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Key Points

● Testicular ultrasound is the initial investigative tool with regard to scrotal 
masses.

● Testicular cancer has a five-year survival rate exceeding 95 percent.
● Ninety-five percent of all testicular tumors are germ cell tumors.
● The sensitivity of testicular ultrasound in detecting testicular tumors is almost 

100 percent.
● Computed tomography is used for staging metastatic disease and for follow-up 

after therapy in patients with disseminated disease.
● Positron emission tomography and MRI adds little to the management of clinical 

stage I non-seminoma germ cell cancer.

1 Introduction

The male reproductive system includes those organs whose function is to accom-
plish reproduction. This consists of testes, which produce spermatoza and hor-
mones, a series of ducts that store and transport the sperm, seminal vesicles, the 
prostate and the penis.

Cancer of the male reproductive system includes testicular, prostatic and penile 
neoplasms. Testicular cancer is the most common cancer in men between 15- to 
35-years–old, and about 36,000 men are diagnosed with testicular cancer each year. 
Prostate cancer is the most frequently diagnosed malignancy in males. Cancer of 
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the penis is rare in western males, but more common in South East Asia and India. 
It is most often diagnosed in men over the age of 60 years. This chapter will present 
an overview of imaging of male reproductive tract malignancies.

2 Prostate Cancer

Prostate cancer is the most frequently diagnosed malignancy in western males and 
the incidence is increasing [1]. It is predicted that in 2007 in the United States alone 
218,890 men will be diagnosed with prostate cancer [1]. This is partly due to a 
growing population of elderly man, but a major factor is the expanding use of the 
prostate-specific antigen (PSA) test as a prostate cancer biomarker. Between 1989 
and 2002, the age-standardized incidence rate of  prostate cancer increased by 21.3 
percent in the United States. However, at the same time epidemiological surveys 
demonstrated decreased prostate cancer  mortality in several countries since 1993. 
This decrease in mortality is mostly attributed to earlier diagnosis with a reduction 
in the number of men with distant metastases. From autopsy studies it is known that 
prostate cancer can be found in 55 percent of men in their fifth decade and 64 per-
cent in their seventh decade, respectively [2-4]. Prostate cancer is very common in 
elderly males, and it occurs with a lifetime risk of one in 10 [1]. However, only one 
in eight of these men will die from this disease [1].

All patient and tumor characteristics must be evaluated to determine the treat-
ment that optimally suits the individual patient. Most often, PSA level, the results 
of digital rectal examination and histopathological biopsy findings are used for this 
purpose. However, imaging plays an important role to detect, localize and to stage 
prostate cancer. This directly influences the diagnostic work-up and may lead to 
important changes in treatment strategy.

2.1 Prostate Anatomy

On the basis of its embryological origins the prostate is anatomically divided into 
three zones that are eccentrically located around the urethra: the innermost transi-
tion zone, the central zone and the outermost peripheral zone [5, 6]. In older 
patients the former two cannot be distinguished radiologically due to compression 
of the central zone by benign prostatic hyperplasia (BPH) in the transitional zone; 
therefore they are collectively referred to as the central gland, as opposed to the 
outer gland, which is composed of the peripheral zone. The prostate is divided into 
the apex and the base. The latter is directed upward and is applied to the inferior 
surface of the  bladder. The apex is directed downward and is in contact with the 
superior fascia of the urogenital diaphragm.

There is still a debate about whether the prostate has a capsule or not. The pros-
tate is surrounded by a thick layer of fibromuscular tissue corresponding to the 
capsule. The ‘true’ prostatic capsule, however, is a thin (0.5 to 2 mm) layer of con-
nective tissue located externally to the peripheral zone. Around this layer there is a 
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pelvic fascia, often called the “false” prostatic capsule. Satter, et al. considered the 
prostate capsule as an extension of the prostate parenchyma itself [7, 8].

The periprostatic venous plexus surrounds the gland and drains into the internal 
iliac veins and the presacral veins. The neurovascular bundles course along the 
posterolateral aspect of the gland and is a preferential path for tumor spread due to 
small nerve branches penetrating the prostate capsule in this area.

Knowledge of the zonal anatomy of the prostate is useful considering that many 
prostatic diseases have a zonal distribution. More than 70 percent of adenocarci-
noma of the prostate arises in the peripheral zone, whereas about 20 percent emerge 
in the transitional zone and 10 percent in the central zone.

2.2 Detection and Localization of Prostate Cancer

In its early stage prostate cancer is commonly asymptomatic because most cancers are 
located in the peripheral zone. A few patients have symptoms of the lower urinary tract 
due to obstruction. Prostate cancer patients rarely present with symptoms of haematuria 
or haematospermia. Prostate cancer is suspected in patients with elevated PSA values.

The urologic work-up in patients with elevated PSA consists of a digital rectal 
examination and transrectal ultrasound (TRUS). The positive predictive value of a 
digital rectal examination in the detection of prostate cancer depends on the patient’s 
age, race, and serum PSA value. In a screening population the positive predictive 
value varies from 4 percent to 11 percent (PSA 0 to 2.9 ng/mL), and from 33 
 percent to 83 percent (PSA > 3 ng/mL) [9, 10]. The reproducibility and the  inter-
observer agreement of a digital rectal examination are limited [11, 12].

2.3 Transrectal Ultrasound (TRUS)

Grayscale TRUS appearance of prostate cancer is a hypoechoic lesion in the periph-
eral zone. Other conditions such as prostatitis and prostatic intraepithelial neoplasia 
may also present as hypoechoic lesions (Fig. 14.1) [13, 14]. It is important to note 
that over 40 percent of prostate cancer lesions are isoechoic while only 5 percent 
are hyperechoic [15]. The positive predictive value of the hypoechoic lesion in the 
average urologic population ranged from 18 percent to 53 percent [16]. The systematic 
TRUS-guided biopsy protocol (sample tissue at standard locations) has become the 
most common biopsy technique [17]. The number of cores taken per session varies 
across institutions. Prostate cancer detection rates have varied from 19 percent to 
40 percent [18, 19] and repeat biopsy sessions are often necessary [20].

