
Chapter 11
Vision-Based Navigation Strategies

Darius Burschka

11.1 Motivation

Navigation and localization are important capabilities of mobile systems allowing
definition of mission goals. Only the knowledge about the absolute and relative po-
sition in an indoor or outdoor environment allows a free definition of mission goals
and path planning in areas not previously traversed by the system. A typical concur-
rent goal is the reconstruction of coherent 3D geometric representations of arbitrary
indoor or outdoor environments from a configurable set of sensors. This represen-
tation is typically used as a reference for localization. The sensor configuration is
thereby defined by the required accuracy and system costs. We investigate monocu-
lar and binocular cameras, laser range finders, and inertial systems as input sources
for this task. The minimal hardware configuration of such a system is a monocular
camera that can be supported by additional sensors to enhance the quality of the
reconstructed models. The goal is to replace expensive inertial systems with a set of
low-cost sensors, like video cameras available on most current computer systems.
The necessary accuracy is achieved through fusion of information over a sequence
of images. The idea is to replace expensive hardware with appropriate algorithmic
techniques to compensate for the imperfections of the low-cost sensors.

An important milestone towards a high accuracy reconstruction of the environ-
ment is an exact localization in an unknown or partially known environment. The
reference model for localization needs often to be extracted in parallel to the actual
localization task. This process is known in the literature as Simultaneous Localiza-
tion and Mapping (SLAM). The localization is necessary to fuse the sensor readings
from different positions to a consistent and complete 3D model.

In this chapter, we will focus on the localization task from a video camera. We
assume a video camera mounted on a mobile system. The localization implicates
several challenges. The first challenge is an accurate estimation of the 3D pose pa-
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rameters from the available sensor data. Another challenge is to perform the local-
ization in situations, where the reference points or landmarks as we will refer to
them in the following text are not known a-priori and need to be estimated in paral-
lel to the localization process. We propose systems that are capable of simultaneous
localization of the camera and navigation relative to obstacles in the world.

Fig. 11.1 Different types of navigation systems using video cameras: (Marvin) 3D exploration of
indoor environments with stereo [4], (Speedy) obstacle avoidance from dense disparity maps [7],
(Goomba) sentry robot using vision-based control for navigation [5], (car application) Visual
SLAM for traffic sign detection [8].

The problem of Simultaneous Localization and Mapping, also known as SLAM,
has attracted immense attraction especially in the mobile robotics literature. SLAM
addresses the problem of building a map of an environment from a sequence of land-
mark measurements obtained from a moving system. Since the motion especially
of hand-operated devices is unknown, the mapping problem induces a localization
problem. The partial 3D reconstructions can only be fused to a complete model
given an accurate relative localization between them. A solution to the SLAM prob-
lem using Kalman Filters was introduced in a paper by Smith, Self, and Cheese-
man [23]. This paper proposed the use of the Extended Kalman Filter (EKF) for
incremental estimation of the posterior distribution over the robot pose along with
the positions of the landmarks. While many popular SLAM implementations use
laser range information as input to the process to simplify the estimation to pure
localization task, we present an extension to vision-based techniques. The challenge
here is to obtain the necessary information for the SLAM process from a monocular
camera as input source.
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We developed a variety of navigation systems using different approaches rang-
ing from mission planning based on explored 3D models from a binocular setup [4],
over localization relative to obstacles in the world from stereo [7] to monocular ap-
proaches based on visual servoing [5] and a recently developed visual simultaneous
localization and mapping system ((VGPS)SLAM) [10] (see Fig. 11.1). We will give
a short evaluation of the advantages and disadvantages of these systems and discuss
the next steps in our current research.

11.1.1 Related Work

The problem that we address here is a simultaneous estimation of the motion param-
eters R,T (rotation and translation) and the depth information as a metric distance
to the observed points. We address the extension of typical SLAM based on laser
range finders to monocular cameras.

There exist solutions to pose estimation for 3 point correspondences for most
traditional camera models, such as for example orthographic, weak perspective [1],
affine, projective [14, 18] and calibrated perspective [19]. These approaches con-
strain the possible poses of the camera to up to four pairs of solutions in the case
of a calibrated perspective camera. At most one solution from each pair is valid ac-
cording to the orientation constraints and the other solution is the reflection of the
camera center across the plane of the three points.

