
Chapter 3
Experimental Designs

3.1 Introduction

This chapter covers the fundamentals of experimental design as applied to wildlife 
studies. Milliken and Johnson (1984) defined experimental design as the combina-
tion of a design structure, treatment structure, and the method of randomization. We 
discuss most of the common design and treatment structures currently used in wild-
life science from the relatively simple to the more complex. While we touch on 
sampling (randomization) plans because they are an integral part of experimental 
design, we delay detailed discussion of sampling until Chap. 4. Data analysis also 
is integral to study design but we leave this discussion to Chap. 5.

3.2 Principles

The relatively large geographic areas of interest, the amount of natural variability 
(noise) in the environment, the difficulty of identifying the target population, the 
difficulty of randomization, and the paucity of good controls make wildlife studies 
challenging. Wildlife studies typically focus on harvestable species and relatively 
scarce species of concern (e.g., threatened and endangered species) and factors that 
influence their abundance (e.g., death, reproduction, and use). In wildlife studies, 
the treatment is usually a management activity, land use change, or other perturba-
tion contamination event potentially affecting a wildlife population. Additionally, 
this event could influence populations over an area much larger than the geographic 
area of the treatment. In most instances, quantification of the magnitude and dura-
tion of the treatment effects necessarily requires an observational study, because 
there usually is not a random selection of treatment and control areas. Early speci-
fication of the target population is essential in the design of a study. If investigators 
can define the target population, then decisions about the basic study design and 
sampling are much easier and the results of the study can be appropriately applied 
to the population of interest.

Hurlbert (1984) divided experiments into two classes: mensurative and manipu-
lative. Mensurative studies involve making measurements of uncontrolled events at 
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one or more points in space or time with space and time being the only experimen-
tal variable or treatment. Mensurative studies are more commonly termed observa-
tional studies, a convention we adopt. Observational studies can include a wide 
range of designs including the BACI, line-transect surveys for estimating abun-
dance, and sample surveys of resource use. The important point here is that all these 
studies are constrained by a specific protocol designed to answer specific questions 
or address hypotheses posed prior to data collection and analysis. Manipulative 
studies include much more control of the experimental conditions; there are always 
two or more treatments with different experimental units receiving different treat-
ments and random application of treatments.

Eberhardt and Thomas (1991), as modified by Manly (1992) provided a useful 
and more detailed classification of study methods (Fig. 3.1). The major classes in 
their scheme are studies where the observer has control of events (manipulative 
experiments) and the study of uncontrolled events. Replicated and unreplicated 
manipulative experiments follow the classical experimental approach described in 
most statistics texts. Many of the designs we discuss are appropriate for these 
experiments. Their other category of manipulative experiment, sampling for mode-
ling, deals with the estimation of parameters of a model hypothesized to represent 
the investigated process (see Chap. 4).

Fig. 3.1 Classification scheme of the types of research studies as proposed by Eberhardt and 
Thomas (1991) and modified by Manly (1992). Reproduced from Eberhardt et al. (1991) with 
kind permission from Springer Science + Business Media



The study of uncontrolled events can be broadly classified as observational stud-
ies. Observational studies also are referred to as “sample surveys” (Kempthorne 
1966), “planned surveys” (Cox 1958), and “unplanned experiments/observational 
studies” (National Research Council 1985). We suggest Manly (1992) and 
McKinlay (1975) for additional discussion of the design and analysis of observa-
tional studies.

In dealing with observational studies, Eberhardt and Thomas (1991) distin-
guished between situations where some perturbation occurs and where this is not 
the case. The study of a perturbation is common in wildlife sciences, such as the 
study of some environmental contamination (e.g., the Exxon Valdez oil spill). 
Eberhardt and Thomas called these studies intervention analysis because they typi-
cally use time-series (Box and Tiao 1975) methods to study the effect of some dis-
tinct event. These environmental impact studies typically are large field studies as 
opposed to manipulative experiments, although manipulative experiments and 
smaller observational studies aid understanding of the mechanism of impact. In 
observational studies, data are collected by visual detection of an event in time and 
space. Many of the basic designs mentioned in this chapter (e.g., BACI) are covered 
in more detail in Chap. 6.

Eberhardt and Thomas (1991) identified four types of observational studies 
where no obvious perturbation exists. These studies correspond to investigations 
designed to develop better understanding of the biology of a system or population. 
Manly (1992) suggested, and we agree, that the “observational category” of 
Eberhardt and Thomas is really a special type of observational study where possible 
observations are limited to selected groups within the entire population of interest. 
The comparison of groups is another common form of wildlife study, often charac-
terized by the study of representative study areas or groups of animals. The final 
three classes of study include the possibility of sampling the entire population or 
area of interest. The point of describing this scheme is that there is a variety of 
study types, and the design of each will determine the inferences that one can make 
with the resulting data (Manly 1992).

3.3 Philosophies

Scientific research is conducted under two broad and differing philosophies for mak-
ing statistical inferences: design/data-based and model-based. These differing phi-
losophies are often confused but both rely on current data to some degree and aim 
to provide statistical inferences. There is a continuum from strict design/data-based 
analysis (e.g., finite sampling theory [Cochran 1977] and randomization testing 
[Manly 1991]) to pure model-based analysis (e.g., global climate models and habitat 
evaluation procedures [HSI/HEP] using only historical data [USDI 1987]). A com-
bination of these two types of analyses is often employed in wildlife studies, result-
ing in inferences based on a number of interrelated arguments. For more detailed 
discussion on design-based and model-based approaches see Chap. 4.
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3.3.1 Design/Data-based Analysis

In the analysis of design/data-based studies, basic statistical inferences concerning 
the study areas or study populations are justified by the design of the study and data 
collected (Cochran 1977; Scheaffer et al. 1990). Computer-intensive statistical 
methods (e.g., randomization, permutation testing, etc.) are available that require 
no additional assumptions beyond the basic design protocol (e.g., Manly 1991). 
Design/data-based statistical conclusions stand on their own merits for the 
agreed-upon:

● Response variables
● Procedures to measure the variables
● Design protocol

Reanalysis of the data later does not mean the original statistical inferences were 
incorrect; instead, the original analysis stands if consensus still exists on the above 
study conditions.

3.3.2 Model-based Analysis

As the name implies, model-based analyses predict the outcome of experiments 
using models. In the extreme case of model-based analysis where no new data are 
available, all inferences are justified by assumption, are deductive, and are subject 
to counterarguments. The model-based approach usually involves the combination 
of new data with parameters from the literature or data from similar studies using 
a theoretical mathematical or statistical model. An example of this approach is the 
demographic modeling of wildlife populations combined with use of radio-telemetry 
data to estimate the influence of some perturbation on critical parameters in the 
model. This approach is illustrated by the telemetry studies of the golden eagle 
(Aquila chrysaetos) (Hunt 1995) in Altamont Pass, California, as described by 
Shenk et al. (1996).

3.3.3 Mixtures of Design/Data-based and Model-based Analyses

Inferences from wildlife studies often require mixtures of the strict design/data-
based and pure model-based analyses. Examples of analyses using mixtures of 
study designs include:

1. Design/data-based studies conducted on a few target wildlife species
2. Manipulative tests using surrogate species to estimate the effect of exposure to 

some perturbation on the species of concern (Cade 1994)



3. Deductive professional judgment and model-based analyses used to quantify 
effects on certain components of the population or habitat in the affected area

Strict adherence to design/data-based analysis in wildlife studies may be impossi-
ble, but we recommend that the design/data-based analysis be adhered to as closely 
as possible. The value of indisputable design/data-based statistical inferences on at 
least a few response variables cannot be overemphasized in establishing confidence 
in the overall assessment of treatment effects. However, in some circumstances, 
model-based methods provide a suitable alternative to design/data-based methods. 
Additional discussion of the advantages, limitations, and appropriate applications 
of model-based methods exist in Chap. 4 and in Gilbert (1987), Johnson et al. 
(1989), and Gilbert and Simpson (1992).

3.4 Replication, Randomization, Control, and Blocking

Fisher (1966) defined the traditional design paradigm for the manipulative experi-
ment in terms of the replication, randomization, control, and blocking, introduced 
in Chap. 2. Two additional methods are useful for increasing the precision of stud-
ies in the absence of increased replication:

1. Group randomly allocated treatments within homogeneous groups of experi-
mental units (blocking)

2. Use analysis of covariance (ANCOVA) when analyzing the response to a treat-
ment to consider the added influence of variables having a measurable influence 
on the dependent variable

3.4.1 Replication

Replication makes statistical inference possible by allowing the estimation of vari-
ance inherent in natural systems. Replication also reduces the likelihood that 
chance events will heavily influence the outcome of studies. In studies of wildlife 
populations, the experimental unit may be an animal, a group of animals, or all the 
animals within a specific geographic area. Using the wrong experimental unit can 
lead to errors in the identification of proper sample sizes and estimates of sample 
variance.

A good rule to follow when estimating the appropriate sample size in an experi-
ment is that the analysis has only one value from each experimental unit. If five 
sample plots are randomly located in a study area, then statistical inferences to the 
area should be based on five values – regardless of the number of animals or plants 
that may be present and measured or counted in each plot. It becomes obvious that 
replication is difficult and costly in wildlife studies, particularly when the treatment 
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is something as unique as an environmental perturbation, such as an oil spill, new 
wind plant, or dam.

3.4.2 Randomization

Like replication, an unbiased set of independent data is essential for estimating the 
error variance and for most statistical tests of treatment effects. Although truly 
unbiased data are unlikely, particularly in wildlife studies, a randomized sampling 
method can help reduce bias and dependence of data and their effects on the accu-
racy of estimates of parameters. A systematic sample with a random start is one 
type of randomization (Krebs 1989).

Collecting data from representative locations or typical settings is not random 
sampling. If landowners preclude collecting samples from private land within a 
study area, then sampling is not random for the entire area. In studies conducted on 
representative study areas, statistical inference is limited to the protocol by which 
the areas are selected. If private lands cannot be sampled and public lands are sam-
pled by some unbiased protocol, statistical inference is limited to public lands. The 
selection of a proper sampling plan (see Chap. 4) is a critical step in the design of 
a project and may be the most significant decision affecting the utility of the data 
when the project is completed. If the objective of the study is statistical inference 
to the entire area, yet the sampling is restricted to a subjectively selected portion of 
the area, then there is no way to meet the objective with the study design. The infer-
ence to the entire area is reduced from a statistical basis to expert opinion.

3.4.3 Control and Error Reduction

Replication can increase the precision of an experiment (see Chap. 2), although this 
increased precision can be expensive. As discussed by Cochran and Cox (1957) and 
Cox (1958), the precision of an experiment can also be increased through:

1. Use of experimental controls
2. Refinement of experimental techniques, including greater sampling precision 

within experimental units
3. Improvement of experimental designs, including stratification and measurements 

of nontreatment factors (covariates) potentially influencing the experiment

Good experimental design should strive to improve confidence in cause and effect 
conclusions from experiments through the control (standardization) of related vari-
ables (Krebs 1989).

ANCOVA uses information measured on related variables as an alternative to 
standardizing variables (Green 1979). For example, understanding differences in 
predator use between areas improves when considered in conjunction with factors 



influencing use, such as the relative abundance of prey in each area. These factors 
are often referred to as concomitant variables or covariates. ANCOVA combines 
analysis of variance (ANOVA) and regression to assist interpretation of data when 
no specific experimental controls have been used (Steel and Torrie 1980). This 
analysis method allows adjustment of variables measured for treatment effects for 
differences in other independent variables also influencing the treatment response 
variable. ANCOVA assists in controlling error and increasing precision of 
experiments.

Precision can also be improved using stratification, or assigning treatments (or 
sampling effort) to homogeneous strata, or blocks, of experimental units. 
Stratification can occur in space (e.g., units of homogeneous vegetation) and in 
time (e.g., sampling by season). Strata should be small enough to maximize homo-
geneity, keeping in mind that smaller blocks may increase sample size require-
ments. For example, when stratifying an area by vegetation type, each stratum 
should be small enough to ensure a relatively consistent vegetation pattern within 
strata. Nevertheless, stratification requires some minimum sample size necessary to 
make estimates of treatment effects within strata. It becomes clear that stratification 
for a variable (e.g., vegetation type) in finer and finer detail will increase the mini-
mum sample size requirement for the area of interest. If additional related variables 
are controlled for (e.g., treatment effects by season), then sample size requirements 
can increase rapidly. Stratification also assumes the strata will remain relatively 
consistent throughout the life of the study, an assumption often difficult to meet in 
long-term field studies.

3.5 Practical Considerations

Once the decision is made to conduct a wildlife study, several practical issues must 
be considered:

1. Area of interest (area to which statistical and deductive inferences will be made). 
Options include the study site(s), the region containing the study sites, the local 
area used by the species of concern, or the population potentially affected (in 
this case, population refers to the group of animals interbreeding and sharing 
common demographics).

2. Time of interest. The period of interest may be, for example, diurnal, nocturnal, 
seasonal, or annual.

3. Species of interest. The species of interest may be based on behavior, existing 
theories regarding species and their response to the particular perturbation, 
abundance, or legal/social mandate.

4. Potentially confounding variables. These may include landscape issues (e.g., 
large-scale habitat variables), biological issues (e.g., variable prey species abun-
dance), land use issues (e.g., rapidly changing crops and pest control), weather, 
study area access, etc.
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5. Time available to conduct studies. The time available to conduct studies given 
the level of scientific or public interest, the timing of the impact in the case of 
an accidental perturbation, or project development schedule in the case of a 
planned perturbation will often determine how studies are conducted and how 
much data can be collected.

6. Budget. Budget is always a consideration for potentially expensive studies. 
Budget should not determine what questions to ask but will influence how they 
are answered. Budget will largely determine the sample size, and thus the degree 
of confidence one will be able to place in the results of the studies.

7. Magnitude of anticipated effect. The magnitude of the perturbation or the impor-
tance of the effect to the biology of the species will often determine the level of 
concern and the required level of precision.

The remainder of this chapter is devoted to a discussion of some of the more com-
mon experimental designs used in biological studies. We begin with the simplest 
designs and progress toward the more complex while providing examples of practi-
cal applications of these designs to field studies. These applications usually take 
liberties with Fisher’s requirements for designs of true experiments and thus we 
refer to them as quasiexperiments. Since the same design and statistical analysis 
can be used with either observational or experimental data, we draw no distinction 
between the two types of study. Throughout the remainder of this chapter, we refer 
to treatments in a general sense in that treatments may be manipulations by the 
experimenter or variables of interest in an observational study.

3.6 Single-factor Designs

Experiments are often classified based on the number of types of treatments that are 
applied to experimental units. A one-factor experiment uses one type of treatment 
or one classification factor in the experimental units in the study, such as all the 
animals in a specific area or all trees of the same species in a management unit. The 
treatment may be different levels of a particular substance or perturbation.

3.6.1 Paired and Unpaired

The simplest form of a biological study is the comparison of the means of two pop-
ulations. An unpaired study design estimates the effect of a treatment by examining 
the difference in the population mean for a selected parameter in a treated and con-
trol population. In a paired study design, the study typically evaluates changes in 
study units paired for similarity. This may take the form of studying a population 
before and after a treatment is applied, or by studying two very similar study units. 
For example, one might study the effects of a treatment by randomly assigning 



treatment and control designation to each member of several sets of twins or to the 
right and left side of study animals, or study the effectiveness of two measurement 
methods by randomly applying each method to subdivided body parts or plant 
materials.

