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Preface

The field of computer vision has developed significantly over the past few years and
its importance for robotics is also growing. Due to many practical applications in
a diverse variety of sub-disciplines, such as surveillance, robot control, and virtual
environments, vision algorithms have a significant application impact. The robotics
and computer vision communities have, however, remained largely separate. Dialog
between the two communities would then contribute greatly to the progress in both
disciplines. In many cases, methods available in the computer vision community are
not in general use in the robotics community. On the other hand, the system level
perspective is often neglected in the computer vision community, because the re-
search is focused on individual problems and algorithms. There is consequently a
need to bring the communities of robot and computer vision to a joint appreciation
of the value of systems, where there is a need to consider all aspects from perception
to action generation. A workshop “From Features to Actions: Unifying Perspectives
in Computational and Robot Vision” was organized by the editors at the IEEE In-
ternational Conference on Robotics and Automation (Rome, April 2007) with the
objective of bringing together computer vision and robotics researchers. This book
intends to continue exploring the benefits of dialog by highlighting current chal-
lenges and novel approaches to the above issues.

October 2007 Danica Kragic
Ville Kyrki
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University of Zaragoza,
I3A - Department of Informatics and Systems Engineering,
50010 Zaragoza, Spain.

Gabe Sibley
Robotic and Embedded Systems Laboratory,
University of Southern California,
Los Angeles, California, USA.
e-mail: gsibley@usc.edu

Ruben Smits
Department of Mechanical Engineering,
Katholieke Universiteit Leuven,
Celestijnenlaan 300B, 3001 Heverlee, Belgium.
e-mail: ruben.smits@mech.kuleuven.be



Contributors xix

Jan Sochman
Center for Machine Perception,
Department of Cybernetics,
Faculty of Electrical Engineering,
Czech Technical University in Prague,
Karlovo nám. 13, 121 35 Prague, Czech Republic.
e-mail: sochmj1@cmp.felk.cvut.cz

Tristram Southey
Department of Computer Science,
University of British Columbia,
Vancouver, BC, Canada.
emailsouthey@cs.ubc.ca

Gaurav Sukhatme
Robotic and Embedded Systems Laboratory,
University of Southern California,
Los Angeles, California, USA.
e-mail: gaurav@usc.edu

Aleš Ude
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Chapter 1
Recent Trends in Computational and Robot
Vision

Ville Kyrki and Danica Kragic

1.1 Introduction

There are many characteristics in common in computer vision research and vision
research in robotics. For example, the Structure-and-Motion problem in vision has
its analog of SLAM (Simultaneous Localization and Mapping) in robotics, visual
SLAM being one of the current hot topics. Tracking is another area seeing great
interest in both communities, in its many variations, such as 2-D and 3-D tracking,
single and multi-object tracking, rigid and deformable object tracking. Other topics
of interest for both communities are object and action recognition.

Despite having these common interests, however, ”pure” computer vision has
seen significant theoretical and methodological advances during the last decade
which many of the robotics researchers are not fully aware of. On the other hand,
the manipulation and control capabilities of robots as well as the range of appli-
cation areas have developed greatly. In robotics, vision can not be considered an
isolated component, but it is instead a part of a system resulting in an action. Thus,
in robotics the vision research should include consideration of the control of the sys-
tem, in other words, the entire perception-action loop. A holistic system approach
would then be useful and could provide significant advances in this application do-
main.

We believe that although there have been good examples of robust vision sys-
tems, there is a gap between the research conducted in computer vision and robotics
communities. In the following, we aim to identify some of the recent developments
where we see great potential for the co-operation between the communities.

Ville Kyrki
Lappeenranta University of Technology, Department of Information Technology, P.O. Box 20,
53851 Lappeenranta, Finland, e-mail: kyrki@lut.fi

Danica Kragic
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1.2 Perception and Action

One of the main challenges in the field of robotics is to make robots ubiquitous.
To intelligently interact with the world, robots need to perceive and interpret the
environment and situations around them and react appropriately. In other words,
they need context-awareness. But how to equip robots with capabilities of gathering
and interpreting the necessary information for novel tasks through interaction with
the environment and by providing some minimal knowledge in advance? This has
been a longterm question and one of the main drives in the field of cognitive system
development. For a service robot that is to perform tasks in a human environment, it
has to be able to learn about objects and object categories. However, the robots will
not be able to form useful categories or object representations by being only passive
observers of the environment. They should, like humans, learn about objects and
their representations through interaction.

The simplest type of interactions that can occur between a robot and an object
may be to, for example, push an object in order to retrieve information about the size
or weight of the object. Here, simple visual cues providing approximate 3D position
of the object may be sufficient. A more complex interaction may be to grasp the
object for the purpose of gaining the physical control over the object. Once the robot
has the object in its hand, it can perform further actions on it, such as examining it
from other views. Information obtained during interaction can be used to update the
robots representations about objects and the world.

Such an approach is studied in Chapter 2 where a mobile manipulator system
employs interactive perception to extract kinematic models from tools such as pliers
or shears. The extracted models are then used to compute an action that transforms
the kinematic attributes of the object to actions that can be performed on them thus
mimicking tool use.

Another way of learning of how to interact with the environment is to observe
humans or other agents and perform actions through a process of imitation, [4].
Imitation learning in robotics is therefore strongly related to action representation
and recognition. The overall goal of imitation learning is to develop robots that are
able to relate perceived actions of another agent to its own embodiment in order to
learn, recognize and finally perform the demonstrated actions [8, 40, 41, 19, 29, 30,
22, 11, 6]. Most of the work work on imitation in robotics is motivated by human
findings, where there is strong neurobiological evidence that human actions and
activities are directly connected to the motor control of the human body [14, 36, 37].

Detection of human body and body part, recognition and interpretation of their
actions has therefore during the past few years gained considerable amount of at-
tention, [1, 2, 13, 48, 24, 47]. Main motivation is the large number of potential
applications, e.g., in visual surveillance, entertainment industry, robot learning and
control due to the ability to acquire and store a large amount of data that can be
processed offline.

In visual surveillance applications, the work is mainly concentrated on classifica-
tion of common versus uncommon actions. In the entertainment industry, the interest
lies mainly in the field of motion capture and synthesis where precise motion capture
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allows to replace an actor with a digital avatar. Ideally, the motion capture system
should be non-intrusive thus making vision based techniques a natural solution.

Even if there are differences in the applications, the system design is very similar:
the sensory input has to be acquired and represented so to enable i) the recognition
of the observed actions and ii) understand the effects certain actions may have on the
environment. In robotics, there is an additional dimension since the system also has
to enable the robot to physically perform a certain action in order to cause the desired
change in the environment. The last point point depends on the individual/robot
under consideration: how to perform an action that causes a particular change in the
environment for a human and a robot depends on their physical capabilities.

Chapter 3 presents an approach for people detection with a mobile robot through
combination of visual and laser range scanner sensors. It is shown how a person may
be represented as a constelation of body parts to facilitate the detection process.

Chapter 4 presents a system where the road towards developing cognitive ca-
pabilities in robots is followed by considering an interply between perception and
action. A humanoid robot with perception, manipulation and communication skills
is described with a special attention paid on the design of the robot head as the
base for prividing the input to various visuo-motor behaviors. The presented work
spans from human motion tracking and object representation to action imitation and
adaptation.

One of the important aspects of integrating the results from the computer vision
community on mobile robots that have constrained processing and storage capa-
bilities, is to consider how to adapt complex processing methods for real-time ap-
plications. In Chapter 5, it is shown how time-constrained classification, detection
and matching problems may be formalised in the framework of sequential decision-
making. The work derives quasi-optimal time-constrained solutions for the three
problems of major relevance for the community: feature detection, feature mathcing
and face detection.

Chapter 6 presents an application where the real-time processing aspects are of
utmost importance - a medical application intended for 3D positioning and guidance
of surgical instruments in the human body. The work shows the importance of real-
time visual processing for the purpose of vision guided control where model based
techniques are adopted to facilitate the tracking process.

1.3 Mapping the Environment — SLAM and vSLAM

One of the essential capabilities of an autonomous mobile robot is to move around
in its environment. To accomplish this in complex natural environments, the robot
needs the ability to build maps of the environment using natural landmarks and to
use them for localization [44, 7, 10, 43, 45]. One of the current research topics re-
lated to Simulatanous Localization and Mapping (SLAM) is the use of vision as
the only exteroceptive sensor [9, 12, 15, 42, 27], due to its low cost. We adopt the
term vSLAM[17] for visual SLAM. Currently, vSLAM solutions focus on accurate
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localization, mostly based on the estimation of geometric visual features of the en-
vironment. Thus, the resultant map is useful for the localization of the robot, but its
use for other purposes is often neglected. This section concentrates on the geometric
mapping while in the next section, we try to take a look at some opportunities how
to apply visual means for higher-level understanding of the robot’s environment.

In mainstream computer vision research, the problem of 3D reconstruction from
a sequence of images is termed structure from motion. There is a great similarity
between the structure from motion (SfM)1 and vSLAM. The essential problem of
simultaneously estimating the structure of the environment and the motion of the
observer is identical. In computer vision community, SfM is nowadays considered
mostly a solved problem, as commercial solutions for SfM-based camera motion es-
timation have become available from companies such as 2d32 The state-of-art SfM
solutions are mostly based on using projective geometry as the geometrical model
[16] and bundle adjustment techniques (basically Levenberg-Marquardt minimiza-
tion) for finding the maximum likelihood solution for the nonlinear optimization
problem [16, 46]. In addition to the 3D reconstruction for calibrated cameras, the in-
ternal camera calibration can be estimated along with the structure (self calibration),
thus eliminating the need to explicitly calibrate cameras (for example, [33, 21]).

However, there are some differences between SfM and vSLAM which are of-
ten overlooked. The main emphasis in SfM is to reconstruct the structure of the
environment as accurately as possible. This is often termed “global bundle adjust-
ment”, emphasizing the fact that the maximum likelihood solution over the whole
image sequence is sought. Thus, the solutions are essentially batch algorithms, re-
quiring the whole data for processing. Also, the heavy computational load of the
global optimization makes it impossible to run in real-time. One reason for this is
that the intended application areas, such as camera tracking for the movie industry,
do not require on-line estimation. In vSLAM, on-line operation is a fundamental
requirement, as the information is often used for robot navigation. In practice, the
computational complexity increases with respect to the number of landmarks and
time. If the robot needs to operate in a large (or changing) environment for a long
time, the vSLAM algorithm would need to be constant time (or at least sub-linear).
Currently there is no vSLAM approach which would allow this, although there have
been propositions of constant time SLAM algorithms using other sensors (for exam-
ple, [20]) although the estimates given by the methods are conservative rather than
optimal.

Another characteristic typical for vSLAM but not for SfM is that in addition to
the estimate, its uncertainty needs to be characterized. Moreover, the algorithms
need to be statistically consistent, that is, not giving overly confident estimates of
the uncertainty. This characteristic can be exploited to build safeguards and allow
the information to be safely used for controlling the robot.

Loop closing refers to identifying that a robot has returned to a previously visited
area after touring in another one. The observation of previously known landmarks

1 Nowadays often termed “structure and motion.”
2 See http://www.2d3.com.
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allows to improve the estimate over the whole tour. Loop closing using the tradi-
tional SLAM sensors, for example, laser scanners, is hard due to the difficulties in
correctly matching previously detected landmarks and current observations. Visual
features are very powerful in this respect, and the use of visually salient features
for loop closing has been recently proposed [26, 34]. However, there are still many
unexplored possibilities in using image retrieval and matching approaches for loop
closing.

In some cases, the maps built are not intended (or needed) to be used for local-
ization at later time instants. In this case, the resulting map is only stored for a short
period and the landmarks are removed from the map after they are no longer vis-
ible. This approach is usually called visual odometry [28, 3]. While this approach
essentially solves the map complexity problem, it suffers from drift as the earlier
landmarks are forgotten and loop closing is not possible. As a compromise between
the accuracy of global bundle adjustment and the restrictions in the available pro-
cessing capacity, it has been proposed to only optimize the pose of a small number
of previous time instants [25]. This has the effect that the accuracy is increased, but
unfortunately the local approach still can not remove drift and benefit from loop
closing in contrast to the more global approaches.

Ideally, the robotics community would like to get a statistically consistent vS-
LAM algorithm that would perform constant time on-line estimation with the opti-
mality of the global bundle adjustment, allowing efficient loop closing. This book
contains three chapters which demonstrate some of the ideas and recent work to-
wards this ideal goal. Chapter 7 presents the Sliding Window Filter, an approach
for incremental SLAM using a sliding time window of most recent sensor measure-
ments, thus attaining constant time complexity. Chapter 8 examines the joint use of
object/scene recognition for coarse topological localization and more accurate local
metric localization using 1D trifocal tensor. Chapter 9 discusses different types of
visual landmarks which could be used for vSLAM. Furthermore, loop closing and
future directions such as multi-robot SLAM and the use of geographical information
systems (GIS) in SLAM are considered.

1.4 From Maps to Understanding the Environment

Robots of the future should be able to easily navigate in dynamic and crowded envi-
ronments, detect as well as avoid obstacles, have a dialog with a user and manipulate
objects. It has been widely recognized that, for such a system, different processes
have to work in synergy: high-level cognitive processes for abstract reasoning and
planning, low-level sensory-motor processes for data extraction and action execu-
tion, and mid-level processes mediating these two levels.

A successful coordination between these levels requires a well defined represen-
tation that facilitates anchoring of different processes. One of the proposed mod-
eling approaches has been the use of cognitive maps [5]. The cognitive map is the
body of knowledge a human or a robot has about the environment. In [5], it is ar-
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gued that topological, semantic and geometrical aspects are important for represen-
tation of spatial knowledge. This approach is closely related to Human-Augmented
mapping (HAM) where a human and a robot interact so to establish a correspon-
dence between the human spatial representation of the environment and robot’s au-
tonomously learned one [18].

In addition, both during the mapping phase and during robot task execution, ob-
ject detection can be used to augment the map of the environment with objects’
locations, [39]. There are several scenarios here: while the robot is building the map
it will add information to the map about the location of objects. Later, the robot will
be able to assist the user when s/he wants to know where a certain object X is. As
object detection might be time consuming, another scenario is that the robot builds
a map of the environment first and then when no tasks are scheduled for execution,
it moves around in the environment and searches for objects.

The same skill can also be used when the user instructs the robot to go to a
certain area to fetch a particular object. If the robot has seen the object before and
has it already in the map, the searching process is simplified to re-detection. By
augmenting the map with the location of objects we also foresee a way of achieving
place recognition. This provides valuable information to the localization system as
well as it greatly reduces the problem with symmetries in a simple geometric map.
This would be an alternative approach to the visual place recognition presented
in [35] and the laser based system in [23]. Furthermore, along the way by building up
statistics about what type of objects typically can be found in, for example, a kitchen
the robot might not only be able to recognize a certain kitchen but also potentially
generalize to recognize a room it has never seen before as probably being a kitchen.

However, although there exists a large body of work on mobile robots, there are
still no fully operational systems that can operate robustly and long-term in everyday
environments. The current trend in development of service robots is reductionistic
in the sense that the overall problem is commonly divided into manageable sub-
problems.

Chapter 10 explores the relations between tasks, objects and contexts for robots
using maps, in the context of visually guided robots. Task descriptions are necessary
as they explain the structure of actions and objects the tasks require. Most tasks can
only occur in prototypical places, which have a suitable arrangement of objects. The
local set of objects and their configuration then determines the context. The context
then allows to endow physical locations with semantic meaning.

A solution to the visual SLAM problem does not necessarily allow robot navi-
gation. Specifically, the knowledge of the 3-D location of a robot is insufficient for
solving the navigation in a general setting. On the other hand, navigation can also
be possible using solely image-based information. Chapter 11 investigates the use
of visual information for robot navigation, presenting both image-based and map-
based approaches.
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1.5 Future Directions

The recent trends and future directions in the computer vision community are not
always well-known for robotics researchers. This section tries to outline some of
them3.

Benchmarking is an important issue, which has only lately gained notable inter-
est in robotics4. Since early 1990s there has been a growing interest in the com-
puter vision community on discovering ways to compare the performance of dif-
ferent methods. For example, the EU funded PCCV (Performance Characterization
in Computer Vision) project produced tutorials and case-studies for benchmarking
vision algorithms [31]. Based on these studies, important benchmarking techniques
include common benchmark data, contests, and specialized benchmarking work-
shops. While all of these have begun to appear also in robotics [32], it seems that
the robotics community could benefit from the issues learned. Another recent trend
in validating methods in computer vision is to use huge data sets gathered from in-
ternet. For example, image search engines give a possibility to obtain thousands of
labeled images for testing object and scene recognition approaches.

Machine learning methods are becoming more and more widely used in computer
vision as the processing power of modern computers has reached the point to make
this possible. Most importantly, they are not only used for traditional “recognition”
applications, but they can be also used for constructing efficient and effective pro-
cessing algorithms, for example, for image feature extraction. Chapter 5 of this book
is a fine example of this development, as is Rosten’s work in learning high-speed
corner detection [38].

Robotics has for the past few decades evolved from an industrial, well-controlled
environment, to our homes, medical/operating rooms and resulted in sending robots
to Mars. Still, most of the existing robot systems are designed for specific purposes
and preprogrammed to expected requirements posed by the task and the environ-
ment. As mentioned, the challenge for the future is to go beyond the current engi-
neering paradigm and develop artificial cognitive robotic systems that can robustly
perceive, interact, reason and cooperate with humans and each other in open-ended
environments.

Compared to classical robot systems, where the main requirement of the system
is to execute a predefined task, the problem of task learning and planning stands as
an open problem. Easy and user-friendly programming of new tasks in robots is one
of the integral problems that will have to be considered in the future service robot
systems.

The work presented in Chapter 12 takes a step towards solving this problem
by providing a programming support for the implementation of complex, sensor-
based robotic tasks in the presence of geometric uncertainty. The application of the
proposed framework is studied in image-based visual servoing tasks.

3 Some of the following ideas originate from a panel discussion at the ICRA 2007 workshop, which
was a source of inspiration for this book.
4 A benchmarking initiative has been recently started in EURON, the European robotics network.
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Chapter 2
Extracting Planar Kinematic Models Using
Interactive Perception

Dov Katz and Oliver Brock

2.1 Introduction

Roboticists are working towards the deployment of autonomous mobile manipu-
lators in unstructured and dynamic environments. Adequate autonomy and com-
petency in unstructured environments would open up a variety of important appli-
cations for robotics, ranging from planetary exploration to elder care and from the
disposal of improvised explosive devices to flexible manufacturing and construction
in collaboration with human experts. Ongoing research efforts seek to enable the use
of autonomous robots for these applications through the development of adequate
hardware platforms [10, 26, 31], robust and task-oriented control strategies [19],
and new learning frameworks [2, 5, 6, 27].

For unstructured and dynamic environments, it is not possible to provide the
robot with a detailed a priori model of the world. Consequently, an autonomous
robot has to continuously acquire perceptual information to successfully execute
mobility and manipulation tasks [12, 17, 25, 29]. This extraction can be performed
most effectively, if it occurs in the context of a specific task.

During task execution, the value of perceptual information can be maximized
by interpreting sensor streams in a manner that is tailored to the task. Focusing
on task-specific aspects during the interpretation of the sensor stream will reveal
the most task-relevant information, while reducing the computational cost of per-
ception. Both of these advantages can improve the robustness of task execution,
particularly in the presence of significant uncertainty. In spite of the advantages
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of integrating perception and manipulation, research towards integrated perceptual
paradigms for autonomous manipulation is still in its early stages.

In this work, we argue that interactive perception, a framework that exploits
forceful interactions with the environment to uncover perceptual information re-
quired for the robust execution of specific tasks, can serve as an adequate percep-
tual framework for autonomous manipulation. We will show that the combination
of forceful interactions with visual perception reveals perceptual information unob-
tainable by forceful interactions or visual perception alone. Crossing the boundaries
between manipulation and perception leads to novel perceptual capabilities, even
when the manipulation and perception capabilities are very basic.

Fig. 2.1 Objects that possess inherent degrees of freedom; these degrees of freedom cannot be
extracted from visual information alone, they have to be discovered through physical interaction

To illustrate the promise of interactive perception as a perceptual paradigm for
autonomous robots operating in unstructured environments, we have developed a
perceptual skill to extract kinematic models from unknown objects. Many objects in
everyday environment possess inherent degrees of freedom that have to be actuated
to perform their function. Such objects include doors, door handles, drawers, and a
large number of tools such as scissors and pliers (Figure 2.1).

In our experiments, UMan (Figure 2.2), our experimental platform for au-
tonomous mobile manipulation, employs interactive perception to extract kinematic
models from tools such as pliers or shears. These models are then employed to com-
pute an action that transforms the kinematic state of the tool into a desired goal state,
mimicking tool use. Note that kinematic models of objects cannot be extracted using
visual information alone. They are also very hard to obtain from tactile feedback.
We believe that the relative ease with which we are able to address this task makes
a convincing case for the use of interactive perception as a perceptual paradigm for
autonomous robotics.
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2.2 Related Work

Fig. 2.2 UMan (UMass Mobile Manipula-
tor) consists of a holonomic mobile base with
three degrees of freedom, a seven-degrees-
of-freedom Barrett Technologies manipula-
tor arm, and a four-degrees-of-freedom Bar-
rett hand.

In the absence of a model, autonomous
manipulation in unstructured environments
depends on sensor streams to assess the
state of the world. The sensor streams
should be interpreted and the resulting in-
formation can then be used to guide ma-
nipulation. In this section, we will discuss
perceptual techniques that were developed
independently of specific manipulation ob-
jectives as well as approaches that closely
integrate perception and manipulation.

Computer vision researchers exten-
sively explored object segmentation and la-
beling from static images [14]. These prob-
lems, which seem to be solved effortlessly
by humans, were found to be quite chal-
lenging.

Active vision [1, 3, 4] represents a
paradigm shift relative to computer vision
based on static images. Now, the agent is
no longer a passive observer but instead
can control the motion of the sensor to ac-
tively extract relevant information. Active
vision simplified the extraction of struc-
ture from visual input [23, 30] and facil-
itated depth estimation based on informa-
tion about the camera’s motion [20].

Visual servoing provides closed-loop
position control for a robotic mecha-
nism [15, 22]. It is an example of how posi-
tion control, one of the fundamental prim-
itives of manipulation, can be greatly im-
proved through integration with vision.

Although active vision greatly improves
data acquisition, in some cases this process
cannot generate the data required to support a specific task. For example, object seg-
mentation and predicting kinematic and dynamic properties of rigid or articulated
bodies remain great challenges even when the camera’s position can be controlled.
Prior work has shown that physical interaction with the world can remedy many of
these difficulties.

Object segmentation can be solved by actively poking objects using a robotic
manipulator [13, 24]. The generated optical flow allows the identification of moving
objects and separates them from their background.
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Tool use can be performed by treating tools in the context of their task. Instead
of recovering the entire state of the world from the sensor stream, Edsinger and
Kemp [11, 12] focus on information that is task-relevant. This simplifies the percep-
tual process, and allows successful operation in environments that were not adapted
to the robot. The work of Fitzpatrick, Metta, Edsinger and Kemp can be character-
ized as interactive perception.

Predicting the movement of objects in the plane can also be simplified by interac-
tion. Christiansen, Mason, and Mitchell addressed this problem by placing objects
on a tray which could be tilted by a robotic manipulator [7]. The robot actively tilted
the tray to increase its knowledge about the objects’ motion. This knowledge then
facilitated successful task execution which required object displacements. Stoytchev
used a predefined set of interactions with rigid objects (tools) to explore their affor-
dances [28]. He extracted the results of tool use by the robot by visually observing
the motion of rigid bodies in the workspace of the robot. This knowledge was then
applied during task execution by selecting the most appropriate tool.

