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Preface
Over the past few decades, fixed point theory of Lipschitzian and non-
Lipschitzian mappings has been developed into an important field of study in
both pure and applied mathematics. The main purpose of this book is to present
many of the basic techniques and results of this theory. Of course, not all aspects
of this theory could be included in this exposition.

The book contains eight chapters. The first chapter is devoted to some
of the basic results of nonlinear functional analysis. The final section in this
chapter deals with the classic results of fixed point theory. Our goal is to
study nonlinear problems in Banach spaces. We remark here that it is hard to
study these without the geometric properties of Banach spaces. As a result in
Chapter 2, we discuss elements of convexity and smoothness of Banach spaces
and properties of duality mappings. This chapter also includes many interest-
ing results related to Banach limits, metric projection mappings, and retraction
mappings. In Chapter 3, we consider normal structure coefficient, weak normal
structure coefficient, and related coefficients. This includes the most recent
work in the literature. Our treatment of the main subject in the book begins in
Chapter 4. In this chapter, we consider the problem of existence of fixed points
of Lipschitzian and non-Lipschitzian mappings in metric spaces. Chapter 5
is devoted to problems of existence of fixed points of nonexpansive, asympto-
tically nonexpansive, pseudocontractive mappings in Banach spaces. Most of
the results are discussed in infinite-dimensional Banach spaces. The theory
of iteration processes for computing fixed points of nonexpansive, asympto-
tically nonexpansive, pseudocontractive mappings is developed in Chapter 6.
In Chapter 7, we prove strong convergence theorems for nonexpansive, pseudo-
contractive, and asymptotically pseudocontractive mappings in Banach spaces.
Finally in Chapter 8, we discuss several applicable problems arising in different
fields.

Each chapter in this book contains a brief introduction to describe the topic
that is covered. Also, an exercise section is included in each chapter. Because the
book is self-contained, the book should be of interest to graduate students and
mathematicians interested in learning fundamental theorems about the theory
of Lipschitzian and non-Lipschitzian mappings and fixed points.

We wish to express our deepest appreciation to Professors Y. Alber,
T. D. Benavides, J. S. Jung, W. A. Kirk, S. Prus, S. Reich, B. E. Rhoades,
B. K. Sharma, W. Takahashi, H. K. Xu, and J. C. Yao for their encouragement
and personal support.
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Finally the authors are very grateful to Ms. V. Damle, Ms. B. Marcia and the
staff from the Springer Publishers for their indefatigable cooperation, patience
and understanding.

R.P. Agarwal
Donal O’Regan

D.R. Sahu
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Chapter 1

Fundamentals

The aim of this chapter is to introduce the basic concepts, notations, and
elementary results that are used throughout the book. Moreover, the results
in this chapter may be found in most standard books on functional analysis.

1.1 Topological spaces

Let X be a nonempty set and d : X ×X → R+ := [0,∞) a function. Then d is
called a metric on X if the following properties hold:

(d1) d(x, y) = 0 if and only if x = y for some x, y ∈ X;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The value of metric d at (x, y) is called distance between x and y, and the
ordered pair (X, d) is called metric space.

Example 1.1.1 The real line R with d(x, y) = |x − y| is a metric space. The
metric d is called the usual metric for R.

For any r > 0 and an element x in a metric space (X, d), we define
Br(x) := {y ∈ X : d(x, y) < r}, the open ball with center x and radius r;
Br[x] := {y ∈ X : d(x, y) ≤ r}, the closed ball with center x and radius r;
∂Br(x) := {y ∈ X : d(x, y) = r}, the boundary of ball with center x and

radius r.

For a subset C of X and a point x ∈ X, the distance between x and C,
denoted by d(x,C), is defined as the smallest distance from x to elements of C.
More precisely,

d(x,C) = inf
x∈C

d(x, y).

The number sup{d(x, y) : x, y ∈ C} is referred to as the diameter of set C and
is denoted by diam(C). If diam(C) is finite, then C is said to be bounded, and

R.P. Agarwal et al., Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3 1,
c© Springer Science+Business Media, LLC, 2009



2 1. Fundamentals

if not, then C is said to be unbounded. In other words, C is bounded if there
exists a sufficiently large ball that contains C.

Interior points and open set – Let G be a subset of a metric space (X, d).
Then x ∈ G is said to be an interior of G if there exists an r > 0 such that
Br(x) ⊂ G. The set G is said to be open if all its points are interior or is the
empty set. The interior of set G is denoted by int(G).

Observation
• int(G) ⊂ G for any subset G of metric space X.

• For any open set G ⊂ X, int(G) = G.

• The empty set ∅ and entire space X are open.

Definition 1.1.2 Let X be a nonempty set and τ a collection of subsets of X.
Then τ is said to be a topology on X if the following conditions are satisfied:

(i) ∅ ∈ τ and X ∈ τ ,
(ii) τ is closed under arbitrary unions,
(iii) τ is closed under finite intersections.
The ordered pair (X, τ) is called topological space.

Observation

• The members of τ are called τ -open sets or simply open sets.

Definition 1.1.3 A topological space is said to be metrizable if its topology can
be obtained from a metric on the underlying space.

Denoting the class of all open sets of a metric space (X, d) by τd, then we
have

(1) ∅ and X are in τd,
(2) an arbitrary union of open sets is open,
(3) a finite intersection of open sets is open.

The class τd is called a metric topology on X.

Definition 1.1.4 Let C be a subset of a topological space X. Then the interior
of C is the union of all open subsets of C. It is denoted by int(C).

In other words, if {Gi : i ∈ Λ} are all open subsets of C, then int(C) =
∪i∈Λ{Gi : Gi ⊂ C}.

Observation
• int(C) is open, because it is union of open sets.

• int(C) is the largest open set of C.

• If G is an open subset of C, then G ⊂ int(C) ⊂ C.
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Definition 1.1.5 A set F in a topological space X whose complement F c =
X − F is open is called a closed set.

Theorem 1.1.6 Let C be a collection of all closed sets in a topological space
(X, τ). Then C has the following properties:

(i) ∅ ∈ C and X ∈ C,
(ii) C is closed under arbitrary intersections,
(iii) C is closed under finite unions.

Definition 1.1.7 Let C be a subset of a topological space X. Then the closure
of C is the intersection of all closed supersets of C. The closure of C is denoted
by C.

In other words, if {Fi : i ∈ Λ} is a collection of all closed supersets of C in
X, then C = ∩i∈ΛFi.

Observation
• C is closed, because it is the intersection of closed sets.

• C is the smallest closed superset of C.

• If F is a closed subset of X containing C, then C ⊂ C ⊂ F .

Theorem 1.1.8 Let C be a subset of a topological space X. Then C is closed
if and only if C = C.

Exterior points and boundary of sets – Let C be a subset of a topological
space X. Then the exterior of C, written by ext(C), is the interior of the
complement of C, i.e., ext(C) = int(Cc). The boundary of C is a set of points
that do not belong to the interior or the exterior of C. The boundary of set C
is denoted by ∂(C). Obviously, ∂(C) = C ∩ (X \ C) is a closed set.

Proposition 1.1.9 Let A and B be two subsets of a topological space X. Then
the following properties hold:

Properties of interiors Properties of closures
int(int(A)) = int(A) (A) = A
int(A ∩B) = int(A) ∩ int(B) A ∩B ⊂ A ∩B
int(A ∪B) ⊃ int(A) ∪ int(B) (A ∪B) = A ∪B

A ⊂ B ⇒ int(A) ⊂ int(B) A ⊂ B ⇒ A ⊂ B

Definition 1.1.10 Let τ1 and τ2 be two topologies on a topological space X.
Then τ1 is said to be weaker than τ2 if τ1 ⊂ τ2.

Note that if τ1 and τ2 are two topologies on X such that τ = τ1 ∩ τ2. Then
the topology τ is weaker than τ1 and τ2 both.

Theorem 1.1.11 Let {τi : i ∈ Λ} be a collection of topologies on a topological
space X. Then the intersection ∩i∈Λτi is also a topology on X.
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We now turn to the notion of a base for the topology τ .

Definition 1.1.12 Let (X, τ) be a topological space. Then a subclass B of τ is
said to be a base for τ if every member of τ can be expressed as the union of
some members of B.

Observation
• Every topology has a base. In fact, we can take B = τ .

• In a metric space (X, d), collection of all open balls Br(x) (x ∈ X, r > 0)

is a base for the metric topology.

Then, we have the following theorem:

Theorem 1.1.13 Let (X, τ) be a topological space and B ⊂ τ . Then B is a
base for τ if and only if, for every x ∈ X and every open set G containing x,
there exists B ∈ B such that x ∈ B and B ⊂ G.

We now consider a base of open sets at a point.

Definition 1.1.14 Let (X, τ) be a topological space and x0 ∈ X. Then the
collection Bx0⊂ τ is called a base at a point x0 if, for any open set G containing
x0, there exists B ∈ Bx0 such that x0 ∈ B ⊂ G.

Observation
• In the metric topology of a metric space (X, d), the collection of all Br(x0), where

r runs through the positive real numbers, constitutes a base at a point x0 ∈ X.

Neighborhoods – Let X be a topological space and G an open set. Then
G is called an open neighborhood of a point x0 ∈ X if x0 ∈ G. The set G with-
out x0, i.e., G \ {x0}, is called a deleted open neighborhood of a point x0 ∈ X.
A subset C of X is said to be a neighborhood of a point x0 ∈ X if there exists
an open set G ∈ τ such that x0 ∈ G ⊂ C.

Let (X, τ) be a topological space. Then a collection ν of neighborhoods of
x0 ∈ X is said to be a neighborhood base at a point x0 if every neighborhood of
x0 contains a member of ν.

A collection σ of subsets of a topological space (X, τ) is said to be a subbase
for τ if σ ⊂ τ and every member of τ is a union of finite intersections of sets
from σ. In other words, σ is a subbase for τ if σ ⊂ τ and for all G ∈ τ and
x ∈ G, there are sets U1, U2, · · · , Un in σ such that x ∈ ∩n

i=1Ui ⊂ G.

Let (X, τ) be a topological space. Then X is said to be

1. a T0-space if x and y are any two distinct points in X, then there exists
an open set that contains one of them, but not the other;

2. a T1-space if x and y are two distinct points in X, there exists an open set
U containing x and not y, and there exists another open set V containing
y, but not x;



1.1. Topological spaces 5

3. a T2-space or Hausdorff topological space if x and y are two distinct points
in X, there exist two open sets G and H such that x ∈ G, y ∈ H, and
G ∩H = ∅.

Observation
• Every Hausdorff space is a T1-space.

• A topological space X is T1-space if and only if every subset consisting of a single
point is closed.

• Every metric space is a Hausdorff space.

A topological space (X, τ) is said to be compact if every open cover has a
finite subcover, i.e., if whenever X = ∪i∈ΛGi, where Gi is an open set, then
X = ∪i∈Λ0Gi for some finite subset Λ0 of Λ.

A subset C of a topological space (X, τ) is said to be compact if every open
cover has finite open subcover, i.e., if whenever C ⊆ ∪i∈ΛGi, where Gi is an
open set, then C ⊆ ∪i∈Λ0Gi for some finite subset Λ0 of Λ.

Observation
• Every finite set of a topological space is compact.

• Every closed subset of a compact space is compact.

• In a compact Hausdorff space, a set is compact if and only if it is closed.

Net – Let D be a nonempty set and  a relation on D. Then the ordered
pair (D,) is said to be directed if

(i)  is reflexive: α  α for all α ∈ D;

(ii)  is transitive: whenever α  β and β  y ⇒ α  y for all α, β, γ ∈ D;

(iii) for any two elements α and β, there exists γ such that α  γ and β  γ.

Observation
• (N,≥) is a directed set.

• If X �= ∅, then (P (X),⊆) and (P (X),⊇) are directed sets, where P (X) is the

power set of X.

• Every lattice is a directed set.

A net, or a generalized sequence in a set X is a mapping S from a directed
set D into X. The net {xα : α ∈ D} is simply written as {xα}.

Let {xα : α ∈ D} be a net in a set X and let E be another directed set.
Then a net {xαβ

: β ∈ E} in X is said to be a subnet of {xα : α ∈ D} if it
satisfies the following conditions:

(i) {xαβ
: β ∈ E} ⊂ {xα : α ∈ D};

(ii) for any α0 ∈ D, there exists β0 ∈ E such that α0  αβ exists β0  β.
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A net {xα : α ∈ D} in a topological space X is said to converge to the point
x in X if for every neighborhood U of x, there exists α0 ∈ D such that xα ∈ U
whenever α � α0. In this case, we write

xα → x, or lim
α

xα = x.

A point x in a topological space X is said to be a cluster point of a net
{xα : α ∈ D} if for every neighborhood U of x and every α ∈ D, there exists
β ∈ D such that β � α and xβ ∈ U .

Theorem 1.1.15 Let {xα}α∈D be a net in a topological space X and let x ∈ X.
Then x is a cluster point of the net {xα}α∈D if and only if the net {xα}α∈D has
a subnet converging to x.

In a metric space (X, d), a sequence {xn} in X is convergent to x ∈ X if
lim

n→∞ d(xn, x) = 0, i.e., if given ε > 0, there exists an integer n0 ∈ N such that

d(xn, x) < ε for all n ≥ n0. A sequence {xn} in a metric space (X, d) is said to
be Cauchy if lim

m,n→∞ d(xn, xm) = 0. A metric space (X, d) is said to be complete

if every Cauchy sequence in X is convergent in X.

Observation
• In a Hausdorff topological space, the limit of a net is unique.

• In a metric space, every convergent sequence is Cauchy.

A subset E of a directed set D is said to be eventual if there exists β ∈ D
such that for all α ∈ D, α  β implies that α ∈ E. A net S : D → X is said to
be eventually in a subset C of X if the set S−1(C) is an eventual subset of D.
A net {xα} in a set X is called a universal net if for each subset C of X, either
{xα} is eventually in C or {xα} eventually in X \ C.

The following facts are important:

(a) Every net in a set has a universal subnet.

(b) If f : X1 → X2 is a mapping and if {xα} is a universal net in X1, then
{f(xα)} is a universal net in X2.

(c) If X is compact and if {xα} is a universal net in X, then lim
α

xα exists.

We now state the following important result:

Theorem 1.1.16 For a topological space (X, τ), the following statements are
equivalent:

(a) X is compact.
(b) For any collection of closed sets {Fi}i∈Λ having the finite intersection

property (i.e., the intersection of any finite number of sets from the collection
is nonempty), then

⋂
i∈Λ Fi �= ∅.
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(c) Every net in X has a limit point (or, equivalently, every net has a
convergent subnet).

(d) Every filter in X has a limit point (or, equivalently, every net has a
convergent subfilter).

(e) Every ultrafilter in X is convergent.

We now turn our attention to the concept of continuity in topological spaces.

Definition 1.1.17 Let (X, τ) and (Y, τ ′) be two topological spaces. Then a
function f : X → Y is said to be continuous relative to τ and τ ′ (more precisely,
τ − τ ′ continuous) or simply continuous at a point x ∈ X if for each V ∈ τ ′

with f(x) ∈ V, there exists U ∈ τ such that x ∈ U and f(U) ⊂ V .

The function f is called continuous if it is continuous at each point of X.
Using the concept of net, we have the following result for continuity of a function
in a topological space.

Theorem 1.1.18 Let X and Y be two topological spaces and let f be a mapping
from X into Y . Then f is continuous at a point x in X if and only if for every
net {xα} in X,

xα → x⇒ f(xα)→ f(x).

Some other formulations for continuous functions are the following:

Theorem 1.1.19 Let f be a function from a topological space (X, τ) into
another topological space (Y, τ ′). Then the following statements are equivalent:

(1) f is continuous (i.e., τ − τ ′ continuous).

(2) For each V ∈ τ ′, f−1(V ) ∈ τ .

(3) For each closed subset A of Y , f−1(A) is closed in X.

(4) For all A ⊂ X, f(A) ⊂ f(A).

(5) There exists a subbase σ of τ ′ such that f−1(V ) ∈ τ for all V ∈ σ.

The following result shows that continuous image of a compact set is
compact.

Theorem 1.1.20 Let X and Y be two topological spaces and let T : X → Y be
a continuous mapping. If C ⊆ X is compact, then T (C) is compact.

The following result shows that there exists the smallest topology for which
each member of {fi : i ∈ Λ} is continuous.

Theorem 1.1.21 Let {(Xi, τi) : i ∈ Λ} be an indexed family of topological
spaces, X any set, and {fi : i ∈ Λ} an indexed collection of functions such that
for each i ∈ Λ, fi is a function from X to Xi. Then there exists the smallest
topology τ on X that makes each fi continuous (i.e., τ − τi continuous).
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Proof. Let σ = {f−1
i (Vi) : Vi ⊂ Xi is open in τi (i ∈ Λ)} be a subbase for the

topology τ given by

τ = {∪F∈F ∩C∈F C : F ⊂ σ} ∪ {∅, X}, (1.1)

where σ is the set of all finite subsets of σ. Thus, G ⊂ X is open in τ if and
only if for every x ∈ G, there are i1, i2, · · · , in ∈ Λ and Vi1 ∈ τi1 , Vi2 ∈ τi2 , · · · ,
Vin
∈ τin

such that x ∈ ∩n
k=1f

−1
ik

(Vik
) ⊂ G.

Remark 1.1.22 The topology τ on X defined by (1.1) making each fi continu-
ous (τ−τ ′ continuous) is called the weak topology generated by F and is denoted
by σ(X,F).

Product space – Let X1, X2, · · · , Xn be n arbitrary sets with the Cartesian
product X = X1 ×X2 × · · · ×Xn. For each i = 1, 2, · · · , n, define πi : X → Xi

by πi(x1, x2, · · · , xn) = xi. Then πi is called the projection on Xi or the ith

projection. If x ∈ X, then πi(x) is called the ith coordinate of x.

Theorem 1.1.23 Let {(Xi, τi) : i = 1, 2, · · · , n} be a collection of topological
spaces and (X, τ) their topological product, i.e., X =

∏
i Xi and τ =

⋂
i τi. Then

each projection πi is continuous. Moreover, if Y is any topological space, then
a function f : Y → X is continuous if and only if the mapping πiof : Y → Xi

is continuous for all i = 1, 2, · · · , n.

Theorem 1.1.24 (Tychonoff’s theorem) – The Cartesian product X of an
arbitrary collection {Xi}i∈Λ of compact spaces is compact (with respect to product
topology).

1.2 Normed spaces

A linear space or vector space X over the field K (the real field R or the complex
field C) is a set X together with an internal binary operation “+” called addition
and a scalar multiplication carrying (α, x) in K ×X to αx in X satisfying the
following for all x, y, z ∈ X and α, β ∈ K:

1. x + y = y + x,
2. (x + y) + z = x + (y + z),
3. there exists an element 0 ∈ X called the zero vector of X such that

x + 0 = x for all x ∈ X,
4. for every element x ∈ X, there exists an element −x ∈ X called the

additive inverse or the negative of x such that x + (−x) = 0,
5. α(x + y) = αx + αy,

6. (α + β)x = αx + βx,
7. (αβ)x = α(βx),
8. 1 · x = x.
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The elements of a vector space X are called vectors, and the elements of
K are called scalars. In the sequel, unless otherwise stated, X denotes a linear
space over field R.

Observation
• With the usual addition and multiplication, R and C are linear spaces over R.

• X = {x = (a1, a2, · · · ) : ai ∈ R} is a linear space.

• The set of solutions of a linear differential equation (and linear partial differential

equation) is a linear space.

A subset S of a linear space X is a linear subspace (or a subspace) of X if S
is itself a linear space, i.e., αx + βy ∈ S for all α, β ∈ K and x, y ∈ S.

If S is a subset of a linear space X, then the linear span of S is the intersection
of all linear subspaces containing S. It is the smallest linear subspace of X
containing S. The linear span of set S is denoted by [S].

Given the points x1, x2, · · · , xn of a linear space X, then the element

x = a1x1 + a2x2 + · · ·+ anxn, ai ∈ K

is called linear combination of {x1, x2, · · · , xn}.
Proposition 1.2.1 Let S be a nonempty subset of a linear space X. Then the
linear span of S is the set of all linear combinations of elements of S.

A linear space X is said to be finite-dimensional if it is generated by the
linear combination of a finite number of points (which are linearly indepen-
dent). Otherwise, it is infinite-dimensional. The dimension of a linear space X
is denoted by dim(X).

Convex set – Let C be a subset of a linear space X. Then C is said to
be convex if (1− λ)x + λy ∈ C for all x, y ∈ C and all scalar λ ∈ [0, 1].

By definition of convexity, we have the following fact:

Proposition 1.2.2 Let C be a subset of a linear space X. Then C is convex if
and only if λ1x1 +λ2x2 + · · ·+λnxn ∈ C for any finite set {x1, x2, · · · , xn} ⊆ C
and any scalars λi ≥ 0 with λ1 + λ2 + · · ·+ λn = 1.

Convex hull – Let C be an arbitrary subset (not necessarily convex) of a linear
space X. Then the convex hull of C in X is the intersection of all convex subsets
of X containing C. It is denoted by co(C). Hence

co(C) = ∩{D ⊆ X : C ⊆ D, D is convex}.
Thus, co(C) is the unique smallest convex set containing C. Clearly,

co(C) =
{

α1x1 + α2x2 + · · ·+ αnxn : xi ∈ C,αi ≥ 0 and
n∑

i=1

αi = 1
}

= the set of all convex combination of elements of C.
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The closure of convex hull of C is denoted by co(C). Thus,

co(C) =
{

α1x1 + α2x2 + · · ·+ αnxn : xi ∈ C,αi ≥ 0 and
n∑

i=1

αi = 1
}

.

The closed convex hull of C in X is the intersection of all closed convex
subsets of X containing C. It is denoted by co(C). Thus,

co(C) = ∩{D ⊆ X : C ⊆ D, D is closed and convex}.

One may easily see that closure of convex hull of C is closed convex hull of C,
i.e., co(C) = co(C).

Observation
• The empty set ∅ is convex.

• For two convex subsets C and D in a linear space X, we have
(i) C + D is convex,
(ii) λC is convex for any scalar λ.

• Any translate C + x0 of a convex set C is convex.

• If {Ci : i ∈ Λ} is any family of convex sets in a linear space X, then ∩iCi is
convex.

• If C is a convex subset of a linear space X, then

(i) the closure C and the interior int(C) are convex,

(ii) co(C) = C.

• If C is a subset of a linear space, co(C) = co(C).

• In general, co(C) �= co(C).

The vector space axioms only describe algebraic properties of the elements
of the space: vector addition, scalar multiplication, and other combinations of
these. For the topological concepts such as openness, closure, convergence, and
completeness, we need a measure of distance in a space.

Definition 1.2.3 Let X be a linear space over field K (R or C) and f : X → R+

a function. Then f is said to be a norm if the following properties hold:
(N1) f(x) = 0 if and only if x = 0; (strict positivity)
(N2) f(λx) = |λ|f(x) for all x ∈ X and λ ∈ K; (absolute homogeneity)
(N3) f(x + y) ≤ f(x) + f(y) for all x, y ∈ X.

(triangle inequality or subadditivity)

The ordered pair (X, f) is called a normed space.

Observation
• f(x) ≥ 0 for all x ∈ X.
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• |f(x) − f(y)| ≤ f(x − y) and |f(x) − f(y)| ≤ f(x + y) for all x, y ∈ X.

• f is a continuous function, i.e., xn → x ⇒ f(xn) → f(x).

• f is a convex function, i.e., f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) for all x, y ∈ X
and λ ∈ [0, 1].

• Addition and scalar multiplication are jointly continuous, i.e., if xn → x and

xn → y, then xn + yn → x + y and if xn → x and λn → λ, then λnxn → λx.

We use the notation ‖ · ‖ for norm. Then every normed space (X, ‖ · ‖) is a
metric space (X, d) with induced metric d(x, y) = ‖x−y‖ and a topological space
with the induced topology. It means that the induced metric d(x, y) = ‖x− y‖
in turn, defines a topology on X, the norm topology.

Observation
• In every linear space X, we can easily define a function ρ : X × X → R

+ by

ρ(x, y) =

{
0 if x = y,
1 if x �= y,

(1.2)

which is a metric on X. It shows that every linear space (not necessarily normed

space) is always a metric space.

At this stage, there arises a natural question:

Under what conditions will any metric on a linear space be a normed space?
Such sufficient conditions are given in following proposition:

Proposition 1.2.4 Let d be a metric on a linear space X. Then function
‖ · ‖ : X → R+ defined by

‖x‖ = d(x, 0) for all x ∈ X

is a norm if d satisfies the following conditions:

(d1) d is homogeneous : d(λx, λy) = |λ|d(x, y) for all x, y ∈ X and λ ∈ K;

(d2) d is translation invariant : d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X.

Remark 1.2.5 The metric ρ defined by (1.2) is not homogeneous and the linear
space X is a metric space under metric ρ, but not a normed space.

The following example also demonstrates that a metric space is not neces-
sarily a normed space.

Example 1.2.6 Let X be a space of all complex sequences {xi}∞i=1 and d(·, ·)
a metric on X defined by

d(x, y) =
∞∑

i=1

1
2i
· |xi − yi|
1 + |xi − yi| , x = {xi}, y = {yi} ∈ X. (1.3)
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Then d is not a norm under the relation d(x, y) = ‖x− y‖. In fact,

d(λx, λy) =
∞∑

i=1

1
2i
· |λ||xi − yi|
1 + |λ||xi − yi| �= |λ|

∞∑
i=1

1
2i
· |xi − yi|
1 + |xi − yi| = |λ|d(x, y),

i.e., d is not homogeneous.

Remark 1.2.7 The metric d defined by (1.3) is bounded, because

d(x, y) =
∞∑

i=1

1
2i
· |xi − yi|
1 + |xi − yi| ≤

∞∑
i=1

1
2i

<∞.

This metric is called a Fréchet metric for X.

We now consider some examples of normed spaces:

Example 1.2.8 Let X = Rn, n > 1 be a linear space. Then Rn is a normed
space with the following norms:

‖x‖1 =
n∑

i=1

|xi| for all x = (x1, x2, · · · , xn) ∈ Rn;

‖x‖p =
( n∑

i=1

|xi|p
)1/p

for all x = (x1, x2, · · · , xn) ∈ Rn and p ∈ (1,∞);

‖x‖∞ = max
1≤i≤n

|xi| for all x = (x1, x2, · · · , xn) ∈ Rn.

Remark 1.2.9 (a) Rn equipped with the norm defined by ‖x‖p =(
∑n

i=1|xi|p)1/p

is denoted by n
p for all 1 ≤ p <∞.

(b) Rn equipped with the norm defined by ‖x‖∞ = max
1≤i≤n

|xi| is denoted by n
∞.

Example 1.2.10 Let X = 1, the linear space whose elements consist of all
absolutely convergent sequences (x1, x2, · · · , xi, · · · ) of scalars (real or complex
numbers), i.e.,

1 =
{

x : x = (x1, x2, · · · , xi, · · · ) and

∞∑
i=1

|xi| <∞
}

.

Then 1 is a normed space with the norm defined by ‖x‖1 =
∑∞

i=1 |xi|.
Example 1.2.11 Let X = p (1 < p < ∞), the linear space whose elements
consist of all p-summable sequences (x1, x2, · · · , xi, · · · ) of scalars, i.e.,

p =
{

x : x = (x1, x2, · · · , xi, · · · ) and
∞∑

i=1

|xi|p <∞
}

.

Then p is a normed space with the norm defined by ‖x‖p = (
∑∞

i=1 |xi|p)1/p.
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Example 1.2.12 Let X = ∞, the linear space whose elements consist of all
bounded sequences (x1, x2, · · · , xi, · · · ) of scalars, i.e.,

∞ = {x : x = (x1, x2, · · · , xi, · · · ) and {xi}∞i=1 is bounded}.
Then ∞ is a normed space with the norm defined by ‖x‖∞ = sup

i∈N

|xi|.

Example 1.2.13 Let X = c, the sequence space of all convergent sequences of
scalars, i.e.,

c = {x : x = (x1, x2, · · · , xi, · · · ) and {xi}∞i=1 is convergent}.
Then c space is a normed space with the norm ‖ · ‖∞.

Example 1.2.14 Let X = c0, the sequence space of all convergent sequences of
scalars with limit zero, i.e.,

c0 = {x = (x1, x2, · · · , xi, · · · ) : {xi}∞i=1 is convergent to zero}.
The c0 space is a normed space with norm ‖ · ‖∞.

Example 1.2.15 Let X = c00, the sequence space defined by

c00 = {x = {xi}∞i=1 ∈ ∞ : {xi}∞i=1 has only a finite number of nonzero terms}.
Then c00 space is a normed space with norm ‖ · ‖∞.

Observation
• c00 ⊂ �p ⊂ c0 ⊂ c ⊂ �∞ for all 1 ≤ p < ∞.

• If 1 ≤ p < q ≤ ∞, then �p ⊂ �q. In fact, let x = (1, 1/2, · · · , 1/n, · · · ), and we
have

∞∑
i=1

|xi| =
∞∑

i=1

1

i
= ∞, and

∞∑
i=1

|xi|2 =
∞∑

i=1

1

i2
=

π2

6
< ∞.

Note that x ∈ �2, but x /∈ �1. Hence an element of �2 is not necessarily an
element of �1. But each element of �1 is an element of �2.

Example 1.2.16 Let X = Lp[a, b] (1 ≤ p <∞), the linear space of all equiva-
lence classes of p-integrable functions on [a, b]. Then Lp[a, b] space is a normed
space with the norm defined by

‖f‖p =
(∫ b

a

|f(t)|pdt

)1/p

<∞.

Example 1.2.17 Let X = L∞[a, b], the linear space of all equivalence classes
of essentially bounded functions on [a, b]. Then L∞[a, b] space is a normed space
with the norm defined by

‖f‖∞ = ess sup|f(t)| <∞.
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Example 1.2.18 Let X = C[a, b], the set of all continuous scalar-valued func-
tions and let “ + ” and “ · ” be operations defined by

(f + g)(t) = f(t) + g(t) for all f, g ∈ C[a, b];
(λf)(t) = λf(t) for all f ∈ C[a, b] and scalar λ ∈ K.

Then C[a, b] is a linear space and is also a normed space with the norms:

‖f‖p =
(∫ b

a

|f(t)|pdt

)1/p

, 1 ≤ p <∞; (1.4)

‖f‖∞ = sup
t∈[a,b]

|f(t)|. (1.5)

Observation
• The norm ‖ · ‖p defined by (1.4) on C[a, b] is called a Lp-norm.

• The norm ‖ ·‖∞ defined by (1.5) on C[a, b] is called a uniform convergence norm.

Equivalent norms – Let X be a linear space over K and let ‖ · ‖′ and ‖ · ‖′′
be two norms on X. Then ‖ · ‖′ is said to be equivalent to ‖ · ‖′′ (written as
‖ · ‖′ ∼ ‖ · ‖′′) if there exist positive numbers a and b such that

a‖x‖′ ≤ ‖x‖′′ ≤ b‖x‖′ for all x ∈ X,

or
a‖x‖′′ ≤ ‖x‖′ ≤ b‖x‖′′ for all x ∈ X.

Observation
• The relation ∼ is an equivalence relation on the set of all norms on X.

• In a finite-dimensional normed space X, all norms on X are equivalent.

• If ‖ ·‖′
and ‖ ·‖′′

are equivalent norms on a linear space X, then a sequence {xn}
that is convergent (Cauchy) with respect to ‖ · ‖′

is also convergent (Cauchy)

with respect to ‖ · ‖′′
and vice versa.

• If ‖ · ‖′
and ‖ · ‖′′

are equivalent norms on a linear space X, then the class of

open sets with respect to ‖ · ‖′
is same as the class of open sets with respect to

‖ · ‖′′
and vice versa.

Seminorm – Let X be a linear space over field K (R or C). Then a function
p : X → R+ is said to be a seminorm on X if (N2) and (N3) (see Definition 1.2.3)
are satisfied. The ordered pair (X, p) is called seminormed space. Note that a
seminorm p is a norm if p(x) = 0⇒ x = 0.

Example 1.2.19 Let X = R2 and define p : X → R+ by

p(x) = p((x1, x2)) = |x1|, x ∈ X.

Then p is a seminorm, but not a norm, because p(x1, x2) = 0 implies that only
the first component of x is zero, i.e., x1 = 0.
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We now consider the notion of topological linear spaces.

Definition 1.2.20 A linear space X over K is said to be a topological linear
space if on X, there exists a topology τ such that X × X and K × X with the
product topology have the property that vector addition + : X × X → X and
scalar multiplication · : K×X → X are continuous functions.

In this case, τ is called a linear topology on X.

Definition 1.2.21 A linear topology on a topological linear space X is said to
be a locally convex topology if every neighborhood of 0 (the zero of X) includes
a convex neighborhood of 0. Then X is called a locally convex topological space.

Then we have the following interesting result.

Proposition 1.2.22 If X is a locally convex topological linear space over K,
then a topology of X is determined by a family of seminorms {pi}i∈I .

Inner product – Let X be a linear space over field C. An inner product on X
is a function 〈·, ·〉 : X ×X → C with the following three properties:

(I1) 〈x, x〉 ≥ 0 for all x ∈ X and 〈x, x〉 = 0 if and only if x = 0;

(I2) 〈x, y〉 = 〈y, x〉, where the bar denotes complex conjugation;

(I3) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x, y, z ∈ X and α, β ∈ C.

The ordered pair (X, 〈·, ·〉) is called an inner product space. Sometimes,
it is called a pre-Hilbert space. 〈x, y〉 is called inner product of two elements
x, y ∈ X.

Example 1.2.23 Let X = Rn, the set of n-tuples of real numbers. Then the
function 〈·, ·〉 : Rn × Rn → R defined by

〈x, y〉 =
n∑

i=1

xiyi for all x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn

is an inner product on Rn. Rn with this inner product is called real Euclidean
n-space.

Example 1.2.24 Let X = Cn, the set of n-tuples of complex numbers. Then
the function 〈·, ·〉 : Cn × Cn → C defined by

〈x, y〉 =
n∑

i=1

xiyi for all x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Cn

is an inner product on Cn. Cn with this inner product is called a complex
Euclidean n-space.
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Example 1.2.25 Let X = 2, the set of all sequences of complex numbers
(a1, a2, · · · , ai, · · · ) with

∑∞
i=1 |ai|2 <∞. Then the function 〈·, ·〉 : 2 × 2 → C

defined by

〈x, y〉 =
∞∑

i=1

xiyi for all x = {xi}∞i=1, y = {yi}∞i=1 ∈ X (1.6)

is an inner product on 2.

We note that the series (1.6) converges by the Cauchy-Schwarz inequality
(see Proposition 1.2.28).

Example 1.2.26 Let X = C[a, b], the linear space of all scalar-valued
continuous functions on [a, b]. Then the function 〈·, ·〉 : C[a, b] × C[a, b] → C

defined by

〈f, g〉 =
∫ b

a

f(t)g(t)dt for all f, g ∈ C[a, b] (1.7)

is an inner product on C[a, b].

We now give some interesting characterizations of linear spaces having inner
products.

Proposition 1.2.27 Let X be an inner product space. Then the function ‖ · ‖ :
X → R+ defined by

‖x‖ =
√
〈x, x〉, x ∈ X

is a norm on X.

Proposition 1.2.28 (The Cauchy-Schwarz inequality) – Let X be an
inner product space. Then the following holds:

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ X,

i.e.,
|〈x, y〉| ≤ ‖x‖ · ‖y‖ for all x, y ∈ X.

Proposition 1.2.29 (The parallelogram law) – Let X be an inner product
space. Then ‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X.

Proposition 1.2.30 The norm on a normed linear space X is given by an
inner product if and only if the norm satisfies the parallelogram law:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X.

Proposition 1.2.31 (The polarization identity) – Let X be an inner prod-
uct space. Then

〈x, y〉 =
1
4

{
‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2

}
for all x, y ∈ X.
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Orthogonality of vectors – Let x and y be two vectors in an inner product
space X. Then x and y are said to be orthogonal if 〈x, y〉 = 0.

Remark 1.2.32 If x and y are orthogonal, then we denote x⊥y and we say “x
is perpendicular to y.”

Proposition 1.2.33 Let X be an inner product space and let x, y ∈ X such
that x⊥y. Then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

Observation
• 0⊥x for all x ∈ X.

• x⊥x if and only if x = 0.

• Every inner product space is a normed space.

• Every normed space is an inner product space if and only if its norm satisfies the

parallelogram law.

Convergent sequence – A sequence {xn} in a normed space X is said to
be convergent to x if lim

n→∞ ‖xn − x‖ = 0. In this case, we write xn → x or
lim

n→∞xn = x.

Observation
• xn → x ⇒ ‖xn‖ → ‖x‖ (this fact can be easily shown by the continuity of norm).

The converse of this fact is not true in general (see Theorem 2.2.13).

• The limit of convergent sequence is unique. To see it, suppose xn → x and

xn → y. Then ‖x − y‖ ≤ ‖xn − x‖ + ‖xn − y‖ → 0.

Cauchy sequence – A sequence {xn} in a normed space X is said to be
Cauchy if lim

m, n→∞ ‖xm − xn‖ = 0, i.e., for ε > 0, there exists an integer n0 ∈ N

such that ‖xm − xn‖ < ε for all m,n ≥ no.

Observation

• A sequence in (R, | · |) is convergent if and only if it is Cauchy sequence.

• Every convergent sequence is a Cauchy, but the converse need not be true in
general. In fact, if xn → x, then

‖xm − xn‖ ≤ ‖xm − x‖ + ‖x − xn‖ → 0 as m, n → ∞.

Conversely, suppose X = c00 is the linear space of finitely nonzero sequences
(x1, x2, · · · , xi, 0, · · · ) with the norm ‖x‖ = sup

i∈N

|xi|. Let {xn = (1, 1/2, 1/3, · · · ,

1/n, · · · )} be a sequence in X. Now

‖xn − xm‖ = max{1/n, 1/m} → 0 as m, n → ∞,

i.e., {xn} is a Cauchy sequence. Clearly, the limit x has infinitely nonzero
elements. Thus, x /∈ X. Therefore, a Cauchy sequence is not convergent in X.
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• Every Cauchy sequence is bounded.

• Every Cauchy sequence is convergent if and only if it has a convergent sub-

sequence.

Hilbert space and Banach space – A normed space (X, ‖ · ‖) is said to be
complete if it is complete as a metric space (X, d), i.e., every Cauchy sequence
is convergent in X.

A complete normed space (inner product space) is called a Banach space
(Hilbert space).

Example 1.2.34 n
p (1 ≤ p ≤ ∞) are (finite-dimensional) Banach spaces.

Example 1.2.35 p and Lp[0, 1], 1 ≤ p ≤ ∞ are (infinite-dimensional) Banach
spaces.

Example 1.2.36 The linear space C[a, b] of continuous functions on closed and
bounded interval [a, b] is a Banach space with the uniform convergence norm
‖f‖∞ = sup

t∈[a,b]

|f(t)|, but an incomplete normed space with the norm

‖f‖p =
(∫ b

a

|f(t)|pdt

)1/p

, 1 ≤ p <∞.

Example 1.2.37 c00 is not complete.

Theorem 1.2.38 Every finite-dimensional normed space is a Banach space.

The topological property closedness has an important role in the construction
of Banach spaces from its subspaces. A point x in a normed space X is said to
be a limit point of a subset C ⊆ X if there exists a sequence {xn} in C such
that lim

n→∞xn = x. Also a subset C of a normed space is said to be closed if it

contains all of its limit points, i.e., C = C.

Theorem 1.2.39 A closed subspace of a Banach space is a Banach space.

Theorem 1.2.40 Let C be a subset of a normed space X and let x ∈ X. Then
x ∈ C if and only if there exists a sequence {xn} in C such that lim

n→∞xn = x.

Observation

• The subspaces c and c0 are closed subspaces of �∞ (and hence are Banach
spaces). The space c00 is only a subspace in c0, but not closed in c0 (and hence
not in �∞). Therefore, c00 is not a Banach space.

• The subspace C[a, b] is not closed in Lp[a, b] for 1 ≤ p < ∞. Hence C[a, b] is not

a Banach space with the Lp-norm ‖ · ‖p (1 ≤ p < ∞) defined by (1.4).

We now give examples of Banach spaces that are not Hilbert spaces.
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Example 1.2.41 n
p is a finite-dimensional Banach space that is not a Hilbert

space for p �= 2. Indeed, for x = (1, 1, 0, 0, · · · ) and y = (1,−1, 0, 0, · · · ), we have
x + y = (2, 0, 0, 0, · · · ) and x− y = (0, 2, 0, 0, · · · ). Hence

‖x‖ =
( n∑

i=1

|xi|p
)1/p

= (1p + 1p)1/p = 21/p,

‖y‖ = (1p + 1p) = 21/p,

‖x + y‖ = (2p)1/p = 2,
‖x− y‖ = (2p)1/p = 2.

If p = 2, then the parallelogram law:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

is satisfied, which shows that n
2 is a Hilbert space. If p �= 2, then the paralle-

logram law is not satisfied. Therefore, n
p is not a Hilbert space for p �= 2.

The following example shows that there exists an infinite-dimensional Banach
space that is not a Hilbert space.

Example 1.2.42 Let X = C[0, 2π], the space of all real-valued continuous func-
tions on [0, 2π] with “sup” norm. Then (C[0, 2π], ‖ · ‖∞) is a Banach space, but
‖ · ‖∞ does not satisfy the parallelogram law. In fact, for x(t) = max{sin t, 0},
y(t) = min{sin t, 0}, we have

‖x‖∞ = 1, ‖y‖∞ = 1, ‖x + y‖∞ = 1, ‖x− y‖∞ = 1,

i.e., the parallelogram law:

‖x + y‖2∞ + ‖x− y‖2∞ = 2‖x‖2∞ + 2‖y‖2∞
is not satisfied.

Remark 1.2.43 C[a, b] is an inner product space with the inner product defined
by (1.7), but not a Hilbert space.

Observation
• �n

2 , �2, L2[a, b] are Hilbert spaces.

• �n
p , �p, Lp[a, b] (p �= 2) are not Hilbert spaces.

We conclude this section with some important facts about the completeness
property.

Definition 1.2.44 A subset C of a normed space X is said to be complete if
every Cauchy sequence in C converges to a point in C.

Definition 1.2.45 Let
∑∞

n=1 xn be an infinite series of elements x1, x2, · · · ,
xn, · · · in a normed space X. Then the series

∑∞
n=1 xn is said to converge to

an element x ∈ X if lim
n→∞ ‖sn − x‖ = 0, where sn = x1 + x2 + · · · + xn is nth

partial sum of series
∑∞

n=1 xn.
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Definition 1.2.46 The series
∑∞

n=1 xn in a normed space X is said to be
absolutely convergent if

∑∞
n=1 ‖xn‖ converges.

The following result shows that completeness and closure are equivalent in
a Banach space.

Theorem 1.2.47 In a Banach space, a subset is complete if and only if it is
closed.

Remark 1.2.48 Notice every normed space is closed, but not necessarily
complete.

Theorem 1.2.49 A normed space X is a Banach space if and only if every
absolutely convergent series of elements in X is convergent in X.

Theorem 1.2.50 (Cantor’s intersection theorem) – A normed space X
is a Banach space if and only if given any descending sequence {Fn} of closed
bounded subsets of X,

lim
n→∞ diam(Fn) = 0⇒ ∩∞

n=1Fn �= ∅. (1.8)

Proof. Let X be a Banach space and {Fn} a descending sequence of nonempty
closed bounded subsets of X for which lim

n→∞ diam(Fn) = 0. For each n, select
xn ∈ Fn. Then given ε > 0, there exists an integer n0 ∈ N such that n ≥ n0 ⇒
diam(Fn) < ε. If m,n ≥ n0, both xn and xm are in Fn0 , then ‖xn − xm‖ ≤ ε.
Hence {xn} is a Cauchy sequence. Because X is a Banach space, there exists
x ∈ X such that lim

n→∞xn = x. This shows that x ∈ Fn = Fn if n ≥ n0. Because

the sequence {Fn} is descending, x ∈ ∩∞
n=1Fn.

Conversely, suppose that the condition (1.8) holds. Suppose {xn} ⊆ X
is a Cauchy sequence. For each n ∈ N, let Fn = {xn, xn+1, · · · }. Then {Fn}
is a descending sequence of nonempty closed subsets of X for which
lim

n→∞ diam(Fn) = 0. By assumption, there exists a point x ∈ ⋂∞
n=1 Fn. Let

ε > 0 and choose N ∈ N so large that

n ≥ N ⇒ diam(Fn) < ε.

Then clearly for such n we have that ‖xn − x‖ ≤ ε. Hence lim
n→∞xn = x.

Therefore, X is complete.

1.3 Dense set and separable space

A sequence {xn} in a normed space X is said to be a (Schauder) basis of X if
each x ∈ X has a unique expansion x =

∑∞
n=1 αnxn for some scalars α1, α2, · · · ,

αn, · · · .
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Observation

• {xn} is a basis of a normed space X if for each x ∈ X, there exists a unique

sequence {αn} of scalars such that lim
n→∞

‖x −
n∑

i=1

αixi‖ = 0.

• The elements
en = (0, 0, 0, · · · , 1, 0, · · · ), n ∈ N

↑
nth position

from a basis for c00, c0 and �p (1 ≤ p < ∞).

• {en}n∈N is not a Schauder basis of �∞.

• The sequence (1, e1, e2, · · · ) is a basis for c, where 1 = (1, 1, 1, · · · ).
A subset C of a metric space (X, d) is said to be dense in X if C = X. This

means that C is dense in X if and only if C∩Br(x) �= ∅ for all x ∈ X and r > 0.

A metric space (X, d) is said to be separable if it contains a countable dense
subset, i.e., there exists a countable set C in X such that C = X.

Observation
• If X is a separable metric space, then C ⊂ X is separable in the induced metric.

• A metric space X is separable if and only if there is a countable family {Gi} of
open sets such that for any open set G ⊂ X,

G = ∪Gi⊂GGi.

Next, we give some examples of separable and nonseparable spaces.

Example 1.3.1 The space p, 1 ≤ p <∞ is separable metric space.

Example 1.3.2 The ∞ space is not a separable space.

Example 1.3.3 The linear space X of all infinite sequences of real numbers
with metric d defined by

d(x, y) =
∞∑

i=1

1
2i
· |xi − yi|
1 + |xi − yi| ,

x = (x1, x2, · · · , xi, · · · ), y = (y1, y2, · · · , yi, · · · ) ∈ X

is a separable complete metric space.

Theorem 1.3.4 Every normed space with basis is separable.

Theorem 1.3.5 Every subset of a separable normed space is separable.

Theorem 1.3.6 Every finite-dimensional normed space is separable.

Observation
• R, R

n, c, C[0, 1], �p, Lp (1 ≤ p < ∞) are separable normed spaces.

• �∞, L∞ are not separable.



22 1. Fundamentals

1.4 Linear operators

Let X and Y be two linear spaces over the same field K and T : X → Y an
operator with domain Dom(T ) and range R(T ). Then T is said to be a linear
operator if

(i) T is additive: T (x + y) = Tx + Ty for all x, y ∈ X;

(ii) T is homogeneous: T (αx) = αTx for all x ∈ X,α ∈ K.

One may easily check that T is linear if and only if

T (αx + βy) = αTx + βTy for all x, y ∈ X and α, β ∈ K.

Otherwise, the operator is called nonlinear. The linear operator is called a
linear functional if Y = R.

Example 1.4.1 Let X = Rn, Y = R, and T : X → R an operator defined by

Tx =
n∑

i=1

xiyi for all x = (x1, x2, · · · , xn),

where y = (y1, y2, · · · , yn) is the fixed element in Rn. Then T is a linear func-
tional on Rn.

Example 1.4.2 Let X = Y = 2 and T : 2 → 2 an operator defined by

Tx =
(

0, x1,
x2

2
,
x3

3
, · · · , xn

n
, · · ·
)

for all x = (x1, x2, x3, · · · , xn, · · · ) ∈ 2.

Then T is a linear operator on 2.

Example 1.4.3 Let X = C[a, b], the linear space of all continuous real-valued
functions on closed bounded interval [a, b]. Then the operator T : C[a, b] →
C[a, b] defined by

T (f)t =
∫ t

a

f(u)du, t ∈ [a, b]

is a linear operator.

Example 1.4.4 Let X = L2[0, 1], Y = R and T : X → R an operator defined
by

Tx =
∫ 1

0

x(t)y(t)dt for all x ∈ L2[0, 1],

where y is a fixed element in L2[0, 1]. Then T is a linear functional on L2[0, 1].

The following result is very useful for linear operators:

Proposition 1.4.5 Let X and Y be two linear spaces over the same field K

and T : X → Y a linear operator. Then we have the following:
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(a) T (0) = 0.

(b) R(T ) = {y ∈ Y : y = Tx for some x ∈ X}, the range of T is a linear
subspace of Y .

(c) T is one-one if and only if Tx = 0⇒ x = 0.

(d) If T is one-one operator, then T−1 exists on R(T ) and T−1 : R(T ) → X
is also a linear operator.

(e) If dim(Dom(T )) = n < ∞ and T−1 exists, then dim(R(T )) =
dim(Dom(T )).

Recall an operator T from a normed space X into another normed space Y is
continuous if for any sequence {xn} in X with xn → x ∈ X ⇒ Txn → Tx. The
following Theorem 1.4.6 is very interesting because the continuity of any linear
operator can be verified by only verifying Txn → 0 for any sequence {xn} ⊆ X
with xn → 0.

Theorem 1.4.6 Let X and Y be two normed spaces and T : X → Y a linear
operator. If T is continuous at a single point in X, then T is continuous through-
out space X.

Proof. Suppose T is continuous at a point x0 ∈ X. Let {xn} be a sequence in
X such that lim

n→∞xn = x ∈ X. By the linearity of T , we have

‖Txn − Tx‖ = ‖T (xn − x + x0)− Tx0‖.
Because T is continuous at x0,

lim
n→∞(xn − x + x0) = x0 ⇒ lim

n→∞T (xn − x + x0) = Tx0,

it follows that ‖Txn − Tx‖ = ‖T (xn − x + x0)− Tx0‖ → 0 as n→∞. Thus, T

is a continuous operator at an arbitrary point x ∈ X.

Boundedness of linear operator – Let X and Y be two normed spaces
and T : X → Y a linear operator. Then T is said be bounded if there exists a
constant M > 0 such that

‖Tx‖ ≤M‖x‖ for all x ∈ X.

A linear functional f : X → R is called bounded if there exists a constant M > 0
such that

|f(x)| ≤M‖x‖ for all x ∈ X.

We now present an example of a linear operator that is unbounded.

Example 1.4.7 Let X = c00, the linear space of finitely nonzero real sequences
with “sup” norm and T : X → R a functional defined by

Tx =
n∑

i=1

ixi for all x = (x1, x2, · · · , xn, 0, 0, · · · ) ∈ X.

Then T is clearly a linear functional, but it is unbounded.
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With this example, we remark that linearity of the operator does not imply
boundedness. Hence we require additional assumption for boundedness of any
linear operator. The following important result shows that such an additional
assumption is continuity of the linear operator.

Theorem 1.4.8 A linear operator on a normed space is bounded if and only if
it is continuous.

Proof. Let T be a bounded linear operator from a normed space X into another
normed space Y . Then there exists a constant M > 0 such that

‖Tx‖ ≤M‖x‖ for all x ∈ X.

Then if xn → 0, we have that

‖Txn‖ ≤M‖xn‖ → 0 as n→∞,

and it follows that T is continuous at zero. By Theorem 1.4.6, we conclude that
T is continuous on X.

Conversely, suppose T is continuous. We show that T is bounded. Suppose,
for contradiction, that T is unbounded. Hence there exists a sequence {xn} in
X such that

‖Txn‖ > n‖xn‖ for all n ∈ N.

Because T0 = 0, this implies that xn �= 0. Set yn := xn/(n‖xn‖), n ∈ N. Then
‖yn‖ = ‖xn/(n‖xn‖)‖ = 1/n → 0, which implies that lim

n→∞ yn = 0. Observe
that

‖Tyn‖ = ‖T
(

xn

n‖xn‖
)
‖ =

1
n‖xn‖‖Txn‖ > 1 for all n ∈ N

and hence {Tyn} does not converge to zero. This means that T is not continuous
at zero, a contradiction.

If the dimension of X is finite, it also forces the boundedness of a linear
operator.

Theorem 1.4.9 Let X and Y be two normed spaces. If X is a finite-dimensional
normed space, then all linear operators T : X → Y are continuous (hence
bounded).

Remark 1.4.10 Example 1.4.7 shows that the conclusion of Theorem 1.4.9
is not true in general (in infinite-dimensional normed spaces). Thus, linear
operators may be discontinuous in infinite-dimensional normed spaces.
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1.5 Space of bounded linear operators

Let X and Y be two normed spaces. Given two bounded linear operators
T1, T2 : X → Y, we define

(T1 + T2)x = T1x + T2x,

(αT1)x = αT1x for all x ∈ X and α ∈ K.

We denote by B(X,Y ), the family of all bounded linear operators from X
into Y . Then B(X,Y ) is a linear space. The space B(X,Y ) becomes a normed
space by assigning a norm as below:

‖T‖B = inf{M : ‖Tx‖ ≤M‖x‖, x ∈ X}
= sup

{‖Tx‖
‖x‖ : x �= 0, x ∈ X

}
= sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}.

Theorem 1.5.1 The normed space B(X,Y ) is a Banach space if Y is a Banach
space.

We now state an important result:

Theorem 1.5.2 (Uniform boundedness principle) – Let X be a Banach
space, Y a normed space, and {Ti}i∈Λ ⊆ B(X,Y ) a family of bounded linear
operators of X into Y such that {Tix} is bounded set in Y for each x ∈ X, i.e.,
for each x ∈ X, there exists Mx > 0 such that

‖Tix‖ ≤Mx for all i ∈ N.

Then {‖Ti‖B} is a bounded set in R+, i.e., Ti are uniformly bounded.

As an immediate consequence of Theorem 1.5.2 (uniform boundedness
principle), we have

Theorem 1.5.3 Let X and Y be two Banach spaces and {Tn} a sequence in
B(X,Y ). For each x ∈ X, let {Tnx} converges to Tx. Then we have the
following:

(a) T is a bounded linear operator, i.e., T ∈ B(X,Y );
(b) ‖T‖B ≤ lim inf

n→∞ ‖Tn‖B .

Proof. (a) Because each Tn is linear, it follows that

T (αx + βy) = lim
n→∞Tn(αx + βy) = lim

n→∞Tn(αx) + lim
n→∞Tn(βy)

= α lim
n→∞Tnx + β lim

n→∞Tny

= αTx + βTy
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for all x, y ∈ X and α, β ∈ K. Further, because the norm is continuous,

lim
n→∞ ‖Tnx‖ = ‖Tx‖ for all x ∈ X,

it follows that {Tnx} is a bounded set in Y . By the uniform boundedness
principle, there exists a positive constant M > 0 such that sup

n∈N

‖Tn‖B ≤ M.

Thus,

‖Tnx‖ ≤ ‖Tn‖B‖x‖ ≤M‖x‖.
Taking the limit as n→∞, we have

‖Tx‖ ≤M‖x‖,
so T is bounded. Therefore, T ∈ B(X,Y ).

(b) Because

‖Tnx‖ ≤ ‖Tn‖B‖x‖,
this implies that

lim inf
n→∞ ‖Tnx‖ ≤ lim inf

n→∞ ‖Tn‖B‖x‖.

Hence ‖Tx‖ ≤ lim inf
n→∞ ‖Tn‖B‖x‖. Thus, ‖T‖B ≤ lim inf

n→∞ ‖Tn‖B .

Dual space – The space of all bounded linear functionals on a normed space
X is called the dual of X and is denoted by X∗. Clearly, X∗ = B(X, R) and is
a normed space with norm denoted and defined by

‖f‖∗ = sup{|f(x)| : x ∈ SX}.
In view of Theorem 1.5.1, we have the following interesting result, which is

very useful for the construction of Banach spaces from normed spaces.

Corollary 1.5.4 The dual space (X∗, ‖ · ‖∗) of a normed space X is always a
Banach space.

We now give basic dual spaces:

The dual of Rn – Let Rn be a normed space of vectors x = (x1, x2, · · · , xn)
with norm ‖x‖2 = (

∑n
i=1 x2

i )
1/2. Then for y = (y1, y2, · · · , yi, · · · , yn) ∈ Rn, any

functional f : Rn → R of the form

f(x) =
n∑

i=1

xiyi, x = (x1, x2, · · · , xi, · · · , xn) ∈ Rn

is linear. Further, from the Cauchy-Schwarz inequality,

|f(x)| =
∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣ ≤
( n∑

i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

=
( n∑

i=1

y2
i

)1/2

‖x‖2,
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which shows that f is bounded with ‖f‖∗ ≤ (
∑n

i=1 y2
i )1/2. However, because

for x = (y1, y2, · · · , yn) equality is achieved in the Cauchy-Schwarz inequality,
we must in fact have ‖f‖∗ = (

∑n
i=1 y2

i )1/2.

Now, let j be any bounded linear functional on X = Rn. Define the basis
vectors ei in Rn by

ei = (0, 0, · · · , 1, 0, · · · , 0).
↑
ith position

Suppose j(ei) = ai. Then for any x = (x1, x2, · · · , xn), we have x =∑n
i=1 xiei. By the linearity of j, we have

j(x) =
n∑

i=1

j(eixi) =
n∑

i=1

j(ei)xi =
n∑

i=1

aixi.

Thus, the dual space X∗ of X = Rn is itself Rn in the sense that the space X∗

consists of all functionals of the form f(x) =
∑n

i=1 aixi and the norm on X∗ is
‖f‖∗ = (

∑n
i=1 |ai|2)1/2 = ‖a‖, where a = (a1, a2, · · · , an) ∈ Rn.

The dual of p, 1 ≤ p <∞p, 1 ≤ p <∞p, 1 ≤ p <∞ – For 1 ≤ p < ∞, the dual space of p is q

(1/p + 1/q = 1) in the sense that there is a one-one correspondence between
elements y ∈ q and bounded linear functionals fy on p such that

fy(x) =
∞∑

i=1

xiyi, x = {xi}∞i=1 ∈ p,

where
y = {yi}∞i=1 ∈ q

and

‖fy‖∗ = ‖y‖q =

⎧⎪⎨
⎪⎩

(
∑∞

i=1 |yi|q)1/q, if 1 < p <∞,

sup
i∈N

|yi| if p = 1.

Observation
• The dual of �1 is �∞.

• The dual of �p is �q, 1 < p < ∞ and 1/p + 1/q = 1.

• The dual of �∞ is not �1.

The dual of c0 – The Banach space c0 of all real sequences x = {xi} such
that lim

i→∞
xi = 0 with norm ‖x‖∞ = sup

i∈N

|xi| is a subspace of ∞. The dual

of c0 is 1 in the usual sense that the bounded linear functionals on c0 can be
represented as

fy(x) =
∞∑

i=1

xiyi, x = {xi}∞i=1 ∈ c0,

where y = {yi}∞i=1 ∈ 1 and ‖fy‖∗ = ‖y‖1 =
∑∞

i=1 |yi|.
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The dual of Lp[0,1],1 ≤ p <∞ – For 1 ≤ p < ∞, the dual space of Lp[0, 1]
is Lq[0, 1], (1/p + 1/q = 1) in the sense that there is one-one correspondence
between elements y ∈ Lq[0, 1] and bounded linear functionals fy : Lp[0, 1] → R

such that

fy(x) =
∫ 1

0

x(t)y(t)dt and ‖fy‖∗ = ‖y‖q.

We now state an important theorem in Hilbert space that is called the Riesz
representation theorem. This theorem demonstrates that any bounded linear
functional on a Hilbert space H can be represented as an inner product with a
unique element in H.

Theorem 1.5.5 (Reisz representation theorem) – Let H be a Hilbert space
and f ∈ H∗. Then we have the following:

(1) There exists a unique element y0 ∈ H such that f(x) = 〈x, y0〉 for each
x ∈ H.

(2) Moreover, ‖f‖∗ = ‖y0‖.
Remark 1.5.6 In a Hilbert space H, (distinct) bounded linear functionals f
on H are generated by (distinct) elements y of the space H itself, i.e., there is
one-one correspondence between f ∈ H∗ and y ∈ H. Therefore, H∗ = H.

1.6 Hahn-Banach theorem and applications

The Hahn-Banach theorem is one of the most important theorems in functional
analysis. To state it, we need the following definitions:

Sublinear functional – Let X be a linear space and p : X → R a functional.
Then p is said to be a sublinear functional on X if

(i) p is subadditive: p(x + y) ≤ p(x) + p(y) for all x, y ∈ X,
(ii) p is positive homogeneous: p(αx) = αp(x) for all x ∈ X and α ≥ 0.

It is evident that every norm is a sublinear functional.

The sublinear functional p on X is called convex functional on X if p(x) ≥ 0
for all x ∈ X. Obviously, every norm is a convex functional also.

Example 1.6.1 Let p : ∞ → R be a functional defined by

p(x) = lim sup
n→∞

xn for all x = (x1, x2, · · · , xn, · · · ) ∈ ∞.

Then p is a sublinear functional on ∞.

Extension mapping – Let C be a proper subset of a linear space X and
f a mapping from C into another linear space Y . If there exists a mapping
F : X → Y such that

F (x) = f(x), x ∈ C,

then F is called an extension of f .
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Example 1.6.2 Let X = [0, 1], C = [0, 1) and f : C → R defined by

f(x) = x2, x ∈ [0, 1).

Then

F1(x) =
{

f(x) if x ∈ C,
0 if x = 1

and

F2(x) =
{

f(x) if x ∈ C,
1 if x = 1

are two extensions of f , where F2 is continuous, but F1 is not.

Simply, the Hahn-Banach theorem states that a bounded linear functional
f defined only on a subspace C of a normed space X can be extended to a
bounded linear functional F defined on the entire space and with norm equal
to that of f on C, i.e.,

‖F‖X = ‖f‖C = sup
x∈C

|f(x)|
‖x‖ .

We now state the theorem without proof.

Theorem 1.6.3 (Hahn-Banach theorem) – Let C be a subspace of a real
linear space X, p a sublinear functional on X, and f a linear functional defined
on C satisfying the condition:

f(x) ≤ p(x) for all x ∈ C.

Then there exists a linear extension F of f such that F (x) ≤ p(x) for all x ∈ X.

Corollary 1.6.4 Let C be a subspace of a real normed space X and f a bounded
linear functional on C. Then there exists a bounded linear functional F defined
on X that is an extension of f such that ‖F‖∗ = ‖f‖C .

Proof. Take p(x) = ‖f‖C‖x‖, x ∈ X.

The following corollary gives the existence of nontrivial bounded linear func-
tionals on an arbitrary normed space.

Corollary 1.6.5 Let x be an element of a normed space X. Then there exists
(nonzero) j ∈ X∗ such that j(x) = ‖j‖∗‖x‖ and ‖j‖∗ = ‖x‖.
Corollary 1.6.6 Let x be a nonzero element of a normed space X. Then there
exists j ∈ X∗ such that j(x) = ‖x‖ and ‖j‖∗ = 1.

Corollary 1.6.7 Let X be a normed space. Then for any x ∈ X,

‖x‖ = sup
‖j‖∗≤1

|j(x)|.
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Corollary 1.6.8 If X is a normed space and x0 ∈ X such that j(x0) = 0 for
all j ∈ X∗, then x0 = 0.

Proof. Suppose x0 �= 0. By Corollary 1.6.6, there exists a functional j ∈ X∗

such that
j(x0) = ‖x0‖ and ‖j‖∗ = 1.

This implies that j(x0) �= 0, which is a contradiction. Hence j(x0) = 0 for all
j ∈ X∗ ⇒ x0 = 0.

The following theorems are very useful in many applications.

Theorem 1.6.9 Let C be a subspace of a normed space X and x0 an element
in X such that d(x0, C) = d > 0. Then there exists a bounded linear functional
j ∈ X∗ with norm 1 such that j(x0) = d and j(x) = 0 for all x ∈ C.

Theorem 1.6.10 (Separability) – If X∗ is the dual space of a normed space
X and X∗ is separable, then X is also separable.

Next, we discuss geometric forms of the Hahn-Banach theorem. We need
the following:
Hyperplane – A subset H of a linear space X is said to be a hyperplane if
there exists a linear functional f �= 0 on X such that

H = {x ∈ X : f(x) = α}, α ∈ R.

f(x) = α is called the equation of the hyperplane.

Example 1.6.11 Let X = R, f(x) = 3x, α = 2. Then the set

H = {x ∈ X : f(x) = α} = {x ∈ X : 3x = 2} = {2/3}.
Hence H is a hyperplane.

We have the following interesting result.

Proposition 1.6.12 Let X be a topological linear space. Then the hyperplane
{x ∈ X : f(x) = α} is closed if and only if f is continuous.

Let f(x) = α, α ∈ R, be the equation of hyperplane in a linear space X.
Then we have the following:

(i) {x ∈ X : f(x) < α} and {x ∈ X : f(x) > α} are open half-spaces.
(ii) {x ∈ X : f(x) ≤ α} and {x ∈ X : f(x) ≥ α} are closed half-spaces.

It is easy to see that the boundary of each of the four half-spaces is just a
hyperplane.

Remark 1.6.13 In a topological linear space X, we have
(i) open half-spaces are open sets,
(ii) the closed half-spaces are closed sets if and only if f is continuous, i.e.,

the hyperplane {x ∈ X : f(x) = α} is closed.



1.6. Hahn-Banach theorem and applications 31

Let X be a linear space. We say that the hyperplane {x ∈ X : f(x) = α}
separates two sets A ⊂ X and B ⊂ X if f(x) ≤ α for all x ∈ A and f(x) ≥ α
for all x ∈ B. We say that the hyperplane {x ∈ X : f(x) = α} strictly separates
two sets A ⊂ X and B ⊂ X if f(x) < α for all x ∈ A and f(x) > α for all
x ∈ B.

Theorem 1.6.14 (Hahn-Banach separation theorem) – Let X be a normed
space and let A ⊂ X,B ⊂ X be two nonempty disjoint convex sets. Suppose
that A is open. Then there exists a closed hyperplane that separates A and B,
i.e., there exist j ∈ X∗ and a number α ∈ R such that

j(x) > α if x ∈ A and j(x) ≤ α if x ∈ B.

Proposition 1.6.15 Let C be a nonempty open convex subset of a normed
space X. Then for x0 ∈ X, x0 /∈ C, there exists f ∈ X∗ such that

f(x) < α for all x ∈ C,

where f(x0) = α.

An immediate consequence of the separation theorem shows that co(C) is
the intersection of all closed half-spaces containing C. Indeed,

Theorem 1.6.16 Let C be a nonempty subset of a normed space X. Then

co(C) = {x ∈ X : f(x) ≤ sup
y∈C

f(y) for all f ∈ X∗}.

Theorem 1.6.17 Let C be a nonempty closed convex subset of a normed space
X. If x is not an element in C, there exists a continuous linear functional
j ∈ X∗ such that

j(x) < inf{j(y) : y ∈ C}.
Theorem 1.6.18 (Hahn-Banach strictly separation theorem) – Let A
and B be two nonempty disjoint convex subsets of a normed space X. Suppose
A is closed and B is compact. Then there exists a closed hyperplane that strictly
separates A and B.

Supporting hyperplane – Let C be a convex subset of a normed space X
with int(C) �= ∅ and x0 ∈ ∂C. Then a nonzero functional f ∈ X∗ is said to be
a support functional for C at x0 if f(x) ≤ f(x0) for all x ∈ C. The correspond-
ing hyperplane {x ∈ X : f(x) = f(x0)} is called a supporting hyperplane for
C at x0.

A point of C through which a supporting hyperplane passes is called a point
of support of C.

Observation
• Any supporting hyperplane of a set C with nonempty interior is closed.

• An interior point of C cannot be a point of support.
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We give some conditions on C under which a boundary point is a point of
support.

Theorem 1.6.19 Let C be a convex subset of a normed space X with
int(C) �= ∅. Then every boundary point of C is a point of support, i.e., for
every x0 ∈ ∂C, there exists an f ∈ X∗ such that f �= 0 and f(x0) = sup

x∈C
f(x).

1.7 Compactness

Let (X, d) be a metric space. Recall that a subset C of X is called compact if
every open cover of C has a finite subcover. Equivalently, a subset C of X is
compact if every sequence in C contains a convergent subsequence with a limit
in C.

A subset C of X is said to be totally bounded if for each ε > 0, there exists a
finite number of elements x1, x2, · · · , xn in X such that C ⊆ ∪n

i=1 Bε(xi). The
set {x1, x2, · · · , xn} is called a finite ε-net.

Observation
• Every subset of a totally bounded set is totally bounded.

• Every totally bounded set is bounded, but a bounded set need not be totally

bounded.

Proposition 1.7.1 A subset of a compact metric space is compact if and only
if it closed.

Proposition 1.7.2 Let X be a metric space. Then the following are equivalent:
(a) X is compact.
(b) Every sequence in X has a convergent subsequence.
(c) X is complete and totally bounded.

Proposition 1.7.3 Let C be a subset of a complete metric space X. Then we
have the following:

(a) C is compact if and only if C is closed and totally bounded.

(b) C is compact if and only if C is totally bounded.

Observation

• X = (0, 1) with usual metric is totally bounded, but not compact.

• X = R with usual metric is complete. But it is not totally bounded and hence

not compact.

A subset C of a topological space is said to be relatively compact if its closure
is compact, i.e., C is compact. In particular, we have an interesting result:
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Proposition 1.7.4 Let C be a closed subset of a complete metric space. Then
C is compact if and only if it is relatively compact.

We now state the following fundamental theorems concerning compactness.

Theorem 1.7.5 (The Heine-Borel theorem) – A subset C of R is compact
if and only if it is closed and bounded.

Corollary 1.7.6 A set C ⊂ Rn is compact if and only if it is closed and
bounded.

Theorem 1.7.7 (Weierstrass theorem) – Let C be a nonempty compact
subset of a metric space (X, d) and f : C → R a continuous function. Then f
attains its maximum and minimum, i.e., there exist x, x ∈ C such that

f(x) = inf
x∈C

f(x) and f(x) = sup
x∈C

f(x).

Theorem 1.7.8 (Mazur’s theorem) – The closed convex hull co(C) of a
compact set C of a Banach space is compact.

Observation
• R

n, n ≥ 1 is not compact. However, every closed bonded subset of R
n is compact.

For example, C = [0, 1] ⊂ R is compact, but R itself is not compact.

• C[0, 1] and �2 are not compact.

• The subset C = {{xn} ∈ �2 : |xn| ≤ 1/n, n ∈ N} of �2 is compact.

• The closed unit ball BX = {x ∈ X : ‖x‖ ≤ 1} in infinite-dimensional normed

space is not compact in the topology induced by norm (see Proposition 1.7.14).

Proposition 1.7.9 A subset C of p space is compact if C is bounded and for
ε > 0, there exists n0(ε) ∈ N such that

∑∞
i=n+1 |xi|p < εp for all n ≥ n0 and

x = {xi}∞i=1 ∈ C.

Proposition 1.7.10 Every compact subset of a normed space X is closed, but
the converse may not be true.

Observation
• R

n is closed.

Proposition 1.7.11 Every compact subset of a normed space X is complete,
but the converse may not be true.

Proposition 1.7.12 Every compact subset of a normed space is bounded, but
the converse may not be true.

Proposition 1.7.13 Every compact subset of a normed space is separable.

Proposition 1.7.14 A closed and bounded subset of a normed space need not
be compact.
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Proof. Let X = 2. Then the unit ball BX = {x ∈ 2 : ‖x‖2 = (
∑∞

i=1 |xi|2)1/2 ≤
1} is closed and bounded. We now show that BX is not compact. Let {xn} be
a sequence in BX defined by

xn = (0, 0, · · · , 1, 0, · · · ), n ∈ N.

↑
nth position

Hence for m �= n,
‖xn − xm‖2 =

√
2,

i.e., there is no convergent subsequence of {xn}. Therefore, BX is not totally
bounded and hence it is not compact.

Remark 1.7.15 B�2 is compact in the weak topology (see Theorem 1.9.26).

Proposition 1.7.16 A normed space X is finite-dimensional if and only if
every closed and bounded subset of X is compact.

1.8 Reflexivity

Let X1, X2, · · · , Xm be m linear spaces over the same field K. Then a func-
tional f : X1 × X2 × · · · × Xm → R is said to be an m-linear (multilinear)
functional on X = X1×X2× · · · ×Xm if it is linear with respect to each of the
variables separately. For m = 2, such a functional is called a bilinear functional .

Duality pairing - Given a normed space X and its dual X∗, we define the
duality pairing as the functional 〈·, ·〉 : X ×X∗ → K such that

〈x, j〉 = j(x) for all x ∈ X and j ∈ X∗.

The properties of duality pairing can be easily derived from the definition:

Proposition 1.8.1 Let X∗ be the dual of a normed space X. Then we have
the following:

(a) The duality pairing is a bilinear functional on X ×X∗:
(i) 〈ax + by, j〉 = a〈x, j〉+ b〈y, j〉 for all x, y ∈ X; j ∈ X∗ and a, b ∈ K;
(ii) 〈x, αj1+βj2〉 = α〈x, j1〉+β〈y, j2〉 for all x ∈ X; j1, j2 ∈ X∗; α, β ∈ K.

(b) 〈x, j〉 = 0 for all x ∈ X implies j = 0.

(c) 〈x, j〉 = 0 for all j ∈ X∗ implies x = 0.

Natural embedding mapping - Let (X, ‖ · ‖) be a normed space. Then
(X∗, ‖ · ‖∗) is a Banach space. Let j ∈ X∗. Hence for given x ∈ X, the equation

fx(j) = 〈x, j〉
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defines a functional fx on the dual space X∗. The functional fx is linear by
Proposition 1.8.1. Moreover, for j ∈ X∗ we have

|fx(j)| = |〈x, j〉| ≤ ‖x‖‖j‖∗. (1.9)

This shows that fx is bounded and hence fx is a bounded linear functional
on X∗.

The space of all bounded linear functionals on X∗ is denoted by X∗∗ and is
called the second dual of X. Then fx ∈ X∗∗. Note that X∗∗ is a Banach space.
Let ‖ · ‖∗∗ denote a norm on X∗∗. From (1.9), we have

‖fx‖∗∗ ≤ ‖x‖.
By Corollary 1.6.5, there exists a nonzero functional j ∈ X∗ such that

〈x, j〉 = ‖x‖‖j‖∗ and ‖j‖∗ = ‖x‖.
This implies that ‖fx‖∗∗ = ‖x‖.

Define a mapping ϕ : X → X∗∗ by ϕ(x) = fx, x ∈ X. Then ϕ is called the
natural embedding mapping from X into X∗∗. It has the following properties:

(i) ϕ is linear: ϕ(αx + βy) = αϕ(x) + βϕ(y) for all x, y ∈ X,α, β ∈ K;
(ii) ϕ(x) is isometry: ‖ϕ(x)‖ = ‖x‖ for all x ∈ X.

Generally, however, the natural embedding mapping ϕ from X into X∗∗ is
not onto. It means that there may be elements in X∗∗ that cannot be represented
by elements in X.

In the case when ϕ is onto, we have an important class of normed spaces.

Definition 1.8.2 A normed space X is said to be reflexive if the natural
embedding mapping ϕ : X → X∗∗ is onto. In this case, we write X ∼= X∗∗

or X = X∗∗.

Observation
• R

n is reflexive. (In fact, every finite-dimensional Banach space is reflexive.)

• �p and Lp for 1 < p < ∞ are reflexive Banach spaces.

• Every Hilbert space is a reflexive Banach space, i.e., H∗∗ = H.

• �1, �∞, L1 and L∞ are not reflexive.

• c and c0 are not reflexive Banach spaces.

We now state the following facts for the class of reflexive Banach spaces.

Proposition 1.8.3 (a) Any reflexive normed space must be complete and, hence,
is a Banach space.

(b) A closed subspace of a reflexive Banach space is reflexive.
(c) The Cartesian product of two reflexive spaces is reflexive.
(d) The dual of a reflexive Banach space is reflexive.
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Theorem 1.8.4 (James theorem) – A Banach space X is reflexive if and
only if for each j ∈ SX∗ , there exists x ∈ SX such that j(x) = 1.

1.9 Weak topologies

Let X∗ be the dual space of a Banach space X. The convergence of a sequence
in a Banach space X is the usual norm convergence or strong convergence, i.e.,
{xn} in X converges to x if lim

n→∞ ‖xn − x‖ = 0. This is related to the strong

topology on X with neighborhood base Br(0) = {x ∈ X : ‖x‖ < r}, r > 0 at
the origin. There is also a weak topology on X generated by the bounded linear
functionals on X. Indeed, G ⊂ X is open in the weak topology (we say G is
w-open) if and only if for every x ∈ G, there are bounded linear functionals
f1, f2, · · · , fn and positive real numbers ε1, ε2, · · · , εn such that

{y ∈ X : |fi(x)− fi(y)| < εi, i = 1, 2, · · · , n} ⊂ G.

Hence a subbase σ for the weak topology on X generated by a base of neigh-
borhoods of x0 ∈ X is given by the following sets:

V (f1, f2 · · · , fn : ε) = {x ∈ X : |〈x− x0, fi〉| < ε, for every i = 1, 2, · · · , n}.
In particular, a sequence {xn} in X converges to x ∈ X for weak topology
σ(X,X∗) if and only if 〈xn, f〉 → 〈x, f〉 for all f ∈ X∗.

Observation
• The weak topology is not metrizable if X is infinite-dimensional.

• Under the weak topology, the normed space X is a locally convex topological
space.

• The weak topology of a normed space is a Hausdorff topology.

We are now in a position to define convergence, closedness, completeness,
and compactness with respect to the weak topology.

Weakly convergent – A sequence {xn} in a normed space X is said to con-
verge weakly to x ∈ X if f(xn) → f(x) for all f ∈ X∗. In this case, we write
xn ⇀ x or weak- lim

n→∞xn = x.

Weakly closed – A subset C of a Banach space X is said to be a weakly
closed if it is closed in the weak topology.

Weak Cauchy sequence – A sequence {xn} in a normed space X is said
to be a weak Cauchy if for each f ∈ X∗, {f(xn)} is a Cauchy sequence in K.

Weakly complete – A normed space X is said to be weakly complete if every
weak Cauchy sequence in X converges weakly to some element in X.
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Weakly compact – A subset C of a normed space X is said to be weakly
compact if C is compact in the weak topology.

Schur property – A Banach space is said to satisfy Schur property if there
exist weakly convergent sequences that are norm convergent.

Theorem 1.9.1 (Schur’s theorem) – In 1, weak and norm convergences of
sequences coincide.

We have the following basic properties of weakly convergent sequences in
normed spaces:

Proposition 1.9.2 (Uniqueness of weak limit) – Let {xn} be a sequence
in a normed space X such that xn ⇀ x and xn ⇀ y. Then x = y.

Proof. Because {f(xn)} is a sequence of scalars such that f(xn) → f(x) and
f(xn) → f(y), it follows that f(x) = f(y). This implies that f(x − y) = 0.
Therefore, x = y by Corollary 1.6.8.

Proposition 1.9.3 (Strong convergence implies weak convergence) –
Let {xn} be a sequence in a normed space X such that xn → x. Then xn ⇀ x.

Proof. Because xn → x, ‖xn − x‖ → 0. Hence

|f(xn)− f(x)| ≤ ‖f‖∗‖xn − x‖ → 0 for all f ∈ X∗.

Therefore, xn ⇀ x.

The converse of Proposition 1.9.3 is not true in general. It can be seen from
the following example:

Example 1.9.4 Let X = 2 and {xn} be a sequence in 2 such that

xn = (0, 0, 0, · · · , 1, 0, · · · ), n ∈ N.

↑
nth position

For any y = (y1, y2, · · · , yn, · · · ) ∈ X∗ = 2, we have

(xn, y) = yn → 0 as n→∞.

Hence xn ⇀ 0 as n → ∞. However, {xn} does not converge strongly because
‖xn‖ = 1 for all n ∈ N. Therefore, a weakly convergent sequence need not be
convergent in norm.

Theorem 1.9.5 (Weak convergence in ppp space, 1 < p <∞1 < p <∞1 < p <∞) – For 1 <
p <∞, let

xn = (α(n)
1 , α

(n)
2 , · · · , αn

i , · · · ) ∈ p, n ∈ N
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and
x = (α1, α2, · · · , αi, · · · ) ∈ p.

Then xn ⇀ x if and only if
(i) {xn} is bounded, i.e., ‖xn‖ ≤M for all n ∈ N and for some M ≥ 0;

(ii) for each i, α
(n)
i → αi as n→∞.

Theorem 1.9.6 Let X be a finite-dimensional normed space. Then strong con-
vergence is equivalent to weak convergence.

Theorem 1.9.7 Every reflexive normed space is weakly complete.

Convergence of sequences in B(X,Y) – Let X and Y be two normed spaces.
A sequence {Tn} in B(X,Y ) is said to be

(i) uniformly convergent to T ∈ B(X,Y ) in the norm of B(X,Y ) if
‖Tn − T‖B → 0 as n → ∞, i.e., for ε > 0, there exists an integer n0 ∈ N

such that sup
‖x‖≤1

‖Tnx− Tx‖ < ε for all n ≥ n0,

[uniform convergence of {Tn}]
(ii) strongly convergent to T ∈ B(X,Y ) if lim

n→∞ ‖Tnx− Tx‖ = 0 for all x ∈ X,

[strong convergence of {Tn}]
(iii) weakly convergent to T ∈ B(X,Y ) if |f(Tnx)− f(Tx)| → 0 for all x ∈ X

and f ∈ Y ∗.

[weak convergence of {Tn}]
It follows immediately from the inequality

‖Tnx− Tx‖ ≤ ‖Tn − T‖B‖x‖, x ∈ X

that the uniform convergence implies strong convergence. It can be easily ob-
served for the sequence of operators in B(X,Y ) that

uniform convergence ⇒ strong convergence ⇒ weak convergence.

We note that the converse is not true in general.

Weak* topology - We have seen that if τ is the norm topology of a normed
space X, then the weak topology σ(X,X∗) is a subset of the original norm topo-
logy τ . Let τ∗ be the norm topology of X∗ generated by the norm ‖·‖∗ (of X∗).
Then there exists a topology denoted by σ(X∗, X) on X∗ such that σ(X∗, X) ⊂
τ∗. The topology σ(X∗, X) is called the weak* topology on X∗. Thus, we
can speak about strong neighborhood, strongly closed, strongly bounded, weak
convergence in (X∗, ‖ · ‖∗) and weak* neighborhood, weak*ly closed, weak*ly
bounded, weak*ly convergence in (X∗, σ(X∗, X)), respectively.

We now study some basic properties of the weak topology and weak* topo-
logy. We begin with a simple characterization for the convergence of sequences
in the weak topologies.
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Proposition 1.9.8 Let X be a normed space and {fn} a sequence in X∗. Then
we have the following:

(a) {fn} converges strongly to f in the norm topology on X∗ (denoted by
fn → f) if

‖fn − f‖∗ → 0.

(b) {fn} converges to f in the weak topology on X∗ (denoted by fn ⇀ f) if

〈fn − f, g〉 → 0 for all g ∈ X∗∗.

(c) {fn} converges to f in the weak* topology on X∗ (denoted by fn → f
weak*ly or fn ⇀∗ f) if

〈x, fn − f〉 → 0 for all x ∈ X.

On the other hand, the following result is an immediate consequence of
Theorem 1.5.3.

Corollary 1.9.9 Let C be a nonempty subset of a Banach space X. For each
f ∈ X∗, let f(C) = ∪x∈C〈x, f〉 be a bounded set in R. Then C is bounded.

Proof. Set X := X∗, Y := R, and Tx(f) := 〈x, f〉, x ∈ C. Then Tx ∈ B(X∗, R).
Because f(C) is bounded, it follows that

sup
x∈C

|Tx(f)| = sup
x∈C

|〈x, f〉| ≤ K,

for some K > 0. By the uniform boundedness principle, there exists a constant
M > 0 such that

‖Tx‖ ≤M for all x ∈ C.

This implies that

|〈x, f〉| = |Tx(f)| ≤ ‖Tx‖‖f‖∗ ≤M‖f‖∗.

By Corollary 1.6.7, we have

‖x‖ ≤M for all x ∈ C.

Therefore, C is bounded.

Applying Corollary 1.9.9, we have

Theorem 1.9.10 Let {xn} be a sequence in a Banach space X. Then we have
the following:

(a) xn ⇀ x (in X) implies {xn} is bounded and ‖x‖ ≤ lim inf
n→∞ ‖xn‖.

(b) xn ⇀ x in X and fn → f in X∗ imply fn(xn)→ f(x) in R.
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Proof. (a) Because xn ⇀ x, then f(xn)→ f(x) for all f ∈ X∗. Hence {f(xn)}
is bounded for all f ∈ X∗. Thus, by Corollary 1.9.9, {xn} is bounded.

Moreover,
|〈xn, f〉| ≤ ‖xn‖‖f‖∗.

Taking liminf in the above inequality, we have

|〈x, f〉| ≤ lim inf
n→∞ ‖xn‖‖f‖∗.

By Corollary 1.6.7, we obtain

‖x‖ = sup
‖f‖∗≤1

|〈x, f〉| ≤ sup
‖f‖∗≤1

(lim inf
n→∞ ‖xn‖‖f‖∗) ≤ lim inf

n→∞ ‖xn‖.

(b) Because xn ⇀ x in X, it follows that 〈xn − x, f〉 = f(xn) − f(x) → 0 and
{xn} is bounded (by part (a)). Hence

|〈xn, fn〉 − 〈x, f〉| ≤ |〈xn, fn〉 − 〈xn, f〉|+ |〈xn, f〉 − 〈x, f〉|
= |〈xn, fn − f〉|+ |〈xn − x, f〉|
≤ ‖xn‖ ‖fn − f‖∗ + |〈xn − x, f〉|
≤ M‖fn − f‖∗ + |〈xn − x, f〉| → 0

for some constant M > 0. Therefore, fn(xn)→ f(x).

Observation
• Let {xn} be a sequence in a Banach space X with xn ⇀ x ∈ X and {αn} a

sequence of scalars such that αn → α. Then {αnxn} converges weakly to αx.

Theorem 1.9.11 Let X be a Banach space and {xn} a sequence in X such
that xn ⇀ x ∈ X. Then there exists a sequence of convex combinations of {xn}
that converges strongly to x, i.e., there exists convex combination {yn} such that

yn =
m∑

i=n

λixi, where

m∑
i=n

λi = 1 and λi ≥ 0, n ≤ i ≤ m,

which converges strongly to x.

Corollary 1.9.12 Let C a nonempty subset of a Banach space X and {xn} a
sequence in C such that xn ⇀ x ∈ X. Then x ∈ co(C).

The weak topology is weaker than the norm topology, and every w-closed
set is also norm closed. The following result shows that for convex sets, the
converse is also true.

Proposition 1.9.13 Let C be a convex subset of a normed space X. Then C
is weakly closed if and only if C is closed.

The following proposition is a generalization of Theorem 1.7.8.
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Proposition 1.9.14 Let C be a weakly compact subset of a Banach space X.
Then co(C) is also weakly compact.

The following result is a direct consequence of the uniform bounded principle:

Proposition 1.9.15 Let C be a weakly compact subset of a Banach space X.
Then C is bounded.

Theorem 1.9.16 (Eberlein-Smulian theorem) – Let C be a weakly closed
subset of a Banach space. Then the following are equivalent:

(a) C is weakly compact.

(b) C is weakly sequentially compact, i.e., each sequence {xn} in C has a
subsequence that converges weakly to a point in C.

Corollary 1.9.17 Let C be a closed convex subset of a Banach space. Then
the following are equivalent:

(a) C is weakly compact.

(b) Each sequence {xn} in C has a subsequence that converges weakly to a
point in C.

Proposition 1.9.18 Any closed convex subset of a weakly compact set is itself
weakly compact.

Theorem 1.9.19 (Kakutani’s theorem) – Let X be a Banach space. Then
X is reflexive if and only if the unit closed ball BX := {x ∈ X : ‖x‖ ≤ 1} is
weakly compact (i.e., BX is compact in the weak topology of X).

Using Proposition 1.9.13 and Kakutani’s theorem, we obtain

Theorem 1.9.20 Let X be a Banach space. Then X is reflexive if and only
if every closed convex bounded subset of X is weakly compact (compact in weak
topology).

Theorem 1.9.21 Let C be a subset of a reflexive Banach space. Then
C is weakly compact ⇔ C is bounded

(compactness in weak topology) (boundedness in strong topology)

Theorem 1.9.22 Let {xn} be a sequence in a weakly compact convex subset of
a Banach space X and ωw({xn}) denote the set of all weak subsequential limits
of {xn}. Then co(ωw({xn})) = ∩∞

n=1co({xk}k≥n).

Proof. Set W := ωw({xn}), An := co({xk}k≥n), and A := ∩∞
n=1An. We now

show that co(W ) = A. The inclusion W ⊂ A (and hence co(W ) ⊂ A) is trivial.
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Hence it suffices to prove that A ⊂ co(W ). Suppose, for contradiction, that
x ∈ A \ co(W ). Then there exists j ∈ X∗ such that

〈x, j〉 > sup{〈y, j〉 : y ∈ co(W )} = sup{〈y, j〉 : y ∈W 〉. (1.10)

Because x ∈ A ⊂ An,

〈x, j〉 ≤ sup{〈y, j〉 : y ∈ An} = sup{〈xk, j〉 : k ≥ n}.

Therefore,
〈x, j〉 ≤ lim sup

n→∞
〈xn, j〉.

It follows from the Eberlein-Smulian theorem that there exists a subsequence
{xni

} of {xn} such that

xni
⇀ x′ and 〈x, j〉 ≤ 〈x′, j〉.

Because x′ ∈W by definition, this is a contradiction of (1.10).

Corollary 1.9.23 Let X be a Banach space and {xn} a sequence in X weakly
convergent to z. Let An = co({xk}k≥n). Then ∩∞

n=1An = {z}.

Proposition 1.9.24 Let {xn} be a bounded sequence in reflexive Banach space
X and An = co({xn}k≥n). If ∩∞

n=1 An = ∩∞
n=1co({xn, xn+1, · · · }) = {x}, then

xn ⇀ x.

Proposition 1.9.25 Let {xn} be a weakly null sequence in a Banach space X
and {jn} a bounded sequence in X∗. Then for each ε > 0, there exists an
increasing sequence {nk} in N such that |〈xni

, jnk
〉| < ε if i �= k.

Proof. Without loss of generality, we may assume that X is a separable space.
We can assume that {jn} converges weak*ly to some j ∈ BX∗ . Given ε > 0, we
find n1 such that |〈xn, j〉| < ε/2 for all n ≥ n1. Next, having n1 < n2 < · · · <
nk−1, we pick nk > nk−1 with |〈xnk

, jni
〉| < ε and |〈xni

, jnk
− j〉| < ε/2 for all

i = 1, 2, · · · , k − 1. Then |〈xni
, jnk

〉| < ε.

We now list several properties that characterize reflexivity.

Theorem 1.9.26 Let X be a Banach space. Then following statements are
equivalent:

(a) X is reflexive.

(b) BX is weakly compact.

(c) Every bounded sequence in X in strong topology has a weakly convergent
subsequence.

(d) For any f ∈ X∗, there exists x ∈ BX such that f(x) = ‖f‖∗.
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(e) X∗ is reflexive.

(f) σ(X∗, X) = σ(X∗, X∗∗), i.e., on X∗ the weak topology and the weak*
topology coincide.

(g) If {Cn} is any descending sequence of nonempty closed convex bounded
subsets of X, then ∩∞

n=1Cn �= ∅.
(h) For any closed convex bounded subset C of X and any j ∈ X∗, there exists

x ∈ C such that 〈x, j〉 = sup{〈y, j〉 : y ∈ C}.
Finally, we give the fundamental result concerning the weak* topology.

Theorem 1.9.27 (Banach-Alaoglu’s theorem) – The unit ball BX∗ of the
dual of a normed space X is compact in the weak* topology.

1.10 Continuity of mappings

In this section, we discuss various forms of continuity of mappings with their
properties.

Definition 1.10.1 Let T be a mapping from a metric space (X, d) into another
metric space (Y, ρ). Then T is said to be

(i) continuous at x0 ∈ X if xn → x0 implies Txn → Tx0 in Y , i.e., for each
ε > 0, there is a δ = δ(ε, x0) > 0 such that ρ(Tx0, T y) < ε whenever
d(x0, y) < δ for all y ∈ X,

(ii) uniformly continuous on X if for given ε > 0, there exists δ = δ(ε) > 0
such that

ρ(Tx, Ty) < ε whenever d(x, y) < δ for all x, y ∈ X.

Example 1.10.2 Let X = (0, 1] and Y = R and let X and Y have usual metric
defined by absolute value. Then the mapping T : X → Y defined by Tx = 1/x
is continuous, but not uniformly continuous.

Observation

• Every uniformly continuous mapping from X into Y is continuous at each point

of X, but pointwise continuity does not necessary imply uniform continuity.

• Every uniformly continuous mapping T from a metric space X into another

metric space Y maps a Cauchy sequence in X into a Cauchy sequence in Y .

Proposition 1.10.3 Let T be a continuous mapping from a compact metric
space (X, d) into another metric space (Y, ρ). Then T is uniformly continuous.
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A mapping T from a metric space (X, d) into another metric space (Y, ρ) is
said to satisfy Lipschitz condition on X if there exists a constant L > 0 such
that

ρ(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X.

If L is the least number for which Lipschitz condition holds, then L is called
Lipschitz constant. In this case, we say that T is an L-Lipschitz mapping or
simply a Lipschitzian mapping with Lipschitz constant L. Otherwise, it is called
non-Lipschitzian mapping. An L-Lipschitz mapping T is said to be contraction
if L < 1 and nonexpansive if L = 1. The mapping T is said to be contractive if

ρ(Tx, Ty) < d(x, y) for all x, y ∈ X, x �= y.