Many localization approaches for indoor applications use simplifications like as-
sumptions about planarity of the imaged objects in the scene or assume a restricted
motion in the ground plane of the floor that allows to derive the metric navigation
parameters from differences in the images using Image Jacobians in vision-based
control approaches. A true 6DoF localization requires a significant computational
effort to calculate the parameters while solving an octic polynomial equation [22]
or estimating the pose with a Bayesian minimization approach utilizing intersec-
tions of uncertainty ellipsoids to find the true position of the imaged points from a
longer sequence of images [12]. While the first solution still requires a sampling to
find the true solution of the equation due to the high complexity of the problem, the
second one can calculate the result only after a motion sequence with strongly vary-
ing direction of motion of the camera that helps to reduce the uncertainty about the
position of the physical point. In the work of Nister [22], an approach sampling for
the correct solution along the rays of projection solving an octic polynomial to find
the actual camera pose is presented. It is limited to exactly 3 points neglecting any
possible additional information. While it represents a direct solution to the problem,
the high order of the polynomial and the typical noise in real images makes this
solution still very complicated and sensitive to noise.

Our system is motivated by the same idea as the system presented in [17], where
a tracking approach for “2.5D space” was proposed. The system is supposed to
compensate for the drawbacks of classical position-based visual servoing. In the
approach presented in [17], eight landmarks are necessary to estimate the pose of an
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object in space. A reduction to four points is only possible in case that four co-planar
points can be identified. The co-planarity constraint is a special case that is difficult
to enforce in all situations. Additionally, a robust tracking of eight landmarks in the
image is contradictory to our goal to build a compact system running on hardware
with limited computational power that can usually be found on mobile systems. The
smaller the number of landmarks that we need to track, the more processing power
can be dedicated to other important tasks on the robot.

Our pose estimation is based on an image-based approach that compares the
2D projections of an internal 3D model between images. The internal 3D model
is estimated up to scale due to the limitations in the perception of a monocular
camera system (see Section 11.3.3.1). In [11] a recursive model-based object pose
estimation is presented that is based on orthographic projection of points onto cam-
era image. This approach is limited to configurations that can be projected onto a
planar image. In our case, we propose a pose estimation method allowing robust
pose verification from 3 tracked landmarks that can be placed anywhere around the
sensor. Our approach operates in image coordinates of the camera using a novel rep-
resentation for the 3D model that does not require any knowledge about the three-
dimensional position in the world to register the reconstructions to each other.

We propose an approach that we validated in a wide range of applications ranging
from reconstructions from endoscopic medical images to 3D scene reconstructions
in outdoor environments.

We assume to know the initial 3D structure of at least 3 points in the world Pi

with known correspondences in the image frame ni. The system is initialized man-
ually or automatically with an initial set of feature correspondences with a known
metric relation and it maintains these correspondences through tracking in color or
texture. It adds new features to the set to compensate for loss of features that become
occluded or that disappear from the field of view. Further, we assume also a cali-
brated camera measuring directly the angles of incidence. In this chapter, we focus
on strategies for depth recovery from spherical projection and the motion+structure
update.

In the following Section 11.2, we give an overview of possible navigation ap-
proaches with a discussion of their advantages and disadvantages. In Section 11.3,
we describe the way the information about the depth changes due to motion and how
the motion itself is calculated. In Section 11.3.3, we discuss the open challenges for
our monocular navigation system. The accuracy of the algorithm is evaluated in Sec-
tion 11.4. We conclude in Section 11.5 with an overall evaluation of the presented
system and present our future research goals.

11.2 Navigation Alternatives

In this section, we present an overview of navigation approaches that we imple-
mented on our mobile systems in the course of the past years. They lead us to our fi-
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nal approach based on monocular VSLAM. We also discuss lessons that we learned
about the advantages and disadvantages of each of the approaches.

We distinguish between map-based systems that build an intern representation
of the environment as a 2D- or 3D-model and image based approaches deriving the
information directly from an error between an expected and an observed position of
a physical point in the world.

11.2.1 Map-based Navigation

Map-based navigation systems represent an approach to global navigation. The nav-
igation is based on 2.5D or 3D models of the environment. A 3D model as a global
reference allows a localization relative to a specific physical reference point in the
world in opposite to a relative localization between two sensor frames. Relative lo-
calization is common in image-based approaches.

The sensor information is abstracted to a 3D representation and fused from all
sensor readings to a consistent global or local model of the environment. The model
allows planning of arbitrary missions in the environment that may traverse locations
which were only perceived by the sensors, but which were never actually passed
in previous missions. It is possible, because the 3D model allows a prediction of
any new sensor view in the world even for new locations. Their advantage is the
flexibility allowing planning of arbitrary missions even in regions which were not
traversed before, but a significant disadvantage is the necessity of fusion of infor-
mation from the sensor readings requiring an exact localization over a long period
of time to allow a correct registration of all sensor readings in an area. An addi-
tional disadvantage is the abstraction of the information from the direct sensor data
to three-dimensional descriptions which are prone to errors due to calibration errors
in the system.

