
Chapter 3
People Detection Using Multiple Sensors on a
Mobile Robot

Zoran Zivkovic and Ben Kröse

3.1 Introduction

Robots are moving out of laboratories into public places where the human beings
have to be taken into account. Such robots should be able to interact with humans
and show aspects of human style social intelligence. This also implies that in ad-
dition to the perception required for the conventional functions (localization, navi-
gation, etc.), a ”socially interactive” robot needs strong human oriented perceptual
capabilities [1, 16]. For a start the robot should be able to accurately and robustly
detect and localize the persons around it.

Person detection from images is a widely studied problem in the computer vi-
sion research area. Two types of applications can be distinguished. The first type
is surveillance where usually much knowledge is available about the environment,
camera position and camera parameters. This knowledge provides additional cues
for person detection. For example in most man made environments people walk over
a floor plane which leads to a limited set of possible person position in an image.
Furthermore, the camera is often static and this can help to distinguish persons from
the static background. The second type of application considers a more general and
difficult problem where not much a priori knowledge is available about the images,
e.g. images or videos from the internet. A common approach in such situations is to
use the whole image to infer more about the environment and the camera which can
then help to detect people, e.g. [10].

Typical robotics applications differ from the typical computer vision applications
in a number of aspects. First, robotics systems are usually equipped with multiple
sensors. For example 2D laser range scanner is often used to detect persons legs.
Properly combining the information from different sensors can improve the detec-
tion results. Second, similar to the surveillance applications, camera and other sen-
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sors positions and parameters are usually known. However, the sensors are not static
since they are mounted on a moving platform, a mobile robot or a vehicle. Finally,
the fact that robots move can be an advantage. Actively moving the sensors can im-
prove the detection results, for example moving closer to the object or viewing it
from another view point.

This chapter considers the important problem of dealing with multiple sensors.
An approach for combining information from multiple sensors for people detection
on a mobile robot is described. A person will be represented by a constellation of
body parts. Person body parts are detected and the parts are constrained to be at
certain positions with respect to each other. Similar part based representations are
widely used in the computer vision area for describing objects in images. A prob-
abilistic model is presented here to combine part detections from multiple sensors
typical for mobile robots. For detecting the body parts specific detectors can be con-
structed in many ways. In this chapter the Ada-Boost [7] is used as a general ”out
of box” approach for building the part detectors.

The chapter starts with the related work which is presented in Section 3.2. Next,
in Section 3.3 people detection using 2D laser range scanner is considered. Per-
sons legs can be detected in the scans. A probabilistic part-based representation is
presented that takes into account the spatial arrangement of the detected legs. The
method is inspired by the latest results on the ”part-based representations” from the
computer vision area and the work of Weber, Perona and colleagues [21, 5]. The
approach takes into account that the leg detector might produce false detections or
fail to detect legs, for example because of partial occlusion. Section 3.4 describes
a straightforward way to extend the presented probabilistic model to properly com-
bine body parts detected using other sensors that might be present on the robot, a
pan-tilt camera and an omnidirectional camera in our case, see Figure 3.1. Evalua-
tion of the proposed model and some practical issues are discussed in Section 3.5.
Finally, the conclusions are given in Section 3.6.

3.2 Related Work

A 2D laser range scanner is often used in robotics for detecting and tracking people
[13, 11]. People are detected by finding their legs in the laser scans. Disadvantages
of using the laser scans for people detection are: the persons can be detected only at
limited distances from the robot, low detection rate in highly cluttered environments
and that the methods fail when the person legs are occluded. Other sensors were also
used like thermal vision [17], stereo vision [9] and regular cameras [23].

Person detection from images is a widely studied problem in the computer vision
area. Many of the presented algorithms aim at the surveillance applications [6] and
are not applicable to mobile platforms since they assume static camera. There is also
a large number of papers considering the people detection without the static camera
assumption, e.g. [8, 14, 22, 15].
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Fig. 3.1 Example moving robot platform equipped with three sensors: a 2D laser range scanner,
a pan-tilt camera and an omnidirectional camera. The sensors are calibrated and their pose with
respect to the floor plane is known. Given the typical size of a person we can define a region of
interest (ROI) in each sensor corresponding a floor plane position as shown.

The people detection can be seen as a part of the more general problem of object
detection. Many approaches were considered in the computer vision area. Recently
it was shown that fast and reliable detection can be archived using ”out of box”
technique Ada-Boost to build classifiers [7]. For example Haar-like features with
Ada-Boost were successively used for face detection by Viola and Jones [19]. Sim-
ilar techniques were used for people detection [20, 18].