Remark 1.10.4 Every Lipschitz continuous mapping T from a metric space
X into another metric space Y is uniformly continuous on X. Indeed, choose
δ < ε/L (independent of x), and we get

ρ(Tx, Tx0) ≤ Ld(x, x0) < ε.

The following example shows that the distance functional f(x) = d(x,C) is
nonexpansive.

Example 1.10.5 Let C be a nonempty subset of a normed space X. Then for
each pair x, y in X

|d(x,C)− d(y, C)| ≤ ‖x− y‖.
In particular, the function x �→ d(x,C) is nonexpansive and hence uniformly
continuous.

The following proposition guarantees the existence of Lipschitzian mappings.

Proposition 1.10.6 Let T : [a, b] ⊂ R → R be a differentiable function on
(a, b). Suppose T ′ is continuous on [a, b]. Then T is a Lipschitz continuous
function (and hence is uniformly continuous).

Proof. By the Lagrange’s theorem, we have

Ty − Tx = T ′(c)(y − x) for all a ≤ x < y ≤ b,

where c ∈ (x, y) ⊂ [a, b]. Because T ′ is continuous and interval [a, b] is compact
in R, by Weierstrass theorem, there exists x0 ∈ [a, b] such that

L = |T ′(x0)| = sup
c∈[a,b]

|T ′(c)|.

Thus, |Tx− Ty| ≤ L|x− y|, which proves that T is Lipschitz continuous.

The following example shows that there is a Lipschitzian mapping for which
T ′ does not exist.
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Example 1.10.7 The function Tx = |x|, x ∈ [−1, 1] satisfies Lipschitz condi-
tion with L = 1, i.e., |Tx − Ty| ≤ |x − y| for all x, y ∈ [−1, 1]. Note T is not
differentiable at zero.

We now give an example of a non-Lipschitzian mapping that is continuous.

Example 1.10.8 Let T :
[− 1

π , 1
π

]→ [− 1
π , 1

π

]
be a mapping defined by

Tx =
{

0 if x = 0,
x
2 sin(1/x) if x �= 0.

Then T is continuous, but not Lipschitz continuous.

For linear mappings, the continuity condition can be restated in terms of
uniform continuity.

Proposition 1.10.9 Let X and Y be two normed spaces and T : X → Y a
linear mapping. Then the following conditions are equivalent:

(a) T is continuous.
(b) T is Lipschitz function: there exists M > 0 such that ‖Tx‖ ≤M‖x‖ for

all x ∈ X.
(c) T is uniformly continuous.

Let X and Y be two Banach spaces and let T be a mapping from X into Y .
Then the mapping T is said to be

1. bounded if C is bounded in X implies T (C) is bounded;

2. locally bounded if each point in X has a bounded neighborhood U such
that T (U) is bounded;

3. weakly continuous if xn ⇀ x in X implies Txn ⇀ Tx in Y ;

4. demicontinuous if xn → x in X implies Txn ⇀ Tx in Y ;

5. hemicontinuous at x0 ∈ X if for any sequence {xn} converging to x0

along a line implies Txn ⇀ Tx0, i.e., Txn = T (x0 + tnx) ⇀ Tx0 as tn →
0 for all x ∈ X;

6. closed if xn → x in X and Txn → y in Y imply Tx = y;

7. weakly closed if xn ⇀ x ∈ X and Txn ⇀ y in Y imply Tx = y;

8. demiclosed if xn ⇀ x in X and Txn → y in Y imply Tx = y;

9. compact if C is bounded implies T (C) is relatively compact (T (C) is com-
pact), i.e., for every bounded sequence {xn} in X, {Txn} has convergent
subsequence in Y ;
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10. completely continuous if it is continuous and compact;

11. demicompact if any bounded sequence {xn} in X such that {xn − Txn}
converges strongly has a convergent subsequence.

In the case of linear mappings, the concepts of continuity and boundedness
are equivalent, but it is not true in general.

Proposition 1.10.10 Every continuous linear mapping T : X → Y is weakly
continuous.

Proposition 1.10.11 Let X be a reflexive Banach space and Y a general
Banach space. Then every weakly continuous mapping T : X → Y is bounded.

Proposition 1.10.12 A completely continuous mapping maps a weakly con-
vergent sequence into a strongly convergent.

Proposition 1.10.13 Every linear mapping is hemicontinuous.

Proof. Every linear and demicontinuous mapping is continuous.
It is clear that every demicontinuous mapping is hemicontinuous, but the

converse is not true.

Example 1.10.14 Let X = R2, Y = R, and T : X → Y a mapping defined by

T (x, y) =

{
x2y

x4+y2 , (x, y) �= (0, 0),
0, (x, y) = (0, 0).

Then T is hemicontinuous at (0, 0), but not demicontinuous at (0, 0).

Let X and Y be two sets. A multivalued T from X to Y , denoted by
T : X → Y , is a subset T ⊆ X × Y . The inverse of T : X → Y is a multivalued
function T−1 : Y → X defined by (y, x) ∈ T−1 if and only if (x, y) ∈ T. The
values of T are the sets Tx = {y ∈ Y : (x, y) ∈ T}; the fibers of T are the sets
T−1(y) = {x ∈ X : (x, y) ∈ T} for y ∈ Y .

For A ⊂ X, the set

T (A) = ∪x∈ATx = {y ∈ Y : T−1(y) ∩A �= ∅}
is called the image of A under T ; for B ⊂ Y , the set

T−1(B) = ∪y∈BT−1(y) = {x ∈ X : Tx ∩B �= ∅},
the image of B under T−1, is called inverse image of B under T . A point of
a set that is invariant under any transformation is called a fixed point of the
transformation. A point x0 ∈ X is said to be a fixed point of T if x0 ∈ Tx0.

Let X and Y be two topological spaces. Then a multivalued function T :
X → Y is said to be upper semicontinuous (lower semicontinuous) if the inverse
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image of a closed set (open set) is closed (open). A multivalued function is
continuous if it is both upper and lower semicontinuous.

Finally, we conclude the chapter with the following important fixed point
theorems.

Theorem 1.10.15 (Brouwer’s fixed point theorem) – Every continuous
mapping from the unit ball of Rn into itself has a fixed point.

Theorem 1.10.16 (Schauder’s fixed point theorem) – Let C be a non-
empty closed convex bounded subset of a Banach space X. Then every continu-
ous compact mapping T : C → C has a fixed point.

Theorem 1.10.17 (Tychonoff’s fixed point theorem) – Let C be a non-
empty compact convex subset of a locally convex topological linear space X and
T : C → C a continuous mapping. Then T has a fixed point.

Exercises

1.1 Let (X, d) be a metric space. Show that ρ(x, y) = min{1, d(x, y)} for all
x, y ∈ X is also a metric space.

1.2 Give an example of a seminorm that is not a norm.

1.3 Let 〈·, ·〉 be an inner product on a linear space X and T : X → X a one-one
linear mapping. Let 〈x, y〉T = 〈Tx, Ty〉 for all x, y ∈ X. Show that 〈·, ·〉T
is an inner product space.

1.4 Show that the space c0 of all real sequences converging to 0 is a normed
space with norm ‖x‖ =

∑∞
n=1 |xn − xn+1| <∞.

1.5 Let c00 be a normed space with p-norm (1 ≤ p ≤ ∞) and {fn} a sequence of
functional on c00 defined by fn(x) = nxn for all x = (x1, x2, · · · , xn, · · · ).
Show that fn(x)→ 0 for every x ∈ c00, but ‖fn‖ = n for all n.

1.6 Show that the space p (1 < p <∞) is reflexive, but 1 is not reflexive.

1.7 Let C be a nonempty closed convex subset of a normed space X and {xn}
a sequence in C such that xn ⇀ x in X. Show that x ∈ C.

1.8 Let {xn} be a sequence in a normed space X such that xn ⇀ x. Show that
x ∈ span {xn}.

1.9 Let {xn} be a sequence in normed space X such that xn ⇀ x. Show that
{xn} is bounded.

1.10 Let X = c00 or c0 with norm ‖ · ‖∞. Show that xn ⇀ x in X if and only
if {xn} is bounded in X and xn,i → xi as n→∞ for each i = 1, 2, · · · .



Chapter 2

Convexity, Smoothness, and
Duality Mappings

Geometric structures such as convexity and smoothness of Banach spaces play
an important role in the existence and approximation of fixed points of nonlinear
mappings. This chapter presents a substantial number of useful properties of
duality mappings and Banach spaces having these geometric structures.

2.1 Strict convexity

Let X be a linear space. The line segment or interval joining the two points
x, y ∈ X is the set [x, y] := {λx + (1− λ)y : 0 ≤ λ ≤ 1}, i.e., [x, y] = co({x, y})
is convex hull of x and y.

The basic property of a norm of a Banach space X is that it is always convex,
i.e.,

‖(1− λ)x + λy‖ ≤ (1− λ)‖x‖+ λ‖y‖ for all x, y ∈ X and λ ∈ [0, 1].

A number of Banach spaces do not have equality when x �= y, i.e.,

‖(1− λ)x + λy‖ < (1− λ)‖x‖+ λ‖y‖
for all x, y ∈ X with x �= y and λ ∈ (0, 1). (2.1)

We use SX to denote the unit sphere SX = {x ∈ X : ‖x‖ = 1} on Banach
space X. If x, y ∈ SX with x �= y, then (2.1) reduces to

‖(1− λ)x + λy‖ < 1 for all λ ∈ (0, 1),

which says that the unit sphere SX contains no line segments. This suggests
strict convexity of norm.

R.P. Agarwal et al., Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3 2,
c© Springer Science+Business Media, LLC, 2009
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Definition 2.1.1 A Banach space X is said to be strictly convex if

x, y ∈ SX with x �= y ⇒ ‖(1− λ)x + λy‖ < 1 for all λ ∈ (0, 1).

This says that the midpoint (x + y)/2 of two distinct points x and y in the
unit sphere SX of X does not lie on SX . In other words, if x, y ∈ SX with
‖x‖ = ‖y‖ = ‖(x + y)/2‖, then x = y.

Example 2.1.2 Consider X = Rn, n ≥ 2 with norm ‖x‖2 defined by

‖x‖2 =
( n∑

i=1

x2
i

)1/2

, x = (x1, x2, · · · , xn) ∈ Rn.

Then X is strictly convex.

Example 2.1.3 Consider X = Rn, n ≥ 2 with norm ‖ · ‖1 defined by

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|, x = (x1, x2, · · · , xn) ∈ Rn.

Then X is not strictly convex. To see it, let

x = (1, 0, 0, · · · , 0) and y = (0, 1, 0, · · · , 0).

It is easy to see that x �= y, ‖x‖1 = 1 = ‖y‖1, but ‖x + y‖1 = 2.

Example 2.1.4 Consider X = Rn, n ≥ 2 with norm ‖ · ‖∞ defined by

‖x‖∞ = max
1≤i≤n

|xi|, x = (x1, x2, · · · , xn) ∈ Rn.

Then X is not strictly convex. Indeed, for x = (1, 0, 0, · · · , 0) and y = (1, 1,
0, · · · , 0), we have, x �= y, ‖x‖∞ = 1 = ‖y‖∞, but ‖x + y‖∞ = 2.

The other equivalent conditions of strict convexity are given in the following:

Proposition 2.1.5 Let X be a Banach space. Then the following are equiva-
lent:

(a) X is strictly convex.

(b) For each nonzero f ∈ X∗, there exists at most one point x in X with
‖x‖ = 1 such that 〈x, f〉 = f(x) = ‖f‖∗.

Proof. (a) ⇒ (b). Let X be a strictly convex Banach space and f an element
in X∗. Suppose there exist two distinct points x, y in X with ‖x‖ = ‖y‖ = 1
such that f(x) = f(y) = ‖f‖∗. If t ∈ (0, 1), then

‖f‖∗ = tf(x) + (1− t)f(y) (as f(x) = f(y) = ‖f‖∗)
= f(tx + (1− f)y)
≤ ‖f‖∗‖tx + (1− t)y‖
< ‖f‖∗, (as ‖tx + (1− t)y‖ < 1)
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which is a contradiction. Therefore, there exists at most one point x in X with
‖x‖ = 1 such that f(x) = ‖f‖∗.

(b) ⇒ (a). Suppose x, y ∈ SX with x �= y such that ‖(x + y)/2‖ = 1.
By Corollary 1.6.6, there exists a functional j ∈ SX∗ such that

‖j‖∗ = 1 and 〈(x + y)/2, j〉 = ‖(x + y)/2‖.
Because 〈x, j〉 ≤ 1 and 〈y, j〉 ≤ 1, we have 〈x, j〉 = 〈y, j〉. This implies, by
hypothesis, that x = y. Therefore, (b)⇒ (a) is proved.

Proposition 2.1.6 Let X be a Banach space. Then the following statements
are equivalent:

(a) X is strictly convex.

(b) For every 1 < p <∞,

‖tx+(1−t)y‖p < t‖x‖p+(1−t)‖y‖p for all x, y ∈ X, x �= y and t ∈ (0, 1).

Proof. (a) ⇒ (b). Let X be strictly convex. Suppose x, y ∈ X with x �= y.
By strict convexity of X,

‖tx + (1− t)y‖p < (t‖x‖+ (1− t)‖y‖)p for all t ∈ (0, 1). (2.2)

If ‖x‖ = ‖y‖, then

‖tx + (1− t)y‖p < ‖x‖p = t‖x‖p + (1− t)‖y‖p.
We now assume that ‖x‖ �= ‖y‖. Consider the function t �→ tp for 1 < p < ∞.
Then it is a convex function and(

a + b

2

)p

<
ap + bp

2
for all a, b ≥ 0 and a �= b.

Hence from (2.2) with t = 1/2, we have∥∥∥∥x + y

2

∥∥∥∥
p

≤
(‖x‖+ ‖y‖

2

)p

<
1
2
(‖x‖p + ‖y‖p). (2.3)

If t ∈ (0, 1/2], then from (2.2), we have

‖tx + (1− t)y‖p =
∥∥∥∥2t

x + y

2
+ (1− 2t)y

∥∥∥∥
p

≤
(

2t

∥∥∥∥x + y

2

∥∥∥∥+ (1− 2t)‖y‖
)p

< 2t

∥∥∥∥x + y

2

∥∥∥∥
p

+ (1− 2t)‖y‖p

≤ t‖x‖p + (1− t)‖y‖p. (by (2.3))

The proof is similar if t ∈ (1/2, 1).
(b)⇒ (a). It is obvious.
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Proposition 2.1.7 Let X be a strictly convex Banach space. If ‖x + y‖ =
‖x‖+ ‖y‖ for 0 �= x ∈ X and y ∈ X, then there exists t ≥ 0 such that y = tx.

Proof. Let x, y ∈ X\{0} be such that ‖x+y‖ = ‖x‖+‖y‖. From Corollary 1.6.6,
there exists j ∈ X∗ such that

〈x + y, j〉 = ‖x + y‖ and ‖j‖∗ = 1.

Because 〈x, j〉 ≤ ‖x‖ and 〈y, j〉 ≤ ‖y‖, we must have 〈x, j〉 = ‖x‖ and
〈y, j〉 = ‖y‖. This means that 〈x/‖x‖, j〉 = 〈y/‖y‖, j〉 = 1. By strict con-
vexity of X, it follows from Proposition 2.1.5 that x/‖x‖ = y/‖y‖. Therefore,
result holds.

We now present the existence and uniqueness of elements of minimal norm
in convex subsets of strictly convex Banach spaces.

Proposition 2.1.8 Let X be a strictly convex Banach space and C a nonempty
convex subset of X. Then there is at most one point x in C such that ‖x‖ =
inf{‖z‖ : z ∈ C}.
Proof. Suppose, there exist two points x, y ∈ C, x �= y such that

‖x‖ = ‖y‖ = inf{‖z‖ : z ∈ C} = d (say).

If t ∈ (0, 1), then by strict convexity of X we have that

‖tx + (1− t)y‖ < d,

which is a contradiction, as tx + (1− y) ∈ C by the convexity of C.

Proposition 2.1.9 Let C be a nonempty closed convex subset of a reflexive
strictly convex Banach space X. Then there exists a unique point x ∈ C such
that ‖x‖ = inf{‖z‖ : z ∈ C}.

Proof. Existence: Let d := inf{‖z‖ : z ∈ C}. Then there exists a sequence
{xn} in C such that lim

n→∞ ‖xn‖ = d. By the reflexivity of X, there exists a

subsequence {xni
} of {xn} that converges weakly to an element x in C. The

weak lower semicontinuity (w-lsc) of the norm (see Theorem 1.9.10) gives

‖x‖ ≤ lim
n→∞ ‖xn‖ = d.

Therefore, d = ‖x‖.

Uniqueness: It follows from Proposition 2.1.8 .

The following result has important applications in the existence and unique-
ness of best approximations.
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Proposition 2.1.10 Let C be a nonempty closed convex subset of a reflexive
strictly convex Banach space X. Then for x ∈ X, there exists a unique point
zx ∈ C such that ‖x− zx‖ = d(x,C).

Proof. Let x ∈ C. Because C is a nonempty closed convex subset Banach
space X, then D = {y − x : y ∈ C} is a nonempty closed convex subset
of X. By Proposition 2.1.9, there exists a unique point ux ∈ D such that
‖ux‖ = inf{‖y − x‖ : y ∈ C}. For ux ∈ D, there exists a point zx ∈ C such
that ux = zx − x. Thus, there exists a unique point zx ∈ C such that
‖zx − x‖ = d(x,C).

2.2 Uniform convexity

The strict convexity of a normed space X says that the midpoint (x + y)/2 of
the segment joining two distinct points x, y ∈ SX with ‖x − y‖ ≥ ε > 0 does
not lie on SX , i.e., ∥∥∥∥x + y

2

∥∥∥∥ < 1.

In such spaces, we have no information about 1− ‖(x + y)/2‖, the distance of
midpoints from the unit sphere SX . A stronger property than strict convexity
that provides information about the distance 1−‖(x+y)/2‖ is uniform convexity.

Definition 2.2.1 A Banach space X is said to be uniformly convex 1 if for any
ε, 0 < ε ≤ 2, the inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε imply there
exists a δ = δ(ε) > 0 such that ‖(x + y)/2‖ ≤ 1− δ.

This says that if x and y are in the closed unit ball BX := {x ∈ X : ‖x‖ ≤ 1}
with ‖x− y‖ ≥ ε > 0, the midpoint of x and y lies inside the unit ball BX at a
distance of at least δ from the unit sphere SX .

Example 2.2.2 Every Hilbert space H is a uniformly convex space. In fact,
the parallelogram law gives us

‖x + y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x− y‖2 for all x, y ∈ H.

Suppose x, y ∈ BH with x �= y and ‖x− y‖ ≥ ε. Then

‖x + y‖2 ≤ 4− ε2,

so it follows that
‖(x + y)/2‖ ≤ 1− δ(ε),

where δ(ε) = 1−√1− ε2/4. Therefore, H is uniformly convex.

Example 2.2.3 The spaces 1 and ∞ are not uniformly convex. To see it,
take x = (1, 0, 0, 0 · · · ), y = (0,−1, 0, 0, · · · ) ∈ 1 and ε = 1. Then

‖x‖1 = 1, ‖y‖1 = 1, ‖x− y‖1 = 2 > 1 = ε.

1The concept of uniform convexity was introduced by Clarkson in 1936.
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However, ‖(x+y)/2‖1 = 1 and there is no δ > 0 such that ‖(x+y)/2‖1 ≤ 1−δ.
Thus, 1 is not uniformly convex.

Similarly, if we take x = (1, 1, 1, 0, 0, · · · ), y = (1, 1,−1, 0, 0 · · · ) ∈ ∞ and
ε = 1, then

‖x‖∞ = 1, ‖y‖∞ = 1, ‖x− y‖∞ = 2 > 1 = ε.

Because ‖(x + y)/2‖∞ = 1, ∞ is not uniformly convex.

Observation
• The Banach spaces �p, �n

p (whenever n is a nonnegative integer), and Lp[a, b]
with 1 < p < ∞ are uniformly convex.

• The Banach spaces �1, c, c0, �∞, L1[a, b], C[a, b] and L∞[a, b] are not strictly

convex.

We derive some consequences from the definition of uniform convexity.

Theorem 2.2.4 Every uniformly convex Banach space is strictly convex.

Proof. Let X be a uniformly convex Banach space. It easily follows from
Definition 2.2.1 that X is strictly convex.

Remark 2.2.5 The converse of Theorem 2.2.4 is not true in general. Let β > 0
and let X = co with the norm ‖ · ‖β defined by

‖x‖β = ‖x‖co
+ β

( ∞∑
i=1

(
xi

i

)2)1/2

, x = {xi} ∈ co.

The spaces (co, ‖ · ‖β) for β > 0 are strictly convex, but not uniformly convex,
while c0 with its usual norm is not strictly convex.

Theorem 2.2.6 Let X be a uniformly convex Banach space. Then we have the
following:

(a) For any r and ε with r ≥ ε > 0 and elements x, y ∈ X with ‖x‖ ≤ r,
‖y‖ ≤ r, ‖x− y‖ ≥ ε, there exists a δ = δ(ε/r) > 0 such that

‖(x + y)/2‖ ≤ r[1− δ(ε/r)].

(b) For any r and ε with r ≥ ε > 0 and elements x, y ∈ X with ‖x‖ ≤ r,
‖y‖ ≤ r, ‖x− y‖ ≥ ε, there exists a δ = δ(ε/r) > 0 such that

‖tx + (1− t)y‖ ≤ r[1− 2min{t, 1− t}δ(ε/r)] for all t ∈ (0, 1).

Proof. (a) Suppose that ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x− y‖ ≥ ε > 0. Then we have
that ∥∥∥∥xr

∥∥∥∥ ≤ 1,

∥∥∥∥yr
∥∥∥∥ ≤ 1 and

∥∥∥∥xr − y

r

∥∥∥∥ ≥ ε

r
> 0.
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By the definition of uniform convexity, there exists δ = δ(ε/r) > 0 such that∥∥∥∥x + y

2r

∥∥∥∥ ≤ 1− δ,

which yields ∥∥∥∥x + y

2

∥∥∥∥ ≤ r(1− δ).

(b) When t = 1/2, we are done by Part (a). If t ∈ (0, 1/2], we have

‖tx + (1− t)y‖ = ‖t(x + y) + (1− 2t)y‖ ≤ 2t‖x + y

2
‖+ (1− 2t)‖y‖. (2.4)

From part (a), there exists a δ = δ(ε/r) > 0 such that∥∥∥∥x + y

2

∥∥∥∥ ≤ r

[
1− δ

(
ε

r

)]
.

From (2.4), we have

‖tx + (1− t)y‖ ≤ 2t

[
1− δ

(
ε

r

)]
r + (1− 2t)r (as ‖y‖ ≤ r)

≤ r

[
1− 2tδ

(
ε

r

)]
.

Now by the choice of t ∈ [1/2, 1), we have

‖tx + (1− t)y‖ = ‖(2t− 1)x + (1− t)(x + y)‖
≤ (2t− 1)‖x‖+ 2(1− t)

∥∥∥∥x + y

2

∥∥∥∥
≤ (2t− 1)r + 2(1− t)r

[
1− δ

(
ε

r

)]

= r

[
1− 2(1− t)δ

(
ε

r

)]
.

Therefore,

‖tx + (1− t)y‖ ≤ r

[
1− 2min{t, 1− t}δ

(
ε

r

)]
.

Theorem 2.2.7 Let X be a Banach space. Then the following are equivalent:

(a) X is uniformly convex.

(b) For two sequences {xn} and {yn} in X,

‖xn‖ ≤ 1, ‖yn‖ ≤ 1 and lim
n→∞ ‖xn + yn‖ = 2⇒ lim

n→∞ ‖xn − yn‖ = 0. (2.5)
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Proof. (a) ⇒ (b). Suppose X is uniformly convex. Let {xn} and {yn} be
two sequences in X such that ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 for all n ∈ N and
lim

n→∞ ‖xn + yn‖ = 2. Suppose, for contradiction, that lim
n→∞ ‖xn − yn‖ �= 0. Then

for some ε > 0, there exists a subsequence {ni} of {n} such that

‖xni
− yni

‖ ≥ ε.

Because X is uniformly convex, there exists δ(ε) > 0 such that

‖xni
+ yni

‖ ≤ 2(1− δ(ε)). (2.6)

Because lim
n→∞ ‖xn + yn‖ = 2, it follows from (2.6) that

2 ≤ 2(1− δ(ε)),

a contradiction.
(b)⇒ (a). Suppose condition (2.5) is satisfied. If X is not uniformly convex,

for ε > 0, there is no δ(ε) such that

‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε⇒ ‖x + y‖ ≤ 2(1− δ(ε)),

and then we can find sequences {xn} and {yn} in X such that
(i) ‖xn‖ ≤ 1, ‖yn‖ ≤ 1,

(ii) ‖xn + yn‖ ≥ 2(1− 1/n),
(iii) ‖xn − yn‖ ≥ ε.

Clearly ‖xn − yn‖ ≥ ε, which contradicts the hypothesis, as (ii) gives
lim

n→∞ ‖xn + yn‖ = 2. Thus, X must be uniformly convex.

For the class of uniform convex Banach spaces, we have the following
important results:

Theorem 2.2.8 Every uniformly convex Banach space is reflexive.

Proof. Let X be a uniformly convex Banach space. Let SX∗ := {j ∈ X∗ :
‖j‖∗ = 1} be the unit sphere in X∗ and f ∈ SX∗ . Suppose {xn} is a sequence in
SX such that f(xn) → 1. We show that {xn} is a Cauchy sequence. Suppose,
for contradiction, that there exist ε > 0 and two subsequences {xni

} and {xnj
}

of {xn} such that ‖xni
−xnj

‖ ≥ ε. The uniform convexity of X guarantees that
there exists δ(ε) > 0 such that ‖(xni

+ xnj
)/2‖ < 1− δ. Observe that

|f((xni
+ xnj

)/2)| ≤ ‖f‖∗‖(xni
+ xnj

)/2‖ < ‖f‖∗(1− δ) = 1− δ

and f(xn) → 1, yield a contradiction. Hence {xn} is a Cauchy sequence and
there exists a point x in X such that xn → x. Clearly, x ∈ SX . In fact,

‖x‖ = ‖ lim
n→∞xn‖ = lim

n→∞ ‖xn‖ = 1.

Using the James theorem (which states that a Banach space is reflexive if and
only if for each f ∈ SX∗ , there exists x ∈ SX such that f(x) = 1), we conclude
that X is reflexive.
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Remark 2.2.9 Every finite-dimensional Banach space is reflexive, but it need
not be uniformly convex, for example, X = Rn, n ≥ 2 with the norm ‖x‖1 =

n∑
i=1

|xi|.

Combining Proposition 2.1.9 and Theorems 2.2.4 and 2.2.8, we obtain the
following interesting result:

Theorem 2.2.10 Let C be a nonempty closed convex subset of a uniformly
convex Banach space X. Then C has a unique element of minimum norm, i.e.,
there exists a unique element x ∈ C such that ‖x‖ = inf{‖z‖ : z ∈ C}.

We now introduce a useful property.

Definition 2.2.11 A Banach space X is said to have the Kadec-Klee property if
for every sequence {xn} in X that converges weakly to x where also ‖xn‖ → ‖x‖,
then {xn} converges strongly to x.

Remark 2.2.12 In Definition 2.2.11, the sequence {xn} can be replaced by the
net {xα} for the definition of the Kadec property.

The following result has a very useful property:

Theorem 2.2.13 Every uniformly convex Banach space has the Kadec-Klee
property.

Proof. Let X be a uniformly convex Banach space. Let {xn} be a sequence
in X such that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖. If x = 0, then lim

n→∞ ‖xn‖ = 0,
which yields that lim

n→∞xn = 0.
Suppose x �= 0. Then we show that xn → x. Suppose, for contradiction, that

lim
n→∞xn �= x, i.e., xn/‖xn‖� x/‖x‖. Then for ε > 0, there exists a subsequence

{xni
/‖xni

‖} of {xn/‖xn‖} such that∥∥∥∥ xni

‖xni
‖ −

x

‖x‖
∥∥∥∥ ≥ ε > 0.

Because X is uniformly convex, there exists δ(ε) > 0 such that

1
2

∥∥∥∥ xni

‖xni
‖ +

x

‖x‖
∥∥∥∥ ≤ 1− δ.

Because xn ⇀ x and ‖xn‖ → ‖x‖ imply xn/‖xn‖⇀ x/‖x‖, it follows that∥∥∥∥ x

‖x‖
∥∥∥∥ ≤ lim inf

n→∞
1
2

∥∥∥∥ xni

‖xni
‖ +

x

‖x‖
∥∥∥∥ ≤ 1− δ,

a contradiction. Therefore, {xn} converges strongly to x ∈ X.
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2.3 Modulus of convexity

Definition 2.3.1 Let X be a Banach space. Then a function δX : [0, 2]→ [0, 1]
is said to be the modulus of convexity of X if

δX(ε) = inf

{
1−
∥∥∥∥x + y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

It is easy to see that δX(0) = 0 and δX(t) ≥ 0 for all t ≥ 0.

Example 2.3.2 For the case of a Hilbert space H (see Example 2.2.2),

δH(ε) = 1−
√

1− ε2

4
, ε ∈ (0, 2].

We now give the modulus of convexity for p (2 ≤ p < ∞) spaces. The
following result gives an analogue of the parallelogram law in p (2 ≤ p < ∞)
spaces.

Proposition 2.3.3 In p (2 ≤ p <∞) spaces,

‖x + y‖p + ‖x− y‖p ≤ 2p−1(‖x‖p + ‖y‖p) for all x, y ∈ p. (2.7)

Proof. We observe from Lemma A.1.1 of Appendix A that for a, b ∈ R and
p ∈ [2,∞)

|a + b|p + |a− b|p ≤ [|a + b|2 + |a− b|2]p/2

≤ [2|a|2 + 2|b|2]p/2

= 2p/2(|a|2 + |b|2)p/2

≤ 2p/22(p−2)/2(|a|p + |b|p)
= 2p−1(|a|p + |b|p).

Hence for x = {xi}∞i=1, y = {yi}∞i=1 ∈ p, we have

∞∑
i=1

|xi + yi|p +
∞∑

i=1

|xi − yi|p ≤ 2p−1

( ∞∑
i=1

|xi|p +
∞∑

i=1

|yi|p
)

,

which implies that points x, y ∈ p (2 ≤ p < ∞) satisfy the following analogue
of the parallelogram law:

‖x + y‖p + ‖x− y‖p ≤ 2p−1(‖x‖p + ‖y‖p).

Example 2.3.4 For the p (2 ≤ p <∞) space,

δ�p
(ε) = 1−

(
1−
(

ε

2

)p)1/p

, ε ∈ (0, 2).
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To see this, let ε ∈ (0, 2) and x, y ∈ p such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and
‖x− y‖ ≥ ε. Then from (2.7), we have

‖x + y‖p ≤ 2p − ‖x− y‖p,
which implies that

∥∥∥∥x + y

2

∥∥∥∥ ≤
(

1−
(

ε

2

)p)1/p

= 1−
[
1−
(

1−
(

ε

2

)p)1/p]
≤ 1− δ�p

(ε),

where δ�p
(ε) ≥ 1−

(
1−
(

ε
2

)p)1/p

.

Observation

• δH(ε) = 1 −√1 − (ε/2)2.

• δ�p(ε) = 1 − (1 − (ε/2)p)p/2.

• δ�p(ε), the modulus of convexity for �p (1 < p ≤ 2) satisfies the following implicit
formula: ∣∣∣∣1 − δ�p(ε) +

ε

2

∣∣∣∣
p

+

∣∣∣∣1 − δ�p(ε) − ε

2

∣∣∣∣
p

= 2.

• δ�p(ε) > 0 for all ε > 0 (1 < p < ∞).

• δX(ε) ≤ δH(ε) for any Banach spaces X and any Hilbert space H, i.e., a Hilbert

space is the most convex Banach space.

We now give some important properties of the modulus of convexity of
Banach spaces.

Theorem 2.3.5 A Banach space X is strictly convex if and only if δX(2) = 1.

Proof. Let X be a strictly convex Banach space with modulus of convexity δX .
Suppose ‖x‖ = ‖y‖ = 1 and ‖x − y‖ = 2 with x �= −y. By strict convexity of
X, we have

1 =
∥∥∥∥x− y

2

∥∥∥∥ =
∥∥∥∥x + (−y)

2

∥∥∥∥ < 1,

a contradiction. Hence x = −y. Therefore, δX(2) = 1.
Conversely, suppose δX(2) = 1. Let x, y ∈ X such that ‖x‖ = ‖y‖ =

‖(x + y)/2‖ = 1. Then∥∥∥∥x− y

2

∥∥∥∥ =
∥∥∥∥x + (−y)

2

∥∥∥∥ ≤ 1− δX(‖x− (−y)‖) = 1− δX(2) = 0,

which implies that x = y. Thus, ‖x‖ = ‖y‖ and ‖x + y‖ = 2 = ‖x‖+ ‖y‖ imply
that x = y. Therefore, X is strictly convex.
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Theorem 2.3.6 A Banach space X is uniformly convex if and only if δX(ε) > 0
for all ε ∈ (0, 2].

Proof. Let X be a uniformly convex Banach space. Then for ε > 0, there
exists δ(ε) > 0 such that

0 < δ(ε) ≤ 1−
∥∥∥∥x + y

2

∥∥∥∥
for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε. Therefore, from the
definition of modulus of convexity, we have δX(ε) > 0.

Conversely, suppose X is a Banach space with modulus of convexity δX such
that δX(ε) > 0 for all ε ∈ (0, 2]. Let x, y ∈ X such that ‖x‖ = 1, ‖y‖ = 1 with
‖x− y‖ ≥ ε for fixed ε ∈ (0, 2]. By the modulus of convexity δX(ε), we have

0 < δX(ε) ≤ 1−
∥∥∥∥x + y

2

∥∥∥∥,
which implies that ∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− δ(ε),

where δ(ε) = δX(ε), which is independent of x and y. Therefore, X is uniformly
convex.

Theorem 2.3.7 Let X be a Banach space with modulus of convexity δX . Then
we have the following:

(a) For all ε1 and ε2 with 0 ≤ ε1 < ε2 ≤ 2,

δX(ε2)− δX(ε1) ≤ ε2 − ε1

2− ε1
(1− δX(ε1)) ≤ ε2 − ε1

2− ε1
.

In particular, δX is a continuous function on [0, 2).
(b) δX(s)/s is a nondecreasing function on (0, 2].
(c) δX is a strictly increasing function if X is uniformly convex.

Proof. (a) We define the set

Su,v = {(x, y) : x, y ∈ BX ;x−y = au, x+y = bv for some u, v ∈ X and a, b ≥ 0}
and the function

δu,v(ε) = inf
{

1−
∥∥∥∥x + y

2

∥∥∥∥ : x, y ∈ Su,v, ‖x− y‖ ≥ ε

}
.

Note that δu,v(0) = 0. For given ε1 and ε2 in (0, 2] and η > 0, we can choose
(xi, yi) in Su,v such that

‖xi − yi‖ ≥ εi and δu,v(εi) + η ≥ 1−
∥∥∥∥xi + yi

2

∥∥∥∥ for i = 1, 2.
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Now for t ∈ [0, 1], let x3 = tx1 + (1 − t)x2 and y3 = ty1 + (1 − t)y2. Because
xi, yi ∈ BX for i = 1, 2, it follows that

‖x3‖ ≤ t‖x1‖+ (1− t)‖x2‖ ≤ 1

and
‖y3‖ ≤ t‖y1‖+ (1− t)‖y2‖ ≤ 1.

Because (xi, yi) ∈ Su,v, there exist positive constants ai, bi ≥ 0 with i = 1, 2 such
that xi−yi = aiu and xi+yi = biv. Set α := ta1+(1−t)a2 and β := tb1+(1−t)b2.
Then

x3 − y3 = t(x1 − y1) + (1− t)(x2 − y2)
= ta1u + (1− t)a2u

= (ta1 + (1− t)a2)u
= αu.

Similarly, x3 + y3 = βv. Thus, (x3, y3) is in Su,v.
Observe that

‖x3 − y3‖ = (ta1 + (1− t)a2)‖u‖
= t‖x1 − y1‖+ (1− t)‖x2 − y2‖
≥ tε1 + (1− t)ε2 by the choice of xi, yi,

and ‖x3 + y3‖ = t‖x1 + y1‖+ (1− t)‖x2 + y2‖.
By the definition of the function δu,v(·), we have

δu,v(tε1 + (1− t)ε2) ≤ 1−
∥∥∥∥x3 + y3

2

∥∥∥∥
≤ 1− t

∥∥∥∥x1 + y1

2

∥∥∥∥− (1− t)
∥∥∥∥x2 + y2

2

∥∥∥∥
= t

(
1−
∥∥∥∥x1 + y1

2

∥∥∥∥
)

+ (1− t)
(

1−
∥∥∥∥x2 + y2

2

∥∥∥∥
)

≤ t

(
δu,v(ε1) +

η

2

)
+ (1− t)

(
δu,v(ε2) +

η

2

)

= tδu,v(ε1) + (1− t)δu,v(ε2) +
η

2
.

Because η is arbitrary, it follows that δu,v(ε) is a convex function of ε.
Note that

δX(ε) ≤ δu,v(ε) for all u, v

and
(x, y) ∈ Su,v with ‖x‖ ≤ 1 and ‖y‖ ≤ 1 for some u, v ∈ X;

and hence
δX(ε) = inf{δu,v(ε) : u, v ∈ X \ {0}}.
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Now for any real number ε > 0, there exist u, v ∈ X such that

δu,v(ε1) ≤ δX(ε1) + ε.

Hence

δu,v(ε2) = δu,v

(
2

ε2 − ε1

2− ε1
+
(

1− ε2 − ε1

2− ε1

)
ε1

)

≤ ε2 − ε1

2− ε1
δu,v(2) +

(
1− ε2 − ε1

2− ε1

)
δu,v(ε1),

which implies that

δu,v(ε2)− δu,v(ε1) ≤ ε2 − ε1

2− ε1
(δu,v(2)− δu,v(ε1))

≤ ε2 − ε1

2− ε1
(1− δX(ε1)).

Then we have

δX(ε2)− δX(ε1) ≤ δu,v(ε2)− δu,v(ε1) + ε

≤ ε2 − ε1

2− ε1
(1− δX(ε1)) + ε.

Because ε > 0 is arbitrary, we have

δX(ε2)− δX(ε1) ≤ ε2 − ε1

2− ε1

(
1− δX(ε1)

)
.

Because δX(ε1) ≥ 0, we have

δX(ε2)− δX(ε1) ≤ ε2 − ε1

2− ε1
,

which implies that δX(·) is continuous on [0, 2).

(b) Fix s ∈ (0, 2] with s ≤ ε and x, y ∈ SX and ‖x− y‖ = ε.
Set

t :=
s

ε
, u := tx + (1− t)

x + y

‖x + y‖ and v := ty + (1− t)
x + y

‖x + y‖ .

Then

u− v = t(x− y), ‖u− v‖ = s and
u + v

2
=

x + y

‖x + y‖
(

t

2
‖x + y‖+ 1− t

)
.

Thus, ∥∥∥∥ x + y

‖x + y‖ −
u + v

2

∥∥∥∥ = t− t

∥∥∥∥x + y

2

∥∥∥∥
= 1−

(
1− t + t

∥∥∥∥x + y

2

∥∥∥∥
)

= 1−
∥∥∥∥u + v

2

∥∥∥∥.
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Observe that∥∥∥∥ x + y

‖x + y‖ −
x + y

2

∥∥∥∥ =
(

1
‖x + y‖ −

1
2

)
‖x + y‖ = 1−

∥∥∥∥x + y

2

∥∥∥∥
and ∥∥∥∥ x + y

‖x + y‖ −
u + v

2

∥∥∥∥
/
‖u− v‖ =

(
1−
∥∥∥∥u + v

2

∥∥∥∥
)/

s

=
(

1− (1− t)− t

∥∥∥∥x + y

2

∥∥∥∥
)/

s

=
(

1−
∥∥∥∥x + y

2

∥∥∥∥
)/

‖x− y‖.

Hence

δX(s)
s

≤ (1− ‖(u + v)/2‖)/‖u− v‖
= (‖(x + y)/‖x + y‖ − (u + v)/2‖)/‖u− v‖ = (1− ‖(x + y)/2‖)/ε.

By taking the infimum over all possible x and y with ε = ‖x−y‖ and x, y ∈ SX ,
we obtain

δX(s)
s

≤ δX(ε)
ε

.

(c) Observe that

δX(s)
s

≤ δX(t)
t

for s < t ≤ 2 and δX(t) > 0.

Hence
tδX(s) ≤ sδX(t) < tδX(t),

which implies that
δX(s) < δX(t).

Therefore, δX is a strictly increasing function.

Remark 2.3.8 The modulus of convexity δX need not be convex on [0,2] and
need not be continuous at t = 2.

Theorem 2.3.9 Let X be a Banach space with modulus of convexity δX . Then

‖tx + (1− t)y‖ ≤ 1− 2min{t, 1− t}δX(‖x− y‖)
for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and all t ∈ [0, 1].

Proof. The result follows from Theorem 2.2.6(b).

Corollary 2.3.10 Let X be a Banach space with modulus convexity δX . Then

‖(1− t)x + ty‖ ≤ 1− 2t(1− t)δX(‖x− y‖)
for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and all t ∈ [0, 1].
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Proof. Because t(1 − t) ≤ min{t, 1 − t} for all t ∈ [0, 1], the result follows
Theorem 2.3.9.

Corollary 2.3.11 Let X be a uniformly convex Banach space with modulus of
convexity δX . If r > 0 and x, y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r, then

‖tx + (1− t)y‖ ≤ r

[
1− 2min{t, 1− t}δX

(‖x− y‖
r

)]
for all t ∈ (0, 1).

Theorem 2.3.12 Let X be a uniformly convex Banach space X. Then there
exists a strictly increasing continuous convex function g : R+ → R+ with
g(0) = 0 such that

2t(1− t)g(‖x− y‖) ≤ 1− ‖(1− t)x + ty‖

for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and all t ∈ [0, 1].

Proof. Let δX be the modulus of convexity of X. Define a function g : R+ →
R+ by

g(λ) =
{

1
2

∫ λ

0
δX(s)ds if 0 ≤ λ ≤ 2,

g(2) + 1
2δX(2)(λ− 2) if λ > 2.

For t ∈ (0, 2], we have

0 < g(t) =
1
2

∫ t

0

δX(s)ds ≤ t

2
δX(t) ≤ δX(t). (as δX(s) ≤ δX(t))

From the definition of g, we have

g′(t) =
1
2
δX(t) for all t ∈ [0, 2].

Hence g′ is increasing with g′(2) = δX(2)/2 = 1/2, and it follows that g is
convex.

Now, let ‖x‖ ≤ 1, ‖y‖ ≤ 1 and t ∈ [0, 1]. Then, we have (see Coroll-
ary 2.3.10)

‖(1− t)x + ty‖ ≤ 1− 2t(1− t)δX(‖x− y‖). (2.8)

Hence from (2.8) we have

2t(1− t)g(‖x− y‖) = t(1− t)
∫ ‖x−y‖

0

δX(s)ds

≤ t(1− t)δX(‖x− y‖)‖x− y‖
≤ 2t(1− t)δX(‖x− y‖)
≤ 1− ‖(1− t)x + ty‖.
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Moreover, for rs < 2, the function s �→ g(rs)/s is increasing (as (g(rs)/s)′ =
[rsδX(rs)/2 − g(rs)]/s2 ≥ 0). Therefore, g is a strictly increasing continuous
convex function.

Using Corollary 2.3.11, we obtain the following, which has important
applications in approximation of fixed points of nonlinear mappings in Banach
spaces.

Theorem 2.3.13 Let X be a uniformly convex Banach space and let {tn} be
a sequence of real numbers in (0,1) bounded away from 0 and 1. Let {xn} and
{yn} be two sequences in X such that

lim sup
n→∞

‖xn‖ ≤ a, lim sup
n→∞

‖yn‖ ≤ a and lim sup
n→∞

‖tnxn + (1− tn)yn‖ = a

for some a ≥ 0. Then lim
n→∞ ‖xn − yn‖ = 0.

Proof. The case a = 0 is trivial. So, let a > 0. Suppose, for contradiction, that
{xn−yn} does not converge to 0. Then there exists a subsequence {xni

−yni
} of

{xn−yn} such that infi ‖xni
−yni

‖ > 0. Note {tn} is bounded away from 0 and
1, and there exist two positive numbers α and β such that 0 < α ≤ tn ≤ β < 1
for all n ∈ N. Because lim sup

n→∞
‖xn‖ ≤ a and lim sup

n→∞
‖yn‖ ≤ a, we may assume

an r ∈ (a, a + 1) for a subsequence {ni} such that ‖xni
‖ ≤ r, ‖yni

‖ ≤ r, a < r.
Choose r ≥ ε > 0 such that

2α(1− β)δX(ε/r) < 1 and ‖xni
− yni

‖ ≥ ε > 0 for all i ∈ N.

From Corollary 2.3.11, we have

‖tni
xni

+ (1− tni
)yni
‖ ≤ r[1− 2tni

(1− tni
)δX(ε/r)]

≤ r[1− 2α(1− β)δX(ε/r)] < a for all i ∈ N,

which contradicts the hypothesis.

We now present the following intersection theorem:

Theorem 2.3.14 (Intersection theorem) – Let {Cn} be a decreasing
sequence of nonempty closed convex bounded subsets of a uniformly convex
Banach space X. Then ∩n∈NCn is a nonempty closed convex subset of X.

Proof. Let z ∈ X be a point such that z /∈ C1, rn = d(z, Cn) and r = lim
n→∞ rn.

Let {εn} be a sequence of positive numbers that decreases to zero. Set

Dn := Br+εn
[z] = {x ∈ Cn : ‖z − x‖ ≤ r + εn},

dn : = diam(Dn),
d : = lim

n→∞ dn.
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Suppose x and y are two elements in Dn such that ‖x − y‖ ≥ dn − εn. Then
Corollary 2.3.11 gives∥∥∥∥z − x + y

2

∥∥∥∥ ≤
(

1− δX

(‖x− y‖
r + εn

))
(r + εn)

and hence

rn ≤
(

1− δX

(
dn − εn

r + εn

))
(r + εn).

This yields a contradiction unless d = 0. This in turn implies that ∩n∈NDn is
nonempty, and so is ∩n∈NCn.

Remark 2.3.15 Theorem 2.3.14 remains valid if the sequence {Cn} is replaced
by an arbitrary decreasing net of nonempty closed convex bounded subsets of X.

We now study a weaker type convexity of Banach spaces that is called locally
uniform convexity.

Definition 2.3.16 A Banach space X is said to be locally uniformly convex if
for any ε > 0 and x ∈ SX , there exists δ = δ(x, ε) > 0 such that

‖x− y‖ ≥ ε implies that
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− δ for all y ∈ SX .

The modulus of local convexity of the Banach space X is

δX(x, ε) = inf
{
1−‖x+y‖

2
: y ∈ SX , ‖x−y‖ ≥ ε

}
for each x ∈ SX and 0 < ε ≤ 2.

One may easily see that the Banach space X is locally uniformly convex if
δX(x, ε) > 0 for all x ∈ SX and ε > 0.

Observation
• Every uniformly convex Banach space is locally uniformly convex.

• By Definition 2.3.16, every locally uniformly convex Banach space is strictly

convex.

We now give interesting properties of locally uniformly convex Banach spaces:

Proposition 2.3.17 Let X be a Banach space. Then the following are equiva-
lent:

(a) X is locally uniformly convex.
(b) Every sequence {xn} in SX and x ∈ SX with ‖xn + x‖ → 2 implies that

xn → x.

Proof. (a) ⇒ (b). By locally uniformly convexity of X, δX(x, ε) > 0 for all
ε > 0. Therefore,

1− ‖xn + x‖
2

→ 0 implies that ‖xn − x‖ → 0.
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(b) ⇒ (a). Let {xn} be a sequence in SX such that ‖xn + x‖ → 2 implies that
xn → x. Then

‖xn − x‖ ≥ ε > 0 implies that
∥∥∥∥xn + x

2

∥∥∥∥ < 1.

Hence, by the definition of modulus of locally uniform convexity, δX(x, ε) > 0.
Therefore, X is locally uniformly convex.

The following theorem is a generalization of Theorem 2.2.13.

Theorem 2.3.18 Every locally uniformly convex Banach space has the Kadec-
Klee property.

Proof. Let X be a locally uniformly convex Banach space. Let {xn} be
a sequence in X such that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖. For x = 0, ‖xn‖ → 0
implies that xn → 0. Suppose x �= 0. Then

xn

‖xn‖ ⇀
x

‖x‖ ⇒
xn

‖xn‖ +
x

‖x‖ ⇀ 2
x

‖x‖ .

By w-lsc of the norm, we have

2 = 2
∥∥∥∥ x

‖x‖
∥∥∥∥ ≤ lim inf

n→∞

∥∥∥∥ xn

‖xn‖ +
x

‖x‖
∥∥∥∥

≤ lim sup
n→∞

(‖xn‖
‖xn‖ +

‖x‖
‖x‖
)

= 2,

which implies that ‖xn/(‖xn‖) + x/(‖x‖)‖ → 2. By Proposition 2.3.17, we
conclude that xn/‖xn‖ → x/‖x‖. Therefore, xn → x.

2.4 Duality mappings

Definition 2.4.1 Let X∗ be the dual of a Banach space X. Then a multivalued
mapping J : X → 2X∗

is said to be a (normalized) duality mapping if

Jx = {j ∈ X∗ : 〈x, j〉 = ‖x‖2 = ‖j‖2∗}.
Example 2.4.2 In a Hilbert space H, the normalized duality mapping is the
identity. To see this, let x ∈ H with x �= 0. Note that H = H∗ and

〈x, x〉 = ‖x‖ · ‖x‖ implies x ∈ Jx.

Suppose y ∈ Jx. Then by the definition of J , we have 〈x, y〉 = ‖x‖‖y‖ and
‖x‖ = ‖y‖. Because

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉,
it follows that x = y. Therefore, Jx = {x}.
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For a complex number, we define the “sign” function by

sgn α =
{

0 if α = 0,
α/|α| if α �= 0.

Observation

• |sgn α| =

{
0 if α = 0,
1 if α �= 0.

• α sgn α =

{
0 if α = 0,
αα/|α| = |α| if α �= 0.

Example 2.4.3 In the 2 space,

Jx = (|x1|sgn(x1), |x2|sgn(x2), · · · , |xi|sgn(xi), · · · ), x = {xi} ∈ 2.

Example 2.4.4 In the L2[0, 1] (1 < p <∞) space, the duality mapping is given
by

Jx =
{ |x| sgn(x)/‖x‖, if x �= 0,

0 if x = 0.

Before giving fundamental properties of duality mappings, we need the
following notations and definitions:

Let T : X → 2X∗
a multivalued mapping. The domain Dom(T ), range

R(T ), inverse T−1, and graph G(T ) of T are defined as

Dom(T ) = {x ∈ X : Tx �= ∅},
R(T ) = ∪x∈Dom(T )Tx,

T−1(y) = {x ∈ X : y ∈ Tx},
G(T ) = {(x, y) ∈ X ×X∗ : y ∈ Tx, x ∈ Dom(T )}.

The graph G(T ) of T is a subset of X ×X∗.

The mapping T is said to be

(i) monotone if 〈x−y, jx−jy〉 ≥ 0 for all x, y ∈ Dom(T ) and jx ∈ Tx, jy ∈ Ty.

(ii) strictly monotone if 〈x− y, jx − jy〉 > 0 for all x, y ∈ Dom(T ) with x �= y
and jx ∈ Tx, jy ∈ Ty.

(iii) α-monotone if there exists a continuous strictly increasing function
α : [0,∞)→ [0,∞) with α(0) = 0 and α(t)→∞ as t→∞ such that

〈x− y, jx − jy〉 ≥ α(‖x− y‖)‖x− y‖
for all x, y ∈ Dom(T ), jx ∈ Tx, jy ∈ Ty.

(iv) strongly monotone if T is α-monotone with α(t) = kt for some constant
k > 0.

(v) injective if Tx ∩ Ty = ∅ for x �= y.
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The monotone operator T : Dom(T ) ⊂ X → 2X∗
is said to be maximal

monotone if it has no proper monotone extensions, i.e., if for (x, y) ∈ X ×X∗

〈x− z, y − jz〉 ≥ 0 for all z ∈ Dom(T ) and jz ∈ Tz implies y ∈ Tx.

The mapping T : Dom(T ) ⊂ X → X∗ is said to be coercive on a subset C
of Dom(T ) if there exists a function c : (0,∞) → [−∞,∞] with c(t) → ∞ as
t→∞ such that 〈x, Tx〉 ≥ c(‖x‖)‖x‖ for all x ∈ C.

In other words, T is coercive on C if 〈x,Tx〉
‖x‖ →∞ as ‖x‖ → ∞, x ∈ C.

Observation

• Every monotonically increasing mapping is monotone.

• If H is a Hilbert space and T : H → H is nonexpansive, then I−T is monotone.

We are now in a position to establish fundamental properties of duality
mappings in Banach spaces.

Proposition 2.4.5 Let X be a Banach space and let J : X → 2X∗
be the

normalized duality mapping. Then we have the following:
(a) J(0) = {0}.
(b) For each x ∈ X,Jx is nonempty closed convex and bounded subset of

X∗.
(c) J(λx) = λJx for all x ∈ X and real λ, i.e., J is homogeneous.
(d) J is multivalued monotone, i.e., 〈x − y, jx − jy〉 ≥ 0 for all x, y ∈ X,

jx ∈ Jx and jy ∈ J(y).
(e) ‖x‖2 − ‖y‖2 ≥ 2〈x− y, j〉 for all x, y ∈ X and j ∈ Jy.
(f) If X∗ is strictly convex, J is single-valued.
(g) If X is strictly convex, then J is one-one, i.e., x �= y ⇒ Jx ∩ Jy = ∅.
(h) If X is reflexive with strictly convex dual X∗, then J is demicontinuous.
(i) If X is uniformly convex, then for x, y ∈ Br[0], jx ∈ Jx, jy ∈ Jy

〈x− y, jx − jy〉 ≥ wr(‖x− y‖)‖x− y‖,
where wr : R+ → R+ is a function satisfies the conditions:

wr(0) = 0, wr(t) > 0 for all t > 0 and t ≤ s⇒ wr(t) ≤ wr(s).

Proof. (a) It is obvious.
(b) If x = 0, we are done by Part(a). If x is a nonzero element in X, then

by the Hahn-Banach theorem (see Corollary 1.6.6), there exists f ∈ X∗ such
that 〈x, f〉 = ‖x‖ and ‖f‖∗ = 1. Set j := ‖x‖f. Then 〈x, j〉 = ‖x‖〈x, f〉 =
‖x‖2 and ‖j‖∗ = ‖x‖, and it follows that Jx is nonempty for each x �= 0.

Now suppose f1, f2 ∈ Jx and t ∈ (0, 1). Because

〈x, f1〉 = ‖x‖‖f1‖∗, ‖x‖ = ‖f1‖∗
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and
〈x, f2〉 = ‖x‖‖f2‖∗, ‖x‖ = ‖f2‖∗,

we obtain

〈x, tf1 + (1− t)f2〉 = ‖x‖(t‖f1‖∗ + (1− t)‖f2‖∗) = ‖x‖2.
Observe that

〈x, tf1 + (1− t)f2〉 ≤ ‖tf1 + (1− t)f2‖∗‖x‖
≤ (t‖f1‖∗ + (1− t)‖f2‖∗)‖x‖
= ‖x‖2.

Then
‖x‖2 ≤ ‖x‖‖tf1 + (1− t)f2‖∗ ≤ ‖x‖2,

which gives us
‖x‖2 = ‖x‖‖tf1 + (1− t)f2‖∗,

i.e.,
‖tf1 + (1− t)f2‖∗ = ‖x‖.

Thus,

〈x, tf1 + (1− t)f2〉 = ‖x‖‖tf1 + (1− t)f2‖∗ and ‖x‖ = ‖tf1 + (1− t)f2‖∗,
and this means that tf1 + (1− t)f2 ∈ Jx, i.e., Jx is a convex set.

Similarly, one can show that Jx is a closed and bounded set in X∗.
(c) For λ = 0, it is obvious that J(0x) = 0Jx. Assume that j ∈ J(λx) for

λ �= 0. First, we show that J(λx) ⊆ λJx. Because j ∈ J(λx), we have

〈λx, j〉 = ‖λx‖‖j‖∗ and ‖λx‖ = ‖j‖∗,
and it follows that 〈λx, j〉 = ‖j‖2∗. Hence

〈x, λ−1j〉 = λ−1〈λx, λ−1j〉 = λ−2〈λx, j〉 = λ−2‖λx‖‖j‖∗ = ‖λ−1j‖2∗ = ‖x‖2.
This shows that λ−1j ∈ Jx, i.e., j ∈ λJx. Thus, we have J(λx) ⊆ λJx.
Similarly, one can show that λJx ⊆ J(λx). Therefore, J(λx) = λJx.

(d) Let jx ∈ Jx and jy ∈ Jy for x,y ∈ X. Hence

〈x− y, jx − jy〉 = 〈x, jx〉 − 〈x, jy〉 − 〈y, jx〉+ 〈y, jy〉
≥ ‖x‖2 + ‖y‖2 − ‖x‖‖jy‖∗ − ‖y‖‖jx‖∗
≥ ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖
= (‖x‖ − ‖y‖)2 ≥ 0. (2.9)

(e) Let j ∈ Jx, x ∈ X. Then

‖y‖2 − ‖x‖2 − 2〈y − x, j〉
= ‖x‖2 + ‖y‖2 − 2〈y, j〉
≥ ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖
= (‖x‖ − ‖y‖)2 ≥ 0. (2.10)
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(f) Let j1, j2 ∈ Jx for x ∈ X. Then

〈x, j1〉 = ‖j1‖2∗ = ‖x‖2

and
〈x, j2〉 = ‖j2‖2∗ = ‖x‖2.

Adding the above identities, we have

〈x, j1 + j2〉 = 2‖x‖2.
Because

2‖x‖2 = 〈x, j1 + j2〉 ≤ ‖x‖‖j1 + j2‖∗,
this implies that

‖j1‖∗ + ‖j2‖∗ = 2‖x‖ ≤ ‖j1 + j2‖∗.
It now follows from the fact ‖j1 + j2‖∗ ≤ ‖j1‖∗ + ‖j2‖∗ that

‖j1 + j2‖∗ = ‖j1‖∗ + ‖j2‖∗.
Because X∗ is strictly convex and ‖j1 + j2‖∗ = ‖j1‖∗ + ‖j2‖∗, then there exists
λ ∈ R such that j1 = λj2. Because

〈x, j2〉 = 〈x, j1〉 = 〈x, λj2〉 = λ〈x, j2〉,
this implies that λ = 1 and hence j1 = j2. Therefore, J is single-valued.

(g) Suppose that j ∈ Jx ∩ Jy for x, y ∈ X. Because j ∈ Jx and j ∈ Jy, it
follows from ‖j‖2∗ = ‖x‖2 = ‖y‖2 = 〈x, j〉 = 〈y, j〉 that

‖x‖2 = 〈(x + y)/2, j〉 ≤ ‖(x + y)/2‖‖x‖,
which gives that

‖x‖ = ‖y‖ ≤ ‖(x + y)/2‖ ≤ ‖x‖.
Hence ‖x‖ = ‖y‖ = ‖(x + y)/2‖. Because X is strictly convex and ‖x‖ = ‖y‖ =
‖(x + y)/2‖, we have x = y. Therefore, J is one-one.

(h) It suffices to prove demicontinuity of J on the unit sphere SX . For this,
let {xn} be a sequence in SX such that xn → z in X. Then ‖Jxn‖∗ = ‖xn‖ = 1
for all n ∈ N, i.e., {Jxn} is bounded. Because X is reflexive and hence X∗ is
also reflexive. Then there exists a subsequence {Jxnk

} of {Jxn} in X∗ such that
{Jxnk

} converges weakly to some j in X∗. Because xnk
→ z and Jxnk

⇀ j,
then we have

〈z, j〉 = lim
k→∞

〈xnk
, Jxnk

〉 = lim
k→∞

‖xnk
‖2 = 1.

Moreover,

‖j‖∗ ≤ lim
k→∞

‖Jxnk
‖∗ = lim

k→∞
(‖Jxnk

‖∗ ‖xnk
‖)

= lim
k→∞

〈xnk
, Jxnk

〉 = 〈z, j〉 = ‖j‖∗.
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This shows that
〈z, j〉 = ‖j‖∗‖z‖ and ‖j‖∗ = ‖z‖.

This implies that j = Jz. Thus, every subsequence {Jxni
} converging weakly

to j ∈ X∗. This gives Jxn ⇀ Jz. Therefore, J is demicontinuous.
(i) Let r > 0 and wr : R+ → R+ a function defined by⎧⎪⎪⎨

⎪⎪⎩
wr(0) = 0;
wr(t) = inf{ 〈x−y,jx−jy〉

‖x−y‖ : x, y ∈ Br[0], ‖x− y‖ ≥ t, jx ∈ Jx, jy ∈ Jy}
if t ∈ (0, 2r];

wr(t) = wr(2r); if t ∈ (2r,∞).

By (d), we have
〈x− y, jx − jy〉 ≥ 0,

and it follows that wr(t) ≥ 0 for all t ∈ R+. It can be readily seen that wr is
nondecreasing. So it remains to prove that wr(t) > 0 for all t > 0.

Suppose, for contradiction, that there exists λ ∈ (0, 2r] such that wr(λ) = 0.
Then there exist sequences {xn}, {yn} in Br[0] such that

‖xn − yn‖ ≥ λ > 0 and 〈xn − yn, jxn
− jyn

〉 → 0,

where jxn
∈ Jxn, jyn

∈ Jyn. We know from (2.9) that

(‖xn‖ − ‖yn‖)2 ≤ 〈xn − yn, jxn
− jyn

〉.
We may assume that

lim
n→∞ ‖xn‖ = lim

n→∞ ‖yn‖ = a > 0 (say).

Notice

〈xn + yn, jxn
+ jyn

〉 = 2‖xn‖2 + 2‖yn‖2 − 〈xn − yn, jxn
− jyn

〉
→ 4a2 (2.11)

and
lim sup

n→∞
‖xn + yn‖ ≤ lim sup

n→∞
(‖xn‖+ ‖yn‖) = 2a.

Moreover, from (2.11), we have

4a2 = lim
n→∞〈xn + yn, jxn

+ jyn
〉

≤ lim inf
n→∞ ‖xn + yn‖(‖xn‖+ ‖yn‖) = 2a lim inf

n→∞ ‖xn + yn‖,
which implies that

2a ≤ lim inf
n→∞ ‖xn + yn‖.

Thus, we have that lim
n→∞ ‖xn + yn‖ = 2a. By the uniform convexity of X (see

Theorem 2.3.13), we obtain that lim
n→∞ ‖xn − yn‖ = 0, which contradicts our

assumption that ‖xn − yn‖ ≥ λ > 0.

The inequalities given in the following results are very useful in many
applications.
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Proposition 2.4.6 Let X be a Banach space and J : X → 2X∗
the duality

mapping. Then we have the following:
(a) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, jx〉 for all x, y ∈ X, where jx ∈ Jx.
(b) ‖x + y‖2 ≤ ‖y‖2 + 2〈x, jx+y〉 for all x, y ∈ X, where jx+y ∈ J(x + y).

Proof. (a) Replacing y by x + y in (2.10), we get the inequality.
(b) Replacing x by x + y in (2.10), we get the result.

Proposition 2.4.7 Let X be a Banach and J : X → 2X∗
a normalized duality

mapping. Then for x, y ∈ X, the following are equivalent:
(a) ‖x‖ ≤ ‖x + ty‖ for all t > 0.

(b) There exists j ∈ Jx such that 〈y, j〉 ≥ 0.

Proof. (a)⇒ (b). For t > 0, let ft ∈ J(x+ ty) and define gt = ft/‖ft‖∗. Hence
‖gt‖∗ = 1. Because gt ∈ ‖ft‖−1

∗ J(x + ty), it follows that

‖x‖ ≤ ‖x + ty‖ = ‖ft‖−1
∗ 〈x + ty, ft〉

= 〈x + ty, gt〉 = 〈x, gt〉+ t〈y, gt〉
≤ ‖x‖+ t〈y, gt〉. (as ‖gt‖∗ = 1)

By the Banach-Alaoglu theorem (which states that the unit ball in X∗ is
weak*ly-compact), the net {gt} has a limit point g ∈ X∗ such that

‖g‖∗ ≤ 1, 〈x, g〉 ≥ ‖x‖ and 〈y, g〉 ≥ 0.

Observe that
‖x‖ ≤ 〈x, g〉 ≤ ‖x‖‖g‖∗ = ‖x‖,

which gives that
〈x, g〉 = ‖x‖ and ‖g‖∗ = 1.

Set j = g‖x‖, then j ∈ Jx and 〈y, j〉 ≥ 0.
(b) ⇒ (a). Suppose for x, y ∈ X with x �= 0 there exists j ∈ Jx such that

〈y, j〉 ≥ 0. Hence for t > 0,

‖x‖2 = 〈x, j〉 ≤ 〈x, j〉+ 〈ty, j〉 = 〈x + ty, j〉 ≤ ‖x + ty‖‖x‖,
which implies that

‖x‖ ≤ ‖x + ty‖.
Observation

• Dom(J) = X.

• J is odd, i.e., J(−x) = −Jx.

• J is homogeneous (hence J is positive homogeneous, i.e., J(λx) = λJx for all
λ > 0).

• J is bounded.

We now consider the duality mappings that are more general than the
normalized duality mappings.
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Definition 2.4.8 A continuous strictly increasing function μ : R+ → R+ is
said to be gauge function if μ(0) = 0 and lim

t→∞μ(t) =∞.

Definition 2.4.9 Let X be a normed space and μ a gauge function. Then the
mapping Jμ : X → 2X∗

defined by

Jμ(x) = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = μ(‖x‖)}, x ∈ X

is called the duality mapping with gauge function μ.

In the particular case μ(t) = t, the duality mapping Jμ = J is called the
normalized duality mapping .

In the case μ(t) = tp−1, p > 1, the duality mapping Jμ = Jp is called the
generalized duality mapping and it is given by

Jp(x) := {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ‖x‖p−1}, x ∈ X.

Note that if p = 2, then Jp = J2 = J is the normalized duality mapping.

Remark 2.4.10 For the gauge function μ, the function Φ : R+ → R+

defined by

Φ(t) =
∫ t

0

μ(s)ds

is a continuous convex strictly increasing function on R+. Therefore, Φ has a
continuous inverse function Φ−1.

Example 2.4.11 Let x = (x1, x2, · · · ) ∈ p (1 < p <∞), set

Jμ(x) = (|x1|p−1sgn(x1), |x2|p−1sgn(x2), · · · )
and let μ(t) = tp−1 = tp/q, where 1/p + 1/q = 1. Observe that

( ∞∑
i=1

|xi|(p−1)q

)1/q

=
( ∞∑

i=1

|xi|p
)1/q

and Jμ(x) ∈ q.

Moreover,
μ(‖x‖) = ‖x‖p/q = ‖Jμ(x)‖∗

and

〈x, Jμ(x)〉 =
∞∑

i=1

xi|xi|p−1sgn(xi) =
∞∑

i=1

|xi|p = ‖x‖p

= ‖x‖‖x‖p−1 = ‖x‖μ(‖x‖) = ‖x‖‖Jμ(x)‖∗.
Thus, Jμ is a duality mapping with gauge function μ. Therefore, the generalized
duality mapping Jp in p space is given by

Jp(x) = (|x1|p−1sgn(x1), |x2|p−1sgn(x2), · · · ), x ∈ p.
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One can easily see the following facts:

(i) Jμ(x) is a nonempty closed convex set in X∗ for each x ∈ X,

(ii) Jμ is a function when X∗ is strictly convex.

(iii) If Jμ(x) is single-valued, then

Jμ(λx) =
sign(λ)μ(‖λx‖)

μ(‖x‖) Jμ(x) for all x ∈ X and λ ∈ R

and

〈x− y, Jμ(x)− Jμ(y)〉 ≥ (μ(‖x‖)− μ(‖y‖))(‖x‖ − ‖y‖) for all x, y ∈ X.

We now give other interesting properties of the duality mappings Jμ in
reflexive Banach spaces.

Theorem 2.4.12 Let X be a Banach space and Jμ a duality mapping with
gauge function μ. Then X is reflexive if and only if

⋃
x∈X Jμ(x) = X∗, i.e., Jμ

is onto.

Proof. Let X be reflexive and let j ∈ X∗. By the Hahn-Banach theorem, there
is an x ∈ SX such that 〈x, j〉 = ‖x‖.

Because μ has the property of Darboux, there exists a constant t ≥ 0 such
that

μ(||tx||) = μ(t) = ‖j‖∗.
Because 〈tx, j〉 = ‖tx‖‖j‖∗, it follows that j ∈ Jμ(tx).

Conversely, suppose that for each j ∈ X∗, there is x ∈ X such that j ∈ Jμ(x).
Set y := x/‖x‖. Then ‖y‖ = 1 and 〈y, j〉 = ‖j‖∗. Hence each continuous
functional attains its supremum on the unit ball. By the James theorem, X is
reflexive.

Theorem 2.4.13 Let X be a reflexive Banach space and J a duality mapping
with gauge function μ. Then J−1 is the duality mapping with gauge μ−1.

Proof. From Theorem 2.4.12, we obtain

J−1(j) = {x ∈ X : j ∈ Jμ(x)} �= ∅ for all j ∈ X∗.

Let J∗ be the duality mapping on X∗ with gauge μ−1. Observe that x ∈ J−1(j)
if and only if 〈x, j〉 = ‖x‖‖j‖∗ and ‖x‖ = μ−1(‖j‖∗) or equivalently if and only
if x ∈ J∗(j). Thus,

J∗(j) = J−1(j) = {x ∈ X : 〈x, j〉 = ‖x‖‖j‖∗, ‖x‖ = μ−1(‖j‖∗)}.
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Corollary 2.4.14 Let X be a reflexive Banach space and J∗ : X∗ → X the
inverse of the normalized duality mapping J : X → X∗. Then

J∗J = I and JJ∗ = I∗ (identity mappings on X and X∗, respectively).

Theorem 2.4.15 Let X be a Banach space and let Jμ be the duality mapping
with gauge function μ. If X∗ is uniformly convex, then Jμ is uniformly continu-
ous on each bounded set in X, i.e., for ε > 0 and K > 0, there is a δ > 0 such
that

‖x‖ ≤ K, ‖y‖ ≤ K and ‖x− y‖ < δ ⇒ ‖Jμ(x)− Jμ(y)‖∗ < ε.

Proof. Because X∗ is strictly convex, Jμ is single-valued. Suppose {xn} and
{yn} are sequences in X such that ‖xn‖ ≤ K, ‖yn‖ ≤ K and ‖xn − yn‖ → 0.

Assume that xn → 0, then yn → 0. Moreover,

‖Jμ(xn)‖∗ = μ(‖xn‖)→ 0 and ‖Jμ(yn)‖∗ = μ(‖yn‖)→ 0.

Hence ‖Jμ(xn)− Jμ(yn)‖∗ → 0 and we are done.
Suppose {xn} does not converge strongly to zero. There exist α > 0 and a

subsequence {xnk
} of {xn} such that ‖xnk

‖ ≥ α. Because ‖xn − yn‖ → 0, one
can assume that ‖ynk

‖ ≥ α/2. Without loss of generality, we may assume that

‖xn‖ ≥ β and ‖yn‖ ≥ β for some β > 0.

Set un := xn/‖xn‖ and vn := yn/‖yn‖ so that ‖un‖ = ‖vn‖ = 1 and

‖un − vn‖ =
∥∥∥∥xn‖yn‖ − ‖xn‖yn

‖xn‖‖yn‖
∥∥∥∥

≤ 1
β2

∥∥∥∥xn‖yn‖ − xn‖xn‖+ xn‖xn‖ − ‖xn‖yn

∥∥∥∥
≤ 1

β2

(∣∣∣∣‖yn‖ − ‖xn‖
∣∣∣∣‖xn‖+ ‖xn‖‖xn − yn‖

)

≤ 1
β2

(‖yn − xn‖K + ‖xn − yn‖K)→ 0 as n→∞.

Because ‖Jμ(un)‖∗ = μ(‖un‖) = μ(1) and ‖Jμ(vn)‖∗ = μ(‖vn‖) = μ(1), we have

μ(1) + μ(1)− μ(1)‖un − vn‖ ≤ 〈un, Jμ(un)〉+〈vn, Jμ(vn)〉+〈un− vn, Jμ(vn)〉
= 〈un, Jμ(un)〉+〈un, Jμ(vn)〉
= 〈un, Jμ(un)+Jμ(vn)〉
≤ ‖Jμ(un) + Jμ(vn)‖∗ ≤ 2μ(1).

This shows that lim
n→∞ ‖Jμ(un) + Jμ(vn)‖∗ = 2μ(1). Because X∗ is uniformly

convex, we have ‖Jμ(un)− Jμ(vn)‖∗ → 0 as n→∞. Hence

Jμ(xn)− Jμ(yn)
= [μ(‖xn‖)(Jμ(un)− Jμ(vn)) + (μ(‖xn‖)− μ(‖yn‖))Jμ(vn)]/μ(1),

and it follows that ‖Jμ(xn)− Jμ(yn)‖∗ → 0 as n→∞.
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Observation

• If Jμ : X → 2X∗
is a duality mapping with gauge function μ then

(i) Jμ is norm to weak* upper semicontinuous.

(ii) for each x ∈ X, the set Jμ(x) is convex and weakly closed in X∗;

(iii) Jμ(−x) = −Jμ(x) and Jμ(λx) = μ(‖λx‖)
μ(‖x‖) Jμ(x) for all x ∈ X, λ > 0;

(iv) each selection of Jμ is a homogeneous single-valued mapping j : X → X∗

satisfying j(x) ∈ Jμ(x) for all x ∈ X,

(v) Jμ is monotone, i.e., 〈x − y, jx − jy〉 ≥ 0 for all x, y ∈ X and jx ∈ Jμ(x),
jy ∈ Jμ(y);

(vi) the strict convexity of X implies that Jμ is strictly monotone, i.e.,

〈x − y, jx − jy〉 > 0 for all x, y ∈ X and jx ∈ Jμ(x), jy ∈ Jμ(y);

(vii) the reflexivity of X and strict convexity of X∗ imply that Jμ is single-valued
monotone and demicontinuous.

One can easily see that the following are reflexive Kadec-Klee Banach spaces:
(a) a Banach space of finite-dimension,
(b) a reflexive Banach space that is locally uniformly convex,
(c) a uniformly convex Banach space.

We now conclude this section with an interesting result concerning a Banach
space whose dual has the Kadec-Klee property.

Theorem 2.4.16 Let X be a reflexive Banach space such that X∗ has the
Kadec-Klee property. Let {xα}α∈D be a bounded net in X and x, y∈ww({xα}α∈D).
Suppose lim

α∈D
‖txα + (1− t)x− y‖ exists for all t ∈ [0, 1]. Then x = y.

Proof. Because lim
α∈D

‖txα + (1 − t)x − y‖ exists (say, r), for each ε > 0, there

exists α0 ∈ D such that

‖txα + (1− t)x− y‖ ≤ r + ε for all α � α0.

It follows that for all α � α0 and j(x− y) ∈ J(x− y),

〈txα + (1− t)x− y, j(x− y)〉 ≤ (r + ε)‖x− y‖.

Because x ∈ ωw({xα}α∈D), we obtain

‖x− y‖2 = 〈tx + (1− t)x− y, j(x− y)〉
≤ ‖x− y‖( lim

α∈D
‖txα + (1− t)x− y‖+ ε),

= (r + ε)‖x− y‖.

Taking the limit as ε→ 0, we obtain

‖x− y‖ ≤ r. (2.12)
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By Proposition 2.4.6 (b), we have

‖txα + (1− t)x− y‖2 ≤ ‖x− y‖2 + 2t〈xα − x, j(txα + (1− t)x− y)〉
for all t ∈ (0, 1] and j(txα + (1− t)x− y) ∈ J(txα + (1− t)x− y). By (2.12), we
have

lim inf
α∈D

〈xα − x, j(txα + (1− t)x− y)〉 ≥ 0.

Hence there exists a sequence {αn}n∈N such that αn � αm for n ≥ m and〈
xα − x, j

(
1
n

xα +
(

1− 1
n

)
x− y

)〉
≥ − 1

n
for all n ∈ N and α � αn. (2.13)

Set D1 = {α : α � α1}. Without loss of generality, we may assume that
D = D1,

ωw({xα}α∈D) = ωw{xα}α∈D1

and

lim
α∈D

‖txα + (1− t)x− y‖ = lim
α∈D1

‖txα + (1− t)x− y‖ for all t ∈ [0, 1].

Set tα = inf{1/n : α � αn} for all α ∈ D.

We now consider two cases:
Case 1. α ∈ D and tα > 0.
Set jα := j(tαxα + (1− tα)x− y). Then

〈x− y, jα〉 = ‖tαxα + (1− tα)x− y‖2 − tα〈xα − x, jα〉 (2.14)

and

‖jα‖ = ‖tαxα + (1− tα)x− y‖. (2.15)

By (2.13), we have

〈xα − x, jα〉 ≥ −tα. (2.16)

Case 2. α ∈ D and tα = 0.
In this case, we can choose a subsequence {j((1/nk)xα+(1−1/nk)x−y)}k∈N

which is weakly convergent to j, and set jα := j. It follows from (2.13) that

〈xα − x, jα〉 ≥ 0. (2.17)

Observe that

‖jα‖ ≤ lim inf
k→∞

∥∥∥∥j
(

1
nk

xα +
(

1− 1
nk

)
x− y

)∥∥∥∥
= lim

k→∞

∥∥∥∥ 1
nk

xα +
(

1− 1
nk

)
x− y

∥∥∥∥ = ‖x− y‖.
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On the other hand, we have

〈x− y, jα〉 = lim
k→∞

〈
x− y, j

(
1
nk

xα +
(

1− 1
nk

)
x− y

)〉

= lim
k→∞

(
‖ 1
nk

xα +
(

1− 1
nk

)
x− y‖2

− 1
nk

〈
xα − x, j

(
1
nk

xα +
(

1− 1
nk

)
x− y

)〉)
= ‖x− y‖2. (2.18)

Therefore,

‖jα‖ = ‖x− y‖ (2.19)

and jα ∈ J(x− y).
We note that by the Kadec-Klee property of X∗, the sequence {j((1/nk)xα+

(1− 1/nk)x− y)}k∈N converges strongly to jα.
Now from the net {xα}α∈D, we choose a subset {αβ}β∈D such that {xαβ

}β∈D

converges weakly to y ∈ ww({xα}α∈D) and {jαβ
}β∈D converges weakly to j.

Then by (2.15) and (2.19) we get

‖j‖∗ ≤ ‖x− y‖
and by (2.14) and (2.18), we get

〈x− y, j〉 = ‖x− y‖2.
Hence j ∈ J(x − y). Because X is reflexive and X∗ has the Kadec-Klee pro-
perty, the space X∗ has also the Kadec property and this implies that {jαβ

}β∈D

converges strongly to j. It follows from (2.16) and (2.17) that

〈y − x, j〉 ≥ 0,

i.e., ‖x− y‖2 ≤ 0. Therefore, x = y.

Corollary 2.4.17 Let X be a reflexive Banach space such that its dual X∗

has the Kadec-Klee property. Let {xn} be a bounded sequence in X and p, q ∈
ωw({xn}). Suppose lim

n→∞ ‖txn +(1− t)p−q‖ exists for all t ∈ [0, 1]. Then p = q.

2.5 Convex functions

Let X be a linear space and f : X → (−∞,∞] a function. Then
(i) f is said to be convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for

all x, y ∈ X and λ ∈ [0, 1];
(ii) f is said to be strictly convex if f(λx+(1−λ)y) < λf(x)+(1−λ)f(y) for

all λ ∈ (0, 1) and x, y ∈ X with x �= y, f(x) <∞, f(y) <∞;
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(iii) f is said to be proper if there exists x ∈ X such that f(x) <∞;
(iv) Dom(f) = {x ∈ X : f(x) <∞} is called domain or effective domain;
(v) f is said to be bounded below if there exists a real number α such that

α ≤ f(x) for all x ∈ X;
(vi) the set epif = {(x, α) : x ∈ X,α ∈ R, f(x) ≤ α} is called the

epigraph of f .

Let C be a subset of X. Then the function iC on X defined by

iC(x) =
{

0 if x ∈ C,
∞ if x /∈ C

is called the indicator function.

Observation
• iC is proper if and only if C is nonempty.

• dom(iC) = C.

• The set C is convex if and only if its indicator function iC is convex.

• The domain of each convex function is convex.

Let X be a topological space and f : X → (−∞,∞] a proper function. Then
f is said to be lower semicontinuous (l.s.c.) at x0 ∈ X if

f(x0) ≤ lim inf
x→x0

f(x0) = sup
V ∈Ux0

inf
x∈V

f(x),

where Ux0 is a base of neighborhoods of the point x0 ∈ X. f is said to be lower
semicontinuous on X if it is lower semicontinuous on each point of X, i.e., for
each x ∈ X

xn → x⇒ f(x) ≤ lim inf
n→∞ f(xn).

We now discuss some elementary properties of convex functions:

Proposition 2.5.1 Let X be a linear space and f : X → (−∞,∞] a function.
Then f is convex if and only if its epigraph is a convex subset of X × R.

Proof. Suppose f is convex. Then for (x, α), (y, β) in epif , we have

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y) ≤ (1− t)α + tβ for all t ∈ [0, 1].

This implies that ((1− t)x + ty, (1− t)α + tβ) ∈ epif .
Conversely, suppose that epif is convex. Then Dom(f) is also convex.

Because for x, y ∈ Dom(f) and (x, f(x)), (y, f(y)) ∈ epif , we have

((1− t)x + ty, (1− t)f(x) + tf(y)) ∈ epif for all t ∈ [0, 1].

Thus, by the definition of epif ,

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y).
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Proposition 2.5.2 Let X be a topological space and f : X → (−∞,∞] a
function. Then the following statements are equivalent:

(a) f is lower semicontinuous.
(b) For each α ∈ R, the level set {x ∈ X : f(x) ≤ α} is closed.
(c) The epigraph of the function f , {(x, α) ∈ X × R : f(x) ≤ α} is closed.

Proof. We recall that

lim inf
x→x0

f(x) = sup
V ∈Ux0

inf
x∈V

f(x).

(a) ⇒ (b). Let α ∈ R and let x0 ∈ X with f(x0) > α. Because f is lower
semicontinuous, there exists V0 ∈ Ux0 such that inf

x∈V0
f(x) > α. Hence V0 ⊂

{x ∈ X : f(x) > α}. Consequently, {x ∈ X : f(x) > α} is open and hence
{x ∈ X : f(x) ≤ α} is closed.

(b) ⇒ (a). Let x0 ∈ Dom(f), ε > 0 and Vε = {x ∈ X : f(x) > f(x0) − ε}.
Because each level set of f is closed, it follows that Vε ∈ U(x0). Because
inf

x∈Vε

f(x) ≥ f(x0)−ε, it follows that lim inf
x→x0

f(x) ≥ f(x0)−ε. As ε is arbitrarily

chosen, we conclude that (a) holds.
(a)⇔ (c). Define ϕ : X × R→ (−∞,∞] by ϕ(x, α) = f(x)− α. Then, f is

l.s.c. on X ⇔ ϕ is l.s.c. on X × R. Because epif is a level set of ϕ, therefore,
the conclusion holds.

Proposition 2.5.3 Let C be a nonempty closed convex subset of a Banach
space X and f : C → (−∞,∞] a convex function. Then f is lower semicontin-
uous in the norm topology if and only if f is lower semicontinuous in the weak
topology.

Proof. Set Fα := {x ∈ C : f(x) ≤ α}, α ∈ R. Then Fα is convex. Indeed, for
x, y ∈ Fα

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)
≤ λα + (1− λ)α = a for all λ ∈ [0, 1].

It follows from Proposition 1.9.13 (which states that for a convex subset C in a
normed space X, C is closed if and only if C is weakly closed) that Fα is closed
if and only if Fα is weakly closed, i.e., Fα is closed in the weak topology.

Before presenting an important result, we first establish a preliminary result:

Theorem 2.5.4 Let X be a compact topological space and f : X → (−∞,∞] a
lower semicontinuous function. Then there exists an element x0 ∈ X such that

f(x0) = inf{f(x) : x ∈ X}.
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Proof. Set Gα := {x ∈ X : f(x) > α}, α ∈ R. One may easily see that each Gα

is open and X =
⋃

α∈R
Gα. By compactness of X, there exists a finite family

{Gαi
}ni=1 of {Gα}α∈R such that

X =
n⋃

i=1

Gαi
.

Suppose α0 = min{α1, α2, · · · , αn}. This gives f(x) > α0 for all x ∈ X.
It follows that inf{f(x) : x ∈ X} exists. Let m = inf{f(x) : x ∈ X}.
Let β be a number such that β > m. Set Fβ := {x ∈ X : f(x) ≤ β}. Then Fβ

is a nonempty closed subset of X; and hence, by the intersection property, we
have ⋂

β>m

Fβ �= ∅.

Therefore, for any point x0 of this intersection, we have m = f(x0).

Theorem 2.5.5 Let C be a weakly compact convex subset of a Banach space
and f : C → (−∞,∞] a proper lower semicontinuous convex function. Then
there exists x0 ∈ Dom(f) such that f(x0) = inf{f(x) : x ∈ C}.
Proof. Because f is proper, there exists u ∈ C such that f(u) < ∞. Then
the set C0 = {x ∈ C : f(x) ≤ f(u)} is nonempty. Because the set C0 is
closed and convex subset of C, it follows that C0 is weakly compact. Applying
Proposition 2.5.3, we have that f is lower semicontinuous in the weak topology.
By Theorem 2.5.4, there exists x0 ∈ C0 ⊂ C such that

f(x0) = inf{f(x) : x ∈ C0} = inf{f(x) : x ∈ C}.
Remark 2.5.6 If f is strictly convex function in Theorem 2.5.5, then x0 ∈ C
is the unique point such that f(x0) = inf

x∈C
f(x).

Recall that every closed convex bounded subset of a reflexive Banach space
is weakly compact. Using this fact, we have

Theorem 2.5.7 Let X be a reflexive Banach space and f : X → (−∞,∞] a
proper lower semicontinuous convex function. Then for every nonempty closed
convex bounded subset C of X, there exists a point x0 ∈ Dom(f) such that
f(x0) = inf

x∈C
f(x).

In Theorem 2.5.7, the boundedness of C may be replaced by the weaker
assumption

lim
x∈C,‖x‖→∞

f(x) =∞.

Theorem 2.5.8 Let C be a nonempty closed convex subset of a reflexive Banach
space X and f : C → (−∞,∞] a proper lower semicontinuous convex function
such that f(xn)→∞ as ‖xn‖ → ∞. Then there exists x0 ∈ Dom(f) such that

f(x0) = inf{f(x) : x ∈ C}.
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Proof. Let m = inf{f(x) : x ∈ C}. Choose a minimizing sequence {xn} in
C, i.e., f(xn) → m. If {xn} is not bounded, there exists a subsequence {xni

}
of {xn} such that ‖xni

‖ → ∞. From the hypothesis, we have f(xni
) → ∞,

which contradicts m �=∞. Hence {xn} is bounded. By the reflexivity X, there
exists a subsequence {xnj

} of {xn} such that xnj
⇀ x0 ∈ C. Because f is lower

semicontinuous in the weak topology, we have

m ≤ f(x0) ≤ lim inf
j→∞

f(xnj
) = lim

n→∞ f(xn) = m.

Therefore, f(x0) = m.

Differentiation of convex functions – Let X be a normed space and
ϕ : X → (−∞,∞] a function. Then the limit

lim
t→0

ϕ(x + ty)− ϕ(x)
t

= inf
t>0

ϕ(x + ty)− ϕ(x)
t

is said to be the directional derivative of ϕ at the point x ∈ X in the direction
y ∈ X. If it exists, it is denoted by ϕ′(x, y).

The function ϕ is said to be Gâteaux differentiable at a point x ∈ X if there
exists a continuous linear functional j on X such that 〈y, j〉 = ϕ′(x, y) for all
y ∈ X. The element j, denoted by ϕ′(x) or �ϕ(x) (i.e., gradϕ(x)) is called the
Gâteaux derivative of ϕ at x.

One can easily see from the definition of Gâteaux derivative of ϕ that
(i) ϕ′(x)(0) = 0,

(ii) ϕ′(x)(λy) = λ lim
t→0

ϕ(x + tλy)− ϕ(x)
t

= λϕ′(x)(y) for all λ ∈ R, i.e.,

ϕ′(x)(·) is homogeneous over R.

Remark 2.5.9 If the function ϕ is Gâteaux differentiable at x ∈ X, then there
exists j = ϕ′(x) ∈ X∗ such that

d

dt
ϕ(x + ty)

∣∣∣∣
t=0

= 〈y, ϕ′(x)〉 = 〈y, j〉 for all y ∈ X.

Let X be a normed space and ϕ : X → (−∞,∞] a function. The function ϕ
is said to be Fréchet differentiable at a point x ∈ X if there exists a continuous
linear functional j on X such that

lim
‖y‖→0

|ϕ(x + y)− ϕ(x)− 〈y, j〉|
‖y‖ = 0.

In this case, the element j denoted by dϕ(x) is called the Fréchet derivative
of ϕ at the point x.

Proposition 2.5.10 Let X be a normed space and ϕ : X → (−∞,∞] a
function. If ϕ is Fréchet differentiable at x, then ϕ is Gâteaux differentiable
at x.
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Proof. Because ϕ is Fréchet differentiable at x,

lim
‖y‖→0

|ϕ(x + y)− ϕ(x)− dϕ(x)y|
‖y‖ = 0. (2.20)

Set y = ty0 for t > 0 and for any fixed y0 �= 0. From (2.20), we obtain

lim
t→0

|ϕ(x + ty0)− ϕ(x)− tdϕ(x)y0|
t‖y0‖ = 0,

which implies that

lim
t→0

ϕ(x + ty0)− ϕ(x)
t

= dϕ(x)y0.

Hence dϕ ∈ X∗ and ϕ is Gâteaux differentiable at x.

The following example shows that the converse of Proposition 2.5.10 is not
true.

Example 2.5.11 Let X = R2 be a normed space with norm ‖·‖2 and ϕ : X → R

a function defined by

ϕ(x, y) =
{

x3y/(x4 + y2) if (x, y) �= (0, 0),
0 if (x, y) = (0, 0).

One may easily see that ϕ is Gâteaux differentiable at 0 with Gâteaux derivative
ϕ′(0) = 0. Because for (h, k) ∈ X, we have

|ϕ(h, k)|
‖(h, k)‖2 =

|h3k|
(h4 + k2)(h2 + k2)1/2

=
1

2(1 + h2)1/2
for k = h2.

Therefore, ϕ is not Fréchet differentiable.

Observation

• Every Fréchet differentiable function is Gâteaux differentiable.

• If ϕ is Fréchet differentiable at x, then ϕ is continuous at x.

• If ϕ is Gâteaux differentiable at x, then ϕ is not necessarily continuous at x
(e.g., the function ϕ : R

2 → R defined by

ϕ(x, y) =
2y exp(−x−2)

y2 + exp(−2x−2)
, x �= 0 and ϕ(x, y) = 0, x = 0

is Gâteaux differentiable at zero, but not continuous at zero).

• If ϕ is Gâteaux differentiable at x, then ϕ(x + ty) → ϕ(x) as t → 0 (i.e., if

xn → x along a line, then ϕ(xn) → ϕ(x)).
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Let X be a Banach space and ϕ : X → (−∞,∞] a proper convex function.
Then an element j ∈ X∗ is said to be a subgradient of ϕ at the point x ∈ X if

ϕ(x)− ϕ(y) ≤ 〈x− y, j〉 for all y ∈ X.

The set (possibly nonempty)

{j ∈ X∗ : ϕ(x)− ϕ(y) ≤ 〈x− y, j〉 for all y ∈ X},
of subgradients of ϕ at x ∈ X is called the subdifferential of ϕ at x ∈ X.
Thus, the subdifferential of a proper convex function ϕ is a mapping ∂ϕ : X →
2X∗

(generally multivalued) defined by

∂ϕ(x) = {j ∈ X∗ : ϕ(x)− ϕ(y) ≤ 〈x− y, j〉 for all y ∈ X}.
The domain of the subdifferential ∂ϕ is denoted and defined by

Dom(∂ϕ) = {x ∈ X : ∂ϕ(x) �= ∅}.

Remark 2.5.12 If ϕ is not the constant ∞, then Dom(∂ϕ) is a subset of
Dom(ϕ).

Observation
• ∂ϕ(x) is always for every x ∈ X nonempty if ϕ is continuous.

• ∂ϕ(x) is always a closed convex set in X∗.

• ∂(λϕ(x)) = λ∂ϕ(x), i.e., ∂ϕ(x) is homogeneous.

• ϕ has a minimum value at x0 ∈ Dom(∂ϕ) if and only if 0 ∈ ∂ϕ(x0).

• Dom(∂ϕ) = Dom(ϕ) if ϕ is lower semicontinuous on X.

• For a lower semicontinuous proper convex function ϕ on a reflexive Banach space

X, ∂ϕ is maximal monotone.

The following results are of fundamental importance in the study of convex
functions. We begin with a basic result.

Proposition 2.5.13 Let C be a nonempty closed convex subset of a Banach
space X and iC the indicator function of C, i.e.,

iC(x) =
{

0 if x ∈ C,
∞ otherwise.

Then ∂iC(x) = {j ∈ X∗ : 〈x− y, j〉 ≥ 0 for all y ∈ C}, x ∈ C.

