
Chapter 4
Sample Survey Strategies

4.1 Introduction

The goal of wildlife ecology research is to learn about wildlife populations and 
their use of habitats. The objective of this chapter is to provide a description of the 
fundamentals of sampling for wildlife and other ecological studies. We discuss a 
majority of sampling issues from the perspective of design-based observational 
studies where empirical data are collected according to a specific study design. We 
end the chapter with a discussion of several common model-based sampling 
approaches that combine collection of new data with parameters from the literature 
or data from similar studies by way of a theoretical mathematical/statistical model. 
This chapter draws upon and summarizes topics from several books on applied sta-
tistical sampling and wildlife monitoring and we would encourage interested read-
ers to see Thompson and Seber (1996), Thompson (2002b), Thompson et al. 
(1998), Cochran (1977), and Williams et al. (2002).

Typically, the availability of resources is limited in wildlife studies, so research-
ers are unable to carry out a census of a population of plants or animals. Even in 
the case of fixed organisms (e.g., plants), the amount of data may make it impossi-
ble to collect and process all relevant information within the available time. Other 
methods of data collection may be destructive, making measurements on all indi-
viduals in the population infeasible. Thus, in most cases wildlife ecologists must 
study a subset of the population and use information collected from that subset to 
make statements about the population as a whole. This subset under study is called 
a sample and is the focus of this section. We again note that there is a significant 
difference between a statistical population and a biological population (Chap. 1).

All wildlife studies should involve random selection of units for study through 
sample surveys. This will result in data that can be used to estimate the biological 
parameters of interest. Studies that require a sample must focus on several different 
factors. What is the appropriate method to obtain a sample of the population of 
interest? Once the method is determined, what measurements will be taken on the 
characteristics of the population? Collecting the sample entails questions of sam-
pling design, plot delineation, sample size estimation, enumeration (counting) 
methods, and determination of what measurements to record (Thompson 2002b).
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Measurement of population characteristics allows the calculation of summary 
values called parameters that aid in describing the population or its habitat. The 
most common values estimated in studies of animal or plant populations are popu-
lation size, density, survival, and recruitment. Each of these values is characterized 
by a set of parameters of interest or estimators (means, variances, and standard 
errors). These estimators (e.g., mean abundance per sampling plot) then allow the 
scientists to draw inferences about the population under study (Williams et al. 
2002). For example, in the study of a deer mouse (Peromyscus spp.) population, the 
parameters of interest might be total number of mice (population size), population 
survival (or mortality rate) age structure and sex ratio, and mean range size. Habitat 
parameters of interest might include the abundance of preferred forage each season, 
niche parameters such as the utilization of key food items, and the standing crop of 
those food items.

Design-based studies are those that have a predetermined sampling and treat-
ment structure, usually probability based. Most studies in wildlife ecology are 
design-based observational studies as it is frequently difficult to assign treatments 
and controls randomly to wildlife populations. However, design based do differ 
from observational studies in that under design-based studies scientists can delib-
erately select a sample, avoiding unrepresentativeness (Anderson 2001; Thompson 
2002). In design-based studies, basic statistical inferences concerning the study 
areas are justified by the design of the study and data collected (Cochran 1977). 
However, sampling is usually distinguished from the related field of true experi-
mental design (Kuehl 2000) where the researchers deliberately applies a specific 
treatment to a randomly selected portion of the population to see what impact the 
treatment has on the population (Thompson 2002b). Additionally, we will discuss 
some of the more common model-based observational sampling approaches; 
these approaches use assumptions to account for patterns within the populations 
of interest.

4.1.1 Basic Sampling Estimators

Sampling in wildlife studies is used to obtain parameter estimates for individuals 
within the population of interest. The goal of any ecological study is to provide 
estimates that are accurate as discussed in Sect. 2.5.4. If the design is appropriate 
and implemented correctly, wildlife ecologists can obtain estimates that satisfy 
these requirements with few assumptions about the underlying population.

In order to determine estimates for the population characteristics of interest, we 
must use an estimator. The most common estimators are those for means, vari-
ances, and other associated measures of central tendency and precision. The pri-
mary measure of central tendency collected in ecological studies is the sample 
mean (X

−). Consider a simple random sample taken from all potential plots of a sta-
tistical population to measure some characteristic x (no. of individuals per plot) and 



our interest is in estimating the mean number of individuals per plot. The sample 
mean (X

−) will be an unbiased estimator for the population mean (m) or the average 
population size for each randomly selected sample. While the population mean is 
the average measurement for each of N samples (after Cochran 1977; Thompson 
2002b) defined as
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In this situation, we assumed we had a finite population of known size N. Thus, 
within a simple random sampling framework, the sample variance (s2) is an unbi-
ased estimator for the finite population variance s2. Thus,
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This approach holds true for estimation of subpopulation means (mean of a statisti-
cal population based on stratification). A subpopulation mean is one where we wish 
to estimate the mean of a subsample of interest. For example, consider the situation 
where we want to estimate the abundance of mice (Mus or Peromyscus) across an 
agricultural landscape. After laying out our sampling grid, however, we determine 
that abundance of the two species should be estimated for both fescue (Family 
Poaceae) and mixed warm-season grass fields. Thus, we are interested in both the 
mean number of mice per sample plot and the mean number of mice per sample 
plot within a habitat type, e.g., a subpopulation. For habitat type h, our sample 
mean subpopulation estimates would be
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As many ecological researchers wish to estimate the total population size based on 
sample data, under a situation with no subpopulation estimates, our estimator for 
total population size (T) would be
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Additional information on estimation of population total and means for more com-
plex designs can be found in Cochran (1977) and Thompson (2002b).
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4.1.2 Plot Construction

We use sampling designs to ensure that the data collected are as accurate as possi-
ble for a given cost. Thus, plot construction necessitates that researchers evaluate 
the impacts of different plot sizes and shapes have on estimator precision. Although 
the importance of determining optimal sizes and shape for sampling plots [for con-
sistency within the text, we are using “plots” rather than “quadrats” as defined by 
Krebs (1999)] is obvious. With the exception of work by Krebs (1989, 1999) and 
general discussion by Thompson et al. (1998), there has been little research on plot 
construction in wildlife science. Wildlife tend to be nonrandomly distributed across 
the landscape and are influenced by inter- and intraspecific interactions (Fretwell 
and Lucas 1970; Block and Brennan 1993). When developing a sampling design to 
study a population, the researcher must decide what size of plots should be used 
and what shape of plots would be most appropriate based on the study question and 
the species life history (Thompson et al. 1998; Krebs 1999). Most frequently, plot 
size and shape selection is based on statistical criteria (e.g., minimum standard 
error), although in studies of ecological scale, the shape and size will be dependent 
upon the process under study (Krebs 1999). Additionally, it is important to realize 
that estimates of precision (variance) are dependent upon the distribution of the 
target organism(s) in the plots to be sampled (Wiegert 1962).

Krebs (1999) listed three approaches to determine which plot shape and size 
would be optimal for a given study:

1. Statistically, or the plot size which has the highest precision for a specific area 
or cost

2. Ecologically, or the plot sizes which are most efficient to answering the question 
of interest

3. Logistically, or the plot size which is the easiest to construct and use

Plot shape is directly related to both the precision of the counts taken within the plot 
and potential coverage of multiple habitat types (Krebs 1999). Four primary factors 
influence plot shape selection: (1) detectability of individuals, (2) distribution of 
individuals, (3) edge effects, and (4) data collection methods. Shape relates to count 
precision because of the edge effect, which causes the researcher to decide whether 
an individual is within the sample plot or not, even when total plot size is equal 
(Fig. 4.1). Given plots of equal area, long and narrow rectangular plots will have 
greater edge effect than square or circular plots. Thompson (1992) concluded that 
rectangular plots were more efficient than other plots for detecting individuals. 
Note that, in general, long and narrow rectangular plots will have a greater chance 
of intersecting species with a clumped distribution. Previous research in vegetation 
science has shown that rectangular plots are more efficient (higher precision) than 
square plots (Kalamkar 1932; Hasel 1938; Pechanec and Stewart 1940; Bormann 
1953). Size is more related to efficiency in sampling (Wiegert 1962), in that we are 
trying to estimate population parameters as precisely as possible at the lowest cost 
(Schoenly et al. 2003). Generally, larger plots have a lower ratio of edge to interior, 



limiting potential edge effects. Large plots, however, are typically more difficult to 
survey based on cost and logistics. Thus, under a fixed budget, there is a general 
trade off between plot size and number of plots to sample. A method developed by 
Hendricks (1956) found that as sample area increased, variance decline, but this 
method is less flexible as this approach had several assumptions such as proportion-
ality of sampling cost per unit area.

4.2 Basic Sample Structure, Design, and Selection

Wildlife studies are limited by fundamental principles of inferential statistics when 
using sample survey data to make predictions about the population of interest. 
Within the population or study area boundaries, statistical inference is limited by 
the protocol by which study sites and/or study specimens are selected. Thus, sam-
pling is an example of inductive logic wherein the conclusions are determined 
based on a limited number of events (Foreman 1991; see Sect. 1.2.3.2 and Table 
1.1). A sample is a subset of the population of interest, where the population 
encompasses every individual located in a particular place at a particular time. 
Sampling entails selecting sample units (unique collection of elements; Scheaffer 
et al. 1990) from a sampling frame from a population and then collecting measure-
ments on the sampling unit (Foreman 1991). Note that sampling units and elements 
can represent the same quantity (Thompson et al. 1998). Essentially, our purpose 
in sampling is to make inferences to our target population or those individuals 
within the population study boundaries at a specific time.

One of the primary functions of statistic and sampling is to make inductive infer-
ence and measure the degree of uncertainty around such inferences (Mood et al. 
1974). Scientific progress in ecological studies is often credited to experiments that 
randomize and replicate treatments (Johnson 2002). However, ecologists are fre-
quently unable to randomize treatments and must use natural experiments or descrip-
tive studies consisting of observations of an organism’s response to a perturbation.

Fig. 4.1 An example of three different types of plot shapes, each with the same area, but with 
different perimeter to edge ratios. Reproduced from Thompson et al. (1998) with kind permission 
from Elsevier
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Methods for sample selection typically fall into two general categories: nonran-
dom sampling and random sampling. In random sampling, also called probability 
sampling, the selection of units for inclusion in the sample has a known probability 
of occurring. If the sample is selected randomly, then based on sample survey theory 
(Cochran 1977) the sample estimates will be normally distributed. With normally 
distributed estimates, knowledge of the sample mean and variance specifies the 
shape of the normal distribution (Fig. 4.2). There is considerable literature justifying 
the need for probabilistic sampling designs from a standpoint of statistical inference 
(Cochran 1977; Thompson and Seber 1996; Thompson 2002b), but little evidence 
exists that nonprobabilistic samples can be inferentially justified (Cochran 1977; 
Anderson 2001; Thompson 2002a). In wildlife ecology, nonprobabilistic sampling 
designs are likely to be divided into several (overlapping) categories which we gen-
eralize as convenience/haphazard sampling (hereafter convenience) or judgment 
sampling/search sampling (hereafter judgment) while probabilistic sampling is the 
other category used in wildlife ecology. For the rest of the chapter, we will discuss 
these different sampling designs and their application to wildlife ecology research.

4.2.1 Nonprobability Sampling

Convenience sampling has historically been the most common approach to sam-
pling wildlife populations. A convenience sample is one where the samples chosen 
are based on an arbitrary selection procedure, often based on accessibility, and jus-
tified because of constraints on time, budgets, or study logistics. Gilbert (1987, p. 19) 
noted in discussion of haphazard sampling, that:

Fig. 4.2 Two normal distributions with different the same mean and different variances



Haphazard sampling embodies the philosophy of “any sampling location will do.” This 
attitude encourages taking samples at convenient locations (say near the road) or times, 
which can lead to biased estimates of means and other population characteristics. 
Haphazard sampling is appropriate if the target population is completely homogeneous. 
This assumption is highly suspect in most wildlife studies.

Examples of convenience sampling approaches are abundant in wildlife ecol-
ogy: abundance and sex ratio estimates from spotlight surveys from roads for 
white-tailed deer (Collier et al. 2007), point counts along roads for birds (Peterjohn 
et al. 1996), surveys for mammal tracks near roads, habitat sampling in only loca-
tions where individuals were detected, to name a few. In these situations, the loca-
tion of the individual(s) of interest determines the location and number of samples 
collected, but with no scheme to infer to the larger population (Thompson and 
Seber 1996). Certain kinds of surveys, such as report card harvest surveys, may 
have an element of convenience sampling in them if the sample is self-selected by 
individuals volunteering to complete the survey. One of the limitations of conven-
ience sampling is that it cannot provide data for valid statistical inferences, because 
results are not repeatable. Information obtained by this type of sampling may be 
appropriate for preliminary inventory of an area but should not be used for formal 
discussion of parameter estimates.

Judgment or search sampling is another common approach used in wildlife stud-
ies. This form of sampling is based on the presumption that the wildlife scientist 
can select studies representative of the study area or population based on expert 
knowledge of the system, often requiring historical knowledge or data indicating 
where the resources of interest exist. Gilbert (1987) argued that judgment sampling 
results in subjective selection of population units by the researcher resulting in the 
following outcome:

If the [researcher] is sufficiently knowledgeable, judgment can result in accurate estimates 
of population parameters such as means and totals even if all population units cannot be 
visually assessed. But, it is difficult to measure the accuracy of the estimated parameters. 
Thus, subjective sampling can be accurate, but the degree of accuracy is difficult to 
quantify.

Judgment sampling may be appropriate for preliminary inventory of an area, but 
is not useful for statistical inferences because results are not repeatable. Judgment 
sampling may have a role to play in understanding the mechanisms in force in a 
biological system. For example, several study areas may be selected to investigate 
the magnitude and duration of an environmental impact or the effect of some man-
agement action under a specific set of conditions. Judgment sampling can also be 
used to develop data for models of natural systems (see capture–recapture model 
discussion later in this chapter). However, statistical inferences from sites selected 
for study are strictly limited to the study sites selected and any inference beyond 
those sites is deductive, depending on the professional judgment of the individual 
making the selection and the rules by which the sites are selected.

