
Chapter 7
A Sliding Window Filter
for Incremental SLAM

Gabe Sibley, Larry Matthies and Gaurav Sukhatme

7.1 Introduction

This work develops a sliding window filter for incremental simultaneous localiza-
tion and mapping (SLAM) that focuses computational resources on accurately es-
timating the immediate spatial surroundings using a sliding time window of the
most recent sensor measurements. Ideally, we would like a constant time algorithm
that closely approximates the all-time maximum-likelihood estimate as well as the
minimum variance Cramer Rao lower bound (CRLB) - that is we would like an
estimator that achieves some notion of statistical optimality (quickly converges), ef-
ficiency (quickly reduces uncertainty) and consistency (avoids over-confidence). To
this end we give a derivation of the SLAM problem from the Gaussian non-linear
least squares optimization perspective. We find that this results in a simple, yet gen-
eral, take on the SLAM problem; we think this is a useful contribution.

Our approach is inspired by the results from the photogrammetry commu-
nity, dating back to the late 1950’s [1], and later derivatives like Mikhail’s least
squares treatment [6], the Variable state dimension filter(VSDF) [5], visual odome-
try(VO) [4], modern bundle adjustment(BA) [10, 3] and of course extended Kalman
filter (EKF) SLAM [9].

We apply the sliding window filter to SLAM with stereo vision and inertial mea-
surements. Experiments show that the best approximate method comes close to
matching the performance of the optimal estimator while attaining constant time
complexity - empirically, it is often the case that the difference in their performance
is indistinguishable.
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7.2 Non-linear Least Squares SLAM

Standard statistical point estimation is a useful tool for understanding the basic
structure of the SLAM problem. Non-linear least squares is appealing for a num-
ber of reasons. First, because it emphasizes the fundamental minimization principle
at work in least squares, which, we would argue, is a principle that is more difficult
to see from the recursive estimation perspective. Second, starting with the under-
lying probability density functions that describe our problem, it clearly shows the
basic probabilistic nature of SLAM - that is, SLAM is simply tracking a normal
distribution through a large state space; a state space that changes dimension as
we undertake the fundamental probabilistic operations of removing parameters via
marginalization, and adding parameters via error propagation and conditioning. An-
other reason to derive SLAM via statistical point estimation is because it exposes
a rich body of theory about the convergence of non-linear least squares estimators.
With this in mind, we carry forward in the usual way, by describing the system state
vector, process model, measurement model and how we incorporate prior informa-
tion.

7.2.1 Parameterization

The parameter vector is a temporal sequence of robot poses xp j , 1 ≤ j ≤ m, and 3D
landmark positions xmi , 1 ≤ i ≤ n.

x =

[
xp

xm

]

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

xp1

...

xpm

xm1

...

xmn

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

A pose xp j at time index j is represented by a six parameter column vector com-
prised of a 3D point and an Euler angle xp j = [xp j yp j zp j rp j pp j qp j ]

T . Map land-
marks are represented by their 3D position, xmi = [xmi ymi zmi ]

T . The state dimension
is thus |x| = (6m+3n) and grows as the robot path increases and as new landmarks
are observed.
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7.2.2 Kinematic Process Model

The process model f j : R
6 → R

6 for a single step describes each pose in terms of
the previous pose

xp j = f j(xp j−1 ,u j)+ w j (7.1)

where u j is an input command to the robot. The noise vector w j is additive and
follows a normal distribution w j ∼ N (0,Q j). We also assume it is reasonable to
have xp j ∼ N ( f j(xp j−1 ,u j),Q j). A simple and useful kinematic process model for
f j is the compound operation, ⊕, which is described in [9]. The 6×6 Jacobian of

f j , F j = ∂ f j
∂xp j

∣∣
∣
∣
xp j ,u j+1

, which we will need in a moment, is also derived in [9].

Concatenating individual process models together, the p.d.f. describing the robot
path, xp = [xT

p1
, ...,xT

pm
]T , is p(xp) = N (μp,Q), where

μp = f (x) =

⎡

⎢
⎢
⎢
⎢
⎣

xp1

f1(xp1 ,u2)
...

fm(xpm−1 ,um)

⎤

⎥
⎥
⎥
⎥
⎦

, Q =

⎡

⎢
⎢
⎣

Q1

. . .