Proof. Because the indicator function is convex and lower semicontinuous
function on X, by the subdifferentiability of iC , we have

∂iC(x) = {j ∈ X∗ : iC(x)− iC(y) ≤ 〈x− y, j〉 for all y ∈ C}.
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Remark 2.5.14 Dom(iC) = Dom(∂iC) = C and ∂iC(x) = {0} for each x ∈
int(C).

We now give a relation between Gâteaux differentiability and subdiffer-
entiability.

Theorem 2.5.15 Let X be a Banach space and ϕ : X → (−∞,∞] a proper
convex function. If ϕ is Gâteaux differentiable at a point x0 ∈ X, then ∂ϕ(x0) =
{ϕ′(x0)}, i.e., the subdifferential of ϕ at x0 ∈ X is a singleton set {ϕ′(x0)} in
X∗.

Conversely, if ϕ is continuous at x0 and ∂ϕ(x0) contains a singleton element,
then ϕ is Gâteaux differentiable at x0 and ϕ′(x0) = ∂ϕ(x0).

Proof. Let ϕ be Gâteaux differentiable at x0 ∈ X. Then

〈y, ϕ′(x0)〉 = lim
t→0

ϕ(x0 + ty)− ϕ(x0)
t

for all y ∈ X.

Notice

ϕ(x0 + λ(z− x0)) = ϕ((1−λ)x0 + λz) ≤ (1−λ)ϕ(x0) + λϕ(z) for all λ ∈ (0, 1).

Set y := z − x0. Then, we have

ϕ(x0 + λy) ≤ ϕ(x0) + λ[ϕ(x0 + y)− ϕ(x0)].

Thus,
ϕ(x0 + λy)− ϕ(x0)

λ
≤ ϕ(x0 + y)− ϕ(x0),

which implies that

ϕ(x0)− ϕ(x0 + y) ≤ −〈y, ϕ′(x0)〉 = 〈x0 − (x0 + y), ϕ′(x0)〉 for all y ∈ X,

i.e., ϕ′(x0) ∈ ∂ϕ(x0).

Now, let jx0 ∈ ∂ϕ(x0). Then, we have

ϕ(x0)− ϕ(u) ≤ 〈x0 − u, jx0〉 for all u ∈ X.

Therefore,
ϕ(x0 + λh)− ϕ(x0)

λ
≥ 〈h, jx0〉 for all λ > 0,

it follows that
〈h, ϕ′(x0)− jx0〉 ≥ 0 for all h ∈ X,

i.e., jx0 = ϕ′(x0). Thus, ϕ is Gâteaux differentiable at x0 and ϕ′(x0) =
∂ϕ(x0).



2.5. Convex functions 87

Corollary 2.5.16 Let X be a Banach space and ϕ : X → (−∞,∞] a proper
convex function. Then ϕ is Gâteaux differentiable at x ∈ int(dom(ϕ)) if and
only if it has a unique subgradient ∂ϕ(x) = {ϕ′(x)}, i.e., the subdifferential of
ϕ at x is a singleton set in X∗. In this case

d

dt
ϕ(x + ty)

∣∣∣∣
t=0

= 〈y, ∂ϕ(x)〉 = 〈y, ϕ′(x)〉 for all y ∈ X.

Theorem 2.5.17 Let X be a Banach space, Jμ : X → 2X∗
a duality mapping

with gauge function μ, and Φ(‖x‖) =
∫ ‖x‖
0

μ(s)ds, 0 �= x ∈ X. Then

Jμ(x) = ∂Φ(‖x‖).
Proof. Because μ is a strictly increasing and continuous function, it follows
that Φ is differentiable and hence Φ′(t) = μ(t), t ≥ 0. Then Φ is a convex
function.

First, we show Jμ(x) ⊆ ∂Φ(‖x‖). Let x �= 0, and j ∈ Jμ(x). Then 〈x, j〉 =
‖x‖‖j‖∗, ‖j‖∗ = μ(‖x‖). In order to prove j ∈ ∂Φ(‖x‖), i.e., Φ(‖x‖)−Φ(‖y‖) ≤
〈x− y, j〉 for all y ∈ X, we assume that ‖y‖ > ‖x‖. Then

‖j‖∗ = μ(‖x‖) = Φ′(‖x‖) ≤ Φ(‖y‖)− Φ(‖x‖)
‖y‖ − ‖x‖ ,

which yields

Φ(‖x‖)− Φ(‖y‖) ≤ ‖j‖∗(‖x‖ − ‖y‖)
≤ 〈x, j〉 − 〈y, j〉
= 〈x− y, j〉.

In a similar way, if ‖x‖ > ‖y‖, we have

Φ(‖x‖)− Φ(‖y‖) ≤ 〈x− y, j〉.
In the case when ‖x‖ = ‖y‖, we have

〈y − x, j〉 = 〈y, j〉 − 〈x, j〉
≤ ‖y‖‖j‖∗ − ‖x‖‖j‖∗ (as 〈x, j〉 = ‖x‖‖j‖∗)
≤ ‖j‖∗(‖y‖ − ‖x‖),

and it follows that

Φ(‖x‖)− Φ(‖y‖) = 0 = ‖j‖∗(‖x‖ − ‖y‖) ≤ 〈x− y, j〉.
Hence j ∈ ∂Φ(‖x‖). Thus, Jμ(x) ⊆ ∂Φ(‖x‖) for all x �= 0.

We now prove ∂Φ(‖x‖) ⊆ Jμ(x) for all x �= 0. Suppose j ∈ ∂Φ(‖x‖) for
0 �= x ∈ X. Then

‖x‖‖j‖∗ = sup{〈y, j〉‖x‖ : ‖y‖ = 1}
= sup{〈y, j〉 : ‖x‖ = ‖y‖ = 1}
≤ sup{〈y, j〉 : ‖x‖ = ‖y‖}
≤ sup{〈x, j〉+ Φ(‖y‖)− Φ(‖x‖) : ‖x‖ = ‖y‖}
≤ ‖x‖‖j‖∗. (as 〈y, j〉 ≤ 〈x, j〉+ Φ(‖y‖)− Φ(‖x‖)).
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Thus, 〈x, j〉 = ‖x‖‖j‖∗. To see j ∈ Jμ(x), we show that ‖j‖∗ = μ(‖x‖) =
Φ′(‖x‖). Because

Φ(‖x‖)− Φ(t‖x‖) ≤ 〈x− tx, j〉 = (1− t)‖x‖‖j‖∗ for all t > 0,

this implies that

‖j‖∗ ≤ Φ(t‖x‖)− Φ(‖x‖)
t‖x‖ − ‖x‖ . (2.21)

It follows from (2.21) that

‖j‖∗ ≤ Φ(t‖x‖)− Φ(‖x‖)
t‖x‖ − ‖x‖ if t > 1

and
Φ(‖x‖)− Φ(t‖x‖)
‖x‖ − t‖x‖ ≤ ‖j‖∗ if t < 1.

Taking the limit as t→ 1, we get

‖j‖∗ = Φ′(‖x‖) = μ(‖x‖).

Thus, ∂Φ(‖x‖) ⊆ Jμ(x). Therefore, Jμ(x) = ∂Φ(‖x‖) for all x �= 0.

Remark 2.5.18 Both the sets Jμ(x) and ∂Φ(‖x‖) are equal to {0} if x = 0.

Corollary 2.5.19 For p ∈ (1,∞), the generalized duality mapping Jp is the
subdifferential of the functional ‖ · ‖p/p.

Proof. Define μ(t) = tp−1, p > 1. Hence

Φ(t) =
∫ t

0

μ(s)ds =
∫ t

0

sp−1ds =
tp

p
.

Therefore, Jp(·) = ∂(‖ · ‖p/p).

Corollary 2.5.20 Let X be a Banach space and ϕ(x) = ‖x‖2/2. Then the
subdifferential ∂ϕ coincides with the normalized duality mapping J : X → 2X∗

defined by

Jx = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ‖x‖}, x ∈ X.

Theorem 2.5.21 Let X be a Banach space. Then

∂‖x‖ = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = 1} for all x ∈ X \ {0}.
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Proof. Let j ∈ ∂‖x‖. Then

〈y − x, j〉 ≤ ‖y‖ − ‖x‖ ≤ ‖y − x‖ for all y ∈ X. (2.22)

It follows that j ∈ X∗ and ‖j‖∗ ≤ 1. It is clear from (2.22) that ‖x‖ ≤ 〈x, j〉,
which gives

〈x, j〉 = ‖x‖ and ‖j‖∗ = 1.

Thus,
∂‖x‖ ⊆ {j ∈ X∗ : 〈x, j〉 = ‖x‖ and ‖j‖∗ = 1}.

Now suppose j ∈ X∗ such that j ∈ {f ∈ X∗ : 〈x, f〉 = ‖x‖ and ‖f‖∗ = 1}. Then
〈x, j〉 = ‖x‖ and ‖j‖∗ = 1. Thus,

〈y − x, j〉 = 〈y, j〉 − ‖x‖ ≤ ‖y‖ − ‖x‖ for all y ∈ X,

i.e., j ∈ ∂‖x‖. It follows that

{j ∈ X∗ : 〈x, j〉 = ‖x‖ and ‖j‖∗ = 1} ⊆ ∂‖x‖.

Therefore, ∂‖x‖ = {j ∈ X∗ : 〈x, j〉 and ‖j‖∗ = 1}.
Using Corollary 2.5.19, we establish an inequality in a general Banach space

that is a generalization of the inequality given in Proposition 2.4.6(b).

Theorem 2.5.22 Let X be a Banach space and let Jp : X → 2X∗
, 1 <

p < ∞ be the generalized duality mapping. Then for any x, y ∈ X, there exists
jp(x + y) ∈ Jp(x + y) such that ‖x + y‖p ≤ ‖x‖p + p〈y, jp(x + y)〉.
Proof. By Corollary 2.5.19, Jp is the subdifferential of the functional ‖ · ‖p/p.
By the subdifferentiability of ‖ · ‖p/p, for x, y ∈ X, there exists jp(x + y) ∈
Jp(x + y) such that ‖x + y‖p ≤ ‖x‖p + p〈y, jp(x + y)〉.

The following result is very useful in the approximation of solution of non-
linear operator equations.

Theorem 2.5.23 Let X be a Banach space and Jμ : X → 2X∗
a duality map-

ping with gauge function μ. If Jμ is single-valued, then

Φ(‖x + y‖) = Φ(‖x‖) +
∫ 1

0

〈y, Jμ(x + ty)〉dt for all x, y ∈ X.

Proof. Because Jμ is single-valued, it follows from Theorem 2.5.17 that
∂Φ(‖x‖) = {Jμ(x)}. Hence Corollary 2.5.16 implies that Jμ is the Gâteaux
gradient of Φ(‖x‖), i.e.,

d

dt
Φ(‖x + ty‖)

∣∣∣∣
t=0

= 〈y, Jμ(x)〉.
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Hence
d

dt
Φ(‖x + ty‖)

∣∣∣∣
t=r

=
d

ds
Φ(‖x + ry + sy‖)

∣∣∣∣
s=0

= 〈y, Jμ(x + ry)〉, r ∈ R.

Because the function t �→ 〈y, Jμ(x + ty)〉 is continuous, hence∫ 1

0

〈y, Jμ(x + ry)〉dr =
∫ 1

0

d

dt
Φ(‖x + ty‖)

∣∣∣∣
t=r

dr = Φ(‖x + y‖)− Φ(‖x‖).

Corollary 2.5.24 Let X be a Banach space. If X∗ is strictly convex, then we
have the following:

(a) Φ(‖x + y‖) = Φ(‖x‖) +
∫ 1

0

〈y, Jμ(x + ty)〉dt for all x, y ∈ X;

(b) ‖x + y‖p = ‖x‖p + p

∫ 1

0

〈y, Jp(x + ty)〉dt for all x, y ∈ X and p > 1;

(c) ‖x + y‖2 = ‖x‖2 + 2
∫ 1

0

〈y, J(x + ty)〉dt for all x, y ∈ X.

Proposition 2.5.25 Let X be a Banach space with strictly convex dual and C
a nonempty convex subset of X. Let x0 be an element in C and Jμ : X → X∗

a duality mapping with gauge function μ. Then

‖x0‖ = inf
x∈C

‖x‖ if and only if 〈x0 − x, Jμ(x0)〉 ≤ 0 for all x ∈ C.

Proof. Let x0 be a point in C such that 〈x0 − x, Jμ(x0)〉 ≤ 0 for all x ∈ C.
Then

‖x0‖‖Jμ(x0)‖∗ = 〈x0, Jμ(x0)〉 ≤ ‖x‖‖Jμ(x0)‖∗ for all x ∈ C.

Therefore, ‖x0‖ = inf
x∈C

‖x‖.
Conversely, suppose that x0 ∈ C such that ‖x0‖ = inf

x∈C
‖x‖. Then

‖x0‖ ≤ ‖x0 + t(x− x0)‖ for all x ∈ C and t ∈ [0, 1],

which implies that

Φ(‖x0‖)− Φ(‖x0 + t(x− x0)‖) ≤ 0.

Because Jμ(z) = ∂Φ(‖z‖), it follows that

Φ(‖x0 + t(x− x0)‖)− Φ(‖x0‖) ≤ 〈x0 + t(x− x0)− x0, Jμ(x0 + t(x− x0))〉,
which implies that

t〈x0 − x, Jμ(x0 + t(x− x0))〉 ≤ Φ(‖x0‖)− Φ(‖x0 + t(x− x0)‖) ≤ 0.

Thus,
〈x0 − x, Jμ(x0 + t(x− x0))〉 ≤ 0.

Letting t→ 0, we obtain 〈x0 − x, Jμ(x0)〉 ≤ 0.
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2.6 Smoothness

Let C be a nonempty closed convex subset of a normed space X such that
the origin belongs to the interior of C. A linear functional j ∈ X∗ is said
to be tangent to C at a point x0 ∈ ∂C if j(x0) = sup{j(x) : x ∈ C}.
If H = {x ∈ X : j(x) = 0} is the hyperplane, then the set H + x0 is called a
tangent hyperplane to C at x0.

Definition 2.6.1 A Banach space X is said to be smooth if for each x ∈ SX ,
there exists a unique functional jx ∈ X∗ such that 〈x, jx〉 = ‖x‖ and ‖jx‖ = 1.

Geometrically, the smoothness condition means that at each point x of the
unit sphere, there is exactly one supporting hyperplane {jx = 1}. This means
that the hyperplane {jx = 1} is tangent at x to the unit ball, and this unit ball
is contained in the half space {jx ≤ 1}.

Observation
• �p, Lp (1 < p < ∞) are smooth Banach spaces.

• c0, �1, L1, �∞, L∞ are not smooth.

Differentiability of norms of Banach spaces – Let X be a normed space
and SX = {x ∈ X : ‖x‖ = 1}, the unit sphere of X. Then the norm of X is
Gâteaux differentiable at point x0 ∈ SX if for y ∈ SX

d

dt
(‖x0 + ty‖)

∣∣∣∣
t=0

= lim
t→0

‖x0 + ty‖ − ‖x0‖
t

exists (say, 〈y,�‖x0‖〉). �‖x0‖ is called the gradient of the norm ϕ(x) = ‖x‖
at x = x0. The norm of X is said to Gâteaux differentiable if it is Gâteaux
differentiable at each point of SX . The norm of X is said to be uniformly
Gâteaux differentiable if for each y ∈ SX , the limit is approached uniformly for
x ∈ SX .

Example 2.6.2 Let H be a Hilbert space. Then the norm of H is Gâteaux
differentiable with �‖x‖ = x/‖x‖, x �= 0. Indeed, for each x ∈ X with x �= 0,
we have

lim
t→0

‖x + ty‖ − ‖x‖
t

= lim
t→0

‖x + ty‖2 − ‖x‖2
t(‖x + ty‖+ ‖x‖)

= lim
t→0

2t〈y, x〉+ t2‖y‖2
t(‖x + ty‖+ ‖x‖) = 〈y, x/‖x‖〉.

Therefore, the norm of H is Gâteaux differentiable with �‖x‖ = x/‖x‖.
Remark 2.6.3 In view of Example 2.6.2, we have the following:
(i) at x �= 0, ϕ(x) = ‖x‖ is Gâteaux differentiable with �‖x‖ = x/‖x‖,
(ii) at x = 0, ϕ(x) = ‖x‖ is not differentiable, but it is subdifferentiable. Indeed,

∂ϕ(0) = ∂‖0‖ = {j ∈ H : 〈x, j〉 ≤ ‖x‖ for all x ∈ H}
= {j ∈ H : ‖j‖∗ ≤ 1}.
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Theorem 2.6.4 Let X be a Banach space. Then we have the following:
(a) If X∗ is strictly convex, then X is smooth.

(b) If X∗ is smooth, then X is strictly convex.

Proof. (a) Suppose X is not smooth. There exist x0 ∈ SX and j1, j2 ∈ SX∗

with j1 �= j2 such that 〈x0, j1〉 = 〈x0, j2〉 = 1. This means that x0 determines
a continuous linear functional on X∗ that takes its maximum value on BX∗ at
two distinct points j1 and j1. Hence X∗ is not strictly convex.

(b) Suppose X is not strictly convex. There exist j ∈ SX∗ and x, y ∈ SX

with x �= y such that 〈x, j〉 = 〈y, j〉 = 1. Thus, two supporting hyperplanes pass
through j ∈ SX∗ such that

〈x, f〉 = 〈y, f〉 = 1, f ∈ X∗.

Therefore, X∗ is not smooth.

It is well-known that for a reflexive Banach space X, the dual spaces X and
X∗ can be equivalently renormed as strictly convex spaces such that the duality
is preserved. Using the above fact, we have

Theorem 2.6.5 Let X be a reflexive Banach space. Then we have the follow-
ing:
(a) X is smooth if and only if X∗ is strictly convex.
(b) X is strictly convex if and only if X∗ is smooth.

The following theorem establishes a relation between smoothness and Gâteaux
differentiability of the norm.

Theorem 2.6.6 A Banach space X is smooth if and only if the norm is Gâteaux
differentiable on X\{0}.
Proof. Because the proper convex continuous function ϕ is Gâteaux differen-
tiable if and only if it has a unique subgradient, we have

norm is Gâteaux differentiable at x
⇔ ∂‖x‖ = {j ∈ X∗ : 〈x, j〉 = ‖x‖, ‖j‖∗ = 1} is singleton
⇔ there exists a unique j ∈ X∗ such that 〈x, j〉 = ‖x‖ and ‖j‖∗ = 1
⇔ smooth.

Next, we establish a relation between smoothness of a Banach space and a
property of the duality mapping with gauge function μ.

Theorem 2.6.7 Let X be a Banach space. Then X is smooth if and only if
each duality mapping Jμ with gauge function μ is single-valued; in this case

d

dt
Φ(‖x + ty‖)

∣∣∣∣
t=0

= 〈y, Jμ(x)〉 for all x, y ∈ X. (2.23)
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Proof. The Banach space X is smooth if and only if there exists a unique
j ∈ X∗ satisfying

〈xμ(||x||), j〉 = ‖x‖μ(‖x‖) and‖j‖∗ = 1;

in this case μ(‖x‖)j = Jμ(x) = ∂Φ(‖x‖), and hence by Corollary 2.5.16, we

obtain the formula (2.23).

Corollary 2.6.8 Let X be a Banach space and Jμ : X → 2X∗
a duality mapping

with gauge function μ. Then j ∈ Jμ(x), x ∈ X if and only if H = {y ∈ X :
〈y, j〉 = ‖x‖μ(‖x‖)} is a supporting hyperplane for the closed ball B‖x‖[0] at x.

Corollary 2.6.9 Let X be a Banach space and J : X → 2X∗
a duality mapping.

Then the following are equivalent:

(a) X is smooth.

(b) J is single-valued.

(c) The norm of X is Gâteaux differentiable with �‖x‖ = ‖x‖−1Jx.

We now study the continuity property of duality mappings.

Theorem 2.6.10 Let X be a Banach space and J : X → X∗ a single-valued
duality mapping. Then J is norm to weak* continuous.

Proof. We show that xn → x⇒ Jxn → Jx in the weak* topology. Let xn → x
and set fn := Jxn. Then

〈xn, fn〉 = ‖xn‖‖fn‖∗, ‖xn‖ = ‖fn‖∗.

Because {xn} is bounded, {fn} is bounded in X∗. Then there exists a subse-
quence {fnk

} of {fn} such that fnk
→ f ∈ X∗ in the weak* topology. Because

the norm of X∗ is lower semicontinuous in weak* topology, we have

‖f‖∗ ≤ lim inf
k→∞

‖fnk
‖∗ = lim inf

k→∞
‖xnk

‖ = ‖x‖.

Because 〈x, f − fnk
〉 → 0 and 〈x− xnk

, fnk
〉 → 0, it follows from the fact

|〈x, f〉 − ‖xnk
‖2| = |〈x, f〉 − 〈xnk

, fnk
〉|

≤ |〈x, f − fnk
〉|+ |〈x− xnk

, fnk
〉| → 0

that
〈x, f〉 = ‖x‖2.

As a result
‖x‖2 = 〈x, f〉 ≤ ‖f‖∗‖x‖.

Thus, we have 〈x, f〉 = ‖x‖2, ‖x‖ = ‖f‖∗. Therefore, f = Jx.
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Theorem 2.6.11 Let X be a Banach space with a uniformly Gâteaux differ-
entiable norm. Then the duality mapping J : X → X∗ is uniformly demicon-
tinuous on bounded sets, i.e., J is uniformly continuous from X with its norm
topology to X∗ with the weak* topology.

Proof. Suppose the result is not true. Then there exist sequences {xn} and
{zn}, a point y0 and a positive ε such that

‖xn‖ = ‖zn‖ = ‖y0‖ = 1, zn − xn → 0 and 〈y0, Jzn − Jxn〉 ≥ ε for all n ∈ N.

Set
an := t−1(‖xn + ty0‖ − ‖xn‖ − t〈y0, Jxn〉)

and
bn := t−1(‖zn − ty0‖ − ‖zn‖+ t〈y0, Jzn〉).

If t > 0 is sufficiently small, then both an and bn are less than ε/2. On the
other hand, we have

an ≥ t−1(〈xn + ty0, Jzn〉 − 〈xn + ty0, Jxn〉)
= 〈y0, Jzn − Jxn〉+ t−1〈xn, Jzn − Jxn〉

and

bn ≥ t−1(〈zn − ty0, Jxn〉 − 〈zn − ty0, Jzn〉)
= 〈y0, Jzn − Jxn〉 − t−1〈zn, Jzn − Jxn〉.

Thus,

an + bn ≥ 2〈y0, Jzn − Jxn〉+ t−1〈xn − zn, Jzn − Jxn〉
≥ 2ε− 2t−1‖xn − zn‖,

a contradiction by choosing t = 2‖xn − zn‖/ε for sufficiently large n.

2.7 Modulus of smoothness

Recall that the modulus of convexity of a Banach space X is a function
δX : [0, 2]→ [0, 1] defined by

δX(t) = inf{1− ‖(x + y)/2‖ : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ t}.
We now introduce the modulus of smoothness of a Banach space.

Definition 2.7.1 Let X be a Banach space. Then a function ρX : R+ → R+

is said to be the modulus of smoothness of X if

ρX(t) = sup
{‖x + y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = t

}

= sup
{‖x + ty‖+ ‖x− ty‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
, t ≥ 0.

It is easy to check that ρX(0) = 0 and ρX(t) ≥ 0 for all t ≥ 0.
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The following result contains important properties of the modulus of
smoothness.

Proposition 2.7.2 Let ρX be the modulus of smoothness of a Banach space X.
Then ρX is an increasing continuous convex function.

Proof. Because for fixed x, y ∈ X with ‖x‖ = 1, ‖y‖ = 1, the function

f(t) =
‖x + ty‖+ ‖x− ty‖

2
− 1, t ∈ R

is convex and continuous on R, it follows that the modulus of smoothness ρX is
also continuous and a convex function.

Moreover, f(−t) = f(t) for each t ∈ R, f is nondecreasing on R+. Hence ρX

is nondecreasing.

The following theorem gives us an important relation between the modulus
of convexity of X (respectively, X∗) and that of smoothness of X∗

(respectively, X).

Theorem 2.7.3 Let X be a Banach space. Then we have the following:

(a) ρX∗(t) = sup
{

tε
2 − δX(ε) : 0 ≤ ε ≤ 2

}
for all t > 0.

(b) ρX(t) = sup
{

tε
2 − δX∗(ε) : 0 ≤ ε ≤ 2

}
for all t > 0.

Proof. (a) By the definition of modulus of smoothness of X∗, we have

2ρX∗(t) = sup{‖x∗ + ty∗‖∗ + ‖x∗ − ty∗‖∗ − 2 : x∗, y∗ ∈ SX∗}
= sup{〈x, x∗〉+t〈x, y∗〉+〈y, x∗〉−t〈y, y∗〉−2 : x, y ∈ SX , x∗, y∗ ∈ SX∗}
= sup{‖x + y‖+ t‖x− y‖ − 2 : x, y ∈ SX}
= sup{‖x + y‖+ tε− 2 : x, y ∈ SX , ‖x− y‖ = ε, 0 ≤ ε ≤ 2}
= sup{tε− 2δX(ε) : 0 ≤ ε ≤ 2}.

Part (b) can be obtained in the same manner.

As an immediate consequence of Theorem 2.7.3 (b), we have

Corollary 2.7.4 Let X be a Banach space. Then ρX(t)/t is increasing function
and ρX(t) ≤ t for all t > 0.

Theorem 2.7.3 allows us to estimate ρX for Hilbert spaces. Indeed, we have

Proposition 2.7.5 Let H be a Hilbert space. Then for t > 0

ρH(t) = sup
{
tε/2− 1 + (1− ε2/4)1/2 : 0 < ε ≤ 2} = (1 + t2)1/2 − 1.
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Observation

• If X is a Banach space and H is a Hilbert space, then ρX(t) ≥ ρH(t) =√
1 + t2 − 1 for all t ≥ 0.

Let X be a Banach space. Then the characteristic of convexity or the
coefficient of convexity of the Banach space X is the number

ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0}.

The Banach space X is said to be uniformly convex if ε0(X) = 0 and uniformly
nonsquare if ε0(X) < 2. One may easily see that the modulus of convexity δX

is strictly increasing on [ε0, 2].

Example 2.7.6 Let X = R2 with norm ‖ · ‖∞ defined by

‖x‖∞ = ‖(x1, x2)‖∞ = max{|x1|, |x2|}.

Then X has a square-shaped unit ball for which δX(ε) = 0 for ε ∈ [0, 2]. Hence
ε0(X) = 2.

The following theorem gives an important relation between the modulus of
smoothness of a Banach space and the characteristic of convexity of its dual
space.

Theorem 2.7.7 Let X be a Banach space. Then the following statements are
equivalent:

(a) lim
t→0

ρX(t)
t

< ε/2 for all ε ≤ 2.

(b) ε0(X∗) < ε for all ε ≤ 2.

Proof. (a) ⇒ (b). Let ε ∈ [0, 2]. Suppose, for contradiction, that ε0(X∗) ≥ ε.
Then there exist {fn} and {gn} in SX∗ such that

‖fn − gn‖∗ ≥ ε and lim
n→∞ ‖fn + gn‖∗ = 2. (2.24)

From the definition of ρX , we get

ρX(t) ≥
∥∥∥∥x + ty

2

∥∥∥∥+
∥∥∥∥x− ty

2

∥∥∥∥− 1 for all t > 0 and x, y ∈ SX .

Therefore,

ρX(t) ≥
∣∣∣∣f(x) + g(x)

2

∣∣∣∣+ t

∣∣∣∣f(y)− g(y)
2

∣∣∣∣− 1 for all f, g ∈ SX∗ .

Because x and y were arbitrary, we get

ρX(t) ≥
∥∥∥∥f + g

2

∥∥∥∥
∗

+ t

∥∥∥∥f − g

2

∥∥∥∥
∗
− 1.
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In particular, we have

ρX(t) ≥
∥∥∥∥fn + gn

2

∥∥∥∥
∗

+ t

∥∥∥∥fn − gn

2

∥∥∥∥
∗
− 1 for all n ∈ N.

It follows from (2.24) that

ρX(t) ≥ tε

2
.

(b) ⇒ (a). Assume that ε0(X∗) < ε and let ε′ ∈ (ε0(X∗), ε). Set t′ = δX∗(ε′)
and consider t ∈ [0, 2]. There are two possibilities :

(i) Assume that t < ε′. Then tλ/2 < λε′/2 and so tλ/2− δX∗(t) < λε′/2.
(ii) Assume that ε′ ≤ t. Then δX∗(t) ≥ δX∗(ε′) = t′, because the

modulus of convexity is an increasing function. Therefore,

λt

2
≤ λ < t′ < δX∗(t) for any λ < t′.

This implies that
tλ

2
− δX∗(t) < 0.

Therefore, in any case we have for λ < t′

sup
{

tλ

2
− δX∗(t) : t ∈ [0, 2]

}
≤ λε′

2
.

Using Theorem 2.7.3, we get ρX(λ) ≤ λε′/2, which gives that lim
λ→0

ρX(λ)/λ ≤
ε′/2. Our choice of ε′ implies that (b) is true.

Let X be a Banach space. Then the characteristic of smoothness of X is the
number

ρ0(X) = lim
t→0

ρX(t)
t

.

The following theorem allows us to estimate ρ0(X) for Banach spaces X.

Theorem 2.7.8 Let X be a Banach space. Then

ρ0(X) = ρ′X(0) = lim
t→0

ρX(t)
t

=
ε0(X∗)

2
.

Proof. Assume first that ε0(X∗) = 2. Then δX∗(ε) = 0 for every ε ∈ [0, 2].
Therefore, using Theorem 2.7.3, we get ρX(t) = t for every t > 0. Hence

lim
t→0

ρX(t)
t

= 1 =
ε0(X∗)

2
.

Now if we assume that ε0(X∗) < 2, then from Theorem 2.7.7 we get the desired
conclusion.
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Using Theorem 2.7.3 and 2.7.8, we have

Theorem 2.7.9 Let X be a Banach space. Then we have the following:
(a) ρ0(X) = ε0(X∗)/2.
(b) ρ0(X∗) = ε0(X)/2.

2.8 Uniform smoothness

Recall that the Banach space X is uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2].

We now define uniform smoothness of a Banach space.

Definition 2.8.1 A Banach space X is said to be uniformly smooth if

ρ′X(0) = lim
t→0

ρX(t)
t

= 0.

Example 2.8.2 The p spaces (1 < p ≤ 2) are uniformly smooth. In fact,

lim
t→0

ρ�p
(t)
t

= lim
t→0

(1 + tp)1/p − 1
t

= 0.

Uniform smoothness has a close relation with differentiability of norm.

Theorem 2.8.3 Every uniformly smooth Banach space X is smooth.

Proof. Suppose, for contradiction, that X is not smooth. Then there exist
x ∈ X\{0}, and i, j ∈ X∗ such that i �= j, ‖i‖ = ‖j‖ = 1 and 〈x, i〉 = 〈x, j〉 =
‖x‖. Let y ∈ X such that ‖y‖ = 1 and 〈y, i− j〉 > 0. For each t > 0, we have

0 < t〈y, i− j〉
= t〈y, i〉 − t〈y, j〉
=

〈x + ty, i〉+ 〈x− ty, j〉
2

− 1

≤ ‖x + ty‖+ ‖x− ty‖
2

− 1,

and it follows that

0 < 〈y, i− j〉 ≤ ρX(t)
t

for each t > 0.

Hence X is not uniformly smooth.

Next, we establish the duality between uniform convexity and uniform smooth-
ness.

Theorem 2.8.4 Let X be a Banach space. Then X is uniformly smooth if and
only if X∗ is uniformly convex.
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Proof. Recall that

ρX(t) = sup
{

tε

2
− δX∗(ε) : 0 < ε ≤ 2

}
for all t > 0. (2.25)

Suppose, for contradiction, that X∗ is not uniformly convex. Then there exists
ε0 ∈ (0, 2] with δX∗(ε0) = 0. From (2.25), we have

tε0

2
− δX∗(ε0) ≤ ρX(t)

which gives us that

0 <
ε0

2
≤ ρX(t)

t
for all t > 0,

and this means that X is not uniformly smooth.
Conversely, assume that X is not uniformly smooth. Then ρ′X(0) =

lim
t→0

ρX(t)
t

�= 0. Hence for ε > 0 with lim
t→0

ρX(t)
t

= ε, there exists a sequence

{tn} in (0, 1) such that

tn → 0 and lim
n→∞

ρX(tn)
tn

= ε.

From (2.25), there exists a sequence {εn} in (0, 2] such that

ε

2
tn ≤ tnεn

2
− δX∗(εn),

which implies that

0 < δX∗(εn) ≤ tn
2

(εn − ε).

It follows from the condition tn < 1 that ε < εn. Because δX∗ is a nondecreasing
function, we have δX∗(ε) ≤ δX∗(εn)→ 0, i.e., X∗ is not uniformly convex.

Theorem 2.8.5 Let X be a Banach space. Then X is uniformly convex if and
only if X∗ is uniformly smooth.

Proof. Notice

ρX∗(t) = sup
{

tε

2
− δX(ε) : 0 < ε ≤ 2

}
for all t > 0.

By interchanging the roles of X and X∗, we obtain the result by Theo-
rem 2.8.4.

Theorem 2.8.6 Every uniformly smooth Banach space is reflexive.
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Proof. Let X be a uniformly smooth Banach space. Then X∗ is uniformly
convex and hence X∗ is reflexive. It follows from Theorem 1.9.26 (which states
that the reflexivity of X∗ implies the reflexivity of X) that X is reflexive.

Fréchet differentiability of norm and uniform smoothness

Uniform smoothness can be characterized by uniform Fréchet differenti-
ability of the norm.

The norm of a Banach space X is said to Fréchet differentiable if for each

x ∈ SX , lim
t→0

‖x + ty‖ − ‖x‖
t

exists uniformly for y ∈ SX .

In the other words, there exists a function εx(s) with εx(s) → 0 as s → 0
such that ∣∣∣∣‖x + ty‖ − ‖x‖ − t〈y, Jx〉

∣∣∣∣ ≤ |t|εx(|t|) for all y ∈ SX .

In this case, the norm is Gâteaux differentiable and

lim
t→0

sup
y∈SX

∣∣∣∣ 12‖x + ty‖2 − 1
2‖x‖2

t
− 〈y, Jx〉

∣∣∣∣ = 0 for all x ∈ X.

On the other hand,

1
2
‖x‖2 + 〈h, Jx〉 ≤ 1

2
‖x + h‖2 ≤ 1

2
‖x‖2 + 〈h, Jx〉+ b(‖h‖)

for all bounded x, h ∈ X, where b is a function defined on R+ such that

lim
t→0

b(t)
t

= 0.

We say that the norm of a Banach space X is uniformly Fréchet differentiable
if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists uniformly for all x, y ∈ SX .

We now establish some results concerning Fréchet differentiability of the
norm of Banach spaces.

Theorem 2.8.7 Let X be a Banach space with a Fréchet differentiable norm.
Then the duality mapping J : X → X∗ is norm to norm continuous.

Proof. It is sufficient to prove that xn → x ∈ SX ⇒ Jxn → Jx ∈ SX∗ . Let
{xn} be a sequence in SX such that xn → x. Then x ∈ SX . Because X has a
Fréchet differentiable norm,

lim
t→0

‖x + ty‖ − ‖x‖
t

= 〈y, Jx〉 uniformly in y ∈ SX ,
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i.e., for any ε > 0, there exists δ > 0 such that∣∣∣∣‖x + ty‖ − ‖x‖
t

− 〈y, Jx〉
∣∣∣∣ < ε for all y ∈ SX and all t with 0 < |t| ≤ δ.

Hence

‖x + ty‖ − ‖x‖ < t(〈y, Jx〉+ ε) and ‖x− ty‖ − ‖x‖ < −t(〈y, Jx〉 − ε),

so that

‖x + ty‖ − 1 < t(〈y, Jx〉+ ε) and ‖x− ty‖ − 1 < t(ε− 〈y, Jx〉).
Note

0 ≤ 1− 〈x, Jxn〉 = 〈xn, Jxn〉 − 〈x, Jxn〉
≤ 〈xn − x, Jxn〉
≤ ‖xn − x‖‖Jxn‖∗ = ‖xn − x‖ → 0,

i.e., 〈x, Jxn〉 → 1 as n→∞. Then there exists n0 ∈ N such that

1 ≤ 〈x, Jxn〉+ tε for all n ≥ n0.

Because

1− tε ≤ 〈x, Jxn〉 = 〈x, Jx + Jxn〉 − 1
= 〈x + ty, Jx〉+ 〈x− ty, Jxn〉 − t〈y, Jx− Jxn〉 − 1
≤ ‖x + ty‖‖Jx‖∗ + ‖x− ty‖‖Jxn‖∗ − t〈y, Jx− Jxn〉 − 1
≤ t〈y, Jx〉+ tε + 1 + 1 + tε− t〈y, Jx〉 − t〈y, Jx− Jxn〉 − 1
= 2tε− t〈y, Jx− Jxn〉+ 1,

this implies that
〈y, Jx− Jxn〉 ≤ 3ε for all y ∈ SX .

Similarly, we can show that

〈y, Jxn − Jx〉 ≤ 3ε for all y ∈ SX .

Thus, ∣∣〈y, Jxn − Jx〉∣∣ ≤ 3ε for all n ≥ n0 and y ∈ SX

which gives us
‖Jxn − Jx‖∗ < 3ε for all n ≥ n0.

Therefore, xn → x in X implies Jxn → Jx in X∗.

Theorem 2.8.8 Let X be a Banach space. Then the following are equivalent:
(a) X has a uniformly Fréchet differentiable norm.
(b) X∗ is uniformly convex.
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Proof. (a) ⇒ (b). Suppose the norm of X is uniformly Fréchet differentiable.
Then for any ε > 0, there exists δ > 0 such that∣∣∣∣‖x + ty‖ − ‖x‖

t
− 〈y, Jx〉

∣∣∣∣ < ε

8
for all x, y ∈ SX and all t with 0 < |t| ≤ δ.

Then for fixed t with 0 < t < δ, we have

‖x + ty‖ <
tε

8
+ t〈y, Jx〉+ 1

and
‖x− ty‖ <

tε

8
− t〈y, Jx〉+ 1.

As a result
‖x + ty‖+ ‖x− ty‖ <

tε

4
+ 2 for all x, y ∈ SX .

Now, let i, j ∈ SX∗ with ‖i− j‖∗ ≥ ε > 0, then there exists y0 ∈ SX such that

〈y0, i− j〉 >
ε

2
.

Note

‖i + j‖∗ = sup
x∈SX

〈x, i + j〉

= sup
x∈SX

(〈x + ty0, i〉+ 〈x− ty0, j〉 − 〈ty0, i− j〉)

< sup
x∈SX

(
‖x + ty0‖+ ‖x− ty0‖ − tε

2

)

≤ tε

4
+ 2− tε

2

≤ 2− tε

2
.

This implies ‖(i + j)/2‖∗ < 1− δ(ε). Hence X∗ is uniformly convex.
(b)⇒ (a). Let x, y ∈ SX . Then for t > 0,

〈y, Jx〉
‖x‖ =

〈x + ty, Jx〉 − ‖x‖2
t‖x‖

≤ ‖x + ty‖‖x‖ − ‖x‖2
t‖x‖

=
‖x + ty‖ − ‖x‖

t

=
‖x + ty‖2 − ‖x + ty‖‖x‖

t‖x + ty‖
≤ 〈x + ty, J(x + ty)〉 − 〈x, J(x + ty)〉

t‖x + ty‖
=

〈y, J(x + ty)〉
‖x + ty‖
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and for t < 0,

〈y, J(x + ty)〉
‖x + ty‖ ≤ ‖x + ty‖ − ‖x‖

t
≤ 〈y, Jx〉

‖x‖ .

By Theorem 2.4.15, X has a uniformly Fréchet differentiable norm.

Theorem 2.8.9 Let X be a Banach space with uniformly Fréchet differentiable
norm. Then the duality mapping J : X → X∗ is uniformly continuous on each
bounded set in X.

Proof. Because X∗ is uniformly convex, the result follows from Theorem 2.4.15

We now study the duality mapping from X∗ to X. To do so, we define the
conjugate function f∗ : X∗ → (−∞,∞] of any function f : X → (−∞,∞] by

f∗(j) = sup{〈x, j〉 − f(x) : x ∈ X}, j ∈ X∗. (2.26)

The conjugate of f∗, i.e., the function on X defined by

f∗∗(x) = sup{〈x, j〉 − f∗(j) : j ∈ X∗}, x ∈ X

is called the biconjugate of f .

Observation
• f is lower semicontinuous proper convex on X if and only if f∗∗ = f .

Example 2.8.10 Let C be a nonempty subset of normed space X. Then the
conjugate of the indicator function iC of C is given by

i∗C(j) = sup{〈x, j〉 : x ∈ C}, j ∈ X∗.

The function i∗C is called the support function of C.

We now give some basic properties of conjugate functions.

Proposition 2.8.11 Let f∗ be the conjugate function f . Then

f(x) + f∗(j) ≥ 〈x, j〉 for all x ∈ X, j ∈ X∗. (2.27)

Proof. It easily follows from (2.26).

The inequality (2.27) is known as the Young inequality. Observe also that if
f is a proper function, then the relation (2.26) can be written as

f∗(j) = sup{〈x, j〉 − f(x) : x ∈ Dom(f)}, j ∈ X∗.
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Proposition 2.8.12 Let f∗ be the conjugate function of f . Then

(cf)∗(j) = cf∗(c−1j) for all c > 0 and j ∈ X∗.

Proof. For j ∈ X∗, we have

(cf)∗(j) = sup{〈x, j〉 − (cf)(x) : x ∈ X}
= c sup{c−1〈x, j〉 − f(x) : x ∈ X}
= c sup{〈x, c−1j〉 − f(x) : x ∈ X}
= cf∗(c−1j).

Proposition 2.8.13 Let X be a normed space and f : X → (−∞,∞] a proper
convex function. Then the following statements are equivalent:

(a) j ∈ ∂f(x) for x ∈ X.
(b) f(x) + f∗(j) ≤ 〈x, j〉.
(c) f(x) + f∗(j) = 〈x, j〉.

Proof. (b) ⇔ (c). The Young inequality (2.27) shows that (b) and (c) are
equivalent.

(c)⇔ (a). Suppose condition (c) holds. Then from the Young inequality (2.27),
we find that

f(y)− f(x) ≥ 〈y − x, j〉 for all y ∈ X,

i.e., j ∈ ∂f(x).

Using a similar argument, it follows that (c) ⇒ (a).

Proposition 2.8.14 Let X be a normed space and f : X → (−∞,∞] a lower
semicontinuous proper convex function. Then j ∈ ∂f(x)⇔ x ∈ ∂f∗(j).

Proof. Because f is a lower semicontinuous convex function, f∗∗ = f . Observe
that

j ∈ ∂f(x) ⇔ f(x) + f∗(j) = 〈x, j〉
⇔ f∗∗(x) + f∗(j) = 〈x, j〉
⇔ x ∈ ∂f∗(j).

Proposition 2.8.15 Let X be a Banach space. If f(x) = ‖x‖p/p, p > 1, then

f∗(j) = ‖j‖q∗/q, 1/p + 1/q = 1.

Proof. Because Jp(x) = ∂(‖x‖p/p) = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ =
‖x‖p−1}, we have

f∗(j) = sup
x∈X
{〈x, j〉 − f(x)〉 = sup

x∈X
{‖x‖p − ‖x‖p/p} = sup

x∈X
{‖x‖p/q}.

Note ‖j‖∗ = ‖x‖p−1 so ‖j‖q∗ = ‖x‖q(p−1) = ‖x‖p. Therefore, f∗(j) =
‖j‖q∗/q.
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Theorem 2.8.16 Let p > 1. Let X be a uniformly smooth Banach space and
let Jp : X → X∗ and J∗

q : X∗ → X be the duality mappings with gauge functions
μp(t) = tp−1 and μq(t) = tq−1, respectively. Then J−1

p = J∗
q .

Proof. The uniform smoothness of X implies that X is reflexive (see
Theorem 2.8.6) and that X∗ is uniformly convex and reflexive. Note also Jμ is
surjective if and only if X is reflexive. Because Jp is single-valued, it follows
that the inverse J−1

p : X∗ = Dom (J−1
p )→ X = X∗∗ exists and is given by

J−1
p (j) = {x ∈ X : j = Jp(x)} for all j ∈ X∗.

Now, let Φ(t) = tp/p, t > 0. It is easy to see that Φ(‖·‖) = ‖·‖p/p is a continuous
convex function and that its conjugate is given by Φ∗(‖j‖∗) = ‖j‖q∗/q for all
j ∈ X∗. Note Jp(x) = ∂Φ(‖x‖) and J∗

q (j) = ∂Φ∗(‖j‖∗) for all x ∈ X, j ∈ X∗.
Using Proposition 2.8.14, we have

j ∈ ∂Φ(‖x‖) if and only if x ∈ ∂Φ∗(‖j‖∗).

Therefore, J−1
p (j) = J∗

q (j) for all j ∈ X∗.

The following inequality is very useful in the existence and approximation
of solutions of nonlinear operator equations.

Theorem 2.8.17 Let X be a Banach space. Then the following are equivalent:
(a) X is uniformly convex.
(b) For any p, 1 < p <∞ and r > 0, there exists a strictly increasing convex

function gr : R+ → R+ such that gr(0) = 0 and

‖tx + (1− t)y‖p ≤ t‖x‖p + (1− t)‖y‖p − t(1− t)gr(‖x− y‖) (2.28)

for all x, y ∈ Br[0] and t ∈ [0, 1].

Proof. (a) ⇒ (b). Let X be a uniformly convex Banach space. Assume that
1 < p < ∞. It suffices to prove that (2.28) is true for r = 1. Now we define a
function γ by

γ(ε) = inf{2p−1(‖x‖p + ‖y‖p)− ‖x + y‖p : x, y ∈ BX and ‖x− y‖ ≥ ε}
for all ε ∈ (0, 2].

Because (
a + b

2

)p

<
ap + bp

2
for all a, b ≥ 0 and a �= b, (2.29)

we have
γ(ε) ≥ 0 for all 0 < ε ≤ 2.

Suppose that γ(ε) = 0 for some ε > 0. Then there exist sequences {xn} and
{yn} in BX such that ‖xn − yn‖ ≥ ε for all n ∈ N and

lim
n→∞ 2p−1(‖xn‖p + ‖yn‖p)− ‖xn + yn‖p = 0.
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We may assume a subsequence of {xn} denoted by {xn} such that

a = lim
n→∞ ‖xn‖, b = lim

n→∞ ‖yn‖ and c = lim
n→∞ ‖xn + yn‖

exist. Thus, (
a + b

2

)p

=
ap + bp

2
,

i.e., equality of inequality (2.29) holds with c = a + b. For a = b > 0, c =
2a = lim

n→∞ ‖xn + yn‖, it follows from Theorem 2.2.7 that lim
n→∞ ‖xn − yn‖ = 0, a

contradiction. Therefore,

γ(ε) > 0 for all ε, 0 < ε ≤ 2.

Now set

μ(ε) := inf
{

λ‖x‖p + (1− λ)‖y‖p − ‖λx + (1− λ)y‖p
λ(1− λ)

}
,

where the infimum is taken over all x, y ∈ BX with ‖x− y‖ ≥ ε and λ ∈ (0, 1).
Note μ(ε) ≥ γ(ε)/2p−1 > 0 for all ε, 0 < ε ≤ 2. Thus, it suffices to take as g1

the double dual Young’s function μ∗∗.
(b) ⇒ (a). Suppose (2.28) is satisfied. For x, y ∈ BX and ‖x − y‖ = ε, we

have ∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− 1
4
g1(ε)

≤ 1− δX(ε),

i.e., δX(ε) ≥ g1(ε)/4, which shows that X is a uniformly convex Banach
space.

2.9 Banach limit

In this section, we generalize the concept of limit by introducing Banach limits
and we discuss its properties.

Let  : c→ K be the “limit functional” defined by

(x) = lim
i→∞

xi for x = {xi} ∈ c.

Then  is a linear functional on c. In order to extend limit  on ∞, use the
following notations and results.

Let S be a nonempty set and let B(S) be the Banach space of all bounded
real-valued functions on S with supremum norm.

Example 2.9.1 Let S = N = {1, 2, 3, · · · }. Then B(S) = l∞.
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Let X be a subspace of B(S) and let j be an element of X∗. Let e be a
constant function on X defined by e(s) = 1 for all s ∈ S. We will denote j(e) by
j(1). When X contains constants, a linear functional j on X is called a mean
on X if ‖j‖∗ = j(1) = 1.

The following example shows that there is a subspace of ∞ for which the
mean exists.

Example 2.9.2 Let ∞ = {x = {xi} : sup
i∈N

|xi| < ∞} and X a subset of ∞

such that

X =
{

x = {xi} ∈ ∞ : lim
n→∞

1
n

n∑
i=1

xi exists

}
.

Then X is a linear subspace of ∞. In fact, for x = {xi} and y = {yi} in X,
we have

lim
n→∞

1
n

n∑
i=1

xi exists and lim
n→∞

1
n

n∑
i=1

yi exists. (2.30)

Hence for scalars α, β, we have

αx + βy = (αx1 + βy1, · · · , αxi + βyi, · · · ).

Using (2.30), we obtain that

lim
n→∞

1
n

n∑
i=1

(αxi + βyi) = α( lim
n→∞

1
n

n∑
i=1

xi) + β( lim
n→∞

1
n

n∑
i=1

yi)

exists. It follows that X is a linear subspace of ∞. We now define j : X → R

by

j(x) = lim
n→∞

1
n

n∑
i=1

xi for all x ∈ X.

Note j(1) = 1 and

|j(x)| =
∣∣∣∣ lim

n→∞
1
n

n∑
i=1

xi

∣∣∣∣
≤ lim sup

n→∞
1
n

n∑
i=1

|xi|

≤ ‖x‖∞,

and it follows that ‖j‖∗ = 1. Therefore, j is linear and ‖j‖∗ = j(1) = 1, i.e., j
is a mean on X.

We now give an equivalent condition for mean.
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Theorem 2.9.3 Let X be a subspace of B(S) containing constants and j ∈ X∗.
Then the following are equivalent:

(a) j is a mean on X, i.e., ‖j‖∗ = j(1) = 1.
(b) The inequalities

inf
s∈S

x(s) ≤ j(x) ≤ sup
s∈S

x(s)

hold for each x ∈ X.

Proof. (a) ⇒ (b). First, we show that j(x) ≥ 0 for all x ≥ 0. Suppose, for
contraction, that j(x) < 0. Choose a positive number K with x ≤ K. Then

j(K − x) = Kj(1)− j(x) = K − j(x) > K.

Because

j(K − x) ≤ ‖j‖∗‖K − x‖ = ‖K − x‖ = sup
s∈S
|K − x(s)| ≤ K,

it follows that
K < j(K − x) ≤ K,

a contradiction. Therefore, j(x) ≥ 0.
Observe that

inf
s∈S

x(s) ≤ x ≤ sup
s∈S

x(s) for each x ∈ X.

Because j(x) ≥ 0 for x ≥ 0, we have

inf
s∈S

x(s) = j( inf
s∈S

x(s)) ≤ j(x) ≤ j(sup
s∈S

x(s)) = sup
s∈S

x(s).

(b) ⇒ (a). For x = 1, we have 1 ≤ j(1) ≤ 1 and hence j(1) = 1. Note for each
x ∈ X,

j(x) ≤ sup
s∈S

x(s) ≤ sup
s∈S
|x(s)| = ‖x‖

and
−j(x) = j(−x) ≤ ‖ − x‖ = ‖x‖,

so |j(x)| ≤ ‖x‖ for each x ∈ X. Thus, ‖j‖∗ = 1. Therefore, ‖j‖∗ = j(1) = 1,
i.e., j is a mean on X.

Let f ∈ ∞. We denote fn(xn+m) for f(xm+1, xm+2, xm+3, · · · , xm+n, · · · ),
m = 0, 1, 2, · · · . A continuous linear functional j on l∞ is called a Banach limit
if

(L1) ‖j‖∗ = j(1) = 1,
(L2) jn(xn) = jn(xn+1) for each x = (x1, x2, · · · ) ∈ l∞.

It is denoted by LIM .
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Theorem 2.9.4 (The existence of Banach limits) – There exists a linear
continuous functional j on l∞ such that ‖j‖∗ = j(1) = 1 and jn(xn) = jn(xn+1)
for each x = {xn}n∈N ∈ ∞.

Proof. Let p : ∞ → R be the functional defined by

p(x) = lim sup
n→∞

x1 + x2 + · · ·+ xn

n
.

Then
−p(−x) = lim inf

n→∞
x1 + x2 + · · ·+ xn

n
.

For x ∈ c, we have

(x) = lim
n→∞xn = lim

n→∞
x1 + x2 + · · ·+ xn

n
= p(x).

Moreover,
p(x + y) ≤ p(x) + p(y) for all x, y ∈ c

and
p(αx) = αp(x) for all x ∈ c and α ≥ 0.

Thus, p is a sublinear functional with (x) = p(x). By the Hahn-Banach
theorem, there is an extension L : ∞ → R of  (from c to ∞) such that

L(x) ≤ (x) for all x ∈ ∞

and
−p(−x) ≤ L(x) ≤ p(x) for all x ∈ ∞.

Thus, we have
p(1, 1, 1, · · · ) = 1

and

p((x1, x2, · · · , xn, · · · )− (x2, x3, · · · , xn+1, · · · )) = lim sup
n→∞

x1 − xn+1

n
= 0.

Hence
L((x1, x2, · · · , xn, · · · )− (x2, x3, · · · , xn+1, · · · )) = 0,

which implies that

L(x1, x2, · · · , xn, · · · ) = L(x2, x3, · · · , xn+1 · · · )
for all x = (x1, x2, · · ·xn, · · · ) ∈ ∞.

Therefore, L is a Banach limit.

Observation
• Every Banach limit is a positive functional on �∞, i.e., LIMn(x) ≥ 0 for all

x ∈ �∞.

• LIM(1, 1, · · · 1, · · · ) = 1.

We now give elementary properties of Banach limits.
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Proposition 2.9.5 Let LIM be a Banach limit. Then

lim inf
n→∞ xn ≤ LIM(x) ≤ lim sup

n→∞
xn for each x = (x1, x2, · · · ) ∈ l∞.

Moreover, if xn → a, then LIM(x) = a.

Proof. For each m ∈ N, we have

LIMn(xn) = LIMn(xn+1) = · · · = LIMn(xn+(m−1)) ≥ inf
n≥m

xn

and hence LIMn(xn) ≥ sup
m∈N

inf
n≥m

xn = lim inf
n→∞ xn.

Similarly, since LIMn(xn) ≤ sup
n≥m

xn, we have LIMn(xn) ≤ lim sup
n→∞

xn.

Therefore,

lim inf
n→∞ xn ≤ LIM(x) ≤ lim sup

n→∞
xn for each x = (x1, x2, · · · ) ∈ l∞.

Letting xn → a, we have lim inf
n→∞ xn = lim sup

n→∞
xn = a and hence LIM(x)

= a.

Proposition 2.9.6 Let a be a real number and let (x1, x2, · · · ) ∈ ∞. Then the
following are equivalent:

(a) LIMn(xn) ≤ a for all Banach limits LIM.

(b) For each ε > 0, there exists m0 ∈ N such that

xn + xn+1 + · · ·+ xn+m−1

m
< a + ε for all m ≥ m0 and n ∈ N. (2.31)

Proof. (a)⇒ (b). Suppose that for {xn} ∈ ∞, we have LIMn(xn) ≤ a for all
Banach limits LIM. Define a sublinear functional q : ∞ → R by

q(y1, y2, · · · ) = lim sup
m→∞

(
sup
n∈N

1
m

n+m−1∑
i=n

yi

)
, {yn} ∈ ∞.

By the Hahn-Banach theorem, there exists a linear functional j : ∞ → R such
that

j ≤ q and jn(xn) = qn(xn).

It is easy to see that j is a Banach limit. From the assumption, we have

qn(xn) = lim sup
m→∞

(
sup
n∈N

1
m

n+m−1∑
i=n

xi

)
≤ a.

Thus, for ε > 0, there exists m0 ∈ N such that

xn + xn+1 + · · ·+ xn+m−1

m
< a + ε for all m ≥ m0 and n ∈ N.
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(b)⇒ (a). Suppose for each ε > 0, there exists m0 ∈ N such that (2.31) holds.
Let LIM be a Banach limit. Then

LIMn(xn) = LIMn

(
xn + xn+1 + · · ·+ xn+m0−1

m0

)
≤ a + ε.

Because ε is an arbitrary positive real number, we have LIMn(xn) ≤ a.

Proposition 2.9.7 Let a be a real number and let (x1, x2, · · · ) ∈ ∞ such that
LIMn(xn) ≤ a for all Banach limits LIM and lim sup

n→∞
(xn+1 − xn) ≤ 0. Then

lim sup
n→∞

xn ≤ a.

Proof. Let ε > 0. By Proposition 2.9.6, there exists m ≥ 2 such that

xn + xn+1 + · · ·+ xn+m−1

m
< a +

ε

2
for all n ∈ N.

Choose n0 ∈ N such that

xn+1 − xn <
ε

m− 1
for all n ≥ n0.

Let n ≥ n0 + m. Observe that

xn = xn−i + (xn−i+1 − xn−i) + · · ·+ (xn − xn−1)

≤ xn−i +
iε

m− 1
for each i = 0, 1, · · · ,m− 1.

Thus,
lim sup

n→∞
xn ≤ a + ε.

Because ε is arbitrary positive number, we get the conclusion.

We note that if a linear functional j on l∞ satisfying:

lim inf
n→∞ xn ≤ j(x) ≤ lim sup

n→∞
xn for each x = (x1, x2, · · · ) ∈ l∞,

then j is a mean on ∞. Thus, every Banach limit on ∞ is a mean on ∞.

Let X be a Banach space, {xn} a bounded sequence in X, and LIM a Banach
limit. Then a point x0 ∈ X is said to be a mean point of {xn} concerning a
Banach limit LIM if

LIMn〈xn, j〉 = 〈x0, j〉 for all j ∈ X∗.

We establish two preliminary results related to mean points.

Proposition 2.9.8 (Existence of mean points) – Let X be a reflexive
Banach space and {xn} a bounded sequence in X. Then, for a Banach limit
LIM , there exists a point x0 in X such that

LIMn〈xn, j〉 = 〈x0, j〉 for all j ∈ X∗.
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Proof. Note the function LIMn〈xn, j〉 is linear in j. Further, as

|LIMn〈xn, j〉| ≤ (sup
n∈N

‖xn‖) · ‖j‖∗,

the function LIMn〈xn, j〉 is also bounded in j. So, we have j∗0 ∈ X∗∗ such that

LIMn〈xn, j〉 = 〈j∗0 , j〉 for every j ∈ X∗.

Because X is reflexive, there exists x0 ∈ X such that LIMn〈xn, j〉 = 〈x0, j〉 for
all j ∈ X∗.

Proposition 2.9.9 Let {xn} be a bounded sequence in a Banach space X and
x0 ∈ X a mean point of {xn} concerning a Banach limit LIM . Then x0 ∈⋂∞

n=1 co({xk}k≥n).

Proof. If not, there exists n0 ∈ N such that x0 /∈ co{xn : n ≥ n0}. By the
separation theorem, we obtain a point j ∈ X∗ such that

〈x0, j〉 < inf{〈z, j〉 : z ∈ co{xn : n ≥ n0}}.

Thus, we have

LIMn〈xn, j〉 = 〈x0, j〉 < inf{(xn, j) : n ≥ n0}
≤ LIMn{〈xn, j〉 : n ≥ n0} = LIMn〈xn, j〉,

a contradiction.

We now characterize the sequences in ∞ for which all Banach limits coincide.
It is obvious that for any element x ∈ c,

LIM(x) = (x) = lim
n→∞xn for all Banach limit LIM.

However, there exist nonconvergent sequences for which all Banach limits
coincide.

Example 2.9.10 Let x = (1, 0, 1, 0, · · · ) ∈ ∞. Then

(x1, x2, · · ·xn, · · · ) + (x2, x3, · · · , xn+1, · · · ) = (1, 1, 1, · · · ),

and it follows that

LIMn(xn) + LIMn(xn+1) = LIMn(1) = 1 for all LIM.

Using (L2), we have

LIMn(xn) =
1
2

for all Banach limit LIM.
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A bounded sequence x = {xi} is said to be almost convergent if all its
Banach limits have the same value at x. Equivalently, x = {xi} ∈ ∞ is almost
convergent if

lim
i→∞

xn + xn+1 · · ·+ xn+i−1

i
exists uniformly in n.

We have seen in Example 2.9.10 that the sequence (1, 0, 1, 0, · · · ) is not conver-
gent, but it is almost convergent.

In optimization theory, the structure of M defined in our next result is of
much interest.

Theorem 2.9.11 Let C be a nonempty closed convex subset of a reflexive
Banach space X, {xn} a bounded sequence in C, LIM a Banach limit, and
ϕ a real-valued function on C defined by ϕ(z) = LIMn‖xn − z‖2, z ∈ C. Then
the set M defined by

M = {u ∈ C : LIMn‖xn − u‖2 = inf
z∈C

LIMn‖xn − z‖2} (2.32)

is a nonempty closed convex bounded set. Moreover, if X is uniformly convex,
then M has exactly one point.

Proof. First, we show that ϕ is continuous and convex. Let {ym} be a sequence
in C such that ym → y ∈ C. Set L := sup{‖xn − ym‖ + ‖xn − y‖ : m,n ∈ N}.
Observe that

‖xn − ym‖2 − ‖xn − y‖2 ≤ (‖xn − ym‖+ ‖xn − y‖)(‖xn − ym‖ − ‖xn − y‖)
≤ L| ‖xn − ym‖ − ‖xn − y‖ |
≤ L‖ym − y‖ for all n,m ∈ N.

Then
LIMn‖xn − ym‖2 ≤ LIMn‖xn − y‖2 + L‖ym − y‖.

Similarly we have

LIMn‖xn − y‖2 ≤ LIMn‖xn − ym‖2 + L‖ym − y‖.

Thus, we have
|ϕ(ym)− ϕ(x)| ≤ L‖ym − x‖.

Hence ϕ is continuous on C. Now, let x, y ∈ C and λ ∈ [0, 1]. It is easy to see
that

ϕ((1− λ)x + λy) ≤ (1− λ)ϕ(x) + λϕ(y).

Hence ϕ is convex.
Using the fact ((a + b)/2)2 ≤ (a2 + b2)/2 for all a, b ≥ 0, we have

‖ym‖2 ≤ 2‖ym − xn‖2 + 2‖xn‖2,
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and hence
‖ym‖2 ≤ 2ϕ(ym) + 2 sup

n∈N

‖xn‖2,

i.e., ϕ(ym)→∞ as ‖ym‖ → ∞. Thus, ϕ is a continuous convex functional and
ϕ(z) → ∞ as ‖z‖ → ∞. Because X is reflexive, ϕ attains its infimum over C
by Theorem 2.5.8. Then M is a nonempty closed convex set. Moreover, M is
bounded. Indeed, let u ∈M . Because

‖u‖2 ≤ 2‖u− xn‖2 + 2‖xn‖2 for all n ∈ N,

this implies that

‖u‖2 ≤ 2ϕ(u) + 2K = 2 inf
z∈C

ϕ(z) + 2K

for some K ≥ 0.

Now, suppose X is uniformly convex. Let z1, z2 ∈M . Then (z1+z2)/2 ∈M .
Choose r > 0 large enough so that {xn} ∪M ⊂ Br[0]. Then xn − z1, xn − z2 ∈
B2r[0] for all n ∈ N. By Theorem 2.8.17, we have∥∥∥∥xn − z1 + z2

2

∥∥∥∥
2

≤ 1
2
‖xn − z1‖2 +

1
2
‖xn − z2‖2 − 1

4
g2r(‖z1 − z2‖).

If z1 �= z2, we have

inf
z∈C

ϕ(z) ≤ ϕ

(
z1 + z2

2

)
≤ 1

2
ϕ(z1) +

1
2
ϕ(z2)− 1

4
g2r(‖z1 − z2‖)

= inf
z∈C

ϕ(z)− 1
4
g2r(‖z1 − z2‖)

< inf
z∈C

ϕ(z),

a contradiction. Therefore, M has exactly one element.

Let LIM be a Banach limit and let {xn} be a bounded sequence in a Banach
space X. We observe that if ψ : X → R is bounded, Gâteaux differentiable
uniformly on bounded sets, then a function f : X → R defined by f(z) =
LIMnψ(xn + z) is Gâteaux differentiable with Gâteaux derivative given by
〈y, f ′(z)〉 = LIMn〈y, ψ′(xn + z)〉 for each y ∈ X.

Using the above facts, we give the following result, which will be used in
convergence of sequences {xn} in Banach spaces with Gâteaux differentiable
norm.

Theorem 2.9.12 Let X be a Banach space with a uniformly Gâteaux differen-
tiable norm and {xn} a bounded sequence in X. Let LIM be a Banach limit
and u ∈ X. Then

LIMn‖xn − u‖2 = inf
z∈X

LIMn‖xn − z‖2

if and only if
LIMn〈z, J(xn − u)〉 = 0 for all z ∈ X.
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Proof. Let u ∈ X be such that LIMn‖xn − u‖2 = inf
z∈X

LIMn‖xn − z‖2.
Then u minimizes the continuous convex function φ : X → R+ defined by
φ(z) = LIMn‖xn − z‖2, so we have φ′(u) = 0.

Note that the norm of X is Gâteaux differentiable, and Jx is the subdiffer-
ential of the convex function ϕ(x) = ‖x‖2/2 at x as the Gâteaux differential of
ϕ. Hence

LIMn〈z, J(xn − u)〉 = 〈z, φ′(u)〉 = 0 for all z ∈ X.

Conversely, suppose that LIMn〈u − z, J(xn − u)〉 = 0 for all z ∈ X.
If x ∈ X,

‖xn − x‖2 − ‖xn − u‖2 ≥ 2〈u− x, J(xn − u)〉 for all n ∈ N.

Because LIMn〈u− x, J(xn − u)〉 = 0 for all x ∈ X, we obtain

LIMn‖xn − u‖2 = inf
x∈X

LIMn‖xn − x‖2.

Corollary 2.9.13 Let X be a Banach space with a uniformly Gâteaux differ-
entiable norm and C a nonempty closed convex subset of X. Let {xn} be a
bounded sequence in C. Let LIM be a Banach limit and u ∈ C. Then

u ∈M if and only if LIMn〈z, J(xn − u)〉 ≤ 0 for all z ∈ C.

2.10 Metric projection and retraction mappings

Let C be a nonempty subset of a normed space X and let x ∈ X. An element
y0 ∈ C is said to be a best approximation to x if

‖x− y0‖ = d(x,C),

where d(x,C) = inf
y∈C
‖x− y‖. The number d(x,C) is called the distance from x

to C or the error in approximating x by C.

The (possibly empty) set of all best approximations from x to C is denoted
by

PC(x) = {y ∈ C : ‖x− y‖ = d(x,C)}.
This defines a mapping PC from X into 2C and is called the metric projection

onto C. The metric projection mapping is also known as the nearest point
projection mapping, proximity mapping, and best approximation operator.

The set C is said to be a proximinal 2 (respectively, Chebyshev) set if each
x ∈ X has at least (respectively, exactly) one best approximation in C.

2The term “proximinal” is a combination of the words “proximity” and “minimal” and
was coined by Killgrove.
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Observation
• C is proximinal if PC(x) �= ∅ for all x ∈ X.

• C is Chebyshev if PC(x) is singleton for each x ∈ X.

• The set of best approximations is convex if C is convex.

Some fundamental results on proximinal sets are the following:

First, we observe that every proximinal set must be closed.

Proposition 2.10.1 Let C be a proximinal subset of a Banach space X. Then
C is closed.

Proof. Suppose, for contradiction, that C is not closed. Then there exists a
sequence {xn} in C such that xn → x and x /∈ C, but x ∈ X. It follows that

d(x,C) ≤ ‖xn − x‖ → 0,

so that d(x,C) = 0. Because x /∈ C, it means that

‖x− y‖ > 0 for all y ∈ C.

This implies PC(x) = ∅. This contradicts PC(x) �= ∅.
Theorem 2.10.2 (The existence of best approximations) – Let C be a
nonempty weakly compact convex subset of a Banach space X and x ∈ X. Then
x has a best approximation in C, i.e., PC(x) �= ∅.
Proof. The function f : C → R+ defined by

f(y) = ‖x− y‖, y ∈ C

is obviously lower semicontinuous. Because C is weakly compact, we can
apply Theorem 2.5.5, and then there exists y0 ∈ C such that ‖x − y0‖ =
inf
y∈C
‖x− y‖.

Corollary 2.10.3 Let C be a nonempty closed convex subset of a reflexive
Banach space X. Then each element x ∈ X has a best approximation in C.

Theorem 2.10.4 (The uniqueness of best approximations) – Let C be
a nonempty convex subset of a strictly convex Banach space X. Then for each
element x ∈ X, C has at most one best approximation.

Proof. Suppose, for contradiction, that y1, y2 ∈ C are best approximations
to x ∈ X. Because the set of best approximations is convex, it follows that
(y1 + y2)/2 is also a best approximation to x. Set r := d(x,C). Then

0 ≤ r = ‖x− y1‖ = ‖x− y2‖ = ‖x− (y1 + y2)/2‖,
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and it follows that

‖(x− y1) + (x− y2)‖ = 2r = ‖x− y1‖+ ‖x− y2‖.
By the strict convexity of X we have

x− y1 = t(x− y2), t ≥ 0.

Taking the norm in this relation, we obtain r = tr, i.e., t = 1, which gives
us y1 = y2.

The following example shows that the strict convexity cannot be dropped in
Theorem 2.10.4.

Example 2.10.5 Let X = R2 with norm ‖ · ‖1. It is easy to check that X is
not strictly convex. Now, let

C = {(x, y) ∈ R2 : ‖(x, y)‖1 ≤ 1} = {(x, y) ∈ R2 : |x|+ |y| ≤ 1}.
Then C is a closed convex set. The distance from z = (−1,−1) to the set C is
one, and this distance is realized by more than one point of C.

In Theorem 2.10.4, uniqueness of best approximations need not be true for
nonconvex sets.

Example 2.10.6 Let X = R2 with the norm ‖ · ‖2 and C = SX = {(x, y)} ∈
R2 : x2+y2 = 1}. Then X is strictly convex and C is a nonconvex set. However,
all points of C are best approximations to (0, 0) ∈ X.

Theorem 2.10.7 If in a Banach space X, every element possesses at most a
best approximation with respect to every convex set, then X is strictly convex.

Proof. Suppose, for contradiction, that X is not strictly convex. Then there
exist x, y ∈ X, x �= y with

‖x‖ = ‖y‖ = ‖(x + y)/2‖ = 1.

Furthermore,
‖tx + (1− t)y‖ = 1 for all t ∈ [0, 1].

Set C := co({x, y}). Then ‖0 − z‖ = d(0, C) for all z ∈ C. This means that
every element of C is the best approximation to zero and this clearly contradicts
the uniqueness.

From Corollary 2.10.3 and Theorem 2.10.4 (see also Proposition 2.1.10), we
obtain some important results:

Theorem 2.10.8 Let C be a nonempty weakly compact convex subset of a
strictly convex Banach space X. Then for each x ∈ X, C has the unique best
approximation, i.e., PC(·) is a single-valued metric projection mapping from X
onto C.
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Corollary 2.10.9 Let C be a nonempty closed convex subset of a strictly convex
reflexive (e.g., uniformly convex) Banach space X and let x ∈ X. Then there
exists a unique element x0 ∈ C such that ‖x− x0‖ = d(x,C).

Observation
• Every closed convex subset C of a reflexive Banach space is proximinal.

• Every closed convex subset C of a reflexive strictly convex Banach is a Chebyshev
set.

• For every Chebyshev set C, we have

(i) PC(x) is singleton set, i.e., PC is a function from X onto C.

(ii) ‖x − PC(x)‖ = d(x, C) for all x ∈ X.

We now study useful properties of metric projection mappings.

Theorem 2.10.10 Let C be a subset of a normed space X and x ∈ X. Then
PC(x) ⊆ ∂C.

Proof. Let y ∈ PC(x). Suppose y ∈ int(C). Then there exists an ε > 0 such
that Bε(y) ⊂ C. For each n ∈ N, let zn = (1/n)x + (1− 1/n)y. Then

‖zn − y‖ = (1/n)‖x− y‖.
For sufficiently large N ∈ N, ‖zN − y‖ < ε. Thus, zN ∈ Bε(y) ⊂ C. On the
other hand,

‖x− zN‖ = (1− 1/N)‖x− y‖ < ‖x− y‖ = d(x,C),

which contradicts the fact that y ∈ PC(x). Therefore, y ∈ ∂C.

Corollary 2.10.11 Let C be a nonempty closed convex subset of a strictly con-
vex reflexive Banach space X and let x ∈ X. Then we have the following:

(a) If x ∈ C, then PC(x) = x.
(b) If x /∈ C, then PC(x) ∈ ∂C.

Theorem 2.10.12 Let C be a nonempty closed convex subset of a reflexive
strictly convex Banach space X. If X has the Kadec-Klee property, then the
projection mapping PC of X onto C is continuous.

Proof. Suppose, for contradiction, that PC is not continuous. Then for the
sequence {xn} in X with lim

n→∞xn = x ∈ X, there exists ε > 0 such that

‖PC(xn)− PC(x)‖ ≥ ε for all n ∈ N.

Because
|d(xn, C)− d(x,C)| ≤ ‖xn − x‖,

it follows that ∣∣‖xn − PC(xn)‖ − ‖x− PC(x)‖∣∣ ≤ ‖xn − x‖.
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This implies that

lim
n→∞ ‖xn − PC(xn)‖ = ‖x− PC(x)‖. (2.33)

Because {PC(xn)} is bounded in C by (2.33), there exists a subsequence
{PC(xni

)} of {PC(xn)} such that w − lim
i→∞

PC(xni
) = z ∈ C. Note

w − lim
i→∞

(xni
− PC(xni

)) = x− z. (2.34)

By w-lsc of the functional ‖ · ‖, we have

‖x− z‖ ≤ lim inf
i→∞

‖xni
− PC(xni

)‖ = ‖x− PC(x)‖.

This implies z = PC(x) by definition of the function PC . From (2.33) and (2.34)

w− lim
i→∞

(xni
−PC(xni

)) = x−PC(x) and lim
i→∞

‖xni
−PC(xni

)‖ = ‖x−PC(x)‖.

Because X has the Kadec-Klee property, we obtain

lim
i→∞

(xni
− PC(xni

)) = x− PC(x),

which implies that lim
i→∞

PC(xni
) = PC(x), which is a contradiction to the

assumption that ‖PC(xn)− PC(x)‖ ≥ ε.

Then following Proposition 2.5.25, we have

Theorem 2.10.13 Let C be a nonempty convex subset of a smooth Banach
space X and let x ∈ X and y ∈ C. Then the following are equivalent:

(a) y is a best approximation to x: ‖x− y‖ = d(x,C).
(b) y is a solution of the variational inequality:

〈y − z, Jμ(x− y)〉 ≥ 0 for all z ∈ C,

where Jμ is a duality mapping with gauge function μ.

As an immediate consequence of Theorem 2.10.13, we have

Corollary 2.10.14 Let C be a nonempty convex subset of a Hilbert space H
and PC be the metric projection mapping from H onto C. Let x be an element
in H. Then the following are equivalent:

(a) ‖x− PC(x)‖ = d(x,C).
(b) 〈x− PC(x), PC(x)− z〉 ≥ 0 for all z ∈ C.

Proposition 2.10.15 Let C be a nonempty closed convex subset of a Hilbert
space X and PC the metric projection from X onto C. Then the following hold:

(a) PC is “idempotent”: PC(PC(x)) = PC(x) for all x ∈ X.
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(b) PC is “firmly nonexpansive”:

〈x− y, PC(x)− PC(y)〉 ≥ ‖PC(x)− PC(y))‖2 for all x, y ∈ X.

(c) PC is “nonexpansive”: ‖PC(x)− PC(y)‖ ≤ ‖x− y‖ for all x, y ∈ X.

(d) PC is “monotone”: 〈PC(x)− PC(y), x− y〉 ≥ 0 for all x, y ∈ X.

(e) PC is “demiclosed”: xn ⇀ x0 and PC(xn)→ y0 ⇒ PC(x0) = y0.

Proof. (a) Observe that PC(x) ∈ C for all x ∈ X and PC(z) = z for all z ∈ C.
Then PC(PC(x)) = PC(x) for all x ∈ X, i.e., P 2

C = PC .

(b) Set j := PC(x)− PC(y) for x, y ∈ X. We have

〈x− y, j〉 = 〈x− PC(x), j〉+ 〈j, j〉+ 〈PC(y)− y, j〉.

Because from Corollary 2.10.14, we get

〈x− PC(x), j〉 ≥ 0 and 〈y − PC(y), j〉 ≥ 0,

it follows that
〈x− y, j〉 ≥ ‖j‖2.

(c) This is an immediate consequence of (b).

(d) It follows from (b).

(e) From Corollary 2.10.14, we have

〈xn − PC(xn), PC(xn)− z〉 ≥ 0 for all z ∈ C.

Because xn ⇀ x0 and PC(xn)→ y0, we have

〈x0 − y0, y0 − z〉 ≥ 0 for all z ∈ C.

Using Theorem 2.10.13, we obtain ‖x0 − y0‖ = d(x0, C). Therefore,
PC(x0) = y0.

Remark 2.10.16 Proposition 2.10.15(c) shows that in a Hilbert space, a metric
projection operator is not only continuous, but also it is Lipschitz continuous and
hence it is uniformly continuous.

The following result is of fundamental importance. It shows that every point
on line segment joining x ∈ X to its best approximation PC(x) ∈ C has PC(x)
as its best approximation.

Proposition 2.10.17 Let C be a Chebyshev set in a Hilbert space H and
x ∈ H. Then PC(x) = PC(y) for all y ∈ co({x, PC(x)}).
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Proof. Suppose, for contradiction, that there exist y ∈ co({x, PC(x)}) and
z ∈ C such that

‖y − z‖ < ‖y − PC(x)‖.
Set y := λx + (1− λ)PC(x) for some λ ∈ (0, 1). Then

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖
< ‖x− y‖+ ‖y − PC(x)‖
= (1− λ)‖x− PC(x)‖+ λ‖x− PC(x)‖ = d(x,C),

a contradiction.

If C is a Chebyshev set in a Hilbert space H, then

PC [λx + (1− λ)PC(x)] = PC(x), x ∈ H, 0 ≤ λ ≤ 1.

Motivated by this fact, we introduce the following:

A Chebyshev subset C of a normed space X is said to be sun if

PC [λx + (1− λ)PC(x)] = PC(x) for all x ∈ X and λ ≥ 0.

In other words, C is a sun if and only if each point on the ray from PC(x)
through x also has PC(x) as its best approximation in C.

Let C be a nonempty subset of a topological space X and D a nonempty
subset of C. Then a continuous mapping P : C → D is said to be a retraction
if Px = x for all x ∈ D, i.e., P 2 = P . In such case, D is said to be a retract
of C.

Example 2.10.18 Every closed convex subset C of Rn is a retract of Rn.

We have seen in Theorem 2.10.8 that for every weakly compact convex subset
C of a strictly convex Banach space, there exists a metric projection mapping
PC : X → C that may not be continuous. However, every single-valued metric
projection mapping is a retraction if it is continuous.

Theorem 2.10.19 Every closed convex subset C of a uniformly convex Banach
space X is a retract of X.

Proof. By Theorem 2.10.8, there exists a metric projection mapping PC : X →
C such that PC(x) = x for all x ∈ C. By Theorem 2.10.12, PC is continuous.
Therefore, PC is retraction.

We now show that every retraction P with condition (2.35) is sunny non-
expansive (and hence continuous).

Proposition 2.10.20 Let C be a nonempty convex subset of a smooth Banach
space X and D a nonempty subset of C. If P is a retraction of C onto D such
that

〈x− Px, J(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ D, (2.35)

then P is sunny nonexpansive.
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Proof. P is sunny: For x ∈ C, set xt := Px + t(x− Px) for all t > 0. Because
C is convex, it follows that xt ∈ C for all t ∈ (0, 1]. Hence

〈x− Px, J(Px− Pxt)〉 ≥ 0 and 〈xt − Pxt, J(Pxt − Px)〉 ≥ 0. (2.36)

Because xt − Px = t(x− Px) and 〈t(x− Px), J(Px− Pxt)〉 ≥ 0, we have

〈xt − Px, J(Px− Pxt)〉 ≥ 0. (2.37)

Combining (2.36) and (2.37), we get

‖Px− Pxt‖2 = 〈Px− xt + xt − Pxt, J(Px− Pxt)〉
≤ −〈xt − Px, J(Px− Pxt)〉+ 〈xt − Pxt, J(Px− Pxt)〉
≤ 0.

Thus, Px = Pxt. Therefore, P is sunny.

P is nonexpansive : For x, z ∈ C, we have from (2.35) that

〈x− Px, J(Px− Pz)〉 ≥ 0 and 〈z − Pz, J(Pz − Px)〉 ≥ 0.

Hence
〈x− z − (Px− Pz), J(Px− Pz)〉 ≥ 0.

This implies that
〈x− z, J(Px− Pz)〉 ≥ ‖Px− Pz‖2

and hence P is nonexpansive.

We now give equivalent formulations of sunny nonexpansive retraction
mappings.

Proposition 2.10.21 Let C be a nonempty convex subset of a smooth Banach
space X, D a nonempty subset of C, and P : C → D a retraction. Then the
following are equivalent:

(a) P is the sunny nonexpansive.
(b) 〈x− Px, J(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ D.
(c) 〈x− y, J(Px− Py)〉 ≥ ‖Px− Py‖2 for all x, y ∈ C.

Proof. (a)⇒ (b). Let P be the sunny nonexpansive retraction and x ∈ C.
Then Px ∈ D and there exists a point z ∈ D such that Px = z. Set M :=
{z + t(x− z) : t ≥ 0}. Then M is nonempty convex set. Hence for v ∈M

‖y − z‖ = ‖Py − Pv‖ (as P is sunny, i.e., Pv = z)
≤ ‖y − v‖ = ‖y − z + t(z − x)‖ for all y ∈ D.

Hence from Proposition 2.4.7, we have

〈x− Px, J(y − Px)〉 ≤ 0.
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(b) ⇒ (a). It follows from Proposition 2.10.20.

(b) ⇒ (c). Let x, y ∈ C. Then Px, Py ∈ D and hence from (b), we have

〈x− Px, J(Py − Px)〉 ≤ 0 and 〈y − Py, J(Px− Py)〉 ≤ 0.

Combining the above inequalities, we get

〈Px− Py − (x− y), J(Px− Py)〉 ≤ 0.

Hence

‖Px− Py‖2 = 〈Px− Py, J(Px− Py)〉
= 〈Px− Py − (x− y), J(Px− Py)〉+ 〈x− y, J(Px− Py)〉
≤ 〈x− y, J(Px− Py)〉.

(c) ⇒ (b). Suppose (c) holds. Let x ∈ C and y ∈ D. Replacing y by y = Py in
(c), we have

〈x− Py, J(Px− P 2y) ≥ ‖Px− P 2y‖2,
which implies that

〈x− y, J(Px− y)〉 ≥ ‖Px− y‖2.
Therefore,

〈x− Px, J(Px− y)〉 = 〈x− y, J(Px− y)〉+ 〈y − Px, J(Px− y)

≥ ‖Px− y‖2 − ‖Px− y‖2 = 0.

Finally, we give uniqueness of sunny nonexpansive retraction mappings.

Proposition 2.10.22 Let C be a nonempty convex subset of a smooth Banach
space X and D a nonempty subset of C. If P is a sunny nonexpansive retraction
from C onto D, then P is unique.

Proof. Let Q be another sunny nonexpansive retraction from C onto D. Then,
we have, for each x ∈ C

〈x− Px, J(y − Px)〉 ≤ 0 and 〈x−Qx, J(y −Qx)〉 ≤ 0 for all y ∈ D.

In particular, because Px and Qx are in D, we have

〈x− Px, J(Qx− Px)〉 ≤ 0 and 〈x−Qx, J(Px−Qx)〉 ≤ 0,

which imply that ‖Px−Qx‖2 ≤ 0. Therefore, Px = Qx for all x ∈ C.
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Exercises

2.1 Let X be a strictly convex Banach space and let x, y ∈ X with x �= y.
If ‖x− z‖ = ‖x−w‖, ‖z− y‖ = ‖w− y‖ and ‖x− y‖ = ‖x− z‖+ ‖z− y‖,
show that z = w.

2.2 Let X be a uniformly convex Banach space and let δX be the modulus of
convexity of X. Let 0 < ε < r ≤ 2R. Show that δX(ε/R) > 0 and

‖λx + (1− λ)y‖ ≤ r

{
1− 2λ(1− λ)δX

(
ε

R

)}

for all x, y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x− y‖ ≥ ε and λ ∈ [0, 1].

2.3 Let X be a Banach space. Show that X is uniformly convex if and only if
γ(t) > 0 for all t ∈ (0, 2], where

γ(t) = inf{〈x− y, x∗ − y∗〉 : x, y ∈ SX , ‖x− y‖ ≥ t, x∗ ∈ J(x), y∗ ∈ J(y)}.

2.4 If 1 < p < ∞, and if the X ′
ns are all strictly convex Banach spaces, show

that

(
∏
n∈N

Xn)p = {x = {xn} : xn ∈ Xn for all n ∈ N and
∑
n∈N

‖xn‖pxn
<∞}
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endowed with norm
‖x‖ = (

∑
n∈N

‖xn‖pxn
)1/p

is strictly convex.

2.5 On L2([0, 1], dt), we consider the norm

‖f‖ =
[
1
2
(‖f‖22 + ‖f‖21)

]1/2

.

Show that this norm is equivalent to ‖ · ‖2, but is not smooth.

2.6 On 1, we consider the norm ‖x‖ = (‖x‖21 + ‖x‖22)1/2, x = {xn}n∈N (where
‖x‖1 =

∑
n∈N

|xn|, ‖x‖2 = (
∑
n∈N

|xn|2)1/2).

Show that this norm is equivalent to the 1-norm and that it is strictly
convex.

2.7 Let C be a nonempty closed convex subset of a strictly convex Banach
space X and D a nonempty subset of C. Let x ∈ C and P be a sunny
nonexpansive retraction of C onto D such that ‖Px − y‖ = ‖x − y‖ for
some y ∈ D. Then Px = x.



Chapter 3

Geometric Coefficients of
Banach Spaces

Geometric coefficients play a key role in the existence of fixed points of
Lipschitzian as well as non-Lipschitzian mappings. In this chapter, we discuss
normal structure coefficient, weak normal structure coefficient, Maluta con-
stants, and other related coefficients.

3.1 Asymptotic centers and asymptotic radius

The concept of asymptotic center is introduced, and several useful results are
discussed here.

Let C be a nonempty subset of a Banach space X and {xn} a bounded
sequence in X. Consider the functional ra(·, {xn}) : X → R+ defined by

ra(x, {xn}) = lim sup
n→∞

‖xn − x‖, x ∈ X.

The infimum of ra(·, {xn}) over C is said to be the asymptotic radius of {xn}
with respect to C and is denoted by ra(C, {xn}). A point z ∈ C is said to be
an asymptotic center of the sequence {xn} with respect to C if

ra(z, {xn}) = inf{ra(x, {xn}) : x ∈ C}.
The set of all asymptotic centers of {xn} with respect to C is denoted by
Za(C, {xn}). This set may be empty, a singleton, or certain infinitely many
points. In fact, if {xn} converges strongly to x ∈ C, then

Za(C, {xn}) = {x}
and if {xn} converges strongly to x and x /∈ C, then

ra(C, {xn}) = d(x,C) and Za(C, {xn}) = {y ∈ C : ‖x−y‖ = d(x,C)} = PC(x),

where PC is the metric projection from X into 2C .

R.P. Agarwal et al., Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3 3,
c© Springer Science+Business Media, LLC, 2009
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For any λ ≥ 0, the level set is

Aλ(C, {xn}) = {x ∈ C : ra(x, {xn}) ≤ ra(C, {xn}) + λ}.

It can be easily observed that

(i) A0(C, {xn}) = Za(C, {xn}), the asymptotic center of {xn} with respect
to C,

(ii) Aλ(C, {xn}) �= ∅ for all λ > 0,

(iii) Aλ′(C, {xn}) ⊂ Aλ(C, {xn}) if λ′ < λ,

(iv) Za(C, {xn}) = A0(C, {xn}) = ∩λ>0Aλ(C, {xn}) may be empty,

(v) Za(C, {xn}) = ∩λ>0{∪∞
n=1 ∩∞

i=n Bra(C,{xn})+λ[xi]} ∩ C. (3.1)

A bounded sequence {xn} in a Banach space X is said to be regular with
respect to a bounded subset C of X if the asymptotic radii (with respect to C)
of all subsequences of {xn} are the same, i.e.,

ra(C, {xni
}) = ra(C, {xn}) for each subsequence {xni

} of {xn}.

A regular sequence {xn} in X is said to be asymptotically uniform with respect
to C if Za(C, {xni

}) = Za(C, {xn}) for each subsequence {xni
} of {xn}.

Observation
• For an arbitrary subsequence {xni} of {xn}, the following fact always holds:

Za(C, {xni}) ⊇ Za(C, {xn}).

• Asymptotic radius: ra(C, {xn}) = inf{ra(x, {xn}) : x ∈ C}.
• Asymptotic center: Za(C, {xn}) = {z ∈ C : ra(z, {xn}) = ra(C, {xn})}.
• For x ∈ X, ra(x, {xn}) = 0 ⇔ lim

n→∞
xn = x.

• ra(αx + βy, {xn}) ≤ αra(x, {xn}) + βra(y, {xn}) for all x, y ∈ X and α, β ≥ 0
with α + β = 1.

• |ra(x, {xn})− ra(y, {xn})| ≤ ‖x−y‖ ≤ ra(x, {xn})+ ra(y, {xn}) for all x, y ∈ X.

• ra(·, {xn}) is convex and nonexpansive (and hence continuous).

• ϕ(·) = ra(·, {xn}) : X → R
+ is w-lsc. Indeed, by the continuity of ϕ(·),

ϕ−1((−∞, α]) is closed for every α ∈ R. Also convexity of ϕ(·) implies that

ϕ−1((−∞, α]) is convex. Thus, ϕ−1((−∞, α]) is weakly closed.

We first establish two preliminary results:

Proposition 3.1.1 Let C be a nonempty bounded subset of a Banach space X
and {xn} a bounded sequence in X. Then {xn} has a subsequence that is regular
with respect to C.
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Proof. Set

r0 := inf{ra(C, {xni
}) : {xni

} is a subsequence of {xn}}.

Then there is a subsequence {xnk(1)} of {xn} such that

ra(C, {xnk(1)}) ≤ r0 + 1.

Set
r1 := inf{ra(C, {xnk(1)j

})},
where the infimum is taken over all subsequences {xnk(1)j

} of {xnk(1)}. Let
{xnk(i)} be a subsequence of {xnk(i−1)} and set

ri := inf{ra(C, {xnk(i)j
})},

where the infimum is taken over all subsequences {xnk(i)j
} of {xnk(i)}. Select a

subsequence {xnk(i+1)} of {xnk(i)} such that

ra(C, {xnk(i+1)}) < ri +
1

i + 1
. (3.2)

Because r1 ≤ r2 ≤ r3 ≤ · · · and {ri} is bounded above, it follows that lim
i→∞

ri

exists (say r). Then from (3.2),

lim
i→∞

ra(C, {xnk(i+1)}) = r.

Now consider the diagonal sequence {xnk(k)} and r = ra(C, {xnk(k)}). Because
{xnk(k)} is a subsequence of {xnk(i)}, it follows that ri ≤ r.

Moreover, from (3.2) we have

r ≤ ra(C, {xnk(i+1)}) < ri +
1

i + 1
,

which implies that
r ≤ r.

Hence r = r. Note any subsequence {yn} of {xnk(k)} satisfies the following:

{yn} ⊆ {xnk(i)} and {yn} ⊆ {xnk(i+1)}.

Hence ra(C, {yn}) = r, and we conclude that {xnk(k)} is regular with respect

to C.

Proposition 3.1.2 Let C be a separable bounded subset of a Banach space X
and {xn} a bounded sequence in X. Then {xn} has an asymptotically uniform
subsequence.
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Proof. By Proposition 3.1.1, {xn} has a subsequence that is regular with
respect to C. Because C is separable, a routine diagonalization argument can
be used to obtain a subsequence of {xn}, which we again denote by {xn} such
that lim

n→∞ ‖xn−y‖ exists for all y ∈ C. Clearly, such a sequence must be asymp-

totically uniform.

We now discuss the existence and uniqueness of asymptotic centers of bounded
sequences.

Theorem 3.1.3 (The existence of of asymptotic centers) – Let {xn} be
a bounded sequence in a Banach space X and C a nonempty subset of X. Then
we have the following:

(a) If C is weakly compact, then Za(C, {xn}) is nonempty.

(b) If C is weakly compact and convex, then Za(C, {xn}) is a nonempty convex
set.

Proof. (a) From (3.1), we obtain that Za(C, {xn}) can be characterized as the
intersection of a decreasing family of weakly closed sets. Thus, Za(C, {xn}) is
nonempty.

(b) Because C is weakly compact convex set and the function ra(·, {xn})
is continuous, it follows from Theorem 2.5.5 that Za(C, {xn}) = {x ∈ C :
ra(x, {xn}) = inf

z∈C
ra(z, {xn})} is nonempty. Also Za(C, {xn}) is convex.

