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Preface

Over the past few decades, fixed point theory of Lipschitzian and non-
Lipschitzian mappings has been developed into an important field of study in
both pure and applied mathematics. The main purpose of this book is to present
many of the basic techniques and results of this theory. Of course, not all aspects
of this theory could be included in this exposition.

The book contains eight chapters. The first chapter is devoted to some
of the basic results of nonlinear functional analysis. The final section in this
chapter deals with the classic results of fixed point theory. Our goal is to
study nonlinear problems in Banach spaces. We remark here that it is hard to
study these without the geometric properties of Banach spaces. As a result in
Chapter 2, we discuss elements of convexity and smoothness of Banach spaces
and properties of duality mappings. This chapter also includes many interest-
ing results related to Banach limits, metric projection mappings, and retraction
mappings. In Chapter 3, we consider normal structure coefficient, weak normal
structure coefficient, and related coefficients. This includes the most recent
work in the literature. Our treatment of the main subject in the book begins in
Chapter 4. In this chapter, we consider the problem of existence of fixed points
of Lipschitzian and non-Lipschitzian mappings in metric spaces. Chapter 5
is devoted to problems of existence of fixed points of nonexpansive, asympto-
tically nonexpansive, pseudocontractive mappings in Banach spaces. Most of
the results are discussed in infinite-dimensional Banach spaces. The theory
of iteration processes for computing fixed points of nonexpansive, asympto-
tically nonexpansive, pseudocontractive mappings is developed in Chapter 6.
In Chapter 7, we prove strong convergence theorems for nonexpansive, pseudo-
contractive, and asymptotically pseudocontractive mappings in Banach spaces.
Finally in Chapter 8, we discuss several applicable problems arising in different
fields.

Each chapter in this book contains a brief introduction to describe the topic
that is covered. Also, an exercise section is included in each chapter. Because the
book is self-contained, the book should be of interest to graduate students and
mathematicians interested in learning fundamental theorems about the theory
of Lipschitzian and non-Lipschitzian mappings and fixed points.

We wish to express our deepest appreciation to Professors Y. Alber,
T. D. Benavides, J. S. Jung, W. A. Kirk, S. Prus, S. Reich, B. E. Rhoades,
B. K. Sharma, W. Takahashi, H. K. Xu, and J. C. Yao for their encouragement
and personal support.
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Finally the authors are very grateful to Ms. V. Damle, Ms. B. Marcia and the
staff from the Springer Publishers for their indefatigable cooperation, patience
and understanding.

R.P. Agarwal
Donal O’Regan
D.R. Sahu



Contents

Preface

1

Fundamentals

1.1 Topological spaces . . . . . . . .. ... .o
1.2 Normed spaces . . . . . . . . . .
1.3 Dense set and separable space . . . . . . ... ... ... ..
1.4 Linear operators . . . . . . . . ... ... ... ..
1.5 Space of bounded linear operators . . . . .. ... ... .....
1.6 Hahn-Banach theorem and applications . . .. ... .. ... ..
1.7 Compactness . . . . . . .. . i
1.8 Reflexivity . . . . . . . ..o
1.9 Weak topologies . . . . . . . . .. . ...
1.10 Continuity of mappings . . . . . . . . .. ... ... ... ..

Convexity, Smoothness, and Duality Mappings

2.1 Strict convexity . . . . . ... L
2.2 Uniform convexity . . . . . . . .. .. ..o
2.3 Modulus of convexity . . . . .. ... L oL
2.4 Duality mappings . . . . . . . . ..o
2.5 Convex functions . . . . . . . . . .. ... e
2.6 Smoothness . . . . .. .. ...
2.7 Modulus of smoothness . . . . . ... ... ... ...
2.8 Uniform smoothness . . . . . ... ... ... ... ........
2.9 Banach limit . .. ... .. ... .. .. ... .. ..
2.10 Metric projection and retraction mappings . . . . . . . . .. . ..

Geometric Coefficients of Banach Spaces

3.1 Asymptotic centers and asymptotic radius . . . . . .. ... ...
3.2 The Opial and uniform Opial conditions . . . . . ... ... ...
3.3 Normal structure . . . . . .. . ... ... ..o
3.4 Normal structure coefficient . . . . . . ... .. ... ... ...
3.5 Weak normal structure coefficient . . . . . . ... ...
3.6 Maluta constant . . . . ... ... Lo
3.7 GGLD property . . . . . . . . .

vii

00 =

20
22
25
28
32
34
36
43

49
49
93
98
67
79
91
94
98
106
115



X Contents

4 Existence Theorems in Metric Spaces 175
4.1 Contraction mappings and their generalizations . . . . . . . . .. 175
4.2 Multivalued mappings . . . . . . . ..o 188
4.3 Convexity structure and fixed points . . . . . . . ... ... ... 197
4.4 Normal structure coefficient and fixed points . . . . .. ... .. 201
4.5 Lifschitz’s coefficient and fixed points . . . . . . .. .. ... ... 206

5 Existence Theorems in Banach Spaces 211
5.1 Non-self contraction mappings . . . . . .. ... .. ... .... 211
5.2 Nonexpansive mappings . . . . . . . . . .. .. ... 222
5.3 Multivalued nonexpansive mappings . . . . .. ... .. .. ... 237
5.4 Asymptotically nonexpansive mappings . . . . . ... ... ... 243
5.5 Uniformly L-Lipschitzian mappings . . . . . . . . ... ... ... 250
5.6 Non-Lipschitzian mappings . . . . . .. .. ... .. ... .... 259
5.7 Pseudocontractive mappings . . . . . . . ... oL 264

6 Approximation of Fixed Points 279
6.1 Basic properties and lemmas . . . .. ... ... ......... 279
6.2 Convergence of successive iterates . . . . . . . . .. .. ... ... 286
6.3 Mann iteration process . . . . . . ... Lo oL 288
6.4 Nonexpansive and quasi-nonexpansive mappings . . . . . . . . . 292
6.5 The modified Mann iteration process . . . . . . . . .. ... ... 300
6.6 The Ishikawa iteration process . . . . .. ... ... ... .... 303
6.7 The S-iteration process . . . . . . . .. ... L 307

7 Strong Convergence Theorems 315
7.1 Convergence of approximants of self-mappings . . . . . .. .. .. 315
7.2 Convergence of approximants of non-self mappings . . . .. . .. 324
7.3 Convergence of Halpern iteration process . . ... ... .. ... 327

8 Applications of Fixed Point Theorems 333
8.1 Attractorsof the IFS . . . . . . ... ... ... ... ... 333
8.2 Best approximation theory . . . . . .. .. .00 335
8.3 Solutions of operator equations . . . . .. ... ... .. ... 336
8.4 Differential and integral equations . . . . ... ... ... .. .. 339
8.5 Variational inequality . . . ... ... ... ... 0L 341
8.6 Variational inclusion problem . . . . . .. ... .. ... ... .. 343

Appendix A 349
A.1 Basicinequalities . . . . . . . . ... o 349
A.2 Partially ordered set . . . . . . ... oL 350
A.3 Ultrapowers of Banach spaces . . . . . ... .. ... ... .... 350

Bibliography 353

Index 365



Chapter 1

Fundamentals

The aim of this chapter is to introduce the basic concepts, notations, and
elementary results that are used throughout the book. Moreover, the results
in this chapter may be found in most standard books on functional analysis.

1.1 Topological spaces

Let X be a nonempty set and d : X x X — RT :=[0,00) a function. Then d is
called a metric on X if the following properties hold:

(d1) d(z,y) =0 if and only if x = y for some =,y € X;
(d2) d(z,y) = d(y, ) for all 7,y € X;
(d3) d(z,y) <d(z,z)+d(z,y) for all z,y,z € X.

The value of metric d at (z,y) is called distance between x and y, and the
ordered pair (X, d) is called metric space.

Example 1.1.1 The real line R with d(z,y) = |x — y| is a metric space. The
metric d is called the usual metric for R.
For any r > 0 and an element x in a metric space (X, d), we define
B.(z):={y € X :d(z,y) < r}, the open ball with center x and radius r;
B, [z] :=={y € X : d(x,y) <r}, the closed ball with center x and radius r;

0B, (z) := {y € X : d(z,y) = r}, the boundary of ball with center x and
radius r.

For a subset C of X and a point x € X, the distance between = and C,
denoted by d(x,C), is defined as the smallest distance from z to elements of C'.

More precisely,
d(z,C) = ingd(z,y).
TE

The number sup{d(z,y) : z,y € C} is referred to as the diameter of set C and
is denoted by diam(C). If diam(C) is finite, then C' is said to be bounded, and

R.P. Agarwal et al., Fized Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3_1,
(© Springer Science+Business Media, LLC, 2009



2 1. Fundamentals

if not, then C' is said to be unbounded. In other words, C' is bounded if there
exists a sufficiently large ball that contains C.

Interior points and open set — Let G be a subset of a metric space (X, d).
Then = € G is said to be an interior of G if there exists an r > 0 such that
B,(x) C G. The set G is said to be open if all its points are interior or is the
empty set. The interior of set G is denoted by int(G).

Observation
e int(G) C G for any subset G of metric space X.
e For any open set G C X, int(G) = G.

e The empty set () and entire space X are open.

Definition 1.1.2 Let X be a nonempty set and T a collection of subsets of X.
Then T is said to be a topology on X if the following conditions are satisfied:

(i))Der and X €T,
(ii) T is closed under arbitrary unions,
(iii) T is closed under finite intersections.

The ordered pair (X, T) is called topological space.

Observation

e The members of 7 are called 7-open sets or simply open sets.

Definition 1.1.3 A topological space is said to be metrizable if its topology can
be obtained from a metric on the underlying space.

Denoting the class of all open sets of a metric space (X,d) by 74, then we
have

(1) @ and X are in 74,
(2) an arbitrary union of open sets is open,

(3) a finite intersection of open sets is open.
The class 74 is called a metric topology on X.

Definition 1.1.4 Let C' be a subset of a topological space X. Then the interior
of C is the union of all open subsets of C. It is denoted by int(C).

In other words, if {G; : i € A} are all open subsets of C, then int(C) =
UiEA{Gi :G; C C}

Observation
e int(C') is open, because it is union of open sets.
e int(C) is the largest open set of C.
e If G is an open subset of C, then G C int(C) C C.
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Definition 1.1.5 A set I in a topological space X whose complement F°¢ =
X — F s open is called a closed set.

Theorem 1.1.6 Let C be a collection of all closed sets in a topological space
(X, 7). Then C has the following properties:

(i) D eC and X €C,

(i) C is closed under arbitrary intersections,

(#ii) C is closed under finite unions.

Definition 1.1.7 Let C be a subset of a topological space X. Then the closure
of C' is the intersection of all closed supersets of C'. The closure of C is denoted
by C.

In other words, if {F} : i € A} is a collection of all closed supersets of C' in
X, then C = NjepF;.

Observation
e C is closed, because it is the intersection of closed sets.
e C is the smallest closed superset of C.

e If F is a closed subset of X containing C, then C ¢ C C F.

Theorem 1.1.8 Let C' be a subset of a topological space X. Then C' is closed
if and only if C = C.

Exterior points and boundary of sets — Let C' be a subset of a topological
space X. Then the exterior of C, written by ext(C), is the interior of the
complement of C, i.e., ext(C) = int(C°). The boundary of C is a set of points
that do not belong to the interior or the exterior of C. The boundary of set C'

is denoted by 9(C). Obviously, d(C) = C N (X \ C) is a closed set.

Proposition 1.1.9 Let A and B be two subsets of a topological space X. Then
the following properties hold:

Properties of interiors Properties of closures
int(int(A)) = int(A) (A)=A
int(AN B) = int(A) Nint(B) ANBCANB
int(AU B) D int(A) Uint(B) (AUB)=AUB

A C B =int(A) C int(B) ACB=ACB

Definition 1.1.10 Let 71 and 15 be two topologies on a topological space X.
Then 11 is said to be weaker than o if 71 C To.

Note that if 71 and 75 are two topologies on X such that 7 = 73 N 75. Then
the topology 7 is weaker than 7 and 7 both.

Theorem 1.1.11 Let {7; : i € A} be a collection of topologies on a topological
space X. Then the intersection N;caT; s also a topology on X.
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We now turn to the notion of a base for the topology 7.

Definition 1.1.12 Let (X, 7) be a topological space. Then a subclass B of T is
said to be a base for T if every member of T can be expressed as the union of
some members of B.

Observation
e Every topology has a base. In fact, we can take B = 7.
e In a metric space (X,d), collection of all open balls B.(z) (zx € X, r > 0)
is a base for the metric topology.

Then, we have the following theorem:

Theorem 1.1.13 Let (X, 7) be a topological space and B C 7. Then B is a
base for T if and only if, for every x € X and every open set G containing x,
there exists B € B such that x € B and B C G.

We now consider a base of open sets at a point.

Definition 1.1.14 Let (X, 7) be a topological space and xy € X. Then the
collection B, C T is called a base at a point xq if, for any open set G containing
Zo, there exists B € By, such that xo € B C G.

Observation

e In the metric topology of a metric space (X, d), the collection of all B,(x¢), where
r runs through the positive real numbers, constitutes a base at a point x¢ € X.

Neighborhoods — Let X be a topological space and G an open set. Then
G is called an open neighborhood of a point zg € X if zg € G. The set G with-
out xg, i.e., G\ {zo}, is called a deleted open neighborhood of a point zy € X.
A subset C of X is said to be a neighborhood of a point xq € X if there exists
an open set G € 7 such that zog € G C C.

Let (X,7) be a topological space. Then a collection v of neighborhoods of
o € X is said to be a neighborhood base at a point xq if every neighborhood of
xo contains a member of v.

A collection o of subsets of a topological space (X, ) is said to be a subbase
for 7 if 0 C 7 and every member of 7 is a union of finite intersections of sets
from o. In other words, o is a subbase for 7 if 0 C 7 and for all G € 7 and
x € G, there are sets Uy,Us, -+ ,U, in o such that x € N}, U; C G.

Let (X, 7) be a topological space. Then X is said to be

1. a Tp-space if z and y are any two distinct points in X, then there exists
an open set that contains one of them, but not the other;

2. a Ty -space if x and y are two distinct points in X, there exists an open set
U containing x and not y, and there exists another open set V' containing
y, but not x;
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3. a Ty-space or Hausdorff topological space if x and y are two distinct points
in X, there exist two open sets G and H such that x € G, y € H, and
GNH=1.

Observation
e Every Hausdorff space is a Ti-space.

e A topological space X is Ti-space if and only if every subset consisting of a single
point is closed.

e Every metric space is a Hausdorff space.

A topological space (X, 7) is said to be compact if every open cover has a
finite subcover, i.e., if whenever X = U;cAG;, where G; is an open set, then
X = Ujep,G; for some finite subset Ag of A.

A subset C of a topological space (X, 1) is said to be compact if every open
cover has finite open subcover, i.e., if whenever C' C U;cAG;, where G; is an
open set, then C' C U;ep, G for some finite subset A of A.

Observation
e Every finite set of a topological space is compact.
e Every closed subset of a compact space is compact.

e In a compact Hausdorff space, a set is compact if and only if it is closed.

Net — Let D be a nonempty set and < a relation on D. Then the ordered
pair (D, =) is said to be directed if

(i) = is reflexive: a < « for all a € D;
(ii) < is transitive: whenever a < f and f <2y = a <Xy for all a, 8,7 € D;
(iii) for any two elements v and 3, there exists v such that « < v and 5 < 7.

Observation
o (N, >) is a directed set.

o If X # (), then (P(X),C) and (P(X), D) are directed sets, where P(X) is the
power set of X.

e Every lattice is a directed set.

A net, or a generalized sequence in a set X is a mapping S from a directed
set D into X. The net {z, : @ € D} is simply written as {z4}.

Let {x, : @ € D} be a net in a set X and let E be another directed set.
Then a net {z,, : 3 € E} in X is said to be a subnet of {z, : a € D} if it
satisfies the following conditions:

(i) {zay : B€ E} C{zo:a € D};

(ii) for any ap € D, there exists By € E such that ap < ag exists Gy < 3.
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A net {z, : @ € D} in a topological space X is said to converge to the point
x in X if for every neighborhood U of x, there exists ag € D such that z, € U
whenever o > aq. In this case, we write

To — T, O limx, = .
«

A point z in a topological space X is said to be a cluster point of a net
{Zs : a € D} if for every neighborhood U of z and every a € D, there exists
B € D such that 8 = o and zg € U.

Theorem 1.1.15 Let {z4}acp be a net in a topological space X and let x € X.
Then x is a cluster point of the net {x}aep if and only if the net {x4}acp has
a subnet converging to x.

In a metric space (X,d), a sequence {z,} in X is convergent to z € X if
lim d(z,,z) =0, ie., if given € > 0, there exists an integer ny € N such that

n—oo

d(xy,z) < € for all n > ng. A sequence {z,} in a metric space (X, d) is said to
be Cauchyif lim d(z,,z,) =0. A metric space (X, d) is said to be complete

m,n— oo

if every Cauchy sequence in X is convergent in X.

Observation

e In a Hausdorff topological space, the limit of a net is unique.

e In a metric space, every convergent sequence is Cauchy.

A subset E of a directed set D is said to be eventual if there exists § € D
such that for all & € D, o < 8 implies that « € E. A net S: D — X is said to
be eventually in a subset C' of X if the set S™1(C) is an eventual subset of D.

A net {z,} in a set X is called a universal net if for each subset C of X, either
{zo} is eventually in C or {z,} eventually in X \ C.

The following facts are important:
(a) Every net in a set has a universal subnet.

(b) If f: X1 — X is a mapping and if {z,} is a universal net in X7, then
{f(za)} is a universal net in Xo.

(c) If X is compact and if {z,} is a universal net in X, then lim z,, exists.
[e%

We now state the following important result:

Theorem 1.1.16 For a topological space (X, T), the following statements are
equivalent:
(a) X is compact.

(b) For any collection of closed sets {F;};cn having the finite intersection
property (i.e., the intersection of any finite number of sets from the collection
is nonempty), then (;cp Fi # 0.
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(c) Every net in X has a limit point (or, equivalently, every met has a
convergent subnet).

(d) Every filter in X has a limit point (or, equivalently, every met has a
convergent subfilter).

(e) Every ultrafilter in X is convergent.
We now turn our attention to the concept of continuity in topological spaces.

Definition 1.1.17 Let (X,7) and (Y,7') be two topological spaces. Then a
function f : X — 'Y is said to be continuous relative to T and 7' (more precisely,
T — 7' continuous) or simply continuous at a point x € X if for each V € 7/
with f(x) € V, there exists U € T such that x € U and f(U) C V.

The function f is called continuous if it is continuous at each point of X.
Using the concept of net, we have the following result for continuity of a function
in a topological space.

Theorem 1.1.18 Let X andY be two topological spaces and let f be a mapping
from X into Y. Then f is continuous at a point x in X if and only if for every
net {zs} in X,

To =7 = f(za) = f(2).

Some other formulations for continuous functions are the following:

Theorem 1.1.19 Let f be a function from a topological space (X,T) into
another topological space (Y, 7'). Then the following statements are equivalent:
(1) f is continuous (i.e., T — 7' continuous).
(2) For each V e 7', f~1(V) € 7.
(3) For each closed subset A of Y, f~1(A) is closed in X.

(4) For all A C X, f(A) C f(A).
(5) There exists a subbase o of 7' such that f~1(V) €1 for all V € o.

The following result shows that continuous image of a compact set is
compact.

Theorem 1.1.20 Let X and Y be two topological spaces and let T : X — 'Y be
a continuous mapping. If C C X is compact, then T(C) is compact.

The following result shows that there exists the smallest topology for which
each member of {f; : i € A} is continuous.

Theorem 1.1.21 Let {(X;,7;) : ¢ € A} be an indexed family of topological
spaces, X any set, and {f; : i € A} an indexed collection of functions such that
for each i € A, f; is a function from X to X;. Then there exists the smallest
topology T on X that makes each f; continuous (i.e., T —7; continuous).
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Proof. Let o = {f;'(V;) : V; C X is open in 7; (i € A)} be a subbase for the
topology 7 given by

T ={Uper Ncer C: F CT}U{0D, X}, (1.1)

where @ is the set of all finite subsets of 0. Thus, G C X is open in 7 if and
only if for every z € G, there are i1,i9,--- ,i, € Aand V;, € 13,, Vi, € 7y -+

Vi, € 7;, such that z € ﬂzzlfizl(Vik) ca. 1

Remark 1.1.22 The topology 7 on X defined by (1.1) making each f; continu-
ous (T—T1" continuous) is called the weak topology generated by F and is denoted
by o(X,F).

Product space — Let X, Xo, -+, X,, be n arbitrary sets with the Cartesian
product X = X7 x Xo x --- x X,,. Foreachi=1,2,--- n, define m; : X — X
by (21,72, - ,2,) = x;. Then 7; is called the projection on X; or the i*"
projection. If x € X, then m;(z) is called the i*" coordinate of x.

Theorem 1.1.23 Let {(X;,7;) : i = 1,2,--- ,n} be a collection of topological
spaces and (X, T) their topological product, i.e., X =[], X; and 7 =, 7;. Then
each projection m; is continuous. Moreover, if Y is any topological space, then
a function f:Y — X is continuous if and only if the mapping mjof 1 Y — X;
s continuous for alli=1,2,--- | n.

Theorem 1.1.24 (Tychonoff’s theorem) — The Cartesian product X of an
arbitrary collection {X; }iea of compact spaces is compact (with respect to product

topology).

1.2 Normed spaces

A linear space or vector space X over the field K (the real field R or the complex
field C) is a set X together with an internal binary operation “4” called addition
and a scalar multiplication carrying (a,z) in K x X to az in X satisfying the
following for all z,y,z € X and a, 0 € K:

l.z+y=y+ux,

2. (x+y)+z=a+(y+2),

3. there exists an element 0 € X called the zero vector of X such that

rz+0=zforal xe X,

=~

for every element x € X, there exists an element —z € X called the
additive inverse or the negative of x such that = + (—z) =0,

o(s+y) = az +ay,
. (a+ PB)x = ax + Sz,
(af)z = a(Bz),

l-x=ux.

© N o W
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The elements of a vector space X are called vectors, and the elements of
K are called scalars. In the sequel, unless otherwise stated, X denotes a linear
space over field R.

Observation
e With the usual addition and multiplication, R and C are linear spaces over R.
e X = {z = (a1,a2, ) : a; € R} is a linear space.
e The set of solutions of a linear differential equation (and linear partial differential
equation) is a linear space.

A subset S of a linear space X is a linear subspace (or a subspace) of X if S
is itself a linear space, i.e., ax + Sy € S for all o, 5 € K and z,y € S.

If S is a subset of a linear space X, then the linear span of S is the intersection
of all linear subspaces containing S. It is the smallest linear subspace of X
containing S. The linear span of set S is denoted by [S].

Given the points x1,x2,- -+ ,x, of a linear space X, then the element
T=a121+ asxo + -+ anx,, a; €K
is called linear combination of {x1, 2, - ,Tpn}.

Proposition 1.2.1 Let S be a nonempty subset of a linear space X. Then the
linear span of S is the set of all linear combinations of elements of S.

A linear space X is said to be finite-dimensional if it is generated by the
linear combination of a finite number of points (which are linearly indepen-
dent). Otherwise, it is infinite-dimensional. The dimension of a linear space X
is denoted by dim(X).

Convex set — Let C be a subset of a linear space X. Then C is said to
be conver if (1 — XNz + Ay € C for all z,y € C and all scalar A € [0,1].

By definition of convexity, we have the following fact:

Proposition 1.2.2 Let C be a subset of a linear space X. Then C is convez if
and only if M1+ Aoxo+- -+ Ay, € C for any finite set {x1, 22, -+ ,2,} CC
and any scalars \; > 0 with A\ + Ao+ --- + X\, = 1.

Convex hull - Let C be an arbitrary subset (not necessarily convex) of a linear
space X. Then the convex hull of C in X is the intersection of all convex subsets
of X containing C. It is denoted by co(C'). Hence

co(C)=N{DCX:CCD, D is convex}.

Thus, co(C') is the unique smallest convex set containing C'. Clearly,
n
co(C) = {alxl + agro + -+ apry, i x; € Coa; > 0 and Zai = 1}

i=1
the set of all convex combination of elements of C.



10 1. Fundamentals

The closure of convex hull of C is denoted by co(C). Thus,

n
co(C) = {alml + aoxg + -+ apx, tx; € Coa; >0 and Zai = 1}.
i=1

The closed conver hull of C' in X is the intersection of all closed convex
subsets of X containing C. It is denoted by ¢o(C'). Thus,

co(C)=n{DCX:CCD, Disclosed and convex}.

One may easily see that closure of convex hull of C' is closed convex hull of C,
i.e., co(C) = co(C).

Observation
e The empty set ) is convex.

e For two convex subsets C' and D in a linear space X, we have
(i) C + D is convex,
(if) AC' is convex for any scalar \.

e Any translate C' 4 zo of a convex set C' is convex.

o If {C; : i € A} is any family of convex sets in a linear space X, then N;C; is
convex.

e If C' is a convex subset of a linear space X, then
(i) the closure C and the interior int(C) are convex,
(ii) co(C) = C.

o If C is a subset of a linear space, ¢o(C') = co(C).

e In general, ¢o(C) # co(C).

The vector space axioms only describe algebraic properties of the elements
of the space: vector addition, scalar multiplication, and other combinations of
these. For the topological concepts such as openness, closure, convergence, and
completeness, we need a measure of distance in a space.

Definition 1.2.3 Let X be a linear space over field K (R orC) and f : X — R*
a function. Then f is said to be a norm if the following properties hold:

(N1) f(x) =0 if and only if x = 0; (strict positivity)
(N3) ()\ac) |Af(z) for allz € X and X € K; (absolute homogeneity)

(N3)  fl@+y) < fl@)+ fy) for all z,y € X.
(triangle inequality or subadditivity)

The ordered pair (X, f) is called a normed space.

Observation
o f(z)>0forallz € X.
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o |f(z) = fW)| < fl@—y) and |f(x) — f(y)| < f(z+y) forall 2,y € X.

e f is a continuous function, i.e., z, — = = f(zn) — f(z).

e f is a convex function, i.e., f(Az+(1—=A)y) < Af(x)+(1—=N)f(y) forall z,y € X
and A € [0, 1].
e Addition and scalar multiplication are jointly continuous, i.e., if x,, — x and

Tn — vy, then z, +y, — =+ y and if x,, — x and \,, — A, then \,z,, — Az.

We use the notation || - || for norm. Then every normed space (X, | - ||) is a
metric space (X, d) with induced metric d(z,y) = ||z—y|| and a topological space
with the induced topology. It means that the induced metric d(z,y) = ||z — y||
in turn, defines a topology on X, the norm topology.

Observation

e In every linear space X, we can easily define a function p: X x X — R™ by
_J o0 if z=y
p(w,y)—{ \if aty (1.2)
which is a metric on X. It shows that every linear space (not necessarily normed
space) is always a metric space.
At this stage, there arises a natural question:

Under what conditions will any metric on a linear space be a normed space?
Such sufficient conditions are given in following proposition:

Proposition 1.2.4 Let d be a metric on a linear space X. Then function
|-l : X — R" defined by

lz]| = d(x,0) for all x € X
18 a norm if d satisfies the following conditions:
(dy) d is homogeneous : d(Ax, Ay) = |AN|d(z,y) for all z,y € X and X € K;
(d2) d is translation invariant : d(z+z,y+ z) = d(z,y) for all z,y,z € X.

Remark 1.2.5 The metric p defined by (1.2) is not homogeneous and the linear
space X is a metric space under metric p, but not a normed space.

The following example also demonstrates that a metric space is not neces-
sarily a normed space.

Example 1.2.6 Let X be a space of all complex sequences {x;}$2, and d(-,-)
a metric on X defined by

oo

I N e 21 _ _
W=D 3 Tyja—y “= b y=luleX (1.3)
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Then d is not a norm under the relation d(x,y) = ||z — y||. In fact,

=1 Al 5 — gl
d(Az, \y) = e = |)\|d(z,y),
( & ;21 L+ [Aff; —yl7é| |Z2l 1+ |z — il |Ald(z, y)

i.e., d is not homogeneous.

Remark 1.2.7 The metric d defined by (1.3) is bounded, because

oo oo

d(z,y) = - — < — <
This metric is called a Fréchet metric for X.

We now consider some examples of normed spaces:

Example 1.2.8 Let X = R",n > 1 be a linear space. Then R™ is a normed
space with the following norms:

n

Izl = Z|$i| forall ¥ = (z1,22, - ,x,) €R™;
i=1
n 1/p
lzll, = <Zfﬂz‘p) for all @ = (z1,22, -+ ,x,) € R" and p € (1,0);
Iz]lee = 1I£ax |z;| for all x = (z1,22, -+ ,x,) € R™.

Remark 1.2.9 (a) R" equipped with the norm defined by ||z, = (3 i, |z:[P)1/P
is denoted by £ for all 1 < p < oc.

(b) R™ equipped with the norm defined by ||x]|co = max |;| is denoted by 7.

Example 1.2.10 Let X = {1, the linear space whose elements consist of all

absolutely convergent sequences (x1,%a,- - ,Z;,-++) of scalars (real or complex
numbers), i.e.,

o0
by = {x:x(xl,x2,~~ Ty ) and Z|1’Z| <oo}.
i=1

Then ¢y is a normed space with the norm defined by ||z|v = > 5oy |@il.

Example 1.2.11 Let X = ¢, (1 < p < 00), the linear space whose elements
consist of all p-summable sequences (x1,xa, - ,x;,--+) of scalars, i.e.,

oo
Ep:{a::xz(th,”- Ty ) and Z|xi|p<oo}.

=1

Then £, is a normed space with the norm defined by ||z, = (352, [x:]P)'/P.
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Example 1.2.12 Let X = (., the linear space whose elements consist of all
bounded sequences (x1,Za, -+ ,x;, -+ ) of scalars, i.e.,

b ={x: 2= (21,29, - , 24, ) and {x;}2, is bounded}.

Then Lo is a normed space with the norm defined by ||z||oo = sup |z
i€EN

Example 1.2.13 Let X = ¢, the sequence space of all convergent sequences of
scalars, i.e.,

c={z:x=(r1,22,  , 2, ) and {x;}2, is convergent}.
Then ¢ space is a normed space with the norm || - || co-

Example 1.2.14 Let X = cq, the sequence space of all convergent sequences of
scalars with limit zero, i.e.,

co={z = (z1,ma, - , x4, ) : {a;}$2, is convergent to zero}.
The ¢y space is a normed space with norm || - | oo-
Example 1.2.15 Let X = cqq, the sequence space defined by
coo = {x = {2:}21 € boo : {mi}i21 has only a finite number of nonzero terms}.
Then coo space is a normed space with norm || - ||sc-

Observation
® oo Clp CepCeClo foralll <p<oo.
e If 1 <p<q< oo, then £, C 4y. In fact, let x = (1,1/2,---,1/n,--), and we
have
oo

2
;21 |zs| = E 7= and ;:1 |z:|” = g 2= g <%

i=1 i=1
Note that € l2, but = ¢ ¢;. Hence an element of {5 is not necessarily an

element of /1. But each element of ¢; is an element of /5.

Example 1.2.16 Let X = Ly[a,b] (1 < p < 00), the linear space of all equiva-
lence classes of p-integrable functions on [a,b]. Then Ly|a,b] space is a normed
space with the norm defined by

i1 = b f(t)lpdt)l/p < oo.

Example 1.2.17 Let X = Ly[a,b], the linear space of all equivalence classes
of essentially bounded functions on [a,b]. Then Lo[a,b] space is a normed space
with the norm defined by

[flloc = ess sup| f(£)] < oc.
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Example 1.2. 18 Let X = Cla,b], the set of all continuous scalar-valued func-
tions and let “+7 and “-7 be operations defined by

(f+9)(t) = [f(t)+g(t) forall f,g€ Cla,bl;
AH®) = Af(@) for all f € Cla,b] and scalar A € K.

Then Cla,b] is a linear space and is also a normed space with the norms:

p
1l = ( / I |pdt) . 1<p<oo (1.4)
fle = sup [0 (1.5)

t€la,b]

Observation
e The norm || - ||, defined by (1.4) on Cfa, b] is called a L,-norm.

e The norm || - || defined by (1.5) on C[a, b] is called a uniform convergence norm.

’

Equivalent norms — Let X be a linear space over K and let || - || and | - ||”
be two norms on X. Then || - | is said to be equivalent to || - || (written as
II- 1 ~ -] ) if there exist positive numbers a and b such that

alz| < |lz||” <b|z| for all z € X,

or
allz|” < |lzl| < bljz|” for all z € X.
Observation
e The relation ~ is an equivalence relation on the set of all norms on X.
e In a finite-dimensional normed space X, all norms on X are equivalent.
oIf |- ||, and || - H” are equivalent norms on a linear space X, then a sequence {z,}
that is convergent (Cauchy) with respect to || - H/ is also convergent (Cauchy)
with respect to || - | and vice versa.
o If || - H/ and || - ||” are equivalent norms on a linear space X, then the class of
open sets with respect to || - H/ is same as the class of open sets with respect to
Il - ||” and vice versa.

Seminorm — Let X be a linear space over field K (R or C). Then a function
p: X — RT issaid to be a seminorm on X if (N3) and (N3) (see Definition 1.2.3)
are satisfied. The ordered pair (X, p) is called seminormed space. Note that a
seminorm p is a norm if p(x) =0=z = 0.

Example 1.2.19 Let X = R? and define p: X — R* by
p(z) = p((x1,22)) = |2a], =€ X.

Then p is a seminorm, but not a norm, because p(x1,x2) = 0 implies that only
the first component of x is zero, i.e., x1 = 0.
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We now consider the notion of topological linear spaces.

Definition 1.2.20 A linear space X over K is said to be a topological linear
space if on X, there exists a topology T such that X x X and K x X with the
product topology have the property that vector addition + : X x X — X and
scalar multiplication - : K x X — X are continuous functions.

In this case, T is called a linear topology on X.

Definition 1.2.21 A linear topology on a topological linear space X is said to
be a locally convex topology if every neighborhood of O (the zero of X ) includes
a convex neighborhood of 0. Then X is called a locally convex topological space.

Then we have the following interesting result.

Proposition 1.2.22 If X is a locally convex topological linear space over K,
then a topology of X is determined by a family of seminorms {p;}icr.

Inner product — Let X be a linear space over field C. An inner product on X
is a function (-,-) : X x X — C with the following three properties:

(I;) (z,z) >0forall z € X and (x,z) =0 if and only if z = 0;

(I2)  {x,y) = (y,x), where the bar denotes complex conjugation;
(Is) A{ax+ By, z) =alz,z) + By, z) forall z,y,z € X and «, 5 € C.

The ordered pair (X, (-,-)) is called an inner product space. Sometimes,
it is called a pre-Hilbert space. (x,y) is called inner product of two elements
z,y € X.

Example 1.2.23 Let X = R", the set of n-tuples of real numbers. Then the
function (-,-) : R™ x R™ — R defined by

n
<xay> :szyl fOT all x = (xlax27"' 7xn)a Yy = (ylay27"' 7y’n) ER"

i=1

18 an inner product on R™. R™ with this inner product is called real Euclidean
n-space.

Example 1.2.24 Let X = C", the set of n-tuples of complexr numbers. Then
the function {(-,-) : C* x C" — C defined by

n

<377y> :Z%@, fO?" all r = ($17x2,"' 71:71)’ Yy = (y17y2a"' 7yn) G(Cn

=1

18 an inner product on C™. C" with this inner product is called a complex
Euclidean n-space.
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Example 1.2.25 Let X = {5, the set of all sequences of complex numbers
(a1,ag, -+ ,a;,-++) with Y oo, |a;|* < co. Then the function (-,-) : la X lo — C
defined by

(w,y) = > @iy for all w = {w:}2,,y = {wi}i2, € X (1.6)
i=1
s an inner product on fs.

We note that the series (1.6) converges by the Cauchy-Schwarz inequality
(see Proposition 1.2.28).

Example 1.2.26 Let X = Cla,b], the linear space of all scalar-valued
continuous functions on [a,b]. Then the function (-,-) : Cla,b] x Cla,b] — C
defined by

b
(f, g :/ f(t)@dt for all f,g € Cla,b] (1.7)

is an inner product on Cla,b].

We now give some interesting characterizations of linear spaces having inner
products.

Proposition 1.2.27 Let X be an inner product space. Then the function ||-|| :
X — R* defined by

o] = vz, z), reX
is a norm on X.

Proposition 1.2.28 (The Cauchy-Schwarz inequality) - Let X be an
inner product space. Then the following holds:

[z, y)* < (w,2)(y,y) for allz,y € X,

i.e.,
[zl < llll - Myl for all z,y € X.

Proposition 1.2.29 (The parallelogram law) — Let X be an inner product
space. Then ||z +y|* + ||z — yl|* = 2||z||* + 2||y[|* for all z,y € X.

Proposition 1.2.30 The norm on a normed linear space X is given by an
inner product if and only if the norm satisfies the parallelogram law:

lz +yl? + e — yl* = 2]|z]* + 2l|y|* for all z,y € X.

Proposition 1.2.31 (The polarization identity) — Let X be an inner prod-
uct space. Then

1 . . . .
(o= gl + ol = llo = yl? + il + iyl = e = i} for att ay € X,
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Orthogonality of vectors — Let x and y be two vectors in an inner product
space X. Then z and y are said to be orthogonal if (x,y) = 0.

Remark 1.2.32 Ifx and y are orthogonal, then we denote x 1y and we say “x
18 perpendicular to y.”

Proposition 1.2.33 Let X be an inner product space and let x,y € X such
that xLy. Then |lz +y|* = [lz]* + [ly||*.

Observation
e 0Lx for all x € X.
e xlx if and only if x = 0.
e Every inner product space is a normed space.

e Every normed space is an inner product space if and only if its norm satisfies the
parallelogram law.

Convergent sequence — A sequence {z,} in a normed space X is said to

be convergent to x if lim ||z, — z|| = 0. In this case, we write x,, — x or
n—oo

lim z, = z.

n—oo

Observation

ez, — = = ||zn| — ||z|| (this fact can be easily shown by the continuity of norm).
The converse of this fact is not true in general (see Theorem 2.2.13).

e The limit of convergent sequence is unique. To see it, suppose x, — = and
24 —y. Then [z — y|| < [lzn — a + [|on — yl| — 0.

Cauchy sequence — A sequence {x,} in a normed space X is said to be
Cauchy if lim ||z, —z,| =0, i.e., for € > 0, there exists an integer nyg € N
m, n—oo

such that ||z, — z,| < e for all m,n > n,.

Observation

e A sequence in (R, | -|) is convergent if and only if it is Cauchy sequence.

e Every convergent sequence is a Cauchy, but the converse need not be true in
general. In fact, if x,, — x, then

lem — all < llm — all + & — @l — 0 as m,n — oo.

Conversely, suppose X = c¢go is the linear space of finitely nonzero sequences
(z1,22,++ , 240, --) with the norm ||z|| = sup |z;|. Let {z,, = (1,1/2,1/3,---,
ieN

1/n,---)} be a sequence in X. Now
|lzn — Zm| = max{1/n,1/m} — 0 as m,n — oo,

ie., {zn} is a Cauchy sequence. Clearly, the limit = has infinitely nonzero
elements. Thus, x ¢ X. Therefore, a Cauchy sequence is not convergent in X.
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e Every Cauchy sequence is bounded.

e Every Cauchy sequence is convergent if and only if it has a convergent sub-
sequence.

Hilbert space and Banach space — A normed space (X, || - ||) is said to be
complete if it is complete as a metric space (X, d), i.e., every Cauchy sequence
is convergent in X.

A complete normed space (inner product space) is called a Banach space
(Hilbert space).

Example 1.2.34 ¢ (1 <p < o0) are (finite-dimensional) Banach spaces.

Example 1.2.35 ¢, and L,[0,1],1 < p < oo are (infinite-dimensional) Banach
spaces.

Example 1.2.36 The linear space Cla,b] of continuous functions on closed and
bounded interval [a,b] is a Banach space with the uniform convergence norm
lfllco = sup |f(¢)|, but an incomplete normed space with the norm

t

€la,b)
b 1/p
|f||p=< / If(t)l”dt) 1<p<

Example 1.2.37 cyg is not complete.
Theorem 1.2.38 FEvery finite-dimensional normed space is a Banach space.

The topological property closedness has an important role in the construction
of Banach spaces from its subspaces. A point = in a normed space X is said to
be a limit point of a subset C' C X if there exists a sequence {z,} in C such
that lim z, = z. Also a subset C' of a normed space is said to be closed if it

n—oo

contains all of its limit points, i.e., C = C.
Theorem 1.2.39 A closed subspace of a Banach space is a Banach space.

Theorem 1.2.40 Let C' be a subset of a normed space X and let x € X. Then
x € C if and only if there exists a sequence {x,} in C such that lim z, = x.

n—oo
Observation

e The subspaces ¢ and co are closed subspaces of ¢ (and hence are Banach
spaces). The space cgo is only a subspace in cg, but not closed in ¢o (and hence
not in £s). Therefore, coo is not a Banach space.

e The subspace C|a, b] is not closed in Ly[a,b] for 1 < p < co. Hence Cla, b] is not
a Banach space with the Ly-norm || - ||, (1 < p < 00) defined by (1.4).

We now give examples of Banach spaces that are not Hilbert spaces.
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Example 1.2.41 (] is a finite-dimensional Banach space that is not a Hilbert
space for p # 2. Indeed, forx = (1,1,0,0,---) andy = (1,—1,0,0,---), we have
x+y=(2000,--) and x —y = (0,2,0,0,---). Hence

n 1/p
(Tlar) " = e 2
i=1

Izl =
lyl = (7 +17) =277,

la+yl = @) =2,

la =yl = @)"r=2.

If p = 2, then the parallelogram law:
2 +ylI* + [l — ylI* = 2]lz] + 2[|y||?

is satisfied, which shows that 03 is a Hilbert space. If p # 2, then the paralle-
logram law is not satisfied. Therefore, £} is not a Hilbert space for p # 2.

The following example shows that there exists an infinite-dimensional Banach
space that is not a Hilbert space.

Example 1.2.42 Let X = C[0, 27, the space of all real-valued continuous func-
tions on [0, 27| with “sup” norm. Then (C0,27], |- |leo) is a Banach space, but
I - [loo does not satisfy the parallelogram law. In fact, for x(t) = max{sint, 0},
y(t) = min{sint,0}, we have

[#]loc = L, [[glloc = L Iz + ylloo = 1, [[# = ylloo = 1,
i.e., the parallelogram law:

Iz + yll5 + llz = yli5 = 2llz[l% +2]lyl%

s mot satisfied.

Remark 1.2.43 Cla,b] is an inner product space with the inner product defined
by (1.7), but not a Hilbert space.

Observation

o (5, s, La[a,b] are Hilbert spaces.
o ly, {y, Lyla,b] (p#2) are not Hilbert spaces.

We conclude this section with some important facts about the completeness
property.

Definition 1.2.44 A subset C' of a normed space X is said to be complete if
every Cauchy sequence in C converges to a point in C.

Definition 1.2.45 Let > 2 x, be an infinite series of elements x1,z2, -+ ,

Tp, -+ in a normed space X. Then the series > - | xy is said to converge to
an element x € X if lim ||s, — x| = 0, where s, = 1 + 29 + -+ + ,, is nt?
n—oo

partial sum of series Y .| Tp.
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Definition 1.2.46 The series Y., , @, in a normed space X is said to be
absolutely convergent if > 7 | ||@y|| converges.

The following result shows that completeness and closure are equivalent in
a Banach space.

Theorem 1.2.47 In a Banach space, a subset is complete if and only if it is
closed.

Remark 1.2.48 Notice every normed space is closed, but not necessarily
complete.

Theorem 1.2.49 A normed space X is a Banach space if and only if every
absolutely convergent series of elements in X is convergent in X.

Theorem 1.2.50 (Cantor’s intersection theorem) — A normed space X
is a Banach space if and only if given any descending sequence {F,} of closed
bounded subsets of X,

lim diam(F,) =0= N F, # 0. (1.8)

Proof. Let X be a Banach space and {F},} a descending sequence of nonempty

closed bounded subsets of X for which lim diam(F,) = 0. For each n, select
n—oo

ZTn € Fy. Then given € > 0, there exists an integer ng € N such that n > ng =
diam(Fy,) < e. If m,n > ng, both z, and z,, are in F,,, then ||z, — z,| < e.
Hence {z,} is a Cauchy sequence. Because X is a Banach space, there exists
z € X such that lim z,, = . This shows that z € F,, = F,, if n > ng. Because

n—oo

the sequence {F,} is descending, x € N2, F,,.

Conversely, suppose that the condition (1.8) holds. Suppose {z,} C X
is a Cauchy sequence. For each n € N, let F,, = {zp,@n 41, }. Then {F,}
is a descending sequence of nonempty closed subsets of X for which
lim diam(F,) =0. By assumption, there exists a point € (), —, F,. Let
n—oo
€ > 0 and choose N € N so large that

n > N = diam(F,,) < .

Then clearly for such n we have that ||z, — z|| < e. Hence lim z, = =z.

n—oo

Therefore, X is complete. I
1.3 Dense set and separable space
A sequence {z,} in a normed space X is said to be a (Schauder) basis of X if

each z € X has a unique expansion z = Zzo:l Qapxy for some scalars aq, g, - -+
Qny -
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Observation

e {z,} is a basis of a normed space X if for each x € X, there exists a unique
n

sequence {an} of scalars such that lim ||z — Z ;x| = 0.
n—00

=1

e The elements
en:(070707"'7 17 07"')7 TLGN

1
nth position
from a basis for cgo, co and £, (1 < p < o0).

e {en}nen is not a Schauder basis of fo.
e The sequence (1,e1,e2,---) is a basis for ¢, where 1 = (1,1,1,---).

A subset C of a metric space (X, d) is said to be dense in X if C = X. This
means that C' is dense in X if and only if CNB,.(z) # @ for all x € X and r > 0.

A metric space (X, d) is said to be separable if it contains a countable dense
subset, i.e., there exists a countable set C' in X such that C' = X.

Observation
e If X is a separable metric space, then C' C X is separable in the induced metric.

e A metric space X is separable if and only if there is a countable family {G;} of
open sets such that for any open set G C X,

G = Ug,;ccGi.
Next, we give some examples of separable and nonseparable spaces.
Example 1.3.1 The space £,,1 < p < oo is separable metric space.
Example 1.3.2 The {, space is not a separable space.

Example 1.3.3 The linear space X of all infinite sequences of real numbers
with metric d defined by

o 1 [z — yil
d(z,y) = ;5 T+ [z -
z= (21,22, T )y = (Y1, Y2, Yir ) € X
1s a separable complete metric space.
Theorem 1.3.4 Every normed space with basis is separable.
Theorem 1.3.5 Every subset of a separable normed space is separable.

Theorem 1.3.6 Every finite-dimensional normed space is separable.

Observation
e R, R" ¢, C[0,1], £p, L, (1 < p < o0) are separable normed spaces.

e /o, Lo are not separable.
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1.4 Linear operators

Let X and Y be two linear spaces over the same field K and T : X — Y an
operator with domain Dom(T) and range R(T). Then T is said to be a linear
operator if

(i) T is additive: T(x +y) = Tz + Ty for all z,y € X;
(ii) T is homogeneous: T(az) = aTx for all x € X, a € K.
One may easily check that T is linear if and only if

T(ax+ By) = aTxz+ Ty for all z,y € X and o, f € K.

Otherwise, the operator is called nonlinear. The linear operator is called a
linear functional if Y = R.

Example 1.4.1 Let X =R", Y =R, and T : X — R an operator defined by
Ty = szyz for all x = (z1, 22, , Tpn),
i=1

where y = (Y1,Y2, -+ ,Yn) s the fized element in R™. Then T is a linear func-
tional on R™.

Example 1.4.2 Let X =Y = /{5 and T : {5 — €5 an operator defined by

To I3 Tn
— | forallx = (x1,22,23, + ,Xp, ) € La.

xz <ax1a2737 ’TL

Then T is a linear operator on fs.

Example 1.4.3 Let X = Cla,b], the linear space of all continuous real-valued
functions on closed bounded interval [a,b]. Then the operator T : Cla,b] —
Cla,b] defined by

¢
T(ht = [ fudu, t€ oy
s a linear operator.

Example 1.4.4 Let X = L3[0,1], Y =R and T : X — R an operator defined
by

1
Tz = / x(t)y(t)dt for all x € Ly]0,1],
0
where y is a fized element in L3[0,1]. Then T is a linear functional on L0, 1].

The following result is very useful for linear operators:

Proposition 1.4.5 Let X and Y be two linear spaces over the same field K
and T : X — Y a linear operator. Then we have the following:
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(a) T(0) =0.
(b) R(T) ={y € Y : y = Tz for some x € X}, the range of T is a linear
subspace of Y.
(c) T is one-one if and only if Tx =0 =z =0.
(d) If T is one-one operator, then T~ exists on R(T) and T~ : R(T) — X
s also a linear operator.
(e) If dim(Dom(T)) = n < oo and T~ exists, then dim(R(T)) =
dim(Dom(T)).
Recall an operator T' from a normed space X into another normed space Y is
continuous if for any sequence {z,} in X with z, - = € X = Tx,, — Txz. The
following Theorem 1.4.6 is very interesting because the continuity of any linear

operator can be verified by only verifying Tz,, — 0 for any sequence {z,} C X
with z,, — 0.

Theorem 1.4.6 Let X and Y be two normed spaces and T : X — Y a linear
operator. If T is continuous at a single point in X, then T is continuous through-
out space X.

Proof. Suppose T is continuous at a point zg € X. Let {x,} be a sequence in
X such that lim z, =2 € X. By the linearity of 7', we have

n—oo
Tz, — Tzl = |T(z, — x + z0) — Tzo]|.
Because T is continuous at xg,

lim (z, — z+ x0) = xg = lim T(x, —x + x9) = T,

it follows that || Tx, — Tx| = ||T (2 — z + x0) — Tao|| — 0 as n — co. Thus, T

is a continuous operator at an arbitrary point z € X.

Boundedness of linear operator — Let X and Y be two normed spaces
and T : X — Y a linear operator. Then T is said be bounded if there exists a
constant M > 0 such that

|ITz|| < M||z|| for all x € X.

A linear functional f : X — R is called bounded if there exists a constant M > 0
such that
|f(z)| < M|z| for all z € X.

We now present an example of a linear operator that is unbounded.

Example 1.4.7 Let X = cqgo, the linear space of finitely nonzero real sequences
with “sup” norm and T : X — R a functional defined by

szZixi for all © = (z1,22,--- ,2,,0,0,---) € X.
i=1

Then T is clearly a linear functional, but it is unbounded.
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With this example, we remark that linearity of the operator does not imply
boundedness. Hence we require additional assumption for boundedness of any
linear operator. The following important result shows that such an additional
assumption is continuity of the linear operator.

Theorem 1.4.8 A linear operator on a normed space is bounded if and only if
1t 18 continuous.

Proof. Let T be a bounded linear operator from a normed space X into another
normed space Y. Then there exists a constant M > 0 such that

|Tz|| < M||z|| for all x € X.
Then if z,, — 0, we have that
T2y, || < M||z,|| — 0 as n — oo,

and it follows that 7" is continuous at zero. By Theorem 1.4.6, we conclude that
T is continuous on X.

Conversely, suppose T' is continuous. We show that 7" is bounded. Suppose,
for contradiction, that 7" is unbounded. Hence there exists a sequence {z,} in
X such that

Tz > nllz,| for all n € N.

Because T0 = 0, this implies that ,, # 0. Set y,, := z,,/(n||zy]]),n € N. Then
lynll = llzn/(n]|zn]))]| = 1/n — 0, which implies that lim y, = 0. Observe

that

1

| Tyn| = |T< In >|| = |IT2,| > 1 for all n € N
nljzn|| n|zn |

and hence {T'y,, } does not converge to zero. This means that T is not continuous

at zero, a contradiction.

If the dimension of X is finite, it also forces the boundedness of a linear
operator.

Theorem 1.4.9 Let X andY be two normed spaces. If X is a finite-dimensional
normed space, then all linear operators T : X — Y are continuous (hence
bounded).

Remark 1.4.10 Example 1.4.7 shows that the conclusion of Theorem 1.4.9
is not true in general (in infinite-dimensional normed spaces). Thus, linear
operators may be discontinuous in infinite-dimensional normed spaces.
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1.5 Space of bounded linear operators

Let X and Y be two normed spaces. Given two bounded linear operators
T, T5 : X — Y, we define
(Tl +T2)SC = T1:L‘+T2(ZZ,
(aTy)x = aTzforallz € X and a € K.

We denote by B(X,Y), the family of all bounded linear operators from X
into Y. Then B(X,Y) is a linear space. The space B(X,Y) becomes a normed
space by assigning a norm as below:

ITl|p = inf{M:|Tz| < Mlz|,z € X}
T
sup{” all ':c;éO,xeX}

]l
= sup{[[Tz| : z € X, [Jzf| <1}

= sup{||Tz| : z € X, [lz]| = 1}.

Theorem 1.5.1 The normed space B(X,Y') is a Banach space if Y is a Banach
space.

We now state an important result:

Theorem 1.5.2 (Uniform boundedness principle) - Let X be a Banach
space, Y a normed space, and {T;};cen € B(X,Y) a family of bounded linear
operators of X intoY such that {T;x} is bounded set in'Y for each x € X, i.e.,
for each © € X, there exists M, > 0 such that

|T;x|| < My for all i € N.
Then {||T;||z} is a bounded set in RT, i.e., T; are uniformly bounded.

As an immediate consequence of Theorem 1.5.2 (uniform boundedness
principle), we have

Theorem 1.5.3 Let X and Y be two Banach spaces and {T,,} a sequence in
B(X,Y). For each x € X, let {T,x} converges to Txz. Then we have the
following:

(a) T is a bounded linear operator, i.e., T € B(X,Y);

(b) |15 < liminf |17,

Proof. (a) Because each T), is linear, it follows that
T(ax+ By) = lim T,(ax+ Pfy) = lim T,(az)+ lim T,(8y)
n—oo n—oo n—oo
= «a lim T,z + 6 lim T,y

= aTx+ Ty
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for all x,y € X and «, 8 € K. Further, because the norm is continuous,

lim ||T,z| = ||Tx]| for all z € X,

it follows that {T,x} is a bounded set in Y. By the uniform boundedness
principle, there exists a positive constant M > 0 such that sup ||T,||p < M.
neN
Thus,
[Tnz|| < | Tnllsllell < Mllz].
Taking the limit as n — oo, we have
1Tz < M|,
so T is bounded. Therefore, T € B(X,Y).

(b) Because
[Toz] < I Tulsll=l,
this implies that

liminf ||T,z|] < liminf||T,| sz
n—oo n—oo
Hence ||Tz|| < liminf ||T5,||g||z]|. Thus, |T||p < liminf [|T,]| 5. I
n— 00 n—o0

Dual space — The space of all bounded linear functionals on a normed space
X is called the dual of X and is denoted by X*. Clearly, X* = B(X,R) and is
a normed space with norm denoted and defined by

[fll+ = sup{|f(z)| : = € Sx}.

In view of Theorem 1.5.1, we have the following interesting result, which is
very useful for the construction of Banach spaces from normed spaces.

Corollary 1.5.4 The dual space (X, || - |+) of a normed space X is always a
Banach space.

We now give basic dual spaces:

The dual of R™ — Let R™ be a normed space of vectors = (x1,x2, - ,y)

with norm ||z = (3°;, x%)l/Q. Then for y = (y1,Y2, - ,Yi, - ,Yn) € R, any
functional f : R™ — R of the form

n
f(q;)zzxiyi’ $:<xl,$2’...’J;i’...7xn)€Rn
=1

is linear. Further, from the Cauchy-Schwarz inequality,

n n 1/2 n 1/2 n 1/2
Seal < (Xa2) (L) =(X#) e
=1 =1 =1

i=1

[f(z)] =
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which shows that f is bounded with || f|l. < (3, ¥?)'/2. However, because
for x = (y1,y2, -+ ,Yn) equality is achieved in the Cauchy-Schwarz inequality,
we must in fact have || f|l. = (31, y2)'/2.

Now, let j be any bounded linear functional on X = R™. Define the basis
vectors e; in R™ by
€, = (0703 71a07"' ,0)
it"  position
Suppose j(e;) = a;. Then for any @ = (21,29, - ,z,), we have z =
>, xie;. By the linearity of j, we have
n n n
i) =Y glew) =Y dlei)wi =Y aimwi.
i=1 i=1 i=1
Thus, the dual space X* of X = R" is itself R™ in the sense that the space X*

consists of all functionals of the form f(z) = Y., a;,x; and the norm on X* is
11l = (32 ail?)!/? = |lall, where a = (a1, a2, -+, a,) € R™.

The dual of ¢;,,1<p<oo - For 1 < p < oo, the dual space of ¢, is ¢,

(1/p+1/q = 1) in the sense that there is a one-one correspondence between
elements y € ¢, and bounded linear functionals f, on ¢, such that

fy(z) = Zmii‘/iv v ={xi}iZ, €4y,
i=1

where
y={vi}i21 € 4
and -
(21':1 ‘yi|q)1/q7 if 1 <p<oo,
I £yl = llyllq = .
sup |y;| if p=1.
ieN
Observation

e The dual of ¢; is /.
e The dual of £, is {g, 1 <p<ooand 1/p+1/g=1.
e The dual of /- is not ¢;.

The dual of co — The Banach space ¢y of all real sequences x = {z;} such
that lim x; = 0 with norm ||z|l« = sup |z;| is a subspace of fo. The dual
N

i—00 i€
of ¢g is 1 in the usual sense that the bounded linear functionals on ¢g can be
represented as

oo
fy(@) = inyiv x = {x;}2, € co,
i=1

where y = {y;}22, € €1 and [ fyll« = llyll = 2232, lyil.
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The dual of L,[0,1],1 <p < oo — For 1 <p < oo, the dual space of L,[0, 1]
is Lq[0,1],(1/p+ 1/q = 1) in the sense that there is one-one correspondence
between elements y € L4[0,1] and bounded linear functionals f, : L,[0,1] — R
such that

fy(x) :/0 z(t)y(t)dt and || fyll+ = [lyllq-

We now state an important theorem in Hilbert space that is called the Riesz
representation theorem. This theorem demonstrates that any bounded linear
functional on a Hilbert space H can be represented as an inner product with a
unique element in H.

Theorem 1.5.5 (Reisz representation theorem) — Let H be a Hilbert space
and f € H*. Then we have the following:

(1) There exists a unique element yo € H such that f(x) = (z,y0) for each
rec H.

(2) Moreover, |[f|l« = llyol|-
Remark 1.5.6 In a Hilbert space H, (distinct) bounded linear functionals f

on H are generated by (distinct) elements y of the space H itself, i.e., there is
one-one correspondence between f € H* and y € H. Therefore, H* = H.

1.6 Hahn-Banach theorem and applications

The Hahn-Banach theorem is one of the most important theorems in functional
analysis. To state it, we need the following definitions:

Sublinear functional — Let X be a linear space and p : X — R a functional.
Then p is said to be a sublinear functional on X if

(i) p is subadditive: p(z +y) < p(z) + p(y) for all z,y € X,
(ii) p is positive homogeneous: p(ax) = ap(x) for all x € X and a > 0.
It is evident that every norm is a sublinear functional.

The sublinear functional p on X is called convex functional on X if p(x) > 0
for all x € X. Obviously, every norm is a convex functional also.

Example 1.6.1 Let p: {o — R be a functional defined by

p(z) =limsupz, for all t = (21,22, - ,&p, ) € loo.
n—oo

Then p is a sublinear functional on £ .
Extension mapping — Let C be a proper subset of a linear space X and
f a mapping from C into another linear space Y. If there exists a mapping

F : X — Y such that
F(z)= f(z), z€C,

then F is called an extension of f.
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Example 1.6.2 Let X =[0,1],C =[0,1) and f : C — R defined by
flz)=2% =x€]0,1).

Then ' o
Fl(x):{ f(ox) ;§§i1

and . o
Fy(z) = { f(lx) Z?iil

are two extensions of f, where Fy is continuous, but Fy is not.

Simply, the Hahn-Banach theorem states that a bounded linear functional
f defined only on a subspace C of a normed space X can be extended to a
bounded linear functional F' defined on the entire space and with norm equal
to that of f on C, i.e.,

1Flx = £l = sup L&)

p .
vec ]
We now state the theorem without proof.

Theorem 1.6.3 (Hahn-Banach theorem) — Let C' be a subspace of a real
linear space X, p a sublinear functional on X, and f a linear functional defined
on C' satisfying the condition:

fx) <p(z) forall xe€C.
Then there exists a linear extension F of f such that F(x) < p(z) for all z € X.

Corollary 1.6.4 Let C be a subspace of a real normed space X and f a bounded
linear functional on C. Then there exists a bounded linear functional F defined
on X that is an extension of f such that ||F|l« = ||fllc-

Proof. Take p(x) = || fllc|lz|,z € X. 1

The following corollary gives the existence of nontrivial bounded linear func-
tionals on an arbitrary normed space.

Corollary 1.6.5 Let x be an element of a normed space X. Then there exists
(monzero) j € X* such that j(z) = |j|. =] and |j]. = |lx].

Corollary 1.6.6 Let x be a nonzero element of a normed space X. Then there
exists j € X* such that j(x) = ||z| and 7]« = 1.

Corollary 1.6.7 Let X be a normed space. Then for any x € X,

ozl = sup |j(z)].
Ijll-<1
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Corollary 1.6.8 If X is a normed space and xo € X such that j(xzg) = 0 for
all j € X*, then xo = 0.

Proof. Suppose z¢ # 0. By Corollary 1.6.6, there exists a functional j € X*
such that

(o) = [[zoll and [|j]l. = 1.
This implies that j(zg) # 0, which is a contradiction. Hence j(xg) = 0 for all
jE€X*=ux9=0.

The following theorems are very useful in many applications.

Theorem 1.6.9 Let C be a subspace of a normed space X and xg an element
in X such that d(xg,C) =d > 0. Then there erists a bounded linear functional
Jj € X* with norm 1 such that j(xo) =d and j(z) =0 for all x € C.

Theorem 1.6.10 (Separability) — If X* is the dual space of a normed space
X and X* is separable, then X is also separable.

Next, we discuss geometric forms of the Hahn-Banach theorem. We need
the following:
Hyperplane — A subset H of a linear space X is said to be a hyperplane if
there exists a linear functional f # 0 on X such that

H={zeX: f(z)=a}, ack
f(z) = «a is called the equation of the hyperplane.
Example 1.6.11 Let X =R, f(z) = 3z, a = 2. Then the set
H={zeX: f(z)=a}={ze X :3z=2}={2/3}.

Hence H is a hyperplane.

We have the following interesting result.

Proposition 1.6.12 Let X be a topological linear space. Then the hyperplane
{r € X : f(x) = a} is closed if and only if f is continuous.

Let f(x) = a, a € R, be the equation of hyperplane in a linear space X.
Then we have the following:

(i) {re X : f(z) <a}and {z € X : f(z) > a} are open half-spaces.

(ii) {z € X : f(z) < a} and {z € X : f(z) > a} are closed half-spaces.

It is easy to see that the boundary of each of the four half-spaces is just a
hyperplane.
Remark 1.6.13 In a topological linear space X, we have

(i) open half-spaces are open sets,

(ii) the closed half-spaces are closed sets if and only if f is continuous, i.e.,
the hyperplane {x € X : f(x) = a} is closed.
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Let X be a linear space. We say that the hyperplane {x € X : f(z) = a}
separates two sets A C X and B C X if f(z) < aforall z € A and f(x) > «
for all © € B. We say that the hyperplane {x € X : f(x) = a} strictly separates
two sets A C X and B C X if f(x) < a for all z € A and f(x) > « for all
z € B.

Theorem 1.6.14 (Hahn-Banach separation theorem) — Let X be a normed
space and let A C X, B C X be two nonempty disjoint convex sets. Suppose
that A is open. Then there exists a closed hyperplane that separates A and B,
i.e., there exist 7 € X* and a number o € R such that

j@)>aifreAandj(zr) <aifze B.

Proposition 1.6.15 Let C be a nonempty open convexr subset of a normed
space X. Then for xg € X, xg & C, there exists f € X* such that

flx)<a foradllxeC,
where f(xg) = a.

An immediate consequence of the separation theorem shows that ¢o(C) is
the intersection of all closed half-spaces containing C. Indeed,

Theorem 1.6.16 Let C be a nonempty subset of a normed space X. Then

co(C)={r e X : f(z) <sup f(y) forall fe X"}
yel

Theorem 1.6.17 Let C' be a nonempty closed convex subset of a normed space
X. If x is not an element in C, there exists a continuous linear functional
J € X* such that

j(x) <inf{j(y) :y € C}.

Theorem 1.6.18 (Hahn-Banach strictly separation theorem) - Let A
and B be two nonempty disjoint convex subsets of a normed space X. Suppose
A is closed and B is compact. Then there exists a closed hyperplane that strictly
separates A and B.

Supporting hyperplane — Let C be a convex subset of a normed space X
with int(C) # () and xo € dC. Then a nonzero functional f € X* is said to be
a support functional for C at xg if f(z) < f(xo) for all x € C. The correspond-
ing hyperplane {z € X : f(z) = f(xo)} is called a supporting hyperplane for
C at xg.

A point of C through which a supporting hyperplane passes is called a point
of support of C.

Observation
e Any supporting hyperplane of a set C' with nonempty interior is closed.

e An interior point of C' cannot be a point of support.
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We give some conditions on C' under which a boundary point is a point of
support.

Theorem 1.6.19 Let C' be a convexr subset of a mormed space X with
int(C) # 0. Then every boundary point of C is a point of support, i.e., for

every xg € OC, there exists an f € X* such that f # 0 and f(x) = sup f(z).
zeC

1.7 Compactness

Let (X, d) be a metric space. Recall that a subset C of X is called compact if
every open cover of C' has a finite subcover. Equivalently, a subset C of X is

compact if every sequence in C' contains a convergent subsequence with a limit
in C.

A subset C of X is said to be totally bounded if for each € > 0, there exists a

finite number of elements x1, 2, -+ , 2, in X such that C C U™, B.(z;). The
set {x1,x2, -+ ,x,} is called a finite e-net.
Observation

e Every subset of a totally bounded set is totally bounded.

e Every totally bounded set is bounded, but a bounded set need not be totally
bounded.

Proposition 1.7.1 A subset of a compact metric space is compact if and only
if it closed.

Proposition 1.7.2 Let X be a metric space. Then the following are equivalent:
(a) X is compact.
(b) Every sequence in X has a convergent subsequence.

(c) X is complete and totally bounded.

Proposition 1.7.3 Let C' be a subset of a complete metric space X. Then we
have the following:

(a) C is compact if and only if C is closed and totally bounded.

(b) C is compact if and only if C is totally bounded.

Observation
e X = (0,1) with usual metric is totally bounded, but not compact.

e X = R with usual metric is complete. But it is not totally bounded and hence
not compact.

A subset C of a topological space is said to be relatively compact if its closure
is compact, i.e., C' is compact. In particular, we have an interesting result:
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Proposition 1.7.4 Let C be a closed subset of a complete metric space. Then
C is compact if and only if it is relatively compact.

We now state the following fundamental theorems concerning compactness.

Theorem 1.7.5 (The Heine-Borel theorem) — A subset C' of R is compact
if and only if it is closed and bounded.

Corollary 1.7.6 A set C C R™ is compact if and only if it is closed and
bounded.

Theorem 1.7.7 (Weierstrass theorem) — Let C' be a nonempty compact
subset of a metric space (X,d) and f: C — R a continuous function. Then f
attains its mazimum and minimum, i.e., there exist x, T € C such that

f(z) = inf f(z) and f(T) = sup f(x).
zeC zeC
Theorem 1.7.8 (Mazur’s theorem) — The closed conver hull co(C) of a
compact set C of a Banach space is compact.

Observation
e R"™ n > 1isnot compact. However, every closed bonded subset of R™ is compact.
For example, C = [0,1] C R is compact, but R itself is not compact.
e C[0,1] and ¢2 are not compact.
e The subset C = {{zn} € {2 : |zn| < 1/n,n € N} of £3 is compact.
e The closed unit ball Bx = {z € X : ||z|| < 1} in infinite-dimensional normed
space is not compact in the topology induced by norm (see Proposition 1.7.14).

Proposition 1.7.9 A subset C' of £, space is compact if C is bounded and for
e > 0, there exists no(e) € N such that Y .2 . |z5|P < &P for all n > ng and
r={z;}2, €C.

Proposition 1.7.10 FEvery compact subset of a normed space X 1is closed, but
the converse may not be true.

Observation
o R" is closed.

Proposition 1.7.11 FEvery compact subset of a normed space X is complete,
but the converse may not be true.

Proposition 1.7.12 Every compact subset of a normed space is bounded, but
the converse may not be true.

Proposition 1.7.13 Every compact subset of a normed space is separable.

Proposition 1.7.14 A closed and bounded subset of a normed space need not
be compact.
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Proof. Let X = f5. Then the unit ball Bx = {z € l3 : ||z[2 = (350, |z:[})1/? <
1} is closed and bounded. We now show that Bx is not compact. Let {z,} be
a sequence in By defined by

2, = (0,0,--+,1,0,---), mneN.
T

nth position
Hence for m # n,

Hxn - mmH2 = \/ia
i.e., there is no convergent subsequence of {x,}. Therefore, Bx is not totally

bounded and hence it is not compact.

Remark 1.7.15 By, is compact in the weak topology (see Theorem 1.9.26).

Proposition 1.7.16 A normed space X is finite-dimensional if and only if
every closed and bounded subset of X is compact.

1.8 Reflexivity

Let X1, X5,---,X,, be m linear spaces over the same field K. Then a func-
tional f : X X X5 X -+ x X, — R is said to be an m-linear (multilinear)
functional on X = X7 x Xy x --- x X, if it is linear with respect to each of the
variables separately. For m = 2, such a functional is called a bilinear functional.

Duality pairing - Given a normed space X and its dual X*, we define the
duality pairing as the functional (-,-) : X x X* — K such that

(x,5) =7(z) forallz € X and j € X™.
The properties of duality pairing can be easily derived from the definition:

Proposition 1.8.1 Let X* be the dual of a normed space X. Then we have
the following:

(a) The duality pairing is a bilinear functional on X x X*:
(i) {ax + by, j) = alz,j) + b{y, j) for all z,y € X;j € X* and a,b € K;
(“) <x7aj1+ﬁj2> = Oé<$»j1>+ﬁ<y»j2> fO’f’ allz € X;jlan S X*7 OZ,/B e kK

(b) (x,7) =0 for all x € X implies j = 0.
(c) (x,7) =0 for all j € X* implies © = 0.

Natural embedding mapping - Let (X,| - ||) be a normed space. Then
(X*, || l+) is a Banach space. Let j € X*. Hence for given z € X, the equation

f2(4) = (2,])
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defines a functional f, on the dual space X*. The functional f, is linear by
Proposition 1.8.1. Moreover, for j € X* we have

|fa()] = [z, ) < N2l 1]l (1.9)
This shows that f, is bounded and hence f, is a bounded linear functional
on X*.

The space of all bounded linear functionals on X* is denoted by X** and is
called the second dual of X. Then f, € X**. Note that X** is a Banach space.
Let || - ||+« denote a norm on X**. From (1.9), we have

([ fallaw < ]

By Corollary 1.6.5, there exists a nonzero functional j € X* such that

(,7) = llzlll7]l« and [5]. = l|lz]-
This implies that || fo|l«« = ||z
Define a mapping ¢ : X — X** by p(x) = f,, x € X. Then ¢ is called the
natural embedding mapping from X into X**. It has the following properties:
(i) ¢ is linear: p(azx + By) = ap(z) + Bp(y) for all z,y € X, o, 8 € K;
(ii) p(x) is isometry: ||p(x)| = ||z| for all x € X.

Generally, however, the natural embedding mapping ¢ from X into X** is
not onto. It means that there may be elements in X** that cannot be represented
by elements in X.

In the case when ¢ is onto, we have an important class of normed spaces.

Definition 1.8.2 A normed space X is said to be reflexive if the natural
embedding mapping ¢ : X — X** is onto. In this case, we write X = X**

or X = X**.
Observation
e R" is reflexive. (In fact, every finite-dimensional Banach space is reflexive.)
e /, and L, for 1 < p < oo are reflexive Banach spaces.
e Every Hilbert space is a reflexive Banach space, i.e., H** = H.
e /1, oo, L1 and L, are not reflexive.

e c and ¢¢ are not reflexive Banach spaces.

We now state the following facts for the class of reflexive Banach spaces.
Proposition 1.8.3 (a) Any reflexive normed space must be complete and, hence,
18 a Banach space.

(b) A closed subspace of a reflexive Banach space is reflexive.

(c) The Cartesian product of two reflexive spaces is reflexive.

(d) The dual of a reflexive Banach space is reflexive.
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Theorem 1.8.4 (James theorem) — A Banach space X is reflexive if and
only if for each j € Sx~, there exists x € Sx such that j(x) = 1.

1.9 Weak topologies

Let X* be the dual space of a Banach space X. The convergence of a sequence
in a Banach space X is the usual norm convergence or strong convergence, i.e.,
{zn} in X converges to z if 711520 ||, — || = 0. This is related to the strong
topology on X with neighborhood base B, (0) = {x € X : ||z|| < r},r > 0 at
the origin. There is also a weak topology on X generated by the bounded linear
functionals on X. Indeed, G C X is open in the weak topology (we say G is
w-open) if and only if for every x € G, there are bounded linear functionals
f1, f2, -, frn and positive real numbers €1, €5, -+ ,&, such that

{y6X|fz('r)_.fl(y)| <é&,t=1,2,-- ,Tl} CG.

Hence a subbase o for the weak topology on X generated by a base of neigh-
borhoods of zy € X is given by the following sets:

V(fisfo---sfnie)={x e X [{x —x0, fi)| <e, for every i=1,2,--- ,n}.

In particular, a sequence {z,} in X converges to z € X for weak topology
o(X,X*) if and only if (x,, f) — (z, f) for all f € X*.

Observation
e The weak topology is not metrizable if X is infinite-dimensional.
e Under the weak topology, the normed space X is a locally convex topological
space.

e The weak topology of a normed space is a Hausdorff topology.

We are now in a position to define convergence, closedness, completeness,
and compactness with respect to the weak topology.

Weakly convergent — A sequence {z,} in a normed space X is said to con-
verge weakly to z € X if f(x,) — f(z) for all f € X*. In this case, we write
T, — x or weak- lim x, = x.

n—oo
Weakly closed — A subset C' of a Banach space X is said to be a weakly
closed if it is closed in the weak topology.

Weak Cauchy sequence — A sequence {z,} in a normed space X is said
to be a weak Cauchy if for each f € X* {f(z,)} is a Cauchy sequence in K.

Weakly complete — A normed space X is said to be weakly complete if every
weak Cauchy sequence in X converges weakly to some element in X.
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Weakly compact — A subset C of a normed space X is said to be weakly
compact if C' is compact in the weak topology.

Schur property — A Banach space is said to satisfy Schur property if there
exist weakly convergent sequences that are norm convergent.

Theorem 1.9.1 (Schur’s theorem) — In ¢, weak and norm convergences of
sequences coincide.

We have the following basic properties of weakly convergent sequences in
normed spaces:

Proposition 1.9.2 (Uniqueness of weak limit) — Let {z,} be a sequence
i a normed space X such that x,, — x and r,, —y. Then x =y.

Proof. Because {f(z,)} is a sequence of scalars such that f(x,) — f(z) and
f(zn) — f(y), it follows that f(x) = f(y). This implies that f(z —y) = 0.
Therefore, x = y by Corollary 1.6.8.

Proposition 1.9.3 (Strong convergence implies weak convergence) -
Let {z,,} be a sequence in a normed space X such that x,, — x. Then xz, — x.

Proof. Because z, — x, ||z, — x| — 0. Hence

[f(zn) = f(@)] < [|fll«llen — 2[] — 0 for all feX™.

Therefore, x,, — x. I

The converse of Proposition 1.9.3 is not true in general. It can be seen from
the following example:

Example 1.9.4 Let X = ¢y and {x,} be a sequence in {5 such that
@ = (0,0,0,---,1,0,---), neN.
7
nth position
For anyy = (y1,Y2, "+ yYn, -+ ) € X* = Lo, we have
(Tnyy) = yn — 0 as n — 0.

Hence x, = 0 as n — oco. However, {x,} does not converge strongly because
lzn|l = 1 for all n € N. Therefore, a weakly convergent sequence need not be
convergent in norm.

Theorem 1.9.5 (Weak convergence in ¢, space, 1<p<oo) - For1l <

p < oo, let

xn:<a§n),aén)’...7@?,...)€£p7 neN
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and
T = (a17a2’... ’ai’...) e[p'
Then x, — x if and only if
(i) {zn} is bounded, i.e., ||x,|| < M for alln € N and for some M > 0;

(ii) for each i, agn) — a; asn — 0o.

Theorem 1.9.6 Let X be a finite-dimensional normed space. Then strong con-
vergence is equivalent to weak convergence.

Theorem 1.9.7 Every reflexive normed space is weakly complete.
Convergence of sequences in B(X,Y) — Let X and Y be two normed spaces.
A sequence {T,,} in B(X,Y) is said to be

(1) wniformly convergent to T € B(X,Y) in the norm of B(X,Y) if
|7, —T|lpg — 0 as n — oo, i.e., for £ > 0, there exists an integer ng € N

such that sup ||T,x — Tx| < ¢ for all n > ny,
llzll<1

[uniform convergence of {T,}]
(ii) strongly convergent to T € B(X,Y) if nl;rr;o |Thx —Tz|| =0 for all z € X,
[strong convergence of {T,}|
(iii) weakly convergent to T € B(X,Y) if |f(Thz) — f(Tz)| — 0 for all z € X
and f € Y*.
[weak convergence of {T,}]
It follows immediately from the inequality
[Tow = Txl| < ||Tn = Tl|pll], ©eX

that the uniform convergence implies strong convergence. It can be easily ob-
served for the sequence of operators in B(X,Y") that

uniform convergence = strong convergence = weak convergence.

We note that the converse is not true in general.

Weak* topology - We have seen that if 7 is the norm topology of a normed
space X, then the weak topology o (X, X*) is a subset of the original norm topo-
logy 7. Let 7* be the norm topology of X* generated by the norm || - || (of X*).
Then there exists a topology denoted by o(X*, X) on X* such that o(X*, X) C
7*. The topology o(X*, X) is called the weak* topology on X*. Thus, we
can speak about strong neighborhood, strongly closed, strongly bounded, weak
convergence in (X*, || - ||«) and weak* neighborhood, weak*ly closed, weak*ly
bounded, weak*ly convergence in (X*,o(X*, X)), respectively.

We now study some basic properties of the weak topology and weak* topo-
logy. We begin with a simple characterization for the convergence of sequences
in the weak topologies.
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Proposition 1.9.8 Let X be a normed space and { f,} a sequence in X*. Then
we have the following:

(a) {fn} converges strongly to f in the norm topology on X* (denoted by
fn—f)if
[fn = fll« = 0.

(b) {fn} converges to f in the weak topology on X* (denoted by f, — f) if

(fu—frg) — 0 forall g€ X™".

(c) {fn} converges to f in the weak™ topology on X* (denoted by f, — f
weak*ly or f, —* f) if

(T, fr — f) — 0 for all z € X.

On the other hand, the following result is an immediate consequence of
Theorem 1.5.3.

Corollary 1.9.9 Let C be a nonempty subset of a Banach space X. For each
fe X let f(C)=Uzec(z, f) be a bounded set in R. Then C' is bounded.

Proof. Set X := X*| Y :=R,and T,.(f) := {(z, f), z € C. Then T, € B(X*,R).
Because f(C') is bounded, it follows that

sup |T1(f)| = sup |<xvf>‘ é K7
zeC zeC

for some K > 0. By the uniform boundedness principle, there exists a constant
M > 0 such that
IT:|| < M for all z € C.

This implies that

(@, )l = [Ta(H <Nl fllx < MI|fls

By Corollary 1.6.7, we have

lz]| < M for all x € C.

Therefore, C' is bounded. I

Applying Corollary 1.9.9, we have

Theorem 1.9.10 Let {z,} be a sequence in a Banach space X. Then we have
the following:

(a) x,, = x (in X ) implies {x,,} is bounded and ||z| < liminf ||x,]|.

(b) xy =z in X and f, — f in X* imply fn(xn) — f(z) in R.
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Proof. (a) Because x,, — z, then f(z,) — f(z) for all f € X*. Hence {f(x,)}
is bounded for all f € X*. Thus, by Corollary 1.9.9, {x,} is bounded.

Moreover,
[(@n, /)] < llznlILf [l

Taking liminf in the above inequality, we have
[, )] < timin [l 1]

By Corollary 1.6.7, we obtain

[zl = sup |(z, )] < sup (liminf [l [[[[f[}.) <Timinf [z,
1711 <1 If.<1 e nee

(b) Because z,, — x in X, it follows that (z, — z, f) = f(z,) — f(z) — 0 and
{z,} is bounded (by part (a)). Hence

(n, fo) = (@ )] < Kan, fo) = (@, O+ (@0, f) = (2, f)]
= [zn, fo = N+ &0 — 2, )]
< Ml fo— fll« + [(zn — 2, f)] =0

for some constant M > 0. Therefore, f,,(z,) — f(x). |

Observation
e Let {z,} be a sequence in a Banach space X with z,, = z € X and {a,} a

sequence of scalars such that o, — a. Then {anx,} converges weakly to ax.

Theorem 1.9.11 Let X be a Banach space and {x,} a sequence in X such
that x,, — x € X. Then there exists a sequence of convex combinations of {x,}
that converges strongly to x, i.e., there exists convex combination {y,} such that

m m
Yn = Z)‘ixi’ whereZ)\i =land \; >0, n<i<m,
i=n 1=n
which converges strongly to x.