Another approach for object detection in images is the so called ”part-based rep-
resentation”. Various part-based representations, e.g. [2, 5, 3, 4], are demonstrated
to lead to high recognition rates. An important advantage of the part-based approach
is it relies on object parts and therefore it is much more robust to partial occlusions
than the standard approach considering the whole object.

The part-based people detection was considered a number of times. Seemann et
al. [14] use SIFT based part detectors but do not model part occlusions. Wu and
Nevatia [22] describe the part occlusions but the occlusion probabilities and part
positions are learned in a supervised manner. We base our algorithm on a princi-
pled probabilistic model of the spatial arrangement of the parts similar to the work
of Weber, Perona and colleagues [21, 5]. An advantage of having a proper prob-
abilistic model is that, after constructing the part detectors, the part arrangement
and occlusion probabilities can be automatically learned from unlabelled images.
This chapter presents a part-based approach and shows how it can be used to prop-
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erly combine information from multiple sensors on a mobile robot, 2D range data,
omnidirectional camera and pan-tilt camera in our case.

3.3 Part-based Model

Legs of a person standing in front of a robot can be detected using a 2D laser range
scanner [11]. A part-based model is presented that takes into account the possible
distance between the detected persons legs. The fact that leg detector might produce
false detections or fail to detect legs, for example because of partial occlusion, is
taken into account. The model also presents the base for combining information
from different sensors as described later.

3.3.1 Part Detection

A human is detected by detecting P human body parts, in this case P = 2 for the
legs. The 2D position of a leg is xp = (xp,yp). The Gaussian distribution is used as
a simple model of the leg positions:

pshape(x) = N (x;μ ,Σ) (3.1)

where x =
(
x1 ... xP

)
is a 2P long vector containing all the 2D part positions, μ is

the mean and Σ is a (2P)× (2P) covariance matrix. If the covariance matrix is diag-
onal than this model can be seen as describing ”string-like” constraints between the
body-part positions [4]. The non-diagonal covariance matrix will express additional
relations between the positions of the body parts.

A laser range scan is first divided into segments by detecting abrupt changes
using the Canny edge detector. Reliable leg detection is performed using a set of
geometric features and Ada-Boost classifier as described in [24]. Let N denote the
number of segments classified as legs and let x j denote the 2D position of the j-th
detection. All leg detections from one scan are given by:

X =
(
x1 x2 ... xN

)
(3.2)

The 2D image position x j = (x j,y j) of the j-th detection is calculated as the mean
position of the 2D scan segment points. Note that sometimes the legs cannot be
separated or their appearance in the scan might change drastically. Furthermore, in
cluttered environments many other objects, e.g. chairs or tables, may produce 2D
scan output similar to human legs and some detections might be false detections.
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3.3.2 Missing Detections and Clutter

From a range scan the collection of person’s leg candidates X is extracted but some
of them are true and some false detections. To indicate which detections are correct
a P = 2 element vector h is used with element hp = j, j > 0, indicating that the j-th
detection x j belongs to the of the p-th body part (leg) and the other detections of that
part are false detections. Given h the 2D positions of the person’s legs are composed
of the corresponding detections x =

(
xh1xh2

)
. The set of all other detections that

belong to the background clutter are denoted by xbg.
It is possible that a leg was not detected indicated using hp = 0. The position of

a not detected leg is considered as missing data. To make distinction between the
missing and the observed parts the set of missing parts is denoted as xm and the
set of observed parts as xo. To indicate the fact that there can be missing parts, the
probabilistic model of the arrangement of the body parts (3.1) will be written as:
pshape(x) = pshape(xo,xm).

3.3.3 Probabilistic Model

The the possibility of part detector false alarms and missed detections of body parts
of a person is determined by the unknown assignment hypotheses vector h. The
probabilistic model can be written as a joint distribution:

p(X ,xm,h) = p(X ,xm|h)p(h) (3.3)

where both xm and h are unknown missing data.
Two auxiliary variables b and n are used to further define p(h). The variable

b = sign(h) is a binary vector that denotes which parts have been detected and
which not. The value of the element np ≤Np of the vector n represents the number of
detections of part p that are assigned to the background clutter. The joint distribution
(3.3) becomes:

p(X ,xm,h,n,b) = p(X ,xm|h)p(h|n,b)p(n)p(b) (3.4)

where b and n are assumed to be independent and:

p(X ,xm|h) = pshape(xo,xm)pbg(xbg) (3.5)

where the observed parts xo, the missing parts xm and the false detections from
clutter xbg correspond to the hypothesis h. The pbg(xbg) is the distribution of the
false detections usually uniform or a wide Gaussian.