Indeed, for x, y ∈ Za(C, {xn}) and t ∈ [0, 1], we have

ra((1− t)x + ty, {xn}) = lim sup
n→∞

‖(1− t)x + ty − xn‖
≤ (1− t) lim sup

n→∞
‖xn − x‖+ t lim sup

n→∞
‖xn − y‖

= (1− t)ra(C, {xn}) + tra(C, {xn}) = ra(C, {xn}),

i.e., (1− t)x + ty ∈ Za(C, {xn}).
Theorem 3.1.4 Let C be a nonempty closed convex subset of a Banach space
X and {xn} a bounded sequence in X. Then

diam(Za(C, {xn})) ≤ ε0(X) ra(C, {xn}).
Proof. Set d = diam(Za(C, {xn})). If Za(C, {xn}) is empty or a singleton,
then we are done. So, we may assume that d > 0. Let 0 < r < d and x, y ∈
Za(C, {xn}) with ‖x−y‖ ≥ d−r. By the convexity of Za(C, {xn}), (x+y)/2 =
z ∈ Za(C, {xn}). Then from the property of modulus of convexity (see Coroll-
ary 2.3.11),

ra(C, {xn}) = ra(z, {xn}) = lim sup
n→∞

‖xn − (x + y)/2‖

≤
(

1− δX

(
d− r

ra(C, {xn})
))

ra(C, {xn}),
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so it follows that

δX

(
d− r

ra(C, {xn})
)
≤ 0.

By the definition of ε0(X),

d− r ≤ ε0(X)ra(C, {xn}).

Because r > 0 is arbitrary, it follows that d ≤ ε0(X) ra(C, {xn}).
Using Theorem 3.1.4, we obtain

Theorem 3.1.5 (The uniqueness of asymptotic centers) – Let C be a
nonempty closed convex subset of a uniformly convex Banach space X and {xn}
a bounded sequence in X. Then Za(C, {xn}) is a singleton set.

Proof. Because ra(·, {xn}) is a continuous and convex functional and ra

(z, {xn})→∞ as ‖z‖ → ∞, by Theorem 2.5.8, we obtain that Za(C, {xn}) �= ∅.
By the uniform convexity of X, ε0(X) = 0, it follows from Theorem 3.1.4 that
diam(Za(C, {xn}) = 0, i.e., Za(C, {xn}) is a singleton set.

The following theorem shows that the asymptotic center enjoys an interesting
inequality.

Theorem 3.1.6 Let C be a nonempty closed convex subset of a uniformly
convex Banach space. Then every bounded sequence {xn} in X has a unique
asymptotic center with respect to C, i.e., Za(C, {xn}) = {z} and

lim sup
n→∞

‖xn − z‖ < lim sup
n→∞

‖xn − x‖ for x �= z.

Proof. The result follows from Theorem 3.1.5.

Observation
• If C is weakly compact, then Za(C, {xn}) is nonempty.

• If C is closed, then Za(C, {xn}) is closed.

• If C is convex, then Za(C, {xn}) is convex.

• Za(C, {xn}) ⊂ ∂C ∪ Za(X, {xn}).

We now give the following result, which is very useful in the study of multi-
valued mappings in Banach spaces.

Proposition 3.1.7 Let C be a nonempty closed convex bounded subset of a
uniformly convex Banach space X and {xn} a sequence in C with asymptotic
center z and asymptotic radius r. For t ∈ (0, 1), let zn = (1− t)z + txn, n ∈ N.
Then Za(C, {zn}) = z and ra(C, {zn}) = tr.

Proof. Suppose, for contradiction, that Za(C, {zn}) = v �= z. Because

‖zn − z‖ = t‖xn − z‖ for all n ∈ N, (3.3)
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it follows that

ra(C, {zn}) = inf{lim sup
n→∞

‖zn − w‖ : w ∈ C} ≤ tr.

Let ra(C, {zn}) = r′. Because the asymptotic center v of {zn} is unique, hence
from Theorem 3.1.6, we have

r′ = lim sup
n→∞

‖zn − v‖ < lim sup
n→∞

‖zn − z‖ = tr.

For each n ∈ N, we have

‖xn − v‖ = ‖v − (1− t)z − txn + (1− t)z − (1− t)xn‖
≤ ‖v − [(1− t)z + txn]‖+ (1− t)‖xn − z‖
= ‖zn − v‖+ (1− t)‖xn − z‖,

which implies that

lim sup
n→∞

‖xn − v‖ ≤ r′ + (1− t)r < r

contradicting ra(C, {xn}) = r. Thus, Za(C, {zn}) = z and from (3.3), we have
ra(C, {zn}) = tr.

We present the following result, which has important applications in the
study of fixed point theory of nonlinear mappings:

Theorem 3.1.8 Let C be a nonempty closed convex subset of a uniformly con-
vex Banach space X and {xn} a bounded sequence in C such that Za(C, {xn}) =
{z}. If {ym} is a sequence in C such that lim

m→∞ ra(ym, {xn}) = ra(C, {xn}), then
lim

m→∞ ym = z.

Proof. Suppose, for contradiction, that {ym} does not converge strongly to z.
Then there exists a subsequence {ymi

} of {ym} such that

‖ymi
− z‖ ≥ d > 0 for all i ∈ N.

By the uniform convexity of X, there exists ε > 0 such that

(ra(C, {xn}) + ε)
[
1− δX

(
d

ra(C, {xn}) + ε

)]
< ra(C, {xn}).

Because ra(z, {xn}) = ra(C, {xn}), there exists n0 ∈ N such that

‖xn − z‖ ≤ ra(C, {xn}) + ε for all n ≥ n0.

Because ra(ym, {xn}) → ra(C, {xn}) as m → ∞ and hence ra(ymi
, {xn}) →

ra(C, {xn}) as i→∞, then there exists an integer n′
0 ∈ N such that

‖xn − ymi
‖ ≤ ra(C, {xn}) + ε for all n ≥ n′

0.
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Because X is uniformly convex,∥∥∥∥xn− z + ymi

2

∥∥∥∥ ≤
[
1−δX

(
d

(ra(C, {xn}) + ε)

)]
(ra(C, {xn})+ε) < ra(C, {xn})

for all n ≥ max{n0, n
′
0}. This implies that

ra

(
z + ymi

2
, {xn}

)
< ra(C, {xn}),

which contradicts the uniqueness of the asymptotic center z.

Let C be a nonempty subset of a Banach space X. For x ∈ C, the inward
set of x relative to C is the set

IC(x) = {(1− t)x + ty : y ∈ C and t ≥ 0}.
Geometrically, it is the union of all rays beginning at x and passing through

other points of C. Let IC(x) denote the closure of IC(x). Then we have

Proposition 3.1.9 Let C be a nonempty closed convex subset of a Banach
space X. If w ∈ IC(x), then (1− t)x + tw ∈ IC(x) for all t > 0.

Proof. Because w ∈ IC(x), then there exists a sequence {wn} in IC(x) such
that

w = lim
n→∞wn and wn = (1− cn)x + cnyn, yn ∈ C, cn ≥ 0.

For t > 0, we have

(1− t)x + twn = (1− t)x + t[(1− cn)x + cnyn]
= (1− tcn)x + tcnyn ∈ IC(x),

which implies that
(1− t)x + tw ∈ IC(x).

Proposition 3.1.10 Let C be a nonempty closed convex subset of a Banach
space X. Then the following are equivalent:

(a) w ∈ IC(x).
(b) There exists b > 0 such that (1− b)x + bw ∈ IC(x).
(c) (1− b)x + bw ∈ IC(x) for all b > 0.

Proof. (a)⇒ (c). It follows from Proposition 3.1.9.
(c)⇒ (b). It is obvious.
(b)⇒ (a). Suppose that there exists b > 0 such that (1− b)x + bw ∈ IC(x).

By Proposition 3.1.9,

(1− a)x + a((1− b)x + bw) ∈ IC(x) for all a > 0.

Taking a = 1/b, we have w ∈ IC(x).
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Proposition 3.1.11 Let C be a convex subset of a normed linear space X.
Then x− y ∈ IC(x) if and only if

lim
h→0+

d(x− hy,C)/h = 0. (3.4)

Proof. Suppose that (3.4) holds. Let x ∈ C. Let ε > 0 be given. Then there
exists b ∈ (0, 1) such that

b−1d(x− by, C) <
ε

2
.

By the definition of distance, there exists u ∈ C such that

‖x− by − u‖ < d(x− by, C) +
bε

2
.

Observe that x + b−1(u− x) ∈ IC(x). Because

‖[x + b−1(u− x)]− (x− y)‖ = b−1‖u− (x− by)‖
< b−1

[
d(x− by, C) +

bε

2

]
< ε,

it follows that x− y is in the closure of IC(x).
Conversely, suppose that x− y ∈ IC(x). Then there exists a sequence {xn}

in IC(x) such that xn → x − y. Let ε > 0 be given. Then there exists n0 ∈ N

such that
‖xn − (x− y)‖ < ε for all n ≥ n0.

Observe that

h−1d(x−hy,C) ≤ h−1‖x−hy− [(1−h)x + hxn0 ]‖+ h−1d((1−h)x + hxn0 , C).

Because xn0 ∈ IC(x) and C is convex, there exists h0 > 0 such that (1−h0)x+
h0xn0 ∈ C. Thus, if 0 < h ≤ h0, h−1d((1− h)x + hxn0 , C) = 0 and

h−1d(x− hy,C) ≤ h−1‖x− hy − [(1− h)x + hxn0 ]‖
= ‖x− y − xn0‖ < ε.

Therefore, lim
h→0+

d(x− hy,C)/h = 0.

Proposition 3.1.12 Let C be a nonempty closed convex subset of a uniformly
convex Banach space X and {xn} a bounded sequence in C. If z is the asymp-
totic center of {xn} with respect to C, then it is also the asymptotic center with
respect to IC(z).

Proof. Let v be the asymptotic center of {xn} with respect to IC(z). Suppose
that v �= z. Because v �= z and C ⊆ IC(z), we have v ∈ IC(z) \ C and
ra(v, {xn}) < ra(z, {xn}) by the uniqueness of the asymptotic center
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(see Theorem 3.1.6). By the continuity of ra(·, {xn}), there exists w ∈ IC(z)\C
such that ra(w, {xn}) < ra(z, {xn}). Hence w = (1 − t)z + ty for some y ∈ C
and t > 1. Because ra(·, {xn})) is a convex functional,

ra(y, {xn}) ≤ ra(t−1w + (1− t−1)z, {xn})
≤ t−1ra(w, {xn}) + (1− t−1)ra(z, {xn})
< ra(z, {xn}),

a contradiction. Hence v = z.

Proposition 3.1.13 Let C be a nonempty closed convex subset of a reflexive
Banach space X and {xn} a bounded sequence in X. Then there exists a point
v ∈ C such that

(a) ra(v, {xn}) = inf{ra(z, {xn}) : z ∈ IC(v)}.
(b) lim inf

n→∞ 〈x−v, J(xn−v)〉 ≤ 0 for all x ∈ IC(v) if the norm of X is uniformly
Gâteaux differentiable.

Proof. (a) Set ϕ(·) = ra(·, {xn}). Observe that ϕ(·) is a continuous and convex
functional and ra(z, {xn}) → ∞ as ‖z‖ → ∞. By Theorem 2.5.8, we obtain
that Za(C, {xn}) �= ∅. Let v be an asymptotic center of {xn} with respect to
C. We now show that v is also an asymptotic center of {xn} with respect to
IC(v), i.e.,

ϕ(v) = inf{ϕ(z) : z ∈ IC(v)}.
Set r := inf{ϕ(z) : z ∈ IC(v)}. Suppose that r < ϕ(v). Now for ε > 0,
r+ε < ϕ(v). By the continuity of ϕ, there exists z ∈ IC(v) such that ϕ(z) ≤ r+ε.
Thus,

z = v + t(w − v) for some w ∈ C and t ≥ 1.

By the convexity of ϕ, we obtain

ϕ(v) ≤ ϕ(w) ≤ t−1ϕ(z) + (1− t−1)ϕ(v),

which implies that

ϕ(v) ≤ ϕ(z) ≤ r + ε,

a contradiction. This shows that r = ϕ(v).
(b) For arbitrary y ∈ IC(v) and t > 0, let zt = (1−t)v+ty. Then zt ∈ IC(v).

By Proposition 2.4.5, we have

2〈zt − v, J(xn − zt)〉 ≤ ‖xn − v‖2 − ‖xn − zt‖2,

which implies that

2t lim inf
n→∞ 〈y − v, J(xn − zt)〉 ≤ ϕ2(v)− ϕ2(zt) ≤ 0
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and hence
lim inf
n→∞ 〈y − v, J(xn − xt)〉 ≤ 0.

Because X is reflexive with uniformly Gâteaux differential norm, J is uniformly
demicontinuous on bounded subsets of X. Using the above fact and letting
t→ 0, we obtain

lim inf
n→∞ 〈y − v, J(xn − v)〉 ≤ 0 for all y ∈ IC(v).

Note that when X is separable, by a diagonalization argument, given a
bounded sequence {xn}, there exists a subsequence {xnk

} of {xn} such that
lim

k→∞
‖xnk

− z‖ exists for all z ∈ X.

In that case, we have the following.

Proposition 3.1.14 Let X be a separable reflexive Banach space with a uni-
formly Gâteaux differentiable norm, C a nonempty closed convex subset of X
and {xn} a bounded sequence in X. Then there exist a point v ∈ C and a
subsequence {xnk

} of {xn} such that

lim sup
k→∞

〈x− v, J(xnk
− v)〉 ≤ 0 for all x ∈ IC(v).

Proof. The result follows from Proposition 3.1.13.

Proposition 3.1.15 Let X be a separable reflexive Banach space with a uni-
formly Gâteaux differentiable norm and {xn} a bounded sequence in X. Then
there exist a point v ∈ X and a subsequence {xnk

} of {xn} such that {J(xnk
−v)}

converges weakly to zero.

Proof. Now for C = X, IC(v) = X. Hence J(xnk
− v) ⇀ 0 by Proposi-

tion 3.1.14.

3.2 The Opial and uniform Opial conditions

The Opial condition plays an important role in convergence of sequences and
in the study of the demiclosedness principle of nonlinear mappings and the
geometry of Banach spaces.

A Banach space X is said to satisfy the Opial condition if whenever a
sequence {xn} in X converges weakly to x0 ∈ X, then

lim inf
n→∞ ‖xn − x0‖ < lim inf

n→∞ ‖xn − x‖ for all x ∈ X, x �= x0. (3.5)

We observe that (3.5) is equivalent to the analogous condition obtained by
replacing lim inf by lim sup. Replacing the strict inequality “ < ” in (3.5)
with “ ≤ , ” we obtain the definition of the so-called non-strict (or weak) Opial
condition.
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Example 3.2.1 Every Hilbert space satisfies the Opial condition, i.e., if the
sequence {xn} in a Hilbert space H, converges weakly to x ∈ H, then

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ for all y ∈ H and y �= x.

In fact, because every weakly convergent sequence is necessarily bounded, so we
have that lim sup

n→∞
‖xn − x‖ and lim sup

n→∞
‖xn − y‖ are finite. Note

‖xn − y‖2 = ‖xn − x + x− y‖2 = ‖xn − x‖2 + ‖x− y‖2 + 2〈xn − x, x− y〉,

so that
lim sup

n→∞
‖xn − y‖2 > lim sup

n→∞
‖xn − x‖2.

The following example shows that Lp[0, 2π], 1 < p <∞ does not satisfy even
the nonstrict Opial condition for any p �= 2.

Example 3.2.2 Let f be a periodic function with period 2π defined by

f(t) =
{

1 if 0 ≤ t ≤ 4π/3;
−2 if 4π/3 < t ≤ 2π.

Set xn(t) = f(nt), n ∈ N. Then {xn} is a weakly null sequence of Rademacher-
like functions in Lp[0, 2π] for every 1 < p <∞. Define a function

λp(s) = lim
n→∞ ‖xn − s‖p =

∫ 2π

0

|f(t)− s|pdt,

where s ∈ R is treated as the constant function. Note

λ′
p(0) = −p

∫ 2π

0

|f(t)|p−1sgn(f(t))dt =
4π

3
p(2p−2 − 1),

λ′
p(0) �= 0 whenever p �= 2. It follows that λp(0) is not the minimal value of

λp, except for the case p = 2. Therefore, Lp[0, 2π] does not satisfy even the
nonstrict Opial condition for any p �= 2.

We now give necessary and sufficient condition for a space satisfying the
Opial condition.

Proposition 3.2.3 A Banach space X satisfies the Opial condition if and only
if

xn ⇀ 0 and lim inf
n→∞ ‖xn‖ = 1⇒ lim inf

n→∞ ‖xn − x‖ > 1 for all x �= 0. (3.6)

Proof. Suppose that the condition (3.6) is satisfied. Let un ⇀ u and r =
lim inf
n→∞ ‖un − u‖. If r = 0, then the Opial condition (3.5) follows from the

uniqueness of a weak limit.
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If r = lim inf
n→∞ ‖un−u‖ > 0, then xn = r−1(un−u) ⇀ 0 and lim inf

n→∞ ‖xn‖ = 1.

Hence from (3.6) we have

lim inf
n→∞ ‖xn − x‖ > 1 for x �= 0,

which implies that

lim inf
n→∞ ‖r−1(un − u)− x‖ > lim inf

n→∞ ‖r−1(un − u)‖,

i.e.,
lim inf
n→∞ ‖un − (u + rx)‖ > lim inf

n→∞ ‖un − u‖ for u �= u + rx.

Hence X satisfies the Opial condition. The inverse implication is obvious.

Proposition 3.2.4 Let X1, X2, · · · , Xk be Banach spaces with norm ‖·‖1, ‖·‖2,
· · · , ‖ · ‖k, respectively. Let p be a constant in [1,∞) and put X = X1 ×X2 ×
· · · ×Xk, where the norm of X is given by

‖(x1, x2, · · · , xk)‖ = (‖x1‖p2+‖x2‖p2+· · ·+‖xk‖pk)1/p for all (x1, x2, · · · , xk) ∈ X.

Then the following are equivalent:
(a) X has the Opial condition.
(b) Each Xj has the Opial condition.

Proof. (a) ⇒ (b). Let {xn} be a sequence in Xj such that xn ⇀ z. Then a
sequence {

(0, 0, · · · , 0, xn, 0, · · · , 0)
}

↑
jth position

in X converges weakly to

(0, 0, · · · , 0, z, 0, · · · , 0).
↑
jth position

Using this fact, one can easily see that (a) implies (b).
Conversely, let {xn} be a sequence in X such that xn ⇀ z and let w belong

to X \ {z}. Set xn := (x(1)
n , x

(2)
n , · · · , x(k)

n ) for n ∈ N, z := (z(1), z(2), · · · , z(k))
and w := (w(1), w(2), · · · , w(k)). Because {xn} is a bounded sequence, there
exists a subsequence {xni

} of {xn} such that

lim inf
n→∞ ‖xn − w‖p = lim

i→∞
‖xni

− w‖p,

and that the limit of {‖x(j)
ni − z(j)‖j} exist for all j = 1, 2, · · · , k. Because Xj

for j, 1 ≤ j ≤ k satisfies the Opial condition,

lim
i→∞

‖x(j)
ni
− z(j)‖pj ≤ lim inf

n→∞ ‖x(j)
ni
− w(j)‖pj
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and
lim

i→∞
‖x(�)

ni
− z(�)‖p� < lim inf

n→∞ ‖x(�)
ni
− w(�)‖p�

holds for some , 1 ≤  ≤ k because z �= w. Therefore, we have

lim inf
n→∞ ‖xn − z‖p ≤ lim

i→∞
‖xni

− z‖p

=
k∑

j=1

lim
i→∞

‖x(j)
ni
− z(j)‖pj

<

k∑
j=1

lim inf
n→∞ ‖x(j)

ni
− w(j)‖pj

≤ lim
i→∞

‖xni
− w‖p

= lim inf
n→∞ ‖xn − w‖p.

Therefore,

lim inf
n→∞ ‖xn − z‖ < lim inf

n→∞ ‖xn − w‖.

The following example shows that Proposition 3.2.4 is not true if the norm
of X is ‖(x1, x2, · · · , xk)‖ = max

1≤i≤k
‖x‖i.

Example 3.2.5 Let X = R× 2 with the norm

‖(a, y)‖ = max{|a|, ‖y‖2}.

Let en be the nth element of the basis of 2 and {xn = (0, en)} be a sequence in
X. Then we have

‖xn‖ = max{0, ‖en‖2} = 1 for all n ∈ N

and xn ⇀ 0 as n→∞, but for x = (1, 0), we have

‖xn − x‖ = ‖(1, en)‖ = max{1, ‖en‖2} = 1 for all n ∈ N.

Therefore, X does not satisfy the Opial condition, even though R and 2 satisfy
it.

We now consider some classes of Banach spaces that always imply the Opial
condition.

Definition 3.2.6 A Banach space X is said to have a weakly continuous duality
mapping if there exists a gauge function μ such that the duality mapping Jμ (with
gauge function μ) is single-valued and (sequentially) continuous from the weak
topology of X to the weak topology of X∗.
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Example 3.2.7 The spaces p (1 < p < ∞) possess duality mappings that are
weakly continuous. To see this, for (x1, x2, · · · , xi, · · · ) ∈ p, let

Jμ(x) = (|x1|p−1sgn(x1), |x2|p−1sgn(x2), · · · , |xi|p−1sgn(xi), · · · )

and μ(t) = tp/q, where 1/p + 1/q = 1. Note

p � (α(n)
1 , α

(n)
2 , · · · , α(n)

i , · · · ) = xn ⇀ x = (α1, α2, · · · , αi, · · · ) ∈ p

if and only if

‖xn‖p ≤M for all n ∈ N and α
(n)
i → αi as n→∞.

Observe that

Jμ(xn)=(|α(n)
1 |p−1sgn(α(n)

1 ), |α(n)
2 |p−1sgn(α(n)

2 ), · · ·,|α(n)
i |p−1sgn(α(n)

i ),· · ·)∈q,

so it follows that

‖Jμ(xn)‖q = μ(‖xn‖p) ≤ μ(M) for all n ∈ N

and
|α(n)

i |p−1sgn(α(n)
i )→ |αi|p−1sgn(αi) as n→∞.

Thus, we conclude that

q � Jμ(xn) ⇀ Jμ(x) ∈ q as n→∞.

Therefore, Jμ is a weakly continuous mapping from X = p into X∗ = q.

The following theorem gives an important characterization of Banach spaces
that possess weakly continuous mappings.

Theorem 3.2.8 Let X be a Banach space with a weakly continuous duality
mapping Jμ with function gauge μ. Then we have the following:

(a) If {xn} is a sequence in X such that xn ⇀ x, then

l̃im
n→∞Φ(‖xn − y‖) = l̃im

n→∞Φ(‖xn − x‖) + Φ(‖x− y‖) for all y ∈ X, (3.7)

where l̃im
n→∞ is either lim inf

n→∞ or lim sup
n→∞

.

(b) X has the Opial condition.

Proof. (a) Because Jμ(x) is the Gâteaux derivative of the convex functional
Φ(‖x‖) =

∫ ‖x‖
0

μ(t)dt, it follows (see Theorem 2.5.23) that

Φ(‖x + y‖) = Φ(‖x‖) +
∫ 1

0

〈y, Jμ(x + ty)〉dt for all x, y ∈ X.
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Let {xn} be a sequence in X such that xn ⇀ x and let y be an element in
C. Then Jμ(xn + ty) ⇀ Jμ(x + ty), so

l̃im
n→∞Φ(‖xn − y‖) = l̃im

n→∞Φ(‖xn − x + x− y‖)
= l̃im

n→∞Φ(‖xn − x‖)

+ l̃im
n→∞

∫ 1

0

〈x− y, Jμ(xn − x + t(x− y))〉dt

= l̃im
n→∞Φ(‖xn − x‖) +

∫ 1

0

〈x− y, Jμ(t(x− y))〉dt

= l̃im
n→∞Φ(‖xn − x‖) + ‖x− y‖

∫ 1

0

μ(t‖x− y‖)dt

= l̃im
n→∞Φ(‖xn − x‖) + Φ(‖x− y‖).

(b) Because Φ is strictly increasing, it follows from (3.7) that X has the
Opial condition.

Observation

• The duality mapping of each Hilbert space (e.g., �2 and R
n) is the identity

mapping and hence it is weakly continuous. Therefore, every Hilbert space

satisfies the Opial condition (see also Example 3.2.1).

• �p (1 < p < ∞) spaces have weakly sequentially continuous duality mappings
(and hence the Opial condition), but the Lp[0, 2π] space (1 < p < ∞, p �= 2) fails
to satisfy the Opial condition. It means that the Opial condition is independent
of uniform convexity.

The following Theorem 3.2.9 shows that weak limit of a bounded sequence
is the asymptotic center under some geometric conditions.

Theorem 3.2.9 Let X be a uniformly convex Banach space satisfying the Opial
condition and C a nonempty closed convex subset of X. If {xn} is a sequence
in C such that xn ⇀ z, then z is the asymptotic center of {xn} in C.

Proof. From Theorem 3.1.6, Za(C, {xn}) is singleton. Let Za(C, {xn}) =
{u}, u �= z. Because xn ⇀ z, by the Opial condition,

lim sup
n→∞

‖xn − z‖ < lim sup
n→∞

‖xn − u‖.

Using again Theorem 3.1.6, we obtain

lim sup
n→∞

‖xn − u‖ < lim sup
n→∞

‖xn − z‖.

Therefore, z = u.
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Corollary 3.2.10 Let X be a uniformly convex Banach space with a weakly
continuous duality mapping and C a nonempty closed convex subset of X.
If {xn} is a sequence in C such that xn ⇀ z, then z is the asymptotic center of
{xn} in C.

Corollary 3.2.11 Let C be a nonempty closed convex subset of a Hilbert space
H. Then the weak limit of a weakly convergent sequence in C coincides with its
asymptotic center with respect to C.

Remark 3.2.12 Corollary 3.2.11 is valid in all sequence spaces p (1 <
p <∞), but it does not hold in the Lebesgue spaces Lp[0, 2π] (1 < p <∞, p �= 2).

We now introduce notions of uniform Opial condition and locally uniform
Opial condition:

Definition 3.2.13 A Banach space X is said to satisfy the uniform Opial con-
dition if for each t > 0, there exists an r > 0 such that

1 + r ≤ lim inf
n→∞ ‖xn + x‖

for each x ∈ X with ‖x‖ ≥ t and each sequence {xn} in X such that xn ⇀ 0
and lim inf

n→∞ ‖xn‖ ≥ 1.

It is obvious from Proposition 3.2.3 that the uniform Opial condition implies
the Opial condition.

Definition 3.2.14 A Banach space X is said to satisfy the locally uniform
Opial condition if for any weakly null sequence {xn} in X with lim inf

n→∞ ‖xn‖ ≥ 1
and any t > 0, there is an r > 0 such that

1 + r ≤ lim inf
n→∞ ‖xn + x‖

for every x ∈ X with ‖x‖ ≥ t.

Note that

uniform Opial condition⇒ locally uniform Opial condition⇒ Opial condition.

We now define the Opial modulus of X, denoted by rX , as follows:

rX(t) = inf
{

lim inf
n→∞ ‖xn + x‖ − 1

}
,

where t ≥ 0 and the infimum is taken over all x ∈ X with ‖x‖ ≥ t and sequences
{xn} in X such that xn ⇀ 0 and lim inf

n→∞ ‖xn‖ ≥ 1.

It is obvious that rX is nondecreasing and that X satisfies the uniform Opial
condition if and only if rX(t) > 0 for all t > 0.

Note that in the definition of locally uniform Opial condition, “lim inf
n→∞ ” can

be replaced with “lim sup
n→∞

.”
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Let {xn} be a weakly null sequence in a Banach space X with lim inf
n→∞

‖xn‖ ≥ 1. We define the local Opial modulus of X as follows:

rX,xn
(t) = inf

{
lim inf
n→∞ ‖xn + x‖ − 1 : x ∈ X with ‖x‖ ≥ t

}
.

One may easily see that X has the local uniform Opial condition if

rX,xn
(t) > 0 for all t > 0

and the uniform Opial condition if

rX(t) = inf
{

rX,xn
(t) : xn ⇀ 0 with lim inf

n→∞ ‖xn‖ ≥ 1
}

> 0 for all t > 0.

We now establish fundamental properties of the Opial modulus.

Proposition 3.2.15 Let X be a Banach space with Opial modulus rX . Then

rX(t2)− rX(t1) ≤ (t2 − t1)
1 + rX(t1)

t1
for all 0 < t1 ≤ t2,

i.e., the Opial modulus rX is continuous.

Proof. Let

Gt :=
{
{xn} in X : xn ⇀ 0 and lim inf

n→∞ ‖xn‖ ≥ t

}
.

Then for 0 < t1 ≤ t2, we have

1 + rX(t2) = inf
{
lim inf
n→∞ ‖xn + x‖ :{xn}⊂X,xn ⇀ 0, lim inf

n→∞ ‖xn‖≥1, ‖x‖≥ t2

}

= inf
{

lim inf
n→∞ ‖xn +

t2
t1

x‖ : {xn} ∈ G1, ‖x‖ ≥ t1

}
.

Because t1/t2 ≤ 1, it follows that

1 + rX(t2) =
1
t1

inf{lim inf
n→∞ ‖t1xn + t2x‖ : {xn} ∈ G1, ‖x‖ ≥ t1}

=
t2
t1

inf{lim inf
n→∞ ‖zn + z‖ : {zn} ∈ G t1

t2
, ‖z‖ ≥ t1}

≤ t2
t1

inf{lim inf
n→∞ ‖zn + z‖ : {zn} ∈ G1, ‖z‖ ≥ t1}

≤ t2
t1

(
1 + rX(t1)

)
.

The following theorem allows us to estimate the Opial modulus of Banach
spaces.
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Theorem 3.2.16 Let X be a Banach space with a weakly continuous duality
mapping Jμ with gauge function μ. Then rX(t) = Φ−1(Φ(1) + Φ(t))− 1 for all
t ≥ 0.

Proof. Let {xn} be a sequence in X such that xn ⇀ 0. Then we obtain from
(3.7) that

lim inf
n→∞ Φ(‖xn + y‖) = lim inf

n→∞ Φ(‖xn‖) + Φ(‖y‖) for all y ∈ X. (3.8)

If lim inf
n→∞ ‖xn‖ ≥ 1, then

Φ(1) + Φ(‖y‖) ≤ lim inf
n→∞ Φ(‖xn‖) + Φ(‖y‖) = lim inf

n→∞ Φ(‖xn + y‖).
Thus,

Φ−1(Φ(1) + Φ(‖y‖)) ≤ lim inf
n→∞ ‖xn + y‖ for all y ∈ X,

and it follows from the definition of rX that

Φ−1(Φ(1) + Φ(t)) ≤ rX(t) + 1. (3.9)

Now, let xn ∈ SX with xn ⇀ 0 and ‖x‖ = t. Then from (3.8), we have

1 + rX(t) ≤ lim inf
n→∞ ‖xn + x‖

≤ Φ−1(Φ(1) + Φ(t)). (3.10)

Combining (3.9) and (3.10), we get

1 + rX(t) = Φ−1(Φ(1) + Φ(t)) for all t ≥ 0.

Because p (1 < p <∞) space admits a weakly continuous duality mapping
Jμ with the gauge function μ(t) = tp−1, we have

Corollary 3.2.17 Let 1 < p <∞. Then r�p
(t) = (1 + tp)1/p − 1, t ≥ 0.

Theorem 3.2.18 Let X be a Banach space. Then the following are equivalent:
(a) X has a nonstrict Opial condition.
(b) rX(t) ≥ 0 for all t > 0.

Proof. (a)⇒(b). Let {xn} be a sequence in X such that xn ⇀0 and lim inf
n→∞ ‖xn‖≥

1. Let x ∈ X such that ‖x‖ ≥ t for t > 0. Then

1 ≤ lim inf
n→∞ ‖xn‖ ≤ lim inf

n→∞ ‖xn + x‖.

Hence rX(t) ≥ 0.

(b) ⇒ (a). Let {xn} be a sequence in X such that xn ⇀ 0 and α :=
lim inf
n→∞ ‖xn‖ > 0. Let x ∈ X such that x �= 0. If lim inf

n→∞ ‖xn‖ ≤ ‖x‖, then
by w-lsc of the norm, we have

lim inf
n→∞ ‖xn‖ ≤ lim inf

n→∞ ‖xn + x‖
and hence we are done.
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If ‖x‖ ≤ lim inf
n→∞ ‖xn‖, then

1 + rX

(‖x‖
α

)
≤ lim inf

n→∞

∥∥∥∥xn

α
+

x

α

∥∥∥∥,
so

α

(
1 + rX

(‖x‖
α

))
≤ lim inf

n→∞ ‖xn + x‖. (3.11)

Because ‖x‖/α > 0, by assumption, we have rX(‖x‖/α) ≥ 0. It follows from
(3.11) that

α = lim inf
n→∞ ‖xn‖ ≤ lim inf

n→∞ ‖xn + x‖.

Hence X satisfies a nonstrict Opial condition.

Proposition 3.2.19 A Banach space X satisfies the locally uniform Opial con-
dition if and only if for any sequence {xn} in X that converges weakly to x ∈ X
and for any sequence {ym} in X,

lim sup
m→∞

(lim sup
n→∞

‖xn − ym‖) ≤ lim sup
n→∞

‖xn − x‖ implies ym → x.

Proof. Assume that X satisfies the locally uniform Opial condition. Let {xn}
be a sequence in X with xn ⇀ x ∈ X and {ym} a sequence in X such that

lim sup
m→∞

(lim sup
n→∞

‖xn − ym‖) ≤ lim sup
n→∞

‖xn − x‖. (3.12)

Set d := lim sup
n→∞

‖xn − x‖. If d = 0, then ym → x. If d > 0, there exists a sub-

sequence {xni
} of {xn} such that d = lim

i→∞
‖xni

−x‖. Suppose, for contradiction,

that {ym} does not converge to x in norm. Then there exist an ε > 0 and a
subsequence {ymj

} of {ym} such that

‖ymj
− x‖ ≥ ε for all j ∈ N.

Set zi := (xni
− x)/d. By the local uniform Opial condition of X, we have an

r > 0 such that

1 + r ≤ lim inf
i→∞

‖zi + z‖ for all z ∈ X with ‖z‖ ≥ ε

d
.

In particular, we have

lim inf
i→∞

‖xni
− ymj

‖ ≥ d(1 + r) for all j ∈ N,

which gives that

lim sup
m→∞

(lim sup
n→∞

‖xn − ym‖) ≥ d(1 + r) > d = lim sup
n→∞

‖xn − x‖,

which contradicts the inequality (3.12).
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Conversely, suppose that X does not satisfy the locally uniform Opial condi-
tion. Then there exist a sequence {xn} in X with xn ⇀ 0 and lim sup

n→∞
‖xn‖ ≥ 1,

a constant c > 0, and a sequence {ym} in X with ‖ym‖ ≥ c for all m ∈ N such
that

1 +
1
m

> lim sup
n→∞

‖xn − ym‖ for m ∈ N.

Hence
lim sup
m→∞

(lim sup
n→∞

‖xn − ym‖) ≤ 1 ≤ lim sup
n→∞

‖xn‖.

By assumption, we have ym → 0. This contradicts the fact that ‖ym‖ ≥ c for all
m ∈ N.

3.3 Normal structure

Let C be a nonempty bounded subset of a Banach space X. Then a point
x0 ∈ C is said to be

(i) a diametral point of C if

sup{‖x0 − x‖ : x ∈ C} = diam(C),

(ii) a nondiametral point of C if

sup{‖x0 − x‖ : x ∈ C} < diam(C).

A nonempty convex subset C of a Banach space X is said to have normal
structure if each convex bounded subset D of C with at least two points contains
a nondiametral point, i.e., there exists x0 ∈ D such that

sup{‖x0 − x‖ : x ∈ D} < diam(D).

Geometrically, C is said to have normal structure if for each convex bounded
subset D of C with diam(D) > 0, there exist a point x0 ∈ D and r < diam(D)
such that

D ⊆ Br[x0].

The Banach space X is said to have normal structure if every closed convex
bounded subset C of X with diam(C) > 0 has normal structure.

The following theorems state that compact convex subsets of any Banach
space and closed convex bounded subsets of a uniformly convex Banach space
have this geometric property.

Theorem 3.3.1 Every compact convex subset C of a Banach space X has
normal structure.
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Proof. Suppose, for contradiction, that C does not have normal structure. Let
D be a convex subset of C that has at least two points. Because C does not have
normal structure, all points of D are diametral. Now we construct a sequence
{xi}∞i=1 in D such that

‖xi − xj‖ = diam(D) for all i, j ∈ N, i �= j.

For this, let x1 be an arbitrary point in D. Then there exists a point x2 ∈ D
such that diam(D) = ‖x1 − x2‖. Because D is convex, there exists a point
(x1 + x2)/2 ∈ D. Next we choose a point x3 ∈ D such that

diam(D) =
∥∥∥∥x3 − x1 + x2

2

∥∥∥∥.
Proceeding in the same manner, we obtain a sequence {xn} in D such that

diam(D) =
∥∥∥∥xn+1 − x1 + x2 + · · ·+ xn

n

∥∥∥∥, n ≥ 2.

Because

diam(D) =
∥∥∥∥xn+1 − x1 + x2 + · · ·+ xn

n

∥∥∥∥
=
∥∥∥∥ (xn+1 − x1) + (xn+1 − x2) + · · ·+ (xn+1 − xn)

n

∥∥∥∥
≤ 1

n
(‖xn+1 − x1‖+ ‖xn+1 − x2‖+ · · ·+ ‖xn+1 − xn‖)

≤ diam(D),

it follows that diam(D) = ‖xn+1 − xi‖, 1 ≤ i ≤ n. This implies that the
sequence {xn} has no convergent subsequences. This contradicts the compact-
ness of C.

Corollary 3.3.2 Every finite-dimensional Banach space has normal structure.

Proof. The result easily follows from Theorem 3.3.1

Theorem 3.3.3 Every closed convex bounded subset C of a uniformly convex
Banach space X has normal structure.

Proof. Let D be a closed convex subset of C with diam(D) = d > 0. Let x1

be an arbitrary point in D. Choose a point x2 ∈ D such that ‖x1 − x2‖ ≥ d/2.
Because D is convex, (x1 + x2)/2 ∈ D. Set x0 = (x1 + x2)/2. By the uniform
convexity,

‖u‖ ≤ r, ‖v‖ ≤ r and ‖u− v‖ ≥ ε > 0⇒
∥∥∥∥u + v

2

∥∥∥∥ ≤
(

1− δX

(
ε

r

))
r.
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Hence for x ∈ D we have

‖x− x0‖ =
∥∥∥∥x− x1 + x2

2

∥∥∥∥ =
∥∥∥∥ (x− x1) + (x− x2)

2

∥∥∥∥
≤ d

(
1− δX

(
d

2d

))

= d

(
1− δX

(
1
2

))
(3.13)

< d. (as δX(1/2) > 0)

Consequently,

sup{‖x− x0‖ : x ∈ D} < diam(D).

Theorem 3.3.4 Every uniformly convex Banach space has normal structure.

Proof. It follows from Theorem 3.3.3.

The following class of Banach spaces is more general than the class of uni-
formly convex Banach spaces:

Let X be a Banach space. Given an element z ∈ SX and a constant ε ∈ [0, 2],
we define

δX(z, ε) = inf
{

1−
∥∥∥∥x + y

2

∥∥∥∥ : x, y ∈ BX , ‖x−y‖ ≥ ε, x−y = tz for some t ≥ 0
}

.

The number δX(z, ε) is called the modulus of convexity in the direction
z ∈ SX . Then Banach space X is said to be uniformly convex in every direction
if δX(z, ε) > 0 for all ε ∈ (0, 2] and z ∈ SX . It is obvious that δX(ε) =
inf{δX(z, ε) : z ∈ SX}.

Observation
• A Banach space X may be uniformly convex in every direction while failing

to be uniformly convex.

• Uniformly convex Banach spaces in every direction are always strictly convex.

• In case of a Hilbert H, δH(z, ε) = 1 −√1 − (ε/2)2 for all z ∈ SH and ε ∈ [0, 2].

The following Theorem 3.3.6 shows that a uniformly convex Banach space
in every direction has normal structure.

Proposition 3.3.5 Let X be a Banach space and C a convex bounded subset
of X with d = diam(C) > 0. Then, for ε > 0, there exists a point x0 ∈ C such
that

sup{‖x0 − x‖ : x ∈ C} ≤ d

(
1− δX

(
z,

d− ε

d

))
for some z ∈ SX .
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Proof. Given d > ε > 0, we choose x1, x2 ∈ C such that ‖x1−x2‖ ≥ d− ε. Set
x0 := (x1 +x2)/2 and z := (x1−x2)/‖x1−x2‖. Note ‖x−x1‖ ≤ d, ‖x−x2‖ ≤ d
and (x− x1)− (x− x2) = x1 − x2 = z‖x1 − x2‖. Hence

‖x− x0‖ =
∥∥∥∥x− x1 + x2

2

∥∥∥∥ ≤ d

(
1− δX

(
z,

d− ε

d

))
.

Theorem 3.3.6 Let X be a uniformly convex Banach space in every direction.
Then X has normal structure.

Proof. Because X is uniformly convex in every direction, δX(z, ε) > 0 for all
z ∈ X and ε > 0. It follows from Proposition 3.3.5 and the continuity of δX(z, ε)
that X has normal structure.

Example 3.3.7 The space C[0, 1] of continuous real-valued functions with “sup”
norm does not have normal structure. To see it, consider the subset C of
X = C[0, 1] defined by

C = {f ∈ C[0, 1] : 0 = f(0) ≤ f(t) ≤ f(1) = 1, t ∈ [0, 1]}.

Let f1, f2 ∈ C and λ ∈ [0, 1] and f = λf1 + (1− λ)f2. Then f(0) = 0, f(1) = 1
and 0 ≤ f(t) ≤ 1 for all t ∈ [0, 1]. Hence C is convex. Thus, C is a closed
convex bounded subset of X with diam (C) = sup{‖f −g‖ : f, g ∈ C} = 1. Then
each point of C is a diametral point. In fact, for f0 ∈ C

sup{‖f0 − f‖ : f ∈ C} = 1 = diam(C).

Therefore, C does not have normal structure.

The following notion plays an important role in the study of normal struc-
ture.

A bounded sequence {xn} in a Banach space is said to be a diametral
sequence if

lim
n→∞ d(xn+1, co({x1, x2, · · · , xn})) = diam({xn}),

where d(x,A) = inf
y∈A

d(x, y).

Remark 3.3.8 Any subsequence of a diametral sequence is also diametral.

The following result gives an important fact relating normal structure and
nondiametral sequence.

Proposition 3.3.9 A convex bounded subset C of a Banach space X has
normal structure if and only if it does not contain a diametral sequence.
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Proof. Suppose C contains a diametral sequence {xn}. Then the set
C0 = co({xn}) is a convex subset of C and each point of C0 is a diametral
point. Thus, C fails to have normal structure.

Conversely, suppose that C contains a convex subset D with
d = diam(D) > 0 and each point of D is a diametral point. By induction,
we construct a sequence {xn} in D such that

y0 = x1,

yn−1 =
n∑

i=1

xi

n
.

Because yn−1 is a diametral point in D, then for 0 < ε < d, there exists an
xn+1 ∈ D such that

‖xn+1 − yn−1‖ > d− ε

n2
.

Suppose x ∈ co({x1, x2, · · · , xn}), say x =
∑n

i=1 λixi, where λi ≥ 0 and∑n
i=1 λi = 1.
Set 0 < λ := max{λ1, λ2, · · · , λn}. Then

1
n

(
1− λi

λ

)
≥ 0 and

1
nλ

+
1
n

n∑
i=1

(
1− λi

λ

)
= 1.

Hence

1
nλ

x +
1
n

n∑
i=1

(
1− λi

λ

)
xi =

1
nλ

x +
1
n

n∑
i=1

xi − 1
λn

n∑
i=1

λixi = yn−1.

Observe that

d− ε

n2
< ‖xn+1 − yn−1‖

= ‖ 1
nλ

(xn+1 − x) +
1
n

n∑
i=1

(
1− λi

λ

)
(xn+1 − xi)‖

≤ 1
nλ
‖xn+1 − x‖+

1
n

n∑
i=1

(
1− λi

λ

)
‖xn+1 − xi‖

≤ 1
nλ
‖xn+1 − x‖+

(
1− 1

nλ

)
d.

Hence

‖xn+1 − x‖ ≥ nλ

(
d− ε

n2
−
(

1− 1
nλ

)
d

)

= nλ

(
d

nλ
− ε

n2

)

= d− ελ

n

≥ d− ε

n
,
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and it follows that

dist (xn+1, co({x1, x2, · · · , xn})) ≥ d− ε

n
.

Now ε is an arbitrary constant, so therefore, {xn} is a diametral sequence
in D.

Example 3.3.10 In the space 1, the basis vectors {en} form a diametral
sequence. Hence 1 does not have normal structure.

Theorem 3.3.11 Let X be a reflexive Banach space with the Opial condition.
Then X has normal structure.

Proof. Suppose, for contradiction, that X fails to have normal structure. Then
X contains a diametral sequence {xn} that may converge weakly to 0. Because
{xn} is diametral sequence, by the definition

lim
n→∞ d(xn+1, co({x1, x2, · · · , xn})) = diam({xn}).

In particular, lim
n→∞ ‖xn − y‖ = diam({xn}) if y ∈ co({x1, x2, · · · }) and lim

n→∞
‖xn − y‖ = diam({xn}) if y ∈ co({x1, x2, · · · }). Taking y = 0, we obtain

lim
n→∞ ‖xn‖ = diam({xn}).

Because also
lim

n→∞ ‖xn − x1‖ = diam({xn}),

this contradicts the Opial condition.

Many spaces satisfy a stronger property than normal structure.

Definition 3.3.12 A nonempty convex subset C of a Banach space is said to
have uniformly normal structure if there exists a constant α ∈ (0, 1), indepen-
dent of C, such that each closed convex bounded subset D of C with diam(D) > 0
contains a point x0 ∈ C such that

sup{‖x0 − x‖ : x ∈ D} ≤ α diam(D).

Theorem 3.3.13 Every uniformly convex Banach space X has uniformly
normal structure.

Proof. For a closed convex bounded subset C of X with d = diam(C) > 0
from (3.13), there exists a point x0 ∈ C such that

‖x− x0‖ ≤
(

1− δX

(
1
2

))
d.

This implies that

sup{‖x− x0‖ : x ∈ C} ≤ α diam(C),

where α = 1− δX(1/2) < 1. Therefore, X has uniformly normal structure.
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Let C be a nonempty bounded subset of a Banach space X. We adopt the
following notations:

rx(C) = sup{‖x− y‖ : y ∈ C}, x ∈ C;
r(C) = inf{rx(C) : x ∈ C} = inf{sup

y∈C
‖x− y‖ : x ∈ C};

Z(C) = {x ∈ C : rx(C) = r(C)};
rX(C) = inf{rx(C) : x ∈ X}.

The number r(C) is called the Chebyshev radius of C and the set Z(C) is called
the Chebyshev center of C. Note that for any x ∈ C

r(C) ≤ rx(C) ≤ diam(C).

Clearly, a point x0 ∈ C is a diametral (nondiametral) point if rx0(C) =
diam(C) (rx0(C) < diam(C)). Thus, set C has normal structure if

r(C) < diam(C)

and uniformly normal structure if there exists a constant α ∈ (0, 1), independent
of C, such that

r(C) ≤ α diam(C).

The set C is called diametral if it consists only of diametral points, i.e.,

rx(C) = diam(C) for all x ∈ C,

equivalently

Z(C) = {x ∈ C : rx(C) = diam(C) = r(C)}.

Observation
• The set Z(C) may be empty.

• The set C is diametral if r(C) = diam(C).

• 1
2
diam(C) ≤ rX(C) ≤ r(C) ≤ diam(C).

• co(C) = ∩{Brx(C)(x) : x ∈ C}.
• sup{‖x0 − x‖ : x ∈ C} = sup{‖x0 − y‖ : y ∈ co(C)}, x0 ∈ C.

• r(co(C)) ≤ r(C).

• diam(C) = diam(co(C)).

The following result gives an essential condition for the existence of
Chebyshev centers.

Proposition 3.3.14 Let C be a weakly compact convex subset of a Banach
space X. Then Z(C) is a nonempty closed convex subset of C.
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Proof. For x ∈ C, set

Cn(x) := Br(C)+ 1
n
[x] =
{

y ∈ C : ‖x− y‖ ≤ r(C) +
1
n

}
, n ∈ N.

Then Cn(x) is a nonempty closed convex subset of C and hence Cn =
⋂

x∈C Cn(x)
is a nonempty closed convex subset of C and Cn+1 ⊂ Cn for all n ∈ N. Because
C is weakly compact, it follows that Z(C) =

⋂
n∈N

Cn �= ∅.
Proposition 3.3.15 Let X be a Banach space and C a weakly compact convex
subset of X with diam(C) > 0. Suppose C has normal structure. Then

diam(Z(C)) < diam(C).

Proof. Because C has normal structure, there exists at least one nondiametral
point x0 ∈ C, i.e.,

rx0(C) = sup{‖x0 − x‖ : x ∈ C} < diam(C).

Let u and v be any two points of Z(C). Then ru(C) = rv(C) = r(C). Because

‖u− v‖ ≤ sup{‖u− x‖ : x ∈ Z(C)} ≤ r(C) ≤ rx0(C) < diam(C),

it follows that
diam(Z(C)) < diam(C).

3.4 Normal structure coefficient

Let X be a Banach space. Then the number N(X) is said to be the normal
structure coefficient if

N(X) = inf
{

diam(C)
r(C)

}
,

where the infimum is taken over all closed convex bounded subsets C of X with
diam(C) > 0.

It is clear that N(X) ≥ 1 and N(X) > 1 if and only if X has uniformly
normal structure.

Example 3.4.1 For a Hilbert space H, N(H) =
√

2. Indeed, let C be the
positive part of the unit ball BH in a Hilbert space H = 2, i.e.,

C = {x = {xi} : ‖x‖ ≤ 1 and xi ≥ 0, i = 1, 2, · · · }.
Then r(C) = inf{sup

y∈C
‖x − y‖ : x ∈ C} = 1 and diam(C) =

√
2. Hence

diam(C) ≥ √2 r(C).

We now give some important properties of the normal structure coefficient.
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Theorem 3.4.2 Let X be a Banach space. Then

N(X) ≥ 1
1− δX(1)

. (3.14)

Proof. Let C be a closed convex bounded subset of X with d = diam (C) > 0
and let d > ε > 0. Choose x and y in C such that ‖x− y‖ ≥ d− ε. Let u be an
element in C and v = (x + y)/2 ∈ C such that

‖u− v‖ ≥ rv(C)− ε.

By the definition of δX ,

‖u− v‖ =
∥∥∥∥u− x + u− y

2

∥∥∥∥ ≤ d

(
1− δX

(
d− ε

d

))

and by the definition rv(C),

r(C) ≤ rv(C) ≤ ‖u− v‖+ ε.

Thus,

r(C) ≤
(

1− δX

(
d− ε

d

))
diam (C) + ε.

Hence by continuity of δX , we have

r(C) ≤ (1− δX(1))diam(C).

Therefore, we get the desired result.

Remark 3.4.3 For the Hilbert space H, δH(ε) = 1 − (1 − (ε2/4))1/2, which
gives N(H) ≥ 4/

√
3, i.e., the estimate (3.14) is not sharp.

Before giving an important example, we observe that the property “uni-
formly normal structure” is stable under small norm perturbations.

Theorem 3.4.4 Let X be a Banach space and let X1 = (X, ‖ · ‖′) and X2 =
(X, ‖ · ‖′′), where ‖ · ‖′ and ‖ · ‖′′ are two equivalent norms on X satisfying for
α, β > 0,

α‖x‖′ ≤ ‖x‖′′ ≤ β‖x‖′, x ∈ X.

If k = β/α, then
k−1N(X1) ≤ N(X2) ≤ kN(X1).

Proof. Note for a nonempty bounded convex subset C of X,

α diam‖·‖′(C) ≤ diam‖·‖′′(C) ≤ β diam‖·‖′(C).

Hence the result follows from the definition of N(X).

The following example shows that a uniformly convex Banach space (Hilbert
space) has an equivalent norm that fails to have normal structure.
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Example 3.4.5 Let X1 = 2 and let Xλ, λ > 1 denote the space obtained by
renorming the Hilbert space (2, ‖ · ‖) as follows:

For x = (x1, x2, · · · ) ∈ 2, set

‖x‖λ : = max
{
‖x‖∞, λ−1‖x‖

}
= max

{
max
i∈N

|xi|, λ−1

( ∞∑
i=1

x2
i

)1/2}
.

Because
λ−1‖x‖ ≤ ‖x‖λ ≤ ‖x‖,

it means that all the norms ‖ · ‖λ are equivalent to norm ‖ · ‖. However the
spaces (Xλ, ‖ · ‖λ), λ > 1 are not uniformly convex. A simple calculation shows
that

ε0(Xλ) =
{

2(λ2 − 1)1/2 for λ ≤ √2,

2 for λ ≥ √2.

Then we have the following:

(i) ε0(X√
5/2) = 1.

(ii) For λ =
√

2, ε0(Xλ) = 2 and N(Xλ) = 1, i.e., Xλ fails to have normal
structure, because the set C ⊂ X√

2 defined by

C =
{

x = {xi} :
∞∑

i=1

x2
i ≤ 1 and xi ≥ 0, i = 1, 2, · · ·

}

satisfies r(C) = diam(C) = 1 with respect to the X√
2 norm.

Let us now check the validity of Theorem 3.3.13 for uniformly smooth Banach
spaces. To do so, we introduce the notion of super-reflexivity.

Let X and Y be two Banach spaces. We say that Y is finitely representable
in X if for every λ > 0, every finite-dimensional subspace Y0 of Y , there
exist a finite-dimensional subspace X0 of X with dim(X0) = dim(Y0) and an
isomorphism T : Y0 → X0 such that

‖T‖ ‖T−1‖ ≤ 1 + λ.

This property can be expressed in terms of the Banach-Mazur distance, which
is defined as follows: The Banach-Mazur distance between two Banach spaces
X and Y is denoted by d(X,Y ) and is defined by

d(X,Y ) = inf{‖T‖‖T−1‖ : T is an isomorphism from X onto Y}.
Thus, Y is finitely representable in X if for any ε ∈ (0, 1) and any finite-

dimensional subspace Y0 of Y , there exists a subspace X0 of X such that
dim(X0) = dim(Y0) and d(X0, Y0) ≤ 1 + ε.
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Observation

• The Banach space X is finitely representable in itself.

• The relation finite representability is transitive: If a Banach space X is finitely

representable in a Banach space Y and if the Banach space Y is finitely repre-

sentable in another Banach space Z, then X is finitely representable in Z.

We now define the “super-P” property of Banach spaces.

Definition 3.4.6 Let P be a property defined for Banach spaces. Then a
Banach space X is said to have super-P if every Banach space finitely rep-
resentable in X has the property P.

Remark 3.4.7 Every Banach space is finitely representable in itself, so it follows
that if X has super-P for any P, then X has P.

Now we are in a position to define super-reflexivity of Banach spaces.

Definition 3.4.8 A Banach space X is said to be super-reflexive if every
Banach space Y that is finitely representable in X is itself reflexive.

Thus, any super-reflexive Banach space is necessarily reflexive (by
Remark 3.4.7).

For uniform convexity of a Banach space, we have the following:

Theorem 3.4.9 Let X and Y be two Banach spaces with respective moduli of
convexity δX and δY , and suppose Y is finitely representable in X. Then for
each ε ∈ [0, 2), δX(ε) ≤ δY (ε).

Proof. Let ε > 0 and let x, y ∈ Y with x, y ∈ SY and ‖x − y‖Y ≥ ε. Suppose
λ > 0 and let T be an isomorphism of span{x, y} onto some two-dimensional
subspace X0 of X that satisfies

‖T‖ ≤ 1 + λ and ‖T−1‖ = 1.

Set x′ := Tx and y′ := Ty. Then

‖x′‖X , ‖y′‖X ≤ 1 + λ and ‖x′ − y′‖X = ‖Tx− Ty‖X ≥ ‖x− y‖Y ≥ ε.

By the definition of δX , we have∥∥∥∥12
(

x′

1 + λ
+

y′

1 + λ

)∥∥∥∥
X

≤ 1− δX

(
ε

1 + λ

)
.

By the continuity of δX , we obtain∥∥∥∥x′ + y′

2

∥∥∥∥ ≤ 1− δX(ε).

Because ‖T−1‖ = 1, it follows that∥∥∥∥x + y

2

∥∥∥∥
Y

=
∥∥∥∥T−1

(
x′ + y′

2

)∥∥∥∥
Y

≤
∥∥∥∥x′ + y′

2

∥∥∥∥
X

.

Therefore, by the definition of δY , we conclude that δY (ε) ≤ δX(ε).
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Corollary 3.4.10 Let X be a Banach space. If Y is finitely representable in
X, then ε0(Y ) ≤ ε0(X).

Corollary 3.4.11 Let X be a uniformly convex Banach space. If a Banach
space Y is finitely representable in X, then Y is uniformly convex.

Corollary 3.4.12 Every uniformly convex Banach space is super-reflexive.

Proof. Because every uniformly convex Banach space is reflexive, it follows
from Corollary 3.4.11 that every uniformly convex space is super-reflexive.

We now discuss the super-property by ultrapower of Banach spaces:

Because the ultrapower {X}U of a Banach space X is finitely representable
in X (see Proposition A.3.10 of Appendix A), we have:

If P is a Banach space property that is inherited by subspaces, then a Banach
space X has super-P if and only if every ultrapower of X has P.

Thus, we have a link between moduli of convexity and smoothness concepts
and ultrapowers:

Let {X}U be an ultrapower of a Banach space X. Then

δX(·) = δ{X}U (·) and ρX(·) = ρ{X}U (·).

Consequently,

ε0(X) = ε0({X}U ) and ρ′X(0) = ρ′{X}U (0).

Theorem 3.4.13 Let X be a Banach space with modulus of smoothness ρX .
If ρ′X(0) < 1/2, then X is super-reflexive and has normal structure.

Proof. Suppose, for contradiction, that X is not super-reflexive. Then for any
θ < 1, there exist x, y ∈ BX and j1, j2 ∈ BX∗ such that

〈y, j1〉 = 〈x, j1〉 = 〈x, j2〉 = θ and 〈y, j2〉 = 0.

Hence for all t > 0:

ρX(t) ≥ 1
2
(‖x + ty‖+ ‖x− ty‖)− 1

≥ 1
2
(〈x + ty, j1〉+ 〈x− ty, j2〉)− 1

= θ(1 +
t

2
)− 1.

Because θ < 1 is arbitrary, ρX(t) ≥ t/2, a contradiction.
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Again suppose, for contradiction, that X does not have normal structure.
Then there exists a sequence {xn} in BX such that

xn ⇀ 0, lim
n→∞ ‖xn‖ = 1 and diam({xn}) ≤ 1.

Consider a sequence {jn} in SX∗ such that 〈xn, jn〉 = ‖xn‖, n ∈ N. Because
X∗ is reflexive, we may assume that {jn} converges weakly to j ∈ X∗. Select
i ∈ N such that |〈xi, j〉| < ε

2 while ‖xn‖ > 1 − ε for all n ≥ i. Then for k > i
sufficiently large,

〈xi, jk − j〉 <
ε

2
and |〈xk, ji〉| < ε.

Consequently, |〈xi, jk〉| < ε. For all t ∈ (0, 1), we have

ρX(t) ≥ 1
2
(‖xi − xk + txi‖+ ‖xi − xk − txi‖)− 1

≥ 1
2
(|〈(1 + t)xi − xk, ji〉|+ |〈xk − (1− t)xi, jk〉|)− 1

≥ 1
2
((1 + t)(1− ε)− ε + 1− ε− (1− t)ε)− 1

=
t

2
− 2ε.

Because ε > 0 is arbitrary, ρX(t) ≥ t/2, and it follows that ρ′X(0) ≥ 1/2, a

contradiction to the hypothesis ρ′X(0) < 1/2.

Theorem 3.4.14 Let X be a Banach space with ρ′X(0) < 1/2. Then X has
uniformly normal structure.

Proof. Note X has normal structure by Theorem 3.4.13. Suppose, for con-
tradiction, that it is not uniform. Then there exists a sequence {Cn} of closed
convex bounded sets of X, each containing 0 and having diameter 1, for which
lim

n→∞ r(Cn) = 1, where r(Cn) = inf{rx(Cn) : x ∈ Cn}. Define the set C ⊂ {X}U
by

C = {Cn}U = {x ∈ {X}U : x = {xn}U , xn ∈ Cn}.
Then C is a closed convex set in {X}U with diam(C) = 1. Moreover, for any
x = {xn}U ∈ C, there exists y = {yn}U ∈ C such that lim

n→∞ ‖xn − yn‖ = 1, and

it means that ‖x−y‖U = 1 and C is diametral. Because ρ′X(0) = ρ′{X}U (0) < 1
2 ,

it follows that {X}U has normal structure. This is a contradiction.

Corollary 3.4.15 Let X be a uniformly smooth Banach space. Then X has
uniformly normal structure.

We call a subsequence {yn} a c-subsequence of the sequence {xn} of a Banach
space X if there exists a sequence of integers 1 = p1 ≤ q1 < p2 ≤ q2 < · · · and
scalars αi ≥ 0 such that, for each n ∈ N,

yn =
qn∑

i=pn

αixi,

qn∑
i=pn

αi = 1.
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Theorem 3.4.16 Every Banach space with a uniformly normal structure is
reflexive.

Proof. Let X be a Banach space with a uniformly normal structure. Let {Cn}
be a decreasing sequence of nonempty closed convex bounded subsets of X. We
need to show that ∩n∈NCn �= ∅. For each n ∈ N, choose xn ∈ Cn. Then for
each ε > 0, there exists a c-subsequence {yn} of {xn} with ‖ym − yn‖ < ε for
each m,n. Suppose this is not true for some ε > 0. Let Bm = {xn}∞n=m. Then
there exist h, 0 < h < 1 and y′

1 ∈ co(B1) such that

sup{‖y′
1 − y‖ : y ∈ co(B1)} ≤ h diam(B1).

Suppose that 0 < h < h1 < 1. Then there exists y1 ∈ co(B1) such that

sup{‖y1 − y‖ : y ∈ co(B1)} ≤ h1 diam(B1).

Because y1 is a finite linear combination of members of B1, there exists a
c-subsequence {yn} of {xn} such that

sup{‖yn − y‖ : y ∈ co(Bpn
)} ≤ h1 diam(Bpn

) ≤ h1 diam(B1),

and it follows that diam({yn}) ≤ h1diam(B1).
By repeating the argument, there exists a successive c-subsequence with

diameter less than or equal to h2
1 diam(B1). We need only repeat the argument

a sufficient number k of times with hk
1 diam(B1) < ε to obtain a contradiction.

Next by the diagonal method, there exists a c-subsequence of {xn} that is
norm Cauchy, and hence convergent to some y. Therefore, y ∈ ∩n∈NCn.

We now give the following constants for bounded sequences in Banach spaces
that are very useful to define various geometric coefficients:

Definition 3.4.17 Let {xn} be a bounded sequence in a Banach space X. Then

(1) the real number

diam({xn}) := sup{‖xm − xn‖ : m,n ∈ N}
is called the diameter of the sequence {xn},

(2) the real number

diama({xn}) := lim
n→∞(sup{‖xi − xj‖ : i, j ≥ n})

is called the asymptotic diameter of the sequence {xn},
(3) the real number

ra({xn}) := inf{ra(y, {xn}) : y ∈ co({xn}n∈N)}
is called the asymptotic radius of the sequence {xn} with respect to
co({xn}n∈N),
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(4) the real number

sep({xn}) := inf{‖xm − xn‖ : m �= n}
is called the separation of the sequence {xn}.

For a bounded sequence {xn} in a Banach space X, we set

D[{xn}] := lim sup
m→∞

(lim sup
n→∞

‖xm − xn‖).

It can be easily seen that D[{xn}] ≤ diama({xn}).
The following example shows that D[{xn}] �= diama({xn}) in general.

Example 3.4.18 Let J be the James quasi-reflexive space, consisting of all real
sequences x := {xn} =

∑∞
n=1 xnen for which

lim
n→∞xn = 0, en = (0, 0, · · · , 1, 0, · · · ) and ‖x‖J <∞,

↑
nth position

where

‖x‖J =sup{[(xp1 − xp2)
2+(xp2 − xp3)

2+· · ·+(xpm−1 − xpm
)2+(xpm

−xp1)
2]1/2}

and the supremum is taken over all choices of m and p1 < p2 < · · · < pm. Then
J is a Banach space with the norm ‖ · ‖J . Consider the sequence {xn} defined
by

xn = en − en+1, n ∈ N.

Then xn ∈ J and ‖xn‖J =
√

6 for all n ∈ N. We now show that

D[{xn}] < diama({xn}).
Note ‖xm − xn‖J = 2

√
3 for each fixed n ∈ N and for all m ≥ n + 3, and hence

D[{xn}] = lim sup
m→∞

(lim sup
n→∞

‖xm − xn‖J ) = 2
√

3.

On the other hand, for each k ∈ N, if we take n = k, m = n + 1 ≥ k, then

‖xm − xn‖J = 2
√

5

and hence

sup{‖xm − xn‖J : m,n ≥ k} = 2
√

5 for each k ∈ N,

which implies that diama({xn}) = 2
√

5. Therefore,

D[{xn}] = 2
√

3 < 2
√

5 = diama({xn}).
Remark 3.4.19 For each bounded sequence {xn} in a Banach space X, we
have

ra({xn}) ≤ D[{xn}] ≤ diama({xn}) ≤ diam({xn}).



3.4. Normal structure coefficient 161

A different form of uniformly normal structure coefficient N(X) is defined
by

N(X) = inf
{

diama({xn})
ra({xn}) : {xn} is a bounded sequence

which is not norm convergent
}

.

We now prove an interesting result concerning the uniformly normal struc-
ture coefficient N(X).

Theorem 3.4.20 Let X be a Banach with Ñ(X) = N(X)−1 < 1. Then, for
every bounded sequence {xn} in X, there exists a point z ∈ co({xn}) such that

(a) for every y ∈ X, ‖z − y‖ ≤ ra(y, {xn}),
(b) ra(z, {xn}) ≤ Ñ(X) diama({xn}).

Proof. (a) For each k ∈ N, set Ak := co({xn}∞n=k) and A := ∩k∈NAk. Observe
that any point z ∈ A satisfies (a). In fact, z ∈ Ak for each k ∈ N, and hence

‖z − y‖ ≤ sup{‖x− y‖ : x ∈ Ak} for all y ∈ X,

which implies that

‖z − y‖ ≤ lim
k→∞

ry(Ak) = ra(y, {xn}).

(b) The reflexivity X implies that each Ak is weakly compact. Hence the sets
A, Za(Ak, {xn}) and Za(A, {xn}) are all nonempty. For each k, choose zk in
Za(Ak, {xn}) and consider a weakly convergent subsequence {zki

} of {zk} such
that zki

⇀ z. Because z ∈ co({zki
}∞i=j) ⊂ Akj

for any j, by the monotonicity
of the sequence {Ak}, we obtain that z ∈ ∩∞

j=1Akj
= A. Note ra(zk, {xn}) is

a monotonic nondecreasing sequence that has ra(A, {xn}) as an upper bound.
Moreover, because ra(·, {xn}) is weakly lower semicontinuous, we have

lim
k→∞

ra(zk, {xn}) = lim
j→∞

ra(zkj
, {xn})

≥ ra(z, {xn})
≥ ra(A, {xn}).

Hence
lim

k→∞
ra(zk, {xn}) = ra(z, {xn}) = ra(A, {xn}).

Note, for any k,

ra(zk, {xn})= ra(zk, {xn}∞n=k) ≤Ñ(X) diama({xn}∞n=k)=Ñ(X) diama({xn}).
Therefore,

ra(z, {xn}) ≤ Ñ(X) diama({xn}).
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3.5 Weak normal structure coefficient

A Banach space X is said to have weak normal structure if every weakly compact
convex subset C of X with more than one point contains a nondiametral point,
that is, an x0 ∈ C for which

sup{‖x0 − y‖ : y ∈ C} < diam(C).

Every Banach space that has normal structure also has weak normal struc-
ture, but the converse is not true. For reflexive Banach spaces, these properties
are equivalent.

Example 3.5.1 The space 1 does not have normal structure. Because weak
compactness coincides with compactness in 1, it follows that 1 does have weak
normal structure.

Let X be a Banach space. Then the number WCS(X) is said to be weak
normal structure coefficient or weakly convergent sequence coefficient if

WCS(X) = inf
{

diam(C)
r(C)

: C is weakly compact convex subset of X

with diam(C) > 0
}

= inf
{

diama({xn})
ra({xn}) : {xn} is a weakly convergent sequence

which is not norm convergent
}

,

where ra({xn}) = inf{ra(x, {xn}) : x ∈ co({xn}) is the asymptotic radius of
{xn} relative to co({xn})}.

Observation

• WCS(X) ≥ 1, as r(C) ≤ diam(C).

• A Banach space X has weak uniformly normal structure if WCS(X) > 1.

• If WCS(X) > 1, then X has weak normal structure.

We now give a sharp expression for WCS(X) in terms of D[{xn})].
We begin with the following lemmas:

Proposition 3.5.2 Let {yn} and {zn} be two sequences in a Banach space X
such that α = lim

n→∞ ‖yn‖ �= 0 and zn = yn/‖yn‖. Then D[{zn}] = D[{yn}]/α.
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Proof. For m,n ∈ N, we have

‖zm − zn‖ =
∥∥∥∥ ym

‖ym‖ −
yn

‖yn‖
∥∥∥∥

=
∥∥∥∥ ym

‖ym‖ −
ym

α
+

ym

α
− yn

α
+

yn

α
− yn

‖yn‖
∥∥∥∥

≤ ‖ym‖
∣∣∣∣ 1
‖ym‖ −

1
α

∣∣∣∣+ 1
α
‖ym − yn‖+ ‖yn‖

∣∣∣∣ 1α − 1
‖yn‖

∣∣∣∣∣.
Hence

D[{zn}] = lim sup
m→∞

(lim sup
n→∞

‖zm − zn‖)

≤ lim sup
m→∞

(‖ym‖
∣∣∣∣ 1
‖ym‖ −

1
α

∣∣∣∣+ 1
α

lim sup
n→∞

‖ym − yn‖)

=
1
α

lim sup
m→∞

(lim sup
n→∞

‖ym − yn‖) =
1
α

D[{yn})].

Similarly, we can obtain
1
α

D[{yn}] ≤ D[{zn}]

Therefore, D[{zn}] = D[{yn}]/α.

Proposition 3.5.3 Let X be a Banach space and M > 0. Then the following
are equivalent:

(a) M lim sup
n→∞

‖xn − x‖ ≤ diama({xn}) for any xn ⇀ x (not strongly con-

vergent).
(b) M lim sup

n→∞
‖yn− y‖ ≤ D[{yn}] for any yn ⇀ y (not strongly convergent).

Proof. (b) ⇒ (a). Because D[{xn}] ≤ diama({xn}), it is obvious that (b) ⇒
(a).

(a) ⇒ (b). Let xn ⇀ x (not strongly convergent) and α := lim sup
n→∞

‖xn − x‖ �= 0. Then we can choose a subsequence {xm} of {xn} such that
α := lim

m→∞ ‖xm − x‖. Set zm := (xm − x)/α. Then zm ⇀ 0 and ‖zm‖ = 1, by

using the diagonal method, we can choose a subsequence {zmi
} of {zm} such

that lim
i,j→∞,i =j

‖zmi
− zmj

‖ exists. From (a), we have

M = M lim
i→∞

‖zmi
‖

≤ diama({zmi
}) = D[{zmi

}]
≤ D[{zm}] =

1
α

D[{xm}] (by Proposition 3.5.2)

≤ 1
α

D[{xn}],
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and it follows that

M lim sup
n→∞

‖xn − x‖ = Mα ≤ D[{xn}].

We are now able to give an expression for WCS(X) in terms of D[{xn}].

Theorem 3.5.4 Let X be a Banach space. Then

WCS(X) = sup{M > 0 : xn ⇀ u⇒M lim sup
n→∞

‖xn − u‖ ≤ D[{xn}]}.

Proof. The result follows from Proposition 3.5.3.

We now establish a relation between the Opial modulus and weak normal
structure coefficient of a Banach space.

Theorem 3.5.5 Let X be a Banach space with the Opial modulus rX . Then

WCS(X) ≥ 1 + rX(1).

Proof. Let {xn} be a sequence in X such that xn ⇀ x ∈ X. Set b :=
ra(x, {xn}) = lim sup

n→∞
‖xn−x‖. Without loss of generality, we may assume that

b > 0 and lim
n→∞ ‖xn − x‖ exists. Otherwise, we can consider a sequence {xni

}
of {xn} such that

lim sup
n→∞

‖xn − x‖ = lim
i→∞

‖xni
− x‖.

Set zn := (xn − x)/b. From the definition of rX , we get

1 + rX(t) ≤ lim inf
n→∞ ‖zn + y‖ for all y ∈ X with ‖y‖ ≥ t.

In particular for y = (x− xm)/b and t = ‖y‖, we have

1 + rX

(‖x− xm‖
b

)
≤ lim inf

n→∞
‖xn − xm‖

b
≤ lim sup

n→∞
‖xn − xm‖

b
.

It follows that
b(1 + rX(1)) ≤ D[{xn}].

Therefore, WCS(X) ≥ 1 + rX(1).

Theorem 3.5.6 Let X be Banach space with the Opial modulus rX .
If rX(1) > 0, then WCS(X) > 1, i.e., X has weak uniformly normal struc-
ture.

Proof. The result follows from the fact that WCS(X) ≥ 1 + rX(1).
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3.6 Maluta constant

Let X be a Banach space. Then the number D(X) is called the Maluta constant
if

D(X) = sup
{ lim sup

n→∞
d(xn+1, co({xi}ni=1))

diam({xn})
}

,

where the supremum is taken over are all nonconstant bounded sequences in X.

The following result shows that D(X) can be defined in several ways.

Proposition 3.6.1 Let X be a Banach space. Then we have the following:

(a) D(X) = sup
{ lim inf

n→∞ d(xn+1, co({xi}ni=1))
diam({xn}) : {xn} ⊂ X

}
.

(b) If X is reflexive, then

D(X) = sup
{ lim sup

n→∞
d(xn+1, co({xi}ni=1))

diam({xn}) : {xn} a weakly convergent

sequence in X

}
.

(c) D(X) = sup
{ lim sup

n→∞
d(xn+1, co({xi}ni=1))

diama({xn}) : {xn} a nonconvergent

sequence in X

}
.

(d) If X is an infinite-dimensional reflexive space, then

D(X) = sup
{ lim sup

n→∞
d(xn+1, co({xi}ni=1))

diama({xn}) : {xn} a weakly, but not strongly

convergent sequence in X

}
.

Proof. (a) Let {xn} be a sequence in X and set α := lim sup
n→∞

d(xn, co({xi}n−1
i=1 )).

Then for a subsequence {xnk
} of {xn} such that α = lim

k→∞
d(xnk′ co({xi}nk−1

i=1 )),

we have

α = lim
k→∞

d(xnk
, co({xni

}nk−1
i=1 )) ≤ lim inf

k→∞
d(xnk

, co({xi}k−1
i=1 )).

Hence for every {xn} we can find a sequence {yn}(= {xnk
}) with diam({yn}) ≤

diam({xn}) such that

lim sup
n→∞

d(xn+1, co({xi}ni=1))

diam({xn}) ≤
lim inf
n→∞ d(yn+1, co({yi}ni=1))

diam({yn}) .

Thus, our assertion is proved.
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(b) Let {xn} be a sequence in X with a weakly convergent subsequence
{xnk

}. Then
d(xnk

, co({xi}nk−1
i=1 )) ≤ d(xnk

, co({xi}k−1
i=1 )),

and it follows that

lim inf
n→∞ d(xn+1, co({xi}ni=1))

diam({xn}) ≤
lim sup

n→∞
d(xnk

, co({xi}k−1
i=1 ))

diam({xnk
}) .

From part (a) we can conclude (b).

(c) Let {xn} be a nonconvergent sequence in X. Then for each k ∈ N, we
have

lim sup
n→∞

d(xn+1, co({xi}ni=1)) ≤ lim sup
n→∞

d(xn+1, co({xi}ni=k))

≤ D(X) diam({xi}∞i=k).

Thus

lim sup
n→∞

d(xn+1, co({xi}ni=1)) ≤ lim
k→∞

(lim sup
n→∞

d(xn+1, co({xi}ni=k)))

≤ D(X) diama({xn}).
Using the fact that diama({xn}) ≤ diam({xn}), we obtain

D(X) ≤ sup
{ lim sup

n→∞
d(xn+1, co({xi}ni=1))

diama({xn})
}
≤ D(X).

(d) It follows easily from (b).

Theorem 3.6.2 Let X be a Banach space. Then we have the following:
(a) If X is a finite-dimensional space, then D(X) = 0.
(b) If X is an infinite-dimensional space with modulus of convexity δX , then

D(X) ≥ 1
2(1− δX(1))

≥ 1
2
.

Proof. (a) Let X be a finite-dimensional Banach space. Then for every con-
vergent sequence {xn}, we have lim

n→∞ d(xn+1, co({xi}ni=1)) = 0. It follows from

Proposition 3.6.1(b) that D(X) = 0.
(b) Let X be an infinite-dimensional Banach space and 0 < r < 1. We now

construct a sequence in the following way:{
x1 ∈ SX ,
xn+1 ∈ SX such that d(xn+1, span{xi}ni=1) > r for all n ∈ N.

Then for any i, j, i �= j we have ‖xi + xj‖ > r so

1
2
‖xi − xj‖ ≤ 1− δX(r).
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Hence
lim sup

n→∞
d(xn+1, co({xi}ni=1))

diam({xn}) ≥ r

2(1− δX(r))
.

Because δX is continuous at 1, we obtain

D(X) ≥ 1
2(1− δX(1))

.

Theorem 3.6.3 Let X be a Banach space. Then we have the following:
(a) D(X) ≤ Ñ(X).
(b) If X is an infinite-dimensional reflexive Banach space, then

D(X) ≤ 1
WCS(X)

.

Proof. (a) For every sequence {xn} in X, we denote co({xn}) by C. Then
diam(C) = diam({xn}) and rx(C) = sup

y∈C
‖x− y‖ = rx({xn}) for all x ∈ X. If

z ∈ C, z =
N∑

i=1

λixi (λi ≥ 0 and
N∑

i=1

λi = 1),

then

rz({xn}) = sup
n∈N

‖xn −
N∑

i=1

λixi‖

≥ lim sup
n→∞

d(xn, co({xi}Ni=1))

≥ lim sup
n→∞

d(xn, co({xi}n−1
i=1 )).

Hence we obtain

r(C) = inf
x∈C

rx(C) = inf
x∈C

rx({xn}) ≥ lim sup
n→∞

d(xn+1, co({xi}ni=1)

and

Ñ(X) ≥ sup
{

r(C)
diam(C)

: C = co({xn})
}
≥ D(X).

(b) Let x ∈ co({xn}), x =
∑N

i=1 λixi (λi ≥ 0,
∑N

i=1 λi = 1). Then

ra(x, {xn}) = lim sup
n→∞

‖xn − x‖ ≥ lim sup
n→∞

d(xn+1, co({xi}Ni=1)

≥ lim sup
n→∞

d(xn+1, co({xi}ni=1)).

Hence

lim sup
n→∞

d(xn+1, co({xi}ni=1) ≤ inf{ra(z, {xn}) : z ∈ co({xn})} for all {xn} in X.
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By Proposition 3.6.1(d), we obtain

D(X) = sup

{ lim sup
n→∞

d(xn+1, co({xi}ni=1))

diama({xn}) : {xn} a weakly, but not strongly

convergent sequence in X

}

≤ sup

{
ra({xn})

diama({xn}) : {xn} a weakly, but not strongly convergent

sequence in X

}

=
1

WCS(X)
.

Theorem 3.6.4 Let X be an infinite-dimensional reflexive Banach space X.
Then

WCS(X) = D′(X) =
1

D(X)
,

where D′(X) = inf{diam({xn}) : {xn} in X with xn ⇀ 0 and lim sup
n→∞

‖xn‖ = 1}.
Proof. By Theorem 3.6.3(b), it suffices to show that

1
D(X)

≤ D′(X) ≤WCS(X).

First, we show that 1/D(X) ≤ D′(X). We take a positive number ε < 1
and choose a sequence {xn} in SX with xn ⇀ 0 and diam({xn}) < D′(X) + ε.
Let {jn} be a sequence in X∗ such that 〈xn, jn〉 = ‖jn‖∗ = 1 for all n ∈ N.
By Proposition 1.9.25, we can assume that

|〈xm, jn〉| < ε whenever m �= n.

Suppose that λi, i = 1, 2, · · ·n are nonnegative constants such that λ1 + λ2 +
· · ·+ λn = 1. Then we have

‖xn+1 −
n∑

i=1

λixi‖ ≥ |〈xn+1 −
n∑

i=1

λixi, jn+1〉| ≥ 1−
n∑

i=1

λi|〈xi, jn+1〉| > 1− ε.

Thus, lim sup
n→∞

d(xn+1, co({xi}ni=1)) ≥ 1− ε and hence

1
D(X)

≤ diam({xn})
1− ε

<
D′(X) + ε

1− ε
.

Because ε ∈ (0, 1) is arbitrary, we have D(X)−1 ≤ D′(X).
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We now show that D′(X) ≤ WCS(X). Let ε > 0 and choose a weakly
convergent non-norm convergent sequence {xn} in X such that

lim
n→∞(sup{‖xi − xj‖ : i, j ≥ n}) < (WCS(X) + ε)ra(co({xn}), {xn}),

where ra(C, {xn}) = inf{ra(z, {xn}) : z ∈ C}.
Let x be the weak limit of {xn} and lim sup

n→∞
‖xn − x‖ = d. Hence for k a

sufficiently large number, we have

diam({xn}∞n=k)− ε < d (WCS(X) + ε).

Set yn := d−1(xn − x). Then lim sup
n→∞

‖yn‖ = 1 and yn ⇀ 0. Therefore,

D′(X) ≤ diam({yn}∞n=k) = d−1diam({xn}∞n=k) < WCS(X) + (1 + d−1)ε,

and it follows that D′(X) ≤WCS(X).

We now establish equivalent expressions for WCS(X).

Theorem 3.6.5 Let X be an infinite-dimensional reflexive Banach space. Then
we have the following:

(a) WCS(X) = inf{diam({xn}) : xn ⇀ 0 and lim sup
n→∞

‖xn‖ = 1} = D′(X).

(b) WCS(X) = inf{diama({xn}) : xn ⇀ 0 and lim sup
n→∞

‖xn‖ = 1}.

(c) WCS(X)=inf
{ lim

n,m;n=m
‖xn − xm‖

lim sup
n→∞

‖xn‖ :xn ⇀0 and lim sup
n,m; n=m

‖xn−xm‖exists}.

Proof. (a) This part follows easily Theorem 3.6.4.

(b) It follows from part (a) that

WCS(X) = inf{diama({xn}) : {xn} converges weakly to zero and
lim sup

n→∞
‖xn‖ = 1}. (3.15)

(c) The equality (3.15) allows us to conclude (c) because for every sequence,
we can obtain a subsequence {xn} such that lim

n,m;n=m
‖xn − xm‖ exists by

a diagonal argument.

Theorem 3.6.6 Let X be a reflexive Banach space. Let

r = inf
{ lim

n,m; n=m
‖xn − xm‖

ra({xn})
}

,

where the infimum is taken over all weakly convergent sequences that are not
convergent and such that lim

n,m; n=m
‖xn − xm‖ exists and lim

n→∞ ‖xn − z‖ exists

for every z ∈ co({xn}). Then WCS(X) = r.
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Proof. Because lim
n,m; n=m

‖xn−xm‖ = diama({xn}) if this limit exists, it follows

that
r ≥WCS(X).

We now show that WCS(X) ≤ r. Let {xn} be a sequence in X with xn ⇀ 0 such
that lim

n,m;n=m
‖xn − xm‖ exists and lim

n→∞ ‖xn − z‖ exists for all z ∈ co({xn}).
Set Ak := co({xn}n≥k). The weak convergence of {xn} to zero implies that⋂∞

k=1 Ak = {0}. Because the function ϕ on X defined by

ϕ(x) = lim
n→∞ ‖xn − x‖, x ∈ X

is weakly lower semicontinuous and Ak is weakly compact, then ϕ attains a
minimum at a point zk in Ak. Because 0 is the unique point that can be
weakly adherent to {zk} we infer that {zk} is weakly null. By the weak lower
semicontinuity of ϕ, we have

ϕ(0) ≤ lim
k→∞

ϕ(zk).

Because {ϕ(zk)} is a nondecreasing sequence that is bounded by ϕ(0), it follows
that

lim
k→∞

ϕ(zk) ≤ ϕ(0).

Thus,
lim

k→∞
ϕ(zk) = ϕ(0).

Observe that

ra({xn}n≥k) = ra(co({xn}n≥k), {xn}n≥k)
= inf{ϕ(y) : y ∈ co({xn}n≥k)}
= ϕ(zk).

By the definition of r, we have

r lim
n→∞ ‖xn − zk‖ ≤ lim

n,m; n=m
‖xn − xm‖.

Taking the limit as k →∞, we obtain

r lim
n→∞ ‖xn‖ ≤ lim

n,m; n=m
‖xn − xm‖.

Hence

r ≤ inf
{ lim

n,m; n=m
‖xn − xm‖

lim sup
n→∞

‖xn‖
}

,

where the infimum is taken over all weakly null sequence such that lim
n,m; n=m

‖xn − xm‖ exists and lim
n→∞ ‖xn − z‖ exists for every z ∈ co({xn}). Using

Theorem 3.6.5 (c), it is clear that this infimum is WCS(X). Hence r ≤WCS(X).
Therefore, WCS(X) = r.
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We now apply Theorem 3.6.6 to estimate WCS(X) for reflexive Banach
spaces with weakly continuous duality mappings.

Theorem 3.6.7 Let X be a reflexive Banach space with a weakly continuous
duality mapping Jμ with gauge function μ. Then 1 + rX(1) = WCS(X) =
Φ−1(2Φ(1)), where Φ(t) =

∫ t

0
μ(s)ds, t ≥ 0.

Proof. Using Theorem 3.2.16 and Theorem 3.5.5, we have

WCS(X) ≥ 1 + rX(1) = Φ−1(2Φ(1)).

To prove equality, we take a weakly null sequence {xn} in SX . We may
assume (through a subsequence if necessary) that lim

n,m;n=m
‖xn − xm‖ exists.

By Theorem 3.6.6, we have

WCS(X) ≤ lim
n,m;n=m

‖xn − xm‖
= lim

m→∞( lim
n→∞ ‖xn − xm‖)

= lim
m→∞( lim

n→∞Φ−1(Φ(‖xn‖) + Φ(‖ − xm‖)))
= lim

m→∞Φ−1(Φ(1) + Φ(‖xm‖))
= Φ−1(2Φ(1)).

This proves the desired result.

Because p (1 < p < ∞), admits a weakly continuous duality mapping Jμ

with the gauge μ(t) = tp−1, we have

Corollary 3.6.8 Let 1 < p <∞. Then WCS(p) = 21/p.

We now establish a relation between WCS(X) and N(X).

Theorem 3.6.9 Let X be a Banach space. Then WCS(X) ≥ N(X).

Proof. Let {xn} be a weakly null sequence in X such that lim
n→∞ ‖xn‖ = c > 0

and lim
m,n;m =n

‖xn − xm‖ = d exist. Given ε > 0 with c/2 > ε, we may assume

that
‖xn‖ ≥ c− ε and ‖xn − xm‖ ≤ d + ε for all n,m ∈ N.

Let {jn} be a sequence in SX∗ such that 〈xn, jn〉 = ‖xn‖ for all n ∈ N. Using
Proposition 1.9.25, we may assume that |〈xm, jn〉| < ε whenever m �= n. Note
x ∈ co({xn}) implies that |〈x, jn〉| < ε for n sufficiently large. Hence

c− 2ε ≤ ‖xn‖ − ε = 〈xn − x, jn〉 ≤ ‖xn − x‖,
and it gives us r(co({xn})) ≥ c− 2ε. Thus,

N(X) ≤ diam(co({xn}))
r(co({xn})) ≤ d + ε

c− 2ε
.
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This shows that
N(X) ≤ d

c
.

Taking the infimum, we obtain that N(X) ≤WCS(X).

Corollary 3.6.10 Let X be a Banach space. If X has uniformly normal struc-
ture, then X has weak uniformly normal structure.

3.7 GGLD property

Definition 3.7.1 A Banach space X is said to be have generalized Gossez-Lami
Dozo property (GGLD) whenever D[{xn}] > 1 for every weakly null sequence
{xn} such that lim

n→∞ ‖xn‖ = 1.

Example 3.7.2 Consider the space co equivalently renormed by

‖{xn}‖ = ‖{xn}‖∞ +
∞∑

n=1

1
2n
|xn|.

It enjoys the Opial condition and it has a weak normal structure but lacks the
GGLD property.

The following coefficient is very useful for fixed point theory of nonlinear
mappings:

β(X) := inf{D[{xn}] : xn ⇀ 0, ‖xn‖ → 1}.
Observation

• A Banach space X has the GGLD property if β(X) > 1.

Proposition 3.7.3 Let X be a Banach space with the GGLD property. If {xn}
is a sequence in X such that xn ⇀ x ∈ X with lim

n→∞ ‖xn − x‖ �= 0, then

lim
n→∞ ‖xn − x‖ < D[{xn}].

Proof. Let α := lim
n→∞ ‖xn − x‖ and yn := α−1(xn − x). Then yn ⇀ 0 and

lim
n→∞ ‖yn‖ = 1. By the GGLD property, 1 < D[{yn}]. Hence α < D[{xn}].

A Banach space X is said to have the semi-Opial condition (SO in short) if for
any nonconstant bounded sequence {xn} in X with xn−xn+1 → 0, there exists
a subsequence {xnk

} such that xnk
⇀ x ∈ X and lim

k→∞
‖xnk

−x‖ < diam({xn}).

The following theorem shows that for reflexive Banach spaces, the SO con-
dition is more general than the GGLD property.

Theorem 3.7.4 Every reflexive Banach space with the GGLD property satisfies
the SO condition.
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Proof. Let {xn} be a bounded sequence in X such that ‖xn+1 − xn‖ → 0.
Because X is reflexive, there exists a subsequence {xnk

} of {xn} such that
xnk

⇀ x ∈ X. We may assume that r := lim
k→∞

‖xnk
− x‖ > 0, otherwise the

result follows immediately.
Now set yk := r−1(xnk

−x). From the GGLD property of space X, we obtain
1 < D[{yk}]. Therefore,

r < lim sup
k→∞

(lim sup
j→∞

‖xnj
− xnk

‖) ≤ diam({xnk
}) ≤ diam({xn}),

which completes the proof.

Let us give some examples concerning the GGLD property.

Example 3.7.5 The Banach space Xβ := (2,‖ · ‖β), where ‖x‖β = max{‖x‖2,
β‖x‖∞} as has the SO condition for 1 < β < 2, but if

√
2 < β, Xβ does not

have normal structure and hence Xβ cannot have the GGLD property.

Example 3.7.6 Consider the James space J that consists of sequences x =
{xn} ∈ co such that

‖x‖J = sup{(xp1 − xp2)
2 + (xp2 − xp3)

2 + · · ·+ (xpn−1 − xpn
)2} <∞,

where the supremum is taken over all increasing sequences of positive integers
{pi}. The James space J fails to be uniformly convex in every direction (in fact,
does not have normal structure), but J satisfies the GGLD property.

Example 3.7.7 Consider the classic space co of sequences with norm ‖ · ‖
defined by ‖x‖ =

(
‖x‖2∞ +

∑∞
i=1 x2

i /2i

)1/2

. Then (co, ‖ · ‖) is uniformly convex

in every direction, but co fails to have the GGLD property.
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Exercises

3.1 Let H be a Hilbert space and ϕ : H → (−∞,∞] be a convex, lower semi-
continuous, and proper function. For λ > 0 and x ∈ H, set

ϕλ(x) := inf
y∈H

[
ϕ(y) +

λ

2
‖x− y‖2

]
.

Let ∂ϕ be the subdifferential of ϕ and Jλ = (I + λ∂ϕ)−1. Show that

(a) ϕλ is convex and ϕλ(x) = ϕ(Jλx) + λ
2 ‖(∂ϕ)λ(x)‖2.

(b) ∂(ϕλ) = (∂ϕ)λ; in particular, ϕλ is continuously differentiable and

has Lipschitz continuous derivative.

(c) ϕλ(x) increases to ϕ(x) as λ ↓ 0.

3.2 Let X be a Banach space, and x1, · · · , xn a finite number of points in X.
Define

ϕ(z) =
1
n

n∑
i=1

‖xi − z‖2 for all z ∈ X.

Show that ϕ is a convex function and that, if X is reflexive, ϕ attains its
minimum.

3.3 Let H be a Hilbert space. Let C = {x ∈ H : ‖x − a‖ ≤ r} and D = {x ∈
H : ‖x‖ ≤ ‖a‖ + r} be two sets, where a �= 0 and r > 0. Let PC and
PD be metric projection mappings, respectively. Show that PCPD is a
nonexpansive retraction of H onto C that is different from PC .

3.4 Let C be a nonempty closed convex subset of a Hilbert space H,
PC : H → C the metric projection mapping onto C, and {xn} a
sequence in H such that xn ⇀ x. Show that the asymptotic center of
{xn} with respect to C is PCx.

3.5 Let X be a Banach space. Show that X∗ has a Fréchet differentiable norm
iff X is reflexive and strictly convex, and has the following property:

if xn ⇀ x and ‖xn‖ → ‖x‖, then {xn} converges strongly to x.



Chapter 4

Existence Theorems in
Metric Spaces

In this chapter, we study asymptotic fixed point theorems for contraction
mappings and for mappings that are more general than contraction mappings
in metric spaces.