Qm

⎤

⎥
⎥
⎦ .

In practice, one usually extends this basic model to also estimate other quanti-
ties, such as linear and angular velocities; for clarity, we will stick with this basic
kinematic formulation.

7.2.3 Sensor Model

We say a measurement of the ith landmark taken from the jth pose is related to the

state vector by the sensor model hi j : R
|xmi |+|xp j | → R

|zi j |

zi j = hi j(xmi ,xp j )+ vi j (7.2)

which generates the expected value the sensor will return when landmark i is
observed from pose j. We assume vi j ∼ N (0,Ri j) so that zi j ∼ N (hi j,Ri j), where
Ri j is the observation error covariance matrix.

Lumping all the observations, measurement functions and measurement covari-
ances together we write z, h, and R as
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z =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

z11

...

z1m

...

znm

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, h(x) =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

h11

...

h1m

...

hnm

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, R =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

R11 0 . . . 0

0
. . .

...

R1m

...
. . .

0 . . . Rnm

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

.

Treating the process information as observations, we get the measurement likeli-
hood p(z,u|x) = N (μz,Σz), where

μz =

[
h(x)
f (x)

]

, Σz =

[
R 0

0 Q

]

.

7.2.4 Point Estimation

Suppose we are also given prior information about the first pose and the map,
p(xπ) = N

(
μπ ,Π−1

)
, where

xπ =

[
xp1

xm

]

, μπ =

[
x̂p1

x̂m

]

, Π =

[
Πp1 Πpm

ΠT
pm Πm

]

.

This prior encodes information about a single starting pose, about some previ-
ously known map of n landmarks, and about the relationships between the starting
pose and the map; Πp is the 6× 6 initial pose information matrix, Πm is 3n× 3n
map prior information matrix, and Πpm is the 6×3n pose-map information matrix.

Armed with the above we can now write the posterior probability of the system,

p(x|z,u) = p(z,u|x)p(x). (7.3)

We wish to compute the maximum a posteriori estimate of x which maximizes
this density. First, it helps if we lump the sensor model, process model, and prior
information terms together by defining the function g(x) and matrix C as

g(x) =

⎡

⎢
⎣

gz(x)
g f (x)
gπ(x)

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

z−h(x)
xp − f (xp)[

x̂p1

x̂m

]

−
[

xp1

xm

]

⎤

⎥
⎥
⎥
⎥
⎦

, C−1 =

⎡

⎢
⎣

R−1 0 0

0 Q−1 0

0 0 Π

⎤

⎥
⎦ ;

then by taking the negative logarithm of (7.3) we get a proportional non-linear
least squares problem

�(x) =
1
2

(
g(x)T C−1g(x)

)
. (7.4)
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Letting ST S = C−1 and r(x) = Sg(x) then (7.4) is clearly a non-linear least
squares problem of the form

�(x) =
1
2
||r(x)||2. (7.5)

Newton’s solution to such optimization problems is the iterative sequence

xi+1 = xi − (∇2�(xi))−1∇�(xi). (7.6)

For small residual problems a useful approximation to (7.6) is the Gauss-Newton
method, which approximates the Hessian ∇2�(xi) by r′(xi)T r′(xi). Thus, since the
gradient of (7.5) is ∇�(xi) = r′(xi)T r(xi), the Gauss-Newton method defines the
sequence of iterates [2]

xi+1 = xi − (r′(xi)T r′(xi))−1r′(xi)T r(xi) (7.7)

Noting that r′(xi) = SGi where Gi is the Jacobian of g(xi), (7.7) becomes

δxi = (GT
i C−1Gi)−1GT

i C−1g(xi). (7.8)

such that xi+1 = xi + δxi. When iterated, this sequence is locally q-quadratically
convergent to the MAP estimate for near zero-residual problems [2]. The system of
linear equations

GT
i C−1Giδxi = GT

i C−1g(xi) (7.9)

is the essential least squares form of the SLAM problem (we will often omit the it-
eration index). The difference between many SLAM algorithms can be boiled down
to differences in how these equations are solved. It is also interesting to note here
that for many problems the Gauss-Newton method is algebraically identical to the
iterated extended Kalman filter (IEKF).