The last three examples demonstrate the positive effects that deliberate action
has on the successful completion of tasks and on the difficulty of the perception
problem. They represent a natural development from the active vision paradigm
towards the interactive perception paradigm, in which robots can actively change the
world to increase sensor range. The following section presents this paradigm, and
explains how it can dramatically improve the capabilities of robots in unstructured
and dynamic environments.

2.3 Interactive Perception

A robot can enhance its perceptual capabilities by including physical interactions
with the environment in its perceptual repertoire. Such interactions can remove ob-
structions, provide an easy and controlled way of exposing multiple views of an
object, or can alleviate the negative effects of lighting conditions by moving objects
into the field of view. Other perceptual tasks are difficult or even impossible to ac-
complish without interacting with the environment. For example, reading the text in
a closed book, checking whether a door is locked, and finding out the purpose of a
switch mounted on the wall. Physical interactions augment the sensor stream with
force feedback and allow to evoke and observe behaviors in the world that can re-
veal physical properties of objects. Such information would otherwise remain inac-
cessible for non-interactive sensors. Physical interactions thus can make traditional
perceptual tasks easier. Moreover, they make a new class of perceptual information
accessible to a robotic agent.

The promise of interactive perception [17] is supported by examples from the
development of physical and mental skills in humans. During the acquisition of
physical skills by infants, for example, physical interactions with the environment
are necessary to bootstrap the cognitive process of learning the connection between
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action and effect, the kinematics of one’s own body, and the properties and functions
of objects in the environment.

Interacting with the environment as part of the perceptual process poses a chal-
lenge: selecting the most adequate interaction for a perceptual task. The need to
choose the right exploratory skill while balancing between exploration and exploita-
tion is not new. Active learning [8], a branch of machine learning, addresses the very
same problem and has been shown to be highly effective. While in this work we will
focus on a single perceptual primitive to demonstrate the effectiveness of interactive
perception, our future work will integrate this and other primitives into a perceptual
framework that can actively select when and which interactive perceptual primitive
to invoke.

2.4 Obtaining Kinematic Models Through Forceful Interactions

In this section, we will present one instantiation of the interactive perception frame-
work. We will demonstrate how a robotic manipulator can extract the kinematic
properties of a tool lying on a table. No a priori knowledge about the tool is as-
sumed. The robot can subsequently construct a model of the tool which will allow
it to determine the appropriate interaction for using the tool. In this early work on
interactive perception, we will restrict ourselves to revolute joints.

2.4.1 Algorithm

The key insight behind our algorithm is that the relative distance between two points
on a rigid body does not change as the body is pushed. However, the distance be-
tween points on different rigid bodies connected by a revolute joint does change as
the bodies rotate relative to each other.

First, we describe our algorithm for objects composed of two links connected by
a single revolute joint. The robot interacts with a tool on the table by sweeping its
end-effector across the surface. Tracking a set of features of the object throughout
the interaction allows us to measure the distance between these features as the object
is being moved. The features can be separated into three groups: features on the first
link, features on the second link, and features on the joint connecting them. Features
in the same group must maintain constant distance to each other, irrespective of the
planar motion the object performs. However, the distance between features in the
first group and features in the second group will change significantly as the object is
being moved. The joint features are simply features that belong to both the first and
the second group. This algorithm works also in the general case of multiple revolute
joints. To identify the groups, a robotic manipulator interacts with the object to
generate motions that will allow distinguishing between the different rigid bodies.
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In order to determine the spatial extent of the links of the object, we construct a
convex hull around the features in each group. Tracking enough features increases
the match between the convex hull and the actual shape of the link. The length of
each link is taken to be the distance between the furthest point in each group and
the joint. We use this knowledge to create a kinematic model for planar kinematic
chains. This model is later used to predict the actions required to manipulate the
object in a meaningful fashion.

The following subsections describe in detail the implementation of the kine-
matic model building algorithm. It is worth noting that the specific way in which
we choose features, track them or analyze their relative motion does not affect the
algorithm.

2.4.2 Tracking Objects

Since our primary goal is to show the promise of interactive perception as a per-
ceptual paradigm, we place objects on a plain white background, facilitating feature
tracking. The white background assumption can be removed using ideas from ac-
tive segmentation (similarly to [13] and [24]). This includes an initial random phase
were the manipulator sweeps the environment in an attempt to segment objects. The
interaction may provide interesting objects, for which we might want to construct a
kinematic model.

We use the open source computer vision library OpenCV [16] to capture, record,
and process images. OpenCV implements feature selection by finding corners with
big eigenvalues, and feature tracking based on the optical flow algorithm of Lucas
and Kanade [21]. We store the position of the automatically generated set of features
in every frame during the interactive session.

The tracked features are selected before the interactive session begins. Some fea-
tures may be obstructed by the manipulator’s motion during the interaction. Those
features will be very noisy, and therefore easily discarded. Moreover, no feature will
be associated with the manipulator itself because all features are selected prior to the
appearance of the arm in the scene.

2.4.3 Constructing a Graphical Representation

Every planar kinematic chain is composed of links and joints. Therefore, the first
task we perform is joint and link identification. We build a graph based on the
maximal change in distance between two features observed throughout the entire
interaction. Every node v ∈V in the graph represents a tracked feature in the image.
An edge e ∈ E connects nodes (vi,v j) if and only if the distance between vi and v j

remains constant (in practice, we allow the distance to vary up to a threshold). The
resulting graph will be analyzed by the algorithm described in the following section.
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2.4.4 Graph Analysis

Figure 2.3 shows a schematic depiction of a graph constructed for an object with two
joints. We can detect in this graph three groups of nodes; each group is very highly
interconnected. The groups represent links, and high interconnectivity is the result
of no motion between features on the same rigid body (link). The nodes that connect
two groups represent joints, and therefore are highly connected to two groups.

Fig. 2.3 Generated graph for an object with two degrees of freedom. Highly connected compo-
nents (colored in shades of grey) represent the links. Nodes that connect between components
represent joints (colored in white).

We use the min-cut algorithm [9] to identify different groups in a graph. Min-
cut will separate a graph into two sub-graphs by removing as few edges as possi-
ble. In the simple case of one joint and two links, min-cut will remove the edges
that connect between the two links, resulting in two highly connected sub-graphs,
each representing a different link. In the general case, a graph may contain multiple
highly connected components (each component represents a different link). Identi-
fying components in this case is done simply by recursively breaking the graph into
sub-graphs. The process stops when the input graph is highly connected, therefore
representing one rigid component. Finally, nodes that belong to two different highly
connected components are nodes that represent a joint connecting two links.

It should be noted that the above procedure automatically rejects errors in track-
ing features. If a feature “jumps” during tracking, the graph construction described
above will lead to a disconnected component consisting of a single vertex. Discon-
nected nodes, and more generally small disconnected components, can be discarded
during the graph analysis. The proposed procedure thus is inherently robust to errors
in feature tracking.

2.4.5 Building a Kinematic Model

The graph provides us with information about the basic kinematic structure of the
object. We can construct an approximate contour of the object by computing the
convex hull of all features in a component of the graph. The extent of the visual
hull gives us an approximate geometric description of each link. By combining all
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the information, we construct a kinematic model of the kinematic chain. This model
enables the robot to reason about the effects that its interactions with the object will
have. This is a prerequisite for purposeful tool use.

2.5 Experimental Results

We validate the method described above in experiments on our robotic platform
for autonomous mobile manipulation, called UMan (see Figure 2.2, [18]). UMan
consists of a holonomic mobile base with three degrees of freedom, a seven-degrees-
of-freedom Barrett Technologies manipulator arm, and a four-degrees-of-freedom
Barrett hand. The vision system is an overhead web camera, mounted above a desk.
The camera’s resolution is 640X480. The platform provides adequate end-effector
capabilities for a wide range of dexterous manipulation tasks.

UMan is tasked to extract a kinematic model of four different tools, shown in
Figure 2.5. To demonstrate that UMan can use the kinematic model for purposeful
interactions with those tools, it is required to push the tool until the two rigid links
form a right angle. UMan first uses its end-effector to sweep the table in front of
it, while observing the scene. Features are tracked in the resulting video sequence
and the algorithm described above is used to extract a kinematic model of the tool.
Using this model, UMan determines the appropriate pushing motion to achieve the
desired angle between the two links and performs this motion. An example of such
an experiment and the corresponding visual observation is shown in Figure 2.4.

Fig. 2.4 UMan interacts with a tool by reaching its arm towards the tool. The right image shows
the tool as seen by the robot, with dots marking the tracked features. The left image shows the
experimental setting

Four tools were used in the experimental phase: scissors, shears, pliers, and a
stapler. All four tools have a single revolute joint, with the exception of the pliers
which also have a prismatic joint that was ignored. The tools are off-the-shelf prod-
ucts and have not been modified for our experiments. They vary in scale, shape, and
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Fig. 2.5 Experimental results showing the use of interactive perception in extracting the kinematic
properties of different objects. The first row of images shows the four objects (scissors, shears,
pliers, and stapler) in their initial pose. The second row shows the final pose of the four objects
after the robot has interacted with them. The third row shows the revolute joint that was detected
using the described methods; the revolute joint is marked with a white disc. The fourth row of
images shows the links of the obtained kinematic model and the manipulation plan to form a right
angle between the two links of the tools. Putting the two links into a 90◦ angle here serves as an
example of tool use. The links of the tools are shown as white lines, and the orientation of one of
the links to achieve the goal configuration of the tool is marked by a black line. The last row of
images shows the results of executing the manipulation plan as presented in the previous row: the
two links of the tools have been arranged in a 90◦ angle.
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color. Despite the differences in appearance, all four tool belong to the family of
two-link kinematic chains with a single revolute joint.

Figure 2.5 shows in each row snapshots of the experiment with one of the four
tools. Each row shows a particular phase of the experiment. First, the tools are in
their initial pose (before the interaction begins). Next, we see the tools in their fi-
nal pose (after the interaction). The third row shows the location of the joints, as
detected by interacting with the tools. In the fourth row, two white lines mark the
position of the parts of the links that will be used for the purposeful interaction. A
third black line indicates where one of the links needs to be moved to in order to
create a right angle between the links. Finally, the last row shows the tools after the
execution of the plan from the previous row—each tool was manipulated to form an
angle of 90◦.

The experimental results show that the detection of the revolute joint is very
accurate. Moreover, the length and position of the links are also discovered correctly.
The algorithm uses the information collected in the interactive process to create
kinematic models for the tools. The high accuracy and usefulness of these models
is demonstrated by the successful manipulation of the tools to form an angle of 90◦
between the links.

Fig. 2.6 Experimental results showing the use of interactive perception in extracting the kinematic
properties of objects with two degrees of freedom.

Figure 2.6 shows an additional experiment with an object that possesses multiple
degrees of freedom. Without any modification, the algorithm described above suc-
cessfully identifies the two degrees of freedom. However, in our experiment, the first
interaction only revealed a single degree of freedom. The second degree of freedom
had to be extracted using another interaction. This illustrates the need to embed the
perceptual primitive described here into a higher-level perceptual process.

In all of our experiments, the proposed algorithm was able to extract the kine-
matic axes of the tools with great precision, despite the cheap off-the-shelf web
camera that was used. Additionally, only a small displacement of the object was
required. The algorithm does not have any parameters that need to be tuned. The
performance of the algorithm was extremely robust, all of our experiments “just
worked.” No changes were necessary to the algorithm to deal with the five objects,
even though their size, visual appearance, and kinematic properties varied. Further-
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more, our experiments have shown that the algorithm is insensitive to the distance
of the camera to the object. The algorithm also performs without errors for a broad
range of viewing angles. Even though we initially assumed that the viewing direc-
tion would be orthogonal to the surface of the table, the algorithm tolerates devia-
tions of up to 30◦. We have not explicitly tested this parameter but suspect that even
higher deviations will continue to give good results.

The experiments discussed here demonstrate that the combination of two very
fundamental capabilities, namely feature tracking and object pushing, yield a highly
robust and accurate perceptual primitive. This primitive is able to extract perceptual
information that neither of its two components could extract by themselves. The
experiments thus demonstrate that interactive perception can increase the percep-
tual capabilities of a robot while at the same time improving the robustness of the
perceptual process. As stated in the introduction, we believe that this is the conse-
quence of combining manipulation and perception to develop a task-related percep-
tual process. We are convinced that interactive perception represents an important
step towards the robust execution of autonomous manipulation tasks in unstructured
environments.

2.6 Conclusion

This document explores interactive perception as an adequate perceptual paradigm
for autonomous robots. Interactive perception tightly couples interaction and per-
ception to enable the robust and efficient extraction of task-relevant information
from sensor streams. The inclusion of interaction into the repertoire of perceptual
primitives not only facilitates many conventional perception tasks, but also allows
an autonomous agent to uncover information about the environment that would oth-
erwise remain hidden. Such information includes, for example, the kinematic and
dynamic properties of objects in the environment, or views of the environment that
can only be obtained after visual obstructions have been removed.

We employed the principle of interactive perception to show that a robot can
easily extract the kinematic properties of novel objects from a visual sensor stream
if it is able to physically interact with these objects. We have further demonstrated
how the extracted knowledge about the object can be used to determine appropriate
use of the object. Our experimental results on a real-world platform for mobile ma-
nipulation show that interactive perception can result in highly robust and effective
perceptual algorithms.

There are many possible directions for future research and extensions of the pre-
sented work. We plan to improve our feature tracking and contour detection algo-
rithms by using active segmentation techniques [13, 24]. We also will generalize the
types of kinematic properties that can be extracted. We would like to include other
types of joints, such as prismatic or spherical joints, and joints that have joint axes
with arbitrary orientations. Finally, we intend to extend our framework to support
additional sensor modalities, such as force sensors and laser scanners.
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22. Martin Jägersand: On-line Estimation of Visual-Motor Models for Robot Control and Visual
Simulation. Ph.D. thesis, University of Rochester (1997)

23. Maybank, S.: The Angular Velocity Associated with the Optical Flowfield Arising from Mo-
tion through a Rigid Environment. In: Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences, vol. 401, pp. 317–326 (1985)

24. Metta, G., Fitzpatrick, P.: Early integration of vision and manipulation. Adaptive Behavior
11(2), 109–128 (2003)

25. Neo, E.S., Sakaguchi, T., Yokoi, K., Kawai, Y., Maruyama, K.: Operating Humanoid Robots
in Human Environments. In: Workshop on Manipulation for Human Environments, Robotics:
Science and Systems (2006)

26. Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., Inoue, H.: The experimental humanoid robot
H7: a research platform for autonomous behaviour. Philosophical Transactions of the Royal
Society 365, 79–108 (2007)

27. Saxena, A., Driemeyer, J., Kearns, J., Ng, A.Y.: Robotic Grasping of Novel Objects. In: Neural
Information Processing Systems (2006)

28. Stoytchev, A.: Behavior-Grounded Representation of Tool Affordances. In: International Con-
ference on Robotics and Automation, pp. 3071–3076. Barcelona, Spain (2005)

29. Sutton, M., Stark, L., Bowyer, K.: Function from visual analysis and physical interaction: a
methodology for recognition of generic classes of objects. Image and Vision Computing 16,
746–763 (1998)

30. Waxman, A.M., Ullman, S.: Surface Structure and Three-Dimensional Motion from Image
Flow Kinematics. The International Journal of Robotics Research 4, 72–94 (1985)

31. Wimboeck, T., Ott, C., Hirzinger, G.: Impedance Behaviors for Two-Handed Manipulation:
Design and Experiments. In: International Conference on Robotics and Automation. Rome,
Italy (2007)



Chapter 3
People Detection Using Multiple Sensors on a
Mobile Robot

Zoran Zivkovic and Ben Kröse

3.1 Introduction

Robots are moving out of laboratories into public places where the human beings
have to be taken into account. Such robots should be able to interact with humans
and show aspects of human style social intelligence. This also implies that in ad-
dition to the perception required for the conventional functions (localization, navi-
gation, etc.), a ”socially interactive” robot needs strong human oriented perceptual
capabilities [1, 16]. For a start the robot should be able to accurately and robustly
detect and localize the persons around it.

Person detection from images is a widely studied problem in the computer vi-
sion research area. Two types of applications can be distinguished. The first type
is surveillance where usually much knowledge is available about the environment,
camera position and camera parameters. This knowledge provides additional cues
for person detection. For example in most man made environments people walk over
a floor plane which leads to a limited set of possible person position in an image.
Furthermore, the camera is often static and this can help to distinguish persons from
the static background. The second type of application considers a more general and
difficult problem where not much a priori knowledge is available about the images,
e.g. images or videos from the internet. A common approach in such situations is to
use the whole image to infer more about the environment and the camera which can
then help to detect people, e.g. [10].

Typical robotics applications differ from the typical computer vision applications
in a number of aspects. First, robotics systems are usually equipped with multiple
sensors. For example 2D laser range scanner is often used to detect persons legs.
Properly combining the information from different sensors can improve the detec-
tion results. Second, similar to the surveillance applications, camera and other sen-
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sors positions and parameters are usually known. However, the sensors are not static
since they are mounted on a moving platform, a mobile robot or a vehicle. Finally,
the fact that robots move can be an advantage. Actively moving the sensors can im-
prove the detection results, for example moving closer to the object or viewing it
from another view point.

This chapter considers the important problem of dealing with multiple sensors.
An approach for combining information from multiple sensors for people detection
on a mobile robot is described. A person will be represented by a constellation of
body parts. Person body parts are detected and the parts are constrained to be at
certain positions with respect to each other. Similar part based representations are
widely used in the computer vision area for describing objects in images. A prob-
abilistic model is presented here to combine part detections from multiple sensors
typical for mobile robots. For detecting the body parts specific detectors can be con-
structed in many ways. In this chapter the Ada-Boost [7] is used as a general ”out
of box” approach for building the part detectors.

The chapter starts with the related work which is presented in Section 3.2. Next,
in Section 3.3 people detection using 2D laser range scanner is considered. Per-
sons legs can be detected in the scans. A probabilistic part-based representation is
presented that takes into account the spatial arrangement of the detected legs. The
method is inspired by the latest results on the ”part-based representations” from the
computer vision area and the work of Weber, Perona and colleagues [21, 5]. The
approach takes into account that the leg detector might produce false detections or
fail to detect legs, for example because of partial occlusion. Section 3.4 describes
a straightforward way to extend the presented probabilistic model to properly com-
bine body parts detected using other sensors that might be present on the robot, a
pan-tilt camera and an omnidirectional camera in our case, see Figure 3.1. Evalua-
tion of the proposed model and some practical issues are discussed in Section 3.5.
Finally, the conclusions are given in Section 3.6.

3.2 Related Work

A 2D laser range scanner is often used in robotics for detecting and tracking people
[13, 11]. People are detected by finding their legs in the laser scans. Disadvantages
of using the laser scans for people detection are: the persons can be detected only at
limited distances from the robot, low detection rate in highly cluttered environments
and that the methods fail when the person legs are occluded. Other sensors were also
used like thermal vision [17], stereo vision [9] and regular cameras [23].

Person detection from images is a widely studied problem in the computer vision
area. Many of the presented algorithms aim at the surveillance applications [6] and
are not applicable to mobile platforms since they assume static camera. There is also
a large number of papers considering the people detection without the static camera
assumption, e.g. [8, 14, 22, 15].
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Fig. 3.1 Example moving robot platform equipped with three sensors: a 2D laser range scanner,
a pan-tilt camera and an omnidirectional camera. The sensors are calibrated and their pose with
respect to the floor plane is known. Given the typical size of a person we can define a region of
interest (ROI) in each sensor corresponding a floor plane position as shown.

The people detection can be seen as a part of the more general problem of object
detection. Many approaches were considered in the computer vision area. Recently
it was shown that fast and reliable detection can be archived using ”out of box”
technique Ada-Boost to build classifiers [7]. For example Haar-like features with
Ada-Boost were successively used for face detection by Viola and Jones [19]. Sim-
ilar techniques were used for people detection [20, 18].

Another approach for object detection in images is the so called ”part-based rep-
resentation”. Various part-based representations, e.g. [2, 5, 3, 4], are demonstrated
to lead to high recognition rates. An important advantage of the part-based approach
is it relies on object parts and therefore it is much more robust to partial occlusions
than the standard approach considering the whole object.

The part-based people detection was considered a number of times. Seemann et
al. [14] use SIFT based part detectors but do not model part occlusions. Wu and
Nevatia [22] describe the part occlusions but the occlusion probabilities and part
positions are learned in a supervised manner. We base our algorithm on a princi-
pled probabilistic model of the spatial arrangement of the parts similar to the work
of Weber, Perona and colleagues [21, 5]. An advantage of having a proper prob-
abilistic model is that, after constructing the part detectors, the part arrangement
and occlusion probabilities can be automatically learned from unlabelled images.
This chapter presents a part-based approach and shows how it can be used to prop-
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erly combine information from multiple sensors on a mobile robot, 2D range data,
omnidirectional camera and pan-tilt camera in our case.

3.3 Part-based Model

Legs of a person standing in front of a robot can be detected using a 2D laser range
scanner [11]. A part-based model is presented that takes into account the possible
distance between the detected persons legs. The fact that leg detector might produce
false detections or fail to detect legs, for example because of partial occlusion, is
taken into account. The model also presents the base for combining information
from different sensors as described later.

3.3.1 Part Detection

A human is detected by detecting P human body parts, in this case P = 2 for the
legs. The 2D position of a leg is xp = (xp,yp). The Gaussian distribution is used as
a simple model of the leg positions:

pshape(x) = N (x;μ ,Σ) (3.1)

where x =
(
x1 ... xP

)
is a 2P long vector containing all the 2D part positions, μ is

the mean and Σ is a (2P)× (2P) covariance matrix. If the covariance matrix is diag-
onal than this model can be seen as describing ”string-like” constraints between the
body-part positions [4]. The non-diagonal covariance matrix will express additional
relations between the positions of the body parts.

A laser range scan is first divided into segments by detecting abrupt changes
using the Canny edge detector. Reliable leg detection is performed using a set of
geometric features and Ada-Boost classifier as described in [24]. Let N denote the
number of segments classified as legs and let x j denote the 2D position of the j-th
detection. All leg detections from one scan are given by:

X =
(
x1 x2 ... xN

)
(3.2)

The 2D image position x j = (x j,y j) of the j-th detection is calculated as the mean
position of the 2D scan segment points. Note that sometimes the legs cannot be
separated or their appearance in the scan might change drastically. Furthermore, in
cluttered environments many other objects, e.g. chairs or tables, may produce 2D
scan output similar to human legs and some detections might be false detections.
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3.3.2 Missing Detections and Clutter

From a range scan the collection of person’s leg candidates X is extracted but some
of them are true and some false detections. To indicate which detections are correct
a P = 2 element vector h is used with element hp = j, j > 0, indicating that the j-th
detection x j belongs to the of the p-th body part (leg) and the other detections of that
part are false detections. Given h the 2D positions of the person’s legs are composed
of the corresponding detections x =

(
xh1xh2

)
. The set of all other detections that

belong to the background clutter are denoted by xbg.
It is possible that a leg was not detected indicated using hp = 0. The position of

a not detected leg is considered as missing data. To make distinction between the
missing and the observed parts the set of missing parts is denoted as xm and the
set of observed parts as xo. To indicate the fact that there can be missing parts, the
probabilistic model of the arrangement of the body parts (3.1) will be written as:
pshape(x) = pshape(xo,xm).

3.3.3 Probabilistic Model

The the possibility of part detector false alarms and missed detections of body parts
of a person is determined by the unknown assignment hypotheses vector h. The
probabilistic model can be written as a joint distribution:

p(X ,xm,h) = p(X ,xm|h)p(h) (3.3)

where both xm and h are unknown missing data.
Two auxiliary variables b and n are used to further define p(h). The variable

b = sign(h) is a binary vector that denotes which parts have been detected and
which not. The value of the element np ≤Np of the vector n represents the number of
detections of part p that are assigned to the background clutter. The joint distribution
(3.3) becomes:

p(X ,xm,h,n,b) = p(X ,xm|h)p(h|n,b)p(n)p(b) (3.4)

where b and n are assumed to be independent and:

p(X ,xm|h) = pshape(xo,xm)pbg(xbg) (3.5)

where the observed parts xo, the missing parts xm and the false detections from
clutter xbg correspond to the hypothesis h. The pbg(xbg) is the distribution of the
false detections usually uniform or a wide Gaussian.