Corollary 1.9.12 Let C a nonempty subset of a Banach space X and {x,} a
sequence in C such that x, — x € X. Then x € co(C).

The weak topology is weaker than the norm topology, and every w-closed
set is also norm closed. The following result shows that for convex sets, the
converse is also true.

Proposition 1.9.13 Let C be a convex subset of a normed space X. Then C
1s weakly closed if and only if C' is closed.

The following proposition is a generalization of Theorem 1.7.8.
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Proposition 1.9.14 Let C be a weakly compact subset of a Banach space X .
Then ¢o(C) is also weakly compact.

The following result is a direct consequence of the uniform bounded principle:

Proposition 1.9.15 Let C be a weakly compact subset of a Banach space X .
Then C' is bounded.

Theorem 1.9.16 (Eberlein-Smulian theorem) — Let C' be a weakly closed
subset of a Banach space. Then the following are equivalent:

(a) C is weakly compact.

(b) C is weakly sequentially compact, i.e., each sequence {x,} in C has a
subsequence that converges weakly to a point in C.

Corollary 1.9.17 Let C be a closed convexr subset of a Banach space. Then
the following are equivalent:

(a) C is weakly compact.

(b) Each sequence {x,} in C' has a subsequence that converges weakly to a
point in C.

Proposition 1.9.18 Any closed convex subset of a weakly compact set is itself
weakly compact.

Theorem 1.9.19 (Kakutani’s theorem) — Let X be a Banach space. Then
X is reflexive if and only if the unit closed ball Bx = {x € X : ||z|| < 1} is
weakly compact (i.e., Bx is compact in the weak topology of X ).

Using Proposition 1.9.13 and Kakutani’s theorem, we obtain

Theorem 1.9.20 Let X be a Banach space. Then X 1is reflexive if and only
if every closed convex bounded subset of X is weakly compact (compact in weak

topology).

Theorem 1.9.21 Let C be a subset of a reflexive Banach space. Then
C is weakly compact & C' is bounded
(compactness in weak topology) (boundedness in strong topology)

Theorem 1.9.22 Let {z,} be a sequence in a weakly compact convez subset of
a Banach space X and w,,({x,}) denote the set of all weak subsequential limits

of {xn}. Then co(ww({zn})) = MLico({zx}h>n).

Proof. Set W := wy,({zn}), Apn = c0({xk}i>n), and A := N2 A,,. We now
show that co(W) = A. The inclusion W C A (and hence co(W) C A) is trivial.
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Hence it suffices to prove that A C co(W). Suppose, for contradiction, that
x € A\ co(W). Then there exists j € X* such that

(z,J) > sup{(y,j) 1y € co(W)} = sup{(y,j) 1y € W). (1.10)

Because z € A C A,,

(x,4) < sup{(y,j) 1 y € An} = sup{(zx, j) : k = n}.

Therefore,
(z,7) <limsup(zn, j).

n—oo

It follows from the Eberlein-Smulian theorem that there exists a subsequence
{zn,} of {z,} such that

Ln; - 1'/ and <’JI,]> S <$,,j>.
Because ' € W by definition, this is a contradiction of (1.10). |

Corollary 1.9.23 Let X be a Banach space and {x,} a sequence in X weakly
convergent to z. Let A, = co({xy}x>n). Then N2 A, = {z}.

Proposition 1.9.24 Let {x,} be a bounded sequence in reflexive Banach space
X and A, =c0({zntisn). If NS Ap =002 co({zn, Tny1, - }) = {z}, then
Ty — T.

Proposition 1.9.25 Let {z,} be a weakly null sequence in a Banach space X
and {jn} a bounded sequence in X*. Then for each ¢ > 0, there exists an
increasing sequence {ny} in N such that |(Tn,, jn,)| <€ if i # k.

Proof. Without loss of generality, we may assume that X is a separable space.
We can assume that {j,} converges weak*ly to some j € Bx«. Given € > 0, we
find ny such that |{z,,7)| < /2 for all n > ny. Next, having ny < ng < -+ <
ng—1, we pick ng > ng_1 with |(xy,, jn,)| < € and [(@n,, jn, — )| < &/2 for all

i=1,2,--- ,k—1. Then [(xn,, Jn,)| <€
We now list several properties that characterize reflexivity.

Theorem 1.9.26 Let X be a Banach space. Then following statements are
equivalent:

(a) X is reflexive.
(b) Bx is weakly compact.

(¢) Every bounded sequence in X in strong topology has a weakly convergent
subsequence.

(d) For any f € X*, there exists © € Bx such that f(x) = || f]|«.
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(e) X* is reflezive.

(f) o(X*,X) = o(X*, X*), i.e, on X* the weak topology and the weak*
topology coincide.

(9) If {C,} is any descending sequence of nonempty closed convex bounded
subsets of X, then NS, Cy, # 0.

(h) For any closed convezr bounded subset C' of X and any j € X*, there exists
x € C such that (x,j) = sup{{y,j) : y € C}.

Finally, we give the fundamental result concerning the weak* topology.

Theorem 1.9.27 (Banach-Alaoglu’s theorem) — The unit ball Bx- of the
dual of a normed space X is compact in the weak* topology.

1.10 Continuity of mappings

In this section, we discuss various forms of continuity of mappings with their
properties.

Definition 1.10.1 Let T be a mapping from a metric space (X, d) into another
metric space (Y, p). Then T is said to be

(i) continuous at xy € X if x,, — xo implies Tx, — Txo inY, i.e., for each
e > 0, there is a § = §(e,x0) > 0 such that p(Txo,Ty) < € whenever
d(xo,y) < 0 for ally € X,

(ii) uniformly continuous on X if for given € > 0, there exists § = d(g) > 0
such that

p(Tz, Ty) < & whenever d(x,y) < for all z,y € X.

Example 1.10.2 Let X = (0,1] andY =R and let X andY have usual metric
defined by absolute value. Then the mapping T : X — Y defined by Tx = 1/x
s continuous, but not uniformly continuous.

Observation

e Every uniformly continuous mapping from X into Y is continuous at each point
of X, but pointwise continuity does not necessary imply uniform continuity.

e Every uniformly continuous mapping 7T from a metric space X into another
metric space Y maps a Cauchy sequence in X into a Cauchy sequence in Y.

Proposition 1.10.3 Let T be a continuous mapping from a compact metric
space (X, d) into another metric space (Y, p). Then T is uniformly continuous.
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A mapping T from a metric space (X, d) into another metric space (Y, p) is
said to satisfy Lipschitz condition on X if there exists a constant L > 0 such
that

p(Tx,Ty) < Ld(z,y) for all z,y € X.

If L is the least number for which Lipschitz condition holds, then L is called
Lipschitz constant. In this case, we say that T is an L-Lipschitz mapping or
simply a Lipschitzian mapping with Lipschitz constant L. Otherwise, it is called
non-Lipschitzian mapping. An L-Lipschitz mapping T is said to be contraction
if L <1 and nonexpansive if L = 1. The mapping T is said to be contractive if

p(Tx,Ty) < d(z,y) for all z,y € X, = #y.

Remark 1.10.4 FEvery Lipschitz continuous mapping T from a metric space
X into another metric space Y is uniformly continuous on X. Indeed, choose
0 < ¢e/L (independent of x), and we get

p(Tz, Txy) < Ld(z,x0) < €.

The following example shows that the distance functional f(z) = d(z,C) is
nonexpansive.

Example 1.10.5 Let C' be a nonempty subset of a normed space X. Then for
each pair x,y in X
ld(z,C) —d(y,O)| < [z —y.

In particular, the function x — d(x,C) is nonexpansive and hence uniformly
continuous.

The following proposition guarantees the existence of Lipschitzian mappings.

Proposition 1.10.6 Let T : [a,b] C R — R be a differentiable function on
(a,b). Suppose T' is continuous on [a,b]. Then T is a Lipschitz continuous
function (and hence is uniformly continuous).

Proof. By the Lagrange’s theorem, we have
Ty—Tx=T(c)(y—xz) foralla <z <y <b,

where ¢ € (z,y) C [a,b]. Because T” is continuous and interval [a,b] is compact
in R, by Weierstrass theorem, there exists xy € [a, b] such that

L =|T"(zo)| = sup [T"(c)|.

c€la,b

Thus, |Tx — Ty| < L|z — y|, which proves that T is Lipschitz continuous. |

The following example shows that there is a Lipschitzian mapping for which
T’ does not exist.
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Example 1.10.7 The function Tz = |z|, « € [—1,1] satisfies Lipschitz condi-
tion with L = 1, i.e., |Tx — Ty| < |z — y| for all z,y € [-1,1]. Note T is not
differentiable at zero.

We now give an example of a non-Lipschitzian mapping that is continuous.

Example 1.10.8 Let T : [— L 1] — [— e l] be a mapping defined by

T T

o if x=0,
Tm{ §sin(1/xz) if = #0.

Then T is continuous, but not Lipschitz continuous.

For linear mappings, the continuity condition can be restated in terms of
uniform continuity.

Proposition 1.10.9 Let X and Y be two normed spaces and T : X — Y a
linear mapping. Then the following conditions are equivalent:

(a) T is continuous.

(b) T is Lipschitz function: there exists M > 0 such that ||Tx| < M||z| for
allz € X.

(¢) T is uniformly continuous.

Let X and Y be two Banach spaces and let T' be a mapping from X into Y.
Then the mapping T is said to be

1. bounded if C' is bounded in X implies T'(C) is bounded;

2. locally bounded if each point in X has a bounded neighborhood U such
that T'(U) is bounded;

3. weakly continuous if x, — x in X implies Tz, = Tz in Y;
4. demicontinuous if x,, — x in X implies Tz,, = Tz in Y;

5. hemicontinuous at o € X if for any sequence {z,} converging to xg
along a line implies T'x,, — T, i.e., Tz, = T(xg + t,z) = Tx 8S t; —
0 for all z € X;

closed if x,, —» x in X and Tx,, — y in Y imply Tz = y;
weakly closed if x,, =~ x € X and Tz, = y in Y imply Tx = y;

demiclosed if x,, — x in X and Tz,, —» y in Y imply Tx = y;

© »®» N @

compact if C' is bounded implies T'(C) is relatively compact (T'(C') is com-
pact), i.e., for every bounded sequence {z,} in X, {Tz,} has convergent
subsequence in Y;
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10. completely continuous if it is continuous and compact;

11. demicompact if any bounded sequence {z,} in X such that {z, — Tz,}
converges strongly has a convergent subsequence.

In the case of linear mappings, the concepts of continuity and boundedness
are equivalent, but it is not true in general.

Proposition 1.10.10 FEvery continuous linear mapping T : X — Y is weakly
continuous.

Proposition 1.10.11 Let X be a reflexive Banach space and Y a general
Banach space. Then every weakly continuous mapping T : X — Y is bounded.

Proposition 1.10.12 A completely continuous mapping maps a weakly con-
vergent sequence into a strongly convergent.

Proposition 1.10.13 FEvery linear mapping is hemicontinuous.

Proof. Every linear and demicontinuous mapping is continuous. I

It is clear that every demicontinuous mapping is hemicontinuous, but the
converse is not true.

Example 1.10.14 Let X =R2Y =R, and T : X — Y a mapping defined by

= (@) #(0,0),
h ’y)‘{ 0. (ny)=(0,0).

Then T is hemicontinuous at (0,0), but not demicontinuous at (0,0).

Let X and Y be two sets. A multivalued T from X to Y, denoted by
T:X —Y,isasubset T C X xY. The inverse of T : X — Y is a multivalued
function 771 : Y — X defined by (y,x) € T~! if and only if (z,y) € T. The
values of T are the sets Tx = {y € Y : (z,y) € T}; the fibers of T are the sets
T Y y)={zeX:(z,y)eT}foryeY.

For A C X, the set
T(A) = UpeaTa = {y € Y : T (y) N A £ 0}
is called the image of A under T'; for B C Y, the set
T HB) =UyepT 'y)={z € X : Tz N B # 0},

the image of B under T, is called inverse image of B under T. A point of
a set that is invariant under any transformation is called a fixed point of the
transformation. A point xy € X is said to be a fixed point of T if zg € Txg.

Let X and Y be two topological spaces. Then a multivalued function 7 :
X —Y is said to be upper semicontinuous (lower semicontinuous) if the inverse
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image of a closed set (open set) is closed (open). A multivalued function is
continuous if it is both upper and lower semicontinuous.

Finally, we conclude the chapter with the following important fixed point
theorems.

Theorem 1.10.15 (Brouwer’s fixed point theorem) - Every continuous
mapping from the unit ball of R™ into itself has a fized point.

Theorem 1.10.16 (Schauder’s fixed point theorem) - Let C' be a non-
empty closed convex bounded subset of a Banach space X. Then every continu-
ous compact mapping T : C — C has a fixed point.

Theorem 1.10.17 (Tychonoff’s fixed point theorem) — Let C be a non-
empty compact convex subset of a locally convex topological linear space X and
T:C — C a continuous mapping. Then T has a fixed point.

Exercises

1.1 Let (X,d) be a metric space. Show that p(z,y) = min{l,d(z,y)} for all
z,y € X is also a metric space.

1.2 Give an example of a seminorm that is not a norm.

1.3 Let (-, -) be an inner product on a linear space X and 7' : X — X a one-one
linear mapping. Let (x,y)r = (Tz,Ty) for all x,y € X. Show that (-,-)p
is an inner product space.

1.4 Show that the space ¢y of all real sequences converging to 0 is a normed
space with norm ||z| = Y07, |z, — Tnt1| < o0

1.5 Let ¢op be a normed space with £,-norm (1 < p < oo) and { f,, } a sequence of
functional on cop defined by f,,(x) = nx, for all © = (z1, 2z, ,Tp, ).
Show that f,,(xz) — 0 for every x € cgp, but || fn|| = n for all n.

1.6 Show that the space £, (1 < p < 00) is reflexive, but ¢; is not reflexive.

1.7 Let C be a nonempty closed convex subset of a normed space X and {z,}
a sequence in C such that x, — x in X. Show that z € C.

1.8 Let {z,} be a sequence in a normed space X such that x,, — x. Show that
x € span {x,}.

1.9 Let {z,} be a sequence in normed space X such that z,, — x. Show that
{z,,} is bounded.

1.10 Let X = ¢pg or ¢g with norm | - ||oc. Show that x, — z in X if and only
if {,} is bounded in X and x,, ; — x; as n — oo for each i = 1,2,--- .



Chapter 2

Convexity, Smoothness, and
Duality Mappings

Geometric structures such as convexity and smoothness of Banach spaces play
an important role in the existence and approximation of fixed points of nonlinear
mappings. This chapter presents a substantial number of useful properties of
duality mappings and Banach spaces having these geometric structures.

2.1 Strict convexity

Let X be a linear space. The line segment or interval joining the two points
z,y € X is the set [z,y] .= { Az + (1 — Ny :0< A <1}, ie, [z,y] = co({z,y})
is convex hull of x and y.

The basic property of a norm of a Banach space X is that it is always convex,
ie.,

(1= XNz + Ayl < (1= N)||z]| + A|y|]| for all z,y € X and X € [0, 1].
A number of Banach spaces do not have equality when x # y, i.e.,

[T =Nz + Ayl < @ =Mzl + Ayl
for all x,y € X with z # y and X € (0,1). (2.1)

We use Sx to denote the unit sphere Sx = {x € X : ||z|| = 1} on Banach
space X. If x,y € Sx with z # y, then (2.1) reduces to

(1= XNz + Ay|]| <1 for all A € (0,1),

which says that the unit sphere Sx contains no line segments. This suggests
strict convexity of norm.

R.P. Agarwal et al., Fized Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3_2,
(© Springer Science+Business Media, LLC, 2009
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Definition 2.1.1 A Banach space X is said to be strictly convez if
x,y € Sx with z #y=||[(1 =Nz + Ay| <1 forall X € (0,1).

This says that the midpoint (z + y)/2 of two distinct points z and y in the
unit sphere Sx of X does not lie on Sx. In other words, if z,y € Sx with
[z]] = llyll = [|(z 4+ y) /2], then z = y.

Example 2.1.2 Consider X = R"™, n > 2 with norm ||z||s defined by

n 1/2

ol = (322) 1 o= (anan,ees ) € B

i=1
Then X s strictly convex.
Example 2.1.3 Consider X = R"™,n > 2 with norm || - ||1 defined by

zlly = [@a] + |2 + -+ + 20l @ = (21,22, ,20) € R™.
Then X is not strictly convex. To see it, let
z=(1,0,0,---,0) and y = (0,1,0,--- ,0).

It is easy to see that x # y, ||z||l1 =1 = ||y||1, but ||z + y|1 = 2.
Example 2.1.4 Consider X = R", n > 2 with norm || - || defined by

||m||00 = 1I£figxn|xl|7 T = ('Tlax27' o 7$n) € R™.

Then X is not strictly convexr. Indeed, for x = (1,0,0,---,0) and y = (1,1,
07' o 30)7 we hCLU@, x # Y, ||xH0<> =1= ||y||00) but ||.’£ +y||00 =2.

The other equivalent conditions of strict convexity are given in the following:

Proposition 2.1.5 Let X be a Banach space. Then the following are equiva-
lent:

(a) X is strictly convex.

(b) For each nonzero f € X*, there exists at most one point x in X with

[«ll =1 such that (z, f) = f(x) =[]+

Proof. (a) = (b). Let X be a strictly convex Banach space and f an element
in X*. Suppose there exist two distinct points z,y in X with ||z|]| = [jy|]| = 1
such that f(z) = f(y) = ||f|l« If t € (0,1), then

1/l tf(z) + (1 =0)f(y) (as f(x) = f(y) = /1)
fltz+ (1= fly)

[fll [tz + (1 = )y]l

£l (as [ltz + (1 = t)y[ < 1)

VASVAN
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which is a contradiction. Therefore, there exists at most one point z in X with
Joll = 1 such that f(z) = [|f]l.

(b) = (a). Suppose z,y € Sx with x # y such that |[(x + y)/2| = 1.
By Corollary 1.6.6, there exists a functional j € Sx~ such that

7]+ =1 and ((z +y)/2,5) = [[(x +y) /2.
Because (x,7) < 1 and (y,j) < 1, we have (z,5) = (y,j). This implies, by
hypothesis, that 2 = y. Therefore, (b) = (a) is proved.

Proposition 2.1.6 Let X be a Banach space. Then the following statements
are equivalent:

(a) X is strictly convex.
(b) For every 1 < p < o0,
[tz+(1=t)y||? < t|z[|P+1—=)|y||? forall z,y € X, x #yandt € (0,1).

Proof. (a) = (b). Let X be strictly convex. Suppose z,y € X with z # y.
By strict convexity of X,

[tz + (1 = t)yl|* < (¢l|=]| + (1 — ¢)]y])? for all ¢ € (0,1). (2.2)
I fJzf} = [ly[l, then
[tz + (1 = yllP < [l|[" = tllz[|” + (1 = &)][y]*.

We now assume that ||z|| # ||y||. Consider the function ¢ — P for 1 < p < oc.
Then it is a convex function and

p D
(a—;—b) <a ;bp for all a,b > 0 and a # b.

Hence from (2.2) with ¢ = 1/2, we have

" (Ifﬂll ;r [yl

rty
2

) < (el + 1", (23

If t € (0,1/2], then from (2.2), we have

P
tr+ (1 —-t)y||P = 2tx+y+ 1—-2t)y
2
r+y P
< (2= @ =20)llyl
x+y p
< 2t + -2yl
< tllzlP+ @ =9)lyllP. (by (2.3))

The proof is similar if ¢ € (1/2,1).
(b) = (a). It is obvious.
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Proposition 2.1.7 Let X be a strictly convex Banach space. If ||z + y| =
llz|| + |ly|| for 0# = € X and y € X, then there exists t > 0 such that y = tx.

Proof. Let z,y € X\{0} be such that ||z+y| = ||=]|+||y||- From Corollary 1.6.6,
there exists j € X* such that

(+y,j) = llz +yll and [lj]|. = 1.

Because (x,j) < ||z|]| and (y,7) < |ly||, we must have (z,j) = |z| and
(y,5) = llyll. This means that (z/|lz[,5) = (y/llyl,s) = 1. By strict con-
vexity of X, it follows from Proposition 2.1.5 that z/|z| = y/|ly||. Therefore,

result holds.

We now present the existence and uniqueness of elements of minimal norm
in convex subsets of strictly convex Banach spaces.

Proposition 2.1.8 Let X be a strictly convex Banach space and C' a nonempty
convex subset of X. Then there is at most one point x in C such that ||z| =

inf{||z]] : z € C}.

Proof. Suppose, there exist two points x,y € C,x # y such that
2]l = llyll = nf{|[2] : z € C} = d (say).

If t € (0,1), then by strict convexity of X we have that

[tz + (1 =)yl < d,
which is a contradiction, as tx 4+ (1 — y) € C by the convexity of C. I

Proposition 2.1.9 Let C be a nonempty closed convexr subset of a reflexive
strictly convex Banach space X. Then there exists a unique point x € C such
that ||z|| = inf{||z| : 2 € C}.

Proof. Euistence: Let d := inf{]|z]| : z € C'}. Then there exists a sequence
{zn} in C such that lim |lz,| = d. By the reflexivity of X, there exists a
n—oo

subsequence {z,,} of {x,} that converges weakly to an element z in C. The
weak lower semicontinuity (w-lsc) of the norm (see Theorem 1.9.10) gives

o < lim ] =
Therefore, d = ||z||.
Uniqueness: It follows from Proposition 2.1.8 . I

The following result has important applications in the existence and unique-
ness of best approximations.
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Proposition 2.1.10 Let C be a nonempty closed convex subset of a reflexive
strictly conver Banach space X. Then for x € X, there exists a unique point
2z € C such that ||z — z,|| = d(x,C).

Proof. Let x € C. Because C is a nonempty closed convex subset Banach
space X, then D = {y —x : y € C} is a nonempty closed convex subset
of X. By Proposition 2.1.9, there exists a unique point u, € D such that
lluz]| = inf{||y — «|| : y € C}. For u, € D, there exists a point z, € C such
that w, = z; — x. Thus, there exists a unique point z, € C such that

lze — 2| = d(z,0). |

2.2 Uniform convexity

The strict convexity of a normed space X says that the midpoint (xz + y)/2 of
the segment joining two distinct points z,y € Sx with ||z — y|| > ¢ > 0 does
not lie on Sy, i.e.,

Tty
2
In such spaces, we have no information about 1 — ||(z + y)/2||, the distance of
midpoints from the unit sphere Sx. A stronger property than strict convexity
that provides information about the distance 1—||(z+y)/2]| is uniform convexity.

<1

Definition 2.2.1 A Banach space X is said to be uniformly convex ' if for any
g, 0 < e < 2, the inequalities ||z|| < 1L,||ly|| < 1 and ||x — y|| > & imply there
exists a 6 = 0(g) > 0 such that ||(x +y)/2|| <1-96.

This says that if # and y are in the closed unit ball Bx := {z € X : ||z|| < 1}
with ||z —y|| > & > 0, the midpoint of z and y lies inside the unit ball Bx at a
distance of at least ¢ from the unit sphere Sx.

Example 2.2.2 FEvery Hilbert space H is a uniformly convexr space. In fact,
the parallelogram law gives us

lz + gl = 2([l2)* + yll*) = llz = yl* for all z,y € H.
Suppose x,y € By with x £y and ||x — y|| > €. Then
o +yl* <4 - €%

so it follows that
(@ +y)/2] <1-46(e),
where 6(e) =1 — /1 —€2/4. Therefore, H is uniformly convez.

Example 2.2.3 The spaces {1 and l are not uniformly convex. To see it,
take x = (1,0,0,0---),y = (0,-1,0,0,---) € ¢y and e = 1. Then

el =Lyl =1 llz —ylh =2>1=e.

IThe concept of uniform convexity was introduced by Clarkson in 1936.
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However, ||(x+vy)/2||1 = 1 and there is no 6 > 0 such that ||[(x+y)/2]1 <1-6.
Thus, £1 is not uniformly convex.

Similarly, if we take x = (1,1,1,0,0,---),y = (1,1,-1,0,0---) € s, and
e =1, then
[#]lc = 1, [[ylloc =L, lz = yllc =2 > 1 =e.

Because ||[(x +y)/2|loo = 1, £oo is not uniformly convex.

Observation

e The Banach spaces ¢p, £, (whenever n is a nonnegative integer), and Ly|a, b]
with 1 < p < oo are uniformly convex.

e The Banach spaces {1, ¢, co, s, Li[a,b], Cla,b] and Ls[a,b] are not strictly
convex.

We derive some consequences from the definition of uniform convexity.
Theorem 2.2.4 Every uniformly conver Banach space is strictly conver.

Proof. Let X be a uniformly convex Banach space. It easily follows from
Definition 2.2.1 that X is strictly convex.

Remark 2.2.5 The converse of Theorem 2.2.4 is not true in general. Let 3 > 0
and let X = ¢, with the norm || - ||g defined by

0o 7\ 2\ /2
fells = el +6( 30 (%) ) o=t} eca
=1

The spaces (co, || - ||g) for 8 > 0 are strictly convex, but not uniformly convez,
while co with its usual norm is not strictly convex.

Theorem 2.2.6 Let X be a uniformly convexr Banach space. Then we have the
following:

(a) For any r and € with r > ¢ > 0 and elements x,y € X with ||z|] < 7,
lyll <7, |l —yl|| > e, there exists a 6 = §(e/r) > 0 such that
Iz +y)/2l < r[l—3d(e/r))
(b) For any r and e with r > € > 0 and elements z,y € X with ||z|| < r,

lyll <7, |l —yl|| > e, there exists a 6 = §(e/r) > 0 such that

Itz + (1 —t)y|| < r[l — 2min{t, 1 — t}d(e/7)] for all t € (0,1).

Proof. (a) Suppose that ||z|| <, ||y|]| <r and ||z — y|| > & > 0. Then we have

that
T

r

i,

yH<1ande— 2£>0.
r r
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By the definition of uniform convexity, there exists § = d(¢/r) > 0 such that

z+y
<1-9¢
2r H - ’
which yields
$+yH <r(l-9).

(b) When ¢t = 1/2, we are done by Part (a). If t € (0,1/2], we have
x+y
[tz + (1 =)yl = [tz +y) + (1 = 2t)yl| < 2tl|——= [ + (L = 20)[}yll. ~ (2.4)

From part (a), there exists a § = §(g/r) > 0 such that
el 0))
2 T

ot =t < 2ef1-5(%)]re =200 as ol <0

r

foa()

Now by the choice of ¢ € [1/2,1), we have

From (2.4), we have

IN

[tz + 1=ty = (2t =1z + (1 -t)(=+y)l
Tr+y
2

< (2t =Dzl +2(1—1¢)

< (2t-1)r+201 —t)r{l - 6(::)}

- s

Therefore,

Itz + (1 — t)y|| < 7[1 ~2min{t,1— t}é(i)]. |

Theorem 2.2.7 Let X be a Banach space. Then the following are equivalent:
(a) X is uniformly convex.

(b) For two sequences {x,} and {y,} in X,

lznll < 1, |lynll <1 and lim ||z, + yn|| =2 = lim ||z, — ya| = 0. (2.5)
n— 00 n—0o0
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Proof. (a) = (b). Suppose X is uniformly convex. Let {z,} and {y,} be
two sequences in X such that [[z,]| < 1, [jy,] < 1 for all n € N and
lim ||, + yn|| = 2. Suppose, for contradiction, that lim ||, — yy,|| # 0. Then
n—0oo n—oo
for some ¢ > 0, there exists a subsequence {n;} of {n} such that

||xni - y'fbi || 2 €.
Because X is uniformly convex, there exists d(¢) > 0 such that

£)
<2(1—6(e)). (2.6)

Zn; + Yn,

Because lim ||z, + yn|| = 2, it follows from (2.6) that

2.<2(1-5(e)),

a contradiction.
(b) = (a). Suppose condition (2.5) is satisfied. If X is not uniformly convex,
for € > 0, there is no d(¢) such that
lzl <Lyl < 1 llz -yl = e = [z +yll <2(1-d(e)),

and then we can find sequences {x,} and {y,} in X such that
@) llznll <1, [lynll <1,
(if) [lzn +ynll = 2(1 = 1/n),
(iii) [|n — ynll > €.
Clearly ||z, — yn| > €, which contradicts the hypothesis, as (ii) gives

lim ||z, 4+ yn|| = 2. Thus, X must be uniformly convex.
n—oo

For the class of uniform convex Banach spaces, we have the following
important results:

Theorem 2.2.8 Every uniformly conver Banach space is reflexive.

Proof. Let X be a uniformly convex Banach space. Let Sx- := {j € X* :
ll7]l« = 1} be the unit sphere in X* and f € Sx~. Suppose {x,} is a sequence in
Sx such that f(x,) — 1. We show that {z,} is a Cauchy sequence. Suppose,
for contradiction, that there exist ¢ > 0 and two subsequences {z,, } and {z,, }
of {x,,} such that ||z,, —z,,|| > . The uniform convexity of X guarantees that
there exists 0(¢) > 0 such that ||(z,, + 2x,)/2| <1 — 4. Observe that

[f (@, +20,) /2] < A flll(@ns 4+ 20,) /2] < (1 Fll(1=0) =1 =6

and f(z,) — 1, yield a contradiction. Hence {z,} is a Cauchy sequence and
there exists a point = in X such that x,, — x. Clearly, x € Sx. In fact,

el = || Tim || = lim_[lz,| = 1.
n— n—oo

Using the James theorem (which states that a Banach space is reflexive if and
only if for each f € Sx~, there exists © € Sx such that f(z) = 1), we conclude

that X is reflexive.
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Remark 2.2.9 FEvery finite-dimensional Banach space is reflexive, but it need

not be uniformly convex, for example, X = R™ n > 2 with the norm |z|; =
n

> |l

i=1

Combining Proposition 2.1.9 and Theorems 2.2.4 and 2.2.8, we obtain the
following interesting result:

Theorem 2.2.10 Let C' be a nonempty closed convexr subset of a uniformly
conver Banach space X. Then C has a unique element of minimum norm, i.e.,
there exists a unique element x € C' such that ||z| = inf{||z]| : z € C}.

We now introduce a useful property.

Definition 2.2.11 A Banach space X is said to have the Kadec-Klee property if
for every sequence {x,} in X that converges weakly to x where also ||z, || — ||z]|,
then {x,} converges strongly to x.

Remark 2.2.12 In Definition 2.2.11, the sequence {x,} can be replaced by the
net {xq} for the definition of the Kadec property.

The following result has a very useful property:

Theorem 2.2.13 FEvery uniformly convexr Banach space has the Kadec-Klee
property.

Proof. Let X be a uniformly convex Banach space. Let {z,} be a sequence

in X such that z, — z € X and ||z,| — ||z||. If z =0, then lim |x,|| =0,
n—oo
which yields that lim z, = 0.
n—oo

Suppose x # 0. Then we show that x,, — x. Suppose, for contradiction, that
hm Tn # T, 1e., Tp/||zn] = x/|z|]. Then for € > 0, there exists a subsequence

{2/ 0,1} of {zn/[lall} such that

Because X is uniformly convex, there exists d(¢) > 0 such that

T,

i

——| =e>0.
lzn Nl ‘

ol

cuid
EARE

Because x,, — x and ||, || — ||z|| imply z,/||z.| — 2/||x|, it follows that

a contradiction. Therefore, {z,} converges strongly to z € X. I

T T, T

_|_ EE—
lznll el

Sl_(sa

1
hmf‘

e n—oo 2
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2.3 Modulus of convexity

Definition 2.3.1 Let X be a Banach space. Then a function ox : [0,2] — [0, 1]
18 said to be the modulus of convexity of X if

Sx(e) = mf{1 _ x;y

H el < 1 ll <1, o — gl = }

It is easy to see that dx(0) =0 and dx(¢) > 0 for all ¢ > 0.

Example 2.3.2 For the case of a Hilbert space H (see Exzample 2.2.2),

5H(5):1—\/1—§, e € (0,2].

We now give the modulus of convexity for ¢, (2 < p < oo) spaces. The
following result gives an analogue of the parallelogram law in £, (2 < p < o)
spaces.

Proposition 2.3.3 In ¢, (2 < p < c0) spaces,

-+ yll? + llz = yl” < 227 ([l + [ly[|P) for all z,y € €. (2.7)
Proof. We observe from Lemma A.1.1 of Appendix A that for a,b € R and
p E [2,00)
la+ b +Ja—b" < [la+b+]a—0bfP/?
< [2laf® +2ppP
= 2 (jaf? + o)
< 2p/29=2)/2(|g P 4 |b|P)

2"~ (|af” + [b[").

Hence for x = {x;}32,, y={y:}2, € {,, we have

o0 o0 o0 o0
S fos P+ Jos — il < QPI(DW 3 ym),
=1 =1 =1 =1

which implies that points z,y € ¢, (2 < p < c0) satisfy the following analogue
of the parallelogram law:

o+ 9l + Il = yll? < 227 L () + gll?)- B

Example 2.3.4 For the ¢, (2 <p < o0) space,

5o (e) = 1— (1 - (;)p>1/p, e € (0,2).
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To see this, let € € (0,2) and x,y € £, such that ||z|| < 1, |ly|| < 1 and
|z —y|| >e. Then from (2.7), we have

[l +ylP <20 = [lz -y,

which implies that

p\ 1/p p\ 1/p
S e (-G)) b)) ]
2 2 2
< 1- 6Zp(5)a
p\ 1/p
where g, (c) > 1 — (1 - (;) ) .
Observation

o due)=1—/1—(/2)2
o 5, () =1—(1—(g/2)7)P/2

® 04, (¢), the modulus of convexity for £, (1 < p < 2) satisfies the following implicit

formula:

P P

‘1—<Sgp(e)+E =2

2

+ ‘1—5%(5) -

€
2
® 0y,(e)>0foralle >0 (1 <p<oo).

® x(g) < du(e) for any Banach spaces X and any Hilbert space H, i.e., a Hilbert
space is the most convex Banach space.

We now give some important properties of the modulus of convexity of
Banach spaces.

Theorem 2.3.5 A Banach space X is strictly convez if and only if §x(2) = 1.

Proof. Let X be a strictly convex Banach space with modulus of convexity dx.
Suppose ||z|| = [ly]| = 1 and ||z — y|| = 2 with z # —y. By strict convexity of
X, we have

-yl _[z+(=v)
1= = 1
=<
a contradiction. Hence © = —y. Therefore, dx(2) = 1.
Conversely, suppose 0x(2) = 1. Let z,y € X such that ||z]| = |y|| =
|(z +v)/2|| = 1. Then
z—y z+ (~y)
2| = | <1 axte - com =1 e =0

which implies that x = y. Thus, ||z|| = ||y|| and ||z + y|| = 2 = ||z|| + ||y|| imply

that x = y. Therefore, X is strictly convex.
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Theorem 2.3.6 A Banach space X is uniformly convez if and only if dx () > 0
for all e € (0,2].

Proof. Let X be a uniformly convex Banach space. Then for € > 0, there
exists d(g) > 0 such that

0<d(e)<1-—

ac-i-yH

for all z,y € X with ||z|| <1, |ly|| <1 and ||x — y|| > €. Therefore, from the
definition of modulus of convexity, we have dx (g) > 0.

Conversely, suppose X is a Banach space with modulus of convexity §x such
that dx(e) > 0 for all € € (0,2]. Let z,y € X such that ||z| =1, ||y|]| = 1 with
|z — y|| > € for fixed e € (0,2]. By the modulus of convexity dx(¢), we have

0<dx(e) <1—|ZEY|
which implies that
x;yH Sl*(S(E),

where 0(¢) = dx (), which is independent of x and y. Therefore, X is uniformly

convex. I

Theorem 2.3.7 Let X be a Banach space with modulus of convezity dx. Then
we have the following:

(a) For all &1 and eq with 0 < g1 < &3 < 2,

€y — €1

5x(52)—5x(51)§ B ﬂ

e (1—(5)((51)) S 2_51 .

In particular, §x is a continuous function on [0,2).
(b) 0x(s)/s is a nondecreasing function on (0,2].

(c) 0x is a strictly increasing function if X is uniformly convez.
Proof. (a) We define the set
Suw ={(z,y) : x,y € Bx;x—y = au,x+y = bv for some u,v € X and a,b > 0}
and the function

r+y

du,v(€) = inf {1 -

H 12,y € Sy lz—yl| > E}.

Note that d,,,(0) = 0. For given ¢; and e2 in (0,2] and 1 > 0, we can choose
(24,y;) in Sy, such that

Ti +Yi

lo; — yill > €; and 6y p(gi) +1>1— H fori=1,2.




2.3. Modulus of convexity 61

Now for ¢t € [0,1], let 5 =ty + (1 — ¢)x2 and y3 = ty; + (1 — t)y2. Because
zi,y; € Bx for i = 1,2, it follows that

IN
—

sl < tllzafl + (1 = )]z

and
lysll < tllyall + (1 = )[[yell < 1.

Because (x;,y;) € Su,v, there exist positive constants a;,b; > 0 with ¢ = 1,2 such
that z;—y; = a;u and z;+y; = b;v. Set o := tay+(1—t)az and [ := tby+(1—t)bs.
Then

r3—y3 = twr—y1)+ (1 —1)(r2—y2)
= taju+ (1 —t)agu
= (tar + (1 —t)az)u

= Qu.

Similarly, x3 4+ y3 = Bv. Thus, (z3,y3) is in Sy,v.
Observe that

s —wsll = (tax + (1 = t)ag)llu]|
tlzr — il + A = 1) [lz2 — g2l
> teq + (1 — t)eq by the choice of x;, y;,

and [|z3 + ysl| = tllz1 + y1ll + (1 = 1)llw2 + vz
By the definition of the function §, ,(-), we have

Sunlter +(1—t)es) < 1 x3;y3
1+ Y1 T2 + Y2
G | P A | TR e T
< ) fuc
1+ Y1 T2 + Y2
= t|l1—-||—— 1—8)(1—||=/—&
(- [=22]) +a-o(-[=22))
<

(Sunter)+ 1) 4 0= 0) (st + 2

= toyn(er) + (1 —t)dyn(e2) + g

Because 7 is arbitrary, it follows that d,, ,(¢) is a convex function of .
Note that
0x (&) < 0y p(e) for all u,v

and
(x,y) € Syu,» with ||z|]| <1 and ||y|| < 1 for some u,v € X;

and hence
0x(e) = inf{dy (€) : u,v € X \ {0}}.
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Now for any real number € > 0, there exist u,v € X such that

duw(e1) < dx(e1) +e.

€9 — € Eg — €
5%1,(62) = 5%1,(2 22—511+(1_ 22_511)51>
€2 — €1

1 6u,v(2) + (1 - 9 _ £ >6u7v<€1)7

Hence

which implies that

g9 —¢€
Bun(2) = bun(e) S 2 (0un(2) — un(er))
— €1
€9 — €1
< 1-— .
< 5L (1 —0dx(e1))
Then we have
dx(e2) —0x(e1) < dyule2) —duw(er) +e
€9 — €1
< — (1 - .
= 5, ( dx(e1)) +¢

Because € > 0 is arbitrary, we have

Sx(e2) — dx(e1) < 522 — e (1 - 5X(gl)>.

Because 0x (1) > 0, we have

which implies that dx(-) is continuous on [0, 2).

(b) Fix s € (0,2] with s <e and z,y € Sx and ||z — y|| = .
Set

S r+y r+y
t:=—u:=tr+(1-1t) and v =ty + (1 —t) .
€ [ +yl [z +yl
Then
U+ v r+y ([t
u—v=t(x—y),|lu—v|]=sand = ( |93+y|+1t>.
2 Iz +yll \2
Thus,
r+y u—+v r+y
- = t—t
lz+yll 2 2
= 1—(1—t—|—t x“’H)
2
u—+v
= ]_—
5
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Observe that

T4y _a:-l—yH_( 1 _1)x+y|_1_ x—l—yH
EETIIE eyl 2 2
and
e - (-l
EETIIE 2
- <1—(1—t)—tz+yH)/s
2
= (== fre-m
Hence
Ox(s
o) (1t v)20) - ol

(@ +y)/lle+yll = (w+v)/20)/lu = ol = 1 = [I(z +y)/2[)/e.

By taking the infimum over all possible z and y with ¢ = || —y|| and z,y € Sx,

we obtain
ox(s) _ 0x(e)
s — &

(c) Observe that

5x(5)<5x(t)
s =t

for s <t <2and dx(t) > 0.

Hence
tox(s) < sdx(t) < tox(t),

which implies that
Ox(s) < dx(t).

Therefore, dx is a strictly increasing function. I

Remark 2.3.8 The modulus of convezity 0x need not be convex on [0,2] and
need not be continuous at t = 2.

Theorem 2.3.9 Let X be a Banach space with modulus of convezity 6 x. Then
[tz + (1 = t)yl| <1 —2min{t, 1 - t}ox ([lz —yl))
Jor all z,y € X with ||z|| <1, [ly|| <1 and all t € [0, 1].
Proof. The result follows from Theorem 2.2.6(b). |
Corollary 2.3.10 Let X be a Banach space with modulus convezity dx. Then
11 = t)z +tyl| <1 —2¢(1 = t)ox(|lz —yl)
forall z,y € X with ||z|| <1,|ly]| <1 and all t € [0,1].
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Proof. Because t(1 —¢) < min{t, 1 — ¢} for all ¢ € [0, 1], the result follows
Theorem 2.3.9.

Corollary 2.3.11 Let X be a uniformly convex Banach space with modulus of
convexity x. If r >0 and z,y € X with ||z|| <r, |yl <r, then

Itz + (1 —t)y|| < r|1—2min{t, 1 —t}dx (x_ylﬂ for all t € (0,1).
T

Theorem 2.3.12 Let X be a uniformly convex Banach space X. Then there
exists a strictly increasing continuous convex function g : RT — Rt with
g(0) =0 such that

2t(1 = t)g(llz —yl) < 1—[|(1 — t)z + ty|
forallz,y € X with ||lz|| <1,|lyl| <1 and all ¢t € [0,1].

Proof. Let dx be the modulus of convexity of X. Define a function g : RT —
R by

_ [ L5 ox(s)ds if 0<A<2,
9() { 9(2) +X%5X(2)()\—2) if A>2.

For t € (0,2], we have
I t
0<g(t):§ dx(s)ds < 3 Ox(t) <dx(t). (asdx(s) <dx(t))
0
From the definition of g, we have
, 1
gt)= §5X(t) for all ¢ € [0, 2].
Hence ¢’ is increasing with ¢'(2) = dx(2)/2 = 1/2, and it follows that g is

convex.

Now, let ||lz|] < 1, |lyll| < 1 and ¢t € [0,1]. Then, we have (see Coroll-
ary 2.3.10)

11 =)z +tyl| <1 —=2¢(1 = )ox ([l — yl)- (2.8)

Hence from (2.8) we have

lz—yll
2(1— gz —yl) = t1—1t) / 5y (5)ds

t(1 = )ax ([l = ylll= - vl
2t(1 = t)ox (= —yl)
1—|(1—=8t)x +ty].

IN N CIA
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Moreover, for rs < 2, the function s — g(rs)/s is increasing (as (g(rs)/s)’ =
[rséx(rs)/2 — g(rs)]/s®> > 0). Therefore, g is a strictly increasing continuous

convex function.

Using Corollary 2.3.11, we obtain the following, which has important
applications in approximation of fixed points of nonlinear mappings in Banach
spaces.

Theorem 2.3.13 Let X be a uniformly convexr Banach space and let {t,} be
a sequence of real numbers in (0,1) bounded away from 0 and 1. Let {x,} and
{yn} be two sequences in X such that

limsup ||z, || < a, limsup||y,|| < a and limsup ||[t,x, + (1 —tn)yn] = a
n—oo n—oo n—oo
for some a > 0. Then lim ||z, — y,| = 0.
n—oo

Proof. The case a = 0 is trivial. So, let a > 0. Suppose, for contradiction, that
{Zn—yn} does not converge to 0. Then there exists a subsequence {x,,, — Yy, } of
{zy, — yn} such that inf; ||z, — yn,|| > 0. Note {t, } is bounded away from 0 and
1, and there exist two positive numbers « and 8 such that 0 < a« <t, < (<1
for all n € N. Because hm 1 Sup lzn|| < a and hm 1 Sup lynll < a, we may assume

anr € (a,a+ 1) for a bubbequence {ni} such that lzn | <7y llyn,]l <7y a <.
Choose r > ¢ > 0 such that

2a(1 — B)ox(e/r) <1 and ||zp, — Yn,|| =& >0 for all i € N.

From Corollary 2.3.11, we have

||t’ﬂi‘r7li + (1 - tni)yni T‘[l - 2tni(1 - tni)éx(&‘/?")]

<
< r[l =2a(l = B)ox(e/r)] < aforalli €N,

which contradicts the hypothesis. I

We now present the following intersection theorem:

Theorem 2.3.14 (Intersection theorem) - Let {C,} be a decreasing
sequence of nonempty closed convexr bounded subsets of a uniformly convex
Banach space X. Then NypenC is a nonempty closed convex subset of X.

Proof. Let z € X be a point such that z ¢ Cy,r, = d(z,C,) and r = lim 7.

n—oo

Let {e,} be a sequence of positive numbers that decreases to zero. Set

Dn = BrJrEn [Z} = {(E € C’ﬂ : ||Z - .’L’H S T+ E"}7
dn: = diam(D,),
d: = lim d,.

n—oo
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Suppose z and y are two elements in D,, such that ||z — y|| > d,, — &,,. Then
Corollary 2.3.11 gives

R
Iy < (1 — oy (Ci”;;"» (r +&n).

This yields a contradiction unless d = 0. This in turn implies that N,enD,, is

and hence

nonempty, and so is NpenCh. I

Remark 2.3.15 Theorem 2.5.14 remains valid if the sequence {Cy,} is replaced
by an arbitrary decreasing net of nonempty closed convex bounded subsets of X .

We now study a weaker type convexity of Banach spaces that is called locally
uniform convexity.

Definition 2.3.16 A Banach space X is said to be locally uniformly convex if
for any e >0 and x € Sx, there exists 6 = §(x,e) > 0 such that

|z —y|| > € implies that

‘JC;yH <1-6 forally € Sx.

The modulus of local convexity of the Banach space X is

dx(z,e) = inf {1 Hx;yn cy € Sx, ||lz—y| > 5} for eachz € Sx and 0 < e < 2.

One may easily see that the Banach space X is locally uniformly convex if
dx(z,e) >0 for all z € Sx and € > 0.

Observation

e Every uniformly convex Banach space is locally uniformly convex.

e By Definition 2.3.16, every locally uniformly convex Banach space is strictly

convex.

We now give interesting properties of locally uniformly convex Banach spaces:
Proposition 2.3.17 Let X be a Banach space. Then the following are equiva-
lent:

(a) X is locally uniformly convez.

(b) Every sequence {x,} in Sx and x € Sx with ||z, + x| — 2 implies that

Ty — T.

Proof. (a) = (b). By locally uniformly convexity of X, dx(z,e) > 0 for all
€ > 0. Therefore,

[2n + 2|

1—
2

— 0 implies that ||z, — z|| — 0.
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(b) = (a). Let {x,} be a sequence in Sx such that ||z, + x| — 2 implies that
T, — . Then

Tn + X

|z, — || > > 0 implies that H <1

Hence, by the definition of modulus of locally uniform convexity, dx (z,£) > 0.

Therefore, X is locally uniformly convex. I

The following theorem is a generalization of Theorem 2.2.13.

Theorem 2.3.18 FEvery locally uniformly convex Banach space has the Kadec-
Klee property.

Proof. Let X be a locally uniformly convex Banach space. Let {z,} be
a sequence in X such that z,, = z € X and ||z, || — ||z||. For z =0, ||z,|| — 0
implies that x,, — 0. Suppose x # 0. Then

N L N W
lenll Nl el A2l ]

By w-Isc of the norm, we have

2:2‘”3’ < liminf ||t +x’
] n—oo || [[znll [l
< limsup (||$n|| + M) =2,
n—oo \llZall = [

which implies that ||z,/(||z.|]) + «/(]|z|)|]| — 2. By Proposition 2.3.17, we

conclude that z,/||z,| — «/|z||. Therefore, z, — x.

2.4 Duality mappings

Definition 2.4.1 Let X* be the dual of a Banach space X. Then a multivalued
mapping J : X — 2% is said to be a (normalized) duality mapping if

Jr={j e X" (z,j) = |lz[I* = [IjII?}.

Example 2.4.2 In a Hilbert space H, the normalized duality mapping is the
identity. To see this, let x € H with x # 0. Note that H = H* and

(x,x) = ||z| - ||lz|| implies x € Jx.

Suppose y € Jx. Then by the definition of J, we have (z,y) = |z||lly| and
llz|]| = ||lyll- Because

lz = l* = [l + llyl1* — 2¢z, 9),

it follows that x = y. Therefore, Jo = {x}.
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For a complex number, we define the “sign” function by

O 0 if =0,
g a= aflal if a #£0.
Observation
0 if o =0,
o lsgn ol =144 if a#0.

e o sgn a= 0 ffo=0,
ITY= ad@/lal =|a| ifa#£0.

Example 2.4.3 In the {5 space,
Jo = (|lz1|sgn(z1), [w2]sgn(z2), -, [wilsgn(zi), - ), « = {z;} € Lo.

Example 2.4.4 In the L2[0,1] (1 < p < o0) space, the duality mapping is given

by
_ [ |zl sgn(z)/||lzll, if = #0,
Jo = { 0 if x = 0.

Before giving fundamental properties of duality mappings, we need the
following notations and definitions:

Let T : X — 2% a multivalued mapping. The domain Dom(T), range
R(T), inverse T~', and graph G(T') of T are defined as

Dom(T) = {xeX:Tx# 0},
R(T) = Uzepom)Tz,
T 'y) = {zreX:yeTx},
GT) = {(z,y) e X xX":yeTz,x € Dom(T)}.

The graph G(T') of T is a subset of X x X*.
The mapping T is said to be
(i) monotoneif (x—y, jz—jy) > 0for allz,y € Dom(T') and j, € Tz, j, € Ty.

(ii) strictly monotone if (& —y, jz — j,) > 0 for all ,y € Dom(T) with x # y
and j, € Tx,j, € Ty.

(iii) a-monotone if there exists a continuous strictly increasing function
a:[0,00) — [0,00) with «(0) = 0 and «(t) — oo as t — oo such that

(@ =y, Je — dy) = oz —yl)llz -yl
for all z,y € Dom(T), j, € Tz, j, € Ty.

(iv) strongly monotone if T is c-monotone with «a(t) = kt for some constant
k> 0.

(v) injective if Te N Ty = O for x # y.
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The monotone operator T : Dom(T) C X — 2% is said to be mazimal
monotone if it has no proper monotone extensions, i.e., if for (z,y) € X x X*

(x — z,y — j.) > 0 for all z € Dom(T) and j, € Tz implies y € Tx.

The mapping T : Dom(T) C X — X* is said to be coercive on a subset C
of Dom(T) if there exists a function ¢ : (0,00) — [—00,00] with ¢(t) — oo as
t — oo such that (z,Tz) > ¢(||z|)||z|| for all z € C.

(z,Tx)

o~ — 00 as |z|]| — o0, z € C.

In other words, T is coercive on C' if

Observation

e Every monotonically increasing mapping is monotone.
e If H is a Hilbert space and T': H — H is nonexpansive, then I —T is monotone.

We are now in a position to establish fundamental properties of duality
mappings in Banach spaces.

Proposition 2.4.5 Let X be a Banach space and let J : X — 2% be the
normalized duality mapping. Then we have the following:

(a) J(0) = {0}.

(b) For each x € X, Jx is nonempty closed convex and bounded subset of
X*.

(c) J(A\x) = AJz for all x € X and real X, i.e., J is homogeneous.

(d) J is multivalued monotone, i.e., (x —y,jz — jy) > 0 for all z,y € X,
Jz € Jx and j, € J(y).

(¢) =l = [lylI* = 2(z — y,j) for all z,y € X and j € Jy.

(f) If X* is strictly convex, J is single-valued.

(g9) If X is strictly convez, then J is one-one, i.e., x =y = JrNJy = 0.

(h) If X is reflexive with strictly convex dual X*, then J is demicontinuous.

(1) If X is uniformly convex, then for x,y € B,[0], jo € Jz, j, € Jy

(# =y, Jz = Jy) = we([l = ylDllz = yll,
where w, : RY — RT is a function satisfies the conditions:
wy(0) = 0,w,(t) >0 for allt >0 and t < s = w,(t) < w,(s).

Proof. (a) It is obvious.

(b) If z = 0, we are done by Part(a). If = is a nonzero element in X, then
by the Hahn-Banach theorem (see Corollary 1.6.6), there exists f € X* such
that (z, f) = ||z|| and |[f[l. = 1. Set j := ||z[|f. Then (x,5) = [lz|{z, f) =
|lz||? and ||]|« = ||z||, and it follows that Jz is nonempty for each x # 0.

Now suppose fi, fo € Jx and t € (0,1). Because

(@, fr) = Izl fulls [l = (1Al
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and
(@, f2) = [zl f2ll; [|2]] = [[ f2ll

we obtain

(,tfy + (1= t) fa) = [ll(tl| foll« + (1 =D f2lle) = [lz]|*.
Observe that

(z,tfi + (1 —1)f2) [£f1+ (1= 1) fall« ]|z
@l fulle + =Bl f2ll) ]

[Elke

IAIA

Then
[z]* < lz|[lltfr + (1 —t) fall« < [|l]|?,

which gives us
] = llellltfi + (1 =) fall,
ie.,
[tf1+ (1 =t) fall« = ||=]].
Thus,
(z,tfr + (1 =1)f2) = llz[l[tfr + (1 = ) foll« and |[z]| = [[tfr + (1 =€) f2l+,

and this means that ¢f; + (1 —t)f2 € Jz, i.e., Jx is a convex set.
Similarly, one can show that Jx is a closed and bounded set in X*.

(¢) For A = 0, it is obvious that J(0z) = 0Jz. Assume that j € J(Az) for
A # 0. First, we show that J(Ax) C AJz. Because j € J(Ax), we have

Az, j) = [IAz |||l and [[Az][ =[]l
and it follows that (Az,j) = ||j||?. Hence
(@, A7) = A7 0, A7) = A2 0, 5) = A7 e[ = I = el

This shows that A™'j € Jz, i.e., 5 € AJa. Thus, we have J(Az) C A\Jx.
Similarly, one can show that AJx C J(Ax). Therefore, J(Ax) = AJx.

(d) Let j, € Jx and j, € Jy for z y € X. Hence

> 2l 4+ lyl* = Nyl = [yl
> 2|+ [lyll* = 2/ [y
= (llzll = ly])* > 0. (2.9)
(e) Let j € Jx, x € X. Then
lyl* = lel? = 2{y — 2, j)

)1 + llyll* = 24y, 5)
(1 + llyl* = 2ll= ] [yl
([l = llylh* > 0. (2.10)

v
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(f) Let j1,72 € Jx for x € X. Then

(@, j1) = [lall = [l
and

(,j2) = 172112 = l|[|*.
Adding the above identities, we have

(@, g1 + g2) = 2]Jl|*.
Because
2ll|* = (x, ju + g2) < llllljr + g2l

this implies that
71l + g2l = 2l ]l < [ljx + g2l

It now follows from the fact ||j1 + jall« < ||71ll« + ||j2||« that

71 + dall« = l71ll+ + ll72ll«

Because X* is strictly convex and [[j1 + ja|l« = [[j1[l« + [|72]|«, then there exists
A € R such that j; = Ajo. Because

<1‘,j2> = <$,j1> = <1‘,>\j2> = )\<1‘,j2>,

this implies that A = 1 and hence j; = js. Therefore, J is single-valued.

(g) Suppose that j € Jx N Jy for z,y € X. Because j € Jx and j € Jy, it
follows from ||7][2 = [lz|[* = [ly[|* = (z,j) = (y, ) that

l]1* = {(= +)/2,5) < (@ +y)/2ll[l,

which gives that
Izl = llyll < Iz +y) /2] < [l

Hence ||z|| = ||y|| = ||(z +v)/2]|. Because X is strictly convex and ||z| = ||y|| =
I(z +v)/2||, we have © = y. Therefore, J is one-one.

(h) It suffices to prove demicontinuity of J on the unit sphere Sx. For this,
let {x,} be a sequence in Sx such that z,, — z in X. Then ||Jz,|[« = ||z,] =1
for all n € N, i.e., {Jx,} is bounded. Because X is reflexive and hence X* is
also reflexive. Then there exists a subsequence {Jx,, } of {Jx,} in X* such that
{Jxn,} converges weakly to some j in X*. Because z,, — z and Jx,, — 7,
then we have

<Z,.7> = kh_{go<x"k"]xnk> = kli_{lolo ”xnkH2 =1

Moreover,

IN

1111+ im || Jap, [« = Hm ([[J2zn, |« [2n,])
k—o0 k—o0

k—o0
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This shows that

(2,3) = lldll«l1z]l and |||« = ||z[|.
This implies that j = Jz. Thus, every subsequence {Jx,,} converging weakly
to j € X*. This gives Jx,, — Jz. Therefore, J is demicontinuous.

(i) Let 7 > 0 and w, : Rt — R™T a function defined by

wr(0) =0;
t — inf (E=yo—Jy) . B.[0 _ >t Jxr. i J
wy( ) mn { Nz—yl HEANAS r[ ],H.’L‘ yH Z )z €JX, 0y € y}
if t € (0,2r];

wr(t) =wy(2r);if t € (2r,00).
By (d), we have
<I - yv.]af —Jy> Z Oa
and it follows that w,(t) > 0 for all ¢ € RT. It can be readily seen that w, is
nondecreasing. So it remains to prove that w,(¢) > 0 for all ¢ > 0.

Suppose, for contradiction, that there exists A € (0, 2r] such that w,.(X) = 0.
Then there exist sequences {x,}, {y»} in B.[0] such that

||xn - yn” >A>0and <-Tn - ynajzn _jyn> — 0,
where j,, € J2n, jy, € Jyn. We know from (2.9) that
(lznll = 19al)? < (@ = Y, Jo — Jya)-

We may assume that

Jim ]| = Jimflgal| = @ >0 (sa)
Notice
(@n +YnsJow TIya) = 2Dzl + 2yal® = (@ — Yo Jon — dya)
—  4a? (2.11)
and

limsup ||z, + yn| < limsup(||z,]| + |lynl]) = 2a.

n—oo n—oo
Moreover, from (2.11), we have
40> = Im (Tp + Yns Jon + Ty )
n—oo

< liminf [z, + g [ (2]l + [[ynl)) = 20 Timinf [z, + y,|l,
n—oo n—oo

which implies that
2a < liminf ||z, + yn||-
n—oo

Thus, we have that lim |z, + y,| = 2a. By the uniform convexity of X (see
n—oo
Theorem 2.3.13), we obtain that lim ||z, — y.| = 0, which contradicts our
n—oo

assumption that ||z, — yn|| > A > 0. 1

The inequalities given in the following results are very useful in many
applications.
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Proposition 2.4.6 Let X be a Banach space and J : X — 2% the duality
mapping. Then we have the following:

(a) ||z +y||* > ||z]|* + 2(y, ju) for all z,y € X, where j, € Jx.

(0) lz+ylI* < yl? + 2(x, joty) for all z,y € X, where joyy € J(z +y).
Proof. (a) Replacing y by z + y in (2.10), we get the inequality.
(b) Replacing by « + y in (2.10), we get the result.
Proposition 2.4.7 Let X be a Banach and J : X — 2% a normalized duality
mapping. Then for x,y € X, the following are equivalent:

(a) ||z|| < ||z 4+ ty|| for allt > 0.

(b) There exists j € Jx such that (y,j) > 0.

Proof. (a) = (b). Fort > 0, let f; € J(x +ty) and define g, = f,/|| fi||«. Hence
llgell« = 1. Because g; € || fi||s*J (z + ty), it follows that

Izl < e+ tyll = 1l @ + ty, fo)
(@ +ty, g0) = (x, 9¢) + Yy, 9t)
2]l +t(y, g0)- (as [lgell« = 1)
By the Banach-Alaoglu theorem (which states that the unit ball in X* is
weak*ly-compact), the net {g;} has a limit point g € X* such that

lgll« <1, (x,g) > ||| and (y,g) > 0.

IN

Observe that
lzll < (2, 9) < lzllllgll« = [l=],
which gives that
(z,9) = ||=[| and |lg[l« = 1.
Set j = g||x||, then j € Jz and (y, j) > 0.

(b) = (a). Suppose for x,y € X with 2 # 0 there exists j € Jx such that
(y,7) > 0. Hence for ¢ > 0,

lzl]> = (2,5) < (2, 5) + (ty, ) = (@ + ty, 5) < ||z + tyl|||],
which implies that
e < flz+tyl. N
Observation
e Dom(J) = X.
e Jisodd, ie., J(—z) = —Jz.

e J is homogeneous (hence J is positive homogeneous, i.e., J(Azx) = AJz for all
A>0).

e J is bounded.

We now consider the duality mappings that are more general than the
normalized duality mappings.
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Definition 2.4.8 A continuous strictly increasing function p : Rt — R* is
said to be gauge function if ;1(0) = 0 and tlim p(t) = oo.
—00

Definition 2.4.9 Let X be a normed space and p a gauge function. Then the
mapping J, : X — 2% defined by

Ju(@) ={j € X*: (z,5) = [[z[lll7ll, Il = n(lzD}, zeX
is called the duality mapping with gauge function p.

In the particular case p(t) = t, the duality mapping J,, = J is called the
normalized duality mapping .

In the case u(t) = tP~1, p > 1, the duality mapping J, = J, is called the
generalized duality mapping and it is given by

Ip(@) == {j € X"t (z,5) = |llljll«, lll« = llz[IP~}, =€ X.
Note that if p = 2, then J, = J» = J is the normalized duality mapping.

Remark 2.4.10 For the gauge function u, the function ® : Rt — RT
defined by

@(t):/o wu(s)ds

is a continuous convex strictly increasing function on RT. Therefore, ® has a
continuous inverse function ®~1.

Example 2.4.11 Let z = (1,22, --) € £, (1 <p < 00), set
Ju(@) = (|1 [P~ sgn(an), [w2P~ sgn(as), - -)
and let p(t) = P~ = tP/9 where 1/p+1/q = 1. Observe that

1/q

oo 1/q oo
(Z|$i|(p_1)q> = (Z|$Z|p> and J,(z) € {,.
i—1 i=1

Moreowver,
ulllz])) = ]9 = (|7, ()]«
and

o0

(@, Ju(@) = Y wilel? sgn(e) =) lelP = ||z
i=1

i=1
lllllzlP=" = Nl ulll) = lelll T @)l

Thus, J, is a duality mapping with gauge function u. Therefore, the generalized
duality mapping Jp, in £, space is given by

Jp(x) = (|21 [P~ L sgn(x), [z2|Ptsgn(xa),-+), x € 4.
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One can easily see the following facts:
(i) J.(x) is a nonempty closed convex set in X* for each z € X,
(ii) J, is a function when X* is strictly convex.

(iii) If J,(x) is single-valued, then
ign(A) (]| A
J, () = WJH(x) for all z € X and A € R

and
(@ =y, Ju(@) = Ju(y)) = (ulllzl) = u(ly D)zl = llyl]) for all 2,y € X.

We now give other interesting properties of the duality mappings J, in
reflexive Banach spaces.

Theorem 2.4.12 Let X be a Banach space and J, a duality mapping with
gauge function . Then X is reflezive if and only if U, ¢ x Ju(x) = X*, ice., J,
18 onto.

Proof. Let X be reflexive and let j € X*. By the Hahn-Banach theorem, there
is an z € Sx such that (z,j) = ||z|.

Because p has the property of Darboux, there exists a constant ¢ > 0 such
that

p(lft]l) = () = 17+
Because (tz,j) = |[tz||||j||«, it follows that j € J,(tz).

Conversely, suppose that for each j € X*, there is € X such that j € J,(x).
Set y := x/||z||. Then |y|| = 1 and (y,j) = |j||«. Hence each continuous
functional attains its supremum on the unit ball. By the James theorem, X is

reflexive. I

Theorem 2.4.13 Let X be a reflexive Banach space and J a duality mapping

with gauge function p. Then J~' is the duality mapping with gauge p~'.

Proof. From Theorem 2.4.12, we obtain
J i) ={zeX:je (o)} #0forall j € X*.
Let J* be the duality mapping on X* with gauge p~!. Observe that z € J~1(j)

if and only if (x, j) = ||z|||lj|l« and ||z|| = = (]|j|«) or equivalently if and only
if x € J*(j). Thus,

TG) = J7G) =z € X {wd) = el el = w23
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Corollary 2.4.14 Let X be a reflexive Banach space and J* : X* — X the
inverse of the normalized duality mapping J : X — X*. Then

J'J=1and JJ* =1 (identity mappings on X and X*, respectively).

Theorem 2.4.15 Let X be a Banach space and let J,, be the duality mapping
with gauge function p. If X* is uniformly convex, then J,, is uniformly continu-
ous on each bounded set in X, i.e., fore >0 and K > 0, there is a 6 > 0 such
that

2] < K, [lyll < K and ||z —y|| <6 = [|Ju(z) = Ju()ll« <e.

Proof. Because X* is strictly convex, J, is single-valued. Suppose {z,} and
{yn} are sequences in X such that ||z,|| < K, ||yn|| < K and ||z, — yn|| — 0.
Assume that x,, — 0, then y,, — 0. Moreover,

[ Tu(@n)lle = pllznl) = 0 and [ Ju(yn)ll« = p(llynl)) —

Hence ||J,(zr) — J.(yn)||+ — 0 and we are done.

Suppose {x,} does not converge strongly to zero. There exist « > 0 and a
subsequence {x,, } of {z,} such that ||z,,| > a. Because ||z, — y,| — 0, one
can assume that ||yn, || > /2. Without loss of generality, we may assume that

lzn|l > 8 and ||yn|| > B for some S > 0.

Set Uy, 1= xn/||n || and v, = yn/||ynl| so that ||u,|| = ||va] = 1 and
||’(L —w ” xn”ynH — ”‘Tn”yn
n n
nHlynl

1

< @ Tollynll = zollzall + zallzn | = [l2nllyn
1

< g\ lwell = lallflizall + lznlllen = yall
1

< @(”yn — || + ||zn, — yn]| K) — 0 as n — oo.

Because ||.J,, (un)[|+ = p([[unl]) = p(1) and [T (vn) ||« = p([[on]]) = p(1), we have

p(1) + p(1) = p(W)llun = vall < (s Ju(un))+ (Wns Ju(00)) + (= vpy Ju(0n))
= (tny T (Un)) + (Un, Ju(vi))

(tny Ju(wn)+Ju(vn))
< N Ju(un) + Ju(vn) ||+ < 2u(1).

This shows that nhjgo | Ju(un) + Ju(vn)|l« = 2u(1). Because X* is uniformly

convex, we have ||.J,(un) — J,(vp) |« — 0 as n — oco. Hence

Ju(xn) - Ju(yn)
= [p(llznl)(Ju(un) = Ju(vn)) + (ulllzall) = £lynll)) Ju(vn)]/ (1),

and it follows that ||.J,(2n) — Ju(yn)|lx — 0 as n — oo. |

A\
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Observation

e IfJ,: X — 2X" is a duality mapping with gauge function p then
(i) J, is norm to weak® upper semicontinuous.
(ii) for each = € X, the set J,(z) is convex and weakly closed in X™;
(iii) J,(—x) = —Ju(2) and J,(Az) = 2UX2D 7 () for all 2 € X, A > 0;
(

w(ll=ll) “H
iv) each selection of J, is a homogeneous single-valued mapping j : X — X*
satisfying j(x) € Ju(z) for all x € X,
(v) J, is monotone, i.e., (x — y,jz — jy) > 0 for all z,y € X and j, € Ju(x),
Ju € Ju(y);
(vi) the strict convexity of X implies that J,, is strictly monotone, i.e.,

(x —y,Ja — Jy) >0 forall z,y € X and j. € Ju(x),5y € Ju(y);

vii) the reflexivity o and strict convexity o imp a is single-value
ii) the reflexivity of X and strict ity of X* imply that J,, is singl lued
monotone and demicontinuous.

One can easily see that the following are reflexive Kadec-Klee Banach spaces:
(a) a Banach space of finite-dimension,
(b) a reflexive Banach space that is locally uniformly convex,

(¢) a uniformly convex Banach space.

We now conclude this section with an interesting result concerning a Banach
space whose dual has the Kadec-Klee property.

Theorem 2.4.16 Let X be a reflexive Banach space such that X* has the
Kadec-Klee property. Let {xo}taecp be a bounded net in X and x,y € wy,({£otacn)-
Suppose lir% ltza + (1 — t)x — y|| ewists for all t € [0,1]. Then x =y.

(1S

Proof. Because hn’[l) [tze + (1 — )z — y|| exists (say, r), for each £ > 0, there
ae

exists ag € D such that
[tza + (1 —t)z —y| <7+ e forall a = ap.
It follows that for all @ = ag and j(z —y) € J(z — y),
(tra + (1 —t)z —y,j(z —y)) < (r+ &)z —yll.
Because z € wy, ({za}aep), we obtain

le—yl? = G+ (=t -y, i)
< o=yl (ling 1tz + (1= 2 — ]| +2),

= (r+e)lz—yl.
Taking the limit as ¢ — 0, we obtain

lz =yl <r (2.12)
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By Proposition 2.4.6 (b), we have
[tza + (1 —t)x —y|? < llz = ylI* + 2t(za — 2, j(tza + (1 — )z —y))

for all t € (0,1] and j(tzo + (1 —t)z —y) € J(txq + (1 —t)z —y). By (2.12), we
have

linéilr)lf@:a —z,j(tze + (1 —t)z —y)) > 0.

Hence there exists a sequence {a, }nen such that o, = ., for n > m and

1 1 1
<xa —x,j(nxa + (1 — n)x—y>> > - for all n € N and a > a,. (2.13)

Set D1 = {a : @ = «;}. Without loss of generality, we may assume that
D= Dla
ww({xa}aeD) = Ww{xa}ozeDl

and
li tre + (1 —t)x — =l tre + (1 —t)x — f 11¢e]|0,1].
lim ltza + ( Yz —yl| aéml [tza + ( )z — y|| for all ¢t € [0,1]

Set to = inf{l/n:a > «a,} for all « € D.

‘We now consider two cases:
Case 1. a« € D and t, > 0.
Set jo = j(taxa + (1 —ty)x — y). Then

(@ = ysja) = [tawa + (1 = ta)z = y|* — talta — 2, ja) (2.14)
and
ldall = ltate + (1 —ta)z =y (2.15)
By (2.13), we have
(Ta = 2, Ja) 2 —ta- (2.16)

Case 2. a € D and t, = 0.

In this case, we can choose a subsequence {j((1/ng)zs+(1—1/nk)x—y) tren
which is weakly convergent to j, and set j, := j. It follows from (2.13) that

(T — Ty Jo) > 0. (2.17)

(e (=) =)
J — T + 1—— r—=y
ng ng

1 1
lim Hxa + <1 - )x — yH =z —yl.
k—oo || Nk Nk

Observe that

IN

17l lim inf

— 00
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On the other hand, we have

1 1
k—oo Nk ny
1 1

Therefore,

lgall = llz =yl (2.19)

and j, € J(z —y).

We note that by the Kadec-Klee property of X*, the sequence {j((1/nx)xo+
(1 —1/nk)x — y) }ren converges strongly to j,.

Now from the net {za }aep, we choose a subset {ag} 5.5 such that {za, } 55

converges weakly to y € wy({Zataep) and {ja,}gcp converges weakly to j.
Then by (2.15) and (2.19) we get

150 < llz =yl

and by (2.14) and (2.18), we get
(@ —y.7) = llz -yl

Hence j € J(x — y). Because X is reflexive and X* has the Kadec-Klee pro-
perty, the space X* has also the Kadec property and this implies that {ja, } 5¢D

converges strongly to j. It follows from (2.16) and (2.17) that
<y - Z, 3> Z 0)

i.e., ||z — y||* < 0. Therefore, z = y. 1

Corollary 2.4.17 Let X be a reflexive Banach space such that its dual X*
has the Kadec-Klee property. Let {x,} be a bounded sequence in X and p,q €
ww({zn}). Suppose lim ||tz + (1 —t)p—q|| exists for allt € [0,1]. Thenp = q.

2.5 Convex functions

Let X be a linear space and f : X — (—o0, 0] a function. Then
(i) f is said to be convez if f(Ax + (1 — Ny) < Af(x) + (1 — X)f(y) for
all z,y € X and X\ € [0,1];
(ii) f is said to be strictly convezif f(Az+(1—N)y) < Af(x)+(1—X)f(y) for
all A € (0,1) and z,y € X with « # y, f(z) < oo, f(y) < o0;
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(iii) f is said to be proper if there exists z € X such that f(z) < oo;
(iv) Dom(f)={z € X : f(z) < oo} is called domain or effective domain;

(v) f is said to be bounded below if there exists a real number « such that
a < f(z) for all x € X;

(vi) the set epif = {(z,a) : ® € X,a € R, f(z) < a} is called the
epigraph of f.

Let C be a subset of X. Then the function i on X defined by

. 0 if =xzeC,
ZC(QU):{OO if v¢C

is called the indicator function.

Observation
e ic is proper if and only if C' is nonempty.
e dom(ic) = C.
e The set C' is convex if and only if its indicator function i¢ is convex.

e The domain of each convex function is convex.

Let X be a topological space and f : X — (—o00, c0] a proper function. Then
f is said to be lower semicontinuous (l.s.c.) at g € X if

f(zo) <liminf f(zo) = sup inf f(z),
T—T0 VEUJ,’O zeV

where U,, is a base of neighborhoods of the point o € X. f is said to be lower
semicontinuous on X if it is lower semicontinuous on each point of X, i.e., for
each z € X

Tn — = fz) < hnrrilgff(xn)

We now discuss some elementary properties of convex functions:

Proposition 2.5.1 Let X be a linear space and f: X — (—00,00] a function.
Then f is convex if and only if its epigraph is a convex subset of X x R.

Proof. Suppose f is convex. Then for (z,«), (y,3) in epif, we have
f(A=tz+ty) < A—t)f(x)+tf(y) <(1—t)a+t3 forallte[0,1].

This implies that ((1 —¢)x + ty, (1 — t)a + t5) € epif.
Conversely, suppose that epif is convex. Then Dom(f) is also convex.
Because for z,y € Dom/(f) and (z, f(x)), (y, f(y)) € epif, we have

(1=t +ty, (1 —t)f(x) +tf(y)) € epif for all t € [0,1].
Thus, by the definition of epif,

=tz +ty) < (1= f (@) +tf(y). |
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Proposition 2.5.2 Let X be a topological space and f : X — (—o00,00] a
function. Then the following statements are equivalent:

(a) f is lower semicontinuous.
(b) For each oo € R, the level set {x € X : f(x) < a} is closed.
(c) The epigraph of the function f, {(z,a) € X xR : f(z) < a} is closed.

Proof. We recall that

liminf f(x) = sup inf f(x).

Tr—x0o VEUIO zeV

(a) = (b). Let o € R and let zyp € X with f(x9) > a. Because f is lower
semicontinuous, there exists Vy € U,, such that 1;15 f(z) > a. Hence Vs C
x 0

{zr € X : f(x) > a}. Consequently, {z € X : f(x) > a} is open and hence
{r € X: f(z) < a} is closed.

(b) = (a). Let g € Dom(f),e >0and V. = {z € X : f(x) > f(xo) — €}
Because each level set of f is closed, it follows that V. € U(xzp). Because
in‘li f(z) > f(xo) —e, it follows that liminf f(x) > f(z¢) —e. As ¢ is arbitrarily
x€VL T—x0
chosen, we conclude that (a) holds.

(a) & (c). Define ¢ : X X R — (=00, 0] by ¢(x,a) = f(z) — a. Then, f is
l.s.c.on X < @ is l.s.c. on X x R. Because epif is a level set of ¢, therefore,

the conclusion holds. I

Proposition 2.5.3 Let C be a nonempty closed convex subset of a Banach
space X and f : C' — (—o00, 0] a convex function. Then f is lower semicontin-
wous in the norm topology if and only if f is lower semicontinuous in the weak

topology.

Proof. Set F,, :={x € C: f(x) < a}, a € R. Then F, is convex. Indeed, for
z,y € Fy

fOz+ (1 =Ny) < Af(@)+ (1 =Nf(y)
< Aa+(1=XNa=aforall X €[0,1].

It follows from Proposition 1.9.13 (which states that for a convex subset C in a
normed space X, C is closed if and only if C is weakly closed) that F, is closed

if and only if F,, is weakly closed, i.e., F,, is closed in the weak topology. I

Before presenting an important result, we first establish a preliminary result:

Theorem 2.5.4 Let X be a compact topological space and f: X — (—o0,0] a
lower semicontinuous function. Then there exists an element xo € X such that

f(zo) =inf{f(z) : z € X}.
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Proof. Set G, :={x € X : f(x) > a}, a € R. One may easily see that each G,
is open and X = (J,cp Go- By compactness of X, there exists a finite family
{Gu,; }1q of {G4}aer such that

Suppose g = min{ag, s, - ,an}. This gives f(x) > «p for all z € X.
It follows that inf{f(z) : * € X} exists. Let m = inf{f(z) : = € X}.
Let (8 be a number such that 8 > m. Set Fjg := {x € X : f(z) < 8}. Then Fj
is a nonempty closed subset of X; and hence, by the intersection property, we

have
() Fs #0.

B>m
Therefore, for any point xg of this intersection, we have m = f(xo). 1

Theorem 2.5.5 Let C' be a weakly compact convex subset of a Banach space
and f : C — (—o00,00] a proper lower semicontinuous convex function. Then
there exists xo € Dom(f) such that f(xo) = inf{f(x) : 2 € C}.

Proof. Because f is proper, there exists u € C such that f(u) < co. Then
the set Cy = {x € C : f(z) < f(u)} is nonempty. Because the set Cy is
closed and convex subset of C, it follows that Cy is weakly compact. Applying
Proposition 2.5.3, we have that f is lower semicontinuous in the weak topology.
By Theorem 2.5.4, there exists o € Cy C C such that

f(zo) =inf{f(z):z € Co} =inf{f(z) : x € C}. 1

Remark 2.5.6 If f is strictly convex function in Theorem 2.5.5, then zy € C
is the unique point such that f(xg) = ingf(z).
xre

Recall that every closed convex bounded subset of a reflexive Banach space
is weakly compact. Using this fact, we have

Theorem 2.5.7 Let X be a reflexive Banach space and f : X — (—o0,0] a
proper lower semicontinuous convex function. Then for every nonempty closed
convex bounded subset C of X, there exists a point xg € Dom(f) such that

f(wo) = inf f(z).
In Theorem 2.5.7, the boundedness of C may be replaced by the weaker
assumption
lim  f(z) = cc.

z€C,||z||— o0

Theorem 2.5.8 Let C' be a nonempty closed convex subset of a reflexive Banach
space X and f : C — (—o0, 0] a proper lower semicontinuous convez function
such that f(x,) — oo as ||z,|| — co. Then there exists xg € Dom(f) such that

flxo) =inf{f(x) : z € C}.
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Proof. Let m = inf{f(z) : + € C'}. Choose a minimizing sequence {x,} in
C, ie., f(zn) — m. If {z,} is not bounded, there exists a subsequence {x, }
of {z,} such that ||z,,|| — oo. From the hypothesis, we have f(z,,) — oo,
which contradicts m # oco. Hence {z,} is bounded. By the reflexivity X, there
exists a subsequence {x,, } of {x,} such that z,,, — xo € C. Because f is lower
semicontinuous in the weak topology, we have

m < f(xo) < liminf f(z,,) = lim f(z,) =m.
J—00 n— 00
Therefore, f(zg) = m. |

Differentiation of convex functions — Let X be a normed space and
¢ : X — (—00,00] a function. Then the limit

ty) — ty) —
i Pty — (@) et ty) — o)
t—0 t t>0 t
is said to be the directional derivative of ¢ at the point x € X in the direction
y € X. If it exists, it is denoted by ¢'(z,y).

The function ¢ is said to be Gateaur differentiable at a point x € X if there
exists a continuous linear functional j on X such that (y,j) = ¢'(z,y) for all
y € X. The element j, denoted by ¢'(z) or y¢(x) (i.e., grade(x)) is called the
Gateaux derivative of ¢ at x.

One can easily see from the definition of Gateaux derivative of ¢ that

(i) ¢'(x)(0) = 0,
(ii) ¢'(x)(\y) = Alim ple + tkiﬁ — p(z)

¢'(x)(+) is homogeneous over R.

= M/ (z)(y) for all A € R, i.e.,

Remark 2.5.9 If the function ¢ is Gateaux differentiable at x € X, then there
exists j = ¢'(x) € X* such that

d .
P =@ (@) = (y.j) for all yeX.
t=0
Let X be a normed space and ¢ : X — (—00, 00| a function. The function ¢
is said to be Fréchet differentiable at a point € X if there exists a continuous
linear functional j on X such that

i 2@ +Y) —el@) — (g, 5)

= 0.
llyll—0 [yl

In this case, the element j denoted by dp(z) is called the Fréchet derivative
of ¢ at the point z.

Proposition 2.5.10 Let X be a normed space and ¢ : X — (—o00,00| a
function. If ¢ is Fréchet differentiable at x, then ¢ is Gateauzx differentiable
at x.
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Proof. Because ¢ is Fréchet differentiable at z,

L 12 +Y) = e(@) —dp(z)y|
lyli—0 Iyl

= 0. (2.20)

Set y = tyg for t > 0 and for any fixed yo # 0. From (2.20), we obtain

i [P+ tyo) — () — tdp(x)yol

= ()7
=0 tlloll

which implies that

Hence dp € X™* and ¢ is Gateaux differentiable at x. I

The following example shows that the converse of Proposition 2.5.10 is not
true.