Note that all of the above sampling approaches are based on nonprobabilistic 
designs and rely either on observations of the organism or expert opinion to select 
locations for sample data collection. Consequently, while many convenience sampling 
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procedures are often justified based on their economics (e.g., easier to sample roads 
than contact landowners for access), this is often not the case as these samples do not 
allow for wide ranging inferences, thus limiting their applicability. Probabilistic sam-
ples allows the researcher to design a study and be confident that the results are suffi-
ciently accurate and economical (Cochran 1977). Nonprobabilistic sampling, while 
common, do not lend themselves to valid statistical inference or estimation of variabil-
ity and often more cost is incurred attempting to validate convenience samples than 
would be spent developing and applying probabilistic designs.

4.2.2 Probability Sampling

Random sampling is the process by which samples are selected from a set of n dis-
tinct sampling units, where each sample has a known likelihood of selection prede-
termined by the sampling methods chosen (Cochran 1977; Foreman 1991). Samples 
selected probabilistically provide a basis for inference (estimation of means and 
variances) from the data collected during the sampling process; samples from non-
probability designs do not have this characteristic.

4.2.3 Single-Level and Multilevel Probability Sampling

The simplest form of random sampling is sampling at a single level or scale. That 
is, the study area is divided into a set of potential units from which a sample is 
taken. For example, a study area could be divided into a grid of sample plots all of 
the same size from which a simple random sample is drawn (Fig. 4.3). The organ-
isms of interest in each cell in the selected sample are then counted. In its simplest 
sense, single level sampling for a simple random sample, assume that we have n = 
100 distinct samples, S

1
, S

2
,…,S

n
, where each sample S

i
 has a known probability of 

selection (p
i
) or the probability that the ith sample is taken (Cochran 1977). 

Assuming that each sample unit (plot) is of equal size, then the probability that a 
single plot is chose to be sampled is 1/100 or p

i
 = 0.01. In the application of single-

level probability sampling we assume that each unit in the population has the same 
chance of being selected. Although this assumption may be modified by other 
probabilistic sampling schemes (e.g., stratified sampling or unequal probability 
sampling), the decisions regarding sample selection satisfy this assumption. 
Sampling at more than one level, however, often is beneficial in wildlife studies. 
Multilevel sampling can be simple, such as selecting subsamples of the original 
probability sample for additional measurements as described in ranked set sam-
pling (Sect. 4.3.5). Multilevel sampling can be more complicated, such as double 
sampling to estimate animal abundance (Sect. 4.3.6). In the correct circumstances, 
multilevel sampling can increase the quality of field data, often at a lower cost.



4.3 Sampling Designs

Although a simple random sample is the most basic method for sample selection, 
there are others that are relevant to wildlife ecology studies, including stratified 
random sampling, systematic sampling, sequential random sampling, cluster sam-
pling, adaptive sampling, and so on. These sampling plans (and others) can be 
combined or extended to provide a large number of options for study designs, 
which can include concepts like unequal probability sampling. Many sampling 
designs are complicated, thus statistical guidance is suggested to select the appro-
priate design and analysis approaches. Below we discuss several sampling scales 
and then appropriate designs for each scale.

4.3.1 Simple Random Sampling

Simple random sampling is the selection of n units from a population of N units in 
a manner such that each of the n units has the same chance (probability) of being 
selected (Cochran 1977; Foreman 1991). Simple random sampling requires that the 
location of each sample site (unit) be selected independently of all other sites 
(units). Typically in ecology studies, a given unit appears at most once in the sam-
ple when sampling without replacement (Thompson 2002b). Samples can be 
replaced after measurements are taken so that sampling is with replacement but 

Fig. 4.3 A simple sampling frame of 100 sample plots that can be used for selecting a simple 
random sample
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sampling without replacement results in a more precise estimate (Caughley 1977; 
Thompson 2002b).

A simple random sample may be obtained by following the basic steps in the 
following list (Cochran 1977; Thompson 2002b):

1. The population of sampling units is assumed to be finite.
2. Units (n) selected in the sample can be located and the measurement of the 

attribute of interest (e.g., count of animals) on the unit is possible. Also, the error 
in measuring the attribute of interest should be small compared with the differ-
ences in the attribute (counts) from unit to unit.

3. The study region, also known as the sampling frame, must be completely cov-
ered by distinct and nonoverlapping sampling units.

4. Sampling units need not be of equal size nor selected with equal probability, but 
differences in size and selection probability increase the complexity of those 
parameter estimation formulas.

5. Sample units are normally sampled without replacement.

Random sampling plans have straightforward mathematical properties (Sect. 4.1.1), 
but random locations are often more clumped and patchy than expected. In studies 
with small sample sizes, which are common in wildlife studies, entire regions of a 
sampling frame may be under- or overrepresented. Thus, random sampling is not 
always the best procedure. Random sampling should be used only if the area of 
interest is homogeneous with respect to the elements and covariates of interest. 
Because this is seldom the case, researchers should try to avoid relying solely on 
simple random sampling.

4.3.2 Stratified Random Sampling

In stratified sampling, the sampling frame is separated into different regions (strata) 
comprising the population to be surveyed and a sample of units within stratum are 
selected for study, usually by a random or systematic process. Ideally, strata should 
be homogeneous with respect to the variable of interest itself (e.g., animal density), 
but in practice, stratification is usually based on covariates that scientists hope are 
highly correlated with the variable of interest (e.g., habitat types influences animal 
density). Stratification may be used to increase the likelihood that the sampling 
effort will be spread over important subdivisions or strata of the study area, popula-
tion, or study period (Fig. 4.4). Similarly, units might also be stratified for subsam-
pling. For example, when estimating the density of forest interior birds, the wildlife 
biologist might stratify the study area into regions of high, medium, and low canopy 
cover and sample each independently, perhaps in proportion to area size.

Stratification is common in wildlife studies, as it often is used to estimate param-
eters within strata and for contrasting parameters among strata. This type of analy-
sis is referred to using “strata as domains of study … in which the primary purpose 
is to make comparisons between different strata” (Cochran 1977, p. 140). Under 



stratified designs, the formulas for analysis and for allocation of sampling effort 
(Cochran 1977, pp. 140–141) are quite different from formulas appearing in intro-
ductory texts such as Scheaffer et al. (1990), where the standard objective is to 
minimize the variance of summary statistics for all strata combined.

The primary objective of stratification is improved precision based on optimal 
allocation of sampling effort into more homogeneous strata. In practice, it may be 
possible to create homogeneous strata with respect to one or a few primary indicators, 
but there are often many indicators measured, and it is not likely that the units within 
strata will be homogeneous for all of them. For example, one could stratify a study 
area based on vegetative characteristics and find that the stratification works well for 
indicators of effect associated with trees. But, because of management (e.g., grazing), 
the grass understory might be completely different and make the stratification unsat-
isfactory for indicators of effect measured in the understory. Differences in variance 
among strata for the primary indicators may not occur or may not be substantially 
better than random sampling. Factors used to stratify an area should be based on the 
spatial location of regions where the population is expected to be relatively homoge-
neous, the size of sampling units, and the ease of identifying strata boundaries. Strata 
should be of obvious biological significance for the variables of interest.

A fundamental problem is that strata normally are of unequal sizes; therefore, units 
from different strata have different weights in any overall analysis. The formulas for 
computing an overall mean and its standard error based on stratified sampling are rela-
tively complex (Cochran 1977). Formulas for the analysis of subpopulations (subunits 

Fig. 4.4 Stratification based on the density of a population. Reproduced from Krebs (1999) with 
kind permission from Pearson Education
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of a study area) that belong to more than one stratum (Cochran 1977, pp. 142–144; 
Thompson 2002b) are even more complex for basic statistics such as means and totals. 
Samples can be allocated to strata in proportion to strata size or through some optimal 
allocation process (Thompson 2002b). When using the stratification with proportional 
allocation, the samples are self-weighting in that estimates of the overall mean and 
proportion are the same as for estimates of these parameters from simple random 
sample. Although proportional allocation is straightforward, it may not make the most 
efficient use of time and budget. If it is known that within strata variances differ, sam-
ples can be allocated to optimize sample size. Detailed methods for optimizing sample 
size are described in Cochran (1977) and Thompson (2002b).

Stratification has some inherent problems. In any stratification scheme, some 
potential study sites will be misclassified in the original classification (e.g., a dark 
area classified as a pond on the aerial photo was actually a parking lot). Stratification 
is often based on maps that are inaccurate, resulting in misclassification of sites that 
have no chance of selection. Misclassified portions of the study area can be adjusted 
once errors are found, but data analysis becomes much more complicated, primarily 
because of differences in the probability of selecting study units in the misclassified 
portions of the study area. Short-term studies usually lead to additional research 
questions requiring longer term research and a more complicated analysis of sub-
populations (Cochran 1977, pp. 142–144) that cross strata boundaries. However, 
strata may change over the course of a study. Typical strata for wildlife studies 
include physiography/topography, vegetative community, land use, temporal 
frame, or management action of interest. Note, however, that the temporal aspect 
of a study is of particular significance when stratifying on a variable that will likely 
change with time (e.g., land use). Stratified sampling works best when applied to 
short-term studies, thus reducing the likelihood that strata boundaries will change. 
In long-term studies, initial stratification procedures at the beginning of the study 
are likely to be the most beneficial to the investigators.

4.3.3 Systematic and Cluster Sampling

In systematic sampling, the sampling frame is partitioned into primary units where 
each primary unit consists of a set of secondary units (Thompson 2002b). Sampling 
then entails selecting units spaced in some systematic fashion throughout the popula-
tion based on a random start (Foreman 1991). A systematic sample from an ordered 
list would consist of sampling every kth item in the list. A spatial sample typically 
utilizes a systematic grid of points. Systematic sampling distributes the locations of 
samples (units) uniformly through the list or over the area (site). Mathematical prop-
erties of systematic samples are not as straightforward as for random sampling, but 
the statistical precision generally is better (Scheaffer et al. 1990).

Systematic sampling has been criticized for two basic reasons. First, the arrange-
ment of points may follow some unknown cyclic pattern in the response variable. 
Theoretically, this problem is addressed a great deal, but is seldom a problem in 



practice. If there are known cyclic patterns in the area of interest, the patterns 
should be used to advantage to design a better systematic sampling plan. For exam-
ple, in a study of the cumulative effects of proposed wind energy development on 
passerines and shore birds in the Buffalo Ridge area of southwestern Minnesota, 
Strickland et al. (1996) implemented a grid of sampling points resulting in observa-
tions at varying distances from the intersection of roads laid out on section lines.

Second, in classical finite sampling theory (Cochran 1977), variation is assessed in 
terms of how much the result might change if a different random starting point could 
be selected for the uniform pattern. For a single uniform grid of sampling points (or a 
single set of parallel lines) this is impossible, and thus variation cannot be estimated in 
the classical sense. Various model-based approximations have been proposed for the 
elusive measure of variation in systematic sampling (Wolter 1984). Sampling variance 
can be estimated by replicating the systematic sample. For example, in a study requir-
ing a 10% sample it would be possible to take multiple smaller samples (say a 1% 
sample repeated ten times), each with a random starting point. Inference to the popula-
tion mean and total can be made in the usual manner for simple random sampling.

Systematic sampling works very well in the following situations:

1. Analyses of observational data conducted as if random sampling had been con-
ducted (effectively ignoring the potential correlation between neighboring loca-
tions in the uniform pattern of a systematic sample)

2. Encounter sampling with unequal probability (Overton et al. 1991; Otis et al. 
1993)

3. The model-based analysis commonly known as spatial statistics, wherein mod-
els are proposed to estimate treatment effects using the correlation between 
neighboring units in the systematic grid (kriging)

The design and analysis in case 1 above is often used in evaluation of indicators of 
a treatment response (e.g., change in density) in relatively small, homogeneous study 
areas or small study areas where a gradient is expected in measured values of the 
indicator across the area. Ignoring the potential correlation and continuing the analy-
sis as if it is justified by random sampling can be defended (Gilbert and Simpson 
1992), especially in situations where a conservative statistical analysis is desired 
(e.g., impact assessment). Estimates of variance treating the systematic sample as a 
random sample will tend to overestimate the true variance of the sample (Hurlbert 
1984; Scheaffer et al. 1990; Thompson 2002). Thus, systematic sampling in rela-
tively small impact assessment study areas following Gilbert and Simpson’s (1992) 
formulas for analysis makes a great deal of sense. This applies whether systematic 
sampling is applied to compare two areas (assessment and reference), the same area 
before and following the incident, or between strata of a stratified sample.

In wildlife studies, populations tend to be aggregated or clustered, thus sample units 
closer to each other will be more likely to be similar. For this reason, systematic sampling 
tends to overestimate the variance of parameter estimates. A uniform grid of points or 
parallel lines may not encounter rare units. To increase the likelihood of capturing some 
of these rare units, scientists may stratify the sample such that all units of each distinct 
type are joined together into strata and simple random samples are drawn from each 
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stratum. Nevertheless, stratification works best if the study is short term, no units are 
misclassified and no units change strata during the study. In longer term studies, such as 
the US Environmental Protection Agency’s (EPA’s) long-term Environmental Monitoring 
and Assessment Program (EMAP), as described by Overton et al. (1991), systematic 
sampling has been proposed to counter these problems.

Cluster sampling is closely related to systematic sampling. A cluster sample is 
a probabilistic sample in which each sampling unit is a collection, or cluster, of 
elements such as groups of animals or plants (Scheaffer et al. 1990; Thompson 
2002b). One of the most common uses of cluster sampling is the two-stage cluster 
sample. First, the researcher selects a probabilistic sample of plots, each of the pri-
mary plots having eight secondary plots. Then, within those primary plots, we 
either select another probability sample of plots from the eight secondary plots, or 
consider the cluster of eight secondary plots of our sample and conduct our enu-
meration method within each of those plots (Fig. 4.5). The selection of progres-
sively smaller subsets of elements within the original set of sample clusters leads 
to a multistage cluster sample. Cluster sampling methods can become considerably 
complex, depending on sampling design, study question, and phenology of the spe-
cies under study (Christman 2000). For example, consider an ecologist interested 
in estimating Greater Prairie-chicken (Tympanuchus cupido) lek numbers in the 

Fig. 4.5 (a) Cluster sample of ten primary units with each primary unit consisting of eight 
secondary units; (b) systematic sample with two starting points. Reproduced from Thompson 
(2002) with kind permission from Wiley



plains during the breeding season. Lek sites are typically close spatially, relative to 
the size of grasslands matrix these birds inhabit, thus we would expect that if a lek 
is located within a primary sample plot, there are other leks in the vicinity. For this 
reason, the researcher would randomly sample primary plots across a landscape of 
Greater Prairie-chicken habitat, then, within those large plots, conduct enumeration 
of lek numbers within the secondary plots.