The probability p(b) describing the presence or absence of parts is modelled as
an explicit table of joint probabilities. Each part can be either detected or not, so
there are in total 2P possible combinations that are considered in p(b).
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The background part detections are assumed independent of each other and the
number of detections n is modelled using Poisson distribution with mean Mp [21].
Different Mp-s for different parts admit different detector statistics. The Poisson
parameter will be denoted by vector M =

(
M1 ... MP

)
.

The density p(h|n,b) is defined as:

p(h|n,b) =

{
1/|H (b,n)| if h ∈ H (b,n),

0 otherwise.
(3.6)

where H (b,n) is the set of all hypotheses consistent with the values of b and n.
Here |H (b,n)| denotes the total number all consistent part assignment hypotheses.
This expresses that these hypotheses are considered equally likely.

3.3.4 Learning Model Parameters

Example leg scans Model

→

Fig. 3.2 Example person’s legs scans from the data set used to train the probabilistic part-based
model and the learned model parameters. For each part its mean position contained in the parameter
μ is presented. The ellipse represents the 1-sigma uncertainty of the part position as described by
the diagonal elements of the covariance matrix Σ .

The density distribution (3.4) will have the following set of parameters Ω =
{μ ,Σ , p(b),M}:

p(X ,xm,h) = p(X ,xm,h|Ω) (3.7)

The likelihood of a collection of detected parts X is obtained by integrating over
the hidden hypotheses h and the missing parts:

p(X |Ω) = ∑
all possible h

∫

xm
p(X ,xm,h|Ω). (3.8)

Integrating over the missing parts xm for the Gaussian distribution can be performed
in closed form.

To estimate the parameters of the model a set of L aligned scans of persons is
used. The collection of leg detections for i-th scan will be denoted as Xi. The max-
imum likelihood estimate of the parameters Ω is computed by maximizing the like-
lihood of the data:
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L

∏
i

p(Xi|Ω) (3.9)

using expectation maximization algorithm, see [21] for details.

3.3.5 Detection

Let us denote the maximum likelihood parameters learned from a set of scans of
persons as Ωperson. For a set of scans from the office clutter the pbg(xbg) and other
parameters can be estimated, denoted as Ωbg. Given a new scan and extracted the
set of detected parts X . The scan is either a scan of a person or some background
clutter:

p(X ) = p(X |Person)p(Person)+ p(X |BG)p(BG) (3.10)

where p(Person) and p(BG) are unknown a priori probabilities that the scan con-
tains a person or background. The a posteriori probability that there is a person is:

p(Person|X ) =
p(X |Person)p(Person)

p(X )
≈ (3.11)

p(X |Ωperson)p(Person)
p(X |Ωperson)p(Person)+ p(X |Ωbg)p(BG)

(3.12)

The last step above is an approximation since the maximum likelihood estimates
for the model parameters Ωperson and Ωbg are used instead of integrating over all
possible parameter values. Calculating p(X |Ω) is done using (3.8).

3.4 Combining Multiple Sensors

Robots are often equipped with multiple sensors. For example an omnidirectional
and a pan-tilt camera as in Figure 3.1. In this section the part based model from
the previous section is extended to include part detections from the corresponding
images.

3.4.1 Part Detection in Images

Haar-like-feature classifiers are used to detect various human body parts in images.
Each classifier is trained using Ada-Boost algorithm on a large set of example im-
ages of the corresponding body part [19]. Here the classifiers are trained on face,
upper body, lower body and full body images. The part detectors can lead to many
false alarms and missed detections [12], see Figure 3.3.
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torso legs full torso face

Part detections – omnicam Part detections – pan-tilt camera

Fig. 3.3 Example body part detections with some false detections.

3.4.2 Extending the Part-based Model

The part based model from the previous section that was applied to the 2D range leg
detections can be easily extended with the human body parts detected in the images.
Instead of 2 parts there will be P = 2 + 3 + 2 = 7 body parts and x =

(
x1 ... xP

)
is

a 2P long vector containing 2D leg positions, the 2D image positions for the upper
body, lower body and full body detected in omnicam images and face and upper
body detected positions from the pan-tilt camera.

The positions of all detected parts are summarized in a data structure:

X =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 ... x1,Nleg1

x2,1 x2,2 ... x2,Nleg2

x3,1 x3,2 ... ... x3,Nup−body

x4,1 x4,2 ... x4,Nlow−body

x5,1 x5,2 ... ... x5,Nf ull−body

x6,1 x6,2 ... ... x6,Nf ace−pan−tilt

x7,1 x7,2 ... x7,Nup−body−pan−tilt

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

(3.13)

with one row per part and where each row contains information about the detections
of the corresponding body part. The first two rows are repeated since the same de-
tector is used for both legs detected in the range scans. The element xp, j contains the
2D positions for the legs or the 2D image position for the parts detected in images
of the j-th detection of the p-th part. The rows of X can have different lengths and
some might be empty if that part was not detected.

Again the hidden P dimensional assignment vector h is used with element hp = j,
indicating that the j-th detection of the p-th part xp, j belongs to the object and
other detections of that part are false detections. Given h the shape of the object is
composed of the corresponding detections x =

(
x1,h1 ... xP,hP

)
. Note that since the

same detector is used for both legs, care should be taken not to select the same leg
detection for both legs.

The other model equations remain the same and the same procedure can be used
to learn now the part based model containing the part detectors from both sensors.
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Example part based model learned from multiple sensors is presented in Figure 3.4.

Fig. 3.4 Examples from the data set used to train the probabilistic part-based model and examples
of learned part arrangement model parameters. For each part its mean position contained in the
parameter μ is presented. The ellipse represents the 1-sigma uncertainty of the part position as
described by the diagonal elements of the covariance matrix Σ .

3.5 Experiments

The presented method for combining information from multiple sensors is evaluated
here. Building reliable part detectors for each sensor is considered first.

3.5.1 Part Detection

A data set of 2D range scans was recorded to build the leg detector. The URG-
04LX 2D range scanner was mounted on our robot at 50cm above the floor. A set of
3530 scans was recorded while driving the robot through the corridors and cluttered
offices in our building. This gives in total 4032 scan segments corresponding to
person’s legs and 14049 segments from the background clutter.

Database examples Model
Pan-tilt camera

→

Omnidirectional camera

→

2D laser range scanner

→
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For each scan segment we extract the set of 12 geometric features, such as seg-
ment size, curvature, see [24] for details. The Gentle AdaBoost algorithm [7] then
automatically selects the relevant features during training. Separate features are used
to build simple linear classifiers, the so called ”weak” classifiers. The classifiers are
then combined to form the final classifier. The final classifier contains 25 classifiers.
The number of classifiers was chosen to such that recognition results do not improve
for adding more classifiers. Note that some features might be selected a number of
times. The final classifier leads to a reliable leg detection. However, leg detection in
cluttered office environments remains difficult since many object can produce range
scan similar to legs. Details are given in [24].

The Haar-like-feature based image part detectors we used in our experiments
were trained on the MIT pedestrian data set [12] and are available in the Intel
OpenCV library.

3.5.2 Multiple Sensor People Detection

For evaluating the part-arrangement model, we collected a realistic data set simu-
lating the scenario where a human is introducing the robot to a new environment.
Five persons were asked to lead the robot around our office environment. The robot
was teleoperated. During the teleoperation the movements of the robot were such
as to try to keep the person in the field of view of the pan-tilt camera. The data set
contains 3200 images from the both cameras captured at 4 frames/second and the
corresponding laser scans. On average each person was leading the robot for 2− 3
minutes and there were around 600 images recorded for each person.

The calibrated omnidirectional camera images were used to manually select the
ground truth person position on the floor-plane. The selected person position was
used to cut out the corresponding regions from all three calibrated sensors, see Fig-
ure 3.1. The aligned images cut out of the omnicam images were 56× 112 pixels
and the corresponding images from the pan-tilt camera were 112× 112 pixels, see
Figure 3.4.

From the whole data set, 1000 randomly chosen images and scans were used to
train our part based model and remaining part of the data set was used for testing.
The automatically learned part based model parameters are presented in Figure 3.4.
It can be observed that there is more uncertainty in the positions of the full and lower
body than for the upper body region in the omnicam images. The pan-tilt camera
was not very stable and it was shaking during the robot movements. This explains
the larger uncertainty in the horizontal position of the detected face and upper body
in the images from the pan-tilt camera.

In order to test recognition results, a set of 5000 no-person parts of the images
and scans are selected from the data set. The recognition results on this data set con-
taining aligned images of people and corresponding scan segments are summarized
in Figure 3.5. The results are presented as recognition Receiver Operating Charac-
teristic (ROC) curves. Changing the a priori chances p(Person) and p(BG) in (3.11),
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Fig. 3.5 Recognition Receiver Operating Characteristic (ROC) curves

various values are obtained for true positive (TP) and false positive (FP) detections
used to plot the ROC curves. The ROC curves of the single part detectors for each
sensor are also reported. Face detection in images is usually very reliable. However,
for the pan-tilt camera images from our data set the face detector performs poorly,
Figure 3.5a. This is mainly because the persons were not facing the robot very often
during the trials where they were leading the robot around our office environment.
The persons were facing the robot at the start of each trial and also later on from
time to time when they turned around to check if the robot is following them. Fur-
thermore, it can be observed from the ROC curves that the combination of parts
leads to much better results. The improvement is small for the laser scanner, Figure
3.5c. The largest improvement can be noted when the different sensor are combined,
Figure 3.5d.

Learning the part detectors using the Ada-Boost requires often long time and
many training examples [15]. On the other hand, once the part detectors are avail-
able, learning the part arrangement model usually does not require many training
examples [5]. Learning the part arrangement model parameters for the 7 parts takes
around 2 minutes for 1000 images in our Matlab implementation. In Figure 3.6 the
recognition accuracy for the various sizes of the data set used to training the part
arrangement model is presented. For each size of the training data set the experi-



36 Zoran Zivkovic and Ben Kröse
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Fig. 3.6 Recognition accuracy for various sizes of the dataset used to training the part arrangement
model. Mean results and the standard deviation from 10 random trials is presented.

ments are repeated by choosing the training data randomly 10 times. The mean and
the standard deviation of the maximum accuracy is presented. It can be observed
that consistent high accuracy recognition can be achieved even with only 50 train-
ing data samples. In practice this means that given reliable part detectors for each
sensor, only a small additional effort needs to be made to construct the part-based
combination of the detection results from multiple sensors.

3.5.3 Recognition from the Robot

The part based model detection is implemented on our robot, see Figure 3.1. The
assumption is made that the people walk over a flat ground floor surface - true in
most man-made environments. A set of possible 2D floor positions Tt is defined. In
the experiments a 10m× 10m area around the robot is used and a grid of possible
positions at every 10cm. This gives 10000 possible floor points Tt to evaluate the
part based model. The sensors are calibrated and their pose with respect to the floor
plane is known. Given the typical size of a person we can define a region of interest
(ROI) in each sensor corresponding a floor plane position, see Figure 3.1. The data
from the National Center for Health Statistics (www.cdc.gov/ nchs/) is used. For
adult humans, the mean height is 1.7m with a standard deviation of 0.085m. The
maximal height of a human is taken to be the mean plus three standard deviations
and the width to be 1/2 of the height. For each floor position Tt we also extract
the corresponding segments from the images and the range scan and use (3.11) to
decide if there is a person at that floor position. Since (3.11) is computed at a dense
grid of ground points, it often has large values for a number of ground points around
the position where the person actually is. Therefore the persons are detected as the
local maxima of (3.11).

The first stage of the algorithm where the body parts are detected in the omni-
directional images is the most computationally expensive. Running the three Haar-
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Fig. 3.7 Body part detection in omnicam images (top) and the heavily reduced set of detections
when the floor plane constraint is used (below).

like-feature based part detectors on a 600×150 panoramic image takes on average
400ms on a 2GHz PC. This is the time needed for checking every image position and
all possible part sizes. The possible part sizes start from the initial part size and then
the part size is increased 1.1 times until it gets out of the image borders. The floor
constraint can heavily reduce the number of positions and part sizes to search and
detection can be done in around 100ms, see Figure 3.7. Once the parts are detected,
detecting persons using our model takes around 25ms. Currently, the people detec-
tion with all three sensors and 7 detected parts can be performed 5 times/second in
our implementation on a 2GHz single processor.

In Figure 3.8 a few panoramic images with the detection results are presented to
illustrate the typical detection results. The data set from the human following trials
was used to evaluate the actual detection performance on a mobile robot. A small
subset of 100 annotated images and scans is used to train the model. The model
is then applied using the floor constraint to detect people in the images and the
range scans. The ground truth positions manually selected from the omnicam images
were used to evaluate the performance. If a person was detected the corresponding
rectangle ROI in the omnicam image was calculated, see Figure 3.8, and compared
to the manually selected one using a relative overlap measure. Let Rgt be the image
region defined by the ground truth bounding box. Let Re be the estimated rectangle
ROI (corresponding to the local maximum of (3.11)). The relative overlap is defined
by:

overlap =
Re ∩Rgt

Re ∪Rgt
(3.14)

where Re∩Rgt is the intersection and Re∪Rgt is the union of the two image regions.
The relative overlap can have values between 0 and 1. A detection is considered to
be true detection if the overlap was larger than 0.5. For the people following data
set of 3200 sensor readings, there were 96% correctly detected people and only 120
false detections.
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Two correct detections of partially occluded people.

Two correct detections. The persons are in the dark and hardly visible

One correct and one false detection.

Fig. 3.8 Example people detection results in panoramic images recorded from a moving robot.

3.6 Conclusions

Due to the large variability in shape and appearance of different people the problem
of people detection in images remains difficult even after many years of research
[15]. The detection results can be improved if multiple sensors are combined. This
chapter presents a people detection approach that combines information from a set
of calibrated sensors. Mobile robots that often have various senors are a typical ex-
ample of a multisensory system. The approach is inspired by the part-based object
representation from the computer vision area. A person is represented by a constella-
tion of body parts. The person body parts are detected and the parts are constrained
to be at certain positions with respect to each other. The presented probabilistic
model combines the part detections from multiple sensors and can achieve person
detection robust to partial occlusions, part detector false alarms and missed detec-
tions of body parts. The method is evaluated using a mobile test platform equipped
with a pan-tilt camera, an omnidirectional camera and a 2D laser range scanner.
The evaluation results show that highly reliable people detection can be achieved by
properly combining the three sensors.
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nitive Companion”) project.
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Chapter 4
Perceiving Objects and Movements to Generate
Actions on a Humanoid Robot

Tamim Asfour, Kai Welke, Aleš Ude, Pedram Azad and Rüdiger Dillmann

4.1 Introduction

To deal with problems in perception and action researchers in the late 80s introduced
two new frameworks, one under the heading of active vision (animate, purposive,
behavioral) originating in the field of computer vision and the other in AI/robotics
under the heading of behavior-based robotics. In both formalisms, the old idea of
conceiving an intelligent system as a set of modules (perception, action, reasoning)
passing results to each other was replaced by a new way of thinking of the system as
a set of behaviors. Behaviors are sequences of perceptual events and actions. These
efforts still go on, but only with limited success up to now. One reason for this is
that although it was expected that active vision would make many perceptual prob-
lems easier, machine perception still remains rather primitive when compared to
human perception. A further reason for failure is that behaviors were often designed
ad hoc without studying the interplay between objects and actions in depth, which
is necessary to develop structures suitable for higher-level cognitive processes. A
third reason was that no one succeeded in formulating a general enough theory for
behavior-based robotics. Hence, it remains difficult or even impossible to predict
how a newly designed behavior-based system will scale and deal with new situa-
tions.

In recent years there are renewed efforts to develop autonomous systems and
especially humanoid robots (see [7, 1, 11, 14, 12, 3]), i.e. (embodied) robots that
perceive, move and perform (simple) actions. The successful attempts in this area
are still limited to simple scenarios, very much for the same reasons mentioned
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above. One should also note the extensive research on visual recognition and cate-
gorization in computer vision, which resulted in quite advanced and efficient recog-
nition methods, although seldom tested on real world scenes. Moreover, the relation-
ship between this research and the development of cognitive systems is still weak;
since these approaches usually assume that what constitutes objects and categories
is given a priori by the external world, they do not pertain to seeing agents and
their actions. Research into cognitive robots should combine the study of perceptual
representations that facilitate motor control, motor representations that support per-
ception, and learning based on actively exploring the environment and interacting
with people that provides the constraints between perception and action. This will
then allow, e.g., to learn the actions that can be carried out on and with objects,
which leads to what we call Object-Action-Complexes (OAC).

The concept of Object-Action Complexes (OACs) has been introduced by the
European PACO-PLUS consortium ( [8]) to emphasize the notion that for a cog-
nitive agent objects and actions are inseparably intertwined and that categories are
therefore determined (and also limited) by the action an agent can perform and by
the attributes of the world it can perceive. The resulting OACs are the entities on
which cognition develops (action-centered cognition). Entities (things) in the world
of a robot (or human) will only become semantically useful objects through the
action that the agent can/will perform on them.

In this work we present a new humanoid active head which features human-like
characteristics in motion and response and mimics the human visual system. We
present algorithms that can be applied to perceive objects and movements, which
form the basis for learning actions on the humanoid. For action representation we
use an HMM-based approach to reproduce the observed movements and build an
action library. Hidden Markov Models (HMM) are used to represent movements
demonstrated to a robot multiple times. They are trained with the characteristic
features (key points) of each demonstration. We propose strategies for adaptation
of movements to the given situation and for the interpolation between movements
stored in a movement library.

4.2 Active Humanoid Head

The humanoid robot ARMAR III has been designed under a comprehensive view so
that it can perform a wide range of tasks and not only a particular task. In the design
of the robot, we desire a humanoid that closely mimics the sensory and sensory-
motor capabilities of the human. The robot should be able to deal with a household
environment and the wide variety of objects and activities encountered in it.

To achieve the above goals, we use an integrated humanoid robot consisting of
a humanoid head with seven degrees of freedom (DOF), two arms (seven DOF per
arm) and five-finger hands (eight DOF per hand), a torso with three DOF, and a holo-
nomic mobile platform. In designing the robot, we desire a humanoid that closely
mimics the sensory and sensory-motor capabilities of the human. Therefore, the
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Fig. 4.1 The humanoid robot ARMAR-III. The has 43 DOF. From the kinematics control point of
view, the robot consists of seven subsystems: head, left arm, right arm, left hand, right hand, torso,
and a mobile platform.

robot is equipped with manipulative, perceptive and communicative skills neces-
sary for real-time interaction with the environment and humans.

4.2.1 System Requirements

We pay special attention to the design of the head since the head can provide rich
perceptual input necessary to realize various visuo-motor behaviors, e.g. smooth
pursuit and saccadic movements towards salient regions, and also more complex
sensory-motor tasks such as hand-eye coordination, gesture identification, human
motion perception and linking of visual representations to the motor representations.
The major design criteria were as follows:

- The robot head should be of realistic human size and shape while modelling the
major degrees of freedom (DOF) found in the human neck/eye system, incorpo-
rating the redundancy between the neck and eye DOF.

- The robot head should feature human-like characteristics in motion and response,
that is, the velocity of eye movements and the range of motion will be similar to
the velocity and range of human eyes.
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- The robot head must enable saccadic motions, which are very fast eye movements
allowing the robot to rapidly change the gaze direction, and smooth pursuit over
a wide range of velocities.

- The optics should mimic the structure of the human eye, which has a higher
resolution in the fovea.

- The vision system should mimic the human visual system while remaining easy
to construct, easy to maintain and easy to control.

With this set of requirements, a first version of the head have been developed as
part of a humanoid robot that will allow for the integration of motor control and
perception. This is essential to enable explorative head, hand, and body movements
for learning of OACs.

4.2.2 Head Motor System

The head has seven DOF and is equipped with two eyes. Each eye can independently
rotate about a vertical axis (pan DOF), and the two eyes share a horizontal axis (tilt
DOF). To approximate These two DOF allow for human-like eye movements1. The
visual system is mounted on a neck mechanism [1] with four DOF organized as
pitch-roll-yaw-pitch.

4.2.3 Head Sensory System

To start learning object-action complexes we must, firstly, identify regions that po-
tentially contain objects of interest and secondly analyze these regions to build
higher-level representations. While the first task is closely related to visual search
and can benefit from a wide field of view, a narrower field of view resulting in
higher-resolution images of objects is better suited for the second task. While the
current technology does not allow us to exactly mimic the features of the human
visual system and because camera systems that provide both peripheral and foveal
vision from a single camera are still experimental, we decided for an alternative
which allows to use commercially available camera systems that are less expen-
sive and more reliable. Foveated vision was realized using two cameras per eye,
one with wide-angle lens for peripheral vision and one with narrow-angle lens for
foveal vision. We use the Point Grey Research Dragonfly IEEE-1394 camera in the
extended version (www.ptgrey.com). The extended version allows the CCD to be
up to 6 inches away from the camera interface board. This arrangement helps with
accessing hard to reach places, and with placing the lens into a small volume. Since
the cameras are very light and are extended from the interface board by a flexible
extension cable, they can be moved with small and low-torque servos.

The cameras can capture colour images at a frame rate of up to 30 Hz. They
implement the DCAM standard, and transmit a raw 8 bit Bayer Pattern with a res-
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olution of 640x480, which is then converted on the PC to a 24 bit RGB image. The
cameras have a FireWire interface, which is capable of delivering data rates of up
to 400 Mbps. The benefit of transmitting the Bayer Pattern is that only a third of the
bandwidth is needed for transmitting the colour image without loosing any informa-
tion. Thus, it is possible to run one camera pair at a frame rate of 30 Hz and the other
at a frame rate of 15 Hz, all being synchronized over the same FireWire bus, with-
out any additional hardware or software effort. Running the foveal cameras, which
have a smaller focal length and thus a narrower view angle, at a lower frame rate is
not a drawback because these cameras are not crucial for time critical applications
such as tracking, but are utilized for detailed scene analysis, which does not need
to be performed at full frame rate in most cases anyway. The camera is delivered
as a development kit with three micro lenses with the focal lengths 4, 6, and 8mm.
In addition, one can use micro lenses with other focal lengths as well. We have
chosen a 3 mm micro lens for the peripheral cameras and a 16 mm micro lens for
the narrow angle cameras. Furthermore, the head is equipped with six microphones
(SONY ECMC115.CE7): two in the ears, two in the front and two in the rear of the
head. These microphones will be used in the later phase of the project to achieve a
richer multi-sensory representation of objects and environment and to support the
integration of speech components in order to provide an additional information for
interaction and natural communication.

4.3 Perceiving Objects and Movements

4.3.1 Human Motion Tracking

For the tracking of human motion, an image-based markerless human motion cap-
ture system has been developed[6, 5]. The input of the system are stereo colour
images of size 320× 240 captured at 25 Hz, with two calibrated Dragonfly cam-
eras built-in into the head of the humanoid robot ARMAR III. The input images
are pre-processed, generating output for the gradient cue, the distance cue, and an
optional region cue, as described in [5]. Based on the output of the image process-
ing pipeline, a particle filter is used for tracking the movements in configuration
space. The overall likelihood function to compute the a-posteriori probabilities is
formulated as:

p(z|s) ∝ exp

{
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, (4.1)

where s is the configuration to be evaluated, z is a general denotation for the
current observations i.e. the current input image pair, and ci ∈ R

3 with i ∈ {1,2,3}
denotes the triangulated 3D position of the hands and the head. The function di(s,c)
is defined as:
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Fig. 4.2 Illustration of the performance of the markerless human motion capture system. Left:
projection of the estimated configuration into the left camera image. Right: 3D visualization of the
estimated configuration with an articulated human model.

di(s,c) :=

{ | fi(s)− c|2 : c �= 0

0 : otherwise
,

where n := dim(s) is the number of DOF of the human model. The transformation
fi : Rn → R3 transforms the n-dimensional configuration of the human model into
the 3D position of the left hand, right hand or head respectively, using the forward
kinematics of the human model. The gm with m ∈ {1,2, ...,Mg} denote the inten-
sity values in the gradient image (which is derived from the input images z) at the
Mg pixel coordinates of the projected contour of the human model for a given con-
figuration s. This process is performed for both input images using the calibration
parameters of each camera. For each image pair of the input sequence the output of
the system is the estimation of the particle filter, given by the weighted mean over
all particles. A detailed description is given in [5].