Example 2.5.11 Let X = R? be a normed space with norm ||-||2 and p : X — R
a function defined by

2Byt y?) i (3,y) # (0,0),
*"(””’y)‘{oy T o - 000,

One may easily see that p is Gateaux differentiable at 0 with Gateauz derivative

©'(0) = 0. Because for (h,k) € X, we have

leth B _ A2k o o
I(h, k)l (b4 + k2)(h2 + E2)1/2 7~ 2(1 + h2)L/2 for k= h*.

Therefore, p is not Fréchet differentiable.

Observation
e Every Fréchet differentiable function is Gateaux differentiable.
e If p is Fréchet differentiable at x, then ¢ is continuous at x.

e If ¢ is Gateaux differentiable at x, then ¢ is not necessarily continuous at x
(e.g., the function ¢ : R*> — R defined by

2y eap(—2~2)

W’ x#Oandtp(m,y):(), =0

o(x,y) =
is Gateaux differentiable at zero, but not continuous at zero).

o If ¢ is Gateaux differentiable at x, then p(z + ty) — ¢(z) as t — 0 (i.e., if
z, — x along a line, then p(z,) — ¢(z)).
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Let X be a Banach space and ¢ : X — (—00, 00] a proper convex function.
Then an element j € X* is said to be a subgradient of ¢ at the point x € X if

o(x) —o(y) < (x —y,j) for ally € X.

The set (possibly nonempty)

{1e X" o) —p(y) < (x—y,j) forally € X},

of subgradients of ¢ at © € X is called the subdifferential of ¢ at x € X.
Thus, the subdifferential of a proper convex function ¢ is a mapping dp : X —
2X" (generally multivalued) defined by

Ip(x) ={j € X" 1 p(z) —p(y) < (z —y,j) for all y € X}.
The domain of the subdifferential dy is denoted and defined by

Dom(dp) = {z € X : dp(z) # 0}.

Remark 2.5.12 If ¢ is not the constant oo, then Dom(dyp) is a subset of
Dom(yp).

Observation
e Jdp(x) is always for every x € X nonempty if ¢ is continuous.
e Jp(x) is always a closed convex set in X*.
e I(A\p(x)) = Ndp(x), i.e., Op(x) is homogeneous.
e © has a minimum value at g € Dom/(d¢) if and only if 0 € dp(zo).
e Dom(0p) = Dom(yp) if ¢ is lower semicontinuous on X.

e For a lower semicontinuous proper convex function ¢ on a reflexive Banach space
X, Oy is maximal monotone.

The following results are of fundamental importance in the study of convex
functions. We begin with a basic result.

Proposition 2.5.13 Let C' be a nonempty closed convex subset of a Banach
space X and i¢ the indicator function of C, i.e.,

. _J o if veC,
ic(x) = { 00 otherwise.

Then dic(x) ={j € X*: (x —y,j) >0 forally € C}, x € C.

Proof. Because the indicator function is convex and lower semicontinuous
function on X, by the subdifferentiability of ic, we have

dic(r) = {jeX* ic(r)—icly) < (z—yj) forallyecy. |
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Remark 2.5.14 Dom(ic) = Dom(dic) = C and dic(x) = {0} for each z €
int(C).

We now give a relation between Gateaux differentiability and subdiffer-
entiability.

Theorem 2.5.15 Let X be a Banach space and ¢ : X — (—00,00] a proper
convex function. If p is Gateauz differentiable at a point xg € X, then dp(xg) =
{¢'(x0)}, i.e., the subdifferential of ¢ at xog € X is a singleton set {¢'(xg)} in
X*.

Conversely, if p is continuous at xo and dp(xg) contains a singleton element,
then ¢ is Gdteaux differentiable at xo and ¢'(xg) = Op(xo).

Proof. Let ¢ be Gateaux differentiable at ¢ € X. Then

t —
(y, ¢ (w0)) = }E% P20 + yt) #(xo) for all y € X.

Notice
o(xo+ Az —1x0)) = (1 = Naxo+ Az) < (1= XN)p(zo) + Ap(2) for all A € (0,1).
Set y := z — xg. Then, we have
e(zo + Ay) < p(w0) + Alp(zo +y) — (0]
Thus,

o(zo + )\Zj\) — (o) < o(xo +y) — ©(x0),

which implies that
o(xo) — (o +y) < —(y,¢'(x0)) = (x0 — (xo +y), ¢ (x0)) for all y € X,

ie., ¢'(20) € (o).
Now, let j,, € Op(xg). Then, we have

o(zo) — p(u) < (xo — U, g, ) for all u € X.
Therefore,

o(xo + Ah) — p(z0)
A

> (h, ju,) for all X > 0,

it follows that
(h, ¢/ (20) — juo) > 0 for all h € X,

ie, jz, = ¢ (x0). Thus, ¢ is Gateaux differentiable at xo and ¢'(xg) =
dp(wo).
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Corollary 2.5.16 Let X be a Banach space and ¢ : X — (—00, 00| a proper
convex function. Then ¢ is Gdteaur differentiable at x € int(dom(p)) if and
only if it has a unique subgradient Op(x) = {¢'(x)}, i.e., the subdifferential of
@ at x is a singleton set in X*. In this case

p(x+ty)| = (y,0p(x)) = (y,¢'(2)) for aly € X.

a? =0
Theorem 2.5.17 Let X be a Banach space, J, : X — 2X" 4 duality mapping

with gauge function u, and ®(||z||) = Hm“ u(s)ds, 0 # x € X. Then
Ju(@) = 5‘@(||9€||)-

Proof. Because pu is a strictly increasing and continuous function, it follows
that @ is differentiable and hence ®'(t) = u(t), t > 0. Then ® is a convex
function.

First, we show J,(z) C 0®(||x]|). Let z # 0, and j € J,(x). Then (z,j) =
[z ll7 )1, 1]« = p([|l])). In order to prove j € 9(||z[]), i-e., 2([|lz]) — ([lyll) <
(x —y,j) for all y € X, we assume that |ly|| > ||z||. Then

il = wlel) = ¥l < L=,
which yields
a(llel) @yl < Gl — )
< <.Z‘,j> - <ya]>
= <.’L’ _y7j>'

In a similar way, if ||z| > ||ly||, we have

O([[=[) = @(llyl) < (& =y, ).

In the case when ||z|| = ||y||, we have
< Nylllglls = N=lllill« (as (2, 5) = [l={ll7]]+)
< alllyll = 1D,

and it follows that

(llzll) — @yl = 0= [l7ll- (=l = [lyll) < (= =y, 5)-
Hence j € 0®(||z||). Thus, J,(x) € 0®(||z|) for all z # 0.

)
We now prove 9®(||z||) C J,(z) for all x # 0. Suppose j € 0®(||z|) for
0# 2z € X. Then

il = sup{{y, Az : [lyll = 1}
= sup{(y,J) : llzl| = [lyll = 1}
< sup{(y,j) : lzll = [lyll}
< sup{(z,5) + @([lyll) — (=] : [|=]| = [lyll}
< lzllllglle (as (. 4) < (2. 4) + ([lyll) — 2([|=]))-
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Thus, (z,j) = |z||||jl]l«. To see j € Ju(x), we show that |j|« = p(|z|]) =
®'(||z||). Because

O([lz]) — @(@tfzll) < (= —tx,j) = (L = O)[[z[l[lj]l« for all £>0,

this implies that

e(tflll) — S(ll«l)

7]l <
’ tlll = ]

(2.21)

It follows from (2.21) that

O(tl])) — 2(]l=[])

ift>1
tlzll = =l

7] <

and
O(|[=]]) — @(tl=l)
)l — tlz|

< |15l if t < 1.
Taking the limit as ¢t — 1, we get
171 = @"(llz]l) = p(liz[D)-
Thus, 0®(||z||) C Ju(x). Therefore, J,(x) = 0P(||x||) for all « # 0. |

Remark 2.5.18 Both the sets J,(x) and 0®(||x||) are equal to {0} if = 0.

Corollary 2.5.19 For p € (1,00), the generalized duality mapping J, is the
subdifferential of the functional || - ||?/p.

Proof. Define u(t) = t*~!, p > 1. Hence

¢ ¢ »
d(t) = / wu(s)ds = / sPlds = —.
0 0 p

Therefore, J,(-) = a(|| - |7/p). |
Corollary 2.5.20 Let X be a Banach space and p(x) = ||x||?/2. Then the
subdifferential Op coincides with the normalized duality mapping J : X — 2X"
defined by

Jr={j € X" :(z,5) = llzlllljll«, llill« = llzl}, = € X.
Theorem 2.5.21 Let X be a Banach space. Then

Olzll = {5 € X (. 3) = llzlllill+, 5]« = 1} for all x € X\ {0}.
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Proof. Let j € 0||z|. Then
(v —2,5) <llyll = llz]| < [ly — [l for all y € X. (2.22)

It follows that j € X* and ||j|l« < 1. Tt is clear from (2.22) that ||z| < (z,j),
which gives
(@, 7) = ||=[| and [|j]l. = 1.

Thus,
Izl € {j € X* : (z,j) = [lz]| and [j]|. = 1}.

Now suppose j € X* such that j € {f € X*: (x, f) = ||z|| and || f||« = 1}. Then
{z,7) = ||=[| and [7]|. = 1. Thus,

(y—2,5) = (y,9) = ll=ll < llyll = ll=[| for all y € X,
ie., j € 0|z|. Tt follows that

{7 € X7 (2, j) = ||zl and [|j]l. = 1} € Of|«].

Therefore, dz|| = {j € X* : (z,7) and |||, = 1}. |

Using Corollary 2.5.19, we establish an inequality in a general Banach space
that is a generalization of the inequality given in Proposition 2.4.6(b).

Theorem 2.5.22 Let X be a Banach space and let J, : X — 2X 1 <
p < oo be the generalized duality mapping. Then for any x,y € X, there exists
Jp(x +y) € Jp(x +y) such that ||z +y||? < |[z]|” + p(y, jp(z +y))-

Proof. By Corollary 2.5.19, J,, is the subdifferential of the functional || - ||” /p.
By the subdifferentiability of || - ||”/p, for z,y € X, there exists j,(z + y) €
Jp(x +y) such that [lz +y[|” < [lz]” + p{y, jp(x + ).

The following result is very useful in the approximation of solution of non-
linear operator equations.

Theorem 2.5.23 Let X be a Banach space and J, : X — 2X" a duality map-
ping with gauge function u. If J, is single-valued, then

1
‘I’(llx+y||)=@(||$||)+/0 (v, Ju(z + ty))dt for all z,y € X.

Proof. Because J, is single-valued, it follows from Theorem 2.5.17 that
0®(||z]|) = {Ju.(x)}. Hence Corollary 2.5.16 implies that J, is the Gateaux
gradient of ®(||z|]), i.e.,

= (Y, Ju ().

d
—¢ t
)|
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Hence
—@(||lz + tyl]) =(y, Julz+ry)), reR.

d
= =0
S0yt

t=r

Because the function t — (y, J,,(z + ty)) is continuous, hence

A? Tz +ry)d /' B (|l + ty|)

Corollary 2.5.24 Let X be a Banach space. If X* is strictly convex, then we
have the following:

dr = (e +y|) — o). 1

t=r

1
(a) @(flz +yl) = @(]|=]]) +/ (y, Ju(x +ty))dt for all x,y € X;
0
1
®) |z +y|? = ||z||P —|—p/ (y, Jp(x + ty))dt for all z,y € X and p > 1;
0

1
(€) llz +yl* = [|=[I? +2/0 (y, J(z +ty))dt for all z,y € X.

Proposition 2.5.25 Let X be a Banach space with strictly convexr dual and C
a nonempty convexr subset of X. Let xy be an element in C and J, : X — X*
a duality mapping with gauge function p. Then

|zol| = Hel(f;Hx” if and only if (xo —x,J,(x0)) <0 for all x € C.

Proof. Let zo be a point in C such that (zo — x, J,(z)) < 0 for all € C.
Then

[zollll T (xo)ll« = (o, Ju(z0)) < [l2[[[| T (o)l for all z € C.
Therefore, ||zo|| = inf ||z].
xeC

Conversely, suppose that xo € C such that ||zl = ing |z||. Then
faS

lzoll < |lo + t(x — x0)|| for all x € C and ¢ € [0, 1],
which implies that
O([lzoll) — @(|lzo + t(z — zo)l[) <0
Because J,,(z) = 0®(]|z||), it follows that
O([lzo + t(x — zo)l) — R([|oll) < (w0 + t(x = w0) — To, Ju(wo + t(x — T0))),
which implies that
txo — 2, Ju(wo + t(x — 20))) < ®([|lzol) — ([0 + t(x — z0)) <0

Thus,
(xo — x, Ju(xo + t(x — x0))) < 0.

Letting t — 0, we obtain (xo — x, J,(z0)) < 0. 1
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2.6 Smoothness

Let C' be a nonempty closed convex subset of a normed space X such that
the origin belongs to the interior of C'. A linear functional j € X* is said
to be tangent to C at a point zg € 9C if j(xg) = sup{j(z) : = € C}.
If H={z € X :j(x) =0} is the hyperplane, then the set H + ¢ is called a
tangent hyperplane to C at x.

Definition 2.6.1 A Banach space X is said to be smooth if for each x € Sx,
there exists a unique functional j, € X* such that (z,j,) = ||z| and ||j.|| = 1.

Geometrically, the smoothness condition means that at each point = of the
unit sphere, there is exactly one supporting hyperplane {j, = 1}. This means
that the hyperplane {j, = 1} is tangent at x to the unit ball, and this unit ball
is contained in the half space {j, < 1}.

Observation
e ly, L, (1 <p < o0) are smooth Banach spaces.
e co, V1, L1, Yoo, Lo are not smooth.

Differentiability of norms of Banach spaces — Let X be a normed space
and Sy = {z € X : ||z|| = 1}, the unit sphere of X. Then the norm of X is
Gateauz differentiable at point xg € Sx if for y € Sx

d . Mlzo + tyll — [Jzol|

%(”‘TOJFUIH) tzo*}ﬂ% ;
exists (say, (y, V||zol}). Vol is called the gradient of the norm o(z) = ||z||
at = xg. The norm of X is said to Gateaux differentiable if it is Gateaux
differentiable at each point of Sx. The norm of X is said to be uniformly
Gateaux differentiable if for each y € Sx, the limit is approached uniformly for
r e Sy.

Example 2.6.2 Let H be a Hilbert space. Then the norm of H is Gateaux
differentiable with /||z|| = z/||z||, * # 0. Indeed, for each x € X with x # 0,
we have

. lo+tyll ==l . lle+tyl® — |||
m -——-- = m
=0 t =0 t([|l + tyl| + [|[])
28y, @) + 2 lyl1?
= lim = (y,z/||z|).

=0 t(||x + tyl| + [|=[))
Therefore, the norm of H is Gateauz differentiable with <7||z|| = z/||z]|.

Remark 2.6.3 In view of Example 2.6.2, we have the following:
(i) at © # 0, 0(x) = ||z| is Géateauz differentiable with 7||z|| = z/||z||,
(i1) at x = 0, p(z) = ||z|| is not differentiable, but it is subdifferentiable. Indeed,
9p(0) = 0|0l = {jeH:(zj)<|z| foral z e H}
= {jeH:|jl. <1}
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Theorem 2.6.4 Let X be a Banach space. Then we have the following:
(a) If X* is strictly convez, then X is smooth.
(b) If X* is smooth, then X is strictly conver.

Proof. (a) Suppose X is not smooth. There exist o € Sx and ji,jo € Sx~
with j1 # jo such that (xg,j1) = (x0,j2) = 1. This means that zy determines
a continuous linear functional on X* that takes its maximum value on Bx» at
two distinct points j; and j;. Hence X™ is not strictly convex.

(b) Suppose X is not strictly convex. There exist j € Sx+ and z,y € Sx

with « # y such that (x, j) = (y,j) = 1. Thus, two supporting hyperplanes pass
through j € Sx« such that

(z,f)={y, f)=1LfeX"

Therefore, X* is not smooth. I

It is well-known that for a reflexive Banach space X, the dual spaces X and
X* can be equivalently renormed as strictly convex spaces such that the duality
is preserved. Using the above fact, we have

Theorem 2.6.5 Let X be a reflexive Banach space. Then we have the follow-
mg:

(a) X is smooth if and only if X* is strictly convez.

(b) X is strictly convex if and only if X* is smooth.

The following theorem establishes a relation between smoothness and Gateaux
differentiability of the norm.

Theorem 2.6.6 A Banach space X is smooth if and only if the norm is Gateaux
differentiable on X\{0}.

Proof. Because the proper convex continuous function ¢ is Gateaux differen-
tiable if and only if it has a unique subgradient, we have

norm is Gateaux differentiable at x
& Ollxll ={j € X7 : (2,5) = [lzll, 7]« =1} is singleton
< there exists a unique j € X* such that (z,j) = ||z|| and ||j||. =1
< smooth.

Next, we establish a relation between smoothness of a Banach space and a
property of the duality mapping with gauge function pu.

Theorem 2.6.7 Let X be a Banach space. Then X is smooth if and only if

each duality mapping J,, with gauge function p is single-valued; in this case

d
%(I)(Hl‘ + tyl|) = (y,J,(x)) for all z,y € X. (2.23)
t=0
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Proof. The Banach space X is smooth if and only if there exists a unique
J € X* satisfying
(eulllzl). ) = lela(lel) andlj]. = 1

in this case p(||z])j = Ju(z) = 0®(||z||), and hence by Corollary 2.5.16, we
obtain the formula (2.23).

Corollary 2.6.8 Let X be a Banach space and J,, : X — 2X" 4 duality mapping
with gauge function p. Then j € Ju(x), x € X if and only if H = {y € X :
(,7) = llzllu(l|x]])} is a supporting hyperplane for the closed ball By, [0] at x.

Corollary 2.6.9 Let X be a Banach space and J : X — 25" a duality mapping.
Then the following are equivalent:

(a) X is smooth.

(b) J is single-valued.

(¢c) The norm of X is Gateaux differentiable with 7||z| = ||z| = Jx.
We now study the continuity property of duality mappings.

Theorem 2.6.10 Let X be a Banach space and J : X — X* a single-valued
duality mapping. Then J is norm to weak™ continuous.

Proof. We show that z,, — = = Jx,, — Jz in the weak™ topology. Let z,, — =
and set f, := Jx,,. Then

(@n, fn) = llzallllfalle llznll = [[fall-

Because {z,} is bounded, {f,} is bounded in X*. Then there exists a subse-
quence {fn, } of {f»} such that f,, — f € X* in the weak* topology. Because
the norm of X* is lower semicontinuous in weak* topology, we have

171l < timin | . = lmin [, | = 2]
Because (z, f — fn,) — 0 and (z — z,,, fn,) — 0, it follows from the fact

|<m7f>7||xnk||2| = |<:C’f>*<xnkafnk>‘
(@, f = frud| + (@ = s fri )] — 0

IN

that
(@, f) = ll=|>.

As a result

2l* = {2, £) < I flll]l-

Thus, we have (z, f) = ||z||?, |z|| = ||f||+- Therefore, f = Jux. |
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Theorem 2.6.11 Let X be a Banach space with a uniformly Gateaux differ-
entiable norm. Then the duality mapping J : X — X* is uniformly demicon-
tinuous on bounded sets, i.e., J is uniformly continuous from X with its norm
topology to X* with the weak* topology.

Proof. Suppose the result is not true. Then there exist sequences {z,} and
{2z, }, a point yo and a positive ¢ such that

lznll = lznll = llvoll = 1, 2n, — 2 — 0 and (yo, Jz,, — Ja,) > € for all n € N.
Set
an =t (|ln + tyoll = lznll — t{yo, Jzn))
and
b, 1= t_l(Hzn —tyoll — llznll + t{yo, J2n)).
If ¢ > 0 is sufficiently small, then both a,, and b, are less than /2. On the
other hand, we have
= t71(<xn =+ tyo, Jzn> - <xn + tyo, an>)
= (yo,Jzn — Jxn) +t 7wy, T2, — J)

an

and
by >t (20 — tyo, Jxn) — (20 — tyo, J2n))
= (o, Jzn — Jn) —t Nz, J2, — Jz,).
Thus,
an +bn > 2o, Jzn — Jan) +t N a, — 20, T2, — J)
> 26— 2t |an — 2all,
a contradiction by choosing t = 2||x,, — 2,/ for sufficiently large n. 1

2.7 Modulus of smoothness

Recall that the modulus of convexity of a Banach space X is a function
dx :[0,2] — [0, 1] defined by

ox(t) =inf{l —|[(z +y)/2l : 2,y € X, [[z[| < L, [ly < 1, ]z —y| = t}.
We now introduce the modulus of smoothness of a Banach space.

Definition 2.7.1 Let X be a Banach space. Then a function px : Rt — RT
18 said to be the modulus of smoothness of X if

=+ vl + 1= ~ o]
() = sup { LIy =

_ {IIwHyII + [lz — tyll
= sup —

: Liflell = Il =1}, ¢20.

Tt is easy to check that px(0) = 0 and px(t) > 0 for all ¢ > 0.
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The following result contains important properties of the modulus of
smoothness.

Proposition 2.7.2 Let px be the modulus of smoothness of a Banach space X .
Then px is an increasing continuous convex function.

Proof. Because for fixed z,y € X with ||z]| =1, ||y|| = 1, the function

_ Nzt tyll + ll= = tyll
2

f(t) —1,teR

is convex and continuous on R, it follows that the modulus of smoothness px is
also continuous and a convex function.

Moreover, f(—t) = f(t) for each t € R, f is nondecreasing on R*. Hence px

is nondecreasing.

The following theorem gives us an important relation between the modulus
of convexity of X (respectively, X*) and that of smoothness of X*
(respectively, X).

Theorem 2.7.3 Let X be a Banach space. Then we have the following:

(a) px=(t) :sup{g‘E —0x(e):0<e< 2} for allt > 0.
(b) px(t) sup{t; —dx+(e):0<e< 2} for allt > 0.

Proof. (a) By the definition of modulus of smoothness of X*, we have

2px+(t) = sup{[|a™ + ty* ||« + [[#" — ty* ||« = 2: 2", y" € Sx+}

sup{(z, ") +t(x, y" )+ {y, 2™y —t{y,y")—2 : x,y € Sx,z",y* € Sx~}
sup{[|z + yl| + t|z —yl| —2: 2,y € Sx}

— sup{la gl +te—2:my€ Syl —y| =0 <c<2)

= sup{te —20x(e) : 0 < e < 2}.

Part (b) can be obtained in the same manner. 1
As an immediate consequence of Theorem 2.7.3 (b), we have

Corollary 2.7.4 Let X be a Banach space. Then px (t)/t is increasing function
and px(t) <t for all t > 0.

Theorem 2.7.3 allows us to estimate px for Hilbert spaces. Indeed, we have
Proposition 2.7.5 Let H be a Hilbert space. Then fort >0

pr(t) = sup{te/2—1+ (1 -/ :0<e <2} =1 +tH)/2 -1
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Observation

e If X is a Banach space and H is a Hilbert space, then px(¢t) > pu(t) =

vV1+4+1t2—1forallt>0.

Let X be a Banach space. Then the characteristic of converity or the
coefficient of convexity of the Banach space X is the number

€0(X) =sup{e € [0,2] : 6x () = 0}.

The Banach space X is said to be uniformly convez if eq(X) = 0 and uniformly
nonsquare if €9(X) < 2. One may easily see that the modulus of convexity dx
is strictly increasing on [eg, 2].

Example 2.7.6 Let X = R? with norm || - ||s defined by

[#]loo = [I(z1, 22) [0 = max{|z1], |2}

Then X has a square-shaped unit ball for which 6x(¢) =0 for e € [0,2]. Hence
€0 (X) =2.

The following theorem gives an important relation between the modulus of
smoothness of a Banach space and the characteristic of convexity of its dual
space.

Theorem 2.7.7 Let X be a Banach space. Then the following statements are

equivalent:
px(t)

(a) PH(I)T < ¢e/2 for alle < 2.

(b) e0(X™*) < e for alle < 2.

Proof. (a) = (b). Let € € [0,2]. Suppose, for contradiction, that ey(X*) > e.
Then there exist {f,} and {g,} in Sx~ such that

Ilfn — gnll« > € and nlgrolo lfr + gnllx = 2. (2.24)

From the definition of px, we get

T —ty
2

px(t) >

T +ty
2

H—lforallt>0andx,y€5’x.

Therefore,

H‘f(y) g(y)‘

—1forall f,g e Sx~.

Because = and y were arbitrary, we get

+tHf_g

-1
2

f+g
2

* *



2.7. Modulus of smoothness 97

In particular, we have

px(t) > ‘ f”;gn —|—t‘ f”;gn —1foralln eN.
It follows from (2.24) that
OEE-
pPX =5

(b) = (a). Assume that €y(X™*) < € and let &’ € (eo(X™*),e). Set ' = dx~ (&)
and consider ¢ € [0,2]. There are two possibilities :
(i) Assume that ¢t < &’. Then tA/2 < Ae’/2 and so tA/2 — dx«(t) < Ae’/2.
(ii) Assume that ¢ < ¢. Then dx«(t) > dx«(¢') = t/, because the
modulus of convexity is an increasing function. Therefore,

At
5 <A<t <dx«(t) for any X < t'.

This implies that
tA
5~ dx+(t) < 0.

Therefore, in any case we have for A < ¢/

/
sup{ﬁ; —ox«(t) :te [0,2]} < /\76

Using Theorem 2.7.3, we get px(A) < Ae’/2, which gives that PH%) px(N)/A <
€’ /2. Our choice of ¢’ implies that (b) is true. |

Let X be a Banach space. Then the characteristic of smoothness of X is the

number

. t
po(X) = lim 2510

The following theorem allows us to estimate pg(X) for Banach spaces X.
Theorem 2.7.8 Let X be a Banach space. Then

) (0) = 1im PXB) _ €o(XT)
po(X) = pix(0) = lim === = ———.
Proof. Assume first that ¢o(X*) = 2. Then dx+(¢) = 0 for every € € [0,2].
Therefore, using Theorem 2.7.3, we get px (t) =t for every ¢ > 0. Hence
lim 2X®) _ 4 _ ©XY)
t—0 t 2

Now if we assume that eg(X™) < 2, then from Theorem 2.7.7 we get the desired

conclusion. I
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Using Theorem 2.7.3 and 2.7.8, we have

Theorem 2.7.9 Let X be a Banach space. Then we have the following:
(a) po(X) = eo(X™)/2.
(b) po(X™) = €0(X)/2.

2.8 Uniform smoothness
Recall that the Banach space X is uniformly convex if dx (¢) > 0 for all e € (0, 2].

We now define uniform smoothness of a Banach space.

Definition 2.8.1 A Banach space X is said to be uniformly smooth if

’ _
PX(O) 20

Example 2.8.2 The £, spaces (1 < p < 2) are uniformly smooth. In fact,

. pe,(t) L (Ltr)P—1
lim = lim =
t—0 t t—0 t

0.

Uniform smoothness has a close relation with differentiability of norm.
Theorem 2.8.3 Every uniformly smooth Banach space X is smooth.

Proof. Suppose, for contradiction, that X is not smooth. Then there exist
x € X\{0}, and 4,j € X* such that ¢ # j, ||¢|| = ||j|| = 1 and (x,?) = (z,j) =
|z]|. Let y € X such that ||y|| =1 and (y,i — j) > 0. For each ¢ > 0, we have

O < t<y7z _.]>
= Uy, i) —ty,])
_ ety i+ (z—tyg)
N 2
< llz+tyll+llz —ty _,
- 2
and it follows that
px(t)

O<<y,ifj>§Tforeacht>0.

Hence X is not uniformly smooth. I

Next, we establish the duality between uniform convexity and uniform smooth-
ness.

Theorem 2.8.4 Let X be a Banach space. Then X is uniformly smooth if and
only if X* is uniformly convez.
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Proof. Recall that
t
pX(t):sup{;—cSX*(s) :0<5<2} for all £ > 0. (2.25)

Suppose, for contradiction, that X* is not uniformly convex. Then there exists
g0 € (0,2] with dx+(g9) = 0. From (2.25), we have

te
70 — dx~(g0) < px(t)
which gives us that
t
0<5—20§pXT()for all >0,

and this means that X is not uniformly smooth.
Conversely, assume that X is not uniformly smooth. Then p(0) =

t t
}in% pLU # 0. Hence for ¢ > 0 with }iH(l) pXT() = ¢, there exists a sequence
{t,} in (0,1) such that
123
t, — 0 and lim pXt( =e.

From (2.25), there exists a sequence {e,} in (0, 2] such that

€ tneEn
7tn < _6 *\en /)y
pins =5 ~Ox(en)
which implies that
128
0 <dx~(en) < 5(6” —¢)

It follows from the condition ¢, < 1 that ¢ < &,,. Because dx~ is a nondecreasing

function, we have Jx« () < dx=(e,) — 0, i.e., X* is not uniformly convex. |
Theorem 2.8.5 Let X be a Banach space. Then X is uniformly convex if and
only if X* is uniformly smooth.

Proof. Notice

t
px(t) =Sup{2€—5x(6)20<6§2} for all ¢ > 0.

By interchanging the roles of X and X™*, we obtain the result by Theo-
rem 2.8.4.

Theorem 2.8.6 FEvery uniformly smooth Banach space is reflexive.
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Proof. Let X be a uniformly smooth Banach space. Then X* is uniformly
convex and hence X* is reflexive. It follows from Theorem 1.9.26 (which states

that the reflexivity of X* implies the reflexivity of X) that X is reflexive.

Fréchet differentiability of norm and uniform smoothness

Uniform smoothness can be characterized by uniform Fréchet differenti-
ability of the norm.

The norm of a Banach space X is said to Fréchet differentiable if for each
= + ty|| — |||l

. exists uniformly for y € Sx.

r € Sx, lim
X0 t—0

In the other words, there exists a function €,(s) with £,(s) — 0 as s — 0
such that

[+ tyll = llz|| — ¢(y, J2)| < [tlex([t]) for all y € Sx.

In this case, the norm is Gateaux differentiable and

sllz +tyll* — ll=)?

. =0 forall z e X.

lim sup
t—0 yESx

(y, Jz)

On the other hand,

1 1
slel®+ (b Jz) < Sllz+hl® < Sll2]® + (b, Jz) + b(([A]])

1
- -2

for all bounded z,h € X, where b is a function defined on R* such that
lim @ =0.
t—0 t
We say that the norm of a Banach space X is uniformly Fréchet differentiable
if
Ll gyl — ]

lim : exists uniformly for all z,y € Sx.

We now establish some results concerning Fréchet differentiability of the
norm of Banach spaces.

Theorem 2.8.7 Let X be a Banach space with a Fréchet differentiable norm.
Then the duality mapping J : X — X™* is norm to norm continuous.

Proof. It is sufficient to prove that z,, — x € Sx = Jx, — Jxr € Sx-. Let
{z,} be a sequence in Sx such that x,, — x. Then x € Sx. Because X has a
Fréchet differentiable norm,

t —
tlin(l) w = (y, Jx) uniformly in y € Sx,
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i.e., for any € > 0, there exists § > 0 such that

[+ tyll = ll=ll

: (y, Jry| < e forall y € Sx and all ¢t with 0 < [t] < 4.

Hence

[+ tyl| = llz|l <t((y, J2) +¢) and |z — ty[| — ||z[| < —t((y, Jz) =€),

so that
|z +tyl| — 1 <t((y,Jz) +¢) and ||z — ty|| — 1 < t(e — (y, Jx)).
Note
0<1—(z,Jan) = (xn,Jzn) —(z,Jx,)
S <1“7l 71’7‘]1"”)
< lzn — 2l Jzallx = lzn — 2l — 0,

ie., (z,Jx,) — 1 as n — oo. Then there exists ng € N such that
1 < {(x,Jx,) + te for all n > ng.
Because
1—te <(x,Jzx,) = (x,Jr+Jx,)—1
= (x+ty, Jz)+ (x —ty, Jz,) — t{y, Jr — Jz,) — 1
o+ tyllI Tzl + 2 — tyll | Tzall, — ty, Jo — Jo) — 1

t(y, Jz) +te + 1+ 1+ te — t{y, Ja) — t{y, Jo — Jx,) — 1
2te — t{y, Jr — Ja,) + 1,

INIA

this implies that
(y, Jo — Jz,) < 3¢ for all y € Sx.

Similarly, we can show that
(y, Jx,, — Jay < 3e for all y € Sx.

Thus,
’(y, Jx, — Jx>| < 3eforalln>ngand y € Sx
which gives us
|Jz,, — Jz||« < 3e for all n > ny.

Therefore, x,, — x in X implies Jx, — Jzx in X*. I

Theorem 2.8.8 Let X be a Banach space. Then the following are equivalent:
(a) X has a uniformly Fréchet differentiable norm.

(b) X* is uniformly conve.
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Proof. (a) = (b). Suppose the norm of X is uniformly Fréchet differentiable.
Then for any € > 0, there exists § > 0 such that

[l + tyll = ll=ll _

" (y, Jxy| < % for all z,y € Sx and all ¢ with 0 < |¢] < 4.

Then for fixed ¢t with 0 < t < §, we have
te
lz +tyll < o +tly, Jo) +1
and

te

r—ty|| <
o —tyll < 3

—t(y, Jz) + 1.

As a result ;
€
|z + ty|| + ||z — ty|| < i 2 for all z,y € Sx.

Now, let i,j € Sx» with ||i — j|l« > € > 0, then there exists yo € Sx such that
. €
<y0’Z _-]> > 5
Note
li+jlls = sup (z,i+j)

TESx

= sup (<$+ty0,l>+<1'—ty0,]>—<ty0,’l,—]>)
zESx

te
< sup (|lz+tyoll + [z — tyoll — =

rESx 2
te te

< —4+2—-—

- 4+ 2

< o2

- 2

This implies ||(¢ + 7)/2]/« < 1 — d(¢). Hence X* is uniformly convex.
(b) = (a). Let z,y € Sx. Then for t > 0,

y,Jz) _ (z+ty, Jo) — |z
(B4 |||
[z + tylll|l=|| — [J=]*
ta]
J + tyll — Il
t
[z +tyl* — [z + ty]|[|=]]
tz + ty||
(x +ty, J(z + ty)) — (z, J(z + ty))
tlz +ty||
(y, J(z +ty))
|+ ty|

IN

IA
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and for ¢t < 0,

(v, + 1)) _ llo - tyll = el _ y, J2)
[ I A P

By Theorem 2.4.15, X has a uniformly Fréchet differentiable norm. I

Theorem 2.8.9 Let X be a Banach space with uniformly Fréchet differentiable
norm. Then the duality mapping J : X — X* is uniformly continuous on each
bounded set in X.

Proof. Because X* is uniformly convex, the result follows from Theorem 2.4.15

We now study the duality mapping from X* to X. To do so, we define the
congugate function f*: X* — (—o0,00] of any function f: X — (—o0, 0] by

fG) =suwp{(z,j) — f(z) 0w € X}, jeX™ (2.26)
The conjugate of f*, i.e., the function on X defined by
[ (@) =suwp{(z,j) = f*(j):j € X}, weX
is called the biconjugate of f.

Observation

e f is lower semicontinuous proper convex on X if and only if f** = f.

Example 2.8.10 Let C be a nonempty subset of normed space X. Then the
conjugate of the indicator function ic of C' is given by

ie(j) =sup{(z,j) :x € C}, jeX".
The function ¢, is called the support function of C.
We now give some basic properties of conjugate functions.
Proposition 2.8.11 Let f* be the conjugate function f. Then

f@)+ f*(4) = (x,j) forallz € X,j € X*. (2.27)

Proof. It easily follows from (2.26). |

The inequality (2.27) is known as the Young inequality. Observe also that if
f is a proper function, then the relation (2.26) can be written as

f7() = sup{(z,j) = f(x) : x € Dom(f)}, j € X~
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Proposition 2.8.12 Let f* be the conjugate function of f. Then
(cf)*(j) = cf*(c7t9) for allc > 0 and j € X*.
Proof. For j € X*, we have
(cf)(G) = sup{(z,j) — (cf)(z) 1z € X}
= csup{c Hx,j) — f(z):z € X}
= csup{(z,c ) - f(z) 1z € X}
= cf*(cy). 1

Proposition 2.8.13 Let X be a normed space and f : X — (—o0, 00| a proper
convez function. Then the following statements are equivalent:

(a) j € 0f(x) forx € X.

(b) F(@)+ F*(j) < (,J).

(c) f(@) + f(5) = (. j)-

Proof. (b) & (¢). The Young inequality (2.27) shows that (b) and (c) are
equivalent.

(¢) & (a). Suppose condition (c) holds. Then from the Young inequality (2.27),
we find that

fy) = f@) 2 (y — x,5) for ally € X,
ie., j€adf(x).
Using a similar argument, it follows that (¢) = (a). |

Proposition 2.8.14 Let X be a normed space and f : X — (—o00,00] a lower
semicontinuous proper convex function. Then j € Of(x) < x € df*(j).

Proof. Because f is a lower semicontinuous convex function, f** = f. Observe
that

jedf(@) & fl@)+ ()= ()
& [T(@)+ 0) = (,9)
= zear(. 1
Proposition 2.8.15 Let X be a Banach space. If f(x) = ||z||?/p, p > 1, then
G =151¢/a, 1/p+1/q=1.

Proof. Because Jy(z) = d(||lz[|P/p) = {j € X* : (z,5) = [[llljll+ lill« =
|lz||P~1}, we have

f7(9) = sup{(z,j) = f(x)) = sup{l|||” —[l«[|"/p} = sup{l|=]"/q}
rzeX reX reX

Note [ljll. = ll«[P~" so [ljl|f = fJz[|*»~ ) = |lz||P. Therefore, f*(j) =
1711%/ -
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Theorem 2.8.16 Let p > 1. Let X be a uniformly smooth Banach space and
let J, : X — X* and J; : X* — X be the duality mappings with gauge functions
pp(t) = P~ and pg(t) = t71, respectively. Then J;* = Jr.

Proof. The uniform smoothness of X implies that X is reflexive (see
Theorem 2.8.6) and that X* is uniformly convex and reflexive. Note also J, is
surjective if and only if X is reflexive. Because J, is single-valued, it follows

that the inverse J, ! : X* = Dom (J, ') — X = X** exists and is given by

JNG) ={z € X :j = Jy(x)} for all j € X*.

p
Now, let ®(¢) = tP/p, t > 0. It is easy to see that ®(||-||) = ||-||”/p is a continuous
convex function and that its conjugate is given by ®*(||j|l«) = ||7]|%/q for all

j € X*. Note Jy(x) = 00(||z[]) and Jg(j) = 00*(||jll) for all z € X, j € X~.
Using Proposition 2.8.14, we have

j € 0(||z|) if and only if z € dB*(||j]|.).

Therefore, J, ' (j) = J;(j) for all j € X*. |

The following inequality is very useful in the existence and approximation
of solutions of nonlinear operator equations.
Theorem 2.8.17 Let X be a Banach space. Then the following are equivalent:
(a) X is uniformly convez.
(b) For any p, 1 < p < oo and r > 0, there exists a strictly increasing convex
function g, : RT™ — RT such that g.(0) =0 and
[tz + (1 = )y||” < tlj=]]” + (1 =)yl — (1 = t)gr (= — yl) (2.28)
for all z,y € B,.[0] and t € [0, 1].

Proof. (a) = (b). Let X be a uniformly convex Banach space. Assume that
1 < p < co. It suffices to prove that (2.28) is true for r = 1. Now we define a
function v by

v(e) = mf{2P7 (|lz]P + [[yll?) = [l + y|IP : 2,y € Bx and [z —y| > ¢}
for all € € (0,2].
Because
b\ P P pp
(a; ) < ot for all a,b > 0 and a # b, (2.29)
we have

v(e)>0forall0<e <2,

Suppose that y(¢) = 0 for some ¢ > 0. Then there exist sequences {z,} and
{yn} in Bx such that ||z, — y,|| > ¢ for all n € N and

lim 277 ([|zn [P + [lynl?) — |zn + yul/” = 0.
n—oo
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We may assume a subsequence of {z,,} denoted by {x,} such that
a= lim ||z,|], b= lm |y,|| and ¢ = lm ||z, + y»||
n—oo n—oo n—oo

exist. Thus,

a+b\’ af 40P
2 o2

i.e., equality of inequality (2.29) holds with ¢ = a +b. Fora =b > 0, ¢ =
2a = lim |@, + yn||, it follows from Theorem 2.2.7 that lim |z, —y,|| =0, a

contradiction. Therefore,
v(e) >0foralle, 0 <e<2.

Now set

e JAlEP A+ (= Myl = Az + (1 = Myl
uie) == mf{ A=) },

where the infimum is taken over all z,y € Bx with ||z —y|| > € and X € (0,1).
Note u(g) > v(g)/2P~1 > 0 for all £, 0 < ¢ < 2. Thus, it suffices to take as g;
the double dual Young’s function p**.

(b) = (a). Suppose (2.28) is satisfied. For x,y € Bx and ||z — y|| = ¢, we
have

Tty 1
1— =
B H = 491(5)
S 1_6X(€)7

ie., dx(e) > ¢1(e)/4, which shows that X is a uniformly convex Banach

space.

2.9 Banach limit

In this section, we generalize the concept of limit by introducing Banach limits
and we discuss its properties.

Let £ : ¢ — K be the “limit functional” defined by
{(z) = lim z; for x = {z;} € c.

Then /£ is a linear functional on ¢. In order to extend limit £ on f., use the
following notations and results.

Let S be a nonempty set and let B(S) be the Banach space of all bounded
real-valued functions on S with supremum norm.

Example 2.9.1 Let S=N=1{1,2,3,---}. Then B(S) = .



2.9. Banach limit

107

Let X be a subspace of B(S) and let j be an element of X*. Let e be a
constant function on X defined by e(s) = 1 for all s € S. We will denote j(e) by
j(1). When X contains constants, a linear functional j on X is called a mean

on X if [[j]l. = j(1) = L.

The following example shows that there is a subspace of ¢, for which the

mean exists.

Example 2.9.2 Let loo = {x = {x;} : sup|z;| < oo} and X a subset of {oo
1€EN

such that

1 n
X = = it €l i i — i ,Sts p.
{x {z;} ner;oan exis s}

=1

Then X is a linear subspace of bos. In fact, for x = {x;} and y = {y;} in X,

we have

n—oo N

I ‘ I ‘
nlirr;o -~ E 1 x; exists and lim — E 1 Y; erists.
i= i=

Hence for scalars o, 3, we have

Oél‘+6y:(04$1 +/6y1a 7a1’z+ﬁyu)

Using (2.30), we obtain that

n

1 1< 1
li *g i i) = o li *E i li *g i
Jim -~ (azx; + By;) a(ngn - x)+ﬂ(n1m . Yi)

i=1 i=1 i=1

(2.30)

exists. It follows that X is a linear subspace of £o,. We now define j : X — R

by
1 n
j(z) = li fE i Il X.
j(x) "Lnéoni,lx forallz €

Note j(1) =1 and

: 1
i) = nlinéoﬁle
=1
1 n
< I - :
< lrrlnjolianm'
i=1
< 7]l

and it follows that ||j||« = 1. Therefore, j is linear and ||j||« = j(1) =1, i.e., j

is a mean on X.

We now give an equivalent condition for mean.
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Theorem 2.9.3 Let X be a subspace of B(S) containing constants and j € X*.
Then the following are equivalent:

(a) j is a mean on X, i.e., ||j]l« = 4(1) =1.
(b) The inequalities

inf z(s) < j(z) < supz(s)
s€S sES

hold for each x € X.

Proof. (a) = (b). First, we show that j(x) > 0 for all z > 0. Suppose, for
contraction, that j(x) < 0. Choose a positive number K with < K. Then

JK —x)=Kj1)—j(z) = K - j(z) > K.
Because

JK =) < Gl K ==l = [|[K -] = 81615|fo(5)| <K,

it follows that
K <j(K-z)<K,
a contradiction. Therefore, j(z) > 0.
Observe that

inf z(s) < x < supx(s) for each x € X.
ses s€S

Because j(z) > 0 for > 0, we have

inf 2(s) = j(inf 2(s)) < j(2) < j(ilelgx(S)) = sup (s).

(b) = (a). For x = 1, we have 1 < j(1) < 1 and hence j(1) = 1. Note for each
reX,

Jj(@) < supa(s) < supla(s)| = [
ses sES

and

—j(@) =j(=2) < || ==l = [|l=[,
so |j(z)] < ||z|| for each z € X. Thus, ||j||« = 1. Therefore, |j|l. = j(1) = 1,
i.e., j is a mean on X.

Let f € {o. We denote fn(xn+m) for f(xm+17zm+23xm+37 s Tmegns )v
m=0,1,2,--- . A continuous linear functional j on l, is called a Banach limit
if

(L1) gl =4(1) =1,

(L2) jn(xn) = jn(xns1) for each © = (21,29, ) € loo.

It is denoted by LIM.
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Theorem 2.9.4 (The existence of Banach limits) — There exists a linear
continuous functional j on lo such that ||j||« = j(1) = 1 and jp(zn) = jn(Tnt1)
for each * = {xn }nen € loo-

Proof. Let p: /o, — R be the functional defined by

. T+ X2+ F+ Th
p(z) = limsup .

n—oo n

Then

—p(—z) = lim inf TitTa Tn
n— o0 n

For x € ¢, we have
x1+x2++1~n

z) = lim z, = lim = p(a).
n—oo n—oo n
Moreover,
p(z+y) <plx)+ply) for all z,y € ¢
and

p(ax) = ap(x) for all x € ¢ and a > 0.

Thus, p is a sublinear functional with ¢(x) = p(z). By the Hahn-Banach
theorem, there is an extension L : £o, — R of £ (from ¢ to £,) such that

L(z) < {(z) for all € £

and
—p(—z) < L(z) < p(x) for all x € o

Thus, we have
p(17 17 17) =1

and

. T — T
p((@1, @2, &y o) = (X2, 23,y Tngr, ) = limsup % = 0.

n—oo

Hence

L((xthu"' ,.’L’n7"') - (1'2,1'37"' 7xn+1a"')) :07
which implies that
L(xl’x27... 7xn,...) :L(l‘Q,x3’... 7‘1:TL+1'.')

for all z = (1, T2, Tpn, ) € loo-
Therefore, L is a Banach limit. I

Observation

e Every Banach limit is a positive functional on fo, i.e., LIMy(z) > 0 for all
T € loo.

o LIM(1,1,-+-1,--+) = 1.

We now give elementary properties of Banach limits.
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Proposition 2.9.5 Let LIM be a Banach limit. Then

liminf 2, < LIM(z) < limsup z, for each © = (21,22, ) € loo.

n— 00 n—00
Moreover, if x, — a, then LIM(z) = a.
Proof. For each m € N, we have

LIMy(t0) = LIMy(@ns1) = -+ = LIMu(ni(m-1) > inf

and hence LIM, (x,) > sup inf x, = liminfz,.
meNn>m n—00

Similarly, since LIM,(z,) < sup z,, we have LIM,(z,) < limsupz,.

n>m n—oo
Therefore,

liminf x,, < LIM(x) < limsupz,, for each x = (21,22, ) € lo.

n—00 n— oo
Letting =, — a, we have liminfz, = limsupz, = a and hence LIM(x)
n—oo

n—oo

—a. |

Proposition 2.9.6 Let a be a real number and let (x1,x2, ) € los. Then the
following are equivalent:

(a) LIM,(x,) < a for all Banach limits LIM.
(b) For each € > 0, there exists mo € N such that

Tn + Tn41 +---+ Tn4+m—1
m

<a+e forall m>mgandneN. (2.31)

Proof. (a) = (b). Suppose that for {x,} € lo, we have LIM, (z,) < a for all
Banach limits LIM. Define a sublinear functional ¢ : £, — R by

n+m—1
q(yhyz,---):limsup(supm > y) {yn} € Lo

m—oo neN .
i=n

By the Hahn-Banach theorem, there exists a linear functional j : /o, — R such
that
J < qand jn(zn) = gn(zn).

It is easy to see that j is a Banach limit. From the assumption, we have

n+m—1
1
gn(x,) = limsup <sup — Z 1’Z> <a.

m—oo neN T £
i=n

Thus, for € > 0, there exists mg € N such that

Tn + Tn+1 + -+ Tn4+m—1
m

< a+e¢ forall m > mgand n € N.
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(b) = (a). Suppose for each £ > 0, there exists mo € N such that (2.31) holds.
Let LIM be a Banach limit. Then

L[Mn(xn> _ LIM”(.%‘TL + Tpt1+ 0 +-’17n+m0—1> <a+e.
mo
Because ¢ is an arbitrary positive real number, we have LIM, (z,) < a. I
Proposition 2.9.7 Let a be a real number and let (x1,xa, ) € oo such that
LIM,(z,) < a for all Banach limits LIM and limsup(z,+1 — ) < 0. Then

n—oo
limsup x, < a.

n—oo
Proof. Let ¢ > 0. By Proposition 2.9.6, there exists m > 2 such that

T + Tn41 +---+ Tn+m—1
m

<a+§foralln€N.

Choose ng € N such that

Tptl — Tp < for all n > ng.

Let n > ng + m. Observe that

Tn = Tp—qt (xnfiJrl - xnfi) +---+ (xn - xnfl)
i€ .
< Tn_;+ foreach ¢ =0,1,--- ,m — 1.
m—1
Thus,
limsupz, <a-+e.
n—oo
Because ¢ is arbitrary positive number, we get the conclusion. I

We note that if a linear functional j on [, satisfying:

liminf z,, < j(z) < limsupx, for each z = (z1,22, ) € loo,
n—00 n— o0

then j is a mean on /... Thus, every Banach limit on ¢, is a mean on f.

Let X be a Banach space, {z,} a bounded sequence in X, and LI M a Banach
limit. Then a point zg € X is said to be a mean point of {x,} concerning a
Banach limit LIM if

LIM,(xn,j) = {(xo,j) for all j € X™.
We establish two preliminary results related to mean points.

Proposition 2.9.8 (Existence of mean points) — Let X be a reflexive
Banach space and {x,} a bounded sequence in X. Then, for a Banach limit
LIM, there exists a point xg in X such that

LIM;(xn,j) = (xo,j) for all j € X
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Proof. Note the function LIM, (x,,j) is linear in j. Further, as

|LIMy (xn, j)| < (Sugllafnll) Nl
ne

the function LIM, (x,, j) is also bounded in j. So, we have j§ € X** such that
LIM,(xn,j) = {j§,j) for every j € X™.

Because X is reflexive, there exists zo € X such that LIM, (x,,j) = (zo,j) for
alljexs |

Proposition 2.9.9 Let {x,} be a bounded sequence in a Banach space X and
xo € X a mean point of {x,} concerning a Banach limit LIM. Then o €

Mozt C0({Tk frn)-

Proof. If not, there exists ng € N such that z¢ ¢ ¢o{z, : n > ng}. By the
separation theorem, we obtain a point j € X* such that

(x0,7) < inf{(z,j): z €co{xn :n > ng}}.
Thus, we have

LIMn<£naj> = <'1:07.j> < inf{(zn,j) in = nO}
LIM, {{xy,J) :n > no} = LIM,{(x,, j),

IN

a contradiction. I

We now characterize the sequences in £, for which all Banach limits coincide.
It is obvious that for any element x € ¢,

LIM(z) = ¢(x) = lim z, for all Banach limit LIM.

n—oo

However, there exist nonconvergent sequences for which all Banach limits
coincide.

Example 2.9.10 Let z = (1,0,1,0,---) € fs. Then
($1,$2,"'$n,"')—‘1-(.132,3?3,"' ,x7l+1’...) = (1’1,17...)7
and it follows that
LIM,(2n) + LIM,(2ps1) = LIMo(1) = 1 for all LIM.

Using (Ls), we have

1
LIM,(z,) = B for all Banach limit LIM.
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A bounded sequence z = {z;} is said to be almost convergent if all its
Banach limits have the same value at x. Equivalently, x = {z;} € ¢ is almost
convergent if
lim £ tT Zng1 + Tngi-l

11— 00 ]

exists uniformly in n.

We have seen in Example 2.9.10 that the sequence (1,0,1,0,---) is not conver-
gent, but it is almost convergent.

In optimization theory, the structure of M defined in our next result is of
much interest.

Theorem 2.9.11 Let C be a nonempty closed convex subset of a reflexive
Banach space X, {x,} a bounded sequence in C, LIM a Banach limit, and
¢ a real-valued function on C defined by p(z) = LIM,||z, — 2||?>, 2 € C. Then
the set M defined by

AI:{UGC:LHWan—uW::méLHWan—zW} (2.32)
zeE

s a nonempty closed convex bounded set. Moreover, if X is uniformly convex,
then M has exactly one point.

Proof. First, we show that ¢ is continuous and convex. Let {y,,} be a sequence
in C such that y,, — y € C. Set L := sup{||lzp, — ym| + |xn — y|| : m,n € N}.
Observe that

< (lzn = ymll + 20 = yIDlzn = ymll = ll2n = yl)
< Ll lzn = ymll = llzn =yl |
< L|ym —y| for all n,m € N.

|zn — ymH2 - Hxn - y”2

Then
LIM,||zn — ymHQ < LIM,||zn — yH2 + L||ym — yl|.

Similarly we have
LIMy||zn — sz < LIMy ||z, — ymH2 + Ll|ym — yll-
Thus, we have

o(ym) — (@) < Lilym — x|

Hence ¢ is continuous on C. Now, let z,y € C' and A € [0,1]. Tt is easy to see
that

(1 =Nz +y) < (1= M) + Ap(y).
Hence ¢ is convex.
Using the fact ((a + b)/2)? < (a® + b?)/2 for all a,b > 0, we have

1y 1* < 2llym — zal® + 2llzal,
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and hence
[yml* < 20(ym) + 2sup ||z 1%,
neN

i.e., (Ym) — 00 as ||ym|| — oco. Thus, ¢ is a continuous convex functional and
p(z) = o0 as ||z|| — oo. Because X is reflexive, ¢ attains its infimum over C
by Theorem 2.5.8. Then M is a nonempty closed convex set. Moreover, M is
bounded. Indeed, let w € M. Because

lull? < 2|ju — 2, || + 2||2n||? for all n € N,
this implies that
lull> < 2¢(u) + 2K =2 inf p(2) + 2K
ze

for some K > 0.

Now, suppose X is uniformly convex. Let 21,29 € M. Then (z;+22)/2 € M.
Choose r > 0 large enough so that {x,} UM C B.[0]. Then x, — 21,2, — 22 €
By, [0] for all n € N. By Theorem 2.8.17, we have

|-

If z; # 29, we have

. Z1 +ZQ 1 1 1
f <o) <« = = — Zgor(llz1 —
Zlgcso(Z) < so( 5 ) < 2s0(21) + 2<P(22) 192 (I[z1 = 22

2
21+ 29
"

1 1 1
< Sllon = 22 + 5lle — 22l = 7020 (1 — 2.

. 1
= inf p(2) — —gor([l21 — 22]|)

zeC 4
< inf ,
2o
a contradiction. Therefore, M has exactly one element. I

Let LIM be a Banach limit and let {x,,} be a bounded sequence in a Banach
space X. We observe that if ¢y : X — R is bounded, Gateaux differentiable
uniformly on bounded sets, then a function f : X — R defined by f(z) =
LIM,(x, + z) is Géateaux differentiable with Gateaux derivative given by
(y, f'(2)) = LIM,(y,¢'(zy, + 2)) for each y € X.

Using the above facts, we give the following result, which will be used in
convergence of sequences {x,} in Banach spaces with Géateaux differentiable
norm.

Theorem 2.9.12 Let X be a Banach space with a uniformly Gateaux differen-
tiable norm and {x,} a bounded sequence in X. Let LIM be a Banach limit
and v € X. Then

LIM, ||z, — u||* = inf LIM,|z, — z|?
zeX

if and only if
LIM,(z,J(zn, —u)) =0 for all z € X.
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Proof. Let u € X be such that LIM,|x, — u|? = in)f{LIMnH:vn — 2|
z€

Then u minimizes the continuous convex function ¢ : X — R7T defined by
é(2) = LIM,||z,, — z||?, so we have ¢ (u) = 0.

Note that the norm of X is Gateaux differentiable, and Jz is the subdiffer-
ential of the convex function ¢(z) = ||z||?/2 at x as the Gateaux differential of

. Hence
LIM,(z,J(z, —u)) = (z,¢'(u)) =0 for all z € X.

Conversely, suppose that LIM,{u — z,J(x, — w)) = 0 for all z € X.
IfzxeX,

lzn — z||* = |zn — ul|* > 2(u — 2, J(x, —u)) for all n € N.
Because LIM,, (u — x, J(x, —u)) = 0 for all z € X, we obtain

LIM |l = ul* = inf LIM, |z, — af/® |
xre

Corollary 2.9.13 Let X be a Banach space with a uniformly Gateauz differ-
entiable norm and C a nonempty closed convex subset of X. Let {x,} be a
bounded sequence in C. Let LIM be a Banach limit and uw € C'. Then

uw€ M if and only if LIM,(z, J(z, —u)) <0 for all z € C.

2.10 Metric projection and retraction mappings

Let C' be a nonempty subset of a normed space X and let x € X. An element
yo € C is said to be a best approximation to x if

12 = yol| = d(x, ©),

where d(z,C) = ing |z — y||. The number d(z,C) is called the distance from x
yeE

to C or the error in approximating x by C.

The (possibly empty) set of all best approximations from z to C' is denoted
by
Po(z) ={y € C:[lz -yl = d(z,C)}.
This defines a mapping Pc from X into 2¢ and is called the metric projection

onto C'. The metric projection mapping is also known as the nearest point
projection mapping, prorimity mapping, and best approximation operator.

The set C is said to be a proziminal ? (respectively, Chebyshev) set if each
x € X has at least (respectively, exactly) one best approximation in C'.

2The term “proximinal” is a combination of the words “proximity” and “minimal” and
was coined by Killgrove.
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Observation
e (' is proximinal if Po(z) # 0 for all z € X.
e C is Chebyshev if Pc(x) is singleton for each z € X.

e The set of best approximations is convex if C' is convex.
Some fundamental results on proximinal sets are the following:
First, we observe that every proximinal set must be closed.

Proposition 2.10.1 Let C be a proziminal subset of a Banach space X. Then
C is closed.

Proof. Suppose, for contradiction, that C' is not closed. Then there exists a
sequence {z,} in C such that 2, — 2 and z ¢ C, but € X. Tt follows that

d(z,C) < ||z, — x| — 0,
so that d(z,C) = 0. Because = ¢ C, it means that

lx —y|| >0 forall ye C.

This implies Po(z) = 0. This contradicts Po(z) # 0. |

Theorem 2.10.2 (The existence of best approximations) — Let C be a
nonempty weakly compact convex subset of a Banach space X and x € X. Then
x has a best approzimation in C, i.e., Po(x) # (.

Proof. The function f: C — RT defined by

f)=lz—yll, yeC

is obviously lower semicontinuous. Because C' is weakly compact, we can
apply Theorem 2.5.5, and then there exists yo € C such that ||z — yo|| =

inf ||z — y|.
Inf flz =yl

Corollary 2.10.3 Let C be a nonempty closed conver subset of a reflexive
Banach space X. Then each element x € X has a best approximation in C.

Theorem 2.10.4 (The uniqueness of best approximations) — Let C be
a nonempty convex subset of a strictly convex Banach space X. Then for each
element © € X, C has at most one best approzimation.

Proof. Suppose, for contradiction, that y;, yo € C are best approximations
to z € X. Because the set of best approximations is convex, it follows that

(y1 + y2)/2 is also a best approximation to x. Set r := d(z,C). Then

0<r=llz—yill = e =2l = o = (g1 +y2)/2l,
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and it follows that
(@ =) + (@ =)l = 2r = lz =l + ||z — 2.
By the strict convexity of X we have
x—y =tlx—y2), t>0.

Taking the norm in this relation, we obtain r = tr, i.e., t = 1, which gives

us y1 = y2. I

The following example shows that the strict convexity cannot be dropped in
Theorem 2.10.4.

Example 2.10.5 Let X = R? with norm || - ||1. It is easy to check that X is
not strictly convex. Now, let

C={(z,y) eR?:|[(z,y)llh <1} = {(z,y) € R?: [2| + [y| < 1}.

Then C' is a closed convex set. The distance from z = (—1,—1) to the set C is
one, and this distance is realized by more than one point of C.

In Theorem 2.10.4, uniqueness of best approximations need not be true for
nonconvex sets.

Example 2.10.6 Let X = R? with the norm || - |2 and C = Sx = {(z,y)} €
R? : 22 +9y% = 1}. Then X is strictly convex and C is a nonconvex set. However,
all points of C are best approzimations to (0,0) € X.

Theorem 2.10.7 If in a Banach space X, every element possesses at most a
best approximation with respect to every conver set, then X is strictly convex.

Proof. Suppose, for contradiction, that X is not strictly convex. Then there
exist z,y € X, x # y with

[zl = llyll = (= +y)/2[| = 1.

Furthermore,

Itz + (1 —t)y|| =1 for all ¢ € [0,1].
Set C := co({z,y}). Then ||0 — z|| = d(0,C) for all z € C. This means that
every element of C'is the best approximation to zero and this clearly contradicts

the uniqueness.

From Corollary 2.10.3 and Theorem 2.10.4 (see also Proposition 2.1.10), we
obtain some important results:

Theorem 2.10.8 Let C be a nonempty weakly compact convex subset of a
strictly convex Banach space X. Then for each x € X, C has the unique best
approzimation, i.e., Po(-) is a single-valued metric projection mapping from X
onto C.
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Corollary 2.10.9 Let C be a nonempty closed convez subset of a strictly convex
reflexive (e.g., uniformly conver) Banach space X and let x € X. Then there
exists a unique element xo € C' such that ||z — zo|| = d(z, C).

Observation
e Every closed convex subset C of a reflexive Banach space is proximinal.

e Every closed convex subset C of a reflexive strictly convex Banach is a Chebyshev
set.

e For every Chebyshev set C, we have
(i) Pc(x) is singleton set, i.e., Pc is a function from X onto C.
(ii) ||z — Pc(x)|| = d(z,C) for all x € X.

We now study useful properties of metric projection mappings.

Theorem 2.10.10 Let C' be a subset of a normed space X and T € X. Then
Po(T) C OC.

Proof. Let y € Po(T). Suppose y € int(C). Then there exists an € > 0 such
that B.(y) C C. For each n € N, let z,, = (1/n)Z + (1 — 1/n)y. Then
lzn —yll = (1/n)[[z =yl
For sufficiently large N € N, ||zy — y|| < e. Thus, zy € B:(y) C C. On the
other hand,
[T —znll = (1 = 1/N)|z -yl <7 -yl = d(z,O),

which contradicts the fact that y € Po(Z). Therefore, y € 9C. 1

Corollary 2.10.11 Let C be a nonempty closed convex subset of a strictly con-
ver reflexive Banach space X and let © € X. Then we have the following:

(a) If x € C, then Po(z) = .

(b) If x ¢ C, then Pc(x) € 9C.
Theorem 2.10.12 Let C be a nonempty closed convex subset of a reflexive

strictly convexr Banach space X. If X has the Kadec-Klee property, then the
projection mapping Pc of X onto C' is continuous.

Proof. Suppose, for contradiction, that Pg is not continuous. Then for the
sequence {z,} in X with lim x, = x € X, there exists ¢ > 0 such that

|Po(xy) — Po(x)|| > e forall neN.

Because
(25, C) — d(z,C)| < [|zn — x|,

it follows that

llen = Po(za)ll = llo = Po(@)] < llzn — =]
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This implies that

i [l — Po(e)l| = o — Po(@)]). (2:33)

Because {Pc(zy)} is bounded in C' by (2.33), there exists a subsequence
{Pc(xn,;)} of {Pc(xy,)} such that w — lim Po(z,,) = z € C. Note

w— lim (x,, — Po(zp,)) =z — 2. (2.34)
1— 00
By w-lsc of the functional || - ||, we have

o= 2l <l inf [lrn, = Po(en,)l = |l = Pe(@)]|

This implies z = Pco(z) by definition of the function Pr. From (2.33) and (2.34)

w— lim (xm _PC(xm)) =2 —Pc(z) and lim ”xm _Pc(xm)” = ||z _PC('I)H'
11— 00

71— 00

Because X has the Kadec-Klee property, we obtain
lim (2,,, — Po(zp,)) =« — Po(x),

i—00

which implies that lim Po(z,,) = Pc(z), which is a contradiction to the

11— 00

assumption that ||Pc(x,) — Po(x)] > €. |

Then following Proposition 2.5.25, we have

Theorem 2.10.13 Let C' be a nonempty convexr subset of a smooth Banach
space X and let x € X and y € C. Then the following are equivalent:

(a) y is a best approximation to x: ||z — y|| = d(z,C).

(b) y is a solution of the variational inequality:
(y—z,Ju(x—y)) >0 forall z € C,
where J,, is a duality mapping with gauge function p.
As an immediate consequence of Theorem 2.10.13, we have

Corollary 2.10.14 Let C be a nonempty convexr subset of a Hilbert space H
and Pc be the metric projection mapping from H onto C. Let x be an element
in H. Then the following are equivalent:

(a) ||z = Po(z)|| = d(z, C).
(b) {(x — Pco(x), Pc(x) —2z) >0 forall z€C.

Proposition 2.10.15 Let C' be a nonempty closed convexr subset of a Hilbert
space X and Po the metric projection from X onto C. Then the following hold:

(a) Pc is “idempotent”: Po(Po(x)) = Po(x) for all z € X.
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(b) Pc is “firmly nonexpansive”:
(x =y, Pc(x) = Pe(y)) > |[Pe(e) — Pe))I® for all z,y € X.

(¢) Pc is “nonexpansive”: ||Pc(z) — Po(y)|l < |z —y|| for all z,y € X.
(d) Po is “monotone”: (Po(x) — Po(y),x —y) >0 for all x,y € X.
(e) Po is “demiclosed”: x, — xo and Po(xn) — yo = Po(xo) = yo-

Proof. (a) Observe that Po(x) € C for all z € X and Px(z) = z for all z € C.
Then Po(Po(x)) = Po(x) for all x € X, ie., P2 = Pc.

(b) Set j := Po(x) — Po(y) for z,y € X. We have
(r—y,J) = (& = Po(x),j) + (4,4) + (Po(y) — v, 5)-
Because from Corollary 2.10.14, we get
(= Pe(z),j) = 0 and {y — Pc(y), j) = 0,

it follows that
(x—y,9) > 7>

(c) This is an immediate consequence of (b).
(d) It follows from (b).
(e) From Corollary 2.10.14, we have
(xn — Po(xn), Po(zn) —2) >0 forall z e C.
Because z,, — xg and Po(z,) — yo, we have
(xo — Yo,yo — z) > 0 for all z € C.

Using Theorem 2.10.13, we obtain |zg — yol| = d(xo,C). Therefore,
Pe(x0) = yo. I

Remark 2.10.16 Proposition 2.10.15(c) shows that in a Hilbert space, a metric
projection operator is not only continuous, but also it is Lipschitz continuous and
hence it is uniformly continuous.

The following result is of fundamental importance. It shows that every point
on line segment joining x € X to its best approximation Px(x) € C has Po(x)
as its best approximation.

Proposition 2.10.17 Let C be a Chebyshev set in a Hilbert space H and
x € H. Then Po(x) = Pe(y) for ally € co({z, Po(x)}).
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Proof. Suppose, for contradiction, that there exist y € co({z, Pc(x)}) and
z € C such that

ly =zl < lly = Po()l].
Set y := Az + (1 — M) Po(z) for some A € (0,1). Then

o=zl < fle—yl+ly— =l
< Nz =yl +lly = Po(2)]
(1 =Nz = Po(z)[| + Allz = Po(2)|| = d(=z, C),

a contradiction. I

If C is a Chebyshev set in a Hilbert space H, then
Podx+ (1 =N Pe(z)] = Po(x), € H, 0 <A< 1.
Motivated by this fact, we introduce the following:
A Chebyshev subset C' of a normed space X is said to be sun if
Po[Az+ (1 = N)Po(x)] = Po(z) for all z € X and A > 0.
In other words, C' is a sun if and only if each point on the ray from Px(x)

through z also has Peo(x) as its best approximation in C.

Let C' be a nonempty subset of a topological space X and D a nonempty
subset of C. Then a continuous mapping P : C' — D is said to be a retraction
if Pr = 2 for all x € D, i.e., P2 = P. In such case, D is said to be a retract

of C.
Example 2.10.18 FEvery closed convex subset C' of R™ is a retract of R™.

We have seen in Theorem 2.10.8 that for every weakly compact convex subset
C of a strictly convex Banach space, there exists a metric projection mapping
Pe : X — C that may not be continuous. However, every single-valued metric
projection mapping is a retraction if it is continuous.

Theorem 2.10.19 FEwvery closed convex subset C' of a uniformly convexr Banach
space X is a retract of X.

Proof. By Theorem 2.10.8, there exists a metric projection mapping Po : X —
C such that Po(z) = « for all € C. By Theorem 2.10.12, P¢ is continuous.

Therefore, Pe is retraction.

We now show that every retraction P with condition (2.35) is sunny non-
expansive (and hence continuous).

Proposition 2.10.20 Let C' be a nonempty convezr subset of a smooth Banach
space X and D a nonempty subset of C. If P is a retraction of C onto D such
that

(x — Px,J(y — Px)) <0 forallz € C and y € D, (2.35)

then P is sunny nonerpansive.
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Proof. P is sunny: For x € C, set x; := Pz + t(x — Px) for all ¢ > 0. Because
C is convex, it follows that z; € C for all ¢ € (0, 1]. Hence

(x — Pz, J(Px — Px)) > 0 and (x; — Pxy, J(Pzy — Px)) > 0. (2.36)
Because x; — Px = t(x — Px) and (t(x — Pz), J(Pxz — Px;)) > 0, we have

(x¢ — Pz, J(Pz — Px:)) > 0. (2.37)

Combining (2.36) and (2.37), we get

(

|Px — th||2

Px — xy + 2y — Pxy, J(Px — Pxy))
—(xy — Px, J(Px — Pxt)) + (2t — Pxy, J(Px — Pxy))
0.

[VANVAN

Thus, Px = Px;. Therefore, P is sunny.

P is nonezpansive : For z,z € C, we have from (2.35) that

(x — Pz, J(Px — Pz)) > 0 and (z — Pz, J(Pz — Pz)) > 0.
Hence
(x — z— (Px — Pz),J(Px — Pz)) > 0.
This implies that
(x — 2, J(Px — Pz)) > ||Px — Pz|?
and hence P is nonexpansive. I

We now give equivalent formulations of sunny nonexpansive retraction
mappings.

Proposition 2.10.21 Let C' be a nonempty convexr subset of a smooth Banach
space X, D a nonempty subset of C, and P : C — D a retraction. Then the
following are equivalent:

(a) P is the sunny nonexpansive.
(b) {x — Pz, J(y — Px)) <0 forallz € C and y € D.
(c) (z—y, J(Px — Py)) > ||Px — Py| for all 2,y € C.
Proof. (a)= (b). Let P be the sunny nonexpansive retraction and z € C.

Then Px € D and there exists a point z € D such that Px = z. Set M :=
{z+t(x — 2) : t > 0}. Then M is nonempty convex set. Hence for v € M

ly—=z|| = ||Py— Pv| (as P issunny,ie., Pv=z)
< Nly—v||=|y—z+t(z—a)|| for ally € D.

Hence from Proposition 2.4.7, we have

(x — Pz, J(y — Px)) <O0.
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(b) = (a). It follows from Proposition 2.10.20.
(b) = (c). Let 2,y € C. Then Px, Py € D and hence from (b), we have
(x — Pz, J(Py — Px)) <0 and (y — Py, J(Pz — Py)) <0.
Combining the above inequalities, we get
(Px— Py — (z —y),J(Pz — Py)) <0.
Hence

(Px — Py, J(Px — Py))
= (Pz—Py—(v—y),J(Pr—Py)) + (z —y,J(Pr — Py))
< (x—y,J(Pz— Py)).

1Pz — Py|*

(c) = (b). Suppose (c) holds. Let z € C and y € D. Replacing y by y = Py in
(c), we have

(x — Py, J(Px — P2y) > ||Pxz— P2y|\27

which implies that
(@ —y,J(Pr —y)) > ||Pz —y|*.

Therefore,

<1‘—PI7J(PI—y)> = <£E—y,J(PI—y)>—|—<y—PI,J(PQS—y)
1Pz —y|? = [Pz —y|?=0. |

Y

Finally, we give uniqueness of sunny nonexpansive retraction mappings.
Proposition 2.10.22 Let C' be a nonempty conver subset of a smooth Banach
space X and D a nonempty subset of C. If P is a sunny nonexpansive retraction

from C onto D, then P is unique.

Proof. Let () be another sunny nonexpansive retraction from C onto D. Then,
we have, for each x € C

(x — Pz,J(y — Pz)) <0 and (z — Qz,J(y — Qz)) <0 for all y € D.
In particular, because Px and Qz are in D, we have
(x — Pz, J(Qx — Pz)) <0 and (x — Qz, J(Px — Qz)) <0,

which imply that ||Pz — Qx||? < 0. Therefore, Pz = Qx for all x € C. 1
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Exercises
2.1 Let X be a strictly convex Banach space and let z,y € X with x # y.
If lz — 2| = lz — wll, |z = yll = w =yl and ||z —y|| = [l — 2] + |z — yl,
show that z = w.

2.2 Let X be a uniformly convex Banach space and let dx be the modulus of
convexity of X. Let 0 < ¢ < r < 2R. Show that dx(e/R) > 0 and

Az + (1= Ay < r{l —2M(1 — M\)dx (;)}

for all x,y € X with ||z]| <, |ly]| <7 and ||z —y|| > € and A € [0,1].

2.3 Let X be a Banach space. Show that X is uniformly convex if and only if
~(t) > 0 for all t € (0, 2], where

y(t) = inf{(z —y,z* —y*) : x,y € Sx, ||z —y|| > t,2* € J(z),y" € J(y)}.

2.4 If 1 < p < oo, and if the X s are all strictly convex Banach spaces, show
that

(H Xn)p={z={zn} 2, € X,, for all n € N and Z lzn|%, < oo}
neN neN
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endowed with norm

lzll = D el )P

neN

is strictly convex.

2.5 On L?([0,1],dt), we consider the norm

1 1/2
151 = {08 + 1180

Show that this norm is equivalent to | - ||2, but is not smooth.

2.6 On /£y, we consider the norm ||z| = (||2||? + ||z]|3)*/?

lzlly =Y el lallz = (D lzal®)'/?).

neN neN
Show that this norm is equivalent to the /;-norm and that it is strictly

convex.

y L= {"Tn}nGN (Where

2.7 Let C be a nonempty closed convex subset of a strictly convex Banach
space X and D a nonempty subset of C. Let z € C' and P be a sunny
nonexpansive retraction of C' onto D such that |[Px — y|| = || — y|| for
some y € D. Then Px = .



Chapter 3

Geometric Coefficients of
Banach Spaces

Geometric coefficients play a key role in the existence of fixed points of
Lipschitzian as well as non-Lipschitzian mappings. In this chapter, we discuss
normal structure coefficient, weak normal structure coefficient, Maluta con-
stants, and other related coeflicients.

3.1 Asymptotic centers and asymptotic radius

The concept of asymptotic center is introduced, and several useful results are
discussed here.

Let C be a nonempty subset of a Banach space X and {z,} a bounded
sequence in X. Consider the functional 7, (-, {z,}) : X — RT defined by

ro(z,{z,}) = limsup ||z, — z||, =€ X.
n—oo

The infimum of r,(-, {z,}) over C is said to be the asymptotic radius of {z,}
with respect to C' and is denoted by r,(C, {x,}). A point z € C is said to be
an asymptotic center of the sequence {z,} with respect to C' if

ro(2,{zn}) = inf{ry(z,{z,}) : x € C}.

The set of all asymptotic centers of {x,} with respect to C' is denoted by
Z,(C,{x,}). This set may be empty, a singleton, or certain infinitely many
points. In fact, if {x,} converges strongly to = € C, then

Zo(C{an}) = {z}
and if {z,,} converges strongly to « and x ¢ C, then
ro(Cy{zn}) =d(x,C) and Z,(C,{z,}) ={y € C: ||z —y| = d(z,C)} = Po(x),
where Pg is the metric projection from X into 2¢.
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For any A > 0, the level set is
AN(C{zn}) ={z € C 1oz, {zn}) < 1a(C,{zn}) + A}

It can be easily observed that

(1) Ao(Cy{zn}) = Z4(C,{x,}), the asymptotic center of {x,} with respect
to C,

(i) Ax(C,{zn)}) # 0 for all A >0,
(“7') A)\'(Cv {xn}) - A)\(C7 {mn}) if A < A,
(iv) Za(C{xn}) = Ao(C,{zn}) = Nr>0AX(C, {z,}) may be empty,

(v) Za(C, {l‘n}) = ﬂ)\>0{U$l°:1 ﬂ;-)in Bra(c’{zn})+)\[$i]} NnC. (31)

A bounded sequence {z,} in a Banach space X is said to be regular with
respect to a bounded subset C' of X if the asymptotic radii (with respect to C)
of all subsequences of {x,,} are the same, i.e.,

ra(Cy{xn,}) = ro(C, {x,}) for each subsequence {z,} of {z,}.

A regular sequence {x,} in X is said to be asymptotically uniform with respect
to C if Z,(C,{xn,}) = Z4(C,{x,}) for each subsequence {z,,} of {x,}.

Observation

e For an arbitrary subsequence {zn,} of {z»}, the following fact always holds:
Za(Co{zn;}) 2 Za(Ci{zn}).

e Asymptotic radius: rq(C,{zn}) = inf{rq(z,{zn}) : x € C}.
e Asymptotic center: Zq(C,{zn}) = {2 € C : ro(z,{zn}) = ra(C, {zn})}.
e Forz € X,ro(z,{zn}) =0& nler;omn =z
o ro(ax + By, {an}) < ara(z,{zn}) + Bra(y,{zn}) for all z,y € X and o, 8 > 0
with a4+ 8 = 1.
o [ra(z, {zn}) = 7oy, {za D] < [lo =yl < ol {zn}) +7a(y, {zn}) forall z,y € X.
e r4(-,{zn}) is convex and nonexpansive (and hence continuous).
e o(-) =7r4(-,{zn}) : X — RY is w-Isc. Indeed, by the continuity of (-),
@ H((—00,a]) is closed for every o € R. Also convexity of ¢(-) implies that
0 H((—00,a]) is convex. Thus, ¢~ '((—o0, a]) is weakly closed.

We first establish two preliminary results:

Proposition 3.1.1 Let C' be a nonempty bounded subset of a Banach space X
and {x,} a bounded sequence in X. Then {x,} has a subsequence that is reqular
with respect to C.
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Proof. Set
ro = inf{r,(C,{xn,}) : {zn,} is a subsequence of {z,}}.
Then there is a subsequence {z,,, } of {x,} such that
Fal(Co{ny ) }) < o+ 1.

Set
r1 = inf{r,(C, {xnm)j bl

where the infimum is taken over all subsequences {zn,, } of {z,, }. Let
J
{*n, ., } be a subsequence of {z,,,_, } and set

r; = inf{ry(C, {Ink(i)j b

where the infimum is taken over all subsequences {z,,, } of {zy,, }. Select a
J
subsequence {Zn,,,,, } of {zn,, } such that

1
T’a(C, {xnk(iﬂ) }) <7+ m (3'2)
Because 11 < rg < r3 < --- and {r;} is bounded above, it follows that lim r;

exists (say 7). Then from (3.2),

lim TQ(C, {xnk('iJrl)}) =T
11— 00

Now consider the diagonal sequence {zy,,,} and 7 = 74(C, {2n,,, }). Because
{Tn, 0 } is a subsequence of {zy, , }, it follows that r; < 7.

Moreover, from (3.2) we have

TS Ta(C, {xnk(i+1)}) <7+ ma

which implies that

r<r.

Hence 7 = r. Note any subsequence {y,} of {xy,, } satisfies the following:

{yn} S {ony b and {yn} S {@n, 0 )

Hence 7,(C,{yn}) = r, and we conclude that {z,,,,} is regular with respect

to C. I

Proposition 3.1.2 Let C be a separable bounded subset of a Banach space X
and {x,} a bounded sequence in X. Then {x,} has an asymptotically uniform
subsequence.
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Proof. By Proposition 3.1.1, {x,,} has a subsequence that is regular with
respect to C'. Because C' is separable, a routine diagonalization argument can
be used to obtain a subsequence of {x, }, which we again denote by {z,} such
that nh_)rrgo |z — y]| exists for all y € C. Clearly, such a sequence must be asymp-

totically uniform. 1

We now discuss the existence and uniqueness of asymptotic centers of bounded
sequences.

Theorem 3.1.3 (The existence of of asymptotic centers) — Let {z,} be
a bounded sequence in a Banach space X and C a nonempty subset of X. Then
we have the following:

(a) If C is weakly compact, then Z,(C,{x,}) is nonempty.

(b) If C is weakly compact and convez, then Z,(C,{x,}) is a nonempty convez
set.

Proof. (a) From (3.1), we obtain that Z,(C, {z,}) can be characterized as the
intersection of a decreasing family of weakly closed sets. Thus, Z,(C,{z,}) is
nonempty.