Comparison of population means is common in impact assessment. For exam-
ple, as a part of a study of winter habitat use of mule deer (Odocoileus hemionus) 
in an area affected by gas exploration, development, and production, Sawyer et al. 
(2006) conducted quadrat counts of deer using the winter range from 2001 to 2005 
and estimated a 49% decline in deer density after development. As Underwood 
(1997) points out, this is the classic “before–after” paired comparison where den-
sity is estimated before the treatment (gas development) and then compared to 
density estimates after development. Even though this rather dramatic decline in 
deer density is of concern, and represents a valid test of the null hypothesis that 
density will not change after development has occurred, the attribution of the 
change to development is not supported because of other influences potentially 
acting on the population. These other potential factors are usually referred to as 
confounding influences (Underwood 1997). In this case, other plausible explana-
tions for the decline in density might be a regional decline in deer density due to 
weather or a response to competition with livestock for forage. Another approach 
to designing a study to evaluate the impacts of gas development on this group of 
deer is to measure density in both a treatment and a control area, where the com-
parison is the density in two independent groups of deer in the same region with 
similar characteristics except for the presence (treatment) or absence (control) of 
gas development.

While there is still opportunity for confounding, and cause and effect is still 
strictly professional judgment since this is a mensurative study, the presence or 
absence of a similar decline in the both the treatment and control groups of animals 
adds strength to the assessment of presence or absence of impact. This example 
illustrates a common problem in wildlife studies; that is, there is no statistical prob-
lem with the study, and there is confidence in not accepting the null hypothesis of 
no change in density after development. The dilemma is that there is no straightfor-
ward way of attributing the change to the treatment of interest (i.e., gas develop-
ment). Fortunately, for Sawyer et al. (2006), contemporary estimates of habitat use 
made before and after gas development illustrated a rather clear reduction of avail-
able habitat resulting from gas development, which provides support for the conclu-
sion that reduced density may be at least partially explained by development.

Another example of the value of paired comparisons is taken from the Coastal 
Habitat Injury Assessment (CHIA) following the massive oil spill when the Exxon 
Valdez struck Bligh Reef in Prince William Sound, Alaska in 1989 – the Exxon 
Valdez oil spill (EVOS). Many studies evaluated the injury to marine resources fol-
lowing the spill of over 41 million liters of Alaska crude oil. Pairing of oiled and 
unoiled sites within the area of impact of the EVOS was a centerpiece in the study 
of shoreline impacts by the Oil Spill Trustees’ Coastal Habitat Injury Assessment 
(Highsmith et al., 1993; McDonald et al., 1995; Harner et al. 1995). In this case, 
beaches classified in a variety of oiled categories (none, light, moderate, and heavy) 
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were paired based on beach substrate type (exposed bedrock, sheltered bedrock, 
boulder/cobble, and pebble/gravel). Measures of biological characteristics were 
taken at each site (e.g., barnacles per square meter, macroinvertebrates per square 
meter, intertidal fish, and algae per square meter) and comparisons were made 
between pairs of sites. The results were summarized as p-values (probabilities of 
observing differences as large as seen on the hypothesis that oiling had no effect) 
and p-values were combined using a meta-analysis approach (Manly 2001).

3.6.2 Completely Randomized Design

The simplest form of an experiment is the random application of two treatments to 
a group of experimental units known as the completely randomized design. This 
design is possible when experimental units are very similar (homogeneous) so 
blocking or other forms of partitioning of variance are of little benefit or sample 
sizes are large enough to be sure there is good representation of the target popula-
tion in each treatment group. Allocation of treatments is by a random process such 
that each experimental unit has the same probability of receiving any treatment. 
Although it is preferable to have equal replication of each treatment across experi-
mental units, it is not necessary.

The completely randomized design is a very flexible design. Analysis is simple 
and straightforward, allowing comparisons of means of different groups with the 
simple t-test or two or more treatments through ANOVA (Underwood 1997). 
Nonparametric equivalents of these tests are also readily available. The design 
maximizes the degrees of freedom (df) for estimating experimental error, increas-
ing precision when df is <20. The loss of information due to missing data is small 
compared with other, more complicated designs. In addition, one can expand the 
design with more than two treatments without major alterations to the form of the 
experiment. The basic model for this design is:

Observed outcome = overall mean + treatment effect + experimental variation.

The completely randomized design is often inefficient, however, since experi-
mental error contains all the variation among experimental units (i.e., measure-
ment error and natural variation). The design may be acceptable for laboratory 
studies where experimental units are carefully controlled. In field situations, 
without considerable knowledge of the experimental units or a pretreatment test 
for differences among experimental units, there is a substantial leap of faith 
required to assume that experimental units are homogeneous. In the absence of 
homogeneous experimental units, an effect may be assumed when in reality the 
apparent treatment effects could actually be the result of pretreatment differences. 
The best way to deal with this naturally occurring heterogeneity is by true rand-
omization of treatments (Manly 1992) and by maximization of sample size within 
the context of project goals and practical limitations (e.g., budget). However, as 
Hurlbert (1984) pointed out, we seldom encounter homogeneous experimental 



units in ecological studies and spatial segregation of experimental units can lead 
to erroneous results resulting from naturally occurring gradients (e.g., elevation 
and exposure effects on plant growth). This is especially problematic with small 
sample sizes common in field studies. A systematic selection of experimental 
units (see Chap. 4) may reduce the effects of spatial segregation of units for a 
given sample size while maintaining the mathematical properties of randomness. 
Regardless, the natural gradients existing in nature make application of the com-
pletely randomized design inappropriate for most field studies.

For a hypothetical example of the completely randomized design, assume the 
following situation. A farmer in Wyoming is complaining about the amount of 
alfalfa consumed by deer in his fields. Since the wildlife agency must pay for veri-
fied claims of damage by big game, there is a need to estimate the effect of deer use 
on production of alfalfa in the field. The biologist decides to estimate the damage 
by comparing production in plots used by deer vs. control plots not used by deer 
and divides the farmer’s largest uniform field into a grid of plots of equal size. 
A sample of plots is then chosen by some random sampling procedure (see Chap. 4). 
Deer-proof fence protects half of the randomly selected plots, while the other half 
is unprotected controls. The effects of deer use is the difference between estimated 
alfalfa production in the control and protected plots, as measured either by compar-
ing the two sample means by a simple t-test or the overall variation between the 
grazed and ungrazed plots by ANOVA (Mead et al. 1993).

An astute biologist who wanted to pay only for alfalfa consumed by deer could 
add an additional treatment to the experiment. That is, a portion of the plots could 
be fenced to allow deer use but exclude rabbits and other small herbivores that are 
not covered by Wyoming’s damage law, without altering the design of the experi-
ment. The analysis and interpretation of this expanded experiment also remains 
relatively simple (Mead et al. 1993).

In a real world example, Stoner et al. (2006) evaluated the effect of cougar 
(Puma concolor) exploitation levels in Utah. This study used a two-way factorial 
ANOVA in a completely randomized design with unequal variances to test for age 
differences among treatment groups (site and sex combinations) for demographic 
structure, population recovery, and metapopulation dynamics.

3.6.3 Randomized Complete Block Design

While the simplicity of the completely randomized design is appealing, the lack of 
any restriction in allocation of treatments even when differences in groups of 
experimental units are known seems illogical. In ecological experiments and even 
most controlled experiments in a laboratory, it is usually desirable to take advantage 
of blocking or stratification (see Chap. 4 for discussion) as a form of error control. 
In the deer example discussed earlier, suppose the biologist realizes there is a gradi-
ent of deer use with distance from cover. This variation could potentially bias 
 estimates of deer damage, favoring the farmer if by chance a majority of the plots 
is near cover or favoring the wildlife agency if a majority of the plots is toward the 
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center of the field. Dividing the field into strata or blocks and estimating deer use 
in each may improve the study. For example, the biologist might divide the field 
into two strata, one including all potential plots within 50 m of the field edge and 
one including the remaining plots. This stratification of the field into two blocks 
restricts randomization by applying treatments to groups of experimental units that 
are more similar and results in better estimates of the effect of deer use, resulting 
in an equitable damage settlement.

In the experiment where blocking is used and each treatment is randomly 
assigned within each block, the resulting design is called a randomized complete 
block design (Table 3.1). Blocking can be based on a large number of factors poten-
tially affecting experimental variation. In animal studies, examples of blocks 
include things such as expected abundance, territoriality, individual animal weights, 
vegetation, and topographical features. Plant studies block on soil fertility, slope 
gradient, exposure to sunlight, individual plant parts, or past management. In eco-
logical studies, it is common to block on habitat and across time. This form of 
grouping is referred to as local control (Mead et al. 1993). The typical analysis of 
randomized block designs is by ANOVA following the linear additive model

Observed outcome = overall mean + block effect + treatment effect + residual 
variation + block × treatment interaction

with the block × treatment interaction serving as the error estimate for hypothesis tests.
With proper blocking, no single treatment gains or loses advantage when compared 

with another because of the characteristics of the units receiving the treatment. 
If the units within blocks are homogeneous compared to units within other blocks, 
the blocking reduces the effects of random variation among blocks on the errors 
involved in comparing treatments. Notwithstanding, poorly designed blocking 
creates more problems than it solves (see Chap. 4 for a discussion of problems 
associated with stratification).

Volesky et al. (2005) provide an example of the randomized complete block 
design to determine the use and herbage production (of cool-season graminoids) in 
response to spring livestock grazing date and stocking rate in the Nebraska 
Sandhills. The study used spring grazing date as the main plot, stocking rate as the 
split plot (see Sect. 3.8.2), with a nongrazed control and grazing rate and stocking 
rate were factor combinations of treatments. The analysis combined treatments 
across years with years as fixed effects and blocks as random effects.

Table 3.1 A randomized complete block experiment with four blocks 
and three treatments (A, B, and C) applied to three plots in each block

Block Treatment  

1 A B C
2 A C B
3 B A C
4 C B A

Reproduced from Morrison et al. (2001), with kind permissions from 
Springer Science + Business Media



Bates et al. (2005) also used the randomized complete block design in a long-term 
study of the successional trends following western juniper cutting. This study estab-
lished four blocks with each block divided into two plots and one plot within each 
block randomly assigned the cutting treatment (CUT) and the remaining plot left as 
woodland (WOODLAND). ANOVA was used to test for treatment effect on herba-
ceous standing crop (functional group and total herbaceous), cover (species and 
functional group), and density (species and functional group). Cover and density of 
shrubs and juniper were analyzed by species with response variables analyzed as a 
randomized complete blocks across time. The final model included blocks (four 
blocks, df = 3), years (1991–1997 and 2003, df = 7), treatments (CUT, WOODLAND, 
df = 1), and year by treatment interaction (df = 7; with the error term df = 45).

3.6.4 Incomplete Block Design

A characteristic of the randomized block design discussed earlier was that each 
treatment was included in each block. In some situations, blocks or budgets may 
not be large enough to allow all treatments to be applied in all blocks. The incom-
plete block design results when each block has less than a full complement of treat-
ments. In a balanced incomplete block experiment (Table 3.2), all treatment effects 
and their differences are estimated with the same precision, as long as every pair of 
treatments occurs together the same number of times (Manly 1992). However, 
analysis of incomplete block designs is considerably more complicated than com-
plete block designs. It is important to understand the analysis procedures before 
implementing an incomplete block design. Example design and analysis methods 
are discussed in Mead et al. (1993).

3.6.5 Latin Squares Design

The randomized block design is useful when one source of local variation exists. 
When additional sources of variation exist, then the randomized block design can 

Table 3.2 A balanced incomplete block experi-
ment with four blocks and four treatments (A, B, 
C, and D) applied to three plots in each block

Block Treatment  

1 A B C
2 A B D
3 A C D
4 B C D

Note that each treatment pair (i.e., AB, AC, BC, and 
CD) occurs the same number of times. Reproduced 
from Morrison et al. (2001), with kind permissions 
from Springer Science + Business Media
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be extended to form a Latin square (Table 3.3). For example, in a study of the 
effectiveness of some treatment, variation may be expected among plots, seasons, 
species, etc. In a Latin square, symmetry is required so that each row and column 
in the square is a unique block. The basic model for the Latin square design is as 
follows:

Observed outcome = row effect + column effect + treatment effect + random unit 
variation.

The Latin square design allows separation of variation from multiple sources at the 
expense of df, potentially reducing the ability of the experiment to detect effect. 
The Latin square design is useful when multiple causes of variation are suspected 
but unknown. However, caution should be exercised when adopting this design. As 
an example of the cost of the design, a 3 × 3 Latin square must reduce the mean 
square error by approximately 40% of the randomized block design of the same 
experiment to detect a treatment effect of a given size.

While the Latin square design is not a common study design in wildlife studies 
it can be useful in some situations. For example, with the aid of George Baxter and 
Lyman McDonald, both professors at the University of Wyoming, the Wyoming 
Game and Fish Department used the Latin square design on a commercial fisheries 
project involving carp (Ctenopharyngodon idella) in Wyoming. The Department 
wanted to determine the cause and frequency of “large” year classes and estimated 
abundance of young fish by different methods at beach sites to help answer this 
question. The study used three sites, three sampling periods separated by some time 
to let the fish settle down, and three types of gear (minnow seining, wing traps, and 
minnow traps). The design was set up in a balanced 3 × 3 Latin square and analysis 
was by ANOVA. The Latin square takes the form of rows as sites, columns as times, 
and three gear types with a response variable of p where p = proportion of young 
of the year fish caught. The Latin square is completed, where each gear type occurs 
once in each site and time. In addition to estimating the abundance of young fish, 
the Department was interested in correcting seining data collected elsewhere for 
biases relative to the “best” sampling method or the pooled proportions if there 
were significant differences.

Table 3.3 A Latin square experiment with two blocking factors (X and Y) each with four blocks 
and four treatments (A, B, C, D)

 Blocking factor (Y)   

Blocking factor (X) 1 2 3 4

1 A B C D
2 B C D A
3 C D A B
4 D A B C

Reproduced from Morrison et al. (2001), with kind permissions from Springer Science + Business 
Media



3.6.6 Summary

Obviously the different levels of a single treatment in these designs are assumed to 
be independent and the treatment response assumed to be unaffected by interactions 
among treatment levels or between the treatment and the blocking factor. This 
might not present a problem if interaction is 0, an unlikely situation in ecological 
experiments. Heterogeneity in experimental units and strata (e.g., variation in 
weather, vegetation, and soil fertility) is common in the real world and results in the 
confounding of experimental error and interaction of block with treatment effects 
(Underwood 1997). This potential lack of independence with a corresponding lack 
of true replication can make interpretation of experiments very difficult, increasing 
the effect size necessary for significance (increase in Type II error).

3.7 Multiple-factor Designs

3.7.1 Factorial Designs

The preceding designs reduced the confounding effects of variance by blocking 
under the assumption that the different treatments of a single factor were unique 
and acted independently. In ecological studies, this independence of treatment 
effects is seldom encountered. Furthermore, studies usually deal with more than 
one factor or class of experimental units. Examples of factors include different 
treatments, such as temperature, diet, habitat, and water quality, or classifica-
tions of experimental units, such as season, time of day, sex, age, etc. Factorial 
experiments are more complex experiments where all possible combinations of 
factors of interest are tested and these tests are possibly replicated a number of 
times (Manly 1992) and with the resulting data typically analyzed with ANOVA 
(Underwood 1997).