11.2.1.1 Binocular 3D Reconstruction

At the Lab for Real-Time Computer Systems of the Technical University in Mu-
nich, we built a mobile robot Marvin that reconstructs the 3D world model from the
perception of a binocular camera system [4]. The system is depicted in Fig. 11.2.

The system reconstructs three-dimensional line segments representing the bound-
aries of human made objects. The line segments are stored in a local map (DLM)
fusing the consecutive sensor readings from the sensor in Fig. 11.3. The map is the
central element of the navigation system. It decouples the three major information
flow loops in the system marked as colored regions in Fig. 11.3. They all operate
with different cycle times. There is a fast bidirectional information exchange be-
tween the local map DLM and the sensor system that predicts expected information
for the current view based on the 3D map content and stores back the current recon-
struction.
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Fig. 11.2 Exploration system Marvin using binocular stereo.

Fig. 11.3 The information flow in the map-based exploration system Marvin.

This loop helps to reduce false matches in stereo processing (3D reconstruction
module), because expected information is predicted for each step increasing the
matching score of correct matches between line segments in the stereo images. It
helps also to filter out wrong matches that cannot be verified in a current frame in
Fig. 11.4.

This filtering is based on the assumption that correct matches will always occur
close to their true position with a small positional error due to localization and cam-
era calibration errors. False matches move to varying locations depending on the
viewing position. Correct entries in the map correspond to line segments that could
be reconstructed from different viewing positions in a local environment.

The reconstructed line segments can be abstracted to polygons or even objects
in the spatial prediction module in the right block in Fig. 11.3. This can provide
additional hypotheses about missing lines based on assumptions about underlying
structures that can be provided to the sensor system as local predictions to be veri-
fied or discarded in the current view. This module operates outside of the fast sensor
loop and does not interfere with the sensor processing directly. The calculated infor-
mation about missing parts of hypothetical objects identified in the data is inserted
asynchronously to be verified in the sensor loop when the corresponding region
comes into sensor view.
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Fig. 11.4 Multiple matching candidates for a given segment can be stored in the local map DLR
to be verified from a different location.

11.2.1.2 Monocular VSLAM Systems

In many cases, 3D reconstruction is necessary in large distances to the camera sys-
tem to allow pre-selection of interesting objects for a mission far ahead before the
system moves closer to them. A typical example is a car navigation system, where
the high speed of motion requires analysis of objects in large distance to the car to
give enough time for decision. An example can be a traffic sign detection system

Fig. 11.5 Large baseline can easily be constructed utilizing the motion of the vehicle with monoc-
ular systems.

that analyzes candidates for signs as soon as they become visible [10]. The rela-
tionship between the depth, z, of a scene point and its disparity, D, in two images
separated by baseline B is given by [14]:

D =
B · f

p
· 1

z
, (11.1)

where f is the focal length of the camera and p is the pixel-size on the camera chip.
This relationship is shown in Fig. 11.6 for several values of the distance between the
stereo cameras B. From the graph, it is clear that the larger the value D for a given
landmark, the better the signal to noise ratio of the resulting reconstruction.
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Fig. 11.6 The disparity value drops rapidly with the distance to the imaged landmark.

Some ways of increasing depth accuracy include increasing f (at the cost of
field of view) or decreasing p (i.e. using a higher resolution camera). The former is
generally limited by the need for a reasonably wide field of view; the latter is limited
by the bandwidth and processing necessary to handle higher resolution images.

As a result, the only real flexibility is in the baseline. There are natural limits
set on the maximum width of a binocular system. These limits can be defined, e.g.,
by the width of the car. Any further increase requires a change to a monocular re-
construction that uses the motion of the system as a baseline for reconstruction (see
Fig. 11.7).

Fig. 11.7 Monocular VSLAM system tracking positions of point feature in a sequence of images
to reconstruct their 3D position in parallel to estimation of the motion parameters of the camera
system.

Feature points representing a specific 3D point in the world are tracked in a se-
quence of images to estimate both their 3D position and the relative motion of the
camera to them in a SLAM (simultaneous localization and mapping) approach.

Like in the case of a binocular reconstruction, the resulting system constructs
a global or local 3D model containing in our case points representing centers of
unique patterns in the world. An accurate localization is necessary to fuse the single
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reconstructions from consecutive steps making the processing more complex and
sensitive to reconstruction and localization errors. In case that the system is used
for absolute localization, special care needs to be taken to keep the resulting errors
small. Relaxation techniques known from laser based SLAM approaches are applied
to reconstructed data to minimize the error.