Thompson (2002b, pp. 129–130) lists several features that systematic and clus-
ter sampling that make these designs worth evaluating for ecological studies:

• In systematic sampling, it is not uncommon to have a sample size of 1, that is, a 
single primary unit (see Fig. 4.5).

• In cluster sampling, the size of the cluster may serve as auxiliary information 
that may be used either in selecting clusters with unequal probabilities or in 
forming ratio estimators.

• The size and shape of clusters may affect efficiency.

4.3.4 Adaptive Sampling

Numerous sampling designs integrate stratified, systematic, and cluster sampling – 
commonly under a framework called adaptive sampling – where, following an ini-
tial probabilistic sample of units, additional units are added to the sample in the 
neighborhood of original units that satisfy a specified condition (Thompson and 
Seber 1996). Thus, methods for adaptive sampling differ from most other sampling 
designs as the sample selection procedure is not determined before sampling, but is 
fluid and changes as successive samples are taken. Given the wide range of adaptive 
techniques available, we refer the interested readers to Thompson and Seber (1996), 
Christman (2000), and Thompson (2002).

Wildlife biologists are often bothered by probability sampling plans because 
sampling is limited to a set of previously selected units to the exclusion of units 
adjacent to, but not in, the sample. Adaptive sampling offers biologists a way to 
augment the probability sample with samples from adjacent units without losing 
the benefits of the original probabilistic design. Because animal populations usually 
are aggregated, adaptive methods take advantage of this tendency and uses informa-
tion on these aggregations to direct future sampling. Adaptive sampling may yield 
more precise estimates of population abundance or density for given sample size or 
cost and may increase the yield of interesting observations resulting in better esti-
mates of population parameters of interest (Thompson and Seber 1996).

Under a general adaptive sampling framework, a sample of units is first selected 
by any probabilistic sampling design. Rules for selection of additional samples are 
established based on some characteristic of the variable of interest (e.g., presence/
absence, age, sex, and height). The values of the variables of interest are then noted 
on the original probabilistic sample of units and rules for selection of additional sam-
ples are applied (Thompson and Seber 1996). In a sense, adaptive sampling is a 
method for systematically directing biologists’ tendency toward search sampling.
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4.3.4.1 Definitions

We provide a brief and general description of the theory of adaptive sampling; a 
comprehensive discussion of the mathematics and theory is beyond the scope of this 
book. See Thompson and Seber (1996) for a complete discussion of this subject. We 
adopted the notations used by Thompson (2002b) for this discussion. To understand 
adaptive sampling it is useful to label sampling units and aggregations of units. The 
following definitions assume a simple random sample of units from a study area.

A neighborhood is a cluster of units grouped together based on some common 
characteristic. Typical definitions of a neighborhood include spatially contiguous 
units or a systematic pattern of surrounding units. For example, a neighborhood of 
1-m2 units in a grid might include each unit and the eight adjacent units (i.e., units 
at the four sides and corners). However, neighborhoods of units may be defined in 
many other ways including social or institutional relationships among units. For 
every unit, if unit i (u

i
) is in the neighborhood of unit k (u

k
) then u

k
 is in the neigh-

borhood of u
i
. Likewise, if neighborhood u

ij
 belongs to the neighborhood of u

kl
 then 

u
kl
 belongs to the neighborhood of u

ij
.

The condition of interest (C) is the characteristic of the variable of interest (y) 
that determines if a unit is added to the neighborhood of units in the sample. Thus, 
u

i
 satisfies the condition and is added to the neighborhood if y

i
 ∈ C where C is a 

specified interval or set of y
i
. For example, C might be a carcass search plot con-

taining ≥1 carcass. When a selected unit satisfies the condition, then all units within 
its neighborhood are added to the sample.

All the units added to the sample as the result of the selection of u
i
 are considered a 

cluster. A cluster may combine several neighborhoods. All the units within a cluster that 
satisfy the condition are considered to be in the same network. A population can be 
uniquely partitioned into K networks. An originally selected unit that does not satisfy 
the condition forms a unique network by itself. Units in the neighborhood that do not 
satisfy the condition are defined to be edge units and are not included in networks.

4.3.4.2 Adaptive Cluster Sampling Example

Adaptive sampling refers to those designs where selection of sample plots is 
dependent upon variables of interest observed (or not observed) within the sample 
during the survey. Adaptive sampling provides a method for using the clustering 
tendencies of a population when locations and shapes of clusters can generally be 
predicted (i.e., they are not known in the physical landscape but can be predicted 
based on existing information). Therefore, adaptive designs allow the researchers 
to add nearby plots under the assumption that if the species of interest is located in 
a plot, then it is likely that there are more members of the species within the imme-
diate vicinity. Probably the most frequently used adaptive approach in wildlife 
ecology is that of adaptive cluster sampling (Smith et al. 1995, 2004, Noon et al. 
2006). For example, consider a survey of mule deer across a range that is divided 
into 400 study units (Fig. 4.6a). In an effort to estimate the number of dead deer 



Fig. 4.6 A hypothetical example of adaptive sampling, illustrating a mule deer winter range that 
is divided into 400 study units (small squares) with simple random sample of ten units selected 
(dark squares in (a) ) potentially containing deer carcasses (black dots). Each study unit and all 
adjacent units are considered a neighborhood of units. The condition of including adjacent units 
in the adaptive sample is the presence of one or more carcasses (black dots) in the unit. Additional 
searches result in the discovery of additional carcasses in a sample of 45 units in ten clusters (dark 
squares in (b) ). (Thompson 1990. Reprinted with permission from the Journal of the American 
Statistical Association, Copyright 1990 by the American Statistical Association. All rights 
reserved)
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following a severe winter, a survey for deer carcasses is conducted. An initial sim-
ple random sample of ten units is selected (see Fig. 4.6a). Each study unit and all 
adjacent units are considered a neighborhood of units. The condition of including 
adjacent units is the presence of one or more carcasses in the sampled unit. With 
the adaptive design, additional searches are conducted in those units in the same 
neighborhood of a unit containing a carcass in the first survey. Additional searches 
are conducted until no further carcasses are discovered, resulting in a sample of 45 
units in ten clusters (see Fig. 4.6b).

The potential benefits of adaptive sampling are obvious in the mule deer exam-
ple. The number of carcasses (point-objects in Fig. 4.6) is relatively small in the 
initial sample. The addition of four or five more randomly selected sample units 
probably would not have resulted in the detection of the number of carcasses con-
tained in the ten clusters of units. Thus, the precision of the estimates obtained from 
the cluster sample of 45 units is greater than from a random sample of 45 units. This 
increase in precision could translate into cost savings by reducing required samples 
for a given level of precision. Cost savings also could result from reduced cost and 
time for data collection given the logistics of sampling clusters of sampled units vs. 
potentially a more widely spread random sample of units. This cost saving, how-
ever, is partially offset by increased record keeping and increased training costs. 
Although there are numerous adaptive sampling options, design efficiency depends 
upon several factors, including initial sample size, population distribution, plot 
shape, and selection conditions (Smith et al. 1995; Thompson 2002b). Thus we 
recommend that adaptive designs be pilot tested before implementation to ensure 
that estimate precision and sampling efficiency is increased over alternate designs.

4.3.4.3 Unbiased Estimators for Simple Random Samples

The potential efficiencies of precision and cost associated with adaptive sampling 
come with a price. Computational complexities are added because of sample size 
uncertainty and unequal probability associated with the sample unit selection. Units 
within the neighborhood of units meeting the condition enter the sample at a much 
higher probability than the probability of any one unit when sampled at random, 
resulting in potentially biased estimates of the variable of interest. For example, u

i
 

is included if selected during the initial sample, if it is in the network of any unit 
selected, or if it is an edge unit to a selected network. In sampling with replacement, 
repeat observations in the data may occur either due to repeat selections in the ini-
tial sample or due to initial selection of more than one unit in a cluster.

The Horvitz–Thompson (H–T) estimator (Horvitz and Thompson 1952) provides an unbi-
ased estimate of the parameter of interest when the probability a

i
 that unit i is included in 

the sample is known. The value for each unit in the sample is divided by the probability 
that the unit is included in the sample. Inclusion probabilities are seldom known in field 
studies, and modifying the Horvitz–Thompson estimator, where estimates of inclusion 
probabilities are obtained from the data, as described by Thompson and Seber (1996) forms 
an unbiased estimator (modified H–T).



Implementing the adaptive sampling procedure described above results in an 
initial sample of n

1
 primary units selected by a systematic or random procedure 

(without replacement). If a secondary unit satisfies the condition, then all units in 
the neighborhood are added to the sample. If any of the new units satisfies the con-
dition, then their neighbors also are added. In the modified H–T estimator, the final 
sample consists of all units in the initial primary units and all units in the neighbor-
hood of any sample unit satisfying the condition. Edge units must be surveyed, but 
are used in the modified H–T estimator only if they belong to the initial primary 
units. Thus, an edge unit in the initial sample of primary units is weighted more 
than individual units in networks and edge units within a cluster are given a weight 
of 0. Formulas for the modified H–T estimator may be found in Thompson and 
Seber (1996).

4.3.4.4 Other Adaptive Designs

Thompson and Seber (1996) and Thompson (2002b) summarized a variety of other 
adaptive sampling designs. Strip adaptive cluster sampling includes sampling an 
initial strip(s) of a given width divided into units of equal lengths. Systematic adap-
tive cluster sampling may be used when the initial sampling procedure is based on 
a systematic sample of secondary plots within a primary plot. Stratified adaptive 
cluster sampling may be useful when the population is highly aggregated with dif-
ferent expectations of densities between strata. In this case, follow-up adaptive 
sampling may cross strata boundaries (Thompson 2002b). Thompson and Seber 
(1996) also discuss sample size determination based on initial observations within 
primary units, strata, or observed values in neighboring primary units or strata. 
Adaptive sampling has considerable potential in ecological research, particularly in 
studies of rare organisms and organisms occurring in clumped distributions.

In Fig. 4.7, the initial sample consists of five randomly selected strips or primary 
units. The secondary units are small, square plots. Whenever a target element is 
located, adjacent plots are added to the sample, which effectively expands the width 
of the primary strip. As depicted in the figure, because this is a probabilistic sam-
pling procedure not all target elements are located (in fact, you might not know they 
exist). For systematic adaptive cluster sampling (Fig. 4.8) the initial sample is a 
spatial systematic sample with two randomly selected starting points. Adjacent 
plots are added to the initial sample whenever a target element is located. The 
choice of the systematic or strip adaptive cluster design depends primarily on the a 
priori decision to use a specific conventional sampling design to gather the initial 
sample, such as the preceding example using aerial or line transects.

Stratified adaptive cluster sampling essentially works like the previous adaptive 
designs, and is most often implemented when some existing information on how an 
initial stratification is available. In conventional (nonadaptive) stratified sampling, 
units that are thought to be similar are grouped a priori into stratum based on prior 
information. For example, in Fig. 4.9a, the initial stratified random sample of five 
units in two strata is established. Then, whenever a sampling unit containing the 
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Fig. 4.7 An example of an adaptive cluster sample with initial random selection of five strip plots 
with the final sample outlined. Reproduced from Thompson (1991a) with kind permission from 
the International Biometric Society

Fig. 4.8 An example of an adaptive cluster sample with initial random selection of two system-
atic samples with the final sample outlined. Reproduced from Thompson (1991a) with kind 
 permission from the International Biometric Society



Fig. 4.9 (a) Stratified random sample of five units per strata. (b) The final sample, which results 
from the initial sample shown in (a). Reproduced from Thompson et al. (1991b) with kind permis-
sion from Oxford University Press

desired element is encountered, the adjacent units are added. The final sample in 
this example (Fig. 4.9b) shows how elements from one strata can be included in a 
cluster initiated in the other stratum (some units in the right-side stratum were 
included in the cluster [sample] as a result of an initial selection in the left-side 
stratum). Thompson (2002b, pp. 332–334) provides a comparison of this example 
with conventional stratified sampling.

There are four challenges you will encounter when considering implementing an 
adaptive cluster design (Smith et al. 2004, pp. 86–87):
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1. Should I apply adaptive cluster sampling to this population?
2. How large should I expect the final sample size to be?
3. How do I implement adaptive sampling under my field conditions?
4. How can I modify adaptive sampling to account for the biology, behavior, and 

habitat use of the elements?

Although most biological populations are clustered, adaptive cluster sampling is 
not necessarily the most appropriate method for all populations. Estimators for 
adaptive cluster sampling are more complicated and less well understood than those 
associated with nonadaptive (classical) methods. Adaptive methods should only be 
used when the benefits of their use clearly outweigh the additional complications.

A difficulty with adaptive sampling is that the final sample size is not known when 
initiating the study. Although “stopping rules” are available, they can potentially bias 
results. If the study area is reasonable and well defined, then sampling will “stop” on 
its own when no additional elements are located. However, if the study area is 
extremely large and not readily defined (e.g., “the Sierra Nevada,” “eastern Texas”), 
then adaptive sampling becomes difficult to stop once initiated. Perhaps one of the 
simplest means of stopping, given an appropriate initial sample, is to frequently 
examine the mean and variances associated with the parameter(s) being sampled and 
watch for stability of those parameter estimates. These parameter estimates can also 
be used in conventional power analysis to help guide the stopping decision. 
Conventional systematic sampling is an effective sampling design for clustered popu-
lations, and can be used as a surrogate for designing adaptive sampling.