7.3 Sparsity in the System Equations

Before describing the sliding window filter it is useful to take a look at the overall
structure of the SLAM least squares equations, and to study how this structure lends
itself to various algebraic solutions.

Expanding the Jacobian G,

G =

⎡

⎢
⎢
⎣

∂gz
∂x
∂g f
∂x
∂gπ
∂x

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎣

H

D

L

⎤

⎥
⎦ ,
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Fig. 7.1 Basic
structure of the
sensor model
Jacobian, H.

Fig. 7.2 The sparse structure of least squares SLAM system matrix is due
to contributions from three components: the measurement block HT R−1H,
the process block DT Q−1D, and the prior information block LTΠL.

we see that the system matrix, GT C−1G = HT R−1H+DT Q−1D+LTΠL, has a
sparse structure. The structure of H is shown in Fig. 7.1. The sparsity pattern of least
squares SLAM system matrix is due to contributions from the three components

HT R−1H=

⎡

⎣
U W

WT V

⎤

⎦, DT Q−1D=

⎡

⎣
E 0

0 0

⎤

⎦, and LTΠL=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Πp 0 ... Πpm

0 0 0

... 0
. . .

...

Πpm
T 0 ... Πm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where U = AT R−1A, W = AT R−1B and V = BT R−1B. The block tri-diagonal
process matrix is

E =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

Q−1
1 + F1Q−1

2 FT
1 −FT

1 Q−1
2 0 . . . 0

−Q−1
2 F1 Q−1

2 + F2Q−1
3 FT

2
. . .

...

0
. . .

. . . 0
... Q−1

m−1 + Fm−1Q−1
m FT

m−1 −FT
m−1Q−1

m

0 . . . 0 −Q−1
m Fm−1 Q−1

m

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

.

This structure is also depicted graphically in Fig. 7.2. The task is to solve the system
of normal equations 7.7 which expand to

[
Λp Λpm

Λpm
T Λm

][
δxp

δxm

]

=

[
gp

gm

]

where gp and gm are the least squares RHS vector corresponding to the robot path
and map, respectively. We solve this system of equations using elementary matrix
operations - for example the Schur complement - to reduce the lower right map
block Λm onto the upper left process block Λp

[
Λp −Λpm(Λm)−1Λpm

T 0

Λpm
T Λm

][
δxp

δxm

]

=

[
gp −Λpm(Λm)−1gm

gm

]
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which is solved directly for δxp and then for δxm by back-substitution:

δxp = (Λp −Λpm(Λm)−1Λpm
T )−1(gp −Λpm(Λm)−1gm)

δxm = (Λm)−1(gm −Λpm
Tδxp)

Alternately, we can also reduce the upper left process block Λp onto the lower
right map block Λm

[
Λp Λpm

0 Λm −Λpm
T (Λp)−1Λpm

][
δxp

δxm

]

=

[
gp

gm −Λpm
T (Λp)−1gp

]

giving the solution

δxm = (Λm −Λpm
T (Λp)−1Λpm)−1(gm −Λpm

T (Λp)−1gp)
δxp = (Λpm)−1(gp −Λpmδxm)

Depending on the process noise and the prior, the system matrix GT C−1G can
take on different sparsity patterns that affect the complexity of finding a solution. In
the field, the problem at hand will define the sparsity pattern, which will influence
the choice of which algorithm to use.

7.4 The Sliding Window Filter

To keep the complexity of the filter constant with the number of landmarks it is nec-
essary to reduce the size of the state vector. This is accomplished by removing the
oldest pose parameters and distant landmark parameters. If we directly remove pa-
rameters from the system equation however, we can lose information about how the
parameters interact. The right way to remove parameters from a multi-dimensional
normal distribution is to marginalize them out.