The probability p(b) describing the presence or absence of parts is modelled as
an explicit table of joint probabilities. Each part can be either detected or not, so
there are in total 2P possible combinations that are considered in p(b).
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The background part detections are assumed independent of each other and the
number of detections n is modelled using Poisson distribution with mean Mp [21].
Different Mp-s for different parts admit different detector statistics. The Poisson
parameter will be denoted by vector M =

(
M1 ... MP

)
.

The density p(h|n,b) is defined as:

p(h|n,b) =

{
1/|H (b,n)| if h ∈ H (b,n),

0 otherwise.
(3.6)

where H (b,n) is the set of all hypotheses consistent with the values of b and n.
Here |H (b,n)| denotes the total number all consistent part assignment hypotheses.
This expresses that these hypotheses are considered equally likely.

3.3.4 Learning Model Parameters

Example leg scans Model

→

Fig. 3.2 Example person’s legs scans from the data set used to train the probabilistic part-based
model and the learned model parameters. For each part its mean position contained in the parameter
μ is presented. The ellipse represents the 1-sigma uncertainty of the part position as described by
the diagonal elements of the covariance matrix Σ .

The density distribution (3.4) will have the following set of parameters Ω =
{μ ,Σ , p(b),M}:

p(X ,xm,h) = p(X ,xm,h|Ω) (3.7)

The likelihood of a collection of detected parts X is obtained by integrating over
the hidden hypotheses h and the missing parts:

p(X |Ω) = ∑
all possible h

∫

xm
p(X ,xm,h|Ω). (3.8)

Integrating over the missing parts xm for the Gaussian distribution can be performed
in closed form.

To estimate the parameters of the model a set of L aligned scans of persons is
used. The collection of leg detections for i-th scan will be denoted as Xi. The max-
imum likelihood estimate of the parameters Ω is computed by maximizing the like-
lihood of the data:
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L

∏
i

p(Xi|Ω) (3.9)

using expectation maximization algorithm, see [21] for details.

3.3.5 Detection

Let us denote the maximum likelihood parameters learned from a set of scans of
persons as Ωperson. For a set of scans from the office clutter the pbg(xbg) and other
parameters can be estimated, denoted as Ωbg. Given a new scan and extracted the
set of detected parts X . The scan is either a scan of a person or some background
clutter:

p(X ) = p(X |Person)p(Person)+ p(X |BG)p(BG) (3.10)

where p(Person) and p(BG) are unknown a priori probabilities that the scan con-
tains a person or background. The a posteriori probability that there is a person is:

p(Person|X ) =
p(X |Person)p(Person)

p(X )
≈ (3.11)

p(X |Ωperson)p(Person)
p(X |Ωperson)p(Person)+ p(X |Ωbg)p(BG)

(3.12)

The last step above is an approximation since the maximum likelihood estimates
for the model parameters Ωperson and Ωbg are used instead of integrating over all
possible parameter values. Calculating p(X |Ω) is done using (3.8).

3.4 Combining Multiple Sensors

Robots are often equipped with multiple sensors. For example an omnidirectional
and a pan-tilt camera as in Figure 3.1. In this section the part based model from
the previous section is extended to include part detections from the corresponding
images.

3.4.1 Part Detection in Images

Haar-like-feature classifiers are used to detect various human body parts in images.
Each classifier is trained using Ada-Boost algorithm on a large set of example im-
ages of the corresponding body part [19]. Here the classifiers are trained on face,
upper body, lower body and full body images. The part detectors can lead to many
false alarms and missed detections [12], see Figure 3.3.
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torso legs full torso face

Part detections – omnicam Part detections – pan-tilt camera

Fig. 3.3 Example body part detections with some false detections.

3.4.2 Extending the Part-based Model

The part based model from the previous section that was applied to the 2D range leg
detections can be easily extended with the human body parts detected in the images.
Instead of 2 parts there will be P = 2 + 3 + 2 = 7 body parts and x =

(
x1 ... xP

)
is

a 2P long vector containing 2D leg positions, the 2D image positions for the upper
body, lower body and full body detected in omnicam images and face and upper
body detected positions from the pan-tilt camera.