The monocular approach can also be used as a relative localization system pro-
viding just position changes between consecutive sensor readings. In this case, just
the image position of corresponding feature points is analyzed in two image frames
allowing an estimation of relative motion without a necessity of fusion with infor-
mation from previous steps. Here, no global localization is performed. Our monoc-
ular SLAM implementation is a generalization of the Vision-Based Control (VBC)
navigation described in Section 11.2.2.1 below. This generalization allows large dis-
placements between the acquisition points of both images, because an analytic pose
estimation is used instead of a local linearization used in the image Jacobian from
VBC. In both cases, a displacement to a reference pose is calculated.

11.2.2 Image-Based Navigation

Many of the complicated house keeping methods to ensure correct global pose and
exact 3D reconstruction that are necessary for correct data fusion can be avoided
in image-based navigation approaches. Usually, these approaches do not provide
an absolute localization relative to a physical reference point in the world. They
calculate merely a relative motion between sensor readings instead. A fusion to an
absolute pose can be done outside of the navigation module. This navigation method
corresponds more to an inertial unit estimating just changes instead of integrating
them to an absolute value. Possible localization errors appear as noise on the top of
the relative pose estimation values.

11.2.2.1 Vision-Based Control

Many applications of mobile systems involve repeating tasks that require a robot to
move along a pre-defined path. The system does not require significant flexibility
in the choice of the paths, but high robustness is required for a long term operation.
A typical task for this type of systems is a sentry robot or mail-delivery robot re-
peating the same paths in each mission. To avoid the localization problems of the
map-based approaches that suffer from calibration errors which may occur due to
vibrations during operation, these systems use directly the images as a ”model” to
store the correct path. Changes in the projection between an expected and the actual
position of a landmark feature are used to calculate the pose error. This is a relative
localization error relative to the pose from where the reference image was taken.
The system does not need to have any knowledge about the absolute pose in the
world at any time.
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We explain the method at an example of a robot moving in a plane of the floor that
restricts its motion to the two dimensions of the plane (x,z) and the orientationΘ in
Fig. 11.8.

Fig. 11.8 The system estimates motion errors based on the difference in the observation between
the expected and the actual position of an imaged point.

A camera system is an angle measuring device. It estimates the direction (αi,βi)
from which a specific point in the world can be seen. The radial distance along
the line of sight is lost in the projection. Each observation with the metric pixel
coordinates (ui,νi) for a focal length f=1 can be converted into two angles (αi,βi)
describing the azimuth and elevation values for a given observation to:

αi = arctan ui = arctan

(
xi

zi

)
, βi = arctan

νi√
1 + u2

i

= arctan
yi√

x2
i + z2

i

Assuming motion in the plane, we can compute the following image Jacobian
relating the change of angles in the observation, (αi,βi), due to changes in motion
in the plane, (xi,zi) to:
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(11.2)
The dependency on the Cartesian coordinates can be avoided considering the

geometry of the system to:
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Note that the image Jacobian is a function of only one unobserved parameter, yi,
the height of the observed point. Furthermore, this value is constant for motion in
the plane. Thus, instead of estimating a time-changing quantity as is the case in most
vision-based control, we only need to solve a simpler static estimation problem for
a constant value yi in case of the motion in the floor plane.

This system is very robust to errors in the calibration, since the goal of the pro-
cessing is to correct an image error to zero, which is independent of the estimates of
the focal length and radial lens distortions. These errors usually just cause the sys-
tem to assume a too large deviation. The correct alignment is still detected correctly.

11.2.2.2 Disparity-based Navigation

Obstacle avoidance systems are essential to protect robots from collisions with the
environment or driving towards staircases or gaps (negative obstacles) while oper-
ating in unknown or partially known environments. Many obstacle avoidance sys-
tems are based on sensors that provide direct 3D measurements, such as laser range
finders and sonar systems [3, 13]. In some cases, e.g. [16], cues from a monocular
camera combined with prior knowledge of supporting surface geometry and appear-
ance have been used. In contrast, our system relies completely on the data from a
real-time stereo system with relative few prior assumptions.

Disparity images are pseudo-images, where each pixel value corresponds to the
disparity D (reciprocal value to the depth distance z, see (11.1)). Two example of
such images are depicted in Fig. 11.9 below. The goal of the binocular system is to
recover all planar structures with a given size and position in space in the current
camera view. In previous work [6], we describe a system that was able to recover
supporting planes from binocular stereo images to detect obstacles in the scene.
This approach relied on the fact that there is a homography between the (u,v,D)
coordinates of a disparity image ([u,v]-image coordinates and disparity D) and the
corresponding Cartesian coordinates from the 3D scene. Here we sketch how we
use the idea to locate and estimate planar structures.