3.7.2 Two-factor Designs

In a single-factor experiment, there is only one class of treatment. For example, a 
biologist is interested in the effects of a particular nutrient on the physical condition 
of deer. The biologist has 24 captive adult deer available for the study. By dividing 
the deer into three groups of eight deer each and feeding each group a diet with dif-
ferent amounts of the nutrient, the biologist has a single-factor experiment. This study 
becomes a two-factor experiment if the adult deer are divided into six groups of four 
deer each and a second class of treatment such as two different amounts of forage is 
added to the experiment. The deer could also be grouped by sex, e.g., three groups of 
four females and three groups of four males. The three levels of nutrient in the diet 
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and the two amounts of total forage (treatment factors) in the first example and the 
grouping by sex (classification factor) combined with the three levels of nutrients in 
the second example both result in a 2 × 3 factorial experiment (Table 3.4).

3.7.3 Multiple-factor Designs

Multiple-factor designs occur when one or more classes of treatments are combined 
with one or more classifications of experimental units. Continuing the deer feeding 
experiment, a multiple-factor experiment might include both classes of treatment 
and the classification of deer by sex resulting in a 2 × 2 × 3 factorial experiment 
(Table 3.5).

Classification factors, such as sex and age, are not random variables but are fixed 
in the population of interest and cannot be manipulated by the experimenter. On the 
other hand, the experimenter can manipulate treatment factors, usually the main 
point of an experiment (Manly 1992). It is not appropriate to think in terms of a 
random sample of treatments, but it is important to avoid bias by randomizing the 
application of treatments to the experimental units available in the different classes 
of factors. In the example above, a probabilistic sample of female deer selected 
from all females available for study receive different levels of the treatment.

In the relatively simple experiments with unreplicated single-factor designs, the 
experimenter dealt with treatment effects as if they were independent. In the real 
world, one would expect that different factors often interact. The ANOVA of facto-
rial experiments allows the biologist to consider the effect of one factor on another. 
In the deer example, it is reasonable to expect that lactating females might react 
differently to a given level of a nutrient, such as calcium, than would male deer. 
Thus, in the overall analysis of the effect of calcium in the diet, it would be instruc-
tive to separate the effects of calcium and sex on body condition (main effects) from 
the effects of the interaction of sex and calcium. The linear model for the factorial 
experiment allows the subdivision of treatment effects into main effects and interac-
tions, allowing the investigation of potentially interdependent factors. The linear 
model can be characterized as follows:

Observed outcome = main effect variable A + main effect variable B+(A)(B) inter-
action + Random unit variation

Table 3.4 A 2 × 3 factorial experiment where factor A has three levels 
(a

1
, a

2
, and a

3
) and factor B has two levels (b

1
 and b

2
)

  Factor A  

 Level a
1
 a

2
 a

3

Factor b
1
 a

1
b

1
 a

2
b

1
 a

3
b

1

B b
2
 a

1
b

2
 a

2
b

2
 a

3
b

2

Reproduced from Morrison et al. (2001), with kind permissions from 
Springer Science + Business Media



Mead et al. (1993) considered this characteristic one of the major statistical contri-
butions from factorial designs.

When interactions appear negligible, factorial designs have a second major ben-
efit referred to as “hidden replication” by Mead et al. (1993). Hidden replication 
allows the use of all experimental units involved in the experiment in comparisons 
of the main effects of different levels of a treatment when there is no significant 
interaction. Mead et al. (1993) illustrated this increase in efficiency with a series of 
examples showing the replication possible when examining three factors, A, B, and 
C, each with two levels of treatment:

1. In the case of three independent comparisons, (a
0
b

0
c

0
) with (a

1
b

0
c

0
), (a

0
b

1
c

0
), and 

(a
0
b

0
c

1
) with four replications for each was possible, involving 24 experimental 

units. The variance of the estimate of the difference between the two levels of A 
(or B or C) is 2s  2/4, where s  2 is the variance per plot.

2. Some efficiency is gained by reducing the use of treatment (a
0
b

0
c

0
) by combin-

ing the four treatments (a
0
b

0
c

0
), (a

1
b

0
c

0
), (a

0
b

1
c

0
), and (a

0
b

0
c

1
) into an experiment 

with six replications each. Thus, the variance of the estimate of the difference 
between any two levels is 2s  2/6, reducing the variance by two-thirds.

3. There are eight factorial treatments possible from combinations of the three fac-
tors with their two levels. When these treatments are combined with three replica-
tions, each comparison of two levels of a factor includes 12 replicates. All 24 
experimental units are involved with each comparison of a factor’s two levels. 
Thus, in the absence of interaction, the factorial experiment can be more economi-
cal, more precise, or both, than experiments looking at a single factor at a time.

There is more at stake than simply an increase in efficiency when deciding whether 
to select a factorial design over independent comparisons. The counterargument for 
case 1 above is that the analysis becomes conditional on the initial test of interac-
tion, with the result that main effect tests of significance levels may be biased. 
Perhaps the only situation where example 1 might be desirable is in a study where 
sample sizes are extremely limited.

Multiple-factor designs can become quite complicated, and interactions are the 
norm. Although there may be no theoretical limit to the number of factors that can be 
included in an experiment, it is obvious that sample size requirements increase dra-
matically as experimental factors with interactions increase. This increases the cost of 

Table 3.5 An example of a 2 × 2 × 3 factorial experiment where the three levels of a mircronu-
trient (factor A) are applied to experimental deer grouped by sex (factor B), half of which are fed 
a different amount of forage (factor C)

Factor B, sex Factor C, forage level Factor A, micronutrient

B
1
 c

1
 a

1
b

1
c

1
 a

2
b

1
c

1
 a

3
b

1
c

1

 c
2
 a

1
b

1
c

2
 a

2
b

1
c

2
 a

3
b

1
c

2

B
2
 c

1
 a

1
b

2
c

1
 a

2
b

2
c

1
 a

3
b

2
c

1

 c
2
 a

1
b

2
c

2
 a

2
b

2
c

2
 a

3
b

2
c

2

Reproduced from Morrison et al. (2001), with kind permissions from Springer Science + Business 
Media
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experiments and makes larger factorial experiments impractical. Also, the more com-
plicated the experiment is, the more difficulty one has in interpreting the results.

Factorial designs are reasonably common in ecology studies. Mieres and Fitzgerald 
(2006) used both two-factor and three-factor models in studying the monitoring and 
management of the harvest of tegu lizards (Tupinambis spp.) in Paraguay. The study 
applied general linear models (two-factor and three-factor ANOVA) to test the null 
hypothesis of no significant differences in mean size of males and females of each 
species among years and among check stations. To analyze data from tanneries, they 
used separate two-factor ANOVAs, with interaction (year and sex as factors), for each 
species to test the hypothesis that body size varied by year and sex. To test for size 
variation in tegu skins sampled in the field, the study used three-factor ANOVAs, with 
interaction (year, sex, and check station as factors), to test the hypothesis that body 
size varied by year, sex, and check station.

In a study of bandwidth selection for fixed-kernel analysis of animal utilization 
distributions, Gitzen et al. (2006) used mixtures of bivariate normal distributions to 
model animal location patterns. The study varied the degree of clumping of simu-
lated locations to create distribution types that would approximate a range of real 
utilization distributions. Simulations followed a 4 × 3 × 3 factorial design, with 
factors of distribution type (general, partially clumped, all clumped, nest tree), 
number of component normals (2, 4, 16), and sample size (20, 50, 150)

3.7.4 Higher Order Designs

The desire to include a large number of factors in an experiment has led to the 
development of complex experimental designs. For an illustration of the many 
options for complex designs, the biologist should consult textbooks with details on 
the subject (e.g., Montgomery 1991; Milliken and Johnson 1984; Mead et al. 1993; 
Underwood 1997). The object of these more complex designs is to allow the study 
of as many factors as possible while conserving observations. One such design is a 
form of the incomplete block design known as confounding. Mead et al. (1993) 
described confounding as the allocation of the more important treatments in a ran-
domized block design so that differences between blocks cancel out the same way 
they do for comparisons between treatments in a randomized block design. The 
remaining factors of secondary interest, including those assumed to have negligible 
interactions are included as treatments in each block, allowing the estimate of their 
main effects while sacrificing the ability to include their effects on interactions. 
Thus, block effects are confounded with the effects of interactions. The resulting 
allocation of treatments becomes an incomplete block with a corresponding reduc-
tion in the number of treatment comparisons the experimenter must deal with. 
Mead et al. (1993) provided two examples that help describe the rather complicated 
blocking procedure. These complicated designs should not be attempted without 
consulting a statistician and unless the experimenter is confident about the lack of 
significant interaction in the factors of secondary interest.



3.8 Hierarchical Designs

3.8.1 Nested Designs

A nested experimental design is one that uses replication of experimental units in 
at least two levels of a hierarchy (Underwood 1997). Nested designs are also known 
as hierarchical designs and are common in biological studies. Milliken and Johnson 
(1984) lumped some nested designs, split-plot designs, and repeated measures 
designs into a category of designs “having several sizes of experimental units.” In 
the earlier discussion of incomplete block experiments, the effects of confounding 
were dismissed because the experimenter presumably knew that the confounding 
effects of the interactions of some treatments were negligible. Unfortunately, as we 
have pointed out, the confounding effects of other variables are all too common in 
wildlife studies, making the estimation of treatment effects very difficult. Nested 
studies are a way to use replication to increase one’s confidence that differences 
seen when comparing treatments are real and not just random chance or the effects 
of some other factor. Nested designs result in data from replicated samples taken 
from replicated plots receiving each treatment of interest. The only difference in the 
ANOVA of a nested design from the one-factor ANOVA is that total variation is 
identified as variation among sample replicates, variation among units (plots) 
within each treatment, and variation among treatments.

Berenbaum and Zangerl (2006) used a nested study design to study parsnip web-
worms (Depressaria pastinacella) and host plants at a continental scale by evaluating 
trophic complexity in a geographic mosaic and their role in coevolution. The study 
used a mixed/nested model (procedure UNIANOVA, SPSS 1999) to compare out-
comes of the interaction between wild parsnip (Pastinaca sativa) in its indigenous 
area, Europe, to its area of introduction, the Midwestern United States. The study 
tested the hypothesis that increasing trophic complexity, represented by alternate host 
plants or the presence of natural enemies, reduces the selective impact of parsnip web-
worms and hence diminishes linkage between host plant chemistry and webworms 
that would be expected in coevolutionary hotspots (areas where webworms were com-
mon). The wild parsnip produces a phototoxic compound (furanocoumarins) that 
crosslink DNA and interfere with transcription in the webworm. Of interest in this 
study was the concentration of furanocoumarin in parsnip seeds as a function of conti-
nent and interaction of temperature and the density of webworms. The study treats the 
chemical characteristic of parsnip as a random factor nested within both continent and 
webworm density, and continent and webworm densities as fixed effects.

3.8.2 Split-plot Designs

Split-plot designs are a form of nested factorial design commonly used in agricul-
tural and biological experiments. The study area is divided into blocks following 

3.8 Hierarchical Designs 95



96 3 Experimental Designs

the principles for blocking discussed earlier. The blocks are subdivided into rela-
tively large plots called main plots, which are then subdivided into smaller plots 
called split plots, resulting in an incomplete block treatment structure. In a two-
factor design, one factor is randomly allocated to the main plots within each block. 
The second factor is then randomly allocated to each split plot within each main 
plot. The design allows some control of the randomization process within a legiti-
mate randomization procedure.

Table 3.6 illustrates a simple two-factor split-plot experiment. In this example, 
four levels of factor A are allocated as if the experiment were a single-factor com-
pletely randomized design. The three levels of factor B are then randomly applied 
to each level of factor A. It is possible to expand the split-plot design to include 
multiple factors and to generalize the design by subdividing split plots, limited only 
by the minimal practical size of units for measurements (Manly 1992).

The ANOVA of the split-plot experiment also occurs at multiple levels. At the 
main plot level, the analysis is equivalent to a randomized block experiment. At the 
split-plot level, variation is divided into variation among split-plot treatments, inter-
action of split-plot treatments with main effects, and a second error term for split 
plots (Mead et al. 1993). A thorough discussion of the analysis of split-plot experi-
ments is presented in Milliken and Johnson (1984). It should be recognized that in 
the split-plot analysis, the overall precision of the experiment is the same as the 
basic design.

The split-plot design is useful in experiments when the application of one or 
more factors requires a much larger experimental unit than for others. For example, 
in comparing the suitability of different species of grass for revegetation of clear-
cuts, the grass plots can be much smaller, e.g., a few square meters, as compared 
with the clear-cuts that might need to be several acres to be practical. The design 
can also be used when variation is known to be greater with one treatment vs. 
another, with the potential for using less material and consequently saving money. 
The design can be useful in animal and plant studies where litters of animals or 
closely associated groups of individual plants can be used as main plots and the 
individual animals and plants used as split plots.

Manly (1992) listed two reasons to use the split-plot design. First, it may be 
convenient or necessary to apply some treatments to whole plots at the same time. 
Second, the design allows good comparisons between the levels of the factor that is 

Table 3.6 An illustration of a two-factor split-plot experiment where factor A is considered at 
four levels in three blocks of a randomized complete block design and a second factor, B, is 
considered at two levels within each block

Block 1    Block 2    Block 3   

a
4
b
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 a

1
b
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 a

2
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 a
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 a

2
b
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1
b
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4
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3
b
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 a

1
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2
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4
b
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3
b
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4
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2
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3
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2
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1
b

1
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4
b

2
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3
b

2
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1
b

2
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2
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1
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4
b

1
 a

3
b

2

Note that each unit of factor A is divided into two subunits and randomization occurs for both 
factor A and factor B. Reproduced from Steel and Torrie (1980), with kind permission from The 
McGraw-Hill Company
Source: Steel and Torrie (1980)



applied at the subplot level at the expense of the comparisons between the main 
plots, since experimental error should be reduced within main plots. However, 
Mead et al. (1993) pointed out that there is actually a greater loss of precision at the 
main plot level than is gained at the level of split-plot comparisons. They also indi-
cate that there is a loss of replication in many of the comparisons of combinations 
of main plot and split treatments resulting in a loss of precision. These authors rec-
ommend against the split-plot design except where practically necessary. Underwood 
(1997) also warned against this lack of replication and the potential lack of inde-
pendence among treatments and replicates. This lack of independence results 
because, in most layouts of split-plot designs, main plots and split plots tend to be 
spatially very close.

Barrett and Stiling (2006) used a split-plot design in a study of Key deer 
(Odocoileus virginianus clavium) impacts on hardwood hammocks near urban 
areas in the Florida Keys. The study used a split-plot ANOVA model to test each 
response variable (total basal area of large trees and percentage of canopy cover) 
with deer density (low and high) and distance (urban and exurban) as factors with 
island (Big Pine, No Name, Cudjoe, Sugarloaf) nested within levels of deer density. 
The study found evidence that deer density interacted with distance indicating dif-
ferences in responses between urban and exurban hammock stands.

3.8.3 Repeated Measures Designs

Experiments where several comparable measurements are taken on each experi-
mental unit are referred to as repeated measures designs. Repeated measures 
experiments are usually associated with nested and split-plot designs. However, 
repeated measures experiments may occur with the simple completely randomized 
design or the more complex designs involving blocking, Latin squares, incomplete 
blocks, or split blocks (Mead et al. 1993). The experimental design structure for the 
allocation of experimental units, upon which multiple measurements are recorded, 
must be clearly defined and understood. The significance of the basic design is that 
it defines the form the analysis must take. In every case, the analysis of repeated 
measures must consider the lack of independence of the multiple measures taken 
on the same unit.