In contrast to the acquisition method based on the magnetic tracking system,
the joint angle values θ3, θ4, θ5, and θ6 are calculated directly and therefore the
position of the elbow does not have to be approximated based on empirical studies
but is determined explicitly.

4.3.2 Object Representations for Actions

Our scheme of object representation is driven by the conviction that objects and
actions are inseparably intertwined. To facilitate the execution of complex actions
in the currently perceived environment, we want our system to learn performing
actions on objects in two ways: learning by demonstration and learning by explo-
ration. In the following section we want to emphasize learning by exploration and
the consequences for an action related object representation scheme.

While autonomously exploring possible actions on an object and finally asso-
ciating successful actions with an object, the robot retrieves a set of object action
relations. The related actions for an object can be considered object affordances[9].
Associating possible actions to prior percepts only will not result in a general repre-
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sentation of object affordances. Therefore, a mechanisms is necessary which allows
the determination of affordances for unknown percepts on the basis of previously
experienced object action relations. Below we will introduce a conceptual way to
generalize object action relations to a representation, which can be used to deter-
mine the affordance of an unknown percept.

Furthermore, to allow autonomous exploration of objects, a mechanism to mea-
sure success for an executed action is necessary. This ability can not be learned in
a completely autonomous way. For a new action the system initially needs a feed-
back, whether an action executed on an object has been successful or not. This
can be provided either by an assistant who judges the action after execution or by
demonstrating successfully executed actions. Once the system learned this measure
of success, it can judge itself if the execution of an action on an unknown object was
successful or not.

A system which allows both, generalizing for object affordances and learning of
how to measure success, has to rely on two distinct sets of object features: features
which are stable and features which are varying during execution. If we consider the
example of filling a cup, the shape and colour of the cup itself will be stable during
action execution, while the fill level changes. In the following, we denote features
of an object which are stable during action execution by F(P) = ( f1, . . . , fNf ) and
features that are varying during execution with G(P) = (g1, . . . ,gNg). Each feature
vector component ( fn or gn) will be called feature channel.

Considering the invariant feature vector F(P) for an action A performed on an
percept P, it is clear that the affordance affordA(P) has to be triggered by elements
of F(P). To determine, which feature channels are responsible for the affordance,
the system has to acquire enough experience with the action A on different percepts
P1, . . . ,PN and to generalize over the resulting vectors F(P1), . . . ,F(PN). During the
generalization process, two things will be determined: the relevance Rn of each fea-
ture channel fn for the affordance and the feature values for all channels, which fre-
quently co-occur with the action and thus are strong indicators for the affordance.
To determine significant domains in feature space, clustering is performed for each
feature channel using all previous percepts which are associated with successful ex-
ecutions of the action. For feature channel n, the resulting clusters are combined
in an extended signature containing the cluster centroid cn,i, the number of sam-
ples wn,i associated to the cluster, and the distance from the cluster’s centroid to the
farthest cluster element dn,i:

Sn = {si = (cn,i,wn,i,dn,i)} (4.2)

For each cluster the probability pn,i is assigned which captures how probable an
element which belongs to the cluster affords the action:

pn,i =
wn,i

N
(4.3)

A cluster with high probability pn,i shows that the corresponding feature channel
captures relevant information for the object affordance. We calculate the relevance
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Rn of a feature channel n by:
Rn = pn,max (4.4)

where max is the index of the cluster center with largest number of elements wn,i.
With the probabilities and the feature channel relevance, the affordance of an

unknown percept X can be determined. First the invariant feature vector F(X) is
calculated. For each feature vector component the closest cluster cn,r is searched.
The distance er to the centroid is calculated and used to determine if the component
is significant for the cluster. To express this in our calculations, we define a binary
function of significance:

kn =

{
1 if er < αdn,r

0 otherwise
(4.5)

The affordance of the percept X for the action A can then be calculated by:

affordA(X) =
∑

Nf
n=0 kn pn,r

∑
Nf
n=0 Rn

(4.6)

The system has to hold an inner model which allows to determine affordances
for percepts. For the calculations we only need the extended signatures Sn. To keep
only relevant channels in the inner model, we threshold the relevance Rn of each
channel and discard channels with low relevance. Channels with low relevance will
usually have many small clusters and discarding them helps in keeping the inner
model small. Thus as inner model for affordances IA for the action A we can write:

IAA = {(Sn) : Rn > minrelevance} (4.7)

Once an action has been performed on the object, the robot has to determine if
the action was successful. For this, a measure of success which relates percepts prior
to execution with percepts after execution is necessary. The action is considered as
continuous process over time. Thus the change of a prior percept P0 to a percept
during action execution Pt can be written in the following way:

Pt = CA(P0,t) (4.8)

where CA describes the change of the percept when applying the action A. The suc-
cess can be measured between two percepts Pti ,Pti+1 , where the intervalΔ t = ti+1−ti
is large enough to perceive the change triggered by the action. The invariant features
F(P) are not relevant for the measuring of success. We use the varying feature set
G(P) of previously perceived successful action executions as input to the measure-
ment. Since we want to measure a relation of percepts between points in time, we
observe the difference between the feature sets gn(Pt+Δ t)−gn(Pt) = dn(t). The gen-
eralization of dn(t) is performed in a similar way as mentioned above. During the
generalization process the expected values En(t) = {en,i(t)} which correspond to
cluster centers and relevances of feature channels Rn are determined. We assume,
that all observed changes dn(t) for a relevant feature channel have the same course
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in time for actions applied to different percepts. This has to be ensured in a normal-
ization step where all dn(t) are mapped to a common time basis and has to be taken
into account during generalization.

In the inner model for the measurement of success IMA the expected values En(t)
are stored, if the corresponding relevance is above a threshold:

IMA = {(En(t)) : Rn > minrelevance} (4.9)

Critical in the realisation of the proposed scheme is the implementation of the
feature extractors G and F . For the example of cup filling we use the problem spe-
cific features shape and colour as invariant features (F(P) = ( fshape, fcolour)) and fill
level as varying feature (G(P) = g f illlevel ). Future challenges comprise the proposal
of feature extraction methods, which follow the requirements formulated in this
section for a broader range of problems. The proposed relevances allow to evaluate
methods on their applicability for the extraction of affordances and the measurement
of success for an action.

4.4 Action Representation

Our approach to generate, represent and reproduce actions makes use of Hidden
Markov Models. We use three different HMM for each arm, one to encode the posi-
tion of the TCP (Tool Center Point, a reference point on the hand), i.e. the hand path,
with the Cartesian coordinates being represented by three-dimensional output distri-
butions, one for the orientation of the TCP (described by three angles) and another
one for the joint angle trajectories where the dimension of the output distributions
is equal to the number of observed joint angles of the arm.

HMMs are used to generalize movements demonstrated to a robot multiple
times [2]. Characteristic features of the perceived movement, so-called key points,
are detected in a pre-processing stage and used to train the HMMs. By doing so,
we avoid having a high number of states and facilitate the matching of (or between)
multiple demonstrations. We use continuous HMMs and model the observations in
each state with multivariate Gaussian density functions. Each HMM is trained with
the key points of all demonstrations using the Baum-Welch algorithm for multiple
observations. Each training sequence consists of the key points of the respective
demonstration. For a given observation sequence, the Viterbi algorithm returns the
optimal state sequence of the HMM with respect to that observation sequence, i.e.
the sequence of states most likely to generate that observation sequence. For the
reproduction of a perceived movement, key points that are common to all (or al-
most all) demonstrations, so-called common key points, are used. To determine the
common key points across d = 1, . . . ,D key point sequences Kd,1, . . . ,Kd,n(d), where
n(d) denotes the number of key points for a demonstration d, we use the Viterbi
algorithm D times to find sequences of HMM states that correspond best to these
key point sequences. The common key points are determined by comparing these
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Fig. 4.3 Two arm postures grabbing a cup in the same way. It is obvious that the relation R to the
object is much more important than the joint angles θ .

state sequences and selecting only those states that appear in every sequence. The
actions that were considered initially are simple actions. In general, it is not possible
to learn an HMM for all possible action imaginable. To treat a large set of complex
actions, we will need to brake down the actions into very simple ones. These simple
actions would define an alphabet based on which complex actions can be defined by
concatenation.

4.5 Imitation on Objects

Learning trajectories both in the work space and in the joint space is one common
approach in imitation learning approaches. Movement are often demonstrated to
a robot by a human instructor, subsequently generalized (using the data from all
demonstrations) and finally reproduced by the robot without trying to infer the goal
of the movement. One main goal of imitation learning is to understand simple move-
ments. Taking the example of grabbing a cup, the path has to be altered if the cup
has a different position. Static learning does not fulfil these needs. In figure 4.3 one
can see that for this example the exact arm posture is less important than the relation
to the effected object. The joint trajectory is only a minor condition. It should not
be used to calculate the hand position. Instead it could be used to solve the problem
of the redundancy in computing the inverse kinematics.

In this section we present an novel way for imitation learning on objects.
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4.5.1 Adaptation of Movements to the Given Situation

If an action is repeated in a different situation, the learned path has to be adjusted.
Our idea is to learn paths only relative to the affected object (see Fig. 4.4). While a
new trajectory is processed the linear path between xstart and xend is calculated. For
the adaptation, the system is trained with the difference Δx between the observed
and the linear path. The reproduction is done by using the linear path between the
new x̃start and x̃end and the learned difference. The result would be a similar path
into a different direction.

Fig. 4.4 Adaptation of an observed movement to the given new situation. Instead of the original
sequence, the gray indicated difference to the linear path is learned. The normalized sequence is
extracted to new parameters in the lower diagram.

Using the linear path as reference is the easiest and fastest possibility. The quality
will be increased if the calculated path is already human-like. A system like the
VITE model created by Hersch and Billard [10] seems to be convenient. The joint
angle information of such a system would be ignored. Only the hand path would be
used as a basis of the difference.
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4.5.2 Generalization Across Movements

The methodology described in Section 4.4 allows us to reproduce the observed
movements by a humanoid robot and build a library specifying a complete set of
the desired trajectories for an observed action class. Motion capture has been used
successfully to reproduce motions that may require a lot of skill and practicing, but
do not need to fulfill a specific goal, such as for example dancing [15]. However,
in tasks involving the manipulation of objects, it is often necessary to adapt the ob-
served trajectories with respect to the current state of the 3-D world. It is highly
unlikely that an appropriate movement would be observed a priori and included in
the library. Hence it is necessary to generalize over the movements stored in the li-
brary and generate a new movement that can attain the goal of an action. With this in
mind we designed a strategy to interpolate between movements stored in the library,
with the goal of generating appropriate new movements that were not recorded in
the data collection phase, but need to be executed to attain the goal of an action.

Let each example motion Mi, i = 1, . . . ,NumEx, be given by key points pi j at
times ti j, j = 1, . . . ,ni,. With each movement we also store the duration of motion
Ti. Such data can be collected by the proposed motion capture system. The key
points can be specified in various ways, for example as joint space postures or as
end-effector poses in 3-D. We start by time normalizing the captured movements to
an interval [0,1]. Similarly to Rose et al. [13], we encode the example trajectories
using uniform cubic B-splines

Mi(t) =
N

∑
k=1

bikBk(t), (4.10)

where N is the number of spline basis functions. Linear least squares approximation
can be used to approximate all trajectories with the same number of splines. The op-
timal number of splines N can be determined experimentally, but more sophisticated
methods are also possible (see for example [15]).

In the following we propose a method for the generation of goal-directed arm
reaching movements. The method is, however, much more general and we discuss
how to apply it to other actions at the end of the section.

In the case of arm reaching movements, the start point xstart and the end point xend

of the end-effector in Cartesian space are very important. Therefore it makes sense
to represent goal-directed arm reaching movements as end-effector trajectories Mi

in a 3-D space. Another important factor is the duration of movement T . We use this
information as a query point q into the database when generating new movements
from example movements

q =
[
xT

start,x
T
end,T

]T
. (4.11)

Given a query point q, we would like to determine movement M(q;t) defined as

M(q;t) =
N

∑
k=1

bk(q)Bk(t), (4.12)
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which starts at xstart and ends at xend. For each of the example trajectories Mi, we
calculate its start point xi,start and its end point xi,end. We apply locally weighted
regression [4] to generate new reaching movements. This results in the following
optimization problem

min
b

C(q) =
NumEx

∑
i=1

L(Mi,M(q))K(di(qi,q)) , (4.13)

subject to
M(q;0) = xstart, M(q;1) = xend. (4.14)

Here L is the loss function, K is the weighting function, and di are the distance

functions between the query point and the data points qi =
[
xT

i,start,x
T
i,end,Ti

]T
. The

unknown parameters we minimize over are b = {bk(q)}.
We define the loss function by the Euclidean distance between the spline coeffi-

cients

L((Mi,M(q)) =
N

∑
k=1

‖bik −bk(q)‖2. (4.15)

Distance function di is given as the weighted Euclidean distance between the data
points, i. e.

d(q,qi) =
1
ai
‖q−qi‖, ai > 0. (4.16)

There are many possibilities to define the weighting function K [4]. We chose the
tricube kernel

K(d) =

{
(1−|d|3)3 if|d| < 1

0 otherwise
. (4.17)

This kernel has finite extent and continuous first and second derivative. Combined
with distance (4.16), these two functions determine how much influence each of the
movements Mi has as the query point q moves away from the data point qi. It is best
to select ai so that there is some overlap between the neighboring query points. One
possibility is

ai = min
j
‖qi −q j‖ (4.18)

By selecting ai in this way we ensure that the influence of neighboring movements
in (4.13) overlaps, that M(qi) = Mi, and that as the query point transitions from one
data point to the other, the generated movement also transitions between movements
associated with data points.

Our choice of L, K, and di makes the optimization problem (4.13) a weighted
linear least-squares problem with equality constraints, which can be solved using
standard approaches. In this way we can generate new arm reaching movement that
were not observed in the data collection phase. It can be clear from the above ex-
planation that the method is not limited to arm reaching movements. For a given
collection of movements, it is only necessary to specify reasonable query points
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and impose any constraints that are necessary to achieve the goal of an action. The
proposed movement interpolation technique can then be applied.

4.6 Discussion and Conclusions

As the goal of an action changes it is necessary to adapt the captured movements to
new situations. Sometimes it is possible to attain the goal of an action by moving
and scaling the desired trajectories in space and time. For this purpose we propose
a method for adaptation of movements to the given situation (Sec. 4.5.1). In some
situations, however, the movement changes more substantially depending on the
goal of an action, e.g. the amplitude could increase or the frequency of oscillation
could change. Such modification cannot be captured by the first approach, therefore
we introduce a strategy to interpolate between movements in stored in the movement
library (Sec. 4.5.2).

Future work will concentrate on both the evaluation of the proposed methods for
the generation of actions and a complete implementation of a real-time imitation
learning system using the active humanoid head.
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Chapter 5
Wald’s Sequential Analysis for
Time-constrained Vision Problems

Jiřı́ Matas and Jan Šochman

5.1 Introduction

In many decision problems in computer vision, both classification errors and time to
decision characterise the quality of an algorithmic solution. This is especially true
for applications of vision to robotics where real-time response is typically required.

Time-constrained classification, detection and matching problems can be often
formalised in the framework of sequential decision-making. We show how to de-
rive quasi-optimal time-constrained solutions for three different vision problems by
applying Wald’s sequential analysis. In particular, we adapt and generalise Wald’s
sequential probability ratio test (SPRT) and apply it to the three vision problems: (i)
face detection, (ii) real-time detection of distinguished regions (interest points) and
(iii) establishing correspondences by the RANSAC algorithm with application e.g. in
SLAM, 3D reconstruction and object recognition.

In the face detection problem, we are interested in learning the fastest detector
satisfying constraints on false positive and false negative rates. We solve the problem
by WaldBoost [15], a combination of Wald’s sequential probability ratio test and
AdaBoost learning [2]. The solution can be viewed as a principled way to build a
close-to-optimal “cascade of classifiers” [22]. Naturally, the approach is applicable
to other classes of objects.

In the interest point detection emulation, we show how a fast (real-time) imple-
mentation of the Hessian-Laplace detector [9] is obtained by WaldBoost [16]. The
emulated detector provides a training set of positive and negative examples of in-
terest points. WaldBoost finds an approximation to the detector output in terms of
a linear combination of efficiently computable filter responses. The trained detector
output differs from the “teacher” detector only at a small, controllable fraction of
locations and yet is significantly faster.

Center for Machine Perception, Dept. of Cybernetics, Faculty of Elec. Eng. Czech Technical Uni-
versity in Prague, Karlovo nám. 13, 121 35 Prague, Czech Rep. e-mail: \{matas,sochmj1\
}@cmp.felk.cvut.cz
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RANSAC (RANdom SAmple Consensus) is a robust estimator that has been used
in many computer vision algorithms e.g. for short and wide baseline stereo matching
and structure and motion estimation. In the time-optimal RANSAC , we derive the
fastest randomised strategy for hypothesis verification satisfying a constraint on the
probability that the returned solution is correct. The optimal strategy is found again
with the help of Wald’s SPRT test.

The rest of the paper is structured as follows. First, we formally define the time-
constrained detection problem and present the relevant parts of Wald’s theory in
Section 5.2. Next, the WaldBoost algorithm for sequential decision making is pre-
sented in Section 5.3. A face detector trained by the WaldBoost procedure is pre-
sented in Section 5.4. A similar methodology is applied in Section 5.5 to the problem
of fast approximation of a repeatable interest point detector. In Section 5.6, Wald’s
SPRT test is combined with RANSAC and a very fast method for robust estimation
of geometric relations and model parameters in general is obtained.

5.2 The Two-class Sequential Decision-making Problem

Let x be an object belonging to one of two classes {−1,+1}, and let an ordering on
the set of measurements {x1, . . . ,xm} on x be given. A sequential decision strategy is
a set of decision functions S = {S1, . . . ,Sm}, where Si : {x1, . . . ,xi} → {−1,+1, �}.
The strategy S takes the measurements one at a time and at time i makes a decision
based on Si. The ‘�’ sign stands for a “continue” (do not decide yet) decision1. If a
decision is ’�’, xi+1 is measured and Si+1 is evaluated. Otherwise, the output of S is
the class returned by Si.

In other words, a sequential strategy takes one measurement at a time. After
the i-th measurement, it either terminates by classifying the object to one of the
classes +1 or −1, or continues by taking the next measurement.

In two-class classification problems, errors of two kinds can be made by strategy
S. Let us denote by αS the probability of error of the first kind (x belongs to +1 but
is classified as −1) and by βS the probability of error of the second kind (x belongs
to −1 but is classified as +1).

A sequential strategy S is characterised by its error rates αS and βS and its average
evaluation time

T̄S = E(TS(x)) , (5.1)

where the expectation E is over p(x) and TS(x) is the expected evaluation time (or
time-to-decision) for strategy

TS(x) = argmin
i

(Si(x) �= �) . (5.2)

1 In pattern recognition, this is called “the rejection option”
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An optimal strategy for the sequential decision making problem is then defined
as

S∗ = argmin
S

T̄S (5.3)

s.t. βS ≤ β , (5.4)

αS ≤ α (5.5)

for specified α and β .
The sequential decision-making theory was developed by Wald [23], who proved

that the solution of the optimisation problem (5.3) is the Sequential Probability Ra-
tio Test (SPRT).

5.2.1 Sequential Probability Ratio Test

Let x be an object characterised by its hidden state (class) y∈ {−1,+1}. This hidden
state is not observable and has to be determined based on successive measurements
x1,x2, . . .. Let the joint conditional density p(x1, . . . ,xm|y = c) of the measurements
x1, ...,xm be known for c ∈ {−1,+1} and for all m.

SPRT is a sequential strategy S∗, which is defined as:

S∗m =

⎧
⎪⎨

⎪⎩

+1, Rm ≤ B

−1, Rm ≥ A

�, B < Rm < A

(5.6)

where Rm is the likelihood ratio

Rm =
p(x1, ...,xm|y = −1)
p(x1, ...,xm|y = +1)

. (5.7)

The constants A and B are set according to the required error of the first kind α and
error of the second kind β . Optimal A and B are difficult to compute in practice, but
tight bounds are easily derived.

Theorem 5.1 (Wald). A is upper bounded by (1−β )/α and B is lower bounded by
β/(1−α).

Proof. For each sample {x1, . . . ,xm}, for which SPRT returns the class −1 we get
from (5.6)

p(x1, . . . ,xm|y = −1) ≥ A · p(x1, . . . ,xm|y = +1) . (5.8)

Since this holds for all samples classified to the class −1

P{S∗ = −1|y = −1} ≥ A ·P{S∗ = −1|y = +1} . (5.9)
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The term on the left is the probability of correct classification of an object from the
class −1 and is therefore 1−β . The term on the right is the probability of incorrect
classification of an object to the class +1, and is equal to α . After this substitution
and rearranging, we get the upper bound on A. Repeating this derivation with the
samples classified by SPRT to the class +1 the lower bound on B is derived. ��

In practical applications, Wald suggests to set the thresholds A and B to their
upper and lower bound respectively

A′ =
1−β
α

, B′ =
β

1−α
. (5.10)

The effect of this approximation on the test error rates was summarised by Wald
in the following theorem.

Theorem 5.2 (Wald). When A′ and B′ defined in (5.10) are used instead of the op-
timal A and B, the real error probabilities of the test change to α ′ and β ′ for which

α ′ +β ′ ≤ α +β . (5.11)

Proof. From Theorem 5.1 it follows that

α ′

1−β ′ ≤
1
A′ =

α
1−β

,and (5.12)

β ′

1−α ′ ≤
1
B′ =

β
1−α

. (5.13)

Multiplying the first inequality by (1−β ′)(1−β ) and the second by (1−α ′)(1−α)
and summing both inequalities, the result follows. ��

This result shows that at most one of the probabilities α and β can be increased
and the other has to be decreased by the approximation.

Theorem 5.3 (Wald). SPRT (with optimal A and B) is an optimal sequential test in
a sense of the optimisation problem (5.3).

Proof. The proof is complex. We refer interested reader to [23]. ��
Wald analysed SPRT behaviour when the upper bound A′ and B′ is used instead

of the optimal A and B. He showed that the effect on the speed of evaluation is
negligible.

However, Wald did not consider the problem of optimal ordering of measure-
ments, since in all of his applications the measurements were i.i.d and the order did
not matter. Secondly, Wald was not concerned with the problem of estimating (5.7)
from a training set, since in the i.i.d case

p(x1, . . . ,xm|y = c) =
m

∏
i=1

p(xi|y = c) (5.14)
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and thus Rm can be computed incrementally from a one dimensional probability
density function.

5.3 WaldBoost

For dependent measurements, which is the case in many computer vision tasks,
SPRT can still be used if the likelihood ratio can be estimated. However, that usually
encompasses many-dimensional density estimation, which becomes infeasible even
for a moderate number of measurements.

In [15], it was suggested to use the AdaBoost algorithm for measurement selec-
tion and ordering and we review the relevant results in this section. The section is
structured as follows. First, the AdaBoost learning algorithm is reviewed in Sec-
tion 5.3.1. In Section 5.3.2, an approximation for the likelihood ratio estimation
is proposed for such (statistically dependent) measurements. The WaldBoost algo-
rithm combining SPRT and AdaBoost is described in Section 5.3.3.