Following the derivation in [6], given a plane Pr in R3,

Pr : arx + bry + crz = dr (11.3)

the equivalent disparity plane is given by
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∀z �= 0 : ar
x
z

+ br
y
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+ cr =
dr

z
(11.4)

aru + brv + cr = k ·D(u,v) (11.5)

with u =
x
z
, v =

y
z
, k =

dr

B
. (11.6)

where D(u,v) represents the disparity at image coordinates (u,v). Clearly, (11.4)
describes a plane in UVD space. We can write (11.4) in the following form

D(u,v) =

⎛
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⎞
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with ρ1 =
ar

k
, ρ2 =

br

k
, ρ3 =

cr

k
(11.8)

All pixels in the disparity image that have the in (11.7) predicted disparity value
are removed form the image and the remaining pixels are treated as obstacles.
Ground suppression is fundamental for the entire process. An example of a suppres-
sion is shown in Fig. 11.9. It shows the resolution of the system, which is capable
of distinguishing between the ground plane and objects as low as 1cm above the
ground at a distance of up to 3m. The newspaper disappears as an obstacle as soon
as it lays flat on the ground. Each image triple shows the real image in the upper
left corner, the computed disparity image in the upper right corner and the detected
obstacles at the bottom.

Fig. 11.9 The newspaper is classified as obstacle left, but it disappears in the right image.

The common feature of this navigation category is that all the necessary infor-
mation is derived from the current sensor reading without any necessity of fusion
between different readings. In this case, like already in section 11.2.2.1, we get the
navigation information directly from the image itself.
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11.3 Monocular VSLAM Approach

Since a typical video camera measures only the angle of incidence of the incoming
rays of light, it is useful to remove the dependency on the physical imaging proper-
ties of the sensor and introduce a more generic sensor model. We decided to use a
spherical projection model for our system, where every 3D-point Pi is represented
as a unit vector ni pointing in its direction:

ni =
Pi

||Pi|| ∨ ni =
(uν 1)T

||(uν 1)T || (11.9)

We see in (11.9) that there is a simple relation between the uni-focal (focal length=1)
image coordinates (u,ν) and the projection on the sphere ni.

In the remainder of this section we describe the way, how the motion parame-
ters (R,T ) and the changing 3D structure elements {Di} are recovered. The motion
parameters represent a delta motion to the previous or a reference frame, but, for
simplicity, we will omit the Δ expression in front of them. We use image-based
tracking to maintain the correspondences between the image frames.

11.3.1 3D-Reconstruction

Analogous to the typical binocular approach, the 3D information is extracted using
additional information from a second image or an initial 3D reference model.

11.3.1.1 Reconstruction of Unknown Points.

This processing step is necessary to recover the depth structure for new points that
appeared in the camera images and need to be added to the tracking process. This
processing can also be used for dual camera systems (e.g., two omnidirectional cam-
eras) with known, calibrated displacement (R,T ).

In a parallel binocular system with a distance B between the cameras, the nor-
mal distance Z to an imaged point Pi is estimated from a horizontal shift (metric
disparity) d between both images [25] to

Z =
B · f

d
, f - focal length of the cameras (11.10)

Since we deal here with a monocular system that reconstructs only sparse infor-
mation about a few corresponding points, we want to avoid any warping operation
to the parallel case. In typical structure-from-motion applications, the translation T
is known only up to scale T

m [25]. Therefore, we modified (11.14) in the following
way:
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D′
i

m n′i = R Di
m ni + T

m

(n′i −R ·ni)
−1 · T

m =

⎛

⎝
D′

i
m

Di
m

⎞

⎠
(11.11)

This is the spherical disparity equation with a similar structure to (11.10). The
baseline B of the system is the distance T

m traveled by the camera and it is ”divided”
by the spherical disparity s

s =
(
n′i −R ·ni

)
, (11.12)

which represents a difference vector between the two projections (n′i,ni) rotated to
the coordinate frame of n′i in which T

m is defined. Since there is no significant plane
as it is the case for the image plane of a coplanar binocular system, a normal distance
definition of Z does not make any sense and it is replaced by the radial distance to

the focal points of both projections (Di
m ,

D′
i

m ). The reconstructed depths are scaled
down to the same scale as T. The scale m is preserved in the reconstruction. In the
following text, we will assume m=1 to simplify the notation. It is easy to verify that
all equation are true for any value of m > 0.