4.1 Contraction mappings and their
generalizations

In this section, we establish a fundamental asymptotic fixed point theorem that
is known as the “Banach contraction principle” and further we give its genera-
lizations in metric spaces.

By an asymptotic fixed point theorem for the mapping T , we mean a theorem
that guarantees the existence of a fixed point of T , if the iterative Tn possess
certain properties. Before to establish the Banach contraction principle, we
discuss some basic definitions and results:

Let (X, d) be a metric space and let Lip(X) denote the class of mappings
T : X → X such that

σ(Tn) = sup
{

d(Tnx, Tny)
d(x, y)

: x, y ∈ X,x �= y

}
<∞

for all n ∈ N.

Members of Lip(X) are called Lipschitzian mappings and σ(Tn) is the
Lipschitz constant of Tn. Note that σ(T ) = 0 if and only if T is constant
on X. For two Lipschitzian mappings T : X → X and S : X → X such that
S(X) ⊆ Dom(T ), we have

σ(T ◦ S) ≤ σ(T )σ(S).

R.P. Agarwal et al., Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3 4,
c© Springer Science+Business Media, LLC, 2009
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It is clear that the mapping T ∈ Lip(X) if there exists a constant Ln ≥ 0
such that

d(Tnx, Tny) ≤ Lnd(x, y) for all x, y ∈ X and n ∈ N. (4.1)

Moreover, the smallest constant Ln for which (4.1) holds is the Lipschitz
constant of Tn. A Lipschitzian mapping T : X → X is said to be uniformly
L-Lipschitzian if Ln = L for all n ∈ N. A Lipschitzian mapping is said to be
contraction (nonexpansive) if σ(T ) < 1 (σ(T ) = 1).

The following result plays an important role in proving several existence
theorems in metric spaces.

Proposition 4.1.1 Let (X, d) be a complete metric space and ϕ : X → (−∞,∞]
a bounded below lower semicontinuous function. Suppose that {xn} is a sequence
in X such that

d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1) for all n ∈ N0 = N ∪ {0}.
Then {xn} converges to a point v ∈ X and d(xn, v) ≤ ϕ(xn) − ϕ(v) for all
n ∈ N0.

Proof. Because

d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1), n ∈ N0,

it follows that {ϕ(xn)} is a decreasing sequence. Moreover, for m ∈ N0

m∑
n=0

d(xn, xn+1) ≤ d(x0, x1) + d(x1, x2) + · · ·+ d(xm, xm+1)

≤ ϕ(x0)− ϕ(xm+1)
≤ ϕ(x0)− inf

n∈N0
ϕ(xn).

Letting m→∞, we have
∞∑

n=0

d(xn, xn+1) <∞.

This implies that {xn} is a Cauchy sequence in X. Because X is complete,
there exists v ∈ X such that lim

n→∞xn = v. Let m,n ∈ N0 with m > n. Then

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤ ϕ(xn)− ϕ(xm).

Letting m→∞, we obtain

d(xn, v) ≤ ϕ(xn)− lim
m→∞ϕ(xm) ≤ ϕ(xn)− ϕ(v) for all n ∈ N0.
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We now begin with Caristi’s fixed point theorem. To prove it, we need the
following important result.

Theorem 4.1.2 Let X be a complete metric space and ϕ : X → (−∞,∞] a
proper, bounded below and lower semicontinuous function. Suppose that, for
each u ∈ X with inf

x∈X
ϕ(x) < ϕ(u), there exists a v ∈ X such that

u �= v and d(u, v) ≤ ϕ(u)− ϕ(v).

Then there exists an x0 ∈ X such that ϕ(x0) = inf
x∈X

ϕ(x).

Proof. Suppose that inf
x∈X

ϕ(x) < ϕ(y) for every y ∈ X. Let u0 ∈ X with

ϕ(u0) < ∞. If inf
x∈X

ϕ(x) = ϕ(u0), then we are done. Otherwise inf
x∈X

ϕ(x) <

ϕ(u0), and there exists a u1 ∈ X such that u0 �= u1 and d(u0, u1) ≤ ϕ(u0) −
ϕ(u1).

Define inductively a sequence {un} in X, starting with u0. Suppose un−1 ∈
X is known. Then choose un ∈ Sn, where

Sn := {w ∈ X : d(un−1, w) ≤ ϕ(un−1)− ϕ(w)}
such that

ϕ(un) ≤ inf
w∈Sn

ϕ(w) +
1
2
{ϕ(un−1)− inf

w∈Sn

ϕ(w)}. (4.2)

Because un ∈ Sn, we get

d(un−1, un) ≤ ϕ(un−1)− ϕ(un), n ∈ N.

Proposition 4.1.1 implies that un → v ∈ X and d(un−1, v) ≤ ϕ(un−1) − ϕ(v).
By hypothesis, there exists a z ∈ X such that z �= v and d(v, z) ≤ ϕ(v)− ϕ(z).
Observe that

ϕ(z) ≤ ϕ(v)− d(v, z)
≤ ϕ(v)− d(v, z) + ϕ(un−1)− ϕ(v)− d(un−1, v)
= ϕ(un−1)− [d(v, z) + d(un−1, v)]
≤ ϕ(un−1)− d(un−1, z).

This implies that z ∈ Sn. It follows from (4.2) that

2ϕ(un)− ϕ(un−1) ≤ inf
w∈Sn

ϕ(w) ≤ ϕ(z).

Thus,
ϕ(z) < ϕ(v) ≤ lim

n→∞ϕ(un) ≤ ϕ(z),

a contradiction. Therefore, there exists a point x0 ∈ X such that ϕ(x0) =
inf

x∈X
ϕ(x).
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Theorem 4.1.3 (Caristi’s fixed point theorem) – Let X be a complete
metric space and ϕ : X → (−∞,∞] a proper, bounded below and lower semi-
continuous function. Let T : X → X be a mapping such that

d(x, Tx) ≤ ϕ(x)− ϕ(Tx) for all x ∈ X. (4.3)

Then there exists a point v ∈ X such that v = Tv and ϕ(v) <∞.

Proof. Because ϕ is proper, there exists u ∈ X such that ϕ(u) <∞. Let

C = {x ∈ X : d(u, x) ≤ ϕ(u)− ϕ(x)}.
Then C is a nonempty closed subset of X. We show that C is invariant under
T . For each x ∈ C, we have

d(u, x) ≤ ϕ(u)− ϕ(x)

and hence from (4.3), we have

ϕ(Tx) ≤ ϕ(x)− d(x, Tx)
≤ ϕ(x)− d(x, Tx) + ϕ(u)− ϕ(x)− d(u, x)
= ϕ(u)− [d(x, Tx) + d(u, x)]
≤ ϕ(u)− d(u, Tx),

and it follows that Tx ∈ C.
Suppose, for contradiction, that x �= Tx for all x ∈ C. Then, for each x ∈ C,

there exists w ∈ C such that

x �= w and d(x,w) ≤ ϕ(x)− ϕ(w).

By Theorem 4.1.2, there exists an x0 ∈ C with ϕ(x0) = inf
x∈C

ϕ(x). Hence for

such an x0 ∈ C, we have

0 < d(x0, Tx0) ≤ ϕ(x0)− ϕ(Tx0) ( inf
x∈C

ϕ(x) = ϕ(x0) ≤ ϕ(Tx0))

≤ ϕ(Tx0)− ϕ(Tx0)
= 0,

a contradiction.

Remark 4.1.4 The fixed point of the mapping T in Theorem 4.1.3 need not be
unique.

We now state and prove the Banach contraction principle, which gives a
unique fixed point of the mapping.

Theorem 4.1.5 (Banach’s contraction principle) – Let (X, d) be a com-
plete metric space and T : X → X a contraction mapping with Lipschitz con-
stant k ∈ (0, 1). Then we have the following:
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(a) There exists a unique fixed point v ∈ X.
(b) For arbitrary x0 ∈ X, the Picard iteration process defined by

xn+1 = Txn, n ∈ N0

converges to v.
(c) d(xn, v) ≤ (1− k)−1knd(x0, x1) for all n ∈ N0.

Proof. (a) Define the function ϕ : X → R+ by ϕ(x) = (1 − k)−1d(x, Tx),
x ∈ X. Hence ϕ is a continuous function. Because T is a contraction mapping,

d(Tx, T 2x) ≤ kd(x, Tx), x ∈ X, (4.4)

which implies that

d(x, Tx)− kd(x, Tx) ≤ d(x, Tx)− d(Tx, T 2x).

Hence

d(x, Tx) ≤ 1
1− k

[d(x, Tx)− d(Tx, T 2x)]

= ϕ(x)− ϕ(Tx). (4.5)

Let x be an arbitrary element in X and define the sequence {xn} in X by

xn = Tnx, n ∈ N0.

From (4.5), we have

d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1), n ∈ N0,

and it follows from Proposition 4.1.1 that

lim
n→∞xn = v ∈ X

and

d(xn, v) ≤ ϕ(xn), n ∈ N0. (4.6)

Because T is continuous and xn+1 = Txn, it follows that v = Tv. Suppose z is
another fixed point of T . Then

0 < d(v, z) = d(Tv, Tz) ≤ kd(v, z) < d(v, z),

a contradiction. Hence T has unique fixed point v ∈ X.
(b) It follows from part (a).
(c) From (4.4) we have that ϕ(xn) ≤ knϕ(x0). This implies from (4.6) that

d(xn, v) ≤ knϕ(x0).

Let us give some examples of contraction mappings.
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Example 4.1.6 Let X = [a, b] and T : X → X a mapping such that T is
differentiable at every x ∈ (a, b) such that |T ′

(x)| ≤ k < 1. Then, by the mean
value theorem, if x, y ∈ X, there is a point ξ between x and y such that

Tx− Ty = T
′
(ξ)(x− y).

Thus,
|Tx− Ty| = |T ′

(ξ)| |x− y| ≤ k|x− y|.
Therefore, T is contraction and it has a unique fixed point.

Example 4.1.7 Let X = R and T : R→ R a mapping defined by

Tx =
1
2
x + 1, x ∈ R.

Then T is contraction and F (T ) = {2}.

The following example shows that there exists a mapping that is not a con-
traction, but it has a unique fixed point.

Example 4.1.8 Let X = [0, 1] and T : [0, 1]→ [0, 1] a mapping defined by

Tx = 1− x, x ∈ [0, 1].

Then T has a unique fixed point 1/2, but T is not a contraction.

Let (X, d) be a metric space. Then a mapping T : X → X is said to be
contractive if

d(Tx, Ty) < d(x, y) for all x, y ∈ X, x �= y.

It is clear that the class of contractive mappings falls between the class of
contraction mappings and that of nonexpansive mappings.

Observation
• A contractive mapping can have at most one fixed point.

The contractive mapping may not have a fixed point. It can be seen from
the following example.

Example 4.1.9 Let X be the space c0 consisting of all real sequences x = {xi}
with lim

i→∞
xi = 0 and d(x, y) = ‖x − y‖ = sup

i∈N

|xi − yi|, x = {xi}, y = {yi} ∈ c0.

Let BX = {x ∈ c0 : ‖x‖ ≤ 1}. For each x ∈ BX , define

T (x1, x2, · · · , xi, · · · ) = (y1, y2, · · · , yi, · · · ),

where y1 = (1 + ‖x‖)/2 and yi = (1 − 1/2i+1)xi−1 for i = 2, 3, · · · . Note that
|y1| ≤ 1 and |yi| ≤ |xi−1| ≤ 1 for all i = 2, 3, · · · . Hence T : BX → BX .
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Suppose x and y are two distinct points in BX . Then

‖Tx− Ty‖ = sup
{‖x‖ − ‖y‖

2
,

(
1− 1

2i+1

)
|xi−1 − yi−1| : i = 2, 3, · · ·

}

≤ sup
{‖x− y‖

2
,

(
1− 1

2i+1

)
|xi−1 − yi−1| : i = 2, 3, · · ·

}
< ‖x− y‖.

Suppose that there is a point v∈BX such that Tv= v. Then v1 = (1+ ‖v‖)/2>0
and for i ≥ 2

|vi| =
(

1− 1
2i+1

)
|vi−1|.

This implies for all i ≥ 2

|vi| =
(

1− 1
2i+1

)
|vi−1|

=
(

1− 1
2i+1

)(
1− 1

2i

)
|vi−2|

. . .

=
i−2∏
k=0

(
1− 1

2i+1−k

)
|v1|

≥
(

1−
i−2∑
k=0

1
2i+1−k

)
|v1|

=
(

1−
i+1∑
j=3

1
2j

)
|v1| > 3

4
|v1|.

This is not possible, because vi → 0 as i → ∞. Thus, T has no fixed point
in BX .

We note that completeness and boundedness of a metric space do not ensure
the existence of fixed points of contractive mappings. However, contractive
mappings always have fixed points in compact metric spaces.

Theorem 4.1.10 Let X be a compact metric space and T : X → X a con-
tractive mapping. Then T has a unique fixed point v in X. Moreover, for each
x ∈ X, the sequence {Tnx} of iterates converges to v.

Proof. For each x ∈ X, define a function ϕ : X → R+ by ϕ(x) = d(x, Tx).
Then ϕ is continuous on X and by compactness of X, ϕ attains its minimum,
say ϕ(v), at v ∈ X. Then ϕ(v) = min

x∈X
ϕ(x). If v �= Tv, then

ϕ(Tv) = d(Tv, T 2v) < d(v, Tv) = ϕ(v),

a contradiction. Hence v = Tv. Uniqueness of v follows from the contractive
condition of T .
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Now, let x0 ∈ X and define a sequence {xn} in X by xn = Tnx0 for all
n ∈ N. Set cn := d(Tnx0, v), n ∈ N0. Because

cn+1 = d(Tn+1x0, v) < d(Tnx0, v) = cn,

{cn} is a nonincreasing sequence in R+. Hence lim
n→∞ cn exists. Suppose lim

n→∞ cn =
c ≥ 0. Assume that c > 0. Because X is compact, there exists a subsequence
{xni

} of {xn} such that xni
→ z ∈ X. Observe that

0 < c = lim
i→∞

cni
= lim

i→∞
d(Tnix0, v) = d(z, v),

i.e., z �= v. Because T is contractive and continuous,

c = lim
i→∞

d(Tni+1x0, v) = d(Tz, v) < d(z, v) = c,

a contradiction. Thus, c = 0, i.e., z = v. This means that every conver-
gent subsequence of {Tnx0} must converge to v. Therefore, {Tnx0} converges
to v.

The following example shows that in general, even in a Hilbert space for
contractive mappings we cannot have that Tnx → x0 for every x ∈ BX and
x0 = Tx0.

Example 4.1.11 Let X = 2 = {(x1, x2, · · · , xi, · · · ) : xi real for each i ∈ N

and
∑∞

i=1 |xi|2 <∞} and BX = {x ∈ X : ‖x‖2 = (
∑∞

i=1 |xi‖2)1/2 ≤ 1}. Define
a mapping T : BX → BX by

Tx = (0, α1x1, α2x2, · · · , αixi · · · ), x = (x1, x2, · · · , xi, · · · ) ∈ BX ,

where α1 = 1; αi = (1−1/i2), i = 2, 3, · · · . It is easy to see that T is contractive
with fixed point (0, 0, · · · , 0, · · · ).

Now, let x = (1, 0, · · · , 0, · · · ) ∈ BX , then

Tnx = (0, 0, · · · ,
n∏

i=1

αi, 0, · · · ) for all n ∈ N.

Thus,

‖Tnx‖ =
n + 2

2(n + 1)
→ 1

2
as n→∞,

and hence Tnx � 0.

We now consider some important generalizations of the Banach contraction
principle in which the Lipschitz constant k is replaced by some real-valued con-
trol function.

Theorem 4.1.12 (Boyd and Wong’s fixed point theorem) – Let X be a
complete metric space and T : X → X a mapping that satisfies

d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X, (4.7)
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where ψ : R+ → R+ is upper semicontinuous function from the right (i.e.,
λi ↓ λ ≥ 0 ⇒ lim sup

i→∞
ψ(λi) ≤ ψ(λ)) such that ψ(t) < t for each t > 0. Then T

has a unique fixed point v ∈ X. Moreover, for each x ∈ X, lim
n→∞Tnx = v.

Proof. Fix x ∈ X and define a sequence {xn} in X by xn = Tnx, n ∈ N0. Set
dn := d(xn, xn+1). We divide the proof into three steps:

Step 1. lim
n→∞ dn = 0.

Note

dn+1 = d(xn+1, xn+2) = d(Txn, Txn+1) ≤ ψ(dn), n ∈ N0.

Hence {dn} is monotonic decreasing and bounded below. Hence lim
n→∞ dn exists.

Let lim
n→∞ dn = δ ≥ 0. Assume that δ > 0. By the right continuity of ψ,

δ = lim
n→∞ dn+1 ≤ lim

n→∞ψ(dn) ≤ ψ(δ) < δ,

so δ = 0.
Step 2. {xn} is Cauchy sequence.
Assume that {xn} is not Cauchy. Then there exist ε > 0 and integers

mk, nk ∈ N0 such that mk > nk ≥ k and

d(xnk
, xmk

) ≥ ε for k = 0, 1, 2, · · · .

Also, choosing mk as small as possible, it may be assumed that

d(xmk−1, xnk
) < ε.

Hence for each k ∈ N0, we have

ε ≤ d(xmk
, xnk

) ≤ d(xmk
, xmk−1) + d(xmk−1, xnk

)
≤ d(xmk−1, xmk

) + ε

= dmk−1 + ε,

and it follows from the fact dmk
→ 0 that lim

k→∞
d(xmk

, xnk
) = ε. Observe that

d(xmk
, xnk

) ≤ d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk

)
≤ dmk

+ ψ(d(xmk
, xnk

)) + dnk
.

Letting k → ∞ and using the upper semicontinuity of ψ from the right, we
obtain

ε = lim
k→∞

d(xmk
, xnk

) ≤ lim
k→∞

ψ(d(xmk
, xnk

)) ≤ ψ(ε),

which is a contradiction. Hence {xn} is a Cauchy sequence in X.
Step 3. Existence and uniqueness of fixed points.
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Because {xn} is Cauchy and X is complete, lim
n→∞xn = v ∈ X. By continuity

of T, we have v = Tv. Uniqueness of v easily follows from condition (4.7).

Let Φ denote the class of all mappings ϕ : R+ → R+ satisfying:
(i) ϕ is continuous,
(ii) ϕ(t) < t for all t > 0.

As an immediate consequence of the Boyd-Wong’s fixed point theorem, we
have the following important result, which will be useful in establishing existence
theorems concerning asymptotic contraction mappings.

Corollary 4.1.13 Let X be a complete metric space and T : X → X a mapping
that satisfies

d(Tx, Ty) ≤ ϕ(d(x, y)) for all x, y ∈ X,

where ϕ ∈ Φ. Then T has a unique fixed point v ∈ X. Moreover, for each
x ∈ X, lim

n→∞Tnx = v.

We now introduce a wider class of mappings that we call “asymptotic con-
tractions.”

Definition 4.1.14 Let (X, d) be a metric space. A mapping T : X → X is said
to be an asymptotic contraction if for each n ∈ N

d(Tnx, Tny) ≤ ϕn(d(x, y)) for all x, y ∈ X, (4.8)

where ϕn : R+ → R+ and ϕn → ϕ ∈ Φ uniformly on the range of d.

The following theorem shows that asymptotic contractions have unique fixed
points.

Theorem 4.1.15 Let X be a complete metric space and T : X → X a con-
tinuous asymptotic contraction for which the mappings ϕn in (4.8) are also
continuous. Assume also that some orbit of T is bounded. Then T has a unique
fixed point v ∈ X and for each x ∈ X, {Tnx} converges to v.

Proof. Because the sequence {ϕi} is uniformly convergent, it follows that ϕ is
continuous. For any x, y ∈ X,x �= y, we have

lim sup
n→∞

d(Tnx, Tny) ≤ lim sup
n→∞

ϕn(d(x, y)) = ϕ(d(x, y)) < d(x, y).

If there exist x, y ∈ X and ε > 0 such that lim sup
n→∞

d(Tnx, Tny) = ε, then

there exists k ∈ N such that ϕ(d(T kx, T ky)) < ε because ϕ is continuous, and
ϕ(ε) < ε. It follows that

lim sup
n→∞

d(Tnx, Tny) = lim sup
n→∞

d(Tn(T kx), Tn(T ky)

≤ lim sup
n→∞

ϕn(d(T kx, T ky))

= ϕ(d(T kx, T ky)) < ε,
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a contradiction. Hence

lim
n→∞ d(Tnx, Tny) = 0 for any x, y ∈ X. (4.9)

Thus, all sequences of the Picard iterates defined by T , are equi-convergent and
bounded.

Now let z0 ∈ X be arbitrary, {zn} be a sequence of Picard iterates of T at the
point z0, C = {zn} and Fn = {x ∈ C : d(x, T kx) ≤ 1/n, k = 1, · · · , n}. Because
{zn} is bounded, C is bounded. It follows from (4.9) that Fn is nonempty.
Because T is continuous, we have Fn is closed, for any n. Also, we have Fn+1 ⊆
Fn. Let {xn} and {yn} be two arbitrary sequences such that xn, yn ∈ Fn. Let
{nj} be a sequence of integers such that lim

j→∞
d(xnj

, ynj
) = lim sup

n→∞
d(xn, yn).

Observe that

lim
j→∞

d(xnj
, ynj

) ≤ lim
j→∞

(d(xnj
, Tnj xnj

) + d(Tnj xnj
, Tnj ynj

) + d(ynj
, Tnj ynj

))

= lim
j→∞

ϕnj
(d(xnj

, ynj
))

= ϕ( lim
j→∞

d(xnj
, ynj

)),

and hence lim
j→∞

d(xnj
, ynj

) = ϕ( lim
j→∞

d(xnj
, ynj

)), which implies that

lim
j→∞

d(xnj
, ynj

) = 0, because C is bounded. Thus, lim sup
n→∞

d(xn, yn) = 0 and

hence lim
n→∞ d(xn, yn) = 0. This implies that lim

n→∞ diam(Fn) = 0. By the com-

pleteness of C, it follows that there exists v ∈ X such that ∩∞
n=1Fn = {v}.

Because d(v, Tv) ≤ 1/n for any n, we have Tv = v. From (4.9), we have
lim

n→∞ d(Tnx, v) = 0 for any x ∈ X.

We now study an important generalization of the Boyd and Wong’s fixed
point theorem in which the control function ϕ is extended in a different direction.
Interestingly, in the following result the continuity condition on ϕ is replaced
by lim

n→∞ϕn(t) = 0 for all t > 0.

Theorem 4.1.16 (Matkowski’s fixed point theorem) – Let X be a com-
plete metric space and T : X → X a mapping that satisfies

d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X,

where ψ : (0,∞) → (0,∞) is nondecreasing and satisfies lim
n→∞ψn(t) = 0 for

all t > 0. Then T has a unique fixed point v ∈ X and for each x ∈ X,
lim

n→∞Tnx = v.

Proof. Fix x0 ∈ X and let xn = Tnx0, n ∈ N. Observe that

0 ≤ lim sup
n→∞

d(xn, xn+1) ≤ lim sup
n→∞

ψn(d(x0, x1)) = 0.
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Hence lim
n→∞ d(xn, xn+1) = 0. Because ψn(t) → 0 for t > 0, ψ(s) < s for any

s > 0. Because lim
n→∞ d(xn, xn+1) = 0, given any ε > 0, it is possible to choose n

such that
d(xn+1, xn) ≤ ε− ψ(ε).

Now for z ∈ Bε[xn] = {x ∈ X : d(x, xn) ≤ ε}, we have

d(Tz, xn) ≤ d(Tz, Txn) + d(Txn, xn)
≤ ψ(d(z, xn)) + d(xn+1, xn)
≤ ψ(ε) + (ε− ψ(ε)) = ε.

Therefore, T : Bε[xn]→ Bε[xn] and it follows that d(xm, xn) ≤ ε for all m ≥ n.
Hence {xn} is a Cauchy sequence. The conclusion of the proof follows as in
Theorem 4.1.12.

We now introduce the concept of nearly Lipschitzian mappings:
Let (X, d) be a metric space and fix a sequence {an} in R+ with an → 0.

A mapping T : X → X is said to be nearly Lipschitzian with respect to {an} if
for each n ∈ N, there exists a constant kn ≥ 0 such that

d(Tnx, Tny) ≤ kn(d(x, y) + an) for all x, y ∈ C. (4.10)

The infimum of constants kn for which (4.10) holds is denoted by η(Tn) and
called the nearly Lipschitz constant.

Notice that

η(Tn) = sup
{

d(Tnx, Tny)
d(x, y) + an

: x, y ∈ C, x �= y

}
.

A nearly Lipschitzian mapping T with sequence {(η(Tn), an)} is said to be
(i) nearly contraction if η(Tn) < 1 for all n ∈ N,
(ii) nearly nonexpansive if η(Tn) = 1 for all n ∈ N,
(iii) nearly asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈ N and

limn→∞ η(Tn) ≤ 1,
(iv) nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ∈ N,
(v) nearly uniformly k-contraction if η(Tn) ≤ k < 1 for all n ∈ N.

Example 4.1.17 Let X = [0, 1] with the usual metric d(x, y) = |x − y| and
T : X → X a mapping defined by

Tx =
{

1/2 if x ∈ [0, 1/2],
0 if x ∈ (1/2, 1].

Thus, T is discontinuous and non-Lipschitzian. However, it is nearly non-
expansive mapping. Indeed, for a sequence {an} with a1 = 1/2 and an → 0, we
have

d(Tx, Ty) ≤ d(x, y) + a1 for all x, y ∈ X



4.1. Contraction mappings and generalizations 187

and
d(Tnx, Tny) ≤ d(x, y) + an for all x, y ∈ X and n ≥ 2,

because
Tnx =

1
2

for all x ∈ [0, 1] and n ≥ 2.

We now develop a technique for studying the existence and uniqueness of
fixed points of nearly Lipschitzian mappings.

Theorem 4.1.18 Let X be a complete metric space and T : X → X a contin-
uous nearly Lipschitzian mapping with sequence {(η(Tn), an)}, i.e., for a fixed
sequence {an} in R+ with an → 0 and for each n ∈ N, there exists a constant
η(Tn) > 0 such that

d(Tnx, Tny) ≤ η(Tn)(d(x, y) + an) for all x, y ∈ X.

Suppose η∞(T ) = lim sup
n→∞

[η(Tn)]1/n < 1. Then we have the following:

(a) T has a unique fixed point v ∈ X.
(b) For each x ∈ X, the sequence {Tnx} converges to v.
(c) d(Tnx, v) ≤∑∞

i=n η(T i)(d(x, Tx)+M) for all n ∈ N, where M = sup
n∈N

an.

Proof. (a) Fix x ∈ X and let xn = Tnx, n ∈ N. Set dn := d(xn, xn+1). Hence

dn = d(Tnx, Tn+1x) ≤ η(Tn)(d(x, Tx) + an),

which implies that

∞∑
n=1

dn ≤ (d(x, Tx) + M)
∞∑

n=1

η(Tn)

for some M > 0, because lim
n→∞ an = 0. By the Root Test for convergence of

series, if η∞(T ) = lim sup
n→∞

[η(Tn)]1/n < 1, then
∑∞

n=1 η(Tn) < ∞. It follows

that
∑∞

n=1 dn <∞ and hence {xn} is a Cauchy sequence. Thus, lim
n→∞xn exists

(say v ∈ X). By the continuity of T , v is fixed point of T . Let w be another
fixed point T . Then

∞ =
∞∑

n=1

d(v, w) =
∞∑

n=1

d(Tnv, Tnw) ≤
∞∑

n=1

η(Tn)(d(v, w) + an)

≤ (d(u,w) + M)
∞∑

n=1

η(Tn) <∞,

a contradiction, hence T has a unique fixed point v ∈ X.
(b) It follows from part (a).
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(c) If m ∈ N, we have

d(xn, xn+m) = d(Tnx, Tn+mx)

≤
n+m−1∑

i=n

d(T ix, T i+1x)

≤
n+m−1∑

i=n

η(T i)(d(x, Tx) + ai)

≤
n+m−1∑

i=n

η(T i)(d(x, Tx) + M).

Letting m→∞, we obtain
d(xn, v) ≤∑∞

i=n η(T i)(d(x, Tx) + M).

Remark 4.1.19 In the case of a nearly uniformly k-Lipschitzian mapping, we
have

lim sup
n→∞

[η(Tn)]1/n = lim sup
n→∞

(k)1/n = 1.

Therefore, the assumptions of Theorem 4.1.18 do not hold for nearly uniformly
k-Lipschitzian mappings.

4.2 Multivalued mappings

Let A be a nonempty subset of a metric space X. For x ∈ X, define

d(x,A) = inf{d(x, y) : y ∈ A}.
Let CB(X) denote the set of nonempty closed bounded subsets of X and K(X)
denote the set of nonempty compact subsets of X. It is clear that K(X) is
included in CB(X).

For A,B ∈ CB(X), define

δ(A,B) = sup{d(x,B) : x ∈ A},
H(A,B) = max{δ(A,B), δ(B,A)} = max{sup

a∈A
d(a,B), sup

b∈B
d(b, A)}.

Example 4.2.1 Let X = R, A = [1, 2] and B = [2, 3]. Then

δ(A,B) = sup
a∈A

d(a,B) = 1 and δ(B,A) = sup
b∈B

d(b, A) = 1.

Hence H(A,B) = max{δ(A,B), δ(B,A)} = 1.

Note that set distance δ is not symmetric. However, δ and H have the
following properties:
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Proposition 4.2.2 Let (X, d) be a metric space. Let A,B,C ∈ CB(X). Then
we have the following:

(a) δ(A,B) = 0⇔ A ⊂ B.
(b) B ⊂ C ⇒ δ(A,C) ≤ δ(A,B).
(c) δ(A ∪B,C) = max{δ(A,C), δ(B,C)}.
(d) δ(A,B) ≤ δ(A,C) + δ(C,B).

Proof. (a) By the definition δ, we have

δ(A,B) = 0 ⇔ sup
x∈A

d(x,B) = 0

⇔ d(x,B) = 0 for all x ∈ A.

Because B is closed in X,

d(x,B) = 0⇔ x ∈ B.

Thus,
δ(A,B) = 0⇔ A ⊂ B.

(b) Observe that

B ⊂ C ⇒ d(x,C) ≤ d(x,B) for all x ∈ X.

(c) Observe that

δ(A ∪B,C) = sup
x∈A∪B

d(x,C) = max{sup
x∈A

d(x,C), sup
x∈B

d(x,C)}.

(d) Let a ∈ A, b ∈ B and c ∈ C. Then

d(a, b) ≤ d(a, c) + d(c, b),

which implies that
d(a,B) ≤ d(a, c) + d(c,B)

and hence
d(a,B) ≤ d(a, c) + δ(C,B).

Because c ∈ C is arbitrary, we have

d(a,B) ≤ d(a,C) + δ(C,B).

Similarly, because a ∈ A is arbitrary, we have

δ(A,B) ≤ δ(A,C) + δ(C,B).

Proposition 4.2.3 Let (X, d) be a metric space. Then H is a metric on
CB(X).
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Proof. By the definition of H, we have

H(A,B) ≥ 0 and H(A,B) = H(B,A).

Observe that

H(A,B) = 0 ⇔ max{δ(A,B), δ(B,A)} = 0
⇔ δ(A,B) = 0 and δ(B,A) = 0
⇔ A ⊂ B and B ⊂ A

⇔ A = B.

Using Proposition 4.2.2, we obtain

H(A,B) = max{δ(A,B), δ(B,A)}
≤ max{δ(A,C) + δ(C,B), δ(B,C) + δ(C,A)
≤ max{δ(A,C), δ(C,A)}+ max{δ(B,C), δ(C,B)}
= H(A,C) + H(C,B).

The metric H on CB(X) is called the Hausdorff metric. The metric H
depends on the metric d. It is easy to see that the completeness of (X, d)
implies the completeness of (CB(X),H) and (K(X),H).

Remark 4.2.4 Let A,B ∈ CB(X) and a ∈ A. Then for ε > 0, there must
exist a point b ∈ B such that d(a, b) ≤ H(A,B) + ε.

The following proposition gives a characteristic property of the Hausdorff
metric that will be used in Section 8.1.

Proposition 4.2.5 Let X be a metric space. Then

H(A ∪B,C ∪D) ≤ max{H(A,C),H(B,D)} for all A,B,C,D ∈ CB(X).

Proof. Observe that

δ(A ∪B,C ∪D) = max{δ(A,C ∪D), δ(B,C ∪D)}
≤ max{δ(A,C), δ(B,D)}
≤ max{H(A,C),H(B,D)}.

Similarly, we have

δ(C ∪D,A ∪B) ≤ max{H(A,C),H(B,D)}
By definition of H, we have

H(A ∪B,C ∪D) = max{δ(A ∪B,C ∪D), δ(C ∪D,A ∪B)}
≤ max{H(A,C),H(B,D)} for all A,B,C,D ∈ CB(X).

Let F (X) denote the family of nonempty closed subsets of a metric space
(X, d). Then we have
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Proposition 4.2.6 Let C be a nonempty subset of a metric space (X, d).
Suppose the mapping T : C → F (X) is an upper semicontinuous at x0 ∈ C.
Then the mapping ϕ : C → R+ defined by ϕ(x) = d(x, Tx), x ∈ C is lower
semicontinuous at x0.

Proof. Let ε > 0. By the upper semicontinuity of T at x0, there exists δ > 0
such that y ∈ Bδ[x0] ∩ C implies Ty lies in an ε/4-neighborhood of Tx0, and
moreover we may suppose δ ≤ ε/4. Select u ∈ Ty such that

d(y, u) ≤ d(y, Ty) +
ε

2

and select v ∈ Tx0 so that d(u, v) ≤ ε/4. Then

d(x0, Tx0)−
[
d(y, Ty) +

ε

2

]
≤ d(x0, Tx0)− d(y, u)

≤ d(x0, v)− d(y, u)
≤ d(x0, y) + d(y, u) + d(u, v)− d(y, u)
≤ d(x0, y) + d(u, v)

≤ δ +
ε

4
=

ε

2
,

and hence
d(x0, Tx0) ≤ d(y, Ty) + ε.

Therefore, ϕ is lower semicontinuous at x0.

We now introduce the class of multivalued contraction mappings and obtain
a fixed point theorem for this class of mappings:

Let T be a mapping from a metric space (X, d) into CB(X). Then T is said
to be Lipschitzian if there exists a constant k > 0 such that

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.

A multivalued Lipschitzian mapping T is said to be contraction (nonexpansive)
if k < 1 (k = 1). Let F (T ) denote the set of fixed points of T , i.e., F (T ) =
{x ∈ X : x ∈ Tx}.
Theorem 4.2.7 (Nadler’s fixed point theorem) – Let X be a complete
metric space and T : X → CB(X) a contraction mapping. Then T has a fixed
point in X.

Proof. Let k, 0 < k < 1 be the Lipschitz constant of T . Let x0 ∈ X and
x1 ∈ Tx0. By Remark 4.2.4, there must exist x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Tx0, Tx1) + k.

Similarly, there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ H(Tx1, Tx2) + k2.
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Thus, there exists a sequence {xn} in X such that xn+1 ∈ Txn and

d(xn, xn+1) ≤ H(Txn−1, Txn) + kn for all n ∈ N.

Notice for each n ∈ N, xn+1 ∈ Txn and so

d(xn, xn+1) ≤ H(Txn−1, Txn) + kn

≤ kd(xn−1, xn) + kn

≤ k[kd(xn−2, xn−1) + kn−1] + kn

≤ k2d(xn−2, xn−1) + 2kn

· · ·
≤ knd(x0, x1) + nkn.

Because
∑∞

n=0 kn <∞ and
∑∞

n=0 nkn <∞, we have

∞∑
n=0

d(xn, xn+1) ≤ d(x0, x1)
∞∑

n=0

kn +
∞∑

n=0

nkn <∞.

Hence {xn} is a Cauchy sequence. By completeness of X, there exists v ∈ X
such that lim

n→∞xn = v. Again, by the continuity of T ,

lim
n→∞H(Txn, T v) = 0.

Because xn+1 ∈ Txn,
lim

n→∞ d(xn+1, T v) = 0,

which implies that d(v, Tv) = 0. Because Tv is closed, it follows that
v ∈ Tv.

Example 4.2.8 Let X = [0, 1] and f : [0, 1]→ [0, 1] a mapping such that

f(x) =
{

x/2 + 1/2, 0 ≤ x ≤ 1/2,
−x/2 + 1, 1/2 ≤ x ≤ 1.

Define T : X → 2X by Tx = {f(x)} ∪ {0}, x ∈ X. Then T is a multivalued
contraction mapping with F (T ) = {0, 2/3}.
Remark 4.2.9 Example 4.2.8 shows that the fixed point of a multivalued con-
traction mapping is not necessarily unique.

We now discuss a stability result (Theorem 4.2.11) for multivalued contrac-
tion mappings.

Proposition 4.2.10 Let X be a complete metric space and let S, T : X →
CB(X) be two contraction mappings each having Lipschitz constant k < 1, i.e.,

H(Sx, Sy) ≤ kd(x, y) and H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.

Then H(F (S), F (T )) ≤ (1− k)−1 sup
x∈X

H(Sx, Tx).
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Proof. Let ε > 0 and c > 0 be such that c
∑∞

n=1 nkn < 1. For x0 ∈ F (S),
select x1 ∈ Tx0 such that

d(x0, x1) ≤ H(Sx0, Tx0) + ε.

Because H(Tx0, Tx1) ≤ kd(x0, x1), it is possible to select x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Tx0, Tx1) +
cεk

1− k

≤ kd(x0, x1) +
cεk

1− k
.

Define {xn} inductively by

xn+1 ∈ Txn and d(xn+1, xn) ≤ kd(xn, xn−1) +
cεkn

1− k
.

Set η := cε/(1− k). Observe that

d(xn+1, xn) ≤ kd(xn, xn−1) + ηkn

≤ k(kd(xn−1, xn−2) + ηkn−1) + ηkn

≤ k2d(xn−1, xn−2) + 2ηkn

· · ·
≤ knd(x0, x1) + nηkn.

Because
∑∞

n=1 kn <∞ and
∑∞

n=1 nkn <∞, it follows that {xn} is a Cauchy sequ-
ence in X and it converges to some point v ∈X. Because lim

n→∞H(Txn, T v) = 0

by continuity of T , it follows from xn+1 ∈ Txn that v ∈ F (T ). Observe that

d(x0, v) ≤
∞∑

n=0

d(xn, xn+1) ≤
∞∑

n=0

knd(x0, x1) + η

∞∑
n=0

nkn

≤ (1− k)−1d(x0, x1) + η

∞∑
n=0

nkn

≤ (1− k)−1(d(x0, x1) + ε)
≤ (1− k)−1(H(Sx0, Tx0) + 2ε).

Interchanging the roles of S and T , we conclude:
For each y0 ∈ F (T ), there exist y1 ∈ Sy0 and u ∈ F (S) such that

d(y0, u) ≤ (1− k)−1(H(Sy0, T y0) + 2ε).

Because ε > 0 is arbitrary, the conclusion follows.

Theorem 4.2.11 Let X be a complete metric space and let Tn : X → CB(X)
(n = 1, 2, · · · ) be contraction mappings each having Lipschitz constant k < 1,
i.e.,

H(Tnx, Tny) ≤ kd(x, y) for all x, y ∈ X and n ∈ N.

If lim
n→∞H(Tnx, T0x) = 0 uniformly for x ∈ X, then lim

n→∞H(F (Tn), F (T0)) = 0.
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Proof. Let ε > 0. Because lim
n→∞H(Tnx, T0x) = 0 uniformly for x ∈ X, it is

possible to select n0 ∈ N such that

sup
x∈X

H(Tnx, T0x) ≤ (1− k)ε for all n ≥ n0.

By Proposition 4.2.10, we have H(F (Tn), F (T0)) < ε for all n ≥ n0.

Next, we extend Nadler’s fixed point theorem for non-self multivalued map-
pings in a metric space. First, we define a metrically convex metric space.

Definition 4.2.12 A metric space (X, d) is said to be metrically convex 1 if for
any x, y ∈ X with x �= y, there exists z ∈ X, x �= y �= z such that

d(x, z) + d(z, y) = d(x, y).

We note that in such a space, each two points are the end points of at least
one metric segment. This fact immediately yields a very useful lemma.

Lemma 4.2.13 If C is a nonempty closed subset of a complete and metrically
convex metric space (X, d), then for any x ∈ C, y /∈ C, there exists a point
z ∈ ∂C (the boundary of C) such that

d(x, z) + d(z, y) = d(x, y).

Now we are in a position to establish a fundamental result on the existence
of fixed points for non-self multivalued contraction mappings.

Theorem 4.2.14 (Assad and Kirk’s fixed point theorem) – Let (X, d) be
a complete and metrically convex metric space, C a nonempty closed subset of
X, and T : C → CB(X) a contraction mapping, i.e.,

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X,

where k ∈ (0, 1). If Tx ⊂ C for each x ∈ ∂C, then T has a fixed point in C.

Proof. We construct a sequence {pn} in C in the following way:
Let p0 ∈ C and p′1 ∈ Tp0. If p′1 ∈ C, let p1 = p′1. Otherwise, select a point

p1 ∈ ∂C such that
d(p0, p1) + d(p1, p

′
1) = d(p0, p

′
1).

Thus, p1 ∈ C. By Remark 4.2.4, we may choose p′2 ∈ Tp1 such that

d(p′1, p
′
2) ≤ H(Tp0, Tp1) + k.

Now, if p′2 ∈ C, let p′2 = p2, otherwise, let p2 ∈ ∂C such that

d(p1, p2) + d(p2, p
′
2) = d(p1, p

′
2).

Continuing in this manner, we obtain sequences {pn} and {p′n} such that for
n ∈ N,

1The concept of metric convexity was introduced by K. Menger in 1953.
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(i) p′n+1 ∈ Tpn;

(ii) d(p′n+1, p
′
n) ≤ H(Tpn, Tpn−1) + kn,

where p′n+1 = pn+1, if p′n+1 ∈ C or

d(pn, pn+1) + d(pn+1, p
′
n+1) = d(pn, p′n+1) if p′n+1 /∈ C and pn+1 ∈ ∂C. (4.11)

Now, set

P : = {pi ∈ {pn} : pi = p′i, i ∈ N};
Q : = {pi ∈ {pn} : pi �= p′i, i ∈ N}.

Observe that if pi ∈ Q for some i, then pi+1 ∈ P be the boundary condition.
We wish to estimate the distance d(pn, pn+1) for n ≥ 2. For this, we consider

three cases:

Case I. pn ∈ P and pn+1 ∈ P .
In this case, we have

d(pn, pn+1) = d(p′n, p′n+1) ≤ H(Tpn, Tpn−1) + kn

≤ kd(pn, pn−1) + kn.

Case II. pn ∈ P and pn+1 ∈ Q.
By (4.11), we have

d(pn, pn+1) ≤ d(pn, p′n+1) = d(p′n, p′n+1)
≤ H(Tpn−1, Tpn) + kn

≤ kd(pn−1, pn) + kn.

Case III. pn ∈ Q and pn+1 ∈ P .
By the above observation, two consecutive terms of {pn} cannot be in Q,

hence pn−1 ∈ P and p′n−1 = pn−1. Using this fact, we obtain

d(pn, pn+1) ≤ d(pn, p′n) + d(p′n, pn+1)
= d(pn, p′n) + d(p′n, p′n+1)
≤ d(pn, p′n) + H(Tpn−1, Tpn) + kn

≤ d(pn, p′n) + αd(pn−1, pn) + kn

< d(pn−1, p
′
n) + kn

= d(p′n−1, p
′
n) + kn

≤ H(Tpn−2, Tpn−1) + kn−1 + kn

≤ kd(pn−2, pn−1) + kn−1 + kn.

The only other possibility, pn ∈ Q, pn+1 ∈ Q cannot occur. Thus, for n ≥ 2,
we have

d(pn, pn+1) =
{

kd(pn, pn−1) + kn, or
kd(pn−2, pn−1) + kn + kn−1.

(4.12)
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Set δ := k−1/2 max{d(p0, p1), d(p1, p2)}. We now prove that

d(pn, pn+1) ≤ kn/2(δ + n), n ∈ N. (4.13)

For n = 1
d(p1, p2) ≤ k1/2(δ + 1).

For n = 2, we use (4.12) and taking each case separately, we obtain

d(p2, p3) ≤ kd(p1, p2) + k2

≤ kk1/2(δ + 1) + k2

≤ k(δ + 2);
d(p2, p3) ≤ kd(p0, p1) + k2 + k

≤ k(k1/2δ + k + 1)
≤ k(δ + 2).

Now assume that (4.13) holds for 1 ≤ n ≤ m. Observe that for m ≥ 2

d(pm+1, pm+2) ≤ kd(pm, pm+1) + km+1

≤ k[km/2(δ + m)] + km+1

≤ k(m+1)/2(δ + m) + k(m+1)/2k(m+1)/2

≤ k(m+1)/2[δ + (m + 1)]

or

d(pm+1, pm+2) ≤ kd(pm−1, pm) + km+1 + km

≤ k[k(m−1)/2(δ + m− 1)] + km+1 + km

≤ k(m+1)/2(δ + m− 1) + k(m+1)/2k(m+1)/2 + k(m+1)/2k(m−1)/2

≤ k(m+1)/2(δ + m− 1) + k(m+1)/2 + k(m+1)/2

= k(m+1)/2(δ + m + 1),

and it follows that (4.13) is true for all n ∈ N. Using (4.13) we obtain

d(pn, pm) ≤ δ
∞∑

i=m

(k1/2)i +
∞∑

i=m

i(k1/2)i, n > m ≥ 1.

This means that {pn} is a Cauchy sequence. Because C is closed, {pn} converges
to a point z ∈ C. By our choice of {pn}, there exists a subsequence {pni

} of
{pn} such that pni

∈ P , i.e., pni
= p′ni

, i = 1, 2, · · · . Note p′ni
∈ Tpni−1 for

i ∈ N by (i) and pni−1 → z imply that Tpni−1 → Tz as i→∞ in the Hausdorff
metric H. Because

d(pni
, T z) ≤ H(Tpni−1, T z)→ 0 as i→∞,

it follows that d(z, Tz) = 0. As Tz is closed, z ∈ Tz.
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4.3 Convexity structure and fixed points

Let C be a nonempty subset of a metric space X and T : C → C a mapping.
Then a sequence {xn} in C is said to be an approximating fixed point sequence
(in short AFPS) of T if lim

n→∞ d(xn, Txn) = 0.

We have seen in the Banach contraction principle that every contraction
mapping has an approximating fixed point sequence in a metric space. In fact,
the Picard iterative sequence (xn+1 = Txn, n ∈ N) is an approximating fixed
point sequence of the contraction mapping T .

The following example shows that the Picard iterative sequence is not
necessarily an approximating fixed point sequence of nonexpansive mappings.

Example 4.3.1 Let X = R and T : R→ R a mapping defined by

Tx = −x for all x ∈ R.

Note that T is nonexpansive with F (T ) = {0}. However for x0 > 0, the iterative
sequence of the Picard iteration process is

xn+1 = Txn = (−1)nx0, n ∈ N0.

Hence d(xn, Txn) = |(−1)n−1 − (−1)n|x0 = 2x0 � 0 as n→∞.

The following Proposition 4.3.9 shows that the convexity structure has an
important role in the existence of AFPS for nonexpansive mappings. We define
convexity structure in a metric space.

Definition 4.3.2 Let (X, d) be a metric space. A continuous mapping W :
X ×X × [0, 1] → X is said to be a convex structure2 on X, if for all x, y ∈ X
and λ ∈ [0, 1] the following condition is satisfied:

d(u,W (x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y) for all u ∈ X. (4.14)

A metric space X with convex structure is called a convex metric space.

A subset C of a convex metric space X is said to be convex if W (x, y;λ) ∈ C
for all x, y ∈ C and λ ∈ [0, 1]. A convex metric space X is said to have property
(B) if

d(W (u, x;λ),W (u, y;λ)) = (1− λ)d(x, y) for all u, x, y ∈ X and λ ∈ (0, 1).

Example 4.3.3 A normed space and each of its convex subsets are convex
metric spaces with convexity structure W (x, y;λ) = λx + (1− λ)y.

2The convexity structure in a metric space was introduced by W. Takahashi in 1970.
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Example 4.3.4 Let X be a linear space that is also a metric space with the
following properties:

(i) d(x, y) = d(x− y, 0) for all x, y ∈ X;
(ii) d(λx + (1− λ)y, 0) ≤ λd(x, 0) + (1− λ)d(y, 0) for all x, y ∈ X and

λ ∈ [0, 1].
Then X is a convex metric space.

Example 4.3.5 A Fréchet space is not necessarily a convex metric space.

The following propositions are very useful in various applications.

Proposition 4.3.6 Let {Cα : α ∈ Λ} be a family of convex subsets of a convex
metric space X. Then ∩α∈ΛCα is also a convex subset of X.

Proposition 4.3.7 The open balls Br(x) and the closed balls Br[x] in a convex
metric space X are convex subsets of X.

Proof. For y, z ∈ Br(x) and λ ∈ [0, 1], there exists W (y, z;λ) ∈ X. Because X
is a convex metric space,

d(x,W (y, z;λ)) ≤ λd(x, y) + (1− λ)d(x, z)
< λr + (1− λ)r = r.

Therefore, W (y, z;λ) ∈ Br(x). Similarly, Br[x] is a convex subset of X.

Proposition 4.3.8 Let X be a convex metric space. Then

d(x, y) = d(x,W (x, y;λ)) + d(W (x, y;λ), y) for all x, y ∈ X and λ ∈ [0, 1].

Proof. Because X is a convex metric space, we obtain

d(x, y) ≤ d(x,W (x, y;λ)) + d(W (x, y;λ), y)
≤ λd(x, x) + (1− λ)d(x, y) + λd(x, y) + (1− λ)d(y, y)
= λd(x, y) + (1− λ)d(x, y)
= d(x, y)

for all x, y ∈ X and λ ∈ [0, 1]. Therefore,

d(x, y) = d(x,W (x, y;λ) + d(W (x, y;λ), y) for all x, y ∈ X and λ ∈ [0, 1].

We now apply the convexity structure defined in Definition 4.3.2 to obtain
AFPS for nonexpansive mappings in a metric space. Note, similar results are
also discussed in Chapter 5.

Proposition 4.3.9 Let X be a complete convex metric space with property (B),
C a nonempty closed convex subset of X, and T : C → C a nonexpansive
mapping. Then we have the following:

(a) For u ∈ C and t ∈ (0, 1), there exists exactly one point xt ∈ C such that

xt = W (u, Txt; 1− t)

(b) If C is bounded, then d(xt, Txt)→ 0 as t→ 1, i.e., T has an AFPS.
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Proof. (a) For t ∈ (0, 1), consider the mapping Tt : C → C defined by

Ttx = W (u, Tx; 1− t).

By property (B), we have

d(Ttx, Tty) = td(Tx, Ty) ≤ td(x, y) for all x, y ∈ C.

By the Banach contraction principle, Tt has exactly one fixed point xt in C.
Therefore,

xt = W (u, Txt; 1− t).

(b) By boundedness of C, we get

d(xt, Txt) = d(Txt,W (u, Txt; 1− t))

≤ (1− t)d(Txt, u) ≤ (1− t) diam(C)→ 0 as t→ 1.

Applying Proposition 4.3.9, we have

Theorem 4.3.10 Let X be a complete convex metric space X with property
(B), C a nonempty compact convex subset of X, and T : C → C a nonexpansive
mapping. Then T has a fixed point in C.

Proof. By Proposition 4.3.9, there exists a sequence {xn} in C such that

lim
n→∞ d(xn, Txn) = 0. (4.15)

Because C is compact, there exists a subsequence {xnk
} of {xn} such that

xnk
→ v ∈ C. Hence from (4.15), we have v = Tv.

In Theorem 4.3.14, we will see that compactness can be dropped if C has
normal structure. To see this, we extend the notion of normal structure in
metric space X.

For C ⊂ X, we denote the following, which will be used throughout the
remainder of this chapter:

rx(C) = sup{d(x, y) : y ∈ C}, x ∈ C,

r(C) = inf{rx(C) : x ∈ C},
ZC = {x ∈ C : rx(C) = r(C)}.

A point x0 ∈ C is said to be a diametral point of C if

sup{d(x0, y) : y ∈ C} = diam(C).

A convex metric space X is said to have normal structure if for each closed
convex bounded subset C of X that contains at least two points, there exists
x0 ∈ C that is not a diametral point of C.
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Example 4.3.11 Every compact convex metric space has normal structure.

A convex metric space X is said to have property (C) if every bounded
decreasing net of nonempty closed convex subsets of X has a nonempty inter-
section. By Smulian’s theorem, every weakly compact convex subset of a Banach
space has property (C).

Using property (C), we have

Proposition 4.3.12 If a convex metric space X has property (C), then ZC is
nonempty, closed, and convex.

Proof. Let Cn(x) = {y ∈ C : d(x, y) ≤ r(C) + 1/n} for n ∈ N and x ∈ X.
It is easily seen that the sets Cn = ∩x∈XCn(x) form a decreasing sequence of
nonempty closed convex sets, and hence ∩∞

n=1Cn is nonempty closed convex by
property (C). Because ZC = ∩∞

n=1Cn, the proof is complete.

Proposition 4.3.13 Let C be a nonempty compact subset of a convex metric
space X and let D be the least closed convex set containing C. If diam(C) > 0,
then there exists an element x0 ∈ D such that sup{d(x, x0) : x ∈ C} < diam(C).

Proof. Because C is compact, we may find x1, x2 ∈ C such that d(x1, x2) =
diam(C). Let C0 ⊂ C be maximal so that C0 ⊃ {x1, x2} and d(x, y) = 0
or diam(C) for all x, y ∈ C0. It is easy to see that C0 is finite. Let C0 =
{x1, x2, · · · , xn}. Because X is a convex metric space, we can define

y1 = W (x1, x2;
1
2
),

y2 = W (x3, y1;
1
3
),

· · ·
yn−2 = W (xn−1, yn−3;

1
n− 1

),

yn−1 = W (xn, yn−2;
1
n

) = u.

Because C is compact, we can find y0 ∈ C such that

d(y0, u) = sup{d(x, u) : x ∈ C}.
From (4.14), we obtain

d(y0, u) ≤ 1
n

d(y0, xn) +
n− 1

n
d(y0, yn−2)

≤ 1
n

d(y0, xn) +
n− 1

n

(
1

n− 1
d(y0, xn−1) +

n− 2
n− 1

d(y0, yn−3)
)

=
1
n

d(y0, xn) +
1
n

d(y0, xn−1) +
n− 2

n
d(y0, yn−3)

· · ·
≤ 1

n

n∑
k=1

d(y0, xk) ≤ diam(C).



4.4. Normal structure coefficient and fixed points 201

Therefore, if d(y0, u) = diam(C), then we must have d(y0, xk) = diam(C) > 0
for all k = 1, 2, · · · , n. Hence y0 ∈ C0 by definition of C0. But, then we must
have y0 = xk for some k = 1, 2, · · · , n. This is a contradiction. Therefore,

sup{d(x, u) : x ∈ C} = d(y0, u) < diam(C).

A closed convex subset C of a convex metric space X is said to have the fixed
point property for nonexpansive mappings if every nonexpansive T : C → C has
a fixed point.

We now prove that every closed convex subset of a convex metric space has
fixed point property for nonexpansive mappings under normal structure.

Theorem 4.3.14 Let X be a convex metric space with property (C). Let C be
a nonempty closed convex bounded subset of X with normal structure and T a
nonexpansive mapping from C into itself. Then T has a fixed point in C.

Proof. Let F be the family of all nonempty closed convex subsets of C, each of
which is mapped into itself by T . By property (C) and Zorn’s lemma, F has a
minimal element C0. We show that C0 consists of a single point. Let x ∈ ZC0 .
Then

d(Tx, Ty) ≤ d(x, y) ≤ rx(C0) for all y ∈ C0.

Hence T (C0) is contained in the ball B = Br(C0) [Tx]. Because T (C0 ∩ B) ⊂
C0 ∩ B, the minimality of C0 implies that C0 ⊂ B. Hence rTx(C0) ≤ r(C0).
Because r(C0) ≤ rx(C0) for all x ∈ C0, we have rTx(C0) = r(C0). Hence
Tx ∈ ZC0 and T (ZC0) ⊂ ZC0 . By Proposition 4.3.12, ZC0 ∈ F . If z, w ∈ ZC0 ,
then d(z, w) ≤ rz(C0) = r(C0). Hence, by normal structure,

δ(ZC0) ≤ r(C0) < δ(C0).

Because this contradicts the minimality of C0, diam(C0) = 0 and C0 consists
of a single point.

4.4 Normal structure coefficient and fixed points

In this section, we discuss another convexity structure on metric space and the
existence of fixed points of uniformly L-Lipschitzian mappings in a metric space
with uniformly normal structure.

Let F(X) denote a nonempty family of subsets of a metric space (X, d).
We say that F(X) defines a convexity structure on X if F(X) is stable by
intersection and that F(X) has property (R) if any decreasing sequence {Cn}
of nonempty closed bounded subsets of X with Cn ∈ F(X) has nonvoid inter-
section.

A subset of X is said to be admissible if it is an intersection of closed balls.
We denote by A(X) the family of all admissible subsets of X. It is obvious that
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A(X) defines a convexity structure on X. In this section, any other convexity
structure F(X) on X is always assumed to contain A(X).

For a bounded subset C of X, we define the admissible hull of C, denoted
by ad(C), as the intersection of all those admissible subsets of X that contain
C, i.e.,

ad(C) = ∩{B : C ⊆ B ⊆ X with B admissible}.
A basic property of admissible hull is given in the following proposition.

Proposition 4.4.1 Let C be a bounded subset of a metric space X and x ∈ X.
Then

rx(ad(C)) = rx(C).

Proof. Suppose r = rx(ad(C)) > rx(C). Then C ⊆ Br[x] for any r with
rx(C) < r < r. It follows that ad(C) ⊆ Br[x]. Hence

rx(ad(C)) = sup{d(x, y) : y ∈ ad(C)} ≤ r < r,

a contradiction.

We introduce normal structure and uniformly normal structure with respect
to convexity structure F(X) in a metric space X, respectively.

Definition 4.4.2 A metric space (X, d) is said to have normal structure if there
exists a convexity structure F(X) such that r(C) < diam(C) for all C ∈ F(X)
that is bounded and consists of more than one point. We say that F(X) is
normal.

Definition 4.4.3 A metric space (X, d) is said to have uniformly normal struc-
ture if there exists a convexity structure F(X) such that r(C) ≤ α ·diam(C) for
some constant α ∈ (0, 1) and for all C ∈ F(X) that is bounded and consists of
more than one point. We also say that F(X) is uniformly normal.

We now define the normal structure coefficient of X (with respect to a given
convexity structure F(X)):

The number N(X) is said to be the normal structure coefficient if

N(X) = inf
{

diam(C)
R(C)

}
,

where the infimum is taken over all bounded C ∈ F(X) with diam(C) > 0.
It is easy to see that X has uniformly normal structure if and only if N(X) > 1.

The following theorem shows that every convexity structure with uniformly
normal structure has property (R).

Theorem 4.4.4 Let X be a complete metric space with a convexity structure
F(X) that is uniformly normal. Let {Cn} be a decreasing sequence of nonempty
bounded subsets of X with Cn ∈ F(X). Then ∩∞

n=1Cn �= ∅.
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Proof. Without loss of generality, we may assume that diam(Cn) > 0 for all
n ∈ N. Let η be a real number with Ñ(X) < η < 1, where Ñ(X) = N(X)−1.
Define a sequence {xn,k} in X as follows:

For arbitrary xn,1 ∈ Cn, n ∈ N, select xn,k ∈ ad({xm,k−1}m≥n) such that

sup{d(xn,k, x) : x ∈ ad({xm,k−1}m≥n) ≤ η diam(ad{xm,k−1}m≥n).

Set An,k := ad({xm,k}m≥n). Observe that

An,k ⊆ Cn for all n, k ∈ N

and for m ≥ n,

d(xn,k, xm,k) ≤ sup{d(xn,k, x) : x ∈ An,k−1}
≤ η diam(An,k−1)
≤ η diam({xi,k−1}i≥1).

For k ≥ 2, we have

diam({xn,k}) ≤ η diam({xn,k−1})
≤ η2 diam({xn,k−2})
· · ·
≤ ηk−1 diam({xn,1})
≤ ηk−1 diam(C1).

Now we consider a subsequence {xn,n} of {xn,k}. Then {xn,n} is Cauchy,
because

d(xn,n, xm,m) ≤ ηn−1 diam(C1) for m ≥ n.

Therefore, there exists an x ∈ ∩∞
n=1Cn such that {xn,n} converges to x, i.e.,

∩∞
n=1Cn �= ∅.

Corollary 4.4.5 Let X be a complete bounded metric space and F(X) a con-
vexity structure of X with uniformly normal structure. Then F(X) has property
(R).

We now introduce the property (P) for metric spaces.

Definition 4.4.6 A metric space (X, d) is said to have property (P) if given any
two bounded sequences {xn} and {zn} in X, one can find some z ∈ ∩∞

n=1ad({zj :
j ≥ n}) such that

lim sup
n→∞

d(z, xn) ≤ lim sup
j→∞

lim sup
n→∞

d(zj , xn).

Remark 4.4.7 If X has property (R), then ∩∞
n=1ad({zj : j ≥ n}) �= ∅. Also, if

X is a weakly compact convex subset of a normed space, then admissible hulls
are closed convex and ∩∞

n=1ad{zj : j ≥ n} �= ∅ by weak compactness of X, and
that X possesses property (P) follows directly from the w-lsc of the function
lim sup

n→∞
‖xn − x‖.
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We establish the following key result that can be viewed as the metric space
formulation of Theorem 3.4.20.

Theorem 4.4.8 Let (X, d) be a complete bounded metric space with both pro-
perty (P) and uniformly normal structure. Let N(X) be the normal structure
coefficient with respect to the given convexity structure F(X). Then for any
sequence {xn} in X and any constant α > Ñ(X), there exists a point z ∈ X
satisfying the properties:

(a) d(z, y) ≤ lim sup
n→∞

d(xn, y) for all y ∈ X,

(b) lim sup
n→∞

d(z, xn) ≤ α diam({xn}).

Proof. (a) For each n ∈ N, let An = ad({xj : j ≥ n}). Then {An} is a
decreasing sequence of admissible subsets of X and hence A := ∩An �= ∅ by
Corollary 4.4.5. We observe by Proposition 4.4.1 that

diam(An) = sup{rx(An) : x ∈ An}
= sup

x∈An

sup
j≥n

d(x, xj)

= sup
j≥n

sup
x∈An

d(x, xj) = sup
j≥n

rxj
(An)

= sup
j≥n

sup
i≥n

d(xj , xi)

≤ sup{d(xi, xj) : i, j ∈ N} = diam({xn}).
For any z ∈ A and any y ∈ X, we have

sup
j≥n

d(y, xj) = ry(An) ≥ ry(A) ≥ d(y, z).

It follows that
d(y, z) ≤ lim sup

n→∞
d(y, xn).

(b) Without loss of generality, we may assume that diam({xn}) > 0. Then
for α > Ñ(X), we choose ε > 0 so small that

Ñ(X)diam({xn}) + ε ≤ α diam({xn}).
By definition, one can find a zn ∈ An such that

rzn
(An) < r(An) + ε

≤ Ñ(X) diam(An) + ε

≤ Ñ(X)diam({xn}) + ε

≤ α diam({xn}).
Hence for each i ≥ 1,

lim sup
m→∞

d(zi, xm) ≤ α diam({xi}).
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Now property (P) yields a point z ∈ ∩∞
i=1ad({zn : n ≥ i}) such that

lim sup
m→∞

d(z, xm) ≤ lim sup
i→∞

lim sup
m→∞

d(zi, xm).

Thus, z ∈ A and satisfies

lim sup
m→∞

d(z, xm) ≤ α diam({xi}).

We now present the existence theorem for uniformly L-Lipschitzian map-
pings in a metric space.

Theorem 4.4.9 Let (X, d) be a complete bounded metric space with both pro-
perty (P) and uniformly normal structure and T : X → X a uniformly
L-Lipschitzian mapping with L < Ñ(X)−1/2. Then T has a fixed point in X.

Proof. Choose a constant α, 1 > α > Ñ(X), such that L < α−1/2. Let x0 ∈ X.
By Theorem 4.4.8, we can inductively construct a sequence {xm}∞m=1 in X:

for each integer m ≥ 0,
(a) lim sup

i→∞
d(xm+1, T

ixm) ≤ α diam({T ixm});

(b) d(xm+1, y) ≤ lim sup
i→∞

d(T ixm, y) for all y ∈ X.

Set rm := lim sup
i→∞

d(xm+1, T
ixm) and h := αL2 < 1. Note for each i > j ≥ 0,

d(T jxm, T ixm) ≤ Ld(xm, T i−jxm)
≤ L lim sup

n→∞
d(Tnxm−1, T

i−jxm) (by (b))

≤ L2 lim sup
n→∞

d(Tnxm−1, xm)

≤ L2rm−1.

Observe that

rm = lim sup
i→∞

d(xm+1, T
ixm)

≤ α diam({T ixm})
≤ αL2rm−1 = hrm−1

· · ·
≤ hmr0.

Hence for each integer i ≥ 0,

d(xm+1, xm) ≤ d(xm+1, T
ixm) + d(xm, T ixm)

≤ d(xm+1, T
ixm) + lim sup

j→∞
d(T jxm−1, T

ixm)

≤ d(xm+1, T
ixm) + L lim sup

j→∞
d(T jxm−1, xm)

≤ d(xm+1, T
ixm) + Lrm−1,
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which implies that

d(xm+1, xm) ≤ rm + Lrm−1 ≤ (hm + Lhm−1)r0.

This implies that {xm} is Cauchy. Let lim
m→∞xm = v ∈ X. Observe that

d(v, Tv) ≤ d(v, xm+1) + d(xm+1, T
ixm) + d(T ixm, T v)

≤ d(z, xm+1) + d(xm+1, T
ixm) + Ld(T i−1xm, v)

≤ d(v, xm+1) + d(xm+1, T
ixm) + Ld(T i−1xm, xm+1) + Ld(xm+1, v),

which implies that

d(v, Tv) ≤ (1 + L)d(v, xm+1) + (1 + L)rm → 0 as m→∞.

Therefore, v is a fixed point of T .

4.5 Lifschitz’s coefficient and fixed points

In this section, we give an existence theorem concerning uniformly
L-Lipschitzian mappings in a metric space.

First, we define the Lifschitz’s coefficient of a metric space:

Let (X, d) be a metric space. Then the Lifschitz’s coefficient κ(X) is a
number defined by

κ(X) = sup{β > 0 : ∃ α > 1 such that for all x, y ∈ X, for all r > 0,

[d(x, y) > r ⇒ ∃ z ∈ X such thatBαr[x] ∩Bβr[y] ⊆ Br[z]]}.
It is clear that κ(X) ≥ 1 for any metric space X. For a strictly convex

Banach space X, κ(X) > 1 and for a Hilbert space H, κ(H) =
√

2.

We are now in a position to prove a fundamental existence theorem for
uniformly L-Lipschitzian mappings in a metric space with Lifschitz’s coefficient
κ(X).

Theorem 4.5.1 Let (X, d) be a bounded complete metric space and T : X → X
a uniformly L-Lipschitzian mapping with L < κ(X). Then T has a fixed point
in X.

Proof. If κ(X) = 1, then T is contraction and hence T has a unique fixed
point. So, suppose κ(X) > 1. For b ∈ (L, κ(X)), there exists a > 1 such that

∀ u, v ∈ X, r > 0 with d(x, y) > r ⇒ ∃z ∈ X : Bbr[u] ∩Bar[v] ⊂ Br[z]. (4.16)

For any x ∈ X, let

r(x) = inf{R > 0 : there exists y ∈ X such that lim sup
n→∞

d(Tnx, y) ≤ R}.
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Observe that r is a lower semicontinuous and r(x) = 0 implies x = Tx.
Take λ ∈ (0, 1) such that γ = min{λa, λb/L} > 1. We now show that there

exists a sequence {ym} in X that satisfies the following:

r(ym+1) ≤ λr(ym) and d(ym, ym+1) ≤ (λ + γ)r(ym) for all m ∈ N0. (4.17)

Indeed, consider an arbitrary point y0 ∈ X and assume that y0, y1, · · · , ym

are given. We now construct ym+1. If r(ym) = 0, then ym+1 = ym. If r(ym) > 0,
then for a number λr(ym), there exists n ∈ N such that

d(ym, Tnym) > λr(ym).

From the definition of r(ym), there exists x ∈ X such that

lim sup
n→∞

d(ym, Tnx) ≤ r(ym) < γr(ym).

Hence for i > j
d(T ix, T jym) ≤ L d(T i−jx, ym),

which implies that

lim sup
i→∞

d(T ix, T jym) ≤ L lim sup
i→∞

d(T i−jx, ym) ≤ Lγ r(m).

Because

Bγr(ym)[ym] ∩BLγr(ym)[Tnym] ⊂ Baλr(ym)[ym] ∩Bbλr(ym)[Tnym] = C,

the set C is contained in a closed ball centered at w with radius λr(ym) (Condi-
tion (4.16)). Thus, lim sup

n→∞
d(Tnx,w) ≤ λr(ym). Take w = ym+1, and it follows

from above that {ym} satisfies (4.17).
Note

r(ym+1) ≤ λr(ym) ≤ · · · ≤ λm+1r(y0)→ 0 as m→∞

and
d(ym, ym+1) ≤ (λ + γ)r(ym)→ 0 as m→∞.

Hence {ym} converges to v ∈ M . But because r(v) = 0, v is a fixed point
of T .
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Exercises

4.1 Let X be a complete metric space and T : X → X a mapping such that
Tm is contraction for some m ∈ N. Show that T has a unique fixed point.

4.2 Let (X, d) be a metric space and T : X → X a mapping. T is said to be
a Zamfirescu mapping if there exist the real number a, b, and c satisfying
0 < a < 1, 0 < b, c < 1/2 such that for each pair x, y in X, at least one of
the following is true:

(Z1) d(Tx, Ty) ≤ ad(x, y),

(Z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],

(Z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

If (X, d) is a complete metric space and T : X → X a Zamfirescu mapping,
show that T has a unique fixed point z ∈ X and for each x ∈ X, {Tnx}
converges to z.

4.3 Let T be a mapping from a complete metric space X into itself satisfying
the condition:

d(Tx, Ty) ≤ ad(x, y) + b[d(x, Tx) + d(y, Ty)] + c[d(y, Tx) + d(x, Ty)]

for all x, y ∈ X, where a, b, c are nonnegative real numbers such that
a + 2b + 2c < 1. Show that T has a unique fixed point z ∈ X and for each
x ∈ X, {Tnx} converges to z.

4.4 Let T be a mapping from a complete metric space into itself. Assume that
for each ε > 0, there exists δ > 0 such that

d(x, Tx) < δ ⇒ T (Bε[x]) ⊂ Bε[x].

If d(Tnx, Tn+1x) → 0 for some x ∈ X, show that the sequence {Tnx}
converges to z, which is a fixed point of T .
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4.5 Let X be a complete metric space and T : X → X an expansion mapping,
i.e., there exists constant k > 1 such that

d(Tx, Ty) ≥ kd(x, y) for all x, y ∈ X.

Assume that T (X) = X. Show that

(a) T is one to one,

(b) T has a unique fixed point z ∈ X with Tnx→ z as n→∞ for some

x ∈ X.

4.6 Let (X, d) be a complete metric space and T : X → CB(X) a mapping.
If α is a function from (0,∞) to [0, 1) such that lim sup

r→t+
α(r) < t for every

t ∈ [0,∞) and if
H(Tx, Ty) ≤ α(d(x, y))d(x, y)

for each x, y ∈ X, show that T has a fixed point in X.



Chapter 5

Existence Theorems in
Banach Spaces

This chapter is devoted to a demiclosed principle and existence of fixed points
of Lipschitzian and non-Lipschitzian mappings in Banach spaces.

5.1 Non-self contraction mappings

In Chapter 4, we studied fixed point theorems for single-valued and multivalued
contraction mappings in metric spaces. In this section, we discuss fixed point
theorems concerning non-self contraction mappings in Banach spaces.

Let C be a nonempty subset of a Banach space X. For x ∈ C, the inward
set of x relative to C is the set

IC(x) = {x + t(y − x) : y ∈ C and t ≥ 0}
and the outward set of x relative to C is the set

OC(x) = {x− t(y − x) : y ∈ C and t ≥ 0}.
Let IC(x) and OC(x) denote closures of IC(x) and OC(x), respectively.

Set

IC(x) := x + {y ∈ X : lim inf
h→0+

d(x + hy,C)
h

= 0}, x ∈ C.

Note that for a convex set C, we have
(i) IC(x) = IC(x),
(ii) C ⊆ IC(x).

We now define weakly inward and weakly outward mappings:

R.P. Agarwal et al., Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3 5,
c© Springer Science+Business Media, LLC, 2009
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Let C be a nonempty subset of a Banach space X and T : C → X a mapping.
Then T is said to be a

(i) inward mapping if Tx ∈ IC(x) for all x ∈ C,

(ii) weakly inward mapping if Tx ∈ IC(x) for all x ∈ C,

(iii) weakly outward mapping if Tx ∈ OC(x) for all x ∈ C.

Let us compare inwardness and weak inwardness conditions with other condi-
tions. Set

(C1) Rothe’s condition: T (∂C) ⊆ C;
(C2) inwardness condition: Tx ∈ IC(x) for all x ∈ C;
(C3) weak inwardness condition: Tx ∈ IC(x) for all x ∈ C;
(C4) the Leray-Schauder condition (if the interior int(C) of C is nonempty):

there exists a z ∈ int(C) such that

Tx− z �= μ(x− z) for all x ∈ ∂C and μ > 1.

These boundary conditions hold the implications:

(C1)⇒ (C2)⇒ (C3)⇒ (C4).

The following proposition gives an equivalent formulation of the weakly
inwardness condition.

Proposition 5.1.1 Let C be a nonempty closed convex subset of a Banach
space X. Then T : C → X is weakly inward if and only if

lim
h→0+

d((1− h)x + hTx,C)
h

= 0 for all x ∈ C. (5.1)

Proof. Suppose that condition (5.1) holds. Fix x ∈ C. For ε > 0, we may
assume t ∈ (0, 1) and y ∈ C such that

‖(1− t)x + tTx− y‖ ≤ d((1− t)x + tTx,C) + tε.

It follows that

‖Tx− [(1− t−1)x + t−1y]‖ ≤ t−1d((1− t)x + tTx,C) + ε.

It is easy to see that Tx ∈ IC(x). Hence T is weakly inward.

Conversely, suppose that T is weakly inward, i.e., Tx ∈ IC(x) for all x ∈ C.
Hence for ε > 0, there exists y ∈ IC(x) such that

‖y − Tx‖ ≤ ε.

Because C is convex, there exists h0 > 0 such that

(1− h)x + hy ∈ C for 0 < h ≤ h0.
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Hence for these h, we have

d((1− h)x + hTx,C)
h

≤ ‖(1− h)x + hTx− {(1− h)x + hy}]‖
h

≤ ε.

Therefore, the condition (5.1) holds.

The following result is an extension of the Banach contraction principle for
non-self contraction mappings.

Theorem 5.1.2 Let C be a nonempty closed convex subset of a Banach space
X and T : C → X a weakly inward contraction mapping. Then T has a unique
fixed point in C.

Prof. Let k, 0 < k < 1 denote Lipschitz constant of T . Choose ε > 0 so small
that k < (1 − ε)/(1 + ε). By Proposition 5.1.1, T satisfies the condition (5.1).
Hence for x ∈ C with x �= Tx, there exists h ∈ (0, 1) such that

d((1− h)x + hTx,C) < hε‖x− Tx‖.
By the definition of distance, there exists y ∈ C such that

‖(1− h)x + hTx− y‖ < hε‖x− Tx‖. (5.2)

By (5.2), we have

hε‖x− Tx‖ > ‖x− y − h(x− Tx)‖
≥ ‖x− y‖ − h‖x− Tx‖,

which implies that

‖x− y‖ < (1 + ε)h‖x− Tx‖. (5.3)

Using (5.2), we have

‖y − Ty‖ ≤ ‖y − [(1− h)x + hTx]‖+ ‖(1− h)x + hTx− Tx‖+ ‖Tx− Ty‖
≤ hε‖x− Tx‖+ (1− h)‖x− Tx‖+ k‖x− y‖
= ‖x− Tx‖+ (ε− 1)h‖x− Tx‖+ k‖x− y‖
= ‖x− Tx‖+ (ε− 1)h‖x− Tx‖+

1− ε

1 + ε
‖x− y‖

−
(

1− ε

1 + ε
− k

)
‖x− y‖

< ‖x− Tx‖ −
(

1− ε

1 + ε
− k

)
‖x− y‖. (by (5.3))

If x �= Tx, x ∈ C, denote y ∈ C as above by f(x), where f is a self-mapping on
C. Then by putting

ϕ(x) =
(

1− ε

1 + ε
− k

)−1

‖x− Tx‖,
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ϕ : C → R+ is a continuous function and

‖x− fx‖ < ϕ(x)− ϕ(fx). (5.4)

By Caristi’s theorem, f has a fixed point, which contradicts the strict inequality
(5.4).

We now turn our attention to study fixed points of multivalued mappings in
Banach spaces.

Let C be a nonempty subset of a Banach space X. We say that a mapping
T of C into the family of nonempty subsets of X is weakly inward if Tx ⊂ IC(x)
for each x ∈ C. Let F (X) denote the family of nonempty closed subsets of X
and T : C → F (X) a multivalued mapping. Given x ∈ C and α ≥ 1, let Tα(x)
denote the set {z ∈ Tx : ‖x− z‖ ≤ α d(x, Tx)}.
Theorem 5.1.3 Let C be a nonempty closed convex subset of a Banach space X
and T : C → F (X) an upper semicontinuous mapping satisfying the conditions:

(a) For each x ∈ C, there exists δ = δ(x) > 0 such that

y ∈ Bδ[x] ∩ C ⇒ d(y, Ty) ≤ d(y, Tx) + k‖x− y‖,
where k ∈ (0, 1).

(b) T1(x) ∩ IC(x) �= ∅ for each x ∈ C.
Then T has a fixed point in C.

Proof. Suppose, for contradiction, that T has no fixed point. We may assume
that d(x, Tx) > 0 for each x ∈ C. Select ε > 0 such that k < (1 − ε)/(1 + ε).
Given x ∈ C, condition (b) implies the existence of an element z ∈ T1(x)∩IC(x),
and by Proposition 3.1.11, there exists h ∈ (0, 1) such that

h−1d((1− h)x + hz,C) < ε d(x, Tx). (5.5)

Set z := (1−h)x+hz. Observe that ‖z−x‖ = h‖z−x‖, and moreover we may
suppose h has been chosen so small that z ∈ Bδ/2[x] (where δ = δ(x) is from
condition (a)). By (5.5), there exists y ∈ C, y �= x such that

‖z − y‖ < hε d(x, Tx). (5.6)

Hence

‖x− y‖/‖z − x‖ ≤ [‖x− z‖+ ‖z − y‖]/‖z − x‖
= 1 + ‖z − y‖/‖z − x‖
< 1 + ‖z − y‖/(hd(x, Tx))
< 1 + ε,

which implies that

(1 + ε)−1‖x− y‖ < ‖z − x‖. (5.7)
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Because z ∈ Bδ/2[x], it follows from (5.7) that y ∈ Bδ[x] and thus

d(y, Ty) ≤ d(y, Tx) + k‖x− y‖
≤ ‖y − z‖+ d(z, Tx) + k‖x− y‖.

Combining this with (5.6), (5.7), and using the definition of z along with the
fact that z ∈ T1(x), we obtain

d(y, Ty) ≤ ‖y − z‖+ d(x, Tx)− ‖x− z‖+ k‖x− y‖
< ε‖x− z‖+ d(x, Tx)− ‖x− z‖+ k‖x− y‖.
= d(x, Tx) + k‖x− y‖ − (1− ε)‖x− z‖
< d(x, Tx) + k‖x− y‖ − (1− ε)(1 + ε)−1‖x− y‖
= d(x, Tx) + [k − (1− ε)(1 + ε)−1]‖x− y‖.

Set η = −[k − (1− ε)(1 + ε)−1]. Then η > 0 and

η‖x− y‖ ≤ d(x, Tx)− d(y, Ty).

We now define g : C → C by g(x) = y with y determined as above, and let
ϕ(x) = η−1d(x, Tx). Proposition 4.2.6 implies that ϕ is lower semicontinuous,
so Caristi’s theorem implies the existence of an x0 ∈ C such that x0 = g(x0).
But g(x) = y �= x for all x ∈ C by definition, and our assumption that T has
no fixed points is contradicted.

The following example shows that condition (b) in Theorem 5.1.3 cannot be
altered to Tx ∩ IC(x) �= ∅.
Example 5.1.4 Let X = R and C = [0, 1]. Define T : C → K(X) by Tx =
{−1, 2} for all x ∈ C. Then T is a constant and

IC(x) =

⎧⎨
⎩

[0,∞) if x = 0,
R if x ∈ (0, 1),
(−∞, 1] if x = 1.

Therefore, Tx ∩ IC(x) �= ∅ for all x ∈ C, but T has no fixed point in C.

Theorem 5.1.5 Let C be a nonempty closed convex subset of a Banach space
X and T : C → F (X) an upper semicontinuous mapping that satisfies the
conditions:

(a) For each x ∈ C, there exists δ = δ(x) > 0 such that

y ∈ Bδ[x] ∩ C ⇒ d(y, Ty) ≤ d(y, Tx) + k‖x− y‖,
where k ∈ (0, 1).

(b′) Corresponding with each x ∈ C, there exist constants α = α(x) > 1, μ =
μ(x) ∈ (0, 1) such that

(1− μ)x + μTα(x) ⊂ C.

Then T has a fixed point in C.
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Proof. Suppose, for contradiction, that T has no fixed point. Select k′ ∈ (k, 1).
Fix x ∈ C, let α = α(x), and choose μ so that μ ≤ min{μ(x), δ(x)} and
αμ d(x, Tx) ≤ δ(x). Then

‖x− y‖ ≥ μ d(x, Tx) for all y ∈ (1− μ)x + μTα(x).

Thus, if ξ ∈ (1, α) is chosen so that ξ − 1 < μ(k′ − k), we obtain

(ξ − 1) d(x, Tx) ≤ (k′ − k)‖x− y‖ for all y ∈ (1− μ)x + μTα(x) (5.8)

Now fix z ∈ Tξ(x) and let y = (1− μ)x + μz. By (5.8), we have

k‖x− y‖ ≤ k′‖x− y‖ − (ξ − 1) d(x, Tx)

and therefore (using (a) because μ‖x− z‖ ≤ μξ d(x, Tx) ≤ δ(x)):

d(y, Ty) ≤ d(y, Tx) + k‖x− y‖
≤ ‖y − z‖+ k‖x− y‖
= ‖x− z‖ − ‖x− y‖+ k‖x− y‖
≤ ξd(x, Tx)− ‖x− y‖+ k′‖x− y‖ − (ξ − 1) d(x, Tx)
= d(x, Tx) + (k′ − 1)‖x− y‖.

Hence
‖x− y‖ ≤ (1− k′)−1[d(x, Tx)− d(y, Ty)]

and the proof is completed as in Theorem 5.1.3 by taking g(x′) = y and ϕ(x) =
(1− k′)−1d(x, Tx).

We now derive some existence theorems from Theorems 5.1.3 and 5.1.5.

Theorem 5.1.6 Let C be a nonempty closed convex subset of a Banach space
X and T : C → CB(X) a multivalued contraction mapping that satisfies either
condition (b) or condition (b′). Then T has a fixed point in C.

Proof. It is easy to see that T is automatically upper semicontinuous. Because

d(y, Ty) ≤ d(y, Tx) + H(Tx, Ty) for all x, y ∈ C,

it follows that T satisfies condition (a).

Theorem 5.1.7 Let C be a nonempty closed convex subset of a Banach space
X and T : C → K(X) a multivalued contraction mapping for which Tx ⊂
IC(x), x ∈ C. Then T has a fixed point in C.

Proof. Under the stated assumptions, condition (b) is automatically satisfied.
Hence the result follows from Theorem 5.1.6.
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As a slightly different result, we have

Theorem 5.1.8 Let C be a nonempty closed convex subset of a Banach space
X and T : C → CB(X) a contraction mapping. If for each x ∈ C,

lim
h→0+

d((1− h)x + hz,C)
h

= 0 uniformly for z ∈ Tx,

then T has a fixed point.

Proof. Let k be the Lipschitz constant of T . Choose real numbers k′ and q such
that k < k′ < 1, 0 < q < 1 and k′ < (1− q)/(1 + q). Suppose, for contradiction,
that T has no fixed point, i.e., d(x, Tx) > 0 for all x ∈ C. For each x ∈ C, take
ε > 0 such that

qd(x, Tx)− εd(x, Tx) > 0.

By assumption, there exists h ∈ (0, 1) such that

d((1− h)x + hz,C) < h(q − ε)d(x, Tx) for all z ∈ Tx.

Choose z ∈ Tx such that

‖x− z‖ < d(x, Tx) + hεd(x, Tx). (5.9)

For such a z, take y ∈ C such that

‖(1− h)x + hz − y‖ < h(q − ε)d(x, Tx). (5.10)

Set w := (1− h)x + hz. From (5.10), we have

‖w − y‖ < h(q − ε)d(x, Tx)
≤ hq‖x− z‖ − hεd(x, Tx)
= q‖w − x‖ − hεd(x, Tx) (since h(z − x) = w − x)
< q‖w − x‖

and

‖x− y‖ ≤ ‖x− w‖+ ‖w − y‖
< ‖x− w‖+ q‖w − x‖
< (1 + q)‖x− w‖.

Let ε′ = [k′‖x − y‖ − H(Tx, Ty)]/2. Then, because T is contraction with
Lipschitz constant k and x �= y by (5.10), we have ε′ > 0. Choose u ∈ Tx and
v ∈ Ty satisfying

‖w − u‖ < d(w, Tx) + ε′ and ‖u− v‖ ≤ H(Tx, Ty) + ε′.
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Then we have

d(y, Ty) ≤ ‖y − v‖
≤ ‖y − w‖+ ‖w − u‖+ ‖u− v‖
< ‖y − w‖+ d(w, Tx) + ε′ + H(Tx, Ty) + ε′

≤ ‖y − w‖+ ‖w − z‖+ k′‖x− y‖
= ‖y − w‖+ ‖x− z‖ − h‖x− z‖+ k′‖x− y‖
= ‖y − w‖+ ‖x− z‖ − ‖w − x‖+ k′‖x− y‖
< q‖w − x‖ − hε d(x, Tx) + ‖x− z‖ − ‖w − x‖+ k′‖x− y‖
= (q − 1)‖w − x‖+ ‖x− z‖ − hε d(x, Tx) + k′‖x− y‖
<

q − 1
q + 1

‖x− y‖+ d(x, Tx) + k′‖x− y‖ (from (5.9))

= d(x, Tx)−
(

1− q

q + 1
− k′
)
‖x− y‖

= d(x, Tx)− r‖x− y‖,

where r = [(1− q)/(1 + q)]− k′. Now for each x ∈ C, denote y ∈ C as above by
f(x). Then

‖x− f(x)‖ < ϕ(x)− ϕ(f(x)) for all x ∈ C, (5.11)

where ϕ : C → [0,∞) is the continuous function defined by ϕ(x) = r−1d(x, Tx)
for all x ∈ C. By Caristi’s fixed point theorem, there exists an x0 ∈ C such
that x0 = fx0. This contradicts the inequality (5.11). Therefore, T has a fixed
point.

We now consider the existence of fixed points of multivalued contraction
mappings when the domain is not necessarily convex.

Let C be a nonempty subset of a Banach space X. For given x ∈ C and
α ∈ R+, let IC(x, α) denote the set {z ∈ X : z = x + λ(y − x) for some y ∈ C
and λ ≥ α}. Obviously, IC(x) = IC(x, 0).

Theorem 5.1.9 Let C be a nonempty closed subset of a Banach space X and
T : C → K(X) a contraction mapping satisfying the condition:

Tx ⊂ IC(x, 1), x ∈ C.

Then T has a fixed point.

Proof. Suppose, for contradiction, that T has no fixed point. Let k be the
Lipschitz constant of T . Choose q such that 0 < q < 1 and k < (1− q)/(1 + q).
Let x ∈ C. Then there exists a point z ∈ Tx such that

0 < d(x, Tx) = ‖x− z‖.
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Because z ∈ Tx ⊂ IC(x, 1), there exists a yn ∈ C and λn ≥ 1 such that

‖z − (x + λn(yn − x))‖ <
1
n

for all n ∈ N.

If λn = 1 for all sufficiently large n, then we define y = z. Otherwise, there
exists a subsequence {λni

} of {λn} such that λni
> 1. We choose N sufficiently

large number such that

‖z − (x + λN (yN − x))‖ <
1
N

< q‖x− z‖

and we define yN = y. Set h := 1/λN and w := (1− h)x + hz. Observe that

‖w − x‖ = h‖x− z‖
and ∥∥∥∥ 1

λN
z − 1

λN
x− (y − x)

∥∥∥∥ <
q

λN

∥∥∥∥x− z

∥∥∥∥,
i.e.,

‖w − y‖ < qh ‖x− z‖.
It follows that

‖x− y‖ ≤ ‖x− w‖+ ‖w − y‖
≤ ‖x− w‖+ qh ‖x− z‖
= (1 + q)‖w − x‖.

Choosing u ∈ Tx and v ∈ Ty such that

‖w − u‖ = d(w, Tx) and ‖u− v‖ ≤ H(Tx, Ty),

we have that

d(y, Ty) ≤ ‖y − v‖
≤ ‖y − w‖+ ‖w − u‖+ ‖u− v‖
≤ ‖y − w‖+ ‖w − z‖+ H(Tx, Ty)
= ‖y − w‖+ ‖z − x‖ − h‖x− z‖+ k‖x− y‖
< qh‖x− z‖+ ‖x− z‖ − h‖x− z‖+ k‖x− y‖
= (q − 1)‖w − x‖+ ‖x− z‖+ k‖x− y‖
<

q − 1
q + 1

‖x− y‖+ ‖x− z‖+ k‖x− y‖
= d(x, Tx)− r‖x− y‖,

where r = [(1− q)/(1 + q)]− k > 0.
We define the mapping f : C → C by f(x) = y for x ∈ C. Then

‖x− fx‖ < ϕ(x)− ϕ(fx) for all x ∈ C, (5.12)
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where ϕ : C → [0,∞) is the continuous function defined by ϕ(x) = r−1d(x, Tx)
for all x ∈ C. By Caristi’s fixed point theorem, there exists an x0 ∈ C such
that x0 = fx0. This contradicts the inequality (5.12). Therefore, T has a fixed
point.

In the following theorem, we assume that each point x ∈ C has a nearest
point in the set Tx.

Theorem 5.1.10 Let C be a nonempty closed subset of a Banach space X and
T : C → 2X\{∅} a contraction with closed-values and satisfying the condition:

Tx ⊂ x + {λ(y − x) : λ ≥ 1, y ∈ C} for all x ∈ C.

Assume that each x ∈ C has a nearest point in Tx. Then T has a fixed point.

Proof. Without loss of generality, we may assume that

Tx ⊆ x + {λ(y − x) : λ > 1, y ∈ C} for all x ∈ C. (5.13)

Choose q ∈ (0, 1) and ε ∈ (0, 1) such that k < q < (1−ε)/(1+ε). By assumption,
each x ∈ C has a nearest point in Tx, then there exists z ∈ Tx such that

‖x− z‖ = d(x, Tx).

Set z = f(x). Then f(x) ∈ Tx and ‖x − f(x)‖ = d(x, Tx). By (5.13), there
exists yn ∈ C and λn > 1 such that

‖f(x)− (x + λn(yn − x))‖ → 0 as n→∞.

Suppose, for contradiction, that T has no fixed point. Then we have a sufficient
large natural number N such that

‖f(x)− (x + λN (yN − x))‖ < εd(x, Tx). (5.14)

Set

h :=
1

λN
, w :=

(
1− 1

λN

)
x +

1
λN

f(x) = (1− h)x + hf(x) and g(x) := yN .

By (5.14), we have

‖yN − w‖ = ‖yN − ((1− h)x + hf(x))‖ < εhd(x, Tx) = εh‖x− f(x)‖.

Also

‖w − f(x)‖ = (1− h)‖x− f(x)‖ = (1− h)d(x, Tx).
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Observe that

d(yN , T yN ) ≤ ‖yN − w‖+ d(w, Tx) + H(Tx, TyN )
≤ ‖yN − w‖+ ‖w − f(x)‖+ k‖x− yN‖
≤ ‖yN − w‖+ (1− h)‖x− f(x)‖+ k‖x− yN‖
< εh‖x− f(x)‖+ (1− h)‖x− f(x)‖+ k‖x− yN‖
= (ε− 1)h‖x− f(x)‖+ ‖x− f(x)‖+ k‖x− yN‖
= (ε− 1)‖w − x‖+ ‖x− f(x)‖+ k‖x− yN‖
= (ε− 1)‖w − x‖+ q‖x− yN‖

+‖x− f(x)‖ − (q − k)‖x− yN‖. (5.15)

By the choice of the integer N , we see that

εd(x, Tx) > ‖f(x)− x− λN (yN − x)‖
≥ λN‖yN − x‖ − ‖f(x)− x‖
= λN‖yN − x‖ − d(x, Tx),

which implies that

‖yN − x‖ <
1 + ε

λN
d(x, Tx).

By the choice of q, we have

‖yN − x‖ <
(1 + ε)

λN
d(x, Tx)

<
1− ε

q
hd(x, Tx) (since ‖w − x‖ = hd(x, Tx))

=
1− ε

q
‖w − x‖.