(b) Because C' is weakly compact convex set and the function r.(-, {z,})
is continuous, it follows from Theorem 2.5.5 that Z,(C,{z,}) = {z € C :
ro(x, {x,}) = ingra(z7 {zn})} is nonempty. Also Z,(C,{z,}) is convex.

ze

Indeed, for z,y € Z,(C, {z,}) and ¢ € [0, 1], we have
ro((1 —t)z + ty,{z,}) = lim_}sup||(1 —t)x+ty — x|

< (;—O:)limsupHxn—xH + tlimsup ||z, — y||

= (1= 0)ra(C,{zn}) + tro(C, {zn}) = ra(C, {}),
ie., (1—t)z+ty € Z,(C {za}). |

Theorem 3.1.4 Let C be a nonempty closed convexr subset of a Banach space
X and {z,} a bounded sequence in X. Then

diam(Z,(C. {20 ) < eo(X) ra(C, {z,}):

Proof. Set d = diam(Z,(C,{z,})). If Z,(C,{z,}) is empty or a singleton,
then we are done. So, we may assume that d > 0. Let 0 < r < d and z,y €
Z,(C,{zy}) with ||z —y|| > d—r. By the convexity of Z,(C,{z,}), (z+y)/2 =
z € Z,(C,{x,}). Then from the property of modulus of convexity (see Coroll-
ary 2.3.11),

ra(CiAzn}) = ra(2{wn}) =limsup|lz, — (2 +y)/2|

<1 o ((g‘x})))w fa}).

IN
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so it follows that

By the definition of €y(X),
d—1 < e (X)re(C,{z,}).

Because r > 0 is arbitrary, it follows that d < €y(X) r4(C, {zn}). |
Using Theorem 3.1.4, we obtain

Theorem 3.1.5 (The uniqueness of asymptotic centers) — Let C be a
nonempty closed convex subset of a uniformly convex Banach space X and {x,}
a bounded sequence in X. Then Z,(C,{x,}) is a singleton set.

Proof. Because r4(-,{z,}) is a continuous and convex functional and r,
(z,{xn}) — o0 as ||z|| — oo, by Theorem 2.5.8, we obtain that Z,(C, {z,}) # 0.
By the uniform convexity of X, ¢x(X) = 0, it follows from Theorem 3.1.4 that

diam(Z,(C, {zn}) = 0, ie., Z4(C, {z,}) is a singleton set. |

The following theorem shows that the asymptotic center enjoys an interesting
inequality.

Theorem 3.1.6 Let C' be a nonempty closed convexr subset of a uniformly
convexr Banach space. Then every bounded sequence {x,} in X has a unique
asymptotic center with respect to C, i.e., Z,(C,{xy}) = {2} and

limsup ||z, — z|| < limsup ||z, — z|| for x # 2.
n—oo

Proof. The result follows from Theorem 3.1.5. I

Observation
e If C is weakly compact, then Z,(C,{z,}) is nonempty.
o If C is closed, then Z,(C,{z,}) is closed.
o If C is convex, then Z,(C,{zy}) is convex.

o Z.(C,{zn}) C OC U Za(X, {zn}).

We now give the following result, which is very useful in the study of multi-
valued mappings in Banach spaces.

Proposition 3.1.7 Let C' be a nonempty closed convex bounded subset of a
uniformly conver Banach space X and {x,} a sequence in C with asymptotic
center z and asymptotic radius r. Fort € (0,1), let z, = (1 —t)z + tx,,n € N.
Then Z,(C,{zn}) = z and ro(C,{z,}) = tr.

Proof. Suppose, for contradiction, that Z,(C,{z,}) = v # z. Because

llzn — z|| = t||xn — 2| for all n € N, (3.3)
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it follows that

ro(C, {2, }) = inf{limsup ||z, — w| : w € C} < tr.

Let r4(C,{zn}) = r'. Because the asymptotic center v of {z,} is unique, hence
from Theorem 3.1.6, we have

r’ =limsup ||z, — v|| < limsup ||z, — 2| = tr.

For each n € N, we have

lon —v]] = lw=(0=t)z—te,+ (1 —1t)z— (1 —1t)x,]
[v—[1—=t)z+tz]|| + (1 —t)llzn — 2|
= |lzn — vl + (1 = t)[lzn — 2],

IN

which implies that

limsup ||z, —v|| <7+ (1 —t)r<r

contradicting r4(C, {z,}) = r. Thus, Z,(C,{z,}) = z and from (3.3), we have
ra(C,{zn}) = tr.

We present the following result, which has important applications in the
study of fixed point theory of nonlinear mappings:

Theorem 3.1.8 Let C' be a nonempty closed convex subset of a uniformly con-

vex Banach space X and {x,,} a bounded sequence in C such that Z,(C,{z,}) =

{z}. If {ym} is a sequence in C such that im 74(Ym,{zn}) = re(C, {zn}), then
lim y, = z.

m—00

Proof. Suppose, for contradiction, that {y,,} does not converge strongly to z.
Then there exists a subsequence {y,,} of {ym,} such that

Y, — 2|l = d >0 for all i € N.

By the uniform convexity of X, there exists € > 0 such that

GalC ) +9)[1=0x (e )] < o€ b,

Because r4(z, {zn}) = re(C, {z,}), there exists ng € N such that
|z — 2|| < 7a(C,{zp}) + ¢ for all n > nyg.

Because 74(Ym,{xn}) — 1o(C,{zs}) as m — oo and hence r4(ym,, {xn}) —
rqo(C,{zn}) as i — oo, then there exists an integer n{, € N such that

1Zn — Ym, || <7a(C,{zn}) + € for all n > ny.
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Because X is uniformly convex,
d

‘x : [1‘5)(((%(0, oD 7 2)

for all n > max{ng,n,}. This implies that

o (2 e} ) < (o))

n

_Z+ymi
2

)| eatci @y e < et

which contradicts the uniqueness of the asymptotic center z. I

Let C' be a nonempty subset of a Banach space X. For z € C, the inward
set of x relative to C' is the set

Io(z) ={(1—-t)z+ty:ye Cand t>0}.

Geometrically, it is the union of all rays beginning at x and passing through
other points of C. Let I=(x) denote the closure of I(x). Then we have

Proposition 3.1.9 Let C be a nonempty closed convexr subset of a Banach
space X. If w € Io(x), then (1 —t)x + tw € Ie(x) for all t > 0.

Proof. Because w € Io(z), then there exists a sequence {wy} in Ic(x) such
that

w= lim w, and w, = (1 — ¢,)x + cpYn, Yn € C, ¢y > 0.
n—oo

For ¢ > 0, we have
1-tr+tw, = (1—t)x+t[(1-cn)x+ cnynl
= (1 —tep)x + tepyn € Io(a),

which implies that

(1-t)z +twe Io(@). |

Proposition 3.1.10 Let C' be a nonempty closed convex subset of a Banach
space X. Then the following are equivalent:

(a) w € Io(x).
(b) There exists b > 0 such that (1 —b)x + bw € Ic(x).

(c) (1 =Db)x+bw € Ic(x) for all b > 0.

Proof. (a) = (c). It follows from Proposition 3.1.9.

(¢) = (b). Tt is obvious.

(b) = (a). Suppose that there exists b > 0 such that (1 — b)x + bw € Io(z).
By Proposition 3.1.9,

(I—-a)z+a((1 —-b)z+bw) € Ic(x) for all a > 0.

Taking a = 1/b, we have w € I (x). |
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Proposition 3.1.11 Let C be a convex subset of a normed linear space X.
Then x —y € Ic(x) if and only if

lim d(z — hy,C)/h =0. (3.4)
h—0t

Proof. Suppose that (3.4) holds. Let 2z € C. Let € > 0 be given. Then there
exists b € (0, 1) such that

b td(z — by, C) <

| ™

By the definition of distance, there exists u € C such that

b
o = by — ull < d(z— by, C) + =

Observe that = + b~ (u — z) € Io(z). Because

e+ u—2)]—(@—yll = b u—(z-0by)
bt d(xfby,C’)erg

A

g,

it follows that = — y is in the closure of Io(x).

Conversely, suppose that © — y € Io(z). Then there exists a sequence {z,}
in Io(x) such that x,, — x —y. Let € > 0 be given. Then there exists no € N
such that
|z — (x — y)|| < € for all n > ny.

Observe that
htd(z —hy,C) < h ™Yo —hy — [(1 — h)x + hap, )| + R~ td((1 — h)x + hap,, O).

Because x,, € Ic(z) and C is convex, there exists hy > 0 such that (1 — ho)z +
hoTpn, € C. Thus, if 0 < h < hg, h=1d((1 — h)x + hx,,,C) = 0 and

htd(x —hy,C) < B Y2 —hy —[(1 = h)x + hay, |
e —y — xn, || <e.

Therefore, hlir& d(x — hy,C)/h =0. 1

Proposition 3.1.12 Let C' be a nonempty closed conver subset of a uniformly
convex Banach space X and {x,} a bounded sequence in C. If z is the asymp-
totic center of {x,} with respect to C, then it is also the asymptotic center with
respect to Io(z).

Proof. Let v be the asymptotic center of {x, } with respect to Ic(z). Suppose
that v # 2. Because v # z and C' C I¢(z), we have v € Ic(z) \ C and
ro(v,{zn}) < ro(z,{xn}) by the uniqueness of the asymptotic center
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(see Theorem 3.1.6). By the continuity of 74 (-, {x, }), there exists w € Ic(z)\ C
such that 7o (w, {x,}) < ro(z, {x,}). Hence w = (1 — ¢)z + ty for some y € C
and t > 1. Because r4(-, {z,})) is a convex functional,

ra(y, {zn}) < rot w4+ (1 -tz {z,})
< Ta(wv {xn}) + (1 —t_l)ra(z, {xn})
< ra(z, {zn}),
a contradiction. Hence v = z. I

Proposition 3.1.13 Let C be a nonempty closed conver subset of a reflexive
Banach space X and {x,} a bounded sequence in X. Then there exists a point
v € C such that

(a) ro(v,{zn}) = nf{r.(z,{zn}) : 2 € Ic(v) }.
(b) lirginf(va, J(xp—v)) <0 for all x € Ic(v) if the norm of X is uniformly

Gateauz differentiable.

Proof. (a) Set ¢(-) = 74(-,{zn}). Observe that ¢(-) is a continuous and convex
functional and 7,(z,{z,}) — oo as ||z|| — oco. By Theorem 2.5.8, we obtain
that Z,(C,{z,}) # 0. Let v be an asymptotic center of {z, } with respect to
C. We now show that v is also an asymptotic center of {x,} with respect to
Io(v), ie.,

p(v) = inf{p(z) : 2 € Ic(v)}.

Set r := inf{p(z) : z € Ic(v)}. Suppose that r < ¢(v). Now for e > 0,
r+e < p(v). By the continuity of ¢, there exists z € Ic(v) such that p(z) < r+e.
Thus,

z=v+t(w —v) for some w € C and t > 1.
By the convexity of ¢, we obtain
p(v) < p(w) < t7Hp(2) + (1 =t )p(v),

which implies that

a contradiction. This shows that r = ¢(v).

(b) For arbitrary y € Ic(v) and t > 0, let 2z, = (1 —t)v+ty. Then z, € Io(v).
By Proposition 2.4.5, we have

2(2 — v, J(@n — 2)) < |20 = 0l* = [lwn — 2,
which implies that

2t liminf(y — v, J(x, — 2z)) < ¢*(v) — 9*(2) <0

n—oo
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and hence
liminf(y — v, J(z, — 2¢)) < 0.

n—oo
Because X is reflexive with uniformly Gateaux differential norm, J is uniformly
demicontinuous on bounded subsets of X. Using the above fact and letting
t — 0, we obtain

liminf(y — v, J(z, —v)) <0 for all y € I(v). 1
n—oo
Note that when X is separable, by a diagonalization argument, given a
bounded sequence {x,}, there exists a subsequence {z,,} of {z,} such that
klim ||z, — 2| exists for all z € X.
—00

In that case, we have the following.

Proposition 3.1.14 Let X be a separable reflexive Banach space with a uni-
formly Gateaux differentiable norm, C a nonempty closed convex subset of X
and {x,} a bounded sequence in X. Then there exist a point v € C and a
subsequence {xn, } of {xn} such that

limsup(z — v, J(zn, —v)) <0 for all x € I (v).

k—o0
Proof. The result follows from Proposition 3.1.13. I

Proposition 3.1.15 Let X be a separable reflexive Banach space with a uni-
formly Gateaux differentiable norm and {x,} a bounded sequence in X. Then
there exist a pointv € X and a subsequence {x,, } of {zy} such that {J(z,, —v)}
converges weakly to zero.

Proof. Now for C = X, Ic(v) = X. Hence J(z,, —v) — 0 by Proposi-
tion 3.1.14. |

3.2 The Opial and uniform Opial conditions

The Opial condition plays an important role in convergence of sequences and
in the study of the demiclosedness principle of nonlinear mappings and the
geometry of Banach spaces.

A Banach space X is said to satisfy the Opial condition if whenever a
sequence {z,} in X converges weakly to zo € X, then

liminf ||z, — zo| < liminf ||z, —z| for all x € X, x # xo. (3.5)

We observe that (3.5) is equivalent to the analogous condition obtained by
replacing liminf by limsup. Replacing the strict inequality “ < ” in (3.5)
with “ <,” we obtain the definition of the so-called non-strict (or weak) Opial
condition.
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Example 3.2.1 FEvery Hilbert space satisfies the Opial condition, i.e., if the
sequence {x,} in a Hilbert space H, converges weakly to x € H, then

limsup ||z, — z|| < limsup ||z, —y|| for ally € H and y # x.

n—oo n—oo

In fact, because every weakly convergent sequence is necessarily bounded, so we
have that limsup ||z, — z|| and limsup ||z, — y|| are finite. Note

n—oo n—oo
2 = _ a2 — 2 —ul2 4 2p. — _
lzn = ylI° = llen — 2w+ 2 —yl" = llon — 2| + llz = yl" + 20 — 2,2 —y),

so that

limsup ||z, — y||* > limsup ||z, — z||*. 1
n—oo n—oo

The following example shows that L,[0,27],1 < p < oo does not satisfy even
the nonstrict Opial condition for any p # 2.

Example 3.2.2 Let f be a periodic function with period 27 defined by

(1 if 0<t<4n/3;
f(t)_{ -2 if 4w/3 <t < 2m.

Set x,(t) = f(nt), n € N. Then {x,} is a weakly null sequence of Rademacher-
like functions in L,[0,2n] for every 1 < p < co. Define a function

2
Mp(s) = lim [z, — s|]? = / () — slrt,

n—oo
where s € R is treated as the constant function. Note

47

Np(0) = —p/o g I[P sgn(f(t))dt = ?p(Qp—z —),

Np(0) # 0 whenever p # 2. It follows that A\,(0) is not the minimal value of
Ap, except for the case p = 2. Therefore, Ly[0,27] does not satisfy even the
nonstrict Opial condition for any p # 2.

We now give necessary and sufficient condition for a space satisfying the
Opial condition.

Proposition 3.2.3 A Banach space X satisfies the Opial condition if and only
if

Tp — 0 and liminf ||z,|| = 1 = liminf ||z, — x| > 1 for allz #0.  (3.6)
n—oo n—oo

Proof. Suppose that the condition (3.6) is satisfied. Let uw, — w and r =
liminf ||u, — u|. If r = 0, then the Opial condition (3.5) follows from the
n—oo

uniqueness of a weak limit.
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If » = liminf ||u,, —u| > 0, then x,, = r~!(u,, —u) — 0 and lim inf |2, || = 1.
Hence from (3.6) we have
liminf ||z, —z| > 1 for  # 0,
which implies that

liminf ||r~* (u, —u) — 2| > liminf ||r = (u, — v,
n—oo

n—oo
ie.,
liminf |u, — (u + rz)| > Uiminf |ju, — u|| for u # u + rz.
n—oo n—oo
Hence X satisfies the Opial condition. The inverse implication is obvious. I

Proposition 3.2.4 Let X1, X5, -, X} be Banach spaces with norm ||-||1, |- |l2,
<o, |- |k, respectively. Let p be a constant in [1,00) and put X = X7 x Xy X
-+ X X, where the norm of X is given by

ey, @2, @)l = (e lb+llezlbt - larlf) P for all (1,22, 20) € X

Then the following are equivalent:
(a) X has the Opial condition.
(b) Each X; has the Opial condition.

Proof. (a) = (b). Let {z,} be a sequence in X; such that z,, = z. Then a
sequence

{(0,0, 7Oaxn70a"' 70)}
7
4t position
in X converges weakly to

(0’07"‘ ,07230,"' 30)
7
4t position
Using this fact, one can easily see that (a) implies (b).
Conversely, let {z,} be a sequence in X such that z,, — z and let w belong
to X \ {z}. Set z,, := (mg),xf), e ,x%k)) for n €N, z:= (20,23 ... (k)
and w := (wM, w® ... wh®) Because {x,} is a bounded sequence, there
exists a subsequence {z,,} of {z,} such that

liminf ||z, — w|? = lim ||, — w|?,
and that the limit of {||%) — 20|} exist for all j = 1,2,--- k. Because X;
for 5,1 < j < k satisfies the Opial condition,

lim [|z$) — 2P <liminf |z{) — w©) |2
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and
lim ngfi) - z(£)||§ < lim inf ||a:§f? — w(e)||§
11— 00 n—oo

holds for some ¢,1 < ¢ < k because z # w. Therefore, we have

liminf ||z, — z||P < lim ||, — 2||P
n—oo 71— 00
k
= Y lim [lz§) — 202
i—00 K J
j=1

k
< Zliminf |zl — w(j)||§.7

j=1
< lim (o, —w]?
11— 00
= liminf ||z, — w]|".
n—oo
Therefore,
liminf ||z, — z|| < liminf ||z, —w]|. |
n—oo n—oo

The following example shows that Proposition 3.2.4 is not true if the norm
of X is [[(z1, 2, -, wi)]| = max [l

Example 3.2.5 Let X =R x {5 with the norm

I, )l = max{[al, [[y]|2}-

Let e, be the n'" element of the basis of €y and {x,, = (0,e,)} be a sequence in
X. Then we have

lzn]l = max{0, |ley]l2} =1 for alln € N
and x, — 0 as n — oo, but for x = (1,0), we have
|z — 2|l = ||(1, en)]| = max{1,|len]l2} =1 for alln € N.

Therefore, X does not satisfy the Opial condition, even though R and {5 satisfy
it.

We now consider some classes of Banach spaces that always imply the Opial
condition.

Definition 3.2.6 A Banach space X is said to have a weakly continuous duality
mapping if there exists a gauge function p such that the duality mapping J,, (with
gauge function p) is single-valued and (sequentially) continuous from the weak
topology of X to the weak topology of X*.
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Example 3.2.7 The spaces £, (1 < p < 00) possess duality mappings that are
weakly continuous. To see this, for (x1,2a, -+ ,&i, ) € £y, let

Tu(@) = (lz [P~ sgn(@r), |w2P~ sgn(wa), - P~ sgn(w), )
and p(t) = tP/9, where 1/p+1/q = 1. Note

&DB (agn)7aén)a"' aagn)7"'):$n4‘r: (a1,a2,~-~ 7ai’.“) efp

if and only if
lznllp < M for alln € N and ozl(.n) — a; asn — 00.
Observe that
Tu(n) = (log™ [P~ sgn(ay), lay” [P~ sgn(ag™), - [af" P sgn(af™). ) €y,
so it follows that

[ Tu(zn)llg = plllznllp) < (M) for all n € N

and
(n)

o™ Pt sgn(al™) — JoalP " sgn(a) as n— oo,

Thus, we conclude that
Ly > Jyu(xn) = Ju(x) € £y as n — oo.
Therefore, J,, is a weakly continuous mapping from X = ¢, into X* = {,.

The following theorem gives an important characterization of Banach spaces
that possess weakly continuous mappings.

Theorem 3.2.8 Let X be a Banach space with a weakly continuous duality
mapping J,, with function gauge u. Then we have the following:

(a) If {x,} is a sequence in X such that x, — x, then

lim ®([[z, —yl) = lim &([lz, —2z[)) + S|z —yl)) for ally € X,  (3.7)
n—oo n—oo

where lim s either liminf or lim sup.
n—oo n—oo n—00

(b) X has the Opial condition.

Proof. (a) Because J,(z) is the Gateaux derivative of the convex functional
O(||z|) = O”w” w(t)dt, it follows (see Theorem 2.5.23) that

1
O(flz +yl)) = () +/ (y, Ju(x + ty))dt for all 7,y € X.
0
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Let {x,} be a sequence in X such that z,, — z and let y be an element in
C. Then J,(z, +ty) = J,(z + ty), so

lim P (||, — yl|) lim ®(||lz, — 2+ —yl)
n—oo n—0oo
= Tim ®(||z, — )
—_ 1
+ lim (x =y, Ju(wn —x+t(x —y)))dt

n—oo 0

n—oo

o 1
= lim @(Hxnfo)Jr/O (x —y, Ju(t(z —y)))dt

1
= lim (I)(Hxn—xH)—i—Hx—yH/ pu(tllz — yll)dt
n—oo 0

= lim &(flz, — zf]) + S([lz - yl])-

(b) Because ® is strictly increasing, it follows from (3.7) that X has the

Opial condition.

Observation

e The duality mapping of each Hilbert space (e.g., 2 and R™) is the identity
mapping and hence it is weakly continuous. Therefore, every Hilbert space
satisfies the Opial condition (see also Example 3.2.1).

e (P (1 < p < o0) spaces have weakly sequentially continuous duality mappings
(and hence the Opial condition), but the L,[0, 2] space (1 < p < oo, p # 2) fails
to satisfy the Opial condition. It means that the Opial condition is independent
of uniform convexity.

The following Theorem 3.2.9 shows that weak limit of a bounded sequence
is the asymptotic center under some geometric conditions.

Theorem 3.2.9 Let X be a uniformly convex Banach space satisfying the Opial
condition and C a nonempty closed conver subset of X. If {x,} is a sequence
in C such that x,, — z, then z is the asymptotic center of {x,} in C.

Proof. From Theorem 3.1.6, Z,(C,{x,}) is singleton. Let Z,(C,{z,}) =
{u}, u # z. Because z,, — z, by the Opial condition,

limsup ||z, — z|| < limsup ||z, — ull.
n—oo

n—oo

Using again Theorem 3.1.6, we obtain

limsup ||z, — u|| < limsup ||z, — 2|
n—oo n—oo

Therefore, z = u. I
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Corollary 3.2.10 Let X be a uniformly convexr Banach space with a weakly
continuous duality mapping and C a nonempty closed convex subset of X.
If {x,} is a sequence in C' such that x,, — z, then z is the asymptotic center of
{zn} in C.

Corollary 3.2.11 Let C be a nonempty closed convex subset of a Hilbert space
H. Then the weak limit of a weakly convergent sequence in C coincides with its
asymptotic center with respect to C.

Remark 3.2.12 Corollary 3.2.11 is wvalid in all sequence spaces (P (1 <
p < 00), but it does not hold in the Lebesgue spaces L, [0, 2] (1 < p < oo, p # 2).

We now introduce notions of uniform Opial condition and locally uniform
Opial condition:

Definition 3.2.13 A Banach space X is said to satisfy the uniform Opial con-
dition if for each t > 0, there exists an r > 0 such that

1+ r <liminf ||z, + |
n—oo
for each x € X with |z|| > t and each sequence {x,} in X such that x,, — 0
and liminf ||z, | > 1.
n—oo

It is obvious from Proposition 3.2.3 that the uniform Opial condition implies
the Opial condition.

Definition 3.2.14 A Banach space X is said to satisfy the locally uniform
Opial condition if for any weakly null sequence {x,} in X with iminf ||z,| > 1
n—oo

and any t > 0, there is an r > 0 such that
1+ r <liminf ||z, + z||
n—oo
for every x € X with ||z| > t.

Note that

uniform Opial condition = locally uniform Opial condition = Opial condition.

We now define the Opial modulus of X, denoted by rx, as follows:
rx(t) = inf { liminf ||z, + z| — 1},

where t > 0 and the infimum is taken over all x € X with ||z|| > ¢ and sequences
{zn} in X such that z,, — 0 and liminf ||z,| > 1.
n—oo

It is obvious that rx is nondecreasing and that X satisfies the uniform Opial
condition if and only if rx (¢) > 0 for all ¢t > 0.

Note that in the definition of locally uniform Opial condition, “liminf” can

n—oo
be replaced with “limsup.”

n—oo
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Let {z,} be a weakly null sequence in a Banach space X with liminf
|xn]| > 1. We define the local Opial modulus of X as follows:

rX gz, (t) = inf { liminf |z, + z|| — 1 : z € X with ||z| > t}.
n—oo

One may easily see that X has the local uniform Opial condition if
rxq,(t) >0 for all ¢t>0

and the uniform Opial condition if

rx(t) = inf {rxﬂ.n(t) &y — 0 with liminf ||z, | > 1} >0 for all t>0.

We now establish fundamental properties of the Opial modulus.
Proposition 3.2.15 Let X be a Banach space with Opial modulus rx. Then

1+ Tx(tl)

; for all 0 < t1 < tg,
1

rx(t2) —rx(t1) < (ta —t1)

i.e., the Opial modulus rx is continuous.

Proof. Let
G = {{zn} in X : z, — 0 and liminf ||z, | > t}.
Then for 0 < t; < ty, we have
1+rx(ta) = inf{liminf lzn + 2| : {xn} C X, 2y — 0, liminf ||z, | >1, ||z| 2752}
n—oo n—0oo
t
= inf { liminf ||z, + tﬁxH Azn} € Gy, 2] > tl}.
n—oo 1
Because t1/to < 1, it follows that
1
1+rx(ts) = o inf{liminf |[t1 2, + tox| : {zn} € Gy, ||z|| > t1}
1 n—oo
t
= Zinf{liminf ||z, + 2| : {zn} € Gor, ||2]| = t1}
3] n— oo To
to

< = inf{liminf ||z, + 2| : {z.} € Gy, ||2|| > t1}
t n—o00

< f(l + rX(t1)>. |

1

The following theorem allows us to estimate the Opial modulus of Banach
spaces.
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Theorem 3.2.16 Let X be a Banach space with a weakly continuous duality
mapping J,, with gauge function p. Then rx(t) = @~ H(®(1) + ®(¢)) — 1 for all
t > 0.

Proof. Let {z,} be a sequence in X such that x,, — 0. Then we obtain from
(3.7) that

lim inf @ (|2, + yl|) = lim inf S(|[z,[|) + S([|y[]) for all y € X. (3.8)
If liminf ||2, || > 1, then
&(1) + () < lim inf &) + (y]) = liminf &(]1a, + y]).

Thus,
O 1(®(1) + &(||ly|)) < liminf ||z, + y| for all y € X,

and it follows from the definition of rx that
&1 (®(1) + @(t)) < rx(t)+ 1. (3.9)
Now, let z,, € Sx with x,, — 0 and ||z|| = ¢. Then from (3.8), we have
1+rx(t) < hnngf lzn + ||

OHD(1) + B(t)). (3.10)

A

Combining (3.9) and (3.10), we get
1+ rx(t) =@ L (@(1) + 0(t)) for all t > 0. |

Because £, (1 < p < 00) space admits a weakly continuous duality mapping
J,, with the gauge function p(t) = tP~!, we have
Corollary 3.2.17 Let 1 < p < co. Then ry,(t) = (1 +tP)Y/P —1,¢ > 0.
Theorem 3.2.18 Let X be a Banach space. Then the following are equivalent:
(a) X has a nonstrict Opial condition.
(b) rx(t) >0 for all t > 0.
Proof. (a)=-(b). Let {z,,} be a sequence in X such that z,, =0 and lim inf ||z, | >
1. Let 2 € X such that ||z| > ¢ for ¢t > 0. Then

1 <liminf ||z, || < liminf ||z, + x|
n—oo n—oo

Hence rx (t) > 0.

(b) = (a). Let {z,} be a sequence in X such that x,, — 0 and «a :=
liminf ||2,|| > 0. Let € X such that  # 0. If liminf ||z,| < ||z|, then

by w-lsc of the norm, we have
liminf ||z, | < liminf |2, + ||
n—oo n—oo

and hence we are done.
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If ||z|| < liminf ||z,||, then
n—oo

] N
+ry < lim inf + )
o n—oo (0% o
SO
a(l—i—?“x <||x||>) < liminf ||z, + z||. (3.11)
[0 n—oo

Because ||z||/a > 0, by assumption, we have rx(||z||/ce) > 0. It follows from
(3.11) that
a = liminf ||z, | < liminf ||z, + z||.
n—oo n—oo

Hence X satisfies a nonstrict Opial condition. I

Proposition 3.2.19 A Banach space X satisfies the locally uniform Opial con-
dition if and only if for any sequence {x,} in X that converges weakly to x € X
and for any sequence {ym} in X,

lim sup(limsup ||z, — Ym||) < limsup ||z, — || implies y, — x.

m—0o0 n—oo n—oo

Proof. Assume that X satisfies the locally uniform Opial condition. Let {x,,}
be a sequence in X with x, = z € X and {y,,} a sequence in X such that

lim sup(limsup ||z, — Ym||) < limsup ||z, — || (3.12)
n—oo

m—00 n—oo
Set d := hmsup llzn, — z||. If d =0, then y,, — z. If d > 0, there exists a sub-

sequence {xm} of {z,} such that d = hm |xn, —x||. Suppose, for contradiction,

that {ym} does not converge to = in norm. Then there exist an € > 0 and a
subsequence {Ym; } of {ym} such that

|Ym; — || > & for all j € N.

Set z; := (xn, — x)/d. By the local uniform Opial condition of X, we have an
r > 0 such that

1+ 7 <liminf ||z; 4+ z|| for all z € X with ||z|| > 2
1— 00
In particular, we have

lim inf ||z, — Y, || > d(1 +7) for all j € N,
71— 00

which gives that

lim sup(limsup ||z, — Ym|]) > d(1 +r) > d = limsup ||z, — x|,

m—0o0 n—oo n—oo

which contradicts the inequality (3.12).
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Conversely, suppose that X does not satisfy the locally uniform Opial condi-

tion. Then there exist a sequence {z,} in X with 2,, = 0 and limsup ||z, | > 1,
n—0o0
a constant ¢ > 0, and a sequence {y,,} in X with ||y,|| > ¢ for all m € N such

that
1
1+ — > limsup ||z, — Ym|| for m € N.
m

n—oo

Hence
lim sup(lim sup ||z, — yml||) < 1 < limsup ||z, |-
n—oo

m—00 n—oo

By assumption, we have y,,, — 0. This contradicts the fact that ||y,,|| > ¢ for all
m € N.

3.3 Normal structure

Let C be a nonempty bounded subset of a Banach space X. Then a point
zo € C is said to be

(i) a diametral point of C' if

sup{|lzo — z|| : x € C} = diam(C),
(ii) a nondiametral point of C if

sup{||zo — z| : ® € C} < diam(C).

A nonempty convex subset C' of a Banach space X is said to have normal
structure if each convex bounded subset D of C' with at least two points contains
a nondiametral point, i.e., there exists x¢g € D such that

sup{||lzo — x| : € D} < diam(D).

Geometrically, C' is said to have normal structure if for each convex bounded
subset D of C with diam(D) > 0, there exist a point g € D and r < diam(D)
such that

D g Br [.’I}Q]

The Banach space X is said to have normal structure if every closed convex
bounded subset C' of X with diam(C) > 0 has normal structure.

The following theorems state that compact convex subsets of any Banach
space and closed convex bounded subsets of a uniformly convex Banach space
have this geometric property.

Theorem 3.3.1 FEvery compact convexr subset C' of a Banach space X has
normal structure.
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Proof. Suppose, for contradiction, that C' does not have normal structure. Let
D be a convex subset of C' that has at least two points. Because C' does not have
normal structure, all points of D are diametral. Now we construct a sequence
{z;}$2, in D such that

llz; — x;|| = diam(D) for all i,j € N,i # j.
For this, let 1 be an arbitrary point in D. Then there exists a point xo € D
such that diam(D) = ||x1 — x2|. Because D is convex, there exists a point

(z1 4+ x2)/2 € D. Next we choose a point x3 € D such that

1+ o
2

diam(D) = ||x3 —

Proceeding in the same manner, we obtain a sequence {x,} in D such that

diam(D) = ||Tp41 — G e s , m>2.
n
Because
dzam(D) _ xn+1_5ﬁ1+$2+~..—|—$n
n
|| @ = m) + @nga —@2) - 4 (@nga — Tn)
n

< s =zl + lzna — @2l + -+ llengs = 2all)
< diam(D),

it follows that diam(D) = ||zp41 — zi|l,1 < ¢ < n. This implies that the
sequence {z, } has no convergent subsequences. This contradicts the compact-

ness of C.

Corollary 3.3.2 FEvery finite-dimensional Banach space has normal structure.

Proof. The result easily follows from Theorem 3.3.1 I

Theorem 3.3.3 FEvery closed convex bounded subset C' of a uniformly convex
Banach space X has normal structure.

Proof. Let D be a closed convex subset of C' with diam(D) = d > 0. Let z;
be an arbitrary point in D. Choose a point z € D such that ||z — z2| > d/2.
Because D is convex, (x1 + x2)/2 € D. Set x¢g = (z1 + z2)/2. By the uniform

convexity,
< (1 —0x <€)>T-
r

U+ v
2

Joll < o] < and = 26> 0 |
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Hence for x € D we have

o —zoll = H; _’(l'xl);(xﬂﬂz)‘
 ooa(2)
- d<1_5x<;>) (3.13)
< d (as 0x(1/2) > 0)

Consequently,
sup{[lz — o|| : € D} < diam(D). |
Theorem 3.3.4 FEvery uniformly conver Banach space has normal structure.

Proof. It follows from Theorem 3.3.3. I

The following class of Banach spaces is more general than the class of uni-
formly convex Banach spaces:

Let X be a Banach space. Given an element z € Sx and a constant € € [0, 2],
we define

0x(z,e) = inf {1—

:E;-yH :x,y € Bx, ||lz—y|| > ¢,x—y =tz for some t>0}.

The number dx(z,e) is called the modulus of convexity in the direction
z € Sx. Then Banach space X is said to be uniformly convez in every direction
if 0x(z,e) > 0 for all € € (0,2] and z € Sx. It is obvious that dx(¢) =
inf{ox(z,e) : z € Sx}.

Observation

e A Banach space X may be uniformly convex in every direction while failing
to be uniformly convex.

e Uniformly convex Banach spaces in every direction are always strictly convex.
e In case of a Hilbert H,0n(z,e) =1—+/1— (¢/2)2 for all z € Sy and € € [0, 2].

The following Theorem 3.3.6 shows that a uniformly convex Banach space
in every direction has normal structure.

Proposition 3.3.5 Let X be a Banach space and C a convex bounded subset
of X with d = diam(C) > 0. Then, for e > 0, there exists a point xo € C such
that

d—
d

SUP{HfEOI||3$€C}§d<15x(z7 €>> for some z € Sx.
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Proof. Given d > ¢ > 0, we choose x1,z2 € C such that ||z; — 23] > d—e. Set
xo = (x14x2)/2 and z := (x1 —22)/||x1 —22]|. Note ||z —z1]| < d, ||z —x2|| < d
and (x —x1) — (x — x2) = 21 — @2 = z||x1 — 23]|. Hence

Sd<1éx<z,dd€>>. I

Theorem 3.3.6 Let X be a uniformly convexr Banach space in every direction.
Then X has normal structure.

xr1 + 2o

[ — ol = ||=

Proof. Because X is uniformly convex in every direction, dx(z,&) > 0 for all
z € X and € > 0. It follows from Proposition 3.3.5 and the continuity of dx (z, €)

that X has normal structure. I

Example 3.3.7 The space C[0,1] of continuous real-valued functions with “sup”

norm does not have normal structure. To see it, consider the subset C' of
X = C[0,1] defined by

C={feCl0,1]:0=f(0) < f(t) < f(1) = 1,t € [0, 1]}.

Let f1,fo € C and A € [0,1] and f = Af1 + (1 — A)fa. Then f(0) =0, f(1) =1
and 0 < f(t) <1 for allt € [0,1]. Hence C is convex. Thus, C is a closed
convex bounded subset of X with diam (C) =sup{||f—gl|l : f,g € C} = 1. Then
each point of C' is a diametral point. In fact, for fo € C

sup{[[fo — fIl : f € C} = 1 = diam(C).
Therefore, C does not have normal structure.

The following notion plays an important role in the study of normal struc-
ture.

A bounded sequence {z,} in a Banach space is said to be a diametral
sequence if

lim d(xpi1,co({z1, 22, ,20})) = diam({z,}),

h A) = inf .
where d(x, A) yllelAd(ﬂ%y)

Remark 3.3.8 Any subsequence of a diametral sequence is also diametral.

The following result gives an important fact relating normal structure and
nondiametral sequence.

Proposition 3.3.9 A convex bounded subset C of a Banach space X has
normal structure if and only if it does not contain a diametral sequence.
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Proof. Suppose C contains a diametral sequence {z,}. Then the set
Co = co({z,}) is a convex subset of C' and each point of Cp is a diametral
point. Thus, C fails to have normal structure.

Conversely, suppose that C contains a convex subset D with
d = diam(D) > 0 and each point of D is a diametral point. By induction,

we construct a sequence {x, } in D such that

Yo T,

n

Z;

Yn—1
i=1

n

Because y,—1 is a diametral point in D, then for 0 < € < d, there exists an

Tp41 € D such that
lTn1 — Yol > d

Suppose z € co({z1,22, "+ ,xn}), Say x
YA =1

Set 0 < A := max{Ai, Ao, -+, A,}. Then

€
n2’

S Air;, where \; > 0 and

n

“(1-2)>0and — + - 1-24) =1.
n( )\)_ o n)\+ni2=;( )\)
Hence
1 I i 1 I 1<
— T+ — -~ zi=—=x+— i~ = D) AT = Yn—1-

€
d_ﬁ < |Tng1 = Yn-1ll
1 1 & \;
= ”a(w?wl —z)+ ﬁ; (1 - A>($n+1 — ;)|
1 1< \;
< M”znﬂ—l’”“‘n;(l—)\ |Znt1 — ]|
< — 1+ (1= L)a
ey — _ 1\,
= oAt n\
Hence
€ 1
|Tner — 2l > n)\<d—2_<1_n/\)d)
d €
= A —
" (n/\ n2>
_ gl
n
> d- =
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and it follows that
. €
dist (xpy1,co({x1,29, -+ ,xp})) > d— —
Now ¢ is an arbitrary constant, so therefore, {z,} is a diametral sequence
mp.

Example 3.3.10 In the space {1, the basis vectors {e,} form a diametral
sequence. Hence £ does mot have normal structure.

Theorem 3.3.11 Let X be a reflexive Banach space with the Opial condition.
Then X has normal structure.

Proof. Suppose, for contradiction, that X fails to have normal structure. Then
X contains a diametral sequence {x,} that may converge weakly to 0. Because
{z,} is diametral sequence, by the definition

lim d(z,41,co({z1,29, - ,2,})) = diam({z,}).
In particular, lim ||z, — y| = diam({z,}) if y € co({x1,z2,---}) and lim
n—oo n—oo

lzn —yl| = diam({z,}) if y € co({x1, 22, - }). Taking y = 0, we obtain

lim ||z,| = diam({z,}).
Because also
lim ||z, — 21| = diam({z,}),

this contradicts the Opial condition. I

Many spaces satisfy a stronger property than normal structure.

Definition 3.3.12 A nonempty convex subset C of a Banach space is said to
have uniformly normal structure if there exists a constant o € (0,1), indepen-
dent of C, such that each closed convex bounded subset D of C with diam(D) > 0
contains a point xog € C such that

sup{|lzo — || : # € D} < « diam(D).

Theorem 3.3.13 FEvery uniformly convexr Banach space X has uniformly
normal structure.

Proof. For a closed convex bounded subset C of X with d = diam(C) > 0
from (3.13), there exists a point zg € C such that

o — zoll < (1 ~ox <;>)d

sup{|lz — zo|| : € C} < a diam(C),

This implies that

where @« = 1—9x(1/2) < 1. Therefore, X has uniformly normal structure. |
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Let C be a nonempty bounded subset of a Banach space X. We adopt the
following notations:

ro(C) = supfllz—yl:yeC}, zel;
r(C) = inf{ry(C):z e C}=inf{sup |z —y|:z € C}
yel

Z(C) = {xzeC:r ,(C)=r(C)};
(@) = inf{r,(C):z e X}.

The number 7(C) is called the Chebyshev radius of C and the set Z(C') is called
the Chebyshev center of C. Note that for any « € C

r(C) <ry(C) < diam(C).

Clearly, a point g € C is a diametral (nondiametral) point if r,, (C) =
diam(C) (rg,(C) < diam(C)). Thus, set C' has normal structure if

r(C) < diam(C)

and uniformly normal structure if there exists a constant « € (0, 1), independent
of C, such that

r(C) < a diam(C).

The set C' is called diametral if it consists only of diametral points, i.e.,
r:(C) = diam(C) for all x € C,
equivalently
Z(C)={z e C:r,(C)= diam(C) =r(C)}.

Observation
e The set Z(C) may be empty.
e The set C is diametral if (C) = diam(C).
e 2diam(C) < rx(C) <r(C) < diam(C).
e co(C) =N{B,,«c)(x) : x € C}.
e sup{|lzo — | : z € C} = sup{||lzo — y|| : y € co(C)},z0 € C.
e r(co(C)) < r(C).
o diam(C) = diam(co(C)).

The following result gives an essential condition for the existence of
Chebyshev centers.

Proposition 3.3.14 Let C be a weakly compact conver subset of a Banach
space X. Then Z(C) is a nonempty closed convex subset of C.
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Proof. For z € C, set
1
Cale) = Byoyyale) = {y € C: e~y <#(C) + =1, neN.

Then C,, () is a nonempty closed convex subset of C' and hence C,, = [, ¢ Cn(z)
is a nonempty closed convex subset of C' and C,,;1 C C), for all n € N. Because

C is weakly compact, it follows that Z(C) =,y Cn # 0. |

Proposition 3.3.15 Let X be a Banach space and C' a weakly compact convex
subset of X with diam(C) > 0. Suppose C' has normal structure. Then

diam(Z(C)) < diam(C).

Proof. Because C has normal structure, there exists at least one nondiametral
point zg € C, i.e.,

T30 (C) = sup{|lzo — z|| : x € C} < diam(C).
Let v and v be any two points of Z(C). Then r,(C) = r,(C) = r(C). Because
Ju— vl < sup{lu—all : & € Z(C)} < 7(C) < 14(C) < diam(C),
it follows that
diam(Z(C)) < diam(C). 1
3.4 Normal structure coefficient
Let X be a Banach space. Then the number N(X) is said to be the normal

structure coefficient if
. diam/(C)
N(X)=inf{ ———~
o0 =t {2
where the infimum is taken over all closed convex bounded subsets C' of X with
diam(C) > 0.

It is clear that N(X) > 1 and N(X) > 1 if and only if X has uniformly
normal structure.

Example 3.4.1 For a Hilbert space H, N(H) = /2. Indeed, let C be the
positive part of the unit ball By in a Hilbert space H = {5, i.e.,

C={ex={x;}:||z|| <1l and x; >0,i=1,2,---}.
Then r(C) = inf{sup|lz —y|| : = € C} = 1 and diam(C) = /2. Hence
yel
diam(C) > /2 r(C).

We now give some important properties of the normal structure coefficient.
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Theorem 3.4.2 Let X be a Banach space. Then

>_ 1
T 1-0x(1)

Proof. Let C be a closed convex bounded subset of X with d = diam (C) > 0
and let d > ¢ > 0. Choose = and y in C such that || —y|| > d —e. Let u be an
element in C and v = (z +y)/2 € C such that

N(X) (3.14)

lu =[] = 7,(C) —e.

U—r+u—y d—e
27 Jdll <« _
= =a( -0 ()

and by the definition r,(C),

By the definition of dx,

[ — vl =

r(C) <7o(C) < flu— vl +e.

Thus,

r(C) < <1 oy (T))diam (©) +¢.

Hence by continuity of dx, we have
r(C) < (1 =6x(1))diam(C).
Therefore, we get the desired result. I

Remark 3.4.3 For the Hilbert space H, dp(e) = 1 — (1 — (¢2/4))Y/2, which
gives N(H) > 4/v/3, i.e., the estimate (3.14) is not sharp.

Before giving an important example, we observe that the property “uni-
formly normal structure” is stable under small norm perturbations.

Theorem 3.4.4 Let X be a Banach space and let X1 = (X, | - |I') and Xo =
(X, |||, where || - || and || - || are two equivalent norms on X satisfying for
a, >0,

aflz]|" < [lzf|” < Bllz|l, = € X.

If k = B/a, then
ETIN(X) < N(X32) < EN(Xy).

Proof. Note for a nonempty bounded convex subset C' of X
o diamH,”r(C) < diamy.» c)y<gp diamH,”/(C).
Hence the result follows from the definition of N(X). |

The following example shows that a uniformly convex Banach space (Hilbert
space) has an equivalent norm that fails to have normal structure.
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Example 3.4.5 Let X1 = {3 and let Xx, A > 1 denote the space obtained by
renorming the Hilbert space (La,] - ||) as follows:

For x = (x1,29, ) € {a, set

00 1/2
A -1 _ ! 2
lzllx: = max{”x”oo,)\ |x||}max{rlr_1€a§(|xl|,)\ (Zx) }

i=1
Because

Azl < llzllx < I,
it means that all the norms || - ||x are equivalent to norm || - ||. However the
spaces (X, ||+ 1Ix), A > 1 are not uniformly convex. A simple calculation shows
that

X, = 2002 = )V2 for X< V2,
co(Xx) = 2 for A > V2.

Then we have the following:
(i) eo(X s5/0) = 1.

(ii) For X = v/2, eo(X)) =2 and N(X)) = 1, i.e., X\ fails to have normal
structure, because the set C'C X /5 defined by

C:{x:{xi}:Zx?<1 andxi>0,i:1,2,-~-}

i=1
satisfies 7(C') = diam(C) = 1 with respect to the X 5 norm.

Let us now check the validity of Theorem 3.3.13 for uniformly smooth Banach
spaces. To do so, we introduce the notion of super-reflexivity.

Let X and Y be two Banach spaces. We say that Y is finitely representable
in X if for every A > 0, every finite-dimensional subspace Yy of Y, there
exist a finite-dimensional subspace Xy of X with dim(Xy) = dim(Yp) and an
isomorphism T : Yy — Xg such that

ITIIT™HE < 1+ A

This property can be expressed in terms of the Banach-Mazur distance, which
is defined as follows: The Banach-Mazur distance between two Banach spaces
X and Y is denoted by d(X,Y) and is defined by

d(X,Y) =inf{||T||||T~ | : T is an isomorphism from X onto Y}.

Thus, Y is finitely representable in X if for any € € (0,1) and any finite-
dimensional subspace Yy of Y, there exists a subspace Xy of X such that
dim(Xo) = dim(Yp) and d(Xo,Yp) <1+e.
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Observation
e The Banach space X is finitely representable in itself.

e The relation finite representability is transitive: If a Banach space X is finitely
representable in a Banach space Y and if the Banach space Y is finitely repre-
sentable in another Banach space Z, then X is finitely representable in Z.

We now define the “super-P” property of Banach spaces.

Definition 3.4.6 Let P be a property defined for Banach spaces. Then a
Banach space X is said to have super-P if every Banach space finitely rep-
resentable in X has the property P.

Remark 3.4.7 FEvery Banach space is finitely representable in itself, so it follows
that if X has super-P for any P, then X has P.

Now we are in a position to define super-reflexivity of Banach spaces.

Definition 3.4.8 A Banach space X is said to be super-reflexive if every
Banach space Y that is finitely representable in X is itself reflexive.

Thus, any super-reflexive Banach space is mnecessarily reflexive (by
Remark 3.4.7).
For uniform convexity of a Banach space, we have the following;:

Theorem 3.4.9 Let X and Y be two Banach spaces with respective moduli of
convexity 0x and dy, and suppose Y is finitely representable in X. Then for
each € € ]0,2), dx(e) < dy(e).

Proof. Let ¢ > 0 and let x,y € Y with 2,y € Sy and ||z — y||y > e. Suppose
A > 0 and let T be an isomorphism of span{z,y} onto some two-dimensional
subspace X of X that satisfies

[T <1+ Xand [T} = 1.
Set 2’ ;= Tx and y' := Ty. Then
l2'llx: [y lx <14+ Xand [2" —y'[x = T2 = Tylx > [lz — ylly > e

By the definition of dx, we have

1/ y €
- - <1-94§ .
H2(1+A+1+A>Hx‘ X(HA)

By the continuity of dx, we obtain

$/+y/

S 1-— (Sx(E).

Because ||T71|| = 1, it follows that

_ T*l x’+y’
v 2

Therefore, by the definition of dy-, we conclude that dy (g) < dx (). 1

/

' +y
2

xr+y
2

<
Y

X
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Corollary 3.4.10 Let X be a Banach space. IfY 1is finitely representable in
X, then GO(Y) S 6(](X).

Corollary 3.4.11 Let X be a uniformly convexr Banach space. If a Banach
space Y is finitely representable in X, then Y is uniformly convex.

Corollary 3.4.12 FEvery uniformly convex Banach space is super-reflexive.

Proof. Because every uniformly convex Banach space is reflexive, it follows

from Corollary 3.4.11 that every uniformly convex space is super-reflexive.
We now discuss the super-property by ultrapower of Banach spaces:

Because the ultrapower {X };; of a Banach space X is finitely representable
in X (see Proposition A.3.10 of Appendix A), we have:

If P is a Banach space property that is inherited by subspaces, then a Banach
space X has super-P if and only if every ultrapower of X has P.

Thus, we have a link between moduli of convexity and smoothness concepts
and ultrapowers:

Let {X '} be an ultrapower of a Banach space X. Then
Ox () = 0y, () and px () = pixy,, ():

Consequently,

eo(X) = eo({X}u) and p’x (0) = pixy,,(0).

Theorem 3.4.13 Let X be a Banach space with modulus of smoothness px .
If o' (0) < 1/2, then X is super-reflexive and has normal structure.

Proof. Suppose, for contradiction, that X is not super-reflexive. Then for any
0 < 1, there exist x,y € Bx and ji,js € Bx» such that

(y,j1) = (z,j1) = (x,72) = 0 and (y, j2) = 0.

Hence for all ¢ > 0:

1
px(t) = (e +tyl+llz —tyl) -1
1 ‘ .
> §(<$+ty,31>+<w*tydz>)*1
t
= 9(1+§)—1.

Because 6 < 1 is arbitrary, px (t) > t/2, a contradiction.
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Again suppose, for contradiction, that X does not have normal structure.
Then there exists a sequence {z,} in Bx such that

Tp — 0, lim |z,|| =1 and diam({z,}) < 1.
Consider a sequence {j,} in Sx- such that (z,,jn) = ||zn],n € N. Because

X* is reflexive, we may assume that {j,} converges weakly to j € X*. Select
i € N such that |(x;,j)| < § while |lz,|| > 1 —¢ for all n > 4. Then for k > i
sufficiently large,
. . € .
(i e —7) < 3 and [{xg,ji)| < e.

Consequently, |(x;, jr)| < e. For all t € (0,1), we have

1
px(t) > 5(\\%—1‘k+mi||+sz‘—l‘k—tﬂciﬂ)—l

1 . .

> §(|<(1+t)xi_$k7ji>|+|<xk_(1_t)xia]k>|)_l
1

> 5((1+t)(1—6)—€+1—6—(1—t)6)—1
t

= 5725

Because ¢ > 0 is arbitrary, px(t) > t/2, and it follows that p’x(0) > 1/2, a
contradiction to the hypothesis p’x (0) < 1/2.

Theorem 3.4.14 Let X be a Banach space with p'y(0) < 1/2. Then X has
uniformly normal structure.

Proof. Note X has normal structure by Theorem 3.4.13. Suppose, for con-
tradiction, that it is not uniform. Then there exists a sequence {C,,} of closed
convex bounded sets of X, each containing 0 and having diameter 1, for which
lim r(Cyp) = 1, where 7(C,) = inf{r,(C,) : € Cy,}. Define the set C C {X}y
by
C={Crlu={zre{X}y:x={x}u,zn € Cr}.

Then C is a closed convex set in {X};; with diam(C) = 1. Moreover, for any
z = {x, }y € C, there exists y = {y, }yy € C such that nhﬂn;(} |z, — ynll = 1, and
it means that ||z -y, = 1 and C' is diametral. Because p'x (0) = py,,,(0) < T
it follows that {X};; has normal structure. This is a contradiction.

Corollary 3.4.15 Let X be a uniformly smooth Banach space. Then X has
uniformly normal structure.

We call a subsequence {y, } a c-subsequence of the sequence {z, } of a Banach
space X if there exists a sequence of integers 1 = p; < ¢1 <p2 < g2 < --- and
scalars a; > 0 such that, for each n € N|

qn dn
Yn = E ;T;, E a; = 1.

1=Pn 1=Pn
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Theorem 3.4.16 Fvery Banach space with a uniformly normal structure is
reflexive.

Proof. Let X be a Banach space with a uniformly normal structure. Let {C),}
be a decreasing sequence of nonempty closed convex bounded subsets of X. We
need to show that N,,enC, # 0. For each n € N, choose z,, € C,. Then for
each € > 0, there exists a c-subsequence {y,} of {z,} with ||ym — yn|l < € for
each m,n. Suppose this is not true for some € > 0. Let B, = {x,}>2,,. Then
there exist h, 0 < h < 1 and ¥} € ¢o(By) such that

sup{||yy —yll : y € @0(B1)} < h diam(By).
Suppose that 0 < h < hy < 1. Then there exists y; € co(B1) such that
sup{[ly1 —yl| : y € €o(B1)} < hy diam(By).

Because y; is a finite linear combination of members of Bj, there exists a
c-subsequence {y,} of {z,} such that

sup{||yn — yll : v € @0(B,, )} < h1 diam(B,,) < hy diam(By),

and it follows that diam({y,}) < hidiam(By).

By repeating the argument, there exists a successive c-subsequence with
diameter less than or equal to h? diam(B;). We need only repeat the argument
a sufficient number k of times with h¥ diam(B;) < € to obtain a contradiction.

Next by the diagonal method, there exists a c-subsequence of {z,} that is

norm Cauchy, and hence convergent to some y. Therefore, y € NypenCh,-

We now give the following constants for bounded sequences in Banach spaces
that are very useful to define various geometric coefficients:

Definition 3.4.17 Let {x,} be a bounded sequence in a Banach space X. Then
(1) the real number
diam({zn}) := sup{||xm — x| : m,n € N}
is called the diameter of the sequence {x,},

(2) the real number
diamg({z,}) == lim (sup{||z; — z;| : 4,5 > n})
n—oo
is called the asymptotic diameter of the sequence {x,},

(3) the real number

ra({7n}) == inf{ra(y, {zn}) 1 y € C0({Zn}nen)}

is called the asymptotic radius of the sequence {x,} with respect to
co({zn}nen),
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(4) the real number

sep({zy,}) = inf{||zp, — zpll : m # n}
is called the separation of the sequence {x,}.

For a bounded sequence {x,} in a Banach space X, we set

D[{z,}] := limsup(limsup ||z, — z,]]).

m—0o0 n— 00

It can be easily seen that D[{z,}] < diam,({x,}).
The following example shows that D[{x,}] # diam,({z,}) in general.

Example 3.4.18 Let J be the James quasi-reflexive space, consisting of all real
sequences & := {xn,} =Y .o | Tne, for which
lim z, =0, e, =(0,0,---,1,0,---) and ||z||; < oo,

nt" position
where

”xHJ :Sup{[('rpl - xp2)2+($P2 - xp3)2+' ' .+($pm71 - Jﬁpm)Q—}—(prm _$P1)2]1/2}

and the supremum is taken over all choices of m and p1 < pa < -+ < pp,. Then
J is a Banach space with the norm || - || ;. Consider the sequence {x,} defined

by
Ty =€n —€nt1, NEN.

Then x, € J and ||z,||; = V6 for alln € N. We now show that

D{zn}] < diamg({zn}).
Note ||xm — znlls = 2V/3 for each fived n € N and for all m > n + 3, and hence

D[{x,}] = limsup(limsup ||z, — z,||7) = 2V/3.

m—00 n—oo

On the other hand, for each k € N, if we taken =k, m=n+12>k, then
| = @nlls = 2V5
and hence
sup{||Zm — xnlls : m,n >k} =2V5 for each k €N,
which implies that diamg({x,}) = 2v/5. Therefore,
D[{z,}] = 2v3 < 2V5 = diam,({,}).

Remark 3.4.19 For each bounded sequence {x,} in a Banach space X, we
have

ra({2a}) < DHaa}] < diam,({2,}) < diam({,}).
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A different form of uniformly normal structure coefficient N(X) is defined
by

diamg({xn})
Ta({Zn})

: {z,} is a bounded sequence

N(X) = inf {
which is not norm convergent}.

We now prove an interesting result concerning the uniformly normal struc-
ture coefficient N (X).

Theorem 3.4.20 Let X be a Banach with N(X) = N(X)™! < 1. Then, for
every bounded sequence {x,} in X, there exists a point z € co({x,}) such that
(a) fO?” every y € Xv ”Z - y” < ra(y, {xn});
(b) ra(z,{zn}) < N(X) diamg,({z,}).

Proof. (a) For each k € N, set A, :=co({x,}52 ) and A := NgenAy. Observe
that any point z € A satisfies (a). In fact, z € Ay for each k € N, and hence

2 — yll < sup{lle — gl : = € A} for all y € X,
which implies that
2 =yl < Jim ry(Ax) = ra(y, {z0})

(b) The reflexivity X implies that each Ay is weakly compact. Hence the sets
A, Z,(Ag, {xn}) and Z,(A,{z,}) are all nonempty. For each k, choose zj in
Z,(Ag,{z,}) and consider a weakly convergent subsequence {zy, } of {2} such
that zp, — 2. Because z € ¢o({z, }{2;) C Ay, for any j, by the monotonicity
of the sequence {4y}, we obtain that z € N32,Ag; = A. Note ra(2k, {2n}) is
a monotonic nondecreasing sequence that has r, (A, {z,}) as an upper bound.
Moreover, because r, (-, {z,}) is weakly lower semicontinuous, we have

kh_{lolo Ta(2zk, {zn}) = Jlggo Ta(zkj Azn})
> ro(2,{wn})
> ra(4, {xn})

Hence
klggo a2k, {an}) = ra(z,{zn}) = ra(A, {zn}).

Note, for any k,
Ta(zka {xn}) = 7a(2k, {ﬂfn}?’f’:k) SN(X) diama({xn}zo:k) :N(X) diama({mn}).

Therefore,
ral(z, {n}) < N(X) diama({zn}). |1
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3.5 Weak normal structure coefficient

A Banach space X is said to have weak normal structure if every weakly compact
convex subset C' of X with more than one point contains a nondiametral point,
that is, an z¢y € C' for which

sup{[lzo -yl : y € C} < diam(C).

Every Banach space that has normal structure also has weak normal struc-
ture, but the converse is not true. For reflexive Banach spaces, these properties
are equivalent.

Example 3.5.1 The space {1 does not have normal structure. Because weak
compactness coincides with compactness in £, it follows that {1 does have weak
normal structure.

Let X be a Banach space. Then the number WCS(X) is said to be weak
normal structure coefficient or weakly convergent sequence coefficient if

WCS(X) = inf {dm ( C()C ) : C is weakly compact convex subset of X
r
with diam(C) > 0}

_ i diamg({xn})
= f{ ra((n))

: {x,} is a weakly convergent sequence

which is not norm convergent},

where 7,({z,}) = inf{rq(z,{z,}) : * € c0({z,}) is the asymptotic radius of
{z,} relative to co({z,})}.
Observation

e WCS(X)>1,as r(C) < diam(C).

e A Banach space X has weak uniformly normal structure if WCS(X) > 1.

o If WCS(X) > 1, then X has weak normal structure.

We now give a sharp expression for WCS(X) in terms of D[{z,})].
We begin with the following lemmas:

Proposition 3.5.2 Let {y,} and {z,} be two sequences in a Banach space X
such that o« = nl;n;o lynll # 0 and zn, = yn/|lynll- Then D[{zn}] = Dl{yn}]/c.
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Proof. For m,n € N, we have

y77l
lom =l = |
lymll IIyn
H_ L Ym Yo Yo Yn ‘
lyml @ o  a oyl
1 1 1 1 1
< ymll — 4+ = Ym = yull + llymll| = — 7 |-
ymll a a |yl
Hence
D{z,}] = limsup(limsup||zm — znl|)

m— 00 n— o0

. 1
< limsup({lym ||| 77— — —

m—o0 ‘ymll

— lim sup ||ym — ynll)

n—oo

2
1. . 1
=~ timsup(limsup [y — yal)) = - Dl{ya )]

O m—oco n—oo

Similarly, we can obtain

Dl{yn}] < D[{zn}]

Therefore, D[{z,}] = D[{y,}]/a. |
Proposition 3.5.3 Let X be a Banach space and M > 0. Then the following
are equivalent:

(a) Mlimsup ||z, — z|| < diamg({zn}) for any x, — = (not strongly con-
vergent).

(b) M limsup ||y, — y|| < D[{yn}] for any y, — y (not strongly convergent).
n—oo

Proof. (b) = (a). Because D[{z,}] < diam,({z,}), it is obvious that (b) =

(a).

(a) = (b). Let z, — =z (not strongly convergent) and a := limsup
n—oo

|z, — || # 0. Then we can choose a subsequence {z,,} of {x,} such that
a:= lim |z, —z|. Set zm := (£, —x)/a. Then z,, — 0 and ||z,| = 1, by

using the diagonal method, we can choose a subsequence {z,,} of {z,} such

that  lim ||z, — 2m, || exists. From (a), we have
i,j—00,i#] ’ !

M= M lim |z
< diama({zm,}) = D[{zm, }]
< Dl{zm}] = éD[{me (by Proposition 3.5.2)
< —D[{zn}],
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and it follows that

M limsup ||z, — z|]| = Ma < D[{z,}]. |

We are now able to give an expression for WCS(X) in terms of D[{x,}].
Theorem 3.5.4 Let X be a Banach space. Then

WCS(X)=sup{M >0:z, = u= Mlimsup |z, — u|| < D[{z,}|}.

n—oo

Proof. The result follows from Proposition 3.5.3. I

We now establish a relation between the Opial modulus and weak normal
structure coefficient of a Banach space.

Theorem 3.5.5 Let X be a Banach space with the Opial modulus rx. Then
WCS(X) > 1+ rx(1).

Proof. Let {z,} be a sequence in X such that z, — = € X. Set b :=
ro(x, {2, }) = limsup ||z, — z||. Without loss of generality, we may assume that

n—oo

b >0 and lim |z, — x| exists. Otherwise, we can consider a sequence {z,, }
n—oo
of {z,} such that

limsup ||z, — z|| = hm |xn, — ||

n—oo

Set zp, == (z, — x)/b. From the definition of rx, we get

14+ rx(t) <liminf ||z, + y|| for all y € X with ||y|| > t.
n—oo

In particular for y = (x — z,,)/b and ¢ = ||y||, we have

(” ‘T’”|> gliminfw < lim sup Fn =2l

n—00 n—oo b

It follows that
b(1+rx(1)) < D[{zn}].

Therefore, WCS(X) > 1+ rx(1). |

Theorem 3.5.6 Let X be Banach space with the Opial modulus rx.
If rx(1) > 0, then WCS(X) > 1, i.e., X has weak uniformly normal struc-
ture.

Proof. The result follows from the fact that WCS(X) > 1+ rx(1). |
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3.6 Maluta constant

Let X be a Banach space. Then the number D(X) is called the Maluta constant
if

h?jolip d(wpt1, co{itisy))
D(X) = sup { diam({z,}) }’

where the supremum is taken over are all nonconstant bounded sequences in X.

The following result shows that D(X) can be defined in several ways.

Proposition 3.6.1 Let X be a Banach space. Then we have the following:
liminf d(zp41,co({z;}i-))
(0) DY) = sup { 22— T o)< x .

(b) If X is reflexive, then

n— o0

diam({zn})

D(X) = :{xn} a weakly convergent

lim sup d(p+1, co({x; }1-1))
sup {
sequence in X}.

lim sup d(zp+1, co({x; }i=q))
(¢) D(X) = sup{ n—oo :{xn} a nonconvergent

diamg ({zn})
sequence in X}.

(d) If X is an infinite-dimensional reflexive space, then

n—oo

diamg({x,})

convergent sequence in X }

D(X) =

limsup d(zn11, co({zi}i=1))
sup{ A{xn} a weakly, but not strongly

Proof. (a) Let {x,} be a sequence in X and set o := lim sup d(z,, co({z; }7=}")).

Then for a subsequence {xz,, } of {z,} such that a = klim d(xp,, co({z: }*h)),

we have

o = Tim d(an,, co({wn, i) < liminf d(zn,, co({zi} 1),

Hence for every {z,} we can find a sequence {y, }(= {xn, }) with diam({y,}) <
diam({z,}) such that
limsup d(zn+1, co{zitisg))  liminf d(yny1, co({yi}iy))
n—oo < n—oo
diam({z,}) - diam({yn})

Thus, our assertion is proved.
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(b) Let {x,} be a sequence in X with a weakly convergent subsequence
{zn,}. Then
d(@n,, co({zi}[21 1)) < d(@n,, co({zi 1)),
and it follows that

liminf d(2p 41, co({z;}7-,))  limsupd(zn,, co({z:}i=)))

n—oo n—oo

diam({x,}) = diam({zn,})

From part (a) we can conclude (b).

(c) Let {z,,} be a nonconvergent sequence in X. Then for each k € N, we
have

IN

lim sup d(2p41, co({z; }7—1)) limsup d(zpn4+1,co({x; }i—r))

n—oo n—oo

D(X) diam({:}32,).

A

Thus

IN

lim sup d(zp1, co({zi}iy)) lim (limsup d(zn41, co({2i}i2t)))

n—o00 k—oo" n—oo

< D(X) diamg({zn}).

Using the fact that diam,({z,}) < diam({z,}), we obtain

limsup d(xp41,co{z;}iq))

D(x) §sup{ R Tt ot }SD(X)-

(d) Tt follows easily from (b). |
Theorem 3.6.2 Let X be a Banach space. Then we have the following:
(a) If X is a finite-dimensional space, then D(X) = 0.
(b) If X is an infinite-dimensional space with modulus of convezity dx, then

1
DX = 35 m)

Proof. (a) Let X be a finite-dimensional Banach space. Then for every con-
vergent sequence {z,}, we have lim d(z,41,co({z;}i=1)) = 0. It follows from
Proposition 3.6.1(b) that D(X) = 0.

(b) Let X be an infinite-dimensional Banach space and 0 < r < 1. We now
construct a sequence in the following way:

T € Sx,
ZTpi1 € Sx such that d(xn,41, span{x;}P ;) >r for all neN.

1
> —.
-2

Then for any 4, j, i # j we have ||z; + z;|| > r so

1
Sllos — il < 1= ax(r).
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Hence ) .
lim sup d(xp41,co({z;}1-1)) ,

> .
diam({x,}) —2(1—=0x(r))
Because dx is continuous at 1, we obtain

1
PO gy B

Theorem 3.6.3 Let X be a Banach space. Then we have the following:
(a) D(X) < N(X).
(b) If X is an infinite-dimensional reflexive Banach space, then

1

DY) < sy

Proof. (a) For every sequence {z,} in X, we denote co({z,}) by C. Then
diam(C) = diam({z,,}) and r,(C) = sup ||z — y|| = ro({z,}) for all z € X. If
yeC

N N
ZGC,Z:ZAll’l (/\lZOand Z)\zil),
i=1

i=1

then
N
r.({zn}) = supllz, — Z)\z-Tz||
neN p
> limsup d(za, col{zi}Y))

n—oo

Y

lim sup d(z,,, co({z; }*=1)).

i=1
n—oo

Hence we obtain
r(C) = inf r,(C) = inf r,({z,}) > limsup d(zp41,co({x;}1y)
zeC zeC n—o0

and

r(C)
diam/(C)

(b) Let 2 € col{zn}),x = SN My (A >0, SN Ay =1). Then

N(X) > sup{ C = co({xn})} > D(X).

ra(@. {2a}) = lmsup |2, — o] > limsupd(zasr,co({r}Y,)

n—oo n—oo

> limsup d(zp41, co({zi})).

n—oo

Hence

limsup d(z, 41, co({zi}iy) < inf{ra(z,{zn}) : 2 € co({wn})} for all {z,} in X.

n—oo
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By Proposition 3.6.1(d), we obtain

n— 00

DX) = diamq({zn})

lim sup d(2p41, co({z; }1-1))
su : {x,,} a weakly, but not strongl
P {zn} g gly

convergent sequence in X }

< sup {m : {x,} a weakly, but not strongly convergent

sequence in X }

_ 1 i

WCS(X)

Theorem 3.6.4 Let X be an infinite-dimensional reflexive Banach space X.

Then
1

D(X)’
where D'(X) = inf{diam({z,}) : {zn} in X with z, — 0 and limsup
[znll =1}
Proof. By Theorem 3.6.3(b), it suffices to show that
1

505 < D'(X) < WCS(X).

WCS(X)=D'(X) =

First, we show that 1/D(X) < D’(X). We take a positive number ¢ < 1
and choose a sequence {z,} in Sx with z,, — 0 and diam({z,,}) < D'(X) + ¢.
Let {j.} be a sequence in X* such that (x,,j,) = ||jn]l« = 1 for all n € N.
By Proposition 1.9.25, we can assume that

[{(Zmm, jn)| < € whenever m # n.

Suppose that \;,7 = 1,2,---n are nonnegative constants such that A\; + Ay +
-+ A\, = 1. Then we have

n n n
|lTnt1 — ZAN@H > [(@nt1 — Z)\ixi;jn+l>| >1- Z)\i|<xi7jn+1>| >1-—e.

i=1 i=1 i=1

Thus, lim sup d(z+1,co({z;}1;)) > 1 — € and hence

n—oo

1 diem({z,}) D'(X)+e
DX) S 1-e <~ 1=z

Because ¢ € (0,1) is arbitrary, we have D(X)~! < D'(X).
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We now show that D’(X) < WCS(X). Let e > 0 and choose a weakly
convergent non-norm convergent sequence {z, } in X such that

Jim (sup{|lz; — ]| : 4,5 > n}) < (WCS(X) + e)ra(co({zn}), {zn}),
where 7, (C, {z,}) = inf{rq(z, {zn}) : z € C}.
Let 2 be the weak limit of {z,} and limsup ||, — 2| = d. Hence for k a

sufficiently large number, we have
diam({zp}ol,) —e <d (WCS(X) + ¢).
Set y,, := d~!(x, — ). Then limsup |ly,|| = 1 and y, — 0. Therefore,

D'(X) < diam({yn}S2y) = d 'diam({x,}52,) < WCS(X) + (1 +d Ve,
and it follows that D'(X) < WCS(X). |

We now establish equivalent expressions for WCS(X).

Theorem 3.6.5 Let X be an infinite-dimensional reflexive Banach space. Then
we have the following:

(a) WCS(X) = inf{diam({x}) : ©, — 0 and limsup ||z, || = 1} = D'(X).

(b) WCS(X) = inf{diam,({zn}) : n, = 0 and limsup ||z, | = 1}.
lIm |z, — |

(c) WCS(X)inf{n’m;";ﬁm 22, —0 and limsup ||z, —x, || exists}.

lim sup ||.73n|| n,m; n#m
n—oo

Proof. (a) This part follows easily Theorem 3.6.4.
(b) Tt follows from part (a) that

WCS(X) = inf{diam,({zn}) : {x,} converges weakly to zero and
limsup [|z,[| = 1}. (3.15)

(¢) The equality (3.15) allows us to conclude (c) because for every sequence,
we can obtain a subsequence {z,} such that lim ||x, — z,,|| exists by
n,m;n#m

a diagonal argument. I

Theorem 3.6.6 Let X be a reflerive Banach space. Let

lim ||z, — ;]|
r = inf { mm; ngm },
Ta({7n})

where the infimum is taken over all weakly convergent sequences that are not
convergent and such that  lim ||z, — x| exists and lim ||z, — z|| exists
m; n#Em n— o0

for every z € co({z,}). Th(;n7WCS(X) =r.
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Proof. Because lim;é |zn—2ml|| = diam,({x,}) if this limit exists, it follows
that o
r>WCS(X).

We now show that WCS(X) < r. Let {x,} be asequence in X with z,, — 0such

that  lm ||@, — 2| exists and lim ||z, — z| exists for all z € co({z,}).
n,m;n#m n— o0

Set Ay := co({xn}n>k). The weak convergence of {x,} to zero implies that
My Ar = {0}. Because the function ¢ on X defined by

o(z) = lim ||z, —z|, € X
n—oo

is weakly lower semicontinuous and Ay is weakly compact, then ¢ attains a
minimum at a point z, in Ag. Because 0 is the unique point that can be
weakly adherent to {z;} we infer that {2z} is weakly null. By the weak lower
semicontinuity of ¢, we have

(0) < lim_ p(z).

Because {¢(zk)} is a nondecreasing sequence that is bounded by ¢(0), it follows
that

Jimo(z,) < ¢(0).

Thus,
i o(zi) = ¢(0).
Observe that

Ta({zn}nzk) = ra(co{zntnzi)s {Tn}n>k)
= inf{p(y) 1y € co{zn}nzk)}
= ¢(2k).

By the definition of r, we have

r lim ||z, — 2] < lm |z, — 2.

31T,

Taking the limit as k — oo, we obtain

rlim |lz,|| < lim  |lon — 2;l)

31Ty

Hence

nnﬁ}'irg;ém 1Zn — Zm]|
rginf{ ! },

lim sup ||z, ||
n—oo

where the infimum is taken over all weakly null sequence such that  lim

n,m; n#m
|zn, — | exists and lim |z, — z| exists for every z € @o({x,}). Using
Theorem 3.6.5 (¢), it is clear that this infimum is WCS(X). Hence r < WCS(X).
Therefore, WCS(X) = r.
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We now apply Theorem 3.6.6 to estimate WCS(X) for reflexive Banach
spaces with weakly continuous duality mappings.

Theorem 3.6.7 Let X be a reflexive Banach space with a weakly continuous
duality mapping J, with gauge function p. Then 1+ rx(1) = WCS(X) =
O~1(20(1)), where ®(t) = fot u(s)ds, t > 0.

Proof. Using Theorem 3.2.16 and Theorem 3.5.5, we have
WCOS(X)>14+rx(1) =3 1(28(1)).
To prove equality, we take a weakly null sequence {z,} in Sx. We may

assume (through a subsequence if necessary) that lim;‘é |zn — zm|| exists.

n,min#m

By Theorem 3.6.6, we have
wWCSsS(X) < lim ||z, — Zm|

n,m;n#m
= lim (lim ||z, — zm|)
=l (lim @7 @) + B(] — )
= lim &7 (@(1) + ()

= o 1(20(1)).
This proves the desired result. I

Because £, (1 < p < 00), admits a weakly continuous duality mapping J,
with the gauge pu(t) = tP~1, we have

Corollary 3.6.8 Let 1 < p < co. Then WCS((,) = 2'/7.
We now establish a relation between WCS(X) and N(X).
Theorem 3.6.9 Let X be a Banach space. Then WCS(X) > N(X).

Proof. Let {z,} be a weakly null sequence in X such that lim |z,||=¢>0
n—oo
and lim ||z, — || = d exist. Given € > 0 with ¢/2 > €, we may assume
m,n;m¥#n
that

lzn|l > c—e and ||z, — x| < d+ e for all n,m € N.

Let {jn} be a sequence in Sx~ such that (x,,j,) = ||z,]| for all n € N. Using
Proposition 1.9.25, we may assume that |(z,,,jn)| < € whenever m # n. Note
x € co({x,}) implies that |{x, j,)| < € for n sufficiently large. Hence

¢ =28 < |@nll —e = (xn — @, jn) < [lon — |,
and it gives us r(co({z,})) > ¢ — 2e. Thus,

diam(co({zn})) < d+e

N < = o)) Se-ze
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This shows that
N(X) <

ol

Taking the infimum, we obtain that N(X) < WCS(X). |

Corollary 3.6.10 Let X be a Banach space. If X has uniformly normal struc-
ture, then X has weak uniformly normal structure.

3.7 GGLD property

Definition 3.7.1 A Banach space X is said to be have generalized Gossez-Lami
Dozo property (GGLD) whenever D[{x,}] > 1 for every weakly null sequence
{zn} such that lim ||z,| = 1.

Example 3.7.2 Consider the space c, equivalently renormed by

{on}l = [{zaHlo + 3 5rlenl

It enjoys the Opial condition and it has a weak normal structure but lacks the
GGLD property.

The following coeflicient is very useful for fixed point theory of nonlinear
mappings:
B(X) = inf{D[{zn}] : xn =0, [|zn] — 1}

Observation
e A Banach space X has the GGLD property if 8(X) > 1.

Proposition 3.7.3 Let X be a Banach space with the GGLD property. If {x,}
is a sequence in X such that x, = x € X with lim ||z, —z| # 0, then
n—oo

lim ||z, —z| < D[{z,}].

Proof. Let a := lim ||z, — 2| and y, := a~!(z, — ). Then y, — 0 and
n—oo
lim |ly,|| = 1. By the GGLD property, 1 < D[{yn}]. Hence oo < D[{x,,}]. 1
n—oo
A Banach space X is said to have the semi-Opial condition (SO in short) if for

any nonconstant bounded sequence {z,} in X with x,, —x,,11 — 0, there exists
a subsequence {x,, } such that z,,, — x € X and klim |Xn, — x| < diam({zn}).
— 00

The following theorem shows that for reflexive Banach spaces, the SO con-
dition is more general than the GGLD property.

Theorem 3.7.4 FEvery reflexive Banach space with the GGLD property satisfies
the SO condition.
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Proof. Let {z,} be a bounded sequence in X such that ||zn41 — 2| — 0.

Because X is reflexive, there exists a subsequence {z,, } of {z,} such that

T, — ¢ € X. We may assume that r := klim |zn, — x| > 0, otherwise the
— 00

result follows immediately.

Now set yi, := r~!(z,, —). From the GGLD property of space X, we obtain
1 < D[{yx}]. Therefore,

r < limsup(imsup ||[2n; — 25, []) < diam({zn, }) < diam({zn}),

k—oo j—o0

which completes the proof. I
Let us give some examples concerning the GGLD property.

Example 3.7.5 The Banach space Xg:= ({2, - ||g), where ||z||g = max{||x]2,
Bz} as has the SO condition for 1 < B < 2, but if V2 < 3, Xs does not
have normal structure and hence Xg cannot have the GGLD property.

Example 3.7.6 Consider the James space J that consists of sequences x =
{zn} € ¢, such that

||33HJ = Sup{(xpl - $p2)2 + (xpfz - 'rPB)Q R ('rpn—l - Ipn)Q} < 0,

where the supremum is taken over all increasing sequences of positive integers
{p:}. The James space J fails to be uniformly convex in every direction (in fact,
does not have normal structure), but J satisfies the GGLD property.

Example 3.7.7 Consider the classic space ¢, of sequences with norm || - ||
/2

defined by ||| = <|:c||§o + > i /2 . Then (co,|| - 1|) is uniformly convex
in every direction, but ¢, fails to have the GGLD property.
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Exercises

3.1 Let H be a Hilbert space and ¢ : H — (—00, 00| be a convex, lower semi-
continuous, and proper function. For A > 0 and = € H, set

. A 2
oa(r) == ylglff w(y)+§||x—y|| .

Let d¢ be the subdifferential of ¢ and Jy = (I + A\dp)~!. Show that
(a) px is convex and i (z) = p(Jaz) + 31/(9p)x(2)|*-

(b) 9(px) = (O¢)x; in particular, ¢, is continuously differentiable and

has Lipschitz continuous derivative.
(c) px(z) increases to p(xz) as A | 0.

3.2 Let X be a Banach space, and x1,--- ,x, a finite number of points in X.
Define

1 n
o(z) =~ Z |lzi — z||? for all z € X.
i=1
Show that ¢ is a convex function and that, if X is reflexive, ¢ attains its
minimum.

3.3 Let H be a Hilbert space. Let C ={rx € H: ||x —al]| <r}and D = {x €
H : ||z|| < |la|]| + 7} be two sets, where a # 0 and r» > 0. Let Po and
Pp be metric projection mappings, respectively. Show that PoPp is a
nonexpansive retraction of H onto C' that is different from Pg.

3.4 Let C be a nonempty closed convex subset of a Hilbert space H,
Po : H — C the metric projection mapping onto C, and {z,} a
sequence in H such that x,, — z. Show that the asymptotic center of
{xn} with respect to C is Pox.

3.5 Let X be a Banach space. Show that X* has a Fréchet differentiable norm
iff X is reflexive and strictly convex, and has the following property:

if ,, = z and ||,|| — ||z||, then {x,} converges strongly to x.



Chapter 4

Existence Theorems in
Metric Spaces

In this chapter, we study asymptotic fixed point theorems for contraction
mappings and for mappings that are more general than contraction mappings
in metric spaces.

4.1 Contraction mappings and their
generalizations

In this section, we establish a fundamental asymptotic fixed point theorem that
is known as the “Banach contraction principle” and further we give its genera-
lizations in metric spaces.

By an asymptotic fixed point theorem for the mapping 7', we mean a theorem
that guarantees the existence of a fixed point of T, if the iterative T™ possess
certain properties. Before to establish the Banach contraction principle, we
discuss some basic definitions and results:

Let (X,d) be a metric space and let Lip(X) denote the class of mappings
T : X — X such that

TTL T"l
o(T™) = sup A1z, T"y) cryeX,x £y, <o
d(z,y)

for all n € N.

Members of Lip(X) are called Lipschitzian mappings and o(T™) is the
Lipschitz constant of T™. Note that o(T) = 0 if and only if T is constant
on X. For two Lipschitzian mappings 7' : X — X and S : X — X such that
S(X) € Dom(T), we have

o(ToS) <o(T)o(S).