The suitability of the adaptive design vs. nonadaptive designs depends on the 
characteristics of the population being sampled. Adaptive cluster sampling is most 
practical when units are easily located, the condition for selecting units is relatively 
constant and set at a reasonable level, and the distribution of elements of interest is 
truly clumped. Adaptive designs are most practical for ground-based surveys for 
things such as contaminants, plant(s) growing in scattered clumps, wildlife species 
that exhibit a general seasonal phenology which cause aggregations (e.g., breeding 
grounds). Adaptive sampling is not recommended for aerial surveys where locating 
sampling units is difficult at best and locating borders of a neighborhood of units 
would be extraordinarily difficult and time consuming. Adaptive sampling is also 
not recommended for situations where the condition is temporary. If the condition 
causing a unit to be included in a network is likely to change, e.g., presence or 
absence of a bird in a study plot, then a survey once started would need to be com-
pleted as quickly as possible, making planning for surveys difficult. If the condi-
tions were too sensitive or the distribution of the elements of interest not sufficiently 
clumped (e.g., broadly distributed species like deer) the survey requirements would 
quickly become overwhelming.

4.3.5 Double Sampling

In double sampling, easy-to-measure or economical indicators are measured on a 
relatively large subset or census of sampling units in the treatment and reference 



areas and expensive or time-consuming indicators are measured on a subset of units 
from each area. As always, easily obtainable ancillary data should be collected. 
Analysis formulas are available in Cochran (1977). The principles for double sam-
pling are straightforward and the method is easy to implement.

Consider the following examples where y is the primary variable of interest that 
is relatively expensive to measure on each experimental unit compared with an 
indicator variable x:

1. y = the number of pairs of breeding ducks present in a certain strip transect 
measured by ground crews, X = the number of breeding pairs seen during an 
aerial survey of the same strip

2. y = number of moose seen in a strip transect during an intensive aerial survey, 
X = number of moose seen in the same strip during a regular aerial survey (e.g., 
Gasaway et al. 1986)

3. y = the amount of vegetative biomass present on a sample plot, X = ocular esti-
mate of the vegetative biomass on the same plot

In some cases the total (or mean) of the indicator variable may be known for the 
entire study area while the more expensive variable is known for only a portion of 
the area. If x and y are positively correlated then double sampling may be useful for 
improving the precision of estimates over the precision achieved from an initial, 
small, and expensive sample of both x and y (Eberhardt and Simmons 1987).

4.3.5.1 Double Sampling with Independent Samples

Double sampling would normally be used with independent samples where an ini-
tial (relatively small) sample of size n

1
 is taken where both y and x are measured. 

The means for the two variables are calculated or, if the mean is known, the value 
of the variable is estimated as

y = y /n      Y  Ny1 i i i 1∑ or andˆ

x x n X Nxi i i i i1 = =∑ / or ˆ .

In a relatively large sample of size n
2
 (or a census) only the variable x is measured. 

Its mean is

x x n X Nxi i2 2 2= =∑ / or 2
ˆ .

In some situations, the mean for X
2
 or (X

–
2
) is known from census data, thus the 

standard error is zero (X
2
 = 0.0). As an example, suppose X

2
 = total production for a 

farmer’s native hay field and Y = potential production without deer as measured in 
n

1
 = 10 deer proof exclosures randomly located in a field. Two variables (X

i
,y

i
) are 

measured on the ith enclosure, where y
i
 is the biomass present on a plot inside the 

enclosure and X
i
 is the biomass present on a paired plot outside the enclosure.
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The ratio of production inside the exclosures to production outside the exclo-
sures is

R
y

x

y

x

y

x
i i

i

= = = ∑
∑1

1

1

ˆ

ˆ
.

The ratio estimator for the total production without deer is

ˆ ˆ ˆ ˆ ,Y
y

x
x RXR =

⎡

⎣
⎢

⎤

⎦
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2 2

and the estimate of the mean production per plot (Y
–
) without deer is

y
y

x
x RxR =

⎡
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⎢

⎤
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1
2 2
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There is the tendency to obtain as small a sample as possible of the first more 
expensive sample. As with any form of probability sampling, the smaller the sam-
ple size the greater the likelihood of bias. However, using the ratio estimator, the 
effect of this bias is reduced. Consider the following example. Suppose the size of 
the field (N) is 100,000 m2, the mean production outside the exclosure is 60 gm m−2, 
the mean production inside the exclosure is 75 gm m−2, and the total production for 
the field is (X

2
) = 100,000 m2 (50 gm m−2) = 5,000,000 gm outside exclosures. The 

ratio of the estimates of production is 60 gm m−2/75 gm m−2 = 1.25. Thus, there is 
an additional 0.25 gm of production per m2 of production inside exclosures for 
every gm of production outside the exclosures. The estimated production without 
deer is (50 gm m−2) (1.25) = 62.5 gm m−2 and total production of the entire field (Y

2
) 

= 100,000 m2 (62.5 gm m−2) = 6,250,000 gm if the field could have been protected 
from deer. Note that the estimate of 75 gm m−2 for sample plots inside exclosures is 
adjusted down since the total production (X

–
2 = 50 gm m−2) is below the average of 

paired sample plots outside the exclosures (X
–

1
 = 60 gm m−2). In our example, the 

small sample of exclosures apparently landed on higher production areas of the 
field by chance. We assume that the ratio R is adequately estimated by the initial, 
small but expensive sample. The large, inexpensive, second sample (i.e., total 
 production by the farmer) adjusts for the fact that the initial sample may not truly 
represent the entire field.

Computation of the variances and standard errors is tedious because a ratio and 
a product are involved. The variance of the product with independent samples is 
estimated by the unbiased formula proposed by Reed et al. (1989).

4.3.5.2 Applications of Double Sampling

Smith’s (1979) two-stage sampling procedure is a variation of the general double-
sampling method for use in environmental impact studies. Smith suggests oversam-
pling in an initial survey, when knowledge concerning impacts is most limited, and 
recording economical easy-to-measure indicators. For example, animal use (an 
index to abundance sampled according to a probability sample) might be taken dur-



ing a pilot study, allowing one to identify species most likely affected by a treat-
ment or impact. In the second stage and with pilot information gained, the more 
expensive and time-consuming indicators (e.g., the actual number of individuals) 
might be measured on a subset of the units. If the correlation between the indicators 
measured on the double-sampled units is sufficiently high, precision of statistical 
analyses of the expensive and/or time-consuming indicator is improved.

Application of double sampling has grown in recent years, particularly for cor-
recting for visibility bias. Eberhardt and Simmons (1987) suggested double sam-
pling as a way to calibrate aerial observations. Pollock and Kendall (1987) included 
double sampling in their review of the methods for estimating visibility bias in aerial 
surveys. Graham and Bell (1969) reported an analysis of double counts made during 
aerial surveys of feral livestock in the Northern Territory of Australia using a similar 
method to Caughley and Grice (1982) and Cook and Jacobson (1979). Several stud-
ies have used radiotelemetered animals to measure visibility bias, including Packard 
et al. (1985) for manatees (Trichechus manatus), Samuel et al. (1987) for elk, and 
Flowy et al. (1979) for white-tailed deer (Odocoileus virginianus). McDonald et al. 
(1990) estimated the visibility bias of sheep groups in an aerial survey of Dall sheep 
(Ovus dalli) in the Arctic National Wildlife Refuge (ANWR), Alaska using this 
technique. Strickland et al. (1994) compared population estimates of Dall sheep in 
the Kenai Wildlife Refuge in Alaska using double sampling following the Gasaway 
et al. (1986) ratio technique and double sampling combined with logistic regression. 
Recently, Bart and Earnst (2002) outlined applications of double sampling to esti-
mate bird population trends. Double sampling shows great promise in field sampling 
where visibility bias is considered a major issue.

4.3.6 Additional Designs

First, wildlife studies are usually plagued with the need for a large sample size in the 
face of budgetary and logistical constraints. Ranked set sampling provides an oppor-
tunity to make the best of available resources through what Patil et al. (1994) referred 
to as observational economy. Ranked set sampling can be used with any sampling 
scheme resulting in a probabilistic sample. A relatively large probabilistic sample of 
units (N) is selected containing one or more elements (n

i
) of interest. The elements then 

are ranked within each unit based on some obvious and easily discernible characteris-
tic (e.g., patch size, % cover type). The ranked elements are then selected in ascending 
or descending order of rank – one per unit – for further analysis. The resulting rank-
ordered sample provides an unbiased estimator of the population mean superior in 
efficiency to a simple random sample of the same size (Dell and Clutter 1972).

Ranked set sampling is a technique originally developed for estimating vegetation 
biomass during studies of terrestrial vegetation; however, the procedure deserves 
much broader application (Muttlak and McDonald 1992). The technique is best 
explained by a simple illustration. Assume 60 uniformly spaced sampling units are 
arranged in a rectangular grid on a big game winter range. Measure a quick, 
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economical indicator of plant forage production (e.g., plant crown diameter) on each 
of the first three units, rank order the three units according to this indicator, and 
measure an expensive indicator (e.g., weight of current annual growth from a sample 
of twigs) on the highest ranked unit. Continue by measuring shrub crown diameter 
on the next three units (numbers 4, 5, and 6), rank order them, and estimate the 
weight of current annual growth on the second-ranked unit. Finally, rank order units 
7, 8, and 9 by plant crown diameter and estimate the weight of current annual growth 
on the lowest-ranked unit; then start the process over on the next nine units. After, 
completion of all 60 units, a ranked set sample of 20 units will be available for esti-
mates of the weight of current annual growth. This sample is not as good as a sample 
of size 60 for estimating the weight of current annual growth, but should have con-
siderably better precision than a simple random sample of size 20. Ranked set sam-
pling is most advantageous when the quick, economical indicator is highly correlated 
with the expensive indicator, and ranked set sampling can increase precision and 
lower costs over simple random sampling (Mode et al. 2002). These relationships 
need to be confirmed through additional research. Also, the methodology for estima-
tion of standard errors and allocation of sampling effort is not straightforward.

One of the primary functions of sampling design it to draw a sample that we hope 
provides good coverage of the area of interest and allows for precise estimates of the 
parameter of interest. The simple Latin square sampling +1 design can provide better 
sample coverage than systematic or simple random sampling, especially when the dis-
tribution of the target species exhibits spatial autocorrelation (Munholland and 
Borkowski 1996). A simple Latin square +1 design is fairly straightforward; a sam-
pling frame is developed first (note that a Latin square +1 is irrespective of plot shape 
or size), then a random sample of plots is selected from each row–column combination 
(Fig. 4.10a), and then a single plot (the +1) is selected at random from the remaining 
plots (6 showing in Fig. 4.10a). Simple Latin square +1 sampling frames need not be 
square; they could also be linear (Fig. 4.10b) or any other a range of various shapes 
(Thompson et al. 1998) so long as the sampling frame can be fully specified.

Fig. 4.10 (a) A simple Latin square sample of +1 drawn from a sampling frame consisting of nine 
square plots. Those plots having an “X” were the initial randomly selected plots based for each 
row–column; the plot having an “O” is the +1 plot, which was randomly selected from the remain-
ing plots. (b) The same sampling frame adapted to a population tied to a linear resource. 
Reproduced from Thompson et al. (1998) with kind permission from Elsevier



Another approach to sampling natural resources, called generalized random-tes-
sellation stratified designs (GRTS; Stevens and Olsen 1999, 2004), was developed 
to assist with spatial sampling of natural resources and ensure that the samples are 
evenly dispersed across the resource. Stratified sampling designs tend to spread out 
sample plots evenly across a landscape, simple random sampling tends to give pat-
terns that are more spatially clumped. Under GRTS designs, the assumption is that 
segments of a population tend to be more similar the closer they are in space. So, 
in order to gather a sample of the resource in question, it is desirable to attempt to 
spread the points fairly evenly across the study frame. For each sampling proce-
dure, a reverse hierarchical ordering is applied and generalized random-tessellation 
samples are designed such that for a given sample size (N) the first n units will be 
spatially balanced across a landscape (Stevens and Olsen 2004). GRTS designs 
have been used for large-scale environmental monitoring studies although they 
could potentially be used for smaller scale studies.

4.4 Point and Line Sampling

In the application of probability sampling, as seen above, one assumes each unit in 
the population has equal chance of being selected. Although this assumption may be 
modified by some sampling schemes (e.g., stratified sampling), the decisions regard-
ing sample selection satisfy this assumption. In the cases where the probability of 
selection is influenced in some predictable way by some characteristic of the object 
or organism, this bias must be considered in calculating means and totals. Examples 
include line intercept sampling of vegetation (McDonald 1980; Kaiser 1983), plot-
less techniques such as the Bitterlich plotless technique for the estimation of forest 
cover (Grosenbaugh 1952), aerial transect methods for estimating big game numbers 
(Steinhorst and Samuel 1989; Trenkel et al. 1997), and the variable circular plot 
method for estimating bird numbers (Reynolds et al. 1980). If the probability of 
selection is proportional to some variable, then equations for estimating the magni-
tude and mean for population characteristics can be modified by an estimate of the 
bias caused by this variable. Size bias estimation procedures are illustrated where 
appropriate in the following discussion of sample selection methods.

4.4.1 Fixed Area Plot

Sampling a population is usually accomplished through a survey of organisms in a col-
lection of known size sample units. The survey is assumed complete (e.g., a census), so 
the only concern is plot-to-plot variation. Estimating the variance of these counts uses 
standard statistical theory (Cochran 1977). Results from the counts of organisms on 
sample units are extrapolated to area of interest based on the proportion of area sampled. 
For example, the number of organisms (N) in the area of interest is estimated as
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ˆ ,N
N

= ′
a

where the numerator (N') equals the number of organisms counted and the denomi-
nator (a) equals the proportion of the area sampled. In the case of a simple random 
sample, the variance is estimated as
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where n = the number of plots, x
i
 = the number of organisms counted on plot i, and 

X
− = the mean number of organisms counted per sample plot.

