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1.1 Introduction

There are many characteristics in common in computer vision research and vision
research in robotics. For example, the Structure-and-Motion problem in vision has
its analog of SLAM (Simultaneous Localization and Mapping) in robotics, visual
SLAM being one of the current hot topics. Tracking is another area seeing great
interest in both communities, in its many variations, such as 2-D and 3-D tracking,
single and multi-object tracking, rigid and deformable object tracking. Other topics
of interest for both communities are object and action recognition.

Despite having these common interests, however, ”pure” computer vision has
seen significant theoretical and methodological advances during the last decade
which many of the robotics researchers are not fully aware of. On the other hand,
the manipulation and control capabilities of robots as well as the range of appli-
cation areas have developed greatly. In robotics, vision can not be considered an
isolated component, but it is instead a part of a system resulting in an action. Thus,
in robotics the vision research should include consideration of the control of the sys-
tem, in other words, the entire perception-action loop. A holistic system approach
would then be useful and could provide significant advances in this application do-
main.

We believe that although there have been good examples of robust vision sys-
tems, there is a gap between the research conducted in computer vision and robotics
communities. In the following, we aim to identify some of the recent developments
where we see great potential for the co-operation between the communities.
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1.2 Perception and Action

One of the main challenges in the field of robotics is to make robots ubiquitous.
To intelligently interact with the world, robots need to perceive and interpret the
environment and situations around them and react appropriately. In other words,
they need context-awareness. But how to equip robots with capabilities of gathering
and interpreting the necessary information for novel tasks through interaction with
the environment and by providing some minimal knowledge in advance? This has
been a longterm question and one of the main drives in the field of cognitive system
development. For a service robot that is to perform tasks in a human environment, it
has to be able to learn about objects and object categories. However, the robots will
not be able to form useful categories or object representations by being only passive
observers of the environment. They should, like humans, learn about objects and
their representations through interaction.

The simplest type of interactions that can occur between a robot and an object
may be to, for example, push an object in order to retrieve information about the size
or weight of the object. Here, simple visual cues providing approximate 3D position
of the object may be sufficient. A more complex interaction may be to grasp the
object for the purpose of gaining the physical control over the object. Once the robot
has the object in its hand, it can perform further actions on it, such as examining it
from other views. Information obtained during interaction can be used to update the
robots representations about objects and the world.

Such an approach is studied in Chapter 2 where a mobile manipulator system
employs interactive perception to extract kinematic models from tools such as pliers
or shears. The extracted models are then used to compute an action that transforms
the kinematic attributes of the object to actions that can be performed on them thus
mimicking tool use.

Another way of learning of how to interact with the environment is to observe
humans or other agents and perform actions through a process of imitation, [4].
Imitation learning in robotics is therefore strongly related to action representation
and recognition. The overall goal of imitation learning is to develop robots that are
able to relate perceived actions of another agent to its own embodiment in order to
learn, recognize and finally perform the demonstrated actions [8, 40, 41, 19, 29, 30,
22, 11, 6]. Most of the work work on imitation in robotics is motivated by human
findings, where there is strong neurobiological evidence that human actions and
activities are directly connected to the motor control of the human body [14, 36, 37].

Detection of human body and body part, recognition and interpretation of their
actions has therefore during the past few years gained considerable amount of at-
tention, [1, 2, 13, 48, 24, 47]. Main motivation is the large number of potential
applications, e.g., in visual surveillance, entertainment industry, robot learning and
control due to the ability to acquire and store a large amount of data that can be
processed offline.

In visual surveillance applications, the work is mainly concentrated on classifica-
tion of common versus uncommon actions. In the entertainment industry, the interest
lies mainly in the field of motion capture and synthesis where precise motion capture
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allows to replace an actor with a digital avatar. Ideally, the motion capture system
should be non-intrusive thus making vision based techniques a natural solution.