Repeated measures usually occur because the experimenter concludes that mul-
tiple measurements on an experimental unit increases the knowledge gained in the 
study. Repeated measures experiments involve a step or steps where there is no 
randomization of treatment levels. The most common form of repeated measures 
experiment is the longitudinal experiment where observations are taken in the same 
order on each experimental unit (Manly 1992). Ordering can be a function of any 
condition that has an order that cannot be changed, but is usually a function of time 
or location.

A repeated measures experiment where each experimental unit is subjected to 
several treatments with the order varied for groups of units is called a changeover 
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experiment (Manly 1992). In addition to the lack of independence of repeated meas-
urements, the changeover experiment should consider the carryover effects of treat-
ments on subsequent treatment effects. When possible, the ordering of treatments 
should be assigned at random to experimental units (Milliken and Johnson 1984).

Longitudinal studies are so common that the term repeated measures often refers 
only to this type of study (Manly 1992). Longitudinal studies are common in wild-
life telemetry studies, environmental impact studies, habitat use and selection stud-
ies, studies of blood chemistry, and many other forms of wildlife research. 
Typically, in these studies, the logistics leads to a repeated measures experiment. 
For example, after going to the trouble and expense of capturing and radio-tagging 
an elk, deer, or golden eagle, a biologist correctly takes the position that taking 
repeated measurements of the marked animal improves the study. Nevertheless, it 
must be recognized that repeated measures on the same animal may improve the 
understanding of that animal’s behavior but do not represent true replication lead-
ing to a better understanding of all animals. The appropriateness of repeated meas-
ures experiments is determined by the goal of the study. The biologist must guard 
against treating repeated measures as true replications and thus leading to what 
Hurlbert (1984) described as pseudoreplication.

The analysis of data from longitudinal experiments usually follows the same 
form as analysis of split-plot experiments. The only apparent difference between 
the longitudinal experiment and the split-plot design is that time, typically a split-
plot factor, is beyond the control of the experimenter. Mead et al. (1993) provided 
a description of the more common approaches to the analysis of these studies. 
Manly (1992) listed the following analysis methods:

1. ANOVA of a summary variable, such as the mean of repeated measures among 
units or the difference between the first and last observations (Mead et al. 
1993)

2. ANOVA of a response function fitted to observations on experimental units to 
see how they vary with the factors that describe the groups (Mead et al. 1993)

3. Multivariate ANOVA taking into account the lack of independence of observa-
tions taken at different times (Winer 1971)

4. ANOVA in the same way as with a split-plot experiment (Manly 1992)

Mead et al. (1993) pointed out that the form of the model chosen for analysis must 
always be biologically reasonable, recognizing that models will always require 
simplification of reality. When the form of analysis follows the split-plot design, 
there is a general assumption that observations on the same unit at different times 
will tend to be more similar than observations on different units. There is also the 
assumption that differences in observations on the same unit are independent of the 
time when the observations are made. That is, the first and last observations should 
have the same degree of similarity as consecutive observations, a seldom-valid 
assumption. This assumption of uniform similarity, also known as compound sym-
metry may be justified by the random allocation of treatment levels to split plots 
but should be formally tested (Manly 1992). Milliken and Johnson (1984) provided 
a detailed discussion of alternative models for analysis of repeated measures experiments 



when the assumption of compound symmetry is appropriate. Several statistical 
software programs (e.g., SAS Institute, Inc.) automatically test for compound sym-
metry and provide alternate models when the assumption is not met.

Mead et al. (1993) suggested that the split-plot analysis oversimplifies the true 
situation in its assumption of uniform similarity between times and fails to use the 
ordering of time. They point out that multivariate ANOVA makes no assumptions 
about patterns of similarity of observations at different times. Multivariate ANOVA 
estimates the relationships between times wholly from the data, ignoring the order 
of times (Crowder and Hand 1990). However, Underwood (1997) maintained that 
the multivariate analysis deals with only one of the problems with the analysis, 
namely the nonindependence among times of sampling. The other problem of lack 
of replication leading to unverifiable assumptions of no interaction between times of 
sampling and replicated plots in each treatment is not addressed. Underwood (1997) 
took the relatively hard line that proper independent replicates should be the design 
of choice unless interactions that must be assumed to be 0 are realistically likely to 
be 0. Obviously, repeated measures are likely to continue in wildlife studies.

Our best advice is to consider the implications of the nonindependence of the 
data when interpreting the meaning of the studies. The experimenter should consult 
a good reference, such as Crowder and Hand (1990), when considering repeated 
measures experiments or, better yet, consult with a statistician experienced in deal-
ing with the design and analysis of such studies.

The repeated measures study design is one of the most common designs in wild-
life studies, particularly in the evaluation of the impacts of management or environ-
mental perturbations. An example of a repeated measures study design is provided 
by Martin and Wisley (2006) in their assessment of grassland restoration success as 
influenced by seed additions and native ungulate activities. The study used a rand-
omized complete block split-plot design with unequal replication, with grazing or 
enclosures applied to main plots and seed addition treatments applied to subplots. 
The statistical analysis used randomized split-plot ANOVAs, with planting as a 
random block term; all grazing effects were tested with the main plot error term. 
A repeated measures ANCOVA was used to compare grazed and ungrazed plots for 
existing vegetation and resource variables, with time 0 data (measurements taken 
before exclosures were constructed) as a covariate and used repeated-measures 
ANOVA of corresponding data to analyze grazing effects on seedling enhancement 
over time. The study analyzed the exotic seedling and seedling diversity variables 
with repeated-measures ANOVA for the first seed addition, and with regular 
ANOVA for the second seed addition.

3.9 Analysis of Covariance

ANCOVA uses the concepts of ANOVA and regression (Huitema 1980; Winer et al. 
1991; Underwood 1997) to improve studies by separating treatment effects on the 
response variable from the effects of confounding variables (covariates). ANCOVA 
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can also be used to adjust response variables and summary statistics (e.g., treatment 
means), to assist in the interpretation of data, and to estimate missing data (Steel 
and Torrie 1980). It is appropriate to use ANCOVA in conjunction with most of the 
previously discussed designs.

Earlier in this chapter, we introduced the concept of increasing the precision of 
studies by the use of ANCOVA when analyzing the response to a treatment by con-
sidering the added influence of variables having a measurable influence on the 
dependent variable. For example, in the study of fatalities associated with different 
wind turbines, Anderson et al. (1999) recommended measuring bird use and the rotor-
swept area as covariates. It seems logical that the more birds use the area around tur-
bines and the larger the area covered by the turbine rotor, the more likely that bird 
collisions might occur. Figure 3.2 provides an illustration of a hypothetical example 
of how analysis of bird fatalities associated with two turbine types can be improved 
by the use of covariates. In the example, the average number of fatalities per turbine 
is much higher in the area with turbine type A vs. turbine type B. However, when the 
fatalities are adjusted for differences in bird use, the ratio of fatalities per unit of bird 
use is the same for both turbine types, suggesting no true difference in risk to birds 
from the different turbines. Normally, in error control, multiple regression is used to 
assess the difference between the experimental and control groups resulting from the 
treatment after allowing for the effects of the covariate (Manly 1992).

Fig. 3.2 Illustration of hypothetical example of bird fatalities associated with two turbine types 
(A and B) where the mean fatalities are adjusted for differences in bird use. The average number 
of fatalities per turbine is much higher associated with turbine type A vs. turbine type B, while the 
ratio of fatalities per unit of bird use is the same for both turbine types. Reproduced from Morrison 
et al. (2001) with kind permission from Springer Science + Business Media



ANCOVA adjusts estimates of response variables, such as treatment means. For 
example, when wildlife surveys record animals by habitat or behavior, these covari-
ates adjust counts to estimate animal numbers more accurately. Strickland et al. 
(1994) used ANCOVA and logistic regression to adjust aerial counts of Dall’s sheep 
in Alaska. To the authors’ surprise, habitat had no effect on sightability but group size 
was quite important, resulting in significant upward adjustments of counts of individ-
uals and small groups. Surveys of other large mammals (e.g., Gasaway et al. 1985; 
Samual et al. 1987) suggested that habitat and group size might influence the sighta-
bility of sheep. Normally, when using ANCOVA to control error and adjust parameter 
estimates, the experimenter measures covariates uninfluenced by treatments, such as 
environmental influences. When covariates are affected by treatments, then their 
interpretation can be misleading. For example, if one is interested in the effect on 
animal use in an area by the presence of wind turbines built in different habitats, the 
study is confounded somewhat because erecting turbines may change habitat charac-
teristics. If this effect is relatively small or the data exist for its estimation, then 
ANCOVA is still preferable over ignoring the effects of the confounding variables. 
For example, if the tower pads and roads in the above example are the same size or 
are carefully measured in all habitats, their effect on bird use can be ignored or 
accounted for. Although measurements of covariates will have residual error, a viola-
tion of one of the necessary assumptions for ANCOVA, Glass et al. (1972) concluded 
that this is not a serious problem unless residual errors are large.

Manly (1992) also urged caution when using regression adjustment in ANCOVA. 
He points out that the linear model may be too simple, and a biased estimate of 
treatment effect may result or important confounding variables may not be meas-
ured. As an example, in the wildlife surveys example discussed earlier, we men-
tioned the propensity for surveys to include environmental covariates, such as 
habitat and animal behavior. However, it is our experience that variables associated 
with experimental methods, e.g., the type of aircraft, the experience of the observer, 
etc., may be far more important in determining the quality of the survey. As with 
repeated measures, the assumptions inherent in the basic design significantly influ-
ence ANCOVA, and good design principles (e.g., randomization and replication) 
are necessary even with a regression adjustment.

ANCOVA is useful in estimating missing values (Steel and Torrie 1980), and 
recently, in a model-based analysis of spatial data (e.g., kreiging) discussed in more 
detail in Chap. 4. The latter application uses the correlations between neighboring 
sampling units to estimate the variable of interest at points not sampled. Generally, 
these studies adopt a completely randomized design using a systematic grid of 
sampling points with a random starting point. Confidence intervals can be calcu-
lated for estimates of variables of interest indicating where increased precision is 
desirable. In environmental contamination studies, these initial samples may be 
used retrospectively for blocking or stratifying the area of interest so that additional 
samples can be taken where more precision is desired. We suggest more extensive 
reading if this form of study is of interest, starting with the summary discussion 
provided by Borgman et al. (1996).

Flemming et al. (2006) used ANCOVA in their study to test for the effects of 
embedded lead shot on body condition of common eiders (Somateria mollissima). 
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The assumptions of normality required a log-transformation (using the Andersen–
Darling test) of the dependent variable total carcass lipids (TCL) and homogeneity 
of variances (using Bartlett’s test).

Herring and Collazo (2006) used ANCOVA in the study of lesser scaup (Aythya 
affinis) winter foraging and nutrient reserve acquisition in east-central Florida. The 
study used ANCOVA to examine the effects of season on each of the response vari-
ables (CBM, protein, lipids, minerals) for each sex and year separately; in the 
models, winter period was the treatment and PC1 (first principal component) the 
covariate to adjust contrasts between season by size of birds.

3.10 Multivariate Analyses

To this point, we dealt with designs that are concerned with the effect of a treatment 
on one response variable (univariate methods). The point of multivariate analysis is 
to consider several related random variables simultaneously, each one being consid-
ered equally important at the start of the analysis (Manly 1986). There is a great deal 
of interest in the simultaneous analysis of multiple indicators (multivariate analysis) 
to explain complex relationships among many different kinds of response variables 
over space and time. This is particularly important in studying the impact of a pertur-
bation on the species composition and community structure of plants and animals 
(Page et al. 1993; Stekoll et al. 1993). Multivariate techniques include multidimen-
sional scaling and ordination analysis by methods such as principal component analy-
sis and detrended canonical correspondence analysis (Gordon 1981; Dillon and 
Goldstein 1984; Green 1984; Seber 1984; Pielou 1984; Manly 1986; Ludwig and 
Reynolds 1988; James and McCulloch 1990; Page et al. 1993). If sampling units are 
selected with equal probability by simple random sampling or by systematic sam-
pling (see Chap. 4) from treatment and control areas, and no quasiexperimental 
design is involved (e.g., no pairing), then the multivariate procedures are applicable.

It is unlikely that multivariate techniques will directly yield indicators of effect 
(i.e., combinations of the original indicators) that meet the criteria for determina-
tion of effect. Nevertheless, the techniques certainly can help explain and corrobo-
rate impact if analyzed properly within the study design. Data from many 
recommended study designs are not easily analyzed by those multivariate tech-
niques, because, for example,

● In stratified random sampling, units from different strata are selected with une-
qual weights (unequal probability).

● In matched pair designs, the inherent precision created by the pairing is lost if 
that pair bond is broken.

A complete description of multivariate techniques is beyond the scope of this book 
and is adequately described in the sources referenced earlier. Multivariate analysis 
has intuitive appeal to wildlife biologists and ecologists because it deals simultane-
ously with variables, which is the way the real world works (see Morrison et al. 



2006). However, complexity is not always best when trying to understand natural 
systems. We think it is worth repeating Manly’s (1986) precautions:

1. Use common sense when deciding how to analyze data and remember that the 
primary objective of the analysis is to answer the questions of interest.

2. The complexity of multivariate analysis usually means that answers that are 
produced are seldom straightforward because the relationship between the 
observed variables may not be explained by the model selected.

3. As with any method of analysis, a few extreme observations (outliers) may 
dominate the analysis, especially with a small sample size.

4. Finally, missing values can cause more problems with multivariate data than 
with univariate data.

The following are examples of multivariate designs in wildlife studies. Miles et al. 
(2006) used multivariate models to study the multiscale roost site selection by 
evening bats on pine-dominated landscapes in southwest Georgia. The study devel-
oped 16 a priori multivariate models to describe day-roost selection by evening bats, 
with pooling data across gender and age classes. Model sets included all possible 
additive combinations of categories that described tree, plot, stand, and landscape 
scales. The study used logistic regression to create models and the second-order 
Akaike’s Information Criteria (AIC

c
) to identify the most parsimonious model and to 

predict variable importance. Kristina et al. (2006) evaluated habitat use by sympatric 
mule and white-tailed deer in Texas using multivariate analysis of variance 
(MANOVA) to test for differences and interactions in habitat composition of home 
ranges, core areas, among years, and between species for males, and among years, 
seasons, and species for females. Cox et al. (2006) evaluated Florida panther habitat 
use using a MANOVA to test the hypothesis that overall habitat selection did not dif-
fer from random with sex as a main effect and individual panthers as the experimental 
unit. The study used the same procedure to test for differences in habitat selection 
between Florida panthers and introduced Texas cougars. Lanszki et al. (2006) evalu-
ated feeding habits and trophic niche overlap between sympatric golden jackal (Canis 
aureus) and red fox (Vulpes vulpes) in the Pannonian ecoregion (Hungary). They used 
a MANOVA to compare the canids in consumption of fresh biomass of prey based on 
the prey’s body mass as the dependent variable, carnivore species as the fixed factor, 
and seasons and mass categories as covariates.

3.11 Other Designs

3.11.1 Sequential Designs

It is always desirable to use research dollars and time as efficiently as possible. In 
the study designs covered so far there is an a priori decision on the number of 
 samples taken and there are two potential statistical inferences, accept or reject the 
null hypothesis. Sequential designs have been proposed as a way of optimizing 
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research dollars. Sequential designs are unique in that the sample size is not fixed 
before the study begins and there are now three potential statistical inferences, 
accept, reject, or uncertainty (more data are needed). After each sampling event, the 
available data are analyzed to determine if conclusions can be reached without 
additional sampling. The obvious advantage to this approach is the potential sav-
ings in dollars and time necessary to conclude a study.