Sampling by fixed plot is best done when organisms are sessile (e.g., plants) or 
when sampling occurs in a short time frame such that movements from plots has no 
effect (e.g., aerial photography). We assume, under this design, that counts are 
made without bias and no organisms are missed. If counts have a consistent bias 
and/or organisms are missed, then estimation of total abundance may be inappro-
priate (Anderson 2001). Aerial surveys are often completed under the assumption 
that few animals are missed and counts are made without bias. However, as a rule, 
total counts of organisms, especially when counts are made remotely such as with 
aerial surveys, should be considered conservative. Biases are also seldom consist-
ent. For example, aerial counts are likely to vary depending on the observer, the 
weather, ground cover, pilot, and type of aircraft.

4.4.2 Line Intercept Sampling

The objective in line intercept sampling is estimation of parameters of two-
dimensional objects in a two-dimensional study area. The basic sampling unit is 
a line randomly or systematically located perpendicular to a baseline and 
extended across the study area. In wildlife studies, the objects (e.g., habitat 
patches, fecal pellets groups) will vary in size and shape and thus will be encoun-
tered with a bias toward larger objects relative to the baseline. This size bias does 
not affect the estimate of aerial coverage of the objects but may bias estimates of 
other parameters. For example, estimates of age or height of individual plants 
would be biased toward the larger plants in the study area. Estimates of these 
parameters for the study area must be corrected for this source of bias.

Parameters in line intercept sampling are illustrated in Fig. 4.11. The study 
region (R) can be defined by its area (A). Within the study area there is a population 
(N) of individual objects (N = 5 in Fig. 4.11) with each defined by an area (a

i
). Each 

object may also have an attribute (Y
i
) (e.g., biomass, height, or production of 

shrubs) and a total of the attribute (Y) over all objects. A mean of the attribute (Y
–
) 

can also be calculated (Y/N). Finally, the aerial coverage (C) of N objects can be 
calculated where the percentage cover is the total area of individual plants divided 
by the area of the study area (C = Σ

ai
/A).



Here we define the following statistics for the line transect:

1. L = length of the randomly located line
2. v

i
 = length of the intersection of the line and the ith object

3. w
i
 = width of the projection of the ith object on the baseline

4. m = number of replications of the basic sampling unit (e.g., the number of lines 
randomly selected)

5. n = number of individual objects intercepted by the line

The primary application of line intercept sampling has been to estimate coverage 
by the objects of interest (Canfield 1941). The procedure also has been used to 
record data on attributes of encountered objects (Lucas and Seber 1977; Eberhardt 
1978; McDonald 1980; Kaiser 1983), to estimate a variety of parameters including 
the aerial coverage of clumps of vegetation, coverage and density (number per unit 
area) of a particular species of plant, number of prairie dog burrows, and the cover-
age by different habitat types on a map.

4.4.3 Size-biased Sampling

Even though biologists often do not recognize that items have been sampled with 
unequal probability and that these data are size biased, care should be taken to rec-
ognize and correct for this source of bias. Size bias can be accounted for by calculat-
ing the probability of encountering the ith object with a given length (L) and width 
(W) with a line perpendicular to the baseline from a single randomly selected point

Fig. 4.11 Parameters in line intercept sampling, including the area (A = L × W) of the study area, 
the objects of interest (1–5), aerial coverage (a

1
,…,a

n
) of the objects, the intercept lines and their 

random starting point and spacing interval. Reproduced from McDonald (1991) with kind permission 
from Lyman McDonald
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where w
i
 is the width of the object in relation to the baseline. The estimate of the 

number of objects N is
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and the density of objects, D = D/A, is estimated by
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where n is the number of objects intercepted by the single line of length L.
The total of the attribute, Ŷ Y
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; over all objects in the area sampled is esti-
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Means and standard errors for statistical inference can be calculated from independ-
ent (m) replications of the line-intercept sample. Lines of unequal length result in 
means weighted by the lengths of the replicated lines.

4.4.4 Considerations for Study Design

Since the probability of encountering an object is typically a divisor in estimators, 
it is desirable to design sampling to maximize p

i
, minimizing the variance of the 

estimates. The width of objects (w
1
, w

2
,…, w

n
) is in the denominator of the formula 

for calculating the probability of encountering the objects. Thus, the baseline 
should be established so that the projections of the objects on the baseline are maxi-
mized, increasing the probability that lines extending perpendicular to the baseline 
will encounter the objects. Lines of unequal length require that weighted means be 
used for making estimates of parameters when combining the results of independ-
ent replicate lines. As an example,
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∑ ∑
1 1

/ /

4.4.5 Estimation of Coverage by Objects

Estimation of coverage of objects, such as clumps of vegetation, is a common use 
of line-intercept sampling in wildlife studies (Canfield 1941). The estimate of percent 



cover of objects is unbiased and can be estimated by the percentage of the line that 
is intersected by the objects (Lucas and Seber 1977) using the formula

ˆ / ,C v Li
i

n

=
=
∑

1

where v
i
 is the length of the intersection of the ith object with a single replicate line 

of length L. Again, replication of lines of intercept m times allows the estimate of 
a standard error for use in making statistical inferences. Equal length lines can be 
combined in the above formula to equal L. Weighted means are calculated when 
lines are of unequal length.

4.4.6 Systematic Sampling

Line intercept methodologies often employ systematic sampling designs. In the sys-
tematic placement of lines, the correct determination of the replication unit and thus 
the correct sample size for statistical inferences is an issue. If sufficient distance 
between lines exists to justify an assumption of independence, then the proper sample 
size is the number of individual lines and the data are analyzed as if the individual lines 
are independent replications. However, if the assumption of independence is not justi-
fied (i.e., data from individual lines are correlated) then the set of correlated lines is 
considered the replication unit. The set of m lines could be replicated m' times using a 
new random starting point each time, yielding an independent estimate of parameters 
of interest with L' = m(L) as the combined length of the transects to yield m' independ-
ent replications. Statistical inferences would follow the standard procedures.

The general objectives in systematic location of lines are to:

1. Provide uniform coverage over the study region, R
2. Generate a relatively large variance within the replication unit vs. a relatively 

small variance from replication to replication

For example, the total biomass and cover by large invertebrates on tidal influenced 
beaches may be estimated by line intercept sampling with lines perpendicular to the 
tidal flow. Standard errors computed for systematically located lines should be 
conservative (too large) if densities of the invertebrates are more similar at the same 
tidal elevation on all transects vs. different tidal elevations on the same transect 
(condition 2 above is satisfied). Even if individual lines cannot be considered inde-
pendent, when condition 2 is satisfied then standard computational procedures for 
standard errors can be used (i.e., compute standard errors as if the data were inde-
pendent) to produce conservative estimates.

4.4.7 One Line with No Replication

Often one or more long lines are possible but the number is not sufficient to provide 
an acceptable estimate of the standard error. Standard errors can be estimated by 
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breaking the lines into subsets, which are then used in a jackknife or bootstrap pro-
cedure. A good example might be surveys along linear features such as rivers or 
highways. Skinner et al. (1997) used bootstrapping for calculating confidence inter-
vals around estimates of moose density along a long transect zigzagging along the 
Innoko River in Alaska. Each zigzag is treated as an independent transect. While 
there may be some lack of independence where the segments join, it is ignored in 
favor of acquiring an estimate variance for moose density along the line. This works 
best with a relatively large sample size that fairly represents the area of interest. 
Skinner et al. (1997) reported satisfactory results with 40–60 segments per stratum.

Generally, the jackknife procedure estimates a population parameter by repeat-
edly estimating the parameter after one of the sample values is eliminated from the 
calculation resulting in several pseudoestimates of the parameter. The pseudoesti-
mates of the parameter are treated as a random sample of independent estimates of 
the parameter, allowing an estimate of variance and confidence intervals. The boot-
strap is the selection of a random sample of n values X

1
, X

2
,…, X

n
 from a population 

and using the sample to estimate some population parameter. Then a large number 
of random samples (usually >1,000) of size n are taken from the original sample. 
The large number of bootstrap samples is used to estimate the parameter of interest, 
its variance, and a confidence interval. Both methods require a large number of cal-
culations and require a computer. For details on jack-knife, bootstrap, and other 
computer-intensive methods, see Manly (1991).

4.5 Line Transects

Line transects are similar to line intercept sampling in that the basic sampling unit 
is a line randomly or systematically located on a baseline, perpendicular to the 
baseline, and extended across the study region. Unlike line intercept sampling, 
objects are recorded on either side of the line according to some rule of inclusion. 
When a total count of objects is attempted within a fixed distance of the line, 
transect sampling is analogous to sampling on fixed plot (see Sect. 4.4.1). This 
form of line transect, also known as a belt (strip) transect, has been used by the US 
Fish and Wildlife Service (Conroy et al. 1988) in aerial counts of black ducks. As 
with most attempts at total counts, belt transect surveys usually do not detect 100% 
of the animals or other objects within the strip. When surveys are completed 
according to a standard protocol, the counts can be considered an index. Conroy et 
al. (1988) recognized ducks were missed and suggested that survey results should 
be considered an index to population size.

Line-transect sampling wherein the counts are considered incomplete has been 
widely applied for estimation of density of animal populations (Laake et al. 1979, 
1993). Burnham et al. (1980) comprehensively reviewed the theory and applica-
tions of this form of line-transect sampling. Buckland et al. (1993) updated the 
developments in line-transect sampling through the decade of the 1980s. Alpizar-
Jara and Pollock (1996), Beavers and Ramsey (1998), Manly et al. (1996), Quang 



and Becker (1996, 1997), and Southwell (1994) developed additional theory and 
application. The notation in this section follows Burnham et al. (1980).

Line-transect studies have used two basic designs and analytic methods depend-
ing on the type of data recorded (1) perpendicular distances (x) or sighting distances 
(r) and (2) angles (q) (Fig. 4.12). Studies based on sighting distances and angles are 
generally subject to more severe biases and are not emphasized in this discussion.

There are several assumptions required in the use of line-transect surveys 
(Buckland et al. 2001), including:

1. Objects on the line are detected with 100% probability.
2. Objects do not move in response to the observer before detection (e.g., animal 

movements are independent of observers).
3. Objects are not counted twice.
4. Objects are fixed at the point of initial detection.
5. Distances are measured without errors.
6. Transect lines are probabilistically located in the study area.

4.5.1 Detection Function

The probability of detecting an object at a perpendicular distance of x from the 
transect line is known as the object’s detection function g(x) illustrated in Fig. 4.12. 
Assumption 1, above, that g(0) = 1 (i.e., the probability is 1.0 that an object with 
x = 0 will be detected) is key and allows estimation of the necessary parameter for 
correcting for visibility bias away from the line (i.e., g < 1.0). The detection func-
tion can be made up of a mixture of more simple functions which depend on factors 

Fig. 4.12 The types of data recorded for the two basic types of line-transect study designs includ-
ing perpendicular distances (x) or sighting distances (r) and angles (q). The probability of detect-
ing an object at a perpendicular distance of x from the transect line is known as the object’s 
detection function g(x). Reproduced from Burnham et al. (1980) with kind permission from The 
Wildlife Society
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such as weather, observer training, vegetation type, etc., so long as all such func-
tions satisfy the condition that probability of detection is 100% at the origin x = 0 
(Burnham et al. 1980).

The average probability of detection for an object in the strip of width 2w is 
estimated by

ˆ / ˆ ( )P wfw = 1 0

where f(x) denotes the relative probability density function of the observed right 
angle distances, x

i
, i = 1, 2,…,n. The function f(x) is estimated by a curve fitted to 

the (relative) frequency histogram of the right angle distances to the observed 
objects and f̂ (0) is estimated by the intersection of f(x) with the vertical axis at x = 
0. Given ˆ / ˆ ( ),P wfw = 1 0  and detection of n objects in the strip of width 2w and 
length L, the observed density is computed by
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The observed density is corrected for visibility bias by dividing by the average 
probability of detection of objects to obtain
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The width of the strip drops out of the formula for estimation of density of objects 
allowing line-transect surveys with no bound on w (i.e., w = ∞). However, at large 
distances from the line, the probability of detection becomes very low and it is 
desirable to set an upper limit on w such that 1–3% of the most extreme observa-
tions are truncated as outliers. Decisions on dropping outliers from the data set can 
be made after data are collected.

4.5.2 Replication

Estimates of the variances and standard errors associated with line-transect sampling 
are usually made under the assumption that the sightings are independent events and 
the number of objects detected is a Poisson random variable. If there are enough data 
(i.e., ≥40 detected objects) on independent replications of transect lines or system-
atic sets of lines, then a better estimate of these statistics can be made. Replications 
must be physically distinct and be located in the study area according to a true prob-
ability sampling procedure providing equal chance of detection for all individuals. 
Given independent lines, the density should be estimated on each line and the stand-
ard error of density estimated by the usual standard error of the mean density 
(weighted by line length if lines vary appreciably in length).

If there are not enough detections on independent replications, then jackknifing 
the lines should be considered (Manly 1991). For example, to jackknife the lines, 



repeatedly leave one line out of the data set and obtain the pseudoestimate of den-
sity by biasing estimates on the remaining lines. The mean of the pseudoestimates 
and the standard error of the pseudoestimates would then be computed. While jack-
knifing small samples will allow the estimation of variance, sample sizes are not 
increased and the pseudovalues are likely to be correlated to some extent, resulting 
in a biased estimate of variance. The significance of this bias is hard to predict and 
should be evaluated by conducting numerous studies of a range of situations before 
reliance is placed on the variance estimator (Manly 1991).

4.5.3 Line-transect Theory and Application

Size bias is an issue when the probability of detecting subjects is influenced by size 
(e.g., the subject’s width, area, etc.). In particular, animals typically occur in groups, 
and the probability of detecting an individual increases with group size. Estimates 
of group density and mean group size are required to estimate the density of indi-
viduals and an overestimate of mean group size will lead to an overestimate of true 
density. Drummer and McDonald (1987) proposed bivariate detection functions 
incorporating both perpendicular distance and group size. Drummer (1991) offered 
the software package SIZETRAN for fitting size-biased data. Quang (1989) pre-
sented nonparametric estimation procedures for size-biased line-transect surveys.