5.3.1 AdaBoost

The AdaBoost algorithm [13, 2]2 is a greedy learning algorithm. Given a labelled
training set T = {(x1,y1), . . . ,(xl ,yl)}, where yi ∈ {−1,+1}, and a class of weak
classifiers H , the AdaBoost produces a classifier of the form

HT (x) =
T

∑
t=1

h(t)(x) , (5.15)

where h(t) ∈ H and usually T � |H |. Weak classifiers can be of an arbitrary com-
plexity but are often chosen to be very simple. The final classifier then boosts their
performance by combining them into a strong classifier HT .

The outputs of selected weak classifiers will be taken as measurements used in
SPRT.

In AdaBoost training, an upper bound on the training error is minimised instead
of the error itself. The upper bound has an exponential form

J(HT ) =∑
i

e−yiHT (xi) =∑
i

e−yi∑T
t=1 h(t)(xi) . (5.16)

Training of the strong classifier runs in a loop. One weak classifier is selected and
added to the sum at each loop cycle. A selected weak classifier is the one which
minimises the exponential loss function (5.16)

2 The real valued version is used.
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hT+1 = argmin
h

J(HT + h) , (5.17)

It has been shown [13, 3] that the weak classifier minimising (5.17) is

hT+1 =
1
2

log
P(y = +1|x,w(T)(x,y))
P(y = −1|x,w(T)(x,y))

, (5.18)

where w(T )(x,y) = e−yHT (x) is a weight of a sample (x,y) at cycle T .
As shown in [3], choosing a weak classifier according to (5.18) in each cycle of

the AdaBoost learning converges asymptotically to

lim
T→∞

HT (x) = H̃(x) =
1
2

log
P(y = +1|x)
P(y = −1|x) . (5.19)

This result will be used in the following section.

5.3.2 Likelihood Ratio Estimation with AdaBoost

The likelihood ratio (5.7) computed on the outputs of weak classifiers found by
AdaBoost has the form

Rt(x) =
p(h(1)(x), ...,h(t)(x)|y = −1)
p(h(1)(x), ...,h(t)(x)|y = +1)

, (5.20)

where the outputs of the weak classifiers cannot be treated as statistically indepen-
dent.

Since the computation of Rt(x) involves a high dimensional density estimation,
it is approximated so that this task simplifies to a one dimensional likelihood ratio
estimation. The t-dimensional space is projected into a one dimensional space by the
strong classifier function Ht (see equation (5.15)). Hence, all points (h(1), ...,h(t))
are projected to a value given by the sum of their individual coordinates. Using this
projection, the ratio (5.20) is estimated by

R̂t(x) =
p(Ht(x)|y = −1)
p(Ht(x)|y = +1)

. (5.21)

Justification of this approximation can be seen from equation (5.19) which can
be reformulated using Bayes formula to the form

H̃(x) = −1
2

logR(x)+
1
2

log
P(+1)
P(−1)

. (5.22)

Thus, in an asymptotic case, the strong classifier is related directly to the likelihood
ratio. In particular, it maps all points with the same likelihood ratio to the same
value. Consequently, it makes sense to estimate the likelihood ratio for every value
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Algorithm 1 WaldBoost Learning
Input: (x1,y1), ..., (xl,yl); xi ∈ X ,yi ∈ {−1,1},

desired final false negative rate α and false
positive rate β .

Initialise weights w1(xi,yi) = 1/l
Set A = (1−β )/α and B = β/(1−α)
For t = 1, ...,T

1. Choose ht according to equation (5.18),
2. Estimate the likelihood ratio Rt according to Eq. (5.21)

3. Find thresholds θ (t)
A and θ (t)

B

4. Throw away samples from training set for which Ht ≥ θ (t)
B or Ht ≤ θ (t)

A
5. Sample new data into the training set

end
Output: Strong classifier HT and thresholds θ (t)

A and θ (t)
B .

of H̃(x) and the estimate (5.21) is then exactly equal to R(x). For a non-asymptotic
case we take an assumption that the same relation holds between Ht(x) and R̂t(x) as
well.

Several methods can be used to estimate R̂t(x), like logistic regression for direct
ratio estimation or the class densities can be estimated instead and the ratio can be
calculated based on these density estimates. The method used in our implementation
is described in Section 5.3.6.

Having the likelihood ratio estimate R̂t , the SPRT can be applied directly. As-
suming monotonicity of the likelihood ratio, only two thresholds are needed on Ht

values. These two thresholds θ (t)
A and θ (t)

B , each one corresponding to one of the
conditions in (5.6), are determined uniquely by the bounds A and B.

5.3.3 The WaldBoost Algorithm

The analysis given above allows us to define the WaldBoost algorithm. The Wald-
Boost learning phase is summarised in Algorithm 1 and described in Section 5.3.4.
A WaldBoost classifier evaluation is explained in next Section 5.3.5 and sum-
marised in Algorithm 2. Finally, a discussion of the algorithm details is given in
Section 5.3.6.

5.3.4 Learning

WaldBoost requires, in addition to the usual AdaBoost initialisation by a labelled
training set, two additional parameters specifying desired final false negative rate
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Algorithm 2 WaldBoost Classification

Given: HT , θ (t)
A , θ (t)

B , γ .
Input: a classified object x.
For t = 1, . . . ,T (SPRT execution)

If Ht(x) ≥ θ (t)
B , classify x to the class +1 and terminate

If Ht(x) ≤ θ (t)
A , classify x to the class −1 and terminate

end
If HT (x) > γ , classify x as +1. Classify x as −1 otherwise.

α and false positive rate β of the output classifier. These rates are used to com-
pute the two thresholds A and B according to equation (5.10). The training runs in
a loop, where the first step is a standard AdaBoost search for the best weak classi-
fier (Step 1), as described in Section 5.3.1. Then, the likelihood ratio is estimated

(Step 2) and the thresholds θ (t)
A and θ (t)

B are found (Step 3), as described in Sec-
tion 5.3.2. Based on the thresholds, the training set is pruned (Step 4). Finally, a
new training set is created by a random sampling over the samples, which have not
been decided yet (Step 5). The steps 4 and 5 are discussed in more detail below.

Pruning of the training set (Step 4) is necessary to keep the final false nega-
tive and false positive rate under the specified values α and β . SPRT requires the
likelihood ratio Rm to be estimated only over the samples which have passed unde-
cided through all pruning steps up to the current learning cycle. The samples already
classified as positive or negative class samples are removed from the training set.

For the new data collection (Step 5), a random sampling is performed over those
data samples, which have not been assigned to any class yet. The number of newly
sampled samples depends on the previous pruning step.

These two steps are similar to the bootstrapping technique [17] except that the
samples are not collected only but thrown away in Step 4 as well. Another close
approach is the cascade building procedure [22] with the substantial difference that
the pruning and new data collection in the WaldBoost learning are run after every
weak classifier is trained.

5.3.5 Classification

The structure of the WaldBoost classifier is summarised in Algorithm 2. The clas-
sification executes the SPRT test on the trained strong classifier HT with thresholds

θ (t)
A and θ (t)

B . If Ht exceeds the respective threshold, a decision is made. Otherwise,
next weak classifier is taken. If a decision is not made within T cycles, the input is
classified by thresholding HT on a value γ specified by the user.
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5.3.6 Algorithm Details

Two parts of WaldBoost have not been fully specified. First, the exact likelihood
ratio Rt(x) is not know. Only its approximation R̂t is used. Although this estimate
is approaching the correct value with onward training, wrong and irreversible deci-
sions can be made easily in early evaluation cycles. Hence, an inaccurate likelihood
ratio estimation can affect performance of the whole classifier.

To reduce this effect, we estimate the likelihood ratio in the following way. The
densities p(Ht(x)|y = +1) and p(Ht(x)|y = −1) are estimated not from the training
set directly, but from an independent validation set to get an unbiased estimate.
Moreover, the estimation uses the Parzen windows technique with the kernel width
set according to the oversmoothing rule for the Normal kernel [14]

hOS = 1.144σn−1/5, (5.23)

where σ is the sample standard deviation and n the number of samples. The hOS is an
upper bound on an optimal kernel width and thus, the density estimate is smoother
than necessary for an optimal density estimation. Due to this conservative strategy,
the evaluation time can be prolonged but the danger of wrong and irreversible deci-
sions is reduced.

Second important aspect of the WaldBoost learning is the stopping criterion. For
practical reasons, only limited number of weak classifiers is found, which implies
truncation of the sequential test during strong classifier evaluation. Wald [23] stud-
ies the effect of truncation of the sequential test procedure, however, his deriva-
tions hold only for cases where independent identically distributed measurements
are taken. For that case, he suggests to threshold the final likelihood ratio at zero
and analyses the effect of such method on the false negative and false positive rates
of the test.

In our implementation, the final threshold is left unspecified. It can be used to
regulate a false positive and a false negative rate in the application. It is also used in
a ROC curve generation in the experiment section.

Generally, the more training cycles are allowed, the more precise is the likelihood
ratio estimation and the better is the separation of the classes, but the slower is
the classifier evaluation. For an analysis of the effect of truncation on WaldBoost
performance see Section 5.4.1.

5.4 WaldBoost Applied to Face Detection

The WaldBoost algorithm is applicable to any time-constrained classification task.
In this section, we show how to apply WaldBoost to face detection. The face detec-
tion problem has two specific features: (i) highly unbalanced class sizes and com-
plexities, and (ii) particular requirements on error of the first and the second kind.
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The object class size (the face class in our case) is usually relatively small and
compact compared to the non-object class. The object class samples are difficult
to collect and too much pruning can reduce the size of the object training set irre-
versibly. The non-object class, on the other hand, consists of all images except the
images of an object itself. Such a huge and complex class cannot be represented by
a small training set sufficiently. So, the goal of the learning is to explore the largest
possible subspace of the non-object class while keeping most of the object samples
during the learning process.

The second specific of the object detection is that error of the first kind (missed
object) is considered as more serious than error of the second kind (falsely detected
object). An ideal way of training a classifier would be to require a zero false negative
rate and the smallest possible false positive rate.

Having the above specifics in mind, WaldBoost can be initialised in the follow-
ing way. Let the required false positive rate β is set to zero and the required false
negative rate α to some small constant (note the inverse initialisation compared to
the above reasoning). In this setting, equations (5.10) reduce to

A =
1− 0
α

=
1
α

, B =
0

1−α
= 0 (5.24)

and the SPRT strategy (5.6) becomes

S∗m =

⎧
⎪⎨

⎪⎩

+1, Rm ≤ 0

−1, Rm ≥ 1/α
�, 0 < Rm < 1/α

(5.25)

Since Rm is always positive, the algorithm will never classify a sample to the object
class. The only allowed decision is the classification to the non-object class. Hence,
the learning process will never prune the object part of the training set while pruning
the non-object part. Such initialisation thus leads to an exploration of the non-object
class (by pruning and new sample collection) while working with a small and un-
changing object training set. Moreover, the detection rate of the final classifier is
assured to be 1−α while the false positive rate is progressively reduced by each
training cycle.

5.4.1 Experiments

The proposed WaldBoost algorithm was tested on the frontal face detection prob-
lem. The classifier was trained on 6350 face images divided into a training and a
validation set. In each training cycle, the non-face part of the training and the vali-
dation set included 5000 non-face samples sampled randomly from a pool of sub-
windows from more than 3000 non-face images. The weak classifier set H used in
training is the same as in [22] but WaldBoost is not feature-specific and any other
weak classifiers can be used. Unlike [22], the weak classifiers are real valued (de-
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Fig. 5.1 ROC curve comparison of the WaldBoost algorithm with the state-of-the-art methods.

fined by equation (5.18)) and implemented as in [6]. The allowed false negative rate
α was set to 5 ·10−4. The training was run with T = 600, i.e. till the strong classifier
consisted of 600 weak classifiers.

The WaldBoost classifier was tested on the MIT+CMU dataset [12] consisting
of 130 images containing 507 labelled faces. A direct comparison with the methods
reported in literature is difficult since they use different subsets of this dataset with
the most difficult faces removed (about 5% in [6, 25]!). Nevertheless, we tested the
WaldBoost classifier on both full and reduced test sets with similar results, so we
report the results on the full dataset and plot them in one graph with the other meth-
ods (see Figure 5.1). However, the results of the other methods are not necessarily
mutually comparable.

The speed and the error rates of a WaldBoost classifier are influenced by the clas-
sifier length. To examine this effect, four classifiers of different lengths (300, 400,
500 and 600 weak classifiers) were compared. The average evaluation time T̄S (for
definition see (5.1)) for these four classifiers is reported in Table 5.1. As expected,
the average evaluation time decreases when less weak classifiers are used. However,
shortening of the classifier affects the detection rates as well. The ROC curves for
the four classifiers are depicted in Figure 5.2. Detection rates are comparable for
the classifiers consisting of 400, 500 and 600 weak classifiers but the detection rate
drops significantly when only 300 weak classifiers are used. Thus, using the classi-
fier consisting of 400 weak classifiers only may be preferred for its faster evaluation.
However, further reducing the classifier length leads to a substantial detection results
degradation.

For a comparison of the WaldBoost classifier length with the other methods see
Table 5.2. From the compared methods, the WaldBoost classifier needs the least
number of weak classifiers, or in other words it produces the most compact classifier.

The bottom row of Table 5.2 shows the average evaluation times to decision T̄S

(sometimes referred to as the average number of weak classifiers evaluated) for the
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#wc 600 500 400 300
T̄S 13.92 12.46 10.84 9.57

Table 5.1 Speed for different length
WaldBoost classifiers.

Method WB VJ[22] Li[6] Xiao[25] Wu[24]

#wc 400 4297 2546 700 756
T̄S 10.84 8 (18.9) 18.1 N/A

Table 5.2 The number of weak classifiers used
and a speed comparison with the state-of-the-
art methods. The parentheses around T̄S of Li’s
method indicate that this result was not reported
by the authors but in [25].
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Fig. 5.2 The effect of reducing the number of weak classifiers in WaldBoost classifier on the
detection rate.

compared methods. The WaldBoost learning results in the fastest classifier among
the compared methods except for the Viola-Jones method which, despite its high
speed, gains significantly worse detection results.

To conclude the experiments, the WaldBoost algorithm applied to the face de-
tection problem proved its near optimality in the number of measurements needed
for a reliable classification. The detection rates reached by the proposed algorithm
are comparable to the state-of-the-art methods. The only method outperforming the
proposed algorithm in the quality of detection is the “nesting-structured cascade”
approach by Wu [24]. This can be caused by different features used, different subset
of the MIT+CMU dataset used or any other implementation details.

5.5 WaldBoost Trained Fast Interest Region Detection

Learning a sequential classifier implementing a face detector as described in Sec-
tion 5.3 can be viewed as a process of a fast minimum error approximation of the
face detector. If suitable computation elements are available, many other binary
functions can be approximated in the same way.
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Fig. 5.3 The strongest responses of Mikola-
jczyk Hessian-Laplace region detector (thresh-
old 3500).

Fig. 5.4 The strongest responses of Wald-
Boost Hessian-Laplace region detector (same
number of responses as in Figure 5.3). T̄S =
2.07.

This section shows how to train a sequential detector approximating the be-
haviour of an interest region detector – the non-affine Hessian-Laplace detector of
Mikolajczyk [9]. The detector has been shown to be widely useful in applications
like wide baseline matching or image retrieval.

5.5.1 Hessian-Laplace WaldBoost Classifier

In the task of Hessian-Laplace region detector3 approximation the positive examples
correspond to the regions found by the detector and all other regions in the image are
used as negative examples. The approximation error is determined by the agreement
of the detectors outputs.

An example of output of a non-affine Hessian-Laplace detector is shown in
the Figure 5.3. Only the strongest responses corresponding to threshold 3500 are
shown. Training a WaldBoost classifier approximating the behaviour of the Hessian-
Laplace detector entails several important differences in the training settings com-
pared to the face detection.

First, positive examples are collected as an output of rotationally invariant
Hessian-Laplace detector. To mimic this quality, the training set has to include ro-
tated versions of positive examples. Nevertheless, the Haar-like filters are inherently
axis parallel and thus the final rotation invariance will be weakened.

An important property of the interest regions detection task is that the positive
examples are very easy to collect. Running the original detector on any image gives
a new set of positive examples. The situation is similar to the problem of very huge
negative examples set in the face detection problem. To process as many positive

3 Available from http://www.robots.ox.ac.uk/˜vgg/research/affine/
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Fig. 5.5 Repeatability score of the WaldBoost detector compared to the state-of-the-art methods
for (a) Bark sequence (b) Boat sequence. Overlap 40%, norm. size = 30 pixels.

examples during training as possible, the positive examples set can be bootstrapped
as well (i.e. β is set to a non-zero value).

Another difference is that there are no images without positive samples for nega-
tive examples collection by random sampling. Negative examples are not taken from
an indifference region in the vicinity of a positive sample.

Finally, the positive and negative classes are highly overlapping. The interest
region detectors have usually one parameter regulating the amount of returned pos-
itive samples. However, the more regions are returned, the less reliable the regions
are and thus changing this parameter, the difficulty of the training set is controlled.

Another consequence of positive and negative class overlapping is that the Wald-
Boost classifier will give responses on many positions and scales. One way of re-
moving the less trusty detections is to threshold the final classifier response. How-
ever, a better option is to set α to a higher value and let the training to concentrate
on the most representative part of the positive class. This leads to much faster classi-
fier, since the less trusty detections are decided earlier and do not need full classifier
evaluation.

5.5.2 Experiments

The Hessian-Laplace detector has been approximated by a sequential WaldBoost
classifier consisting of 20 weak classifiers (see [16] for more details). The strongest
responses of the WaldBoost classifier are shown in Figure 5.4. Note that the de-
tections are not exactly the same as the strongest responses of the Hessian-Laplace
detector (Figure 5.3). The WaldBoost training does not retain the quality ordering
of the detections of the original detector. Nevertheless, similar and sometimes the
same structures are detected.

To evaluate the detector, the same tests as in [10] have been run to test the re-
peatability rate. The result on Bark and Boat sequences is shown in Figure 5.5. The
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sequences contain scale and rotation changes. The repeatability of the WaldBoost
detector is similar to the affine version of the Hessian-Laplace detector. The impor-
tant property of the trained detector is its speed of 2 weak classifiers evaluated per
window on average. The WaldBoost detector thus gains the speed of the original
manually tuned algorithm with 1.3s per 850×680 image.

5.6 Robust Estimation of Model Parameters - RANSAC with
Optimal Sequential Verification

RANSAC (RANdom SAmple Consensus) is a widely used robust estimator that has
become a de facto standard in the field of computer vision. RANSAC has been ap-
plied to many vision problems: short baseline stereo [20, 19], wide baseline stereo
matching, motion segmentation [20], mosaicing, detection of geometric primitives ,
robust eigenimage matching, structure and motion estimation [11, 18], object recog-
nition and elsewhere.

In this section, we show how RANSAC speed can be improved by application
of Wald’s theory. We first briefly review a model verification strategy for RANSAC

based on Wald’s SPRT test. The resulting method [8] finds, like RANSAC, a solution
that is optimal with user-specified probability. The solution is found in time that is
(i) close to the shortest possible and (ii) superior to any deterministic verification
strategy.

The RANSAC algorithm proceeds as follows. Repeatedly, subsets of the input data
(e.g. a set of tentative correspondences are randomly selected and model parameters
fitting the sample are computed. In a second step, the quality of the parameters is
evaluated on the input data. Different cost functions have been proposed [21], the
standard being the number of inliers, i.e. the number of data points consistent with
the model. The process is terminated when the probability of finding a better model
becomes lower than a user-specified probability η0 . The 1−η0 confidence in the
solution holds for all levels of contamination of the input data, i.e. for any number
of outliers within the input data.

The speed of standard RANSAC depends on two factors: the number of random
samples and the number N of the input data points. In all common settings where
RANSAC is applied, almost all models whose quality is verified are incorrect with
arbitrary parameters originating from contaminated samples. Such models are con-
sistent with only a small number of the data points.

A provably fastest model verification strategy is designed for the (theoretical)
situation when the contamination of data by outliers is known. In this case, the
algorithm is the fastest possible (on average) of all randomised RANSAC algorithms
guaranteeing a given confidence in the solution. The derivation of the optimality
property is based on Wald’s theory of sequential decision making, in particular a
modified sequential probability ratio test (SPRT). In application, the requirement of
a priori knowledge of the fraction of outliers is unrealistic and the quantity must be
estimated online.
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The speed of RANSAC depends on two factors. First, the percentage of outliers
determines the number of random samples needed to guarantee the a given confi-
dence in the optimality of the solution. Second, the time needed to assess the quality
of a hypothesised model parameters is proportional to the number N of input data
points. The total running time t of RANSAC can be expressed as

t = k(tM + mS tV ) , (5.26)

where k is the number of samples drawn, tM is time needed to instantiate a model
hypotheses given a sample, mS is an average number of models per sample and tV
is average time needed to evaluate the quality of the sample. We choose the time
needed to verify a single correspondence as the unit of time for tM, tV and t. Note
that in standard RANSAC tV = N.

The core idea of the Randomised (hypothesis evaluation) RANSAC, i.e. RANSAC

with sequential hypothesis testing, is that most evaluated model hypotheses are in-
fluenced by outliers. To reject such erroneous models, it is sufficient to perform a
statistical test on only a small number of data points. The test can be formulated as
follows. The hypothesis generation step proposes a model. It is either ‘good’, i.e. it
is uncontaminated with outliers and leads to the optimal solution (the solution with
maximal support), or it is ‘bad’ (or contaminated), i.e. at least one of the data points
in the sample is an outlier The property ‘good’ is a hidden state that is not directly
observable but is statistically linked to observable events. The observable events are
“data point (correspondence) is/is-not consistent with the model”.

The statistical test has two effects on RANSAC behaviour: it (i) reduces the num-
ber of verified correspondences (and thus time complexity of the verification step)
and (ii) introduces the possibility of rejecting (overlooking) a good sample. The
probability α of rejecting a good sample is the significance of the test and it in-
creases the number of samples drawn before the 1−η0 confidence is ensured. The
correct model parameters are recovered if an uncontaminated sample is drawn and
passes the test. This happens with probability

P = Pg(1−α) .

The problem is to find a test that balances the number of correspondences needed
for model verification and the increase in the number of samples induced by false
rejections so that the total running time t Eq. (5.26) is minimised. Since the average
time to draw an uncontaminated model that passes the test is k̄ = 1/(Pg(1−α)), we
have

t =
1

Pg(1−α)
(tM + mS tV ) . (5.27)
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5.6.1 The Optimal Sequential Test

In sequential testing, as applied e.g. in industrial inspection, the problem is to decide
whether a model (or the batch of products) is ‘good’ or ‘bad’ in the shortest pos-
sible time (i.e. making the smallest number of observations) and yet satisfying the
predefined bounds on the probabilities of the two possible errors – accepting a ‘bad’
model as ‘good’ and vice versa. Wald’s SPRT test is a solution of this constrained
optimisation problem. The user supplies the acceptable probabilities of the errors
of the first and the second kind and the resulting optimal test is a trade-off between
time to decision (or cost of observations) and the errors committed.

However, when evaluating RANSAC, the situation is different. First of all, a
‘good’ model is always evaluated for all data points (correspondences) since the
number of inliers is one of the outputs of the algorithms. So the only error that can
be committed is an early rejection of a ‘good’ model (error of the first kind). But
this only means that more samples have to be drawn to achieve the required confi-
dence 1−η0 of finding the optimal solution. So unlike in the classical setting, we
are solving a global optimisation problem, minimising a single real number – the
time to decision, since the consequence of an error is also a loss of time.

The model evaluation step of the optimal R-RANSAC proceeds as Wald’s sequen-
tial probability ratio test (SPRT) with the probability α of rejecting a ‘good’ sample
set to achieve maximum speed of the whole RANSAC process.

