
Chapter 4
Perceiving Objects and Movements to Generate
Actions on a Humanoid Robot

Tamim Asfour, Kai Welke, Aleš Ude, Pedram Azad and Rüdiger Dillmann

4.1 Introduction

To deal with problems in perception and action researchers in the late 80s introduced
two new frameworks, one under the heading of active vision (animate, purposive,
behavioral) originating in the field of computer vision and the other in AI/robotics
under the heading of behavior-based robotics. In both formalisms, the old idea of
conceiving an intelligent system as a set of modules (perception, action, reasoning)
passing results to each other was replaced by a new way of thinking of the system as
a set of behaviors. Behaviors are sequences of perceptual events and actions. These
efforts still go on, but only with limited success up to now. One reason for this is
that although it was expected that active vision would make many perceptual prob-
lems easier, machine perception still remains rather primitive when compared to
human perception. A further reason for failure is that behaviors were often designed
ad hoc without studying the interplay between objects and actions in depth, which
is necessary to develop structures suitable for higher-level cognitive processes. A
third reason was that no one succeeded in formulating a general enough theory for
behavior-based robotics. Hence, it remains difficult or even impossible to predict
how a newly designed behavior-based system will scale and deal with new situa-
tions.

In recent years there are renewed efforts to develop autonomous systems and
especially humanoid robots (see [7, 1, 11, 14, 12, 3]), i.e. (embodied) robots that
perceive, move and perform (simple) actions. The successful attempts in this area
are still limited to simple scenarios, very much for the same reasons mentioned
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above. One should also note the extensive research on visual recognition and cate-
gorization in computer vision, which resulted in quite advanced and efficient recog-
nition methods, although seldom tested on real world scenes. Moreover, the relation-
ship between this research and the development of cognitive systems is still weak;
since these approaches usually assume that what constitutes objects and categories
is given a priori by the external world, they do not pertain to seeing agents and
their actions. Research into cognitive robots should combine the study of perceptual
representations that facilitate motor control, motor representations that support per-
ception, and learning based on actively exploring the environment and interacting
with people that provides the constraints between perception and action. This will
then allow, e.g., to learn the actions that can be carried out on and with objects,
which leads to what we call Object-Action-Complexes (OAC).

The concept of Object-Action Complexes (OACs) has been introduced by the
European PACO-PLUS consortium ( [8]) to emphasize the notion that for a cog-
nitive agent objects and actions are inseparably intertwined and that categories are
therefore determined (and also limited) by the action an agent can perform and by
the attributes of the world it can perceive. The resulting OACs are the entities on
which cognition develops (action-centered cognition). Entities (things) in the world
of a robot (or human) will only become semantically useful objects through the
action that the agent can/will perform on them.

In this work we present a new humanoid active head which features human-like
characteristics in motion and response and mimics the human visual system. We
present algorithms that can be applied to perceive objects and movements, which
form the basis for learning actions on the humanoid. For action representation we
use an HMM-based approach to reproduce the observed movements and build an
action library. Hidden Markov Models (HMM) are used to represent movements
demonstrated to a robot multiple times. They are trained with the characteristic
features (key points) of each demonstration. We propose strategies for adaptation
of movements to the given situation and for the interpolation between movements
stored in a movement library.

4.2 Active Humanoid Head

The humanoid robot ARMAR III has been designed under a comprehensive view so
that it can perform a wide range of tasks and not only a particular task. In the design
of the robot, we desire a humanoid that closely mimics the sensory and sensory-
motor capabilities of the human. The robot should be able to deal with a household
environment and the wide variety of objects and activities encountered in it.

To achieve the above goals, we use an integrated humanoid robot consisting of
a humanoid head with seven degrees of freedom (DOF), two arms (seven DOF per
arm) and five-finger hands (eight DOF per hand), a torso with three DOF, and a holo-
nomic mobile platform. In designing the robot, we desire a humanoid that closely
mimics the sensory and sensory-motor capabilities of the human. Therefore, the
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Fig. 4.1 The humanoid robot ARMAR-III. The has 43 DOF. From the kinematics control point of
view, the robot consists of seven subsystems: head, left arm, right arm, left hand, right hand, torso,
and a mobile platform.

robot is equipped with manipulative, perceptive and communicative skills neces-
sary for real-time interaction with the environment and humans.