Distance-based methods have been combined with aerial surveys (Guenzel 
1997) to become a staple for some big game biologists in estimating animal abun-
dance. As pointed our earlier (Sect. 4.5.1), the probability of detecting objects dur-
ing line-transect surveys can influence parameter estimates. Quang and Becker 
(1996) offered an approach for incorporating any appropriate covariate influencing 
detection into aerial surveys using line-transect methodology by modeling scale 
parameters as log-linear functions of covariates. Manly et al. (1996) used a double-
sample protocol during aerial transect surveys of polar bear. Observations by two 
observers were analyzed using maximum likelihood methods combined with an 
information criterion (AIC) to provide estimates of the abundance of polar bears. 
Beavers and Ramsey (1998) illustrated the use of ordinary least-squares regression 
analyses to adjust line-transect data for the influence of variables (covariates).

The line-transect method is also proposed for use with aerial surveys and other 
methods of estimating animal abundance such as a form of capture–recapture 
(Alpizar-Jara and Pollock 1996) and double sampling (Quang and Becker 1997; 
Manly et al. 1996). Lukacs et al. (2005) investigated the efficiency of trapping web 
designs, which can be combined with distance sampling to estimate density or 
abundance (Lukacs et al. 2004) and provided software for survey design (Lukacs 
2002). In addition, line-transect methods have been developed which incorporate 
covariates (Marques and Buckland 2004), combine capture–mark–recapture data 
(Burnham et al. 2004), and a host of other potential topics (Buckland et al. 2004). 
The field of abundance and density estimation from transect-based sampling 
schemes is active, so additional methodologies are sure to be forthcoming.
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4.6 Plotless Point Sampling

The concept of plotless or distance methods was introduced earlier in our discus-
sion of the line intercept method (see Sect. 4.4.2). Plotless methods from sample 
points using some probability sampling procedure are considered more efficient 
than fixed area plots when organisms of interest are sparse and counting of individ-
uals within plots is time consuming (Ludwig and Reynolds 1988).

4.6.1 T-square Procedure

In the T-square procedure, sampling points are at random, or systematically selected 
locations, and two distances are taken at each point (Fig. 4.13). For example, this 
method has been used in the selection individual plants and animals for study. 
McDonald et al. (1995) used the method for selection of invertebrates in the study 
of the impacts of the Exxon Valdez oil spill. The two measurements include:

1. The distance (x
i
) from the random point (O) to the nearest organism (P)

2. The distance (z
i
) from the organism (P) to its nearest neighbor (Q) with the restric-

tion that the angle OPQ must be more than 90° (the T-square distance).

The most robust population density estimator from T-square data is the compound 
estimate using both measures x

i
 and z

i
 (Byth 1982), computed as

ˆ
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∑ ∑

2
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where n represents the number of random points (the sample size). The somewhat 
complicated standard error is calculated on the reciprocal of the compound density 
given by Diggle (1983) as

Fig. 4.13 The two T-square sampling points and the two distances measured at each point. 
Reproduced from Morrison et al. (2001) with kind permission from Springer Science + Business 
Media
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organism-to-neighbor distances, and S
xz
 is the covariance of x and z distances.

4.6.2 Variable Area Circular Plots

The variable circular plot is often applied as a variation of line-transect sampling 
for estimating the number of birds in an area (Reynolds et al. 1980). Counts of 
organisms along a transect is a standard sampling procedure, particularly when the 
organisms of interest are relatively rare. The variable circular plot is recommended, 
however, in dense vegetation and rough terrain where attention may be diverted 
from the survey and toward simply negotiating the transect line. An added advan-
tage of the circular plot is that the observer can allow the surveyed animals to settle 
down. For example, in breeding bird surveys, observers wait several minutes to 
allow the songbirds disturbed by their arrival to settle down before counts begin 
and sound as well as visual observation can be used to detect birds.

While the plot is perceived as circular, the procedure is plotless since all obser-
vations made from a point, in any direction, are recorded. Plot size is a function of 
the observer’s ability to detect the organism of interest and not the design (Ramsey 
and Scott 1979). As with a line transect, estimation of the number of organisms 
within the area surveyed is based on a detection function g(x) that represents the 
distance at which the observer can detect organisms of interest. Density is esti-
mated as

ˆ ,D
n

P
=

p 2

where n is the number of birds detected and the denominator is the area of a circle 
with a radius of r, the distance from the plot center within which we would expect 
n birds to be located (Lancia et al. 2005).

Program DISTANCE (Buckland et al. 1993, 2001) can be used to estimate bird 
densities from variable circular plot data. The theoretical models and estimation 
methods used in DISTANCE work best when at least 40 independent observations 
exist for the area of interest. Data may be pooled across time periods or species to 
estimate detection functions resulting in an average detection probability.

Distance estimates are usually recorded as continuous data. Buckland (1987) 
proposed binomial models for variable circular plots where subjects are categorized 
as being within or beyond a specified distance. Estimates of distances to detected 
subjects may also be assigned to intervals with the frequency of observations ana-
lyzed in the intervals. Placing detected subjects in intervals of distance should be 
more accurate for subjects close to the observer so we recommend that intervals 
near the center of the plot be smaller than intervals farthest from the observer. The 
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critical point estimate is the intersection of the detection function at the origin. 
Burnham et al. (1980) suggested trimming data so that roughly 95% of the observed 
distances are used in the analysis. The assumption is that the outer 5% of observa-
tions are outliers that may negatively affect density estimates.

The assumption that counts are independent may be difficult, as subjects being 
counted are seldom marked or obviously unique. Biologists may consider estimat-
ing use per unit area per unit time as an index to abundance. When subjects are rela-
tively uncommon, the amount of time spent within distance intervals can be 
recorded. In areas with a relatively high density of subjects, surveys can be con-
ducted as instantaneous counts of animals at predetermined intervals of time during 
survey periods.

4.7 Model-based Sampling

The major advantage of classic probability sampling is that assumptions regarding 
the underlying population are unnecessary. Using this approach, the population of 
interest is considered fixed in time and space. Randomness is present only because 
of the sample-selection process and variation within the population must be dealt 
with in the course of data analysis. Model-based sampling uses assumptions to 
account for patterns of variability within the population and uses these patterns in 
sampling schemes.

As a note of caution, literature dealing with strictly model-based studies often 
focuses on the analysis of data. Model-based approaches are often promoted as a 
less costly and logistically easier alternative to large design-based field studies. The 
assumption sometimes seems to be that design deficiencies in model-based studies 
can be overcome by modeling. Data analysis can improve the quality of the infor-
mation produced by these studies; however, fundamentally flawed design issues 
should not be ignored. It is worth repeating the philosophy of model selection and 
data analysis advice on modeling in science as offered by McCullagh and Nelder 
(1983, p. 6) and Lebreton et al. (1992):

Modeling in science remains, partly at least, an art. Some principles exist, however, to 
guide the modeler. The first is that all models are wrong; some, though, are better than 
others and we can search for the better ones. At the same time we must recognize that eter-
nal truth is not within our grasp. The second principle (which applies also to artists!) is not 
to fall in love with one model, to the exclusion of alternatives. Data will often point with 
almost equal emphasis at several possible models and it is important that the analyst 
accepts this. A third principle involves checking thoroughly the fit of the model to the data, 
for example by using residuals and other quantities derived from the fit to look for outlying 
observations, and so on. Such procedures are not yet fully formalized (and perhaps never 
will be), so that imagination is required of the analyst here, as well as in the original choice 
of models to fit.

Our distinction between model-based and design-based sampling is somewhat arti-
ficial. Modeling is defined as the mathematical and statistical processes involved in 
fitting mathematical functions to data. Given this definition, models are included in 



all study designs. The importance of models and assumptions in the analysis of 
empirical data ranges from little effect in design-based studies to being a critical 
part of data analysis in model-based studies. Design-based studies result in pre-
dicted values and estimates of precision as a function of the study design. Model-
based studies lead to predicted values and estimates of precision based on a 
combination of study design and model assumptions often open to criticism. The 
following discussion focuses on the most prevalent model-based studies that are 
heavily dependent on assumptions and estimation procedures involving linear and 
logistic regression for data analysis. These study methods are only slightly more 
model-based than some previously discussed (e.g., plotless and line intercept) 
involving estimates of nuisance parameters such as detection probabilities, proba-
bilities of inclusion, and encounter probabilities.

4.7.1 Capture–Recapture Studies

When observational characteristics make a census of organisms difficult, capture–
recapture methods may be more appropriate for estimating population abundance, 
survival, recruitment, and other demographic parameters (e.g., breeding probabili-
ties, local extinction, and recolonization rates). In capture–recapture studies, the 
population of interest is sampled two or more times and each captured animal is 
uniquely marked. Depending upon study objectives, captures may be by live trap-
ping, harvest, passive integrated transponder (PIT) tags, radioactive markers, radio-
telemetry, observing marks such as neck or leg bands, or repeated counts. Some 
individual animals may carry unique markings such as color patterns (e.g., stripes 
on a tiger), vocal patterns (e.g., unique bird sonograms), and even genetic markers. 
With capture–recapture studies, there is a concern with variation from both the 
sampling procedure and detectability (capture probability) issues related to the 
individuals under study (Lancia et al. 2005; Williams et al. 2002). Some detectabil-
ity issues can be solved through study design, as described by our discussion of line 
intercept and double sampling (see Sects. 4.3.5 and 4.5). Capture–recapture studies, 
and the extensive theory dealing with models for the analysis of these data,  combine 
issues related to the sampling process and those issues related to the uncertainty 
regarding the appropriate model to be used to explain the data (Williams et al. 
2002).

In general, sample plans should allow the study to meet the assumptions of the 
model being used to analyze the resulting data and allow the desired statistical infer-
ence. We consider a range of models including the relatively simple Petersen–
Lincoln model (Lincoln 1930), the closed and open population capture–recapture 
Cormack–Jolly–Seber and Jolly–Seber model (Otis et al. 1978; Seber 1982; Pollock 
et al. 1990; Williams et al. 2002), models for survival of radio-tagged individuals 
(Pollock et al. 1989; Venables and Ripley 2002), and models for presence–absence 
data (MacKenzie et al. 2002). For a general review of modeling of capture–recapture 
statistics we refer you to Pollock (1991) and Williams et al. (2002).
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4.7.2 Petersen–Lincoln Model

The Petersen–Lincoln model has been used for years by wildlife biologists to esti-
mate animal abundance and is considered a closed population model. The Petersen–
Lincoln model should be considered an index to abundance when a systematic bias 
prevents of one or more of the assumptions described below from being satisfied. 
In a Petersen–Lincoln study, a sample n

1
 of the population is taken at time t

1
 and all 

organisms are uniquely marked. A second sample n
2
 is taken at time t

2
 and the 

organisms captured are examined for a mark and a count is made of the recaptures 
(m

2
). Population size (N) is estimated as

ˆ / .N n n m= 1 2 2

The assumptions for the Petersen–Lincoln model are:

1. The population is closed (i.e., N does not change between time t
1
 and time t

2
).

2. All animals have equal probability of capture in each sample.
3. There are no errors of measurement.

The assumption of closure is fundamental to the Petersen–Lincoln and other closed 
population models. Populations can increase or decrease through reproduction or 
immigration and mortality or emigration, respectively. The elimination of immigra-
tion and emigration is difficult in large and relatively mobile species. The success 
of mark–recapture studies with mobile populations often depends on the selection 
of study area boundaries grounded in this assumption. Lebreton et al. (1992 [from 
Gaillard 1988]) provided an example of studies of roe deer (Capreolus capreolus) 
in a large fenced enclosure, essentially creating an artificially closed population. 
Numerous studies of larger and more mobile species have attempted to document 
and account for immigration and emigration through the use of radiotelemetry (e.g., 
Miller et al. 1997). The assumption can best be met for small and relatively immo-
bile species by keeping the interval between samples short. Lancia et al. (2005) 
reported 5–10 days as the typical interval, although the appropriate period between 
samples will be taxon-specific.

The assumption of closure can be relaxed in some situations (Seber 1982). 
Losses from the population are allowed if the rate of loss is the same for marked 
and unmarked individuals, which is a difficult assumption to justify. If there are 
deaths at the time of marking the first sample, then the Petersen–Lincoln estimate 
applies to the number of animals alive in the population after time t

1
. If there is 

natural mortality of animals between the two samples and it applies equally to 
marked and unmarked animals, then the estimate applies to the population size at 
the time of the release of the first sample. Kendall (1999) suggested that if animals 
are moving in and out of the study area in a completely random fashion, then the 
Petersen–Lincoln estimator (and closed population methods in general) is unbiased 
for the larger estimate of abundance. The jackknife estimator of Burnham and 
Overton (1978) is a good general tool for dealing with heterogeneity of capture 
probabilities. When heterogeneity is not severe, turning multiple samples into two, 



as in Menkins and Anderson (1988), works reasonably well. Kendall (1999) also 
discussed the implications of these and other types of closure violations for studies 
involving greater than two samples of the population.

The second assumption is related to the first and implies that each sample is a 
simple random sample from a closed population and that marked individuals have 
the same probability of capture as the unmarked animals. If the probability of cap-
ture is different for different classes of animals (say young vs. adults) or for differ-
ent locations, then the sampling could follow the stratified random sampling plan. 
It is common in studies of large populations that a portion of the animal’s range 
may be inaccessible due to topography or land ownership. The estimate of abun-
dance is thus limited to the area of accessibility. This can be a problem for animals 
that have large ranges, as there is no provision for animals being unavailable during 
either of the sampling periods. The probability of capture can also be influenced by 
the conduct of the study such that animals become trap happy (attracted to traps) or 
trap shy (repulsed from traps). The fact that study design seldom completely satis-
fies this assumption has led to the development of models (discussed below) that 
allow the relaxation of this requirement.

The third assumption depends on an appropriate marking technique. Marks must 
be recognizable without influencing the probability of resighting or recapture. 
Thus, marks must not make the animal more or less visible to the observer or more 
or less susceptible to mortality. Marks should not be easily lost. If the loss of marks 
is a problem, double marking (Caughley 1977; Seber 1982) can be used for correc-
tions to the recapture data. New methods of marking animals are likely to help 
refine the design of mark–recapture observational studies and experiments (Lebreton 
et al. 1992). This assumption illustrates the need for standardized methods and 
good standard operating procedures so that study plans are easy to follow and data 
are properly recorded.