It follows from (5.15) that

d(yN , T yN ) < ‖x− f(x)‖ − (q − k)‖x− yN‖.
Thus, we have

‖x− g(x)‖ < ϕ(x)− ϕ(g(x)) for all x ∈ C, (5.16)

where ϕ : C → R+ is the continuous function defined by ϕ(x) = (q−k)−1d(x, Tx),
x ∈ C. By Caristi’s theorem, g has a fixed point that contradicts the strict
inequality (5.16). Therefore, T has a fixed point in C.

Theorem 5.1.11 Let C be a nonempty closed subset of a Banach space X and
T : C → F (X) a contraction. Assume that T is weakly inward on C and that
each x ∈ C has a nearest point in Tx. Then T has a fixed point.

Proof. The proof is similar to the proof of Theorem 5.1.10.
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5.2 Nonexpansive mappings

Let C be a nonempty subset of a normed space X and T : C → X a mapping.
Then T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

Recall that a sequence {xn} ⊂ C is an approximating fixed point sequence of
T if lim

n→∞ ‖xn − Txn‖ = 0.

The approximating fixed point sequence has a fundamental role in the study
of fixed point theory of nonexpansive mappings. We begin with the existence
and basic properties of approximating fixed point sequences of nonexpansive
mappings.

Proposition 5.2.1 Let C be a nonempty closed convex subset of a Banach
space X and T : C → X a nonexpansive mapping that is weakly inward. Then
for u ∈ C and t ∈ (0, 1), there exists exactly one point xt ∈ C such that

xt = (1− t)u + Txt.

If C is bounded, then xt − Txt → 0 as t→ 1.

Proof. For t ∈ (0, 1), the mapping Tt : C → X defined by

Ttx = (1− t)u + tTx, x ∈ C (5.17)

is a contraction with Lipschitz constant t. By Theorem 5.1.2, there exists exactly
one point xt ∈ C such that

xt = Ttxt = (1− t)u + tTxt.

If C is bounded, then

‖xt − Txt‖ = (1− t)‖u− Txt‖ ≤ (1− t) diam(C)→ 0 as t→ 1.

As an immediate consequence of Proposition 5.2.1, we have

Corollary 5.2.2 Let C be a nonempty closed convex bounded subset of a Banach
space X and T : C → C a nonexpansive mapping. Then there exists a sequence
{xn} in C such that lim

n→∞ ‖xn − Txn‖ = 0.

Proof. For t ∈ (0, 1), the mapping Tt : C → C defined by (5.17) is a contrac-
tion and it has exactly one fixed point xt in C. Now the result follows from
Proposition 5.2.1

It is clear from the proof of Corollary 5.2.2 that one does not need the
convexity of C. Indeed, this assumption can be replaced by the assumption
that C is star-shaped, i.e., there exists u ∈ C such that (1− t)u + tx ∈ C for all
x ∈ C and t ∈ [0, 1]. The point u is called star-center of C.
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There is another way to obtain an approximating fixed point sequence of
nonexpansive mappings defined in a nonconvex domain.

Before proving our next theorem, we need the following lemma:

Lemma 5.2.3 Let {an} and {bn} be two sequences of a normed space X.
If there is a sequence {tn} of real numbers satisfying the conditions:

(i) 0 ≤ tn ≤ t < 1 and
∑∞

n=1 tn =∞,

(ii) an+1 = (1− tn)an + tnbn for all n ∈ N,

(iii) lim
n→∞ ‖an‖ = d,

(iv) lim sup
n→∞

‖bn‖ ≤ d and {∑n
i=1 tibi} is bounded,

then d = 0.

Proof. Suppose, for contradiction, that d > 0. It follows from (iv) that
{∑n+m−1

i=n tibi} is bounded for all n and m. Set M = sup{‖∑n+m−1
i=n tibi‖ :

n,m ∈ N}. Choose a number N such that N > max{2M/d, 1}. We can choose
a positive ε such that 1 − 2ε exp((N + 1)/(1 − t)) > 1/2. It follows from
(i) that there exists a natural k such that N <

∑k
i=1 ti ≤ N + 1. Because

lim
n→∞ ‖an‖ = d, lim sup

n→∞
‖bn‖ ≤ d and ε is independent of n, without loss of

generality we may assume that for all n ∈ N,

d(1− ε) < ‖an‖ < d(1 + ε) and ‖bn‖ < d(1 + ε).

Set T =
∑k

i=1 ti, S =
∏k

i=1 si and sn = 1 − tn for all n ∈ N. From (ii), we
obtain

ak+1 = s1s2 · · · ska1 + t1s2s3 · · · skb1 + · · ·+ tk−1skbk−1

+tkbk, ak+1 ∈ B := co{a1, b1, b2, · · · , bk}.

Let x = T−1
∑k

i=1 tibi and

y = S(1− S)−1{a1 + t1(s−1
1 − T−1)b1

+t2(s−1
1 s−1

2 − T−1)b2 + · · ·+ tk(S−1 − T−1)bk}.

Then x, y ∈ B and ak+1 = Sx + (1− S)y. Hence

d(1− ε) < ‖ak+1‖ ≤ S‖x‖+ (1− S)‖y‖
≤ S‖x‖+ (1− S)d(1 + ε).
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It follows that

‖x‖ > d(1− S−1(2− S)ε)
> d(1− 2εS−1)

= d

(
1− 2ε

k∏
i=1

(1− ti)−1

)

= d

[
1− 2ε exp

( k∑
i=1

log
(

1 +
ti

1− ti

))]

≥ d

(
1− 2ε exp

( k∑
i=1

ti
1− ti

))

≥ d(1− 2ε exp(T/(1− t)))
≥ d(1− 2ε exp((N + 1)/(1− t)))
> d/2,

because log(1 + u) ≤ u for −1 < u <∞. Thus, we have

‖x‖ = T−1

∥∥∥∥
k∑

i=1

tibi

∥∥∥∥ ≤ T−1M ≤ d

2M
M =

d

2
,

a contradiction.

Theorem 5.2.4 Let C be a nonempty subset of a normed space and T : C → C
a nonexpansive mapping. For x0 ∈ C, suppose we have a sequence {tn} of real
numbers and a sequence {Ttn

} of mappings from C into itself satisfying the
conditions:

(i) 0 ≤ tn ≤ t < 1 and
∑∞

n=0 tn =∞,

(ii) xn+1 = Ttn
xn and Ttn

= (1− tn)I + tnT, n ∈ N0.

If {xn} is bounded sequence in C, then lim
n→∞ ‖xn − Txn‖ = 0. Moreover,

lim
n→∞ ‖Ttn

Ttn−1 · · ·Tt0x0 − Ttn−1Ttn−2 · · ·Tt0x0‖ = 0.

Proof. Because

‖xn+1 − Txn+1‖ ≤ (1− tn)‖xn − Txn+1‖+ tn‖Txn − Txn+1‖
≤ (1− tn)(‖xn−xn+1‖+‖xn+1−Txn+1‖)+tn‖xn+1 − xn‖
≤ (1− tn)‖xn+1 − Txn+1‖+ ‖xn+1 − xn‖
≤ (1− tn)‖xn+1 − Txn+1‖+ tn‖xn − Txn‖,

this yields
‖xn+1 − Txn+1‖ ≤ ‖xn − Txn‖ for all n ∈ N0.
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The sequence {‖xn − Txn‖} is nonincreasing; it follows that

lim
n→∞ ‖xn − Txn‖ exists. (5.18)

Suppose lim
n→∞ ‖xn − Txn‖ = r. Without loss of generality, we may assume that

tn > 0 for all n ∈ N0. Set an := xn − Txn and bn := t−1
n (Txn − Txn+1). Then

an+1 = (1− tn)an + tnbn.

Because

‖bn‖ = t−1
n ‖Txn − Txn+1‖ ≤ t−1

n ‖xn − xn+1‖ = ‖xn − Txn‖,

this implies that
lim sup

n→∞
‖bn‖ ≤ r.

Observe that

‖
n∑

i=0

tibi‖ = ‖
n∑

i=0

(Txi − Txi+1)‖

= ‖Tx0 − Txn+1‖
≤ ‖x0 − xn+1‖,

Hence {∑n
i=0 tibi} is bounded, because {xn} is bounded. By Lemma 5.2.3, we

have lim
n→∞ ‖xn − Txn‖ = 0.

Now, for all n ∈ N

‖xn+1 − xn‖ = tn‖xn − Txn‖ ≤ t‖xn − Txn‖,

which implies that

lim
n→∞ ‖Ttn

Ttn−1 · · ·Tt0x0 − Ttn−1Ttn−2 · · ·Tt0x0‖ = 0.

The notion of asymptotic regularity is of fundamental importance in the
study of fixed point theory of nonlinear mappings.

Let C be a nonempty subset of a normed space X and T : C → C a mapping.
Then T is said to be

(i) asymptotically regular at x0 ∈ C if lim
n→∞ ‖T

nx0 − Tn+1x0‖ = 0;

(ii) weakly asymptotically regular at x0 ∈ C if Tnx0 − Tn+1x0 ⇀ 0;

(iii) asymptotically regular on C if for any x ∈ C, lim
n→∞ ‖T

nx− Tn+1x‖ = 0;

(iv) uniformly asymptotically regular if lim
n→∞(sup

x∈C
‖Tnx− Tn+1x‖) = 0;
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(v) reasonable wanderer in C if starting at any x ∈ C,

∞∑
n=0

‖Tnx− Tn+1x‖ <∞.

Note that every uniformly asymptotically regular mapping is asymptotically
regular.

Remark 5.2.5 The asymptotic regularity of a mapping T at a point x0 implies
the existence of an approximating fixed point sequence of that mapping, but the
converse is not true.

It can be easily seen that a contraction mapping enjoys all this properties.
The following example shows that there exists a nonexpansive mapping that is
not necessarily asymptotically regular.

Example 5.2.6 Let X = R and T : X → X defined by Tx = −x. Note that T
is nonexpansive, but T is not asymptotically regular.

However, a convex combination of nonexpansive mappings turns out to be
asymptotically regular in a general Banach space. Indeed, we have

Theorem 5.2.7 Let C be a nonempty convex subset of a normed space X and
T : C → C a nonexpansive mapping. For a t ∈ (0, 1), define a mapping
Tt : C → C by

Tt = (1− t)I + tT.

If for x0 ∈ C, {Tn
t x0} is bounded, then Tt is asymptotically regular at x0, i.e.,

lim
n→∞ ‖T

n
t x0 − Tn+1

t x0‖ = 0.

We now turn to study a demiclosedness principle for nonexpansive mappings
in Banach spaces.

Definition 5.2.8 Let C be a nonempty subset of a Banach space X and T :
C → X a mapping. Then T is said to be demiclosed at v ∈ X if for any sequence
{xn} in C the following implication holds:

xn ⇀ u ∈ C and Txn → v imply Tu = v.

Our first result concerning the demiclosedness principle of nonexpansive
mappings is in an Opial space.

Theorem 5.2.9 Let X be a Banach space that satisfies the Opial condition,
C a nonempty weakly compact subset of X, and T : C → X a nonexpansive
mapping. Then the mapping I − T is demiclosed.

Proof. Let {xn} be a sequence in C such that xn ⇀ x ∈ C and lim
n→∞

‖(I − T )xn − y‖ = 0 for some y ∈ X. We show that (I − T )x = y.
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Observe that

‖xn − Tx− y‖ ≤ ‖xn − Txn − y‖+ ‖Txn − Tx‖,

which implies that

lim inf
n→∞ ‖xn − Tx− y‖ ≤ lim inf

n→∞ ‖xn − x‖.

By the Opial condition, we have

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − (Tx + y)‖,

a contradiction. Therefore, (I − T )x = y.

Corollary 5.2.10 Let X be a reflexive Banach space that satisfies the Opial
condition, C a nonempty closed convex subset of X, and T : C → X a non-
expansive mapping. Then I − T is demiclosed.

We now extend the demiclosedness principle of nonexpansive mappings in a
uniformly convex Banach space without Opial’s condition. To do so, we need
the following:

Proposition 5.2.11 Let C be a nonempty convex bounded subset of a uniformly
convex Banach space X and T : C → X a nonexpansive mapping. Then, for
any ε > 0, there exists positive number ζ(ε) > 0 such that ‖x − Tx‖ < ε for
all x ∈ co({x0, x1}), whenever for x0, x1 ∈ C with ‖x0 − Tx0‖ ≤ ζ(ε) and
‖x1 − Tx1‖ ≤ ζ(ε).

Proof. Let x = (1− λ)x0 + λx1 for some λ ∈ [0, 1]. Suppose ‖x0 − x1‖ < ε/3,
then

‖x− x0‖ = λ‖x1 − x0‖ < ε/3.

If ζ(ε) < ε/3, then we have

‖Tx− x‖ ≤ ‖Tx− Tx0‖+ ‖Tx0 − x0‖+ ‖x0 − x‖ (5.19)
≤ 2‖x− x0‖+ ζ(ε)
< ε.

Hence we need only consider pairs of points x0 and x1 with ‖x1 − x0‖ ≥ ε/3.
Set d := diam(C). Then for any nonnegative number λ with λ < ε/(3d),

‖x− x0‖ = λ‖x1 − x0‖ <
ε

3
.

Thus, if ζ(ε) < ε/3 and λ < ε/(3d), from (5.19), we have ‖Tx− x‖ < ε.

Now let λ ≥ ε/(3d). If (1 − λ) < ε/(3d), then because ‖x − x1‖ =
(1− λ)‖x1 − x0‖ < ε/3, we have ‖x− Tx‖ < ε.
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So, without loss of generality we may assume that λ ∈ [ε/(3d), 1 − ε/(3d)]
and ‖x0 − x1‖ ≥ ε/3. Note

‖Tx− x0‖ ≤ ‖Tx− Tx0‖+ ‖Tx0 − x0‖
≤ λ‖x1 − x0‖+ ζ(ε)

and

‖Tx− x1‖ ≤ ‖Tx− Tx1‖+ ‖Tx1 − x1‖
≤ (1− λ)‖x1 − x0‖+ ζ(ε).

Set
u :=

Tx− x0

λ‖x1 − x0‖ and v :=
x1 − Tx

(1− λ)‖x1 − x0‖ .

Then

‖u‖ =
‖Tx− x0‖
λ‖x1 − x0‖ ≤ 1 +

ζ(ε)
λ‖x1 − x0‖ ≤ 1 +

9dζ(ε)
ε2

and

‖v‖ =
‖Tx− x1‖

(1− λ)‖x1 − x0‖ ≤ 1 +
ζ(ε)

(1− λ)‖x1 − x0‖ ≤ 1 +
9dζ(ε)

ε2
.

Observe that

‖λu + (1− λ)v‖ =
‖x1 − x0‖
‖x1 − x0‖ = 1 for all λ ∈

[
ε

3d
, 1− ε

3d

]
.

By the uniform convexity of X, if ζ(ε) is sufficiently small and positive, it follows
that ‖u− v‖ ≤ ε/d. Because x = λx1 + (1− λ)x0, it follows that

‖Tx− x‖ ≤ ‖λ(Tx− x1) + (1− λ)(Tx− x0)‖
≤ λ(1− λ)‖u− v‖‖x1 − x0‖ < λ(1− λ)

(
ε

d

)
‖x1 − x0‖ ≤ ε.

Theorem 5.2.12 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C → X a nonexpansive mapping. Then
I − T is demiclosed on X.

Proof. Let {xn} be a sequence in C such that xn⇀x and lim
n→∞‖xn−Txn−y‖=0

for some y ∈ X. Set Tyx := Tx+y, x ∈ C. Then (I−Ty)xn = (I−T )xn−y → 0.
If (I − Ty)x = 0, then (I − T )x = y. Hence, we may assume without loss of
generality that y = 0. Set εn := ‖xn − Txn‖. Because εn → 0 as n → ∞, we
may thin out the sequence to make the convergence faster, and we do this in
such a way that for each n

εn ≤ ζ(εn−1) < εn−1,
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where ζ(ε) for any ε > 0 is constant as described in the conclusion of Proposi-
tion 5.2.11. Hence for each point z ∈ co({xk : k ≥ n}), we have ‖z−Tz‖ ≤ εn−1.
Because co({xk : k ≥ n}) is weakly compact (and hence weakly closed) and con-
tains the weak limit x of the sequence {xn}, it follows that ‖x−Tx‖ ≤ εn−1 → 0
as n→∞. Therefore, x = Tx.

Theorem 5.2.13 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C → X a nonexpansive mapping. Then
(I − T )(C) is closed.

Proof. Suppose u ∈ (I − T )(C). Then there is a sequence {xn} in C such that
xn − Txn → u as n → ∞. Because C is a weakly closed and bounded set in
a reflexive Banach space X, it is weakly compact. Hence we may assume that
xn ⇀ x ∈ C. By the conclusion of Theorem 5.2.12, we have (I − T )x = u, i.e.,
(I − T )(C) is closed.

We now prove some fundamental existence theorems for nonexpansive
mappings.

Theorem 5.2.14 Let C be a nonempty closed convex bounded subset of a
Banach space X and T : C → X a nonexpansive mapping that is weakly
inward. If I − T is closed, then T has a fixed point in C.

Proof. By Proposition 5.2.1, xt−Txt → 0 as t→ 1. Hence 0 lies in the closure
of (I − T )(C). Because I − T is closed, there exists a point v ∈ C such that
(I − T )v = 0.

Theorem 5.2.15 Let X be a reflexive Banach space with the Opial condition.
Let C be a nonempty closed convex bounded subset of X and T : C → C a
nonexpansive mapping. Then T has a fixed point in C.

Proof. By Corollary 5.2.2, there exists a sequence {xn} in C such that lim
n→∞

‖xn − Txn‖ = 0. By the reflexivity of X, there is a subsequence {xnk
} of {xn}

such that xnk
⇀ x ∈ C. By Corollary 5.2.10, I − T is demiclosed at zero, i.e.,

xnk
⇀ x ∈ C and xnk

− Txnk
→ 0 imply x − Tx = 0. Therefore, x is a fixed

point of T .

Using Theorem 5.2.14, we prove some fundamental existence theorems for
nonexpansive mappings.

Theorem 5.2.16 (Browder’s theorem and Göhde’s theorem) – Let X
be a uniformly convex Banach space and C a nonempty closed convex bounded
subset of X. Then every nonexpansive mapping T : C → C has a fixed point in
C.

Proof. Because (I − T )(C) is closed by Theorem 5.2.13, it follows from
Theorem 5.2.14 that T has fixed point in C.
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Corollary 5.2.17 (Browder’s theorem) – Let H be a Hilbert space and C a
nonempty closed convex bounded subset of H. Then every nonexpansive mapping
T : C → C has a fixed point in C.

The following result is slightly more general than Theorem 5.2.16.

Theorem 5.2.18 (Kirk’s fixed point theorem) – Let X be a Banach space
and C a nonempty weakly compact convex subset of X with normal structure.
Then every nonexpansive mapping T : C → C has a fixed point.

Proof. Let

F = {Dα ⊂ C : Dα is nonempty closed convex set such that T (Dα) ⊂ Dα}.
Because C ∈ F , it follows that F is nonempty and it can be partially ordered
by set inclusion. Then, using Zorn’s Lemma (see Appendix A), F has a mini-
mal element, say C0. We show that C0 has only one element. Suppose, for
contradiction, that C0 contains two elements. Hence diam(C0) > 0. Because
C0 is weakly compact convex, Z(C0) is nonempty. Let x0 ∈ Z(C0). Then for
x ∈ C0

‖Tx0 − Tx‖ ≤ ‖x0 − x‖ ≤ rx0(C0) = r(C0),

i.e., Tx is contained in B = Br(C0)[Tx0]. Thus, T (C0) ⊂ B and hence T (B ∩
C0) ⊂ B ∩ C0. The minimality of C0 implies that C0 ⊂ B. Hence rTx0(C0) ≤
r(C0). Because r(C0) ≤ rTx0(C0), it follows that r(C0) = rTx0

(C0). Thus,
Tx0 ∈ Z(C0), i.e., Z(C0) is mapped into itself by T . By Proposition 3.3.14,
Z(C0) is a nonempty closed convex subset of C0 such that T (Z(C0)) ⊆ Z(C0).
It means that Z(C0) ∈ F and also Z(C0) is properly contained in C0 by Propo-
sition 3.3.15. This contradicts the minimality of C0. Therefore, C0 consists of
a single point and hence T has a fixed point in C.

The following examples show that nonexpansive mappings may fail to have
fixed points in general Banach spaces.

Example 5.2.19 Let X be a Banach space and T : X → X a translation
mapping defined by

Tx = x + a, a �= 0.

Then T is nonexpansive and a fixed point free mapping.

Example 5.2.20 (Sadovski) – Let c0 be the Banach space of null sequences
and C = {x ∈ c0 : ‖x‖ ≤ 1}, the unit closed ball in c0. Define a mapping
T : C → C by

T (x1, x2, · · · , xi, · · · ) = (1, x1, x2, x3, · · · ).
It is obvious that T is nonexpansive on the closed convex bounded set C and
x = (1, 1, 1, · · · ) is a fixed point of T . But (1, 1, 1, · · · ) /∈ c0. In this case, the
Banach space X = c0 is not reflexive and C does not have normal structure.

The following example shows that there exists a non-self nonexpansive map-
ping that has a fixed point.
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Example 5.2.21 Let X = R, C = [−1, 1] and T : C → X defined by Tx =
1− x, x ∈ C. Then T (−1) = 2 /∈ C, i.e., T is not a self-mapping. But T does
have a unique fixed point in C.

We now give another example that shows that the boundedness of C in
Browder’s existence theorem may not be essential (even for non-self nonexpan-
sive mappings).

Example 5.2.22 Let X = R, C = R+ and T : C → X defined by Tx =
1/(1 + x), x ∈ C. Then T is nonexpansive, T (C) = (0, 1], which is bounded,
and Tv = v = (

√
5− 1)/2. However, C is unbounded.

Examples 5.2.21 and 5.2.22 indicate that we may be able to extend Browder-
Göhde-Kirk theorem for non-self nonexpansive mappings. We begin with the
following fundamental theorem.

Theorem 5.2.23 Let C be a nonempty closed convex subset of a Hilbert space
H and T : C → H a nonexpansive mapping with T (C) bounded. Then there
exists a z ∈ C such that ‖z − Tz‖ = d(Tz,C).

Proof. Let P be the metric projection mapping from H onto C. Then PT :
C → C is a nonexpansive mapping. Set D := co(PT (C)). Then PT (C) is
bounded, because T (C) is bounded. Thus, D is a closed convex bounded set
and PT is nonexpansive self-mapping on D. By Browder-Göhde-Kirk’s theorem,
PT has a fixed point z in D. Therefore,

‖Tz − z‖ = ‖Tz − PTz‖ = d(Tz,C).

In the following corollary, we replace boundedness of T (C) by “boundedness
of C”:

Corollary 5.2.24 Let C be a nonempty closed convex bounded subset of a
Hilbert space H and T : C → H a nonexpansive mapping. Then there exists a
z ∈ C such that ‖z − Tz‖ = d(Tz,C).

We now apply Theorem 5.2.23 to derive an existence theorem for fixed points
of non-self nonexpansive mappings.

Theorem 5.2.25 Let C be a nonempty closed convex subset of a Hilbert space
H and T : C → H a nonexpansive mapping. Let T (C) be bounded and T (∂C) ⊆
C. Then T has a fixed point.

Proof. By Theorem 5.2.23, there exists a point z ∈ C such that

‖z − Tz‖ = d(Tz,C).

If Tz ∈ C, then z is a fixed point of T . Otherwise, z ∈ ∂C, and hence Tz ∈ C,

since T (∂C) ⊆ C. It follows that z ∈ F (T ).
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Theorem 5.2.26 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C → X a weakly inward nonexpansive
mapping. Then T has a fixed point.

Proof. By Proposition 5.2.1, there exists a path {xt}t∈(0,1) ⊂ C such that
xt − Txt → 0 as t → 1. Set xn := xtn

, where tn → 1 as n → ∞. Let z be the
asymptotic center of {xn} with respect to C. Then

ra(Tz, {xn}) = lim sup
n→∞

‖xn − Tz‖
≤ lim sup

n→∞
‖Txn − Tz‖

≤ lim sup
n→∞

‖xn − z‖ = ra(z, {xn}).

Because Tz ∈ IC(z) and by Proposition 3.1.12, z is the asymptotic center of
{xn} with respect to IC(z), we conclude that Tz = z by the uniqueness of the
asymptotic center.

We now discuss the structure of the set of fixed points of nonexpansive
mappings.

Theorem 5.2.27 Let C be a convex subset of a strictly convex Banach space
X and T : C → X a nonexpansive mapping. Then F (T ), the set of fixed points
of T is either empty or convex.

Proof. The example Tx = x+a (a �= 0) shows that F (T ) = ∅. Next, we assume
that F (T ) �= ∅. Set x, y ∈ F (T ) and α ∈ [0, 1]. Then for z = αx + (1− α)y, we
have

‖x− Tz‖ = ‖Tx− Tz‖ ≤ ‖x− z‖ = (1− α)‖x− y‖
and

‖y − Tz‖ = ‖Ty − Tz‖ ≤ ‖y − z‖ = α‖x− y‖.
Hence

‖x− y‖ ≤ ‖x− Tz‖+ ‖Tz − y‖ ≤ ‖x− z‖+ ‖y − z‖ = ‖x− y‖.

This implies that
‖x− y‖ = ‖x− Tz‖+ ‖Tz − y‖.

Let a = x−Tz and b = Tz−y. Then ‖a+b‖ = ‖a‖+‖b‖. Because X is strictly
convex, a = λb for some positive constant λ (see Proposition 2.1.7). This means
that Tz is a linear combination of x and y, i.e., Tz = βx + (1 − β)y for some
real β. Hence

‖Tz − x‖ = ‖z − x‖ = (1− α)‖x− y‖ = (1− β)‖x− y‖,
‖Tz − y‖ = ‖z − y‖ = α‖x− y‖ = β‖x− y‖.

Consequently, α = β, i.e., z = Tz.
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Remark 5.2.28 By the continuity of T, F (T ) is always closed.

Corollary 5.2.29 Let C be a nonempty closed convex subset of a strictly convex
Banach space X and T : C → X a nonexpansive mapping. Then F (T ) is closed
and convex.

Theorem 5.2.27 is not true in a general Banach space. This fact is shown in
the following example:

Example 5.2.30 Let X = R2 be a Banach space with maximum norm defined
by

‖(a, b)‖ = max{|a|, |b|} for all x = (a, b) ∈ R2.

Let T : X → X be a mapping defined by

T (a, b) = (|b|, b) for all (a, b) ∈ R2.

Then T is nonexpansive and (1, 1) and (1,−1) are fixed points of T . However,
no other point in the segment joining these two points is a fixed point of T .

We now introduce the class of mappings that is properly included in the
class of nonexpansive mappings.

Let Γ denote the set of strictly increasing continuous convex functions
γ : R+ → R+ with γ(0) = 0. Let C be a nonempty convex subset of a Banach
space X. Then a mapping T : C → X is said to be of type (γ) if there exists
γ ∈ Γ such that

γ(‖(1− t)Tx + tTy − T ((1− t)x + ty)‖) ≤ ‖x− y‖ − ‖Tx− Ty‖

for all x, y ∈ C and t ∈ [0, 1].

It is clear that every mapping of type (γ) is nonexpansive, but the converse is
not true in general. We derive the following interesting result, which shows that
every nonexpansive mapping defined on a convex bounded subset of a uniformly
convex Banach space is a mapping of type (γ).

Theorem 5.2.31 Let C be a nonempty convex bounded subset of a uniformly
convex Banach space X and T : C → X a nonexpansive mapping. Then there
exists a strictly increasing continuous convex function (depending on diam(C))
γ : R+ → R+ with γ(0) = 0 such that

γ(‖(1− t)Tx + tTy − T ((1− t)x + ty)‖) ≤ ‖x− y‖ − ‖Tx− Ty‖

for all x, y ∈ C and t ∈ [0, 1].

Proof. Because X is uniformly convex, there exists a strictly increasing con-
tinuous convex function g : R+ → R+ with g(0) = 0 such that

2t(1− t)g(‖u− v‖) ≤ 1− ‖(1− t)u + tv‖ (5.20)
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for all u, v ∈ X with ‖u‖ ≤ 1, ‖v‖ ≤ 1 and all t ∈ [0, 1] (see Theorem 2.3.12).
It suffices to show Theorem 5.2.31 when t ∈ (0, 1).

Let x, y ∈ C and z = (1− t)x + ty for t ∈ (0, 1). Set

d := diam(C), u :=
Ty − Tz

(1− t)‖x− y‖ and v :=
Tz − Tx

t‖x− y‖ .

Then we have ‖u‖ ≤ 1, ‖v‖ ≤ 1,

(1− t)u + tv =
Ty − Tx

‖x− y‖ and u− v =
(1− t)Tx + tTy − Tz

t(1− t)‖x− y‖ .

Take r = ‖(1 − t)Tx + tTy − Tz‖ and s−1 = t(1 − t)‖x − y‖. It follows from
(5.20) that

2t(1− t)‖x− y‖g(rs) ≤ ‖x− y‖ − ‖Tx− Ty‖,
which implies that

2
g(rs)

s
≤ ‖x− y‖ − ‖Tx− Ty‖. (5.21)

Observe that rs ≤ 2. Because t(1 − t) ≤ 1/4, it follows that t(1 − t)‖x − y‖ ≤
d/4 and hence 4/d ≤ s. Note that for rs ≤ 2, the function s �→ g(rs)/s is
nondecreasing, and then from (5.21) we have

d

2
g

(
4r

d

)
= 2

g(4r/d)
4/d

≤ 2
g(rs)

s
≤ ‖x− y‖ − ‖Tx− Ty‖.

Therefore,

γ(‖(1− t)Tx + tTy − T ((1− t)x + ty)‖) ≤ ‖x− y‖ − ‖Tx− Ty‖,

where γ(t) = dg(4t/d)/2, t ≥ 0. It can be easily verified that γ ∈ Γ.

We denote

 n−1 = {λ = (λ1, λ2, · · · , λn) : λi ≥ 0 (i = 1, 2, · · · , n) and
n∑

i=1

λi = 1}.

Proposition 5.2.32 Let C be a nonempty convex bounded subset of a uniformly
convex Banach space X and T : C → X a nonexpansive mapping. Then for
each positive integer p, there exists γp ∈ Γ such that for any λ ∈  p−1 and
x1, x2, · · · , xp ∈ C,

γp

(∥∥∥∥T
( p∑

i=1

λixi

)
−

p∑
i=1

λiTxi

∥∥∥∥
)
≤ max

1≤i,j≤p
(‖xi − xj‖ − ‖Txi − Txj‖). (5.22)
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Proof. Once γp has been defined, we define γp+1 to be any function in Γ
satisfying the condition:

γ−1
p+1(t) ≥ γ−1

2 (t) + γ−1
p (t + γ−1

2 (t)).

We must verify (5.22) for p+1. Fix λ ∈  p and x1, x2, · · · , xp+1 ∈ C. The case
λp+1 = 1 is trivial. We assume that λp+1 �= 1. Set

uj := (1− λp+1)xj + λp+1xp+1, μj :=
λj

1− λp+1

and
u′

j := (1− λp+1)Txj + λp+1Txp+1 for j = 1, 2, · · · , p.

Observe that p∑
j=1

μj =
p∑

j=1

λj

1− λp+1
= 1;

p+1∑
i=1

λixi =
p∑

i=1

λi

1− λp+1
{(1− λp+1)xi + λp+1xp+1} =

p∑
j=1

μjuj ;

p+1∑
i=1

λiTxi =
p∑

j=1

μju
′
j ;

∥∥∥∥T
( p+1∑

i=1

λixi

)
−

p+1∑
i=1

λiTxi

∥∥∥∥
=
∥∥∥∥T
( p∑

j=1

μjuj

)
−

p∑
j=1

μju
′
j

∥∥∥∥
≤
∥∥∥∥T
( p∑

j=1

μjuj

)
−

p∑
j=1

μjTuj

∥∥∥∥+
p∑

j=1

μj‖Tuj − u′
j‖; (5.23)

γp

(∥∥∥∥T
( p∑

j=1

μjuj

)
−

p∑
j=1

μjTuj

∥∥∥∥
)

≤ max
1≤j,k≤p

(‖uj − uk‖ − ‖Tuj − Tuk‖); (5.24)

‖uj − uk‖ − ‖Tuj − Tuk‖ ≤ ‖uj − uk‖ − ‖u′
j − u′

k‖
+ ‖u′

k − Tuk‖+ ‖u′
j − Tuj‖; (5.25)

γ2(‖Tuj − u′
j‖) ≤ ‖xj − xp+1‖ − ‖x′

j − x′
p+1‖; (5.26)

‖uj − uk‖ − ‖u′
j − u′

k‖ = (1− λp+1)(‖xj − xk‖ − ‖x′
j − x′

k‖)
≤ ‖xj − xk‖ − ‖x′

j − x′
k‖. (5.27)
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Put t := max
1≤i,k≤p+1

{‖xi − xk‖ − ‖x′
i − x′

k‖}. By (5.26), we have

‖Tuj − u′
j‖ ≤ γ−1

2 (t).

By (5.25) and (5.27)

‖uj − uk‖ − ‖Tuj − Tuk‖ ≤ ‖xj − xk‖ − ‖x′
j − x′

k‖+ 2γ−1
2 (t)

≤ t + 2γ−1
2 (t). (5.28)

It follows from (5.24) that∥∥∥∥T
( p∑

j=1

μjuj

)
−

p∑
j=1

μjTuj

∥∥∥∥ ≤ γ−1
p (t + γ−1

2 (t)). (5.29)

From (5.23), (5.28), and (5.29), we have∥∥∥∥T
( p+1∑

i=1

λixi

)
−

p+1∑
i=1

λiTxi

∥∥∥∥
≤ γ−1

p (t + γ−1
2 (t)) + γ−1

2 (t)

≤ γ−1
p+1(t). (by definition of γp+1)

Therefore,

γp+1

(∥∥∥∥T
( p+1∑

i=1

λixi

)
−

p+1∑
i=1

λiTxi

∥∥∥∥
)
≤ t= max

1≤i,k≤p+1
(‖xi−xk‖−‖Txi−Txk‖).

A Banach space X is said to have the convex combination property (CAP) if
for each ε > 0, there exists an integer p(= p(ε)) ≥ 1 such that for all subsets D
in X whose diameters are uniformly bounded,

co(D) ⊂ cop(D) + Br[0],

where

cop(D) =
{ p∑

i=1

λixi : λ ∈  p−1, x1, x2, · · · , xp ∈ D

}
.

We note that every uniformly convex Banach space X has the CAP. The
product of uniformly convex Banach spaces being uniformly convex implies
X ×X has the CAP.

Theorem 5.2.33 Let C be a nonempty convex bounded subset of a uniformly
convex Banach space X and T : C → X a nonexpansive mapping. Then there
exists γ ∈ Γ such that for any finite many elements {xi}ni=1 in C and any finite
many nonnegative numbers {λi}ni=1 with

∑n
i=1 λi = 1, the following inequality

holds:

γ

(∥∥∥∥T
( n∑

i=1

λixi

)
−

n∑
i=1

λiTxi

∥∥∥∥
)
≤ max

1≤i,j≤n
(‖xi − xj‖ − ‖Txi − Txj‖).
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Proof. First, determine γp ∈ Γ for p = 2, 3, · · · from Proposition 5.2.32.
Because X × X has the CAP and hence, given ε > 0, we can determine p
so that

co(D) ⊂ cop(D) + Bε/3[0]×Bε/3[0]

for every D ⊂ C × C. Set δ = γp(ε/3). Suppose x1, x2, · · · , xn ∈ C satisfy

‖xi − xj‖ − ‖Txi − Txj‖ ≤ δ for all i, j.

Consider D = {(xi, Txi) ∈ X ×X : i = 1, 2, · · · , n}. Thus, for each λ ∈  n−1,
there exist μ ∈  p−1 and i1, i2, · · · , ip ∈ {1, 2, · · · , n} such that∥∥∥∥

n∑
i=1

λixi −
p∑

j=1

μjxij

∥∥∥∥ <
ε

3

and ∥∥∥∥
n∑

i=1

λiTxi −
p∑

j=1

μjTxij

∥∥∥∥ <
ε

3
.

In other words, the CAP on X×X guarantees simultaneous approximability
in X. Observe that∥∥∥∥T

( n∑
i=1

λixi

)
−

n∑
i=1

λiTxi

∥∥∥∥ ≤
∥∥∥∥T
( n∑

i=1

λixi

)
− T

( p∑
j=1

μjxi

)∥∥∥∥
+
∥∥∥∥T
( p∑

j=1

μjxi

)
−

p∑
j=1

μjTxij

∥∥∥∥
+
∥∥∥∥

p∑
j=1

μjTxij
−

n∑
i=1

λiTxi

∥∥∥∥
≤ ε

3
+

ε

3
+

ε

3
= ε.

Thus, whenever ‖xi − xj‖ − ‖Txi − Txj‖ ≤ δ for all i, j, we have∥∥∥∥T
( n∑

i=1

λixi

)
−

n∑
i=1

λiTxi

∥∥∥∥ ≤ ε.

Therefore, the construction of γ ∈ Γ such that γ(ε) ≤ δ for this ε − δ

prescription is a simple calculation.

5.3 Multivalued nonexpansive mappings

In this section, we consider the problem of solving the operator equation

x ∈ Tx, (5.30)

where T is a multivalued nonexpansive mapping in a Banach space.
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Definition 5.3.1 Let C be a nonempty subset of a Banach space X. A mapping
T : C → CB(X) is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖ for all x, y ∈ C,

where H(·, ·) is the Hausdorff metric on CB(X).

Recall that the graph G(A) of a multivalued mapping A : C → 2Y is

G(A) = {(x, y) ∈ X × Y : x ∈ C, y ∈ Ax},
where Y is another Banach space.

The mapping A is said to be demiclosed at y ∈ Y if

xn (in C) ⇀ x and yn ∈ Axn → y ⇒ y ∈ Ax.

First, we show that for every compact-valued nonexpansive mapping T, I−T
is demiclosed in a Banach space with the Opial condition.

Theorem 5.3.2 Let C be a nonempty weakly compact subset of a Banach space
X with the Opial condition and T : C → K(X) a nonexpansive mapping. Then
I − T is demiclosed.

Proof. Because the domain of I − T is weakly compact, we must prove that
the graph of I − T is only sequentially closed. Let (xn, yn) ∈ G(I − T ) be such
that xn ⇀ x and yn → y. Hence x ∈ C.

We now show that y ∈ (I − T )x. Because yn ∈ xn − Txn, yn = xn − zn for
some zn ∈ Txn. By the nonexpansiveness of T , there exists z′n ∈ Tx such that

‖zn − z′n‖ ≤ H(Txn, Tx) ≤ ‖xn − x‖. (5.31)

It follows from (5.31) that

lim inf
n→∞ ‖xn − x‖ ≥ lim inf

n→∞ ‖zn − z′n‖
= lim inf

n→∞ ‖xn − yn − z′n‖. (5.32)

Because Tx is compact, z′n ∈ Tx and yn → y, and then there exists a sub-
sequence {z′ni

} of {z′n} such that

z′ni
→ z ∈ Tx and yni

→ y.

Hence from (5.32) we have

lim inf
i→∞

‖xni
− x‖ ≥ lim inf

i→∞
‖xni

− y − z‖.

By the Opial condition

lim inf
i→∞

‖xni
− x‖ < lim inf

i→∞
‖xni

− y − z‖,

which implies that y + z = x. Therefore, y = x− z ∈ x− Tx.
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The fixed point theory of multivalued nonexpansive mappings is however
much more complicated than the corresponding theory of single-valued non-
expansive mappings. We will concentrate on some important existence theorems.

We begin with the existence of fixed points of compact-valued nonexpansive
mappings in Banach spaces.

Theorem 5.3.3 Let X be a Banach space with the Opial condition, C a non-
empty weakly compact convex subset of X, and T : C → K(C) a nonexpansive
mapping. Then T has a fixed point in C.

Proof. Let u be an element in C and let {an} be a sequence in (0, 1) such that
lim

n→∞ an = 1. For each n ∈ N, define Tn : C → K(C) by

Tnx = (1− an)u + anTx, x ∈ C. (5.33)

Then Tn is a contraction mapping. By Theorem 4.2.7 (Nadler’s fixed point
theorem), there exists xn ∈ C such that xn ∈ Tnxn. Because C is weakly
compact, there exists a subsequence {xni

} of {xn} such that xni
⇀ v ∈ C.

From (5.33) we have
xn = (1− an)u + anzn,

where zn ∈ Txn. Observe that

‖xn − zn‖ = (1− an)‖zn − u‖.
Hence yn = xn − zn ∈ (I − T )xn and yn → 0. Thus, (xni

, yni
) ∈ G(I − T ) and

xni
⇀ x and yni

→ 0, it follows from the demiclosedness of I − T at zero that
0 ∈ (I − T )v, Therefore, v ∈ Tv.

Proposition 5.3.4 Let C be a nonempty closed convex subset of a uniformly
convex Banach space X and T : C → K(C) a nonexpansive mapping. Suppose
there exists a bounded sequence {xn} in C such that d(xn, Txn)→ 0 as n→∞.
Then T has a fixed point in C.

Proof. We may assume that {xn} is regular and thus asymptotically uniform.
Let Za(C, {xn}) = {z} and ra(C, {xn}) = r. Choose yn ∈ Txn such that
‖xn − yn‖ → 0 as n→∞. By the compactness of Tz, select zn ∈ Tz such that

‖yn − zn‖ ≤ H(Txn, T z) ≤ ‖xn − z‖. (5.34)

Because Tz is compact, there exists a subsequence {znk
} of {zn} such that

znk
→ v ∈ Tz.
By the regularity of {xn}, we have

ra(C, {xnk
}) = ra(C, {xn}) = r and Za(C, {xn}) = Za(C, {xnk

}) = {z}.
Because

‖xnk
− v‖ ≤ ‖xnk

− ynk
‖+ ‖ynk

− znk
‖+ ‖znk

− v‖,
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it follows from (5.34) that

lim sup
k→∞

‖xnk
− v‖ ≤ r

and hence Za(C, {xn}) = z = v.

Theorem 5.3.5 Let X be a uniformly convex Banach space, C a nonempty
closed convex subset of X (with 0 ∈ C), and T : C → K(C) a nonexpansive
mapping. Suppose the set

E = {x ∈ C : λx ∈ Tx for some λ > 1}
is bounded. Then T has a fixed point in C.

Proof. Let {tn} be a sequence in (0,1) with tn → 1. Then for each n ∈ N,
tnT : C → K(C) is a contraction mapping. Then Nadler’s theorem implies that
xn ∈ tnTxn for some xn ∈ C. Now select yn ∈ Txn such that xn = tnyn, which
yields

d(xn, Txn) ≤ ‖xn − yn‖ = (t−1
n − 1)‖xn‖.

Because {xn} is in E and E is bounded, we obtain that d(xn, Txn) → 0 as
n → ∞. Therefore, there exists a fixed point of T in C by Proposi-
tion 5.3.4.

Theorem 5.3.6 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C → K(X) a nonexpansive mapping.
If Tx ⊂ IC(x) for all x ∈ C, then T has a fixed point in C.

Proof. Let u ∈ C be fixed and let {an} be a sequence in (0, 1) such that
lim

n→∞ an = 1. For each n ∈ N, define Tn : C → 2X by

Tnx = (1− an)u + anTx, x ∈ C.

Then Tn is a multivalued contraction with Lipschitz constant an. Because IC(x)
is convex for each x ∈ C, it follows that

Tnx ⊂ IC(x), x ∈ C. (5.35)

Observe that T (C) = ∪x∈CTx is a bounded set. Now let x ∈ C, z ∈ Tx and let
K = ‖u− z‖+ diam(∪x∈CTx). If y ∈ Tnx, then y = (1− an)u + anw for some
w ∈ Tx and

d(y, Tx) ≤ (1− an)‖u− z‖ ≤ (1− an)K. (5.36)

Also for any x ∈ Tx, we have (1− an)u + anx ∈ Tnx and so

d(x, Tnx) ≤ (1− an)K. (5.37)

Together (5.36) and (5.37) imply that H(Tx, Tnx) ≤ (1− an)K → 0 uniformly
for x ∈ C as n→∞.



5.3. Multivalued nonexpansive mappings 241

Because Tnx ⊂ IC(x), x ∈ C by (5.35) and the values of T are compact, Tn

has a fixed point xn ∈ C by Theorem 5.1.7. This means that

xn ∈ Tnxn = (1− an)u + anTxn.

Thus
d(xn, Txn) ≤ H(Tnxn, Txn).

By the uniform convergence of {Tn} we have

d(xn, Txn)→ 0 as n→∞.

For each n ∈ N, choose yn ∈ Txn such that

‖xn − yn‖ = d(xn, Txn).

By Propositions 3.1.1 and 3.1.2, passing to a subsequence if necessary, we may
assume that {xn} is regular and asymptotically uniform. Let Za(C, {xn}) = {z}
and ra(C, {xn}) = r.

Because T is compact-valued mapping, we can select zn ∈ Tz such that

‖yn − zn‖ ≤ H(Txn, T z) ≤ ‖xn − z‖. (5.38)

Let {zni
} be a subsequence of {zn} such that zni

→ v as i→∞. Hence v ∈ Tz.
Because v ∈ Tz ⊂ IC(z), there exists t ∈ (0, 1) such that

(1− t)z + tv ∈ C.

Note Za(C, {xni
}) = z, ra(C, {xni

}) = r and {xn} is regular and asymptotically
uniform. Set wi := (1 − t)z + txni

, i ∈ N, t ∈ (0, 1). Proposition 3.1.7 implies
that Za(C, {wi}) = z and ra(C, {wi}) = tr. Set

pi : = (1− t)z + tyni

qi : = (1− t)z + tzni
,

w : = (1− t)z + tv.

Then for each i ∈ N,

‖wi − w‖ ≤ ‖wi − pi‖+ ‖pi − qi‖+ ‖qi − w‖
≤ t‖xni

− yni
‖+ t‖yni

− zni
‖+ t‖zni

− v‖
≤ t(‖xni

− yni
‖+ ‖xni

− z‖+ ‖zni
− v‖) (from (5.38))

From zni
→ v and xn − yn → 0, we have

lim sup
i→∞

‖wi − w‖ ≤ t lim sup
i→∞

‖xni
− z‖ = tr.

Because Za(C, {wi}) = {z} and ra(C, {wi}) = tr, by the uniqueness of asymp-
totic center we have w = z. Thus, z = v ∈ Tz.

Finally, we obtain some existence theorems for multivalued nonexpansive
non-self mappings in which the convexity of domain is not necessary.
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Theorem 5.3.7 Let C be a nonempty weakly compact star-shaped subset of a
uniformly convex Banach space X and T : C → K(X) a nonexpansive mapping.
If for each x ∈ ∂C, Tx ⊂ C and λx + (1 − λ)Tx ⊂ C for some λ ∈ (0, 1) or
Tx ⊂ int(C), then T has a fixed point in C.

Proof. Let p be the star-center of C and {an} a sequence in (0, 1) with an → 1.
Define

Tnx = (1− an)p + anTx, x ∈ C, n ∈ N.

Then Tn is a multivalued contraction. By Theorem 4.2.14, each Tn has a fixed
point xn such that

xn = (1− an)p + anTxn. (5.39)

Because {xn} is bounded, we have ra(C, {xni
}) = ra(C, {xn}) and Za(C, {xn}) ⊂

Za(C, {xni
}). Let z ∈ Za(C, {xn}). Because Tz is compact, there exists zn ∈ Tz

such that for yn ∈ Txn

‖yn − zn‖ ≤ H(Txn, T z) ≤ ‖xn − z‖. (5.40)

Let {zni
} be a subsequence of {zn} such that zni

→ v ∈ Tz. Because
Za(C, {xn}) ⊂ Za(C, {xni

}), it follows that z ∈ Za(C, {xni
}). From (5.39),

we get
‖xni

− yni
‖ = (1− ani

)‖xni
− p‖ → 0 as i→∞.

Hence

lim sup
i→∞

‖xni
− v‖ ≤ lim sup

i→∞
(‖xni

− yni
‖+ ‖yni

− zni
‖+ ‖zni

− v‖)
= lim sup

i→∞
‖yni

− zni
‖

≤ lim sup
i→∞

‖xni
− z‖ (from (5.40))

= inf{lim sup
i→∞

‖xni
− x‖ : x ∈ C},

and this means that v ∈ Za(C, {xni
}).

If z ∈ ∂C, then by hypothesis for v ∈ Tz, there exists w ∈ C such that

w = (1− λ)v + λz, λ ∈ (0, 1).

Suppose that v �= z. By uniform convexity of X, we have some δ ∈ (0, 1)

lim sup
i→∞

‖xni
− w‖ ≤ (1− δ) inf{lim sup

i→∞
‖xni

− y‖ : y ∈ C},

which is a contradiction of the choice of w. If z ∈ Za(X, {xn}), we have

ra(X, {xni
}) ≤ lim sup

i→∞
‖v − xni

‖
≤ lim sup

i→∞
(‖v − zni

‖+ ‖zni
− yni

‖+ ‖yni
− xni

‖)
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≤ lim sup
i→∞

‖zni
− yni

‖
≤ lim sup

i→∞
‖z − xni

‖ = ra(X, {xni
}).

Hence v ∈ Za(X, {xni
}). By uniform convexity of X, we obtain v = z

∈ Tz.

Theorem 5.3.8 Let C be a nonempty closed bounded subset of a Banach space
X and T : C → K(X) a mapping that satisfies the following conditions:

(i) H(Tx, Ty) ≤ ‖x− y‖ for all x, y ∈ C,
(ii) Tx ⊂ IC(x, 1) for all x ∈ C,

(iii)
⋃

x∈C(x− Tx) =
⋃

x∈C

⋃
y∈Tx(x− y) is a closed subset of X.

Then T has a fixed point in C.

Proof. Without loss of generality, we may assume that 0 ∈ C. Let {an} be a
sequence in (0, 1) such that an → 1 as n→∞. For each n ∈ N, define

Tnx = anTx, x ∈ C.

It is easy to see that Tnx ∈ K(X) and Tnx ⊂ IC(x, 1) for each n ∈ N and all
x ∈ C. Furthermore,

H(Tnx, Tny) ≤ an‖x− y‖ for all x, y ∈ C, n ∈ N.

By Theorem 5.1.9, there exists xn ∈ C such that

xn = Tnxn = anTxn.

We choose yn ∈ Txn satisfying xn = anyn. By the boundedness of C,

‖xn − yn‖ =
(

1
an
− 1
)
‖xn‖ → 0.

Because ∪x∈C(x − Tx) is closed, we have 0 ∈ ∪x∈C(x − Tx). Therefore, there
exists some z ∈ C such that z ∈ Tz.

5.4 Asymptotically nonexpansive mappings

Let C be a nonempty subset of a Banach space X. A mapping T : C → C is
said to be asymptotically nonexpansive 1 if for each n ∈ N, there exists a positive
constant kn ≥ 1 with lim

n→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ for all x, y ∈ C.

The following example shows that the class of asymptotically nonexpansive
mappings is essentially wider than the class of nonexpansive mappings.

1The notion of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
in 1972.
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Example 5.4.1 Let BH be the closed unit ball in the Hilbert space H = 2 and
T : BH → BH a mapping defined by

T (x1, x2, x3, · · · ) = (0, x2
1, a2x2, a3x3, · · · ),

where {ai} is a sequence of real numbers such that 0 < ai < 1 and
∏∞

i=2 ai = 1/2.
Then

‖Tx− Ty‖ ≤ 2‖x− y‖ for all x, y ∈ BH ,

i.e., T is Lipschitzian, but not nonexpansive. Observe that

‖Tnx− Tny‖ ≤ 2
n∏

i=2

ai‖x− y‖ for all x, y ∈ BH and n ≥ 2.

Here kn = 2
∏n

i=2 ai → 1 as n→∞. Therefore, T is asymptotically nonexpan-
sive, but not nonexpansive.

There is also a connection between the demiclosedness principle and the
fixed point theory of asymptotically nonexpansive mappings. Some simple
results concerning the demiclosedness principle of asymptotically nonexpansive
mappings are given in the following theorems:

We first establish Proposition 5.4.2, which shows that the asymptotic center
of every bounded AFPS of an asymptotically nonexpansive mapping is a fixed
point of the mapping in uniformly convex Banach spaces.

Proposition 5.4.2 Let C be a nonempty closed convex subset of a uniformly
convex Banach space X and T : C → C an asymptotically nonexpansive map-
ping. If {yn} is a bounded sequence in C such that lim

n→∞ ‖yn − Tyn‖ = 0 and

Za(C, {yn}) = {v}, then v is a fixed point in C.

Proof. We define a sequence {zn} in C by zm = Tmv,m ∈ N. For integers
m,n ∈ N, we have

‖zm − yn‖ ≤ ‖Tmv − Tmyn‖+ ‖Tmyn − Tm−1yn‖+ · · ·+ ‖Tyn − yn‖

≤ km‖v − yn‖+ (‖Tyn − yn‖+
m−1∑
i=1

ki‖yn − Tyn‖). (5.41)

Then by (5.41) we have

ra(zm, {yn}) = lim sup
n→∞

‖yn − zm‖ ≤ kmra(v, {yn}) = kmra(C, {yn}).

Hence

|ra(zm, {yn})− ra(C, {yn})| ≤ (km − 1)ra(C, {yn})→ 0 as m→∞.

It follows from Theorem 3.1.8 that Tmv → v. By the continuity of T , we have

Tz = T ( lim
m→∞Tmz) = lim

m→∞Tm+1z = z.
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Theorem 5.4.3 Let X be a uniformly convex Banach space with the Opial
condition, C a nonempty closed convex (not necessarily bounded) subset of X,
and T : C → C an asymptotically nonexpansive mapping. Then I − T is
demiclosed at zero.

Proof. Let {xn} be a sequence in C such that xn ⇀ x ∈ C and xn − Txn → 0
as n → ∞. By Theorem 3.2.9 (which states that if a sequence {un} of a
nonempty closed convex subset of a uniformly convex Banach space having the
Opial condition converges weakly to u ∈ C, then u is asymptotic center of
{un} with respect to C), the asymptotic center of {xn} is x. It follows from
Proposition 5.4.2 that x is a fixed point of T .

To prove the next theorem concerning a demiclosedness principle, we need
the following:

Proposition 5.4.4 Let X be a Banach space with the Opial condition, C a
nonempty weakly compact convex subset of X, and T : C → C an asymptoti-
cally nonexpansive mapping. If {xn} is a sequence in C such that xn ⇀ x ∈
C and xn − Txn → 0, then {Tnx} converges weakly to x.

Proof. Set Am := co({T ix}i≥m),m ∈ N and A :=
∞⋂

m=1

Am. Because C is weakly

compact, then A is nonempty and A = co(ωw({Tnx})) by Theorem 1.9.22.
We show that Tnx ⇀ x, and this means that A = {x}. Because {xn} is
bounded, we define a functional f : C → R by f(y) = lim sup

n→∞
‖xn−y‖, y ∈ C.

Suppose, for contradiction, that y0 ∈ A such that y0 �= x. Then by the Opial
condition, we have

f(x) < f(y0).

Because km−1→ 0, then for ε := (f(y0)−f(x))/(1+f(x)) > 0, there exists an
integer m0 ∈ N such that km−1 < ε for all m ≥ m0. Because y0 ∈ Am0+1, there
exist an integer p ∈ N and nonnegative numbers t1, t2, · · · , tp with

∑p
i=1 ti = 1

such that ∥∥∥∥y0 −
p∑

j=1

tjT
m0+jx

∥∥∥∥ < ε. (5.42)

Note

f(y0) = lim sup
n→∞

‖xn − y0‖

≤ lim sup
n→∞

(
‖xn −

p∑
j=1

tjT
m0+jx‖+ ‖

p∑
j=1

tjT
m0+jx− y0‖

)

<

p∑
j=1

tj lim sup
n→∞

‖xn − Tm0+jx‖+ ε (by (5.42))
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≤
p∑

j=1

tj lim sup
n→∞

‖Tm0+jxn − Tm0+jx‖+ ε (as xn − Txn → 0)

≤
p∑

j=1

tjkm0+j lim sup
n→∞

‖xn − x‖+ ε

≤
p∑

j=1

tj(ε + 1)f(x) + ε (as km < ε + 1 for m ≥ m0)

= (ε + 1)f(x) + ε = f(y0),

a contradiction. Therefore, x = y0, i.e., A = {x}.
Theorem 5.4.5 Let X be a Banach space with the locally uniform Opial con-
dition, C a nonempty weakly compact convex subset of X, and T : C → C an
asymptotically nonexpansive mapping. Then I − T is demiclosed at zero.

Proof. Suppose {xn} is a sequence in C such that xn ⇀ x and xn −
Txn → 0. By Proposition 5.4.4, we have Tnx ⇀ x. Because T is asymptotically
nonexpansive, we have

lim sup
m→∞

(lim sup
n→∞

‖Tnx− Tmx‖) ≤ lim sup
m→∞

(lim sup
n→∞

km‖Tn−mx− x‖)
= lim sup

n→∞
‖Tnx− x‖.

Proposition 3.2.19 implies that Tmx → x. By the continuity of T , we have
x = Tx.

We have already shown in Section 5.2 that every nonexpansive mapping is
demiclosed in a uniformly convex Banach space. The following Theorem 5.4.6
shows that Theorem 5.2.12(a) is valid also for asymptotically nonexpansive
mappings.

Theorem 5.4.6 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C → C an asymptotically nonexpansive
mapping. Then I − T is demiclosed at zero.

Proof. Let {xn} be a sequence in C such that x ⇀ x ∈ C and xn − Txn → 0
as n→∞. We show that Tnx→ x. Indeed, because {xn} is weakly convergent
to x, there exists for each integer n ∈ N a convex combination

yn =
m(n)∑
i=1

t
(n)
i xi+n (t(n)

i ≥ 0 and
m(n)∑
i=1

t
(n)
i = 1)

such that ‖yn−x‖ < 1/n. For an arbitrary but fixed j ∈ N, because (I−T )xn →
0, there is an n0 = n0(ε, j) so large that 1/n0 < ε and ‖(I − T j)xn‖ < ε for
n ≥ n0.



5.4. Asymptotically nonexpansive mappings 247

Because X is uniformly convex, by Theorem 5.2.33, there exists a strictly
increasing convex and continuous function g : R+ → R+, g(0) = 0 such that for
any nonexpansive mapping S : C → X, for any finite many elements {ui}ni=1 in
C, and for any finite many nonnegative numbers {ti}ni=1 with

∑n
i=1 ti = 1, the

following inequality holds:

g(‖S(
n∑

i=1

tiui)−
n∑

i=1

tiSui‖) ≤ max
1≤i, j≤n

(‖ui − uj‖ − ‖Sui − Suj‖). (5.43)

Suppose Lj is the Lipschitz constant of T j . Then Lj
−1T j is nonexpansive in

C, and it follows from (5.43) that

‖T jyn − yn‖ ≤ ‖T jyn −
m(n)∑
i=1

t
(n)
i T jxi+n‖+ ‖

m(n)∑
i=1

t
(n)
i T jxi+n − yn‖

≤ ‖T j

(m(n)∑
i=1

t
(n)
i xi+n

)
−

m(n)∑
i=1

t
(n)
i T jxi+n‖

+
m(n)∑
i=1

t
(n)
i ‖T jxi+n − xi+n‖

≤ Ljg
−1

(
max

1≤i, k≤m(n)
(‖xi+n − xk+n‖

−L−1
j ‖T jxi+n − T jxk+n‖)

)
+ ε

≤ Ljg
−1(2ε + (1− L−1

j ) diam(C)) + ε, (5.44)

because

‖xi+n − xk+n‖ − L−1
j ‖T jxi+n − T jxk+n‖

≤ ‖xi+n − T jxi+n‖+ ‖xk+n − T jxk+n‖
+ (1− L−1

j )‖T jxi+n − T jxk+n‖
≤ 2ε + (1− L−1

j ) diam(C).

Taking the limit superior as n→∞ in (5.44), we obtain

lim sup
n→∞

‖T jyn − yn‖ ≤ Ljg
−1(2ε + (1− L−1

j ) diam(C))

+ ε for all j ∈ N. (5.45)

For each j ∈ N, we have

‖T jx− x‖ ≤ ‖T jx− T jyn‖+ ‖T jyn − yn‖+ ‖yn − x‖
≤ (Lj + 1)‖yn − x‖+ ‖T jyn − yn‖. (5.46)
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Because yn → x, it follows from (5.45) and (5.46) that

‖T jx− x‖ ≤ lim sup
n→∞

((Lj + 1)‖yn − x‖+ ‖T jyn − yn‖)

≤ Lj g−1(2ε + (1− L−1
j ) diam(C)) + ε

= g−1(0) = 0 as j →∞ and ε→ 0.

This shows that Tnx → x and by the continuity of T , we obtain that
x = Tx.

We now give a fundamental existence theorem for asymptotically nonexpan-
sive mappings in a uniformly convex Banach space.

Theorem 5.4.7 (Goebel and Kirk’s fixed point theorem) – Let C be a
nonempty closed convex bounded subset of a uniformly convex Banach space X
and T : C → C an asymptotically nonexpansive mapping. Then T has a fixed
point in C.

Proof. For fixed y ∈ C and r > 0, set

Ry := {r : there exists k ∈ N with C ∩ (∩∞
i=kBr[T iy]) �= ∅} and d := diam(C).

Then d ∈ Ry. Hence Ry �= ∅. Let r0 = inf{r : r ∈ Ry}. For each ε > 0, we
define

Cε = ∪∞
k=1(∩∞

i=kBr0+ε[T iy]).

Thus, for each ε > 0, the set Cε ∩ C is nonempty and convex. The reflexivity
of X implies that

∩ε>0(Cε ∩ C) �= ∅.
Note that for x ∈ ∩ε>0(Cε ∩C) and η > 0, there exists an integer n0 such that

‖x− Tny‖ ≤ r0 + η for all n ≥ n0.

Now, let x ∈ ∩ε>0(Cε ∩ C) and suppose, for contradiction, that the sequence
{Tnx} does not converge strongly to x. Then there exist ε > 0 and a subse-
quence {Tnix} of {Tnx} such that

‖Tnix− x‖ ≥ ε for all i = 1, 2, · · · .

Suppose kn is the Lipschitz constant of Tn. Then for m > n, we have

‖Tnx− Tmx‖ ≤ kn‖x− Tm−nx‖.

Assume that r0 > 0 and choose α > 0 such that(
1− δX

(
ε

r0 + α

))
(r0 + α) < r0.
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Select n such that

‖x− Tnx‖ ≥ ε and kn

(
r0 +

α

2

)
≤ r0 + α.

If n0 ≥ n is sufficiently large, then m > n0 implies

‖x− Tm−ny‖ ≤ r0 +
α

2
.

Because

‖Tnx− Tmy‖ ≤ kn‖x− Tm−ny‖ ≤ kn

(
r0 +

α

2

)
≤ r0 + α

and
‖x− Tmy‖ ≤ r0 + α,

it follows from the uniform convexity of X that for m > n0,

‖1
2
(x + Tnx)− Tmy‖ ≤

(
1− δX

(
ε

r0 + α

))
(r0 + α) < r0.

This contradicts the definition of r0. Hence we conclude that r0 = 0 or x = Tx.
But r0 = 0 implies that {Tny} is a Cauchy sequence and hence lim

n→∞Tny =

x = Tx. Therefore, the set ∩ε>0(Cε ∩ C) is a singleton that is a fixed point
of T .

In our next existence theorem, the boundedness of C is not necessary.
In particular, we will show that the existence of a fixed point of an asymp-
totically nonexpansive mapping in a uniformly convex Banach space is not only
equivalent to the existence of a bounded orbit at a point, but it is also equivalent
to the existence of a bounded AFPS.

Theorem 5.4.8 Let C be a nonempty closed convex (but not necessarily boun-
ded) subset of a uniformly convex Banach space X and T : C → C an asymp-
totically nonexpansive mapping. Then the following statements are equivalent:

(a) T has a fixed point.
(b) There exists a point x0 ∈ C such that the sequence {Tnx0} is bounded.
(c) There exists a bounded sequence {yn} in C such that lim

n→∞ ‖yn−Tyn‖ = 0.

Proof. (a)⇒ (b) and (a)⇒ (c) follows easily.
(b) ⇒ (a). Let x0 ∈ C be a point such that the sequence {xn = Tnx0}

is bounded. By Theorem 3.1.5, there exists a unique point z ∈ C such that
Za(C, {xn}) = {z}. Define a sequence {ym} in C by ym = Tmz for all m ∈ N.
Let km be the Lipschitz constant of the iterates Tm. For n > m ≥ 1, we have

‖xn − ym‖ = ‖Tmxn−m − Tmz‖ ≤ km‖xn−m − z‖.



250 5. Existence Theorems in Banach Spaces

This implies that

ra(ym, {xn}) ≤ kmra(z, {xn}) = kmra(C, {xn}).
This shows that lim

m→∞ ra(ym, {xn}) = ra(C, {xn}). By Theorem 3.1.8, lim
m→∞

ym = z. By the continuity of T , v is a fixed point of T .
(c)⇒ (a). Let {yn} be a bounded sequence in C such that lim

n→∞ ‖yn−Tyn‖ =

0. Let Za(C, {yn}) = {v}. Therefore, Proposition 5.4.2 implies that v is a fixed
point of T .

We have seen in a Corollary 5.2.29 that F (T ) is closed and convex in strictly
convex Banach space for nonexpansive mappings. However, Corollary 5.2.29 is
not true for asymptotically nonexpansive mappings. In fact, we have

Theorem 5.4.9 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X and T : C → C an asymptotically nonexpansive
mapping. Then F (T ) is closed and convex.

Proof. The closedness of F (T ) is obvious. To show convexity, it is sufficient to
prove that z = (x + y)/2 ∈ F (T ) for x, y ∈ F (T ). For each n ∈ N, we have

‖x− Tnz‖ = ‖Tnx− Tnz‖ ≤ kn‖x− z‖ =
1
2
kn‖x− y‖,

‖y − Tnz‖ = ‖Tny − Tnz‖ ≤ kn‖y − z‖ =
1
2
kn‖x− y‖.

By the uniform convexity of X, we have

‖z − Tnz‖ ≤ 1
2

[
1− δX

(
2
kn

)]
kn‖x− y‖ ≤ 1

2

[
1− δX

(
2
kn

)]
kndiam(C)

and hence Tnz → z as n → ∞. It follows from the continuity of T that z is a
fixed point of T .

5.5 Uniformly L-Lipschitzian mappings

Let C be a nonempty subset of a normed space X and T : C → C a mapping.
Then T is said to be uniformly L-Lipschitzian if for each n ∈ N, there exists a
positive constant L such that ‖Tnx− Tny‖ ≤ L‖x− y‖ for all x, y ∈ C.

Note that every nonexpansive mapping is uniformly L-Lipschitzian with
L = 1 and every asymptotically nonexpansive mapping with sequence {kn}
is also uniformly L-Lipschitzian with L = sup

n∈N

kn.

The following proposition shows that the class of uniformly L-Lipschitzian
mappings on C can be characterized as the class of mappings on C that are
nonexpansive relative to some metric on C that is equivalent to the norm.
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Proposition 5.5.1 Let C be a nonempty subset of a Banach space X and T :
C → C a uniformly L-Lipschitzian mapping. Then there exists a metric d on C
that is equivalent to the norm metric such that T is nonexpansive with respect
to d.

Proof. Define the metric d on C by

d(x, y) = sup{‖Tnx− Tny‖ : n = 0, 1, 2, · · · }, x, y ∈ C.

Because
‖x− y‖ ≤ d(x, y) ≤ L‖x− y‖,

this means that the metric d on C is equivalent to the norm metric. Furthermore,
T is nonexpansive with respect to d.

Proposition 5.5.2 Let C be a nonempty subset of a Banach space and ρ a
metric on C satisfying the condition:

α‖x− y‖ ≤ ρ(x, y) ≤ β‖x− y‖ for all x, y ∈ C. (5.47)

If T : C → C is a nonexpansive mapping with respect to ρ, then T is uniformly
β/α-Lipschitzian with respect to ‖ · ‖.
Proof. Because

α‖x− y‖ ≤ ρ(x, y) ≤ β‖x− y‖ for all x, y ∈ C

and T : C → C is nonexpansive with respect to ρ(x, y), then for n = 1, 2, · · · ,

‖Tnx− Tny‖ ≤ 1
α

ρ(Tnx, Tny) ≤ 1
α

ρ(x, y) ≤ β

α
‖x− y‖.

Therefore, T is uniformly β/α-Lipschitzian.

The following Theorem 5.5.3 shows that the Goebel and Kirk’s fixed point
theorem (see Theorem 5.4.7) for asymptotically nonexpansive mappings remains
valid for a broader class of uniformly L-Lipschitzian mappings with L < γ, where
γ is sufficiently near one.

Theorem 5.5.3 (Goebel and Kirk’s fixed point theorem) – Let C be a
nonempty closed convex bounded subset of a uniformly convex Banach space X.
Then every uniformly L-Lipschitzian mapping T : C → C with L < γ has a
fixed point in C, where γ > 1 is the unique solution of the equation

t

(
1− δX

(
1
t

))
= 1.

Proof. We take γ to be the solution of the equation t(1 − δX(1/t)) = 1 and
assume that 1 ≤ L < γ, i.e., L satisfies the inequality:

L

(
1− δX

(
1
L

))
< 1. (5.48)
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For x ∈ C, set d(x) := lim sup
n→∞

‖x− Tnx‖. Let

R = {r > 0 : there exists n ∈ N with C ∩ (∩∞
i=nBr[T ix]) �= ∅}.

Then R is nonempty (because R contains the diameter of C), so we can define

r0 = r0(x) = inf{r > 0 : r ∈ R}.

For each ε > 0, we define

Cε = ∪∞
n=1(∩∞

i=nBr0+ε[T ix]).

Hence for each ε > 0, the sets Cε are nonempty and convex. The reflexivity of
X implies that

∩ε>0(Cε ∩ C) �= ∅.
Let z = z(x) ∈ ∩ε>0(Cε∩C). Notice that z and r0 have the following properties:

(i) for each ε > 0, Br0+ε[z] contains almost all terms of the sequence {T ix},
(ii) given u ∈ C and r < r0, the set {i : ‖u− T ix‖ > r} is infinite.

Now if r0 = 0 or if d(z) = 0, then lim
i→∞

T ix = z yielding z = Tz. So we may

assume that r0 > 0 and d(z) = lim sup
n→∞

‖z − T iz‖ > 0.

Let ε > 0 with 0 < ε ≤ d(z) and select j ∈ N such that ‖z−T iz‖ ≥ d(z)−ε.
By (i), there exists an integer n0 such that if i ≥ n0, then

‖z − T ix‖ ≤ r0 + ε ≤ L(r0 + ε), (as 1 ≤ L)

and it follows for i− j ≥ n0 that

‖T jz − T ix‖ = ‖T jz − T j(T i−j)x‖
≤ L‖z − T i−jx‖
≤ L(r0 + ε).

Set w := (z + T jz)/2. By a property of δX , we have

‖w − T ix‖ =
∥∥∥∥z − T ix + T jz − T ix

2

∥∥∥∥
≤
(

1− δX

(
d(z)− ε

L(r0 + ε)

))
L(r0 + ε) for all i ≥ n0 + j.

This implies (by (ii)) that

r0 ≤
(

1− δX

(
d(z)− ε

L(r0 + ε)

))
L(r0 + ε).
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By the continuity of δX , we have

L

(
1− δX

(
d(z)
Lr0

))
≥ 1.

This implies that

d(z) ≤ Lδ−1
X

(
1− 1

L

)
r0.

From (ii), we have r0 ≤ d(x), and hence

d(z) ≤ Lδ−1
X

(
1− 1

L

)
d(x) = αd(x),

where α = Lδ−1
X (1− 1/L) < 1 because L satisfies (5.48).

To complete the proof, fix x0 ∈ C and define the sequence {xn} by

xm+1 = z(xm), m = 0, 1, 2, · · · ,
where z(xm) is selected in the same manner as z(x). Now if for any m we have
r0(xm) = 0, then Txm+1 = xm+1. Otherwise,

‖xm − xm+1‖ ≤ 2d(xm) ≤ 2αmd(x0),

which implies that {xm} is a Cauchy sequence. Hence xm → v ∈ C. Note

‖v − T iv‖ ≤ ‖v − xm‖+ ‖xm − T ixm‖+ ‖T ixm − T iv‖
≤ (1 + L)‖v − xm‖+ ‖xm − T ixm‖
≤ (1 + L)‖v − xm‖+ d(xm)→ 0 as m→∞.

By the continuity of T , we have v = Tv.

Corollary 5.5.4 Let C be a nonempty closed convex bounded subset of Hilbert
space H and T : C → C uniformly L-Lipschitzian with L < γ =

√
5/2. Then T

has a fixed point.

Let us give an example of a uniformly L-Lipschitzian mapping that is fixed
point free.

Example 5.5.5 Let ‖ · ‖2 be the usual Euclidean norm on the Hilbert space
H = 2 and let BH be the closed unit (‖ · ‖2-unit) ball and let S : 2 → 2 be the
right shift operator defined by

S(x1, x2, · · · ) = (0, x1, x2, · · · ).
Then the mapping T : BH → BH defined by

Tx =
(1− ‖x‖2)e + Sx

‖(1− ‖x‖2)e + Sx‖2 , x ∈ BH , e = (1, 0, 0, · · · )

is uniformly L-Lipschitzian with L = 2, but it has no fixed point in BH .
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Applying Theorem 5.5.3, we have

Theorem 5.5.6 Let C be a nonempty closed convex bounded subset of a uni-
formly convex Banach space X. If T : C → C is nonexpansive with respect to a
metric ρ(x, y) on C satisfying (5.47), where β/α < γ for γ as in Theorem 5.5.3,
then T has a fixed point in C.

The following theorem has a sharper estimate for L than Goebel and Kirk’s
fixed point theorem even in a more general Banach space.

Theorem 5.5.7 (Casini and Maluta’s fixed point theorem) - Every
Banach space X with uniformly normal structure has the fixed point property
for uniformly L-Lipschitzian mappings with L <

√
N(X).

Proof. Let C be a nonempty closed convex bounded subset of X and T : C → C
a uniformly L-Lipschitzian mapping. For any x0 ∈ C, consider the sequence
{Tnx0} in C. By Theorem 3.4.20(b) for {Tnx0}, there exists x1 ∈ co({Tnx0})
such that

ra(x1, {Tnx0}) ≤ Ñ(X) diama({Tnx0}), (5.49)

where Ñ(X) = 1/N(X). Observe that

diama({Tnx0}) = lim
k→∞

(sup{‖T ix0 − T jx0‖ : i, j ≥ k})
≤ sup

i≥j≥0
‖T ix0 − T jx0‖

≤ L sup
i≥j≥0

‖x0 − T i−jx0‖

≤ L sup
n∈N

‖x0 − Tnx0‖.

From (5.49), we have

ra(x1, {Tnx0}) ≤ LÑ(X) sup
n∈N

‖x0 − Tnx0‖. (5.50)

Moreover, for  ∈ N, we have

ra(T �x1, {Tnx0}) = lim sup
n→∞

‖T �x1 − Tnx0‖

≤ L lim sup
n→∞

‖x1 − Tn−�x0‖
= Lra(x1, {Tnx0}). (5.51)

From (5.50) and (5.51), we have

ra(T �x1, {Tnx0}) ≤ L2Ñ(X) sup
n∈N

‖x0 − Tnx0‖.

By Theorem 3.4.20(a), we have

‖x1 − T �x1‖ ≤ ra(T �x1, {Tnx0}) ≤ L2Ñ(X) sup
n∈N

‖x0 − Tnx0‖,
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which implies that

sup
�∈N

‖x1 − T �x1‖ ≤ L2Ñ(X) sup
n∈N

‖x0 − Tnx0‖.

Thus, for any x0 ∈ C, we can inductively define a sequence {xm}m≥0 in the
following manner:

sup
n∈N

‖xm+1 − Tnxm+1‖ ≤ L2Ñ(X) sup
n∈N

‖xm − Tnxm‖ for all m ∈ N0

and

ra(xm+1, {Tnxm}) ≤ LÑ(X) sup
n∈N

‖xm − Tnxm‖ for all m ∈ N0.

Set Dm := sup
n∈N

‖xm − Tnxm‖ for m ≥ 0 and η := L2Ñ(X) < 1. Then

Dm+1 ≤ ηDm ≤ η2Dm−1 ≤ · · · ≤ ηm+1D0 → 0 as m→∞.

Observe that

‖xm − xm+1‖ ≤ ‖xm − Tnxm‖+ ‖xm+1 − Tnxm‖ ≤ Dm + ‖xm+1 − Tnxm‖.

Taking the limit superior as n→∞, we have

‖xm − xm+1‖ ≤ (1 + LÑ(X))Dm,

and it follows that {xm} is a Cauchy sequence in C. Let lim
m→∞xm = v ∈ C.

Hence

‖v − Tv‖ ≤ ‖v − xm‖+ ‖xm − Txm‖+ ‖Txm − Tv‖
≤ (1 + L)‖xm − v‖+ Dm → 0 as m→∞.

The following result is a slight generalization of Theorem 5.5.7.

Theorem 5.5.8 Let X be a Banach space with uniformly normal structure, C
a nonempty bounded subset of X, and T : C → C a uniformly L-Lipschitzian
mapping with L <

√
N(X). Suppose that there exists a nonempty closed convex

bounded subset M of C with the following property (P):

x ∈M implies ωw({Tnx}) ⊂M. (5.52)

Then T has a fixed point in M .

Proof. For any x0 ∈M and each n ∈ N, consider a sequence {T jx0}j≥n in C.
By Theorem 3.4.20(b), we have yn ∈ co({T jx0}j≥n) such that

lim sup
j→∞

‖T jx0 − yn‖ ≤ Ñ(X) diama({T jx0}j≥n). (5.53)
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Theorem 3.4.16 implies that X is reflexive, and there exists a subsequence {yni
}

of {yn} such that yni
⇀ x1 ∈ X. From (5.53) and w-lsc of the functional

ra(·, {Tnx0}), we have

ra(x1, {T jx0}) ≤ lim inf
i→∞

ra(yni
, {T jx0})

≤ lim sup
n→∞

ra(yn, {T jx0})

≤ Ñ(X) diama({Tnx0}).
It can be easily seen that x1 ∈ ∩∞

n=1co({T jx0}j≥n) and that

‖x1 − y‖ ≤ lim sup
n→∞

‖Tnx0 − y‖ for all y ∈ X.

Using Theorem 1.9.22, we obtain that co(ωw({Tnx0})) = ∩∞
n=1co({T jx0}j≥n).

It follows that x1 ∈ co(ωw({Tnx0})). Using property (P) we obtain that
x1 ∈ M . By repeating the above process, we can obtain a sequence {xm}
in M with the properties:

for all integers m ≥ 0,

lim sup
n→∞

‖xm+1 − Tnxm‖ ≤ Ñ(X) diama({Tnxm}) (5.54)

and

‖xm+1 − y‖ ≤ lim sup
n→∞

‖Tnxm − y‖ for all y ∈ X. (5.55)

Set Dm := sup
n∈N

‖xm − Tnxm‖ for all m = 0, 1, 2, · · · . Note

diama({Tnxm}) = lim
k→∞

(sup{‖T ixm − T jxm‖ : i, j ≥ k})
≤ sup

i≥j≥0
‖T ixm − T jxm‖

≤ L sup
i≥j≥0

‖xm − T i−jxm‖
≤ LDm.

Moreover, from (5.54) we have, for  ∈ N

lim sup
n→∞

‖T �xm+1 − Tnxm‖ ≤ L lim sup
n→∞

‖xm+1 − Tn−�xm‖
≤ L lim sup

n→∞
‖xm+1 − Tnxm‖

≤ LÑ(X) diama({Tnxm})
≤ L2Ñ(X)Dm.

From (5.55), we have

‖xm+1 − T �xm+1‖ ≤ lim sup
n→∞

‖Tnxm − T �xm+1‖

≤ L2Ñ(X)Dm,
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which implies that

Dm+1 ≤ ηDm for all m = 0, 1, 2, · · · ,
where η = L2Ñ(X) < 1. Now proceeding with the same argument as in the
proof of Theorem 5.5.7, we conclude that {xm} converges strongly to a fixed
point of T in M .

Using weak uniformly normal structure coefficient WCS(X), we now
establish an existence theorem for asymptotically regular Lipschitzian mappings.
Before proving Theorem 5.5.10, we first establish a preliminary result.

Proposition 5.5.9 Let C be a nonempty closed subset of a Banach space X
and T : C → C an asymptotically regular mapping such that for some m ∈ N,
Tm is continuous. If lim sup

i→∞
‖Tnix − z‖ = 0 for some x ∈ C and z ∈ C, then

z ∈ F (T ).

Proof. Note Tnix→ z as i→∞. So

‖z − Tni+mx‖ ≤ ‖z − Tnix‖+ ‖Tnix− Tni+mx‖

≤ ‖z − Tnix‖+
m−1∑
ν=0

‖Tni+νx− Tni+ν+1x‖.

By the asymptotic regularity of T , Tni+mx → z as i → ∞. Because Tm is
continuous, it follows that

Tmz = Tm( lim
i→∞

Tnix) = lim
i→∞

(Tni+mx) = z.

Because z = Tmz = T 2mz = · · · = Tmsz for all s ∈ N,

‖z − Tz‖ = ‖Tmsz − Tms+1‖ → 0 as s→∞.

Therefore, z ∈ F (T ).

Theorem 5.5.10 Let X be a Banach space with WCS(X) > 1, C a nonempty
weakly compact convex subset of X, T : C → C a Lipschitzian mapping such
that lim inf

n→∞ σ(Tn) <
√

WCS(X). If T is asymptotically regular on C, then T

has a fixed point.

Proof. Because one can easily construct a nonempty closed convex separable
subset C0 of C such that C0 is invariant under T , i.e., T (C0) ⊂ C0, we may
assume that C is itself separable. The separability of C makes it possible to
select a subsequence {ni} of natural numbers such that

lim inf
n→∞ σ(Tn) = lim

i→∞
σ(Tni) <

√
WCS(X)

and
{Tnix} converges weakly for every x ∈ C.
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Now we can construct a sequence {xm} in C in the following way:{
x0 ∈ C arbitrary,
xm+1 = w − lim

i→∞
Tnixm,m ≥ 0.

By the asymptotic regularity of T on C, we have

xm+1 = w − lim
i→∞

Tni+kxm for all k ≥ 0.

Set
rm := lim sup

i→∞
‖xm+1 − Tnixm‖ and L := lim sup

i→∞
σ(Tni).

By the definition of WCS(X), we obtain

WCS(X) = sup{M > 0 : M · lim sup
n→∞

‖xn − u‖ ≤ D[{xn}]},

where the supremum is taken over all weakly (not strongly) convergent sequences
{xn} in X with xn ⇀ u. Then we have

rm = lim sup
i→∞

‖xm+1 − Tnixm‖ ≤ 1
WCS(X)

D[{Tnixm}].

However, from the w-lsc of the norm of X, we obtain that

D[{Tnixm}] = lim sup
i→∞

(lim sup
j→∞

‖Tnixm − Tnj xm‖)

≤ lim sup
i→∞

(lim sup
j→∞

(‖Tnixm − Tni+nj xm‖

+‖Tni+nj xm − Tnj xm‖))
≤ lim sup

i→∞
(lim sup

j→∞
(σ(Tni)‖xm − Tnj xm‖

+
ni−1∑
ν=0

‖Tnj+νxm − Tnj+ν+1xm‖))

= lim sup
i→∞

σ(Tni)× lim sup
j→∞

‖xm − Tnj xm‖

≤ L lim sup
j→∞

(lim sup
k→∞

‖Tnkxm−1 − Tnj xm‖)

= L lim sup
j→∞

(lim sup
k→∞

(‖Tnj xm − Tnj+nkxm−1‖

+‖Tnj+nkxm−1 − Tnkxm−1‖)
≤ L lim sup

j→∞
(lim sup

k→∞
(σ(Tnj )‖xm − Tnkxm−1‖

+
nj−1∑
ν=0

‖Tnk+νxm−1 − Tnk+ν+1xm−1‖))

= L2rm−1.
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Hence

rm ≤ L2

WCS(X)
rm−1 = ηrm−1 for all m ∈ N,

where η = L2/WCS(X) < 1.

Again by w-lsc of the norm of X, we have

‖xm − xm+1‖ ≤ lim sup
i→∞

(‖xm − Tnixm‖+ ‖Tnixm − xm+1‖)
≤ lim sup

i→∞
‖xm − Tnixm‖+ lim sup

i→∞
‖xm+1 − Tnixm‖

≤ lim sup
i→∞

(lim sup
j→∞

‖Tnj xm−1 − Tnixm‖) + rm

≤ lim sup
i→∞

(lim sup
j→∞

(‖Tnixm − Tni+nj xm−1‖

+‖Tni+nj xm−1 − Tnj xm−1‖)) + rm

≤ lim sup
i→∞

(lim sup
j→∞

(σ(Tni)‖xm − Tnj xm−1‖

+
ni−1∑
ν=0

‖Tnj+νxm−1 − Tnj+ν+1xm−1‖)) + rm

= Lrm−1 + rm

≤ (L + η)rm−1,

and it follows that {xm} is a Cauchy sequence in C. Let lim
m→∞xm = p ∈ C.

Note

‖p− Tnip‖ ≤ ‖p− xm+1‖+ ‖xm+1 − Tnixm‖+ ‖Tnixm − Tnip‖
≤ ‖p− xm+1‖+ ‖xm+1 − Tnixm‖+ σ(Tni)‖xm − p‖,

which implies that

lim sup
i→∞

‖p− Tnip‖ ≤ ‖xm+1 − p‖+ rm + L‖xm − p‖ → 0 as m→∞.

Hence Tnip→ p as i→∞. Therefore, Tp = p by Proposition 5.5.9.

5.6 Non-Lipschitzian mappings

Let C be a nonempty subset of a Banach space X, T : C → C a mapping, and
fix a sequence {an} in R+ with an → 0. Recall that

η(Tn) = sup
{‖Tnx− Tny‖
‖x− y‖+ an

: x, y ∈ C, x �= y

}

is nearly Lipschitz constant of Tn. Then T is nearly Lipschitzian with sequence
{(η(Tn), an)} if

‖Tnx− Tny‖ ≤ η(Tn)(‖x− y‖+ an) for all x, y ∈ C and n ∈ N.
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T is nearly asymptotically nonexpansive with sequence {(η(Tn), an)} if for each
n ∈ N, η(Tn) ≥ 1 with lim

n→∞ η(Tn) = 1 and

‖Tnx− Tny‖ ≤ η(Tn)(‖x− y‖+ an) for all x, y ∈ C.

In this section, we study fixed point theorems for non-Lipschitzian mappings
in Banach spaces. We begin with the following preliminary result.

Proposition 5.6.1 Let C be a nonempty closed subset of a Banach space and
T : C → C a demicontinuous mapping. Suppose that Tnu → x∗ as n → ∞ for
some u, x∗ ∈ C. Then x∗ is a fixed point of T .

Proof. Let un = Tnu for all n ∈ N. Then {un} and {Tun} converge strongly to
x∗. By the demicontinuity of T, {Tun} converges weakly to Tx∗. By uniqueness
of weak limits of {Tun}, we have x∗ = Tx∗.

In view of Proposition 5.6.1, we remark that Theorem 4.1.18 is valid for
demicontinuous nearly Lipschitzian mappings. In fact,

Theorem 5.6.2 Let C be a nonempty closed subset of a Banach space and T :
C → C a demicontinuous nearly Lipschitzian mapping with sequence {(η(Tn),
an)}. Suppose η∞(T ) = lim sup

n→∞
[η(Tn)]1/n < 1. Then we have the following:

(a) T has a unique fixed point v ∈ C.

(b) For each x ∈ C, the sequence {Tnx} converges to v.

(c) ‖Tnx− v‖ ≤∑∞
i=n η(T i)(‖x−Tx‖+M) for all x ∈ C and n ∈ N, where

M = sup
n∈N

an.

Proof. Let x ∈ C. By Theorem 4.1.18, {Tnx} is a Cauchy sequence in C.
Let lim

n→∞Tnx = v ∈ C. It follows from Proposition 5.6.1 that v is a fixed point

of T .

We now give demiclosedness principle for nearly Lipschitzian mappings in a
Banach space.

Theorem 5.6.3 Let X be a Banach space with a weakly continuous duality
mapping Jμ : X → X∗ with gauge function μ. Let C be a nonempty closed
convex subset of X and T : C → C a uniformly continuous nearly Lipschitzian
mapping with sequence {(η(Tn), an)} such that lim

n→∞ η(Tn) = 1. Then I − T is
demiclosed at zero.

Proof. Let {xn} be a sequence in C such that xn ⇀ x and lim
n→∞ ‖xn−Txn‖ = 0.

Then x ∈ C because C is weakly closed. The uniform continuity of T implies
that

lim
n→∞ ‖xn − Tmxn‖ = 0 for all m ∈ N.
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It follows that Tmxn ⇀ x for all m ∈ N. Set rm := lim sup
n→∞

‖Tmxn−x‖, m ∈ N.

Let m, s ∈ N. Because Tm+sxn ⇀ x as n → ∞, by the Opial condition, we
have

rm+s = lim sup
n→∞

‖Tm+sxn − x‖ < lim sup
n→∞

‖Tm+sxn − T sx‖
≤ lim sup

n→∞
η(T s)(‖Tmxn − x‖+ as)

= η(T s)(rm + as).

It follows that

lim sup
s→∞

rs ≤ rm,

which implies that

lim sup
s→∞

rs ≤ lim inf
m→∞ rm.

Thus, lim
m→∞ rm exists. Suppose lim

m→∞ rm = r for some r > 0. Noting by
Theorem 2.5.23 that

Φ(‖x + y‖) = Φ(‖x‖) +
∫ 1

0

〈y, Jμ(x + ty)〉dt for all x, y ∈ X.

For m, s ∈ N, we have

Φ(‖Tm+sxn − x‖) = Φ(‖Tm+sxn − Tmx + Tmx− x‖)
= Φ(‖Tm+sxn − Tmx‖)

+
∫ 1

0

〈Tmx− x, Jμ(Tm+sxn − Tmx + t(Tmx− x))〉dt

≤ Φ(η(Tm)(‖T sxn − x‖+ am))

+
∫ 1

0

〈Tmx− x, Jμ(Tm+sxn − Tmx + t(Tmx− x))〉dt.

Because Tm+sxn ⇀ x as n→∞, we obtain

Φ(rm+s) = Φ(lim sup
n→∞

‖Tm+sxn − x‖)
≤ Φ(η(Tm)(rs + am))

−
∫ 1

0

〈Tmx− x, Jμ((1− t)(Tmx− x))〉dt

= Φ(η(Tm)(rs + am))

−
∫ 1

0

‖Tmx− x‖μ(t‖Tmx− x‖)dt

= Φ(η(Tm)(rs + am))− Φ(‖Tmx− x‖),
which implies that

Φ(‖Tmx− x‖) ≤ Φ(η(Tm)(rs + am))− Φ(rm+s).
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Because lim
s→∞ rs exists, we have

Φ(‖Tmx− x‖) ≤ Φ(η(Tm)(r + am))− Φ(r)→ 0 as m→∞.

Thus, Tmx→ x. Therefore, by the continuity of T , we have x = Tx.

Corollary 5.6.4 Let X be a Banach space with a weakly continuous duality
mapping Jμ : X → X∗ with gauge function μ. Let C be a nonempty closed
convex subset of X and T : C → C an asymptotically nonexpansive mapping.
Then I − T is demiclosed at zero.

The following theorem is an extension of Theorem 5.4.8 for demicontinuous
nearly asymptotically nonexpansive mappings.

Theorem 5.6.5 Let C be a nonempty closed convex (but not necessarily
bounded) subset of a uniformly convex Banach space X and T : C → C a
demicontinuous nearly asymptotically nonexpansive mapping. Then the follow-
ing statements are equivalent:

(a) T has a fixed point in C.
(b) There is a point x0 ∈ C such that the sequence {Tnx0} is bounded.

Proof. (a)⇒ (b) follows easily.
(b) ⇒ (a). Assume that x0 ∈ C is such that the sequence {xn} defined by

xn = Tnx0 is bounded. By Theorem 3.1.5, let Za(C, {xn}) = {z}, and let {ym}
be a sequence in C defined by ym = Tmz for m = 1, 2, · · · .

For two integers n > m ≥ 1, we have

‖xn − ym‖ = ‖Tnx0 − Tmz‖ = ‖Tm(Tn−mx0)− Tmz‖
and hence

ra(ym, {xn}) ≤ η(Tm)(ra(z, {xn}) + am).

This shows that ra(ym, {xn}) → ra(C, {xn}) as m → ∞. By Theorem 3.1.8,
this would imply that Tmz → z as m → ∞. Because T is demicontinuous,
hence by Proposition 5.6.1, z ∈ F (T ).

In the following results, WCS(X) plays an important role in the existence
of fixed points of nearly Lipschitzian mappings.

Theorem 5.6.6 Let X be a Banach space with WCS(X) > 1, C a nonempty
weakly compact convex subset of X, and T : C → C a demicontinuous nearly
Lipschitzian mapping with sequence {(an, η(Tn))} such that η(Tn)→ 1 as n→
∞. If T is weakly asymptotically regular on C, i.e., Tnx − Tn+1x ⇀ 0 for all
x ∈ C, then T has a fixed point in C.

Proof. Let U be a free ultrafilter on N. We then define a mapping S on C by

Sx = w − lim
U

Tnx, x ∈ C.
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Because C is weakly compact, Sx is well defined for all x ∈ C. The asymptotic
nonexpansiveness of T clearly implies that S is a nonexpansive on C. Hence, S
has a fixed point v ∈ C, i.e.,

w − lim
U

Tnv = v.