4.2.1 System Requirements

We pay special attention to the design of the head since the head can provide rich
perceptual input necessary to realize various visuo-motor behaviors, e.g. smooth
pursuit and saccadic movements towards salient regions, and also more complex
sensory-motor tasks such as hand-eye coordination, gesture identification, human
motion perception and linking of visual representations to the motor representations.
The major design criteria were as follows:

- The robot head should be of realistic human size and shape while modelling the
major degrees of freedom (DOF) found in the human neck/eye system, incorpo-
rating the redundancy between the neck and eye DOF.

- The robot head should feature human-like characteristics in motion and response,
that is, the velocity of eye movements and the range of motion will be similar to
the velocity and range of human eyes.
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- The robot head must enable saccadic motions, which are very fast eye movements
allowing the robot to rapidly change the gaze direction, and smooth pursuit over
a wide range of velocities.

- The optics should mimic the structure of the human eye, which has a higher
resolution in the fovea.

- The vision system should mimic the human visual system while remaining easy
to construct, easy to maintain and easy to control.

With this set of requirements, a first version of the head have been developed as
part of a humanoid robot that will allow for the integration of motor control and
perception. This is essential to enable explorative head, hand, and body movements
for learning of OACs.

4.2.2 Head Motor System

The head has seven DOF and is equipped with two eyes. Each eye can independently
rotate about a vertical axis (pan DOF), and the two eyes share a horizontal axis (tilt
DOF). To approximate These two DOF allow for human-like eye movements1. The
visual system is mounted on a neck mechanism [1] with four DOF organized as
pitch-roll-yaw-pitch.

4.2.3 Head Sensory System

To start learning object-action complexes we must, firstly, identify regions that po-
tentially contain objects of interest and secondly analyze these regions to build
higher-level representations. While the first task is closely related to visual search
and can benefit from a wide field of view, a narrower field of view resulting in
higher-resolution images of objects is better suited for the second task. While the
current technology does not allow us to exactly mimic the features of the human
visual system and because camera systems that provide both peripheral and foveal
vision from a single camera are still experimental, we decided for an alternative
which allows to use commercially available camera systems that are less expen-
sive and more reliable. Foveated vision was realized using two cameras per eye,
one with wide-angle lens for peripheral vision and one with narrow-angle lens for
foveal vision. We use the Point Grey Research Dragonfly IEEE-1394 camera in the
extended version (www.ptgrey.com). The extended version allows the CCD to be
up to 6 inches away from the camera interface board. This arrangement helps with
accessing hard to reach places, and with placing the lens into a small volume. Since
the cameras are very light and are extended from the interface board by a flexible
extension cable, they can be moved with small and low-torque servos.

The cameras can capture colour images at a frame rate of up to 30 Hz. They
implement the DCAM standard, and transmit a raw 8 bit Bayer Pattern with a res-



4 Perceiving Objects and Movements to Generate Actions on a Humanoid Robot 45

olution of 640x480, which is then converted on the PC to a 24 bit RGB image. The
cameras have a FireWire interface, which is capable of delivering data rates of up
to 400 Mbps. The benefit of transmitting the Bayer Pattern is that only a third of the
bandwidth is needed for transmitting the colour image without loosing any informa-
tion. Thus, it is possible to run one camera pair at a frame rate of 30 Hz and the other
at a frame rate of 15 Hz, all being synchronized over the same FireWire bus, with-
out any additional hardware or software effort. Running the foveal cameras, which
have a smaller focal length and thus a narrower view angle, at a lower frame rate is
not a drawback because these cameras are not crucial for time critical applications
such as tracking, but are utilized for detailed scene analysis, which does not need
to be performed at full frame rate in most cases anyway. The camera is delivered
as a development kit with three micro lenses with the focal lengths 4, 6, and 8mm.
In addition, one can use micro lenses with other focal lengths as well. We have
chosen a 3 mm micro lens for the peripheral cameras and a 16 mm micro lens for
the narrow angle cameras. Furthermore, the head is equipped with six microphones
(SONY ECMC115.CE7): two in the ears, two in the front and two in the rear of the
head. These microphones will be used in the later phase of the project to achieve a
richer multi-sensory representation of objects and environment and to support the
integration of speech components in order to provide an additional information for
interaction and natural communication.