7.4.1 The Effects of Marginalizing Out Parameters

Marginalizing out a set of pose parameters will add cross-information terms in the
SLAM least squares system matrix (that is the Hessian, or information matrix) be-
tween all the landmarks that were conditionally dependent on those parameters. This
is depicted graphically in Fig. 7.3 for a system that starts without any prior informa-
tion. Studying this structure we see that downdating the oldest pose causes fill-in in
three places: 1) between any landmarks that were visible from the downdated pose,
2) between the parameters of the next-oldest-pose (the pose one time step after the
pose being downdated), and 3) between the next-oldest-pose and all landmarks seen
by the downdated pose. Interestingly, Π is the only place that ever suffers from
fill-in. Because of this structure, when solving we can still take advantage of any
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Fig. 7.3 Information matrix evolution for an example problem with 4 poses and 6 landmarks. The
left image is after measuring landmarks 1, 2, 3 from pose 1, landmarks 2, 3, and 4 from pose 2,
landmarks 3, 4, and, 5 from pose 3 and 4, 5, and 6 at pose 4. In the second image from left we
see that marginalizing out pose 1 induces conditional dependencies (fill-in) in three places: 1) the
top left 6×6 of the process-block, 2) the prior map-block Πm between landmarks that were visible
from pose 1, and 3) the prior pose-to-map block Πpm between landmarks that were visible from
pose 1. These places are shaded in darker grey. At this point (second from right image) downdating
landmark 1, which is not visible from any of the remaining poses, will induce no extra fill-in in Π
(right image).

sparsity patterns in Λpm and Λp. It is important to note that the Π term catches all
the prior information as we “roll” up old state parameters. If we were to ignore Π ,
we would not benefit from past measurements. Marginalizing out landmarks that
are not visible from any active pose will also only ever cause fill in Π .

Marginalizing out poses at a fixed rate and landmarks when they lose support
results in a constant time complexity incremental SLAM estimation algorithm. By
choosing when to downdate poses and landmarks sliding window SLAM can scale
from the full batch solution, to the extended Kalman filter solution. That these algo-
rithms are subsumed within one framework testifies to the generality of the simple
least squares approach.

It is interesting to note what happens if we simply delete parameters from the
estimator instead of marginalizing them out. For a sliding window of size k, the
error converges like 1/k just as we would expect the batch estimator to do. However,
after k steps, the error stops converging as we delete information from the back of
the filter. With such deleting and a sliding window of k = 2 it is interesting to note
that we end up with a solution that is nearly identical to previous forms of Visual
Odometry [4, 7, 8]. The graph in Fig. 7.4 shows the average RMS mapping error for
this type of Visual Odometry compared to the batch solution, as well as the sliding
window filter solution.

7.5 Conclusions

This chapter describes a SLAM solution that concentrates computational resources
on accurately estimating the immediate spatial surroundings by using a sliding time
window of the most recent sensor measurements. Focusing computation on im-
proving the local result is crucial for applications that wish to fuse spatially high-
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Fig. 7.4 Graph showing average RMS mapping error. Each curve is a trial for different size time
window, averaged over 50 Monte-Carlo trials, with 0.1 pixel std. dev. measurement noise. 1.0m std.
dev. process noise. Note that the sliding window filter comes close to the full SLAM solution. A
sliding window of 2 is close to optimal 1/k full batch curve. Further, because VO does not combine
information over time, it does not reduce uncertainty as time passes.

resolution, dense structure estimates. With high bandwidth sensors (like cameras)
this is clearly beneficial for computational reasons, and it especially true if we wish
to fuse all of the sensor data (or a significant portion thereof).

By tuning a few parameters, the sliding window algorithm can scale from exhaus-
tive batch solutions to fast incremental solutions. Ideally, we would like a constant
time algorithm that closely approximates the all-time maximum-likelihood estimate
as well as the minimum variance Cramer Rao Lower Bound - that is, we would like
an estimator that achieves some notion of statistical optimality (quickly converges),
efficiency (quickly reduces uncertainty) and consistency (avoids over-confidence).
We find that approaching this problem from the statistical point estimation point
of view results in a simple, yet general, take on the SLAM problem; we think this
is a useful contribution. Data-fusion is fundamental for improving a robot’s met-
ric estimation of the world. Doing it quickly and with large amounts of data is a
challenging task. Ultimately, some form of dense data-fusion will enable accurate
high-resolution spatial perception for autonomous robots.
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