Sequential sampling can be very useful when data are essentially nonexistent on a 
study population and a priori sample size estimation is essentially a guess. As an exam-
ple, suppose in a regulatory setting the standard for water quality below a waste treat-
ment facility is survival time for a particular fish species (e.g., fathead minnow). The 
null hypothesis is that mean survival time is less than the regulatory standard and the 
alternate hypothesis is greater than equal to the regulatory standard. The primary deci-
sion criterion is the acceptable risks for Type I and II errors. Typically, in a regulatory 
setting the emphasis is placed on reducing the Type I errors (i.e., rejecting a true null 
hypothesis). Sequential sampling continues until a decision regarding whether the facil-
ity is meeting the regulatory standard is possible within the acceptable risk of error.

Biological studies commonly use computer-intensive methods (see Manly 1997). 
Randomization tests, for example, involve the repeated sampling of a randomization 
distribution (say 5,000 times) to determine if a sample statistic is significant at a cer-
tain level. Manly (1997) suggests that a sequential version of a randomization test 
offers the possibility of reducing the number of randomizations necessary, potentially 
saving time and reducing the required computing power. Nevertheless, Manly (1997) 
advocates the use of a fixed number of randomizations to estimate the significance 
level rather than determining if it exceeds some prespecified level.

The above discussion of the sequential study design presumes there is comprehen-
sive knowledge of the biology of the population of interest. That is, we know which 
variables are most important, the range of variables that should be studied, the proper 
methods and metrics to use, and potential interactions. However, the sequential study 
can also be thought of at a more global scale. That is, an investigation could begin 
with a moderately sized experiment followed by reassessment after the first set of 
results is obtained. The obvious advantage to this approach is that the a priori deci-
sions made regarding the biology of populations and the resulting initial study design 
are modified based on new information. Adaptive resource management (Walters 
1986; see Chap. 2) is popularizing this method of scientific study. Box et al. (1978) 
advocate “the 25% rule,” that is not more than one quarter of the experimental effort 
(budget) should be invested in a first design. The bottom-line is that when there is a 
great deal of uncertainty regarding any of the necessary components of the study one 
should not put all of the proverbial eggs (budget and time) into one basket (study).

3.11.2 Crossover Designs

The crossover design is a close relative of the Latin square and in some instances 
the analysis is identical (Montgomery 1991). Simply put, crossover designs involve 



the random assignment of two or more treatments to a study population during the 
first study period and then the treatments are switched during subsequent study 
periods so that all study units receive all treatments in sequence. Contrast this with 
the above designs where treatments are assigned in parallel groups where some 
subjects get the first treatment and different subjects get the second treatment. The 
crossover design is typically implemented with a single treatment and control, and 
represents a special situation where there is not a separate comparison group. In 
effect, each study unit serves as its own control. In addition, since the same study 
unit receives both treatments, there is no possibility of covariate imbalance. That is, 
by assigning all treatments to each of the units crossover designs eliminate effects 
of variation between experimental units (Williams et al. 2002).

The crossover design can be quite effective when spatially separated controls are 
unavailable but temporal segregation of treatments is a possibility. However, a key 
requirement is that the treatments must not have a lasting effect on the study units 
such that the response in the second allocation of treatments is influenced by the 
first. This potential for a carry-over effect limits to some extent the type of treat-
ments and study units that can be used in crossover experiments. Typically study 
units are given some time for recovery (i.e., overcome any potential effects of the 
first treatment application) before the second treatment phase begins. Williams et 
al. (2002) describes an analysis procedure that includes a treatment effect, time 
effect, carry-over effect, and two random terms, one for replication and one that 
accounts for the sequencing of treatments.

Wolfe et al. (2004) provide a straightforward example of the application of the 
crossover design in the study of the immobilization of mule deer with the drug 
Thiafentanil (A-3080). This study utilized a balanced crossover design where each 
deer was randomly assigned one of two Thiafentanil dose treatments. One treat-
ment was the existing study protocol dose (0.1 mg kg−1), and the other treatment 
was 2× the protocol dose (0.2 mg kg−1). Treatment assignments were switched for 
the second half of the experiment so that each animal eventually received both treat-
ments. The first half of the crossover experiment occurred on day 0 of the study and 
the second half occurred 14 days later to allow the mule deer to recover from the 
application of the first treatment dose. As another example, a study currently being 
implemented at the Altamont Pass Wind Resource Area in central California, where 
a high (>40 per year) number of golden eagles are being killed by wind turbines. 
The study uses a crossover design to determine if a seasonal shutdown of turbines 
can be effective in reducing eagle fatalities. A set of turbines are operated during 
the first half of the winter season while another set is shut down and eagle fatalities 
are quantified; the on–off turbines are reversed for the second half of the season; 
and, the same protocol is followed for a second year. The objectives are to see if the 
overall fatalities in the area decline because of a winter shutdown, to see if winter 
fatalities decline due to partial shutdown, and to see if variation in fatalities occurs 
within seasons of operation. Thus, the treatment has been “crossed-over” to the 
other elements. Power remains low in such experiments, and the experimenter 
draws conclusions using a weight of evidence approach (where “weight of evidence” 
simply means you see a pattern in the response).
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3.11.3 Quasiexperiments

To this point, we have concentrated on designs that closely follow the principles 
Fisher (1966) developed for agricultural experiments where the observer can con-
trol the events. These principles are the basis for most introductory statistics 
courses and textbooks. In such courses, there is the implication that the researcher 
will have a great deal of latitude in the control of experiments. The implication is 
that experimental controls are often possible and blocking for the partitioning of 
sources of variance can commonly be used, and the designs of experiments often 
become quite complicated. The principles provide an excellent foundation for the 
study of uncontrolled events that include most wildlife studies. However, when 
wildlife students begin life in the real world, they quickly learn that it is far messier 
than their statistics professors led them to believe.

Wildlife studies are usually observational with few opportunities for the conduct 
of replicated manipulative experiments. Studies usually focus on the impact of a 
perturbation on a population or ecosystem, and fall into the category classified by 
Eberhardt and Thomas (1991) as studies of uncontrolled events (see Fig. 3.1). The 
perturbation may be a management method or decision with some control possible 
or an environmental pollutant with no real potential for control. Even when some 
control is possible, the ability to make statistical inference to a population is lim-
ited. The normal circumstance is for the biologist to create relatively simple models 
of the real world, exercise all the experimental controls possible, and then, based 
on the model-based experiments, make subjective conjecture (Eberhardt and 
Thomas 1991) to the real world.

Regardless of the approach, most of the fundamental statistical principles still 
apply, but the real world adds some major difficulties, increasing rather than dimin-
ishing the need for careful planning. Designing observational studies require the 
same care as the design of manipulative experiments (Eberhardt and Thomas 1991). 
Biologists should seek situations in which variables thought to be influential can be 
manipulated and results carefully monitored (Underwood 1997). When combined 
with observational studies of intact ecosystems, the results of these experiments 
increase our understanding of how the systems work. The usefulness of the infor-
mation resulting from research is paramount in the design of studies and, if ecolo-
gists are to be taken seriously by decision-makers, they must provide information 
useful for deciding on a course of action, as opposed to addressing purely academic 
questions (Johnson 1995).

The need for quasiexperiments is illustrated by using the existing controversy 
over the impact of wind power development on birds (Anderson et al. 1999). There 
is a national desire by consumers for more environmentally friendly sources of 
energy from so-called “Green Power.” Some industry analysts suggest that as much 
as 20% of the energy needs in the United States could be met by electricity pro-
duced by wind plants. As with most technology development, power from wind 
apparently comes with a cost to the environment. Early studies of the first large 
wind resource areas in the Altamont Pass and Solano County areas of California by 



the California Energy Commission (Orloff and Flannery 1992) found unexpectedly 
high levels of bird fatalities. The resulting questions about the significance of these 
fatalities to the impacted populations were predictable and led to independent 
research on wind/bird interactions at these two sites and other wind plants through-
out the country (Strickland et al. 1998a,b; Anderson et al. 1996; Howell 1995; Hunt 
1995; Orloff and Flannery 1992; Erickson et al. 2002). While these studies look at 
project-specific impacts, the larger question is what these studies can tell us about 
potential impacts to birds as this technology expands. The study of the impact of 
wind power on birds is a classic example of the problems associated with study of 
uncontrolled events.

First, the distribution of wind plants is nonrandom with respect to bird popula-
tions and windy sites. Four conditions are necessary for a wind project to be feasi-
ble. There must be a wind resource capable of producing power at rates attractive 
to potential customers. There must be access to the wind. There must be a market 
for the power, usually in the form of a contract. Finally, there must be distribution 
lines associated with a power grid in close proximity. Thence, randomization of the 
treatment is not possible. Wind plants are large and expensive, and sites with favo-
rable wind are widely dispersed. As a result, replication and contemporary controls 
are difficult to achieve. Nevertheless, public concern will not allow the industry, its 
regulators, or the scientific community to ignore the problem simply because 
Fisher’s principles of experimental design are difficult to implement.

A second and more academic example of a quasiexperiment is illustrated by 
Bystrom et al. (1998) in their whole-lake study of interspecific competition among 
young predators and their prey. Before their study, most research on the issue 
occurred on a much smaller scale in enclosures or ponds. Bystrom et al. sought to 
evaluate the effect of competition from a prey fish (roach, Rutilus rutilus) on the 
recruitment of a predatory fish (perch, Perca fluviatilis). The study introduced 
roach to two of four small, adjacent unproductive lakes inhabited by natural popula-
tions of perch. After the introduction, the investigators collected data on diet, 
growth, and survival of the newborn cohorts of perch during a 13-month period. 
Several complications were encountered, including the incomplete removal of a 
second and larger predator (pike, Esox lucius) in two of the four lakes and an unfor-
tunate die-off of adult perch in the roach-treatment lakes. A second unreplicated 
enclosure experiment was conducted in one of the lakes to evaluate intraspecific vs. 
interspecific competition.

Bystrom et al. (1998) attempted to follow good experimental design principles 
in their study. The problems they encountered illustrate how difficult experiments 
in nature really are. They were able to replicate both treatment and control environ-
ments and blocked treatment lakes. However, the experiment was conducted with a 
bare minimum of two experimental units for each treatment. They attempted to 
control for the effects of the pike remaining after the control efforts by blocking. 
They also attempted to control for intraspecific competition, but with a separate 
unreplicated study. It could be argued that a better study would have included 
 replications of the enclosure study in some form of nested design or a design that 
considered the density of perch as a covariate in their blocked experiment. In spite 
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of a gallant effort, they are left with a study utilizing four subjectively selected lakes 
from what is likely a very large population of oligotrophic lakes in Sweden and 
somewhat arbitrary densities of prey and other natural predators. In addition, the 
two “control” lakes were not true experimental controls and some of the differences 
seen between the control and treatment conditions no doubt resulted from preexist-
ing differences. It is doubtful that a sample size of two is sufficient replication to 
dismiss the possibility that differences attributed to the treatment could have 
occurred by chance. Any extrapolation of the results of this study to other lakes and 
other populations of perch is strictly a professional judgment; it is subject to the 
protocols and unique environmental conditions of the original study and is not an 
exercise of statistical inference.

3.11.3.1 Characteristics of Quasiexperimental Designs

In observational studies of treatment effects, conclusions concerning cause-and-
effect relationships are limited. Practically speaking, identical control areas seldom 
exist and similar reference areas must be used instead. Moreover, there is seldom 
random assignment of treatment, and replication is usually impossible. Oil spills 
only occur along shipping lanes and power plant sites tend to be unique topographi-
cally, geographically, and biologically, and no one would duplicate an oil spill for 
the sake of science. In the case of an industrial development, where most of the 
potential construction sites are known, the decision regarding where to locate a new 
facility never includes a random element in the process. The expense of a new facil-
ity or the potential damage caused by a contaminant spill makes replication imprac-
tical. Thus, one does not have a true experiment.

Wildlife investigators usually design studies to learn something about some 
treatment that leads to the prediction of outcomes at unstudied contemporary or 
future sites with the same or similar treatment (see Sect. 1.2.3.2). For example, 
from data generated from a probabilistic sample of study plots throughout all oiled 
areas resulting from an oil spill, the biologist can make statistical (inductive) infer-
ence to the entire oiled area. The practice of extending the conclusions of wildlife 
studies beyond the specific study areas to unstudied areas is acceptable, as long as 
study assumptions are specified and it is clear that the extrapolation is based on 
expert opinion (deductive inference). For example, one can make deductive predic-
tions of the impact of future oil spills in similar areas based on the data from a study 
of an oil spill. When the extrapolation is presented as an extension of statistical 
conclusions, it is an improper form of data analysis. In the wind power example, 
deductive inferences that extend beyond the specific study areas to draw general 
conclusions about cause-and-effect aspects of operating a wind plant may be possi-
ble if enough independent studies of different wind plants identify similar effects. 
However, statistical inferences beyond the study areas are not possible; nor should 
this be the primary objective of quasiexperiments, given the unique aspects of any 
particular development or ecological inquiry.



3.11.3.2 Examples of Quasiexperimental Designs

The following discussion deals primarily with the study of a distinct treatment or 
perturbation. These designs fall into the category of intervention analysis in 
Eberhardt and Thomas’s (1991) classification scheme. Because these designs typi-
cally result in data collected repeatedly over time they are also called an interrupted 
time series (Manly 1992). We do not specifically discuss designs for studies when 
no distinct treatment or perturbation exists, as these depend on sampling and may 
be characterized by the way samples are allocated over the area of interest. 
Sampling plans are covered in detail in Chap. 4.

There are several alternative methods of observational study when estimating the 
impact of environmental perturbations or the effects of a treatment. The following 
is a brief description of the preferred designs, approximately in order of reliability 
for sustaining confidence in the scientific conclusions. A more complete descrip-
tion of these designs can be found in Chap. 6 under the discussion of impact studies 
and in Manly (1992) and Anderson et al. (1999).

3.11.3.3 Before–After/Control-Impact Design

The before–after/control-impact (BACI) design is a common design reported in the 
ecological literature (e.g., Stewart-Oaten 1986), and has been called the “optimal 
impact study design” by Green (1979). The term BACI is so common that we retain 
the letter C in the name, even though we use the term reference area rather than 
control area, as true control areas rarely exist. In the BACI design, experimental 
units are randomly allocated to both treatment and reference areas and populations 
before the treatment is applied.

The BACI design is desirable for studies of impact or treatment effects because 
it addresses two major quasiexperimental design problems:

1. Response variables, such as the abundance of organisms, vary naturally through 
time, so any change observed in a study area between the pretreatment and post-
treatment periods could conceivably be unrelated to the treatment (e.g., the con-
struction and operation of a wind plant). Large natural changes are expected 
during an extended study period.

2. There are always differences in the random variables between any two areas. 
Observing a difference between treatment and reference areas following the 
treatment does not necessarily mean that the treatment was the cause of the dif-
ference. The difference may have been present prior to treatment. Conversely, 
one would miss a treatment effect if the levels of the response variable on the 
reference and treatment areas were the same after the treatment, even though 
they were different before the treatment.

By collecting data at both reference and treatment areas using exactly the same pro-
tocol during both pretreatment and posttreatment periods one can ask the question: 
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Did the average difference in abundance between the reference area(s) and the treat-
ment area change after the treatment?