4.3 Perceiving Objects and Movements

4.3.1 Human Motion Tracking

For the tracking of human motion, an image-based markerless human motion cap-
ture system has been developed[6, 5]. The input of the system are stereo colour
images of size 320× 240 captured at 25 Hz, with two calibrated Dragonfly cam-
eras built-in into the head of the humanoid robot ARMAR III. The input images
are pre-processed, generating output for the gradient cue, the distance cue, and an
optional region cue, as described in [5]. Based on the output of the image process-
ing pipeline, a particle filter is used for tracking the movements in configuration
space. The overall likelihood function to compute the a-posteriori probabilities is
formulated as:

p(z|s) ∝ exp

{
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where s is the configuration to be evaluated, z is a general denotation for the
current observations i.e. the current input image pair, and ci ∈ R

3 with i ∈ {1,2,3}
denotes the triangulated 3D position of the hands and the head. The function di(s,c)
is defined as:
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Fig. 4.2 Illustration of the performance of the markerless human motion capture system. Left:
projection of the estimated configuration into the left camera image. Right: 3D visualization of the
estimated configuration with an articulated human model.

di(s,c) :=

{ | fi(s)− c|2 : c �= 0

0 : otherwise
,

where n := dim(s) is the number of DOF of the human model. The transformation
fi : Rn → R3 transforms the n-dimensional configuration of the human model into
the 3D position of the left hand, right hand or head respectively, using the forward
kinematics of the human model. The gm with m ∈ {1,2, ...,Mg} denote the inten-
sity values in the gradient image (which is derived from the input images z) at the
Mg pixel coordinates of the projected contour of the human model for a given con-
figuration s. This process is performed for both input images using the calibration
parameters of each camera. For each image pair of the input sequence the output of
the system is the estimation of the particle filter, given by the weighted mean over
all particles. A detailed description is given in [5].

In contrast to the acquisition method based on the magnetic tracking system,
the joint angle values θ3, θ4, θ5, and θ6 are calculated directly and therefore the
position of the elbow does not have to be approximated based on empirical studies
but is determined explicitly.

4.3.2 Object Representations for Actions

Our scheme of object representation is driven by the conviction that objects and
actions are inseparably intertwined. To facilitate the execution of complex actions
in the currently perceived environment, we want our system to learn performing
actions on objects in two ways: learning by demonstration and learning by explo-
ration. In the following section we want to emphasize learning by exploration and
the consequences for an action related object representation scheme.

While autonomously exploring possible actions on an object and finally asso-
ciating successful actions with an object, the robot retrieves a set of object action
relations. The related actions for an object can be considered object affordances[9].
Associating possible actions to prior percepts only will not result in a general repre-
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sentation of object affordances. Therefore, a mechanisms is necessary which allows
the determination of affordances for unknown percepts on the basis of previously
experienced object action relations. Below we will introduce a conceptual way to
generalize object action relations to a representation, which can be used to deter-
mine the affordance of an unknown percept.

Furthermore, to allow autonomous exploration of objects, a mechanism to mea-
sure success for an executed action is necessary. This ability can not be learned in
a completely autonomous way. For a new action the system initially needs a feed-
back, whether an action executed on an object has been successful or not. This
can be provided either by an assistant who judges the action after execution or by
demonstrating successfully executed actions. Once the system learned this measure
of success, it can judge itself if the execution of an action on an unknown object was
successful or not.

A system which allows both, generalizing for object affordances and learning of
how to measure success, has to rely on two distinct sets of object features: features
which are stable and features which are varying during execution. If we consider the
example of filling a cup, the shape and colour of the cup itself will be stable during
action execution, while the fill level changes. In the following, we denote features
of an object which are stable during action execution by F(P) = ( f1, . . . , fNf ) and
features that are varying during execution with G(P) = (g1, . . . ,gNg). Each feature
vector component ( fn or gn) will be called feature channel.