Color Doppler TRUS – Doppler imaging enables the detection of blood flow to 
or from the ultrasound probe. Increased blood flow due to neovascularity is one of 
the characteristics of prostate cancer. Doppler enhancement correlated with the 
microvessel density and Gleason score of a lesion in a study of 96 patients with 
lower urinary tract symptoms, and PSA levels over 4 ng/ml [21]. Prostate cancer 
detection rates up to 40 percent were detected using Doppler TRUS [22]. Doppler 
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TRUS imaging resulted in a high inter-observer variability [23, 24] and wide vari-
ation in sensitivity and specificity of 27 percent to 92 percent and 46 percent to 84 
percent, respectively.

Contrast-enhanced TRUS – A new development is the application of gas-filled 
microbubble contrast agents (Fig. 14.2.). The microbubbles remain intravascular and, 
thus, act as blood pool agents. Disadvantages of using contrast agents are the longer 
duration and higher degree of invasiveness of the examination: however, the risk of 
hypersensitivity to the substance is rare. Contrast agent-specific imaging techniques have 
been developed to optimize microbubble signal reception while preserving the micro-
bubbles. Until now, three studies directly compared systematic and contrast-enhanced-
targeted TRUS biopsy [25-27]. These studies showed significantly higher positive 
biopsy core rates when directing biopsy, based on focal areas of contrast enhancement. 
Sensitivities and specificities of prostate cancer detection using contrast agents varied 
between 48 percent to 94 percent and 46 percent to 88 percent, respectively.

Sonoelastography – A novel ultrasound technique that analyzes the compres-
sional characteristics of prostate tissue is transrectal sonoelastography. In a recent 
study of 404 men undergoing biopsy based on real-time sonoelastography revealed 
a detection rate of 37.4 percent [28]. A drawback of the study was the heterogeneity 
of the population since more than half of the patients had already undergone one or 
more negative biopsy sessions. A study comparing real-time elastography with 
radical prostatectomy reported a localization sensitivity of 88 percent [29].

2.4 Computed Tomography (CT)

A study by Prando and Wallace revealed that contrast-enhanced CT scanning was 
able to detect only 58 percent of the 102 histologic prostate cancer sites documented 

Fig. 14.1 Axial gray-scale transrectal ultrasound image of the prostate of a 55-year-old man 
(PSA level, 5.7 ng/mL, Gleason sum score, 7 and normal digital rectal examination). A hypo-
echoic lesion was observed in the right peripheral zone (arrows)
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by TRUS-guided biopsies in 25 patients [30]. CT scanning has too little soft tissue 
contrast resolution to discern the subtle tissue changes due to prostate cancer. CT 
should not be used for prostate cancer detection and localization.

2.5 Magnetic Resonance Imaging (MRI)

Anatomical MRI – MRI of the prostate is performed using a combination of an 
endorectal and pelvic phased array coils. On T2-weighted MR images, in the 
peripheral zone normal prostate tissue appears as an intermediate to high signal 
intensity, while the central gland has lower signal intensity than the peripheral zone 
(Fig. 14.3.). Conversely, the prostate has a homogeneous, intermediate signal inten-
sity on T1-weighted images. This means differentiation between the peripheral 
zone and central gland cannot be perceived.

On MRI prostate cancer appears as an area of low signal intensity within the 
brighter, healthy peripheral zone using a T2-weighted sequence (Fig. 14.4.). In the cen-
tral gland, prostate cancer is not as clearly discernable because the central gland gener-
ally has lower signal intensity than the peripheral zone, and it is more inhomogeneous 
due to BPH-induced architectural changes that may mimic prostate cancer. In addition 
to carcinoma, the differential diagnosis of an area of low signal intensity includes post-
biopsy hemorrhage, prostatitis, BPH, effects of hormone or radiation treatment, scars, 
calcifications, smooth muscle hyperplasia and fibromuscular hyperplasia

MRI plays no role as a screening imaging modality in patients with suspected 
prostate cancer. In patients with a prior negative TRUS-guided biopsy, T2-weighted 

Fig. 14.2 Contrast-enhanced transrectal ultrasound image in contrast-harmonic mode. After a 
2.4 ml bolus injection of microbubble contrast agent an area of enhancement in the right lateral 
peripheral zone (arrows) was visible and showed marked enhancement, compared with the rest of 
the peripheral zone. A symmetrical enhancement of the central gland (arrowheads) was observed
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Fig. 14.3 Normal prostate in a 28-year-old man. T2-weighted MRI image shows peripheral zone 
(PZ) with intermediate to high signal intensity. Small central gland (CG) has lower signal intensity 
than does the peripheral zone. The neurovascular bundle is located at the posterolateral aspect of 
the gland (curved arrow)

Fig. 14.4 55-year-old man (same patient as in Fig. 14.1) with stage T2a prostate cancer in the 
right peripheral zone. The T2-weighted MRI image shows that the tumor (arrows) has a lower 
signal intensity compared with the rest of the peripheral zone
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MRI plays an important role. In this patient population an 83 percent sensitivity and 
a 50 percent positive predictive value for MRI have been established [31].

Proton MR spectroscopic imaging (MRSI) – provides quantitative metabolic 
data based on the citrate, choline and creatine levels, as well as their ratios. MRSI 
can be used for detection and localization of prostate cancer (Fig. 14.5) [32, 33]. 
The addition of MRSI to MRI increased the localization accuracy of MRI, particularly 
by raising specificity up to 91 percent [34]. However, a limitation of MRSI is its 

Fig. 14.5 In (a), the position of the voxel of which spectrum (b) and (c) originate from is indicated. 
The axial T2-weighted image of this patient shows a low signal intensity in the right peripheral zone 
which is suspicious for prostate cancer. MRI spectra (b) from a voxel in healthy left peripheral 
zone (high level of citrate and normal low level of choline and creatine) and from a voxel (c) that 
contained prostate cancer (decreased level of citrate and increased level of choline and creatine)
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low spatial resolution. MRSI significantly increased the area under the receiver 
operating curve, from 0.68 with regular anatomical MRI to 0.80 [35].