11.3.1.2 Update of Known Radial Distances.

The presented system maintains a set of known correspondences that was used to
recover the motion. For these points, the depths {Di} in the previous frame or in
the reference position at the origin are assumed to be known. The task is to update
them to the current depth {D′

i}. Theoretically, the equation (11.11) can be used for
this task, but since some of the data may represent very accurate model information,
a different type of update equation is used. It takes the accurate depth information
instead of the calculated motion information (R,T ) into account.

Since we try to estimate the 6DoF motion, point and line features do not pro-
vide sufficient information to describe all 6 motion parameters. We have chosen a
plane E spawned by 3 feature points {P1,P2,P3} and {P′

1,P
′
2,P

′
3} in both images as

a reference feature that is observed in both images of a sequence. The features must
not be collinear. We construct two vectors v1 = P′

2 −P′
1 ∧ v2 = P′

3 −P′
1 and describe

the plane segment with the diagonal resulting from addition of these two vectors.
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v1 = P′
2 −P′

1 ∧ v2 = P′
3 −P′

1

D = (D1,D2,D3)T

v1 = D′
2n′2 −D′

1n′1 = R ·D2n2 + T −R ·D1n1 −T

v2 = D′
3n′3 −D′

1n′1 = R ·D3n3 −R ·D1n1

v1 + v2 =

= (−2n′1 n′2 n′3) ·D ′ = R · (−2n1 n2 n3) ·D

F ′ ·D ′ = R ·F ·D

⇒ D ′ = F ′−1R ·F ·D
(11.13)

The equation (11.13) introduces the projection matrix F that projects the depth
vector D onto the diagonal vector v1 + v2 in the plane E . It allows a recovery of
the updated depth values D ′ based on the current image data that was used to con-
struct F and F’, and the known geometric structure D from the previous frame.
The equation (11.13) shows that from a known set of relative distances D the new
3D structure D’ after the motion can be reconstructed without any knowledge about
the translation in the system T . It is an important property of this estimation system,
since monocular systems are able to recover the rotation matrix R correctly, while
the translation vector T is estimated only up to an unknown scale factor if there is
no external metric reference in the world used.

11.3.2 Motion Recovery

The reconstruction approaches in the previous section (Section 11.3.1) assumed a
knowledge of the motion parameters (R,T ). In case of a monocular system, these
parameters are unknown and need to be estimated in parallel to the reconstruction
process. We mentioned already in the motivation section that there is no linear rela-
tion between the motion and structure parameters according to (11.14). The typical
structure-from-motion approaches are able to reconstruct the motion from 5-8 point
correspondences between the images. In our case, we assume to have additional in-
formation about the metric distances D to the imaged points that will allow us to re-
duce this number to a minimal set of 3 features. Our goal is to develop an algorithm
that on one hand works with a minimum feature set but on the other hand accepts
additional features if they are available. This is one of the important differences to
the algorithm presented in [22] that operates on 3 points assuming their accurate
detection. In real applications, the feature detection is error-prone and some of the
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errors can be compensated by using additional features in over-determined systems
of equations.

11.3.2.1 Motion-Induced Changes in the Feature Projections

The equation (11.11) describes completely the change in the projection ni → n′i due
to arbitrary motion in all 6 degrees of freedom (R,T ). The motion estimation needs
to be separated from the reconstruction of the depth parameters {Di,D′

i}.

v2

v1

P1

P2

P3

D1

D2

D1’

D3’D2’

D3

Fig. 11.10 Minimum set of three non-collinear points {P1,P2,P3, . . .} in 3D space is used to
recover the motion parameters.

The equation (11.11) shows that any translation T changes the lengths {Di} of
the associated rays of projection. On the other hand, motion is necessary for the
depth reconstruction according to (11.11). We want to recover the motion from ob-
servations of a static set of points.

Recursive Algorithm for Simultaneous Motion and Structure Estimation

Since the influence of motion (R,T) and structure Di is non-linear in

D′
in

′
i = R ·Dini + T, (11.14)

therefore, we need to estimate both in parallel. Instead of sampling the rays for
the correct solution, we use an algorithm that we originally developed for small
positional changes [9, 10], but that proves to be valid for large deviations as well.