Considering the invariant feature vector F(P) for an action A performed on an
percept P, it is clear that the affordance affordA(P) has to be triggered by elements
of F(P). To determine, which feature channels are responsible for the affordance,
the system has to acquire enough experience with the action A on different percepts
P1, . . . ,PN and to generalize over the resulting vectors F(P1), . . . ,F(PN). During the
generalization process, two things will be determined: the relevance Rn of each fea-
ture channel fn for the affordance and the feature values for all channels, which fre-
quently co-occur with the action and thus are strong indicators for the affordance.
To determine significant domains in feature space, clustering is performed for each
feature channel using all previous percepts which are associated with successful ex-
ecutions of the action. For feature channel n, the resulting clusters are combined
in an extended signature containing the cluster centroid cn,i, the number of sam-
ples wn,i associated to the cluster, and the distance from the cluster’s centroid to the
farthest cluster element dn,i:

Sn = {si = (cn,i,wn,i,dn,i)} (4.2)

For each cluster the probability pn,i is assigned which captures how probable an
element which belongs to the cluster affords the action:

pn,i =
wn,i

N
(4.3)

A cluster with high probability pn,i shows that the corresponding feature channel
captures relevant information for the object affordance. We calculate the relevance
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Rn of a feature channel n by:
Rn = pn,max (4.4)

where max is the index of the cluster center with largest number of elements wn,i.
With the probabilities and the feature channel relevance, the affordance of an

unknown percept X can be determined. First the invariant feature vector F(X) is
calculated. For each feature vector component the closest cluster cn,r is searched.
The distance er to the centroid is calculated and used to determine if the component
is significant for the cluster. To express this in our calculations, we define a binary
function of significance:

kn =

{
1 if er < αdn,r

0 otherwise
(4.5)

The affordance of the percept X for the action A can then be calculated by:

affordA(X) =
∑

Nf
n=0 kn pn,r

∑
Nf
n=0 Rn

(4.6)

The system has to hold an inner model which allows to determine affordances
for percepts. For the calculations we only need the extended signatures Sn. To keep
only relevant channels in the inner model, we threshold the relevance Rn of each
channel and discard channels with low relevance. Channels with low relevance will
usually have many small clusters and discarding them helps in keeping the inner
model small. Thus as inner model for affordances IA for the action A we can write:

IAA = {(Sn) : Rn > minrelevance} (4.7)

Once an action has been performed on the object, the robot has to determine if
the action was successful. For this, a measure of success which relates percepts prior
to execution with percepts after execution is necessary. The action is considered as
continuous process over time. Thus the change of a prior percept P0 to a percept
during action execution Pt can be written in the following way:

Pt = CA(P0,t) (4.8)

where CA describes the change of the percept when applying the action A. The suc-
cess can be measured between two percepts Pti ,Pti+1 , where the intervalΔ t = ti+1−ti
is large enough to perceive the change triggered by the action. The invariant features
F(P) are not relevant for the measuring of success. We use the varying feature set
G(P) of previously perceived successful action executions as input to the measure-
ment. Since we want to measure a relation of percepts between points in time, we
observe the difference between the feature sets gn(Pt+Δ t)−gn(Pt) = dn(t). The gen-
eralization of dn(t) is performed in a similar way as mentioned above. During the
generalization process the expected values En(t) = {en,i(t)} which correspond to
cluster centers and relevances of feature channels Rn are determined. We assume,
that all observed changes dn(t) for a relevant feature channel have the same course
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in time for actions applied to different percepts. This has to be ensured in a normal-
ization step where all dn(t) are mapped to a common time basis and has to be taken
into account during generalization.

In the inner model for the measurement of success IMA the expected values En(t)
are stored, if the corresponding relevance is above a threshold:

IMA = {(En(t)) : Rn > minrelevance} (4.9)

Critical in the realisation of the proposed scheme is the implementation of the
feature extractors G and F . For the example of cup filling we use the problem spe-
cific features shape and colour as invariant features (F(P) = ( fshape, fcolour)) and fill
level as varying feature (G(P) = g f illlevel ). Future challenges comprise the proposal
of feature extraction methods, which follow the requirements formulated in this
section for a broader range of problems. The proposed relevances allow to evaluate
methods on their applicability for the extraction of affordances and the measurement
of success for an action.

4.4 Action Representation

Our approach to generate, represent and reproduce actions makes use of Hidden
Markov Models. We use three different HMM for each arm, one to encode the posi-
tion of the TCP (Tool Center Point, a reference point on the hand), i.e. the hand path,
with the Cartesian coordinates being represented by three-dimensional output distri-
butions, one for the orientation of the TCP (described by three angles) and another
one for the joint angle trajectories where the dimension of the output distributions
is equal to the number of observed joint angles of the arm.