The positions of all detected parts are summarized in a data structure:

X =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 ... x1,Nleg1

x2,1 x2,2 ... x2,Nleg2

x3,1 x3,2 ... ... x3,Nup−body

x4,1 x4,2 ... x4,Nlow−body

x5,1 x5,2 ... ... x5,Nf ull−body

x6,1 x6,2 ... ... x6,Nf ace−pan−tilt

x7,1 x7,2 ... x7,Nup−body−pan−tilt

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

(3.13)

with one row per part and where each row contains information about the detections
of the corresponding body part. The first two rows are repeated since the same de-
tector is used for both legs detected in the range scans. The element xp, j contains the
2D positions for the legs or the 2D image position for the parts detected in images
of the j-th detection of the p-th part. The rows of X can have different lengths and
some might be empty if that part was not detected.

Again the hidden P dimensional assignment vector h is used with element hp = j,
indicating that the j-th detection of the p-th part xp, j belongs to the object and
other detections of that part are false detections. Given h the shape of the object is
composed of the corresponding detections x =

(
x1,h1 ... xP,hP

)
. Note that since the

same detector is used for both legs, care should be taken not to select the same leg
detection for both legs.

The other model equations remain the same and the same procedure can be used
to learn now the part based model containing the part detectors from both sensors.
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Example part based model learned from multiple sensors is presented in Figure 3.4.

Fig. 3.4 Examples from the data set used to train the probabilistic part-based model and examples
of learned part arrangement model parameters. For each part its mean position contained in the
parameter μ is presented. The ellipse represents the 1-sigma uncertainty of the part position as
described by the diagonal elements of the covariance matrix Σ .

3.5 Experiments

The presented method for combining information from multiple sensors is evaluated
here. Building reliable part detectors for each sensor is considered first.

3.5.1 Part Detection

A data set of 2D range scans was recorded to build the leg detector. The URG-
04LX 2D range scanner was mounted on our robot at 50cm above the floor. A set of
3530 scans was recorded while driving the robot through the corridors and cluttered
offices in our building. This gives in total 4032 scan segments corresponding to
person’s legs and 14049 segments from the background clutter.

Database examples Model
Pan-tilt camera

→

Omnidirectional camera

→

2D laser range scanner

→
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For each scan segment we extract the set of 12 geometric features, such as seg-
ment size, curvature, see [24] for details. The Gentle AdaBoost algorithm [7] then
automatically selects the relevant features during training. Separate features are used
to build simple linear classifiers, the so called ”weak” classifiers. The classifiers are
then combined to form the final classifier. The final classifier contains 25 classifiers.
The number of classifiers was chosen to such that recognition results do not improve
for adding more classifiers. Note that some features might be selected a number of
times. The final classifier leads to a reliable leg detection. However, leg detection in
cluttered office environments remains difficult since many object can produce range
scan similar to legs. Details are given in [24].

The Haar-like-feature based image part detectors we used in our experiments
were trained on the MIT pedestrian data set [12] and are available in the Intel
OpenCV library.

3.5.2 Multiple Sensor People Detection

For evaluating the part-arrangement model, we collected a realistic data set simu-
lating the scenario where a human is introducing the robot to a new environment.
Five persons were asked to lead the robot around our office environment. The robot
was teleoperated. During the teleoperation the movements of the robot were such
as to try to keep the person in the field of view of the pan-tilt camera. The data set
contains 3200 images from the both cameras captured at 4 frames/second and the
corresponding laser scans. On average each person was leading the robot for 2− 3
minutes and there were around 600 images recorded for each person.

The calibrated omnidirectional camera images were used to manually select the
ground truth person position on the floor-plane. The selected person position was
used to cut out the corresponding regions from all three calibrated sensors, see Fig-
ure 3.1. The aligned images cut out of the omnicam images were 56× 112 pixels
and the corresponding images from the pan-tilt camera were 112× 112 pixels, see
Figure 3.4.

From the whole data set, 1000 randomly chosen images and scans were used to
train our part based model and remaining part of the data set was used for testing.
The automatically learned part based model parameters are presented in Figure 3.4.
It can be observed that there is more uncertainty in the positions of the full and lower
body than for the upper body region in the omnicam images. The pan-tilt camera
was not very stable and it was shaking during the robot movements. This explains
the larger uncertainty in the horizontal position of the detected face and upper body
in the images from the pan-tilt camera.