The algorithm is based on the idea of alternating refinement of pose and structure
information. For small movements in the scene, the assumption is valid that the
changes are mostly in the pose parameters (especially rotation R) while the distances
to the observed points remain almost the same. Therefore, for each new frame, we
start with an initial guess for distances {D̂i

t} that is chosen for each iteration step t
as follows:

D̂i
t =

{
Dinit , t = 0

Dt−1
i , t �= 0

(11.15)
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These depths are used to calculate guesses for the point positions to

P̂′
i = D̂t

i ·n′i (11.16)

The initial error for a significant change in pose is depicted in Fig. 11.11 as
green(gray) lines and circles. We compute the pose change for these two initial
point sets and use it to refine our guess about the depth structure {D′

i}.

v2

v1

P1

P2

P3

D1

D2

D1’

D3’D2’

D3

Fig. 11.11 The initial depth assumption for a very large deviation in position.

Computing the absolute orientation is the process of determining R̃ and T from
corresponding pairs P̂′

i and Pi. With three or more non-collinear points, R̃ and T can
be obtained as a solution to the following least-squares problem as described in [15].

min
R,T

n

∑
i=1

‖RPi + T− P̂′
i‖2, subject to RT R = I. (11.17)

Such a constrained least squares problem [14] can be solved in closed form using
quaternions [21, 24], or singular value decomposition (SVD) [20, 2, 21, 24]. We use
the SVD method to calculate the rotation matrix in our system as described in [10]
in more detail. We see in (11.13) that the rotation alone is sufficient to estimate the
changes in the distances to the tracked points. The corresponding translation T can
be estimated from the pose change of the corresponding points (Pi,P′

i ) assuming
that the rotation matrix R is known.

This is an iterative approach, where the result of each iteration is used to estimate
new improved guesses of the depth structure Di.

11.3.3 Open Challenges

The presented VSLAM system was tested in different scales ranging from outdoor
navigation down to navigation of endoscopes in medical applications. The system
works reliably if the initial depth structure is known. The correct initialization is still
an open challenge that we try to approach. The second challenge is a compensation
of drifts due to accumulation of errors for the case that the presented system is used
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for global localization and the noise values create an offset value deteriorating the
localization quality.

11.3.3.1 Estimation of the Initial Depth Relations

The initial depth structure is usually initialized in two ways. In case that the system
starts at a known location, like e.g. a landing place or a docking station, a known
reference structure can be observed and a reference projection can be calculated
from it. As an example, the reference structure can be a rectangle on the floor and
the reference view can be a pose with an image plane coplanar to the rectangle with
the focal point 1m above the center of the rectangle. Basic projection equations can
be used to calculate this ”virtual projection”. The depth information for a current
observation can now be estimated using our iterative approach (Section 11.3.2) in
Fig. 11.12.

Fig. 11.12 Initialization from a known reference structure.

A second initialization method is based on the essential matrix computation [25].
The motion parameters can be estimated up to an unknown scale in the translation
in Fig. 11.13. A relation between the projections pi, p∗i in two camera images with
known internal parameters can be expressed with the Essential Matrix Ẽ [14] as

p∗i Ẽpi = 0 (11.18)

The Essential Matrix Ẽ consists of a product of two matrices

Ẽ = R̃ · sk(T),

with sk(T) =

⎛

⎜
⎝

0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

⎞

⎟
⎠

(11.19)
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Fig. 11.13 Initialization from an initial motion. After the initial motion a subset of the initial points
in the left image can still be tracked. It is used for the essential matrix method.

Note that, given a correspondence, we can form a linear constraint on Ẽ. It is
only unique up to scale, therefore, we need 8 matches, then we can form a system
of the form C̃ · e = 0 where e is the vector of the 9 values in Ẽ.

The essential matrix solution gives a valid result only if the corresponding points
did not lie on a super-quadric, like e.g. on a plane. This condition occurs unfortu-
nately quite often in case of flying systems observing the ground. For such a con-
figuration a homography matrix method needs to be used. An important decision is
to recognize that a given feature set is on a plane without any knowledge about the
environment. Our current solution uses the eigenvalues of the essential matrix which
should be equal to (1,1,0) in the ideal case. Noise and detection errors cause them
to deviate from this ideal case. A planar condition can be identified as a result with
two non-zero eigenvalues with a ratio significantly larger than 1. In such a case, the
homography solution is chosen.

11.3.3.2 Compensation of Drifts

A typical off-shelf perspective camera has only a limited field of view. Therefore,
only a small set of landmarks is usually visible in the sensor cone with an opening
angle defined by the focal length of the lens. The shorter the focal length the larger
is the field of view of the camera. There are natural limits on the maximum size of
the field of view. Fish-eye lenses with a wide field of view have usually significant
radial distortions and do not focus in a single point, which deteriorates the quality
of the navigation result that relies on the knowledge of the angle of incidence of the
light rays.