HMMs are used to generalize movements demonstrated to a robot multiple
times [2]. Characteristic features of the perceived movement, so-called key points,
are detected in a pre-processing stage and used to train the HMMs. By doing so,
we avoid having a high number of states and facilitate the matching of (or between)
multiple demonstrations. We use continuous HMMs and model the observations in
each state with multivariate Gaussian density functions. Each HMM is trained with
the key points of all demonstrations using the Baum-Welch algorithm for multiple
observations. Each training sequence consists of the key points of the respective
demonstration. For a given observation sequence, the Viterbi algorithm returns the
optimal state sequence of the HMM with respect to that observation sequence, i.e.
the sequence of states most likely to generate that observation sequence. For the
reproduction of a perceived movement, key points that are common to all (or al-
most all) demonstrations, so-called common key points, are used. To determine the
common key points across d = 1, . . . ,D key point sequences Kd,1, . . . ,Kd,n(d), where
n(d) denotes the number of key points for a demonstration d, we use the Viterbi
algorithm D times to find sequences of HMM states that correspond best to these
key point sequences. The common key points are determined by comparing these
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Fig. 4.3 Two arm postures grabbing a cup in the same way. It is obvious that the relation R to the
object is much more important than the joint angles θ .

state sequences and selecting only those states that appear in every sequence. The
actions that were considered initially are simple actions. In general, it is not possible
to learn an HMM for all possible action imaginable. To treat a large set of complex
actions, we will need to brake down the actions into very simple ones. These simple
actions would define an alphabet based on which complex actions can be defined by
concatenation.

4.5 Imitation on Objects

Learning trajectories both in the work space and in the joint space is one common
approach in imitation learning approaches. Movement are often demonstrated to
a robot by a human instructor, subsequently generalized (using the data from all
demonstrations) and finally reproduced by the robot without trying to infer the goal
of the movement. One main goal of imitation learning is to understand simple move-
ments. Taking the example of grabbing a cup, the path has to be altered if the cup
has a different position. Static learning does not fulfil these needs. In figure 4.3 one
can see that for this example the exact arm posture is less important than the relation
to the effected object. The joint trajectory is only a minor condition. It should not
be used to calculate the hand position. Instead it could be used to solve the problem
of the redundancy in computing the inverse kinematics.

In this section we present an novel way for imitation learning on objects.
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4.5.1 Adaptation of Movements to the Given Situation

If an action is repeated in a different situation, the learned path has to be adjusted.
Our idea is to learn paths only relative to the affected object (see Fig. 4.4). While a
new trajectory is processed the linear path between xstart and xend is calculated. For
the adaptation, the system is trained with the difference Δx between the observed
and the linear path. The reproduction is done by using the linear path between the
new x̃start and x̃end and the learned difference. The result would be a similar path
into a different direction.

Fig. 4.4 Adaptation of an observed movement to the given new situation. Instead of the original
sequence, the gray indicated difference to the linear path is learned. The normalized sequence is
extracted to new parameters in the lower diagram.

Using the linear path as reference is the easiest and fastest possibility. The quality
will be increased if the calculated path is already human-like. A system like the
VITE model created by Hersch and Billard [10] seems to be convenient. The joint
angle information of such a system would be ignored. Only the hand path would be
used as a basis of the difference.
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4.5.2 Generalization Across Movements

The methodology described in Section 4.4 allows us to reproduce the observed
movements by a humanoid robot and build a library specifying a complete set of
the desired trajectories for an observed action class. Motion capture has been used
successfully to reproduce motions that may require a lot of skill and practicing, but
do not need to fulfill a specific goal, such as for example dancing [15]. However,
in tasks involving the manipulation of objects, it is often necessary to adapt the ob-
served trajectories with respect to the current state of the 3-D world. It is highly
unlikely that an appropriate movement would be observed a priori and included in
the library. Hence it is necessary to generalize over the movements stored in the li-
brary and generate a new movement that can attain the goal of an action. With this in
mind we designed a strategy to interpolate between movements stored in the library,
with the goal of generating appropriate new movements that were not recorded in
the data collection phase, but need to be executed to attain the goal of an action.