In order to test recognition results, a set of 5000 no-person parts of the images
and scans are selected from the data set. The recognition results on this data set con-
taining aligned images of people and corresponding scan segments are summarized
in Figure 3.5. The results are presented as recognition Receiver Operating Charac-
teristic (ROC) curves. Changing the a priori chances p(Person) and p(BG) in (3.11),
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Fig. 3.5 Recognition Receiver Operating Characteristic (ROC) curves

various values are obtained for true positive (TP) and false positive (FP) detections
used to plot the ROC curves. The ROC curves of the single part detectors for each
sensor are also reported. Face detection in images is usually very reliable. However,
for the pan-tilt camera images from our data set the face detector performs poorly,
Figure 3.5a. This is mainly because the persons were not facing the robot very often
during the trials where they were leading the robot around our office environment.
The persons were facing the robot at the start of each trial and also later on from
time to time when they turned around to check if the robot is following them. Fur-
thermore, it can be observed from the ROC curves that the combination of parts
leads to much better results. The improvement is small for the laser scanner, Figure
3.5c. The largest improvement can be noted when the different sensor are combined,
Figure 3.5d.

Learning the part detectors using the Ada-Boost requires often long time and
many training examples [15]. On the other hand, once the part detectors are avail-
able, learning the part arrangement model usually does not require many training
examples [5]. Learning the part arrangement model parameters for the 7 parts takes
around 2 minutes for 1000 images in our Matlab implementation. In Figure 3.6 the
recognition accuracy for the various sizes of the data set used to training the part
arrangement model is presented. For each size of the training data set the experi-
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Fig. 3.6 Recognition accuracy for various sizes of the dataset used to training the part arrangement
model. Mean results and the standard deviation from 10 random trials is presented.

ments are repeated by choosing the training data randomly 10 times. The mean and
the standard deviation of the maximum accuracy is presented. It can be observed
that consistent high accuracy recognition can be achieved even with only 50 train-
ing data samples. In practice this means that given reliable part detectors for each
sensor, only a small additional effort needs to be made to construct the part-based
combination of the detection results from multiple sensors.

3.5.3 Recognition from the Robot

The part based model detection is implemented on our robot, see Figure 3.1. The
assumption is made that the people walk over a flat ground floor surface - true in
most man-made environments. A set of possible 2D floor positions Tt is defined. In
the experiments a 10m× 10m area around the robot is used and a grid of possible
positions at every 10cm. This gives 10000 possible floor points Tt to evaluate the
part based model. The sensors are calibrated and their pose with respect to the floor
plane is known. Given the typical size of a person we can define a region of interest
(ROI) in each sensor corresponding a floor plane position, see Figure 3.1. The data
from the National Center for Health Statistics (www.cdc.gov/ nchs/) is used. For
adult humans, the mean height is 1.7m with a standard deviation of 0.085m. The
maximal height of a human is taken to be the mean plus three standard deviations
and the width to be 1/2 of the height. For each floor position Tt we also extract
the corresponding segments from the images and the range scan and use (3.11) to
decide if there is a person at that floor position. Since (3.11) is computed at a dense
grid of ground points, it often has large values for a number of ground points around
the position where the person actually is. Therefore the persons are detected as the
local maxima of (3.11).

The first stage of the algorithm where the body parts are detected in the omni-
directional images is the most computationally expensive. Running the three Haar-
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Fig. 3.7 Body part detection in omnicam images (top) and the heavily reduced set of detections
when the floor plane constraint is used (below).

like-feature based part detectors on a 600×150 panoramic image takes on average
400ms on a 2GHz PC. This is the time needed for checking every image position and
all possible part sizes. The possible part sizes start from the initial part size and then
the part size is increased 1.1 times until it gets out of the image borders. The floor
constraint can heavily reduce the number of positions and part sizes to search and
detection can be done in around 100ms, see Figure 3.7. Once the parts are detected,
detecting persons using our model takes around 25ms. Currently, the people detec-
tion with all three sensors and 7 detected parts can be performed 5 times/second in
our implementation on a 2GHz single processor.