Our camera model represents the imaged points on a sphere (see Fig. 11.14).
They are represented by the normalized direction vectors ni. This allows us to con-
struct a reference view used for the localization in the local area that spans the
entire space. In the initialization, only features contained in the current sensor view
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Fig. 11.14 Points in different directions around the origin of the local coordinate frame are getting
projected on a sphere and represented as direction vectors ni.

are used as the initial reference set, but this view gets extended with additional land-
marks that are reconstructed using the current motion parameters between images
containing a specific landmark. The images used for reconstruction of a specific
landmark do not need to contain the initial reference view. The newly estimated
landmark position gets transformed back to this initial frame. This allows a recon-
struction of landmarks in all directions (360◦ field of view).

This extension of the field of view permits the usage of one unique set of ref-
erence features in a local area independent of the direction of motion. Any noise
or error in the localization results in this case just in a noise in the resulting pose
estimation. Since the localization is calculated always relative to the same reference
structure in the world, we can avoid drifts in the localization that could be caused
by continues integration of the relative motions between consecutive frames. The
reference frames need to be changed because of the limited range in which a given
set can be observed. This hand-off process is an interesting open issue. Interesting
solutions can be used from laser based SLAM approaches.

11.4 Results

11.4.1 Convergence of the Pose Estimation

The presented system estimates the pose change between two frames. This can be
an incremental change between two consecutive frames or the absolute difference
to a reference frame. Depending on the requirements in the system, both modes are
of interest. An important question here is the accuracy of the system for varying
distances from the original configuration.

The number of iterations required to estimate the motion parameters with an
accuracy below 1cm stays below 50 for most large indoor environments tested with
this system. The proof of global convergence is mathematically derived in [15]. The
number of iterations to find the best transformation explaining the changes between
the reference and the current position of the projections varies depending on the
initial differences between the reference model and the current pose.
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Usually, we don not propagate the changes in the λi lengths between the steps.
Instead of calculating the change from the reference position, a relative change to
the previous step can be calculated which converges in very few (le10) iterations.

11.4.2 Reconstruction Results

11.4.2.1 Endoscope Navigation

The system was tested in micro-scale performing pose estimation of the endoscope
camera in a phantom of a human skull. The experimental validation of our approach
was carried out on the setup depicted in Fig. 11.15.

Fig. 11.15 Experimental setup for the validation of the accuracy of the endoscope navigation in a
porcine cadaver head.

We tracked the position of the endoscope with the OptoTrakTM system in the
background to verify the motion estimation results from our system. The result-
ing reconstruction errors had a standard deviation of (0.62, 0.3382) for each of the
cases. The minimal rotational error expressed as Rodrigues vector was r=(0.0017,
0.0032, 0.0004), (-0.0123, -0.0117, -0.0052) for both cases. The error in the esti-
mate of the translation vector was ΔT = (0.05,−0.398,0.2172)T,(−0.29,0.423−
0.4027)T [mm]

11.4.2.2 Outdoor Scene Reconstruction

We used the presented VSLAM system to classify geometric positions of regions
in the image to filter candidates for traffic signs. The system was recovering the
motion of the camera by tracking of features in the images and performing a 3D
reconstruction of the position of the extracted color blobs. Candidates in the right
geometric location relative to the road were additionally checked for planarity by
adding additional points on the surface in Fig. 11.16.
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Fig. 11.16 (Left) Outdoor scene, (right) 3D reconstruction.

11.5 Conclusions

We presented an overview of the navigation approaches tested on our mobile sys-
tems. A theoretical background for our approach for explicit recovery of structure
and motion from a minimum set of 3 corresponding landmarks in spherical pro-
jections was discussed. The presented approach assumes the knowledge about the
initial geometrical relation between the depths to the observed points, which may
be obtained from a 3D model of the world or from more complex structure-from-
motion approaches requiring more points. A good candidate for initialization is,
e.g., the eight point algorithm [25] that delivers an initial guess for the depths to
the points. This information is refined using the presented 3D-reconstruction. This
initial information is updated in the system using a recursive algorithm updating the
motion and depth parameters in parallel.

In opposite to other existing approaches, the presented system presents an ex-
plicit solution for an arbitrary number of point correspondences in monocular im-
age sequences. We require a minimum of 3 landmarks for the structure and motion
recovery, but the system scales easily to more corresponding points, which improve
the error compensation capabilities of the system.

Our future work will focus on improvements in the convergence of the system
by controlled fixation of parameters depending on the feature configuration and on
solving the open challenges mentioned in section 11.3.3.
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