Even if there are differences in the applications, the system design is very similar:
the sensory input has to be acquired and represented so to enable i) the recognition
of the observed actions and ii) understand the effects certain actions may have on the
environment. In robotics, there is an additional dimension since the system also has
to enable the robot to physically perform a certain action in order to cause the desired
change in the environment. The last point point depends on the individual/robot
under consideration: how to perform an action that causes a particular change in the
environment for a human and a robot depends on their physical capabilities.

Chapter 3 presents an approach for people detection with a mobile robot through
combination of visual and laser range scanner sensors. It is shown how a person may
be represented as a constelation of body parts to facilitate the detection process.

Chapter 4 presents a system where the road towards developing cognitive ca-
pabilities in robots is followed by considering an interply between perception and
action. A humanoid robot with perception, manipulation and communication skills
is described with a special attention paid on the design of the robot head as the
base for prividing the input to various visuo-motor behaviors. The presented work
spans from human motion tracking and object representation to action imitation and
adaptation.

One of the important aspects of integrating the results from the computer vision
community on mobile robots that have constrained processing and storage capa-
bilities, is to consider how to adapt complex processing methods for real-time ap-
plications. In Chapter 5, it is shown how time-constrained classification, detection
and matching problems may be formalised in the framework of sequential decision-
making. The work derives quasi-optimal time-constrained solutions for the three
problems of major relevance for the community: feature detection, feature mathcing
and face detection.

Chapter 6 presents an application where the real-time processing aspects are of
utmost importance - a medical application intended for 3D positioning and guidance
of surgical instruments in the human body. The work shows the importance of real-
time visual processing for the purpose of vision guided control where model based
techniques are adopted to facilitate the tracking process.

1.3 Mapping the Environment — SLAM and vSLAM

One of the essential capabilities of an autonomous mobile robot is to move around
in its environment. To accomplish this in complex natural environments, the robot
needs the ability to build maps of the environment using natural landmarks and to
use them for localization [44, 7, 10, 43, 45]. One of the current research topics re-
lated to Simulatanous Localization and Mapping (SLAM) is the use of vision as
the only exteroceptive sensor [9, 12, 15, 42, 27], due to its low cost. We adopt the
term vSLAM[17] for visual SLAM. Currently, vSLAM solutions focus on accurate
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localization, mostly based on the estimation of geometric visual features of the en-
vironment. Thus, the resultant map is useful for the localization of the robot, but its
use for other purposes is often neglected. This section concentrates on the geometric
mapping while in the next section, we try to take a look at some opportunities how
to apply visual means for higher-level understanding of the robot’s environment.

In mainstream computer vision research, the problem of 3D reconstruction from
a sequence of images is termed structure from motion. There is a great similarity
between the structure from motion (SfM)1 and vSLAM. The essential problem of
simultaneously estimating the structure of the environment and the motion of the
observer is identical. In computer vision community, SfM is nowadays considered
mostly a solved problem, as commercial solutions for SfM-based camera motion es-
timation have become available from companies such as 2d32 The state-of-art SfM
solutions are mostly based on using projective geometry as the geometrical model
[16] and bundle adjustment techniques (basically Levenberg-Marquardt minimiza-
tion) for finding the maximum likelihood solution for the nonlinear optimization
problem [16, 46]. In addition to the 3D reconstruction for calibrated cameras, the in-
ternal camera calibration can be estimated along with the structure (self calibration),
thus eliminating the need to explicitly calibrate cameras (for example, [33, 21]).

However, there are some differences between SfM and vSLAM which are of-
ten overlooked. The main emphasis in SfM is to reconstruct the structure of the
environment as accurately as possible. This is often termed “global bundle adjust-
ment”, emphasizing the fact that the maximum likelihood solution over the whole
image sequence is sought. Thus, the solutions are essentially batch algorithms, re-
quiring the whole data for processing. Also, the heavy computational load of the
global optimization makes it impossible to run in real-time. One reason for this is
that the intended application areas, such as camera tracking for the movie industry,
do not require on-line estimation. In vSLAM, on-line operation is a fundamental
requirement, as the information is often used for robot navigation. In practice, the
computational complexity increases with respect to the number of landmarks and
time. If the robot needs to operate in a large (or changing) environment for a long
time, the vSLAM algorithm would need to be constant time (or at least sub-linear).
Currently there is no vSLAM approach which would allow this, although there have
been propositions of constant time SLAM algorithms using other sensors (for exam-
ple, [20]) although the estimates given by the methods are conservative rather than
optimal.