In the model evaluation step, our objective is to decide between the hypothesis
Hg that model is ‘good’ and the alternative hypothesis Hb that the model is ‘bad’. A
‘good’ model is computed from an all-inlier sample. The Wald’s SPRT is based on
the likelihood ratio [23]

λ j =
j

∏
r=1

p(xr|Hb)
p(xr|Hg)

= λ j−1 · p(x j|Hb)
p(x j|Hg)

, (5.28)

a ratio of two conditional probabilities of the observation xr under the assumptions
of Hg and Hb respectively. Not that here, unlike in the case of face and interest point
detection, observations are independent since we are sampling at random and the
product rule applies. In RANSAC, xr is equal to 1 if the r-th data point is consistent
with a model with parameters θ and 0 otherwise. For example, a correspondence is
consistent with (i.e. supporting) an epipolar geometry represented by a fundamen-
tal matrix F if its Sampson’s error is smaller than some predefined threshold [4].
The probability p(1|Hg) that any randomly chosen data point is consistent with a
‘good’ model is approximated by the fraction of inliers ε among the data points4.
The probability of a data point being consistent with a ‘bad’ model is modelled
as a probability of a random event with Bernoulli distribution with parameter δ :
p(1|Hb) = δ . The process of estimation of δ and ε is discussed in Section 5.6.2.

4 The probability ε would be exact if the data points were selected with replacement. Since the
objective of the verification is to count the size of the support of the model, the correspondences
are drawn without replacement. However, the approximation is close.
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Algorithm 3 The Adapted Sequential Probability Ratio Test (Adapted SPRT).
Output: model accepted/rejected, number of tested data points j, a fraction of data points
consistent with the model

Set j = 1
1. Check whether j-th data point is consistent with the model
2. Compute the likelihood ratio λ j Eq. (5.28)
3. If λ j > A, decide the model is ‘bad’ (model “rejected”), else increment j
4. If j > N, where N is the number of correspondences, decide model “accepted” else go to

Step 1.

Algorithm 4 The Structure of R-RANSAC with SPRT.
Initialise ε0, δ0, calculate A0 and set i = 0.

Repeat until the probability η of finding a model with support larger than ε̂ falls under a user
defined value η0 :

1mm=3pt

1. Hypothesis generation
• Select a random sample of minimum size m from the set of data points.
• Estimate model parameters θ fitting the sample.

2. Verification
Execute the SPRT (Alg. 3) and update the estimates if
a. ˆ

i

design (i+1)-th test (εi+1 = εi, δi+1 = δ̂ , i = i +1)
b. (εi+1 = ε̂ ,

δi+1 = δ̂ , i = i +1). Store the current model parameters θ .

After each observation the standard Wald’s SPRT makes one of three decisions:
accept a ‘good’ model, reject a ‘bad’ model, or continue testing. Since in RANSAC

the total number of inliers is needed to decide on termination, nothing is gained
by an early decision in favour of a ‘good’ model. Therefore the option of an early
acceptance of the model has been removed in the Adapted SPRT (Alg. 3). The full
SPRT is described e.g. in Wald [23] and, in a more accessible form, in Lee [5].

The Optimal Value of the Decision Threshold The decision threshold A is the
only parameter of the Adapted SPRT. In [8], Chum and Matas show show how to set
it to achieve optimal performance. The total expected time of RANSAC is expressed
as a function of A: The average time to the solution expressed as a function of A is

t(A) =
1

Pg(1−1/A)

⎛

⎝tM + mS
logA

E

(
log p(x|Hb)

p(x|Hg)

)

⎞

⎠ . (5.29)

The minimum of t(A) is found iteratively by process with fast convergence.
The R-RANSAC with SPRT algorithm is outlined in Alg. 4. To fully specify de-

tails of the algorithm, two issues have to be addressed. First, the estimation of pa-
rameters δ and ε; second, the termination criterion guaranteeing 1−η0 confidence
in the solution has to be derived.

Model rejected: re-estimate δ . If the estimate δ differs from δ by more than 5%

Model accepted and the largest support so far: design (i+1)-th test
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Algorithm 4 proceeds like standard RANSAC [1, 4], only instead of checking
all data points in the model verification step, the data points are evaluated sequen-
tially and hypotheses with low support are rejected early. After a hypothesis is re-
jected, δ is re-estimated (Alg. 4, step 2a). Accepted hypotheses are candidates for
the RANSAC outcome (see below). The overhead of the evaluation of the likelihood
ratio λ j Eq. (5.28) is negligible compared to the evaluation of the model versus data
point error function.

5.6.2 Estimation of δ and ε

The optimal test derived in Section 5.6.1 requires the knowledge of two parameters,
ε and δ . These probabilities are different for different data sets and we assume they
are unknown. The proposed algorithm uses values of ε and δ that are estimated
during the sampling process and the test is adjusted to reflect the current estimates.

If the probabilities ε and δ are available a-priori, e.g. in some standard setting
where the algorithm is run repeatedly, they can be used in the initialisation of the
algorithm.

Estimation of δ . Since almost all tested models are ‘bad’5, the probability δ can
be estimated as the average fraction of consistent data points in rejected models.
When current estimate δ differs from the estimate used to design the SPRT (by
more than 5%, for example), new (i+1)-th test is designed. The initial estimate δ0

is obtained by geometric considerations, i.e. as a fraction of the area that supports
a hypothesised model (a strip around an epipolar line in case of epipolar geometry)
to the area of possible appearance of outlier data (the area of the search window).
Alternatively, a few models can be evaluated without applying SPRT in order to
obtain an initial estimate of δ .

Estimation of ε . In general, it is not possible to obtain an unbiased estimate
of ε , since this would require the knowledge of the solution to the optimisation
problem we are solving. The tightest lower bound on ε is provided by the size of
the largest support so far. It was shown in [7] that a sample with the largest support
so far appears logk times, where k is the number of samples drawn. When such a
sample (with support of size Ii+1) appears, new test is designed for εi+1 = Ii+1/N.
Throughout the course of the algorithm, a series of different tests with

ε0 < · · · < εi < · · · < ε

are performed. The initial value of ε0 can be derived from the maximum time the
user is willing to wait for the algorithm to terminate.

The properties of R-RANSAC with SPRT were tested on a wide range of stan-
dard data and a two to tenfold speed up of the algorithm was observed [8]. Tests

5 RANSAC verifies, on average, − log(η0) ‘good’ models, e.g. for the typical η0 = 0.05 a ‘good’
model is hypothesised three times prior to termination of the algorithm.
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included epipolar geometry estimation in both wide and narrow baseline settings
and homography estimation.

5.7 Conclusions

A framework exploiting Wald’s sequential analysis for designing time-efficient two-
class detection and matching algorithms was presented. Besides Wald’s Sequential
Probability Ratio Test, we relied on WaldBoost, a method that allows learning se-
quential classifiers in the case of non-i.i.d. features.

The WaldBoost algorithm was applied to the problems of face and interest point
detection. Error rates of the face detector proposed algorithm were comparable to the
state-of-the-art methods. In the interest point application, the output of the Hessian-
Laplace detector [9] was approximated by a sequential WaldBoost classifier con-
sisting of 20 weak classifiers. The detector was evaluated according to the standard
testing protocol on reference images [10] and its repeatability was similar to the
affine version of the Hessian-Laplace detector. The WaldBoost detector gains the
speed of the original manually tuned Hessian-Laplace algorithm — only about 2
weak classifiers are evaluated per window on average, which means that about eight
additions are needed on average to decide a window corresponds to an interest point.
Finally, we have presented a sequential strategy based on Wald’s SPRT for evalua-
tion of model quality in RANSAC. The resulting RANSAC with SPRT is significantly
faster (2 to 10 times) than its deterministic counterpart.
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Chapter 6
Pose Estimation and Feature Tracking for Robot
Assisted Surgery with Medical Imaging

6.1 Introduction

The field of vision-based robotics has been widely growing for more than three
decades, and more and more complex 3-D scenes are within robot vision capabilities
thanks to better understanding of the scenes, improvement of computer capabilities
and control theory. The achievement of applications like medical robotics, mobile
robotics, micro-robotic manipulation, agricultural automation or the observation by
aerial or underwater robots needs the integration of several research areas in com-
puter vision and automatic control ([32, 19]).
For the past two decades, medical robot and computer-assisted surgery have gained
increasing popularity. They have expanded the capabilities and comfort for both pa-
tients and surgeons in many kinds of interventions such as local therapy, biopsies,
tumors detection and removal with techniques like multi-modal registration, on-
line visualization, simulators for specific interventions and tracking. Medical robots
provide a significant help in surgery, mainly for the improvement of positioning ac-
curacy and particularly for intra-operative image guidance [36]. The main challenge
in visual 3-D tracking for medical robotic purposes is to catch the relevant video in-
formation from images acquired with endoscopes [5], ultra-sound probes [17, 21] or
scanners [35, 26] so as to evaluate the position and the velocity of objects of interest
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(a) (b)

Fig. 6.1 (a) The laparoscopic experimental setup. The instrument is mounted on the end effec-
tor of a surgical robot and inserted through the abdominal wall while the laparoscope is inserted
through another insertion point. (b) An image-guidance with CT scanners feedback control during
the percutaneous insertion of a radio-frequency needle.

which usually are natural or artificial landmarks attached to a surgical instrument.

This chapter presents several 3-D pose estimation algorithms and visual servoing-
based tracking with monocular vision systems such as endoscopes and CT scanners
(see Fig. 6.1) developped in an attempt to improve the guidance accuracy. These are
intended for the 3-D positioning and guidance of surgical instruments in the human
body. The efficiency of most of model-based visual servoing approaches relies on
correspondences between the position of tracked visual features in the current image
and their 3-D attitude in the world space. If these correspondences contain errors
then the servoing usually fails or converges towards a wrong position. Overcoming
these errors is often achieved by improving the quality of tracking algorithms and
features selection methods ([37, 20]). Following this purpose, the work integrates
several issues where computational vision can play a role:

1. estimating the distance between the tip of a laparoscopic instrument and the tar-
geted organ with projected collinear feature points,

2. estimating the 3-D pose of an instrument using a multiple features tracking and
a virtual visual servoing,

3. positioning a cylindrical-shaped instrument,
4. registering the instantaneous position of a robot using stereotaxy.

The chapter is organized as follows. In the next Section, the problem of the pose es-
timation of surgical instruments with markers is stated and solved for some degrees
of freedom. In Section 3, we focus on the positioning of the symmetry axis of a
cylindrical-shaped instrument. Applications of both Sections use endoscopic vision
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in laparoscopy. The stereotactic registration with a single view (2-D/3-D registra-
tion) is studied as a pose estimation problem in Section 4. Finally, a conclusion with
some perspectives is drawn in Section 5.

6.2 Pose Estimation of a Laparoscopic Instrument with
Landmarks

6.2.1 Pose Estimation with Collinear Markers

There exist several difficulties when tackling the problem of estimating the 3-D po-
sition of a laparoscopic surgical instruments with a single endoscopic view. One
difficulty is the use of monocular vision which gives poor depth information. An-
other one relies on the highly unstructured nature of the scene with varying lighting
conditions and with a background moving due to breathing or heart beating. To solve
these problems, we conceived five years ago a special instrument which projects a
laser pattern onto the organ surface in order to provide the relative orientation of
the instrument with respect to the organ, even if the instrument is not in the camera
field of view. Optical markers have been added on the tip of the surgical instrument.
These markers (composed of three circular LEDs) were directly projected onto the
image and in conjunction with images of the laser pattern, they were used to guide
the instrument (see Fig. 6.2). We combined image feature points (spots center co-
ordinates) and depth information for positioning the instrument with respect to the
pointed organ [22].

Fig. 6.2 A surgical instrument with a laser pointing device (laser beam - big cross) and three optical
markers (three small crosses). The cross-ratio is computed with crosses’ centres and controlled so
as to estimate the distance and its variations between the tip and the pointed organ surface.
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6.2.1.1 Pose Estimation with a Calibrated Endoscope

Recovering the relative orientation (2 degrees of freedom - a unit vector r) and
position (3 degrees of freedom - a vector t) of a set of n collinear points such as the
optical markers and laser projections in Fig. 6.2 with respect to the camera has been
previously investigated by Haralick fifteen years ago [15]. The interpoint distances
(structure) and a focal length f of the camera are assumed to be known. Haralick
solved this problem with a linear algorithm. Let P0 = t, P1 = t + λ1r,..., Pn−1 =
t + λn−1r be n discriminated points where λi represents the distance between the
(i+1)th and ith points. The first point P0 is arbitrarly chosen as the origin (λ0 = 0),
hence the perspective projection Qi = (ui,vi,1)T of the ith point is given by

[0 0 1] (λir + t)

⎡

⎢
⎣

ui

vi

1

⎤

⎥
⎦ = Kc (λir + t) (6.1)

where Kc is a (3× 3) upper diagonal matrix containing the internal parameters of
the camera. From the above equation, Haralick built a homogeneous linear system
with a uni-variate matrix Kc = diag( f , f ,1) and vectors t and r as unknowns

[
Ar At

]

︸ ︷︷ ︸
A

[
r

t

]

= 0 . (6.2)

A is a (2n× 6) real matrix and a closed-form solution can be found with n ≥ 3
discriminated points. This system may be reformulated as a classical optimization
problem with an equality constraint:

min ‖Ar r + At t‖ subject to rTr = 1 , (6.3)

where Ar and At are two (2n×3) real matrices defined as:
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(6.4)
The solution for r is given by the eigenvector associated with the smallest eigenvalue
of the following symmetric matrix
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E = AT
r

(
I − At

(
AT

t At
)−1

AT
t

)
Ar (6.5)

and the position vector t is given by t = −(
AT

t At
)−1 AT

t Ar r. We end up with
two different estimates for r (a twofold ambiguity in the sign of r). However, for
real objects placed in front of the camera, the third component of vector t must be
strictly positive assuming that the camera z-axis (usually, the optical axis) is pointed
towards the scene. This leads to the uniqueness of the solution for the pose.
It is worth pointing out that collinearity is a projective invariant property which is
not fully exploited in this technique for pose recovery. Moreover, in presence of
both noisy data and close points in the object pattern, matrices Ar and At are ill-
conditioned, which introduces some significant bias in the results. The use of the
least mean squares and the lack of data normalization in the original algorithm tend
the solution to be sensitive to the condition number. One has to pay attention to data
normalization since the pose estimation may be computed with points not always
well scattered. This may also lead to numerical problems. To lower the condition
number, it seems advisable to normalize data coordinates with an affine transforma-
tion as in [16].

6.2.1.2 Distance with Collinear Landmarks

To perform 3-D positioning of an instrument with respect to an organ [22], we need
to estimate the distance between the instrument and the targeted organ (depth d0 in
Fig. 6.3). Since the three optical markers centers P1, P2 and P3 are placed along the
instrument axis, we assumed they are collinear with the laser spot’s barycentre P.

Under this assumption, a cross-ratio can be computed from these four points [28].
This projective invariant can also be computed in the image using their respective
projections p1, p2, p3 and p (see Fig. 6.2 and 6.3) and can be used to estimate the
depth d0. In other words, since a 1-D projective basis can be defined either with
{P1,P2,P3} or their respective images {p1, p2, p3}, the-cross ratio is a projective
invariant built with the fourth point (P or p). Consequently, a 1-D homography H
exists between these two bases, so that the straight line Δ corresponding to the
instrument axis is transformed, in the image, into a line δ = H(Δ) as shown in Fig.
6.3. The cross-ratio τ is given by:

τ =

(
pp2
p1 p2

)

(
pp3
p1 p3

) =

(
PP2
P1P2

)

(
PP3
P1P3

) (6.6)

and d0 is obtained as

d0 = PP1 = (1− τ)
P1P3

τ− P1P3
P1P2

= α
1− τ
τ−β

(6.7)
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Fig. 6.3 The basic geometry involved for the relative instrument positioning with the laser spot
aligned with three collinear LED centres.

where α and β depend only on the known relative position of P1, P2 and P3. To
simplify the computation of the cross-ratio in the image plane, it’s necessary to
characterize the straight line δ in order to relate the pixels coordinates of an image
point p = (u,v,1)T and its projective coordinates (sλ ,s)T on δ . Let (−b,a)T be the
normalized cosine direction of δ and pk = (uk,vk,1)T a point on δ . This gives:

⎡

⎢
⎣
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⎤
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0 1
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]

(6.8)

or

λ =
[−b a

]
[
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v− vk

]

(6.9)

with :
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a b c

]

⎡
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v

1

⎤

⎥
⎦ = 0 (6.10)

where (−c) is the orthogonal distance from δ to the image origin. The computation
of the cross-ratio is then:

τ =
λ0 + p1 p2

p1 p2

p1 p3

λ0 + p1 p3
(6.11)
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From equation (6.7), it is straightforward that d0 is a function of τ which, in turn, is
a function of λ0, p1 p2 and p1 p3. Similar computations lead to the same relationship
between d2 and another cross-ratio μ defined with the points P1,P2,P3, I and their
respective projections provided that i, the perspective projection of the incision point
I (see Fig. 6.4), can be recovered [10]. Since I is generally not in the camera field of
view, this can be achieved by considering a displacement of the surgical instrument
between two configurations yielding straight lines δ and δ ′ in the image. Then, i is
the intersection of these lines given that I is invariant. Finally :

μ =

(
p1 p3
p2 p3

)

(
p1i
p2i

) =

(
P1P3
P2P3

)

(
P1I
P2I

) , (6.12)

d2 = P1I =
α

1−β

μ + β
1−β

. (6.13)

Fig. 6.4 Markers P1,P2,P3 on the tool axis Δ and their images p1, p2, p3 on line δ . Note that
i = H(I) is invariant during surgical procedures.

6.2.2 Pose Estimation with Multiple Features

6.2.2.1 Objectives and Related work

In many early works, the images of laparoscopic instruments are segmented, in or-
der to control the position of the endoscopic camera. These methods are based on
the structure, mainly the apparent lines of the instrument [1, 6], or on its frequential
features [8, 41]. In order to make the detection more robust and accurate, instru-
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ments can be marked with structuring markers as described before ([1, 43, 22]) or
frequential (color) markers ([42, 38]). Most of these works use only the 2-D position
of the instrument in the image and the accuracy of the features extraction is not so
important for aimed applications. On the contrary, the 3-D pose estimation requires
a very accurate feature extraction step.

None of the earlier works have focused on the complete 6 degrees of freedom de-
tection. To determine the six degrees of freedom, the non symmetric part of the
instrument has to be used or the instrument has to be marked. The second solution
avoids using a CAD model and can be applied to any kind of instrument. We use the
marker presented in Fig. 6.5, which is composed of twelve black spots on a white
area, building four ”marker lines” which can be discriminated from each other by
using the cross-ratio invariant. For more information on the choice of this marker,
the interested reader can refer to [30]. The detection of this marker is mainly based
on the intensity of the white area and the black spots in the endoscopic images. It can
thus be used in grey level images as well as color endoscopic images. The results
of the detection technique are shown in Fig. 6.5 for laboratory endoscopic images.
The image features noted s are n points corresponding to the centres of the visible
spots (generally n ∈ [0,6]) and two lines l+ and l− corresponding to the apparent
contours of the shaft in the endoscopic image and represented by their distance ρ to
the origin of the image and their orientation θ :

s =
(
l+, l−, p1, · · · , pn

)T
. (6.14)

Depending on the size of the white marker area in the image, the complete extrac-
tion process can take up to 200 ms. In order to track the instrument at higher rate,
we have developed techniques based on the moving edges method due to Bouthemy
[3]. The main difficulty is to track the black spots which can appear and disappear,
due to the rotation of the instrument around its own axis, and possibly due to occlu-
sions. We have proposed a method based on the prediction of the spots appearance
and disappearance which allows to track the markers without the need to register
the images of the spots with the real positions [31]. Thus, the tracking of the instru-
ment can be handled at a rate of 20 Hz as long as at least one spot is visible in the
endoscopic images.

6.2.2.2 Pose Estimation of a Tagged Instrument

Our model-based pose estimation process requires a calibrated camera. Endoscopic
cameras have a large field of view and include large radial distortion. As a conse-
quence, the calibration method must estimate the distortion parameter [2, 39].

Only four degrees of freedom are necessary to estimate the attitude of the instrument
axis (see next Section). Theoretically, the 4 degrees of freedom of the pose can be
determined using the contour generator and its image (the apparent contour) of the
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(a)

(b)

(c)

Fig. 6.5 (a-c) The pose estimation as a virtual visual servoing process with multiple geometric
features (apparent lines, marker-lines and eventually the circular needle). (a) The straight lines are
the projections with the initial virtual camera position. (c) The projections when the error vector
s− sd tends to 0.

cylinder [9]. However, the positions of the marking spots not only define the proper
rotations and translations, but also give information on the orientation and position
of the axis of the shaft. We then chose to estimate all the degrees of freedom of the
instrument. This can be done with analytical methods using both the apparent con-
tours and one known point at the cylinder’s surface [29]. Other methods, like those
proposed by Horaud [18], Haralick [14], DeMenthon [7] or Quan [33] can also be
used. However, the full pose estimation is interesting for robustness considerations
only if all the available information given by the apparent lines and all the spots
is used. To this purpose, the Virtual Visual Servoing (VVS) due to Marchand and
Sundareswaran ([24, 34]) may handle the information redundancy. VVS is a numer-
ical iterative method for minimizing the error between the extracted features and the
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forward projection of the object in the images, based on the image-based visual ser-
voing (IBVS) schemes. This process needs the computation of an interaction matrix
which relates the variations of each image feature and the the camera velocity screw
τ . With the image features we use, the interaction matrix Ls has the following form:

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

l̇+

l̇−

ṗ1

...

ṗn

⎞

⎟
⎟
⎟
⎟
⎟⎟
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⎠
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⎠
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(
cVC

c/i
cωc/i

)

︸ ︷︷ ︸
τ

. (6.15)

The interaction matrices associated to a point Lpt and to a line Lline can be found in
the works of Chaumette [11]. In order to guarantee a fast convergence and a good
stability of the VVS, it is useful to initialize the algorithm close enough to the real
pose (from which a desired feature vector sd can be defined). To this purpose, we
use either the DeMenthon iterative method when at least four points are visible.
From the obtained initial estimate, the following control law is applied to the virtual
camera

τ = −λ L̃s
+(s− sd) (6.16)

until the control vector becomes smaller than a specified value. The process con-
verges quickly towards the real pose of the camera (see Fig. 6.5-c).

6.3 Pose Estimation of a Laparoscopic Instrument without
Landmarks

6.3.1 Problem Statement and Perspective Projection

The aim of this section is to briefly present a new algorithm for the determination of
the pose of a straight homogeneous circular cylinders (SHCC) without markers, that
is to say directly from the apparent contour. More details are provided in [9]. The
apparent contour (γ) of a cylinder is a set of points which intersect the viewline and
the image plane. It is the projection of a 3-D curve on the cylinder’s surface referred
to as the contour generator (Γ ).
Given the matrix Kc of camera intrinsic parameters, the cylinder radius rc and the
apparent lines {l−, l+}, we look for the estimation of the Plücker coordinates (r,w)
of the cylinder axis (see Fig. 6.7) satisfying the non-linear equation rTw = 0. This
means that one has to solve a polynomial equation for a unique (double) solution
(see [9]) that is, for a null discriminant. This one equals B2 −AC = 0 with
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⎧
⎪⎨

⎪⎩

A = mT(Kc)−T[r]× [r]T×m

B = mT(Kc)−T[r]×w

C = ‖w‖2 − r2
c

(6.17)

and after some computations, it can be expressed as

(
rc B√

C
+ wT(Kc)−1m)T (

rc B√
C

−wT(Kc)−1m) = 0 . (6.18)

If the scalar C ≤ 0, the projection center (0,0,0,1)T is located inside the cylinder (or
on its surface, if C = 0) and the above equation yields no real solutions. We do not
consider these special cases in the remainder, we rather focus this work on the more
practical situation with real solutions. In the case of a circular cylinder with infinite

Fig. 6.6 (a-c) Segmentation of three endoscopic images of surgical instruments in the abdominal
cavity. The degenerate conic fitting superimposed with the overall apparent contour of the two
detected cylindrical instruments.
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height and a constant radius, equation (6.18) shows that the apparent contour is a set
of two straight lines represented either with the pair of vectors l− and l+ satisfying

{
(l−)T m ≡ {(Kc)−T (I−α[r]×) w}T m = 0

(l+)T m ≡ {(Kc)−T (I+α[r]×) w}T m = 0
(6.19)

withα = rc/
√‖w‖2 − r2

c , or alternatively with the (3×3) matrix C= l− l+T + l+ l−T

satisfying mT C m = 0. It is a rank-2 symmetrical matrix defined up to a scale and
both representations are equivalent to model the apparent contour with 4 parameters.