Dynamic contrast-enhanced MRI (DCE-MRI) – DCE-MRI is a technique in which 
the contrast agent concentration is followed in time [36]. This technique is reported to be 
an effective tool in visualizing the pharmacokinetics of gadolinium uptake in the prostate 
[37-39]. Early contrast enhancement and high (relative) peak enhancement are the most 
accurate predictors of prostate cancer of the peripheral zone, while washout of the con-
trast agent and high permeability of the blood vessels are most sensitive for central gland 
prostate cancer [40, 41]. A recent study showed that the area under the receiver operating 
curve for localizing prostate cancer increased significantly, from 0.68 with anatomical 
T2-weighted MRI, to 0.91 by applying contrast agent (Fig. 14.6) [35].

Fig. 14.6 MR images of the prostate of 65-year-old man with prostate cancer (prostate-specific 
antigen level, 8.4 ng/mL, Gleason sum score, 6 and normal digital rectal examination). (a) Axial T2-
weighted MRI image through the prostate shows a low signal intensity lesion in the left peripheral 
(arrows). (b–d) Pharmacokinetic maps of calculated Ktrans (b) and k

ep
 (c) showing increased levels of 

Ktrans and k
ep

 in the left peripheral zone. (d) Pharmacokinetic map shows a negative wash-out area (red) 
in the left peripheral zone. Histopathology after radical prostatectomy revealed a T2a tumor in the left 
peripheral zone
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2.6 Positron Emission Tomography (PET)

Positron emission tomography – the utility of PET scanning with 18-fluorine-labelled 
deoxyglucose (18FDG) in detecting prostate cancer is compromised by the relatively 
low uptake of 18FDG by prostate cancer cells [42], and significant overlap with 
marker uptake by benign prostatic hyperplasia, fibrosis and inflammation. Generally, 
18FDG-PET is not recommended for evaluation of the prostate due to sensitivities as 
low as 4 percent to 64 percent, with a specificity of 50 percent [43-45].

Another tracer – carbon-11 labelled choline (11C-choline) – accumulates in 
prostatic cells and has the advantage that, unlike 18FDG, it is not excreted via the 
urinary tract, and thereby does not interfere with the visualization of the prostate 
(Fig. 14.7). Furthermore, the prostate is the only organ in the pelvis to accumulate 
11C-choline. The 11C-choline uptake was higher in prostate cancer, compared with 
benign prostatic hyperplasia, but the difference was not statistically significant 
[46]. Drawbacks are the high costs of 11C-choline and its short, 20-minute half-life.

Fig. 14.7 11C-choline PET-CT image in a 58-year-old patient. 11C-choline uptake is visible in the 
right central gland which corresponded with a local prostate cancer
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2.7 Staging of Prostate Cancer

Clinical staging of prostate cancer currently entails the use of digital rectal exami-
nation, PSA as well TRUS. It is now common practice for clinicians treating prostate 
cancer patients to employ nomograms to determine therapeutic options [47-49]. 
The most frequently used nomogram, the Partin tables, estimates the chance of 
organ-confined disease, capsular penetration, seminal vesicle invasion and lymph 
node metastasis, based on the results of the traditional triad of digital rectal exami-
nation, biopsy Gleason score and PSA value [50]. The clinical stage is identified 
using these variables and is expressed in the TNM staging classification (Table 14.1) 
[51]. The current general opinion is that localized prostate cancer can be treated 
successfully by radical prostatectomy or radiation therapy. Nevertheless, advan-
tages of aggressive treatment over watchful waiting in terms of quality-adjusted life 
expectancy are often small, leading to controversies about the adequate treatment.

Table 14.1 TNM Staging Classification of Prostate Cancer [51]

Stage

Primary Tumor

TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
T1 Clinically the tumor is neither palpable or visible with imaging
T1a Tumor is an incidental histologic finding in 5 percent or less of tissue resected
T1b Tumor is an incidental histologic finding in > 5 percent of tissue resected
T1c Tumor identified with needle biopsy (e.g., because of an elevated PSA)
T2 Tumor confined within the prostate
T2a Tumor involves one-half of one lobe or less
T2b Tumor involves more than one-half of one lobe, but not both lobes
T2c Tumor involves both lobes
T3 Tumor extends through the prostate capsule
T3a Extra-capsular extension (unilateral or bilateral)
T3b Tumor invades seminal vesicle(s)
T4 Tumor is fixed or invades adjacent structures other than seminal vesicles: 
  bladder neck, external sphincter, rectum, levator muscles and/or pelvic wall

Regional Lymph Nodes

NX Regional lymph nodes were not assessed
N0 No regional lymph node metastasis
N1 Metastasis in regional lymph node(s)

Distant Metastasis

MX Distant metastasis cannot be assessed (not evaluated with any modality)
M0 No distant metastasis
M1 Distant metastasis
M1a Non-regional lymph node(s)
M1b Bone(s)
M1c Other site(s) with or without bone disease
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Clinical assessment by digital rectal examination and PSA level are not accurate 
in determining local stage, with underestimations in as many as 40 percent to 60 
percent of cases [52, 53]. Accurate staging with additional imaging techniques is, 
therefore, an important issue for correct management of prostate cancer patients.

TRUS – TRUS may enable correct assessment of locally advanced tumors, but 
it is not sensitive enough to detect initial extraprostatic extension across the capsule 
or into the seminal vesicles in clinically confined lesions [54, 55]. Any change of 
the prostatic capsule, like bulging or irregularity, adjacent to a hypoechoic lesion is 
suspicious of extracapsular extension. Accuracies of gray-scale TRUS in determin-
ing the local disease stage varied from 58 percent to 83 percent, with sensitivities 
and specificities ranging from 33 percent to 76 percent and 46 percent to 91 percent, 
respectively [54, 56-59]. Three-dimensional TRUS aids in assessing local disease 
extension [58]. Duplex Doppler TRUS and contrast-enhanced TRUS are new methods 
to study tumor vascularity. These blood flow-enhancing TRUS techniques have the 
potential to improve the local staging of prostate cancer [26]. Future research will 
indicate their exact role.