Another characteristic typical for vSLAM but not for SfM is that in addition to
the estimate, its uncertainty needs to be characterized. Moreover, the algorithms
need to be statistically consistent, that is, not giving overly confident estimates of
the uncertainty. This characteristic can be exploited to build safeguards and allow
the information to be safely used for controlling the robot.

Loop closing refers to identifying that a robot has returned to a previously visited
area after touring in another one. The observation of previously known landmarks

1 Nowadays often termed “structure and motion.”
2 See http://www.2d3.com.
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allows to improve the estimate over the whole tour. Loop closing using the tradi-
tional SLAM sensors, for example, laser scanners, is hard due to the difficulties in
correctly matching previously detected landmarks and current observations. Visual
features are very powerful in this respect, and the use of visually salient features
for loop closing has been recently proposed [26, 34]. However, there are still many
unexplored possibilities in using image retrieval and matching approaches for loop
closing.

In some cases, the maps built are not intended (or needed) to be used for local-
ization at later time instants. In this case, the resulting map is only stored for a short
period and the landmarks are removed from the map after they are no longer vis-
ible. This approach is usually called visual odometry [28, 3]. While this approach
essentially solves the map complexity problem, it suffers from drift as the earlier
landmarks are forgotten and loop closing is not possible. As a compromise between
the accuracy of global bundle adjustment and the restrictions in the available pro-
cessing capacity, it has been proposed to only optimize the pose of a small number
of previous time instants [25]. This has the effect that the accuracy is increased, but
unfortunately the local approach still can not remove drift and benefit from loop
closing in contrast to the more global approaches.

Ideally, the robotics community would like to get a statistically consistent vS-
LAM algorithm that would perform constant time on-line estimation with the opti-
mality of the global bundle adjustment, allowing efficient loop closing. This book
contains three chapters which demonstrate some of the ideas and recent work to-
wards this ideal goal. Chapter 7 presents the Sliding Window Filter, an approach
for incremental SLAM using a sliding time window of most recent sensor measure-
ments, thus attaining constant time complexity. Chapter 8 examines the joint use of
object/scene recognition for coarse topological localization and more accurate local
metric localization using 1D trifocal tensor. Chapter 9 discusses different types of
visual landmarks which could be used for vSLAM. Furthermore, loop closing and
future directions such as multi-robot SLAM and the use of geographical information
systems (GIS) in SLAM are considered.

1.4 From Maps to Understanding the Environment

Robots of the future should be able to easily navigate in dynamic and crowded envi-
ronments, detect as well as avoid obstacles, have a dialog with a user and manipulate
objects. It has been widely recognized that, for such a system, different processes
have to work in synergy: high-level cognitive processes for abstract reasoning and
planning, low-level sensory-motor processes for data extraction and action execu-
tion, and mid-level processes mediating these two levels.

A successful coordination between these levels requires a well defined represen-
tation that facilitates anchoring of different processes. One of the proposed mod-
eling approaches has been the use of cognitive maps [5]. The cognitive map is the
body of knowledge a human or a robot has about the environment. In [5], it is ar-
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gued that topological, semantic and geometrical aspects are important for represen-
tation of spatial knowledge. This approach is closely related to Human-Augmented
mapping (HAM) where a human and a robot interact so to establish a correspon-
dence between the human spatial representation of the environment and robot’s au-
tonomously learned one [18].

In addition, both during the mapping phase and during robot task execution, ob-
ject detection can be used to augment the map of the environment with objects’
locations, [39]. There are several scenarios here: while the robot is building the map
it will add information to the map about the location of objects. Later, the robot will
be able to assist the user when s/he wants to know where a certain object X is. As
object detection might be time consuming, another scenario is that the robot builds
a map of the environment first and then when no tasks are scheduled for execution,
it moves around in the environment and searches for objects.