R.P. Agarwal et al., Fized Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3_4,
(© Springer Science+Business Media, LLC, 2009
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It is clear that the mapping T € Lip(X) if there exists a constant L,, > 0
such that

d(T"z, T"y) < L,d(x,y) for all z,y € X and n € N. (4.1)

Moreover, the smallest constant L, for which (4.1) holds is the Lipschitz
constant of T™. A Lipschitzian mapping T : X — X is said to be wuniformly
L-Lipschitzian if L, = L for all n € N. A Lipschitzian mapping is said to be
contraction (nonexpansive) if o(T) <1 (o(T) = 1).

The following result plays an important role in proving several existence
theorems in metric spaces.

Proposition 4.1.1 Let (X,d) be a complete metric space and ¢ : X — (—00, 0]
a bounded below lower semicontinuous function. Suppose that {x,} is a sequence
i X such that

d(zp, Tnt1) < @(xn) — @(xnt1) for alln € Ng = NU {0}.

Then {x,} converges to a point v € X and d(z,,v) < @(z,) — () for all
n € Np.

Proof. Because
d(Tn, Tny1) < @(@n) — @(@ny1), n € Ny,

it follows that {p(z,)} is a decreasing sequence. Moreover, for m € Ny

m
Z d(Tp, Tny1) < d(@o,z1) +d(T1,72) + - + d(Trny Trnt1)
n=0
< pl@0) = p(Tmi1)
< — i .
< ¢lzo) — inf o(zn)
Letting m — oo, we have
Zd(gcn,xnﬂ) < 0.
n=0

This implies that {z,} is a Cauchy sequence in X. Because X is complete,
there exists v € X such that lim z, = v. Let m,n € Ny with m > n. Then

n—oo
m—1
d(Tn, Tm) < Zd(xi,xiﬂ)
1=n

< p(xn) — o(Tm)-

Letting m — oo, we obtain

d(xn,v) < p(zy) — Im @(x,) < p(z,) — @(v) for all n € Np. 1
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We now begin with Caristi’s fixed point theorem. To prove it, we need the
following important result.

Theorem 4.1.2 Let X be a complete metric space and ¢ : X — (—00,00| a
proper, bounded below and lower semicontinuous function. Suppose that, for
each u € X with in}f{go(m) < (u), there exists a v € X such that

xE

u#v and d(u,v) < p(u) — ).

Then there exists an xo € X such that p(xg) = in}f{ o(z).
1S
Proof. Suppose that 12)f{ o(x) < p(y) for every y € X. Let ug € X with
p(ug) < oo. If inigo(m) = ¢(up), then we are done. Otherwise inﬁ( p(z) <
zE TE

»(ug), and there exists a u; € X such that ug # uy and d(ug,u1) < p(ug) —
p(u1).

Define inductively a sequence {u, } in X, starting with ug. Suppose u,,_1 €
X is known. Then choose u,, € S,,, where

Spi={w € X 1 d(up—1,w) < (un—1) — p(w)}

such that

plun) < inf p(w) + 3 {plun 1) — inf ()} (4.2

Because u,, € S,, we get

d(tn—1,un) < @(un-1) — ©(u,), neN.

Ju
~
\

S
—~
<
~—

Proposition 4.1.1 implies that u, — v € X and d(un—1,v) < @(tn— .
By hypothesis, there exists a z € X such that z # v and d(v, z) < p(v) — @(2).
Observe that

p(2) < o) —d(v,2)
< () —d(v, 2) + (un—1) = ¢(v) — d(tn-1,v)
= @(un-1) = [d(v, 2) + d(un—1,v)]
< p(up—1) — d(up—1,2).

This implies that z € S,,. It follows from (4.2) that

2¢(un) — @(tn— 1)<w1?§ p(w) < p(2).

Thus,
p(2) < (o) < Tim p(un) < ¢(2),

a contradiction. Therefore, there exists a point zy € X such that ¢(xg) =

o |
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Theorem 4.1.3 (Caristi’s fixed point theorem) - Let X be a complete
metric space and ¢ : X — (—o0,00] a proper, bounded below and lower semi-
continuous function. Let T : X — X be a mapping such that

d(z,Tx) < p(x) — p(Tx) for all x € X. (4.3)
Then there exists a point v € X such that v ="Tv and p(v) < co.
Proof. Because ¢ is proper, there exists u € X such that p(u) < co. Let
C = {o € X :d(u,z) < p(u) — plx)}.

Then C' is a nonempty closed subset of X. We show that C' is invariant under
T. For each x € C, we have

d(u, z) < ¢(u) — o(z)

and hence from (4.3), we have

o(Tx) < o) —d(z,Tx)
< o) —d(@,Tz) + o(u) — p(z) — d(u,z)
= p(u) —[d(z, Tz) + d(u,z)]
< p(u) —d(u, Tz),

and it follows that Tx € C.

Suppose, for contradiction, that « # Tz for all z € C'. Then, for each z € C,
there exists w € C such that

z # w and d(z,w) < p(z) — p(w).

By Theorem 4.1.2, there exists an xg € C with ¢(xg) = infcgo(m). Hence for
re

such an zg € C, we have

0 <d(wo,Txzo) < ¢(x0) — ¢(T'x0) (Iﬂelg o(x) = p(x0) < @(T0))
< p(Tzo) — p(Txo)
pu— O7
a contradiction. I

Remark 4.1.4 The fized point of the mapping T in Theorem 4.1.3 need not be
unique.

We now state and prove the Banach contraction principle, which gives a
unique fixed point of the mapping.

Theorem 4.1.5 (Banach’s contraction principle) - Let (X,d) be a com-
plete metric space and T : X — X a contraction mapping with Lipschitz con-
stant k € (0,1). Then we have the following:
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(a) There exists a unique fized point v € X.
(b) For arbitrary xo € X, the Picard iteration process defined by

Tpt1 =Tzn, n €Ny

converges to v.
(c) d(zn,v) < (1 — k)" k"d(xg,x1) for all n € Ny.

Proof. (a) Define the function ¢ : X — R* by ¢(z) = (1 — k)~td(x, Tx),
x € X. Hence ¢ is a continuous function. Because T' is a contraction mapping,

d(Tz,T?z) < kd(x,Tz), =€ X, (4.4)
which implies that
d(xz,Tx) — kd(z,Tz) < d(z,Tz) — d(Tx, T?z).

Hence

Az, Tz) < ﬁ[d(x,m) — (T, T%)]
= ¢(@) —¢(Tx). (4.5)
Let « be an arbitrary element in X and define the sequence {z,} in X by
Tp, =T"x, n €Ny
From (4.5), we have

d(xwuxn-&-l) < ‘P(xn) - @(mn+1)a n € Ny,
and it follows from Proposition 4.1.1 that

lim z, =veX

n—oo

and
d(xn,v) < o(x,), n € Ny. (4.6)

Because T is continuous and x,1 = Tz, it follows that v = Tv. Suppose z is
another fixed point of T. Then

0<d(v,z) =d(Tv,Tz) < kd(v,z) < d(v, 2),

a contradiction. Hence T has unique fixed point v € X.

(b) It follows from part (a).

(c) From (4.4) we have that ¢(x,) < k™p(x0). This implies from (4.6) that
d(xn,v) < kE"p(x0).

Let us give some examples of contraction mappings.
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Example 4.1.6 Let X = [a,b] and T : X — X a mapping such that T s
differentiable at every x € (a,b) such that |T (z)| < k < 1. Then, by the mean
value theorem, if x,y € X, there is a point £ between x and y such that

T —Ty =T (&)(x—y).

Thus,
Tx =Tyl =T ()] |z —y| < klz —yl.

Therefore, T is contraction and it has a unique fized point.

Example 4.1.7 Let X =R and T : R — R a mapping defined by

1
Tx:§x+1, x eR.

Then T is contraction and F(T) = {2}.

The following example shows that there exists a mapping that is not a con-
traction, but it has a unique fixed point.

Example 4.1.8 Let X = [0,1] and T : [0,1] — [0,1] a mapping defined by
Tr=1-z, x€][0,1].
Then T has a unique fized point 1/2, but T is not a contraction.

Let (X,d) be a metric space. Then a mapping T : X — X is said to be
contractive if

d(Tz,Ty) < d(x,y) for all z,y € X, © # y.

It is clear that the class of contractive mappings falls between the class of
contraction mappings and that of nonexpansive mappings.

Observation
e A contractive mapping can have at most one fixed point.

The contractive mapping may not have a fixed point. It can be seen from
the following example.

Example 4.1.9 Let X be the space ¢y consisting of all real sequences x = {x;}
with lim z; = 0 and d(z,y) = ||z —y|| = sug |z — yil, . = {x:},y = {vi} € co.
ic

1— 00

Let Bx ={x € ¢ : ||z|| < 1}. For each x € Bx, define

T(x17x27'” 7xi7"') = (ylvaa'“ 7yi7”')7

where y1 = (14 ||z||)/2 and y; = (1 — 1/27" Y2,y for i = 2,3,---. Note that
ly1] < 1 and |yi| < |zi1| < 1 for all i = 2,3,---. Hence T : Bx — Bx.
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Suppose x and y are two distinct points in Bx. Then

Izl = llyll 1 ,
HT{II—Ty” = Sup{ 2 ) 1- 2i+1 |xi—1 _yi—ll :122737"'
[z — yll 1 .
< sup{Q, 1—% |Tic1 —yiz1] :1=2,3,---
< ==yl

Suppose that there is a point v € Bx such that Tv=v. Thenvi= (14 ||v||)/2>0

and for i > 2
1
|'Ui| = 1-— 22? |U2‘71|.

This implies for all i > 2

lvg| =

1
1 g i

<
()0 2o

I
=i
o no
7 N

—

|

[\v)
3.
£l =
|
>
N~~~
=
=

v

This is not possible, because v; — 0 as i — oco. Thus, T has no fized point
m Bx. I

We note that completeness and boundedness of a metric space do not ensure
the existence of fixed points of contractive mappings. However, contractive
mappings always have fixed points in compact metric spaces.

Theorem 4.1.10 Let X be a compact metric space and T : X — X a con-
tractive mapping. Then T has a unique fixed point v in X. Moreover, for each
x € X, the sequence {T"x} of iterates converges to v.

Proof. For each z € X, define a function ¢ : X — RT by ¢(z) = d(z,Tz).
Then ¢ is continuous on X and by compactness of X, ¢ attains its minimum,
say p(v), at v € X. Then ¢(v) = mi}r{l o(z). If v # Tv, then

xE

©(Tv) = d(Tv, T?*v) < d(v, Tv) = p(v),

a contradiction. Hence v = Tw. Uniqueness of v follows from the contractive
condition of T.
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Now, let zyp € X and define a sequence {z,} in X by =z, = T"z( for all
n € N. Set ¢, := d(T"x,v),n € Ng. Because

Cn1 = d(T" g, v) < d(T"xg,v) = Cp,

{cn} is a nonincreasing sequence in R*. Hence lim ¢, exists. Suppose lim ¢, =

n—oo n—o0

¢ > 0. Assume that ¢ > 0. Because X is compact, there exists a subsequence
{zn,} of {z,} such that x,, — z € X. Observe that

0 <c= lim ¢y, = lim d(T"zg,v) = d(z,v),

11— 00 71— 00

i.e., z # v. Because T is contractive and continuous,

c= lim d(T™ " zg,v) = d(Tz,v) < d(z,v) = c,

11— 00
a contradiction. Thus, ¢ = 0, i.e., 2z = v. This means that every conver-
gent subsequence of {T"xo} must converge to v. Therefore, {T™xz¢} converges

to v.

The following example shows that in general, even in a Hilbert space for
contractive mappings we cannot have that T"x — x( for every x € Bx and
o — Txo.

Example 4.1.11 Let X = by = {(x1, 22, - , 24, ) : x; real for each i € N
and 352 |74]? < 00} and Bx = {x € X : ||z]2 = (52, |i]|>)Y/? < 1}. Define
a mapping T : Bx — Bx by

Tz =(0,0121, 002, x5+ ), &= (x1,%2,---,%4, ) € Bx,

where aq = 1; a; = (1-1/i?), i = 2,3,--- . It is easy to see that T is contractive
with fized point (0,0,---,0,--+).
Now, let x = (1,0,---,0,---) € Bx, then

T"z = (0,0, - ’Hai’o"")fOT all n € N.
i=1

Thus,

2
Trx|| = nt as n — 0o,
2

(n+1) )

and hence T"x - 0.

We now consider some important generalizations of the Banach contraction
principle in which the Lipschitz constant k is replaced by some real-valued con-
trol function.

Theorem 4.1.12 (Boyd and Wong’s fixed point theorem) — Let X be a
complete metric space and T : X — X a mapping that satisfies

d(Tx, Ty) < Y(d(z,y)) forall x,y€X, (4.7)
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where 1 : RT — RY is upper semicontinuous function from the right (i.e.,
Ai LA > 0= limsupy(\i) < ¢(N)) such that ¢(t) <t for each t > 0. Then T

11— 00

has a unique fixed point v € X. Moreover, for each x € X, lim T"x = v.

Proof. Fix € X and define a sequence {z,} in X by z, = T"x, n € Ny. Set
dy, == d(xp, Tnt1). We divide the proof into three steps:
Step 1. lim d, = 0.

Note
dn+1 = d(:cn+1,xn+2) = d(Txn,Tan) < ’l/)(dn), n e No.

Hence {d,} is monotonic decreasing and bounded below. Hence lim d,, exists.

n—oo
Let lim d,, =6 > 0. Assume that § > 0. By the right continuity of v,
n—oo
§ = lim dyy1 < lim ¥(d,) < 9(0) < 0,
n—0oo n—oo
so 0 = 0.

Step 2. {x,} is Cauchy sequence.

Assume that {z,} is not Cauchy. Then there exist ¢ > 0 and integers
mg, N € Ng such that mg > ng > k and

A(Xpy, s T, ) > € for k=0,1,2,---.
Also, choosing my, as small as possible, it may be assumed that
ATy, -1, Tny,) < E.
Hence for each k € Ny, we have

d(xmk ) xmk—l) + d(xmk—la xnk)
d(xmk*hxmk) +e
dmkfl +53

e < d(Xm,,, Tn,,)

IAIA

and it follows from the fact d,,,, — 0 that lim d(x,, ,x,,) = . Observe that

k—oo

d(xmkvxmk+1) + d(xkarlv xnk+1) + d(xnkJrlv xnk)

d(xmk ’ xnk‘ ) S
<

Letting & — oo and using the upper semicontinuity of ¢ from the right, we
obtain

e = lim d(@m,,Tn,) < klim V(A (@, Ty, ) < P(e),

k—o0
which is a contradiction. Hence {xz,} is a Cauchy sequence in X.

Step 3. Existence and uniqueness of fixed points.
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Because {z,,} is Cauchy and X is complete, lim z, = v € X. By continuity
n—oo
of T, we have v = T'v. Uniqueness of v easily follows from condition (4.7). I

Let ® denote the class of all mappings ¢ : R* — RT satisfying:
(i) ¢ is continuous,
(ii) o(t) < t for all t > 0.

As an immediate consequence of the Boyd-Wong’s fixed point theorem, we
have the following important result, which will be useful in establishing existence
theorems concerning asymptotic contraction mappings.

Corollary 4.1.13 Let X be a complete metric space andT : X — X a mapping
that satisfies

d(Tz,Ty) < @(d(z,y)) for all x,y € X,

where ¢ € ®. Then T has a unique fized point v € X. Moreover, for each
x € X, lim TMx = wv.

n—oo

We now introduce a wider class of mappings that we call “asymptotic con-
tractions.”

Definition 4.1.14 Let (X, d) be a metric space. A mappingT : X — X is said
to be an asymptotic contraction if for each n € N

d(T"z, T"y) < op(d(z,y)) for oll z,y € X, (4.8)
where oy, : RT — RT and ¢, — ¢ € ® uniformly on the range of d.

The following theorem shows that asymptotic contractions have unique fixed
points.

Theorem 4.1.15 Let X be a complete metric space and T : X — X a con-
tinuous asymptotic contraction for which the mappings ¢, in (4.8) are also
continuous. Assume also that some orbit of T is bounded. Then T has a unique
fized point v € X and for each v € X, {T™xz} converges to v.

Proof. Because the sequence {¢;} is uniformly convergent, it follows that ¢ is
continuous. For any x,y € X,z # y, we have
limsup d(T"z, T"y) < limsup @, (d(z,y)) = (d(z,y)) < d(z,y).

n—oo n—0o0

If there exist z,y € X and € > 0 such that limsupd(T"z,T"y) = €, then

there exists k& € N such that p(d(T*z, T"y)) < & because ¢ is continuous, and
o(e) < e. It follows that

limsupd(T"z, T"y) = limsupd(T™(T*z), T™(T*y)
n—o00 n—o00
< limsup g, (d(T*x, T"y))
n—oo

= w(d(Tkx,Tky)) <&,
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a contradiction. Hence

nlingo d(T"z, T"y) =0 for any x,y € X. (4.9)
Thus, all sequences of the Picard iterates defined by T, are equi-convergent and
bounded.

Now let zgp € X be arbitrary, {z,} be a sequence of Picard iterates of T" at the
point 29, C = {z,} and F,, = {x € C : d(z,T*z) < 1/n,k =1,--- ,n}. Because
{zn} is bounded, C is bounded. It follows from (4.9) that F,, is nonempty.
Because T is continuous, we have F), is closed, for any n. Also, we have Fj,11 C
F,. Let {z,} and {y,} be two arbitrary sequences such that z,,y, € F,. Let
{n;} be a sequence of integers such that lim d(xy;,yn,) = limsup d(zn, y,).

J—0o0

n—oo
Observe that

hm d(xnj ) ynj) é hm (d(‘rn] I T'ﬂj xn]‘) + d(TnJ xnj ) T'ﬂj yn]) + d(y’n] I T'ﬂj y’n]‘ ))

J—00 J—00

Jm on, (d(2n, s yn,))

@(jh_)rgo d(zn,- )y Yn ))s

and hence lim d(z,;,yn,) = @(lim d(xn;,yn;)), which implies that
J—00 J—00

lim d(zy,,yn;) = 0, because C is bounded. Thus, limsupd(z,,y,) = 0 and
J—0 n— oo
hence lim d(z,,y,) = 0. This implies that lim diam(F,) = 0. By the com-

pleteness of C, it follows that there exists v € X such that N0, F,, = {v}.
Because d(v,Tv) < 1/n for any n, we have Tv = v. From (4.9), we have

lim d(T"z,v) =0 for any z € X.

n—oo

We now study an important generalization of the Boyd and Wong’s fixed
point theorem in which the control function ¢ is extended in a different direction.
Interestingly, in the following result the continuity condition on ¢ is replaced
by nan;o " (t) =0 for all t > 0.

Theorem 4.1.16 (Matkowski’s fixed point theorem) — Let X be a com-
plete metric space and T : X — X a mapping that satisfies

d(Tx, Ty) < Y(d(z,y)) for all z,y € X,

where 1 = (0,00) — (0,00) is nondecreasing and satisfies lim ™ (t) = 0 for
n—oo
all t > 0. Then T has a unique fized point v € X and for each v € X,

lim T"z = v.
n—oo

Proof. Fix z¢g € X and let z,, = T"xq, n € N. Observe that

0 < limsup d(y, Zp41) < limsup y"(d(zo,21)) = 0.

n—oo n—o0
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Hence lim d(zy,Tnt+1) = 0. Because ™ (t) — 0 for t > 0, ¥(s) < s for any
s> 0. ]%gg;use lim d(zy,,z,41) =0, given any € > 0, it is possible to choose n
such that o

d(Tpt1,7n) < € —(e).

Now for z € B.[zy]) = {z € X : d(x,z,) < €}, we have

d(Tz,xy) < d(Tz,Txyn)+d(Txn, )
< P(d(z,20)) + d(Tnyr, Tn)
< Yl)+(e—y(e) =e.
Therefore, T : B.[x,] — B:[z,] and it follows that d(z,,x,) < e for all m > n.

Hence {x,} is a Cauchy sequence. The conclusion of the proof follows as in
Theorem 4.1.12.

We now introduce the concept of nearly Lipschitzian mappings:

Let (X,d) be a metric space and fix a sequence {a,} in RT with a, — 0.
A mapping T : X — X is said to be nearly Lipschitzian with respect to {a,} if
for each n € N, there exists a constant k,, > 0 such that

d(T"z, T"y) < kn(d(z,y) + ayn) for all z,y € C. (4.10)

The infimum of constants k,, for which (4.10) holds is denoted by n(T") and
called the nearly Lipschitz constant.
Notice that

d(T™z, T"y)

n(Tn) - { d(xa y) +an

:J;,yEC,x#y}.

A nearly Lipschitzian mapping T with sequence {(n(T™), a,)} is said to be

(i) nearly contraction if n(T™) < 1 for all n € N,

(ii) nearly nonexpansive if n(T") =1 for all n € N,

(iil) nearly asymptotically nonexpansive if n(T™) > 1 for all n € N and
limy, oo n(T") < 1,

(iv) nearly uniformly k-Lipschitzian if n(T™) < k for all n € N,

(v) nearly uniformly k-contraction if n(T™) < k < 1 for all n € N.

Example 4.1.17 Let X = [0,1] with the usual metric d(z,y) = | — y| and
T:X — X a mapping defined by

[ 1/2ifxe(0,1/2],
Tw= { 0ifxe(1/2,1].

Thus, T is discontinuous and non-Lipschitzian. However, it is nearly non-
expansive mapping. Indeed, for a sequence {a,} with ay =1/2 and a,, — 0, we
have

d(Tz,Ty) < d(x,y)+ay forallx,y € X
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and
d(T"x, T"y) < d(z,y) + a, for allz,y € X and n > 2,
because .
T"xziforallxe [0,1] and n > 2.

We now develop a technique for studying the existence and uniqueness of
fixed points of nearly Lipschitzian mappings.

Theorem 4.1.18 Let X be a complete metric space and T : X — X a contin-
uous nearly Lipschitzian mapping with sequence {(n(T"),an)}, i.e., for a fixed
sequence {an} in RY with a, — 0 and for each n € N, there exists a constant
n(T™) > 0 such that

d(T"z, T"y) < n(T™)(d(z,y) + an) forall z,y€ X.

1/n

Suppose Moo (T) = limsup[n(T")]"/™ < 1. Then we have the following:

n—oo

(a) T has a unique fized point v € X.
(b) For each x € X, the sequence {T"x} converges to v.

(c) d(T"z,v) < > o2 n(TH)(d(z, Tz)+M) for alln € N, where M = sup a,,.
neN

Proof. (a) Fix x € X and let z,, = T"z, n € N. Set d,, := d(zp, Tn+1). Hence
dp = d(T"z, T" " z) < n(T™)(d(z, Tz) + a,),

which implies that

idng( d(x,Txz) + M) i
n=1 n=1

for some M > 0, because lim a, = 0. By the Root Test for convergence of

series, if 7o (T) = limsup[n(T™)]Y/" < 1, then 3.°° n(T") < oco. Tt follows
n—oo
that -7, d,, < oo and hence {z,} is a Cauchy sequence. Thus, lim z,, exists

n—oo

(say v € X). By the continuity of T, v is fixed point of T. Let w be another
fixed point T. Then

:id(v,w) = id(T"v,T”w i d(v,w) + ay,)
n=1 n=1 n=1

(d(u,w) + M) Y n(T") < oo,

n=1

IN

a contradiction, hence T" has a unique fixed point v € X.
(b) It follows from part (a).
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(¢) If m € N, we have

d(Tny Tnam) = d(T"z, T"z)
n+m—1

Z d(T'z, T )

n+m—1

> 0T (d(x, Tz) + a;)

i=n

IN

IA

n+m—1

Z (T (d(z, Tx) + M).

i=n

IN

Letting m — oo, we obtain
d(wn,v) < 2, n(T) (e, Ta) + M)

Remark 4.1.19 In the case of a nearly uniformly k-Lipschitzian mapping, we
have
lim sup[n(T™)]*/™ = limsup(k)Y/™ = 1.

n—oo n—oo

Therefore, the assumptions of Theorem 4.1.18 do not hold for nearly uniformly
k-Lipschitzian mappings.

4.2 Multivalued mappings
Let A be a nonempty subset of a metric space X. For x € X, define
d(z, A) = inf{d(z,y) : y € A}.

Let CB(X) denote the set of nonempty closed bounded subsets of X and K(X)
denote the set of nonempty compact subsets of X. It is clear that K(X) is
included in CB(X).

For A, B € CB(X), define
0(A, B) = sup{d(z, B) : x € A},

H(A,B) =max{d(A,B),§(B,A)} = max{sgg d(a, B), Sgg d(b, A)}.

Example 4.2.1 Let X =R, A=[1,2] and B =[2,3]. Then

0(A,B) =supd(a,B) =1 and §(B,A) =supd(b, A) = 1.
acA beB

Hence H(A, B) = max{d(A, B),0(B,A)} = 1.

Note that set distance § is not symmetric. However, 6 and H have the
following properties:



4.2. Multivalued mappings 189

Proposition 4.2.2 Let (X,d) be a metric space. Let A, B,C € CB(X). Then
we have the following:

(a) 6(A,B) =0 A C B.

(b) BC C=§(A,C) <A, B).

(c) (AU B,C) = max{d(A,C),(B,C)}.

(d) 6(A,B) < 6(A,C) +4(C, B).
Proof. (a) By the definition ¢, we have

0(A,B)=0 < supd(z,B)=0
T€A
< d(xz,B) =0 for all z € A.

Because B is closed in X,

d(z,B) =0« z € B.

Thus,
0(A,B)=0< AC B.

(b) Observe that
BcC=d(z,C)<d(z,B) for all x € X.
(c) Observe that

0(AUB,C)= sup d(xz,C)=max{supd(z,C),supd(z,C)}.
r€AUB €A zeB

(d) Let a € A, b€ B and ¢ € C. Then
d(a,b) < d(a,c) + d(c,b),

which implies that
d(a, B) < d(a,c) + d(c, B)

and hence
d(a, B) < d(a,c) + 6(C, B).

Because ¢ € C' is arbitrary, we have
d(a,B) < d(a,C)+(C, B).
Similarly, because a € A is arbitrary, we have

3(A,B) < §(A,¢)+8(0,B). 1

Proposition 4.2.3 Let (X,d) be a metric space. Then H is a metric on
CB(X).
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Proof. By the definition of H, we have
H(A,B)>0and H(A,B) = H(B, A).
Observe that

H(A,B)=0 < max{di(4,B),0(B,A)} =0
& §(A,B)=0 and 0(B,A)=0
& ACB and BCA
< A=B.

Using Proposition 4.2.2, we obtain

H(A,B) max{d§(4, B), (B, A)}
max{d(A4,C) +§(C, B),d(B,C) +6(C, A)
max{d(A,C),d(C, A)} + max{d(B,C),s(C,B)}

HA, )+ H(C,B). |

IN A

The metric H on CB(X) is called the Hausdorff metric. The metric H
depends on the metric d. It is easy to see that the completeness of (X, d)
implies the completeness of (CB(X), H) and (K(X), H).

Remark 4.2.4 Let A,B € CB(X) and a € A. Then for € > 0, there must
exist a point b € B such that d(a,b) < H(A,B) +¢.

The following proposition gives a characteristic property of the Hausdorff
metric that will be used in Section 8.1.

Proposition 4.2.5 Let X be a metric space. Then
H(AUB,CUD) <max{H(A,C),H(B,D)} for all A,B,C,D € CB(X).
Proof. Observe that

5(AUB,CUD)

max{d§(A,CUD),s(B,CUD)}
max{d§(4,C),6(B,D)}
max{H(A,C),H(B,D)}.

VANVAN

Similarly, we have
d(CUD,AUB) <max{H(A,C),H(B,D)}
By definition of H, we have
H(AUB,CUD) =max{6(AUB,CUD),§(CUD,AUB)}
< max{H(A,C), H(B,D)} for all A,B,C,D € ¢B(X). |

Let F'(X) denote the family of nonempty closed subsets of a metric space
(X,d). Then we have
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Proposition 4.2.6 Let C be a nonempty subset of a metric space (X,d).
Suppose the mapping T : C — F(X) is an upper semicontinuous at xg € C.
Then the mapping ¢ : C — RT defined by p(x) = d(z,Tx), v € C is lower
semicontinuous at xg.

Proof. Let £ > 0. By the upper semicontinuity of 7" at x¢, there exists § > 0
such that y € Bs[xo] N C implies Ty lies in an e/4-neighborhood of T'zg, and
moreover we may suppose 0 < /4. Select u € T'y such that

€
d(y,u) < d(y, Ty) + 5
and select v € T'zg so that d(u,v) <e/4. Then
€
oo, Too) = [y, ) + 5] < o, Tiw) — d(y)
< d(zo,v) —d(y,u)
< d(wo,y) + d(y, u) + d(u,v) — d(y, u)
< d(x07y) + d(“’?v)
< S+o=-<
— 4 - 2’
and hence
d(xo, Two) < d(y, Ty) +e.
Therefore, ¢ is lower semicontinuous at xg. I

We now introduce the class of multivalued contraction mappings and obtain
a fixed point theorem for this class of mappings:

Let T be a mapping from a metric space (X, d) into CB(X). Then T is said
to be Lipschitzian if there exists a constant k& > 0 such that

H(Tz,Ty) < kd(z,y) for all z,y € X.

A multivalued Lipschitzian mapping T is said to be contraction (nonexpansive)
if k<1 (k=1). Let F(T) denote the set of fixed points of T, i.e., F(T) =
{re X :xeTx}

Theorem 4.2.7 (Nadler’s fixed point theorem) - Let X be a complete
metric space and T : X — CB(X) a contraction mapping. Then T has a fixed
point in X.

Proof. Let k, 0 < k < 1 be the Lipschitz constant of T. Let xy € X and
1 € Txg. By Remark 4.2.4, there must exist x5 € Tz such that

d(z1,29) < H(Txzo,Tx1) + k.
Similarly, there exists x3 € T'xo such that

d(l‘g,.’ﬂg) < H(T$1,T$2> + kj2.
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Thus, there exists a sequence {z,} in X such that z,1 € Tz, and
d(xpn, Tpt1) < HTxp—1,Tx,) + k" for allm e N.

Notice for each n € N, x,,4+1 € Tx,, and so

d(x'm xn—&-l) < H(Tl'n—la Txn) + K"
S kd(xnfla l‘n) + kn
< klkd(zn_2, 0 1) + K"+ K"
< K2d(zn_9,Tp 1) + 2k
<  k"d(xzg,x1) + nk™.

Because Y oo k™ < oo and Y - nk"™ < oo, we have

i (@, Tpt1) < d(zo, 1) i k" + i nk™ < oo.
n=0 n=0 n=0

Hence {x,} is a Cauchy sequence. By completeness of X, there exists v € X
such that lim x, = v. Again, by the continuity of T,

n—oo

lim H(Tz,,Tv) =0.

n—oo
Because z,41 € Ty,
lim d(zp41,Tv) =0,
which implies that d(v,Tv) = 0. Because Tw is closed, it follows that
veTv.
Example 4.2.8 Let X =[0,1] and f :[0,1] — [0,1] a mapping such that
(@) x/2+1/2, 0<2<1/2,
T 2241, 1/2<2<1.
Define T : X — 2% by To = {f(2)} U {0}, x € X. Then T is a multivalued
contraction mapping with F(T) = {0,2/3}.

Remark 4.2.9 Ezxample 4.2.8 shows that the fized point of a multivalued con-
traction mapping is not necessarily unique.

We now discuss a stability result (Theorem 4.2.11) for multivalued contrac-
tion mappings.

Proposition 4.2.10 Let X be a complete metric space and let S,T : X —
CB(X) be two contraction mappings each having Lipschitz constant k < 1, i.e.,

H(Sz,Sy) < kd(z,y) and H(Tz,Ty) < kd(x,y) for all z,y € X.

Then H(F(S), F(T)) < (1 —k)~! sup H(Sz,Tx).
zeX
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Proof. Let £ > 0 and ¢ > 0 be such that ¢> > nk™ < 1. For zg € F(S),
select 1 € Txg such that

d(xo,21) < H(Szo,Txo) + €.

Because H(Txg, Tx1) < kd(zg,21), it is possible to select x5 € Tz such that

k
d(z1,22) < H(Txzo,Tx1)+ 1Ci A
cek
< kd .
< kd(zo,21) + 1— 3
Define {z,} inductively by
kn
Tpy1 € Txy and d(zpi1, Tn) < kd(Tn, Tn_1) + 105 =

Set n := ce/(1 — k). Observe that

d(xn+17xn) < kd(frnazn—l) +77kn
S k(kd(xn—lv xn—Q) + nkn_l) + nkn
< Kd(zp-1,mn_2) + 20k"
< Krd(zo, 31) + k™.

Because Y~ | k™ <ocoand Y, nk™ <oo, it follows that {z,, } is a Cauchy sequ-
ence in X and it converges to some point v € X. Because lim H(Tz,,Tv) =0

n—oo

by continuity of T, it follows from x,, 11 € Tz, that v € F(T). Observe that
d(zg,v) < Z d(zp, Tny1) < Z E"d(xo, 1) + 1 Z nk"™
n=0 n=0 n=0

(1= k) 'd(zo, 1) +1 > _ nk"

<
n=0
< (1 —k) " Hd(zo, 1) +¢)
< (1 —Fk)"Y(H(Szo, Txo) + 2¢).

Interchanging the roles of S and T', we conclude:
For each yo € F(T'), there exist y; € Syo and u € F(S) such that

d(yo,u) < (1— k)~ (H(Syo, Tyo) + 2¢).

Because € > 0 is arbitrary, the conclusion follows. I

Theorem 4.2.11 Let X be a complete metric space and let T,, : X — CB(X)
(n =1,2,---) be contraction mappings each having Lipschitz constant k < 1,
i.e.,

H(Thx, Thy) < kd(z,y) for all x,y € X and n € N.

If im H(T,x,Tox) =0 uniformly for x € X, then lim H(F(T,), F(Tp)) = 0.
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Proof. Let € > 0. Because lim H(T,z,Tox) = 0 uniformly for z € X, it is

n—oo

possible to select ng € N such that

sup H(T,x, Tox) < (1 — k)e for all n > ny.
reX

By Proposition 4.2.10, we have H(F(T,,), F(Tp)) < ¢ for all n > nyg. |

Next, we extend Nadler’s fixed point theorem for non-self multivalued map-
pings in a metric space. First, we define a metrically convex metric space.

Definition 4.2.12 A metric space (X, d) is said to be metrically convex * if for
any x,y € X with x # y, there exists z € X, © # y # z such that

d(x,z) +d(z,y) = d(z,y).

We note that in such a space, each two points are the end points of at least
one metric segment. This fact immediately yields a very useful lemma.

Lemma 4.2.13 If C is a nonempty closed subset of a complete and metrically
convex metric space (X,d), then for any x € C, y ¢ C, there exists a point
z € 0C (the boundary of C) such that

d(z,z) +d(z,y) = d(z,y).

Now we are in a position to establish a fundamental result on the existence
of fixed points for non-self multivalued contraction mappings.

Theorem 4.2.14 (Assad and Kirk’s fixed point theorem) — Let (X, d) be
a complete and metrically convex metric space, C' a nonempty closed subset of
X, and T : C — CB(X) a contraction mapping, i.e.,

H(Txz,Ty) < kd(z,y) for all z,y € X,
where k € (0,1). If Tx C C for each x € OC, then T has a fized point in C.

Proof. We construct a sequence {p,} in C in the following way:

Let pg € C and p} € Tpo. If pj € C, let p; = p). Otherwise, select a point
p1 € OC such that
d(po, p1) + d(p1,py) = d(po, p})-

Thus, p; € C. By Remark 4.2.4, we may choose p, € Tpy such that
d(p', ps) < H(Tpo, Tp1) + k.
Now, if p, € C, let ph = po, otherwise, let p; € OC such that

d(p1,p2) + d(p2,p5) = d(p1,p5)-

Continuing in this manner, we obtain sequences {p, } and {p/, } such that for
n €N,

IThe concept of metric convexity was introduced by K. Menger in 1953.



4.2. Multivalued mappings 195

() pry1 € Tpn;
(i) d(Pli1,Pp) < H(Tpn, Tpn-1) + k",
where p, | = png1, if p,,; € C or
(P Prs1) + A(Prt1 Pyr) = dpn, Pug) i plyy ¢ C and poys € 0C. (4.11)
Now, set
P: = {p;€{pn}:pi=p;ieN}
Q: = {pi€{pn}:pi#pi €N}
Observe that if p; € @ for some 4, then p; 1 € P be the boundary condition.

We wish to estimate the distance d(py,, pn+1) for n > 2. For this, we consider
three cases:

Case I. p, € P and p,41 € P.
In this case, we have

H(Tpn, Tpn—l) + k"
kd(pn,pn-1) + k™.

d(pna pn+1) = d(p/nv p/n—i-l)

IA A

Case 1I. p, € P and p41 € Q.
By (4.11), we have

d(pmp/n-u) = d(plnvp;b+1)
H(Tpp-1,Tp,) + k"
kd(pnflvpn) + kn

d(Pmpn+1)

IAN A IA

Case I1I. p, € Q and p,4+1 € P.

By the above observation, two consecutive terms of {p,} cannot be in @,
hence p,—1 € P and p,_; = p,—1. Using this fact, we obtain

d(pn;pnt1) < d(pn,p),) + d(py, Prt1)
= d(pn,p'n) + AP, Pry1)
< d(pn,p,) + H(Tpy—1,Tps) + k"
< d(pnapn) + O‘d(pn 1,pn) + K"
< d(pn-1,p,) + k"
= d(pp_1,p,) + k"
< H(Tpp-2,Tpp—1) + k"t + k"
< kd(pp_o,pn_1) + "1+ k"

The only other possibility, p, € @, pni1 € @ cannot occur. Thus, for n > 2,
we have

kd(pn7pn71> + kna or

d(pn, Pnt1) = { ko py) K k=, (4.12)
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Set § := k=2 max{d(po, p1),d(p1,p2)}. We now prove that
d(pn,Pny1) < K20 +n), neN. (4.13)

Forn=1
d(py,p2) < kY2(6 4 1).

For n = 2, we use (4.12) and taking each case separately, we obtain

kd(py,p2) + K
kkY2(6 41) + k2
k(0 + 2);
kd(po,p1) + k* + k
k(K25 4+ k4 1)
k(8 +2).

d(p2,p3)

d(p2,p3)

(AN VAR VAN VAN VAN VAN

Now assume that (4.13) holds for 1 < n < m. Observe that for m > 2

kd(pms pmt1) + k™
k[E™/2(5 +m)] + k™!
k(m+1)/2(5+m) +k(m+1)/2k(m+1)/2

EmAD2(5 4 (m 4 1)]

d(Pm+1 , Pm+2)

INIA NN

or

kd(pm—lapm) + km+1 + E™

E[EM=D/2(5 4+ m — 1)) + E™H 4 k™

K D/2(§ 4 — 1) 4 fmD/2g M D/2 | m+1)/2(m=1)/2
k(m+1)/2(5 +m— 1) + k(m+1)/2 + k(m+1)/2

EmHED2(5 4om 1),

d(Pm+1,Pm+2)

(VAN VAN VAR VAN

and it follows that (4.13) is true for all n € N. Using (4.13) we obtain

A(pp,pm) < 6> (K2 4+ i), n>m> 1

This means that {p, } is a Cauchy sequence. Because C is closed, {p, } converges
to a point z € C. By our choice of {p,}, there exists a subsequence {p,,} of
{pn} such that p,, € P, ie, p,, =p),,, i=12,---. Note p}, € Tpy,_1 for
i € N by (i) and p,,—1 — 2z imply that Tp,,,_1 — Tz as i — oo in the Hausdorff
metric H. Because

d(pn,;, Tz) < H(Tpn,-1,Tz) — 0 as i — oo,

it follows that d(z,Tz) = 0. As Tz is closed, z € Tz. |
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4.3 Convexity structure and fixed points

Let C be a nonempty subset of a metric space X and T : C — C a mapping.
Then a sequence {z,} in C is said to be an approzimating fized point sequence
(in short AFPS) of T'if lim d(zp, Tz,) =0.

n—oo

We have seen in the Banach contraction principle that every contraction
mapping has an approximating fixed point sequence in a metric space. In fact,
the Picard iterative sequence (11 = Tz, n € N) is an approximating fixed
point sequence of the contraction mapping 7.

The following example shows that the Picard iterative sequence is not
necessarily an approximating fixed point sequence of nonexpansive mappings.

Example 4.3.1 Let X =R and T : R — R a mapping defined by
Tx = —x for all z € R.

Note that T is nonexpansive with F(T) = {0}. However for x¢ > 0, the iterative
sequence of the Picard iteration process is

Tpi1 =Tz, = (—=1)"x9, n € Np.
Hence d(x,, Txy,) = |(—=1)""1 — (=1)"|x¢ = 229 » 0 as n — oco.

The following Proposition 4.3.9 shows that the convexity structure has an
important role in the existence of AFPS for nonexpansive mappings. We define
convexity structure in a metric space.

Definition 4.3.2 Let (X,d) be a metric space. A continuous mapping W :
X x X x [0,1] — X is said to be a convex structure* on X, if for all v,y € X
and X € [0,1] the following condition is satisfied:

d(u, W(z,y; X)) < Md(u, z) + (1 — N)d(u,y) for allu € X. (4.14)
A metric space X with convex structure is called a convex metric space.

A subset C of a convex metric space X is said to be conver if W(x,y; \) € C
for all z,y € C and A € [0,1]. A convex metric space X is said to have property
(B) if

AW (u, z; X)), W(u,y; \) = (1 — Nd(z,y) for all u,z,y € X and A € (0,1).

Example 4.3.3 A normed space and each of its conver subsets are convex
metric spaces with convexity structure W (z,y; \) = Ax + (1 — N)y.

2The convexity structure in a metric space was introduced by W. Takahashi in 1970.
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Example 4.3.4 Let X be a linear space that is also a metric space with the
following properties:

(i) d(z,y) = d(x — y,0) for all x,y € X;
(i) d(Az + (1 — N)y,0) < Ad(z,0) + (1 — AN)d(y,0) for all x,y € X and
A €0,1].

Then X is a convexr metric space.
Example 4.3.5 A Fréchet space is not necessarily a convex metric space.
The following propositions are very useful in various applications.

Proposition 4.3.6 Let {C, : « € A} be a family of convex subsets of a convex
metric space X. Then NaepCly is also a conver subset of X.

Proposition 4.3.7 The open balls B.(x) and the closed balls B,.[x] in a convex
metric space X are conver subsets of X.

Proof. For y,z € B,(x) and A € [0,1], there exists W (y, z; A\) € X. Because X
is a convex metric space,

< M+(Q-=-XNr=r

Therefore, W (y, z; ) € B,(z). Similarly, B,[z] is a convex subset of X. 1
Proposition 4.3.8 Let X be a convex metric space. Then

d(z,y) = d(x, W(x,y; \)) + d(W (z,y; A),y) for allx,y € X and X € [0, 1].
Proof. Because X is a convex metric space, we obtain

d(z,y) d(x, W(z,y; A)) + d(W(z,y;A), y)

Ad(z,x) + (1 = Nd(z,y) + Ad(z,y) + (1 = A)d(y,y)
d(z,y)
for all z,y € X and A € [0, 1]. Therefore,

IAIA

d(z,y) = d(z, W(z,y; A) + d(W(z,y; ), y) for all z,y € X and A € [0, 1]. |

We now apply the convexity structure defined in Definition 4.3.2 to obtain
AFPS for nonexpansive mappings in a metric space. Note, similar results are
also discussed in Chapter 5.

Proposition 4.3.9 Let X be a complete convex metric space with property (B),
C' a nonempty closed convex subset of X, and T : C — C a nonezrpansive
mapping. Then we have the following:

(a) For u € C and t € (0,1), there exists exactly one point x; € C' such that
xy = W(u,Txy; 1 —t)

(b) If C is bounded, then d(x¢,Tx¢) — 0 ast — 1, i.e., T has an AFPS.
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Proof. (a) For ¢t € (0,1), consider the mapping T; : C' — C defined by
Tix = W(u,Tz;1 —t).
By property (B), we have
d(Tyx, Tyy) = td(Tx, Ty) < td(x,y) for all z,y € C.

By the Banach contraction principle, 7; has exactly one fixed point x; in C.
Therefore,
xp = Wiu, Tz 1 —t).

(b) By boundedness of C, we get
d(xe, Tay) = d(Tay, W(u,Tx; 1 —t))
(1 — )d(Tzr,u) < (1 — 1) diam(C) —0ast —1. |

IN

Applying Proposition 4.3.9, we have

Theorem 4.3.10 Let X be a complete conver metric space X with property
(B), C a nonempty compact convex subset of X, and T : C — C a nonexpansive
mapping. Then T has a fized point in C.

Proof. By Proposition 4.3.9, there exists a sequence {z,} in C such that

lim d(x,,Tz,) = 0. (4.15)

n—0oo

Because C' is compact, there exists a subsequence {z,,} of {z,} such that
T, — v € C. Hence from (4.15), we have v = Tv.
In Theorem 4.3.14, we will see that compactness can be dropped if C' has

normal structure. To see this, we extend the notion of normal structure in
metric space X.

For C C X, we denote the following, which will be used throughout the
remainder of this chapter:

r.(C) = sup{d(z,y):yeC}, z€C,
r(C) = inf{r,(C):z e C},
Ze = {zeC:r(C)=7r(C)}.

A point ¢ € C' is said to be a diametral point of C if
sup{d(xo,y) : y € C} = diam(C).

A convex metric space X is said to have normal structure if for each closed
convex bounded subset C' of X that contains at least two points, there exists
xg € C that is not a diametral point of C'.
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Example 4.3.11 Every compact convex metric space has normal structure.

A convex metric space X is said to have property (C) if every bounded
decreasing net of nonempty closed convex subsets of X has a nonempty inter-
section. By Smulian’s theorem, every weakly compact convex subset of a Banach
space has property (C).

Using property (C), we have

Proposition 4.3.12 If a convex metric space X has property (C), then Z¢ is
nonempty, closed, and convex.

Proof. Let Cp(z) = {y € C : d(z,y) < r(C)+ 1/n} for n € N and z € X.
It is easily seen that the sets C,, = NyexCyr(x) form a decreasing sequence of
nonempty closed convex sets, and hence N2, C), is nonempty closed convex by

property (C). Because Z¢c = N3, C,,, the proof is complete.

Proposition 4.3.13 Let C be a nonempty compact subset of a convex metric
space X and let D be the least closed convex set containing C. If diam(C) > 0,
then there exists an element xg € D such that sup{d(z,z¢) : x € C'} < diam(C).

Proof. Because C is compact, we may find x1,x2 € C such that d(z1,z2) =
diam(C). Let Cy C C be maximal so that Cy D {z1,z2} and d(z,y) = 0
or diam(C) for all z,y € Cy. It is easy to see that Cy is finite. Let Cy =

{x1,22, -+ ,x,}. Because X is a convex metric space, we can define
1
y1 = W(xy,xo; 5)’
1
y2 = Wiz, 5),
1
Yn—2 = W(xnfla Yn—3; m)a
1
Yn—1 = W(In, Yn—2; E) = u.

Because C' is compact, we can find yg € C such that
d(yo,u) = sup{d(z,u) : x € C}.

From (4.14), we obtain

1 n—1
d(yo,u) < -~ d(yo, Tn) + — d(yo, Yn—2)

1 n—1 1 n—2

< —d n —d sy n— —d y In—

< Lty + (g dlmn) + 2 ) )
1 1 n—2

= I d(ymxn) + n d(y(laxnfl) + n d(yo, yn73)

< 1 Zn:d( ) < diam(C)

= - Yo, Tx) < diam(C).

k=1
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Therefore, if d(yo,u) = diam(C'), then we must have d(yo, zr) = diam(C) > 0
for all k = 1,2,--- ,n. Hence yy € Cy by definition of Cy. But, then we must
have yo = xj, for some k = 1,2,--- ,n. This is a contradiction. Therefore,

sup{d(z,u) : € C} = d(yo, u) < diam(C). |

A closed convex subset C' of a convex metric space X is said to have the fized
point property for nonexpansive mappings if every nonexpansive T': C' — C' has
a fixed point.

We now prove that every closed convex subset of a convex metric space has
fixed point property for nonexpansive mappings under normal structure.

Theorem 4.3.14 Let X be a convex metric space with property (C). Let C be
a nonempty closed convex bounded subset of X with normal structure and T a
nonexpansive mapping from C into itself. Then T has a fixed point in C.

Proof. Let F be the family of all nonempty closed convex subsets of C, each of
which is mapped into itself by 7. By property (C) and Zorn’s lemma, F has a
minimal element C. We show that C consists of a single point. Let x € Z¢,.
Then

d(Tz,Ty) < d(x,y) <1y (Co) for all y € Cp.

Hence T'(Co) is contained in the ball B = B, [T'z]. Because T(Co N B) C
Co N B, the minimality of Cy implies that Cy C B. Hence rr,(Cy) < 7(Cp).
Because r(Cp) < r,(Cy) for all & € Cy, we have rr,(Co) = r(Cp). Hence
Tx € Z¢, and T(Z2¢,) C Z¢,. By Proposition 4.3.12, Z¢, € F. If z,w € Z¢,,
then d(z,w) < r,(Cy) = r(Cp). Hence, by normal structure,

6(Z¢,) < r(Co) < 6(Co).

Because this contradicts the minimality of Cy, diam(Cy) = 0 and Cy consists

of a single point. I

4.4 Normal structure coefficient and fixed points

In this section, we discuss another convexity structure on metric space and the
existence of fixed points of uniformly L-Lipschitzian mappings in a metric space
with uniformly normal structure.

Let F(X) denote a nonempty family of subsets of a metric space (X, d).
We say that F(X) defines a convezxity structure on X if F(X) is stable by
intersection and that F(X) has property (R) if any decreasing sequence {C),}
of nonempty closed bounded subsets of X with C,, € F(X) has nonvoid inter-
section.

A subset of X is said to be admissible if it is an intersection of closed balls.
We denote by A(X) the family of all admissible subsets of X. It is obvious that
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A(X) defines a convexity structure on X. In this section, any other convexity
structure F(X) on X is always assumed to contain A(X).

For a bounded subset C of X, we define the admissible hull of C', denoted
by ad(C), as the intersection of all those admissible subsets of X that contain
C, ie.,

ad(C)=n{B:C C B C X with B admissible}.

A basic property of admissible hull is given in the following proposition.

Proposition 4.4.1 Let C be a bounded subset of a metric space X and x € X.
Then
r(ad(C)) = r(C).

Proof. Suppose r = r,(ad(C)) > ry(C). Then C C Bg[z] for any 7 with
r:(C) <7 < r. It follows that ad(C) C Br[z]. Hence

r(ad(C)) = sup{d(z,y) : y € ad(C)} <T <1,
a contradiction. I

We introduce normal structure and uniformly normal structure with respect
to convexity structure F(X) in a metric space X, respectively.

Definition 4.4.2 A metric space (X, d) is said to have normal structure if there
exists a convexity structure F(X) such that r(C) < diam(C) for all C € F(X)
that is bounded and consists of more than one point. We say that F(X) is
normal.

Definition 4.4.3 A metric space (X,d) is said to have uniformly normal struc-
ture if there exists a convezity structure F(X) such that r(C) < a-diam(C) for
some constant o € (0,1) and for all C € F(X) that is bounded and consists of
more than one point. We also say that F(X) is uniformly normal.

We now define the normal structure coefficient of X (with respect to a given
convexity structure F(X)):
The number N (X) is said to be the normal structure coefficient if

tin(©)),

N(X) inf{ RO

where the infimum is taken over all bounded C' € F(X) with diam(C) > 0.
It is easy to see that X has uniformly normal structure if and only if N(X) > 1.

The following theorem shows that every convexity structure with uniformly
normal structure has property (R).

Theorem 4.4.4 Let X be a complete metric space with a convexity structure
F(X) that is uniformly normal. Let {C,} be a decreasing sequence of nonempty
bounded subsets of X with C,, € F(X). Then N22,C,, # 0.
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Proof. Without loss of generality, we may assume that diam(C,) > 0 for all
n € N. Let  be a real number with N(X) < n < 1, where N(X) = N(X)~L.
Define a sequence {z, } in X as follows:

For arbitrary x,,1 € Cp,n € N, select z,, 1 € ad({Zm k—1}m>n) such that
sup{d(zn i, ) : © € ad({Tm k-1 }m>n) < N diam(ad{Tm k—1}m>n)-
Set Ay, i = ad({Tm k}m>n). Observe that
Anr €O, foralln, k€N

and for m > n,

d(-rn,kaxm,k) < SU»p{d(xn,kax) 1T e An,k—l}
< diam(Ay 1)
S n diam({xiwk,l}izl).
For k > 2, we have
diem({znr}) < ndiam({znr-1})
< 7P diam({zn x—2})
< nk_l diam({xn,1})
< "1 diam(Cy).

Now we consider a subsequence {z,} of {x, x}. Then {z, ,} is Cauchy,
because
A(Znm, Tmom) < nnl diam(C4) for m > n.

Therefore, there exists an z € N ;C,, such that {x, ,} converges to =, i.e.,

N, Cy, # 0. 1

Corollary 4.4.5 Let X be a complete bounded metric space and F(X) a con-
vexity structure of X with uniformly normal structure. Then F(X) has property

(R).
We now introduce the property (P) for metric spaces.

Definition 4.4.6 A metric space (X, d) is said to have property (P) if given any
two bounded sequences {x,} and {z,} in X, one can find some z € N3 ad({z; :
Jj >n}) such that

limsup d(z, z,,) < limsup limsup d(z;, ,,).
n— o0 j—oo m—oo
Remark 4.4.7 If X has property (R), then N3 ad({z; : j > n}) # 0. Also, if
X is a weakly compact convex subset of a normed space, then admissible hulls
are closed conver and N5 ad{z; : j > n} # 0 by weak compactness of X, and
that X possesses property (P) follows directly from the w-lsc of the function
lim sup ||z, — z||.

n—oo
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We establish the following key result that can be viewed as the metric space
formulation of Theorem 3.4.20.

Theorem 4.4.8 Let (X,d) be a complete bounded metric space with both pro-
perty (P) and uniformly normal structure. Let N(X) be the normal structure
coefficient with respect to the given convezity structure F(X). Then for any
sequence {x,} in X and any constant o > N(X), there exists a point z € X
satisfying the properties:

(a) d(z,y) < limsupd(z,,y) for ally € X,

n—oo
(b) imsupd(z, z,) < a diam({z,}).
Proof. (a) For each n € N, let A, = ad({z; : j > n}). Then {4,} is a
decreasing sequence of admissible subsets of X and hence A := NA, # 0 by
Corollary 4.4.5. We observe by Proposition 4.4.1 that

diam(A,) = sup{rz(4,):z € A,}

= sup supd(zx,z;)
TEA, j>n

= sup sup d(z,z;) = supry; (Ay,)
Jj>nz€A, jzn

= supsupd(z;,z;)
j>ni>n

sup{d(z;,x;) : 1,5 € N} = diam({z,}).

IA

For any z € A and any y € X, we have

sup d(y,zj) = ry(An) > 1y (A) > d(y, 2).
Jj=zn

It follows that
d(y, z) < limsup d(y, z,,).

n—oo

(b) Without loss of generality, we may assume that diam({z,}) > 0. Then
for &« > N(X), we choose £ > 0 so small that

N(X)diam({z,}) + ¢ < a diam({z,}).
By definition, one can find a z, € A, such that

Tz, (An) T(An) +e

ZST(X) diam(A,) +¢

N(X)diam({z,}) + ¢
a diam({x,}).

ININ N A

Hence for each i > 1,

limsup d(z;, ©,) < a diam({z;}).

m—00



4.4. Normal structure coefficient and fixed points 205

Now property (P) yields a point z € N2 ad({z, : n > i}) such that

limsup d(z, z,,) < limsup lim sup d(z;, ).

m— 00 71— 00 m— o0

Thus, z € A and satisfies

limsupd(z, ;) < a diam({z;}). |

m—0Q

We now present the existence theorem for uniformly L-Lipschitzian map-
pings in a metric space.

Theorem 4.4.9 Let (X, d) be a complete bounded metric space with both pro-
perty (P) and uniformly normal structure and T : X — X a uniformly
L-Lipschitzian mapping with L < N(X)~Y2. Then T has a fized point in X .
Proof. Choose a constant a, 1 > o > N(X), such that L < o~ /2. Let 75 € X.
By Theorem 4.4.8, we can inductively construct a sequence {z,,}5°_; in X:

for each integer m > 0,

(a) imsup d(2pi1, T'Tm) < a diam({T z,});

1—00
(b) d(xmi1,y) < limsupd(T zp,,y) for all y € X.
Set 7y, := limsup d(Z41, Ti:cm) and h := aL? < 1. Note for each i > j > 0,

1—00

AT 20, T ) Ld(2m, T I 2,,)

Llimsupd(T"p—1,T" 7z,)  (by (b))

n—oo

IAIA

IN

L2 limsup d(T™ Ty —1, Trm)
n—oo

2
L T'm—1-

IN

Observe that

lim sup d(@ 11, T
1—00

a diam({T 'z, })

al?rp_1 = hrm_1

T'm

IAIA

IN

m
h To-

Hence for each integer i > 0,

d(xm—i-lvxm) S d(an-l-hTixm) + d(xmaTian)
< d(@my1, T'a) +limsup d(To zp 1, Ty,
Jj—00
< d(@my1, T'a) + Llimsup d(TV 2,1, )
Jj—00
S d($m+17 szm) + LTmfly



206 4. Existence Theorems in Metric Spaces

which implies that
d(Tmi1;Tm) < T+ L1 < (K™ + LA™ Hrg.

This implies that {z,,} is Cauchy. Let lim x,, =v € X. Observe that

m—0o0

d(v, Tv) d(v, Tma1) + d(Tmy1, Tixm) + d(Tixm, Tv)

<
< d(z,xmyr) + d(@pyr, Tay) + Ld(T " 2y, v)
< dv,zmir) F d(@mi1, T m) + LA(T 2, 2mg1) + Ld(2m11,0),

which implies that

d(v,Tv) < (14 L)d(v,m+1) + (1 + L)ry, — 0 as m — oo.

Therefore, v is a fixed point of T'. I

4.5 Lifschitz’s coefficient and fixed points

In this section, we give an existence theorem concerning uniformly
L-Lipschitzian mappings in a metric space.

First, we define the Lifschitz’s coeflicient of a metric space:

Let (X,d) be a metric space. Then the Lifschitz’s coefficient x(X) is a
number defined by

k(X) = sup{8>0:3 a>1such that for all z,y € X, for all r > 0,
[d(z,y) > r =3 z € X such thatB,.[z] N Bg,[y] C B,[#]]}.

It is clear that x(X) > 1 for any metric space X. For a strictly convex
Banach space X, x(X) > 1 and for a Hilbert space H, x(H) = /2.

We are now in a position to prove a fundamental existence theorem for
uniformly L-Lipschitzian mappings in a metric space with Lifschitz’s coefficient
K(X).

Theorem 4.5.1 Let (X, d) be a bounded complete metric space andT : X — X
a uniformly L-Lipschitzian mapping with L < k(X). Then T has a fixed point
mn X.

Proof. If x(X) = 1, then T is contraction and hence T has a unique fixed
point. So, suppose x(X) > 1. For b € (L, k(X)), there exists a > 1 such that

YVu,v€ X, r>0with d(z,y) >r = 3z € X : Bp.[u] N Bg,[v] C Bylz]. (4.16)
For any x € X, let

r(z) = inf{R > 0: there exists y € X such that limsupd(T"z,y) < R}.

n—oo
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Observe that r is a lower semicontinuous and r(z) = 0 implies © = T'z.

Take A € (0,1) such that v = min{Aa, Ab/L} > 1. We now show that there
exists a sequence {y,} in X that satisfies the following:

(Ym+1) < Ar(ym) and d(Ym, Ym+1) < (A +9)r(ym) for all m € Ng.  (4.17)

Indeed, consider an arbitrary point yg € X and assume that yo,vy1, -, Ym
are given. We now construct ym,+1. I r(ym) = 0, then ypmi1 = ym- Hr(ym) > 0,
then for a number Ar(y,,), there exists n € N such that

d(ymanym) > )‘r<y7n)'

From the definition of r(y, ), there exists € X such that

limsup d(ym, T"x) < 1(Ym) < Y7 (Ym).

n—oo

Hence for i > j 4 ) o
A(T'@, Thy) < L d(T" 72, ),

which implies that

limsupd(T'z, Ty,,) < L limsupd(T* 7z, y,) < Ly r(m).

Because
By [ym] 0 BLW(ym)[Tnym] - Ba)\T(ym)[ym] N Bb}\T(ym)[Tnym] =C,
the set C is contained in a closed ball centered at w with radius Ar(y,,) (Condi-

tion (4.16)). Thus, limsup d(T"z,w) < A\r(ym). Take w = Y11, and it follows

n—oo

from above that {y,,} satisfies (4.17).
Note
(Yma1) < A (ym) < -+ < XN e(y) — 0 as m — oo
and

AYms Ym+1) < A+ 9)7(Ym) — 0 as m — oo.

Hence {y.,,} converges to v € M. But because r(v) = 0, v is a fixed point
of T.
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Exercises

4.1 Let X be a complete metric space and T : X — X a mapping such that
T™ is contraction for some m € N. Show that T has a unique fixed point.

4.2 Let (X, d) be a metric space and T : X — X a mapping. T is said to be
a Zamfirescu mapping if there exist the real number a, b, and c¢ satisfying
0<a<1,0<b,c<1/2such that for each pair z,y in X, at least one of
the following is true:

(Zl) d(TLL',Ty) < ad(gc, y)v
(Z2) d(T'x, Ty) < bld(x, T'x) + d(y, Ty)],
(Z3) d(Tz,Ty) < cld(z,Ty) + d(y, Tz)].

If (X, d) is a complete metric space and T : X — X a Zamfirescu mapping,
show that T has a unique fixed point z € X and for each z € X, {T"x}
converges to z.

4.3 Let T be a mapping from a complete metric space X into itself satisfying
the condition:

d(Tz,Ty) < ad(z,y) + bld(z, Tz) + d(y, Ty)] + c[d(y, Tx) + d(z, Ty)]

for all z,y € X, where a,b,c are nonnegative real numbers such that
a4+ 2b+ 2c < 1. Show that T" has a unique fixed point z € X and for each
x € X,{T"z} converges to z.

4.4 Let T be a mapping from a complete metric space into itself. Assume that
for each € > 0, there exists § > 0 such that

d(z,Tz) < 6 = T(Bc[z]) C B:[z].

If d(T"x, T"*'z) — 0 for some x € X, show that the sequence {T"z}
converges to z, which is a fixed point of T.
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4.5 Let X be a complete metric space and T : X — X an expansion mapping,
i.e., there exists constant £ > 1 such that

d(Tz,Ty) > kd(x,y) for all z,y € X.

Assume that T'(X) = X. Show that
(a) T is one to one,

(b) T has a unique fixed point z € X with T"x — z as n — oo for some
zc X.

4.6 Let (X,d) be a complete metric space and T : X — CB(X) a mapping.

If « is a function from (0, 00) to [0,1) such that limsup a(r) < ¢ for every
r—tt
t € [0,00) and if
H(Tz,Ty) < a(d(z,y))d(z,y)

for each z,y € X, show that T has a fixed point in X.



Chapter 5

Existence Theorems in
Banach Spaces

This chapter is devoted to a demiclosed principle and existence of fixed points
of Lipschitzian and non-Lipschitzian mappings in Banach spaces.

5.1 Non-self contraction mappings

In Chapter 4, we studied fixed point theorems for single-valued and multivalued
contraction mappings in metric spaces. In this section, we discuss fixed point
theorems concerning non-self contraction mappings in Banach spaces.

Let C be a nonempty subset of a Banach space X. For z € C, the inward
set of x relative to C' is the set

Io(z)={z+t(ly—x):ye Candt >0}
and the outward set of x relative to C' is the set

Oc(x)={z—tly—x):y € C and t > 0}.

Let Io(z) and O¢(x) denote closures of Io(z) and O¢(x), respectively.

Set

d(xz + hy,C)

- =0}, zeC.

I = € X : liminf
cl@)=z+{y im in

Note that for a convex set C, we have

(i) Ie(z) = Ic(x),
(i) C C Io ().

We now define weakly inward and weakly outward mappings:

R.P. Agarwal et al., Fized Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3_5,
(© Springer Science+Business Media, LLC, 2009
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Let C be a nonempty subset of a Banach space X and T': C — X a mapping.
Then T is said to be a

(i) inward mapping if Tx € Io(x) for all x € C,

(i) weakly inward mapping if Tx € Ic(x) for all x € C,

(ili) weakly outward mapping if Tx € O¢(z) for all z € C.

Let us compare inwardness and weak inwardness conditions with other condi-
tions. Set

(C1) Rothe’s condition: T(0C) C C;

C2) inwardness condition: Tz € I(x) for all x € C

(C2)
(C3) weak inwardness condition: Tz € I¢(z) for all € C;
(C4)

C4) the Leray-Schauder condition (if the interior int(C') of C' is nonempty):
there exists a z € int(C) such that

Tx—z# p(r—z) for all 2 €9C and p > 1.
These boundary conditions hold the implications:

(C1) = (C2) = (C3) = (C4).

The following proposition gives an equivalent formulation of the weakly
inwardness condition.

Proposition 5.1.1 Let C be a nonempty closed convexr subset of a Banach
space X. Then T : C — X is weakly inward if and only if

(L= )+ 1T, )
h—0t h

=0 foralzeC. (5.1)

Proof. Suppose that condition (5.1) holds. Fix x € C. For ¢ > 0, we may
assume ¢t € (0,1) and y € C such that

[(1—t)x +tTz —y| <d((1 —t)z +tTz,C) + te.
It follows that
[Tz —[(1—t e+t ]| <t7'd((1 — )z + tT2,0) +e.

It is easy to see that Tz € Io(z). Hence T is weakly inward.

Conversely, suppose that T is weakly inward, i.e., Tz € Io(x) for all z € C.
Hence for € > 0, there exists y € Io(z) such that

ly — Tzl <e.
Because C' is convex, there exists hg > 0 such that

(1 —h)x+ hy € C for 0 < h < hg.
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Hence for these h, we have
d((1 = h)x+ hTz,C) < (1= h)z+ ATz —{(1 - h)x + hy}]|
h - h
< e

Therefore, the condition (5.1) holds. |

The following result is an extension of the Banach contraction principle for
non-self contraction mappings.

Theorem 5.1.2 Let C be a nonempty closed convex subset of a Banach space
X and T : C — X a weakly inward contraction mapping. Then T has a unique
fixed point in C'.

Prof. Let k, 0 < k < 1 denote Lipschitz constant of T". Choose € > 0 so small
that £ < (1 —¢)/(1 + ¢). By Proposition 5.1.1, T satisfies the condition (5.1).
Hence for x € C with « # Tz, there exists h € (0,1) such that

d((1 —h)x + hTz,C) < he|lx — Tx||.
By the definition of distance, there exists y € C' such that
[(1 = h)z + hTz —y| < hellx — Tz|. (5.2)
By (5.2), we have

hellx = Tx|| > |lz—y—h(z—Tz)|
> ||z =yl = hllz — Tz,

which implies that
|z —y|l < (14 ¢e)h|jlz — Tz|. (5.3)

Using (5.2), we have

ly =Tyl < lly =11 = h)a+ ATa]l| + | (1 = W)z + hTw — Tal| + [ Ta — Ty
< hella = To|| + (1= h)lle — Ta| + Ko~y
= e =Tzl + (¢ = Dhlle — Taf| + Kz — y]|
1—
=l = Tal| + (e = Dhlle Tz + T [l — vl
1-¢

_ —_k —

(1=l
< Jo-Tal = (F=S—k)lo—yl. (o 5.3)

1+€ Y- Y .

If  # Tz, x € C, denote y € C as above by f(x), where f is a self-mapping on
C. Then by putting

-1
1—¢
= —k -T
o) = (155 - ) llo-Tal,
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¢ : C — R* is a continuous function and

[z = fal < p(x) = o(fz). (5-4)

By Caristi’s theorem, f has a fixed point, which contradicts the strict inequality

5.4). |

We now turn our attention to study fixed points of multivalued mappings in
Banach spaces.

Let C' be a nonempty subset of a Banach space X. We say that a mapping
T of C into the family of nonempty subsets of X is weakly inward if Tz C Io(x)
for each € C. Let F(X) denote the family of nonempty closed subsets of X
and T : C — F(X) a multivalued mapping. Given z € C and a > 1, let T, (z)
denote the set {z € Tz : || — z|| < a d(x, Tx)}.

Theorem 5.1.3 Let C be a nonempty closed convex subset of a Banach space X
and T : C — F(X) an upper semicontinuous mapping satisfying the conditions:

(a) For each x € C, there exists 6 = 6(x) > 0 such that
y € Bslx] N C = d(y,Ty) < d(y,Tx) + kllz -y,

where k € (0,1).
(b) Ty(z) N Ic(z) # O for each x € C.
Then T has a fized point in C.

Proof. Suppose, for contradiction, that 7" has no fixed point. We may assume
that d(x,Tz) > 0 for each z € C. Select € > 0 such that k < (1 —¢)/(1 + ¢).
Given z € C, condition (b) implies the existence of an element z € T} (z)NIc(x),
and by Proposition 3.1.11, there exists h € (0, 1) such that

htd((1 — h)x + hz,0) < & d(x,Tz). (5.5)

Set Z := (1 — h)z + hz. Observe that ||Z — z|| = h||z — z||, and moreover we may
suppose h has been chosen so small that Z € Bj/s[z] (where § = 6(x) is from
condition (a)). By (5.5), there exists y € C, y # z such that

1Z —y| < he d(z,Tx). (5.6)

Hence

A

lz —yll/IZ—=l < [lz—zl+Zz-yll/lIz -
= 1+ [z—yl/lz <

1+ |z = yll/(hd(z,Tx))

1+e,

ANVAN

which implies that

A+e) o=yl <[z - ]| (5.7)
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Because Z € Bsz[], it follows from (5.7) that y € Bs[z] and thus

dly, Ty) < d(y,Tx)+kllz -yl
< lly =zl +dETz) + kllz -yl
Combining this with (5.6), (5.7), and using the definition of Z along with the
fact that z € Ty (x), we obtain
dly,Ty) < |y—z|+d(@Te)— ||z —Z|| + kllz — y||

< elle =zl +d(z,Tx) — |z — 2| + kl|lx — yl|.

= d(z,Tz) +klz —yl| - (1 —¢)llz—Z

< d(@,T) +klz —yll = (1 - &)1 +e) 7 |z —y]

= d(z,Tz) + [k~ (1—€)(1+e) [z —yll.
Set n = —[k— (1 —¢)(1 +&)7']. Then n > 0 and

nllz —yll < d(z, Tx) — d(y, Ty).

We now define g : C — C by g(x) = y with y determined as above, and let
¢(z) = n~1d(z, Tz). Proposition 4.2.6 implies that ¢ is lower semicontinuous,
so Caristi’s theorem implies the existence of an 2y € C such that zy = g(z).
But g(x) = y # « for all z € C' by definition, and our assumption that 7" has

no fixed points is contradicted. I

The following example shows that condition (b) in Theorem 5.1.3 cannot be
altered to Tz N Ic(z) # 0.

Example 5.1.4 Let X =R and C = [0,1]. Define T : C — K(X) by Tz =
{=1,2} for allx € C. Then T is a constant and

[0,00) if =0,
IC(I> = R Zf T < (07 )7
(—o0,1] if z=1

Therefore, Tx N Ic(x) # 0 for all x € C, but T has no fized point in C.

Theorem 5.1.5 Let C be a nonempty closed convex subset of a Banach space
X and T : C — F(X) an upper semicontinuous mapping that satisfies the
conditions:

(a) For each x € C, there exists 6 = 0(x) > 0 such that
y € Bslx] NC = d(y,Ty) < d(y,Tx) + kl|z -y,

where k € (0,1).

(") Corresponding with each x € C, there exist constants o = a(x) > 1, p =
u(x) € (0,1) such that

(1 —p)x+ puTy(z) CC.
Then T has a fized point in C.
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Proof. Suppose, for contradiction, that 7" has no fixed point. Select &’ € (k, 1).
Fix x € C, let & = «a(z), and choose p so that p < min{u(z),d(x)} and
ap d(z,Tz) < §(x). Then
o = yll > g dz, T2) for all y € (1 — )z + pTa(a).

Thus, if £ € (1,a) is chosen so that £ — 1 < u(k’ — k), we obtain

(€—1) d(w, Tx) < (W — k)llz — |l for all y € (1 — )z + pTu(z)  (5.8)
Now fix z € T¢(z) and let y = (1 — p)x + pz. By (5.8), we have

klle —yll < K'llz =yl — (£ = 1) d(z,Tx)

and therefore (using (a) because p|lx — z|| < pé d(z, Tz) < §(x)):

d(y, Ty) < d(y,Tz)+kllz -yl
< ly =zl +kllz —y]
= |z -zl = [lz — yll + kllz — y||
< &d(x,Tx) — |z —yl| + K[|z —yl| = (€~ 1) d(z, Tz)

d(z, Tz) + (K = 1)||a —y]|.

Hence
e =yl < (1= &) d(x, Tx) — d(y, Ty)]

and the proof is completed as in Theorem 5.1.3 by taking g(z') = y and p(z) =
1 - &) (e, Tz). |

‘We now derive some existence theorems from Theorems 5.1.3 and 5.1.5.

Theorem 5.1.6 Let C be a nonempty closed convex subset of a Banach space
X and T : C — CB(X) a multivalued contraction mapping that satisfies either
condition (b) or condition (b'). Then T has a fized point in C.

Proof. It is easy to see that T is automatically upper semicontinuous. Because

d(y,Ty) < d(y,Tz)+ H(Tz,Ty) for all z,y € C,

it follows that T satisfies condition (a). |

Theorem 5.1.7 Let C be a nonempty closed convexr subset of a Banach space
X and T : C — K(X) a multivalued contraction mapping for which Tx C
Io(z), x € C. Then T has a fized point in C.

Proof. Under the stated assumptions, condition (b) is automatically satisfied.

Hence the result follows from Theorem 5.1.6. I
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As a slightly different result, we have

Theorem 5.1.8 Let C be a nonempty closed convexr subset of a Banach space
X and T : C — CB(X) a contraction mapping. If for each x € C,

lim d((1 = h)x + hz,C)

=0 ung l €Tz,
Jm, . uniformly for z T

then T has a fized point.
Proof. Let k be the Lipschitz constant of T. Choose real numbers k' and ¢ such
that k <k <1,0<¢g<1and k' < (1—-¢q)/(1+q). Suppose, for contradiction,

that T has no fixed point, i.e., d(xz,Tz) > 0 for all z € C. For each x € C, take
€ > 0 such that

qd(z,Txz) — ed(z, Tz) > 0.

By assumption, there exists h € (0, 1) such that
d((1 = h)x + hz,C) < h(q — €)d(x,Tx) for all z € Tx.
Choose z € Tz such that
|z — 2| < d(xz, Tx) + hed(z, Tx). (5.9)
For such a z, take y € C such that
[(1—h)x+hz—y|| < h(q—e)d(z, Tx). (5.10)
Set w := (1 — h)xz + hz. From (5.10), we have

[w—yll < hig—e)d(z,Tx)

< hgl|lz — z| — hed(x, Tx)
= q|lw—z| — hed(x,Tz) (since h(z —z) = w — x)
< qflw -zl

and

lz = yll [l = w]| + [lw -y
[ = wll + gllw — ]|

(14 g)llz — wl|

VASVARVAN

Let ¢/ = [K'||x — y|| — H(Tz,Ty)]/2. Then, because T is contraction with
Lipschitz constant k and z # y by (5.10), we have ¢/ > 0. Choose u € Tz and
v € Ty satisfying

|lw—ul| < d(w,Tz) +&" and ||[u —v| < H(Tz,Ty) + €.
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Then we have

dy,Ty) < lly—|
< ly—wll 4+ flw —ull + flu—2
< |ly—w|+dw,Tz) +&" + H(Tz,Ty) + €
< ly—wll + lw =zl + &z -yl
= |ly—wll+llz =2 = hllz — 2| + ¥z -y
ly = wll + [z = 2|| = [[w — || + &[]z — y||
< gllw—z|| = he d(@,Tx) + ||z — 2| = |lw — 2| + ¥z -y
= (¢—Dlw—=a|+ |z 2| - he dz, Tz) + K[|z — y|
< Il eyl dn 7o) 4 Kyl Grom (59)

l—q
— de.70) - (LK )llo ol

= d(z,Tz) —rllz -yl

where r = [(1—¢)/(14¢)] — k¥'. Now for each z € C, denote y € C' as above by
f(x). Then

|z — f(2)|| < ¢(z) —o(f(x)) forallzeC, (5.11)

where ¢ : C' — [0, 00) is the continuous function defined by ¢(z) = r~td(x, Tz)
for all x € C. By Caristi’s fixed point theorem, there exists an xy € C such
that g = fxo. This contradicts the inequality (5.11). Therefore, T has a fixed

point. I

We now consider the existence of fixed points of multivalued contraction
mappings when the domain is not necessarily convex.

Let C' be a nonempty subset of a Banach space X. For given x € C' and
a € R, let Io(z,a) denote the set {z € X : 2z = x + Ay — ) for some y € C
and A > a}. Obviously, Ic(z) = Ic(x,0).

Theorem 5.1.9 Let C' be a nonempty closed subset of a Banach space X and
T:C — K(X) a contraction mapping satisfying the condition:

Tx C Io(x,1), zeC.
Then T has a fized point.

Proof. Suppose, for contradiction, that T" has no fixed point. Let k£ be the
Lipschitz constant of T'. Choose ¢ such that 0 < ¢ <1 and k < (1 —¢q)/(1+q).
Let x € C. Then there exists a point z € Tz such that

0<d(z,Tz) = ||z — 2|
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Because z € Tx C Io(x, 1), there exists a y,, € C and \,, > 1 such that

1
Iz = (x + An(yn —x))|| < — for allm e N.
n

If A\, = 1 for all sufficiently large n, then we define y = 2. Otherwise, there
exists a subsequence {\,,} of {\,} such that A,,, > 1. We choose N sufficiently
large number such that

1
Iz = (z + An(yn —2))ll < 5 < dallz 2]
and we define yy = y. Set h:=1/Ay and w := (1 — h)x + hz. Observe that

lw — || = Az — 2|

and

ie.,
[w =yl < qh [z - z]|.

It follows that

= yll [l —wll + [lw =y

[z — w[| + gh ||z — 2|
= (1+qg)lw—=z|.

Choosing u € Tx and v € Ty such that
Jow = ull = d(w, Tw) and ||u— vl < H(Tw, Ty),

we have that

Ay, Ty) < |ly -l
< Ny —wll + e —ull + =l
<y —wl +[lw =2l + H(Tz, Ty)
= lly = wll + 2= all - hlle — 2] + kllz ]
< ghlle =2l + o = =l = Al — =] + Hllz — ]
= (= Dlkw ol + lz — 2l + kllz ~ ]
< Ll —yl+ o= 2+ e — ol

q+1
= d(z,Tz) —rlz —yl|,

where r = [(1—¢q)/(1+¢q)] —k > 0.
We define the mapping f: C — C by f(z) =y for € C. Then

|z — fz|| < o(z) —p(fz) foralzeC, (5.12)
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where ¢ : C' — [0,00) is the continuous function defined by ¢(z) = r~'d(x, Tz)
for all x € C. By Caristi’s fixed point theorem, there exists an zy € C' such
that zg = fxg. This contradicts the inequality (5.12). Therefore, T has a fixed

point.

In the following theorem, we assume that each point z € C has a nearest
point in the set T'x.

Theorem 5.1.10 Let C' be a nonempty closed subset of a Banach space X and
T :C —2X\{0} a contraction with closed-values and satisfying the condition:

TrCx+{ANy—2x): A>1yeC} forallxecC.
Assume that each x € C has a nearest point in Tx. Then T has a fized point.

Proof. Without loss of generality, we may assume that

TrCzxz+{ANy—z): A>1yeC} forallzeC. (5.13)

Choose ¢ € (0,1) and € € (0, 1) such that k < ¢ < (1—¢)/(1+4¢). By assumption,
each x € C has a nearest point in Tz, then there exists z € Tx such that

|l — z|| = d(z, Tx).

Set z = f(z). Then f(x) € Tz and ||z — f(x)| = d(z,Tx). By (5.13), there
exists y, € C and A, > 1 such that

I/ (x) = (z + A\p(yn — x))|| — 0 as n — oo.

Suppose, for contradiction, that 7" has no fixed point. Then we have a sufficient
large natural number N such that

If(x) — (x+ An(yny — 2))|| < ed(z, Tx). (5.14)

Set

B 1 w = (1 - )\lN)x+ %f(:c) =1 —-h)z+ hf(z) and g(x) := yn.

By (5.14), we have
lyn —wll = llyn = (L = h)z + hf(z))| < ehd(z, Tz) = eh|jz — f(2)]|

Also
Jw—=f(@)| =1 =h)lz—fl@)]|=1-"h)dz,Tz).
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Observe that

d(yn,Tyn) lyn — wll + d(w, Tz) + H(Tz, Tyn)
lyn —wll + llw = f(@)] + kllz — ynll
lyn —wll + (1 = h)llz = f(2)]| + Ekllz —yn|
ehllz = f(@)| + (1 = h)[lz = f(@)[| + kllz — yn ||
(€ = Dhllz = f(@)ll + |z = F(@)I] + kllz — yn||
(€ = Dllw —zl| + [lz = F@)I| + kllz — yn||
= (e=Dlw -z +qllz —ynl
Fllz = f@)l = (¢ = k)llz —ynll. (5.15)

VAN VANR VAN VAN

By the choice of the integer N, we see that

ed(z,Tx) > |[f(z)—x—An(yn —2)|
> Avlyy =zl = [ f(x) — =z
= Avllyny — 2l — d(z, Tz),

which implies that

1+4+¢
lyx = 2l < <" d(z, Tz).
N
By the choice of ¢, we have
1+¢
Iy —all < D)
N
1 _
< hd(z,Tz) (since |w—z| = hd(z, Tx))
1—¢
= [w — ||
q

It follows from (5.15) that
dyn, Tyn) < ||z = f(@)| = (¢ = B)l|lz — ynl|.
Thus, we have
lz — g(z)]] < p(z) —(g(z)) forallx e C, (5.16)

where ¢ : C' — RT is the continuous function defined by p(z) = (¢—k)~td(z, Tx),
x € C. By Caristi’s theorem, g has a fixed point that contradicts the strict

inequality (5.16). Therefore, T has a fixed point in C'.