CT – Few recent studies have been published on role of CT for staging prostate 
cancer [60–63]. A pre-radiation therapy staging study of 85 patients showed that CT 
staging had only a marginal effect on treatment decisions [60]. CT has no use in 
assessing clinically confined lesions [61]. Two other studies revealed low sensitivity 
of 26 percent to 29 percent, and specificity of 80 percent to 89 percent [62, 63].

MRI – A large number of studies have been performed over the last two decades 
to show the accuracy of MRI in local staging of the prostate. Two meta-analyses on 
local staging by MRI found combined maximum sensitivities and specificities of 
71 percent to 74 percent, while sensitivity was 62 percent to 69 percent at a specificity 
of 80 percent [64, 65]. T2-weighted MRI in more than one plane, as well as utiliz-
ing an endorectal coil, resulted in significantly better staging performance. The use 
of endorectal-pelvic phased array coils is recommended. Significant improvement 
of anatomic details, extracapsular extension accuracy and specificity was found when 
an endorectal-pelvic phased-array coil is used [53]. MRI should be performed at 
least four weeks after prostatic biopsy. T1-weighted sequence should be acquired 
for evaluation of post-biopsy hemorrhage.

The most reliable criteria for the detection of extracapsular extension of prostate 
carcinoma are asymmetry of the neurovascular bundle (Fig. 14.8), obliteration of the 
rectoprostatic angle and tumor bulge into the periprostatic fat (Fig. 14.9) [66]. 
Seminal vesicles on T2-weighted images appear as tubular structures with thin hypo-
intense walls and filled with hyper-intense fluid. The diagnosis of seminal vesicle 
invasion is made when focal or diffuse thickening (hypo-intense) of the tubular walls, 
associated with focal hypo-intense luminal lesions, is present (Fig 14-10).

The most cost-effective patient group to undergo local staging with endorectal 
MRI are those considered to have an intermediate risk of T3 disease, based on PSA 
level (between 4 to 20 ng/mL), and a Gleason score of five to seven [67]. Jager, et al. 
developed a decision analysis model that supported the position that MRI in the pre-
operative work-up of prostate cancer is cost-effective in patients with a moderate to 
high chance of extra-capsular disease, and should be performed with an emphasis on 



Fig. 14.8 60-year-old man with stage T3a disease (T) in the left peripheral zone and central 
gland. T2-weighted MRI image shows invasion of the neurovascular bundle (curved arrow). 
Obliteration of the left rectoprostatic angle (arrow), but the right neurovascular bundle and recto-
prostatic angle are intact

Fig. 14.9 51-year-old man with stage T3a disease in the right peripheral zone. T2-weighted MRI 
image shows that the tumor (T) has lower signal intensity than the normal peripheral zone and 
shows bulging (arrows) and broad surface contact with capsule
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achieving high specificity [68]. Langlotz, et al. emphasized the need of high-spe-
cificity reading in prostate MRI to ensure that as few patients as possible are 
unnecessarily denied potential curative therapy because of false positive MRI 
results [69].

A substantial improvement in overall staging accuracy of endorectal MRI can be 
achieved by careful pathologic correlation and by considering the anatomic fea-
tures of prostate cancer. A prospective study of 103 patients revealed a significant 
improvement in staging performance for the less experienced reader using multislice 
dynamic contrast-enhanced MRI [70]. Also, the addition of three-dimensional 
MRSI to MRI improved staging accuracies, particularly for less experienced read-
ers [71]. Imaging at higher magnetic field strengths (e.g., 3 tesla) results in 
increased anatomical resolution. Two recent studies on local staging with 3T MRI 
reported a sensitivity and specificity of 80 percent to 88 percent and 94 percent to 100 
percent, respectively [72, 73].

Positron emission tomography – The role of 18FDG-PET in local staging is very 
limited due to this technique’s low spatial resolution and the low uptake within the 
primary tumor [74].

Fig. 14.10 Seminal vesicle invasion in 58-year-old patient. Axial T2-weighted MRI image 
through seminal vesicles shows a low signal intensity within the lumen of the seminal vesicles and 
thickening of the tubular walls
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2.8 Lymph Node Staging

Pelvic lymph node metastases have a significant effect on the prognosis of patients 
with malignancies. One positive lymph node can turn prostate cancer from a local 
to a systemic disease unsusceptible to curative treatment [75, 76]. Surgical open 
pelvic lymph node dissection with histopathological examination is currently the 
most reliable method of assessing lymph node status.

Abdominal ultrasound plays no role in this phase of staging [77]. Routine cross-
sectional imaging modalities, such as CT and MRI, have a limited sensitivity in 
identifying metastases [78-80]. CT and MRI interpretation of lymph nodes is essen-
tially based on size and shape criteria. These techniques only use the size (8 to 
10 mm) and shape (round – oval) criteria and, therefore, are limited [80]. In a study 
of 80 patients, Harisinghani, et al. found a 35 percent sensitivity and 90 percent specifi-
city of detection of positive lymph nodes using anatomical MRI node-by-node [81].

MR lymphangiography (MRL) uses intravenously administered lymphotropic 
ultrasmall superparamagnetic iron-oxide (USPIO) particles (Ferumoxtran-10) with a 
long plasma circulation time and is a novel, non-invasive cellular imaging tool for the 
evaluation of nodal involvement. MRL is an accurate tool to differentiate benign from 
malignant lymph nodes [82, 83]. Post-ferumoxtran-10 MRI exam includes both a 
sequence which is insensitive for iron using T1- or proton-weighted turbo spin echo 
sequences, and a sequence which is sensitive for iron (Fig. 14.11). For the latter pur-
pose, a good sequence is a high resolution T2-weighted gradient echo sequence. 
Ferumoxtran-10-enhanced MRI achieved a 97.3 percent accuracy with high sensitivity 
(90.5 percent) and specificity (97.8 percent) on a node-by-node basis [81]. Harisinghani, 
et al. achieved a sensitivity of 100 percent and a specificity of 96 percent for detection 
of 5 to 10 mm nodes with 1.5T MRI. However, when the metastatic lymph node was 
smaller than 5 mm, this sensitivity dropped to 41 percent. Ferumoxtran-10-enhanced 
MRI at a 3T field strength using a higher spatial resolution with improvement of image 
quality may allow detection of small metastatic nodes (<5 mm) in the future [84].