The BACI design is not always practical or possible. Adequate reference areas 
are difficult to locate, the perturbation does not always allow enough time for study 
before the impact, and multiple times and study areas increase the cost of study. 
Additionally, alterations in land use or disturbance occurring before and after treat-
ment complicate the analysis of study results. We advise caution when employing 
this method in areas where potential reference areas are likely to undergo signifi-
cant changes that potentially influence the response variable of interest. If advanced 
knowledge of a study area exists, the area of interest is somewhat varied, and the 
response variable of interest is wide ranging, then the BACI design is preferred for 
observational studies for treatment effect.

3.11.3.4 Matched Pairs in the BACI Design

Matched pairs of study sites from treatment and reference areas often are subjec-
tively selected to reduce the natural variation in impact indicators (Skalski and 
Robson 1992; Stewart-Oaten et al. 1986). Statistical analysis of this form of 
quasiexperiment is dependent on the sampling procedures used for site selection 
and the amount of information collected on concomitant site-specific variables. For 
example, sites may be randomly selected from an assessment area and each subjec-
tively matched with a site from a reference area.

When matched pairs are used in the BACI design to study a nonrandom treatment 
(perturbation), the extent of statistical inferences is limited to the assessment area, and 
the reference pairs simply act as an indicator of baseline conditions. Inferences also 
are limited to the protocol by which the matched pairs are selected. If the protocol for 
selection of matched pairs is unbiased, then statistical inferences comparing the 
assessment and reference areas are valid and repeatable. For example, McDonald et al. 
(1995) used this design to evaluate the impacts of the Exxon Valdez oil spill on the 
intertidal communities in Prince William Sound, Alaska. Since the assessment study 
units were a random sample of oiled units, statistical inferences were possible for all 
oiled units. However, since the reference units were subjectively selected to match the 
oiled units, no statistical inferences were possible or attempted to nonoiled units. The 
selection of matched pairs for extended study contains the risk that sites may change 
before the study is completed, making the matching inappropriate (see discussion of 
stratification in Chap. 4). The presumption is that, with the exception of the treatment, 
the pairs remain very similar – a risky proposition in long-term studies.

3.11.3.5 Impact-Reference Design

The impact-reference design quantifies treatment effects through comparison of 
response variables measured on a treatment area with measurements from one or 
more reference areas. Studies of the effect of environmental perturbations fre-



quently lack “before” baseline data from the assessment area and/or a reference 
area requiring an alternative to the BACI, such as the impact-reference design. 
Assessment and reference areas are censused or randomly subsampled by an appro-
priate sampling design. Design and analysis of treatment effects in the absence of 
preimpact data follow Skalski and Robson’s (1992) (see Chap. 6) recommendations 
for accident assessment studies.

Differences between assessment and reference areas measured only after the 
treatment might be unrelated to the treatment, because site-specific factors differ. 
For this reason, differences in natural factors between assessment and reference 
areas should be avoided as much as possible. Although the design avoids the added 
cost of collecting preimpact data, reliable quantification of treatment effects must 
include as much temporal and spatial replication as possible. Additional study 
components, such as the measurement of other environmental covariates that might 
influence response variables, may help limit or explain variation and the confound-
ing effects of these differences. ANCOVA may be of value to adjust the analysis of 
a random variable to allow for the effect of another variable.

3.11.3.6 Response-Gradient Design

The response-gradient design is useful for quantifying treatment effects in rela-
tively small study areas with homogeneous environments. If the distribution of 
experimental units is relatively restricted (e.g., small home ranges of passerines) 
and a response is expected to vary relative to the distance or time from the applica-
tion of the treatment (gradient of response), this design is an excellent choice for 
observational studies. When this design is appropriate, treatment effects can usually 
be estimated with more confidence and associated costs should be less than for 
those designs requiring baseline data and/or reference areas.

Analysis of the response-gradient design considers the relationship between the 
response variable and the gradient of treatment levels. For example, in the analysis 
of an environmental impact, the analysis considers the relationship between the 
impact indicator and distance from the hypothesized impact source. In effect, the 
study area includes the treatment area with a reference area on its perimeter. This 
design does not require that the perimeter of the treatment area be free of effect, only 
that the level of effect be different. If a gradient of biological response(s) is identi-
fied, the magnitude of differences can be presumed to represent at least a minimum 
estimate of the amount of effect. This response-gradient design would be analogous 
to a laboratory toxicity test conducted along a gradient of toxicant concentrations. 
An example might be an increasing rate of fledgling success in active raptor nests or 
a decrease in passerine mortality as a function of distance to a wind plant.

As in any field study, treatment effects will likely be confounded by the effect of 
naturally varying factors on response variables. Thus, it is important to have support-
ing measurements of covariates to help interpret the observed gradient of response. In 
the example of decreased mortality in passerines associated with a wind plant, an 
obvious covariate to consider would be level of use of the species of interest.
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If one discovers a gradient of response is absent but a portion of the study area 
meets the requirements of a reference area, data analysis compares the response 
variables measured in the treatment and control portions of the study area. The 
impact-gradient design can be used in conjunction with BACI, impact reference, 
and before–after designs.

3.11.3.7 Before–After Design

The before–after design is a relatively weak design, which is appropriate when 
measurements on the study area before the treatment are compared with measure-
ments on the same area following the treatment. Wildlife managers use long-term 
monitoring programs to track resources within an area and periodically analyze the 
resulting data as a before–after designed study. However, observed changes might be 
unrelated to the treatment, because confounding factors also change with time (see 
the earlier discussion of the BACI design). Reliable quantification of treatment 
effects usually include additional study components to limit variation and the con-
founding effects of natural factors that may change with time.

Because of the difficulty in relating posttreatment differences to treatment 
effects in the absence of data from reference areas, indirect indicators of treatment 
effect can be particularly useful in detecting impacts using the before–after design. 
The correlation of exposure to toxic substances and a physiological response in 
wildlife has been documented well enough for some substances to allow the use of 
the physiological response as a biomarker for evidence of effect. Examples of 
biomarkers used in impact studies include the use of blood plasma dehydratase in 
the study of lead exposure, acetylcholinesterase levels in blood plasma in the study 
of organophosphates, and the effect of many organic compounds on the microsomal 
mixed-function oxidase system in liver (Peterle 1991).

Costs associated with conducting the before–after design should be less than 
those for designs requiring reference areas. Statistical analysis procedures include 
the time-series method of intervention analysis (Box and Tiao 1975). An abrupt 
change in the response variable at the time of the treatment may indicate that the 
response is due to the treatment (e.g., an oil spill) and confidence in this interpreta-
tion increases if the response variables return to baseline conditions through time 
after removal of the treatment. Interpretation of this type of response without refer-
ence areas or multiple treatments is difficult and more subjective than the other 
designs discussed. This type of design is most appropriate for study of short-term 
perturbations rather than for long-term and ongoing perturbations, such as an indus-
trial development or the study of some persistent contaminant.

3.11.4 Improving Reliability of Study Designs

When studies using reference areas are possible, the use of more than one reference 
area increases the reliability of conclusions concerning quantification of a treatment 



response in all designs (Underwood 1994). Multiple reference areas help deal with 
the frequently heard criticism that the reference area is not appropriate for the treat-
ment area. Consistent relationships among several reference areas and the treatment 
area will generate far more scientific confidence than if a single reference area is 
used. In fact, scientific confidence is likely increased more than would be expected 
given the increase in number of reference areas. This confidence comes from the 
replication in space of the baseline condition. Multiple reference areas also reduce 
the impact on the study if one reference area is lost, e.g., due to a change in land 
use affecting response variables.

Collection of data on study areas for several time periods before and/or after the 
treatment also will enhance reliability of results. This replication in time allows the 
detection of convergence and divergence in the response variables among reference 
and treatment areas. The data can be tested for interaction among study sites, time, 
and the primary indicator of effect (e.g., mortality), assuming the data meet the 
assumptions necessary for ANOVA of repeated measures. The specific test used 
depends on the response variable of interest (e.g., count data, percentage data, con-
tinuous data, categorical data) and the subsampling plan used (e.g., point counts, 
transect counts, vegetation collection methods, GIS [Geographic Information 
System] data available, radio-tracking data, capture–recapture data). Often, classic 
ANOVA procedures will be inappropriate and nonparametric, Bayesian, or other 
computer-intensive methods will be required.

3.11.5 Model-based Analysis and Use of Site-Specific Covariates

The conditions of the study may not allow a pure design/data-based analysis, particu-
larly in impact studies. For example, animal abundance in an area might be estimated 
on matched pairs of impacted and reference study sites. However, carefully the match-
ing is conducted, uncontrolled factors always remain that may introduce too much 
variation in the system to allow one to statistically detect important differences 
between the assessment and reference areas. In a field study, there likely will be natu-
rally varying factors whose effects on the impact indicators are confounded with the 
effects of the incident. Data for easily obtainable random variables that are correlated 
with the impact indicators (covariates) will help interpret the gradient of response 
observed in the field study. These variables ordinarily will not satisfy the criteria for 
determining impact, but are often useful in model-based analyses for the prediction of 
impact (Page et al. 1993; Smith 1979). For example, in the study of bird use on the 
Wyoming wind plant site, Western Ecosystems Technology, Inc. (1995) developed 
indices to prey abundance (e.g., prairie dogs [Cynomys], ground squirrels [Spermophilus], 
and rabbits [Lagomorpha]). These ancillary variables are used in model-based analy-
ses to refine comparisons of avian predator use in assessment and reference areas. 
Land use also is an obvious covariate that could provide important information when 
evaluating differences in animal use among assessment and reference areas and time.

Indicators of degree of exposure to the treatment also should be measured 
on sampling units. As in the response-gradient design, a clear effect–response 
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 relationship between response variables and level of treatment will provide corrob-
orating evidence of effect. These indicators are also useful with other concomitant 
variables in model-based analyses to help explain the “noise” in data from natural 
systems. For example, in evaluating the effect of an oil spill, the location of the site 
with regard to prevailing winds and currents or substrate of the oiled site are useful 
indicators of the degree of oil exposure.

3.12 Meta-analyses

A common practice when embarking on a new investigation is to review the lit-
erature on the subject and subjectively assess knowledge about the research ques-
tion of interest. Typically, in the wildlife research field, one finds numerous 
independent quasiexperiments. For example, if one is interested in the impact of 
antler restrictions on deer populations, hunting effects on prairie grouse, or her-
bicide effects on sagebrush, it might be possible to find studies conducted in sev-
eral states, or even several studies within states. The resulting review of the 
literature usually produces a subjective evaluation of what all these independent 
studies mean, and in a sense is a form of meta-analysis. Alternatively, the inves-
tigator could compare these independent studies statistically in a quantitative 
meta-analysis.

A number of procedures exist for statistical meta-analysis. Manly (2001) 
describes two methods for comparing studies by combining the p-values from sev-
eral independent studies (Fisher 1970; Folks 1984) using a chi-square analysis for 
tests of significance. Fisher’s approach is simple and provides a test of whether the 
null hypothesis is false for any of the studies. However, other methods are more 
appropriate when addressing the more interesting question usually asked by wild-
life scientists; that is, is the null hypothesis generally supported when considering 
all the studies. One common concern when conducting meta-analysis is the poten-
tial variation in studies related to the methods and metrics used, independent of the 
treatment effects (i.e., are we comparing apples and oranges).

An alternative form of meta-analysis used in medical research involves a statisti-
cal analysis of data pooled from independent studies on the response to a particular 
management action. This approach is appealing, but is most appropriate when study 
methods and metrics are similar among the studies included in the analysis. In both 
forms of meta-analysis, the rules for deciding to include or exclude studies are of 
paramount importance.

Conducting meta-analysis on observational studies, the common form of wild-
life study, can be useful, but also controversial because of the inherent variability 
among studies.

Egger et al. (1998) suggest that while formal meta-analysis of observational 
studies can be misleading if insufficient attention is not given to heterogeneity, it is 



a desirable alternative to writing highly subjective narrative reviews. They make the 
logical recommendation that meta-analysis of observational studies should follow 
many of the principles of systematic reviews: a study protocol should be written in 
advance, complete literature searches carried out, and studies selected and data 
extracted in a reproducible and objective fashion. Following this systematic 
approach exposes both differences and similarities of the studies, allows the explicit 
formulation and testing of hypotheses, and allows the identification of the need for 
future studies. Particular with observational studies, meta-analysis should carefully 
consider the differences among studies and stratify the analysis to account for these 
differences and for known biases.

Erickson et al. (2002) provide a nice example of a meta-analysis using pooled 
data from a relatively large group of independent observational studies of the 
impacts of wind power facilities on birds and bats. The meta-analysis evaluated 
data on mortality, avian use, and raptor nesting for the purpose of predicting direct 
impacts of wind facilities on avian resources, including the amount of study neces-
sary for those predictions. The authors considered approximately 30 available stud-
ies in their analysis of avian fatalities. In the end, they restricted the fatality and use 
components of the meta-analysis to the 14 studies that were conducted consistent 
with recommendations by Anderson et al. (1999). They also restricted their analysis 
to raptors and waterfowl/waterbird groups because the methods for estimating use 
appeared most appropriate for the larger birds.

Based on correlation analyses, the authors found that overall impact prediction 
for all raptors combined would typically be similar after collection of one season 
of raptor use data compared to a full year of data collection. The authors cau-
tioned that this was primarily the case in agricultural landscapes where use esti-
mates were relatively low, did not vary much among seasons, and mortality data 
at new wind projects indicated absent to very low raptor mortality. Furthermore, 
the authors recommended more than one season of data if a site appears to have 
relatively high raptor use and in landscapes not yet adequately studied.

Miller et al. (2003) reviewed results of 56 papers and subjectively concluded 
that current data (on roosting and foraging ecology of temperate insectivorous 
bats) were unreliable due to small sample sizes, short-term nature of studies, 
pseudoreplication, inferences beyond scale of data, study design, and limitations 
of bat detectors and statistical analyses. To illustrate the value of a quantitative 
meta-analysis, Kalcounis-Ruppell et al. (2005) used a series of meta-analyses on 
the same set of 56 studies to assess whether data in this literature suggested gen-
eral patterns in roost tree selection and stand characteristics. The authors also 
repeated their analyses with more recent data, and used a third and fourth series 
of meta-analyses to separate the studies done on bat species that roost in cavities 
from those that roost in foliage. The quantitative meta-analysis by Kalcounis-
Ruppell et al. (2005) provided a much more thorough and useful analysis of the 
available literature compared to the more subjective analysis completed by Miller 
et al. (2003).
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3.13 Power and Sample Size Analyses

Traditionally in the analysis of an experiment, a null hypothesis (H
0
) is the straw 

man that must be rejected to infer statistically that a response variable has changed 
or that a cause-and-effect relationship exists. The typical H

0
 is that there is no dif-

ference in the value of a response variable between control areas and assessment 
areas or that there is a zero correlation between two response variables along their 
gradients. In the regulatory setting and in impact studies, this approach usually 
places the burden of scientific proof of impact on regulators.

The classical use of a H
0
 protects only against the probability of a Type I error 

(also called a, concluding that impact exists when it really does not, i.e., a false 
positive). By convention the significance level is set at a = 0.05 before the conclu-
sion of effect is considered to be valid, although there is nothing magic about 0.05. 
The probability of a Type II error (also called b, concluding no effect when in fact 
effect does exist, i.e., a false negative) is almost always unknown, commonly 
ignored and is often much larger than 0.05. At a given a-level, the risk of a Type II 
error can be decreased by increasing sample size, reducing sampling error, or, in 
some situations, through use of better experimental design and/or more powerful 
types of analysis. In general, the power of a statistical test of some hypothesis is the 
probability that it rejects the H

0
 when it is false 1 – b. An experiment is said to be 

very powerful if the probability of a Type II error is very small.
As Underwood (1997) points out, it makes intuitive sense to design a study to 

make equal the probability of making either a Type I or II error. However, he intro-
duces the precautionary principle that the willingness to accept a type of error will 
depend on the nature of the study. For example, in testing drugs or in environmental 
monitoring it may be more acceptable to commit a Type I error much more often 
than a type Type II error. Thus, one would want to design a more powerful study to 
decrease the probability of concluding no effect when one actually exists.