Theorem 5.1.11 Let C be a nonempty closed subset of a Banach space X and
T:C — F(X) a contraction. Assume that T is weakly inward on C and that
each x € C has a nearest point in Tx. Then T has a fixed point.

Proof. The proof is similar to the proof of Theorem 5.1.10. I
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5.2 Nonexpansive mappings

Let C be a nonempty subset of a normed space X and T': C — X a mapping.
Then T is said to be nonexpansive if

|Tx — Tyl < ||z —y| forall z,yeC.

Recall that a sequence {x,,} C C is an approximating fized point sequence of
Tif lim ||z, —Txzy| = 0.
n—oo

The approximating fixed point sequence has a fundamental role in the study
of fixed point theory of nonexpansive mappings. We begin with the existence
and basic properties of approximating fixed point sequences of nonexpansive
mappings.

Proposition 5.2.1 Let C be a nonempty closed convex subset of a Banach
space X and T : C — X a nonexpansive mapping that is weakly inward. Then
forue C andt € (0,1), there exists exactly one point xy € C' such that

e = (1 — t)u+ Tay.
If C is bounded, then xy — Txy — 0 ast — 1.
Proof. For t € (0,1), the mapping T} : C — X defined by
Tix=(1-tu+tle, zeC (5.17)

is a contraction with Lipschitz constant ¢. By Theorem 5.1.2, there exists exactly
one point z; € C such that

xy =Ty = (1 — )u + tTay.
If C is bounded, then
loy — Tay|| = (1 = t)||Ju — Txe|| < (1 —1t) diam(C) -0 as t — 1. |
As an immediate consequence of Proposition 5.2.1, we have

Corollary 5.2.2 Let C be a nonempty closed convex bounded subset of a Banach
space X and T : C — C' a nonexpansive mapping. Then there exists a sequence
{zn} in C such that lim ||z, — Tz,| = 0.

n—oo

Proof. For t € (0,1), the mapping T; : C — C defined by (5.17) is a contrac-
tion and it has exactly one fixed point z; in C. Now the result follows from

Proposition 5.2.1

It is clear from the proof of Corollary 5.2.2 that one does not need the
convexity of C'. Indeed, this assumption can be replaced by the assumption
that C is star-shaped, i.e., there exists u € C such that (1 —t)u+tz € C for all
x € C and t € [0,1]. The point u is called star-center of C'.
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There is another way to obtain an approximating fixed point sequence of
nonexpansive mappings defined in a nonconvex domain.

Before proving our next theorem, we need the following lemma:

Lemma 5.2.3 Let {a,} and {b,} be two sequences of a normed space X.
If there is a sequence {t,} of real numbers satisfying the conditions:

(i) 0<t, <t<land) " t,=o00,

(i1) any1 = (1 — tp)an + tpby for alln € N,

(i11) lim |la,| = d,

(i) limsup ||b,|| < d and {37, t;b;} is bounded,
then d = 0.

Proof. Suppose, for contradiction, that d > 0. It follows from (iv) that
{Somm =1 b} is bounded for all n and m. Set M = sup{|| 7™ b

=N =N

n,m € N}. Choose a number N such that N > max{2M/d,1}. We can choose
a positive € such that 1 — 2¢ exp((N + 1)/(1 —t)) > 1/2. It follows from

(7) that there exists a natural k such that N < Ele t; < N + 1. Because
lim |la,|| = d, limsup||b,| < d and ¢ is independent of n, without loss of
n—oo n— o0

generality we may assume that for all n € N,

d(1—¢) < |lan|| <d(l+4+¢) and ||b,] < d(1+¢).

Set T = Zle t;,S = Hle s; and s, = 1 —t, for all n € N. From (1), we
obtain

k41 = 8182 -8pa1 + 115283+ Spby 4+ -+ +tr_15kbp—1
+tibi, ap1 € B := co{ay, b1, b2, -+ by}

Let x =T Zle t;b; and

Yy = S(l—S)il{al —|—t1(51_1—T71)bl
+ta(sy syt =T by + -+ t5(STH =T by}

Then z,y € B and ax4+1 = Sz + (1 — 5)y. Hence

d1—¢) < lagsrll < Sllfl + (1 =)yl
< Szl + (1= S5)d +e).
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It follows that

] > d(1—S7'(2~8)e)
> d(1—2eS7h)
- d(l — 2gf[(1 — t,)—l)
= d[1—25 emp(izi;log (1+ 1titi>)]
> a3 1))
> d(1-2e ea:p(T/z(ll— t)))
> d(1 —2¢ exp((N +1)/(1—1)))
> df2,

because log(1 + u) < u for —1 < u < co. Thus, we have

th

<T'M< —M-=

4y d
- 2M 2’

]l =

a contradiction. I

Theorem 5.2.4 Let C' be a nonempty subset of a normed space andT : C — C
a nonezxpansive mapping. For xog € C, suppose we have a sequence {t,} of real
numbers and a sequence {1y, } of mappings from C into itself satisfying the
conditions:

(i) 0<t, <t<1land) "ty =00,
(1i) Tpi1 =T, 2 and Ty, = (1 — t,)] +t,T, n € Np.

If {xn} is bounded sequence in C, then lim ||z, —Tz,| = 0. Moreover,
n—oo
lim HTtnTtnfl o 'Tto‘ro - Ttnfthn72 o 'Ttox()” =0.
n—oo

Proof. Because

lZnt1 = Tzniall < (1 =tn)llzn — Tzpgrl| + tal| T2y — T4
< (I =to)([zn =gl +Hl1Znt1 =Tonial)) FtnllTns1 — oo
< (I =tp)llzntr = Teptall + [2pt1 — 2l
< (= ta)llwnr = Tanga || + tallzn — Tanl,

this yields
lzn+1 — Teng1ll < |xn — Ty || for all n € No.
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The sequence {||z, — Tx,||} is nonincreasing; it follows that
lim ||, — Tz, exists. (5.18)
n—o0

Suppose lim ||z, — Tz, || = r. Without loss of generality, we may assume that

tp, >0 fo?;ﬁon € Ng. Set a,, := z,, — Tz, and b, =t *(Tz,, — Txpy1). Then

ant1 = (1 —tp)an + tnby.
Because
bull = 5Tz — Tnga] < 5 Jon — 2naall = 20 — Taal,
this implies that

lim sup ||b,,]| < 7.

n—oo

Observe that

1Y (Tz; — Tai )|
1=0
= [[Tzo — Txni|

1) tabsll
i=0

< lwo = zpgall,

Hence {>°7" ,t;b;} is bounded, because {z,} is bounded. By Lemma 5.2.3, we
have lim ||z, — Txz,| = 0.
n—oo

Now, for all n € N
[#nt1 —anll = tollzn — Taa|l < tllan — Tl

which implies that

lim |3, T,, - Tyzo— Ty Ty o Tozol| =0. |
n—oo

The notion of asymptotic regularity is of fundamental importance in the
study of fixed point theory of nonlinear mappings.

Let C' be a nonempty subset of a normed space X and T : C' — C' a mapping.
Then T is said to be
(i) asymptotically reqular at xo € C if lim ||T™zo — T" M ay|| = 0;
n—oo
ii) weakly asymptotically reqular at xo € C if T"xg — T oy — 0;

(
(iii) asymptotically regular on C if for any x € C, lim ||T"z — T" || = 0;
(

iv) uniformly asymptotically regular if lim (sup | T"z — T"'z||) = 0;
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(v) reasonable wanderer in C if starting at any = € C,

oo
ST e — T | < oo
n=0

Note that every uniformly asymptotically regular mapping is asymptotically
regular.

Remark 5.2.5 The asymptotic reqularity of a mapping T at a point xqg implies
the existence of an approximating fized point sequence of that mapping, but the
converse s not true.

It can be easily seen that a contraction mapping enjoys all this properties.
The following example shows that there exists a nonexpansive mapping that is
not necessarily asymptotically regular.

Example 5.2.6 Let X =R and T : X — X defined by Tx = —x. Note that T
s monexpansive, but T is not asymptotically regular.

However, a convex combination of nonexpansive mappings turns out to be
asymptotically regular in a general Banach space. Indeed, we have

Theorem 5.2.7 Let C' be a nonempty convexr subset of a normed space X and
T : C — C a nonexpansive mapping. For a t € (0,1), define a mapping
T, :C — C by

T, =(1—t) I +1tT.
If for xy € C,{T{*xo} is bounded, then T; is asymptotically reqular at xg, i.e.,
lim |7}z — T/ || = 0.

We now turn to study a demiclosedness principle for nonexpansive mappings
in Banach spaces.

Definition 5.2.8 Let C' be a nonempty subset of a Banach space X and T :
C — X a mapping. Then T is said to be demiclosed at v € X if for any sequence
{zn} in C the following implication holds:

Ty —=u€C and Txy, — v imply Tu=wv.

Our first result concerning the demiclosedness principle of nonexpansive
mappings is in an Opial space.

Theorem 5.2.9 Let X be a Banach space that satisfies the Opial condition,
C a nonempty weakly compact subset of X, and T : C — X a nonexpansive
mapping. Then the mapping I — T is demiclosed.

Proof. Let {z,} be a sequence in C such that z, — = € C and lim
(I —T)z, —yl| =0 for some y € X. We show that (I —T)z =y.
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Observe that
lzn — T2 —y|| < l|2n —Ton -yl + | Tz, — Tl
which implies that

liminf ||z, — Tz — y[| < liminf ||z, — zf].
n—oo n—oo

By the Opial condition, we have

liminf ||z, — z|| < liminf ||z, — (T2 + y)||,
n—oo n—oo

a contradiction. Therefore, (I —T)x = y. |

Corollary 5.2.10 Let X be a reflexive Banach space that satisfies the Opial
condition, C a nonempty closed convexr subset of X, and T : C' — X a non-
expansive mapping. Then I —T is demiclosed.

We now extend the demiclosedness principle of nonexpansive mappings in a
uniformly convex Banach space without Opial’s condition. To do so, we need
the following:

Proposition 5.2.11 Let C be a nonempty convex bounded subset of a uniformly
conver Banach space X and T : C — X a nonexpansive mapping. Then, for
any € > 0, there exists positive number ((¢) > 0 such that ||x — Tz|| < € for
all x € co({xg,z1}), whenever for xzg,x1 € C with ||zg — Txo| < ((¢) and
o1 — T < C(e):

Proof. Let z = (1 — M)z + Az for some A € [0,1]. Suppose ||zg — z1]| < /3,

then
|z — 20| = Allz1 — 0] < &/3.

If ((e) < /3, then we have

[Tz —zf| < |[Te—Txo| + [[Txo — ol + [lxo — || (5.19)
< 2fje — ol +<(e)
<

g.

Hence we need only consider pairs of points 2y and 21 with ||z1 — 29| > /3.
Set d := diam(C). Then for any nonnegative number A with A < £/(3d),

e

Iz = zoll = Ales = w0 < 5

Thus, if {(¢) < /3 and A < €/(3d), from (5.19), we have | Tz — z|| < e.

Now let A > ¢/(3d). If (1 — A) < &/(3d), then because ||z — z1] =
(1= N)||z1 — zol| <e/3, we have ||z — Tz| <e.
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So, without loss of generality we may assume that A € [¢/(3d),1 — ¢/(3d)]
and |zo — 1] > €/3. Note

[Tz — ol < [Tz —Txoll + [|Tzo — 20|
< Az — 2ol +¢(e)
and
[Tz —zi1f| < (T2 — T + | Tz1 — 24|
< (I =N[z1 — ol +((e).
Set
Tx — xg and r —Tx
Ui=————and v:= )
Allzr = xo| (1= N[lz1 — zo|
then |7 — o (@) 9d¢ ¢)
T — X9 9 5
uf = T <1 <1
b= N ol = Mo — w0l 2
and
(L=Nflzr —zol| = (I =A)Jz1 — 2o ~ g2
Observe that
lx1 — 2ol € €
A 1—A = =1 f 11\ —, 11— —.
A+ ( Yol| l2x = 2ol or a € 37’ 34

By the uniform convexity of X, if {(¢) is sufficiently small and positive, it follows
that ||u —v|| < e/d. Because x = Az1 + (1 — )z, it follows that

[Tz =zl < ATz =z1)+ (1= A)(Tz - z0)||

€
< M1 =XN)]u—=o|lz1 — 20l <AL =X) (d) lx1 — 2ol < e. I

Theorem 5.2.12 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C' — X a monexpansive mapping. Then
I —T is demiclosed on X.

Proof. Let {z,} be a sequence in C such that z,— z and nlirglo||xn—Txn —y||=0
for some y € X. Set Tyx :=Txz+y,x € C. Then (I -T,)x, = (I -T)z,—y — 0.
If (I —T,)xr =0, then (/ —T)z = y. Hence, we may assume without loss of
generality that y = 0. Set &, := ||z, — Tx,||. Because &, — 0 as n — oo, we
may thin out the sequence to make the convergence faster, and we do this in
such a way that for each n

En S C<5n71> < En—1,
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where ((g) for any € > 0 is constant as described in the conclusion of Proposi-
tion 5.2.11. Hence for each point z € ¢o({xy : k > n}), we have ||[z—=Tz| < &,—1.
Because ¢o({zy, : k > n}) is weakly compact (and hence weakly closed) and con-
tains the weak limit « of the sequence {z,}, it follows that ||z —Tz| < &,-1 — 0

as n — o0o. Therefore, x = Tx.

Theorem 5.2.13 Let C be a nonempty closed convex bounded subset of a uni-

formly convex Banach space X and T : C — X a nonexpansive mapping. Then
(I =T)(C) is closed.

Proof. Suppose u € (I —T)(C). Then there is a sequence {z,,} in C such that
r, — Tx, — uas n — oco. Because C is a weakly closed and bounded set in
a reflexive Banach space X, it is weakly compact. Hence we may assume that
x, — x € C. By the conclusion of Theorem 5.2.12, we have (I —T)x = u, i.e.,

(I =T)(C) is closed. 1

We now prove some fundamental existence theorems for nonexpansive
mappings.

Theorem 5.2.14 Let C be a nonempty closed convex bounded subset of a
Banach space X and T : C — X a nonexpansive mapping that is weakly
inward. If I —T is closed, then T has a fized point in C.

Proof. By Proposition 5.2.1, z; —Tz; — 0 as t — 1. Hence 0 lies in the closure
of (I —T)(C). Because I — T is closed, there exists a point v € C such that

(I-T)v=0.

Theorem 5.2.15 Let X be a reflexive Banach space with the Opial condition.
Let C' be a nonempty closed convexr bounded subset of X and T : C — C a
nonezxpansive mapping. Then T has a fized point in C.

Proof. By Corollary 5.2.2, there exists a sequence {z,} in C such that lim

l|xn, — Txn|| = 0. By the reflexivity of X, there is a subsequence {z,,} of {z,}
such that z,, — « € C. By Corollary 5.2.10, I — T is demiclosed at zero, i.e.,

Zn, = 2 € C and zp, — Tx,, — 0imply 2 — Tz = 0. Therefore, z is a fixed

point of T.

Using Theorem 5.2.14, we prove some fundamental existence theorems for
nonexpansive mappings.

Theorem 5.2.16 (Browder’s theorem and Goéhde’s theorem) — Let X
be a uniformly convexr Banach space and C' a nonempty closed convexr bounded
subset of X. Then every nonexpansive mapping T : C — C has a fixed point in

C.

Proof. Because (I — T)(C) is closed by Theorem 5.2.13, it follows from
Theorem 5.2.14 that T has fixed point in C.
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Corollary 5.2.17 (Browder’s theorem) - Let H be a Hilbert space and C a
nonempty closed convex bounded subset of H. Then every nonexpansive mapping
T:C — C has a fixed point in C.

The following result is slightly more general than Theorem 5.2.16.

Theorem 5.2.18 (Kirk’s fixed point theorem) — Let X be a Banach space
and C a nonempty weakly compact convex subset of X with normal structure.
Then every nonexpansive mapping T : C — C has a fized point.

Proof. Let
F ={D, C C: D, is nonempty closed convex set such that T'(D,) C D, }.

Because C' € F, it follows that F is nonempty and it can be partially ordered
by set inclusion. Then, using Zorn’s Lemma (see Appendix A), F has a mini-
mal element, say Cy. We show that Cjy has only one element. Suppose, for
contradiction, that Cy contains two elements. Hence diam(Cy) > 0. Because
Cy is weakly compact convex, Z(Cp) is nonempty. Let zg € Z(Cp). Then for
x € Cy

T2 — T < Jlag — @l < 74y (Co) = 7(Co),

i.e., Tz is contained in B = B,(cy)[Txo]. Thus, T(Cy) C B and hence T'(B N
Cy) € BN Cy. The minimality of Cy implies that Cy C B. Hence rpy,(Co) <
7(Co). Because 7(Co) < 7714,(Co), it follows that 7(Co) = 71, (Cop). Thus,
Tzy € Z(Ch), ie.,, Z(Cy) is mapped into itself by T. By Proposition 3.3.14,
Z(Cy) is a nonempty closed convex subset of Cy such that T(Z(Cy)) C Z(Ch).
It means that Z(Cp) € F and also Z(Cy) is properly contained in Cy by Propo-
sition 3.3.15. This contradicts the minimality of Cy. Therefore, Cy consists of

a single point and hence T has a fixed point in C'.

The following examples show that nonexpansive mappings may fail to have
fixed points in general Banach spaces.

Example 5.2.19 Let X be a Banach space and T : X — X a translation
mapping defined by
Tr=xz+a, a#0.

Then T is nonexpansive and a fized point free mapping.

Example 5.2.20 (Sadovski) — Let ¢y be the Banach space of null sequences
and C = {zx € ¢ : ||z|| < 1}, the unit closed ball in co. Define a mapping
T:C—C by

T($1,JJ2,"' 7315@‘7"') = (1,1‘17:172,,%3,-'-).

It is obvious that T is nonexpansive on the closed convexr bounded set C and
x=(1,1,1,---) is a fized point of T. But (1,1,1,---) & co. In this case, the
Banach space X = cq is not reflexive and C' does not have normal structure.

The following example shows that there exists a non-self nonexpansive map-
ping that has a fixed point.
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Example 5.2.21 Let X =R, C = [-1,1] and T : C — X defined by Tx =
l—z,ze€C. ThenT(-1)=2¢ C, i.e., T is not a self-mapping. But T does
have a unique fixed point in C'.

We now give another example that shows that the boundedness of C' in
Browder’s existence theorem may not be essential (even for non-self nonexpan-
sive mappings).

Example 5.2.22 Let X = R, C = RT and T : C — X defined by Tz =
1/(1+z), x € C. Then T is nonexpansive, T(C) = (0,1], which is bounded,
and Tv = v = (v/5 — 1)/2. However, C is unbounded.

Examples 5.2.21 and 5.2.22 indicate that we may be able to extend Browder-
Gohde-Kirk theorem for non-self nonexpansive mappings. We begin with the
following fundamental theorem.

Theorem 5.2.23 Let C be a nonempty closed convex subset of a Hilbert space
H and T : C — H a nonezpansive mapping with T(C) bounded. Then there
exists a z € C such that ||z — Tz|| = d(T'z,C).

Proof. Let P be the metric projection mapping from H onto C. Then PT :
C — C is a nonexpansive mapping. Set D := co(PT(C)). Then PT(C) is
bounded, because T(C) is bounded. Thus, D is a closed convex bounded set
and PT is nonexpansive self-mapping on D. By Browder-Gohde-Kirk’s theorem,
PT has a fixed point z in D. Therefore,

Tz — 2| = |T= — PTz| = d(T=0). |
In the following corollary, we replace boundedness of T'(C') by “boundedness
of C”:

Corollary 5.2.24 Let C be a nonempty closed conver bounded subset of a
Hilbert space H and T : C' — H a nonexpansive mapping. Then there exists a
z € C such that ||z — Tz|| = d(Tz,C).

We now apply Theorem 5.2.23 to derive an existence theorem for fixed points
of non-self nonexpansive mappings.

Theorem 5.2.25 Let C be a nonempty closed convex subset of a Hilbert space
H and T : C — H a nonexpansive mapping. Let T(C) be bounded and T(0C) C
C. Then T has a fized point.

Proof. By Theorem 5.2.23, there exists a point z € C' such that
|z —Tz|| = d(TzC).

If Tz € C, then z is a fixed point of T. Otherwise, z € 0C, and hence Tz € C,
since T'(0C) C C. Tt follows that z € F(T). 1
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Theorem 5.2.26 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C — X a weakly inward nonexpansive
mapping. Then T has a fized point.

Proof. By Proposition 5.2.1, there exists a path {x;};c0,1) C C such that
2t —Txy — 0ast— 1. Set x, := x¢,, where t,, — 1 as n — co. Let z be the
asymptotic center of {x,,} with respect to C. Then

Ta(TZa {xn}> = lim sup ||m7l - TZH

n—oo

IN

limsup ||Tz, — Tz||
n—oo
limsup ||z, — 2| = 7oz, {zn})-

n—oo

A

Because Tz € Ic(z) and by Proposition 3.1.12, z is the asymptotic center of
{z,} with respect to Ic(z), we conclude that Tz = z by the uniqueness of the

asymptotic center.

We now discuss the structure of the set of fixed points of nonexpansive
mappings.

Theorem 5.2.27 Let C be a convex subset of a strictly convex Banach space
X and T : C — X a nonexpansive mapping. Then F(T), the set of fized points
of T is either empty or conver.

Proof. The example Tz = z+a (a # 0) shows that F(T') = (). Next, we assume
that F(T) # 0. Set z,y € F(T) and a € [0,1]. Then for z = az + (1 — a)y, we
have

o = Tz|| = [[Te =Tz < [lv — 2| = (1 - )|z -y

and
ly =Tzl = [Ty — Tz|| < [ly — 2| = aflz -yl

Hence
e —yll < llz = Tzl| + 1Tz =yl < ||z — 2l + ly — 2l = llz — .
This implies that
|z —yll = llo = Tzl| + | Tz — .

Let a =2 —Tzand b=Tz—y. Then |ja+b|| = ||a| +|/b]|. Because X is strictly
convex, a = A\b for some positive constant A (see Proposition 2.1.7). This means
that Tz is a linear combination of z and y, i.e., Tz = Bz + (1 — B)y for some
real 5. Hence

Tz — |
| Tz —

Iz =zl = (A =a)llz—yl = A =B)llz -yl
Iz =yl = allz — yll = Bllz -yl

Consequently, a = 3, i.e., z =Tz. I
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Remark 5.2.28 By the continuity of T, F(T) is always closed.

Corollary 5.2.29 Let C be a nonempty closed convex subset of a strictly convex
Banach space X and T : C — X a nonexpansive mapping. Then F(T') is closed
and convez.

Theorem 5.2.27 is not true in a general Banach space. This fact is shown in
the following example:

Example 5.2.30 Let X = R? be a Banach space with mazimum norm defined
by
I(a,b)| = max{Jal, o]} for all @ = (a,b) € R2.

Let T : X — X be a mapping defined by
T(a,b) = (|b|,b) for all (a,b) € R%

Then T is nonexpansive and (1,1) and (1,—1) are fized points of T. However,
no other point in the segment joining these two points is a fixed point of T'.

We now introduce the class of mappings that is properly included in the
class of nonexpansive mappings.

Let T' denote the set of strictly increasing continuous convex functions
v :RT — RT with v(0) = 0. Let C be a nonempty convex subset of a Banach
space X. Then a mapping T : C — X is said to be of type (7) if there exists
v € T" such that

YA =0Tz +tTy = T((1 = ) + ty)l|) < [le —yll = [Tz = Ty||
for all z,y € C and t € [0, 1].

It is clear that every mapping of type () is nonexpansive, but the converse is
not true in general. We derive the following interesting result, which shows that
every nonexpansive mapping defined on a convex bounded subset of a uniformly
convex Banach space is a mapping of type (7).

Theorem 5.2.31 Let C be a nonempty convex bounded subset of a uniformly
conver Banach space X and T : C — X a nonexpansive mapping. Then there

exists a strictly increasing continuous convex function (depending on diam(C'))
v :RT — R with v(0) = 0 such that

A(I(1 = )Tz + 1Ty — T((1 = )z + ty)) < & — o]l — | T — Ty
for allz,y € C and t € [0,1].

Proof. Because X is uniformly convex, there exists a strictly increasing con-
tinuous convex function g : Rt — R* with ¢(0) = 0 such that

20(1 — g(llu—oll) <1~ (1~ yu + to] (5.20)
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for all u,v € X with |Jul]| <1, ||v|| <1 and all ¢ € [0,1] (see Theorem 2.3.12).
It suffices to show Theorem 5.2.31 when ¢t € (0, 1).

Let z,y € C and z = (1 — t)z + ty for ¢ € (0,1). Set

Ty—-T Tz-T
d := diam(C), u:= YV CE  andoi=
(=)= -yl tlz =yl
Then we have ||ul| < 1, |lv|| < 1,
Ty-T 1-t)Tz+tTy-T
(1—t)u+tv:7y xandu—vz( )Tz +tTy :
[z = yll t(1 =)z —yll

Take r = ||(1 — t)Tz + tTy — Tz| and s7* = ¢(1 — t)||x — y||. It follows from
(5.20) that

2t(1 = t)[|x = yllg(rs) < |lz —y| = Tz — Ty,
which implies that

g(rs)

Observe that rs < 2. Because t(1 —t) < 1/4, it follows that ¢(1 — ¢)||z — y|| <
d/4 and hence 4/d < s. Note that for rs < 2, the function s — g(rs)/s is
nondecreasing, and then from (5.21) we have

d (4r\ _ g(4r/d) g(rs)
29<d>—2 d =27

2

< le =yl =Tz = Tyl (5.21)

<z =yl = 1Tz — Tyl
Therefore,
YA =Tz +tTy - T((1 = t)r + ty)||) < |z — yll - [Tz = Ty,

where (t) = dg(4t/d)/2, t > 0. It can be easily verified that v € T. |

We denote

A= (A=A A, A) A >0 (i=1,2,--+,n) and Z)\Z.:1},
=1

Proposition 5.2.32 Let C be a nonempty convex bounded subset of a uniformly
conver Banach space X and T : C — X a nonexpansive mapping. Then for
each positive integer p, there exists v, € I' such that for any A € AP and
T1,T2, " ,Tp S C,

P p
Tp (HT(Z /\1$Z> — Z )\iT.Z‘i
i=1 i=1

< — x| = || Tz — Tx;)). (5.
) < (o = oyl = [T = T, (522
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Proof. Once v, has been defined, we define y,11 to be any function in I'

satisfying the condition:

Tt (t) =73 L)+, (E+ s (¢
We must verify (5.22) for p+1. Fix A € AP and x4, z9, - - -

Ap+1 = 1 is trivial. We assume that A\p;1 # 1. Set
uj = (1= Apt1)mj + ApaTpr1, py =

and

o= (1 — Ap_;,_l)TSCj + )\p+1T.Tp+1 fOI‘j = 172, e

Observe that

T

P+1

))-

,Zp+1 € C. The case

Aj

1— At

) P-

p+1 P i D
Z)‘ Ti = Z = A1)z + Az} = Zﬂjuj?
o1 Aen j=1
p+1 P
ST G
i=1 j=1
p+1 p+1
i=1 ;
P
- \T(zw) > s
j=1 j=1
p P
< HT(ZWJ) ST S T 529)
Jj=1 Jj=1 J=1
p p
(o))
j:
< — _ . )
< (I = el = T; — Ty (5:29
g —upll = | Tuj — Tugll < flug — ugl| — lJuf — ug|
+ Ny = Tug || + |l — Tugll;  (5.25)
Vo([Tu; = jll) < lag = zpiall = 125 — 2ppalls (5.26)
luj —unll = [luj —will = (L= Apa)(llay — zpll = (|25 — 21)
< lleg = gl = [l — 2l (5.27)
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— L Nt — !
Put t:= 1§£2};+1{||x1 xil| — ||z, — «%]|}- By (5.26), we have

1 Tu; = ujll < v3 (1)
v (5.25) and (5.27)

lluj —wpll = 17w = Tugll <l — @l = 2§ — 2l + 2957 (1)
t+ 275 1 (1). (5.28)

IA

It follows from (5.24) that

HT<§MW) - Zp:ujTUj

j=1

<t (). (5.29)

From (5.23), (5.28), and (5.29), we have

p+1 p+1
HT(Z/\1$1> - Z)\szz
i=1 =1

W s (1) + 2 ()
’7;_&1 (t). (by definition of vp41)

[VARVAN

Therefore,

p+1 p+1
Tp+1 ( ’T<Z )\ixi)_z ATz
i1 i1

A Banach space X is said to have the convex combination property (CAP) if
for each € > 0, there exists an integer p(= p(¢)) > 1 such that for all subsets D
in X whose diameters are uniformly bounded,

co(D) C cop(D) + B,[0],

<t= TN
>_t 1§¢I,I;1%};,+1(sz o= ||Tx;—Txk|)

where

P

cop(D) = {Z)\z% A€ AP gz, ,Zp € D}.
i=1

We note that every uniformly convex Banach space X has the CAP. The

product of uniformly convex Banach spaces being uniformly convex implies

X x X has the CAP.

Theorem 5.2.33 Let C' be a nonempty convex bounded subset of a uniformly
convex Banach space X andT : C — X a nonexpcmsive mapping. Then there
exists v € T’ such that for any finite many elements {xz;}7, in C and any finite

many nonnegative numbers {\;}1—; with > " A, = 1, the following inequality
holds:

V(HT<2:; Am) Z NTz;

>< max (lloi — 5 — [ T2; — Ta;)).
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Proof. First, determine v, € T' for p = 2,3,--- from Proposition 5.2.32.
Because X x X has the CAP and hence, given ¢ > 0, we can determine p
so that

co(D) C co,(D) + B.3[0] x B 3[0]

for every D C C' x C. Set 6 = 7,(¢/3). Suppose x1, %2, , T, € C satisfy
lz; — x| — |Tx; — Txj|| <9 for all ¢, 5.

Consider D = {(z;,Tz;) € X x X :i=1,2,--- ,n}. Thus, for each A\ € A"71,
there exist 4 € AP~ and iy,42,- -+ ,ip € {1,2,--- ,n} such that

n p
Z/\ﬂ}i - Z,ijij < %
i=1 j=1
and
n p
i=1 j=1

In other words, the CAP on X x X guarantees simultaneous approximability
in X. Observe that

i=1 i=1

n p
< () (o)
i=1 j=1
p P
+HT<Z ,Liji) - Z Uij'L'j
j=1 j=1
P n
Z ,LLjT.Tij — Z )\iTZCq;
j=1 i=1

< L84,
- 3 3 3 7

Thus, whenever ||x; — x;|| — [|[ Tz, — Tz;|| < 0 for all 4, j, we have

i=1 i=1

Therefore, the construction of v € I' such that v(¢) < § for this ¢ — d

_|_

<e.

prescription is a simple calculation. I

5.3 Multivalued nonexpansive mappings

In this section, we consider the problem of solving the operator equation
xeTx, (5.30)

where T is a multivalued nonexpansive mapping in a Banach space.
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Definition 5.3.1 Let C be a nonempty subset of a Banach space X. A mapping
T:C — CB(X) is said to be nonexpansive if

H(Txz,Ty) < ||lx —yl|| for all x,y € C,
where H(-,-) is the Hausdorff metric on CB(X).
Recall that the graph G(A) of a multivalued mapping 4 : C — 2Y is
GA) ={(z,y) e X xY :2e€Cyc Az},
where Y is another Banach space.
The mapping A is said to be demiclosed at y € Y if
Zy (in C) =z and y, € Ax,, — y =y € Ax.

First, we show that for every compact-valued nonexpansive mapping 7', I—T
is demiclosed in a Banach space with the Opial condition.

Theorem 5.3.2 Let C be a nonempty weakly compact subset of a Banach space
X with the Opial condition and T : C — K(X) a nonexpansive mapping. Then
I — T is demiclosed.

Proof. Because the domain of I — T is weakly compact, we must prove that
the graph of I — T is only sequentially closed. Let (x,,,y,) € G(I —T) be such
that z, — z and y,, — y. Hence z € C.

We now show that y € (I — T)z. Because y,, € x,, — Ty, Yn = Tp — 2y for
some z,, € Tz,. By the nonexpansiveness of T, there exists z/, € Tz such that

lzn — 20|l < H(Tzp, Tz) < ||z — 2| (5.31)

It follows from (5.31) that

liminf ||z, —z| > liminf |z, — 2|
n—oo n—oo
= liminf ||z, — y, — 2, ]|. (5.32)
n—oo

Because Tz is compact, z/, € Tz and y, — y, and then there exists a sub-
sequence {z;,. } of {2;,} such that

z, — z € Tx and y,, — y.
Hence from (5.32) we have
liminf ||, — | > liminf ||z,, —y — z]|.
i—00 i—00
By the Opial condition

liminf ||2,, — z|| < liminf ||z,, —y — 2|,
1— 00 11— 00

which implies that y + z = x. Therefore, y =x — z € x — Tx. I



5.3. Multivalued nonexpansive mappings 239

The fixed point theory of multivalued nonexpansive mappings is however
much more complicated than the corresponding theory of single-valued non-
expansive mappings. We will concentrate on some important existence theorems.

We begin with the existence of fixed points of compact-valued nonexpansive
mappings in Banach spaces.

Theorem 5.3.3 Let X be a Banach space with the Opial condition, C' a non-
empty weakly compact convex subset of X, and T : C — K(C) a nonexpansive
mapping. Then T has a fized point in C.

Proof. Let u be an element in C' and let {a,} be a sequence in (0, 1) such that
lim a, = 1. For each n € N, define T, : C — K(C) by

T,x=(1-ap)u+a,Tx, ze€C. (5.33)

Then T, is a contraction mapping. By Theorem 4.2.7 (Nadler’s fixed point
theorem), there exists x,, € C such that z, € T,z,. Because C is weakly
compact, there exists a subsequence {z,,} of {z,} such that z,, — v € C.
From (5.33) we have

Tn = (1 —ap)u+ apzy,

where z,, € Tx,. Observe that
|20 — 20|l = (1 = an) ||z — ul|.

Hence y, = ¢, — 2 € (I = Tz, and y, — 0. Thus, (zn,,yn,) € GUI —T) and
Tp, — « and y,, — 0, it follows from the demiclosedness of I —T' at zero that

i

0 € (I — T)v, Therefore, v € Tv. |

Proposition 5.3.4 Let C be a nonempty closed convex subset of a uniformly
convex Banach space X and T : C — K(C) a nonexpansive mapping. Suppose
there exists a bounded sequence {xy} in C such that d(x,, Tx,) — 0 as n — oo.
Then T has a fized point in C.

Proof. We may assume that {x,} is regular and thus asymptotically uniform.
Let Z,(C,{zn}) = {2} and r,(C,{zn}) = r. Choose y, € Tz, such that
l|zn, — ynl| — 0 as n — oco. By the compactness of T'z, select z,, € Tz such that

1yn = znll < H(T2n, T2) <z — 2| (5.34)

Because Tz is compact, there exists a subsequence {z,, } of {z,} such that
2, — v ET2.

By the regularity of {z,}, we have

Ta(Ci{zn, }) = 1a(Ci{zn}) =1 and Z,(C,{zn}) = Z4(C, {zy, }) = {2}

Because
|2 = 0l < |Zny, = Yni | + 1Y — 20k |l + 120, — 2,
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it follows from (5.34) that

limsup ||, —v| < r

— 00

and hence Z,(C,{z,}) =2z =v. |

Theorem 5.3.5 Let X be a uniformly convexr Banach space, C' a nonempty
closed convex subset of X (with 0 € C), and T : C — K(C) a nonexpansive
mapping. Suppose the set

E={xecC: xeTx for some A > 1}

is bounded. Then T has a fized point in C.

Proof. Let {t,} be a sequence in (0,1) with ¢, — 1. Then for each n € N,
t,T: C — K(C) is a contraction mapping. Then Nadler’s theorem implies that
Ty € tyTx, for some x, € C. Now select y,, € Tz, such that x, = t,y,, which
yields

d(@n, Txy) < [lzn — yull = (tgl = Dllzall-

Because {x,} is in E and E is bounded, we obtain that d(z,,Tz,) — 0 as
n — oo. Therefore, there exists a fixed point of T in C by Proposi-

tion 5.3.4. |

Theorem 5.3.6 Let C' be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C — K(X) a nonexpansive mapping.
If Tx C Io(x) for all x € C, then T has a fixed point in C.

Proof. Let u € C be fixed and let {a,} be a sequence in (0,1) such that
lim a, = 1. For each n € N, define T}, : C — 2% by

T,x=(1—-ay)u+a, Tz, z€C.

Then T, is a multivalued contraction with Lipschitz constant a,,. Because I (x)
is convex for each z € C, it follows that

T,z CIo(x), zeC. (5.35)

Observe that T(C') = UgecT'x is a bounded set. Now let 2 € C, z € Tx and let
K = |ju— z|| + diam(UzecTx). If y € Tz, then y = (1 — a,)u + a,w for some
w € Tx and

dly,Tz) < (1 —ap)|lu—z|| < (1 —a,)K. (5.36)
Also for any T € Tz, we have (1 — ap)u + a,T € T2 and so
d@, Thx) < (1 —ap)K. (5.37)

Together (5.36) and (5.37) imply that H(Tz,T,z) < (1 — ap)K — 0 uniformly
forz € C as n — oo.
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Because T,z C Ic(z),z € C by (5.35) and the values of T" are compact, T),
has a fixed point x,, € C' by Theorem 5.1.7. This means that

Tp € Tnen = (1 — ap)u+ an Ty,

Thus
d(xpn, Try) < H(Tpxn, Txy).

By the uniform convergence of {7}, } we have
d(xpn, Txy) — 0 as n — oo.
For each n € N, choose y,, € T'x,, such that
ln = yll = d(n, T).

By Propositions 3.1.1 and 3.1.2, passing to a subsequence if necessary, we may
assume that {x,,} is regular and asymptotically uniform. Let Z,(C, {z,}) = {z}
and rq(C, {z,}) =

Because T is compact-valued mapping, we can select z, € Tz such that
[Yn — 2nl < H(Txn,T2) < |20 — 2| (5.38)

Let {z,, } be a subsequence of {z,} such that z,, — v as i — oco. Hence v € T'z.
Because v € Tz C I¢(2), there exists t € (0,1) such that

(1—t)z+tveC.

Note Z,(C,{xn,}) = 2, 7¢(C, {zp,}) = r and {x,} is regular and asymptotically
uniform. Set w; := (1 —t)z + tz,,, i € N, t € (0,1). Proposition 3.1.7 implies

that Z,(C,{w;}) = z and r4(C, {w;}) = tr. Set
pi: (1 —1t)z + tyn,
gi: = (Q—t)z+tzn,,
w: (1—=1t)z+ tw.

Then for each i € N,

wi —wll < Nw —pil| + [lpi — gill + llgi — wll
< t”xm — Yn; +t||yn1 — Zn; +t||'zn1 - U”
< tllon, = ynill + llzn, = 2] + [[2n, —vl])  (from (5.38))

From z,, — v and x,, — y, — 0, we have
limsup ||w; —w|| < ¢ limsup||z,, — 2| = tr.
i—00 i—00
Because Z,(C,{w;}) = {z} and r,(C,{w;}) = tr, by the uniqueness of asymp-
totic center we have w = z. Thus, z =v € Tz.

Finally, we obtain some existence theorems for multivalued nonexpansive
non-self mappings in which the convexity of domain is not necessary.
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Theorem 5.3.7 Let C be a nonempty weakly compact star-shaped subset of a
uniformly convex Banach space X and T : C' — K(X) a nonexpansive mapping.
If for each x € OC, Tx C C and \x + (1 — \)Tz C C for some X € (0,1) or
Tz C int(C), then T has a fized point in C.

Proof. Let p be the star-center of C' and {a, } a sequence in (0,1) with a,, — 1.
Define
Thx = (1 —an)p+a Tz, v€CneN

Then T;, is a multivalued contraction. By Theorem 4.2.14, each T;, has a fixed
point x,, such that

Tp = (1= an)p+ anTxy,. (5.39)

Because {x, } is bounded, we have r,(C, {xn, }) = ro(C, {2, }) and Z,(C, {x,}) C
Z,(C{xn,}). Let z € Z,(C,{z,}). Because Tz is compact, there exists z, € Tz
such that for y,, € Tz,

[yn = 2nll < H(Twn, T2) < |20 — 2. (5.40)

Let {z,,} be a subsequence of {z,} such that z,, — v € Tz Because
Z,(C{zn}) C Z,(C,{xn,}), it follows that z € Z,(C,{x,,}). From (5.39),
we get

||x"1 - yTMH = (1 - ani)Hxni _pH — 0 asi— oo.
Hence
hmsup ”xm - UH < hmsup(”an ~ Ynill + ||yn7 — Zng|| T Hzm - UH)
11— 00 71— 00

= limsup [|yn, — 2, |
1—00

< limsup ||z,, — 2|| (from (5.40))
i— 00

= inf{limsup||z,, — 2| : x € C},

11— 00

and this means that v € Z,(C, {zn, }).
If z € 9C, then by hypothesis for v € Tz, there exists w € C such that

w=(1-Nv+Az, e (0,1).
Suppose that v # z. By uniform convexity of X, we have some ¢ € (0,1)

limsup [z, — wl < (1 8) inf{limsup [z, — yl| : y € C},

1—00 i—00

which is a contradiction of the choice of w. If z € Z,(X,{z,}), we have

ra(X,{zn}) < limsup o — |

71— 00

IA

hmsup(”?] = Zng | + 120 = Ynill + 195 — 2, 1)

71— 00
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IN

lim sup ||2n; — Yn,
1— 00
< limsup |z — Zn, || = 7o (X, {zn,; }).

21— 00

Hence v € Z,(X,{xn,}). By uniform convexity of X, we obtain v = z
eTz.
Theorem 5.3.8 Let C' be a nonempty closed bounded subset of a Banach space
X and T : C — K(X) a mapping that satisfies the following conditions:

(i) H(Tz,Ty) < |z — y| for all 2,y € C,

(ii) Tx C Ic(z,1)  for allz € C,

(i) Upec(@ — Tx) = U,ec Uyers (T —v) is a closed subset of X.
Then T has a fized point in C.

Proof. Without loss of generality, we may assume that 0 € C. Let {a,} be a
sequence in (0, 1) such that a,, — 1 as n — oco. For each n € N, define

Tox=a, Tz, xze€C.

It is easy to see that T,z € K(X) and T,z C Ic(x,1) for each n € N and all
x € C. Furthermore,

H(Thx, Thy) < apllz —y|| for all z,y € C, n € N.
By Theorem 5.1.9, there exists x,, € C such that
Tn =Thoy = anTxy,.

We choose y,, € Tz, satisfying z,, = a,y,. By the boundedness of C,

1

n

Because Ugcco(x — Tx) is closed, we have 0 € U,ec(x — Tz). Therefore, there
exists some z € C such that z € Tz. I

5.4 Asymptotically nonexpansive mappings

Let C be a nonempty subset of a Banach space X. A mapping T : C — C'is
said to be asymptotically nonexpansive ! if for each n € N, there exists a positive
constant k,, > 1 with lim k,, = 1 such that

n—oo

IT"x — T y|| < kp|lx — y|| for all z,y € C.

The following example shows that the class of asymptotically nonexpansive
mappings is essentially wider than the class of nonexpansive mappings.

I The notion of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
in 1972.
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Example 5.4.1 Let By be the closed unit ball in the Hilbert space H = £y and
T : By — By a mapping defined by

T(I1,$2,$3, o ) = (0,33%,&21‘2,@3333, e )7

where {a;} is a sequence of real numbers such that0 < a; <1 and [[25a; = 1/2.
Then
Tz — Tyl <2||z—y| for all z,y € By,

i.e., T is Lipschitzian, but not nonexpansive. Observe that

|IT"x — Ty < QHain —y|| for all x,y € By and n > 2.
i=2

Here k,, = 2]y a; — 1 as n — oo. Therefore, T is asymptotically nonezpan-
sive, but not nonexpansive.

There is also a connection between the demiclosedness principle and the
fixed point theory of asymptotically nonexpansive mappings. Some simple
results concerning the demiclosedness principle of asymptotically nonexpansive
mappings are given in the following theorems:

We first establish Proposition 5.4.2, which shows that the asymptotic center
of every bounded AF PS of an asymptotically nonexpansive mapping is a fixed
point of the mapping in uniformly convex Banach spaces.

Proposition 5.4.2 Let C be a nonempty closed convex subset of a uniformly

conver Banach space X and T : C — C an asymptotically nonexpansive map-

ping. If {yn} is a bounded sequence in C' such that lim |y, — Ty,|| = 0 and
n—oo

Z,(C{yn}) = {v}, then v is a fized point in C.

Proof. We define a sequence {z,} in C by z, = T™v,m € N. For integers
m,n € N, we have

lzm =yl < (T™0 =Tyl + 1T yn — Tmilyn” + o Tyn = yall
m—1

< knllo = yall + U790 = yall + Y killyn = Tyal). (5:41)

i=1

Then by (5.41) we have
Ta(zmy {yn}) = limsup Hyn - Zm” < kmra(’uv {yn}) = kmra<Ca {yn})

Hence

ra(zms {yn}) = 7a(C, {yn})| < (km = Dra(Ci{yn}) — 0 as m — oo.

It follows from Theorem 3.1.8 that T™v — v. By the continuity of T, we have

Tz=T(lim T"z) = lim Tl = 2. I

m— 00 m— 00
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Theorem 5.4.3 Let X be a uniformly convex Banach space with the Opial
condition, C' a nonempty closed convex (not necessarily bounded) subset of X,
and T : C — C an asymptotically nonexpansive mapping. Then I — T is
demiclosed at zero.

Proof. Let {z,} be a sequence in C such that z,, — z € C and z,, — Tz, — 0
as n — oo. By Theorem 3.2.9 (which states that if a sequence {u,} of a
nonempty closed convex subset of a uniformly convex Banach space having the
Opial condition converges weakly to u € C, then w is asymptotic center of
{un} with respect to C'), the asymptotic center of {x,} is . It follows from

Proposition 5.4.2 that z is a fixed point of T'.

To prove the next theorem concerning a demiclosedness principle, we need
the following:

Proposition 5.4.4 Let X be a Banach space with the Opial condition, C' a
nonempty weakly compact convex subset of X, and T : C — C' an asymptoti-
cally nonexpansive mapping. If {x,} is a sequence in C such that x, — = €
C and x, — Tx,, — 0, then {T"x} converges weakly to x.

Proof. Set A, :=co({T"z}i>m),m € Nand A := m A,,. Because C' is weakly

m=1
compact, then A is nonempty and A = ¢o(w,, ({T"z})) by Theorem 1.9.22.
We show that 7"z — z, and this means that A = {z}. Because {z,} is
bounded, we define a functional f : C — R by f(y) = limsup ||z, —vy|, v € C.

n—oo

Suppose, for contradiction, that ¢y € A such that yg # x. Then by the Opial
condition, we have

f(x) < f(yo)-

Because k,,, —1 — 0, then for e := (f(yo) — f(2))/(1+ f(z)) > 0, there exists an
integer mo € N such that k,,, —1 < € for all m > mg. Because yg € A,y+1, there

exist an integer p € N and nonnegative numbers t1,¢,--- , %, with Zle ti=1
such that
p .
‘ yo— Y Tz <. (5.42)
j=1
Note
f(yo) = limsup [lz, — yol|
n—oo
< limsup <||a:n - thTm‘H'JmH + | thTmOJ”m - y0||)
noee j=1 j=1

p
< th limsup ||z, — 7™ z| +¢  (by (5.42))
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P

< th limsup [|[T™ g, — T™ ||+ (as x, — Tz, — 0)
P

< thkmo+j limsup ||z, — z| + ¢

NE

tile+1)f(x) +e (as kp, < e+ 1 for m > my)

I
-

I
—_ .

e+ 1)f(x) +e = f(y),

a contradiction. Therefore, z = yo, i.e., A = {z}. 1

Theorem 5.4.5 Let X be a Banach space with the locally uniform Opial con-
dition, C' a nonempty weakly compact convex subset of X, and T : C — C an
asymptotically nonexpansive mapping. Then I — T is demiclosed at zero.

Proof. Suppose {z,} is a sequence in C such that z, — z and =z, —
Tz, — 0. By Proposition 5.4.4, we have T"x — x. Because T is asymptotically
nonexpansive, we have

limsup(limsup [|7"x — T™z||) < limsup(limsupk,,||T" "z —z|)
m—0oQ n—oo m—0o0 n—oo
= limsup||T"z — z||.

n—oo

Proposition 3.2.19 implies that T™x — z. By the continuity of T', we have

x="Tx.

We have already shown in Section 5.2 that every nonexpansive mapping is
demiclosed in a uniformly convex Banach space. The following Theorem 5.4.6
shows that Theorem 5.2.12(a) is valid also for asymptotically nonexpansive
mappings.

Theorem 5.4.6 Let C' be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C — C an asymptotically nonerpansive
mapping. Then I —T is demiclosed at zero.

Proof. Let {z,} be a sequence in C such that x — = € C and z,, — Tx,, — 0
as n — 0o. We show that 7"z — z. Indeed, because {z,} is weakly convergent
to x, there exists for each integer n € N a convex combination

o= e, (Y >0and Y " =1)
i=1 i=1

such that ||y, —z|| < 1/n. For an arbitrary but fixed j € N, because (I —T")z,, —
0, there is an ng = ng(e, j) so large that 1/ny < ¢ and [|[(I — T9)z,| < e for
n > ng.
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Because X is uniformly convex, by Theorem 5.2.33, there exists a strictly
increasing convex and continuous function g : RT™ — R*, g(0) = 0 such that for
any nonexpansive mapping S : C — X, for any finite many elements {u;}? ; in
C, and for any finite many nonnegative numbers {¢;}/, with >_1 ; t; = 1, the
following inequality holds:

g(ISQ_ taw) = Y taSuil) < (Jmax (flui =yl = |[Sus = Suyl). - (5.43)
i=1 i=1 0=

Suppose L; is the Lipschitz constant of T3, Then LjflTj is nonexpansive in
C, and it follows from (5.43) that

m(n) m(n)
Ty = yull < [ Tyn = > " Tl + 11 D 5 T wi 1 —
=1 =1
m(n) m(n)
< ||Tj( > tz('n)xi‘Fn) -> Ty
. i=1 i=1
+ 3 T mi g — i
i=1
< nygt(_max (hoisn — x|
L i = Tloial)) o
< Lig ' (2e+ (1 - L;") diam(C)) +e, (5.44)
because
[#itn — Tpanll = L;1||zji+n — T g

|2itn = TP Tinl| + |28 — T? @i
(1= Ly Tzien — Thpnl

1 .
2¢e + (1= L; ) diam(C).

IN 4+ IA

Taking the limit superior as n — oo in (5.44), we obtain

limsup |77y, —ynl| < Ljg ' (26 +(1— Lj_l) diam(C))

n—oo

+ cforall j eN. (5.45)
For each j € N, we have

1772 — | 1772 — Tyl + 177y = yull + llyn — ||

<
< (Lj + Dllyn — 2l + [Ty — yall- (5.46)
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Because vy, — x, it follows from (5.45) and (5.46) that

T2 || < limsup((L; + Dllyn =zl + [Ty = yall)

Lj g "2+ (1—L;") diam(C)) + ¢
g '(0)=0as j — oo and £ — 0.

IA

This shows that T"x — =z and by the continuity of T, we obtain that
x="Tx. I

We now give a fundamental existence theorem for asymptotically nonexpan-
sive mappings in a uniformly convex Banach space.

Theorem 5.4.7 (Goebel and Kirk’s fixed point theorem) - Let C be a
nonempty closed convex bounded subset of a uniformly convex Banach space X
and T : C — C an asymptotically nonexpansive mapping. Then T has a fixed
point in C.

Proof. For fixed y € C and r > 0, set
R, := {r: there exists k € N with C' N (N2, B, [T"y]) # 0} and d := diam(C).

Then d € R,. Hence R, # (. Let ro = inf{r : r € R,}. For each ¢ > 0, we
define
Ce = Uia (NZ Bro+e[TY))-

Thus, for each € > 0, the set C. N C is nonempty and convex. The reflexivity
of X implies that

Ne>o(Ce NC) # 0.

Note that for x € N.~o(C- N C) and n > 0, there exists an integer ng such that

|l —T"y|| <rg+n forall n>mng.
Now, let € N.s0(C. N C) and suppose, for contradiction, that the sequence
{T™z} does not converge strongly to x. Then there exist ¢ > 0 and a subse-
quence {T™z} of {T™x} such that

|T" 2z —z|| >e forall i=1,2,--- .
Suppose k,, is the Lipschitz constant of T™. Then for m > n, we have

1Tz — T"z|| < kplle —T™ "z||.

Assume that rg > 0 and choose « > 0 such that

(1-5(=22))ou <
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Select n such that
o
|le —T"z|| > e and k, (ro + 2) <rg+a.
If ng > n is sufficiently large, then m > ng implies
lo =Tyl < ro+ 5.
Because
IT"z —T"y|| < kpllz =TT "yl < kn (To + g) <rg+a

and
|z =Tyl <ro+a,

it follows from the uniform convexity of X that for m > ny,

1 €
|\§(x+Tnx) —Tmy| < (1 — 5X(r0 +a>)(7’0 + a) < 1.

This contradicts the definition of rg. Hence we conclude that rg = 0 or z = T'x.
But rg = 0 implies that {T"y} is a Cauchy sequence and hence lim T"y =

n—oo

x = Txz. Therefore, the set N.~o(C. N C) is a singleton that is a fixed point
of T. I

In our next existence theorem, the boundedness of C' is not necessary.
In particular, we will show that the existence of a fixed point of an asymp-
totically nonexpansive mapping in a uniformly convex Banach space is not only
equivalent to the existence of a bounded orbit at a point, but it is also equivalent
to the existence of a bounded AFPS.

Theorem 5.4.8 Let C' be a nonempty closed convex (but not necessarily boun-
ded) subset of a uniformly convexr Banach space X and T : C — C an asymp-
totically nonexpansive mapping. Then the following statements are equivalent:

(a) T has a fized point.
(b) There exists a point xg € C such that the sequence {T"xo} is bounded.
(c¢) There ezists a bounded sequence {yn} in C such that lim ||y, —Ty,|| = 0.

Proof. (a) = (b) and (a) = (c) follows easily.

(b) = (a). Let zyp € C be a point such that the sequence {z, = T"z¢}
is bounded. By Theorem 3.1.5, there exists a unique point z € C' such that
Z,(C,{z,}) = {#}. Define a sequence {y,,} in C by y,, = Tz for all m € N.
Let k,,, be the Lipschitz constant of the iterates T™. For n > m > 1, we have

[ = yml = NT"@p—m —T"2|| < kmllen—m — 2]/
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This implies that

Ta(yma {xn}) < kmra(za {xn}) = kmra(ca {xn})
This shows that lim 74 (ym,{zn}) = 7a(C,{2zn}). By Theorem 3.1.8, lim
m—0o0

m—00

Ym = z. By the continuity of T, v is a fixed point of T.
(¢) = (a). Let {y,} be a bounded sequence in C such that lim ||y, —Ty,| =
0. Let Z,(C,{yn}) = {v}. Therefore, Proposition 5.4.2 implies that v is a fixed

point of T.

We have seen in a Corollary 5.2.29 that F'(T) is closed and convex in strictly
convex Banach space for nonexpansive mappings. However, Corollary 5.2.29 is
not true for asymptotically nonexpansive mappings. In fact, we have

Theorem 5.4.9 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C — C an asymptotically nonerpansive
mapping. Then F(T) is closed and convez.

Proof. The closedness of F(T) is obvious. To show convexity, it is sufficient to
prove that z = (z +y)/2 € F(T) for z,y € F(T'). For each n € N, we have

[l —T"z]|

n n 1
1Tz = T"2|| < kallz = 2]l = Skallz —yll;

1
[Ty = T"z|| < knlly = 2]l = Skallz =yl

_T"
ly - 7" ;

By the uniform convexity of X, we have

1 2 1 2
—_T" < = — — — < — — — )
|z —=T"z| < 5 [1 5X<kn)]k;n||x yll < 5 {1 5X(kn>]kndmm(0)

and hence T"z — z as n — oo. It follows from the continuity of T" that z is a
fixed point of T'.

5.5 Uniformly L-Lipschitzian mappings

Let C' be a nonempty subset of a normed space X and T : C' — C' a mapping.
Then T is said to be uniformly L-Lipschitzian if for each n € N, there exists a
positive constant L such that ||T"x — T"y|| < L||x — y|| for all x,y € C.

Note that every nonexpansive mapping is uniformly L-Lipschitzian with
L = 1 and every asymptotically nonexpansive mapping with sequence {k,}
is also uniformly L-Lipschitzian with L = sup k.
neN
The following proposition shows that the class of uniformly L-Lipschitzian
mappings on C' can be characterized as the class of mappings on C that are
nonexpansive relative to some metric on C' that is equivalent to the norm.
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Proposition 5.5.1 Let C' be a nonempty subset of a Banach space X and T :
C — C a uniformly L-Lipschitzian mapping. Then there exists a metric d on C

that is equivalent to the norm metric such that T is nonexpansive with respect
to d.

Proof. Define the metric d on C' by
d(z,y) = sup{[|[T"z —T"y|[ : n =0,1,2,--- },z,y € C.
Because
lz —yll < d(z,y) < Lllz -yl
this means that the metric d on C'is equivalent to the norm metric. Furthermore,

T is nonexpansive with respect to d.

Proposition 5.5.2 Let C' be a nonempty subset of a Banach space and p a
metric on C satisfying the condition:

allz —yll < p(z,y) < Bl —yl| for all x,y € C. (5.47)

If T : C' — C is a nonexpansive mapping with respect to p, then T is uniformly
B/a-Lipschitzian with respect to || - ||.

Proof. Because
allz —yll < p(z,y) < Bllz —yl for all 2,y € C

and T : C'— C is nonexpansive with respect to p(z,y), then forn =1,2,--- |

mn mn 1 mn mn 1 /8
[T"z —T"y|| < —p(T"z, T"y) < —p(z,y) < =|lz —y||.
« « o

Therefore, T is uniformly §/a-Lipschitzian. I

The following Theorem 5.5.3 shows that the Goebel and Kirk’s fixed point
theorem (see Theorem 5.4.7) for asymptotically nonexpansive mappings remains
valid for a broader class of uniformly L-Lipschitzian mappings with L < -y, where
v is sufficiently near one.

Theorem 5.5.3 (Goebel and Kirk’s fixed point theorem) — Let C' be a
nonempty closed conver bounded subset of a uniformly convexr Banach space X .
Then every uniformly L-Lipschitzian mapping T : C — C with L < v has a
fizxed point in C', where v > 1 is the unique solution of the equation

()=

Proof. We take v to be the solution of the equation ¢(1 — dx(1/t)) = 1 and
assume that 1 < L < «, i.e., L satisfies the inequality:

si-a(1)) <1 st
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For z € C, set d(x) := limsup ||z — T"z||. Let

R = {r >0:there exists n € N with C'n (N5, B,.[T"z]) # 0}.
Then R is nonempty (because R contains the diameter of C'), so we can define
ro = ro(z) = inf{r > 0:r € R}.
For each £ > 0, we define
Ce = UpZ 1 (N2, Bro[T"2]).

Hence for each € > 0, the sets C. are nonempty and convex. The reflexivity of
X implies that

Mes0(@2 N C) £0.
Let 2 = z(z) € Ne»0(C.NC). Notice that 2z and 7o have the following properties:
(i) for each e > 0, B, 4c[2] contains almost all terms of the sequence {T%x},
(i) given u € C and r < 19, the set {i : [[u — Tx|| > r} is infinite.

Now if ro = 0 or if d(z) = 0, then lim T’z = z yielding z = T2. So we may
assume that 79 > 0 and d(z) = limsup ||z — T%z|| > 0.

Let € > 0 with 0 < ¢ < d(z) and select j € N such that ||z —T%z| > d(z) —e.
By (i), there exists an integer ng such that if ¢ > ng, then

|z —Tix| <ro+e<Lirg+e), (as 1<1I)

and it follows for ¢ — j > ng that

IT72 =Tzl = |17z = TH(T" )z
< Lljz =Tz
S L(T0+E).

Set w := (2 + T7z)/2. By a property of dx, we have

2=—Tix+Tiz—Tix

_ Tt -
e :
d(z) —
< <1—5X<L((:O)+;>)L(ro+s)fora11i>n0—|—j.

This implies (by (ii)) that

ro < (1 —0x (m))ﬂro +e).
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By the continuity of dx, we have
d(z)
L{1—-6x|—+ > 1.
< * < Lro )) -

d(z) < Loy (1 - i)m

From (ii), we have ro < d(z), and hence

This implies that

d(z) < L&y <1 — 1>d(x) = ad(z),

where o = Ly (1 — 1/L) < 1 because L satisfies (5.48).
To complete the proof, fix zy € C and define the sequence {x,} by
Tm+1 = Z(iCm)7 m = Oa ]-727 Tty

where z(x,,) is selected in the same manner as z(x). Now if for any m we have
70(2m) = 0, then Tz 11 = Tpmy1. Otherwise,

[m = mpall < 2d(zm) < 2a™d(x0),
which implies that {z,,} is a Cauchy sequence. Hence z,, — v € C. Note

lv =T lv = @l + l2m = T @ | + 1Tz — T"0]|

1+ L)l = @l + [[€m — T'am]|
14+ D)|lv — zp]|| + d(zm) — 0 as m — oo.

INIA A

By the continuity of T', we have v = Tw. I

Corollary 5.5.4 Let C be a nonempty closed convex bounded subset of Hilbert
space H and T : C — C uniformly L-Lipschitzian with L < v = \/5/2. Then T
has a fized point.

Let us give an example of a uniformly L-Lipschitzian mapping that is fixed
point free.

Example 5.5.5 Let || - |2 be the usual Euclidean norm on the Hilbert space
H = {5 and let By be the closed unit (|| - ||2-unit) ball and let S : lo — {5 be the
right shift operator defined by

S($1,$27"') = (0,.7}17.’172,"').
Then the mapping T : By — By defined by

(1 — |[zll2)e + Sz

Tx = ,
11 = llzll2)e + Szl

x € By, e=(1,0,0,--+)

1s uniformly L-Lipschitzian with L = 2, but it has no fized point in By .
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Applying Theorem 5.5.3, we have

Theorem 5.5.6 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X. If T : C' — C' is nonexpansive with respect to a
metric p(x,y) on C satisfying (5.47), where 3/a <~y for~ as in Theorem 5.5.3,
then T has a fized point in C.

The following theorem has a sharper estimate for L than Goebel and Kirk’s
fixed point theorem even in a more general Banach space.

Theorem 5.5.7 (Casini and Maluta’s fixed point theorem) - FEuvery
Banach space X with uniformly normal structure has the fixed point property
for uniformly L-Lipschitzian mappings with L < /N (X).

Proof. Let C be a nonempty closed convex bounded subset of X and T : C — C
a uniformly L-Lipschitzian mapping. For any zy € C, consider the sequence
{T™xzo} in C. By Theorem 3.4.20(b) for {T"x}, there exists x1 € co({T™xzo})
such that

Ta(z1, {T"x0}) < N(X) diam,({T"xo}), (5.49)

where N(X) = 1/N(X). Observe that

diam,({T"xo}) = klim (sup{||T?zo — T9x0|| : i, § > k})
< sup [T @0 — TVa|
127520

< L sup |lwg — T
i2j>0

< Lsup |0 — Tl
neN

From (5.49), we have
To(x1, {T"x0}) < LN(X) sup ||zo — T"zo]. (5.50)
neN

Moreover, for £ € N, we have

ro(T @, {T"zo}) = limsup [Tz — T a0l
< Llimsup ||z; — T" ‘x|
= Lro(z1,{T"z0}). (5.51)

From (5.50) and (5.51), we have

ro(T 21, {T"x}) < L*N(X) sup ||z — T™z0|.
N

ne

By Theorem 3.4.20(a), we have

|21 — Tz || < ro(Tfzy, {T"x0}) < LEN(X)sup ||zg — T"z0 ||,
neN
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which implies that

sup ||z — Tz || < L2N(X) sup ||lzg — T o).

LeN neN
Thus, for any z9 € C, we can inductively define a sequence {,}m>0 in the
following manner:

SUp | g1 — T @y || < LEN(X) sup || @y, — T2 | for all m € Ny
neN neN

and

Ta(Tmi1, {T"zm}) < LN(X)sup ||y, — Tz, for all m € Ny.
neN

Set Dy, := sup ||z, — T" || for m > 0 and ;= L>N(X) < 1. Then
neN

Dyi1 <Dy <72Dpyq < - <™ Dy — 0 as m — 0.
Observe that
[#m = Zmiall < om = T"2m | + [[Zms1 = T Tl < Do + [|2mss = T @]
Taking the limit superior as n — oo, we have
”zm - mm—H” < (1 + LN(X))Dmv

and it follows that {x,,} is a Cauchy sequence in C. Let lim z,, = v € C.

Hence
lo=Tol < |lv=am| +[lzm = Teml| + [ T2m - To|
< (14 LD)||@m —v| + Dm — 0asm — oo. |

The following result is a slight generalization of Theorem 5.5.7.

Theorem 5.5.8 Let X be a Banach space with uniformly normal structure, C
a nonempty bounded subset of X, and T : C' — C a uniformly L-Lipschitzian
mapping with L < /N (X). Suppose that there exists a nonempty closed convex
bounded subset M of C with the following property (P):

x € M implies w,,({T"z}) C M. (5.52)
Then T has a fized point in M.

Proof. For any o € M and each n € N, consider a sequence {T7x¢};>, in C.
By Theorem 3.4.20(b), we have y,, € co({T7z¢};>,) such that

lim sup | Tz — yn| < N(X) diama({T7x0}j5n)- (5.53)

j—o0
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Theorem 3.4.16 implies that X is reflexive, and there exists a subsequence {y,, }
of {yn} such that y,, — 21 € X. From (5.53) and w-Isc of the functional
ro(, {T"x0}), we have

ra(zy, {T?x0})

IN

liminf rq (yn,, {17 z0})

A

< limsup rq(Yn, {zjo})

< N(X) diamg({T"zo}).
It can be easily seen that z1 € N5 20({T?x0};>,) and that
lz1 — y|| < limsup ||T"zo — y|| for all y € X.
Using Theorem 1.9.22, we obtain that ¢o(w, ({T"zo})) = NS c0({T7x}j>n)-
It follows that x1 € €o(w,({T"x0})). Using property (P) we obtain that

x1 € M. By repeating the above process, we can obtain a sequence {z,}
in M with the properties:

for all integers m > 0,

Hmsup |21 — T 2| < N(X) diam,({T"z,}) (5.54)
and
|Tm+1 — yl| < limsup ||[T"x,, —yl|| for all y € X. (5.55)
Set Dy, :=sup ||xy, — T" x| for all m =0,1,2,---. Note
neN
diam,({T"xm}) = klim (sup{|| Tz, — T2y, | : 3,5 > k})
< sup || T'xp — TP,
i>j>0
< L sup ||@g — T2,
12520
< LD,

Moreover, from (5.54) we have, for £ € N

limsup | T %me1 — T2 < Llmsup ||z, — T 2|
n—oo n—oo
< Llimsup ||Zmi1 — T"Tm ||
< LN(X) diam,({T"zm})
< L:N(X)D,,.

From (5.55), we have

”mm+1 - T€$m+1” < lim sup ||anm - Témerl ||

n—oo

L2N(X)D,y,

IN
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which implies that
Dm+1 < an for all m:071’2’... ,
where 7 = L?N(X) < 1. Now proceeding with the same argument as in the

proof of Theorem 5.5.7, we conclude that {x,,} converges strongly to a fixed
point of Tin M. |

Using weak uniformly normal structure coefficient WCS(X), we now
establish an existence theorem for asymptotically regular Lipschitzian mappings.
Before proving Theorem 5.5.10, we first establish a preliminary result.

Proposition 5.5.9 Let C be a nonempty closed subset of a Banach space X
and T : C — C an asymptotically regular mapping such that for some m € N,
T™ is continuous. If limsup [Tz — z|| = 0 for some x € C and z € C, then

z € F(T).
Proof. Note T"™x — z as 1 — 00. So

HZ_TnH-mxH S HZ—T"%H + ||Tn'il‘—Tni+m,’EH
m—1

|z = Tl + 37 T+ — T+,
v=0

IN

By the asymptotic regularity of T, T™t™x — z as i — oo. Because T™ is
continuous, it follows that

Tz =T™(lim T"z) = lim (T™"™z) = 2.

1—00 1—00
Because 2 = T™z =T?"z = ... =T™z for all s € N,
lz =Tz = |T™2 —T™ || — 0 as s — .

Therefore, z € F(T). |

Theorem 5.5.10 Let X be a Banach space with WCS(X) > 1, C a nonempty
weakly compact convex subset of X, T : C' — C a Lipschitzian mapping such
that iminf o (T™) < /WCS(X). If T is asymptotically reqular on C, then T

has a fized point.

Proof. Because one can easily construct a nonempty closed convex separable
subset Cy of C such that Cp is invariant under T, i.e., T(Cy) C Cp, we may
assume that C' is itself separable. The separability of C' makes it possible to
select a subsequence {n;} of natural numbers such that

liminf o(T") = lim o(T™) < /WCS(X)

n—oo 11— 00
and

{T™x} converges weakly for every = € C.
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Now we can construct a sequence {z,,} in C in the following way:

Tmt1 = w — lim T™z,,,m > 0.

{ xg € C  arbitrary,

11— 00

By the asymptotic regularity of T on C, we have

Tmg1 =w — lim T tkg,  for all k > 0.

Set

11— 00

T i= lmsup |41 — T2 || and L := limsup o(T™).

1—00

i—00

By the definition of WCS(X), we obtain

WCS(X) =sup{M >0: M -limsup ||z, —u|| < D[{z,}]},

where the supremum is taken over all weakly (not strongly) convergent sequences

{z,} in X with z,, = u. Then we have

T = limsup || m41 — T @ || <

1—00

1

wesgo el

However, from the w-lsc of the norm of X, we obtain that

DT xm}] =

<

IN

IN

limsup(limsup || T @, — T™ 2,|)
i— 00 j—00
lim sup (Hm sup(|| 7™ 2, — T™ T 2, |
HIT" " 2, — T 1))
lim sup(lim sup(o (7" ||z — T |

n;—1

+ 3 T gy — T )
v=0

limsup o(T™) x limsup ||z, — T x|
i—00 j—o0
Llimsup(limsup [|[T"*@y,—1 — T™ x4, ||)

j—oo k—oo

Llim sup(im sup (|| 7™z, — T™ " 2, ||

j—o0 k—oo
+‘|Tnj+nkm7n—1 —Tmk Tm—1 H)

Llimsup(limsup(o(T")||@m — T"* @ pm—1||

j—o0 —00
njfl

3T g — T, )
v=0

2
L Tm—1-
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Hence
L2
D ——
m = oS (X)
where n = L?/W(CS(X) < 1.

Again by w-Isc of the norm of X, we have

Tm—1 = Nrm—1 for all m € N|

[#m = Tmirll < limsup(f|zm — T @l + [T Tn — Tmeal])

1—00

< limsup |y, — T" x| + Hmsup ||2pme1 — T 2|
< limsup(limsup [T zpm—1 — T @ ||) + Tm
1—00 Jj—o00
< limsup(limsup(||T™ @y, — T™ " 21 ||
i—00 j—oo
T w1 = T @) + 1
< limsup(limsup(o(T™)||€m — T™ Tp—1]|
i—00 j—oo
n;—1
2 Ty = T )
v=0
= Lrypa1+7Tm
< (L + n)rmfh

and it follows that {z,,} is a Cauchy sequence in C. Let lim z,, =p € C.
m— 00
Note

Ip = Zmprll + J2mia = T || + o (T™) l2m = pll,

lp—=T"p P = Zmia || + [|2mpr = T || + | T" 2 — T™p

<
<

which implies that

limsup [|p — T"p|| < |Tm+1 = pll + 7m + Ll|zm — pl| — 0 as m — oo.

1—00

Hence T™p — p as ¢ — oo. Therefore, T'p = p by Proposition 5.5.9. I

5.6 Non-Lipschitzian mappings

Let C' be a nonempty subset of a Banach space X, T : C' — C' a mapping, and
fix a sequence {a,} in R* with a,, — 0. Recall that

[Tz — T"y||
[z =yl + an

n(T”)Sup{ :x,yGC,w#y}

is nearly Lipschitz constant of T™. Then T is nearly Lipschitzian with sequence

{(n(T™), an)} i
IT"z — Tyl < n(T™)(||lx — y|| + a,) for all z,y € C' and n € N.
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T is nearly asymptotically nonexpansive with sequence {(n(1"), a,)} if for each
neN, n(T") > 1 with lim n(T"™) =1 and

17"z — Tyl < n(T™)(||x — y|| + a,) for all z,y € C.

In this section, we study fixed point theorems for non-Lipschitzian mappings
in Banach spaces. We begin with the following preliminary result.

Proposition 5.6.1 Let C' be a nonempty closed subset of a Banach space and
T:C — C a demicontinuous mapping. Suppose that T"u — z* as n — oo for
some u,x* € C'. Then x* is a fixed point of T.

Proof. Let u,, = T"u for all n € N. Then {u, } and {Tu,} converge strongly to
x*. By the demicontinuity of T, {Tu,, } converges weakly to T'z*. By uniqueness

of weak limits of {T'u,}, we have z* = Tx*.

In view of Proposition 5.6.1, we remark that Theorem 4.1.18 is valid for
demicontinuous nearly Lipschitzian mappings. In fact,

Theorem 5.6.2 Let C be a nonempty closed subset of a Banach space and T :

C — C a demicontinuous nearly Lipschitzian mapping with sequence {(n(T™),

an)}. Suppose oo (T) = limsup[n(T™)]*/™ < 1. Then we have the following:
n—oo

(a) T has a unique fized point v € C.
(b) For each x € C, the sequence {T"x} converges to v.
(c) |Tmx —v|| <302 n(TH)(||lx — Tz||+ M) for allz € C and n € N, where
M = sup a,.
neN
Proof. Let € C. By Theorem 4.1.18, {T"x} is a Cauchy sequence in C.
Let lim T"z =wv € C. It follows from Proposition 5.6.1 that v is a fixed point

n—oo

of T. I

We now give demiclosedness principle for nearly Lipschitzian mappings in a
Banach space.

Theorem 5.6.3 Let X be a Banach space with a weakly continuous duality
mapping J, : X — X* with gauge function p. Let C' be a nonempty closed
convex subset of X and T : C — C a uniformly continuous nearly Lipschitzian
mapping with sequence {(n(T™),a,)} such that nh_)rr;o n(T") =1. Then I =T is

demiclosed at zero.

Proof. Let {x,} be a sequence in C such that x,, = z and lim ||z, —T2z,| = 0.
n—oo

Then x € C because C' is weakly closed. The uniform continuity of 7" implies
that

lim ||z, — T™x,|| =0 for all m € N.



5.6. Non-Lipschitzian mappings 261

It follows that T™x,, — x for all m € N. Set ry, := limsup || Tz, — x|, m € N.

n—oo
Let m,s € N. Because 7™ %z, — x as n — oo, by the Opial condition, we
have

Pmts = limsup [Tz, — 2| < limsup [Tz, — T°z|
< limsupn(T*)(| Tz, — x| + as)
= 0(T°)(rm + as).
It follows that
limsupr, < rp,

S— 00
which implies that

limsupry, < liminfr,,.
s§—00 m—00

Thus, lim 7, exists. Suppose lim r, = r for some r > 0. Noting by
m— 00 m— 00

Theorem 2.5.23 that

1
([l +yll) = @) +/ (s Ju(z + ty))di for all 2,y € X.
0

For m,s € N, we have

(| Tz, —2||) = (T 5z, —T"x+T"x —x|)
= O(|T" " w, — T™xl])

1
+/ (T"x — 2, J (T "z, — Tz + t(T™z — x)))dt
0

IN

(T (1T — 2| + am))
1
+/ <me — X, Ju(Tm+sxn -T"x + t(Tm.Z‘ - m))>dt
0

Because T™*15z,, — x as n — 0o, we obtain
D) = O(limsup [Tz, — a)
O(n(T™)(rs + am))
— /Ol(Tm:E -z, J, (1 -t)(T™z —x)))dt
= om(T™)(rs + am))
/ |77 ~ slut|7™s ~
= T)(rs + am)) = (| T™x — x)),

IN

which implies that
O(|T"z —zl) < @Mm(T™)(rs + am)) = P(rm+s)-
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Because lim r; exists, we have

§—00

STz —z|]) < SM(T™)(r+ am)) — ®(r) — 0 as m — oo.

Thus, T™x — x. Therefore, by the continuity of 7', we have z = T'z. I

Corollary 5.6.4 Let X be a Banach space with a weakly continuous duality
mapping J, : X — X* with gauge function u. Let C' be a nonempty closed
convez subset of X and T : C — C an asymptotically nonexpansive mapping.
Then I — T 1is demiclosed at zero.

The following theorem is an extension of Theorem 5.4.8 for demicontinuous
nearly asymptotically nonexpansive mappings.

Theorem 5.6.5 Let C' be a nonempty closed conver (but not necessarily
bounded) subset of a uniformly convex Banach space X and T : C — C a
demicontinuous nearly asymptotically nonexpansive mapping. Then the follow-
ing statements are equivalent:

(a) T has a fized point in C.
(b) There is a point g € C such that the sequence {T"xo} is bounded.

Proof. (a) = (b) follows easily.

(b) = (a). Assume that z¢ € C is such that the sequence {z,} defined by
2y = T"xg is bounded. By Theorem 3.1.5, let Z,(C,{z,}) = {z}, and let {ym}
be a sequence in C defined by y,,, = Tz form =1,2,--- .

For two integers n > m > 1, we have
| —ymll = [T 20 = T™2]| = |T™(T" ") = T™2]

and hence

Ta(Ym, {Tn}) <N(T™)(ra(2, {20 }) + am).
This shows that r4(ym, {zn}) — 7a(C,{zn}) as m — oco. By Theorem 3.1.8,
this would imply that 7™z — z as m — oo. Because T is demicontinuous,
hence by Proposition 5.6.1, z € F(T). 1

In the following results, WC'S(X) plays an important role in the existence
of fixed points of nearly Lipschitzian mappings.

Theorem 5.6.6 Let X be a Banach space with WCS(X) > 1, C a nonempty
weakly compact convex subset of X, and T : C' — C a demicontinuous nearly
Lipschitzian mapping with sequence {(an,n(T™))} such that n(T™) — 1 asn —
co. If T is weakly asymptotically reqular on C, i.e., T"x — T2z — 0 for all
x € C, then T has a fixed point in C'.

Proof. Let U be a free ultrafilter on N. We then define a mapping S on C' by

Sx:w—libr[nT"x, xzeC.
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Because C' is weakly compact, Sx is well defined for all x € C. The asymptotic
nonexpansiveness of T' clearly implies that S is a nonexpansive on C. Hence, S
has a fixed point v € C, i.e.,

w—1limT"y = v.
u
This yields a subsequence {T"iv} of {T"v} converging weakly to v. By the
property of WCS(X)

1
timsup [T = vl < wregryy

By the weak asymptotic regularity of T', we have

DH{T™v}]. (5.56)

T™+Py — v as t — oo for any p > 0.

On the other hand, for each 4,5 € N with ¢ > j, by the w-lsc of the norm || - ||
we have

[T 0 =T ol < p(T")([lo =T 0| + an,)
< (™) (liminf [T" Py — T 0)| + an, )
(with p=n; —n;)
(L) (=) o [0 — T 0] + ) + ]

IN

Taking the limit superior as ¢ — co, we get

limsup | T"v — T™v|| < n(T™) hmsup v —T"v|| + an,

and hence from (5.56), we have

li?isolipHTmU—U” < WD[{TWU}]

1
< 7hmsu lim ||[T"v —T™ v
o msup( i | I

hmsup||v T,

= WC’S( )

which implies that
(WCS(X) — 1) limsup [|[T"v — v|| <0,
i—00
ie., lim T™v = v. By the demicontinuity of T, lim T"v = v implies w —
71— 00

lim 7" 1y = Tw. By weak asymptotic regularity ofT we have Tiyp—T" 11y —

17— 00

0 implies w — lim 7™ %'y = v. Hence by the uniqueness of weak limit of

11— 00

{T™*1v}, we conclude that v = Tv. 1

Corollary 5.6.7 Let X be a Banach space with WCS(X) > 1, C a nonempty
weakly compact convexr subset of X, and T : C — C' an asymptotically non-
expansive mapping. If T is weakly asymptotically regular on C, then T has a
fixed point in C'.
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5.7 Pseudocontractive mappings

In this section, our aim is to study a class of continuous pseudocontractive
mappings in Banach spaces. Strongly pseudocontractive mappings will play an
important role in many of the existence theorems for pseudocontractive map-

pings.

Let X be a Banach space with dual X*. Then a mapping T with domain
Dom(T') and range R(T) in X is said to be strongly pseudocontractive if there
exists a positive constant k& and such that

o —yll <1 +t)(z —y) — ki(Tz — Ty
for all x,y € Dom(T) and all t > 0.
For k = 1, such mappings are called pseudocontractive.