Although very promising in metastatic lung cancer, the role of 18FDG-PETscanning 
is limited in the urinary tract region, as 18F-fluorodeoxyglucose accumulates in the 
urinary bladder and kidneys. This makes an evaluation of metastases at these sites 
difficult. In prostate cancer this method is further limited by its low uptake in metastatic 
nodes. Although the sensitivity of 18FDG-PET is slightly better (67 percent), 
compared to those of CT and unenhanced MRI, this value is, however, not high 
enough to replace pelvic lymph node dissection (Fig. 14.12) [85].

2.9 Metastatic Bone Disease

The first diagnostic test to detect or exclude bone metastases is the technetium-
99m-diphosphonate bone scintigraphy (Fig 14.13). A meta-analysis of 23 pros-
tate cancer studies deduced detection rates of 2.3 percent, 5.3 percent and 16.2 
percent for patients with PSA levels below 10 ng/mL, between 10 and 19.9 ng/mL 
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Fig. 14.11 Normal size lymph node (8 mm) in the right obturator fossa in a 60-year-old male with 
biopsy proven prostate cancer (PSA 15.3 ng/mL; Gleason score 7). On post ferumoxtran-10 T2-
weighted gradient echo MRI image (which is iron sensitive) this normal sized node remains white 
(circle). On histopathology this node was completely metastatic

and between 20 to 49.9 ng/mL, respectively [86]. In a large study it was found 
that, in patients with levels below 20 ng/mL, the false negative rate was less than 
2 percent [87]. Bone scintigraphy lacks specificity and, thus, primary skeletal 
diseases may cause false positive findings. X-ray can be used to exclude false 
positive findings on bone scintigraphy due to conditions such as trauma, degen-
erative joint disease or other chronic diseases. Conventional X-rays are too insen-
sitive for the detection of metastatic bone lesions. Most metastatic bone lesions 
are sclerotic [88]. A 50 percent change in bone mineral density is needed for 
metastatic bone lesions to be visible on X-ray images [89]. CT has no place in 
determining metastatic bone disease.

The high spatial resolution and excellent soft tissue contrast make MRI an ideal 
tool for the detection of osseous lesions. Whole-body MRI appears to be a very 
sensitive tool to determine bone marrow metastases and, in less than 15 minutes, is 
feasible for tumor staging [90]. Advantages of MRI are the absence of radiation 
exposure, as well as the ability to also detect non-skeletal metastases.
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Purely sclerotic lesions take up 18F-FDG less avidly, compared to purely lytic or 
mixed metastases. Bone metastases in prostate cancer are commonly sclerotic 
lesions. 18F-FDG-PET is considered to be inferior to bone scintigraphy [91]. An 
important role of PET imaging may lie in its early ability to detect treatment 
response in patients with metastatic disease who are receiving chemotherapy.

2.10 Conclusions

TRUS remains the primary imaging tool for the detection of prostate cancer and for 
guiding prostate biopsy. Functional MRI achieves high localization rates. MRI of the 
prostate can be used as a problem-solving tool in patients with rising PSA and repetitive 
negative biopsies. MRI at 1.5T, using an endorectal coil combined with a pelvic 
 phased-array coil, is currently the optimal choice for determining the local disease stage 
in prostate cancer patients. Dynamic contrast-enhanced MRI and MR spectroscopic 
 imaging may be used to increase the staging accuracy for less experienced readers. The 

Fig. 14.12 11C-choline PET-CT image of the same patient as in Fig. 14.11. The metastatic node 
in right obturator fossa demonstrated uptake of 11C-choline. This is indicative of lymph node 
metastasis
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Fig. 14.13 Technetium-99 m-diphosphonate bone scintigraphy in a patient with bone metastases 
(PSA 82 ng/mL). Anterior and posterior whole body delayed planar imaging was performed. 
Planar bone scan imaging demonstrates a substantial focus of increased uptake at the level of 
thoracic spine level 2/3/4, as well as at the left aspect of the approximate T7 and T12. There is 
also moderate increased focal uptake at L3, the right sacroiliac joint, sacrum, as well as the level 
of the fifth (left) and seventh (right) rib

role of PET in local staging is limited. MR lymphangiography using ultrasmall super-
paramagnetic iron-oxide particles is the most sensitive and specific method for  detecting 
lymph node metastases. Bone scintigraphy is the most sensitive method for detection of 
bone metastases. However, FDG-PET and whole body MRI are promising modalities 
for detection and assessment of response to therapy.

Key Points

● The urologic work-up in patients with elevated PSA consists of a digital rectal 
examination and transrectal ultrasound.

● Transrectal ultrasound is the primary imaging tool for the detection of prostate 
cancer.
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● More than 70 percent of adenocarcinoma of the prostate arises in the peripheral 
zone, whereas about 20 percent emerge in the transitional zone and 10 percent 
in the central zone.

● Computed tomography should not be used for prostate cancer detection, locali-
zation and staging.

● Dynamic contrast-enhanced MRI and MR spectroscopic imaging can be used 
for localization of prostate cancer, and to increase the staging accuracy for less 
experienced readers.

● The optimal sensitivity and specificity for the detection of lymph node metastases is 
achieved by using MRI using ultra-small superparamagnetic iron-oxide particles.

● Bone scintigraphy remains the single most sensitive method of detecting bone 
metastases.

2.11 Testicular Cancer

Testicular germ cell cancer accounts for only 1 percent of all cancer in males [92]. 
The peak prevalence occurs between 25 and 35 years of age. The incidence of 
testicular cancer has doubled in the last 40 years. Bilateral tumors are found in 0.7 
percent of men with germ cell tumors at diagnosis, and 1.5 percent of patients 
develop metachronous lesions within five years [93].