The same skill can also be used when the user instructs the robot to go to a
certain area to fetch a particular object. If the robot has seen the object before and
has it already in the map, the searching process is simplified to re-detection. By
augmenting the map with the location of objects we also foresee a way of achieving
place recognition. This provides valuable information to the localization system as
well as it greatly reduces the problem with symmetries in a simple geometric map.
This would be an alternative approach to the visual place recognition presented
in [35] and the laser based system in [23]. Furthermore, along the way by building up
statistics about what type of objects typically can be found in, for example, a kitchen
the robot might not only be able to recognize a certain kitchen but also potentially
generalize to recognize a room it has never seen before as probably being a kitchen.

However, although there exists a large body of work on mobile robots, there are
still no fully operational systems that can operate robustly and long-term in everyday
environments. The current trend in development of service robots is reductionistic
in the sense that the overall problem is commonly divided into manageable sub-
problems.

Chapter 10 explores the relations between tasks, objects and contexts for robots
using maps, in the context of visually guided robots. Task descriptions are necessary
as they explain the structure of actions and objects the tasks require. Most tasks can
only occur in prototypical places, which have a suitable arrangement of objects. The
local set of objects and their configuration then determines the context. The context
then allows to endow physical locations with semantic meaning.

A solution to the visual SLAM problem does not necessarily allow robot navi-
gation. Specifically, the knowledge of the 3-D location of a robot is insufficient for
solving the navigation in a general setting. On the other hand, navigation can also
be possible using solely image-based information. Chapter 11 investigates the use
of visual information for robot navigation, presenting both image-based and map-
based approaches.
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1.5 Future Directions

The recent trends and future directions in the computer vision community are not
always well-known for robotics researchers. This section tries to outline some of
them3.

Benchmarking is an important issue, which has only lately gained notable inter-
est in robotics4. Since early 1990s there has been a growing interest in the com-
puter vision community on discovering ways to compare the performance of dif-
ferent methods. For example, the EU funded PCCV (Performance Characterization
in Computer Vision) project produced tutorials and case-studies for benchmarking
vision algorithms [31]. Based on these studies, important benchmarking techniques
include common benchmark data, contests, and specialized benchmarking work-
shops. While all of these have begun to appear also in robotics [32], it seems that
the robotics community could benefit from the issues learned. Another recent trend
in validating methods in computer vision is to use huge data sets gathered from in-
ternet. For example, image search engines give a possibility to obtain thousands of
labeled images for testing object and scene recognition approaches.

Machine learning methods are becoming more and more widely used in computer
vision as the processing power of modern computers has reached the point to make
this possible. Most importantly, they are not only used for traditional “recognition”
applications, but they can be also used for constructing efficient and effective pro-
cessing algorithms, for example, for image feature extraction. Chapter 5 of this book
is a fine example of this development, as is Rosten’s work in learning high-speed
corner detection [38].

Robotics has for the past few decades evolved from an industrial, well-controlled
environment, to our homes, medical/operating rooms and resulted in sending robots
to Mars. Still, most of the existing robot systems are designed for specific purposes
and preprogrammed to expected requirements posed by the task and the environ-
ment. As mentioned, the challenge for the future is to go beyond the current engi-
neering paradigm and develop artificial cognitive robotic systems that can robustly
perceive, interact, reason and cooperate with humans and each other in open-ended
environments.

Compared to classical robot systems, where the main requirement of the system
is to execute a predefined task, the problem of task learning and planning stands as
an open problem. Easy and user-friendly programming of new tasks in robots is one
of the integral problems that will have to be considered in the future service robot
systems.

The work presented in Chapter 12 takes a step towards solving this problem
by providing a programming support for the implementation of complex, sensor-
based robotic tasks in the presence of geometric uncertainty. The application of the
proposed framework is studied in image-based visual servoing tasks.

3 Some of the following ideas originate from a panel discussion at the ICRA 2007 workshop, which
was a source of inspiration for this book.
4 A benchmarking initiative has been recently started in EURON, the European robotics network.
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