In summary, four interrelated factors determine statistical power: power increases 
as sample size, a-level, and effect size increase; power decreases as variance 
increases. Understanding statistical power requires an understanding of Type I and 
Type II error, and the relationship of these errors to null and alternative hypotheses. 
It is important to understand the concept of power when designing a research 
project, primarily because such understanding grounds decisions about how to 
design the project, including methods for data collection, the sampling plan, and 
sample size. To calculate power the researcher must have established a hypothesis to 
test, understand the expected variability in the data to be collected, decide on an 
acceptable a-level, and most importantly, a biologically relevant response level.

3.13.1 Effect Size

Effect size is the difference between the null and alternative hypotheses. That is, if 
a particular management action is expected to cause a change in abundance of an 



organism by 10%, then the effect size is 10%. Effect size is important in designing 
experiments for obvious reasons. At a given a-level and sample size, the power of 
an experiment increases with effect size and, conversely, the sample size necessary 
to detect an effect typically increases with a decreasing effect size.

Given that detectable effect size decreases with increasing sample size, there 
comes a condition in most studies that a finding of a statistically significant differ-
ence has no biological meaning (for example, a difference in canopy cover of 5% 
over a sampling range of 30–80%; see Sect. 1.5.3). As such, setting a biologically 
meaningful effect size is the most difficult and challenging aspect of power analysis 
and this “magnitude of biological effect” is a hypothetical value based on the 
researcher’s biological knowledge. This point is important in designing a meaning-
ful research project. Nevertheless, the choice of effect size is important and is an 
absolute necessity before it is possible to determine the power of an experiment or 
to design an experiment to have a predetermined power (Underwood 1997).

3.13.2 Simple Effects

When the question of interest can be reduced to a single parameter (e.g., differences 
between two population means or the difference between a single population and a 
fixed value), establishing effect size is in its simplest form. There are three basic 
types of simple effects:

● Absolute effect size is set when the values are in the same units; for example, 
looking for a 10 mm difference in wing length between males and females of 
some species.

● Relative effect size is used when temporal or spatial control measures are used 
and effects are expressed as the difference between in response variable due. As 
expected, relative effect sizes are expressed as percentages (e.g., the percent 
increase in a population due to a treatment relative to the control).

● Standardized effect sizes are measures of absolute effect size scaled by variance 
and therefore combine these two components of hypothesis testing (i.e., effect 
size and variance). Standardized effect sizes are unit-less and are thus compara-
ble across studies. They are, however, difficult to interpret biologically and it is 
thus usually preferable to use absolute or relative measures of effect size and 
consider the variance component separately.

3.13.3 Complex Effects

Setting an effect size when dealing with multiple factors or multiple levels of a sin-
gle factor is a complex procedure involving and examination of the absolute effect 
size based on the variance of the population means:
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Steidl and Thomas (2001) outlined four approaches for establishing effect size in 
complex situations:

● Approach 1. Specify all cell means. In an experiment with three treatments and 
a control, you might state that you are interested in examining power given a 
control value of 10 g and treatment yields of 15, 20, and 25 g. Although these 
statements are easy to interpret, they are also difficult to assign.

● Approach 2. Delineate a measure of effect size based on the population variances 
through experimenting with different values of the means. That is, you experi-
ment with different values of the response variable and reach a conclusion based 
on what a meaningful variance would be.

● Approach 3. Simplify the problem to one of comparing only two parameters. For 
example, in a one-factor ANOVA you would define a measure of absolute effect 
size (m

max
 – m

min
), which places upper and lower bounds on power, each of which 

can be calculated.
● Approach 4. Assess power at prespecified levels of standardized effect size for a 

range of tests. In the absence of other guidance, it is possible to calculate power 
at three levels as implied by the adjectives small, medium, and large. This 
approach is seldom applied in ecological research and is mentioned here briefly 
only for completeness.

In sum, power and sample size analyses are important aspects of study design, but 
only so that we can obtain a reliable picture of the underlying distribution of the 
biological parameters of interest. The statistical analyses that follow provide addi-
tional guidance for making conclusions. By setting effect size or just your expecta-
tion regarding results (e.g., in an observational study) a priori, the biology drives the 
process rather than the statistics. That is, the proper procedure is to use statistics to 
first help guide study design, and later to compliment interpretations. The all too 
common practice of collecting data, applying a statistical analysis, and then inter-
preting the outcome misses the needed biological guidance necessary for an ade-
quate study. What you are doing, essentially, is agreeing a priori to accept whatever 
guidance the statistical analyses provide and then trying to force a biological expla-
nation into that framework. Even in situations where you are doing survey work to 
develop a list of species occupying a particular location, stating a priori what you 
expect to find, and the relative order by abundance, provides a biological framework 
for later interpretation (and tends to reduce the fishing expedition mentality).

Sensitivity analysis can be used to help establish an appropriate effect size. For 
example, you can use the best available demographic information – even if it is 
from surrogate species – to determine what magnitude of change in, say, reproduc-
tive success will force l (population rate of increase) above or below 1.0. This 
value then sets the effect size for prospective power analysis or for use in guiding 
an observational study (i.e., what difference in nest success for a species would be 
of interest when studying reproduction along an elevation gradient?). For a primarily 



observational study, there will usually be information – sometimes qualitative – on 
the likely distribution and relative abundance of the element of interest (e.g., previous 
studies, field guides and natural history reports, expert opinion).

3.14 Prospective Power Analysis

A primary defense against weak tests of hypotheses is to perform a prospective 
power analysis at the start of the research, hopefully following a pilot study (Garton 
et al. 2005). The first step in the prospective power analysis is to decide on the null 
hypothesis, alternate hypothesis, and significance level before beginning the inves-
tigation (Zar 1998). Power analysis can be used to help make a decision regarding 
the necessary sample size, or at least inform the investigator of the chances of 
detecting the anticipated effect size with the resources available. Zar (1998) is a 
useful reference for methods for estimating the required sample size for most com-
mon sampling and experimental designs.

Prospective power analysis is used to:

● Determine the number of replicates or samples necessary to achieve a specified 
power given the specified effect size, alpha, and variance (scenario 1)

● The power of a test likely to result when the maximum number of replicates or 
samples that you think can be obtained are gathered (scenario 2)

● The minimum effect size that can be detected given a target power, alpha, vari-
ance, and sample size (scenario 3)

Below, we discuss each of these topics as applied to ecological field research:

1. Scenario 1. In this scenario you are able to specify the effect size, set a (an easy 
task relative to setting effect size), and estimate the population variance. We 
have previously discussed how to establish effect size. Estimating the population 
variance can be accomplished either through previous work on the element of 
interest (pilot test or existing literature), or by using estimates from a similar 
element (e.g., congeneric species). Remember that power analysis is used to 
provide a starting point for research and is not intended to set a final sample size. 
Thus, using a range (min, max) of estimates for population variance provides 
you with a method to estimate what your sample size should be, given the effect 
size and alpha you have selected.
If you determine you cannot achieve the desired number of samples using a and 
effect size you initially selected, then your primary option is to change a and 
effect size; variance can seldom be modified. Many papers are available that 
discuss selection of a; we do not review them here. Effect size can be modified, 
but remember that you must be able to justify the effect size that you set in the 
publication that follows the research.

2. Scenario 2. Here you are asking what you can achieve given the available sam-
pling situation. This is often the situation encountered in wildlife research where 
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a funding entity (e.g., agency) has developed a request for a study (i.e., Request 
for Proposal or RFP) that includes a specific sampling location(s), sampling 
conditions, and a limit to the amount of funding available. By accepting such 
funding, you are in essence accepting what the resulting power and effect size. 
You often have the ability, however, to adjust the sampling protocol to ensure 
that you can address at least part of the study objectives with appropriate rigor.
In this scenario you conduct power analysis in an iterative manner using differ-
ent effect sizes and a-levels to determine what you can achieve with the sample 
size limits in place (Fig. 3.3).

3. Scenario 3. Here you are determining what effect size you can achieve given a 
target power, a-level, variance, and sample size. As discussed earlier, a can be 
changed within some reasonable bounds (i.e., a case can usually be made for 
£0.15) and variance is set. Here you also are attempting to determine what role 
sample size has in determining effect size.

In summary, the advantage of prospective power analysis is the insight you gain 
regarding the design of your study. Moreover, even if you must conduct a study 
given inflexible design constraints, power analysis provides you with knowledge of 
the likely rigor of your results.

Fig. 3.3 The influence of number of replicates on statistical power to detect small (0.09), 
medium (0.23), and large (0.36) effect sizes (differences in the probability of predation) between 
six large and six small trout using a Wilcoxon signed-ranks test. Power was estimated using a 
Monte Carlo simulation. Reproduced from Steidel et al. (2001) with kind permission from 
Springer Science + Business Media



3.15 Retrospective Power Analysis

As the names implies, retrospective power analysis is conducted after the study is 
completed, the data have been collected and analyzed, and the outcome is known. 
Statisticians typically dismiss retrospective power analysis as being uninformative 
and perhaps inappropriate and its application is controversial (Gerard et al. 1998). 
However, in some situations retrospective power analysis can be useful. For exam-
ple, if a hypothesis was tested and not rejected you might want to know the proba-
bility that a Type II error was committed (i.e., did the test have low power?). As 
summarized by Steidl and Thomas (2001), retrospective power analysis is useful in 
distinguishing between two reasons for failing to reject the null hypothesis:

● The true effect size was not biologically significant.
● The true effect size was biologically significant but you failed to reject the null 

hypothesis (i.e., you committed a Type II error).

To make this distinction, you calculate the power to detect a minimally biologically 
significant effect size given the sample size, a, and variance used in the study. If the 
resulting power at this effect size is large, then the magnitude of the minimum bio-
logically significant effect would likely lead to statistically significant results. Given 
that the test was actually not significant, you can infer that the true effect size is likely 
not this large. If, however, power was small at this effect size, you can infer that the 
true effect size could be large or small and that your results are inconclusive.

Despite the controversy, retrospective power analysis can be a useful tool in 
management and conservation. Nevertheless, retrospective power analysis should 
never be used when power is calculated using the observed effect size. In such 
cases, the resulting value for power is simply a reexpression of the p-value, where 
low p-values lead to high power and vice versa.

3.16 Power Analysis and Wildlife Studies

In practice, observational studies generally have low statistical power. In the case 
of environmental impact monitoring, the H

0
 will usually be that there is no impact 

to the variable of interest. Accepting a “no impact” result when an experiment has 
low statistical power may give regulators and the public a false sense of security. 
The a-level of the experiment is usually set by convention and the magnitude of the 
effect in an observational study is certainly not controllable. In the case of a regula-
tory study, the regulation may establish the a-level. Thus, sample size and estimates 
of variance usually determine the power of observational studies. Many of the 
methods discussed in this chapter are directed toward reducing variance in obser-
vational studies. In properly designed observational studies, the ultimate determi-
nant of statistical power is sample size.

The lack of sufficient sample size necessary to have reasonable power to detect 
differences between treatment and reference (control) populations is a common 
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problem in observational studies. For example, reasonably precise estimates of 
direct animal death from a given environmental perturbation may be made through 
carcass searches. However, tests of other parameters indicating indirect effects for 
any given impact (e.g., avoidance of a particular portion of their range by a species) 
may have relatively little power to detect an effect on the species of concern. Most 
field studies will result in data that must be analyzed with an emphasis on detection 
of biological significance when statistical significance is marginal. For a more 
complete study of statistical power, see Cohen (1973), Peterman (1989), Fairweather 
(1991), Dallal (1992), and Gerard et al. (1998).

The trend of differences between reference and treatment areas for several 
important variables may detect effects, even when tests of statistical significance on 
individual variables have marginal confidence. This deductive, model-based 
approach is illustrated by the following discussion. The evaluation of effects from 
wind energy development includes effects on individual birds (e.g., reduction or 
increase in use of the area occupied by the turbines) and population effects such as 
mortality (e.g., death due to collision with a turbine). Several outcomes are possible 
from impact studies. For example, a decline in bird use on a new wind plant without 
a similar decline on the reference area(s) may be interpreted as evidence of an effect 
of wind energy development on individual birds. The presence of a greater number 
of carcasses of the same species near turbines than in the reference plots increases 
the weight of evidence that an effect can be attributed to the wind plant. However, 
a decline in use of both the reference area(s) and the development area (i.e., area 
with wind turbines) in the absence of large numbers of carcasses suggests a 
response unrelated to the wind plant. Data on covariates (e.g., prey) for the assess-
ment and reference area(s) could be used to further clarify this interpretation.

The level at which effects are considered biologically significant is subjective 
and will depend on the species/resource involved and the research question of inter-
est. Additionally, we note that a biologically significant effect, although not statisti-
cally significant, can have population level implications (see Sect. 1.5.3). In the 
case of bird fatalities, even a small number of carcasses of a rare species associated 
with the perturbation may be considered significant, particularly during the breed-
ing season. A substantial number of carcasses associated with a decline in use rela-
tive to the reference area, particularly late in the breeding season during the 
dispersal of young, may be interpreted as a possible population effect. The sugges-
tion of a population effect may lead to additional, more intensive studies.

3.17 Sequential Sample Size Analysis

Sequential sample size analysis is primarily a graphical method of evaluating sam-
ple size as data are collected, and attempting to justify the sample size collected 
after the study is completed. While a study is ongoing, you can easily plot the val-
ues of any variable of interest as the sample size increases. For example, one might 
calculate means and variance as every ten vegetation (or habitat use) plots are gathered 



for a species of interest. You can justify ceasing sampling when the means and vari-
ance stabilize (i.e., asymptote; see Fig. 3.4). In a similar fashion, you can take 
increasingly large random subsamples from a completed data set, calculate the 
mean and variance, and determine if the values reached an asymptote.

3.18 Bioequivalence Testing

Much has been written criticizing null hypothesis significance testing including 
applications to wildlife study (see Sect. 1.4.1; Johnson 1999; Steidl and Thomas 
2001). McDonald and Erickson (1994), and Erickson and McDonald (1995) 
describe an alternative approach often referred to as bioequivalence testing. 
Bioequivalence testing reverses the burden of proof so that a treatment is consid-
ered biologically significant until evidence suggests otherwise; thus the role of the 
null and alternative hypotheses are switched. As summarized by Steidl and Thomas 
(2001), a minimum effect size that is considered biologically significant is defined. 

Fig. 3.4 An illustration of how means and variance stabilize with additional sampling. Note that 
in the all four examples the means (horizontal solid and dashed lines) and variance (vertical solid 
and dashed lines) stabilize with 20–30 plots. Knowledge of the behavior of means and variance 
influences the amount of sampling in field studies
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Then, the alternative hypothesis is stated such that the true effect size is greater than 
or equal to the minimum effect size that was initially selected. Lastly, the alterna-
tive hypothesis is that the true effect size is less than the initial minimum effect size. 
Thus, Type I error occurs when the researcher concludes incorrectly that no biologi-
cally significant difference exists when one does. Recall that this is the type of error 
addressed by power analysis within the standard hypothesis-testing framework. 
Bioequivalence testing controls this error rate a priori by setting the a-level of the 
test. Type II error, however, does remain within this framework when the researcher 
concludes incorrectly that an important difference exists when one does not.