6.3.2 Direct Pose Computation

In this paragraph we present a linear algorithm for the pose estimation. Starting from
(6.19), the matrix C can be related to the pose parameters since we have

KcT C Kc ≡ KcT
(
l− l+T + l+ l−T

)
Kc (6.20)

≡ (α[r]×−I) wwT (α[r]T× +I)+ (α[r]×+I) wwT (α[r]T×−I) (6.21)

≡ α2[r]×wwT[r]× + wwT (6.22)

≡ [r]×(α2 wwT

‖w‖2 +
[w]×[w]T×
‖w‖2 )[r]T×=[r]×(I−(1−α2)

wwT

‖w‖2 )[r]T× (6.23)
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with z =
√

1−α2

‖w‖ [r]×w and the unit vector zu = z/σ . On the other hand, the SVD

has the following expression KcT C Kc = U D UT = U diag(λ1,λ2,0) UT. Then, it
is easy to see that U =

[
a zu r

]
and

σ = ‖z‖ =
√

1−α2 =

√

1− λ2

λ1
.

Finally, w ≡ zu × r = a and

‖z‖ =

√

1− r2
c

‖w‖2 − r2
c

⇒ ‖w‖ = rc

√

1 +
λ1

λ2
. (6.25)

Many results are provided in [9]. In particular, we have compared the pose computa-
tion from the apparent contours of cylinders and the Haralick’s method for the pose
of a set of collinear points [15] with some artificial markers attached to the cylinder’s
surface. Here, we rather focus the discussion on the application of concern which
is the image-guidance for intra-operative procedures in minimally invasive surgery
(MIS). In laparoscopic surgery, most of surgical instruments have cylindrical parts
and are metallic (see Fig. 6.6) leading to grey regions with many specularities in
the image. Prior researchs involving such endoscopic images have been conducted
in the field of color image segmentation [8]. Once regions have been segmented,
the region boundaries are ordered and used to perform a degenerate conic-based
contours fitting. With the calibrated and distortion-corrected endoscope used in the
experiments, the 3-D localization of the two moving surgical instruments in Fig. 6.6
has been done with success for more than 300 successive images of the abdominal
cavity of a pig.

With the proposed method, the location of each insertion point in laparoscopy can be
recovered, on-line, with no marker, without any knowledge of robot kinematics and
without an external measurement device [10]. Since any laparoscopic instrument
is passsing through this point, the motion constraint in MIS can be expressed as
the intersection of multiple convergent 3-D straight lines. Since any (homogeneous)
point X is on L if L�X = 0, given n positions corresponding to the set of dual Plücker
matrices {L�

1,L
�
2, ...,L

�
n}, the intersection of lines is obtained with a rank-3 (4n×4)

matrix GT
n such that

Gn = [L�
1,L

�
2, ...,L

�
n] . (6.26)

That is to say the null-space of GT
n must be a one-dimensional subspace and the

intersection may be computed with n (n ≥ 2) 3-D positions. By computing the SVD
of GT

n , one obtains the common intersection with the singular vector associated to
the null singular value (or the smallest one in presence of noisy data). Moreover, the
perspective projection of the 3-D line Lj is the image line l j defined by

[l j]× = KcPc L j (KcPc)T = [(Kc)−T w j]× ⇒ l j ≡ (Kc)−T w j , (6.27)



92 Doignon et al.

where Pc is the projection matrix. Since vector l j is defined up to a scale, it does
not depend on the magnitude of vector w j, hence the n convergent image lines
l1, l2, ..., ln must satisfy

(
l1 . . . ln

)T
i =

(
w1 . . . wn

)T

︸ ︷︷ ︸
Wn

(Kc)−1 i = 0 (6.28)

where i is the image of the insertion point I. It follows that a set of n 3-D straight
lines is projected to n convergent image lines if the above (n× 3) matrix Wn is of
rank 2. It is only a necessary condition which does not ensure the convergence of
the 3-D lines, but it makes very important the accurate estimation of the imaged
cylinder axis (lines l j), hence the estimation of its Plücker coordinates.

6.4 Pose Estimation of Stereotactic Landmarks

This Section deals with the 2-D/3-D registration of a stereotactic frame from a single
slice captured with a computed tomography (CT) scanner. A registration with a
single image is very well suited for CT-guided robotic systems in interventional
radiology, particularly to quickly correct the needle positioning (see Fig. 6.8) during
percutaneous procedures [27].
In stereotaxy, line fiducials are usually used to produce a set of image points that
are further employed in a pose estimation algorithm (see Fig. 6.8). To achieve the
registration, the matching and pose estimation processes need to be robust and fast
enough so as to be convenient in clinical conditions. To this end, a new formulation
of the patient-to-modality stereotactic registration with a single image and for any
arrangement of the fiducials has been proposed. It is worth pointing out that our
solution requires very few fiducials in comparison with previous techniques.

6.4.1 The Imaging Model

Since most CT imaging devices execute some proprietary algorithms to generate im-
age slices and since these algorithms usually are not in the public domain, we con-
sider the imaging device as a black box. In other words, this work is focused on the
delivery of a general framework for 2-D/3-D registration rather than a study of the
physical properties of each step of image formation. A CT scanner provides slices
of objects. It has internal parameters such as the thickness of a slice and scaling pa-
rameters that influence the tomographic reconstruction process from the projection
measurements. To take care of them, we propose an imaging model composed of an
affine transformation accounting for intrinsic parameters, an Euclidean one for the
rigid-body transformation that relates the scanner to the stereotactic frame and an
orthographic projection that expresses the projection of a thin slice onto the image.
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(a) (b)

Fig. 6.8 ”Look an move” with CT scanners. (a) The needle is maintained in the needle-holder
jaws of a lightweight parallel robotic plateform (CT-Bot), which has to be moved to the target
point (right). (b) A new acquisition to check for the final positioning.

To formulate the registration, we denote with F0 the reference frame attached to
the fiducials and with Fct the frame attached to the scanner. A scaled frame FI

is also attached to the CT image with pixel units instead of millimeters. A point
in space like the origin of a reference frame is written in bold as O. The imaging
model relates the coordinates of a 3-D point P j expressed in Fct and coordinates of

the corresponding point IQ j =
[
u j v j

]T
in the image as

ctOP j =

⎡

⎢
⎣

x j

y j

z j

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0

0 1

0 0

⎤

⎥
⎦

︸ ︷︷ ︸
orthographic

[
sx g

0 sy

]

︸ ︷︷ ︸
intrinsic parameters

[
u j

v j

]

︸ ︷︷ ︸
pixel

= ctΠπ
πSI

IQ j

(6.29)

where ctΠπ is a (3× 2) matrix accounting for the orthographic projection onto the
cutting plane (π) (see Fig. 6.10) and the non-null entries of matrix πSI are the in-
trinsic parameters of the scanner. They consist of two scaling factors sx and sy and a
shearing parameter g accounting for a gantry tilt angle error or table bending during
the scan. Usually, this parameter is very small and it is often neglected. However, it
may be identified, since in some circumstances, it may decrease the registration ac-
curacy as it is for MRI [4]. In the rest of the paper, this parameter will be neglected.
Since there exists a rigid-body transformation between F0 and Fct , the expression
for the vector OP j in F0 is given by 0OP j = R ctOP j + t where R is a rotation
matrix and t is a position vector. Then, one may see the following expression

0OP j =
[

r1 r2
] πSI

IQ j + t (6.30)
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(a) (b)

Fig. 6.9 (a) The plastic cube with the line fiducials used for experiments. - (b) A CT scanner image
(magnified) when the cube is placed on a phantom.

as a compact representation for the transformation FI → F0 including the ortho-
graphic projection, where rk is the kth column of R. Therefore, the following (3×2)
real matrix

0LI = [r1 r2] πSI = [l1 l2] (6.31)

must satisfy the quadratic constraints coming from the orthonormality of any rota-
tion matrix 1 :

l1 T l1 = s2
x , l2 T l2 = s2

y and l1 T l2 = 0 . (6.32)

Finally, considering the notations for homogenous coordinates of IQ j as IQ
j
=

(u j,v j,1)T, equation (6.30) is rewritten as

0OP j =
[

0LI t
] IQ

j
. (6.33)

6.4.2 Modeling the Fiducials

Fiducials used in stereotaxy are usually composed of rods (see Fig. 6.9-a) and are
represented with straight lines [13, 35, 23]. Let Δ j be the jth line. This line may be
represented with the origin O j (3 dof) and a unit vector y j (2 dof). Its intersection
with the scanner plane (π) is (generally) a point P j = Δ j ∩ π (see Fig. 6.9-b), and
substituting the expression of 0OP j in (6.33), it can be expressed with

0OP j = 0OO j +λ j
0y j =

[
0LI t

] IQ
j
, λ j ∈ R (6.34)

1 In accordance with (6.29), if the shearing parameter g is significant, equation (6.32) should be
replaced by lT1 l1 = s2

x , lT1 l2 = sxg and lT2 l2 = g2 + s2
y .
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where O j is the orthogonal projection of the origin of the frame F0 onto Δ j, thus sat-
isfying O jP j ×y j = 0. Therefore, to achieve the registration, one must solve (6.34)
for 0LI , t and the {λ j}’s, that is for (9 + n) unknowns with n lines. Consequently,
the size of the system to solve increases with the number of rods, leading to large
matrices which must be precessed with many numerical operations [26]. To re-
duce the number of unknowns, we introduce the Plückerian representation [16]. The
Plückerian coordinates of a 3-D line Δ j are the pair of orthogonal vectors (y j,w j)
(see Fig. 6.10) where w j is defined by w j = y j ×OP j. With this representation, the
origin of the line as well as the {λ j}’s are removed from the system. The above def-
inition and the latter expression for 0OP j can be gathered in the following equation,
expressed in F0:

[0y j]×
[

0LI t
] IQ

j
= 0w j , (6.35)

where [y j]× is the (3×3) skew-symmetric (singular) matrix associated to y j. Equa-
tion (6.35) is the basis for our registration approach.
Generally, intersections of straight lines with the cutting plane should provide as
many spots as there are lines (see Fig. 6.9-b). In practice, several spots may be
missing in the image or in contrary some artifacts may appear [23]. In practice, line
fiducials are bounded (λmin

j ≤ λ j ≤ λmax
j ). It is easy to compute these extremal val-

ues for any displacement (R,t) and to check the relevance of the corresponding spot.
To do so, a pre-multiplication with a unit vector 0y

T
j in (6.34) gives the following

expression

λ j = 0y j
T [

0LI t
] IQ

j
. (6.36)

Given n lines/points correspondences, (6.35) can be expressed as a minimization
problem with equality constraints:

min
x

|| A x−b ||2 subject to xT C x = 0 (6.37)

Oj

P j

(π)

(Δ j)

λ j

w j

Fo

Fct

y j

Oo

Fig. 6.10 A 3-D line Δ j crossing the cutting plane (π). The pair of vectors (y j,w j) is the
Plückerian representation of the line.
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where x =
[

l1T l2T tT
]T

, C is a (9×9) symmetrical matrix with null entries except
for C14 = C25 = C36 = C41 = C52 = C63, A is a (3n×9) and b is a (3n×1) matrix,
respectively defined as:

A =

⎡

⎢
⎢
⎣

IQ1
T ⊗ [0y1]×

...

IQ
n
T ⊗ [0yn]×

⎤

⎥
⎥
⎦ , b =

⎡

⎢
⎢
⎣

0w1
T

...

0wn
T

⎤

⎥
⎥
⎦ . (6.38)

6.4.3 Registration as a Pose Estimation Problem

This section aims at designing fast algorithms for estimating the parameters of the
rigid registration, assuming a calibrated scanner is available (see [26] for uncali-
brated scanners). We tackle this rigid registration problem (recovery of R and t)
with the minimum number of fiducials needed and by means of a linear algorithm.
Given a single image, and considering the unknown vector ξ =

[
r1

T r2
T tT

]T
,

(6.35) becomes [
IQ

j
T ⊗ [0y j]×

]
S9 ξ = 0w j, (6.39)

where S9 =

[
πSI

T ⊗ I3 0

0 I3

]

. With exactly 4 lines/points correspondences, (6.39) is

a deficient-rank system which can be solved thanks to rotations properties. Except
for some arrangements of the fiducials enumerated in [25], the matrix A has rank
8 when components contain uncorrupted data. However, with noisy data, the rank
may be greater than 8. Hence, we wish to enforce the rank value because of the ma-
trix structure (it is built with singular matrices). Therefore, there is a one-parameter
family of solutions and (6.39) may be solved with the the Singular Value Decompo-
sition (SVD). We summarize it as follows:

1. Find the SVD of A: A = UDVT, where the diagonal entries di of D are in de-
scending numerical order,

2. Set b′ =
[
b′1 b′2 . . . b′9

]T = UT b (see (6.38)),
3. Build the vector z defined by zi = b′i/di, for i = 1, · · · ,8 and z9 = 0,
4. The general solution is ξ = S−1

9 (V z + γ v9), where v9 is the last (rightmost)
column of V .

1=
[
ξ1 ξ2 ξ3

]T

and r2 =
[
ξ4 ξ5 ξ6

]T
.

Equation (6.39) can be solved provided that all combinations of triplets verify the
conditions mentioned in previous section. Because of the presence of noise, R is
not exactly a rotation matrix. One may enforce R to be a rotation by computing the
SVD, R = UΣVT and by setting singular values to 1. If R′ is the corrected rotation
matrix, it is given by R′ = U diag(1,1,det(UV)) VT [12, 40].

5. Compute the value of scalar γ with the quadratic relations between r
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A Newton-Raphson (N-R) numerical approach has also been carried out. It uses
the initial guesses provided by the above least-squares method (LS) but we do not
describe it here (see [26] for details).

6.4.4 Experimental Validation

(a) (b)

Fig. 6.11 (a) The two cubes used for the experiments. - (b) image picked up from a CT helicoidal
sequence with image size of (512×512) pixel.

Experiments were conducted with a Siemens Somatom Plus CT scanner and with
fiducials composed of two cubes with six rods each (see Fig. 6.11). The relative po-
sition of the cubes is constrained to by a guide rail on which the cubes are screwed.
Each cube has been calibrated as well as their relative position with a Mitutoyo
measuring machine which can achieve a precision better than 10 μm.
We have assessed the accuracy of the relative pose recovery by registering only
one fiducial cube at a time, and by computing the relative position and rotation.
By doing so, it is possible to verify the consistency of the pose estimation between
two coordinate frames with a single image. To this end, a helicoidal sequence has
been captured while a constant translation of the table is performed. In Fig. 6.12,
we present the estimated position vector between the two cubes, as the orientation
is approximately the identity matrix (it differs to the identity matrix by less than
10−5 on each component). The registration has been executed for each cube inde-
pendently and once it has been done for both (with the LS method and the N-R min-
imization), the relative position and orientation have been computed. The position
T =

[
0 −118.29 0

]
mm was measured during a calibration procedure (orientations

are equal for the two cubes’ reference frames). Thus, this value (dotted line in Fig.
6.12) can be compared to the estimations.
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As shown in Fig. 6.13, the 3-D pose algorithm works very well on experimental data,
since the registration of each cube can serve to predict the position of the rods of the
other cube. The estimated error bounding-boxes with an assumed spot location error
of 0.25 pixel are also represented. As illustrated, all the detected spots are inside a
box with boundaries corresponding to 3-D position errors always less than 2 mm.

6.5 Conclusion

In this chapter, we have described some pose estimation problems by means of
intra-operative images. We focused the works on endoscopic views for assisted la-
paroscopy and CT images slices with X-ray scanners for the image guidance in inter-
ventional radiology. For vision-based integrated systems used in minimally invasive
surgery, we have developed a set of techniques for assisting surgeons in navigat-
ing and manipulating the three-dimensional space within the human body. To that
purpose, simple geometrical features have been attached to surgical instruments.
Alternatively, when the task is sufficiently constrained by the shape of object of in-
terest, we directly solve the pose without artificial markers: it is the case for the 4
degrees of freedom of a cylindrical needle-holder inside the human abdomen.

One path toward safety and reliability is to incorporate all the available video infor-
mation. Following this issue, the virtual visual servoing has been used to combine
both the apparent contour of the instrument and artificial markers in a numerical
iterative process.
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Fig. 6.12 Relative positions between the cubes during the acquisition (slice thickness is 0.5 mm)
while translating the table. The first plot (up) is with 5 fiducials for the estimation while the second
(down) is with 6 fiducials.
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Fig. 6.13 CT images of the cubes. Each drawing box in one cube is corresponding to 2 mm of
error bounds computed with the registration of the other cube.

The recovery of out-of-field of view instrument in laparoscopy, the automatic sutur-
ing intervention demonstrated in vitro [31] and the positioning of a radio-frequency
needle with CT scanners [25] are some applications we contributed for the afore-
mentioned pose problems.

Finally, we believe that significant advances are possible when the geometric infor-
mation is fused across time and across modality. Furthermore, pre-operative infor-
mation like the insertion point’s localization, the CAD model of instruments, the
eye-to-hand calibration or the availability of several statistical atlases of organs can
provide some strong constraints on the vision problem. These are crucial factors
to achieve reliable dedicated vision systems while compensating small displace-
ments due to patient breathing or any small disturbances which may occur during
an image-guided surgical procedure.
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Chapter 7
A Sliding Window Filter
for Incremental SLAM

Gabe Sibley, Larry Matthies and Gaurav Sukhatme

7.1 Introduction

This work develops a sliding window filter for incremental simultaneous localiza-
tion and mapping (SLAM) that focuses computational resources on accurately es-
timating the immediate spatial surroundings using a sliding time window of the
most recent sensor measurements. Ideally, we would like a constant time algorithm
that closely approximates the all-time maximum-likelihood estimate as well as the
minimum variance Cramer Rao lower bound (CRLB) - that is we would like an
estimator that achieves some notion of statistical optimality (quickly converges), ef-
ficiency (quickly reduces uncertainty) and consistency (avoids over-confidence). To
this end we give a derivation of the SLAM problem from the Gaussian non-linear
least squares optimization perspective. We find that this results in a simple, yet gen-
eral, take on the SLAM problem; we think this is a useful contribution.

Our approach is inspired by the results from the photogrammetry commu-
nity, dating back to the late 1950’s [1], and later derivatives like Mikhail’s least
squares treatment [6], the Variable state dimension filter(VSDF) [5], visual odome-
try(VO) [4], modern bundle adjustment(BA) [10, 3] and of course extended Kalman
filter (EKF) SLAM [9].

We apply the sliding window filter to SLAM with stereo vision and inertial mea-
surements. Experiments show that the best approximate method comes close to
matching the performance of the optimal estimator while attaining constant time
complexity - empirically, it is often the case that the difference in their performance
is indistinguishable.
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7.2 Non-linear Least Squares SLAM

Standard statistical point estimation is a useful tool for understanding the basic
structure of the SLAM problem. Non-linear least squares is appealing for a num-
ber of reasons. First, because it emphasizes the fundamental minimization principle
at work in least squares, which, we would argue, is a principle that is more difficult
to see from the recursive estimation perspective. Second, starting with the under-
lying probability density functions that describe our problem, it clearly shows the
basic probabilistic nature of SLAM - that is, SLAM is simply tracking a normal
distribution through a large state space; a state space that changes dimension as
we undertake the fundamental probabilistic operations of removing parameters via
marginalization, and adding parameters via error propagation and conditioning. An-
other reason to derive SLAM via statistical point estimation is because it exposes
a rich body of theory about the convergence of non-linear least squares estimators.
With this in mind, we carry forward in the usual way, by describing the system state
vector, process model, measurement model and how we incorporate prior informa-
tion.

7.2.1 Parameterization

The parameter vector is a temporal sequence of robot poses xp j , 1 ≤ j ≤ m, and 3D
landmark positions xmi , 1 ≤ i ≤ n.

x =

[
xp

xm

]

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

xp1

...

xpm

xm1

...

xmn

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

A pose xp j at time index j is represented by a six parameter column vector com-
prised of a 3D point and an Euler angle xp j = [xp j yp j zp j rp j pp j qp j ]

T . Map land-
marks are represented by their 3D position, xmi = [xmi ymi zmi ]

T . The state dimension
is thus |x| = (6m+3n) and grows as the robot path increases and as new landmarks
are observed.
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7.2.2 Kinematic Process Model

The process model f j : R
6 → R

6 for a single step describes each pose in terms of
the previous pose

xp j = f j(xp j−1 ,u j)+ w j (7.1)

where u j is an input command to the robot. The noise vector w j is additive and
follows a normal distribution w j ∼ N (0,Q j). We also assume it is reasonable to
have xp j ∼ N ( f j(xp j−1 ,u j),Q j). A simple and useful kinematic process model for
f j is the compound operation, ⊕, which is described in [9]. The 6×6 Jacobian of

f j , F j = ∂ f j
∂xp j

∣∣
∣
∣
xp j ,u j+1

, which we will need in a moment, is also derived in [9].

Concatenating individual process models together, the p.d.f. describing the robot
path, xp = [xT

p1
, ...,xT

pm
]T , is p(xp) = N (μp,Q), where

μp = f (x) =

⎡

⎢
⎢
⎢
⎢
⎣

xp1

f1(xp1 ,u2)
...

fm(xpm−1 ,um)

⎤

⎥
⎥
⎥
⎥
⎦

, Q =

⎡

⎢
⎢
⎣

Q1

. . .

Qm

⎤

⎥
⎥
⎦ .

In practice, one usually extends this basic model to also estimate other quanti-
ties, such as linear and angular velocities; for clarity, we will stick with this basic
kinematic formulation.

7.2.3 Sensor Model

We say a measurement of the ith landmark taken from the jth pose is related to the

state vector by the sensor model hi j : R
|xmi |+|xp j | → R

|zi j |

zi j = hi j(xmi ,xp j )+ vi j (7.2)

which generates the expected value the sensor will return when landmark i is
observed from pose j. We assume vi j ∼ N (0,Ri j) so that zi j ∼ N (hi j,Ri j), where
Ri j is the observation error covariance matrix.

Lumping all the observations, measurement functions and measurement covari-
ances together we write z, h, and R as
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z =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

z11

...

z1m

...

znm

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, h(x) =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

h11

...

h1m

...

hnm

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, R =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

R11 0 . . . 0

0
. . .

...

R1m

...
. . .

0 . . . Rnm

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

.

Treating the process information as observations, we get the measurement likeli-
hood p(z,u|x) = N (μz,Σz), where

μz =

[
h(x)
f (x)

]

, Σz =

[
R 0

0 Q

]

.

7.2.4 Point Estimation

Suppose we are also given prior information about the first pose and the map,
p(xπ) = N

(
μπ ,Π−1

)
, where

xπ =

[
xp1

xm

]

, μπ =

[
x̂p1

x̂m

]

, Π =

[
Πp1 Πpm

ΠT
pm Πm

]

.

This prior encodes information about a single starting pose, about some previ-
ously known map of n landmarks, and about the relationships between the starting
pose and the map; Πp is the 6× 6 initial pose information matrix, Πm is 3n× 3n
map prior information matrix, and Πpm is the 6×3n pose-map information matrix.