This yields a subsequence {Tniv} of {Tnv} converging weakly to v. By the
property of WCS(X)

lim sup
i→∞

‖Tniv − v‖ ≤ 1
WCS(X)

D[{Tniv}]. (5.56)

By the weak asymptotic regularity of T , we have

Tnt+pv ⇀ v as t→∞ for any p ≥ 0.

On the other hand, for each i, j ∈ N with i > j, by the w-lsc of the norm ‖ · ‖
we have

‖Tniv − Tnj v‖ ≤ η(Tnj )(‖v − Tni−nj v‖+ anj
)

≤ η(Tnj )(lim inf
t→∞ ‖Tnt+pv − Tni−nj v‖+ anj

)

(with p = ni − nj)
≤ η(Tnj )[η(Tni−nj )(lim inf

t→∞ ‖v − Tntv‖+ ani−nj
) + anj

].

Taking the limit superior as i→∞, we get

lim sup
i→∞

‖Tniv − Tnj v‖ ≤ η(Tnj ) lim sup
t→∞

‖v − Tntv‖+ anj

and hence from (5.56), we have

lim sup
i→∞

‖Tniv − v‖ ≤ 1
WCS(X)

D[{Tniv}]

≤ 1
WCS(X)

lim sup
j→∞

( lim
i→∞

‖Tniv − Tnj v‖)

≤ 1
WCS(X)

lim sup
t→∞

‖v − Tntv‖,

which implies that

(WCS(X)− 1) lim sup
i→∞

‖Tniv − v‖ ≤ 0,

i.e., lim
i→∞

Tniv = v. By the demicontinuity of T , lim
i→∞

Tniv = v implies w −
lim

i→∞
Tni+1v = Tv. By weak asymptotic regularity of T , we have Tniv−Tni+1v →

0 implies w − lim
i→∞

Tni+1v = v. Hence by the uniqueness of weak limit of

{Tni+1v}, we conclude that v = Tv.

Corollary 5.6.7 Let X be a Banach space with WCS(X) > 1, C a nonempty
weakly compact convex subset of X, and T : C → C an asymptotically non-
expansive mapping. If T is weakly asymptotically regular on C, then T has a
fixed point in C.
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5.7 Pseudocontractive mappings

In this section, our aim is to study a class of continuous pseudocontractive
mappings in Banach spaces. Strongly pseudocontractive mappings will play an
important role in many of the existence theorems for pseudocontractive map-
pings.

Let X be a Banach space with dual X∗. Then a mapping T with domain
Dom(T ) and range R(T ) in X is said to be strongly pseudocontractive if there
exists a positive constant k and such that

‖x− y‖ ≤ ‖(1 + t)(x− y)− kt(Tx− Ty)‖
for all x, y ∈ Dom(T ) and all t > 0.

For k = 1, such mappings are called pseudocontractive.

Following Proposition 2.4.7, we are able to formulate an equivalent definition
of strongly pseudocontractive mapping as follows:

The mapping T : Dom(T ) ⊆ X → X is strongly pseudocontractive if for
each x, y ∈ Dom(T ), there exist a positive constant k and j(x− y) ∈ J(x− y)
such that

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2.
It is easy to see that the mapping T is pseudocontractive if for each x, y ∈ D(T ),
there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2. (5.57)

We note that every nonexpansive (contraction) mapping is pseudocontractive
(strongly pseudocontractive), but the converse is not true. In fact, if T is non-
expansive with domain Dom(T ), for each x, y ∈ Dom(T ) and j(x−y) ∈ J(x−y),
we have

〈Tx− Ty, j(x− y)〉 ≤ ‖Tx− Ty‖‖j(x− y)‖∗ ≤ ‖x− y‖2.
We now give examples of pseudocontractive mappings that are not non-

expansive.

Example 5.7.1 Let H = R2 be the Hilbert space under the usual Euclidean
inner product. If x = (a, b) ∈ H, we define x⊥ = (b,−a) ∈ H. Trivially, we
have

〈x, x⊥〉 = 0, ‖x⊥‖ = ‖x‖;
〈x⊥, y⊥〉 = 〈x, y〉, ‖x⊥ − y⊥‖ = ‖x− y‖;

and
〈x, y⊥〉+ 〈x⊥, y〉 = 0 for all x, y ∈ H.
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Let C be the closed unit ball in H, C1 = {x ∈ H : ‖x‖ ≤ 1/2} and C2 =
{x ∈ H : 1/2 ≤ ‖x‖ ≤ 1}.

We define the mapping T : C → C by

Tx =

{
x + x⊥ if x ∈ C1,

x/‖x‖ − x + x⊥ if x ∈ C2.

We now show that T is Lipschitz continuous. One easily shows that

‖Tx− Ty‖ =
√

2‖x− y‖ for all x, y ∈ C1.

For x, y ∈ C2, we have

∥∥∥∥ x

‖x‖ −
y

‖y‖
∥∥∥∥

2

=
2

‖x‖ · ‖y‖ (‖x‖ · ‖y‖ − 〈x, y〉)

=
1

‖x‖ · ‖y‖ (‖x− y‖2 − (‖x‖ − ‖y‖)2)

≤ 2
‖x‖ · ‖y‖‖x− y‖2

≤ 8‖x− y‖2,

which implies that

‖Tx− Ty‖ ≤
∥∥∥∥ x

‖x‖ −
y

‖y‖
∥∥∥∥+ ‖x− y‖+ ‖x⊥ − y⊥‖

≤ 5‖x− y‖.

Now let x and y be in the interiors of C1 and C2, respectively. Then there
exist λ ∈ (0, 1) and z ∈ C1 ∩ C2 for which z = λx + (1− λ)y. Hence

‖Tx− Ty‖ ≤ ‖Tx− Tz‖+ ‖Tz − Ty‖
≤

√
2‖x− z‖+ 5‖z − y‖

≤ 5‖x− z‖+ 5‖z − y‖
= 5‖x− y‖.

Thus, ‖Tx− Ty‖ ≤ 5‖x− y‖ for all x, y ∈ C, i.e., T is Lipschitzian on C.
We now show that T is pseudocontractive. For x, y ∈ C, set Γ(x, y) :=

‖x−y‖2−〈Tx−Ty, x−y〉. Hence to show T is a pseudocontractive, we need to
prove that Γ(x, y) ≥ 0 for all x, y ∈ C. We consider the following three cases:

Case 1. x, y ∈ C1:

Obviously, Γ(x, y) ≥ 0 for all x, y ∈ C1.

Case 2. x ∈ C1 and y ∈ C2:
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We have

Γ(x, y) = ‖x− y‖2 −
{
‖x‖2 − ‖y‖2 + ‖y‖ − 〈x, y〉

‖y‖
}

= 2‖y‖2 − ‖y‖+ (1− 2‖y‖) 〈x, y〉
‖y‖ .

Because 1 − 2‖y‖ ≤ 0 for y ∈ C2, 〈x, y〉/(‖x‖‖y‖) has its minimum, for fixed
‖x‖ and ‖y‖ when 〈x, y〉/(‖x‖‖y‖) = 1. We conclude that

Γ(x, y) ≥ 2‖y‖2 − ‖y‖+ ‖x‖ − 2‖x‖‖y‖
= (‖y‖ − ‖x‖)(2‖y‖ − 1)
≥ 0 for all x ∈ C1, y ∈ C2.

Case 3. x, y ∈ C2:

Observe that

〈Tx− Ty, x− y〉 = ‖x‖ − ‖x‖2 + ‖y‖ − ‖y‖2 +
(

2− 1
‖x‖ −

1
‖y‖
)
〈x, y〉

= ‖x‖ − ‖x‖2 + ‖y‖ − ‖y‖2 + (2‖x‖‖y‖ − ‖x‖ − ‖y‖) 〈x, y〉
‖x‖‖y‖ .

Hence Γ(x, y) = 2‖x‖2 + 2‖y‖2 − ‖x‖ − ‖y‖ − (4‖x‖‖y‖ − ‖x‖ − ‖y‖)〈x, y〉/
(‖x‖‖y‖). It is easy to see that 4‖x‖‖y‖−‖x‖−‖y‖ ≥ 0 for all x, y ∈ C2. Hence
for fixed ‖x‖ and ‖y‖,Γ(x, y) has a minimum when 〈x, y〉/(‖x‖‖y‖) = 1. This
minimum is 2‖x‖2 + 2‖y‖2 − 4‖x‖‖y‖ = 2(‖x‖ − ‖y‖)2. Thus, Γ(x, y) ≥ 0 for
all x, y ∈ C2. Therefore, T is Lipschitz continuous pseudocontractive, but it is
not nonexpansive.

Example 5.7.2 Let X = R and T : Dom(T ) = [0, 1]→ R be defined by

Tx = (1− x2/3)3/2, x ∈ [0, 1].

Because T is monotonically decreasing, T is pseudocontractive. Observe that

∣∣∣∣T
(

1
43

)
− T

(
1
23

)∣∣∣∣ =
∣∣∣∣
(

15
16

)3/2

−
(

3
4

)3/2∣∣∣∣
=

|(15)3/2 − (12)3/2|
64

>
7
64

=
∣∣∣∣ 143
− 1

23

∣∣∣∣.
Hence T is not nonexpansive. Thus, continuous pseudocontractive is not neces-
sarily nonexpansive.

We now establish an equivalent definition of pseudocontractive mapping in
a Hilbert space.
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Proposition 5.7.3 Let H be a Hilbert space. Then following are equivalent:

(a) T is a pseudocontractive mapping with domain Dom(T ).

(b) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2 for all x, y ∈ Dom(T ).

Proof. (a) ⇒ (b). Let T be a pseudocontractive with Dom(T ). Then from
(5.57), we have

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 for all x, y ∈ Dom(T ).

Observe that

‖Tx− Ty‖2 = ‖(I − T )x− (I − T )y − (x− y)‖2
= ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2

−2〈(I − T )x− (I − T )y, x− y〉
= ‖x− y‖2 + ‖(I − T )x− (I − T )‖2

−2{‖x− y‖2 − 〈Tx− Ty, x− y〉}
≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2.

(b)⇒ (a). Suppose for all x, y ∈ Dom(T ),

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2

holds. Then we have

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖x− y − (Tx− Ty)‖2
≤ ‖x− y‖2 + ‖x− y‖2 + ‖Tx− Ty‖2 − 2〈Tx− Ty, x− y〉,

and it follows that 〈Tx− Ty, x− y〉 ≤ ‖x− y‖2.
Proposition 5.7.4 Let H be a Hilbert space and T a nonlinear mapping on
H with domain Dom(T ). Then T is strongly pseudocontractive if the following
inequality is satisfied:

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2 (5.58)

for all x, y ∈ Dom(T ), where k ∈ (0, 1).

Proof. From (5.58), we have for all x, y ∈ Dom(T )

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k{‖x− y‖2 + ‖Tx− Ty‖2 − 2〈Tx− Ty, x− y〉},
which implies that

〈Tx− Ty, x− y〉 ≤ t(k)‖x− y‖2 − 1− k

2k
‖Tx− Ty‖2,

where t(k) = (1 + k)/(2k).
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The pseudocontractive mappings are easily seen to be more general than the
nonexpansive mappings. They derive their importance in nonlinear functional
analysis via their connection with an important class of nonlinear operators
defined as follows:

Let X be a Banach space. An operator A : Dom(A) ⊆ X → X is said to be
accretive if for each x, y ∈ Dom(T ) and t > 0, the following inequality holds:

‖x− y‖ ≤ ‖x− y + t(Ax−Ay)‖. (5.59)

An operator A is said to be dissipative if −A is accretive and A is expansive if

‖Ax−Ay‖ ≥ ‖x− y‖ for all x, y ∈ Dom(A).

Example 5.7.5 Let X = R and A : Dom(A) ⊆ X → R a real-valued increasing
(nonincreasing) function. Then A is accretive (dissipative).

By Proposition 2.4.7, we obtain

Proposition 5.7.6 Let X be a Banach space and T a nonlinear operator on X
with domain Dom(T ). Then the following are equivalent:

(a) T is an accretive operator.

(b) For each x, y ∈ Dom(T ), there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ 0.

Proposition 5.7.7 Let X be a Banach space and T : Dom(T ) ⊆ X → X a
mapping. Then T is pseudocontractive if and only if I − T is accretive.

Proposition 5.7.8 Let X be a Banach space and A : Dom(T ) ⊆ X → X an
operator. If (I + tA) is expansive for all t > 0, then the following hold:

(i) A is accretive.

(ii) (I+tA)−1 exists and (I+tA)−1 is a nonexpansive mapping from R(I+tA)
into Dom(A).

Proof. Proposition 5.7.8 follows from (5.59).

We now introduce a semigroup of type ω:
Let C be a nonempty closed subset of a Banach space X and ω a real number.

A semigroup of type ω on C is a function S : R+×C → C satisfying the following
conditions:

(i) S(t1 + t2)x = S(t1)S(t2)x for t1, t2 ≥ 0 and x ∈ C;

(ii) ‖S(t)x− S(t)y‖ ≤ eωt‖x− y‖ for t ≥ 0 and x, y ∈ C;
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(iii) S(0)x = x for x ∈ C;

(iv) S(t)x is continuous in t ≥ 0 for each x ∈ C.

For each t > 0 and x ∈ C, let Atx = (S(t)x − x)/t, Dom(A) = {x ∈ C :
lim

t→0+
Atx exists} and Ax = lim

t→0+
Atx for all x ∈ Dom(A). Then A is called the

(strong) generator of a semigroup S.

If ω = 0, S is said to be semigroup of nonexpansive mappings.

Remark 5.7.9 If C is a nonempty closed convex subset of a Banach space X
and A : C → X a continuous mapping, the following are equivalent:

(i) A is the generator of a semigroup S of type ω on C.

(ii) For x, y ∈ C, there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≤ ω‖x− y‖2

and lim
h→0+

d(x + hAx,C)
h

= 0 for all x ∈ C.

The following proposition plays a key role in the existence of solutions of
nonlinear operator equations.

Proposition 5.7.10 Let C be a nonempty closed convex subset of a Banach
space X and T : C → X a continuous strongly pseudocontractive mapping with
constant k ∈ (0, 1) such that

lim
h→0+

d(x + hTx,C)
h

= 0.

Then for each ε > 0 with εk < 1, the range of (I − εT ) contains C.

Proof. Let u be an element in C and ε a positive number such that εk < 1.
For each x ∈ C, define Bx = εTx + u− x. Then B is continuous on C and for
x, y ∈ C, there exists j(x− y) ∈ J(x− y) such that

〈Bx−By, j(x− y)〉 = 〈ε(Tx− Ty)− (x− y), j(x− y)〉
≤ (εk − 1)‖x− y‖2.

Let x ∈ C and for each h > 0, let xh be an element of C such that

d(x + hTx,C) ≥ ‖x + hTx− xh‖ − h2.

Note that

lim
h→0+

‖x + hTx− xh‖
h

= 0.

Define

yh =
εxh + hu + (1− h)x

1 + ε
.
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Because C is convex and xh, u and x are in C, it follows that yh ∈ C, whenever
h ∈ (0, 1). Hence if h ∈ (0, 1) and λ = (1 + ε)−1h, we have

d(x + λBx,C) ≤ ‖x + λBx− yh‖
= ‖[(1 + ε)x + hεTx + hu− hx]

−[εxh + hu + (1− h)x]‖(1 + ε)−1

= ε(1 + ε)−1‖x + hTx− xh‖.
Hence lim

λ→0+
d(x + λBx,C)/λ = 0. So B is the generator of a semigroup V of

type (kε− 1) on C. Because

‖V (t)x− V (t)y‖ ≤ e(kε−1)t‖x− y‖ for t > 0,

V (t) is a contraction from C into itself. Hence V (t) has a unique fixed point
xt ∈ C. Because

V (s)xt = V (s)V (t)xt = V (t)V (s)xt,

there is a unique point z ∈ C such that V (t)z = z for all t ≥ 0. Thus Bz = 0
and z − εTz = u. Therefore, the range of (I − εT ) contains C.

The following example shows that convexity of C cannot be removed from
Proposition 5.7.10.

Example 5.7.11 Let X = R2 be the Euclidean space, C = {(x, y) ∈ R2 :
x2 + y2 = 1} and A(x, y) = (y,−x) for all (x, y) ∈ C. Then A is genera-
tor of a semigroup U of type 0 on C (in particular, U(t)(x, y) = (x cos t +
y sin t,−x sin t+ y cos t)), but the image of C under I− εA does not intersect
C for any ε > 0.

We now introduce more general classes of nonlinear operators:

Let α : R+ → R+ be a function such that α(0) = 0 and lim inf
r→r0

α(r) > 0 for

all r0 > 0.

A mapping A : C ⊆ X → X is said to be α-strongly accretive if for each
x, y ∈ C, there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ α(‖x− y‖)‖x− y‖. (5.60)

A mapping T is said to be α-strongly pseudocontractive if I−T is α-strongly
accretive.

If α(r) = kr for some k > 0, then A is strongly accretive (with strongly
accretive constant k) as in this case (5.60) reduces to

〈Ax−Ay, j(x− y)〉 ≥ k‖x− y‖2

and T = I − A (k ∈ (0, 1)) is strongly pseudocontractive (with strongly pseu-
docontractive constant 1− k) as in this case (5.60) takes the form of

〈Tx− Ty, j(x− y)〉 ≤ (1− k)‖x− y‖2.
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One may easily see that the pseudocontractivity of T implies the strong
pseudocontractivity of tT for t ∈ (0, 1). Also, the accretiveness of A implies the
strong accretiveness of tI + A for t > 0.

Note that every continuous strongly accretive self-mapping on X is surjec-
tive.

The following proposition shows that the sum of accretive and strongly
accretive mappings is strongly accretive.

Proposition 5.7.12 Let X be a smooth Banach space, and T : X → X a
strongly accretive mapping with the strongly accretive constant k ∈ (0, 1). Let
S : X → X be an accretive mapping. Then T + S : X → X is also a strongly
accretive mapping with the strongly accretive constant k.

Proof. Because S is accretive and T is strongly accretive with the strongly
accretive constant k, then for any x, y ∈ X, we have

〈Sx− Sy, J(x− y)〉 ≥ 0 and 〈Tx− Ty, J(x− y)〉 ≥ k‖x− y‖2.
Hence

〈(T + S)x− (T + S)y, J(x− y)〉 = 〈Tx− Ty, J(x− y)〉+ 〈Sx− Sy, J(x− y)〉
≥ k‖x− y‖2.

Applying Proposition 5.7.10, we obtain the existence of zeros for continuous
and α-strongly accretive mappings.

Theorem 5.7.13 Let C be a nonempty closed convex subset of a Banach space
X and A : C → X a continuous and α-strongly accretive mapping such that

(i) lim inf
r→∞ α(r) > ‖Ax0‖ for some x0 ∈ C,

(ii) lim
h→0+

d(x− hAx,C)
h

= 0 for all x ∈ C.

Then A has a unique zero in C.

Proof. We may assume that x0 = 0. Proposition 5.7.10 implies that C ⊂
(I + A)(C). Because (I + A) is invertible, the mapping g = (I + A)−1 is
a nonexpansive self-mapping on C and the fixed points of g are zeros of A.
It suffices to show that g has a fixed point.

Let D = {x ∈ C : Ax = tx for some t < 0}. Then D is bounded. Indeed, for
x ∈ D, we have

Ax = tx for some t < 0 and 〈Ax−A0, j〉 ≥ α(‖x‖)‖x‖ for some j ∈ J(x),

which imply that

α(‖x‖)‖x‖ ≤ ‖Ax‖‖x‖+ ‖A0‖‖x‖
= t‖x‖2 + ‖A0‖‖x‖.

Because t < 0, α(‖x‖) < ‖A0‖. It follows that D is bounded.
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Similarly, one can show that E = {y ∈ C : g(y) = λy for some λ > 1} is also
bounded.

Next, we show that (I − g)(C) is a closed set of X. For this, let {yn} be a
sequence in C such that yn−g(yn)→ u for some u ∈ X. Set xn := g(yn). Then

yn − g(yn) = Axn → u as n→∞.

Because for m,n ∈ N, there exists j(xn − xm) ∈ J(xn − xm) such that

〈Axn −Axm, j(xn − xm)〉 ≥ α(‖xn − xm)‖xn − xm‖,
this yields

α(‖xn − xm‖) ≤ ‖Axn −Axm‖.
Hence {xn} is a Cauchy sequence. Let xn → x for some x ∈ C. By the continuity
of I +A, yn → y for some y ∈ C. Thus, (I−g)(y) = u, i.e., (I−g)(C) is closed.

Now, let {tn} be a sequence in (0, 1) with tn → 1. Then tng(yn) = yn for
some yn ∈ C, and it follows that

yn − g(yn) = (1− t−1
n )yn.

Because {yn} is in E and E is bounded, yn−g(yn)→ 0 ∈ (I−g)(C). Therefore,
g has a fixed point in C.

Note that the mapping A satisfies condition (ii) of Theorem 5.7.13 if and
only if I − A is weakly inward on C. Therefore, Theorem 5.7.13 yields the
following useful existence results for strongly pseudocontractive mappings in
Banach spaces.

Corollary 5.7.14 Let C be a nonempty closed convex subset of a Banach space
X and T : C → X a weakly inward continuous α-strongly pseudocontractive
mapping. Then T has a unique fixed point in C.

Corollary 5.7.15 Let C be a nonempty closed convex subset of a Banach space
X and T : C → C a continuous α-strongly pseudocontractive mapping. Then T
has a unique fixed point in C.

We now give fundamental properties and existence results for pseudocon-
tractive mappings in Banach spaces.

Proposition 5.7.16 Let C be a nonempty subset of a Banach space X and
T : C → X a continuous pseudocontractive mapping. Let AT : C → X be
a mapping defined by AT := I + r(I − T ) for any r > 0. Then we have the
following:

(a) AT is one-one and A−1
T is nonexpansive.

(b) F (T ) = F (A−1
T ).

(c) If C is closed, then AT (C) is closed.
(d) If C is closed and convex and T is weakly inward, then the range of AT

contains C, i.e., C ⊂ AT (C).
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Proof. (a) By pseudocontractivity of T,

‖x− y‖ ≤ ‖[I + r(I − T )]x− [I + r(I − T )]y‖ = ‖AT x−AT y‖ for all x, y ∈ C,

and it follows that AT is one-one. Therefore, A−1
T is nonexpansive.

(b) and (c) are obvious.
(d) Let z be a point in C. Then it suffices to show that there exists x ∈ C

such that z = AT x. Define g : C → X by g(x) = (1 + r)−1(rTx + z). Then g is
weakly inward and continuous. Let x, y ∈ C, there exists j(x − y) ∈ J(x − y)
such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2,
which implies that

〈g(x)− g(y), j(x− y)〉 =
r

1 + r
〈Tx− Ty, j(x− y)〉

≤ r

1 + r
‖x− y‖2.

Then g is continuous and a r/(1 + r)-strongly pseudocontractive mapping.
By Corollary 5.7.14, there exists x ∈ C with g(x) = x, i.e., z = AT (x).

Theorem 5.7.17 Let X be a uniformly convex Banach space satisfying the
Opial condition. Let C be a nonempty closed convex subset of X and T : C → X
a weakly inward continuous pseudocontractive mapping. Then I − T is demi-
closed at zero.

Proof. Let {xn} be a sequence in C with xn ⇀ z and lim
n→∞ ‖xn − Txn‖ = 0.

By Theorem 3.2.9, we have Za(C, {xn}) = {z}.
Let AT : C → X be a mapping defined by AT := I + r(I − T ) for any

r > 0. Then Proposition 5.7.16 (d) implies that C ⊂ AT (C) and because AT

is one-one, we conclude that g : C → C defined by g = A−1
T is nonexpansive.

Because AT (xn) = xn + r(xn−Txn), it follows that xn = g(xn + r(xn−Txn)).
Now

‖xn − g(xn)‖ = ‖g(xn + r(xn − Txn))− g(xn)‖
≤ r‖xn − Txn‖ → 0 as n→∞.

Because

ra(g(z), {xn}) = lim sup
n→∞

‖xn − g(z)‖
≤ lim sup

n→∞
‖g(xn)− g(z)‖ ≤ lim sup

n→∞
‖xn − z‖,

it follows that g(z) = z.

We now give existence results for pseudocontractive mappings.
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Proposition 5.7.18 Let {xn} be a bounded sequence in a Hilbert space H and
{rn} a strictly decreasing sequence in R+ such that

〈rnxn − rmxn, xn − xm〉 ≤ 0 for all m,n ∈ N.

Then there exists x ∈ H such that xn → x.

Proof. Observe that

2〈rnxn − rmxn, xn − xm〉 = (rn + rm)‖xn − xm‖2 + (rn − rm)(‖xn‖2 − ‖xm‖2)
for all m,n ∈ N. This implies that {xn} is a Cauchy sequence and hence there
exists x ∈ H such that xn → x.

Theorem 5.7.19 Let C be a nonempty closed convex bounded subset of a Hilbert
space H and T : C → H a weakly inward continuous pseudocontractive mapping.
Then T has a fixed point.

Proof. Let u be an element in C and let {tn} be a strictly increasing sequence
in (0, 1) with tn → 1. Define a mapping Tn : C → X by

Tnx = (1− tn)u + tnTx, x ∈ C, n ∈ N.

Then for each n ∈ N, Tn is a continuous strongly pseudocontractive mapping
and also Tn is weakly inward because C is convex. By Corollary 5.7.14, there
exists exactly one point xn ∈ C such that xn = (1− tn)u + tnTxn.

Set rn = t−1
n − 1. Then

〈rnxn − rmxm, xn − xm〉 = (rn − rm)〈u, xn − xm〉+ 〈Txn − Txm

−(xn − xm), xn − xm〉
≤ (rn − xm)〈u, xn − xm〉.

Without loss of generality, we may assume that u = 0. By Proposition 5.7.18,
xn → x. It follows from the fact xn − Txn → 0 and continuity of T that
x = Tx.

Theorem 5.7.20 Let X be a uniformly convex Banach space and C a nonempty
closed convex subset of X (with 0 ∈ C). Let T : C → X be a weakly inward
continuous pseudocontractive mapping. Then T has fixed point in C if and only
if the set E = {x ∈ C : Tx = λx for some λ > 1} is bounded.

Proof. Suppose that E is bounded. Define a mapping AT : C → X by
AT := I + r(I − T ) for any r > 0. Proposition 5.7.16 implies that C ⊂ AT (C)
and because AT is one-one, we conclude that g : C → C defined by g = A−1

T is
nonexpansive.

Now, by Theorem 5.3.5, it suffices to show that the set

D = {y ∈ C : g(y) = μy for some μ > 1}
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is bounded. Suppose that g(y) = μy for μ > 1. Select x ∈ C such that y = AT x.
Then Tx = (1 + (μ− 1)/(μr))x, i.e., x ∈ E. Because x = μy, it follows that D
is bounded.

Conversely, suppose that v is a fixed point of T and x ∈ E. Then Tx = λx
for some λ > 1. By the pseudocontractivity of T ,

‖x− v‖ ≤ ‖(1 + r)(x− v)− r(λx− v)‖ = ‖(1 + r − rλ)x− v‖.
By choosing r = (λ − 1)−1, we have ‖x − v‖ ≤ ‖v‖. Therefore, E is
bounded.

Corollary 5.7.21 Let C be a nonempty closed convex subset of a Banach space
X and T : C → C a Lipschitzian pseudocontractive mapping. Suppose C has
the fixed point property for nonexpansive mappings. Then T has a fixed point
in C.

Theorem 5.7.22 Let C be a nonempty closed convex subset of a Banach space
X and T : C → X a weakly inward continuous pseudocontractive mapping.
Suppose C has the fixed point property for nonexpansive self-mappings. Then T
has a fixed point in C.

Proof. Note the mapping g : C → C defined by g := A−1
T is nonexpansive

by Proposition 5.7.16. Therefore, there exists v ∈ C such that v = AT v =
v + r(v − Tv) from which v ∈ F (T ).

Corollary 5.7.23 Let C be a nonempty closed convex subset of a Banach space
and T : C → X a weakly inward nonexpansive mapping. Suppose C has the fixed
point property for nonexpansive self-mappings. Then T has a fixed point in C.

Finally, we discuss the structure of the set of fixed points of pseudocontrac-
tive mappings.

Theorem 5.7.24 Let C be a nonempty closed convex subset of a strictly convex
Banach space X and T : C → X a weakly inward continuous pseudocontractive
mapping. Then F (T ) is closed and convex.

Proof. Proposition 5.7.16 implies that the mapping g := A−1
T is nonexpansive

and F (T ) = F (g). Hence F (T ) is closed and convex by Corollary 5.2.29.
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Exercises

5.1 Let C be a nonempty closed subset of a Banach space X and T : C → X
a continuous mapping with the property that for each x ∈ C, there is
an αx, 0 < αx ≤ 1 such that (1 − αx)x + αxTx ∈ C. Let x1 ∈ C and
inductively for n ∈ N define xn+1 ∈ C by xn+1 = (1 − αn)xn + αnTxn,
where αn ∈ (0, 1] is chosen so that xn+1 ∈ C. Show that

(a) if z = lim
n→∞xn exists and

∑∞
n=1 αn =∞, then z is a fixed point of T ,

(b) if T is a contraction mapping, then z = lim
n→∞xn exists.

5.2 Let X be a Banach space and T : X → X a mapping satisfies the condition:

‖Tx− Ty‖ ≤ ϕ(‖x− y‖) for all x, y ∈ X,

where ϕ : [0,∞)→ [0,∞) is a continuous function and ϕ(t) < t for t > 0.
Show that I − T is bijective and (I − T )−1 is continuous on X.
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5.3 Let C be a nonempty closed convex subset of a Banach space X and T :
C → X a weakly inward contraction mapping. Show that T has a unique
fixed point in C.

5.4 Let C be a nonempty closed convex subset of a Banach space X and T :
C → C a nonexpansive mapping. If A = I −T , show that R(I +λA) ⊃ C
for every λ > 0.

5.5 Let C be a nonempty subset of a normed space X. A function α of C×C →
[0,∞) is symmetric if α(x, y) = α(y, x) for all x, y ∈ C. Let T : C → C
be a mapping. T is said to be generalized nonexpansive if there exist
symmetric functions αi, i = 1, 2, 3, · · · , 5 of C × C into [0,∞) such that

sup
{ 5∑

i=1

αi(x, y) : x, y ∈ C

}
≤ 1 and for all x, y in X,

‖Tx−Ty‖ ≤ a1‖x−y‖+a2‖x−Ty‖+a3‖y−Tx‖+a4‖x−Tx‖+a5‖y−Ty‖,
where ai = αi(x, y).

If C is a nonempty convex subset of a uniformly convex Banach space
X, and T : C → C is a generalized nonexpansive mapping with F (T ) �= ∅,
show that for each t ∈ (0, 1), the mapping defined by

Ttx = (1− t)x + tTx, x ∈ C

is asymptotically regular.

5.6 Let X be a strictly convex Banach space and C a weakly compact convex
subset of X that has normal structure. Let S = {T1, T2, · · · , Tn} be a
finite commuting family of nonexpansive mappings of C into itself. Show
that ∩n

i=1F (Ti) �= ∅.
5.7 Let X be a Banach space, C a nonempty closed bounded subset of X

that is star-shaped with respect to 0, and T : C → C an asymptotically
nonexpansive mapping with sequence {kn} and uniformly asymptotically
regular (i.e., for each ε > 0, there exists n0 ∈ N such that ‖Tnx−Tn+1x‖ ≤
ε for all n ≥ n0 and all x ∈ C). Let {λn} be a sequence in (0, 1) such that
lim

n→∞λn = 1. Show that

(a) for each n ∈ N, there exists exactly one xn ∈ C such that xn =
(λn/kn)Tnxn,

(b) xn − Txn → 0 as n→∞.

5.8 Let C be a nonempty subset of a normed space X and T : C → C a
mapping. T is said to be weakly asymptotically semicontractive if there
exist a mapping S : C × C → C and a sequence {kn} ⊂ [1,∞) such
that Tx = S(x, x) for all x ∈ C while for each fixed x ∈ C,S(·, x) is
asymptotically nonexpansive with sequence {kn} and for fixed x ∈ C and
fixed n ∈ N, the mapping y → S(·, y)nx is compact on C.
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If X is a reflexive Banach space possessing a weakly continuous duality
mapping, C is a nonempty closed convex bounded subset of X, and T :
C → C is weakly asymptotically semicontractive with data (S, {kn}) and
satisfies the condition:

for each ε > 0, there exists an n0 ∈ N such that for all n ≥ n0 and all
z ∈ C,

‖S(·, z)n+1(z)− S(·, z)n(z)‖ < ε,

show that

(a) inf
x∈C
{‖x− Tx‖} = 0,

(b) if (I − T )(C) is closed, it follows that F (T ) �= ∅.

5.9 Let X be a Banach space with GGLD and the Opial condition, C a nonempty
weakly compact convex subset of X, and T : C → C an asymptotically
nonexpansive mapping. Show that I − T is demiclosed at 0.

5.10 Let X = R2 with the 1 norm, i.e., ‖(x, y)‖ = |x| + |y|. Let A and B be
operators in X defined by

D(A) = D(B) = {(0, 0), (0, 1)}

and

A(0, 0) = (0, 0) = B(0, 1), A(0, 1) = (1, 1/2), B(0, 0) = (1, 1).

Show that both A and B are accretive, but A + B is not.



Chapter 6

Approximation of Fixed
Points

The purpose of this chapter is to develop iterative techniques for approximation
of fixed points of nonlinear mappings by using the Picard, Mann, and Ishikawa
iteration processes.

6.1 Basic properties and lemmas

In this section, we develop preliminary results for approximation of fixed points
of nonlinear mappings.

Proposition 6.1.1 Let X be a Banach space satisfying the Opial condition, C
a nonempty weakly compact subset of X, and T : C → C a mapping such that

(i) F (T ) �= ∅,
(ii) I − T is demiclosed at zero.

Let {xn} be a sequence in C satisfying the following properties:

(D1) lim
n→∞ ‖xn − p‖ exists for all p ∈ F (T );

(D2) {xn} is an AFPS, i.e., lim
n→∞ ‖xn − Txn‖ = 0.

Then {xn} converges weakly to a fixed point of T .

Proof. Because C is weakly compact, it follows that {xn} has a weakly conver-
gent subsequence {xnj

}. Suppose {xnj
} converges weakly to p. Because {xnj

}
⊂ C and C is weakly closed, then p ∈ C. From (D2), lim

n→∞ ||xn−Txn|| = 0 and

because I − T is demiclosed at zero, we have (I − T )p = 0, so that p ∈ F (T ).
To complete the proof, we show that {xn} converges weakly to a fixed point of
T ; it suffices to show that ωw({xn}) consists of exactly one point, namely, p.
Suppose there exists another subsequence {xnk

} of {xn} that converges weakly
to some q �= p. As in the case of p, we must have q ∈ C and q ∈ F (T ). It follows

R.P. Agarwal et al., Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3 6,
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from (D1) that lim
n→∞ ||xn − p|| and lim

n→∞ ||xn − q|| exist. Because X satisfies the
Opial condition, we have

lim
n→∞ ||xn − p|| = lim

j→∞
||xnj

− p|| < lim
j→∞

||xnj
− q|| = lim

n→∞ ||xn − q||,

lim
n→∞ ||xn − q|| = lim

k→∞
||xnk

− q|| < lim
k→∞

||xnk
− p|| = lim

n→∞ ||xn − p||,

a contradiction. Hence p = q and {xn} converges weakly to p.

Proposition 6.1.2 Let C be a nonempty closed convex subset of a Banach
space X and T : C → C a mapping such that

(i) F (T ) �= ∅,
(ii) I − T is demiclosed at zero.

Let {xn} be a sequence in C that satisfies properties (D1) and (D2). Suppose
{xn} holds one of the following conditions:

(a) X is uniformly convex with Fŕechet differentiable norm and

lim
n→∞〈xn, J(p− q)〉 exists for all p, q ∈ F (T ). (6.1)

(b) X is reflexive, X∗ has the Kadec-Klee property, and lim
n→∞ ‖txn+(1−t)p−q‖

exists for all t ∈ [0, 1] and for some p, q ∈ ωw({xn}).
Then {xn} converges weakly to a fixed point of T .

Proof. We show that ωw({xn}) has exactly one point. Let u, v ∈ ωw({xn})
with u �= v. Then for some subsequences {xni

} and {xnj
} of {xn}, we have

xni
⇀ u and xnj

⇀ v. By (D2), lim
n→∞ ‖xn − Txn‖ = 0, which implies by the

demiclosedness of I − T at zero that u, v ∈ ωw({xn}) ⊂ F (T ).
(a) From (6.1), we have

〈u, J(p− q)〉 = d (say), and 〈v, J(p− q)〉 = d;

so

〈u− v, J(p− q)〉 = 0 for all p, q ∈ F (T ). (6.2)

From (6.2) we obtain that

‖u− v‖2 = 〈u− v, J(u− v)〉 = 0,

a contradiction. Hence ωw({xn}) is singleton. Therefore, {xn} converges weakly
to a fixed point of T .

(b) By assumption, lim
n→∞ ‖txn +(1−t)u−v‖ exists. Corollary 2.4.17 guaran-

tees that u = v. Hence ωw({xn}) is singleton. Therefore, {xn} converges weakly
to a fixed point of T .
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Proposition 6.1.3 Let X be a reflexive Banach space, C a nonempty closed
convex subset of X, {xn} a bounded sequence in C, and T : C → C a nonex-
pansive mapping. Suppose {xn} satisfies one of the following conditions:

(D2) lim
n→∞ ‖xn − Txn‖ = 0.

(D3) lim
n→∞ ‖xn+1 − Txn‖ = 0.

Then the set M defined by (2.32) is a nonempty closed convex bounded and
T -invariant subset of C.

Proof. Define a real-valued function ϕ on C by ϕ(z) = LIMn‖xn−z‖2 for each
z ∈ C. Theorem 2.9.11 implies that M is a nonempty closed convex bounded
set. If lim

n→∞ ‖xn − Txn‖ = 0, then for y ∈M

ϕ(Ty) = LIMn‖xn − Ty‖2 ≤ LIMn‖Txn − Ty‖2
≤ LIMn‖xn − y‖2 = ϕ(y).

Hence Ty ∈M , i.e., M is T -invariant.

Suppose now that lim
n→∞ ‖xn+1 − Txn‖ = 0. Observe that for y ∈M

ϕ(Ty) = LIMn‖xn − Ty‖2
= LIMn‖xn+1 − Ty‖2 (as LIMn(an) = LIMn(an+1))
≤ LIMn‖Txn − Ty‖2
≤ LIMn‖xn − y‖2 = ϕ(y).

Hence M is T -invariant.

We now give some useful lemmas:

Lemma 6.1.4 Let {αn} be a sequence of nonnegative numbers such that∑∞
n=1 αn =∞. Suppose that βn > 0 for all n ∈ N and

∑∞
n=1 αnβn < ∞.

Then lim inf
n→∞ βn = 0.

Proof. Suppose, for contradiction, that lim inf
n→∞ βn = δ for some δ > 0. Then

there exists n0 ∈ such that βn > δ/2 for all n ≥ n0. Then

∑
n≥n0

αnβn >
δ

2

∑
n≥n0

αn =∞,

a contradiction. Therefore, δ = 0.

Lemma 6.1.5 Let {δn} be a sequence of nonnegative numbers satisfying:

δn+1 ≤ βnδn + γn for all n ∈ N,
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where {βn} and {γn} are sequences of nonnegative numbers such that

{βn} ⊆ [1,∞),
∞∑

n=1

(βn − 1) <∞, (6.3)

∞∑
n=1

γn <∞. (6.4)

Then lim
n→∞ δn exists. If lim inf

n→∞ δn = 0, then lim
n→∞ δn = 0.

Proof. For m,n ∈ N, we have

δn+m+1 ≤ βn+mδn+m + γn+m

≤ βn+m(δn+m + γn+m)
≤ βn+m(βn+m−1(δn+m−1 + γn+m−1) + γn+m)
· · ·

≤
( n+m∏

i=n

βi

)(
δn +

n+m∑
i=n

γi

)
.

Hence

lim sup
m→∞

δm ≤
( ∞∏

i=n

βi

)(
δn +

∞∑
i=n

γi

)
. (6.5)

By the conditions (6.3) and (6.4), we have lim
n→∞

( ∞∏
i=n

βi

)
= 1 and lim

n→∞

∞∑
i=n

γi =

0. It follows from (6.5) that lim sup
n→∞

δn ≤ lim inf
n→∞ δn. Therefore, lim

n→∞ δn exists.

Suppose lim inf
n→∞ δn = 0. Then lim

n→∞ δn = lim inf
n→∞ δn = 0.

Lemma 6.1.6 Let {an}, {bn}, and {tn} be three sequences of nonnegative
numbers such that

an+1 ≤ (1− tn)an + bntn, n ∈ N, (6.6)

where tn ∈ [0, 1],
∑∞

n=1 tn =∞ and lim
n→∞ bn = 0. Then lim

n→∞ an = 0.

Proof. By (6.6),

0 ≤ an+1 ≤
n∏

i=k

(1− ti)ak +
n∑

i=k

[
ti

n∏
j=i+1

(1− tj)
]
bi. (6.7)

Observe that
n∑

i=k

ti

n∏
j=i+1

(1− tj) ≤ 1 for all n, k ∈ N and
n∏

i=k

(1− ti) ≤ exp

(
−

n∑
i=k

ti

)
→ 0.



6.1. Basic properties and lemmas 283

Given ε > 0, pick k such that bi ≤ ε for all i ≥ k, from (6.7), we have

0 ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an ≤ ε.

Letting ε→ 0, we obtain lim
n→∞ an = 0.

Lemma 6.1.7 Let {xn} and {yn} be two sequences in a uniformly convex
Banach space X such that

xn+1 = (1− αn)xn + αnyn and ‖yn‖ ≤ ‖xn‖, n ∈ N,

where {αn} is a sequence of nonnegative numbers in [0, 1] with
∑∞

n=1 min{αn,

1− αn} =∞. Then 0 ∈ {xn − yn}.

Proof. Suppose, for contradiction, that ‖xn − yn‖ ≥ ε > 0 for all n ∈ N.
Observe that

‖xn+1‖ ≤ ‖xn‖ ≤ · · · ≤ ‖x1‖ for all n ∈ N.

Then

‖xn+1‖ = ‖(1− αn)xn + αnyn‖
≤ ‖xn‖

[
1− 2min{αn, 1− αn}δX

(
ε

‖x1‖
)]

.

Inductively, we have

‖xn‖ ≤
n−1∏
i=1

[
1− 2min{αi, 1− αi}δX

(
ε

‖x1‖
)]
‖x1‖ for all n > 1.

Because
∑∞

i=1 min{αi, 1− αi} =∞, it follows that

‖xn‖ ≤ ‖x1‖exp

(
− 2δX

(
ε

‖x1‖
) n−1∑

i=1

min
{

αi, 1− αi

})
→ 0 as n→∞

and hence lim
n→∞ ‖xn‖ = lim

n→∞ ‖yn‖ = 0. This is a contradiction.

Lemma 6.1.8 Let C be a nonempty closed convex bounded subset of a Banach
space X and {Tn} a sequence of Lipschitzian self-mappings of C such that

(i) Ln(≥ 1) is the Lipschitz constant of Tn with
∑∞

n=1(Ln − 1) <∞,
(ii) F := ∩∞

n=1F (Tn), the set of common fixed points of {Tn} is nonempty.

For a given x1 ∈ C, define the sequence {xn} by

xn+1 = Tnxn, n ∈ N. (6.8)
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Then the following hold:

(a) lim
n→∞ ‖xn − p‖ exists for all p ∈ F .

(b) If X is uniformly convex, then lim
n→∞ ‖txn + (1 − t)f1 − f2‖ exists for all

f1, f2 ∈ F , and t ∈ [0, 1].

(c) If X is uniformly convex with Fréchet differentiable norm, then lim
n→∞

〈xn − p, J(p− q)〉 exists for all p, q ∈ F .

Proof. (a) Let p ∈ F . Then from (6.8), we have

‖xn+1 − p‖ = ‖Tnxn − p‖ ≤ Ln‖xn − p‖, n ∈ N,

and it follows from Lemma 6.1.5 that lim
n→∞ ‖xn − p‖ exists, because

∑∞
n=1

(Ln − 1) <∞.
(b) Let p, q ∈ F . Set

an(t) : = ‖txn + (1− t)p− q‖,
Sn,m : = Tn+m−1Tn+m−2 · · ·Tn,

bn,m = ‖Sn,m(txn + (1− t)p)− (txn+m + (1− t)p)‖.
We show lim

n→∞ an(t) exists for all t ∈ [0, 1]. Note that lim
n→∞ an(0) and lim

n→∞ an(1)

exist, so it remains to show that lim
n→∞ an(t) exists for all t ∈ (0, 1).

Observe that for x, y ∈ C

xn+m = Sn,mxn;

‖Sn,mx− Sn,my‖ ≤
( n+m−1∏

i=n

Li

)
‖x− y‖ ≤

( ∞∏
i=n

Li

)
‖x− y‖;

and

an+m(t) = ‖txn+m + (1− t)p− q‖
≤ ‖txn+m + (1− t)p− Sn,m(txn + (1− t)p)‖

+‖Sn,m(txn + (1− t)p)− q‖

≤ bn,m +
( n+m−1∏

i=n

Li

)
‖txn + (1− t)p− q‖

≤ bn,m +
( ∞∏

i=n

Li

)
an(t) = bn,m + Hnan(t), (6.9)

where Hn =
∏∞

i=n Li.
By Theorem 5.2.31, there exists a strictly increasing continuous function

γ : R+ → R+ with γ(0) = 0 such that

γ(‖S(tx + (1− t)y)− (tSx + (1− t)Sy)‖) ≤ ‖x− y‖ − ‖Sx− Sy‖
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for all nonexpansive S : C → X and t ∈ [0, 1]. It then follows that

γ(H−1
n bn,m) = γ(H−1

n ‖Sn,m(txn + (1− t)p)− (tSn,mxn + (1− t)p)‖)
≤ ‖xn − p‖ −H−1

n ‖xn+m − p‖,

which implies that

bn,m ≤ Hnγ−1(‖xn − p‖ −H−1
n ‖xn+m − p‖). (6.10)

Because lim
n→∞ ‖xn− p‖ exists by part (a) and lim

n→∞Hn = 1, then from (6.10)

we obtain that lim
n,m→∞ bn,m = 0. Hence from (6.9), we have

lim sup
m→∞

am(t) ≤ lim
n,m→∞ bn,m + lim inf

n→∞ Hnan(t) = lim inf
n→∞ an(t).

Therefore, lim
n→∞ an(t) exists for all t ∈ [0, 1].

(c) Because the norm of X is Fréchet differentiable,

1
2
‖x‖2 + 〈h, Jx〉 ≤ 1

2
‖x + h‖2 ≤ 1

2
‖x‖2 + 〈h, Jx〉+ b(‖h‖) (6.11)

for all bounded x, h ∈ X, where J is normalized duality mapping and b is the

function defined on R+ such that lim
t→0

b(t)
t

= 0.

Taking x = p− q and h = t(xn − p) in (6.11), we get

1
2
‖p− q‖2 + t〈xn − p, J(p− q)〉 ≤ 1

2
a2

n(t)

≤ 1
2
‖p− q‖2 + t〈xn − p, J(p− q)〉+ b(t‖xn − p‖).

Because for each t ∈ (0, 1), lim
n→∞ an(t) exists, it follows that

1
2
‖p− q‖2 + t lim sup

n→∞
〈xn − p, J(p− q)〉

≤ 1
2

lim
n→∞ a2

n(t)

≤ 1
2
‖p− q‖2 + t lim inf

n→∞ 〈xn − p, J(p− q)〉+ o(t).

This yields

lim sup
n→∞

〈xn − p, J(p− q)〉 ≤ lim inf
n→∞ 〈xn − p, J(p− q)〉+ o(t)

t
.

On letting t→ 0+, we obtain that lim
n→∞〈xn − p, J(p− q)〉 exists.
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6.2 Convergence of successive iterates

In this section, we develop techniques for convergence of {Tnx} to fixed points
of nonlinear operators in Banach spaces. Recall for contraction mapping T , the
sequence of iterates {Tnx} converges strongly in Banach spaces. The following
example shows that even if a nonexpansive mapping T has a unique fixed point,
then {Tnx} need not converge to it.

Example 6.2.1 Let C = BH be the unit ball of the Hilbert space H = 2 and
{an} a sequence of real numbers in [0, 1] such that

∏∞
n=1 an > 0. Consider the

linear mapping T : C → C defined by

T (x1, x2, · · · ) = (0, a1x1, a2x2, · · · ).

The origin is the only fixed point of T . It is easy to see that the sequence
of iterates {Tne} with e = (1, 0, 0, · · · ) converges weakly to 0, but it does not
converge strongly to 0.

We first study strong convergence of {Tnx} for nonexpansive mappings in a
Banach space.

Theorem 6.2.2 (Browder and Petryshyn’s theorem) – Let X be a
Banach space and T an asymptotically regular nonexpansive self-mapping of
X. Suppose that T has a fixed point and that I−T maps closed bounded subsets
of X into closed subsets of X. Then for each x ∈ X, {Tnx} converges strongly
to an element of F (T ).

Proof. Let p ∈ F (T ). Then {‖Tnx − p‖} is a nonincreasing sequence.
It suffices therefore to show that there exists a subsequence of {Tnx} that con-
verges strongly to a fixed point of T . Let S be the strong closure of sequence
{Tnx}. By the asymptotic regularity of T ,

(I − T )Tnx→ 0 as n→∞.

Hence 0 lies in the strong closure of (I−T )(S) and because the latter is closed by
hypothesis (as S is closed and bounded), 0 lies in (I−T )(S). Hence there exists
a subsequence {Tnix} such that Tnix→ v ∈ S such that (I − T )v = 0. Hence
Tnx→ v.

We now turn our attention to the study of weak convergence of the iterates
of nonlinear mappings.

Theorem 6.2.3 Let X be a Banach space satisfying the Opial condition, C a
nonempty weakly compact convex subset of X, and T : C → C a nonexpansive
mapping with F (T ) �= ∅. If for x ∈ C, Tnx − Tn+1x → 0 as n → ∞, then
{Tnx} converges weakly to an element of F (T ).
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Proof. For x ∈ C, define a sequence {xn} in C by xn = Tnx, n ∈ N0. Then
for v ∈ F (T ),

‖xn+1 − v‖ = ‖Tn+1x− v‖ ≤ ‖Tnx− v‖ ≤ ‖xn − v‖ for all n ∈ N0,

and it follows that lim
n→∞ ‖xn − v‖ exists. By assumption

Tnx− Tn+1x = xn − Txn → 0 as n→∞.

Thus, {Tnx} is an AFPS of T . By Theorem 5.2.9, I − T is demiclosed at zero.
Applying Proposition 6.1.1, we conclude that {Tnx} converges weakly to some
z ∈ F (T ).

We now study weak convergence of iterates of mappings that are more gen-
eral than nonexpansive mappings. We begin with the following proposition:

Proposition 6.2.4 Let C be a nonempty closed convex subset of a uniformly
convex Banach space X satisfying the Opial condition and T : C → C a nearly
asymptotically nonexpansive mapping. Suppose that x0 is the asymptotic cen-
ter of the bounded sequence {Tnx} for some x ∈ C. If the weak limit z of a
subsequence {Tnix} of {Tnx} is a fixed point of T , then x0 coincides with z.

Proof. It is obvious that ra(C, {Tnx}) ≥ ra(C, {Tnix}). Because Tnix ⇀ z, it
follows from Theorem 3.2.9 that Za(C, {Tnix}) = {z} and so, for any ε > 0, we
can choose an integer io such that

‖z − Tni0 x‖ ≤ ra(C, {Tnix}) +
ε

2
.

Because z is a fixed point of T and T is nearly asymptotically nonexpansive, we
can choose an integer j0 such that for all j ≥ j0

‖z − Tni0+jx‖ ≤ η(T j)(‖z − Tni0 x‖+ aj)

≤ η(T j)(ra(C, {Tnix}) +
ε

2
+ aj)

≤ η(T j)(ra(C, {Tnx}) + ε + aj),

and it follows that

lim sup
n→∞

‖z − Tnx‖ = ra(C, {Tnx}).

By the uniqueness of asymptotic center, we have z = x0.

Theorem 6.2.5 Let X be a uniformly convex Banach space satisfying the Opial
condition and C a nonempty closed convex (but not necessarily bounded) subset
of X. Let T : C → C be a demicontinuous nearly asymptotically nonexpansive
mapping and x ∈ C. Then {Tnx} converges weakly to a fixed point of T if and
only if T is weakly asymptotically regular at x.
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Proof. Assume that Tnx ⇀ z as n → ∞. We show that z ∈ F (T ). By Theo-
rem 3.2.9, Za(C, {Tnx}) = {z}. As in proof of Theorem 5.6.5, we have z ∈ F (T ).
Because Tnx ⇀ z as n→∞, it follows that Tn+1x− Tnx ⇀ 0 as n→∞.

Conversely, suppose that Tn+1x− Tnx ⇀ 0 as n→∞. First, we show that
ωw({Tnx}) ⊆ F (T ). Let y ∈ ωw({Tnx}). Then we have a subsequence {Tnix}
of {Tnx} such that Tnix ⇀ y. By the weak asymptotic regularity of T , we have

Tni+mx ⇀ y as i→∞ for m = 0, 1, · · · .

By Theorem 3.2.9, we have

Za(C, {Tni+mx}) = {y} for m = 0, 1, 2, · · · .

Let {ys} be a sequence in C defined by ys = T sy for s ∈ N. For m, s ∈ N with
m > s, we have

‖ys − Tni+mx‖ = ‖T sy − T s(Tni+m−sx)‖
≤ η(T s)(‖y − Tni+m−sx‖+ as),

which implies that

ra(ys, {Tmx}) ≤ η(T s)(ra(y, {Tmx}) + as).

By Theorem 3.1.8, T sy → y as s → ∞. By the demicontinuity of T , we
obtain from Proposition 5.6.1 that Ty = y. Thus, ωw({Tnx}) ⊆ F (T ) is veri-
fied. To complete the proof, we show that ωw({Tnx}) is singleton. Let u, v ∈
ωw({Tnx}). Then we have two subsequences {Tnj x} and {Tnkx} of {Tnx} such
that Tnj x ⇀ u and Tnkx ⇀ v. Then u, v ∈ F (T ). Let Za(C, {Tnx}) = {z}.
It follows from Proposition 6.2.4 that u = v = z. This proves that ωw({Tnx}) =
{z}.

Corollary 6.2.6 Let X be a uniformly convex Banach space satisfying the
Opial condition and C a nonempty closed convex (but not necessarily bounded)
subset of X. If T : C → C is an asymptotically nonexpansive mapping and
x ∈ C, then {Tnx} converges weakly to a fixed point of T if and only if T is
weakly asymptotically regular at x.

Proof. Because every asymptotically nonexpansive mapping is nearly asymp-
totically nonexpansive mapping, the result follows from Theorem 6.2.5.

6.3 Mann iteration process

We have already seen in Section 6.2 that asymptotic regularity of nonlinear map-
pings T is required even for weak convergence of {Tnx}. We drop asymptotic
regularity of nonlinear mappings when using the Mann iteration process.
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Definition 6.3.1 Let C be a nonempty convex subset of a linear space X and
T : C → C a mapping. Let A = [ai,j ] be an infinite real matrix satisfying:

(A1) A is a lower matrix with nonnegative entries (an,i ≥ 0 for all n, i ∈ N

and an,i = 0 for all i > n), i.e.,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1,1 0 0 · · · 0 0
a2,1 a2,2 0 · · · 0 0
a3,1 a3,2 a3,3 · · · 0 0
· · · · · · · · · · · · · · · · · ·
an,1 an,2 an,3 · · · 0 0
· · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A2) the sum of each row is 1, i.e.,
∑n

i=1 an,i = 1 for all n ∈ N,
(A3) lim

n→∞ an,i = 0 for all i ∈ N.

Define a sequence {xn} in C by x1 ∈ C and

xn+1 = T (
n∑

i=1

an,ixi), n ∈ N. (6.12)

Then the sequence {xn} defined by (6.12) is called the Mann iteration.

Such an iteration process is called the Mann iteration process.1

Example 6.3.2 Let Λ define the Cesaro matrix, i.e.,

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · · · · · · ·
1
2

1
2 0 0 · · · · · · · · ·

1
3

1
3

1
3 0 · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·
1
n

1
n

1
n · · · 1

n 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that Λ satisfies all the hypothesis related to the matrix A. Then
the sequence {xn} in C defined by (6.12) reduces to

xn+1 = T (
1
n

n∑
i=1

xi), n ∈ N.

In Definition 6.3.1, the matrix A is very general. The most useful Mann
iteration process can be obtained by choosing the matrix A as follows:

an,i = (1− an,n)an−1,i, i = 1, 2, · · · , n and n = 2, 3, · · · , (6.13)

and
either an,n = 1 or an,n < 1 for all n ∈ N. (6.14)

1It was introduced by W.R. Mann in 1953.
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The entries of matrix A satisfying conditions (6.13) and (6.14) can be con-
structed by choosing a sequence of nonnegative numbers in [0, 1] as below:

Choose a sequence {αn} of nonnegative numbers satisfying the conditions:

0 ≤ αn < 1 for all n ∈ N and
∞∑

n=1

αn =∞ (6.15)

and then we can define the entries of A by⎧⎪⎪⎨
⎪⎪⎩

a1,1 = 1, a1,i = 0 for i > 1;
an+1,n+1 = αn for n ∈ N;
an+1,i = ai,i

∏n
k=i(1− αk) for i = 1, 2, · · · , n;

an+1,i = 0 for i > n + 1, n ∈ N.

More precisely, we now define the Mann iteration process, which will be used
to approximate fixed points of nonlinear mappings.

Definition 6.3.3 Let C be a nonempty convex subset of a linear space X and
T : C → C a mapping. Let {αn} be a sequence of nonnegative numbers satisfying
(6.15). Define a sequence {xn} in C by{

x1 ∈ C;
xn+1 = M(xn, αn, T ), n ∈ N; (6.16)

where M(xn, αn, T ) = (1 − αn)xn + αnTxn. Then sequence {xn} is called the
(normal) Mann iteration.

Using convexity structure defined in Section 4.3, we now define the Mann
iteration in a metric space.

Definition 6.3.4 Let C be a nonempty convex subset of a convex metric space
X and T : C → C a mapping. Let {αn} be a sequence satisfying (6.15). Define
a sequence {xn} in C by{

x1 ∈ C;
xn+1 = W (Txn, xn;αn), n ∈ N.

Then {xn} is called the Mann iteration.

First, we study a convergent Mann iteration for arbitrary continuous map-
pings.

Theorem 6.3.5 Let C be a nonempty closed convex subset of a Banach space
X and T : C → C a continuous mapping. If the Mann iteration {xn} defined
by (6.16) converges strongly to a point p ∈ C, then p is a fixed point of T .

Proof. Let lim
n→∞xn = p. Suppose, for contradiction, that p �= Tp. Set εn :=

xn − Txn − (p− Tp). Because lim
n→∞xn = p and T is continuous, it follows that

lim
n→∞ εn = lim

n→∞[(xn − Txn)− (p− Tp)] = 0.
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Because ‖p − Tp‖ > 0, there exists n0 ∈ N such that ‖εn‖ < ‖p − Tp‖/3 and
‖xn − xm‖ < ‖p− Tp‖/3 for all n,m ≥ n0. Let N be any positive integer such
that
∑n0+N

i=n0
αi ≥ 1. Because xi+1 − xi = αi(Txi − xi), it follows that

‖xn0 − xn0+N+1‖ =
∥∥∥∥

n0+N∑
i=n0

(xi − xi+1)
∥∥∥∥ =
∥∥∥∥

n0+N∑
i=n0

αi(p− Tp + εi)
∥∥∥∥

≥
∥∥∥∥

n0+N∑
i=n0

αi(p− Tp)
∥∥∥∥−
∥∥∥∥

n0+N∑
i=n0

αiεi

∥∥∥∥
≥

n0+N∑
i=n0

αi

(
‖p− Tp‖ − ‖p− Tp‖

3

)

≥ 2‖p− Tp‖
3

.

The contradiction proves the result.

We have shown that if the Mann iteration is convergent to v for a continuous
mapping T , then v is a fixed point of T . But if T is not continuous, then there
is no guarantee that, even if the Mann iteration converges strongly to z, then z
will be a fixed point of T . Let us give an example of a discontinuous mapping.

Example 6.3.6 Let X = C = [0, 1] and T : C → C a mapping defined by

Tx =

⎧⎨
⎩

0, if x = 0,
1, if 0 < x < 1,
0, if x = 1.

Then T0 = 0 and the Mann iteration {xn} defined by (6.16) with x1 ∈ (0, 1)
and αn = 1/n, n ∈ N converges to 1, which is not a fixed point of T .

The following results are very useful for approximation of fixed points of
nonexpansive type mappings.

Proposition 6.3.7 Let C be a nonempty convex subset of a normed space X
and T : C → C a mapping with a fixed point p in C such that

‖Tx− p‖ ≤ ‖x− p‖ for all x ∈ C.

Then for the Mann iteration {xn} defined by (6.16) with {αn} in [0, 1],
lim

n→∞ ‖xn − p‖ exists.

Proof. Because

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖Txn − p‖ ≤ ‖xn − p‖ for all n ∈ N,

it follows that lim
n→∞ ‖xn − p‖ exists.
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Proposition 6.3.8 Let C be a nonempty convex subset of a uniformly convex
Banach space X and T : C → C a mapping with F (T ) �= ∅ satisfying the
condition:

‖Tx− p‖ ≤ ‖x− p‖ for all x ∈ C and p ∈ F (T ).

Define a sequence {xn} in C by (6.16) with the restriction that
∑∞

n=1 min{αn,
1− αn} =∞. Then lim inf

n→∞ ‖xn − Txn‖ = 0.

Proof. Proposition 6.3.7 implies that lim
n→∞ ‖xn − p‖ exists for p ∈ F (T ).

Observe that
‖Txn − p‖ ≤ ‖xn − p‖ for all n ∈ N

and
xn+1 − p = (1− αn)xn + αn(Txn − p) for all n ∈ N.

Applying Lemma 6.1.7, we obtain that lim inf
n→∞ ‖xn − Txn‖ = 0.

6.4 Nonexpansive and quasi-nonexpansive
mappings

We begin with a basic result on approximation of fixed points of nonexpansive
mappings in a uniformly convex Banach space with compact setting.

Theorem 6.4.1 (Krasnoselski) – Let C be a nonempty closed convex bounded
subset of a uniformly convex Banach space X and T a nonexpansive mapping of
C into a compact subset of C. Let x1 ∈ C be an arbitrary point in C. Then the
sequence {xn} defined by

(K) xn+1 =
1
2
(xn + Txn) = M(xn,

1
2
, T ), n ∈ N

converges strongly to a fixed point of T in C.

Proof. Note F (T ) �= ∅ by Schauder’s theorem. Let p ∈ F (T ). Then lim
n→∞

‖xn − p‖ exists by Proposition 6.3.7. Proposition 6.3.8 implies that

lim inf
n→∞ ‖xn − Txn‖ = 0. (6.17)

Note

‖xn+1 − Txn+1‖ ≤ 1
2
(‖xn − Txn+1‖+ ‖Txn − Txn+1‖)

≤ 1
2
(‖xn − xn+1‖+ ‖xn+1 − Txn+1‖+ ‖xn − xn+1‖),

which gives
‖xn+1 − Txn+1‖ ≤ ‖xn − Txn‖ for all n ∈ N.
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This means that lim
n→∞ ‖xn − Txn‖ exists. Using (6.17), we obtain

‖xn − Txn‖ → 0 as n→∞. (6.18)

Because {Txn} is in a compact set, there exists a subsequence {Txnk
} of

{Txn} such that Txnk
→ v ∈ C. Hence from (6.18), we have xnk

→ v. Because
T is continuous, v is a fixed point of T . Note lim

n→∞ ‖xn − v‖ = lim
k→∞

‖xnk
− v‖

exists. Therefore, {xn} converges strongly to a fixed point of T in C.

The following example shows that without the asymptotic regularity condi-
tion, the Picard iteration cannot be used to approximate fixed points of non-
expansive mapping, but the iteration procedure given by (K) can be used to
locate fixed point of the same mapping.

Example 6.4.2 Let X = C, which has the usual absolute value metric for
complex numbers, C = {z ∈ C : |z| ≤ 1}, and T : C → C a mapping defined by

Tz = iz, z ∈ C, where i =
√−1.

It is easy to see that T is nonexpansive mapping with a fixed point 0 ∈ C.
Now, let z0 �= 0 be an arbitrary point in C. Then the Picard iteration of T

is given by
zn+1 = Tzn = in+1z0, n = 0, 1, 2, · · · .

Hence

|Tnz0 − Tn+1z0| = |inz0 − in+1z0|
= |in| · |1− i| · |z0| =

√
2|z0|� 0 as n→∞.

Note T is not asymptotically regular at z0, and {Tnz0 = inz0} does not converge
to zero.

However, from (K) we have

zn+1 =
1
2
(zn + Tzn) =

1 + i

2
zn =
(

1 + i

2

)n+1

z0.

Because
∞∑

n=0

|zn − zn+1| =
∞∑

n=0

∣∣∣∣1 + i

2

∣∣∣∣
n ∣∣∣∣1− 1 + i

2

∣∣∣∣ |z0|

=
∞∑

n=0

(
1√
2

)n+1

|z0|

= (
√

2 + 1)|z0| <∞,

it follows that {zn} is Cauchy sequence. Let lim
n→∞ zn = p. Because zn − Tzn →

0 as n → ∞, it follows that p = 0. Therefore, {zn} converges to the fixed
point 0.
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The following result shows that the sequence {xn} defined by

xn+1 = M(xn, αn, T ), n ∈ N

converges strongly to a fixed point of nonexpansive mapping T without the
assumption of convexity of domain.

Theorem 6.4.3 (Ishikawa) – Let C be a nonempty closed subset of a Banach
space X and let T be a nonexpansive mapping from C into a compact subset of
X. Suppose there exist x1 ∈ C and a sequence {αn} of real numbers satisfying
the conditions:

(i) 0 ≤ αn ≤ α < 1 and
∑∞

n=1 αn =∞,

(ii) xn ∈ C for all n ∈ N, where xn+1 = M(xn, αn, T ).
Then {xn} converges strongly to an element of F (T ).

Proof. Let D denote co(T (C)∪{x1}). Then D is compact by Mazur’s theorem.
The sequence {xn} is clearly in D. It follows from assumptions (i) ∼ (ii) that
{xn} is a compact sequence in C. Hence there exists a subsequence {xnk

} of
{xn} such that xnk

→ v ∈ C, as C is closed. As in proof of Theorem 5.2.4, {xn}
is an AFPS for T , i.e., xn − Txn → 0. Thus, v ∈ F (T ). Note lim

n→∞ ‖xn − v‖
exists by Proposition 6.3.7. Therefore, lim

n→∞ ‖xn−v‖ = lim
k→∞

‖xnk
−v‖ = 0.

The next result is similar to Theorem 6.2.2 (Browder and Petryshyn’s
theorem), but the asymptotic regularity condition of T is not necessary.

Theorem 6.4.4 (Groetsch) – Let C be a nonempty closed convex subset of
a uniformly convex Banach space X, T : C → C a nonexpansive mapping that
has at least one fixed point, and {αn} a sequence of nonnegative numbers such
that 0 ≤ αn < 1 and

∑∞
n=1 αn(1 − αn) = ∞. Suppose that I − T maps closed

bounded subsets of C into closed subsets of C. Then the Mann iteration {xn}
defined by (6.16) converges strongly to a fixed point of T .

Proof. By Proposition 6.3.8, we have lim inf
n→∞ ‖xn−Txn‖ = 0. It is easy to show

that lim
n→∞ ‖xn − Txn‖ exists (see Theorem 5.2.4). It follows that

lim
n→∞ ‖xn − Txn‖ = 0. (6.19)

Let S be the strong closure of {xn}. By (6.19) and the fact that (I − T )(S) is
closed, 0 ∈ (I −T )(S). Hence there exists a subsequence {xni

} converging to v,
where (I − T )v = 0. Therefore, {xn} converges strongly to v, as lim

n→∞ ‖xn − v‖
exists.

We now consider a class of mappings that properly includes the class of
nonexpansive mappings with fixed points.
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Definition 6.4.5 Let C be a nonempty subset of a normed space X and T :
C → C a mapping that has at least one fixed point p in C. Then T is said to
be quasi-nonexpansive if

‖Tx− p‖ ≤ ‖x− p‖ for all x ∈ C.

Observation
• A nonexpansive mapping with at least one fixed point is quasi-nonexpansive.

• A linear quasi-nonexpansive is nonexpansive.

The following example shows that there exists a nonlinear continuous quasi-
nonexpansive mapping that is not nonexpansive.

Example 6.4.6 Let X = l∞, C = BX = {x ∈ l∞ : ‖x‖∞ ≤ 1} and T : C → C
a mapping defined by

Tx = (0, x2
1, x

2
2, x

2
3, · · · ) for x = (x1, x2, x3, · · · ) ∈ C.

It is clear that T is a nonlinear continuous self-mapping on C with unique fixed
point 0. Moreover,

‖Tx− 0‖∞ = ‖(0, x2
1, x

2
2, · · · )‖∞ ≤ ‖(0, x1, x2, · · · )‖∞ = ‖x− p‖ for all x ∈ C,

i.e., T is quasi-nonexpansive mapping. However, T is not nonexpansive. Indeed,
for x = (1/2, 1/2, · · · ) and y = (3/4, 3/4, · · · ), we have

‖Tx− Ty‖∞ =
∥∥∥∥
(

0,
5
16

,
5
16

, · · ·
)∥∥∥∥

∞
=

5
16

>
1
4

= ‖x− y‖∞.

We now show that Theorem 5.2.4 is also true for quasi-nonexpansive map-
pings in a uniformly convex Banach space.

Theorem 6.4.7 Let C be a nonempty closed convex subset of a uniformly con-
vex Banach space X and T : C → C a quasi-nonexpansive mapping that has at
least one fixed point p. Let {xn} be the Mann iteration defined by

xn+1 = Tαn
xn = M(xn, αn, T ), n ∈ N,

where {αn} is a sequence of nonnegative numbers that is bounded away from 0
and 1. Then {xn} has the following properties:

(D1) lim
n→∞ ‖xn − p‖ exists.

(D2) lim
n→∞ ‖xn − Txn‖ = 0.

Moreover, lim
n→∞ ‖Tαn

Tαn−1 · · ·Tα1x1 − Tαn−1Tαn−2 · · ·Tα1x1‖ = 0.

Proof. (a) It follows that from Proposition 6.3.7.
(b) Suppose lim

n→∞ ‖xn − p‖ = r. Because

xn+1 − p = (1− αn)(xn − p) + αn(Txn − p) and ‖Txn − p‖ ≤ ‖xn − p‖,

it follows from Theorem 2.3.13 that lim
n→∞ ‖xn − Txn‖ = 0.
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Corollary 6.4.8 Let C be a nonempty closed convex subset of a uniformly con-
vex Banach space X and T : C → C a quasi-nonexpansive mapping that has at
least one fixed point p. Let {xn} be the Mann iterative sequence defined by

xn+1 = Tαxn = M(xn, α, T ), n ∈ N.

Then Tα is asymptotically regular for each x1∈C, i.e., lim
n→∞‖T

n
α x1−Tn+1

α x1‖=0.

Recall that a self-mapping T on a nonempty subset C of a Banach space X
is demicompact if every bounded {xn} in C such that {xn − Txn} converges
strongly contains a convergent subsequence.

The following example demonstrates that there is no connection between
continuity and demicompactness of mappings.

Example 6.4.9 Let X = C = [0, 1] with the usual metric and T : C → C a
mapping defined by

Tx =
{

x/2, if x �= 0,
1, if x = 0.

Then T is not continuous. However, T is demicompact. In fact, if {xn} is a
bounded sequence in C such that xn−Txn → 0 as n→∞, then by the Bolzano-
Weierstrass theorem, it follows that {xn} has a convergent subsequence.

The following example shows that there is a demicompact mapping that is
not compact.

Example 6.4.10 Let X = 2 and C = {e1, e2, · · · , en, · · · } be the usual
orthonormal basis for 2. Define T : C → C by

T (ei) = ei+1, i ∈ N.

Then T is continuous (in fact, an isometry), but not compact. However, T is
demicompact. Indeed, if {ei}i∈N is a bounded sequence in C such that ei − Tei

converges, {ei}i∈N must be finite.

We now introduce a condition that ensures strong convergence of iterative
sequences to fixed points of nonexpansive type mappings.

Condition I. Let C be a nonempty subset of a Banach space X and T :
C → C a mapping with F (T ) �= ∅. Then T is said to satisfy Condition I if there
exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(t) > 0 for
t ∈ (0,∞) such that

‖x− Tx‖ ≥ f(d(x, F (T )) for all x ∈ C.

T is said to satisfy Condition II if there exists a constant c > 0 such that

‖x− Tx‖ ≥ c d(x, F (T )) for all x ∈ C.



6.4. Nonexpansive and quasi-nonexpansive mappings 297

It is easy to see that mappings that satisfy Condition II also satisfy
Condition I.

The following example shows that there exists a mapping that is quasi-
nonexpansive mapping and satisfies Condition II.

Example 6.4.11 Let C be a nonempty subset of a Banach space X and T :
C → C a mapping such that

‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Tx‖+ c‖y − Ty‖ for all x, y ∈ C,

where a, b, c ≥ 0 with a + b + c ≤ 1. If F (T ) �= ∅, then T satisfies condition II.
Indeed, if p ∈ F (T ), then for x ∈ C

‖Tx− p‖ ≤ a‖x− p‖+ b‖x− Tx‖ ≤ a‖x− p‖+ b(‖x− p‖+ ‖p− Tx‖),
which implies that

‖Tx− p‖ ≤ a + b

1− b
‖x− p‖.

Hence T is quasi-nonexpansive. Observe that

‖Tx− p‖ ≥ ∣∣‖Tx− x‖ − ‖x− p‖∣∣ ≥ ‖x− p‖ − ‖x− Tx‖
and

‖Tx− p‖ ≤ a‖x− p‖+ b‖x− Tx‖.
Hence

a‖x− p‖+ b‖x− Tx‖ ≥ ‖x− p‖ − ‖x− Tx‖,
which gives

‖x− Tx‖ ≥ 1− a

a + b
‖x− p‖.

The constant (1−a)/(1+ b) is positive because 0 < a, b < 1. Thus, Condition II
holds.

We now establish a relationship between mappings that satisfy Condition I
and those that are demicompact.

Proposition 6.4.12 Let C be a nonempty closed bounded subset of a Banach
space X and T : C → C a mapping with F (T ) �= ∅. If I − T maps closed
bounded subsets of C onto closed subsets of X, then T satisfies Condition I on
C.

Proof. Let M = sup{d(x, F (T )) : x ∈ C}. If M = 0, then F (T ) = C and
Condition I follows trivially. If M > 0, then for 0 < r < M , define

Cr = {x ∈ C : d(x, F (T )) ≥ r}
and

f(r) = inf{‖x− Tx‖ : x ∈ Cr}.
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Note that Cr is nonempty closed bounded. We show that f(r) > 0 for arbitrary
r, 0 < r < M .

By hypothesis, (I−T )(Cr) = {x−Tx : x ∈ Cr} is closed. If 0 ∈ (I−T )(Cr)
then 0 = z − Tz for some z ∈ Cr and hence z ∈ F (T ), but d(z, F (T )) ≥ r > 0
a contradiction. Therefore, 0 �= (I − T )(Cr).

Suppose now that f(r) = inf{‖x − Tx‖ : x ∈ Cr} = 0. Then there exists a
sequence {xn} in Cr such that ‖xn−Txn‖ → 0. Note {xn−Txn} ⊆ (I−T )(Cr)
is a closed set. Thus, we obtain 0 ∈ (I − T )(Cr), contradicting our statement
above that 0 /∈ (I − T )(Cr). Therefore, f(r) > 0 for r < M .

We extend the domain of f to R+ by defining f(0) = 0 and f(r) = sup{f(s) :
s < M} for r ≥M . It is easy to verify that f so defined fulfills the hypotheses of
Condition I; in particular, ‖x− Tx‖ ≥ f(d(x, F (T ))) for all x ∈ C.

We now give strong convergence of the Mann iteration for quasi-nonexpansive
mappings satisfying Condition I.

Theorem 6.4.13 Let C be a nonempty closed convex subset of a uniformly
convex Banach space X and T : C → C a continuous quasi-nonexpansive map-
ping. If T satisfies Condition I, then for arbitrary x1 ∈ C, the Mann iteration
{xn} defined by (6.16), where {αn} is a sequence of nonnegative numbers in
[0, 1] that is bounded away from 0 and 1, converges strongly to a fixed point
of T .

Proof. Because for p ∈ F (T ), ‖xn+1 − p‖ ≤ ‖xn − p‖, it follows that

d(xn+1, F (T )) ≤ d(xn, F (T )).

Thus, lim
n→∞ d(xn, F (T )) exists. By Theorem 6.4.7, lim

n→∞ ‖xn − Txn‖ = 0. Note

‖xn − Txn‖ ≥ f(d(xn, F (T ))), n ∈ N,

which gives that lim
n→∞ d(xn, F (T )) = 0. Then for given ε > 0, there exists n0 ∈ N

such that
d(xn, F (T )) <

ε

2
for all n ≥ n0.

Note for all n,m ≥ n0 and p ∈ F (T )

‖xn − xm‖ ≤ ‖xn − p‖+ ‖p− xm‖
≤ 2‖xn0 − p‖,

which implies that
‖xn − xm‖ ≤ ε.

Thus, {xn} is a Cauchy sequence and lim
n→∞xn = z ∈ C. Therefore, xn−Txn → 0

implies by the continuity of T that z ∈ F (T ).

A consequence of Proposition 6.4.12 and Theorem 6.4.13 is the following:



6.4. Nonexpansive and quasi-nonexpansive mappings 299

Corollary 6.4.14 (Browder and Petryshyn) – Let C be a nonempty closed
convex subset of a uniformly convex Banach space X and T : C → C a non-
expansive mapping. For t ∈ (0, 1), let Tt be given by Tt = tI +(1− t)T . If I−T
maps closed bounded sets of C onto closed subsets of X and F (T ) �= ∅, then for
each x ∈ C, {Tn

t x} converges strongly to a fixed point of T .

In many applications, compactness is a strong condition. We now study the
problem of approximation of fixed points of nonexpansive and quasi-nonexpansive
mappings in the noncompact setting.

Theorem 6.4.15 Let X be a Banach space satisfying the Opial condition, C a
weakly compact subset of X, and T : C → X a nonexpansive mapping. Given a
sequence {xn} in C defined by (6.16), where {αn} is a sequence of nonnegative
numbers such that 0 ≤ αn ≤ α < 1 and

∑∞
n=1 αn = ∞. Then {xn} converges

weakly to a fixed point of T .

Proof. Theorem 5.2.4 implies that lim
n→∞ ‖xn − Txn‖ = 0. Because C is weakly

compact, there exists a subsequence {xnk
} of {xn} that converges weakly to

p ∈ C. By Theorem 5.2.9, I − T is demiclosed at zero, p = Tp. Thus, all
the assumptions of Proposition 6.1.1 are satisfied. Therefore, {xn} converges
weakly to a fixed point of T by Proposition 6.1.1.

Theorem 6.4.16 Let X be a uniformly convex Banach space satisfying the
Opial condition, C a nonempty closed convex subset of X, and T : C → C
a quasi-nonexpansive mapping that has at least one fixed point. If I − T is
demiclosed at zero, then the Mann iteration {xn} defined in Theorem 6.4.7
converges weakly to a fixed point of T .

Proof. Theorem 6.4.7 implies that {xn} has properties (D1) ∼ (D2). Therefore,
the conclusion follows from Proposition 6.1.1.

We have seen in Section 3.2 that there exists a class of uniformly convex
Banach spaces without the Opial condition (e.g., Lp spaces, p �= 2). Therefore,
Theorem 6.4.15 is not true for such Banach spaces. The following theorem deals
with the problem of approximation of fixed points of nonexpansive mappings in
a uniformly convex Banach space without the Opial condition.

Theorem 6.4.17 Let X be a uniformly convex Banach space with a Fŕechet
differentiable norm, C a nonempty closed convex bounded subset of X, and
T : C → C a nonexpansive mapping. Then for each x1 ∈ C, the Mann iteration
{xn} defined by (6.16) with the restriction that

∑∞
n=1 min{αn, 1 − αn} = ∞

converges weakly to a fixed point of T .

Proof. Set
Tn := (1− αn)I + αnT, n ∈ N. (6.20)

It is easy to see that F (T ) ⊆ F (Tn) and Tn is nonexpansive. It follows from
Lemma 6.1.8 that lim

n→∞〈xn, J(p− q)〉 exists for all p, q ∈ F (T ).
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Observe that

(i) I − T is demiclosed at zero by Theorem 5.2.12;

(ii) lim
n→∞ ‖xn − p‖ exists for all p ∈ F (T ) by Proposition 6.3.7,

(iii) lim inf
n→∞ ‖xn − Txn‖ = 0 by Proposition 6.3.8 and lim

n→∞ ‖xn − Txn‖ exists

by (5.18) imply that ‖xn − Txn‖ → 0.

Thus, all the assumptions of Proposition 6.1.2 are satisfied. Therefore, {xn}
converges weakly to a fixed point of T .

The following example shows that there exists a Banach space that does not
satisfy the Opial condition and its norm is not Fŕechet differentiable. However,
its dual does have the Kadec-Klee property.

Example 6.4.18 Let X = R2 with the norm given by ‖x‖ =
√
‖x‖21 + ‖x‖22

and Y = Lp[0, 1] with 1 < p < ∞ and p �= 2. Then the Cartesian product
X × Y equipped with the 2-norm is uniformly convex, it does not satisfy the
Opial condition, and its norm is not Fŕechet differentiable. However, its dual
does have the Kadec-Klee property.

The following theorem is more general than Theorem 6.4.17.

Theorem 6.4.19 Let X be a uniformly convex Banach space such that its dual
has the Kadec-Klee property, C a nonempty closed convex bounded subset of X,
and T : C → C a nonexpansive mapping. Then the Mann iteration defined by
(6.16) with the restriction that

∑∞
n=1 min{αn, 1−αn} =∞ converges weakly to

a fixed point of T .

Proof. It follows from the proof of Theorem 6.4.17 that Tn defined by (6.20)
is a nonexpansive mapping. Observe that

(i) I − T is demiclosed at zero;

(ii) lim
n→∞ ‖txn + (1 − t)p − q‖ exists for all p, q ∈ F (T ) and t ∈ [0, 1] by

Lemma 6.1.8(b);

(iii) xn − Txn → 0.

Therefore, {xn} converges weakly to a fixed point of T by Proposi-
tion 6.1.2.

6.5 The modified Mann iteration process

In this section, we study weak convergence of the modified Mann iteration
process to fixed points of mappings that are more general than nonexpansive
mappings in Banach spaces.
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First, we modify the Mann iteration process and prove a useful lemma:

Let C be a nonempty convex subset of a linear space X, T : C → C a
mapping, and {αn} a real sequence such that 0 < a ≤ αn ≤ b < 1 for all n ∈ N.
Then the sequence {xn} in C defined by{

x1 ∈ C;
xn+1 = M(xn, αn, Tn), n ∈ N

(6.21)

is called the modified Mann iteration.

Lemma 6.5.1 Let C be a nonempty convex subset of a Banach space X and
T : C → C an asymptotically nonexpansive mapping with sequence {kn} such
that
∑∞

n=1(kn − 1) < ∞. Define the modified Mann iteration {xn} by (6.21).
Then we have the following:

(a) If p is a fixed point of T , it follows that lim
n→∞ ‖xn − p‖ exists.

(b) If lim
n→∞ ‖xn − Tnxn‖ = 0, then lim

n→∞ ‖xn − Txn‖ = 0.

Proof. (a) Let p be the fixed point of T . From (6.21), we have

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖Tnxn − p‖
≤ (1− αn)‖xn − p‖+ αnkn‖xn − p‖
≤ kn‖xn − p‖ for all n ∈ N.

Because
∑∞

n=1(kn − 1) is convergent, it follows from Lemma 6.1.5 that lim
n→∞

‖xn − p‖ exists.
(b) For each n ∈ N, set dn := ‖xn − Tnxn‖ and L = sup

n∈N

kn. Then we have

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − Tn+1xn+1‖+ ‖Tn+1xn+1 − Txn+1‖
≤ dn+1 + L‖xn+1 − Tnxn+1‖
≤ dn+1 + L(‖xn+1 − xn‖+ ‖xn − Tnxn‖

+‖Tnxn − Tnxn+1‖
≤ dn+1 + L(αndn + dn + L‖xn − xn+1‖)
≤ dn+1 + L(2 + L)dn → 0 as n→∞.

Using Lemma 6.5.1, we prove weak convergence of the modified Mann itera-
tion {xn} defined by (6.21) in uniformly convex Banach spaces.

Theorem 6.5.2 Let X be a uniformly convex Banach space satisfying the Opial
condition, C a nonempty closed convex bounded subset of X, and T : C → C
an asymptotically nonexpansive mapping with sequence {kn} such that

∑∞
n=1

(kn− 1) <∞. Let {αn} be a sequence of nonnegative numbers in (0, 1) bounded
away from 0 and 1. Then the modified Mann iteration {xn} defined by (6.21)
converges weakly to a fixed point of T .
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Proof. Let p be a fixed point of T . By Lemma 6.5.1(a), lim
n→∞ ‖xn − p‖ exists.

Because

lim sup
n→∞

‖Tnxn − p‖ ≤ lim sup
n→∞

(kn‖xn − p‖) ≤ lim
n→∞ ‖xn − p‖

and
lim

n→∞ ‖(1− αn)(xn − p) + αn(Tnxn − p)‖ = lim
n→∞ ‖xn+1 − p‖,

it follows from Theorem 2.3.13 that lim
n→∞ ‖xn − Tnxn‖ = 0, which in turn

implies by Lemma 6.5.1(b) that lim
n→∞ ‖xn−Txn‖ = 0. By Theorem 5.4.3, I−T

is demiclosed at zero. Therefore, {xn} converges weakly to a fixed point of T

by Proposition 6.1.1.

The following convergence theorems extend Theorems 6.4.17 and 6.4.19 for
asymptotically nonexpansive mappings, respectively.

Theorem 6.5.3 Let X be a uniformly convex Banach space with Fréchet differ-
entiable norm, C a nonempty closed convex bounded subset of X, and T : C → C
an asymptotically nonexpansive mapping such that

∑∞
n=1(kn − 1) < ∞. Then

for each x1 ∈ C, the Mann iteration {xn} defined by (6.21), where {αn} is a
sequence of nonnegative numbers bounded away from 0 and 1, converges weakly
to a fixed point of T .

Proof. Set Tn := (1−αn)I +αnTn, n ∈ N. It is easily seen that F (T ) ⊆ F (Tn)
and Tn is Lipschitzian with Lipschitz constant Ln = (1 − αn) + αnkn ≥ 1.
Because ∞∑

n=1

(Ln − 1) =
∞∑

n=1

αn(kn − 1) ≤
∞∑

n=1

(kn − 1) <∞,

it follows from Lemma 6.1.8 that lim
n→∞〈xn, J(p − q)〉 exists for all p, q ∈ F (T ).

Observe that

(i) lim
n→∞ ‖xn − p‖ exists for all p ∈ F (T ),

(ii) xn − Txn → 0,

(iii) I − T is demiclosed at zero,

(iv) lim
n→∞〈xn, J(p− q)〉 exists for all p, q ∈ F (T ).

Hence result follows from Proposition 6.1.2.

Theorem 6.5.4 Let X be a uniformly convex Banach space such that X∗ has
the Kadec-Klee property, C a nonempty closed convex bounded subset of X, and
T : C → C an asymptotically nonexpansive mapping with sequence {kn} such
that
∑∞

n=1(kn−1) <∞. Then for each x1 ∈ C, the Mann iteration {xn} defined
by (6.21), where {αn} is a sequence of nonnegative numbers bounded away from
0 and 1, converges weakly to a fixed point of T .
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Proof. As in proof of Theorem 6.5.3, we have the following:

(i) lim
n→∞ ‖xn − p‖ exists for all p ∈ F (T ),

(ii) xn − Txn → 0,

(iii) I − T is demiclosed at zero,

(iv) lim
n→∞ ‖txn + (1 − t)p − q‖ exists for all p, q ∈ F (T ) and t ∈ [0, 1] by
Lemma 6.1.8.

Hence Theorem 6.5.4 follows from Proposition 6.1.2.

6.6 The Ishikawa iteration process

In this section, we discuss the problem of approximation of fixed points of
pseudocontractive mappings and develop iterative methods to deal with such
problems in Hilbert spaces. We have seen in Section 6.4 that the Mann itera-
tion converges (strongly) to fixed points of nonexpansive mapping in finite-
dimensional Banach spaces. The following example shows that there exists a
Lipschitz pseudocontractive mapping with a unique fixed point for which the
Mann iteration fails to converge.

Example 6.6.1 Let H,C1, C2, C, and T be as in Example 5.7.1. Observe that

‖Tx‖2 = 2‖x‖2 for all x ∈ C1

and
‖Tx‖2 = 1 + 2‖x‖2 − 2‖x‖ for all x ∈ C2.

It is clear that the origin is the only fixed point of T .
We now show that no Mann iteration for T is convergent to the origin for

any nonzero starting point. Let x ∈ C be such that x �= 0. If x ∈ C1, then

‖(1− λ)x + λTx‖2 = (1 + λ2)‖x‖2 > ‖x‖2 for λ ∈ (0, 1),

i.e., the Mann iterate of x is actually further away form zero than x is.
If x ∈ C2, then

‖(1− λ)x + λTx‖2 =
∥∥∥∥
(

λ

‖x‖ + 1− 2λ

)
x + λx⊥

∥∥∥∥
2

=
[(

1 +
λ

‖x‖ − 2λ

)2

+ λ2

]
‖x‖2

> 0 for λ ∈ (0, 1).

Thus, the Mann iteration {xn} defined by (6.16) has the following properties:
(i) if x1 ∈ C1, then ‖xn+1‖ > ‖xn‖ for all n ∈ N,

(ii) if x1 ∈ C2, then ‖xn+1‖ ≥ ‖xn‖/
√

2 for all n ∈ N.



304 6. Approximation of Fixed Points

For convergence of such a sequence to origin, xn would have to lie in neigh-
borhood C1 of the origin for all n > n0 for some n0 ∈ N. But this is not possible
because we already established for C1 that ‖xn+1‖ > ‖xn‖ for all n > n0.

We now introduce an iteration process for approximation of fixed points of
pseudocontractive mappings:

Definition 6.6.2 Let C be a nonempty convex subset of a linear space X and
T : C → C a mapping. Let {αn} and {βn} be two sequences of real numbers in
[0,1] satisfying the following conditions:

(i) 0 ≤ αn ≤ βn ≤ 1 and lim
n→∞βn = 0,

(ii)
∑∞

n=1 αnβn =∞.

For arbitrary x1 ∈ C, define a sequence {xn} in C by

{
xn+1 = (1− αn)xn + αnTyn,
yn = (1− βn)xn + βnTxn, n ∈ N.

(6.22)

Then {xn} is called the Ishikawa iteration.2

Before proving a theorem, we first establish two preliminary results:

Proposition 6.6.3 Let C be a nonempty convex subset of a Hilbert space
H and T : C → C a pseudocontractive mapping. Then

‖(1− α)(x− y) + α(Tx− Ty)‖2 ≤ ‖x− y‖2 + α2‖x− y − (Tx− Ty)‖2

for all x, y ∈ C and α ∈ [0, 1].

Proof. Let x, y ∈ C. Then from the identity

‖(1− λ)x + λy‖2 = (1− λ)‖x‖2 + λ‖y‖2 − λ(1− λ)‖x− y‖2, λ ∈ [0, 1];

we have

‖(1 − α)(x− y) + α(Tx− Ty)‖2
= (1− α)‖x− y‖2 + α‖Tx− Ty‖2 − α(1− α)‖x− y − (Tx− Ty)‖2
≤ (1− α)‖x− y‖2 + α(‖x− y‖2 + ‖x− y − (Tx− Ty)‖2)

−α(1− α)‖x− y − (Tx− Ty)‖2

≤ ‖x− y‖+ α2‖x− y − (Tx− Ty)‖2.

2This iteration process was introduced by Ishikawa in 1974.
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Proposition 6.6.4 Let C be a nonempty convex subset of a Hilbert space H
and T : C → C a pseudocontractive mapping. For 0 ≤ α ≤ β ≤ 1, define a
mapping Tα,β : C → C by Tα,βx = (1−α)x + αT [(1−β)x + βTx], x ∈ C. Then

‖Tα,βx− Tα,βy‖ ≤ ‖x− y‖2 − αβ(1− 2β)‖x− y − (Tx− Ty)‖2
−α(β − α)‖x− y − (Tux − Tuy)‖2
+αβ‖Tx− Ty − (Tux − Tuy)‖2.

for all x, y ∈ C, where ux = (1− β)x + βTx and uy = (1− β)y + βTy.

Proof. Let x, y ∈ C. By Proposition 6.6.3, we have

‖ux − uy‖2 = ‖(1− β)(x− y) + β(Tx− Ty)‖2
≤ ‖x− y‖2 + β2‖x− y − (Tx− Ty)‖2,

‖ux − Tux‖2 = ‖(1− β)(x− Tux) + β(Tx− Tux)‖2
= (1− β)‖x− Tux‖2 + β‖Tx− Tux‖2 − β(1− β)‖x− Tx‖2.

Because T is pseudocontractive,

‖Tux − Tuy‖2 ≤ ‖ux − uy‖2 + ‖ux − uy − (Tux − Tuy)‖2
≤ ‖ux − uy‖2

+‖(1− β)(x− y) + β(Tx− Ty)− (Tux − Tuy)‖2
≤ ‖x− y‖2 + β2‖x− y − (Tx− Ty)‖2

+(1− β)‖x− y − (Tux − Tuy)‖2
+β‖Tx− Ty − (Tux − Tuy)‖2
−β(1− β)‖x− y − (Tx− Ty)‖2

≤ ‖x− y‖2 − β(1− 2β)‖x− y − (Tx− Ty)‖2
+(1− β)‖x− y − (Tux − Tuy)‖2
+β‖Tx− Ty − (Tux − Tuy)‖2.