An appropriate study design can help meet the assumptions of the Petersen–
Lincoln model, but the two trapping occasions do not allow a test of the assumptions 
upon which the estimates are based. Lancia et al. (2005) suggested that in two- sample 
studies, the recapture method be different and independent of the initial sample 
method. For example, one might trap and neckband mule deer and then use observa-
tion as the recapture method. This recommendation seems reasonable and should 
eliminate the concern over trap response and heterogeneous capture probabilities.

4.7.3 Closed Population Mark–Recapture

Otis et al. (1978) and White et al. (1982) offered a modeling strategy for making 
density and population size estimates using capture data on closed animal popula-
tions. With a complete capture history of every animal caught, these models allow 
relaxation of the equal catchability assumption (Pollock 1974; Otis et al. 1978; 
Burnham and Overton 1978; White et al. 1982; Pollock and Otto 1983; Chao 1987, 
1988, 1989; Menkins and Anderson 1998; Huggins 1989, 1991; Brownie et al. 1993; 
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Lee and Chao 1994). A set of eight models is selected to provide the appropriate 
estimator of the population size. The models are M

0
, M

t
, M

b
, M

h
, M

tb
, M

th
, M

bh
, and 

M
tbh

, where the subscript “0” indicates the null case, and t, b, and h, are as follows:

● 0 – All individuals have the same probability of capture throughout the entire 
study

● t – Time-specific changes in capture probabilities (i.e., the Darroch 1958 model 
where probability of capture is the same for all individuals on a given occasion)

● b – Capture probabilities change due to behavioral response from first capture 
(i.e., probability of capture remains constant until first capture, can change once, 
and then remains constant for the remainder of the study)

● h – Heterogeneity of capture probabilities in the population (i.e., different sub-
sets of the individuals have different probability of capture but, probability of 
capture does not change during the course of the study)

This series of eight models includes all possible combinations of the three factors, 
including none and all of them (Table 4.1 and Fig. 4.14). Population estimates from 
removal data can also be obtained because the estimators for the removal model of 
Zippen (1958) are the same as the estimators under the behavioral model M

b
.

Estimators for the eight models can be found in Rexstad and Burnham (1991). 
We suggest you also check the US Geological Survey Patuxent Wildlife Research 
Center’s software archive (http://www.pwrc.usgs.gov) for additional information 
and updated software for mark–recapture data. Since explicit formulas do not exist 
for the estimators, they must be solved by iterative procedures requiring a compu-
ter. The design issues are essentially identical to the two-sample Petersen–Lincoln 
study with the condition of assumption 2 met through the repeated trapping events 
and modeling.

4.7.4 Population Parameter Estimation

When studying animal populations, survival and recruitment may be of equal or 
greater interest than density or absolute abundance. Capture–recapture models 

Table 4.1 The eight models summarized by symbol, sources of variation in capture probability, 
and the associated estimator, if any

Model Sources of variation in capture possibilities Appropriate estimator

M
0
 None Null

M
t
 Time Darroch

M
b
 Behavior Zippin

M
h
 Heterogeneity Jacknife

M
tb
 Time, behavior None

M
th
 Time, heterogeneity None

M
bh

 Behavior, heterogeneity Generalized removal
Mtbh Time, behavior, heterogeneity None

The names provided are those used by program Capture and MARK for these estimators



focused on estimation of survival originally treated survival as a nuisance parame-
ter to estimation of abundance (Williams et al. 2002). Beginning around the 1980s, 
however, survival estimation became a primary state variable of interest in wildlife 
population ecology (Lebreton et al. 1992). Here we provide a brief overview of 
several related topics with respect to parameter estimation, but refer readers to 
Seber (1982), Williams et al. (2002), and Amstrup et al. (2005) for a detailed dis-
cussion as the literature and methods for estimating population parameters are con-
tinually being reevaluated and refined. Additionally, see Chap. 2 for a list of 
statistical programs that can be used for estimation procedures.

Fig. 4.14 The series of eight closed population models proposed includes all possible combina-
tions of three factors, including none and all of them. Reproduced from Otis et al. (1978) with kind 
permission from The Wildlife Society
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4.7.4.1 Open Population Mark–Recapture

The Cormack–Jolly–Seber and Jolly–Seber methods (Seber 1982; Williams et al. 
2002) allow for estimates of abundance, survival, recruitment, and account for nui-
sance parameters (e.g., detectability). These models are referred to as open popula-
tion models because they allow for gain or loss in animal numbers during the study. 
Note that the rate of gain, sometimes called the birth rate, could be recruitment and 
immigration and the rate of loss, sometimes called the death rate, could be death 
and permanent emigration. Estimates of population size follow the Petersen–
Lincoln estimator previously discussed (see Sect. 4.7.2). The estimate of survival is 
the ratio of the number of marked animals in the i+ 1 sample to the number of 
marked animals in the ith sample. Recruitment from time period i to time period i+ 
1 is estimated as the difference between the size of the population at time i and the 
expected number of survivors from i to i+ 1. Formulas for these estimators are pre-
sented with examples in Williams et al. (2002) and Lancia et al. (2005).

Assumptions required by the models and possible sampling implications include:

1. The probability of capture in the ith sample is the same for all animals (marked 
and unmarked).

2. The probability of survival from t
i
 to t

i–l
 is the same for all marked animals.

3. The probability that an animal in the ith sample is returned alive is the same for 
all animals.

4. Marks are not lost or overlooked.
5. The sampling is instantaneous and fates of marked individuals are independent.
6. Emigration from the sample area is permanent.

If the probability of capture varies by characteristics such as age and sex of animal 
then the data can be stratified during analysis. Similarly, if capture probabilities 
vary depending on habitat or other environmental variables, then stratification of 
the study area during sampling may be attempted with separate estimates made for 
each habitat. The assumption of equal probability of survival (and its reciprocal, the 
probability of death) of marked animals is not required for either method. For 
example, young and adult marked animals can have different survival probabilities, 
a common occurrence in wildlife populations. Using a classic design of one capture 
occasion per period, survival–immigration and death–permanent emigration are 
completely confounded in capture–recapture data. However, for the models to be 
useful, one must accept the assumption that survival probability is the same for 
marked and unmarked animals. In many situations, one can assume that immigra-
tion and emigration offset and thus have little impact on the assumption that esti-
mates of the rate of gain and loss equal birth rate and death rate. If a segregation of 
these rates is desired, however, then study boundaries should minimize this inter-
change or interchange must be estimated (e.g., Miller et al. 1997). Emigration and 
immigration could be significant problems in short-term studies of highly mobile 
animals with large home ranges (e.g., bears) or in source populations where emigra-
tion far exceeds immigration (e.g., dispersal of young mountain lions as described by 
Hornocker 1970). The confounding mentioned above can be partially avoided by 



using more complex applications of these models. If the study is being done at 
multiple sites then multistate models (e.g., Brownie et al. 1993; Williams et al. 
2002) can be used to estimate probabilities of movement between areas. 
Supplemental telemetry could be used to estimate some of the movement. Band 
recoveries can be combined with recapture information to separate philopatry from 
survival (Burnham 1993). In age-dependent models, recruitment from a lower age 
class can be separate from immigration (Nichols and Pollock 1983). There are 
many different types of capture–recapture models including approaches outlined by 
Burnham (1993), the super-population approach of Schwarz and Arnason (1996), a 
host of models by Pradel (1996) which focus on survival and recruitment, as well 
as the Link and Barker (2005) reparameterization of the Pradel (1996) model to 
better estimate those recruitment parameters.

4.7.4.2 Pollock’s Robust Design

Lancia et al. (2005) pointed out that the distinction between open and closed popu-
lations is made to simplify models used to estimate population parameters of inter-
est. The simplifications are expressed as assumptions and study design must take 
these simplifying assumptions into account. Pollock (1982) noted that long-term 
studies often consist of multiple capture occasions for each period of interest. He 
showed that the extra information from the individual capture occasions could be 
exploited to reduce bias in Jolly–Seber estimates of abundance and recruitment 
when there is heterogeneity in detection probabilities.

Under Pollock’s robust design, each sampling period consists of at least two subsam-
ples, ideally spaced closely together so that the population can be considered closed to 
additions and deletions during that period. Kendall and Pollock (1992) summarized 
other advantages of this basic design, in that abundance, survival rate, and recruitment 
can be estimated for all time periods in the study, whereas with the classic design one 
cannot estimate abundance for the first and last periods, survival rate to the last period, 
and the first and last recruitment values; recruitment can be separated into immigration 
and recruitment from a lower age class within the population when there are at least two 
age classes, whereas the classic design requires three age classes (Nichols and Pollock 
1990); abundance and survival can be estimated with less dependence, thereby lessen-
ing some of the statistical problems with density-dependent modeling (Pollock et al. 
1990); and study designs for individual periods can be customized to meet specific 
objectives, due to the second level of sampling. For instance, adding more sampling 
effort in period i (e.g., more trapping days) should increase precision of the abundance 
estimate for period i. However, adding more sampling effort after period i should 
increase precision of survival rate from i to i + 1.

The additional information from the subsamples in the robust design allows one 
to estimate the probability that a member of the population is unavailable for detec-
tion (i.e., a temporary emigrant) in a given period (Kendall et al. 1997). Depending 
on the context of the analysis, this could be equivalent to an animal being a non-
breeder or an animal in torpor. Based on the advantages listed above, we recommend 
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that Pollock’s robust design be used for most capture–recapture studies. There are 
no apparent disadvantages in doing so. Even the assumption of closure across sub-
samples within a period is not necessarily a hindrance (Schwarz and Stobo 1997; 
Kendall 1999). Even where it turns out that it is not possible to apply sufficient 
effort to each subsample to employ the robust design, the data still can be pooled 
and traditional methods used. The advantages of the robust design derive from the 
second source of capture information provided by the subsamples. Obviously, the 
overall study design must recognize the desired comparisons using the open mod-
els, even though the distribution of the samples for the closed model (as long as it 
is a probabilistic sample) is of relatively little consequence.

4.7.4.3 Time-to-event Models

Survival analysis is a set of statistical procedures for which the outcome variable is 
the time until an event occurs (Kleinbaum 1996). As such, survival analysis is con-
cerned with the distribution of lifetimes (Venables and Ripley 2002). In wildlife 
research, survival analysis is used to estimate survival (Ŝ ), or the probability that an 
individual survives a specified period (days, weeks, years). Because estimates of sur-
vival are used in population models, evaluations of changing population demography, 
and as justification for altering management practices, approaches to survival analysis 
have becoming increasingly common in wildlife research. Probably the most com-
mon approach to survival analysis in wildlife science is estimation using known fate 
data based on radio-telemetry where individuals are relocated on some regular basis. 
Another common application of time to event models has been recent work focused 
on estimating survival of nests where the event of interest is the success or failure of 
a nest (Stanley 2000; Dinsmore et al. 2002; Rotella et al. 2004; Shaffer 2004).

Generally, estimation of survival is focused on the amount of time until some event 
occurs. Time-to-event models are not constrained to evaluating only survival, as the 
event of interest could include not only death, but also recovery (e.g., regrowth after a 
burn), return to a location (e.g., site fidelity), incidence (e.g., disease transmission or 
relapse), or any experience of interest that happens to an individual (Kleinbaum 1996). 
Typically, the time in time-to-event models refers to an anthropomorphic specification 
set by the researchers (e.g., days, months, seasons) based on knowledge of the species 
of interest. In wildlife studies, the event of interest is usually death (failure).

One key point that must be addressed is censoring, both right and interval censor-
ing and left truncation. Censoring occurs when the information on the individual(s) 
survival is incomplete, thus we do not know the survival times exactly. There are 
three types of censoring which influence survival modeling:

● Right censoring – when the dataset becomes incomplete on the right size of the 
follow-up period

● Middle censoring – when during the study, the probability of detecting an indi-
vidual is <1

● Left truncation – when the dataset is incomplete at the left side of the follow-up 
period



Censoring of individuals in wildlife studies can be caused by several factors, includ-
ing loss or failure of the radio-tag, detection probabilities <1, topography, or observer 
search image as well as emigration, which we break into two classes, temporary, or 
when a radio tagged individual leaves the study area for 1 sampling occasion and 
then returns (e.g., middle censoring), and permanent emigration, or when an individual 
leaves the study area and does not return. One primary difficulty in radio-telemetry 
studies is distinguishing radio failure from permanent emigration. Additionally, 
nonrelocation due to temporary emigration during an encounter (sampling) occasion 
also causes censoring. For example, temporary emigration can be a problem when 
attempting to evaluate effects of some factor on survival, but this factor differs on 
and off the study area (e.g., hunting on public lands [study area], but no hunting off 
the study area on adjacent private lands).

There are three basic survivorship functions using for analysis of time to event 
data. First, consider that T is a random variable that indicated the length of time 
before a specific event occurs, e.g., the event typically is “failure”, i.e., death of a 
study individual, but it could be “success,” such as returning to an area.

The three potential survivorship functions (from Venables and Ripley 2002; 
Hosmer and Lemeshow 1999) are

● S(t) = Pr(T>t), which is the survivorship function which described the probabil-
ity than an individual animal survives longer than time T. This is frequently 
estimated as the proportion of animals surviving longer than t, Ŝ (t)

● f(t) = 1 − S(t) or f(t) = dF(t)/dt = − dS(t)/dt, which is the probability density func-
tion for the time until event. f(t) is most often called the life distribution or the 
failure time distribution

● h(t) = f(t)/S(t) is the hazard function and is interpreted as a conditional probabil-
ity of failure rate

Perhaps the most common estimator for survival is the Kaplan–Meier product limit 
estimator (Kaplan and Meier 1958; Pollock et al. 1989). The Kaplan–Meier estima-
tor does not make any underlying assumptions about the function being estimated 
and is basically an extension of the binomial estimator (Williams et al. 2002). In its 
simplest form, the Kaplan–Meier estimator is
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j
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and so on.