Following Proposition 2.4.7, we are able to formulate an equivalent definition
of strongly pseudocontractive mapping as follows:

The mapping 7' : Dom(T) C X — X is strongly pseudocontractive if for
each z,y € Dom(T), there exist a positive constant k and j(x —y) € J(z — y)
such that

(Tx =Ty, j(x—y)) < kllz —y||*.

It is easy to see that the mapping T is pseudocontractive if for each x,y € D(T),
there exists j(z —y) € J(x — y) such that

(Tz =Ty, j(z —y)) < llz—yl* (5.57)

We note that every nonexpansive (contraction) mapping is pseudocontractive
(strongly pseudocontractive), but the converse is not true. In fact, if T' is non-
expansive with domain Dom(T), for each z,y € Dom/(T) and j(x—y) € J(z—y),
we have

(T =Ty,jlx—y) < [|Tz—Tylllilz -yl < [z -yl

We now give examples of pseudocontractive mappings that are not non-
expansive.

Example 5.7.1 Let H = R? be the Hilbert space under the usual Fuclidean
inner product. If v = (a,b) € H, we define v+ = (b,—a) € H. Trivially, we
have
(w,zt) = 0,fla*| = ||;
@ty = (zy), et =yt =z -yl

and
(x,y) + (2, y) =0 for all z,y € H.
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Let C be the closed unit ball in H, Cy = {x € H : ||z|| < 1/2} and Cy =
{re H:1/2 <|z| <1}.

We define the mapping T : C — C by

T +azt if x ey,
B z/|z|| —z+at if x €.

We now show that T is Lipschitz continuous. One easily shows that
| Tz — Ty|| = V2||z — yl|| for all z,y € C;.

For x,y € Csy, we have

2 2

]l -yl

z Y

el Iyl

Uzl Nyl = (2, 9))

(e =l = l=ll = ly1)?)

1
]l -yl

2
e = vl
[l - Iyl

S 8”‘1: 7y||27
which implies that
€ )
T —Ty| < ] . H e =yl + ot — g
Tl ~ Tl
< Slz—y.

Now let © and y be in the interiors of C1 and Csq, respectively. Then there
exist A € (0,1) and z € C1 N Cy for which z = Az + (1 — X)y. Hence

[Tz =Tyl < |Tz—Tz||+ [Tz —-Ty|
V2||z — 2] + 5]z — y|
5[l — 2]l + 5[z — vl

= Sllz—yll

IAIA

Thus, ||Tx — Ty| < 5|z —y|| for allx,y € C, i.e., T is Lipschitzian on C.

We now show that T is pseudocontractive. For x,y € C, set I'(z,y) =
|z —y||> = (T — Ty, x —y). Hence to show T is a pseudocontractive, we need to
prove that T'(z,y) > 0 for all x,y € C. We consider the following three cases:

Case 1. x,y € Cy:
Obviously, T'(x,y) > 0 for all z,y € Cy.
Case 2. x € Cy and y € Cy:
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We have

M) =l ol = el = ol + I - S22

[yl
(z,y)
lyll

Because 1 — 2||y|| < 0 fory € Co, (x,y)/(|z|lllyll) has its minimum, for fived
llz|| and ||y|| when {z,y)/(||lz||lly|]|) = 1. We conclude that

20yl = llyll + (1 = 2[lyl)

C(z,y) > 20yl =yl + =] = 2]z]l]y]
= (lyl = =Dyl - 1)
> 0 forallz e Cy, yeCs.
Case 3. z,y € Cy:
Observe that
9 9 1 1
(Tz —Ty,z —y) = ||z — lzlI* + [lyll = l[ylI"+ | 2 - T2l = Tl (z,y)

(z,y)
[yl

= llll =l + llyll = lyl* + @llelllyl = Nl = llyi)

Hence I(z,y) = 2[lz| + 2]yl — =/l — lyll — (4llzlllyll — Izl — [ly]]){z, )/
(Izlllyl)- It is easy to see that 4||z||||y]| — ||z||— ||yl = O for all z,y € Cy. Hence
for fized ||z|| and ||y||,T(x,y) has a minimum when {(x,y)/(|z|||lyll) = 1. This
minimum is 2|22 + 2| — 4ellly] = 20|zl — Iy])?- Thus, T(z,9) > 0 for
all x,y € Cy. Therefore, T is Lipschitz continuous pseudocontractive, but it is
not nonexpansive.

Example 5.7.2 Let X =R and T : Dom(T) = [0,1] — R be defined by
Te=(1-2%3)2  zel0,1].

Because T is monotonically decreasing, T' is pseudocontractive. Observe that
3/2 3/2

T 1y T 1 = 15 (3

43 23 16 4
B2 (22| 7
64 64

1 1

43 23

Hence T is not nonexpansive. Thus, continuous pseudocontractive is not neces-
sarily nonexrpansive.

We now establish an equivalent definition of pseudocontractive mapping in
a Hilbert space.
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Proposition 5.7.3 Let H be a Hilbert space. Then following are equivalent:
(a) T is a pseudocontractive mapping with domain Dom(T).
(b) [Tz —Ty|* < |z =yl + |1 = T)x — (I = T)y||* for all z,y € Dom(T).

Proof. (a) = (b). Let T be a pseudocontractive with Dom(T"). Then from
(5.57), we have

(Tx —Ty,z —y) < ||lz — y||* for all 2,y € Dom(T).
Observe that

Tz —Tyll> = [(I-T)z—I-T)y—(z—y)l
lz = yl* + |(I = T)x — (I - T)y|]?

2 -T)z—(I-T)y,z—y)

Iz —yl? + (I = T)x — (I = T)|?

—2{l|lz —y|* — (Tz — Ty,z —y)}

l = yl? + (I = T)x — (I - T)yl>.

IN

(b) = (a). Suppose for all z,y € Dom(T),
1T = Tyl|* < [lz — y[* + (I = T)a — (I = T)y]*
holds. Then we have

1Tz — Tylf? lz = ylI* + llz —y = (Tz = Ty)||?

lz = ylI* + |z = ylI* + | T2 = Ty||* — 2(Tx — Ty,x — y),

IN A

and it follows that (Tx — Ty, z — ) < ||z — y||*. 1

Proposition 5.7.4 Let H be a Hilbert space and T a nonlinear mapping on
H with domain Dom(T). Then T is strongly pseudocontractive if the following
inequality is satisfied:

T2 = Ty|* < [lz = y[|* + K| (I = T)a — (I = T)y]* (5.58)
for all z,y € Dom(T), where k € (0,1).
Proof. From (5.58), we have for all z,y € Dom(T)
T2 = Tyl* < llz = ylI* + k{lle = ylI* + | Tz = Tyl|* - 2Tz — Ty,z — y)},
which implies that

1-k
(T =Ty, —y) <t(0)le — gl = — =Tz~ Tyl

where t(k) = (1 + k)/(2k). |}
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The pseudocontractive mappings are easily seen to be more general than the
nonexpansive mappings. They derive their importance in nonlinear functional
analysis via their connection with an important class of nonlinear operators
defined as follows:

Let X be a Banach space. An operator A : Dom(A) C X — X is said to be
accretive if for each x,y € Dom(T) and t > 0, the following inequality holds:

lz =yl < llz -y + t(Az — Ay)||. (5.59)
An operator A is said to be dissipative if —A is accretive and A is expansive if

|Az — Ayl > ||z — y|| for all z,y € Dom(A).

Example 5.7.5 Let X =R and A: Dom(A) C X — R a real-valued increasing
(nonincreasing) function. Then A is accretive (dissipative).

By Proposition 2.4.7, we obtain

Proposition 5.7.6 Let X be a Banach space and T a nonlinear operator on X
with domain Dom(T). Then the following are equivalent:

(a) T is an accretive operator.

(b) For each x,y € Dom(T), there exists j(x —y) € J(x —y) such that

(Tz —Ty,j(z—y)) 2 0.

Proposition 5.7.7 Let X be a Banach space and T : Dom(T) C X — X a
mapping. Then T is pseudocontractive if and only if I — T is accretive.

Proposition 5.7.8 Let X be a Banach space and A : Dom(T) C X — X an
operator. If (I +tA) is expansive for all t > 0, then the following hold:

(i) A is accretive.
(ii) (I+tA)~! exists and (I+tA)~! is a nonexpansive mapping from R(I+tA)
into Dom(A).
Proof. Proposition 5.7.8 follows from (5.59). |

We now introduce a semigroup of type w:

Let C be a nonempty closed subset of a Banach space X and w a real number.
A semigroup of type w on C is a function S : RT xC — C satisfying the following
conditions:

(i) S(t1 +ta)x = S(t1)S(te)x for t1,ta > 0 and = € C;
(ii) [|S(t)z — S(t)y| < e*t|lz —yl| for t > 0 and 2,y € C;
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(iii) S(0)x = x for x € C,
(iv) S(t)x is continuous in ¢ > 0 for each = € C.

For each t > 0 and x € C, let Az = (S(t)z — z)/t, Dom(A) = {x € C :
lim_ Alx exists} and Az = lim Atz for all z € Dom(A). Then A is called the
t—0 t—0
(strong) generator of a semigroup S.

If w =0, S is said to be semigroup of nonexpansive mappings.
Remark 5.7.9 If C is a nonempty closed convex subset of a Banach space X
and A : C — X a continuous mapping, the following are equivalent:

(i) A is the generator of a semigroup S of type w on C.
(i1) For x,y € C, there exists j(x —y) € J(x —y) such that
(Az — Ay, j(z —y)) < wllz —y]?

A
and lim 2&+hAz,C)

JHm, . =0 forallz € C.

The following proposition plays a key role in the existence of solutions of
nonlinear operator equations.

Proposition 5.7.10 Let C' be a nonempty closed convex subset of a Banach
space X and T : C — X a continuous strongly pseudocontractive mapping with
constant k € (0,1) such that

lim d(x + hTz,C)

=0.
h—0t h

Then for each € > 0 with ek < 1, the range of (I — €T contains C.

Proof. Let u be an element in C' and € a positive number such that ek < 1.
For each x € C, define Bx = ¢T'x + u — 2. Then B is continuous on C' and for
x,y € C, there exists j(z —y) € J(z — y) such that

(Bzx — By, j(x —y)) = (e(Tx—Ty)—(z—y),jlx—y))
(ek — Dz —y|*

IN

Let x € C and for each h > 0, let x}, be an element of C such that
d(x + hTz,C) > ||z 4+ hTz — 3| — h2.

Note that
.z + Tz — a4
lim —mMm—— =

0.
h—0+ h

Define
y exp +hu+ (1 —h)x
h = .

1+¢
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Because C' is convex and zp,u and z are in C, it follows that y; € C, whenever
h € (0,1). Hence if h € (0,1) and A = (1 + )~ 1h, we have
d(z +ABz,C) < ||lz+ ABz — ||
(1 + &)z + heTx + hu — ha]
—lexp +hu+ (1 —h)x]||(1 +¢)~*
= e(1+¢e) Yo+ hTz — .

Hence )\lin(rJlJr d(x + ABz,C)/X = 0. So B is the generator of a semigroup V of
type (ke — 1) on C. Because

IV(#)e = V(tyyl| < eV ||z —y]| for t >0,

V(t) is a contraction from C' into itself. Hence V'(¢) has a unique fixed point
z; € C. Because

V(s)xy =V (s)V(t)xe = V() V(s)xy,
there is a unique point z € C such that V(t)z = z for all ¢ > 0. Thus Bz =0
and z — Tz = u. Therefore, the range of (I —T') contains C. |

The following example shows that convexity of C' cannot be removed from
Proposition 5.7.10.

Example 5.7.11 Let X = R? be the Euclidean space, C = {(z,y) € R? :
2?2 + 9% = 1} and A(x,y) = (y,—x) for all (z,y) € C. Then A is genera-
tor of a semigroup U of type 0 on C (in particular, U(t)(z,y) = (z cost +
y sint, —x sint+y cos t)), but the image of C under I —eA does not intersect
C for any € > 0.

We now introduce more general classes of nonlinear operators:

Let a: Rt — R™ be a function such that «(0) = 0 and liminf a(r) > 0 for

r—ro
all 7o > 0.

A mapping A : C C X — X is said to be a-strongly accretive if for each
x,y € C, there exists j(x —y) € J(z — y) such that

(Az — Ay, j(z —y)) = a(lle —y)]l= = yll. (5.60)

A mapping T is said to be a-strongly pseudocontractive if [ —T is a-strongly
accretive.

If a(r) = kr for some k > 0, then A is strongly accretive (with strongly
accretive constant k) as in this case (5.60) reduces to

(Az — Ay, j(x —y)) = kllz —y|?

and T=1—A (ke (0,1)) is strongly pseudocontractive (with strongly pseu-
docontractive constant 1 — k) as in this case (5.60) takes the form of

(Tz =Ty, j(x —y)) < 1=Kz -yl
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One may easily see that the pseudocontractivity of T' implies the strong
pseudocontractivity of tT" for ¢ € (0,1). Also, the accretiveness of A implies the
strong accretiveness of tI + A for ¢t > 0.

Note that every continuous strongly accretive self-mapping on X is surjec-
tive.

The following proposition shows that the sum of accretive and strongly
accretive mappings is strongly accretive.

Proposition 5.7.12 Let X be a smooth Banach space, and T : X — X a
strongly accretive mapping with the strongly accretive constant k € (0,1). Let
S : X — X be an accretive mapping. Then T + S : X — X is also a strongly
accretive mapping with the strongly accretive constant k.

Proof. Because S is accretive and T is strongly accretive with the strongly
accretive constant k, then for any x,y € X, we have

(Sz— Sy, J(z —y)) > 0 and (Tz — Ty, J(x — y)) > kllz — y|*.
Hence
(T+8)z—(T+ 8y, Jx—y)) = (Tx—Ty,J(x —y)) + (Sz — Sy, J(x — y))
Kle -yl |

Y

Applying Proposition 5.7.10, we obtain the existence of zeros for continuous
and a-strongly accretive mappings.

Theorem 5.7.13 Let C be a nonempty closed convex subset of a Banach space
X and A: C — X a continuous and a-strongly accretive mapping such that

(i) iminf a(r) > ||Axo|| for some xy € C,
r—00

(ii) Tim d(x — hAz,C)

., N =0 forallxeC.

Then A has a unique zero in C.

Proof. We may assume that o = 0. Proposition 5.7.10 implies that C' C
(I + A)(C). Because (I + A) is invertible, the mapping ¢ = (I + A)~! is
a nonexpansive self-mapping on C and the fixed points of g are zeros of A.
It suffices to show that ¢ has a fixed point.

Let D ={x € C: Az =tz for some t < 0}. Then D is bounded. Indeed, for
x € D, we have

Az = tx for some t < 0 and (Ax — A0, j) > a(||z|)||z| for some j € J(z),
which imply that

a(llzDli=ll < [[Az[llz]| + [ A0][l]|
= tlla]* + [lA0]|[l].

Because t < 0, a(]|z|]) < [|A0||. Tt follows that D is bounded.
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Similarly, one can show that £ = {y € C : g(y) = Ay for some A > 1} is also
bounded.

Next, we show that (I — ¢)(C) is a closed set of X. For this, let {y,} be a
sequence in C such that y, — g(y,) — u for some u € X. Set x,, := g(y,). Then

Yn — 9(Yn) = Az, — u as n — oo.
Because for m,n € N, there exists j(z, — z;,) € J(¢n — @) such that
(Azp — Az, j(n — T)) > a([|n — T |20 — T,
this yields
O‘(Hxn - xm”) < ||A$n - Ame.
Hence {z,,} is a Cauchy sequence. Let x,, — x for some x € C. By the continuity

of I+ A, y, — y for some y € C. Thus, (I —g)(y) = u, i.e., (I —g)(C) is closed.

Now, let {t,} be a sequence in (0,1) with ¢, — 1. Then ¢,g9(y,) = y» for
some ¥y, € C, and it follows that

Yn — g(yn) = (1 - t:Ll)yn-
Because {y,,} is in E and E is bounded, y,, — g(yn) — 0 € (I — g)(C). Therefore,
g has a fixed point in C.

Note that the mapping A satisfies condition (i7) of Theorem 5.7.13 if and
only if I — A is weakly inward on C. Therefore, Theorem 5.7.13 yields the
following useful existence results for strongly pseudocontractive mappings in
Banach spaces.

Corollary 5.7.14 Let C be a nonempty closed convez subset of a Banach space
X and T : C — X a weakly inward continuous a-strongly pseudocontractive
mapping. Then T has a unique fized point in C.

Corollary 5.7.15 Let C' be a nonempty closed convex subset of a Banach space
X and T : C — C a continuous a-strongly pseudocontractive mapping. Then T
has a unique fized point in C.

We now give fundamental properties and existence results for pseudocon-
tractive mappings in Banach spaces.

Proposition 5.7.16 Let C be a nonempty subset of a Banach space X and
T : C — X a continuous pseudocontractive mapping. Let Ay : C — X be
a mapping defined by Ar := I +r(I —T) for any r > 0. Then we have the
following:

(a) Ar is one-one and AL' is nonezpansive.

(b) F(T) = F(A7').

(c) If C is closed, then Ap(C) is closed.

(d) If C is closed and convex and T is weakly inward, then the range of Ar
contains C, i.e., C C Ar(C).
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Proof. (a) By pseudocontractivity of T,
e =yl <ML +r(I =Tz —[I+r(I =Tyl = [[Arz — Agpy| for all 2,y € C,

and it follows that A7 is one-one. Therefore, A;l is nonexpansive.

(b) and (c) are obvious.

(d) Let z be a point in C. Then it suffices to show that there exists z € C
such that z = Apz. Define g: C — X by g(z) = (1 +7)"'(rTx + z). Then g is
weakly inward and continuous. Let z,y € C, there exists j(xz — y) € J(z — y)
such that

(Tz =Ty, j(x —y)) <llz—yl*
which implies that

r

(9(x) —g(y),j(x —y)) = 1+7,<T917—Ty,j(ﬂc—y)>

< =y
< 1+er yll

Then g is continuous and a r/(1 + r)-strongly pseudocontractive mapping.
By Corollary 5.7.14, there exists € C with g(x) = z, i.e., z = Ap(x).

Theorem 5.7.17 Let X be a uniformly convex Banach space satisfying the
Opial condition. Let C be a nonempty closed convex subset of X andT : C — X
a weakly inward continuous pseudocontractive mapping. Then I — T is demi-
closed at zero.

Proof. Let {z,} be a sequence in C' with z,, — z and lim ||z, — Tx,|| = 0.
n—oo

By Theorem 3.2.9, we have Z,(C, {z,}) = {z}.

Let Ar : C — X be a mapping defined by Ay := I + r(I — T) for any
r > 0. Then Proposition 5.7.16 (d) implies that C C Ap(C) and because Ar
is one-one, we conclude that g : C' — C defined by g = A;l is nonexpansive.
Because Ar(z,) = xp +7(x, — Txy), it follows that z,, = gz, +7(zn, — Txy)).
Now

len —g(an)ll = lg(zn +r(zn —Tan)) — g(zn)||
< 1|y — Tan| — 0 as n — oo.
Because
ra(9(2),{xn}) = limsup [z, —g(z)]|

n—oo

limsup ||g(x,) — g(2)|| < limsup ||z, — 2|,
n—oo n—oo

IN

it follows that g(z) = z. |

We now give existence results for pseudocontractive mappings.
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Proposition 5.7.18 Let {x,} be a bounded sequence in a Hilbert space H and
{rn} a strictly decreasing sequence in R™ such that

(Pn@n — Ti@n, Tn — Tim) < 0 for allm,n € N.
Then there exists x € H such that x,, — x.

Proof. Observe that
2(rn®y — TmTn, Tn — $m> = (rn+7rm) |z — l'mHQ + (1 — rm)(Han2 - ”xm”Q)

for all m,n € N. This implies that {z,} is a Cauchy sequence and hence there

exists x € H such that z,, — .

Theorem 5.7.19 Let C be a nonempty closed convex bounded subset of a Hilbert
space H andT : C — H a weakly inward continuous pseudocontractive mapping.
Then T has a fixed point.

Proof. Let u be an element in C and let {¢,,} be a strictly increasing sequence
in (0,1) with ¢,, — 1. Define a mapping T,, : C — X by

Tox=(1—-ty)u+t, Tz, z€C, neN.

Then for each n € N, T, is a continuous strongly pseudocontractive mapping
and also T;, is weakly inward because C' is convex. By Corollary 5.7.14, there
exists exactly one point z, € C such that z, = (1 — t,)u + t,Tx,.

Set r, = t,jl — 1. Then

(Fo@n — rm@m, Tn — Tm) = (Fo — ) {0, T — ) + Ty — T,
*(xn - xm); Tp — zm>

< (rp — ) (U Ty, — Ty

Without loss of generality, we may assume that v = 0. By Proposition 5.7.18,
r, — x. It follows from the fact x, — Tz, — 0 and continuity of 7" that

x="Tx. I

Theorem 5.7.20 Let X be a uniformly convex Banach space and C' a nonempty
closed convex subset of X (with 0 € C). Let T : C — X be a weakly inward
continuous pseudocontractive mapping. Then T has fixed point in C' if and only
if the set E ={x € C:Tx = Ax for some A > 1} is bounded.

Proof. Suppose that E is bounded. Define a mapping Ay : C — X by
Ap =1+ r(I —T) for any > 0. Proposition 5.7.16 implies that C C Ar(C)
and because Ap is one-one, we conclude that g : C' — C' defined by g = A;l is
nonexpansive.

Now, by Theorem 5.3.5, it suffices to show that the set

D={yeC:g(y) = py for some pu> 1}
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is bounded. Suppose that g(y) = py for u > 1. Select x € C such that y = Apa.
Then Tx = (1 + (u — 1)/(ur))x, ie., x € E. Because © = py, it follows that D
is bounded.

Conversely, suppose that v is a fixed point of T and x € E. Then Tz = Ax
for some A > 1. By the pseudocontractivity of T,

[z =l <[+ r)(z —v) —r(Az = o) = [[(1+7 —rX)z — 0.

By choosing r = (A — 1)7!, we have ||z — v| < |jv||. Therefore, E is
bounded.

Corollary 5.7.21 Let C be a nonempty closed convez subset of a Banach space
X and T : C — C a Lipschitzian pseudocontractive mapping. Suppose C has
the fized point property for monexpansive mappings. Then T has a fixed point
in C.

Theorem 5.7.22 Let C' be a nonempty closed convex subset of a Banach space
X and T : C — X a weakly inward continuous pseudocontractive mapping.
Suppose C' has the fized point property for nonexpansive self-mappings. Then T
has a fized point in C.

Proof. Note the mapping g : C — C defined by g := A;l is nonexpansive
by Proposition 5.7.16. Therefore, there exists v € C such that v = Apv =

v+ r(v—Tv) from which v € F(T). |

Corollary 5.7.23 Let C be a nonempty closed convex subset of a Banach space
andT : C' — X a weakly inward nonexpansive mapping. Suppose C' has the fixed
point property for nonexpansive self-mappings. Then T has a fixed point in C'.

Finally, we discuss the structure of the set of fixed points of pseudocontrac-
tive mappings.

Theorem 5.7.24 Let C be a nonempty closed convex subset of a strictly convex
Banach space X and T : C — X a weakly inward continuous pseudocontractive
mapping. Then F(T) is closed and convez.

Proof. Proposition 5.7.16 implies that the mapping g := A;l is nonexpansive
and F(T) = F(g). Hence F(T) is closed and convex by Corollary 5.2.29. |
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Exercises

5.1 Let C be a nonempty closed subset of a Banach space X and T': C — X
a continuous mapping with the property that for each = € C, there is
an ay, 0 < a; < 1 such that (1 — ag)zr + a,Tx € C. Let 1 € C and
inductively for n € N define z,+1 € C by z,41 = (1 — ap)zn + Ty,
where «,, € (0, 1] is chosen so that x,+1 € C. Show that

(a) if z = lim z, exists and Y, @, = 0o, then z is a fixed point of T,

n—oo
(b) if T is a contraction mapping, then z = lim z,, exists.

n—oo

5.2 Let X be a Banach space and T': X — X a mapping satisfies the condition:
[Tz — Ty|| < ¢(|lz —yl|) for all z,y € X,

where ¢ : [0,00) — [0, 00) is a continuous function and ¢(¢) < t for t > 0.
Show that I — T is bijective and (I — T')~! is continuous on X.
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5.3 Let C be a nonempty closed convex subset of a Banach space X and T :
C — X a weakly inward contraction mapping. Show that 7" has a unique
fixed point in C.

5.4 Let C be a nonempty closed convex subset of a Banach space X and T :
C — C a nonexpansive mapping. If A =1 —T, show that R(I +\A) D C
for every A > 0.

5.5 Let C be a nonempty subset of a normed space X. A function o of C'xC —
[0, 00) is symmetric if a(z,y) = a(y,z) for all z,y € C. Let T : C — C
be a mapping. T is said to be generalized nonexpansive if there exist

symmetric functions a;,i = 1,2,3,---,5 of C x C into [0,00) such that
5
sup{Zai(o:,y) N TRS C’} <1 and for all z,y in X,
i=1

|T2—Ty|| < arlle—yl+aslle~Tyl|+as]ly—Tal|l+aslle—Ta| +as |y Ty,

where a; = a;(z,y).

If C is a nonempty convex subset of a uniformly convex Banach space
X, and T : C — C is a generalized nonexpansive mapping with F'(T) # 0,
show that for each ¢ € (0, 1), the mapping defined by

Tix=(1—-t)a+tTx,z € C
is asymptotically regular.

5.6 Let X be a strictly convex Banach space and C' a weakly compact convex
subset of X that has normal structure. Let § = {T%,Ts,---,T,} be a
finite commuting family of nonexpansive mappings of C' into itself. Show
that N, F(T;) # 0.

5.7 Let X be a Banach space, C' a nonempty closed bounded subset of X
that is star-shaped with respect to 0, and T': C — C' an asymptotically
nonexpansive mapping with sequence {k,} and uniformly asymptotically
regular (i.e., for each ¢ > 0, there exists ng € N such that |77z —T" " z|| <
¢ for all n > ng and all z € C). Let {\,} be a sequence in (0, 1) such that

lim A, = 1. Show that
n—oo
(a) for each n € N, there exists exactly one z, € C such that z, =
(An k)T,

(b) zp, —Tx, — 0 as n — oo.

5.8 Let C be a nonempty subset of a normed space X and T : C — C a
mapping. 7 is said to be weakly asymptotically semicontractive if there
exist a mapping S : C x C — C and a sequence {k,} C [1,00) such
that Tx = S(z,z) for all z € C while for each fixed z € C,S(-,x) is
asymptotically nonexpansive with sequence {k, } and for fixed z € C and
fixed n € N, the mapping y — S(-,y)"z is compact on C.
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If X is a reflexive Banach space possessing a weakly continuous duality
mapping, C' is a nonempty closed convex bounded subset of X, and T :
C — C is weakly asymptotically semicontractive with data (S, {k,}) and
satisfies the condition:

for each € > 0, there exists an ng € N such that for all n > ng and all
zeC,
1S, )" (2) = S, 2)"(2)] <ce,

show that
inf {[l@ — Tz} =
(a) inf {||lz — T[]} =0,
(b) if (I —T)(C) is closed, it follows that F(T) # 0.

5.9 Let X be a Banach space with GGLD and the Opial condition, C' a nonempty
weakly compact convex subset of X, and T : C' — C an asymptotically
nonexpansive mapping. Show that I — T is demiclosed at 0.

5.10 Let X = R? with the ¢; norm, i.e., ||[(z,y)| = |z| + |y|. Let A and B be
operators in X defined by

D(A) = D(B) ={(0,0),(0,1)}
and
A(0,0) = (0,0) = B(0,1), A(0,1) = (1,1/2), B(0,0) = (1, 1).

Show that both A and B are accretive, but A + B is not.



Chapter 6

Approximation of Fixed
Points

The purpose of this chapter is to develop iterative techniques for approximation
of fixed points of nonlinear mappings by using the Picard, Mann, and Ishikawa
iteration processes.

6.1 Basic properties and lemmas

In this section, we develop preliminary results for approximation of fixed points
of nonlinear mappings.

Proposition 6.1.1 Let X be a Banach space satisfying the Opial condition, C
a nonempty weakly compact subset of X, and T : C' — C' a mapping such that
(i) F(T) # 0,
(#6) I —T is demiclosed at zero.
Let {x,,} be a sequence in C satisfying the following properties:

(D1) lim ||z, — p|| ezists for allp € F(T);
(D2) {zn} is an AFPS, i.e., lim ||z, — Tz,| = 0.
Then {x,} converges weakly to a fixed point of T.

Proof. Because C' is weakly compact, it follows that {z,} has a weakly conver-
gent subsequence {x,; }. Suppose {z,,} converges weakly to p. Because {x,, }
C C and C is weakly closed, then p € C. From (D), lim ||z, —Tx,|| =0 and

because I — T is demiclosed at zero, we have (I —T)p = 0, so that p € F(T).
To complete the proof, we show that {z,,} converges weakly to a fixed point of
T; it suffices to show that w,({z,}) consists of exactly one point, namely, p.
Suppose there exists another subsequence {z,, } of {z,} that converges weakly
to some g # p. As in the case of p, we must have ¢ € C and g € F(T). It follows

R.P. Agarwal et al., Fized Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3_6,
(© Springer Science+Business Media, LLC, 2009
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from (D;) that lim ||z, —p|| and lim ||z, — ¢|| exist. Because X satisfies the
n—oo n—oo

Opial condition, we have

lim ||z, —p|| = lim Hmn] —p|| < lim Hxn] —q|| = lim ||z, — ql,
n—oo j—o0 Jj—o0 n—oo
i ||z, — gl = lim [|z,, —ql[ < lim [[zn, —p|| = lim [[z, —p]|,
n— 00 k—oo k—oo n— 00

a contradiction. Hence p = ¢ and {x,} converges weakly to p. |

Proposition 6.1.2 Let C be a nonempty closed convex subset of a Banach
space X and T : C — C a mapping such that

(i) F(T) # 0,

(1) I — T is demiclosed at zero.
Let {x,,} be a sequence in C' that satisfies properties (D1) and (Ds). Suppose
{zn} holds one of the following conditions:

(a) X is uniformly convex with Frechet differentiable norm and

lim (z,,J(p — q)) exists for all p,q € F(T). (6.1)

(b) X is reflexive, X* has the Kadec-Klee property, and lim |[tz,+(1—t)p—q|
exists for all t € [0,1] and for some p,q € wy({zn}).

Then {x,} converges weakly to a fixed point of T

Proof. We show that w,, ({z,}) has exactly one point. Let u,v € wy,({zn})
with u # v. Then for some subsequences {z,,} and {z,,} of {z,}, we have
Tp, = u and z,, — v. By (D), lim |z, — Txz,| = 0, which implies by the

demiclosedness of I — T at zero that u,v € wy,({z,}) C F(T).
(a) From (6.1), we have

(u, J(p = q)) = d (say), and (v,J(p—q)) =d;
S0
(u—wv,J(p—q)) =0 for all p,q € F(T). (6.2)
From (6.2) we obtain that
lu = vl* = {u—v,J(u—wv)) =0,

a contradiction. Hence w,, ({x,}) is singleton. Therefore, {x,} converges weakly
to a fixed point of T'.

(b) By assumption, lim ||¢x,+ (1 —t)u—v|| exists. Corollary 2.4.17 guaran-
tees that u = v. Hence w,, ({x,,}) is singleton. Therefore, {x, } converges weakly

to a fixed point of T'.
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Proposition 6.1.3 Let X be a reflexive Banach space, C' a nonempty closed
convex subset of X, {x,} a bounded sequence in C, and T : C — C a nonez-
pansive mapping. Suppose {x,} satisfies one of the following conditions:

(D3) lim ||z, — Tx,| = 0.
(D3) nh—>Holo [#n41 — T = 0.

Then the set M defined by (2.32) is a nonempty closed convex bounded and
T-invariant subset of C'.

Proof. Define a real-valued function ¢ on C by ¢(z) = LIM,, ||z, — z||? for each
z € C. Theorem 2.9.11 implies that M is a nonempty closed convex bounded
set. If lim ||z, — Tx,|| =0, then for y € M

o(Ty) = LIM,|z, —Ty|*> < LIM,||Tz, — Ty|?
< LIM,|z, —ylI> = ¢(y).

Hence Ty € M, i.e., M is T-invariant.
Suppose now that lim ||z,+1 — T2,|| = 0. Observe that for y € M
n—oo

o(Ty) = LIMy|z, — Ty||2
LIM,||zns1 — Ty||* (as LIM,(a,) = LIM,(ans1))

< LIM,|Tz, — Tyl
< LIMy|lzn, —yl* = o(y).
Hence M is T-invariant. I

We now give some useful lemmas:
Lemma 6.1.4 Let {a,} be a sequence of nonnegative numbers such that
Yoo Ly =00. Suppose that B, > 0 for alln € N and >.0° | anf, < .
Then liminf 3, = 0.
n—oo

Proof. Suppose, for contradiction, that liminf 5, = § for some § > 0. Then

n—oo

there exists ng € such that 8, > §/2 for all n > ng. Then

Zan5n>gzan:ooy

n>ngo n>ng
a contradiction. Therefore, § = 0. I

Lemma 6.1.5 Let {0, } be a sequence of nonnegative numbers satisfying:

Ont1 < Bubn + vn for alln € N,
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where {Bn} and {v,} are sequences of nonnegative numbers such that
{8} € [1,00), D> (Bu—1) <o, (6.3)
n=1

2771 < 00. (64)
n=1

Then lim 6, exists. If liminfd, =0, then lim 6, = 0.

n—oo n—oo n—oo

Proof. For m,n € N, we have

5n+m+1 § 6n+m5n+m + 7n+m
< ﬁn+m(5n+m + 7n+m)
S ﬁner(ﬁnerfl (6n+m71 + ’Ynerfl) + '7n+m)
<

n+m n+m
( 11 5i> <5n+ > %‘>~
Hence

i < (T10)(5+351) .

m—0o0 .
=n

By the conditions (6.3) and (6.4), we have lim (H Bi) =1land lim Z% =

0. It follows from (6.5) that limsupd,, < liminf 5;. Therefore, lim (5n_exists.

n—o0 n—00 n—00

Suppose liminf §,, = 0. Then lim ¢, = liminfd, = 0. I

n—oo n—oo
Lemma 6.1.6 Let {a,}, {b.}, and {t,} be three sequences of nonnegative
numbers such that

ant1 < (1 —ty)an + bptn, neN, (6.6)

where t,, € [0,1],5.°7 , t, = o0 and lim b, =0. Then lim a, = 0.

n=1 n—oo n—oo

Proof. By (6.6),

0< ansr < JJO = ti)aw+> [ti IT a- tj)} b;. (6.7)
i=k i=k

j=it1

Observe that

n n

Zti H (1—-t;) <1foralln,keNand ﬁ(l—ti)gexp(—iti) — 0.
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Given £ > 0, pick k such that b; < e for all i > k, from (6.7), we have

0 < liminfa, < limsupa, < e.

n—0o0 n—o0o
Letting € — 0, we obtain lim a, = 0. I
n—oo

Lemma 6.1.7 Let {x,} and {y,} be two sequences in a uniformly convex
Banach space X such that

Tpt1 = (1 — Q)T + QnYn and ”ynH < Hxnll’ n €N,

where {ay,} is a sequence of nonnegative numbers in [0,1] with Y~ min{a,,
1—a,}=00. Then 0 € {z,, — yn}.

Proof. Suppose, for contradiction, that ||z, — yn| > ¢ > 0 forall n € N.
Observe that
|Znt1]l < llzn]l < -+ < ||x1]| for all n € N.

Then
||xn+1|| = ||<1 - an)mn + anynH
<zl {1 — 2min{an, 1 — an}dx (5)} .
[l ]
Inductively, we have
n—1 c
ENE {1 — 2min{a;,1 — a; }x (””>] 1] for all n > 1.
£

i=1

Because Y- min{a;,1 — a;} = oo, it follows that

n—1
[zall < ||$1||€9Cp< — 20x (€|> > min {ai, 1- az}> — 0 asn — oo
Z1 :
=1

and hence lim ||z,| = lim [|y,|| = 0. This is a contradiction. |
n—oo n—0o0

Lemma 6.1.8 Let C' be a nonempty closed convex bounded subset of a Banach

space X and {T,,} a sequence of Lipschitzian self-mappings of C such that
(i) Ly (> 1) is the Lipschitz constant of T, with >~ (L, —1) < oo,
(is) F := N2, F(T,,), the set of common fized points of {T,,} is nonempty.

n=1

For a given x1 € C, define the sequence {x,} by

Tpi1 = Thxy, neN. (6.8)
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Then the following hold:
(a) lim |z, —pl| exists for allp € F.
(b) If X is uniformly convex, then lim |tz, + (1 —t)f1 — fal ewists for all
n—oo
fi,fo€F, andt € [0,1]

(c) If X is uniformly conver with Fréchet differentiable norm, then lim

n—oo

(xn —p, J(p — q)) exists for all p,q € F.
Proof. (a) Let p € F. Then from (6.8), we have
|Zn+1 = pll = |Tozn — pll < Lal|lzn —pll, n €N,

and it follows from Lemma 6.1.5 that lim |z, — p|| exists, because > -,
n—oo
(Lp —1) < o0.
(b) Let p,q € F. Set

an(t): = |[ftzn+ (1 —t)p—ql,
Sn,m L= Tn+m—1Tn+m—2 te Tn7
bpm = HSn,m(txn +(1—1t)p) — (tanrm + (1 - t)p)H

We show lim a,(t) exists for all ¢ € [0,1]. Note that lim a,(0) and lim a,(1)

exist, so it remains to show that lim a,(t) exists for all ¢t € (0, 1).

n—oo

Observe that for z,y € C

Tn+m = Sn,mxn;
n+m—1 [e%s)
IS0 = Sumall < (T 2e)lo =l < (TL 2 )l ol
i=n i=n
and
antm(t) = [[t@p4m + (1 —t)p— 4|
S Htxn—i-'m + (1 - t)p - Sn,m(txn + (1 - t)p)”
+||Sn,m(txn + (1 - t)p) - QH

n+m—1

< bt (T 20w+ 0= 0=l

< bpm + (H Li>an(t) = bnm + Hpan(t), (6.9)

where H,, = [[;2, Li.
By Theorem 5.2.31, there exists a strictly increasing continuous function
v : Rt — Rt with y(0) = 0 such that

YISz + (1 = t)y) = Sz + (1 = 1)Sy)l|) < [l =yl - Sz - Sy||
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for all nonexpansive S : C' — X and t € [0,1]. It then follows that

'Y(Hrjlbn,m) = V(H;1||Sn,m(txn + (1 =t)p) — (tSnmzn + (L = t)p)]|)
l2n = pll = Hy, Hlznrm — o,

IN

which implies that

bnm < Hyy M (lln = pll = Hy Hl2nsm — pl)- (6.10)
Because lim ||z, — pl|| exists by part (a) and hm H, =1, then from (6.10)
we obtain that lim b, ,, = 0. Hence from (6.9), we have

n,m— o0

limsupa,,(t) < Um by, + liminf Hya, () = liminf a,, ().

m—oo n,m—00 n—00 n—00

Therefore, lim a,(t) exists for all ¢ € [0, 1].

n—oo

(c) Because the norm of X is Fréchet differentiable,

1 1
sl +hl* < Sll2l® + (B, Jz) + b(lIR) (6.11)

1
Sllall? + (b, Jz) < :

for all bounded z,h € X, where J is normalized duality mapping and b is the
b(t
function defined on R* such that }m(l) % =0.

Taking = p — ¢ and h = t(z,, — p) in (6.11), we get

%Hp_qH? + tan—p,J(p—q) < %i(t)

< Slo—al? + tea — . T — @) + btz — pl).
Because for each ¢ € (0, 1), nILH;O an(t) exists, it follows that

1 ) ,

Slp—al® + thgf;;ﬂ% —p,J(p—q))
< §nlij;oai(t)
< glp—dlP + tlimin (e, —p, J(p —4)) +olt).

This yields
timsup(, — p, J(p — q)) < liint (e, — . J(p ) + 2.

On letting t — 0%, we obtain that lim (x, —p, J(p — q)) exists. 1

n—oo
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6.2 Convergence of successive iterates

In this section, we develop techniques for convergence of {T™xz} to fixed points
of nonlinear operators in Banach spaces. Recall for contraction mapping T, the
sequence of iterates {T™x} converges strongly in Banach spaces. The following
example shows that even if a nonexpansive mapping 7" has a unique fixed point,
then {T"z} need not converge to it.

Example 6.2.1 Let C = By be the unit ball of the Hilbert space H = {5 and
{an} a sequence of real numbers in [0,1] such that [] -, a,, > 0. Consider the
linear mapping T : C — C defined by

T(l’l,I‘Q, o ) = (07a1x17a2z27 e )

The origin is the only fized point of T. It is easy to see that the sequence
of iterates {T"e} with e = (1,0,0,---) converges weakly to 0, but it does not
converge strongly to 0.

We first study strong convergence of {T™x} for nonexpansive mappings in a
Banach space.

Theorem 6.2.2 (Browder and Petryshyn’s theorem) - Let X be a
Banach space and T an asymptotically reqular nonerpansive self-mapping of
X. Suppose that T has a fized point and that I —T maps closed bounded subsets
of X into closed subsets of X. Then for each v € X,{T"x} converges strongly
to an element of F(T).

Proof. Let p € F(T). Then {||T"x — p||} is a nonincreasing sequence.
It suffices therefore to show that there exists a subsequence of {T"z} that con-
verges strongly to a fixed point of T. Let S be the strong closure of sequence
{T"z}. By the asymptotic regularity of T,

(I-T)T"x — 0asn— oo.

Hence 0 lies in the strong closure of (I—T)(S) and because the latter is closed by
hypothesis (as S is closed and bounded), 0 lies in (I —T)(.S). Hence there exists
a subsequence {T™z} such that 7"z — v € S such that (I — T)v = 0. Hence

Ty — v.

We now turn our attention to the study of weak convergence of the iterates
of nonlinear mappings.

Theorem 6.2.3 Let X be a Banach space satisfying the Opial condition, C' a
nonempty weakly compact convex subset of X, and T : C — C a nonexpansive
mapping with F(T) # 0. If forx € C, T"x — T""'x — 0 as n — oo, then
{T"x} converges weakly to an element of F(T).
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Proof. For z € C, define a sequence {z,} in C by z,, = T"z, n € Ng. Then
for v € F(T),

|Zni1 —v|| = ||T"Mz —o|| <||T"x —v| < ||z, —v| for all n € Ny,

and it follows that lim ||z, — v|| exists. By assumption
n—oo

Tz — T e =2, — Tz, — 0 as n — .

Thus, {T"z} is an AFPS of T. By Theorem 5.2.9, I — T is demiclosed at zero.
Applying Proposition 6.1.1, we conclude that {T™z} converges weakly to some

z € F(T).

We now study weak convergence of iterates of mappings that are more gen-
eral than nonexpansive mappings. We begin with the following proposition:

Proposition 6.2.4 Let C be a nonempty closed convex subset of a uniformly
conver Banach space X satisfying the Opial condition and T : C — C' a nearly
asymptotically nonerpansive mapping. Suppose that xq is the asymptotic cen-
ter of the bounded sequence {T™x} for some x € C. If the weak limit z of a
subsequence {T™x} of {T"x} is a fized point of T, then xy coincides with z.

Proof. It is obvious that rq(C,{T"z}) > r,(C,{T™z}). Because T™x — z, it
follows from Theorem 3.2.9 that Z,(C, {T™iz}) = {z} and so, for any € > 0, we
can choose an integer i, such that

2= o] < ro(CAT™a}) + 5.

Because z is a fixed point of 7" and T is nearly asymptotically nonexpansive, we
can choose an integer jo such that for all j > jg

le =102l < (T)(lz — Tl +a)
< @) (CAT 2} + £ +aj)
< ﬂ(Tj)(Ta(Ca {T":p})—i—s—i—aj),

and it follows that

limsup ||z — T"x|| = ro(C,{T"z}).

n—oo
By the uniqueness of asymptotic center, we have z = x. I

Theorem 6.2.5 Let X be a uniformly convexr Banach space satisfying the Opial
condition and C a nonempty closed convez (but not necessarily bounded) subset
of X. Let T : C — C be a demicontinuous nearly asymptotically nonexpansive
mapping and x € C. Then {T"x} converges weakly to a fized point of T if and
only if T is weakly asymptotically reqular at x.
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Proof. Assume that 7"z — z as n — co. We show that z € F(T'). By Theo-
rem 3.2.9, Z,(C,{T"z}) = {z}. Asin proof of Theorem 5.6.5, we have z € F(T').
Because T"z — z as n — o0, it follows that T?t'e — T"z — 0 as n — oo.
Conversely, suppose that T"t'z — T"z — 0 as n — oo. First, we show that
ww({T"x}) C F(T). Let y € w,({T"x}). Then we have a subsequence {T"z}
of {T"x} such that T™x — y. By the weak asymptotic regularity of T', we have

Tritme ~yasi— oo form=0,1,---.

By Theorem 3.2.9, we have
Z(C AT Mz}) = {y} for m =0,1,2,--- .

Let {ys} be a sequence in C defined by ys = T*y for s € N. For m,s € N with
m > s, we have

lys =T " 1Ty — (T )|

n(T*)(ly =T 2| + as),

A

which implies that

ra(ys, {T™x}) < n(T°)(ra(y, {T™x}) + as).

By Theorem 3.1.8, T%y — y as s — oo. By the demicontinuity of T', we
obtain from Proposition 5.6.1 that Ty = y. Thus, w,({T"z}) C F(T) is veri-
fied. To complete the proof, we show that w,,({T™z}) is singleton. Let u,v €
wyw({T™x}). Then we have two subsequences {T™ z} and {T™ z} of {T™x} such
that 7"z — w and T™ 2 — v. Then u,v € F(T). Let Z,(C,{T"z}) = {z}.
It follows from Proposition 6.2.4 that v = v = z. This proves that w,, ({T"z}) =

e |

Corollary 6.2.6 Let X be a uniformly convex Banach space satisfying the
Opial condition and C' a nonempty closed convex (but not necessarily bounded)
subset of X. If T : C — C is an asymptotically nonerpansive mapping and
x € C, then {T™z} converges weakly to a fixed point of T if and only if T is
weakly asymptotically reqular at x.

Proof. Because every asymptotically nonexpansive mapping is nearly asymp-
totically nonexpansive mapping, the result follows from Theorem 6.2.5.

6.3 Mann iteration process
We have already seen in Section 6.2 that asymptotic regularity of nonlinear map-

pings T is required even for weak convergence of {T"xz}. We drop asymptotic
regularity of nonlinear mappings when using the Mann iteration process.
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Definition 6.3.1 Let C' be a nonempty convex subset of a linear space X and
T :C — C a mapping. Let A = [a; ;] be an infinite real matric satisfying:

(A1) A is a lower matriz with nonnegative entries (an,; > 0 for alln, i € N
and ay; =0 for all i > n), i.e.,

a171 0 0 tee 0 0
as i @22 0 te 0 0
A— | @1 a2 azz - 0 O

)

ap,1 QAp2 Aanp3 - 0 0
(As) the sum of each row is 1, i.e., > iy an; =1 for alln €N,
(As) lim an,; =0 for alli € N.

Define a sequence {x,,} in C by 1 € C and
n
Tpa1 = T(Z aniz;), neN. (6.12)
i=1

Then the sequence {z,} defined by (6.12) is called the Mann iteration.

Such an iteration process is called the Mann iteration process.!

Example 6.3.2 Let A define the Cesaro matriz, i.e.,

1 0 0 0

L1 5 9

iilo
A=| 3 3 3

101 1 1

n o on o » 0

It is easy to see that A satisfies all the hypothesis related to the matriz A. Then
the sequence {x,} in C defined by (6.12) reduces to

n

1
Tpy1 = T(ﬁ Zl’i% neN.

i=1

In Definition 6.3.1, the matrix A is very general. The most useful Mann
iteration process can be obtained by choosing the matrix A as follows:

Un,i = (1 - an,n)an—l,iai =1,2,---,nandn=2,3,---, (613)

and
either a,,, =1 or an, <1 forallm e N. (6.14)

11t was introduced by W.R. Mann in 1953.
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The entries of matrix A satisfying conditions (6.13) and (6.14) can be con-
structed by choosing a sequence of nonnegative numbers in [0, 1] as below:

Choose a sequence {a;,} of nonnegative numbers satisfying the conditions:

0<a,<1 for alln € N and Zan:oo (6.15)

n=1
and then we can define the entries of A by

a1 =1, a; =0fori>1;
Ap+1,n+1 = On for n € N;
n .
Any1i = Qi [[p_;(1 —oy) fori=1,2,--- n;
Gpy1;=0fori>n+1,neN

More precisely, we now define the Mann iteration process, which will be used
to approximate fixed points of nonlinear mappings.

Definition 6.3.3 Let C' be a nonempty convex subset of a linear space X and
T:C — C amapping. Let {a,} be a sequence of nonnegative numbers satisfying
(6.15). Define a sequence {x,} in C by

{1160;

Tpy1 = M(2p,an,T), n €N; (6.16)

where M (zy,, an,T) = (1 — ap)zy + aTx,. Then sequence {x,} is called the
(normal) Mann iteration.

Using convexity structure defined in Section 4.3, we now define the Mann
iteration in a metric space.

Definition 6.3.4 Let C be a nonempty convex subset of a convexr metric space
X and T : C — C a mapping. Let {a,} be a sequence satisfying (6.15). Define
a sequence {x,} in C by

r1 € C
Tpt+1 = W(Txn; Tnj an)vn eN.
Then {x,} is called the Mann iteration.

First, we study a convergent Mann iteration for arbitrary continuous map-
pings.

Theorem 6.3.5 Let C' be a nonempty closed convex subset of a Banach space
X and T : C — C a continuous mapping. If the Mann iteration {x,} defined
by (6.16) converges strongly to a point p € C, then p is a fized point of T.

Proof. Let lim z, = p. Suppose, for contradiction, that p # Tp. Set €, :=

n—oo
xn — Tz, — (p— Tp). Because lim x,, = p and T is continuous, it follows that
n—oo

lim e, = lim [(z, — Tx,) — (p—Tp)] = 0.

n—oo n—o0



6.3. Mann iteration process 291

Because ||[p — T'p|| > 0, there exists ng € N such that |le,|| < ||p — Tp||/3 and
lzn, — zm| < |lp — Tp||/3 for all n,m > ng. Let N be any positive integer such
that Z@OHV a; > 1. Because x; 1 — x; = o;(Tz; — x;), it follows that

i=ng
no+N no+N
[2ng = Tnginviall = || D @i—zipa)|| =] D cilp—Tp+ei)
i:no i:no
no+N no+N
> ) ai(p—Tp)H 1 > e
i=n0 ’L‘=n(]
no+N
p—Tp
> > o= o - 222
i:no
e
- 3
The contradiction proves the result. I

We have shown that if the Mann iteration is convergent to v for a continuous
mapping 7', then v is a fixed point of 7. But if T" is not continuous, then there
is no guarantee that, even if the Mann iteration converges strongly to z, then z
will be a fixed point of T'. Let us give an example of a discontinuous mapping.

Example 6.3.6 Let X = C =1[0,1] and T : C — C a mapping defined by

0, if =0,
Tr = 1, if O<z<l,
0, if xz=1.

Then TO = 0 and the Mann iteration {x,} defined by (6.16) with x1 € (0,1)
and o, = 1/n, n € N converges to 1, which is not a fixed point of T.

The following results are very useful for approximation of fixed points of
nonexpansive type mappings.

Proposition 6.3.7 Let C be a nonempty convex subset of a normed space X
and T : C'— C a mapping with a fived point p in C such that

Tz —p|| < ||z —p|| for allz € C.

Then for the Mann iteration {x,} defined by (6.16) with {a,} in [0,1],
lim ||z, — p|| exists.

Proof. Because
[#n1 —pll < (1 = an)l|@n = pll + an|[Ten — pl| < [Jan — p| for all n € N,

it follows that lim ||z, — p|| exists. |
n—oo
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Proposition 6.3.8 Let C be a nonempty convexr subset of a uniformly convex
Banach space X and T : C — C a mapping with F(T) # ( satisfying the
condition:

T2z — p|| < ||l —p|| for all z € C and p € F(T).

Define a sequence {x,,} in C by (6.16) with the restriction that Y. min{a,,

1—ay,} =o0. Then liminf ||z, — Tx,|| = 0.

Proof. Proposition 6.3.7 implies that lim |lx, — p| exists for p € F(T).
Observe that
Tz, —p| < |z, —pl| forall n € N

and
Tnt1 —p = (1 —an)zy, + (T, —p) for all n € N.

Applying Lemma 6.1.7, we obtain that liminf ||x,, — Tx,| = 0. i

6.4 Nonexpansive and quasi-nonexpansive
mappings

We begin with a basic result on approximation of fixed points of nonexpansive
mappings in a uniformly convex Banach space with compact setting.

Theorem 6.4.1 (Krasnoselski) — Let C be a nonempty closed convex bounded
subset of a uniformly convex Banach space X and T a nonexpansive mapping of
C into a compact subset of C. Let x1 € C be an arbitrary point in C. Then the
sequence {x,} defined by

1 1
(K) Tyl = §(xn+Txn):M(xn,§,T), neN
converges strongly to a fixed point of T in C.

Proof. Note F(T) # () by Schauder’s theorem. Let p € F(T). Then lim

n—oo

|z — p|| exists by Proposition 6.3.7. Proposition 6.3.8 implies that
liminf ||z, — Tz, | = 0. (6.17)
Note

1
|Zn1 — Txnia| < 5(”3% = Tapia| + | T2y — Topgal])

IN

1
5(”3371 — Tpy1ll + |01 = Topga || + |20 — 2nal]),

which gives
lzns1 — Txpt1ll < ||xn — Txy|| for all n € N.
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This means that lim ||z, — Tz, exists. Using (6.17), we obtain
n—oo

|z — Tzp|| — 0 as n — oo. (6.18)

Because {Tx,} is in a compact set, there exists a subsequence {Tz,, } of
{Tz,} such that Tx,, — v € C. Hence from (6.18), we have z,, — v. Because
T is continuous, v is a fixed point of T. Note lim |z, —v| = klim |Xn, —

n—oo — 00

exists. Therefore, {x,,} converges strongly to a fixed point of T in C. 1

The following example shows that without the asymptotic regularity condi-
tion, the Picard iteration cannot be used to approximate fixed points of non-
expansive mapping, but the iteration procedure given by (K) can be used to
locate fixed point of the same mapping.

Example 6.4.2 Let X = C, which has the usual absolute value metric for
complex numbers, C ={z € C:|z| <1}, and T : C — C a mapping defined by

Tz =iz, z€ C, wherei=+—1.

It is easy to see that T is nonexpansive mapping with a fized point 0 € C.

Now, let zy # 0 be an arbitrary point in C. Then the Picard iteration of T
s given by
Zpg1 =Tzn =" 2y, n=0,1,2,---.

Hence
‘TnZO — Tn+120| = |ZnZO — Z.n+120‘
= i1 —i| - |z0] = V2|z0| - 0 as n — oco.

Note T is not asymptotically reqular at zo, and {T™zy = i"zp} does not converge
to zero.

However, from (K) we have

1 14 144\
Zn+1 = 7(271 + Tzn) = 5 An = < > 20-

2 2 2
Because
> 144" 144
Z|zn—zn+1 = Z 5 1-— 5 |20]
n=0 n=0
i( 1 )n+1
= —= |20]
n=0 \/5

= (V2+1)[z0] < o,

it follows that {z,} is Cauchy sequence. Let im z, = p. Because z, — Tz, —

n—oo

0 as n — oo, it follows that p = 0. Therefore, {z,} converges to the fized
point 0.
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The following result shows that the sequence {x,} defined by
Tn+1 :M(xn,ozn,T), neN

converges strongly to a fixed point of nonexpansive mapping 7' without the
assumption of convexity of domain.

Theorem 6.4.3 (Ishikawa) — Let C' be a nonempty closed subset of a Banach
space X and let T be a nonexpansive mapping from C into a compact subset of
X. Suppose there exist x1 € C and a sequence {a,} of real numbers satisfying
the conditions:

(i))0<a, <a<land | a, =00,

(i1) x,, € C for all n € N, where 41 = M(zy, a0, T).
Then {z,} converges strongly to an element of F(T).

Proof. Let D denote co(T(C)U{x1}). Then D is compact by Mazur’s theorem.
The sequence {z,} is clearly in D. It follows from assumptions (i) ~ (ii) that
{z,,} is a compact sequence in C. Hence there exists a subsequence {z,,} of
{zy} such that z,,, — v € C, as C' is closed. As in proof of Theorem 5.2.4, {x,,}
is an AFPS for T, i.e., x, — Tz, — 0. Thus, v € F(T). Note nlLrI;o |xn — vl

exists by Proposition 6.3.7. Therefore, lim ||z, —v|| = lim ||z,, —v| =0. |
n—oo k—o0

The next result is similar to Theorem 6.2.2 (Browder and Petryshyn’s
theorem), but the asymptotic regularity condition of 7" is not necessary.

Theorem 6.4.4 (Groetsch) — Let C be a nonempty closed conver subset of
a uniformly convex Banach space X, T : C' — C' a nonezxpansive mapping that
has at least one fized point, and {an} a sequence of nonnegative numbers such
that 0 < a, < 1 and Zzo:l an(l — ay,) = oo. Suppose that I — T maps closed
bounded subsets of C' into closed subsets of C. Then the Mann iteration {x,}
defined by (6.16) converges strongly to a fized point of T.

Proof. By Proposition 6.3.8, we have liminf ||z, — Tz, || = 0. It is easy to show
that lim ||z, — T, || exists (see Theorem 5.2.4). It follows that

lim ||x, — Tz,| = 0. (6.19)
n—oo

Let S be the strong closure of {z,}. By (6.19) and the fact that (I — T)(S) is
closed, 0 € (I —T)(S). Hence there exists a subsequence {z,, } converging to v,
where (I — T)v = 0. Therefore, {x,} converges strongly to v, as lim ||z, — ||

exists. I

We now consider a class of mappings that properly includes the class of
nonexpansive mappings with fixed points.
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Definition 6.4.5 Let C' be a nonempty subset of a normed space X and T :
C — C a mapping that has at least one fized point p in C. Then T is said to
be quasi-nonexrpansive if

Tz —p|| < ||z —pl| for allz e C.

Observation
e A nonexpansive mapping with at least one fixed point is quasi-nonexpansive.

e A linear quasi-nonexpansive is nonexpansive.

The following example shows that there exists a nonlinear continuous quasi-
nonexpansive mapping that is not nonexpansive.
Example 6.4.6 Let X =1, C=Bx ={x €loo : ||Z]jcc <1} and T : C — C
a mapping defined by

Tx = (0,x?,x§,x§7~--) for x = (x1,x9,23, ) € C.

It is clear that T is a nonlinear continuous self-mapping on C' with unique fized
point 0. Moreover,

IT2 = 0lloe = [1(0, 2,23, )lloo < (0, 21,22, )lloc = |2 = p|| for all z € C,

i.e., T is quasi-nonerpansive mapping. However T is not nonexpansive. Indeed,
forz=1(1/2,1/2,---) and y = (3/4 3/4,--+), we have

e =Tl = (0.5 g5 )| = 5> § = e =l

We now show that Theorem 5.2.4 is also true for quasi-nonexpansive map-
pings in a uniformly convex Banach space.

Theorem 6.4.7 Let C' be a nonempty closed convex subset of a uniformly con-
vex Banach space X and T : C' — C a quasi-nonexpansive mapping that has at
least one fized point p. Let {x,} be the Mann iteration defined by

Tn+1 = Tanzn = M(xn,an,T), n e Na

where {a,} s a sequence of nonnegative numbers that is bounded away from 0
and 1. Then {x,} has the following properties:
(D1) lim ||z, —p|| exists.
n—oo
(D2) lim |z — Tzy] = 0.
T

Moreover hm To, To, 1 Toyz1 — T, ez "

QAn—1

. Ta1x1|| =0.

Proof. (a) It follows that from Proposition 6.3.7.

(b) Suppose lim |2, — p|| = r. Because
Tny1 —p=(1—an)(@n —p) + (T2, — p) and [Tz, — pl| < |lzn —pl,

it follows from Theorem 2.3.13 that lim ||z, — Tz, =0. |
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Corollary 6.4.8 Let C be a nonempty closed convex subset of a uniformly con-
ver Banach space X and T : C'— C' a quasi-nonezpansive mapping that has at
least one fized point p. Let {x,} be the Mann iterative sequence defined by

Tnt+1 = ToTn = M(xn,a,T), n € N.

Then T, is asymptotically regular for each x1 €C, i.e., lim ||T"xy —T" 2| =0.
n—oo

Recall that a self-mapping T on a nonempty subset C' of a Banach space X
is demicompact if every bounded {z,} in C such that {z, — Tx,} converges
strongly contains a convergent subsequence.

The following example demonstrates that there is no connection between
continuity and demicompactness of mappings.

Example 6.4.9 Let X = C = [0,1] with the usual metric and T : C — C a
mapping defined by

| x/2,if x #0,
T"”{ 1, ifz=0.

Then T is not continuous. However, T is demicompact. In fact, if {x,} is a
bounded sequence in C such that x, — Tx, — 0 as n — oo, then by the Bolzano-
Weierstrass theorem, it follows that {x,} has a convergent subsequence.

The following example shows that there is a demicompact mapping that is
not compact.

Example 6.4.10 Let X = {5 and C = {ej,ea, -+ ,en, -} be the usual
orthonormal basis for f5. Define T : C' — C by

T(ei) =eit1, i€N

Then T is continuous (in fact, an isometry), but not compact. However, T is
demicompact. Indeed, if {e;}ien is a bounded sequence in C such that e; — Te;
converges, {e;}ien must be finite.

We now introduce a condition that ensures strong convergence of iterative
sequences to fixed points of nonexpansive type mappings.

Condition I. Let C be a nonempty subset of a Banach space X and T :
C — C amapping with F(T) # (). Then T is said to satisfy Condition Iif there
exists a nondecreasing function f : [0,00) — [0, 00) with f(0) = 0, f(¢) > 0 for
t € (0,00) such that

|le — Tx| > f(d(z, F(T)) for all x € C.
T is said to satisfy Condition II if there exists a constant ¢ > 0 such that

|l — Tx|| > ¢ d(z, F(T)) for all z € C.
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It is easy to see that mappings that satisfy Condition II also satisfy
Condition 1.

The following example shows that there exists a mapping that is quasi-
nonexpansive mapping and satisfies Condition II.

Example 6.4.11 Let C be a nonempty subset of a Banach space X and T :
C — C' a mapping such that

|72 = Tyl| < alla — yl| + bllz — T + clly — Tyl| for all .y € C,

where a,b,c > 0 witha+b+c < 1. If F(T) # 0, then T satisfies condition II.
Indeed, if p € F(T), then for x € C

1Tz = pl| <allz = pl| + bl = Tzl < allz = p|| + b(llx = pll + [[p = Tz|),

which implies that
L
T le ol

Hence T is quasi-nonexpansive. Observe that

[Tz —p|| <

1Tz —pll > [Tz — @[l = |z = pll| > |2 = pl| - [lo — Tx||

and
[Tz —p| < allz — pl| + ]|z — Tz

Hence

all = pl| + bljx = Ta|| > [lo — pl| - ||lz — T[],
which gives
1—-a
a+b
The constant (1 —a)/(1+b) is positive because 0 < a,b < 1. Thus, Condition II
holds.

| — Tzl| > [l = pl|.

We now establish a relationship between mappings that satisfy Condition I
and those that are demicompact.

Proposition 6.4.12 Let C be a nonempty closed bounded subset of a Banach
space X and T : C — C a mapping with F(T) # 0. If I — T maps closed
bounded subsets of C onto closed subsets of X, then T satisfies Condition I on
C.

Proof. Let M = sup{d(z, F(T)) : x € C}. If M = 0, then F(T) = C and
Condition I follows trivially. If M > 0, then for 0 < 7 < M, define

Cr={xeC:dz,F(T))>r}

and
f(r) =inf{||lz —Tz| :z € C.}.
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Note that C, is nonempty closed bounded. We show that f(r) > 0 for arbitrary
r, 0<r< M.

By hypothesis, (I —T)(C,) ={x—Tx :x € C,} is closed. If 0 € (I - T)(C})
then 0 = z — T'z for some z € C,. and hence z € F(T), but d(z, F(T)) > r > 0
a contradiction. Therefore, 0 # (I — T)(C,).

Suppose now that f(r) = inf{|jz — Tz|| : « € C.} = 0. Then there exists a
sequence {z,} in C, such that ||z, — Tx,| — 0. Note {x,, — Tx,} C (I-T)(C,)
is a closed set. Thus, we obtain 0 € (I — T)(C,), contradicting our statement
above that 0 ¢ (I —T)(C,). Therefore, f(r) > 0 for r < M.

We extend the domain of f to RT by defining f(0) = 0 and f(r) = sup{f(s) :
s < M} forr > M. It is easy to verify that f so defined fulfills the hypotheses of

Condition I; in particular, ||z — Tz|| > f(d(z, F(T))) for all x € C.

We now give strong convergence of the Mann iteration for quasi-nonexpansive
mappings satisfying Condition I.

Theorem 6.4.13 Let C be a nonempty closed convex subset of a uniformly
conver Banach space X and T : C — C' a continuous quasi-nonexpansive map-
ping. If T satisfies Condition I, then for arbitrary x1 € C, the Mann iteration
{xn} defined by (6.16), where {ay} is a sequence of nonnegative numbers in
[0,1] that is bounded away from 0 and 1, converges strongly to a fixed point
of T.

Proof. Because for p € F(T), ||[n+1 — 2|l < ||xn — pl|, it follows that
A(wns1, F(T)) < d(za, F(T).

Thus, lim d(z,, F(T)) exists. By Theorem 6.4.7, lim ||z, — T'z,| = 0. Note
n—oo

lwn — Txn| > f(d(zn, F(T))), n €N,

which gives that lim d(zy, F(T)) = 0. Then for given € > 0, there exists ng € N

such that . :
d(z,, F(T)) < 3 for all n > ny.

Note for all n,m > ng and p € F(T)
[en = zm|l < llzn = pll + [P = 2m]|
< 2z, — ol

which implies that
[z — 2wl <e.

Thus, {x,} is a Cauchy sequence and lim z, = z € C. Therefore, z,—Tx,, — 0
implies by the continuity of T that z € F(T). 1

A consequence of Proposition 6.4.12 and Theorem 6.4.13 is the following;:
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Corollary 6.4.14 (Browder and Petryshyn) — Let C be a nonempty closed
convex subset of a uniformly convexr Banach space X and T : C — C a non-
expansive mapping. Fort € (0,1), let Ty be given by Ty = tI+(1—¢)T. If I-T
maps closed bounded sets of C' onto closed subsets of X and F(T) # 0, then for
each © € C,{T]"xz} converges strongly to a fixed point of T.

In many applications, compactness is a strong condition. We now study the
problem of approximation of fixed points of nonexpansive and quasi-nonexpansive
mappings in the noncompact setting.

Theorem 6.4.15 Let X be a Banach space satisfying the Opial condition, C a
weakly compact subset of X, and T : C' — X a nonexpansive mapping. Given a
sequence {x,} in C defined by (6.16), where {ay,} is a sequence of nonnegative
numbers such that 0 < o, < a <1 and Y 07, o, = 0. Then {z,} converges
weakly to a fized point of T.

Proof. Theorem 5.2.4 implies that lim ||z, —Tz,|| = 0. Because C is weakly

compact, there exists a subsequence {z,,} of {z,} that converges weakly to
p € C. By Theorem 5.2.9, I — T is demiclosed at zero, p = Tp. Thus, all
the assumptions of Proposition 6.1.1 are satisfied. Therefore, {x,} converges

weakly to a fixed point of T by Proposition 6.1.1.

Theorem 6.4.16 Let X be a uniformly convex Banach space satisfying the
Opial condition, C a nonempty closed conver subset of X, and T : C — C
a quasi-nonexpansive mapping that has at least one fized point. If I — T is
demiclosed at zero, then the Mann iteration {x,} defined in Theorem 6.4.7
converges weakly to a fixed point of T'.

Proof. Theorem 6.4.7 implies that {x,, } has properties (D) ~ (Dz). Therefore,

the conclusion follows from Proposition 6.1.1.

We have seen in Section 3.2 that there exists a class of uniformly convex
Banach spaces without the Opial condition (e.g., L, spaces, p # 2). Therefore,
Theorem 6.4.15 is not true for such Banach spaces. The following theorem deals
with the problem of approximation of fixed points of nonexpansive mappings in
a uniformly convex Banach space without the Opial condition.

Theorem 6.4.17 Let X be a uniformly convexr Banach space with a Frechet
differentiable norm, C a nonempty closed conver bounded subset of X, and
T:C — C a nonexpansive mapping. Then for each x1 € C, the Mann iteration
{x,} defined by (6.16) with the restriction that Y .- min{a,,1 — a,} =
converges weakly to a fixed point of T

Proof. Set
T,:=(1-a)l+a,T, neN. (6.20)

It is easy to see that F(T) C F(T,,) and T, is nonexpansive. It follows from
Lemma 6.1.8 that lim (z,,J(p — q)) exists for all p,q € F(T).
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Observe that
(i) I —T is demiclosed at zero by Theorem 5.2.12;
(ii) lim ||, — pl| exists for all p € F(T) by Proposition 6.3.7,

(iii) liminf ||z, — Tz,| = 0 by Proposition 6.3.8 and lim ||z, — Tz, exists
by (5.18) imply that ||, — Tz,| — 0.

Thus, all the assumptions of Proposition 6.1.2 are satisfied. Therefore, {z,}

converges weakly to a fixed point of T'. I

The following example shows that there exists a Banach space that does not
satisfy the Opial condition and its norm is not Frechet differentiable. However,
its dual does have the Kadec-Klee property.

Example 6.4.18 Let X = R? with the norm given by |z|| = /||z]|? + ||=||3
and Y = Lyl0,1] with 1 < p < oo and p # 2. Then the Cartesian product
X XY equipped with the 5-norm is uniformly convex, it does not satisfy the
Opial condition, and its norm is not Frechet differentiable. However, its dual
does have the Kadec-Klee property.

The following theorem is more general than Theorem 6.4.17.

Theorem 6.4.19 Let X be a uniformly convex Banach space such that its dual
has the Kadec-Klee property, C' a nonempty closed convex bounded subset of X,
and T : C — C a nonexpansive mapping. Then the Mann iteration defined by
(6.16) with the restriction that Y-, min{ay,, 1 —a,} = co converges weakly to
a fixed point of T.

Proof. It follows from the proof of Theorem 6.4.17 that T,, defined by (6.20)
is a nonexpansive mapping. Observe that

(i) I —T is demiclosed at zero;

(ii) lim |[tz, + (1 — t)p — q|| exists for all p,q € F(T) and t € [0,1] by
Lemma 6.1.8(b);

(iii) zp —Txy — 0.

Therefore, {z,} converges weakly to a fixed point of T by Proposi-
tion 6.1.2.

6.5 The modified Mann iteration process

In this section, we study weak convergence of the modified Mann iteration
process to fixed points of mappings that are more general than nonexpansive
mappings in Banach spaces.
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First, we modify the Mann iteration process and prove a useful lemma:

Let C be a nonempty convex subset of a linear space X, T : C — C a
mapping, and {a,,} a real sequence such that 0 < a < a,, <b < 1forallm eN.
Then the sequence {z,} in C defined by

r1 € C,
{ Tpt1 = M(xp, 0, T"),n € N (6.21)

is called the modified Mann iteration.

Lemma 6.5.1 Let C' be a nonempty convex subset of a Banach space X and
T :C — C an asymptotically nonexpansive mapping with sequence {ky} such
that 07 (kn — 1) < co. Define the modified Mann iteration {x,} by (6.21).
Then we have the following:

(a) If p is a fized point of T, it follows that lim ||z, — pl|| exists.
(b) If lim ||z, — T"x,|| =0, then lim ||z, — Tx,| = 0.
Proof. (a) Let p be the fixed point of T. From (6.21), we have

(1 —ap)llzn —pll + o[ T"2n — p|
(1 - an)”xn _pH + ananxn _pH
knllzn — pl| for all n € N.

[€nt1 = pll

IAN A IA

Because Y-, (k, — 1) is convergent, it follows from Lemma 6.1.5 that lim

n—oo

|z — p|| exists.
(b) For each n € N, set d,, := ||z, — T"x,|| and L = sup k,,. Then we have

neN
|Zns1 = Tappall < N@nss = T apga | + 1T @pgs — Tnga |
< dnyr + Llzpgr — T @pqa ||
< dny1 + L(l|lzngr — 2ol + 2 — T" 20|
HT"2n — T" @41
< dpt1+ L(and, +dy + Lljzn — Tpia|])
< dp41+ L(2+ L)d, — 0 as n — oo. I

Using Lemma 6.5.1, we prove weak convergence of the modified Mann itera-
tion {x,} defined by (6.21) in uniformly convex Banach spaces.

Theorem 6.5.2 Let X be a uniformly convexr Banach space satisfying the Opial
condition, C' a nonempty closed convex bounded subset of X, and T : C — C
an asymptotically nonexpansive mapping with sequence {k,} such that ZZOZI
(kn —1) < co. Let {a,} be a sequence of nonnegative numbers in (0,1) bounded
away from 0 and 1. Then the modified Mann iteration {x,} defined by (6.21)
converges weakly to a fixed point of T'.
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Proof. Let p be a fixed point of 7. By Lemma 6.5.1(a), lim ||z, — p|| exists.

Because

limsup |77, — pl| < lim sup(ky 0, — pll) < lim_ |z, — p]

and
lim (1= o) (@, = p) + an (T2 = p)| = lim [|znsr —pl),
it follows from Theorem 2.3.13 that lim ||z, — T"z,| = 0, which in turn

implies by Lemma 6.5.1(b) that lim ||, —T,|| = 0. By Theorem 5.4.3, I =T
is demiclosed at zero. Therefore, {z,} converges weakly to a fixed point of T’

by Proposition 6.1.1.

The following convergence theorems extend Theorems 6.4.17 and 6.4.19 for
asymptotically nonexpansive mappings, respectively.

Theorem 6.5.3 Let X be a uniformly convexr Banach space with Fréchet differ-
entiable norm, C' a nonempty closed convex bounded subset of X, andT : C — C
an asymptotically nonexpansive mapping such that > -, (k, — 1) < co. Then
for each x1 € C, the Mann iteration {x,} defined by (6.21), where {ay} is a
sequence of nonnegative numbers bounded away from 0 and 1, converges weakly
to a fized point of T'.

Proof. Set T,, := (1 — o) + 0, T, n € N. It is easily seen that F(T') C F(T,,)
and T, is Lipschitzian with Lipschitz constant L, = (1 — ay,) + apk, > 1
Because

Z(Ln - 1) = Zan(k'n - 1) < Z(kn - 1) < 0,
n=1 n=1 n=1

it follows from Lemma 6.1.8 that lim (z,,J(p — q)) exists for all p,q € F(T).
Observe that

(i) lim ||z, — p|| exists for all p € F(T),

(ii) zp — Tx, — 0,
(iii) I — T is demiclosed at zero,

(iv) lim (zn,J(p — q)) exists for all p,q € F(T).

n—oo

Hence result follows from Proposition 6.1.2. I

Theorem 6.5.4 Let X be a uniformly conver Banach space such that X* has
the Kadec-Klee property, C a nonempty closed convexr bounded subset of X, and
T :C — C an asymptotically nonexpansive mapping with sequence {k,} such
that 37 | (kn,—1) < oo. Then for each z1 € C, the Mann iteration {x,} defined
by (6.21), where {a,} is a sequence of nonnegative numbers bounded away from
0 and 1, converges weakly to a fixed point of T.
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Proof. As in proof of Theorem 6.5.3, we have the following;:
(i) Jim |z, — p| exists for all p € F(T),
(ii) zp — Ta, — 0,
(iii) I — T is demiclosed at zero,
(iv) nan;C ltz,, + (1 — t)p — g exists for all p,q € F(T) and ¢t € [0,1] by
Lemma 6.1.8.

Hence Theorem 6.5.4 follows from Proposition 6.1.2. I

6.6 The Ishikawa iteration process

In this section, we discuss the problem of approximation of fixed points of
pseudocontractive mappings and develop iterative methods to deal with such
problems in Hilbert spaces. We have seen in Section 6.4 that the Mann itera-
tion converges (strongly) to fixed points of nonexpansive mapping in finite-
dimensional Banach spaces. The following example shows that there exists a
Lipschitz pseudocontractive mapping with a unique fixed point for which the
Mann iteration fails to converge.

Example 6.6.1 Let H,C1,C5,C, and T be as in Example 5.7.1. Observe that
|Tz||* = 2||z||* for all 2 € C;

and
|Tz||* =14 2||z||® = 2||z|| for all z € Cs.

It is clear that the origin is the only fized point of T.
We now show that no Mann iteration for T is convergent to the origin for
any nonzero starting point. Let x € C be such that x # 0. If x € Cy, then

11 = N+ AT = (L +2A)]al* > [z|* for A € (0,1),

i.e., the Mann iterate of x is actually further away form zero than x is.
If x € Cy, then

)\ 2
1— Nz + \Tz|]? = L4 1—2X\ )z + Mzt
|||
T

A 2

= [(1 4+ = 2/\> + AQ] ||
[l

> 0 for e (0,1).

Thus, the Mann iteration {x,} defined by (6.16) has the following properties:
(i) if x1 € Cy, then ||xpi1|| > ||xnll for alln € N,
(i) if 1 € Cy, then ||Tni1|l > ||znll/V2 for alln € N.
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For convergence of such a sequence to origin, x, would have to lie in neigh-
borhood Cy of the origin for alln > ngy for some ng € N. But this is not possible
because we already established for Cy that ||Tp41]| > [|zn ]| for all n > ng.

We now introduce an iteration process for approximation of fixed points of
pseudocontractive mappings:

Definition 6.6.2 Let C be a nonempty convex subset of a linear space X and
T:C — C a mapping. Let {a,} and {3,} be two sequences of real numbers in
[0,1] satisfying the following conditions:

(i) 0<a, <GB, <1and lim G, =0,

(1) D01 anfn = c0.

For arbitrary x1 € C, define a sequence {x,} in C by

L T (6.22)

Yn = (]- - ﬁn)xn + ﬂnTxnv n € N.
Then {x,,} is called the Ishikawa iteration.?
Before proving a theorem, we first establish two preliminary results:

Proposition 6.6.3 Let C' be a nonempty conver subset of a Hilbert space
H and T : C — C a pseudocontractive mapping. Then

11— a)(x —y) +a(Tz =Ty < |z -yl + a®llz —y — (Tz — Ty)|?
for all z,y € C and a € [0, 1].
Proof. Let x,y € C. Then from the identity

11 =Nz + Ayl* = (1= Nllz]|* + Allyll* = A1 = N}z = yl|I*, A € [0,1];

we have
1 — @)@ —y)+a(lz - Ty)|
= (1-a)z—yl?>+a|Tz - Ty[]* — a(l — a)llz —y — (Tz — Ty)|”
< (1-a)llz—yl* +alle—yl? + |z —y - (Tz - Ty)[?)
—a(l - a)lz —y — Tz — Ty)|?
< o=yl +ae—y— Tz Ty |

2This iteration process was introduced by Ishikawa in 1974.
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Proposition 6.6.4 Let C' be a nonempty convexr subset of a Hilbert space H
and T : C — C a pseudocontractive mapping. For 0 < a < 8 < 1, define a
mapping T 5 : C — C by Ty pr = (1 —a)r+oT[(1 - B)x+ Tz, x € C. Then

[Tapr = Tapyll < Nz =yl —af(l = 28)|lz —y — (T - Ty)|?

—a(f — )|z —y — (Tuy — Tuy)|”
+af||Tx — Ty — (Tu, — Tuy)|*.

forall xz,y € C, where uy = (1 — B+ Tz and uy, = (1 — B)y + fTy.

Proof. Let x,y € C. By Proposition 6.6.3, we have

I(1 = B)(z —y) + B(Tz - Ty)|?

e = yl* + 8|z —y — (Tz — Ty)|*,

1(1 = B)(x — Tug) + B(Tz — Tuy)||?

= (1 -PB)llz = Tug|* + BTz — Tug||* — B(1 = B)l|l= — T|*.

o _uy||2

IN

[z — Tu:,;||2

Because T is pseudocontractive,

[Tus — Tuyl|* < fue — uyl|* + [t — wy — (Tt — Tuy)|?
< lue — uy |
+[I(1 = B8)(z —y) + B(Tx — Ty) — (Tuy — Tuy)|?
o =yl + Bl —y — (Tx — Ty)|?
+(1=B)lz —y — (Tux — Tuy)|?
+0||Tz — Ty — (Tuy — Tuy)|?
—B(1 =)z —y— (Tx—Ty)|?
[ =yl = B(1 = 2B)||lz — y — (Tx — Ty)|?
+(1 = B)lle —y — (Tug — Tuy)|?
+0|Tx — Ty — (Tu, — Tuy)HQ.

IN

IN

Hence

[Topz — Ta,ﬁyHQ
= (1= a)(@ —y) + a(Tus — Tuy)|?
= (1-a)llz —ylI” + || Tus — T, |?
—a(l = a)|lz —y — (Tu, — Tuy)|”
(1 =a)llz =yl + afllz = y[* = BQ = 28)[|z —y — (Tz - Ty)|?
+(1 = B)llz —y — (Tuy — Tuy)|* + BT — Ty — (Tuy — Tuy)|*}
—a(l = a)|lz —y = (Tuy — Tuy)|”
lz = ylI* — aB(1 = 26) |}z — y — (T — Ty)|?
—a(8 = a)llz —y = (Tuy — Tuy)|”
+af||Tx — Ty — (Tu, — Tuy)|?. |

IN

IN
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Theorem 6.6.5 Let C be a nonempty compact convex subset of a Hilbert space
H andT : C — C a Lipschitzian pseudocontractive mapping with F(T) # (. Let
{xn} be the Ishikawa iteration defined by (6.22). Then {x,} converges strongly
to a fized point of T.