Let each example motion Mi, i = 1, . . . ,NumEx, be given by key points pi j at
times ti j, j = 1, . . . ,ni,. With each movement we also store the duration of motion
Ti. Such data can be collected by the proposed motion capture system. The key
points can be specified in various ways, for example as joint space postures or as
end-effector poses in 3-D. We start by time normalizing the captured movements to
an interval [0,1]. Similarly to Rose et al. [13], we encode the example trajectories
using uniform cubic B-splines

Mi(t) =
N

∑
k=1

bikBk(t), (4.10)

where N is the number of spline basis functions. Linear least squares approximation
can be used to approximate all trajectories with the same number of splines. The op-
timal number of splines N can be determined experimentally, but more sophisticated
methods are also possible (see for example [15]).

In the following we propose a method for the generation of goal-directed arm
reaching movements. The method is, however, much more general and we discuss
how to apply it to other actions at the end of the section.

In the case of arm reaching movements, the start point xstart and the end point xend

of the end-effector in Cartesian space are very important. Therefore it makes sense
to represent goal-directed arm reaching movements as end-effector trajectories Mi

in a 3-D space. Another important factor is the duration of movement T . We use this
information as a query point q into the database when generating new movements
from example movements

q =
[
xT

start,x
T
end,T

]T
. (4.11)

Given a query point q, we would like to determine movement M(q;t) defined as

M(q;t) =
N

∑
k=1

bk(q)Bk(t), (4.12)
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which starts at xstart and ends at xend. For each of the example trajectories Mi, we
calculate its start point xi,start and its end point xi,end. We apply locally weighted
regression [4] to generate new reaching movements. This results in the following
optimization problem

min
b

C(q) =
NumEx

∑
i=1

L(Mi,M(q))K(di(qi,q)) , (4.13)

subject to
M(q;0) = xstart, M(q;1) = xend. (4.14)

Here L is the loss function, K is the weighting function, and di are the distance

functions between the query point and the data points qi =
[
xT

i,start,x
T
i,end,Ti

]T
. The

unknown parameters we minimize over are b = {bk(q)}.
We define the loss function by the Euclidean distance between the spline coeffi-

cients

L((Mi,M(q)) =
N

∑
k=1

‖bik −bk(q)‖2. (4.15)

Distance function di is given as the weighted Euclidean distance between the data
points, i. e.

d(q,qi) =
1
ai
‖q−qi‖, ai > 0. (4.16)

There are many possibilities to define the weighting function K [4]. We chose the
tricube kernel

K(d) =

{
(1−|d|3)3 if|d| < 1

0 otherwise
. (4.17)

This kernel has finite extent and continuous first and second derivative. Combined
with distance (4.16), these two functions determine how much influence each of the
movements Mi has as the query point q moves away from the data point qi. It is best
to select ai so that there is some overlap between the neighboring query points. One
possibility is

ai = min
j
‖qi −q j‖ (4.18)

By selecting ai in this way we ensure that the influence of neighboring movements
in (4.13) overlaps, that M(qi) = Mi, and that as the query point transitions from one
data point to the other, the generated movement also transitions between movements
associated with data points.

Our choice of L, K, and di makes the optimization problem (4.13) a weighted
linear least-squares problem with equality constraints, which can be solved using
standard approaches. In this way we can generate new arm reaching movement that
were not observed in the data collection phase. It can be clear from the above ex-
planation that the method is not limited to arm reaching movements. For a given
collection of movements, it is only necessary to specify reasonable query points
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and impose any constraints that are necessary to achieve the goal of an action. The
proposed movement interpolation technique can then be applied.

4.6 Discussion and Conclusions

As the goal of an action changes it is necessary to adapt the captured movements to
new situations. Sometimes it is possible to attain the goal of an action by moving
and scaling the desired trajectories in space and time. For this purpose we propose
a method for adaptation of movements to the given situation (Sec. 4.5.1). In some
situations, however, the movement changes more substantially depending on the
goal of an action, e.g. the amplitude could increase or the frequency of oscillation
could change. Such modification cannot be captured by the first approach, therefore
we introduce a strategy to interpolate between movements in stored in the movement
library (Sec. 4.5.2).

Future work will concentrate on both the evaluation of the proposed methods for
the generation of actions and a complete implementation of a real-time imitation
learning system using the active humanoid head.
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