There are several general assumptions for time to event studies (see Pollock et al. 
1989; Williams et al. 2002). First, we assume that radio-tagged individuals are a 
random sample from the population of interest. This assumption can be satisfied by 
using random location of trapping sites or perhaps stratifying trapping effort by 
perceived density of the population. We also assume that survival times are inde-
pendent among different animals; violating this assumption leads to overdispersion. 
For example, you catch a brood of quail (say 6 young) and radio-tag each, but a 
predator finds the brood and predates the hen and all the young – thus survival time 
between individuals was not independent. Additionally, we assume that radio trans-
mitters (or other marks) do not affect the survival of marked individuals and that 
the censoring mechanism in random or that censoring is not related to fate of the 
individual (e.g., a radio destroyed during predation or harvest event). For staggered 
entry studies, newly marked individuals have the same survival function as previ-
ously marked individuals.

4.7.4 Occupancy Modeling

Occupancy modeling is a recent entry into the field of capture–recapture analysis 
(MacKenzie et al. 2002; MacKenzie 2005). This approach stems from historical 
work done to confirm presence of a species in a particular location at a particular 
time, and as such relates data on site-specific features (e.g., canopy cover) to the 
presence of a species. Thus, the presence or absence of the feature can be used as 
a surrogate for abundance in monitoring temporal and spatial changes in species 
distributions (MacKenzie et al. 2006). Research on animal detectability has focused 
primarily on density or abundance estimation (e.g., Buckland et al. 2001; Borchers 
et al. 2002; Williams et al. 2002), but more limited efforts have been expended on 
presence–absence approaches (Vojta 2005). Occupancy modeling focuses on esti-
mating the proportion of an area of suitable habitat that is occupied by an individual 
of the species of interest (MacKenzie et al. 2004).

Occupancy surveys make the same general assumptions as most capture–
mark–recapture studies and several specific assumptions (MacKenzie et al. 2006) 
including (1) survey sites are closed to changes in occupancy over the survey sea-
son, (2) occupancy probabilities and detection probabilities are either constant 
across sites or a function of survey covariates, and (3) detections at each location 
are independent. Surveys for occupancy are usually less labor intensive than surveys 
for estimation of abundance in that both active (e.g., point counts during breeding 
season) and passive approaches (e.g., track counts or hair snares) can be used to 
survey for presence. However, the difficulty becomes determining when a species 
is truly absent from the study plot, because failing to locate an individual during a 
survey does not imply absence (MacKenzie et al. 2006).



From a survey design standpoint, the percentage of sampling units occupied by a 
species of interest across a landscape is important for population management and 
monitoring (MacKenzie and Royle 2005). Occupancy surveys are developed to esti-
mate this quantity (fraction of sampling units occupied), while accounting for incom-
plete detectability and those factors, which influence detectability. Consider the 
hypothetical situation where we conduct bird point counts to evaluate presence–
absence of an endangered passerine across a physiographic region. We are unable to 
sample every potential area the birds might inhabit, but we know that the birds select 
a specific habitat type (e.g., closed canopy forest). Thus, our sampling frame will be 
all potential bird habitat within this ecoregion, and we will sample, according to some 
probabilistic design, a subset of the total number of sampling units (sites). For each 
site, we will conduct several visits; the number of visits depends upon bird phenology 
and survey effort necessary, although MacKenzie and Royle (2005) suggest 3 visits. 
On each visit, presence or absence is noted, with our intent being to estimate occu-
pancy (ψ

i
) as well as detection probability (p

i
) for the ith sampling unit for the species 

of interest (MacKenzie and Royle 2005; MacKenzie et al. 2006). Currently, occu-
pancy models are available for single or multiple season surveys, and considerable 
research is continuing on combining occupancy surveys with count data or marked 
individuals to estimate population size (MacKenzie et al. 2006).

Occupancy modeling provides an alternative to managers for monitoring species 
trends (proportion of plots with the species) as well as evaluating colonization and 
extinction from study sites. Occupancy approaches require less data and effort. 
More precise abundance estimation for a rare species across a landscape may not 
be implementable due to costs associated with capture and marking animals over a 
broad spatial and temporal frame, while collection of presence–absence data can 
demonstrate whether the population is expanding or contracting over time. This 
might be all the information required for sound management.

Species detectability frequently hinders the ability of managers to make appropri-
ate management decisions. Detectability becomes extremely important when  dealing 
with species that are rare either functionally or operationally (McDonald 2004). Work 
by Royle and Nichols (2003), Royle (2004a,b), Kery et al. (2005), Royle and Link 
(2005), and Royle et al. (2005) focused on estimating species abundance by combin-
ing repeated survey counts and mixture models (beta-binomial mixtures) to estimate 
both detectability and abundance. We see occupancy modeling as a considerable 
improvement over uncorrected surveys (e.g., bird point counts) and these approaches 
should be evaluated for applicability across wildlife science.

4.8 Resource Selection

A primary concern of the biologist is the identification, availability, and relative 
importance of resources (e.g., food, cover, or water) used by animals (i.e., habitat). 
Habitat or resource selection by animals is of interest when evaluating habitat man-
agement and the impact of perturbations on wildlife populations. These studies 
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have far reaching importance to wildlife management, particularly as they relate to 
federally protected species. For example, results of habitat use studies were central 
to the debate over the importance of old-growth timber to the spotted owl (Strix 
occidentalis) and instream flows in the central Platte River in Nebraska to the 
whooping crane (Grus americana).

In resource selection studies, the availability of a resource is the quantity accessi-
ble to the animal (or population of animals) and the use of a resource is that quantity 
utilized during the time period of interest (Manly et al. 1993). When use of a resource 
is disproportionate to availability, then the use is selective (i.e., the animal is showing 
a preference or avoidance for the resource). Manly et al. (1993) provide a unified sta-
tistical theory for the analysis of selection studies. The theory and application of 
resource selection studies were updated (Johnson 1998). We recommend a thorough 
review of both of these references for anyone considering this type of study.

Biologists often identify resources used by animals and document their availa-
bility (usually expressed as abundance or presence/absence). Resource selection 
models can be developed using most of the designs previously discussed. In most 
observational studies, it will be impossible to identify unique animals. However, 
using observations of animals seen from randomly or systematically chosen points, 
it is possible to use resource variables with known availability (e.g., vegetation) as 
predictor variables. For example, assume that a certain vegetation type is preferen-
tially selected as feeding sites for elk within a certain distance of conifer cover 
(Thomas 1979). For example, if the distance was 0.5 km, then one could predict that 
the impact of timber harvest on elk forage would increase if logging occurs <0.5 km 
from this vegetation type. Alternatively, the study area could be classified into 
available units characterized on the basis of a set of predictor variables, such as 
vegetation type, distance to water, distance to cover, and distance to roads. If use is 
defined as the presence or absence of feeding elk, resource selection could be used 
to evaluate the effect of a set of predictor variables on available forage.

4.8.1 Sampling Designs

Alldredge et al. (1998) reviewed the multitude of methods used in the study of 
resource selection. Resource selection occurs in a hierarchical fashion from the geo-
graphic range of a species, to individual animal ranges within a geographic range, to 
use of general features (habitats) within the individual’s range, to the selection of 
particular elements (food items) within the feeding site (Manly et al. 1993). The first 
design decision in a resource selection study is the scale of study (Johnson 1980). 
Manly et al. (1993) suggested conducting studies at multiple scales. Additional 
important decisions affecting the outcome of these studies include the selection of 
the study area boundary and study techniques (Manly et al. 1993).

Resource selection probability functions give probabilities of use for resource 
units of different types. This approach may be used when the resource being stud-
ied can be classified as a universe of N available units, some of which are used and 



the remainder not used. Also, every unit can be classified by the values that it pos-
sesses for certain important variables (X = X

1
, X

2
, …, X

p
) thought to affect use. 

Examples include prey items selected by predators based on color, size, and age, or 
plots of land selected by ungulates based on distance to water, vegetation type, dis-
tance to disturbance, and so on. Sampling of used and unused units must consider 
the same issues as discussed previously for any probability sample.

Thomas and Taylor (1990) described three general study designs for evaluating 
resource selection. In design I, measurements are made at the population level. 
Units available to all animals in the population are sampled or censused and classi-
fied into used and unused. Individual animals are not identified. In design II, indi-
vidual animals are identified and the use of resources is measured for each while 
availability is measured at the level available to the entire population. In design III, 
individuals are identified or collected as in design II and at least two of the sets of 
resource units (used resource units, unused resource units, available resource units) 
are sampled or censused for each animal.

Manly et al. (1993) also offered three sampling protocols for resource selection stud-
ies. First, one outlines random sampling or complete counts on available units and ran-
domly samples used resource units. Next, one = outlines randomly samples or census 
subjects within available units and randomly samples unused units. Finally, one takes 
an independent sample of both used and unused units. Also, it is possible in some situa-
tions to census both used and unused units. Erickson et al. (1998) described a moose 
(Alces alces) study on the Innoko National Wildlife Refuge in Alaska that evaluated 
habitat selection following Design I and sampling protocol A (Fig. 4.15).

Fig. 4.15 Schematic of design I and sampling protocol A (from Manly et al. 1993) as used in a 
survey of potential moose use sites in a river corridor in Innoko National Wildlife Refuge in 
Alaska. Reproduced from Erickson et al. (1998) with kind permission from American Statistical 
Society
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The selection of a particular design and sampling protocol must consider the 
study area, the habitats or characteristics of interest, the practical sample size, and 
the anticipated method of analysis. The design of studies should also consider the 
relationship between resource selection and the anticipated benefits of the selection 
of good resources, such as increased survival rate, increased productivity, and/or 
increased fitness (Alldredge et al. 1998).

4.9 Spatial Statistics

Wildlife studies frequently are interested in describing the spatial pattern of resources 
or contaminants. The application of spatial statistics offers an opportunity to evaluate 
the precision of spatial data as well as improve the efficiency of spatial sampling 
efforts. Spatial statistics combine the geostatistical prediction techniques of kriging 
(Krige 1951) and simulation procedures such as conditional and unconditional simu-
lation (Borgman et al. 1984, 1994). Both kriging and simulation procedures are used 
to estimate random variables at unsampled locations. Kriging produces best linear 
unbiased predictions using available known data, while the simulation procedures 
give a variety of estimates usually based on the data’s statistical distribution. Kriging 
results in a smoothed version of the distribution of estimates, while simulation procedures 
result in predicted variance and correlation structure, and natural variability of the 
original process are preserved (Kern 1997). If the spatial characterization of the mean 
of the variable in the mean in each cell of a grid, for example, then kriging procedures 
are satisfactory. However, if the spatial variability of the process is of importance, 
simulation procedures are more appropriate. For a more complete treatment of 
simulation techniques see Borgman et al. (1994) or Deutsch and Journel (1992). 
Cressie (1991) gave a complete theoretical development of kriging procedures, while 
Isaaks and Srivastava (1989) provided a more applied treatment appropriate for the 
practitioner. For the original developments in geostatistics, we refer you to Krige 
(1951), Matheron (1962, 1971), and Journel and Huigbregts (1978).

In a study using spatial statistics, data generally are gathered from a grid of points 
and the spatial covariance structure of variables is used to estimate the variable of 
interest at points not sampled. The data on the variable of interest at the sample locations 
could be used to predict the distribution of the variable for management or conserva-
tion purposes. For example, suppose a wind plant is planned for a particular area and 
there is concern regarding the potential for the development to create risk to birds. If 
bird counts are used as an index of local use, then estimates of local mean bird use 
could be used to design the wind plant to avoid high bird use areas. Preservation of 
local variability would not be necessary, and kriging would provide a reasonable 
method to predict locations where bird use is low and hence wind turbines should be 
located. Using this sort of linear prediction requires sampling in all areas of interest.

Geostatistical modeling, which considers both linear trends and correlated 
random variables, can be more valuable in predicting the spatial distribution of a 
variable of interest. These geostatistical simulation models are stochastic, and 



predict a degree of randomness in spatial perception of the parameter (Borgman 
et al. 1994). For example, if one is interested in the spatial distribution of a 
contaminant for the purposes of cleanup, then a fairly high degree of interest 
would exist in the location of high concentrations of the contaminant as well as the 
degree of confidence one could place in the predicted distribution. This confi-
dence in the predicted distribution of contaminates would lead to decisions about 
where cleanup is required and where more sampling effort is needed. Figure 4.16 
illustrates a hypothetical upper and lower confidence limit for lead concentration. 
These kinds of maps could be valuable in impact evaluation, as well as management 
situations such as contaminant clean up.

4.10 Summary

The goal of wildlife ecology research is to learn about wildlife populations and the 
habitats that they use. Thus, the objective of Chap. 4 was to provide a description 
of the fundamental methods for sampling and making inferences in wildlife studies. 

Fig. 4.16 A hypothetical three-dimensional map generated by geostatistical modeling illustrating 
an upper (a) and lower (b) 95% confidence limit for lead concentration (from Kern 1997)
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We began with a discussion of the basics of sample survey design, plot shape and 
size, random and nonrandom sample survey selection as well as a description of 
common definitions used in wildlife sample survey design. Within Sect. 4.1, we 
detail the necessity to define clearly study objectives, the area of inference, and the 
sampling unit(s) of importance. Additionally, we discuss the need for clear defini-
tion of the parameters to measure. In Sects. 4.2 and 4.3, we discussed numerous 
methods for probability sampling, ranging from simple random sampling to strip 
adaptive cluster sampling. Under this framework, we outline the need for probabil-
istic sampling procedures and how their use lead to strong inference. We outlined 
several methods to sample populations, ranging from simple fixed area plots to 
more complicated distance-based estimators under design-based inference.

Next, we focused on model-based sampling (Sect. 4.7). We outlined the rationale 
for using model-based techniques and discussed the differences between model-based 
and design-based studies (also see Chap 2). Often, as each wildlife study is unique, 
decisions regarding the sampling plan will require use of a variety of methods. With 
this in mind, we discussed several variant of capture–mark–recapture techniques, 
analysis of presence–absence data, and time to event models; all of which are used for 
model-based inferences. We conclude this chapter with a discussion on resource selec-
tion and spatial statistics and their application to wildlife conservation.
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