In Figure 3.8 a few panoramic images with the detection results are presented to
illustrate the typical detection results. The data set from the human following trials
was used to evaluate the actual detection performance on a mobile robot. A small
subset of 100 annotated images and scans is used to train the model. The model
is then applied using the floor constraint to detect people in the images and the
range scans. The ground truth positions manually selected from the omnicam images
were used to evaluate the performance. If a person was detected the corresponding
rectangle ROI in the omnicam image was calculated, see Figure 3.8, and compared
to the manually selected one using a relative overlap measure. Let Rgt be the image
region defined by the ground truth bounding box. Let Re be the estimated rectangle
ROI (corresponding to the local maximum of (3.11)). The relative overlap is defined
by:

overlap =
Re ∩Rgt

Re ∪Rgt
(3.14)

where Re∩Rgt is the intersection and Re∪Rgt is the union of the two image regions.
The relative overlap can have values between 0 and 1. A detection is considered to
be true detection if the overlap was larger than 0.5. For the people following data
set of 3200 sensor readings, there were 96% correctly detected people and only 120
false detections.
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Two correct detections of partially occluded people.

Two correct detections. The persons are in the dark and hardly visible

One correct and one false detection.

Fig. 3.8 Example people detection results in panoramic images recorded from a moving robot.

3.6 Conclusions

Due to the large variability in shape and appearance of different people the problem
of people detection in images remains difficult even after many years of research
[15]. The detection results can be improved if multiple sensors are combined. This
chapter presents a people detection approach that combines information from a set
of calibrated sensors. Mobile robots that often have various senors are a typical ex-
ample of a multisensory system. The approach is inspired by the part-based object
representation from the computer vision area. A person is represented by a constella-
tion of body parts. The person body parts are detected and the parts are constrained
to be at certain positions with respect to each other. The presented probabilistic
model combines the part detections from multiple sensors and can achieve person
detection robust to partial occlusions, part detector false alarms and missed detec-
tions of body parts. The method is evaluated using a mobile test platform equipped
with a pan-tilt camera, an omnidirectional camera and a 2D laser range scanner.
The evaluation results show that highly reliable people detection can be achieved by
properly combining the three sensors.

Acknowledgements This work has been sponsored by EU FP6-002020 COGNIRON (”The Cog-
nitive Companion”) project.



3 People Detection Using Multiple Sensors on a Mobile Robot 39

References

1. Breazeal, C.: Designing sociable robots. MIT Press, Cambridge (2002)
2. Burl, M., Leung, T., Perona, P.: Recognition of planar object classes. In Proc. of the IEEE

Conf. on Computer Vision and Pattern Recognition (1996)
3. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories.

In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (2005)
4. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Intl. Journal of

Computer Vision 61(1), 55–79 (2005)
5. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant

learning. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (2003)
6. Ferryman, J., Crowley, J. (eds.): Proc. of the 9th IEEE Int. Workshop on Performance Evalu-

ation of Tracking and Surveillance (2006)
7. Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of

boosting. Technical Report, Dept. of Statistics, Stanford University (1998)
8. Gavrila, D., Philomin, V.: Real-time object detection for smart vehicles. In Proc. of the Intl.

Conf. on Computer Vision (1999)
9. Giebel, J., Gavrila, D., Schnrr, C.: A Bayesian framework for multi-cue 3D object tracking. In

Proc. of the European Conf. on Computer Vision (2004)
10. Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. In Proc. of the IEEE Conf.

on Computer Vision and Pattern Recognition (2006)
11. Arras, K., Mozos, O., Burgard, W.: Using boosted features for detection of people in 2D range

scans. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (2007)
12. Kruppa, H., Castrillon-Santana, M., Schiele, B.: Fast and robust face finding via local context.

In: Proc of the IEEE Intl. Workshop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance (2003)

13. Schulz, D., Burgard, W., Fox, D., Cremers, A.: People tracking with a mobile robot using
sample-based joint probabilistic data association filters. International Journal of Robotics
Research 22(2), 99–116 (2003)

14. Seemann, E., Leibe, B., Mikolajczyk, K., Schiele, B.: An evaluation of local shape-based
features for pedestrian detection. In Proc. of the British Machine Vision Conference (2005)

15. Munder, S., Gavrila, D.M.: An experimental study on pedestrian classification. IEEE Trans.
on Pattern Analysis and Machine Intelligence 28(11), 1863–1868 (2006)

16. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robots and
Autonomous Systems 42, 143–166 (2003)

17. Treptow, A., Cielniak, G., Duckett, T.: Real-time people tracking for mobile robots using
thermal vision. Robotics and Autonomous Systems 54(9), 729–739 (2006)

18. Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on riemannian manifolds.
In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (2007)

19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (2001)

20. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance.
In Proc. of the Intl. Conf. on Computer Vision (2003)

21. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In Proc.
of the European Conf. on Computer Vision (2000)

22. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by
bayesian combination of edgelet part detectors. In Proc. of the Intl. Conf. on Computer Vision
(2005)
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