For a real world example of the significance of value of this alternative approach, 
consider testing for compliance with a regulatory standard for water quality. In the 
case of the classic hypothesis testing, poor laboratory procedure resulting in wide 
confidence intervals could easily lead to a failure to reject the null hypothesis that 
a water quality standard had been exceeded. Conversely, bioequivalence testing 
protects against this potentiality and is consistent with the precautionary principle. 
While this approach appears to have merit, it is not currently in widespread use in 
wildlife science.

3.19 Effect Size and Confidence Intervals

As discussed earlier, null hypothesis significance testing is problematic because 
any two samples will usually, show a statistical difference if examined finely 
enough, such as through increasing sample size (see Sect. 1.4.1). Conversely, no 
statistical significance will be evident if the sample size was too small or the vari-
ance in the data is too great even when differences are biologically important (see 
Sect. 1.5.3). These scenarios can be distinguished by reporting an estimate of the 
effect size and its associated confidence interval, thus providing far more biological 
information than available through a p-value.

Confidence intervals (CI) may be used to test a null hypothesis. When estimated 
with the data for an observed effect size, a CI represents the likely range of numbers 
that cannot be excluded as possible values of the true effect size if the study were 
repeated infinitely into the future with probability 1 – a. If the 100(1 − a)% CI for 
the observed effect does not include the value established by the null hypothesis, 
you can conclude with 100(1 − a)% confidence that a hypothesis test would be sta-
tistically significant at level a.. Additionally, CIs provide more information than a 
hypothesis test because they establish approximate bounds on the likely value of the 
true effect size. Figure 3.5 (from Steidl and Thomas 2001) presents the possible 
various hypothetical observed effects and their associated 100(1 − a)% CI. Note 
that when the vertical CI line crosses the solid horizontal line (zero effect), no sta-
tistically significant effect has occurred.

Case A – the CI for the estimated effect excludes 0 effect and includes only 
 biologically significant effects; the study is both statistically and biologically 
significant.



Case B – the CI excludes 0 so it is statistically significant, but includes values 
that are below that thought to be biologically significant; the study is thus inconclu-
sive biologically.

Case C – the CI includes 0 effect and biologically significant effects, so it is 
inconclusive statistically.

Case D – the CI includes 0 effect but excludes all effects considered biologically 
significant; thus the null hypothesis of no biologically significant effect cannot be 
rejected.

Case E – the CI excludes 0 effect but does not include effects considered bio-
logically significant; the study is statistically but not biologically significant. This 
situation often occurs when you have very large sample sizes – note now the CI has 
narrowed.

In CI estimation, the focus is on establishing plausible bounds on the true effect 
size and determining whether biologically significant effect sizes are contained 
within those bounds. In retrospective power analysis, however, the focus is on the 
probability of obtaining a statistically significant result if the effect sizes were truly 
biologically significant. Steidl and Thomas (2001) concluded that the CI approach 

Fig. 3.5 Hypothetical observed effects (circles) and their associated 100(1−a)% confidence 
intervals. The solid line represents zero effect, and dashed lines represent minimum biologically 
important effects. In case A, the confidence interval for the estimated effect excludes zero effect 
and includes only biologically important effects, so the study is both statistically and biologically 
important. In case B, the confidence interval excludes zero effect, so the study is statistically 
significant; however, the confidence interval also includes values below those thought to be bio-
logically important, so the study is inconclusive biologically. In case C, the confidence interval 
includes zero effect and biologically important effects, so the study is both statistically and bio-
logically inconclusive. In case D, the confidence interval includes zero effect but excludes all 
effects considered biologically important, so the “practical” null hypothesis of no biologically 
important effect can be accepted with 100(1−a)% confidence. In case E, the confidence interval 
excludes zero effect but does not include effects considered biologically important, so the study is 
statistically but not biologically important. Reproduced from Steidel et al. (2001) with kind per-
mission from Springer Science + Business Media
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was preferable because interpretation of results is relatively straightforward, more 
informative, and viewed from a biological rather than a probabilistic context.

3.20 Making Adjustments When Things Go Wrong

As in much of life, things can and often do go wrong in the best-designed studies. 
The following are a few case studies that illustrate adjustments that salvage a study 
when problems occur.

Case 1 – As previously discussed, Sawyer (2006) conducted a study to deter-
mine the impact of gas development on habitat use and demographics of mule deer 
in southwestern Wyoming. Although the study of habitat use clearly demonstrated 
a decline in use of otherwise suitable habitat, the lack of a suitable control ham-
pered identification of the relationship of this impact to population demographics. 
Sawyer (2006) established a reference area early in the study based on historical 
data supplemented by aerial surveys during a pilot study period. While the impact 
area boundary remained suitable over the course of the 4-year study, the boundary 
around the control area turned out to be inadequate. That is, each year the deer dis-
tribution was different, resulting in the need for continually expanding the area 
being surveyed as a control. Thus, even though the numbers of deer remained rela-
tively unchanged in the reference area, the fact that the boundaries continued to 
change made a comparison of abundance and other demographic characteristics 
between the control and impact area problematic. Demographic data for the deer 
within the impact area did show declines in reproductive rate and survival, although 
the reductions were not statistically different from 0. Additionally, emigration rates 
did not satisfactorily explain the decline in deer numbers in the impact area. Finally, 
simulations using the range of reproduction and survival measured in the impact 
area suggested that those declines, while not statistically significant could, when 
combined with emigration rates explain the decline in deer numbers. While there is 
still opportunity for confounding and cause and effect is still strictly professional 
judgment, the weight of evidence suggests that the loss in effective habitat caused 
by the gas development may have resulted in a decline in deer abundance and sup-
ports a closer look at the impact of gas development on mule deer in this area.

Case 2 – McDonald (2004) surveyed statisticians and biologists, and reported 
successes and failures in attempts to study rare populations. One of the survey 
respondents, Lowell Diller (Senior Biologist, Green Diamond Resource Company, 
Korbel, California, USA) suggested that “A rare population is one where it is diffi-
cult to find individuals, utilizing known sampling techniques, either because of small 
numbers, secretive and/or nocturnal behavior, or because of clumped distribution 
over large ranges, i.e., a lot of zeros occur in the data. Therefore, a rare population 
is often conditional on the sampling techniques available.” Lowell provided an illus-
tration of his point by describing surveys conducted for snakes during the mid-1970s 
on the Snake River Birds of Prey Area in southern Idaho. Surveys were being con-
ducted for night snakes (Hypsiglena torquata), which were thought to be one of the 



rarest snakes in Idaho with only four known records for the state. His initial surveys, 
using standard collecting techniques for the time (turning rocks and such along some 
transect, or driving roads at night), confirmed that night snakes were very rare. In the 
second year of his study, however, he experimented with drift fences and funnel traps 
and suddenly began capturing numerous night snakes. They turned out to be the 
most common snakes in certain habitats and were the third most commonly captured 
snake within the entire study area. This case study illustrates two points, unsuccess-
ful surveys may be the result of “common wisdom” being incorrect, and/or standard 
techniques may be ineffective for some organisms and/or situations.

Case 3 – The Coastal Habitat Injury Assessment started immediately after the 
EVOS in 1989 with the selection of heavily oiled sites for determining the rate of 
recovery. To allow an estimate of injury, the entire oiled area was divided into 16 
strata based on the substrate type (exposed bedrock, sheltered bedrock, boulder/cob-
ble, and pebble/gravel) and degree of oiling (none, light, moderate, and heavy). Four 
sites were then selected from each of the 16 strata for sampling to estimate the abun-
dance of more than a thousand species of animals and plants. The stratification and 
site selection were all based on the information in a geographical information system 
(GIS). Unfortunately, some sites were excluded from sampling because of their 
proximity to active eagle nests, and more importantly, many of the oiling levels were 
misclassified and some of the unoiled sites were under the influence of freshwater 
dramatically reducing densities of marine species. So many sites were misclassified 
by the GIS system that the initial study design was abandoned in 1990. Alternatively, 
researchers matched each of the moderately and heavily oiled sites sampled in 1989 
with a comparable unoiled control site based on physical characteristics, resulting in 
a paired comparison design. The Trustees of Natural Resources Damage Assessment, 
the state of Alaska and the US Government, estimated injury by determining the 
magnitude of difference between the paired oiled and unoiled sites (Highsmith et al. 
1993; McDonald et al. 1995; Harner et al. 1995). Manley (2001) provides a detailed 
description of the rather unusual analysis of the resulting data.

McDonald (2004) concluded that the most important characteristics of success-
ful studies are (1) they trusted in random sampling, systematic sampling with a 
random start, or some other probabilistic sampling procedure to spread the initial 
sampling effort over the entire study area and (2) they used appropriate field proce-
dures to increase detection and estimate the probability of detection of individuals 
on sampled units. It seems clear that including good study design principles in the 
initial study as described in this chapter increases the chances of salvaging a study 
when things go wrong.

3.21 Retrospective Studies

As the name implies, a retrospective study is an observational study that looks back-
ward in time. Retrospective studies can be an analysis of existing data or a study of 
events that have already occurred. For example, we find data on bird fatalities from 
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several independent surveys of communications towers and we figure out why they 
died. Similarly, we design a study to determine the cause of fatalities in an area that 
has been exposed to an oil spill. A retrospective study can address specific statistical 
hypotheses relatively rapidly, because data are readily available or already in hand; 
all we need to do is analyze the data and look for apparent treatment effects and cor-
relations. In the first case, the birds are already dead; we just have to tabulate all the 
results and look at the information available for each communications tower. 
Numerous mensurative experiments used to test hypotheses are retrospective in 
nature (See Sinclair 1991; Nichols 1991); and, medical research on human diseases 
is usually a retrospective study. Retrospective studies are opposed to prospective 
studies, designed studies based on a priori hypotheses about events that have not yet 
occurred.

Retrospective studies are common in ecology and are the only option in most 
post hoc impact assessments. Williams et al. (2002) offer two important caveats to 
the interpretation of retrospective studies. First, inferences from retrospective stud-
ies are weak, primarily because response variables may be influenced by unrecog-
nized and unmeasured covariates. Second, patterns found through mining the data 
collected during a retrospective study are often used to formulate a hypothesis that 
is then tested with the same data. This second caveat brings to mind two comments 
Lyman McDonald heard Wayne Fuller make at a lecture at Iowa State University. 
The paraphrased comments are that “the good old data are not so good” and “more 
will be expected from the data than originally designed.” In general, data mining 
should be avoided or used as to develop hypotheses that are tested with newly 
obtained empirical data. Moreover, all the above study design principles apply to 
retrospective studies.

3.22 Summary

Wildlife studies may include manipulative experiments, quasiexperiments, or 
mensurative or observational studies. With manipulative experiments there is 
much more control of the experimental conditions; there are always two or more 
different experimental units receiving different treatments; and there is a random 
application of treatments. Observational studies involve making measurements of 
uncontrolled events at one or more points in space or time with space and time 
being the only experimental variable or treatment. Quasiexperiments are observa-
tional studies where some control and randomization may be possible. The impor-
tant point here is that all these studies are constrained by a specific protocol 
designed to answer specific questions or address hypotheses posed prior to data 
collection and analysis.

Once a decision is made to conduct research there are a number of practical 
considers including the area of interest, time of interest, species of interest, poten-
tially confounding variables, time available to conduct studies, budget, and the 
magnitude of the anticipated effect.



Single-factor designs are the simplest and include both paired and unpaired 
experiments of two treatments or a treatment and control. Adding blocking, includ-
ing randomized block, incomplete block, and Latin squares designs further compli-
cates the completely randomized design. Multiple designs include factorial 
experiments, two-factor experiments and multifactor experiments. Higher order 
designs result from the desire to include a large number of factors in an experiment. 
The object of these more complex designs is to allow the study of as many factors 
as possible while conserving observations. Hierarchical designs as the name 
implies increases complexity by having nested experimental units, for example 
split-plot and repeated measures designs. The price of increased complexity is a 
reduction in effective sample size for individual factors in the experiment.

ANCOVA uses the concepts of ANOVA and regression to improve studies by 
separating treatment effects on the response variable from the effects of covari-
ates. ANCOVA can also be used to adjust response variables and summary statis-
tics (e.g., treatment means), to assist in the interpretation of data, and to estimate 
missing data.

Multivariate analysis considers several related random variables simultaneously, 
each one considered equally important at the start of the analysis. This is particu-
larly important in studying the impact of a perturbation on the species composition 
and community structure of plants and animals. Multivariate techniques include 
multidimensional scaling and ordination analysis by methods such as principal 
component analysis and detrended canonical correspondence analysis.

Other designs frequently used to increase efficiency, particularly in the face of 
scarce financial resources, or when manipulative experiments are impractical 
include sequential designs, crossover designs, and quasiexperiments. 
Quasiexperiments are designed studies conducted when control and randomization 
opportunities are possible, but limited. The lack of randomization limits statistical 
inference to the study protocol and inference beyond the study protocol is usually 
expert opinion. The BACI study design is usually the optimum approach to 
quasiexperiments. Meta-analysis of a relatively large number of independent stud-
ies improves the confidence in making extrapolations from quasiexperiments.

An experiment is statistically very powerful if the probability of concluding no 
effect when in fact effect does exist is very small. Four interrelated factors deter-
mine statistical power: power increases as sample size, a-level, and effect size 
increase; power decreases as variance increases. Understanding statistical power 
requires an understanding of Type I and Type II error, and the relationship of these 
errors to null and alternative hypotheses. It is important to understand the concept 
of power when designing a research project, primarily because such understanding 
grounds decisions about how to design the project, including methods for data col-
lection, the sampling plan, and sample size. To calculate power the researcher must 
have established a hypothesis to test, understand the expected variability in the data 
to be collected, decide on an acceptable a-level, and most importantly, a biologi-
cally relevant response level. Retrospective power analysis occurs after the study is 
completed, the data have been collected and analyzed, and with a known outcome. 
Statisticians typically dismiss retrospective power analysis as being uninformative 
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and perhaps inappropriate and its application is controversial, although it can be 
useful in some situations.

Bioequivalence testing, an alternative to the classic null hypothesis significance 
testing reverses the burden of proof and considers the treatment biologically signifi-
cant until evidence suggests otherwise; thus switching the role of the null and 
alternative hypotheses. The use of estimation and confidence intervals to examine 
treatment differences is also an effective alternative to null hypothesis testing and 
often provides more information about the biological significance of a treatment.

Regardless of the care taken, the best-designed experiments can and many will 
go awry. The most important characteristics of successful studies include (1) they 
trusted in random sampling, systematic sampling with a random start, or some other 
probabilistic sampling procedure to spread the initial sampling effort over the entire 
study area and (2) they used an appropriate field procedures to increase detection 
and estimate the probability of detection of individuals on sampled units. It seems 
clear that including good study design principles in the initial study as described in 
this chapter increases the chances of salvaging a study when things go wrong.

Study designs must be study-specific. The feasibility of different study designs 
will be strongly influenced by characteristics of the different designs and by the 
available opportunities for applying the treatment (i.e., available treatment struc-
tures). Other, more practical considerations include characteristics of study sub-
jects, study sites, the time available for the study, the time period of interest, the 
existence of confounding variables, budget, and the level of interest in the outcome 
of the study by others. Regardless of the study environment, all protocols should 
follow good scientific methods. Even with the best of intentions, though, study 
results will seldom lead to clear-cut statistical inferences.

There is no single combination of design and treatment structures appropriate 
for all situations. Our advice is to seek assistance from a statistician and let com-
mon sense be your guide.
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