Hence

‖Tα,βx − Tα,βy‖2
= ‖(1− α)(x− y) + α(Tux − Tuy)‖2
= (1− α)‖x− y‖2 + α‖Tux − Tuy‖2
−α(1− α)‖x− y − (Tux − Tuy)‖2

≤ (1− α)‖x− y‖2 + α{‖x− y‖2 − β(1− 2β)‖x− y − (Tx− Ty)‖2
+(1− β)‖x− y − (Tux − Tuy)‖2 + β‖Tx− Ty − (Tux − Tuy)‖2}
−α(1− α)‖x− y − (Tux − Tuy)‖2

≤ ‖x− y‖2 − αβ(1− 2β)‖x− y − (Tx− Ty)‖2
−α(β − α)‖x− y − (Tux − Tuy)‖2

+αβ‖Tx− Ty − (Tux − Tuy)‖2.
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Theorem 6.6.5 Let C be a nonempty compact convex subset of a Hilbert space
H and T : C → C a Lipschitzian pseudocontractive mapping with F (T ) �= ∅. Let
{xn} be the Ishikawa iteration defined by (6.22). Then {xn} converges strongly
to a fixed point of T .

Proof. (a) Let p ∈ F (T ). Set Tnxn := Tαn,βn
xn. Then xn+1 = Tnxn, n ∈ N.

From Proposition 6.6.4, we have

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − αnβn(1− 2βn)‖xn − Txn‖2
−αn(βn − αn)‖xn − Tyn‖2 + αnβn‖Txn − Tyn‖2.

Because αn ≤ βn, it follows that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − αnβn(1− 2βn)‖xn − Txn‖2
+ αnβn‖Txn − Tyn‖2. (6.23)

Suppose T is L-Lipschitzian mapping. Then

‖Txn − Tyn‖ ≤ L‖xn − yn‖ ≤ Lβn‖xn − Txn‖
Hence from (6.23)

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − αnβn(1− 2βn − L2β2
n)‖xn − Txn‖2.

Because lim
n→∞βn = 0, there exists a number n0 ∈ N such that 2βn +L2β2

n ≤ 1/2
for all n ≥ n0. Hence

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − 1
2
αnβn‖xn − Txn‖2 for all n ≥ n0, (6.24)

which gives that

1
2

n∑
i=n0

αiβi‖xi − Txi‖2 ≤ ‖xn0 − p‖2 − ‖xn+1 − p‖2.

Because C is bounded, {‖xn+1 − p‖} is bounded. Therefore, the series on the
left-hand side is bounded. From condition (ii), this implies that

lim inf
n→∞ ‖xn − Txn‖ = 0,

which in turn implies from the compactness of C that there exists subsequence
{xnj

} such that lim
j→∞

xnj
= v, where v ∈ F (T ).

Because v ∈ F (T ), it follows from (6.24) that

‖xn+1 − v‖ ≤ ‖xn − v‖ for all n ≥ n0. (6.25)

Let ε > 0. Then there exists an Ni,0 such that

‖xNi,0 − v‖ ≤ ε for all Ni,0 ≥ n0.

Hence from (6.25), we get

‖xn − v‖ ≤ ε for all n ≥ Ni,0.

This completes the proof of Theorem 6.6.5.
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6.7 The S-iteration process

For C a convex subset of a linear space X and T a mapping of C into itself, the
iterative sequence {xn} of the S-iteration process is generated from x1 ∈ C and
is defined by {

xn+1 = (1− αn)Txn + αnTyn,
yn = (1− βn)xn + βnTxn, n ∈ N,

(6.26)

where {αn} and {βn} are real sequences in (0,1) satisfying the condition:
∞∑

n=1

αnβn(1− βn) =∞. (6.27)

Let us compare the rate of convergence of the Picard, Mann, and S-iteration
processes for contraction mappings.

Proposition 6.7.1 Let C be a nonempty closed convex subset of a Banach
space X and T : C → C a contraction mapping with Lipschitz constant k and
a unique fixed point p. For u1 = v1 = w1 ∈ C, define sequences {un}, {vn} and
{wn} in C as follows:

Picard iteration: un+1 = Tun, n ∈ N

Mann iteration: vn+1 = (1− αn)vn + αnTvn, n ∈ N

S-iteration: wn+1 = (1− αn)Twn + αnTyn,
yn = (1− βn)wn + βnTwn, n ∈ N,

where {αn} and {βn} are real sequences in (0, 1). Then we have the following:
(a) ‖un+1 − p‖ ≤ k‖un − p‖ for all n ∈ N.
(b) ‖vn+1 − p‖ ≤ ‖vn − p‖ for all n ∈ N.
(c) ‖wn+1 − p‖ ≤ k[1− (1− k)αnβn]‖wn − p‖ for all n ∈ N.

Proof. Part (a) is obvious.
(b) Now part (b) follows from

‖vn+1 − p‖ = ‖(1− αn)(vn − p) + αn(Tvn − p)‖
≤ (1− αn)‖vn − p‖+ kαn‖vn − p‖
≤ [1− (1− k)αn]‖vn − p‖ for all n ∈ N.

(c) For all n ∈ N, we have

‖wn+1 − p‖ ≤ (1− αn)k‖wn − p‖+ αnk‖yn − p‖
≤ k[(1− αn)‖wn − p‖+ αn((1− βn)‖wn − p‖+ kβn‖wn − p‖)]
= k[1− (1− k)αnβn]‖wn − p‖.

It is obvious that the rate convergence of the S-iteration process is faster
than the Picard iteration process and the Picard iteration process is faster than
the Mann iteration process for contraction mappings.

We now discuss the S-iteration process for nonexpansive mappings.



308 6. Approximation of Fixed Points

Lemma 6.7.2 Let X be a normed space, C a nonempty convex subset of X,
and T : C → C a nonexpansive mapping. If {xn} is the iterative process defined
by (6.26), then lim

n→∞ ‖xn − Txn‖ exists.

Proof. Set an := xn − Txn for all n ∈ N. Then, we have

‖an+1‖ ≤ (1− αn)‖Txn − Txn+1‖+ αn‖Tyn − Txn+1‖
≤ (1− αn)‖xn − xn+1‖+ αn‖yn − xn+1‖. (6.28)

Because

‖yn − Tyn‖ ≤ (1− βn)‖xn − Tyn‖+ βn‖Txn − Tyn‖
≤ (1− βn)‖xn − Tyn‖+ β2

n‖an‖,
‖xn+1 − yn‖ ≤ (1− αn)‖yn − Txn‖+ αn‖yn − Tyn‖

= (1− αn)(1− βn)‖an‖+ αn((1− βn)‖xn − Tyn‖+ β2
n‖an‖)

≤ (1− αn)(1− βn)‖an‖+ αn((1− βn)(‖xn − Txn‖ (6.29)
+‖Txn − Tyn‖) + β2

n‖an‖)
≤ [(1− αn)(1− βn) + αn(1− βn)(1 + βn) + αnβ2

n]‖an‖
= (1− βn + αnβn)‖an‖,

‖xn+1 − xn‖ ≤ (1− αn)‖an‖+ αn‖xn − Tyn‖
≤ (1− αn)‖an‖+ αn(‖xn − Txn‖+ ‖Txn − Tyn‖) (6.30)
≤ (1 + αnβn)‖an‖.

From (6.28), (6.29), and (6.30), we have

‖an+1‖ ≤ [(1− αn)(1 + αnβn) + αn(1− βn + αnβn)]‖an‖
= ‖an‖,

so that {‖an‖} is nonincreasing and hence lim
n→∞ ‖an‖ exists.

Theorem 6.7.3 Let C be a nonempty closed convex (not necessary bounded)
subset of a uniformly convex Banach space X and T : C → C a nonexpansive
mapping. Let {xn} be the sequence defined by (6.26) with the restriction:

lim
n→∞αnβn(1− αn) exists and lim

n→∞αnβn(1− βn) �= 0. (6.31)

Then, for arbitrary initial value x1 ∈ C, {‖xn − Txn‖} converges to some
constant rC(T ), which is independent of the choice of the initial value x1 ∈ C.

Proof. Lemma 6.7.2 implies that lim
n→∞ ‖xn − Txn‖ exists. We denote this

limit by r(x1). Let {x∗
n} be another iterative sequence generated by (6.26) with

the same restriction on iteration parameters {αn} and {βn} as the sequence
{xn}, but with the initial value x∗

1 ∈ C. It follows from Lemma 6.7.2 that
lim

n→∞ ‖x
∗
n − Tx∗

n‖ = r(x∗
1).
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Observe that

‖Tyn − Ty∗
n‖ ≤ ‖yn − y∗

n‖
≤ (1− βn)‖xn − x∗

n‖+ βn‖Txn − Tx∗
n‖

≤ ‖xn − x∗
n‖

and

‖xn+1 − x∗
n+1‖ = ‖(1− αn)(Txn − Tx∗

n) + αn(Tyn − Ty∗
n)‖

≤ (1− αn)‖xn − x∗
n‖+ αn‖Tyn − Ty∗

n‖
≤ (1− αn)‖xn − x∗

n‖+ αn‖yn − y∗
n‖ (6.32)

≤ ‖xn − x∗
n‖.

This shows that lim
n→∞ ‖xn− x∗

n‖ exists. Let lim
n→∞ ‖xn− x∗

n‖ = d for some d > 0.

By using Corollary 2.3.10, we obtain that

‖yn − y∗
n‖ = ‖(1− βn)(xn − x∗

n) + βn(Txn − Tx∗
n)‖

≤ [1− 2βn(1− βn)δX

(‖xn − x∗
n − (Txn − Tx∗

n)‖
‖xn − x∗

n‖
)
‖xn − x∗

n‖,

it follows from (6.32) that

‖xn+1 − x∗
n+1‖ ≤ ‖xn − x∗

n‖

−2αnβn(1− βn)‖xn − x∗
n‖δX

(‖xn − x∗
n − (Txn − Tx∗

n)‖
‖xn − x∗

n‖
)

.

This gives us

∞∑
n=1

αnβn(1− βn)‖xn − x∗
n‖δX

(‖xn − x∗
n − (Txn − Tx∗

n)‖
‖xn − x∗

n‖
)
≤ ‖x1 − x∗

1‖ <∞.

Because lim
n→∞αnβn(1− βn) �= 0 and lim

n→∞ ‖xn − x∗
n‖ = d, we

lim
n→∞ δX

(‖xn − x∗
n − (Txn − Tx∗

n)‖
‖xn − x∗

n‖
)

= 0.

Because δX is strictly increasing and continuous and lim
n→∞ ‖xn − x∗

n‖ = d > 0,
we have

lim
n→∞ ‖xn − x∗

n − (Txn − Tx∗
n)‖ = 0.

Observe that∣∣‖xn − Txn‖ − ‖x∗
n − Tx∗

n‖
∣∣ ≤ ‖xn − Txn − (x∗

n − Tx∗
n)‖,

which implies that

lim
n→∞
∣∣‖xn − Txn‖ − ‖x∗

n − Tx∗
n‖
∣∣ = 0.



310 6. Approximation of Fixed Points

Thus, r(x1) = r(x∗
1). Because

‖xn+1 − Txn+1‖ ≤ ‖xn − Txn‖ ≤ ‖x1 − Tx1‖ for all n ∈ N, and x1 ∈ C,

it follows that

rC(T ) = inf{‖x− Tx‖ : x ∈ C}.

Theorem 6.7.4 Let X be a real uniformly convex Banach space with a Fréchet
differentiable norm or that satisfies Opials condition. Let C be a nonempty
closed convex (not necessary bounded) subset of and T : C → C a nonexpansive
mapping with F (T ) �= ∅. Let {xn} be the sequence defined by (6.26) with the
restriction (6.31). Then {xn} converges weakly to a fixed point of T .

Proof. Set Tnx := (1 − αn)Tx + αnT ((1 − βn)x + βnTx) for all x ∈ C and
n ∈ N. Then for each n ∈ N, the mapping Tn : C → C is also nonexpansive and
the S-iterative sequence {xn} defined by (6.26) can be written as

xn+1 = Tnxn for all n ∈ N.

Furthermore, we have F (T ) ⊆ F (Tn) for all n ∈ N. Because F (T ) �= ∅, by
Theorem 6.7.3, we see that lim

n→∞ ‖xn − Txn‖ = 0. The remainder of the proof

is followed by Theorems 6.4.16 and 6.4.17.
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6.7. The S-iteration process 311

Exercises

6.1 Let C be a compact convex subset of a Hilbert space H and let P(C) denote
family of all bounded proximinal subsets of C. Let T : C → P(C) be a
nonexpansive mapping with fixed point p. Define the sequence {xn} of
Mann iterates by x1 ∈ C,

xn+1 = αnxn + (1− αn)yn, n ∈ N,

where yn ∈ Txn is such that ‖yn − p‖ = d(p, Txn) and {αn} is a real
sequence such that 0 ≤ αn < 1 and

∑∞
n=1 αn = ∞. Show that there

exists a subsequence {xnk
} of {xn} that converges to a fixed point of T.

6.2 Let X be a uniformly convex Banach space that satisfies the Opial con-
dition or has a Fréchet differentiable norm, C a closed convex bounded
subset of X, and T : C → C an asymptotically nonexpansive mapping
with sequence {kn} such that

∑∞
n=1(kn − 1) < ∞. Suppose that x1 is a

given point in C and {αn} and {βn} are real sequences such that {αn} is
bounded away from 0 and 1 and {βn} is bounded away from 1. Show that
the sequence {xn} defined by the modified Ishikawa iteration process:

(I) xn+1 = (1− αn)xn + αnTn((1− βn)xn + βnTnx), n ∈ N

converges weakly to a fixed point of T .

6.3 Let C be a nonempty subset of a Banach space X and T : C → C a
mapping. T is said to be asymptotically quasi-nonexpansive if F (T ) �= ∅
and there exists a sequence {kn} ⊂ [1,∞) with lim

n→∞ kn = 1 such that

‖Tnx− p‖ ≤ kn‖x− p‖ for all x ∈ C, p ∈ F (T ) and n ∈ N.

If C is a nonempty compact convex subset of a uniformly convex Banach
space X and T : C → C is a uniformly continuous asymptotically quasi-
nonexpansive mapping with sequence {kn} such that

∑∞
n=1(kn− 1) <∞,

show that sequence {xn} defined by (I) converges strongly to a fixed point
of T .

6.4 Let C be a nonempty subset of a Banach space X and T : C → C a
mapping. T is said to be asymptotically nonexpansive in the intermediate
sense provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0.

If C is a nonempty closed convex subset of a uniformly convex Banach
space X and T : C → C is completely continuous and asymptotically
nonexpansive in the intermediate sense with

cn = sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ∨ 0 such that
∞∑

n=1

cn <∞,
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show that sequence {xn} defined by (I) converges strongly to a fixed point
of T .

6.5 Let C be a nonempty closed convex subset of a Banach space X and T :
C → C a contraction mapping with Lipschitz constant k and a unique
fixed point p. For u1 = v1 = w1 ∈ C, define sequences {un}, {vn} and
{wn} in C as follows:

Picard iteration: un+1 = Tun, n ∈ N;

Mann iteration: vn+1 = (1− αn)vn + αnTvn, n ∈ N;

S-iteration: wn+1 = (1− αn)Twn + αnTyn,

yn = (1− βn)wn + βnTwn, n ∈ N;

where {αn} and {βn} are real sequences in (0, 1). Show that

(a) ‖un+1 − p‖ ≤ k‖un − p‖ for all n ∈ N.

(b) ‖vn+1 − p‖ ≤ ‖vn − p‖ for all n ∈ N.

(c) ‖wn+1 − p‖ ≤ k‖wn − p‖ for all n ∈ N.

6.6 Let C be a nonempty closed convex subset of a Hilbert space H and T :
C → C a nonexpansive mapping. Show that the following are equivalent:

(a) F (T ) �= ∅.
(b) For any x ∈ C, { 1

n

∑n−1
i=0 T ix} converges weakly to a fixed point of

T .

6.7 Let C be a nonempty subset of a Hilbert space and T : C → C a mapping.
The mapping T is said to satisfy condition (A) if F (T ) �= ∅ and there
exists a real positive number λ such that

〈x− Tx, x− p〉 ≥ λ‖x− Tx‖2 for all x ∈ C and p ∈ F (T ).

If C is a nonempty closed convex subset of a Hilbert space H, T : C → C
is a mapping that satisfies condition (A), I −T is demiclosed at zero, and
{xn} is a sequence in C generated by xn+1 = (1− αn)xn + αnTxn, n ∈ N

with 0 < a < αn ≤ b < 1, show that {xn} converges weakly to an element
of F (T ).

6.8 Let C be a nonempty convex subset of a Banach space X and Ti : C →
C (i = 1, 2, · · · , k) nonexpansive mappings. Let

S = α0 + α1T1 + α2T2 + · · ·+ αkTk,

where αi ≥ 0, α0 > 0 and
∑k

i=1 αi = 1. If {xn} is a bounded sequence in
C defined by

xn+1 = Sxn, n ∈ N,

show that xn − Sxn → 0 as n→∞.
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6.9 Let X be a Banach space that satisfies the Opial condition and C a weakly
compact convex subset of X. Let Ti (i = 1, 2, · · · , k) and {xn} be as in
Exercise 6.8. Show that {xn} converges weakly to a fixed point of S.

6.10 Let C be a nonempty closed convex subset of a Banach space. Let {Ti : i =
1, 2, · · · , k} be k asymptotically quasi-nonexpansive self-mappings of C,
i.e., ‖Tn

i x− qi‖ ≤ kin‖x− qi‖ for all x ∈ C, qi ∈ F (Ti), i ∈ {1, 2, 3, · · · , k}.
Suppose that F =

⋂k
i=1 F (Ti) �= ∅, x0 ∈ C, {αn} ⊂ (s, 1 − s) for some

s ∈ (0, 1), and
∑∞

n=1(kin − 1) < ∞ for all i ∈ {1, 2, 3, · · · , k}. Show that
the implicity iterative sequence {xn} generated by

xn = αnxn−1 + (1− αn)Tm
i xn, n ∈ N,

where n = (m−1)k+i, i ∈ {1, 2, 3, · · · , k} converges strongly to a common
fixed point if and only if lim inf

n→∞ d(xn, F ) = 0.



Chapter 7

Strong Convergence
Theorems

In this chapter, we prove convergence theorems for approximants of self-
mappings and non-self mappings in Banach spaces. We also study a Halpern’s
type iteration process for approximation of fixed points of nonexpansive
mappings in a Banach space with a uniformly Gâteaux differentiable norm.

7.1 Convergence of approximants of
self-mappings

In this section, we study strong convergence of approximants of nonexpansive
and asymptotically nonexpansive type self-mappings in Banach spaces.

First, we establish a fundamental strong convergence theorem for nonexpan-
sive mappings in a Hilbert space.

Theorem 7.1.1 (Browder’s convergence theorem) – Let C be a nonempty
closed convex bounded subset of a Hilbert space H. Let u be an element in C
and Gt : C → C, t ∈ (0, 1) the family of mappings defined by

Gtx = (1− t)u + tTx, x ∈ C.

Then the following hold:

(a) There is exactly one fixed point xt of Gt, i.e.,

xt = (1− t)u + tTxt. (7.1)

(b) The path {xt} converges strongly to Pu as t → 1, where P is the metric
projection mapping from C onto F (T ).

R.P. Agarwal et al., Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3 7,
c© Springer Science+Business Media, LLC, 2009
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Proof. (a) Note for each t ∈ (0, 1), Gt is a contraction mapping of C into itself.
Hence Gt has a unique fixed point xt in C.

(b) Because F (T ) is a nonempty closed convex subset of C, there exists an
element u0 ∈ F (T ) that is the nearest point of u. By boundedness of {xt}, there
exists a subsequence {xtn

} of {xt} such that xtn
⇀ z ∈ C. Write xtn

= xn.
Because xn − Txn → 0, it follows that z = Tz. Indeed, for z �= Tz

lim sup
n→∞

‖xn − z‖ < lim sup
n→∞

‖xn − Tz‖
≤ lim sup

n→∞
(‖xn − Txn‖+ ‖Txn − Tz‖)

≤ lim sup
n→∞

‖xn − z‖,

a contradiction, because H has the Opial condition. Observe that

(1− tn)xn + tn(xn − Txn) = (1− tn)u

and
(1− tn)u0 + tn(u0 − Tu0) = (1− tn)u0.

Subtracting and taking the inner product of the difference with xn−u0, we get

(1− tn)〈xn − u0, xn − u0〉 + tn〈Uxn − Uu0, xn − u0〉
= (1− tn)〈u− u0, xn − u0〉,

where U = I − T . Because U = I − T is monotone, 〈Uxn − Uu0, xn − u0〉 ≥ 0,
it follows that

‖xn − u0‖2 ≤ 〈u− u0, xn − u0〉 for all n ∈ N.

Because u0 ∈ F (T ) is the nearest point to u,

〈u− u0, z − u0〉 ≤ 0,

which gives

‖xn − u0‖2 ≤ 〈u− u0, xn − u0〉
= 〈u− u0, xn − z〉+ 〈u− u0, z − u0〉
≤ 〈u− u0, xn − z〉.

Thus, from xn ⇀ z, we obtain xn → u0 as n→∞. We show that xt → u0 as
t→ 1, i.e., u0 is the only strong cluster point of {xt}. Suppose, for contradiction,
that {xtn′ } is another subsequence of {xt} such that xtn′ → v �= u0 as n′ →∞.
Set xn′ := xtn′ . Because xn′ − Txn′ → 0, it follows that v ∈ F (T ). From (7.1),
we have

xt − Txt = (1− t)(u− Txt). (7.2)
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Because for y ∈ F (T )

〈xt − Txt, xt − y〉 = 〈xt − Ty + Ty − Txt, xt − y〉
= ‖xt − y‖2 − 〈Txt − Ty, xt − y〉
≥ 0,

this gives from (7.2) that 〈u − Txt, xt − y〉 ≥ 0. Thus, 〈xt − u, xt − y〉 ≤ 0 for
all t ∈ (0, 1) and y ∈ F (T ). It follows that

〈u0 − u, u0 − v〉 ≤ 0 and 〈v − u, v − u0〉 ≤ 0,

which imply that u0 = v, a contradiction. Therefore, {xt} converges strongly
to Pu, where P is metric projection mapping from C onto F (T ).

We now prove strong convergence of path {xt} in a more general situation.

Proposition 7.1.2 Let C be a nonempty subset of a Banach space X and T :
C → X a pseudocontractive mapping such that for some u ∈ C, the equation

x = (1− t)u + tTx (7.3)

has a unique solution xt in C for each t ∈ (0, 1). If F (T ) �= ∅, there exists
j(xt − v) ∈ J(xt − v) such that

〈xt − u, j(xt − v)〉 ≤ 0 for all v ∈ F (T ) and t ∈ (0, 1).

Proof. From (7.3) we have

xt − Txt = (1− t)(u− Txt) for all t ∈ (0, 1).

For y ∈ F (T ), there exists j(xt − y) ∈ J(xt − y) such that

〈xt − Txt, j(xt − y)〉 = 〈xt − Ty + Ty − Txt, j(xt − y)〉
= ‖xt − y‖2 − 〈Txt − Ty, j(xt − y)〉
≥ 0,

which implies that
〈u− Txt, j(xt − y)〉 ≥ 0.

It follows from (7.3) that

〈xt − u, j(xt − y)〉 ≤ 0 for all y ∈ F (T ) and t ∈ (0, 1).

Theorem 7.1.3 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X → X∗. Let C be a nonempty closed subset of X and
T : C → X a demicontinuous pseudocontractive mapping such that for some
u ∈ C, the equation defined by (7.3) has a unique solution xt in C for each
t ∈ (0, 1). If the path {xt} is bounded, then it converges strongly to a fixed point
of T as t→ 1.
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Proof. Because {xt} is bounded, {Txt} is bounded by (7.3) and

‖xt − Txt‖ = (1− t)‖u− Txt‖ ≤ (1− t)diam({u− Txt})→ 0.

Because X is reflexive and {xt} is bounded, there exists a subsequence {xtn
}

of {xt} such that xtn
⇀ v as tn → 1. Write xtn

:= xn. Because (t−1 − 1)xt =
(t−1 − 1)u + Txt − xt, it follows that

〈(t−1
n − 1)xn − (t−1

m − 1)xm, J(xn − xm)〉
= (t−1

n − t−1
m )〈u, J(xn − xm)〉

+〈Txn − Txm − (xn − xm), J(xn − xm)〉
≤ (t−1

n − t−1
m )〈u, J(xn − xm)〉 for all n,m ∈ N.

Taking the limit as m→∞, we obtain

〈(t−1
n − 1)xn, J(xn − v)〉 ≤ (t−1

n − 1)〈u, J(xn − v)〉,
and thus,

〈xn − u, J(xn − v)〉 ≤ 0.

Hence

‖xn − v‖2 = 〈xn − v, J(xn − v)〉 = 〈xn − u, J(xn − v)〉+ 〈u− v, J(xn − v)〉.
Therefore, xn → v as n → ∞. Because Txn → v by xn − Txn → 0, it follows
from the demicontinuity of T that v ∈ F (T ).

We show that v is the only strong cluster point of {xt}. Suppose, for con-
tradiction, that {xtn′ } is another subsequence of {xt} such that xtn′ → w (�= v)
as tn′ → 1. It can be easily seen that w = Tw. Thus, from Proposition 7.1.2,
we have

〈xtn
− u, J(xn − w)〉 ≤ 0 and 〈xtn′ − u, J(xtn′ − v)〉 ≤ 0

which imply that

〈v − u, J(v − w)〉 ≤ 0 and 〈w − u, J(w − v)〉 ≤ 0.

Hence

‖u− w‖2 = 〈v − w, J(v − w)〉 = 〈v − u, J(v − w)〉+ 〈u− w, J(v − w)〉 ≤ 0,

a contradiction. Therefore, {xt} converges strongly to a fixed point of T as
t→ 1.

Corollary 7.1.4 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X → X∗. Let C be a nonempty closed subset of X and
T : C → X a nonexpansive mapping such that for some u ∈ C, the equation
(7.3) has a unique solution xt in C for each t ∈ (0, 1). If the path {xt} is
bounded, then it converges strongly to a fixed point of T as t→ 1.
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Applying Theorem 7.1.3, we obtain

Theorem 7.1.5 Let X be a reflexive Banach space with a weakly continuous
duality mapping, C a nonempty closed convex bounded subset of X,u an element
in C, and T : C → C a continuous pseudocontractive mapping. Then the
following hold:

(a) For each t ∈ (0, 1), there exists exactly one xt ∈ C such that

xt = (1− t)u + tTxt. (7.4)

(b) {xt} converges strongly to a fixed point of T as t→ 1.

Proof. (a) For each t ∈ (0, 1), define Gt : C → C by

Gtx = (1− t)u + tTx, x ∈ C.

Then Gt is well defined because u ∈ C and T (C) ⊂ C. Because for each
t ∈ (0, 1), Gt is strongly pseudocontractive, it follows from Corollary 5.7.15 that
Gt has exactly one fixed point xt ∈ C.

(b) It follows from Theorem 7.1.3.

Corollary 7.1.6 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X → X∗, C a nonempty closed convex bounded subset of
X, and T : C → C a continuous pseudocontractive mapping. Then F (T ) is a
sunny nonexpansive retract of C.

Proof. For each u ∈ C, by Theorem 7.1.5, there is a unique path {xt} defined
by (7.4) such that lim

t→1
xt = v ∈ F (T ). Then there exists a mapping P from C

onto F (T ) defined by Pu = lim
t→1

xt, as u is an arbitrary element of C.

Because

〈xt − u, J(xt − y)〉 ≤ 0 for all y ∈ F (T ) and t ∈ (0, 1),

this implies that

〈Pu− u, J(Pu− y)〉 ≤ 0 for all u ∈ C, y ∈ F (T ).

Therefore, by Proposition 2.10.21, P is the sunny nonexpansive retraction from
C onto F (T ).

Next, we study a strong convergence theorem for the following more general
class of mappings:

Definition 7.1.7 Let C be a nonempty subset of a Banach space X and T :
C → C a mapping. Then T is said to be asymptotically pseudocontractive if for
each n ∈ N and x, y ∈ C, there exist a sequence {kn} in [1,∞) with lim

n→∞ kn = 1

and j(x− y) ∈ J(x− y) such that 〈Tnx− Tny, j(x− y)〉 ≤ kn‖x− y‖2.
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We note that every asymptotically nonexpansive mapping is asymptotically
pseudocontractive, but the converse is not true. In fact, if T is asymptotically
nonexpansive with domain Dom(T ) and sequence {kn}, then for each n ∈ N

and x, y ∈ Dom(T ), there exists j(x− y) ∈ J(x− y) such that

〈Tnx− Tny, j(x− y)〉 ≤ ‖Tnx− Tny‖‖x− y‖ ≤ kn‖x− y‖2.

Theorem 7.1.8 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X → X∗. Let C be a nonempty closed subset of X and
T : C → C a demicontinuous asymptotically pseudocontractive mapping with
sequence {kn}. Let u be an element in C and {tn} a sequence of nonnegative
numbers in (0, 1) such that tn → 1 and lim

n→∞(kn − 1)/(1− tn) = 0. Let {xn} be
a bounded sequence in C with xn − Txn → 0 such that

xn = (1− tn)u + tnTnxn for all n ∈ N. (7.5)

If I − T is demiclosed at zero, then {xn} converges strongly to a fixed point
of T .

Proof. From (7.5), we have

xn − Tnxn = (1− tn)(u− Tnxn) and tn(u− Tnxn) = u− xn.

Thus, whenever y ∈ F (T ), we have

(1− tn)〈u− Tnxn, J(xn − y)〉 = 〈xn − Tnxn, J(xn − y)〉
= 〈xn − y + y − Tnxn, J(xn − y)〉
= ‖xn − y‖2 − 〈Tnxn − Tny, J(xn − y)〉
≥ −(kn − 1)‖xn − y‖2,

which yields

〈xn − u, J(xn − y)〉 ≤ kn − 1
1− tn

‖xn − y‖2 ≤ kn − 1
1− tn

K (7.6)

for some K ≥ 0.
Because X is reflexive, there exists a subsequence {xni

} of {xn} such that
xni

⇀ v ∈ C. Because I − T is demiclosed at zero, v = Tv. Hence

‖xni
− v‖2 = 〈xni

− v, J(xni
− v)〉

= 〈xni
− u, J(xni

− v)〉+ 〈u− v, J(xni
− v)〉

≤ kni
− 1

1− tni

K + 〈u− v, J(xni
− v)〉.

From J(xni
− v) →∗ 0 and (kni

− 1)/(1− tni
)→ 0, we get xni

→ v.
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We now show that v is only strong cluster point of {xn}. Suppose, for
contradiction, that {xnj

} is another subsequence of {xn} such that xnj
→

w ∈ C. Because xnj
− Txnj

→ 0, it follows that Txnj
→ w. By demicon-

tinuity of T , we have that Txnk
⇀ Tw. Hence Tw = w. From (7.6), we have

〈v − u, J(v − w)〉 ≤ 0 and 〈w − u, J(w − v)〉 ≤ 0,

which imply that

‖v − w‖2 = 〈v − w, J(u− w)〉 = 〈v − u, J(v − w)〉+ 〈u− w, J(v − w)〉 ≤ 0,

a contradiction. Therefore, {xn} converges strongly to a fixed point of T .

Corollary 7.1.9 Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X → X∗. Let C be a nonempty closed subset of X and
T : C → C an asymptotically nonexpansive mapping with sequence {kn}. Let
u be an element in C and {tn} a sequence of real numbers in (0, 1) such that
tn → 1 and lim

n→∞(kn − 1)/(1 − tn) = 0. Let {xn} be a bounded sequence in C

with xn−Txn → 0 such that xn = (1− tn)u+ tnTnxn for all n ∈ N. Then {xn}
converges strongly to a fixed point of T .

The following result is very useful for strong convergence of AFPS of self-
mappings as well as non-self mappings.

Theorem 7.1.10 Let X be a reflexive Banach space whose norm is uniformly
Gâteaux differentiable, C a nonempty closed convex subset of X, T : C → X a
demicontinuous mapping with F (T ) �= ∅, and A : C → C a continuous strongly
pseudocontractive mapping with constant k ∈ [0, 1). Let {αn} be a sequence in
R+ with lim

n→∞αn = 0 and {xn} a bounded sequence in C such that xn−Txn → 0
as n→∞ and

〈xn −Axn, J(xn − p)〉 ≤ αn‖xn − p‖2 for all n ∈ N and p ∈ F (T ). (7.7)

Suppose the set M = {x ∈ C : LIMn‖xn − x‖2 = inf
y∈C

LIM‖xn − y‖2} contains

a fixed point of T , where LIM is a Banach limit. Then {xn} converges strongly
to an element of M ∩ F (T ).

Proof. By Theorem 2.9.11, M is a nonempty closed convex and bounded set.
By assumption, T has a fixed point in M . Denote such a fixed point by v.
It follows from Corollary 2.9.13 that

LIMn〈z, J(xn − v)〉 ≤ 0 for all x ∈ C.

In particular,

LIMn〈Av − v, J(xn − v)〉 ≤ 0. (7.8)
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From (7.7), we obtain

LIMn〈xn −Axn, J(xn − v〉 ≤ 0. (7.9)

Combining (7.8) and (7.9), we have

LIMn‖xn − v‖2 = LIMn[〈xn −Axn, J(xn − v)〉+ 〈Axn −Av, J(xn − v)〉
+〈Av − v, J(xn − v)〉]

≤ kLIMn‖xn − v‖2,
i.e., (1 − k)LIMn‖xn − v‖2 ≤ 0. Therefore, there is a subsequence {xni

} of
{xn} that converges strongly to v. To complete the proof, let {xnj

} be another
subsequence of {xn} such that xnj

→ z as j → ∞. Because xnj
− Txnj

→ 0,
it follows that Txnj

→ z. By demicontinuity of T , we have that Tz = z. From
(7.7), we have

〈v −Av, J(v − z)〉 ≤ 0 and 〈z −Az, J(z − v)〉 ≤ 0.

Hence z = v. This proves that {xn} converges strongly to v.

Corollary 7.1.11 Let X be a reflexive Banach space whose norm is uniformly
Gâteaux differentiable, C a nonempty closed convex subset of X, and T : C → X
a demicontinuous mapping with F (T ) �= ∅. Let u be an element in C, {αn} a
sequence in R+ with lim

n→∞αn = 0, and {xn} a bounded sequence in C such that
xn − Txn → 0 as n→∞ and

〈xn − u, J(xn − p)〉 ≤ αn‖xn − p‖2 for all n ∈ N and all p ∈ F (T ).

Suppose the set M = {x ∈ C : LIMn‖xn − x‖2 = inf
y∈C

LIM‖xn − y‖2} contains

a fixed point of T , where LIM is a Banach limit. Then {xn} converges strongly
to an element of F (T ).

We now prove a notable strong convergence theorem for nonexpansive map-
pings in a uniformly smooth Banach space.

Theorem 7.1.12 (Reich’s convergence theorem) – Let C be a nonempty
closed convex subset of a uniformly smooth Banach space X, x an element in
C, T : C → C a nonexpansive mapping, and Gt : C → C, t ∈ (0, 1), the family
of mappings defined by Gt(x) = (1− t)x + tTGt(x). If T has a fixed point, then
for each x ∈ C, lim

t→1
Gt(x) exists and is a fixed point of T .

Proof. Let {tn} be a sequence of real numbers in (0, 1) such that tn → 1.
Set xn := Gtn

(x). Because F (T ) �= ∅, it follows that {xn} is bounded and
xn − Txn → 0 as n → ∞. Then the set M defined by (2.32) is a nonempty
closed convex bounded T -invariant subset of C (see Proposition 6.1.3). Note
every uniformly smooth Banach space is reflexive and has normal structure.
Hence every closed convex bounded set of X has fixed point property. Thus,
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T has a fixed point in M . Observe that {xn} satisfies (7.7) with αn = 0 for
all n ∈ N (see Proposition 7.1.2). It follows from Corollary 7.1.11 that {xn}
converges strongly to an element of F (T ).

Applying Corollary 7.1.11, we obtain

Theorem 7.1.13 Let X be a reflexive Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of X, and T : C →
C an asymptotically nonexpansive mapping with sequence {kn}. Let u be an
element in C and {tn} a sequence of real numbers in (0, 1) such that tn → 1
and (kn − 1)/(1− tn)→ 0. Then the following hold:

(a) There exists exactly one point xn ∈ C such that

xn = (1− tn)u + tnTnxn, n ∈ N.

(b) If {xn} is a bounded AFPS of T and M = {x ∈ C : LIMn‖xn − x‖2 =
inf
y∈C

LIMn‖xn − y‖2} contains a fixed point of T , then {xn} converges

strongly to an element of F (T ).

Proof. (a) Because lim
n→∞(kn − 1)/(1 − tn) = 0, then there exists a sufficiently

large natural number n0 such that kntn < 1 for all n ≥ n0. For each n ∈ N,
define Tn : C → C by

Tnx = (1− tn)u + tnTnx, x ∈ C.

Because for each n ≥ n0, Tn is contraction, there exists exactly one fixed point
xn ∈ C of Tn. We may assume that xn = u for all n = 1, 2, · · · , n0 − 1. Then

xn = (1− tn)u + tnTnxn for all n ∈ N.

(b) As in the proof of Theorem 7.1.8, it can be easily seen that {xn} satisfies
the inequality (7.6). Note that M is a nonempty closed convex bounded set.
Moreover, T has a fixed point in M by assumption.

Observe that
(i) (7.7) is satisfied with αn = (kn − 1)/(1− tn)→ 0 as n→∞,

(ii) T has a fixed point in M ,
(iii) ‖xn − Txn‖ → 0 as n→∞.

Hence this part follows from Corollary 7.1.11.

The following proposition shows that for a bounded AFPS, the set M satisfies
the property (P ) defined by (5.52).

Proposition 7.1.14 Let C be a nonempty closed convex bounded subset of a
reflexive Banach space X and T : C → C asymptotically nonexpansive. Let
{xn} be an AFPS. Then the set M satisfies property (P ).
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Proof. By Theorem 2.9.11, M is a nonempty closed convex bounded subset of
C. Let x ∈ M . Because {Tmx} is bounded in C, there exists a subsequence
{Tmj x} of {Tmx} such that Tmj x ⇀ u ∈ C. Let kn be the Lipschitz constant
of Tn. By w-lsc of the function ϕ(z) = LIMn‖xn − z‖2, we have

ϕ(u) = lim inf
j→∞

ϕ(Tmj x)

≤ lim sup
m→∞

ϕ(Tmx)

= lim sup
m→∞

(LIMn‖xn − Tmx‖2)
≤ lim sup

m→∞
(LIMn(‖xn − Txn‖+‖Txn − T 2xn‖+ · · ·+ ‖Tm−1xn − Tmxn‖

+‖Tmxn − Tmx‖)2)
≤ lim sup

m→∞
(LIMn(km‖xn − x‖))2

= ϕ(x) = inf
z∈M

ϕ(z).

Thus, u ∈M . Therefore, M has property (P ).

Applying Theorem 5.5.8 and Proposition 7.1.14, we obtain

Theorem 7.1.15 Let C be a nonempty closed convex bounded subset of a uni-
formly smooth Banach space X and T : C → C an asymptotically nonexpansive
mapping with sequence {kn}. Let u ∈ C and {tn} a sequence in (0, 1) such that
tn → 1 and (kn − 1)/(1− tn)→ 0. Suppose the sequence {xn} defined by (7.5)
is an AFPS of T . Then {xn} converges strongly to a fixed point of T .

Proof. By Proposition 7.1.14, the set M has property (P). It follows from
Theorem 5.5.8 that T has a fixed point in M . Therefore, by Theorem 7.1.13,
{xn} converges strongly to an element of F (T ).

7.2 Convergence of approximants of non-self
mappings

In this section, we discuss strong convergence of approximants of non-self non-
expansive mappings.

The following theorem is an extension of Browder’s strong convergence theorem
for non-self nonexpansive mappings with unbounded domain.

Theorem 7.2.1 (Singh and Watson’s convergence theorem) – Let C
be a nonempty closed convex subset of a Hilbert space H and T : C → H a
nonexpansive mapping such that T (∂C) ⊆ C and T (C) is bounded. Let u be an
element in C and define Gt : C → H by

Gtx = (1− t)u + tTx, x ∈ C and t ∈ (0, 1).
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Let xt = Gtxt. Then {xt} converges strongly to v as t→ 1, where v is the fixed
point of T closest to u.

Proof. Note F (T ) is nonempty by Theorem 5.2.25. Then for any y ∈ F (T ),
we have

‖xt − y‖ ≤ ‖u− y‖ for all t ∈ (0, 1),

so {xt} is bounded. By boundedness of {Txt}, we obtain that

‖xt − Txt‖ ≤ (1− t) sup
t∈(0,1)

‖u− Txt‖ → 0 as t→ 1.

Because H is reflexive, {xt} has a weakly convergent subsequence. Let {xtn
}

be subsequence of {xt} such that xtn
⇀ z as tn → 1. Write xn = xtn

. Because
I − T is demiclosed at zero, z ∈ F (T ). Because F (T ) is a nonempty closed
convex set in C by Corollary 5.2.29, there exists a unique point v ∈ F (T ) that
is closest to u, i.e., v ∈ F (T ) is the nearest point projection of u. Now, for
y ∈ F (T ), we have

‖xt − u + t(u− y)‖2 = t2‖Txt − y‖2
≤ t2‖xt − y‖2 = t2‖xt − u + u− y‖2

and hence

‖xt − u‖2 + t2‖u− y‖2 + 2t〈xt − u, u− y〉 = ‖xt − u + t(u− y)‖2
≤ t2(‖xt − u‖2 + ‖u− y‖2 + 2〈xt − u, u− y〉).

It follows that

‖xt − u‖2 ≤ 2t

1 + t
〈xt − u, y − u〉 ≤ 〈xt − u, y − u〉 ≤ ‖xt − u‖ · ‖y − u‖.

Hence ‖xt − u‖ ≤ ‖y − u‖. By w-lsc of the norm of H,

‖z − u‖ ≤ lim inf
n→∞ ‖xn − u‖ ≤ ‖y − u‖ for all y ∈ F (T ).

But v is the nearest point projection of u. Therefore, z = v is the unique element
in F (T ) that is the nearest point projection of u. This shows that xn ⇀ v as
n→∞. It remains to show that the convergence is strong. Because

‖xn − u‖2 = ‖xn − v + v − u‖2 = ‖xn − v‖2 + ‖u− v‖2 + 2〈xn − v, v − u〉,
this implies that

‖xn − v‖2 = ‖xn − u‖2 − ‖u− v‖2 − 2〈xn − v, v − u〉
≤ −2〈xn − v, v − u〉 → 0 as n→∞.

Therefore, {xt} converges strongly to v.

We now establish a strong convergence theorem for non-self mappings in a
Banach space.
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Theorem 7.2.2 Let X be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty closed convex subset of X, u an
element in C, and T : C → X a weakly inward nonexpansive mapping with
F (T ) �= ∅. Suppose for t ∈ (0, 1), the contraction Gt : C → X defined by

Gtx = (1− t)u + tTx, x ∈ C (7.10)

has a unique fixed point xt ∈ C. Then {xt} converges strongly to a fixed point
of T as t→ 1.

Proof. Because F (T ) is nonempty, then {xt} is bounded. In fact, we have

‖xt − v‖ ≤ ‖u− v‖ for all v ∈ F (T ) and t ∈ (0, 1).

We now show that {xt} converges strongly to a fixed point of T as t→ 1 . To this
end, let {tn} be a sequence of real numbers in (0,1) such that tn → 1 as n→∞.
Set xn := xtn

. Then we can define ϕ : C → [0,∞) by ϕ(x) = LIMn‖xn − x‖2.
Then the set M defined by (2.32) is a nonempty closed convex bounded subset
of C. Because

‖xn − Txn‖ = (1− tn)‖Txn − u‖ → 0 as n→∞, (7.11)

it follows that for x ∈M

ϕ(Tx) = LIMn‖xn − Tx‖2
≤ LIMn‖Txn − Tx‖2
≤ LIMn‖xn − x‖2 = ϕ(x). (7.12)

By Theorem 2.9.11, M consists of one point, say z. We now show that this z
is a fixed point of T . Because T is weakly inward, there are some vn ∈ C and
λn ≥ 0 such that

wn := z + λn(vn − z)→ Tz strongly.

If λn ≤ 1 for infinitely many n and for these n, then we have wn ∈ C and hence
Tz ∈ C. Thus, we have Tz = z by (7.12). So, we may assume λn > 1 for all
sufficiently large n. We then write vn = rnwn + (1 − rn)z, where rn = λ−1

n .
Suppose rn → 1. Then vn → Tz and hence Tz ∈ C. By (7.12), we have Tz = z.
So, without loss of generality, we may assume rn ≤ a < 1. By Theorem 2.8.17,
there exists a continuous increasing function g = gr : [0,∞) → [0,∞) with
g(0) = 0 such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖),

for all x, y ∈ Br[0] and λ ∈ [0, 1], where Br[0] (the closed ball centered at 0 and
with radius r) is big enough so that Br[0] contains z and {wn}. It follows that

ϕ(λx + (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)− λ(1− λ)g(‖x− y‖)
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for all x, y ∈ Br[0] and λ ∈ [0, 1]. Because vn ∈ C, we obtain that

ϕ(z) ≤ ϕ(vn)
≤ rnϕ(wn) + (1− rn)ϕ(z)− rn(1− rn)g(‖wn − z‖)

and hence

(1− a)g(‖wn − z‖) ≤ (1− rn)g(‖wn − z‖)
≤ ϕ(wn)− ϕ(z).

Taking the limit as n→∞, we obtain

(1− a)g(‖Tz − z‖) ≤ ϕ(Tz)− ϕ(z)
≤ 0. (by (7.12))

Therefore, Tz = z, i.e., z is a fixed point of T . Observe that
(i) xn − Txn → 0 by (7.11),
(ii) (7.7) is satisfied with αn = 0,
(iii) the set M contains a fixed point z of T.

By Corollary 7.1.11, we conclude that {xt} converges strongly to z as
t→ 1.

7.3 Convergence of Halpern iteration process

In Chapter 6, we have seen that the Mann and S-iteration processes are weakly
convergent for nonexpansive mappings even in uniformly convex Banach spaces.
The purpose of this section is to develop an iteration process so that it can
generate a strongly convergent sequence in a Banach space.

Definition 7.3.1 Let C be a nonempty convex subset of a linear space X and
T : C → C a mapping. Let u ∈ C and {αn} a sequence in [0, 1]. Then a
sequence {xn} in C defined by{

x0 ∈ C
xn+1 = αnu + (1− αn)Txn, n ≥ 0 (7.13)

is called the Halpern iteration.

We now prove the main convergence theorem of this section.

Theorem 7.3.2 Let X be a Banach space with a uniformly Gâteaux differ-
entiable norm, C a nonempty closed convex subset of X, and T : C → C a
nonexpansive mapping with F (T ) �= ∅. Let u ∈ C and {αn} be a sequence of
real numbers in [0, 1] that satisfies

lim
n→∞αn = 0,

∞∑
n=0

αn =∞ and
∞∑

n=0

|αn+1 − αn| <∞. (7.14)
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Suppose that {zt} converges strongly to z ∈ F (T ) as t → 1, where for t ∈
(0, 1), zt is a unique element of C that satisfies zt = (1− t)u + tTzt. Then the
sequence {xn} defined by (7.13) converges strongly to z.

Proof. Because F (T ) �= ∅, it follows that {xn} and {Txn} are bounded. Set
K := sup{‖u‖+ ‖Txn‖ : n ∈ N}. From (7.13), we have

‖xn+1 − xn‖ ≤ |αn − αn−1|(‖u‖+ ‖Txn−1‖) + (1− αn)‖xn − xn−1‖
≤ |αn − αn−1|K + (1− αn)‖xn − xn−1‖.

Hence for m,n ∈ N, we have

‖xn+m+1 − xn+m‖

≤
( n+m−1∑

k=m

|αk+1 − αk|
)

K +
( n+m−1∏

k=m

(1− αk+1)
)
‖xm+1 − xm‖

≤
( n+m−1∑

k=m

|αk+1 − αk|
)

K + exp

(
−

n+m−1∑
k=m

αk+1

)
‖xm+1 − xm‖.

So the boundedness of {xn} and
∑∞

k=0 αk =∞ yield

lim sup
n→∞

‖xn+1 − xn‖ = lim sup
n→∞

‖xn+m+1 − xn+m‖ ≤
( ∞∑

k=m

|αk+1 − αk|
)

K

for all m ∈ N. Because
∑∞

k=0 |αk+1 − αk| < ∞, we get
lim

n→∞ ‖xn+1 − xn‖ = 0. Notice

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖
≤ ‖xn − xn+1‖+ αn‖u− Txn‖ → 0 as n→∞.

Let LIM be a Banach limit. Then, we get

LIMn‖xn − Tzt‖2 ≤ LIMn‖xn − zt‖2.

Because t(xn − Tzt) = (xn − zt)− (1− t)(xn − u), we have

t2‖xn − Tzt‖2 ≥ ‖xn − zt‖2 − 2(1− t)〈xn − u, J(xn − zt)〉
= (2t− 1)‖xn − zt‖2 + 2(1− t)〈u− zt, J(xn − zt)〉

for all n ∈ N. These inequalities yield

1− t

2
LIMn‖xn − zt‖2 ≥ LIMn〈u− zt, J(xn − zt)〉.

Letting t go to 1, we get

0 ≥ LIMn〈u− z, J(xn − z)〉,
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because X has uniformly Gâteaux differentiable norm. Because ‖xn−xn+1‖ →
0 as n→∞, we obtain

lim
n→∞ |〈u− z, J(xn+1 − z)〉 − 〈u− z, J(xn − z)〉| = 0.

Hence by Proposition 2.9.7, we obtain

lim sup
n→∞

〈u− z, J(xn − z)〉 ≤ 0. (7.15)

Because (1− αn)(Txn − z) = (xn+1 − z)− αn(u− z), we have

‖(1− αn)(Txn − z)‖2 ≥ ‖xn+1 − z‖2 − 2αn〈u− z, J(xn+1 − z)〉,
it follows that

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + 2(1− (1− αn))〈u− z, J(xn+1 − z)〉
for each n ∈ N. Let ε > 0. From (7.15), there exists n0 ∈ N such that

〈u− z, J(xn − z)〉 ≤ ε/2 for all n ≥ n0.

Then we have

‖xn+n0 − z‖2 ≤
( n+n0−1∏

k=n0

(1− αk)
)
‖xn0 − z‖2 +

(
1−

n+n0−1∏
k=n0

(1− αk)
)

ε

for all n ∈ N. By the condition
∑∞

k=0 αk =∞, we have

lim sup
n→∞

‖xn − z‖2 = lim sup
n→∞

‖xn+n0 − z‖2 ≤ ε.

Therefore, {xn} converges strongly to z, because ε is an arbitrary positive real
number.

Corollary 7.3.3 Let C be a nonempty closed convex subset of a uniformly
smooth Banach space and T : C → C a nonexpansive mapping with F (T ) �= ∅.
Let u ∈ C and {αn} a sequence of real numbers in [0, 1] satisfying (7.14).
Then the sequence {xn} defined by (7.13) converges strongly to a fixed point
of T .
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Exercises

7.1 Let C be a nonempty closed convex subset of a Hilbert space H. Let
T : C → C be a nonexpansive mapping and f : C → C a contraction
mapping. Let {xn} be the sequence defined by the scheme

xn =
1

1 + εn
Txn +

εn

1 + εn
fxn,

where εn is a sequence (0, 1) with εn → 0. Show that {xn} converges
strongly to the unique solution of the variational inequality:

〈(I − f)x̃, x̃− x〉 ≤ 0 for all x ∈ F (T ).

7.2 Let H be a Hilbert space, C a closed convex subset of H, T : C → C a
nonexpansive mapping with F (T ) �= ∅, and f : C → C a contraction. Let
{xn} be a sequence in C defined by{

x0 ∈ C,
xn+1 = (1− αn)Txn + αnf(xn), n ≥ 0,

where {αn} is a sequence in (0, 1) satisfies

(H1) αn → 0;

(H2)
∑∞

n=0 αn =∞;

(H3) either
∑∞

n=0 |αn+1 − αn| <∞ or lim
n→∞(αn+1/αn) = 1.

Show that under the hypotheses (H1) ∼ (H3), xn → x̃, where x̃ is the
unique solution of the variational inequality:

〈(I − f)x̃, x̃− x〉 ≤ 0 for all x ∈ F (T ).

7.3 Let C be a nonempty closed convex subset of a uniformly smooth Banach
space X and T : C → C a nonexpansive mapping with F (T ) �= ∅. If ΠC

is the set of all contractions on C, show that the path {xt} defined by

xt = tfxt + (1− t)Txt, t ∈ (0, 1), f ∈ ΠC ,

converges strongly to a point in F (T ). If we define Q : ΠC → F (T ) by

Q(f) = lim
t→0+

xt, f ∈ ΠC ,

show that Q(f) solves the variational inequality:

〈(I − f)Q(f), J(Q(f)− v)〉 ≤ 0, f ∈ ΠC and v ∈ F (T ).
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7.4 Let C be a nonempty closed convex subset of a Banach space X. Let
A : C → C be a continuous strongly pseudocontractive with constant
k ∈ [0, 1) and T : C → C a continuous pseudocontractive mapping. Show
that

(a) for each t ∈ (0, 1), there exists unique solution xt ∈ C of equation

x = tAx + (1− t)Tx.

(b) Moreover, if v is a fixed point of T , then for each t ∈ (0, 1), there
exists j(xt − v) ∈ J(xt − v) such that

〈xt −Axt, j(xt − v)〉 ≤ 0;

(c) {xt} is bounded.

7.5 Let C be a nonempty closed convex subset of a Banach space X that has
a uniformly Gâteaux differentiable norm and T : C → C a nonexpansive
mapping with F (T ) �= ∅. For a fixed δ ∈ (0, 1), define S : C → C by

Sx := (1− δ)x + δTx

for all x ∈ C. Assume that {zt} converges strongly to a fixed point z of
T as t→ 0, where zt is the unique element of C that satisfies

zt = tu + (1− t)Tzt

for arbitrary u ∈ C. Let {αn} be a real sequence in (0, 1) that satisfies
the following conditions:

(i) lim
n→∞αn = 0;

(ii)
∑∞

n=1 αn =∞.

For arbitrary x0 ∈ C, let the sequence {xn} be defined iteratively by

xn+1 = αnu + (1− αn)Sxn.

Show that {xn} converges strongly to a fixed point of T .



Chapter 8

Applications of Fixed Point
Theorems

The aim of this chapter is to sketch applications of fixed point theorems in
attractors of hyperbolic IFS, best approximation theory, operator equations,
variational inequalities, and variational inclusions.

8.1 Attractors of the IFS

Definition 8.1.1 A (hyperbolic) iterated function system consists of a com-
plete metric space (X, d) together with a finite set of contraction mappings Tn :
X → X, with respective Lipschitz constants kn, for n = 1, 2, · · · , N .

The abbreviation “IFS” is used for “iterated function system”. The notation
for the IFS is {X;Tn, n = 1, 2, · · · , N} and its Lipschitz constant is k =
max{kn : n = 1, 2, · · · , N}.

Let {X;Tn, n = 1, 2, · · · , N} be a hyperbolic iterated function system with
Lipschitz constant k. Then the fixed point of the mapping W : K(X)→ K(X)
defined by

W (B) = ∪N
n=1Tn(B) for all B ∈ K(X),

is called the attractor of the IFS .

The following propositions tell us how to make a contraction mapping on
(K(X),H) out of a contraction mapping on a metric space (X, d).

Proposition 8.1.2 Let (X, d) be a metric space and T : X → X a continuous
mapping. Then T maps K(X) into itself.

Proof. Let C be a nonempty compact subset of X. Then clearly T (C) =
{Tx : x ∈ C} is nonempty. We show that T (C) is compact. Let {yn = Txn}
be a sequence in C. Because C is compact, there is a subsequence {xni

} that

R.P. Agarwal et al., Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Topological Fixed Point Theory and Its Applications 6, DOI 10.1007/978-0-387-75818-3 8,
c© Springer Science+Business Media, LLC, 2009
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converges to a point in x̂ ∈ C. The continuity of T implies that {yni
= Txni

}
is a subsequence of {yn} that converges to ŷ = T x̂ ∈ T (C).

Proposition 8.1.3 Let T : X → X be a contraction mapping on the metric
space (X, d) with Lipschitz constant k. Then T : K(X)→ K(X) defined by

T (B) = {Tx : x ∈ B} for all B ∈ K(X)

is a contraction mapping on (K(X),H) with Lipschitz constant k.

Proof. Because T : X → X is continuous, it follows from Proposition 8.1.2
that T maps K(X) into itself. Now let B,C ∈ K(X). Then

δ(T (B), T (C)) = sup{inf{d(Tx, Ty) : y ∈ C} : x ∈ B}
≤ sup{inf{kd(x, y) : y ∈ C} : x ∈ B} = k · δ(B,C).

Similarly, δ(T (C), T (B)) ≤ k · δ(C,B). Hence

H(T (B), T (C) = max{δ(T (B), T (C), δ(T (C), T (B))}
≤ k max{δ(B,C), δ(C,B)}
≤ k ·H(B,C).

The next proposition provides an important method for combining contrac-
tion mappings on (K(X),H) to produce new contraction mappings on (K(X),H).

Proposition 8.1.4 Let (X, d) be a metric space. Let {Tn : n = 1, 2, · · · , N}
be contraction mappings on (K(X),H). Let the Lipschitz constant for Tn be
denoted by kn for each n. Define W : K(X)→ K(X) by

W (B) = T1(B) ∪ T2(B) ∪ · · · ∪ TN (B) = ∪N
n=1Tn(B) for all B ∈ K(X).

Then W is a contraction mapping with Lipschitz constant k = max{kn : n =
1, 2, · · · , N}.
Proof. We show the claim for N = 2. An inductive argument then completes
the proof. Let B,C ∈ K(X). We have

H(W (B),W (C)) = H(T1(B) ∪ T2(B), T1(C) ∪ T2(C))
≤ max{H(T1(B), T1(C)),H(T2(B), T2(C))}

(by Proposition 4.2.5)

≤ max{k1H(B,C), k2H(B,C)} ≤ k H(B,C).

The following theorem gives the main result concerning a hyperbolic IFS.

Theorem 8.1.5 Let {X;Tn, n = 1, 2, · · · , N} be a hyperbolic iterated function
system with Lipschitz constant k. Then the mapping W : K(X)→ K(X) defined
by

W (B) = ∪N
n=1Tn(B) for all B ∈ K(X),
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is a contraction mapping on the complete metric space (K(X),H) with Lipschitz
constant k, i.e.,

H(W (B),W (C)) ≤ kH(B,C) for all B,C ∈ K(X).

Its unique fixed point A ∈ K(X) satisfies

A = W (A) = ∪N
n=1Tn(A)

and is given by A = lim
n→∞Wn(B) for any B ∈ K(X).

Proof. By Proposition 8.1.4, W : K(X) → K(X) is a contraction mapping.
Hence the result follows from the Banach contraction principle.

8.2 Best approximation theory

Recall that when C is a nonempty subset of a normed space X, the set of best
approximation to x ∈ X from C is

PC(x) = {y ∈ C : ‖x− y‖ = d(x,C)},

where PC is the metric projection from X into 2C .

We begin with the fundamental result concerning invariance best approxi-
mation.

Theorem 8.2.1 (Brosowski’s theorem) – Let X be a Banach space and T :
X → X a nonexpansive mapping with a fixed point x ∈ X. Let C be a nonempty
subset of X such that T (C) ⊆ C. Suppose PC(x) is a nonempty compact convex
subset of C. Then T has a fixed point in PC(x).

Proof. First, we show that T : PC(x)→ PC(x). Let y ∈ PC(x). Then

‖Ty − x‖ ≤ ‖y − x‖ = inf
z∈C
‖x− z‖

implying that Ty ∈ PC(x).

Let {an} be a sequence in (0, 1) such that an → 1. Define Tn : PC(x) →
PC(x) by

Tnx = (1− an)u + anTx for all x ∈ PC(x).

By the Banach contraction principle, each Tn has a unique fixed point, say
xn. Because PC(x) is compact, there exists a subsequence {xni

} of {xn} such
that xni

→ z ∈ PC(x). Because ‖xn − Txn‖ → as n → ∞, it follows that
z ∈ F (T ).

The following result is an improvement of Brosowski’s theorem.
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Theorem 8.2.2 Let X be a Banach space and T : X → X a nonexpansive
mapping with a fixed point x ∈ X. Let C be a nonempty subset of X such
that T (∂C) ⊆ C. Suppose PC(x) is weakly compact and star-shaped. Assume
that

(i) T is nonexpansive on PC(x),
(ii) ‖Tx− Tx‖ ≤ ‖x− x‖ for all x ∈ PC(x),
(iii) I − T is demiclosed on PC(x).

Then PC(x) ∩ F (T ) �= ∅.
Proof. First, we show that T is a self-mapping on PC(x). Let y ∈ PC(x).
Theorem 2.10.10 implies that y ∈ ∂C. As T (∂C) ⊆ C, so Ty ∈ C. Because
Tx = x and T is nonexpansive, we have

‖Ty − x‖ = ‖Ty − Tx‖ ≤ ‖y − x‖ = inf
z∈C
‖x− z‖.

Because Ty ∈ C, it follows that Ty ∈ PC(x). Hence T is a self-mapping on
PC(x). Now, let p be the star-center of PC(x) and {tn} a sequence of real
numbers in (0, 1) with tn → 1. Define Tn : PC(x)→ PC(x) by

Tnx = (1− tn)p + tnTx, x ∈ PC(x).

For each n ∈ N, Tn is a contraction, so there exists exactly one fixed point xn

of Tn.
Now

‖xn − Txn‖ = (1− tn)‖Txn − p‖ ≤ (1− tn)K → 0 as n→∞
for some K ≥ 0. Because PC(x) is weakly compact, there exists a subsequence
{xni

} of {xn} such that xni
⇀ z ∈ PC(x). Because I − T is demiclosed on

PC(x) and xni
− Txni

→ 0 as i → ∞, it follows that z ∈ F (T ). Therefore,
PC(x) ∩ F (T ) �= ∅.

8.3 Solutions of operator equations

In this section, we study applications of fixed point theorems to solutions of
operator equations in Banach spaces.

We give an application of the Browder-Göhde-Kirk’s fixed point theorem for
the existence of solutions of the operator equation x− Tx = f .

Theorem 8.3.1 Let X be a uniformly convex Banach space X, f an element
in X, and T : X → X a nonexpansive mapping. Then the operator equation

x− Tx = f (8.1)

has a solution x if and only if for any x0 ∈ X, the sequence of Picard iterates
{xn} in X defined by xn+1 = Txn + f, n ∈ N0 is bounded.
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Proof. Let Tf be the mapping from X into X given by

Tf (u) = Tu + f.

Then u is a solution of (8.1) if and only if u is a fixed point of Tf . It is easy to
see that Tf is nonexpansive. Suppose Tf has a fixed point u ∈ X. Then

‖xn+1 − u‖ ≤ ‖xn − u‖ for all n ∈ N.

Hence {xn} is bounded.
Conversely, suppose that {xn} is bounded. Let d = diam({xn}) and

Bd[x] = {y ∈ X : ‖x− y‖ ≤ d} for each x ∈ X.

Set Cn := ∩i≥nBd[xi]. Then Cn is a nonempty convex set for each n, and
Tf (Cn) ⊂ Cn+1. Let C be the closure of the union of Cn for n ∈ N, i.e.,
C = ∪n∈NCn. Because Cn increases with n, C is closed convex bounded subset
of X. Because Tf maps C into itself, Tf has a fixed point in C by the Browder-

Göhde-Kirk theorem.

Next we show that if T is nonexpansive, then the Mann iteration converges
strongly to the solution of the operator equation x + Tx = f .

Theorem 8.3.2 Let H be a Hilbert space and T : H → H a monotonic non-
expansive operator. For f ∈ H, define S : H → H by

Sx = −Tx + f, x ∈ H. (8.2)

Then we have the following:
(a) The Mann iteration {xn} defined by

xn+1 = M(xn, αn, S) with αn ∈ [0, 1],
∞∑

n=1

αn(1− αn) =∞,

converges strongly to the unique solution x = v of the operator equation

x + Tx = f. (8.3)

(b) If αn = (n + 1)−1, then ‖xn+1 − v‖ ≤ (n + 1)−1/2‖x1 − v‖ for all n ∈ N.

Proof. From (8.2), we have

‖Sx− Sy‖ = ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H.

The solution v of operator equation (8.3) is a fixed point of the nonexpansive
operator S. By the monotonicity of T ,

〈Sx− Sy, x− y〉 = −〈Tx− Ty, x− y〉 ≤ 0 for all x, y ∈ H.
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Hence

‖xn+1 − v‖2 = ‖(1− αn)(xn − v) + αn(Sxn − Sv)‖2
= (1− αn)2‖xn − v‖2 + 2αn(1− αn)〈Sxn − Sv, xn − v〉

+α2
n‖Sxn − Sv‖2

≤ (1− αn)2‖xn − v‖2 + α2
n‖Sxn − Sv‖2 (as αn(1− αn) ≥ 0)

≤ (1− αn)2‖xn − v‖2 + α2
n‖xn − v‖2, (8.4)

which implies that

‖xn+1 − v‖2 ≤ [1− 2αn(1− αn)]‖xn − v‖2

≤
n∏

i=1

[1− 2αi(1− αi)]‖x1 − v‖2. (8.5)

Because
∑∞

i=1 αi(1− αi) =∞, it follows that

n∏
i=1

[1− 2αi(1− αi)] ≤ exp

(
− 2

n∑
i=1

αi(1− αi)
)
→ 0 as n→∞.

Hence from (8.5), {xn} converges strongly to the unique solution of the
operator equation (8.3).

(b) Note

‖xn+1 − v‖ = ‖(1− αn)(xn − v) + αn(Sxn − v)‖
≤ (1− αn)‖xn − v‖+ αn‖Sxn − v‖
≤ ‖xn − v‖ ≤ · · · ≤ ‖x1 − v‖ for all n ∈ N.

Hence from (8.4), we have

‖xn+1 − v‖2 ≤
(

n

n + 1

)2

‖xn − v‖2 +
(

1
n + 1

)2

‖xn − v‖2,

which gives that

(n + 1)2‖xn+1 − v‖2 − n2‖xn − v‖2 ≤ ‖x1 − v‖2.

Summing from n = 1 to m, we get

(m + 1)2‖xm+1 − v‖2 − ‖x1 − v‖2 ≤ m‖x1 − v‖2.

Hence

‖xm+1 − v‖ ≤ 1√
m + 1

‖x1 − v‖ for all m ∈ N.
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8.4 Differential and integral equations

Let f(x, y) be a continuous real-valued function on [a, b] × [c, d]. The Cauchy
initial value problem is to find a continuous differentiable function y on [a, b]
satisfying the differential equation

dy

dx
= f(x, y), y(x0) = y0. (8.6)

Consider the Banach space C[a, b] of continuous real-valued functions with
supremum norm defined by ‖y‖ = sup{|y(x)| : x ∈ [a, b]}.

Integrating (8.6), we obtain an integral equation

y(x) = y0 +
∫ x

x0

f(t, y(t))dt. (8.7)

The problem (8.6) is equivalent the problem solving the integral equation
(8.7).

We define an integral operator T : C[a, b]→ C[a, b] by

Ty(x) = y0 +
∫ x

x0

f(t, y(t))dt.

Thus, a solution of Cauchy initial value problem (8.6) corresponds with a
fixed point of T . One may easily check that if T is contraction, then the problem
(8.6) has a unique solution.

Now our purpose is to impose certain conditions on f under which the inte-
gral operator T is Lipschitzian with σ(T ) < 1.

Theorem 8.4.1 Let f(x, y) be a continuous function of Dom(f) = [a, b]× [c, d]
such that f is Lipschitzian with respect to y, i.e., there exists L > 0 such that

|f(x, u)− f(x, v)| ≤ L|u− v| for all u, v ∈ [c, d] and for x ∈ [a, b].

Suppose (x0, y0) ∈ int(Dom(f)). Then for sufficiently small h > 0, there exists
a unique solution of the problem (8.6).

Proof. Let M = sup{|f(x, y)| : x, y ∈ Dom(f)} and choose h > 0 such that
Lh < 1 and [x0 − h, x0 + h] ⊆ [a, b]. Set

C := {y ∈ C[x0 − h, x0 + h] : |y(x)− y0| ≤Mh}.
Then C is a closed subset of the complete metric space C[x0 − h, x0 + h] and
hence C is complete. Note T : C → C is a contraction mapping. Indeed, for
x ∈ [x0 − h, x0 + h] and two continuous functions y1, y2 ∈ C, we have

‖Ty1 − Ty2‖ =
∥∥∥∥
∫ x

x0

f(x, y1)− f(x, y2)dt

∥∥∥∥
≤ |x− x0| sup

s∈[x0−h,x0+h]

L|y1(s)− y2(s)|

≤ Lh‖y1 − y2‖.
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Therefore, T has a unique fixed point implying that the problem (8.6) has a
unique solution.

Now, consider the Fredholm integral equation for an unknown function y :
[a, b]→ R (−∞ < a < b <∞):

y(x) = f(x) + λ

∫ b

a

k(x, t)y(t)dt, (8.8)

where

k(x, t) is continuous on [a, b]× [a, b]

and

f(x) is continuous on [a, b].

Consider the Banach space X = C[a, b] of continuous real-valued functions
with supremum norm ‖y‖ = sup{|y(x)| : x ∈ [a, b]} and define an operator
T : C[a, b]→ C[a, b] by

Ty(x) = f(x) + λ

∫ b

a

k(x, t)y(t)dt. (8.9)

Thus, a solution of Fredholm integral equation (8.8) is a fixed point of T .

We now impose a restriction on the real number λ such that T becomes a
contraction.

Theorem 8.4.2 Let K(x, t) be a continuous function on [a, b]× [a, b] with M =
sup{|k(x, t)| : x, t ∈ [a, b]}, f a continuous function on [a, b], and λ a real number
such that M(b − a)|λ| < 1. Then the Fredholm integral equation (8.8) has a
unique solution.

Proof. It is sufficient to show that the mapping T defined by (8.9) is a con-
traction. For two continuous functions y1, y2 ∈ C[a, b], we have

‖Ty1 − Ty2‖ = sup
x∈[a,b]

|λ||
∫ b

a

k(x, t)[y1(t)− y2(t)]dt|

≤ |λ| sup
x∈[a,b]

∫ b

a

|k(x, t)||y1(t)− y2(t)|dt

≤ |λ|M
∫ b

a

sup
t∈[a,b]

|y1(t)− y2(t)|dt

= |λ|M‖y1 − y2‖
∫ b

a

dt.
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8.5 Variational inequality

Let C be a convex subset of a smooth Banach space X, D a nonempty subset of
C, and A : C → C a mapping. We consider the following variational inequality
V ID(C, I −A):

to find a z ∈ D such that 〈(I −A)z, J(z − y)〉 ≤ 0 for all y ∈ D,

where J is the duality mapping from X into X∗.

The set of solutions of the variational inequality V ID(C, I − A) is denoted
by ΩD(I −A), i.e.,

ΩD(I −A) = {z ∈ C : 〈(I −A)z, J(z − y)〉 ≤ 0 for all y ∈ D}.
Proposition 8.5.1 Let C be a nonempty convex subset of a smooth Banach
space X. Let A : C → C be strongly pseudocontractive with constant k ∈ [0, 1).
Then variational inequality V ID(C, I −A) has at most one solution.

Proof. Let x∗ and y∗ be two distinct solutions of V ID(C, I −A). Then

〈x∗ −Ax∗, J(x∗ − y∗)〉 ≤ 0

and
〈y∗ −Ay∗, J(y∗ − x∗)〉 ≤ 0.

Adding these inequalities, we get

〈x∗ − y∗ − (Ax∗ −Ay∗), J(x∗ − y∗)〉 ≤ 0,

which implies that

‖x∗ − y∗‖2 ≤ 〈Ax∗ −Ay∗, J(x∗ − y∗)〉
≤ k‖x∗ − y∗‖2,

a contradiction. Therefore, x∗ = y∗.

Proposition 8.5.2 Let C be a nonempty convex subset of a smooth Banach
space X and D a nonempty subset of C. Let A : C → C be a mapping and
let P be the sunny nonexpansive retraction from C onto D. Then following are
equivalent:

(a) z is a fixed point of PA.
(b) z is a solution of variational inequality V ID(C, I −A).

Proof. Let x ∈ C and x0 ∈ D. Then from Proposition 2.10.21, we have

x0 = Px if and only if 〈x0 − x, J(x0 − y)〉 ≤ 0 for all y ∈ D. (8.10)

For z ∈ C, we obtain from (8.10) that

z = Pfz if and only if 〈z − fz, J(z − y)〉 ≤ 0 for all y ∈ D.
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Theorem 8.5.3 Let X be a reflexive Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex bounded subset of X, A : C →
C a continuous strongly pseudocontractive mapping with constant k ∈ [0, 1), and
T : C → X a weakly inward continuous pseudocontractive mapping. Suppose
every nonempty closed convex bounded subset of C has fixed point property for
nonexpansive self-mappings. Then we have the following:

(a) for each t ∈ (0, 1), there exists a path {xt} in C defined by

xt = (1− t)Axt + tTxt, (8.11)

(b) {xt} converges strongly to z ∈ F (T ) as t→ 1,
(c) z is the unique solution of the variational inequality V IF (T )(C, I −A).

Proof. (a) For each t ∈ (0, 1), define the mapping Gt : C → X by

GA
t x = (1− t)Ax + tTx, x ∈ C.

Note for each t ∈ (0, 1), GA
t is weakly inward continuous strongly pseudocon-

tractive. By Corollary 5.7.14, GA
t has exactly one fixed point xt in C.

(b) Because the mapping (2I−T ) has a nonexpansive inverse g, then g maps
C into itself. Note xt − Txt → 0 as t→ 1 implies that xt − g(xt)→ 0 as t→ 1.
Write xn = xtn

. Then, we have

xn − Txn → 0 as n→∞. (8.12)

Because {xn} is bounded, we define ϕ : C → R+ by ϕ(z) = LIMn

‖xn − z‖2, z ∈ C. As in proof of Theorem 7.1.12, the set M defined by (2.32)
is a nonempty closed convex bounded g-invariant subset of C and hence the
nonexpansive mapping g has a fixed point in M by assumption. Denote such a
fixed point by v.

On the other hand, by monotonicity of I − T , we have

〈xt − Txt, J(xt − y)〉 ≥ 0 for all y ∈ F (T ).

From (8.11), we have xt − Txt = 1−t
t (Axt − xt). Thus,

〈xt −Axt, J(xt − y)〉 ≤ 0 for all y ∈ F (T ). (8.13)

Clearly, the sequence {xn} satisfies (7.7). Therefore, by Theorem 7.1.10, {xn}
converges strongly to the fixed point v.

We finally prove that the path {xt} converges strongly. Toward this end,
we assume that {tn′} is another subsequence in (0, 1) such that xtn′ → v′ as
tn′ → 1. By (8.12), we obtain v′ ∈ F (T ). From (8.13), we have that

〈v −Av, J(v − v′)〉 ≤ 0 and 〈v′ −Av′, J(v′ − v)〉 ≤ 0.

We must have v = v′. Therefore, {xt} converges strongly to v ∈ F (T ).

(c) Because xt → v ∈ F (T ) as t→ 1, it follows from (8.13) that

〈v −Av, J(v − y)〉 ≤ 0 for all y ∈ F (T ).
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Corollary 8.5.4 Let X be a reflexive Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of X, A : C → C a
contraction mapping with Lipschitz constant k ∈ [0, 1), and T : C → C a non-
expansive with F (T ) �= ∅. Suppose every nonempty closed convex bounded subset
of C has fixed point property for nonexpansive self-mappings. Then conclusions
of Theorem 8.5.3 hold.

Proof. It suffices to show that the path {xt} defined by (8.11) is bounded. Let
y ∈ F (T ). Then

‖xt − y‖ ≤ (1− t)‖Axt − y‖+ t‖Txt − y‖
≤ (1− t)(‖Axt −Ay‖+ ‖Ay − y‖) + t‖Txt − y‖
≤ (1− t)(k‖xt − y‖+ ‖Ay − y‖) + t‖xt − y‖

which implies that

‖xt − y‖ ≤ 1
1− k

‖Ay − y‖.

Hence {xt} is bounded.

Theorem 8.5.5 Let X be a reflexive Banach space with a uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of X, and T : C → C
a nonexpansive mapping such that F (T ) �= ∅. Suppose that every closed convex
bounded subset of C has fixed point property for nonexpansive self-mappings.
Then F (T ) is the sunny nonexpansive retract of C.

Proof. The proof is followed by Corollary 8.5.4.

8.6 Variational inclusion problem

In this section, we study the existence and uniqueness of solutions and the
convergence of the Mann iteration for a variational inclusion problem in a
Banach space.

Let A, T be two self-mappings defined on a Banach space X, g : X → X∗

another mapping, and ϕ : X∗ → (−∞,∞] a proper convex lower semicontinuous
function. Let us consider the following variational inclusion problem:

{
to find an u ∈ X such that g(u) ∈ Dom(∂ϕ),
〈Tu−Au− f, v − g(u)〉 ≥ ϕ(g(u))− ϕ(v) for all v ∈ X∗. (8.14)

We begin with the following basic result:

Proposition 8.6.1 Let X be a reflexive Banach space. Then the following are
equivalent:
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(a) x∗ ∈ X is a solution of variational inclusion problem (8.14).

(b) x∗ ∈ X is a fixed point of the mapping S : X → 2X :

S(x) = f − (Tx−Ax + ∂ϕ(g(x)) + x, x ∈ X.

(c) x∗ ∈ X is a solution of equation f ∈ Tx−Ax + ∂ϕ(g(x)), x ∈ X.

Proof. (a)⇒ (c). If x∗ is a solution of the variational inclusion problem (8.14),
then g(x∗) ∈ Dom(∂ϕ) and

〈Tx∗ −Ax∗ − f, v − g(x∗)〉 ≥ ϕ(g(x∗))− ϕ(v) for all v ∈ X∗.

By the definition of subdifferential of ϕ, it follows from the above expression
that

f + Ax∗ − Tx∗ ∈ ∂ϕ(g(x∗)). (8.15)

This implies that x∗ is a solution of equation f ∈ Tx−Ax + ∂ϕ(g(x)).

(c) ⇒ (b). Adding x∗ to both sides of (8.15), we have

x∗ ∈ f − (Tx∗ −Ax∗ + ∂ϕ(g(x∗))) + x∗ = Sx∗. (8.16)

This implies that x∗ is a fixed point of S in X.

(b) ⇒ (a). From (8.16), we have f − (Tx∗ − Ax∗) ∈ ∂ϕ(g(x∗)), hence from
the definition of ∂ϕ, it follows that

ϕ(v)− ϕ(g(x∗)) ≥ 〈f − (Tx∗ −Ax∗), v − g(x∗)〉 for all v ∈ X∗,

i.e.,
〈Tx∗ −Ax∗ − f, v − g(x∗)〉 ≥ ϕ(g(x∗))− ϕ(v) for all v ∈ X∗.

Thus, x∗ is a solution of the variational inclusion problem (8.14).

Theorem 8.6.2 Let X be a uniformly smooth Banach space and let T,A :
X → X, g : X → X∗ be three continuous mappings. Let ϕ : X∗ → (−∞,∞] be
a function with a continuous Gâteaux differential ∂ϕ and satisfying the following
conditions:

(i) T −A : X → X is a strongly accretive mapping with constant k ∈ (0, 1),
(ii) ϕog : X → X is accretive.
For any given f ∈ X, define a mapping S : X → X by

Sx = f − (Tx−Ax + ∂ϕ(g(x))) + x, x ∈ X. (8.17)

If S(X) is bounded, then for any given x1 ∈ X, the Mann iterative sequence
{xn} defined by

xn+1 = M(xn, αn, S), n ∈ N, (8.18)
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where {αn} is the sequence in [0, 1] with the restriction

αn → 0,

∞∑
n=0

αn =∞, (8.19)

converges strongly to the unique solution of variational inclusion (8.14).

Proof. First we show that the variational inclusion problem (8.14) has a unique
solution.

From conditions (i) ∼ (ii) and Proposition 5.7.12, the mapping T−A+∂ϕog :
X → X is a strongly accretive continuous mapping with a strongly accretive
constant k ∈ (0, 1). Because T − A + ∂og is a continuous strongly accretive
mapping, T − A + ∂ϕog is surjective. Therefore, for any given f ∈ X, the
equation f = (T − A + ∂ϕog)(x) has a solution x∗. Because X is reflexive, by
Proposition 8.6.1, x∗ is a solution of variational inclusion (8.14), and it is also
a fixed point of the self-mapping S defined by (8.17).

We now break the proof into the following three steps:

Step 1: x∗ is the unique solution of (8.14) in X.
Suppose, for contradiction, u∗ ∈ X is another solution of (8.14). Then, u∗

is also a fixed point of S. Hence, we have

‖x∗ − u∗‖2 = 〈x∗ − u∗, J(x∗ − u∗)〉
= 〈Sx∗ − Su∗, J(x∗ − u∗)〉
= 〈f − (T −A + ∂ϕog)(x∗) + x∗

−(f − (T −A + ∂ϕog)(u∗) + u∗), J(x∗ − u∗)〉
= ‖x∗ − u∗‖2 − 〈(T −A + ∂ϕog)(x∗)

−(T −A + ∂ϕog)(u∗), J(x∗ − u∗)〉
≤ ‖x∗ − u∗‖2 − k‖x∗ − u∗‖2,

a contradiction. Hence x∗ = u∗.

Step 2: {xn} is bounded.
Because S(X) is bounded, let

K = sup{‖Sx− x∗‖+ ‖x1 − x∗‖ : x ∈ X}. (8.20)

Now we show that

‖xn − x∗‖ ≤ K for all n ∈ N. (8.21)

In fact, for n = 1 it follows from (8.20) that ‖x1 − x∗‖ ≤ K. Suppose (8.21) is
true for n = k ≥ 1, then for n = k + 1, we have

‖xk+1 − x∗‖ = ‖(1− αk)(xk − x∗) + αk(Sxk − x∗)‖
≤ (1− αk)‖xk − x∗‖+ αk‖Sxk − x∗‖
≤ K,
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Hence {xn} is bounded.

Step 3: xn → x∗.
From (8.18) and Proposition 2.4.6(b), we obtain that

‖xn+1 − x∗‖2 = ‖(1− αn)(xn − x∗) + αn(Sxn − x∗)‖2
≤ (1− αn)2‖xn − x∗‖2 + 2αn〈Sxn − x∗, J(xn+1 − x∗)〉
= (1− αn)2‖xn − x∗‖2 + 2αn〈Sxn − x∗, J(xn − x∗)〉

+2αn〈Sxn − x∗, J(xn+1 − x∗)− J(xn − x∗)〉. (8.22)

Observe that

〈Sxn − x∗, J(xn − x∗)〉 = 〈f − (T −A + ∂ϕog)(xn) + xn

−(f − (T −A + ∂ϕog)(x∗)− x∗), J(xn − x∗)〉
= ‖xn − x∗‖2 − 〈(T −A + ∂ϕog)(xn)

−(T −A + ∂ϕog))(x∗), J(xn − x∗)〉
≤ (1− k)‖xn − x∗‖2.

Set βn := |〈Sxn − x∗, J(xn+1 − x∗)− J(xn − x∗)〉|. Then

βn ≤ K‖J(xn+1 − x∗)− J(xn − x∗)‖∗.
Observe that

xn+1 − x∗ − (xn − x∗) = xn+1 − xn

= αn(Sxn − xn). (8.23)

Again because {xn}, {Sxn} are bounded, and αn → 0, hence, from (8.23), we
have

xn+1 − x∗ − (xn − x∗)→ 0 as n→∞.

By the uniform continuity of J , ‖J(xn+1 − x∗)− J(xn − x∗)‖∗ → 0. Thus, we
have

βn → 0. (8.24)

So from (8.22), (8.23), and (8.24), we have

‖xn+1 − x∗‖2 ≤ [(1− αn)2 + 2αn(1− k)]‖xn − x∗‖2 + 2αnβn

= (1 + α2
n − 2αnk)‖xn − x∗‖2 + 2αnβn

= [1− αnk + αn(αn − k)]‖xn − x∗‖2 + 2αnβn. (8.25)

Because αn → 0, there exists an n0 ∈ N such that αn < k for n ≥ n0. Hence
for any n ≥ n0, from (8.25) we have

‖xn+1 − x∗‖2 ≤ (1− αnk)‖xn − x∗‖2 + 2αnβn. (8.26)

Let an = ‖xn − x∗‖2, tn = αnk, bn = 2αnβn. Therefore, by Lemma 6.1.6,
xn → x∗ as n→∞.
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Exercises

8.1 Let C be a closed convex cone in a Hilbert space H and T : C → H a
mapping. Show that the following are equivalent:

(a) Find x ∈ C such that

Tx ∈ C∗ (dual cone) and 〈x, Tx〉 = 0. (C.P.)

(b) Find x ∈ C such that gx = x, where g : C → C is defined by

gx = PC(x− ρTx), and ρ > 0 is a real number.

8.2 Let C be a closed convex cone of a Hilbert space H. Show that the comple-
mentarity problem (C.P.) has a solution if and only if T (x) = PCx−TPCx
for x ∈ H has a fixed point in H. If x0 = Tx0, show that x = PCx0 is a
solution of the complementarity problem.

8.3 Let C be a nonempty compact convex subset of a normed pace X and
T : C → X a continuous mapping. Show that there exists a point u ∈ C
such that ‖u− Tu‖ = d(Tu,C).

8.4 Let K(s, t) and w(s, t) be continuous real functions on the unit square
[0, 1]2, and let v(s) be a continuous real function on [0, 1]. Suppose that

|w(s, t1)− w(s, t2)| ≤ N |t1 − t2| for all 0 ≤ t1, t2, s ≤ 1.

Show that there is a unique continuous real function y(s) on [0, 1] such
that

y(s) = v(s) +
∫ s

0

K(s, t)w(t, y(t))dt.

8.5 Let K(s, t, u) be a continuous function on 0 ≤ s, t ≤ 1, u ≥ 0 such that

|K(x, t, u1)−K(s, t, u2)| ≤ N(s, t)|u1 − u2|,
where N(s, t) is a continuous function satisfying∫ 1

0

N(s, t)dt ≤ k < 1,
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for every 0 ≤ s ≤ 1. Show that for every y ∈ C[0, 1], there exists a unique
function y ∈ C[0, 1] such that

y(s) = v(s) +
∫ 1

0

K(s, t, y(t))dt.



Appendix A

A.1 Basic inequalities

Lemma A.1.1 Let a, b ∈ R+ and 2 ≤ p <∞. Then we have the following:

(a) ap + bp ≤ (a2 + b2)p/2,

(b) (a2 + b2)p/2 ≤ 2(p−2)/2(ap + bp).

Proof. We note that both the inequalities hold if either a or b is zero. So we
prove the Lemma for a �= 0 and b �= 0.

(a) Because
a2

a2 + b2
≤ 1 and

b2

a2 + b2
≤ 1,

we have

ap

(a2 + b2)p/2
+

bp

(a2 + b2)p/2
=
(

a2

a2 + b2

)p/2

+
(

b2

a2 + b2

)p/2

≤ a2

a2 + b2
+

b2

a2 + b2
(since p/2 ≤ 1)

= 1

(b) It is obvious for p = 2. So, assume that p > 2. Set p′ := p/2 > 1 and
q′ = p′/(p′ − 1) = p/(p− 2). Then 1/p′ + 1/q′ = 1. By Holder’s inequality, we
have

a2 + b2 ≤ ((a2)p′
+ (b2)p′

)1/p′
(1q′

+ 1q′
)1/q′

= 2(p−2)/p(ap + bp)2/p,

which implies that

(a2 + b2)p/2 ≤ 2(p−2)/2(ap + bp).
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A.2 Partially ordered set

Let ≤ be a relation on a nonempty set X. Then the relation ≤ is said to be
partially ordered if it is

(i) reflexive: a ≤ a for all a ∈ X;
(ii) antisymmetric: a ≤ b and b ≤ a⇒ a = b for some a, b ∈ X;
(iii) transitive: a ≤ b and b ≤ c⇒ a ≤ c for some a, b, c ∈ X.
The ordered pair (X,≤) is called a partially ordered set.

Totally ordered (or linearly ordered) set - Let (X,≤) be a partially ordered
set. Then a subset S of X is said to be totally ordered or linearly ordered if for
all a, b ∈ S either a ≤ b or b ≤ a, i.e., all the elements of S are comparable.

Infimum and supremum of a set - Let X be a partially ordered set with
relation ≤ and let S be a nonempty subset of X. Then an element u ∈ X
(v ∈ S) is said to be an upper bound of S (a lower bound of S) if

x ≤ u for all x ∈ S (v ≤ x for all x ∈ S).

The least upper bound of S is called the supremum and it is denoted supS.
The greatest lower bound of S is called the infimum and it is denoted by inf S.

Minimum and maximum of a set - Let S be a nonempty subset of a partially
ordered set (X,≤). If inf S exists and belongs to S, then it is called a minimum
of S. Similarly, if supS exists and belongs to S, then it is called a maximum of S.

Minimal and maximal elements of a set - Let (X,≤) be a partially ordered
set. An element m ∈ X is said to be minimal if x ≤ m for x ∈ X ⇒ x = m.
Similarly, an element m ∈ X is said to maximal if m ≤ x for x ∈ X ⇒ x = m.

We now state a very useful lemma that is known as Zorn’s lemma.

Lemma A.2.1 (Zorn’s Lemma) - Let (X,≤) be a partially ordered set in
which every chain has an upper bound. Then X has a maximal element.

A.3 Ultrapowers of Banach spaces

Let Λ denote an index set.

Definition A.3.1 Let F be a nonempty family of subsets of Λ. Then the family
F is said to be a filter on Λ if

(F1) F is closed under super set:

A ∈ F and A ⊆ B ⊆ Λ⇒ B ∈ F ,

(F2) F is closed under intersection:

A,B ∈ F ⇒ A ∩B ∈ F .
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Observation
• 2Λ, the power set of index set Λ, defines a filter.

• A filter F is proper if F �= 2Λ.

For i0 ∈ Λ, let Fi0 = {A ⊆ Λ : i0 ∈ A}. Then a filter of the form Fi0 for
some i0 is called a non-free filter.

Definition A.3.2 Let U be a filter on Λ. Then U is said to be an ultrafilter on
Λ if it is maximal with respect to ordering of filters on Λ by inclusions, i.e., if
U ⊆ F and F is a filter on Λ, then F = U .

Observation
• If U is an ultrafilter on Λ, then it is not properly contained in any other filter

on Λ.

Definition A.3.3 Let (X, τ) be a topological space, U an ultrafilter on Λ and
{xi}i∈Λ a subset in X. We say

lim
U

xi(≡ τ − lim
U

xi) = x

if for every neighborhood U of x we have {i ∈ Λ : xi ∈ U} ∈ U .

Observation
• If X is a Hausdorff topological space, then the limit along U of the set {xi}i∈Λ

in X is always unique.

• If {xn} is a bounded sequence in R and U is an ultrafilter on N, then lim
U

xn

exists and
lim inf
n→∞

xn ≤ lim
U

xn ≤ lim sup
n→∞

xn.

We now give basic properties of ultrafilter.

Proposition A.3.4 Let X be a Hausdorff topological vector space and U an
ultrafilter over an index set Λ. If {xi}i∈Λ and {yi}i∈Λ are two subsets of X
such that lim

U
xi and lim

U
yi exist,

lim
U

(xi + yi) = lim
U

xi + lim
U

yi

and
lim
U

αxi = α lim
U

xi for any scalar α ∈ K.

Proposition A.3.5 Let {xn} be a sequence in a metric space X and U an
ultrafilter (over an index set N) such that lim

U
xn = x. Then there exists a

subsequence of {xn} that converges to x.

Proposition A.3.6 Let X be a Hausdorff topological space. Then X is compact
if and only if lim

U
xi exists for all {xi}i∈I ⊂ X and any ultrafilter over Λ.
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Now we are in position to define an ultrapower of a Banach space:

Let X be a Banach space and U an ultrafilter over an index set Λ. Let
∞(X) denote the space

{{yn} : yn ∈ X and {‖yn‖} ∈ ∞}

with the norm ‖{yn}‖�∞(X) := sup
n∈N

‖yn‖ and let N be the closed subspace of

∞(X)
{{yn} : yn ∈ X and lim

U
‖yn‖ = 0}.

Definition A.3.7 Let X be a Banach space. Then the Banach space ultrapower
of X over U is defined to be the Banach space quotient

{X}U := ∞(X)/N .

The norm ‖ · ‖U in {X}U is the usual quotient norm, i.e., ‖{xi}‖U = lim
U
‖xi‖.

We now give some useful properties of an ultrapower of Banach spaces.

Proposition A.3.8 Let X be a Banach space. Then {X}U is a Banach space.

Proposition A.3.9 The ultrapower {X}U of a Banach space X contains a
subspace isometrically isomorphic to X.

Observation
• X is a subspace of {X}U .

• {H}U is a Hilbert space, i.e.,

‖{xi} + {yi}‖2
U + ‖{xi} − {yi}‖2

U = 2‖{xi}‖2
U + 2‖{yi}‖2

U for all {xi}, {yi} ∈ {H}U .

Proposition A.3.10 The ultrapower {X}U of a Banach space X is finitely
representable in X.
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