Once the leading cause of cancer death in men between 15 and 35 years of age, 
it has now proved to be a model of success with a five-year survival rate exceeding 
95 percent [94]. This success in treatment is related to improved staging and treat-
ment methods. Imaging plays a central role in assessment of tumor bulk, sites of 
metastases, monitoring response to therapy, surgical planning and accurate assess-
ment of disease at relapse [95].

2.12 Clinical Symptoms of Testicular Cancer

The most common sign of testicular germ cell cancer is a painless unilateral mass 
in the scrotum, which is inseparable from the testis (up to 95 percent of cases)[96]. 
In 20 percent of the cases, the first symptom is scrotal pain, followed by back and 
flank pain in 11 percent. Gynecomastia appears in 7 percent of the cases [97]. 
Although differential diagnosis must be established with any other intrascrotal 
mass or disease, any scrotal complaint at a young age needs to be thoroughly inves-
tigated to rule out testicular germ cell cancer.

2.13 Pathology of Testicular Germ Cell Cancer

Ninety-five percent of all testicular tumors are germ cell tumors (Fig. 14.14). The 
remaining are lymphomas (4 percent) and Leydig or Sertoli cell tumors. Testicular 
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germ cell tumors are derived from spermatogenic cells and may be classified as 
unipotential or totipotential. Unipotential tumors are seminomas, which comprise 
35 percent to 50 percent of all germ cell tumors. Nonseminomatous germ cell 
tumors are considered to be totipotential.

Serum tumor markers are especially helpful to differentiate germ cell tumors 
from each other and from other malignancies. Serum concentrations of alpha-feto-
protein (AFP) and/or beta-human chorionic gonadotropin (beta-hCG) are elevated 
in 80 percent to 85 percent of non-seminomas. In contrast, serum beta-hCG is 
 elevated in fewer than 25 percent of testicular seminomas, and AFP is not elevated 
in pure seminomas. However, these tumor markers cannot accurately assess disease 
bulk or locate sites of tumor spread [95].

2.14 Diagnosis of Testicular Cancer

The first step in diagnosing testicular cancer is usually through self-examination. 
Testicular ultrasound is used to confirm the presence of a testicular mass (Fig. 14.15), 
to distinguish from other scrotal abnormalities and to explore the contralateral testis 
[98-102]. The sensitivity of testicular ultrasound in detecting testicular tumors is 
almost 100 percent [103]. Furthermore, ultrasound is almost 100 percent sensitive 
in differentiating intratesticular from extratesticular lesions [102, 104, 105] and is 
able to detect microlithiasis (Fig. 14.16). Extratesticular lesions are commonly 
benign in adults, whereas in children these lesions are often malignant [106]. 
Microlithiasis should be cautiously followed up, since it can be associated with 
testicular germ cell cancer [107]. Serum tumor markers contribute to the diagnosis. 
At the time of the diagnosis a chest radiography is used to evaluate the mediastinum 
for lymphadenopathy, and the lungs for haematogenous metastases. After a testicu-
lar tumor has been clinically diagnosed, the inguinal ablation of the testis is indi-
cated (Fig. 14.17).

Fig. 14.14 (a) Seminomatous germ cell cancer. (b) Histopathology of normal testis (left) with 
adjacent seminomatous germ cell cancer (right)
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Fig. 14.15 Testicular ultrasound of a testis with increased vascular flow at the cancerous part

Fig. 14.16 The appearances of testicular microlithiasis (‘snow storm’ appearance on ultrasound)
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2.15 Staging of Testicular Cancer

As soon as the diagnosis of germ cell cancer has been pathologically confirmed, 
further staging examinations are warranted to examine the extent of disease. 
Staging is of utmost importance as it is the cornerstone for further treatment after 
orchiectomy. The European Germ Cell Cancer Consensus Group (EGCCCG) rec-
ommends that TNM staging be used [51] (Table 14.2). The most commonly used 
staging system in Europe for dissemination is the Royal Marsden Hospital 
Classification system (Table 14.3) [108]. Today, computerized tomography (CT) of 
the abdomen and chest is the standard technique in initial staging.

The most common sites for metastases are via the lymphatic system to the retro-
peritoneal nodes, and via the hematogenous route to the lungs and, less commonly, 
to the liver, brain and bone. In general, advanced stage disease will be treated 
primarily with chemotherapy. Nonseminoma germ cell tumors appear as multiple 
small peripheral nodules, whereas seminoma metastases tend to be larger masses 
[95]. Other sites of hematogenous metastases, though rarely seen and usually only 
in the setting of advanced disease, include the adrenals, kidneys, spleen, pleura, 
pericardium and peritoneum [95].

Lymphatic spread occurs via lymphatic channels (from spermatic cord and testicular 
vessels to retroperitoneal lymph nodes). Usually, right-sided testicular neoplasms 
spread to the right side of the retroperitoneum. Lymph node metastases can be 

Fig. 14.17 Right-sided inguinal orchiectomy. The incision is high inguinal and the whole sper-
matic cord should be removed up to the internal ring with separation of ductus deferens and 
gonadal vessels
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Table 14.2 TNM Staging Classification of Testicular Tumors [51]

Stage

Primary Tumor

The extent of the primary tumor is classified after radical orchidectomy (pT)
pTX Primary tumor cannot be assessed (if no radical orchidectomy has been 
 performed, TX is used)
pT0 No evidence of primary tumor (e.g., histological scar in testis)
pTis Intratubular germ cell neoplasia
pT1 Tumor limited to testis and epididymis without vascular/lymphatic inva-
 sion; tumor may invade into the tunica albuginea, but not the tunica 
 vaginalis
pT2 Tumor limited to testis and epididymis with vascular/lymphatic 
 invasion, or tumor extending through tunica albuginea
  with involvement of tunica vaginalis
pT3 Tumor invades spermatic cord with or without vascular/lymphatic invasion
pT4 Tumor invades scrotum with or without vascular/lymphatic invasion