Proof. (a) Let p € F(T). Set Tz, := Tq, g, %n. Then 41 = Tz, n € N
From Proposition 6.6.4, we have
Zn+1 —p||2 < lan — pH2 — anfBn(1 = 26,20 — Tanz
— 0y (Bn — an)||Tn — Tyn”2 + anfBn || Tz, — Tyn||2~
Because a,, < (3,, it follows that
[zns1 =pl? < 2w = plI? = anfu(l = 26,) 2 — Tn|®
+ an || T2y, — Tyn||2- (6.23)
Suppose T is L-Lipschitzian mapping. Then
1Tz — Tynll < Lllwn — yull < LBnllzn — Ty
Hence from (6.23)
Znt1 — p”2 < |z, — pH2 —anfn(1 =26, — LQﬁi)Hxn - T$n||2~
Because lim 3, = 0, there exists a number ng € N such that 23, + L2362 < 1/2

for all n > ng. Hence

1
|zt —plI* < |z — | — ianﬁnﬂxn — T, || for all n > ny, (6.24)

which gives that
1 n
5 3 aibilles = Tail* < fomg — Bl = lnsa — ol
’i:no

Because C is bounded, {||z,+1 — p||} is bounded. Therefore, the series on the
left-hand side is bounded. From condition (ii), this implies that

liminf ||z, — Tx,|| =0,
n—oo

which in turn implies from the compactness of C' that there exists subsequence
{xn,} such that lim z,, = v, where v € F(T).
— 00

j
Because v € F(T), it follows from (6.24) that

|Xnt1 — o] < ||n — v for all n > ng. (6.25)
Let € > 0. Then there exists an IV; g such that
lzn, , —v|| < e forall Nyo > no.
Hence from (6.25), we get

|z —v|| <€ for all n > N, .

This completes the proof of Theorem 6.6.5. I
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6.7 The S-iteration process

For C a convex subset of a linear space X and T' a mapping of C into itself, the
iterative sequence {x,} of the S-iteration process is generated from z; € C and
is defined by

Tny1 = (1 —an)Tzy + anTyn,
A i iy S (6:20)
where {a,,} and {f,} are real sequences in (0,1) satisfying the condition:
(o)
Z anfn(1 — By) = oo. (6.27)

n=1

Let us compare the rate of convergence of the Picard, Mann, and S-iteration
processes for contraction mappings.

Proposition 6.7.1 Let C be a nonempty closed convex subset of a Banach
space X and T : C — C a contraction mapping with Lipschitz constant k and
a unique fized point p. For uy = v = wy € C, define sequences {u,},{v,} and
{wn} in C as follows:

Picard iteration: Upt1 = Tup,n €N
Mann iteration: Upt1 = (1 — ap)vy + apToy,n €N
S-iteration: Wpt1 = (1 — an)Twy, + an Ty,

Yn = (1 - 6n)wn + BnTwnan e N,
where {a,} and {B,} are real sequences in (0,1). Then we have the following:

(a) l[tns1 — pll < Kllun — pll for all n € N,
(0) lvnsr = pll < llon = pl| for alln € N.
(¢) llwnyr = pll < kL = (1 = K)o Bn]llwn — pl| for alln € N.
Proof. Part (a) is obvious.
(b) Now part (b) follows from

(1 = an)(vn — p) + an(Tv, — )|
< (1= a)||vn = pl| + kom||vn — p||
< [1—-(1-=k)ay]||lvn —p| for all n € N.

”Un—i-l - p”

(c) For all n € N, we have

< (1= an)klwn — pll + ankllyn — pll
< K[(1 = an)[[wn — pll + an((1 = Ba)llwn — pl| + kBullwn — p|)]
= k1= (1= B)onBullwn —pf. b

[wni1 = pll

It is obvious that the rate convergence of the S-iteration process is faster
than the Picard iteration process and the Picard iteration process is faster than
the Mann iteration process for contraction mappings.

We now discuss the S-iteration process for nonexpansive mappings.
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Lemma 6.7.2 Let X be a normed space, C' a nonempty convexr subset of X,
and T : C — C a nonexpansive mapping. If {x,} is the iterative process defined
by (6.26), then lim |z, — Tx,| exists.

n—oo

Proof. Set a, := x, — Tz, for all n € N. Then, we have

lantill < (1= an)|T2n = Toniall + onl|Tyn — Tap |

< (1= an)llzn = Zngall + anllyn — zaga - (6.28)
Because
IIyn — Tynll < (1- ﬁn)HCEn - Tyn” + BnHTxn - Tyn”
< (L= Bo)llzn = Tyall + Ballanll,
[Znt1 —ynll < (1= an)llyn — Txnll + anllyn — Tynll
= (I =an)(1 = Bn)llanll + an((1 = Bn)l|zn — Tynll + ﬁi”anu)
< (=)@ = Ba)llanll + an((1 = Bn)([lzn — Taa|| (6.29)
Tz — Tyal) + B2llanl)
< (1= an)(1 = Bn) + an(l = Bu)(1+ Bn) + anfi]llan]|
= (1= B+ anbh)llanll,
[Znt1 —znll < (1= an)llanll + anllzn — Tynl|
< (1= anllanll + anlllzn — Toall + I T2n — Toal)  (6.30)
< (L anf)llan|-

From (6.28), (6.29), and (6.30), we have

lansill < [(1=an)(I+ anfn) + an(l = Bn + anfn)][lan||

= lanll,
so that {||a,||} is nonincreasing and hence lim ||a,| exists. 1
n—oo

Theorem 6.7.3 Let C' be a nonempty closed convex (not necessary bounded)
subset of a uniformly convexr Banach space X and T : C — C' a nonexpansive
mapping. Let {x,} be the sequence defined by (6.26) with the restriction:
lim a,0,(1 —ay,) ezxists and lm a,0,(1 — G,) # 0. (6.31)
n— oo n—oo

Then, for arbitrary initial value x1 € C,{||xy,, — Txy||} converges to some
constant ro(T), which is independent of the choice of the initial value x1 € C.

Proof. Lemma 6.7.2 implies that lim ||a, — Tz,| exists. We denote this
n—oo

limit by r(z1). Let {x} be another iterative sequence generated by (6.26) with
the same restriction on iteration parameters {«,} and {8,} as the sequence
{zn}, but with the initial value 27 € C. Tt follows from Lemma 6.7.2 that
Tim |, — Ty | = r(z)
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Observe that

1Ty —Tynll < llyn — il
< (A =B)llzn —azpll + Bl T2n — Ty ||
< g —
and
[ns1 =zl = (1= an)(Ten — Ta) + on(Tyn — Ty, )|l
< (L—an)lzn —apll + an [Ty, — Ty, |
< (T—an)lzn — 2yl + anllyn — vyl (6.32)
< len — 2y
This shows that lim ||z, — || exists. Let lim ||z, — || = d for some d > 0.
n—oo n—oo

By using Corollary 2.3.10, we obtain that
lyn —wnll = 11 = Bn)(@n — 27) + Bn(Txn — Ty,
S R e

*
‘|$n_x;k7,|| ||x7l_ana

it follows from (6.32) that
[en1 =2l < llon — 25

—20nBa(1 = Bo)llen — 2 10x ( I

— = (Ten — TIZ)II)

2 — a7l

This gives us

< Jlay — 3] < oc.

S (1 = Ba) | — 24l ( o =@, = (Twn = Tx:s,>|>

= [ en — a7l
Because lim «,0,(1 — 8,) #0 and lim |z, — )| = d, we
n—oo n—0oo
iy o (L2 2h e T
n—o0 [ — a3l
Because dx is strictly increasing and continuous and lim ||z, — || = d > 0,
n—oo
we have
lim ||@, —x), — (Tz, — Tx})|| = 0.
n—oo

Observe that

|20 = Txall = llzy, = Tapll] < l2n — T2 — (27, = Tayp)ll,
which implies that

lim |Hxn =Ty — =) — Ta:fl||| =0.
n—oo
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Thus, r(z1) = r(x7). Because
lent1 — Tonsal < |@n — Tzpl| < ||z1 — T21]| for all n € N, and 21 € C,

it follows that
re(T) = inf{|lz — Tz| :x e ¢} |

Theorem 6.7.4 Let X be a real uniformly conver Banach space with a Fréchet
differentiable norm or that satisfies Opials condition. Let C' be a nonempty
closed convex (not necessary bounded) subset of and T : C'— C a nonexpansive
mapping with F(T) # 0. Let {x,} be the sequence defined by (6.26) with the
restriction (6.31). Then {x,} converges weakly to a fized point of T.

Proof. Set Tz := (1 — ap)Tz + a,T((1 — Bp)z + BoTx) for all z € C and
n € N. Then for each n € N, the mapping T;, : C' — C is also nonexpansive and
the S-iterative sequence {x,} defined by (6.26) can be written as

Tpy1 = Tha, for allm € N,

Furthermore, we have F(T) C F(T,) for all n € N. Because F(T) # 0, by
Theorem 6.7.3, we see that lim ||z, — Tz,| = 0. The remainder of the proof
n—oo

is followed by Theorems 6.4.16 and 6.4.17. I
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Exercises

6.1 Let C be a compact convex subset of a Hilbert space H and let P(C') denote
family of all bounded proximinal subsets of C. Let T : C' — P(C) be a
nonexpansive mapping with fixed point p. Define the sequence {z,} of
Mann iterates by z1 € C,

Tl = pZp + (1 — an)yn, nEN,

where y, € Tx, is such that ||y, — p|| = d(p,Tz,) and {o,} is a real
sequence such that 0 < «, < 1 and Zflozl «, = 0o. Show that there
exists a subsequence {z,, } of {z,,} that converges to a fixed point of T.

6.2 Let X be a uniformly convex Banach space that satisfies the Opial con-
dition or has a Fréchet differentiable norm, C a closed convex bounded
subset of X, and T : C — C an asymptotically nonexpansive mapping
with sequence {k, } such that > >~ (k, — 1) < oo. Suppose that z; is a
given point in C' and {a,,} and {3,} are real sequences such that {a,} is
bounded away from 0 and 1 and {3, } is bounded away from 1. Show that
the sequence {z,} defined by the modified Ishikawa iteration process:

ey Tnt1 = (1 — ap)2n + 0T ((1 = Bn)zy + BuT"2), n €N
converges weakly to a fixed point of T.

6.3 Let C' be a nonempty subset of a Banach space X and T : C — C a
mapping. T is said to be asymptotically quasi-nonexpansive if F(T) # )
and there exists a sequence {k,} C [1,00) with lim k, =1 such that

| Tz — p|| < knllz — p|| for all z € C,p € F(T) and n € N.

If C is a nonempty compact convex subset of a uniformly convex Banach
space X and T : C' — (' is a uniformly continuous asymptotically quasi-
nonexpansive mapping with sequence {k,} such that > - (k, — 1) < oo,
show that sequence {x,,} defined by (I) converges strongly to a fixed point
of T

6.4 Let C' be a nonempty subset of a Banach space X and T": C — C a
mapping. T is said to be asymptotically nonexpansive in the intermediate
sense provided T is uniformly continuous and

limsup sup (||7"z —T"y|| — ||z —yl[) < 0.

n—oo z,ycC
If C is a nonempty closed convex subset of a uniformly convex Banach

space X and T : C — C is completely continuous and asymptotically
nonexpansive in the intermediate sense with

oo
en = sup (||[T"z — T™y|| — ||z — y||) V 0 such that ch < o0,

z,ye n=1
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show that sequence {x,,} defined by (I) converges strongly to a fixed point
of T.

6.5 Let C' be a nonempty closed convex subset of a Banach space X and T :
C — C a contraction mapping with Lipschitz constant k£ and a unique
fixed point p. For u; = v; = wy € C, define sequences {u,}, {v,} and
{wp} in C as follows:

Picard iteration: Upt1 = TUp,n €N;
Mann iteration: Unt1 = (1 — ap)v, + apnTop,n € N;
S-iteration: Wpt1 = (1 — ap)Tw, + ayTyy,

Yn = (1 = Bn)wyn, + BnTw,,n € N;
where {a,, } and {8, } are real sequences in (0,1). Show that
(a) [Junt1 — p|l < k|jun — || for all n € N.

(b) ons1 — pll < [[on — pl for all m € N
(©) lwns1 —pl| < E||lw, —pl| for all n € N.

6.6 Let C' be a nonempty closed convex subset of a Hilbert space H and T :
C — (' a nonexpansive mapping. Show that the following are equivalent:

(a) F(T) # 0.
(b) For any z € C, {1 Z;:Ol Tz} converges weakly to a fixed point of
T.
6.7 Let C be a nonempty subset of a Hilbert space and T : C' — C a mapping.

The mapping T is said to satisfy condition (A) if F(T) # () and there
exists a real positive number A such that

(x — T,z —p) > M|z — Tz for all z € C and p € F(T).

If C is a nonempty closed convex subset of a Hilbert space H, T : C — C
is a mapping that satisfies condition (A), I — T is demiclosed at zero, and
{z,} is a sequence in C generated by z,+1 = (1 — ap)z, + @ Tx,,n € N
with 0 < a < ay, < b < 1, show that {z,,} converges weakly to an element
of F(T).

6.8 Let C' be a nonempty convex subset of a Banach space X and T; : C' —
C (i=1,2,--- k) nonexpansive mappings. Let

S =oay+ a1y +aTy + - + apTy,

where a; > 0,9 > 0 and Zle a; = 1. If {z,} is a bounded sequence in
C defined by
Tpte1 = Sz,, neN,

show that x,, — Sx,, — 0 as n — oo.
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6.9 Let X be a Banach space that satisfies the Opial condition and C' a weakly

6.10

compact convex subset of X. Let T; (i = 1,2,--- ,k) and {z,} be as in
Exercise 6.8. Show that {x,} converges weakly to a fixed point of S.

Let C' be a nonempty closed convex subset of a Banach space. Let {T; : i =
1,2,--+ .k} be k asymptotically quasi-nonexpansive self-mappings of C,
ie., |T1'x — qil| < kinllz —qi]| for all z € C,q; € F(T;),1 € {1,2,3,--- ,k}.
Suppose that F = ﬂle F(T;) # 0, o € C,{an} C (5,1 — s) for some
s €(0,1), and >07 , (kin — 1) < 0o for all ¢ € {1,2,3,--- ,k}. Show that
the implicity iterative sequence {z,} generated by

Tp = QApTp—-1 + (1 - an)jjzml'nd n e N,

where n = (m—1)k+i,i € {1,2,3,--- , k} converges strongly to a common
fixed point if and only if liminf d(x,, F') = 0.



Chapter 7

Strong Convergence
Theorems

In this chapter, we prove convergence theorems for approximants of self-
mappings and non-self mappings in Banach spaces. We also study a Halpern’s
type iteration process for approximation of fixed points of nonexpansive
mappings in a Banach space with a uniformly Gateaux differentiable norm.

7.1 Convergence of approximants of
self-mappings

In this section, we study strong convergence of approximants of nonexpansive
and asymptotically nonexpansive type self-mappings in Banach spaces.

First, we establish a fundamental strong convergence theorem for nonexpan-
sive mappings in a Hilbert space.

Theorem 7.1.1 (Browder’s convergence theorem) — Let C' be a nonempty
closed conver bounded subset of a Hilbert space H. Let u be an element in C
and Gy : C — C, t € (0,1) the family of mappings defined by

Gix=(1—-tu+tTz, zeC.
Then the following hold:
(a) There is exactly one fized point x; of Gy, i.e.,

2y = (1 —t)u+ tTxy. (7.1)

(b) The path {x:} converges strongly to Pu ast — 1, where P is the metric
projection mapping from C onto F(T).

R.P. Agarwal et al., Fized Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3_7,
(© Springer Science+Business Media, LLC, 2009
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Proof. (a) Note for each t € (0, 1), G; is a contraction mapping of C into itself.
Hence G; has a unique fixed point z; in C.

(b) Because F(T) is a nonempty closed convex subset of C, there exists an
element ug € F(T') that is the nearest point of u. By boundedness of {}, there
exists a subsequence {z:, } of {z:} such that x; — z € C. Write z;, = x,.
Because x,, — Tx, — 0, it follows that z = T'z. Indeed, for z # Tz

limsup ||z, — 2] < limsup ||z, — Tz||
n—oo n—oo
< hmsuP(”xn - Tmn” + ||Txn - TZH)
n—oo
< limsup ||z, — #||,

a contradiction, because H has the Opial condition. Observe that
(1 —tn)xn +tn(xy —Tay) = (1 —tp)u
and
(1 — tn)uo —+ tn(’LLO — TUO) = (1 — tn)’u,o.
Subtracting and taking the inner product of the difference with x,, — ug, we get
(1 —tu){xp —wo,xpy —ug) + to(Uzy — Uug, x, — up)
= (1—tn){(u—up,z, — up),

where U = I — T. Because U = I — T is monotone, (Uzx,, — Uug, 2, — ug) > 0,
it follows that

2n — uol|? < (u — ug, 2, — up) for all n € N.
Because ug € F(T') is the nearest point to u,
(uw — g,z —ug) <0,
which gives

20 —uol® < {u—ug,x —uo)
= (u—ug, Ty — 2) + (u— ug, z — up)
< {(u—wug,zy — 2).
Thus, from z,, — z, we obtain x,, — ug as n — oo. We show that x; — ug as
t — 1, i.e., ug is the only strong cluster point of {z;}. Suppose, for contradiction,
that {z; ,} is another subsequence of {x;} such that z; , — v # ug as n’ — oo.
Set x, := x,,. Because x,y — T'z,,y — 0, it follows that v € F/(T). From (7.1),
we have
2y —Tay = (1 —t)(u—Tay). (7.2)
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Because for y € F(T)

(x¢ = Tapxe —y) = (w0 —Ty+Ty—Tay,z —y)

l|lze — 2/”2 —(Txy — Ty, zy — y)
> 0,

this gives from (7.2) that (v — Tz, ¢ — y) > 0. Thus, (v —u, 2 —y) < 0 for
all t € (0,1) and y € F(T). It follows that

(ug — u,up — vy <0 and (v —u,v —ug) <0,

which imply that up = v, a contradiction. Therefore, {;} converges strongly

to Pu, where P is metric projection mapping from C onto F(T).
We now prove strong convergence of path {z;} in a more general situation.

Proposition 7.1.2 Let C' be a nonempty subset of a Banach space X and T :
C — X a pseudocontractive mapping such that for some u € C, the equation

r=(1—-tu+tTx (7.3)

has a unique solution z; in C for each t € (0,1). If F(T) # 0, there exists
Jjlxy —v) € J(xy — v) such that

(x —u,j(xy —0)) <0 for allve F(T) and t € (0,1).
Proof. From (7.3) we have
2y —Toy = (1 —t)(u—Txy) for all t € (0,1).
For y € F(T), there exists j(z; —y) € J(z: —y) such that

(wy =Ty, j(xe —y)) = (w0 —Ty+Ty—Tay, j(x —y))
e — y||> = (Tay — Ty, j(ze — y))
> 0,

which implies that
(u—Tay, j(z, —y)) = 0.

It follows from (7.3) that

(¢ —u,j(xy —y)) <0 forall y e F(T) and t € (0,1). |

Theorem 7.1.3 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X — X*. Let C' be a nonempty closed subset of X and
T :C — X a demicontinuous pseudocontractive mapping such that for some
u € C, the equation defined by (7.3) has a unique solution xz; in C for each

€ (0,1). If the path {z:} is bounded, then it converges strongly to a fized point
of T ast — 1.
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Proof. Because {z;} is bounded, {T'z;} is bounded by (7.3) and
lor — Tyl = (A —0)|lu—Tre] < (1—t)diam({u — Tz }) — 0.

Because X is reflexive and {z;} is bounded, there exists a subsequence {z;, }
of {z;} such that z;, — v as t, — 1. Write x;, := x,. Because (t1 — 1)z, =
(t=! — D)u+ Txy — 4, it follows that

<(t;1 - Dz, - (t;nl = Dy, J (20 — )
= (' =) (u, J (20 — 2))
+<T33n — Tz — (-Tn - xm)7 J(‘T’ﬂ - LL’m)>

< (ot =t u, J(en — o)) for all n,m € N.

n

Taking the limit as m — oo, we obtain
(7" = Dag, J(zn —0)) < (t51 = 1)(u, J (25 —v)),

and thus,
(X — uy (20, — v)) < 0.

Hence
|20 — 0|2 = (2n — v, J(Tn — v)) = (T —u, J (2, — 0)) + {u — v, (2, — V).

Therefore, x,, — v as n — oo. Because Tz, — v by z,, — Tz, — 0, it follows
from the demicontinuity of T that v € F(T).

We show that v is the only strong cluster point of {x;}. Suppose, for con-
tradiction, that {z; ,} is another subsequence of {x;} such that x; , — w (# v)
as t,» — 1. It can be easily seen that w = Tw. Thus, from Proposition 7.1.2,
we have

(w4, —u,J(xp —w)) <0 and (x; , —u,J(x, —v)) <0
which imply that
(v —u,J(v—w)) <0 and (w—u,J(w—v)) <O0.
Hence
lu —w|* = (v —w,J(v—w)) = {v-—uJwv—w)+ (u—wJv-—uw) <0,
a contradiition. Therefore, {z:} converges strongly to a fixed point of T as
t— 1.

Corollary 7.1.4 Let X be a reflerive Banach space with a weakly continuous
duality mapping J : X — X*. Let C be a nonempty closed subset of X and
T : C — X a nonexpansive mapping such that for some u € C, the equation
(7.3) has a unique solution x¢ in C for each t € (0,1). If the path {x:} is
bounded, then it converges strongly to a fixed point of T ast — 1.
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Applying Theorem 7.1.3, we obtain

Theorem 7.1.5 Let X be a reflexive Banach space with a weakly continuous
duality mapping, C a nonempty closed convex bounded subset of X, u an element
i C, and T : C — C a continuous pseudocontractive mapping. Then the
following hold:

(a) For each t € (0,1), there exists exactly one x, € C' such that

e = (1 —t)u + tTxy. (7.4)

(b) {x+} converges strongly to a fized point of T ast — 1.
Proof. (a) For each ¢t € (0,1), define Gy : C — C by

Gix=(1—-tu+tTz, z € C.

Then G, is well defined because u € C and T(C) C C. Because for each
€ (0,1), G, is strongly pseudocontractive, it follows from Corollary 5.7.15 that
G has exactly one fixed point z; € C.

(b) It follows from Theorem 7.1.3. 1
Corollary 7.1.6 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X — X*, C' a nonempty closed convexr bounded subset of

X, and T : C — C a continuous pseudocontractive mapping. Then F(T) is a
sunny nonexpansive retract of C'.

Proof. For each u € C, by Theorem 7.1.5, there is a unique path {z;} defined
by (7.4) such that }ur% x¢ = v € F(T). Then there exists a mapping P from C
onto F(T) defined by Pu = thn% Xy, as u is an arbitrary element of C.

Because
(xy —u, J(xy —y)) <0 forally € F(T) and t € (0,1),
this implies that
(Pu—u,J(Pu—y))<0forallueC,ye F(T).

Therefore, by Proposition 2.10.21, P is the sunny nonexpansive retraction from
C onto F(T).

Next, we study a strong convergence theorem for the following more general
class of mappings:

Definition 7.1.7 Let C be a nonempty subset of a Banach space X and T :

C — C a mapping. Then T is said to be asymptotically pseudocontractive if for

eachn € N and z,y € C, there exist a sequence {ky} in [1,00) with lim k, =1
n—oo

and j(z —y) € J(x —y) such that (T"x — Ty, j(x —y)) < kallz — y||*.
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We note that every asymptotically nonexpansive mapping is asymptotically
pseudocontractive, but the converse is not true. In fact, if T is asymptotically
nonexpansive with domain Dom(T) and sequence {k,}, then for each n € N
and z,y € Dom(T), there exists j(z — y) € J(x — y) such that

(T"z = T"y,j(z —y)) < IT"x = T y|llz -yl < kallz —ylI*.

Theorem 7.1.8 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X — X*. Let C' be a nonempty closed subset of X and
T :C — C a demicontinuous asymptotically pseudocontractive mapping with
sequence {k,}. Let u be an element in C and {t,} a sequence of nonnegative
numbers in (0,1) such that t, — 1 and nler;O(kn —1)/(1—t,)=0. Let {z,} be

a bounded sequence in C with x, — Tz, — 0 such that
Tp = (1 —tp)u+t,T"x, for alln € N. (7.5)

If T — T is demiclosed at zero, then {x,} converges strongly to a fized point
of T.

Proof. From (7.5), we have
Tp =T "z, = (1 —ty)(u—T"z,) and t,(u — T"x,) = u — Ty
Thus, whenever y € F(T), we have

(1 =tp)(u—T"xy, J(xp —y)) = (tn—T"Tn, J(xn —y))
(Tn —y+y—T"zn, J(xn — y))
= ||‘Tn - sz - <Tn'rn - Tnya J(xn - y)>

2 _(kn - 1)”xn - y||2a
which yields
k,—1 9  kn—1
(@ = (=) < § o =yl < (7.6)

for some K > 0.
Because X is reflexive, there exists a subsequence {x,,} of {z,} such that
Zpn, = v € C. Because I — T is demiclosed at zero, v = Tv. Hence

||In1 —’UH2 = <xnz -0, J(znz _U)>
= (@ —u, (20, —0)) + (u— 0, J(2n, —v))
=1
< %K+<U—U,J(l‘ni—v)>.

From J(z,, —v) —* 0 and (k,, — 1)/(1 — t,,) — 0, we get z,, — v.
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We now show that v is only strong cluster point of {z,}. Suppose, for
contradiction, that {z,,} is another subsequence of {z,} such that z,, —
w € C. Because x,, — Tx,, — 0, it follows that T'x,, — w. By demicon-
tinuity of T', we have that T'z,, — Tw. Hence Tw = w. From (7.6), we have

(v—u,J(v—w)) <0and (w—u, J(w—wv)) <0,
which imply that
v —w|? = (v —w,J(u—w)) = {(v—uJwv—w)+ (u—w,Jv—w) <0,
a contradiction. Therefore, {z,} converges strongly to a fixed point of T. I

Corollary 7.1.9 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X — X*. Let C' be a nonempty closed subset of X and
T :C — C an asymptotically nonexpansive mapping with sequence {k,}. Let
u be an element in C and {t,} a sequence of real numbers in (0,1) such that
t, — 1 and nh_)ngo(kn - 1)/(1—t,) =0. Let {x,} be a bounded sequence in C

with ©, — Tz, — 0 such that x, = (1 —t,)u+t,T"x, for alln € N. Then {x,}
converges strongly to a fized point of T.

The following result is very useful for strong convergence of AFPS of self-
mappings as well as non-self mappings.

Theorem 7.1.10 Let X be a reflexive Banach space whose norm is uniformly
Gateauz differentiable, C' a nonempty closed convex subset of X, T : C' — X a
demicontinuous mapping with F(T) # 0, and A : C — C a continuous strongly
pseudocontractive mapping with constant k € [0,1). Let {ay,,} be a sequence in
R with lim o, = 0 and {z,} a bounded sequence in C such that x, —Tx, — 0

n—oo
as n — 0o and

(€ — Ay, J(2n — p)) < anllzn —p||? for alln €N and p € F(T).  (7.7)

Suppose the set M = {x € C : LIM,||x, — z||*> = iIelgLIMHﬂCn —y|*} contains
y

a fixed point of T, where LIM is a Banach limit. Then {x,} converges strongly
to an element of M N F(T).

Proof. By Theorem 2.9.11, M is a nonempty closed convex and bounded set.
By assumption, T has a fixed point in M. Denote such a fixed point by wv.
It follows from Corollary 2.9.13 that

LIMy(z,J(zn, —v)) <0 for all z € C.
In particular,

LIM,{Av — v, J(z, —v)) <0. (7.8)
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From (7.7), we obtain
LIM,(x, — Az, J(x, —v) <O0. (7.9)
Combining (7.8) and (7.9), we have

LIM,||z, — ’UH2 = LIM,[(xn — Axy, J(xy — v)) + (Azy, — Av, J (2, — 0))
+(Av — v, J(x,, — v))]
< kLIM,||z, —v|?,

ie., (1 — k)LIM, |z, — v||*> < 0. Therefore, there is a subsequence {z,,} of
{2} that converges strongly to v. To complete the proof, let {x,} be another
subsequence of {x,} such that z,,, — z as j — oo. Because z,, — T'x,;, — 0,
it follows that T'x,,;, — 2. By demicontinuity of 7', we have that Tz = 2. From
(7.7), we have

(v—Av,J(v—2)) <0and (z — Az, J(z —v)) <O0.
Hence z = v. This proves that {x,,} converges strongly to v. |

Corollary 7.1.11 Let X be a reflexive Banach space whose norm is uniformly
Gateauz differentiable, C' a nonempty closed convex subset of X, andT : C — X
a demicontinuous mapping with F(T) # (. Let u be an element in C, {a,} a
sequence in R with nhﬂn;o an =0, and {z,} a bounded sequence in C such that

Ty —Tx, — 0 asn — oo and
(Tn, —u, J(zy, — p)) < anllzn —p||* for alln € N and all p € F(T).

Suppose the set M = {x € C : LIM,||z,, — x||* = ingLIMHxn —y|*} contains
ye

a fixed point of T, where LIM is a Banach limit. Then {x,} converges strongly
to an element of F(T).

We now prove a notable strong convergence theorem for nonexpansive map-
pings in a uniformly smooth Banach space.

Theorem 7.1.12 (Reich’s convergence theorem) — Let C' be a nonempty
closed convex subset of a uniformly smooth Banach space X, x an element in
C,T:C — C a nonexpansive mapping, and Gy : C — C, t € (0,1), the family
of mappings defined by Gi(x) = (1 — )z +tTG(x). If T has a fized point, then
for each x € C, }gr% Gi(x) exists and is a fized point of T

Proof. Let {t,} be a sequence of real numbers in (0,1) such that ¢, — 1.
Set x, := G, (z). Because F(T) # 0, it follows that {z,} is bounded and
Zn — Tz, — 0 as n — oo. Then the set M defined by (2.32) is a nonempty
closed convex bounded T-invariant subset of C' (see Proposition 6.1.3). Note
every uniformly smooth Banach space is reflexive and has normal structure.
Hence every closed convex bounded set of X has fixed point property. Thus,
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T has a fixed point in M. Observe that {z,} satisfies (7.7) with o, = 0 for
all n € N (see Proposition 7.1.2). It follows from Corollary 7.1.11 that {x,,}

converges strongly to an element of F(T)).
Applying Corollary 7.1.11, we obtain

Theorem 7.1.13 Let X be a reflexive Banach space with a uniformly Gateaux
differentiable norm, C' a nonempty closed conver subset of X, and T : C —
C an asymptotically nonexpansive mapping with sequence {k,}. Let u be an
element in C and {t,} a sequence of real numbers in (0,1) such that t, — 1
and (k, —1)/(1 —t,) — 0. Then the following hold:

(a) There exists exactly one point x,, € C such that

Tn=1—=ty)u+t,T"x,, neN

(b) If {z,} is a bounded AFPS of T and M = {z € C : LIM, ||z, — z|* =
11612 LIM, ||z, — y||*} contains a fived point of T, then {x,} converges
y

strongly to an element of F(T).

Proof. (a) Because lim (k, —1)/(1 —¢,) = 0, then there exists a sufficiently

large natural number ng such that k,t, < 1 for all n > ng. For each n € N,
define T, : C'— C by

Tox=(1-ty)u+t,T"z, xe€C.

Because for each n > ng, T, is contraction, there exists exactly one fixed point
z, € C of T,,. We may assume that x, =u for alln =1,2,--- ,ng — 1. Then

Tp = (1 —t,)u+t,T"x, for all n € N.

(b) As in the proof of Theorem 7.1.8, it can be easily seen that {z,} satisfies
the inequality (7.6). Note that M is a nonempty closed convex bounded set.
Moreover, T has a fixed point in M by assumption.

Observe that

(i) (7.7) is satisfied with ay, = (k, — 1)/(1 —t,,) — 0 as n — oo,

(ii) T has a fixed point in M,

(ili) ||xy, — Ty — 0 as n — occ.

Hence this part follows from Corollary 7.1.11. I

The following proposition shows that for a bounded AFPS, the set M satisfies
the property (P) defined by (5.52).

Proposition 7.1.14 Let C' be a nonempty closed conver bounded subset of a
reflerive Banach space X and T : C — C asymptotically nonexpansive. Let
{xn} be an AFPS. Then the set M satisfies property (P).
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Proof. By Theorem 2.9.11, M is a nonempty closed convex bounded subset of
C. Let € M. Because {IT™x} is bounded in C, there exists a subsequence
{T™ix} of {T™x} such that T™ix — u € C. Let k,, be the Lipschitz constant
of T™. By w-lsc of the function ¢(z) = LIM, ||z, — z||?, we have

p(u) = liminf p(T™ )
j*)OO

< limsup o(T™z)

m—0o0

= limsup(LIM,||z, — T"z|]?)

m—00

< limsup(LIM,, (|, — Tan ||+ | T2 — T?n|| + - + | Tty — T, ||

Tz, — T™|)?)
< limsup(LIM,,(km ||z, — z|))?

m—00

= ¢(z) = Inf o(2).

Thus, u € M. Therefore, M has property (P). 1
Applying Theorem 5.5.8 and Proposition 7.1.14, we obtain

Theorem 7.1.15 Let C be a nonempty closed convex bounded subset of a uni-
formly smooth Banach space X and T : C' — C an asymptotically nonerpansive
mapping with sequence {ky}. Let uw € C and {t,} a sequence in (0,1) such that
t, — 1 and (k, —1)/(1 —t,) — 0. Suppose the sequence {x,} defined by (7.5)
is an AFPS of T. Then {x,} converges strongly to a fized point of T.

Proof. By Proposition 7.1.14, the set M has property (P). It follows from
Theorem 5.5.8 that T" has a fixed point in M. Therefore, by Theorem 7.1.13,

{z,} converges strongly to an element of F'(T).

7.2 Convergence of approximants of non-self
mappings

In this section, we discuss strong convergence of approximants of non-self non-

expansive mappings.

The following theorem is an extension of Browder’s strong convergence theorem
for non-self nonexpansive mappings with unbounded domain.

Theorem 7.2.1 (Singh and Watson’s convergence theorem) — Let C
be a nonempty closed conver subset of a Hilbert space H and T : C — H a
nonexpansive mapping such that T(OC) C C and T(C) is bounded. Let u be an
element in C' and define Gy : C — H by

Gix=(1-tu+tTz, z€C andte (0,1).
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Let x4 = Gyxy. Then {x:} converges strongly to v ast — 1, where v is the fized
point of T closest to u.

Proof. Note F(T) is nonempty by Theorem 5.2.25. Then for any y € F(T),
we have
¢ =yl < llu—yll for all ¢ € (0,1),

so {z;} is bounded. By boundedness of {T'z;}, we obtain that

loe — Txy|| < (1—1t) sup |lu—Tax|| > 0ast— 1.
t€(0,1

Because H is reflexive, {z;} has a weakly convergent subsequence. Let {z:, }
be subsequence of {z;} such that x;, — z as t,, — 1. Write x,, = 2. Because
I — T is demiclosed at zero, z € F(T). Because F(T) is a nonempty closed
convex set in C' by Corollary 5.2.29, there exists a unique point v € F(T') that
is closest to u, i.e., v € F(T) is the nearest point projection of u. Now, for
y € F(T), we have

s —u+tlu—y)|* = Tz —yl?
< Pllae -yl = P llar —u+u—yl
and hence
e —ull® + llu—yl?+ 26z —u,u—y) = |2 —u+t(u—y)|
< (o —ull? + lu =yl + 2(z —u,u—y)).
It follows that
e —ul* < 1+t<xt—u,y—U> <Azt —u,y —u) <z —ull - [ly —ul.

Hence ||z; — ul| < ||y — u||. By w-Isc of the norm of H,
|z = ul| <liminf ||z, —u| < ||y — ul for all y € F(T).
n—oo

But v is the nearest point projection of u. Therefore, z = v is the unique element
in F(T) that is the nearest point projection of u. This shows that z,, — v as
n — oo. It remains to show that the convergence is strong. Because

lzn = ull?* = llzn — v +v = ul® = lon = v + lu = v + 220 — v,v — w),

this implies that

lzn —ol? = fon —ull? = llu—l* - 2z, —v,0 —u)
< —2zy —v,v—u) — 0asn — oo.
Therefore, {z;} converges strongly to v. 1

We now establish a strong convergence theorem for non-self mappings in a
Banach space.
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Theorem 7.2.2 Let X be a uniformly convex Banach space with a uniformly
Gateauz differentiable norm, C' a nonempty closed convex subset of X, u an
element in C, and T : C — X a weakly inward nonexpansive mapping with
F(T) # 0. Suppose fort € (0,1), the contraction Gy : C — X defined by

Gix=(1—-tu+tTz, x€C (7.10)

has a unique fized point x; € C. Then {x:} converges strongly to a fized point
of T ast — 1.

Proof. Because F(T) is nonempty, then {z;} is bounded. In fact, we have
lz: — o] < |lu—wv| for all v e F(T) and t € (0,1).

We now show that {x;} converges strongly to a fixed point of " as t — 1. To this
end, let {t,,} be a sequence of real numbers in (0,1) such that ¢, — 1 as n — oo.
Set x,, := x;,. Then we can define ¢ : C — [0,00) by p(z) = LIM,, ||z, — z|*.
Then the set M defined by (2.32) is a nonempty closed convex bounded subset
of C'. Because

|wn — Tzl = (1 —tp)||Tan — u|| — 0 as n — oo, (7.11)

it follows that for z € M

o(Tx) = LIM,||z, —Tz|?
< LIM,||Tz, — Tz|?
< LIM,||z, —z|* = o(z). (7.12)

By Theorem 2.9.11, M consists of one point, say z. We now show that this z
is a fixed point of T. Because T is weakly inward, there are some v, € C and
A, > 0 such that

Wy, = 2z + Ap(vy, — 2) — Tz strongly.

If A, <1 for infinitely many n and for these n, then we have w,, € C and hence
Tz € C. Thus, we have Tz = z by (7.12). So, we may assume A, > 1 for all
sufficiently large n. We then write v, = r,w, + (1 — r,)z, where r,, = A\ 1.
Suppose r,, — 1. Then v, — Tz and hence Tz € C. By (7.12), we have Tz = z.
So, without loss of generality, we may assume 7, < a < 1. By Theorem 2.8.17,
there exists a continuous increasing function ¢ = g, : [0,00) — [0,00) with
9(0) = 0 such that

Az + (1= Xyl* < Ml + @ = Nllyl* = A1 = Ng(llz = y])),

for all z,y € B, [0] and A € [0,1], where B,[0] (the closed ball centered at 0 and
with radius 7) is big enough so that B, [0] contains z and {w,}. It follows that

pAz + (1= ANy) < Ap(z) + (1= Nep(y) — AL = Ng([lz —yl)
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for all z,y € B,[0] and X € [0,1]. Because v,, € C, we obtain that

o(vn)
rn@(wn) + (L= 1n)@(2) = ra(1 —r0)g([|[wn — 2]])

o(2)

IAIA

and hence

(1 = a)g([lwn — z[]) (1 =rn)g(llwn — 2[])

<
< p(wn) — ¢(2).

Taking the limit as n — oo, we obtain

(I—a)g(|Tz—=[)) < »(T=2)—¢(z)
< o (by (7.12))

Therefore, Tz = z, i.e., z is a fixed point of T'. Observe that

(t) &p — T2y, — 0 by (7.11),

(#3) (7.7) is satisfied with «,, = 0,

(i7) the set M contains a fixed point z of T.
By Corollary 7.1.11, we conclude that {z;} converges strongly to z as
t— 1.

7.3 Convergence of Halpern iteration process

In Chapter 6, we have seen that the Mann and S-iteration processes are weakly
convergent for nonexpansive mappings even in uniformly convex Banach spaces.
The purpose of this section is to develop an iteration process so that it can
generate a strongly convergent sequence in a Banach space.

Definition 7.3.1 Let C be a nonempty convex subset of a linear space X and
T:C — C a mapping. Let u € C and {ay} a sequence in [0,1]. Then a
sequence {x,} in C defined by

{.T()EC

Tnt1 = apu+ (1 — )Tz, n>0 (7.13)

1s called the Halpern iteration.

We now prove the main convergence theorem of this section.

Theorem 7.3.2 Let X be a Banach space with a uniformly Gateauz differ-
entiable norm, C a nonempty closed convexr subset of X, and T : C — C a
nonezpansive mapping with F(T) # (0. Let u € C and {ay} be a sequence of
real numbers in [0, 1] that satisfies

lim «a, =0, Zan = oo and Z |ap+1 — o] < 0. (7.14)
n=0 n=0
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Suppose that {z} converges strongly to z € F(T) as t — 1, where for t €
(0,1), 2 is a unique element of C' that satisfies z = (1 — t)u +tTz,. Then the
sequence {x,} defined by (7.13) converges strongly to z.

Proof. Because F(T) # 0, it follows that {z,} and {Tx,} are bounded. Set
K = sup{||lu|| + ||Txx|| : » € N}. From (7.13), we have

lon — ap—1|([ull + [Tzn-1]) + (1 — an)l|zn — 2p-1]|
lotn, — an—1|K + (1 — a)||xn — Tr-1]|-

[#nt1 — @]

INIA

Hence for m,n € N, we have

Hxn+m+1 - xn+mH

n+m—1 n+m—1
< (Xt} (T 0= k)l - ol

k=m k=m
n+m—1 n+m—1
< ( > ks — ak|>K+ exp( - > ozk+1> [Zmt1 — Zml-
k=m k=m

So the boundedness of {z,,} and >, , o = oo yield

[ee]
s 1 = ] = 5t i1~ ] < (3 lawi =l K
n—o0 n—00 [—

for all m € N Because Y ;o |k — ax] < oo, we get
lim ||zn+1 — 2,] = 0. Notice
n—oo

[#n — Ty [z = Tngall + |Tns1 — Ton |

<
< en — Zpta| + anllu = Txy,|| — 0 as n — oco.

Let LIM be a Banach limit. Then, we get
LIM,||zy — Tz||* < LIM, ||z, — 2]
Because t(z, — Tz) = (vn, — 2¢) — (1 — t)(x,, — u), we have

t2||xn — Tz

v

Hxn - Zt||2 - 2(1 - t)<1'n —u, J(xn - Zt)>
(2t — D)||an — 2| +2(1 = t)(u — 2, J (2, — 2¢))

for all n € N. These inequalities yield

1—t¢
TLIMnH:cn — 2| > LIMy (u — 2z, J (2 — 21)).

Letting t go to 1, we get

0> LIM,(u—z,J(z, — 2)),
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because X has uniformly Gateaux differentiable norm. Because ||z, — zp41| —
0 as n — 0o, we obtain

lim [{(u—z,J(zpy1 —2)) — {u— 2, J(z, — 2))| = 0.

n—oo
Hence by Proposition 2.9.7, we obtain

lim sup(u — z, J(x, — 2)) <0. (7.15)

n—oo

Because (1 — a,)(Tzy, — 2) = (X1 — 2) — an(u — 2), we have
11 = an)(Tzn = 2 2 [Jons1 — 2% = 20m(u = 2, J (n 41 — 2)),
it follows that
lns1 = 27 < (1= o) zm — 2" +2(1 = (1 = an))(u = 2, J (@nt1 — 2))
for each n € N. Let € > 0. From (7.15), there exists ng € N such that
(u—z,J(x, — 2)) <e/2 for all n > ny.

Then we have

n+ng—1 n+ng—1

fenny =217 < ( TT (=an) o —al2+ (1= T[T (1-an)e

k):’I’LQ k:no
for all n € N. By the condition Y-, ay = co, we have

limsup ||z, — 2| = limsup ||z, 10, — 2||> < e.
n—oo

n—oo

Therefore, {x,,} converges strongly to z, because ¢ is an arbitrary positive real

number.

Corollary 7.3.3 Let C be a nonempty closed conver subset of a uniformly
smooth Banach space and T : C — C' a nonexpansive mapping with F(T) # (.
Let u € C and {a,} a sequence of real numbers in [0,1] satisfying (7.14).
Then the sequence {xy} defined by (7.13) converges strongly to a fixed point
of T.
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Exercises

7.1 Let C' be a nonempty closed convex subset of a Hilbert space H. Let
T : C — C be a nonexpansive mapping and f : C — C a contraction
mapping. Let {z,} be the sequence defined by the scheme

[
Tz, + 7nfxna

T =y 1+e,

where ¢, is a sequence (0,1) with €, — 0. Show that {x,} converges
strongly to the unique solution of the variational inequality:

(I - f)z,z—=x) <0forall z € F(T).

7.2 Let H be a Hilbert space, C a closed convex subset of H, T : C' — C a
nonexpansive mapping with F(T) # (), and f : C — C' a contraction. Let
{z,} be a sequence in C defined by

XTo € C7
Tnt1 = (1 —ap)Txy + anf(z,), n>0,

where {ay,} is a sequence in (0, 1) satisfies
(H1) o, — 0
(H2) 32,0 o = 005

(H3) either Y 0 |an41 — ap| < 00 or lim (apy1/n) = 1.

Show that under the hypotheses (H1) ~ (H3), x,, — &, where Z is the
unique solution of the variational inequality:

(I —f)z,z—=x) <0forall z € F(T).

7.3 Let C be a nonempty closed convex subset of a uniformly smooth Banach
space X and T : C — C a nonexpansive mapping with F'(T) # 0. If Tl¢
is the set of all contractions on C, show that the path {z;} defined by

Ty = tfl’t + (1 — t)TZZ?t, te (O7 1), f S Hc,
converges strongly to a point in F(T'). If we define @ : I — F(T') by

Q(f)= lim z;, fellg,

t—0t

show that Q(f) solves the variational inequality:

(I =He(f), J(Q(f) —v)) <0, [fellg andv e F(T).
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7.4 Let C be a nonempty closed convex subset of a Banach space X. Let
A : C — C be a continuous strongly pseudocontractive with constant
k€0,1) and T : C — C a continuous pseudocontractive mapping. Show
that

(a) for each ¢ € (0, 1), there exists unique solution z; € C' of equation
x=tAz + (1 —t)Tz.

(b) Moreover, if v is a fixed point of T, then for each ¢ € (0,1), there
exists j(xy — v) € J(ay — v) such that

(w0 — Azy, jz —v)) < 0;
(¢) {x¢} is bounded.

7.5 Let C be a nonempty closed convex subset of a Banach space X that has
a uniformly Gateaux differentiable norm and 7' : C' — C' a nonexpansive
mapping with F(T') # ). For a fixed 6 € (0,1), define S : C' — C by

Sz :=(1-08)x+dTx

for all x € C. Assume that {z:} converges strongly to a fixed point z of
T as t — 0, where z; is the unique element of C' that satisfies

zr=tu+ (1 —1)Tz

for arbitrary u € C. Let {a,} be a real sequence in (0, 1) that satisfies
the following conditions:

(i) lim «a, =0;
n—oo
(i) Y07 o = 00.
For arbitrary zy € C, let the sequence {x,} be defined iteratively by

Tnt1 = apu+ (1 — o) Say,.

Show that {x,} converges strongly to a fixed point of T.



Chapter 8

Applications of Fixed Point
Theorems

The aim of this chapter is to sketch applications of fixed point theorems in
attractors of hyperbolic IFS, best approximation theory, operator equations,
variational inequalities, and variational inclusions.

8.1 Attractors of the IFS

Definition 8.1.1 A (hyperbolic) iterated function system consists of a com-
plete metric space (X, d) together with a finite set of contraction mappings T, :
X — X, with respective Lipschitz constants ky,, form=1,2,--- /| N.

The abbreviation “IFS” is used for “iterated function system”. The notation
for the IFS is {X;T,,,n = 1,2,--- N} and its Lipschitz constant is k =
max{k, :n=1,2,--- N}

Let {X;T,,n=1,2,--- N} be a hyperbolic iterated function system with
Lipschitz constant k. Then the fixed point of the mapping W : K(X) — K(X)
defined by

W(B) = UN_,T,,(B) for all B € K(X),

is called the attractor of the IFS.

The following propositions tell us how to make a contraction mapping on
(K(X), H) out of a contraction mapping on a metric space (X, d).

Proposition 8.1.2 Let (X,d) be a metric space and T : X — X a continuous
mapping. Then T maps K(X) into itself.

Proof. Let C be a nonempty compact subset of X. Then clearly T(C) =
{Tz : v € C} is nonempty. We show that T'(C) is compact. Let {y, = Tx,}
be a sequence in C. Because C is compact, there is a subsequence {z,,} that

R.P. Agarwal et al., Fized Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3_8,
(© Springer Science+Business Media, LLC, 2009
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converges to a point in & € C. The continuity of T implies that {y,, = Txn,}
is a subsequence of {y,} that converges to § = T4 € T(C).

Proposition 8.1.3 Let T : X — X be a contraction mapping on the metric
space (X, d) with Lipschitz constant k. Then T : K(X) — K(X) defined by

T(B) ={Tx:x € B} for all B € K(X)
is a contraction mapping on (K(X), H) with Lipschitz constant k.

Proof. Because T : X — X is continuous, it follows from Proposition 8.1.2
that T" maps K(X) into itself. Now let B,C € K(X). Then

§(T(B), T(C)) = sup{inf{d(Tz,Ty):ye€ C}:x e B}
< sup{inf{kd(z,y):y€ C}:2 € B} =k-0(B,C).
Similarly, 6(7'(C), T(B)) < k- 6(C, B). Hence
H(T(B),T(C) = max{d(T(B), T(C),(T(C), T(B))}
< kmax{6(B,C),i(C,B)}
< k-HBC). |

The next proposition provides an important method for combining contrac-
tion mappings on (K (X), H) to produce new contraction mappings on (K(X), H).

Proposition 8.1.4 Let (X,d) be a metric space. Let {T, : n =1,2,--- N}
be contraction mappings on (K(X),H). Let the Lipschitz constant for T, be
denoted by k,, for each n. Define W : K(X) — K(X) b

W(B) =Ty(B)UTy(B)U---UTy(B) = UN_,T,(B) for all B € K(X).

Then W is a contraction mapping with Lipschitz constant k = max{k, : n =

1,2,---,N}.

Proof. We show the claim for N = 2. An inductive argument then completes
the proof. Let B,C € K(X). We have

HW(B),W(C)) = H(TW(B)UTz(B),T:i(C) UT:(C))
max{H (T1(B),T1(C)), H(T2(B), T2(C))}
(by Proposition 4.2.5)

max{k H(B,C), ke H(B,C)} < k H(B,C). |

IN

IN

The following theorem gives the main result concerning a hyperbolic IFS.

Theorem 8.1.5 Let {X;T,,n=1,2,--- ,N} be a hyperbolic iterated function
system with Lipschitz constant k. Then the mapping W : K(X) — K(X) defined
by

W(B) = UN_,T,,(B) for all B € K(X),
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is a contraction mapping on the complete metric space (K(X), H) with Lipschitz
constant k, i.e.,

H(W(B),W(C)) < kH(B,C) for all B,C € K(X).
Its unique fized point A € K(X) satisfies
A=W(A) =UN_ T, (A)
and is given by A = lim W"(B) for any B € K(X).

Proof. By Proposition 8.1.4, W : K(X) — K(X) is a contraction mapping.

Hence the result follows from the Banach contraction principle.

8.2 Best approximation theory

Recall that when C' is a nonempty subset of a normed space X, the set of best
approximation to x € X from C'is

Po(z) ={y € C: [z —y|| = d(z,C)},
where Pg is the metric projection from X into 2¢.

We begin with the fundamental result concerning invariance best approxi-
mation.

Theorem 8.2.1 (Brosowski’s theorem) — Let X be a Banach space and T :
X — X a nonexpansive mapping with a fixed point T € X. Let C be a nonempty
subset of X such that T(C) C C. Suppose Pc(T) is a nonempty compact convex
subset of C. Then T has a fized point in Po(T).

Proof. First, we show that T': Po(Z) — Pc(Z). Let y € Po(z). Then

Ty —7|| < ||y — 7| = inf |T —
Iy ~ 7| < lly — 7| = inf 17— 2]

implying that Ty € Pc(T).
Let {a,} be a sequence in (0,1) such that a,, — 1. Define T}, : Po(z) —
Pc(z) by
Tox = (1 —an)u+ a,Tx for all z € Po(T).

By the Banach contraction principle, each T,, has a unique fixed point, say
Z,. Because Po(T) is compact, there exists a subsequence {x,,} of {z,} such
that z,, — z € Po(T). Because ||z, — Tz,|| — as n — oo, it follows that

z € F(T).

The following result is an improvement of Brosowski’s theorem.
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Theorem 8.2.2 Let X be a Banach space and T : X — X a nonexpansive
mapping with a fired point T € X. Let C be a nonempty subset of X such
that T(0C) C C. Suppose Pc(T) is weakly compact and star-shaped. Assume
that

(i) T is nonexpansive on Po(T),
(it) |Tx — TZ|| < ||x — || for all x € Po(T),
(ii) I — T is demiclosed on Po(T).

Then Po(T) N F(T) # 0.

Proof. First, we show that T is a self-mapping on Pc(Z). Let y € Po(Z).
Theorem 2.10.10 implies that y € 9C. As T(9C) C C, so Ty € C. Because
T7Z =T and T is nonexpansive, we have

[Ty — 7| = [Ty — T7|| < |ly — || = inf ||z — z].
zeC

Because Ty € C, it follows that Ty € Po(Z). Hence T is a self-mapping on
Po(ZT). Now, let p be the star-center of Po(Z) and {t,} a sequence of real
numbers in (0,1) with ¢, — 1. Define T,, : Po(Z) — Pc(T) by

Tox=(1—ty)p+t,Tx, x€ Po(T).

For each n € N, T,, is a contraction, so there exists exactly one fixed point z,,
of T,.

Now
lxn = Tznl| = (1 —=t)|Tzn—p|| <(1—1t,)K —-0asn— o

for some K > 0. Because Po(ZT) is weakly compact, there exists a subsequence
{xn,} of {x,} such that z,, = z € Po(T). Because I — T is demiclosed on
Po(z) and x,, — Tx,, — 0 as @ — oo, it follows that z € F(T). Therefore,

Po(@)NF(T) # 0.

8.3 Solutions of operator equations

In this section, we study applications of fixed point theorems to solutions of
operator equations in Banach spaces.

We give an application of the Browder-Gohde-Kirk’s fixed point theorem for
the existence of solutions of the operator equation z — Tz = f.

Theorem 8.3.1 Let X be a uniformly convex Banach space X, f an element
m X, and T : X — X a nonexpansive mapping. Then the operator equation

x—Tx=Ff (8.1)

has a solution x if and only if for any x¢o € X, the sequence of Picard iterates
{xn} in X defined by xp41 = Txyn + f, n € Ny is bounded.



8.3. Solutions of operator equations 337

Proof. Let T} be the mapping from X into X given by
Tf (u) =Tu+ f

Then u is a solution of (8.1) if and only if u is a fixed point of T. It is easy to
see that T is nonexpansive. Suppose T has a fixed point v € X. Then

|xnt1 — u|| < ||zn — ul| for all n € N.

Hence {z,} is bounded.
Conversely, suppose that {z,} is bounded. Let d = diam({z,}) and

Bylz] ={y € X : ||z — y|| < d} for each z € X.

Set C), = Ni>pBqlz;]. Then C, is a nonempty convex set for each n, and
Ty(C,) C Cpt1. Let C be the closure of the union of C, for n € N, ie,
C' = UpenCh. Because C), increases with n, C'is closed convex bounded subset
of X. Because Ty maps C into itself, Ty has a fixed point in C' by the Browder-

Gohde-Kirk theorem.

Next we show that if T is nonexpansive, then the Mann iteration converges
strongly to the solution of the operator equation = + Tx = f.

Theorem 8.3.2 Let H be a Hilbert space and T : H — H a monotonic non-
expansive operator. For f € H, define S: H — H by

Sv=-Tz+ f, zeH. (8.2)
Then we have the following:
(a) The Mann iteration {x,} defined by

Tpt1 = M(xp, o, S) with «, € [0,1], Z an(1 —ay) = oo,
n=1

converges strongly to the unique solution xr = v of the operator equation
z+Tx=f. (8.3)
(b) If an, = (n+1)71, then |zpe1 —v|| < (n+1)"Y2||lzy — v|| for alln € N.
Proof. From (8.2), we have
Sz — Sy|| = [Tz — Ty|| < ||z -yl for all 2,y € H.

The solution v of operator equation (8.3) is a fixed point of the nonexpansive
operator S. By the monotonicity of T,

(Sz — Sy,x —y) = —(Tx —Ty,x —y) <0 for all z,y € H.
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Hence

|2ns1 = o]? = [I(1 = an)(zn = v) + an(Szn — S0)|?

(1 = an)?||zn — v||* + 20, (1 — an) (S — Sv, 2, — v)
+a2||Sz, — Sv|?

(1 — ap)?||zn — v||* + 2 ||Sz, — Sv||*  (as an(l — ay) > 0)

(1 = an)?llen = ol* + af 2 — vl (8.4)

<
<

which implies that

IN

[1 - 20,1~ an)]llzn — ol

n

[0 = 20601 = a)]fly — v, (8.5)

=1

|41 =]

IN

Because Y, o;(1 — ;) = o0, it follows that

n

H[l —20;(1 — )] < exp(—QZozi(l - ozi)> — 0 asn — oo.

=1

Hence from (8.5), {z,} converges strongly to the unique solution of the
operator equation (8.3).

(b) Note

(1= an)(zn — v) + (S, —v)||
(1 — o) ||n — || + || Szn — v
lzn —v]| < -+ < |lz1 — | for all n € N.

Zn1 — vl

INIA

Hence from (8.4), we have

2 2
n 1
fow =0l < (5257 ) o =l + (37 ) e = ol

which gives that

(n+ 12241 — 0l* = 0®||lzn — vff* < [|l21 — 0|,
Summing from n =1 to m, we get

(m + 12|21 — of* = [lz1 = o]* < mllzy —o]%.

Hence

|1 — v|| for all m € N. |

1
Tmt1 — V|| < ——
I — vl € ———|
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8.4 Differential and integral equations

Let f(z,y) be a continuous real-valued function on [a,b] X [¢,d]. The Cauchy
initial value problem is to find a continuous differentiable function y on [a,b]
satisfying the differential equation

Y~ ), vlwo) = wo (5.6

Consider the Banach space Cfa,b] of continuous real-valued functions with
supremum norm defined by ||y|| = sup{|y(z)| : = € [a, b]}.
Integrating (8.6), we obtain an integral equation

o=+ [ fty) (5.7)
zo
The problem (8.6) is equivalent the problem solving the integral equation
(8.7).
We define an integral operator T : C[a,b] — Cla,b] by

—yo+/ f(t,y(t)

Thus, a solution of Cauchy initial value problem (8.6) corresponds with a
fixed point of T'. One may easily check that if T is contraction, then the problem
(8.6) has a unique solution.

Now our purpose is to impose certain conditions on f under which the inte-
gral operator T is Lipschitzian with o(T") < 1.

Theorem 8.4.1 Let f(x,y) be a continuous function of Dom(f) = [a,b] X [¢, d]
such that f is Lipschitzian with respect to y, i.e., there exists L > 0 such that

|f(z,u) — f(z,v)] < Llu—v| for all u,v € [¢,d] and for = € [a,b].

Suppose (zg,yo) € int(Dom(f)). Then for sufficiently small h > 0, there exists
a unique solution of the problem (8.6).
Proof. Let M = sup{|f(x,y)| : z,y € Dom(f)} and choose h > 0 such that
Lh <1 and [xg — h,z9 + h] C [a,b]. Set

C:={y € Clzo = h,xo+ N] : [y(z) — yo| < Mh}.
Then C is a closed subset of the complete metric space Clzg — h, 2o + h] and

hence C' is complete. Note T : C' — C is a contraction mapping. Indeed, for
x € [zg — h,x0 + h] and two continuous functions y1,y2 € C, we have

ITy - Tyl = \

/ f(z,y1) (%Z&)dt‘

< lz—m|  sup  Llyi(s) — ya(s)]
s€[xo—h,zo+h]

Lthl —y2||-

IN
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Therefore, T' has a unique fixed point implying that the problem (8.6) has a
unique solution. I

Now, consider the Fredholm integral equation for an unknown function y :
[a,0] = R (00 < a <b<o0):

b
y(@) = F(z) + A / k(. )y (1) dt, (8.8)

where

k(x,t) is continuous on [a, b] X [a, b]

and
f() is continuous on [a, b].
Consider the Banach space X = Cla

with supremum norm |ly|| = sup{|y(x)
T : Cla,b] — Cla,b] by

b] of continuous real-valued functions
| : © € [a,b]} and define an operator

b
Ty(z) = f(x) + /\/ k(z,t)y(t)dt. (8.9)

Thus, a solution of Fredholm integral equation (8.8) is a fixed point of T'.

We now impose a restriction on the real number A such that 7" becomes a
contraction.

Theorem 8.4.2 Let K(x,t) be a continuous function on [a,b] X [a,b] with M =
sup{|k(z,t)| : z,t € [a,b]}, f a continuous function on [a,b], and X a real number
such that M(b — a)|A\| < 1. Then the Fredholm integral equation (8.8) has a
unique solution.

Proof. It is sufficient to show that the mapping T" defined by (8.9) is a con-
traction. For two continuous functions y;,y2 € Cla, b], we have

b

Ty ~Tiol = sup [ K00~ vl
b
< A sup / (e, ) [y (1) — ya(0)]
z€la,b] Ja
b
< AM sup |y1(t) — yo(t)|dt

a t€la,b]

b
s el [ar.



8.5. Variational inequality 341

8.5 Variational inequality

Let C be a convex subset of a smooth Banach space X, D a nonempty subset of
C,and A: C — C a mapping. We consider the following variational inequality
VIp(C,I - A):

to find a z € D such that (I — A)z, J(z —y)) <0 for ally € D,

where J is the duality mapping from X into X*.

The set of solutions of the variational inequality VIp(C,I — A) is denoted
by Qp(I — A), ie.,

Qp(I—-A)={z€C:(I-A)zJ(z—y)) <0for all y € D}.

Proposition 8.5.1 Let C be a nonempty convexr subset of a smooth Banach
space X. Let A : C — C be strongly pseudocontractive with constant k € [0,1).
Then variational inequality VIp(C,I — A) has at most one solution.

Proof. Let 2* and y* be two distinct solutions of VIp(C,I — A). Then
(x* = Ax™, J(x* —y*)) <0

and
(y* = Ay*, J(y* — 7)) <0.

Adding these inequalities, we get
(z7 —y" — (Az” — Ay"), J(z" —y")) <0,
which implies that

(Az” = Ay, J(z" —y"))
klla* —y*||?,

o — g2 <
<
a contradiction. Therefore, x* = y*. I

Proposition 8.5.2 Let C be a nonempty convexr subset of a smooth Banach
space X and D a nonempty subset of C. Let A : C — C be a mapping and
let P be the sunny nonexpansive retraction from C' onto D. Then following are
equivalent:

(a) z is a fixed point of PA.
(b) z is a solution of variational inequality VIp(C,I — A).

Proof. Let x € C and zy € D. Then from Proposition 2.10.21, we have
xg = Pz if and only if (zg —x,J(zo —y)) <0 for ally e D. (8.10)

For z € C, we obtain from (8.10) that

z=Pfzif and only if (z — fz,J(z —y)) <O0for ally e D. 1
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Theorem 8.5.3 Let X be a reflexive Banach space with a uniformly Géteaux
differentiable norm, C' a nonempty closed convex bounded subset of X, A: C —
C' a continuous strongly pseudocontractive mapping with constant k € [0,1), and
T :C — X a weakly inward continuous pseudocontractive mapping. Suppose
every monempty closed convex bounded subset of C has fixed point property for
nonexpansive self-mappings. Then we have the following:

(a) for each t € (0,1), there exists a path {x;} in C defined by
Tty = (1 — t)A.’L‘t + tT.’IZ‘t, (811)

(b) {z+} converges strongly to z € F(T) ast — 1,
(c) z is the unique solution of the variational inequality VIpr)(C, 1 — A).

Proof. (a) For each ¢t € (0, 1), define the mapping G; : C — X by
Gz =(1—-t)Az+ 1Tz, zeC.

Note for each t € (0,1), G{* is weakly inward continuous strongly pseudocon-
tractive. By Corollary 5.7.14, G{* has exactly one fixed point z; in C.

(b) Because the mapping (27 —T') has a nonexpansive inverse g, then g maps
C into itself. Note z; — Tx; — 0 as t — 1 implies that x; — g(2;) = 0 as ¢t — 1.
Write x,, = z,. Then, we have

Tp —Tx, — 0asn— oo. (8.12)

Because {z,} is bounded, we define ¢ : C — Rt by ¢(z) = LIM,
|z, — z||%,2 € C. As in proof of Theorem 7.1.12, the set M defined by (2.32)
is a nonempty closed convex bounded g-invariant subset of C and hence the
nonexpansive mapping ¢ has a fixed point in M by assumption. Denote such a
fixed point by v.

On the other hand, by monotonicity of I — T, we have

(x¢ = Txy, J(xy —y)) > 0 for all ye F(T).
From (8.11), we have z; — Tz, = 34 (Ax, — x). Thus,
(xy — Az, J(zy —y)) <0 for all ye F(T). (8.13)

Clearly, the sequence {z,} satisfies (7.7). Therefore, by Theorem 7.1.10, {x,}
converges strongly to the fixed point v.

We finally prove that the path {x;} converges strongly. Toward this end,
we assume that {t,/} is another subsequence in (0,1) such that z; , — v’ as
t,» — 1. By (8.12), we obtain v' € F(T). From (8.13), we have that

(v—Av,J(v—2")) <0and (v — AV, J(v' —v)) <0.
We must have v = v’. Therefore, {z;} converges strongly to v € F(T).

(c) Because zy — v € F(T) as t — 1, it follows from (8.13) that

(v—Av, J(v—1y)) <0 forall y € F(T). 1
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Corollary 8.5.4 Let X be a reflexive Banach space with a uniformly Gateauz
differentiable norm, C a nonempty closed convex subset of X, A : C — C a
contraction mapping with Lipschitz constant k € [0,1), and T : C — C a non-
expansive with F(T) # (0. Suppose every nonempty closed convexr bounded subset
of C has fized point property for nonexpansive self-mappings. Then conclusions
of Theorem 8.5.3 hold.

Proof. It suffices to show that the path {z;} defined by (8.11) is bounded. Let
y € F(T). Then

(1 =t)|| Az, —y|| + t| T2, — y|
(1 =)l Az — Ayl| + | Ay — yll) + Tz -y
(1 = t)(kllze — yll + 1Ay — yl) + tllz: — yll

lz: — yll

IAIACIA

which implies that
1
lze =yl < 7=y —yll.

Hence {z;} is bounded. 1

Theorem 8.5.5 Let X be a reflexive Banach space with a uniformly Gateaux
differentiable norm, C a nonempty closed convex subset of X, and T : C — C
a nonexpansive mapping such that F(T) # (). Suppose that every closed convex
bounded subset of C has fixed point property for nonexpansive self-mappings.
Then F(T) is the sunny nonexpansive retract of C.

Proof. The proof is followed by Corollary 8.5.4.

8.6 Variational inclusion problem

In this section, we study the existence and uniqueness of solutions and the
convergence of the Mann iteration for a variational inclusion problem in a
Banach space.

Let A, T be two self-mappings defined on a Banach space X, g : X — X*
another mapping, and ¢ : X* — (—o00, 00| a proper convex lower semicontinuous
function. Let us consider the following variational inclusion problem:

{ to find an w € X such that g(u) € Dom(9dyp), (8.14)
( .

Tu— Au— f,v—g(u)) > ¢(g(u)) —@(v) for allve X*
We begin with the following basic result:

Proposition 8.6.1 Let X be a reflexive Banach space. Then the following are
equivalent:
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(a) z* € X is a solution of variational inclusion problem (8.14).
(b) x* € X is a fived point of the mapping S : X — 2%

Sx)=f— Tz — Az + 0p(g9(x)) +z, z € X.

(c) z* € X is a solution of equation f € Tx — Az + dp(g(z)), = € X.

Proof. (a) = (c). If 2* is a solution of the variational inclusion problem (8.14),
then g(z*) € Dom(0p) and

(Tx™ — Ax™ — f,o—g(z¥)) > v(g(z¥)) — ¢(v) for all v € X™*.

By the definition of subdifferential of ¢, it follows from the above expression
that

f+Azx" —Tx™ € 0p(g(z™)). (8.15)
This implies that #* is a solution of equation f € Ta — Az + 9p(g(z)).
(¢) = (b). Adding z* to both sides of (8.15), we have
¥ e f— (Tz" — Azx" 4+ 0p(g(z™))) + =™ = Sz™. (8.16)
This implies that «* is a fixed point of S in X.

(b) = (a). From (8.16), we have f — (T'z* — Az*) € dp(g(x*)), hence from
the definition of dy, it follows that

o) —p(g(z)) > (f = (Tz* — Az™),v — g(z¥)) for all v € X™,

ie.,

(Tx* — Az™ — f,o—g(z™)) > ¢(g(z")) — p(v) for all v € X™.
Thus, z* is a solution of the variational inclusion problem (8.14). I

Theorem 8.6.2 Let X be a uniformly smooth Banach space and let T, A :
X — X,g: X — X* be three continuous mappings. Let ¢ : X* — (—o00, 0] be
a function with a continuous Gateaux differential Op and satisfying the following
conditions:

(1)) T— A: X — X is a strongly accretive mapping with constant k € (0,1),
(i1) pog : X — X is accretive.
For any given f € X, define a mapping S : X — X by

Se=f—(Tr— Az + 0p(g(z))) +z, zeX. (8.17)

If S(X) is bounded, then for any given x1 € X, the Mann iterative sequence
{an} deﬁned by

Tnt1 = M(zn, an,S), neN, (8.18)
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where {ay,} is the sequence in [0, 1] with the restriction
an =0, Y a, =00, (8.19)

converges strongly to the unique solution of variational inclusion (8.14).
Proof. First we show that the variational inclusion problem (8.14) has a unique
solution.

From conditions () ~ (i7) and Proposition 5.7.12, the mapping T— A+0yog :
X — X is a strongly accretive continuous mapping with a strongly accretive
constant k € (0,1). Because T'— A + Jog is a continuous strongly accretive
mapping, T — A + Oypog is surjective. Therefore, for any given f € X, the
equation f = (T'— A+ dpog)(x) has a solution z*. Because X is reflexive, by
Proposition 8.6.1, z* is a solution of variational inclusion (8.14), and it is also
a fixed point of the self-mapping S defined by (8.17).

We now break the proof into the following three steps:

Step 1: x* is the unique solution of (8.14) in X.

Suppose, for contradiction, u* € X is another solution of (8.14). Then, u*
is also a fixed point of S. Hence, we have

la* —u*|? = <fﬂ —u” J(fﬂ —u”))
= (S2" — Su", J(a" —u”))
= (f- (T A+8s009)( )+t
—(f = (T = A+ 0pog)(u™) +u”), J(z" — u"))
= |la* —ur P = (T - A+8s009)( ")
—(T — A+ 9pog)(u”), J(z" —u"))
e | 1 e VA

a contradiction. Hence z* = u*.

Step 2: {xn} is bounded.
Because S(X) is bounded, let

K = sup{||Sz — z*|| + |1 — 2| : x € X}. (8.20)
Now we show that
|xn — || < K for all n € N. (8.21)

In fact, for n =1 it follows from (8.20) that ||z; — «z*|| < K. Suppose (8.21) is
true for n = k > 1, then for n = k + 1, we have

[ensr =2 = [(1 = ap)(zr — 27) + ap(Szy, — 27|
< (L—aw)for — 27| + o[ Sz — 27|
< K

)
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Hence {z,} is bounded.

Step 3: x, — x*.
From (8.18) and Proposition 2.4.6(b), we obtain that

lzns1 = 2" = |(1 = an)(@n — 2%) + an(Sz — 27)|?

(1 — ap)?||zn — 2*||? + 200 (S — 2%, T (Tpy1 — 2))
(1= an)?||lzn — 2*||* + 20, (Sxp — 2%, J (2, — %))
+20,(Szy, — 2%, J (g1 — ") — J (x5, — 7). (8.22)

IN

Observe that
(Sap —a*, J(zn —2%)) = (f— (T — A+ 0pog)(zn) + an
—(f = (T'= A+ Opog)(z™) — a*), J(zy, — 27))
= |lzn —a*|* = (T — A+ dpog) (zn)
(T = A+ dgog))(z"), J(wn — 7))
< (I =k)|z, — x*HQ
Set By, == [{Sxp — 2*, J(xp41 — %) — J(zy, — 2*))|. Then
ﬂn < KHJ(xn-i-l - 33*) - J(xn - J?*)H*
Observe that

Tpg1 — " — (Bp — %) = Zpy1— T
= a,(Sz, —z,). (8.23)

Again because {z,}, {Sx,} are bounded, and «,, — 0, hence, from (8.23), we
have
Tpt1 —2° — (2, — %) — 0 as n — oc.

By the uniform continuity of J, ||J(zn4+1 — 2*) — J(z, — 2*)||« — 0. Thus, we
have

B, — 0. (8.24)
So from (8.22), (8.23), and (8.24), we have

lzns1 =2 < [(1— an)? + 200 (1 = B)][lon — 7|1 + 2003,
(1+ a2 = 20,k)||zn — %% + 20,5,
(1 — ank + an(an — E)]||lzn — 2*]1? + 206, (8.25)

Because a,, — 0, there exists an ng € N such that «,, < k for n > ng. Hence
for any n > ng, from (8.25) we have

lns1 = 22 < (1= ank)llwn — 27| + 20m 5. (8.26)

Let a, = ||z, — 2*|* t, = ank,b, = 2a,3,. Therefore, by Lemma 6.1.6,

T, — T asn — oo.
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Exercises

8.1 Let C be a closed convex cone in a Hilbert space H and T': C — H a
mapping. Show that the following are equivalent:

(a) Find 7 € C such that
T7Z € C* (dual cone) and (Z,7T7Z) = 0. (C.P)

(b) Find T € C such that gT = T, where g : C — C is defined by
gx = Po(x — pTz), and p > 0 is a real number.

8.2 Let C be a closed convex cone of a Hilbert space H. Show that the comple-
mentarity problem (C.P.) has a solution if and only if T'(z) = Pcx —T Pcx
for x € H has a fixed point in H. If xg = Txq, show that T = Pcxg is a
solution of the complementarity problem.

8.3 Let C be a nonempty compact convex subset of a normed pace X and
T :C — X a continuous mapping. Show that there exists a point u € C
such that ||u — Tul| = d(Tu,C).

8.4 Let K(s,t) and w(s,t) be continuous real functions on the unit square
[0,1]%, and let v(s) be a continuous real function on [0, 1]. Suppose that

[w(s,t1) — w(s,t2)] < N|t1 — to| for all 0 < ty,t9,s8 < 1.

Show that there is a unique continuous real function y(s) on [0,1] such
that

y(s) =v(s) + /OS K(s,t)w(t,y(t))dt.

8.5 Let K(s,t,u) be a continuous function on 0 < s,¢ < 1,u > 0 such that
‘K(xﬂfaul) - K(S7tau2)‘ < N(S7t)‘u1 - u2‘7

where N(s,t) is a continuous function satisfying

1
/ N(s,t)dt < k <1,
0
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for every 0 < s < 1. Show that for every y € C]0, 1], there exists a unique
function y € C[0,1] such that

v = o)+ [ Kl tyle)i



Appendix A

A.1 Basic inequalities

Lemma A.1.1 Let a,b € R" and 2 < p < co. Then we have the following:
(a) aP + b < (a2 + b*)P/2,
(b) (a® + b?)P/2 < 2P=2)/2(gP 4 pP).

Proof. We note that both the inequalities hold if either a or b is zero. So we
prove the Lemma for a # 0 and b # 0.

(a) Because

2 b2
aypstdaE st
we have
aP P a2 P/2 b2 p/2
(a2 +b2)p/2 + (a2 i b2)p/2 - <a2 —|—b2> + (a2 + b2>
a? b? )
21 + Z (since p/2 < 1)
=1

(b) Tt is obvious for p = 2. So, assume that p > 2. Set p’ := p/2 > 1 and
g =p/p—-1)=p/(p—2). Then 1/p' +1/¢’ = 1. By Holder’s inequality, we
have

@+ 6 < (@) + %)) ar )Y
2(p—2)/p(ap + bzu)2/p7

which implies that

(a? + b2)P/2 < 20=2/2gp 1 pp) |
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A.2 Partially ordered set

Let < be a relation on a nonempty set X. Then the relation < is said to be
partially ordered if it is

(i) reflexive: a < a for all a € X;
(ii) antisymmetric: ¢ < b and b < a = a = b for some a,b € X;

(iil) transitive: a < b and b < ¢ = a < ¢ for some a,b,c € X.
The ordered pair (X, <) is called a partially ordered set.

Totally ordered (or linearly ordered) set - Let (X, <) be a partially ordered
set. Then a subset S of X is said to be totally ordered or linearly ordered if for
all a,b € S either a < b or b < a, i.e., all the elements of S are comparable.

Infimum and supremum of a set - Let X be a partially ordered set with
relation < and let S be a nonempty subset of X. Then an element u € X
(v € S) is said to be an upper bound of S (a lower bound of S) if

x<uforallz e S (v <z forall z€b8).
The least upper bound of S is called the supremum and it is denoted supS.
The greatest lower bound of S is called the infimum and it is denoted by inf S.

Minimum and maximum of a set - Let S be a nonempty subset of a partially
ordered set (X, <). If inf S exists and belongs to .S, then it is called a minimum
of S. Similarly, if sup .S exists and belongs to S, then it is called a maximum of .S.

Minimal and maximal elements of a set - Let (X, <) be a partially ordered
set. An element m € X is said to be minimal if z < m for x € X = 2 = m.
Similarly, an element m € X is said to maximal if m < x for x € X = x =m.

We now state a very useful lemma that is known as Zorn’s lemma.

Lemma A.2.1 (Zorn’s Lemma) - Let (X, <) be a partially ordered set in
which every chain has an upper bound. Then X has a mazimal element.

A.3 Ultrapowers of Banach spaces

Let A denote an index set.

Definition A.3.1 Let F be a nonempty family of subsets of A. Then the family
F is said to be a filter on A if
(FY) F is closed under super set:

Ae Fand ACBCA=BeF,
(Fy)  F is closed under intersection:

ABeF=ANBEeF.
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Observation
e 2% the power set of index set A, defines a filter.
e A filter F is proper if F # 2*.

For ig € A, let F;y = {A C A :ig € A}. Then a filter of the form F;, for
some g is called a non-free filter.

Definition A.3.2 LetU be a filter on A. Then U is said to be an ultrafilter on
A if it is maximal with respect to ordering of filters on A by inclusions, i.e., if
UCF and F is a filter on A, then F =U.

Observation
e If U/ is an ultrafilter on A, then it is not properly contained in any other filter

on A.

Definition A.3.3 Let (X,7) be a topological space, U an ultrafilter on A and
{z;}ien a subset in X. We say

limz;(=7 —limz;) =
%{nwz( T 1Lrlnxl) x

if for every neighborhood U of x we have {i € A:x; e U} € U.

Observation

e If X is a Hausdorff topological space, then the limit along U of the set {x;}ica
in X is always unique.

e If {z,} is a bounded sequence in R and U is an ultrafilter on N, then ligfn Tn

exists and
liminf z, <limz, <limsup z,.

n— oo u n—oo

We now give basic properties of ultrafilter.

Proposition A.3.4 Let X be a Hausdorff topological vector space and U an
ultrafilter over an index set A. If {z;}ica and {y;}ica are two subsets of X
such that liLr{n x; and liLI{n y; exist,

lim(z; +y;) = ima; + limy;
im(z; +y;) = lima; +limy

and
libr[n ar; = alig{n x; for any scalar a € K.

Proposition A.3.5 Let {z,} be a sequence in a metric space X and U an
ultrafilter (over an index set N) such that liLI{n Ty, = x. Then there exists a

subsequence of {x,} that converges to x.

Proposition A.3.6 Let X be a Hausdorff topological space. Then X is compact
if and only if liLI{nJ;i exists for all {x;}ic; C X and any ultrafilter over A.
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Now we are in position to define an ultrapower of a Banach space:

Let X be a Banach space and U an ultrafilter over an index set A. Let
£ (X) denote the space

Hyn} s yn € X and {||ynll} € oo}

with the norm |[{yn}ll¢.(x) := sup||yn|| and let N be the closed subspace of
neN

loo(X)
{{yn} : yn € X and lim|ly, | = 0}.

Definition A.3.7 Let X be a Banach space. Then the Banach space ultrapower
of X over U is defined to be the Banach space quotient

{ X} =l (X)/N.
The norm || - || in { X}y is the usual quotient norm, i.e., |[{x;}|lu = libr{n [l -
We now give some useful properties of an ultrapower of Banach spaces.
Proposition A.3.8 Let X be a Banach space. Then {X }y is a Banach space.

Proposition A.3.9 The ultrapower {X}y of a Banach space X contains a
subspace isometrically isomorphic to X.

Observation
e X is a subspace of {X }y.
e {H}y is a Hilbert space, i.e.,

i} + {yi e+ i} = {wllee = 2l{i I+ 20{wi & for all {wi}, {y:} € {H}u.

Proposition A.3.10 The ultrapower {X 1}y of a Banach space X ‘s finitely
representable in X .
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