 Regional Lymph Nodes

Clinical Involvement

NX Regional nodes cannot be assessed
N0 No regional lymph node metastasis
N1 Metastasis with a lymph node mass ≤2 cm in greatest dimension 
 or multiple lymph nodes none >2 cm in greatest dimension
N2 Metastasis with a lymph node mass >2 cm, but <5 cm in greatest 
 dimension, or multiple lymph nodes, any one mass >2 cm, but ≤5 cm 
 in greatest dimension
N3 Metastasis with a lymph node mass >5 cm in greatest dimension

Pathological Involvement

pN0 No regional lymph node metastases
pN1 Metastasis with a lymph node mass ≤2 cm in greatest dimension and five 
 or fewer positive nodes, none >2 cm in greatest dimension
pN2 Metastasis with a lymph node mass >2 cm, but ≤5 cm in greatest 
 dimensions; or more than five nodes positive, none >5 cm; 
 or evidence of extranodal extension of tumor
pN3 Metastasis with a lymph node mass >5 cm in greatest dimension

Distant Metastases

MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis
M1a Non-regional lymph node or pulmonary metastasis
M1b Distant metastasis other than to non-regional lymph nodes and lungs

identified around the inferior vena cava, and between the level of right renal hilum 
and the aortic bifurcation. Lymph node metastases of left-sided testicular cancer 
may be found adjacent to the abdominal aorta and just below the left renal vein. 
Contralateral involvement is uncommon, but may occur with a larger disease burden 
[109]. Pelvic lymphadenopathy is uncommon in the absence of bulky disease [110].



14 Recent Advances in Imaging of Male Reproductive Tract Malignancies 353

2.16 Ultrasound

Testicular ultrasound (linear 6 to 12 MHz probe) is performed in at least two planes. 
The homogenous, low-to-medium echogenicity of the testicle noted in boys 
increases after puberty [111]. Testicular tumors are usually well defined and 
hypoechoic relative to the normal testicle. Some testicular tumors may show a het-
erogeneous echotexture, calcification or cystic change. Color and power Doppler 
ultrasound may be helpful in delineating areas of malignant involvement, but this 
is not specific and may not be demonstrated in small tumors [112]. If a malignant-
appearing mass is encountered, sonography of the retroperitoneum may identify 
associated lymphadenopathy [113].

2.17 Computed Tomography

Computed tomography (CT) is used for staging metastatic disease and for follow-up 
after therapy in patients with disseminated disease. The abdominal CT examination 
offers a sensitivity of 30 percent to 35 percent in the evaluation of retroperitoneal 
lymph nodes in the landing zone by using a threshold of 1 cm. Contrast-enhanced 

Table 14.3 The Royal Marsden Hospital Classification System for Germ Cell Tumors

Stage I Tumor limited to testis

Stage II Infradiaphragmatic lymph node involvement
IIA Metastases <2 cm in diameter
IIB Metastases 2 to 5 cm in diameter
IIC Metastases 5 to 10 cm in diameter
IID Metastases >10 cm in diameter

Stage III Supradiaphragmatic lymph node involvement
A-D See stage II

Stage IV Extralymphatic involvement of lung (L), liver (H), 
  brain and bone
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CT of the thorax, abdomen and pelvis is recommended according to the guidelines 
of the EGCCCG. CT of the brain is only performed in patients with suspected disease 
and patients with high risk factors for metastases. CT is limited in distinguishing 
residual tumors from hematoma, fibrosis and/or necrosis [113].

2.18 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) can be used as a problem-solving tool in incon-
clusive ultrasound cases. MRI is performed in supine positioning and surface coils 
(phased-array) are positioned above the testicles. T1- and T2-weighted sequences 
in at least two planes are acquired. Dynamic contrast-enhanced subtraction MRI 
can be used to differentiate testicular diseases from scrotal disorders [114].

The normal testicle has an intermediate homogenous signal intensity on T1-
weighted images, and homogeneous high signal intensity (less than fluid signal 
intensity) on T2-weighted images. Signal intensity of the epididymis is low signal 
intensity on both T1- and T2-weighted images. The tunica albuginea and testicular 
septa appear as low signal intensity structures [115].

Testicular neoplasms present with low signal intensity on T2-weighted images 
and intermediate to low signal intensity on T1-weighted images. MRI cannot pre-
dict the histological type [116].

2.19 Positron Emission Tomography (PET)

Examining the role of 18-fluorine-labelled deoxyglucose 18F-FDG-PET in testicu-
lar germ cell cancer (Fig. 14.18) shows a sensitivity of 82 percent, a specificity of 
94 percent, and a negative predictive value of 94 percent [117-120]. However, 
lymph node metastases smaller than 1 cm can be missed with 18F-FDG-PET. 
Seminomatous germ cell tumors have a significantly higher uptake of FDG, com-
pared to nonseminomatous lesions. The role of 18F-FDG-PET in primary staging is 
minimal if metastatic disease has already been diagnosed [95]. 18F-FDG-PET is of 
incremental value in assessing residual disease or recurrence [121].

2.20 Imaging in Clinical Stage I Testicular Cancer

Patients with clinical stage I tumors have disease that is confined to the testis. 
However, approximately 30 percent of the clinical stage I non-seminomas are 
understaged by radiological imaging, and are found to have metastatic disease at 
retroperitoneal surgery [122].

The abdominal CT scan offers a sensitivity of 30 percent to 35 percent in the 
evaluation of retroperitoneal lymph nodes in the landing zone by using a threshold 
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of 1 cm. Lowering this threshold results in an increased sensitivity, but a decreased 
specificity (with a criterion of 4 mm, the sensitivity increases to 93 percent, but the 
specificity decreases to 58 percent) [123]. New generation CT scans do not seem to 
improve the sensitivity [124]. Although pulmonary involvement rarely occurs in the 
absence of retroperitoneal disease, a chest X-ray is mandatory and the preferred 
imaging modality. Routine CT of the chest, although highly sensitive, produces a 
significant number of false positive scans (detecting 2 mm sized lesions, but 70 
percent of those are benign) [125].

Alternative imaging methods like PET and MRI add little to the management of 
clinical stage I non-seminoma germ cell cancer. The accuracy of MRI is in line with 
CT examination [126-127]. Currently, the additional value of intravenous ferumoxtran-
10 administration before MRI has been evaluated. Ferumoxtran-10 is an ultrasmall 
nanoparticle given intravenously, which moves into the reticulo-endothelial system. 
Benign nodes only take up ferumoxtran-10, leaving the cancerous lymph nodes 
without enhancement. Ferumoxtran-10-enhanced MRI yields a higher sensitivity and 
specificity when compared with unenhanced MRI (sensitivity: 88.2 percent vs 70.5 
percent, specificity: 92 percent vs 68 percent). Although the results are encouraging, the 
precise role of this tool in clinical stage I testicular germ cell cancer remains to be 
determined [128].

The old-fashioned method of imaging lymph nodes through lymphangiography 
has gained new interest via new contrast agents. Lymphangiography allows visuali-
zation of the three main lymphatic channels (paracaval, interaortacaval and paraaortal, 
Fig. 14.19). The major goal of the new contrast agents is to investigate the feasibility 
and accuracy of radio-guided mapping of sentinel lymph nodes (SLNs) in clinical 

Fig. 14.18 Patient with a nonseminomatous testicular cancer. Through clinical imaging a lesion 
of 9 mm was found on CT. Increased uptake of 18FDG suggests the presence of a retroperitoneal 
metastasis
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Stage I testicular tumors. For a left-sided testicular tumor the primary landing zone 
(e.g., SLN) includes the nodes in the para-aortic region below the renal vessels and 
the ipsilateral lateral distribution of the para-aortic, pre-aortic and left common iliac 
nodes. For right-sided tumors the primary landing zone is in the interaortacaval region 
below the renal vessels and the ipsilateral lymph nodes in the paracaval, preaortic and 
right common iliac region. Satoh, et al. injected (99 m) Technetium-labeled phytate 
around the testicular tumor in 22 patients. In 21 of them the SLN was detected by 
laparoscopic retroperitoneal lymph node dissection. Only in two patients were 
micrometastases found in the SLN. Both patients were free of disease after adjuvant 
chemotherapy [129]. As in two other patients lymph node relapses were detected, 
the real value of radio-guided mapping of SLNs with laparoscopy can be 
questioned.

In clinical stage I seminomas approximately 15 percent of patients have sub-
clinical metastatic disease [130]. In accordance with nonseminomas, FDG-PET and 
MRI provide no additional value above CT scan. [118, 128, 131]

2.21 Imaging in Advanced Stage Testicular Germ Cell Cancer

The most common sites for metastases are via the lymphatic system to the retro-
peritoneal nodes, and via the hematogenous route to the lungs and, less commonly, 

Fig. 14.19 Landing zone for retroperitoneal metastases of testicular germ cell cancer. In patients 
with right-sided tumors (a), the limits of dissection for the modified nerve-sparing template 
include the right ureter, the renal veins, the right lateral wall of the aorta, the inferior mesenteric 
artery and the iliac bifurcation. For left-sided tumors (b), the limits of dissection are the left ureter, 
left renal vein, left mid-wall of vena cava, the inferior mesenteric artery and iliac bifurcation
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to the liver, brain and bone. In general, advanced stage disease will be treated primarily 
with chemotherapy. Today, CT is the standard in initial staging. Though FDG-PET 
has the potential to improve clinical staging, more studies are warranted to establish 
its definitive value [131, 132].

Following completion of chemotherapy, residual tumorous lesions are found in 
up to 15 percent of patients with seminomas [133], compared to 20 percent of 
patients with non-seminomas [134]. Furthermore, 40 percent of the nonseminoma-
tous residual masses contain mature teratoma (pre-malignant disease). The key to 
success is complete surgical removal of these masses. A major challenge is finding 
the optimal method for differentiating patients with post-chemotherapy (pre-) 
malignant residual masses from those with fibrotic lesions. Again, CT and the change 
in size of the mass has been the standard for assessing residual masses. PET is of 
incremental value in assessing residual seminomatous disease. A study of 56 scans 
by De Santis, et al. reveals that PET had a sensitivity, specificity, positive predictive 
value and negative predictive value of 100 percent, 80 percent, 100 percent and 
96 percent, respectively, versus 74 percent, 70 percent, 37 percent and 90 percent 
for CT [121]. In contrast, in nonseminomas there is no real additional value as PET 
cannot differentiate between fibrosis and mature teratoma (Fig. 14.20) [119].

2.22 Follow-up of Testicular Germ Cell Cancer

Because most recurrences after curative therapy will occur in the first two years, fol-
low-up should be most frequent and intensive during this time. Follow-up protocols 

Fig. 14.20 Coronal 18FDG-PET scan shows metastases of nonseminomatous testicular germ cell 
tumor in the retroperitoneum, and in lungs with increased uptake of 18FDG (arrow). The lesion in 
the retroperitoneum shows no uptake in the center. The patient showed partial radiological 
response during treatment: both decrease in 18FDG uptake and volume reduction on CT scan ret-
roperitoneally, and disappearance of lung metastases. Surgery of residual retroperitoneal mass 
showed necrotic and teratomatous tissue in the center, and inflammatory tissue at the rim of the 
retroperitoneal mass
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vary by institution and by type, stage and treatment of the primary disease. After 
treatment all patients receive follow-up care through regular outpatient visits, dur-
ing which physical examination, serum tumor markers, chest X-ray and CT scans 
are performed. Currently, efforts are made to optimize the follow-up schedule. 
[135,136]

2.23 Conclusions

Ultrasound is the initial investigative tool with regard to scrotal masses. Patients 
should undergo a CT examination of the chest, abdomen and pelvis when the histo-
logical diagnosis of testicular germ cell cancer has been confirmed.

Clinical staging is hampered by the inability to detect micrometastatic disease 
because the sensitivity of conventional imaging studies is inversely proportional to 
tumor volume. To date, the metabolic tracer imaging studies have no additional 
value because the micrometastases do not show enough metabolic activity for 
detection. In re-assessing the extent of metastastic disease after chemotherapy, CT 
scan remains the first choice of imaging. PET can contribute to the management of 
residual seminoma lesions.
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