Armed with the above we can now write the posterior probability of the system,

p(x|z,u) = p(z,u|x)p(x). (7.3)

We wish to compute the maximum a posteriori estimate of x which maximizes
this density. First, it helps if we lump the sensor model, process model, and prior
information terms together by defining the function g(x) and matrix C as

g(x) =

⎡

⎢
⎣

gz(x)
g f (x)
gπ(x)

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

z−h(x)
xp − f (xp)[

x̂p1

x̂m

]

−
[

xp1

xm

]

⎤

⎥
⎥
⎥
⎥
⎦

, C−1 =

⎡

⎢
⎣

R−1 0 0

0 Q−1 0

0 0 Π

⎤

⎥
⎦ ;

then by taking the negative logarithm of (7.3) we get a proportional non-linear
least squares problem

�(x) =
1
2

(
g(x)T C−1g(x)

)
. (7.4)
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Letting ST S = C−1 and r(x) = Sg(x) then (7.4) is clearly a non-linear least
squares problem of the form

�(x) =
1
2
||r(x)||2. (7.5)

Newton’s solution to such optimization problems is the iterative sequence

xi+1 = xi − (∇2�(xi))−1∇�(xi). (7.6)

For small residual problems a useful approximation to (7.6) is the Gauss-Newton
method, which approximates the Hessian ∇2�(xi) by r′(xi)T r′(xi). Thus, since the
gradient of (7.5) is ∇�(xi) = r′(xi)T r(xi), the Gauss-Newton method defines the
sequence of iterates [2]

xi+1 = xi − (r′(xi)T r′(xi))−1r′(xi)T r(xi) (7.7)

Noting that r′(xi) = SGi where Gi is the Jacobian of g(xi), (7.7) becomes

δxi = (GT
i C−1Gi)−1GT

i C−1g(xi). (7.8)

such that xi+1 = xi + δxi. When iterated, this sequence is locally q-quadratically
convergent to the MAP estimate for near zero-residual problems [2]. The system of
linear equations

GT
i C−1Giδxi = GT

i C−1g(xi) (7.9)

is the essential least squares form of the SLAM problem (we will often omit the it-
eration index). The difference between many SLAM algorithms can be boiled down
to differences in how these equations are solved. It is also interesting to note here
that for many problems the Gauss-Newton method is algebraically identical to the
iterated extended Kalman filter (IEKF).

7.3 Sparsity in the System Equations

Before describing the sliding window filter it is useful to take a look at the overall
structure of the SLAM least squares equations, and to study how this structure lends
itself to various algebraic solutions.

Expanding the Jacobian G,

G =

⎡

⎢
⎢
⎣

∂gz
∂x
∂g f
∂x
∂gπ
∂x

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎣

H

D

L

⎤

⎥
⎦ ,
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Fig. 7.1 Basic
structure of the
sensor model
Jacobian, H.

Fig. 7.2 The sparse structure of least squares SLAM system matrix is due
to contributions from three components: the measurement block HT R−1H,
the process block DT Q−1D, and the prior information block LTΠL.

we see that the system matrix, GT C−1G = HT R−1H+DT Q−1D+LTΠL, has a
sparse structure. The structure of H is shown in Fig. 7.1. The sparsity pattern of least
squares SLAM system matrix is due to contributions from the three components

HT R−1H=

⎡

⎣
U W

WT V

⎤

⎦, DT Q−1D=

⎡

⎣
E 0

0 0

⎤

⎦, and LTΠL=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Πp 0 ... Πpm

0 0 0

... 0
. . .

...

Πpm
T 0 ... Πm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where U = AT R−1A, W = AT R−1B and V = BT R−1B. The block tri-diagonal
process matrix is

E =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

Q−1
1 + F1Q−1

2 FT
1 −FT

1 Q−1
2 0 . . . 0

−Q−1
2 F1 Q−1

2 + F2Q−1
3 FT

2
. . .

...

0
. . .

. . . 0
... Q−1

m−1 + Fm−1Q−1
m FT

m−1 −FT
m−1Q−1

m

0 . . . 0 −Q−1
m Fm−1 Q−1

m

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

.

This structure is also depicted graphically in Fig. 7.2. The task is to solve the system
of normal equations 7.7 which expand to

[
Λp Λpm

Λpm
T Λm

][
δxp

δxm

]

=

[
gp

gm

]

where gp and gm are the least squares RHS vector corresponding to the robot path
and map, respectively. We solve this system of equations using elementary matrix
operations - for example the Schur complement - to reduce the lower right map
block Λm onto the upper left process block Λp

[
Λp −Λpm(Λm)−1Λpm

T 0

Λpm
T Λm

][
δxp

δxm

]

=

[
gp −Λpm(Λm)−1gm

gm

]
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which is solved directly for δxp and then for δxm by back-substitution:

δxp = (Λp −Λpm(Λm)−1Λpm
T )−1(gp −Λpm(Λm)−1gm)

δxm = (Λm)−1(gm −Λpm
Tδxp)

Alternately, we can also reduce the upper left process block Λp onto the lower
right map block Λm

[
Λp Λpm

0 Λm −Λpm
T (Λp)−1Λpm

][
δxp

δxm

]

=

[
gp

gm −Λpm
T (Λp)−1gp

]

giving the solution

δxm = (Λm −Λpm
T (Λp)−1Λpm)−1(gm −Λpm

T (Λp)−1gp)
δxp = (Λpm)−1(gp −Λpmδxm)

Depending on the process noise and the prior, the system matrix GT C−1G can
take on different sparsity patterns that affect the complexity of finding a solution. In
the field, the problem at hand will define the sparsity pattern, which will influence
the choice of which algorithm to use.

7.4 The Sliding Window Filter

To keep the complexity of the filter constant with the number of landmarks it is nec-
essary to reduce the size of the state vector. This is accomplished by removing the
oldest pose parameters and distant landmark parameters. If we directly remove pa-
rameters from the system equation however, we can lose information about how the
parameters interact. The right way to remove parameters from a multi-dimensional
normal distribution is to marginalize them out.

7.4.1 The Effects of Marginalizing Out Parameters

Marginalizing out a set of pose parameters will add cross-information terms in the
SLAM least squares system matrix (that is the Hessian, or information matrix) be-
tween all the landmarks that were conditionally dependent on those parameters. This
is depicted graphically in Fig. 7.3 for a system that starts without any prior informa-
tion. Studying this structure we see that downdating the oldest pose causes fill-in in
three places: 1) between any landmarks that were visible from the downdated pose,
2) between the parameters of the next-oldest-pose (the pose one time step after the
pose being downdated), and 3) between the next-oldest-pose and all landmarks seen
by the downdated pose. Interestingly, Π is the only place that ever suffers from
fill-in. Because of this structure, when solving we can still take advantage of any
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Fig. 7.3 Information matrix evolution for an example problem with 4 poses and 6 landmarks. The
left image is after measuring landmarks 1, 2, 3 from pose 1, landmarks 2, 3, and 4 from pose 2,
landmarks 3, 4, and, 5 from pose 3 and 4, 5, and 6 at pose 4. In the second image from left we
see that marginalizing out pose 1 induces conditional dependencies (fill-in) in three places: 1) the
top left 6×6 of the process-block, 2) the prior map-block Πm between landmarks that were visible
from pose 1, and 3) the prior pose-to-map block Πpm between landmarks that were visible from
pose 1. These places are shaded in darker grey. At this point (second from right image) downdating
landmark 1, which is not visible from any of the remaining poses, will induce no extra fill-in in Π
(right image).

sparsity patterns in Λpm and Λp. It is important to note that the Π term catches all
the prior information as we “roll” up old state parameters. If we were to ignore Π ,
we would not benefit from past measurements. Marginalizing out landmarks that
are not visible from any active pose will also only ever cause fill in Π .

Marginalizing out poses at a fixed rate and landmarks when they lose support
results in a constant time complexity incremental SLAM estimation algorithm. By
choosing when to downdate poses and landmarks sliding window SLAM can scale
from the full batch solution, to the extended Kalman filter solution. That these algo-
rithms are subsumed within one framework testifies to the generality of the simple
least squares approach.

It is interesting to note what happens if we simply delete parameters from the
estimator instead of marginalizing them out. For a sliding window of size k, the
error converges like 1/k just as we would expect the batch estimator to do. However,
after k steps, the error stops converging as we delete information from the back of
the filter. With such deleting and a sliding window of k = 2 it is interesting to note
that we end up with a solution that is nearly identical to previous forms of Visual
Odometry [4, 7, 8]. The graph in Fig. 7.4 shows the average RMS mapping error for
this type of Visual Odometry compared to the batch solution, as well as the sliding
window filter solution.

7.5 Conclusions

This chapter describes a SLAM solution that concentrates computational resources
on accurately estimating the immediate spatial surroundings by using a sliding time
window of the most recent sensor measurements. Focusing computation on im-
proving the local result is crucial for applications that wish to fuse spatially high-
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Fig. 7.4 Graph showing average RMS mapping error. Each curve is a trial for different size time
window, averaged over 50 Monte-Carlo trials, with 0.1 pixel std. dev. measurement noise. 1.0m std.
dev. process noise. Note that the sliding window filter comes close to the full SLAM solution. A
sliding window of 2 is close to optimal 1/k full batch curve. Further, because VO does not combine
information over time, it does not reduce uncertainty as time passes.

resolution, dense structure estimates. With high bandwidth sensors (like cameras)
this is clearly beneficial for computational reasons, and it especially true if we wish
to fuse all of the sensor data (or a significant portion thereof).

By tuning a few parameters, the sliding window algorithm can scale from exhaus-
tive batch solutions to fast incremental solutions. Ideally, we would like a constant
time algorithm that closely approximates the all-time maximum-likelihood estimate
as well as the minimum variance Cramer Rao Lower Bound - that is, we would like
an estimator that achieves some notion of statistical optimality (quickly converges),
efficiency (quickly reduces uncertainty) and consistency (avoids over-confidence).
We find that approaching this problem from the statistical point estimation point
of view results in a simple, yet general, take on the SLAM problem; we think this
is a useful contribution. Data-fusion is fundamental for improving a robot’s met-
ric estimation of the world. Doing it quickly and with large amounts of data is a
challenging task. Ultimately, some form of dense data-fusion will enable accurate
high-resolution spatial perception for autonomous robots.
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Chapter 8
Topological and Metric Robot Localization
through Computer Vision Techniques

8.1 Introduction

Nowadays, robotic applications based on vision sensors have become widespread,
but there is still a gap between these applications and the pure computer vision
developments. Sometimes this separation can be due to the lack of communication
between both research communities or to the divergence in their objectives. Other
times this difference is due to the inadequacy of the methods for certain tasks, e.g.,
there are computer vision methods which can not be applied for robotic tasks due to
their computational complexity. However, this can be solved many times just with a
slight adaptation of the techniques.

Many works during the last years have developed vision based methods for
robotic tasks such as control [5], automatic topological map building [23], topo-
logical localization [10], or Simultaneous Localization and Mapping [3]. This work
is focused on the application of computer vision techniques for robot global self-
localization, a fundamental issue for any autonomous device. Both topological and
metric localization are taken into account, as the two of them have huge similarities
with computer vision applications. On the one hand, topological localization usually
consists of identifying the current location of our mobile device in a higher cogni-
tive level than just metric units, for example identifying the room where the robot
currently is. This could also be named room/scene identification. Object recognition
is an important issue in computer vision research, with many works and important
results in the previous years, e.g. [11], [8] or [19], that could be adapted for scene
recognition. For instance, in [12] a room identification technique was presented,
that mixes range and camera information and is based on a learning method typi-
cally used for object classification/recognition (AdaBoost). On the other hand, the
metric localization as well as the Simultaneous Localization and Mapping (SLAM)
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are very similar to the classical computer vision problem of Structure from Motion
(SFM). The SFM algorithms provide the camera (or robot) and landmarks loca-
tion from the required minimum number of multi-view correspondences. Thus, they
have the same goal as the SLAM. This has been studied in previous works, e.g, SFM
from the 1D trifocal tensor has been proved to improve bearing only SLAM initial-
ization [4], and more recently it has been shown also the utility of SFM methods for
the always difficult problem of loop closing [18], in this case using the 2D geometry
for image pairs.

This paper explains a vision-based method to obtain both topological and met-
ric localization through a hierarchical process, presented in our previous work [17].
There, global localization is obtained with respect to a visual memory (a topological
map built with sorted reference images). The global localization, sometimes known
as the ”kidnapped robot problem”, intends to localize the robot only with the cur-
rent acquisition of the sensors, without any knowledge of previous measurements,
oppositely to the continuous localization tasks. The aforementioned localization hi-
erarchy consists of an initial less accurate localization result, in terms of topological
information (room identification), which applies object recognition techniques. The
second localization result of the hierarchy is a more accurate metric localization. It
is obtained through a SFM algorithm for 1D bearing only data [1], [4] based on
the 1D trifocal tensor [6]. This kind of data is intuitively extracted from images,
Fig. 8.1 shows two examples of 1D bearing only data. On the left, the orientation of
point features in omnidirectional images, that is the more stable cue in that kind of
images; on the right, another situation where using only 1D is convenient, the hor-
izontal coordinate of vertical lines in conventional images, as these line segments
usually have a clear orientation (x-coordinate) but they do not have accurate tips
(y-coordinate).

Fig. 8.1 Two examples of 1D bearing only data extracted from images.

The outline of this paper is as follows. Next section 8.2 is divided in two parts:
subsection 8.2.1 details the process used to perform the room/scene recognition and
subsection 8.2.2 explains the 1D trifocal tensor estimation and its SFM algorithms.
In section 8.3, a brief description of the features that have been studied in our exam-
ples is given, followed by section 8.4 with several examples of localization results
obtained applying the explained techniques. Finally section 8.5 concludes the work.
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8.2 Vision-based Hierarchical Localization

This section summarizes the hierarchical localization process developed in [17],
including some small improvements in the process and emphasizing the similarities
between well-known computer vision tasks and some robotic ones, as well as how
these computer vision methods are applied to robot localization.

To perform both topological and metric localization in the same process has sev-
eral advantages. First of all, both kinds of information are usually necessary, e.g.,
the topological one is more suitable to interact with users but the metric one is more
accurate. The fact of designing a hierarchical process, leaving the computationally
expensive steps at the end (those needed for a metric localization), helps to deal effi-
ciently with a big amount of reference images. The diagram in Fig. 8.2 summarizes
the hierarchical localization process, whose two main stages are detailed in next
subsections.

Most
similar
Image

Adjacent
Image

Get adjacent
image from VM

Current
Image

   

C

B

METRIC LOCATION
(relative rotation 

and translation
between A - B and C )

TOPOLOGICAL LOCALIZATION
(room/scene recognition)

METRIC 
LOCALIZATIONREFERENCE
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map
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3-view
robust
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1D trifocal
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Fig. 8.2 Diagram of the hierarchical localization process.

8.2.1 Object Recognition ⇒ Room/Scene Recognition

Firstly, let us focus in the topological localization, which corresponds to the first
stage of the hierarchical process. In our case of study, this topological localiza-
tion consists of room identification indoors and of building recognition outdoors.
The goal is to localize the robot in the available topological map (or visual mem-
ory of reference images). In practice, this means to identify which image from the
reference set is the most similar to the current view, which will point the topologi-
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cal location. In order to obtain this, a similarity evaluation algorithm is run in two
stages: a first one using simple global image descriptors, and a second one using
local image features.

8.2.1.1 Global Image Descriptors Evaluation

First, a pre-filtering is carried out evaluating a global descriptor, such as color his-
tograms or color invariant moments, which is computed for each image over all its
pixels. Then, all reference images are compared with the current view with regard to
the chosen global descriptor, and a probability to be the current room/location is es-
timated for each reference image. Images with lower probability than the established
threshold are discarded. This step intends to reject in a fast way as many wrong can-
didates as possible, with a rough but quick global evaluation of the appearance of
the images.

8.2.1.2 Local Image Descriptors Evaluation

After the rough initial step to discard reference images which are unprovable to
match the current one, a more detailed similarity measure is obtained evaluating lo-
cal image features descriptors. Two approaches were studied in our previous work
[17] for this task, a typical nearest neighbour (NN) based matching and the pyra-
midal matching method developed in [8], that approximates the optimal correspon-
dences between two given feature sets in linear time with the number of features.

NN-based approach. The first approach for image similarity evaluation is based
on a local feature nearest neighbour matching. This process has quadratic (n2) or
n log(n) computational cost with the number of features (n), depending on the im-
plementation chosen. We use a typical approximate nearest neighbour implementa-
tion that has the lower complexity. After the matching, a probability Pv is estimated
for each reference image (v) processed at this stage, which depends on the similarity
Scv between the reference image and the current view (c):

Pv = e
−(1−Scv)

σs , (8.1)

being σs the variance among the similarity values between all reference images
and the current one. In this approach, the similarity measure Scv is obtained from
the distance between the two views dcv: Scv = 1

dcv+1 , being dcv = mde + Fz, with
m the number of matches, de the average Euclidean distance between each pair of
matched features, F the number of non matched features and z a penalty for it.

Pyramid-based approach. In the second image similarity evaluation approach
based on local features studied, the descriptor sets of all features are used to imple-
ment a pyramid matching kernel [8]. This implementation consists of building for
each image several multi-dimensional histograms (each dimension corresponds to
one descriptor), where each feature occupies one of the histogram bins. The value of
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each feature descriptor is rounded to the corresponding histogram resolution, which
gives the coordinates of the bin corresponding to that feature. Several levels of his-
tograms are defined, and in each level, the size of the bins is increased by powers of
two until all the features fall into one bin. The histograms of each image are stored
in a vector (pyramid) ψ with different levels of resolution. Once these pyramids
are built, the similarity S between two images, the current one (c) and a reference
image (v), is obtained from the intersection of the two pyramids of histograms as
explained in next eq. (8.2). This operation is quite efficient, with linear complexity
in the number of features:

S(ψ(c),ψ(v)) =
L

∑
i=0

wiNi(ψ(c),ψ(v)) , (8.2)

with Ni the number of matches between images c and v in level i of the pyramid
(features that fall in the same bin in level i of the histograms, see Fig. 8.3 ). wi is the
weight for the matches in level i and is the inverse of the current bin size (2i). L is the
level where all features fall in the same bin, e.g., Fig. 8.3 example has L = 3. This
similarity measure is divided by a factor determined by the self-similarity score of
each image, in order to avoid giving advantage to images with bigger feature sets,
so the normalized similarity measure obtained with this approach is

Scv =
S(ψ(c),ψ(v))

√
S(ψ(c),ψ(c)) S(ψ(v),ψ(v))

. (8.3)
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Fig. 8.3 Local Features Pyramids construction and matching (intersection). Top: plot with the
features from two images (c and v). Bottom: histograms pyramids (ψ) of both images and their
intersection (for graphic simplification, only two levels evaluation and feature descriptor of 2 di-
mensions).
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Similarly to the previous studied approach, a probability for each reference image
being the current location is estimated based on this Scv (see eq. 8.1).

Notice that the matches found with this approach are not always individual
feature-to-feature matches, as the method just counts how many features fall in
the same bin. The more levels we check in the pyramid the bigger the bins are,
so the easier it is to get multiple coincidences in the same bin (as it can be seen in
Fig. 8.3). Although this matching method can be less accurate, it can also be faster
than typical matching methods based on nearest neighbour approaches, so it is very
convenient for the current task when it is necessary to deal with big amounts of
reference images.

Finally, to obtain the topological localization result, using either similarity eval-
uation approach shown in this section, we select the reference location (image) with
higher probability (Pv) as the current topological location. If our process would fin-
ish with this topological localization, it would be convenient to make a robust selec-
tion from the x most probable locations, for example imposing a multi-view geom-
etry constraint [9] to theirs sets of correspondences or making a voting process with
these images. However, if we carry on the whole hierarchical localization process,
the method continues with a last step based pursuing a more accurate metric local-
ization, which is based on a robust estimation of geometry constraints that will be
explained in next subsection. Then, if this following robust estimation fails, the pro-
cess could go back and pick up the reference image with second higher probability.

8.2.2 Structure From Motion (SFM) ⇒ Metric Localization

As previously mentioned, the methods known in computer vision as SFM provide
the simultaneous recovery of the robot and landmarks locations from feature cor-
respondences in multiple views [9], i.e., similar goals as in the SLAM problem.
The difference could be noticed in the fact that the SLAM methods are continuous
processes where the robot integrates the sensor measurements along the time, in or-
der to obtain an accurate metric map of the environment at the end together with
the robot current location with regard to that map. However, SFM algorithms are a
more instantaneous procedure that gives robot and landmarks location at a certain
moment. It does not use any a priori information, therefore it is very convenient for
obtaining a global localization, or recovering a lost robot. Applications based on
two view geometry have been more frequently studied in computer vision than the
case of three views, which could be convenient for robotics for example in the case
of using 1D bearing only data. This situation is the subject of this section and is
described in Fig. 8.4.

To obtain the metric localization in the case of study, the 1D three view geometry
constraint (1D trifocal tensor) has to be computed. This tensor is robustly estimated
simultaneously to a robust set of three view feature correspondences, as explained
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Fig. 8.4 SFM with three-view 1D geometry (the 1D trifocal tensor): with at least five correspon-
dences of bearing-only observations in three views (u, u′, u′′), we can estimate the 1D tensor and
extract from it the relative location of the robot (θ ′, θ ′′, t′ = [t ′xt ′z], t′′ = [t ′′x t ′′z ]) and the position of
the landmarks x.

in next section 8.2.2.1. Afterwards, the robot and landmarks locations are recovered
from the tensor as shown in section 8.2.2.2.

8.2.2.1 Automatic Robust Matching and 1D Trifocal Tensor Computation

The 1D trifocal tensor, T, can be computed as explained in the literature, using
the trilinear constraint [6], that relates observations of a landmark in three views
(u,u′,u′′):

2

∑
i=1

2

∑
j=1

2

∑
k=1

Ti jkuiu
′
ju

′′
k = 0. (8.4)

where Ti jk (i, j,k = 1,2) are the eight elements of the 2×2×2 1D trifocal tensor.
The minimal number of correspondences varies in different situations. In a gen-

eral case, at least seven correspondences are required, but if the two calibration
constraints from [1] are included in the computations only five matches are needed.
A deeper study about the tensor estimation options, and about their performance in
robot applications can be found in [20] and [15].

With more matches than the minimum number required, the SVD procedure
gives the least squares solution, which assumes that all the measurements can be
interpreted with the same model. This is very sensitive to outliers, then robust es-
timation methods are necessary to avoid those outliers in the process, such as the
well known RANSAC [7], which makes a search in the space of solutions obtained
from subsets of minimum number of matches. This robust estimation allows to ob-
tain simultaneously the tensor and a robust set of correspondences. It consists of the
following steps:
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- Extract relevant features in the three views, and perform an automatic matching
process to firstly obtain a putative set of matches (basic matching), based on the
appearance of the features in the image.

- Afterwards, the geometrical constraint imposed by the tensor is included to ob-
tain a robust matching set using a RANSAC voting approach. This robust esti-
mation efficiently rejects the outliers from the basic matching.

- Optionally, the tensor constraint can help to grow the final set of matches, ob-
taining new ones with weaker appearance-based similarity but fitting well the
geometric constraint.

8.2.2.2 SFM from the 1D Trifocal Tensor

The camera and landmarks location parameters can be computed from the 1D trifo-
cal tensor in a closed form. These parameters can be related to the components of
the tensor by developing the elements of the projection matrixes (M,M′,M′′). These
matrixes project a 2D feature in homogeneous 2D coordinates, x = [x1,x2,x3]T ), in
the P1 projective space, 1D images, as u = [u1,u2]T :

λu = Mx, λ ′u′ = M′x, λ ′′u′′ = M′′x, (8.5)

where λ , λ ′ and λ ′′ are scale factors.
If we suppose all the 2D features in a common reference frame placed in the first

robot location, the projection matrixes relating the scene and the image features are
M = [I|0], M′ = [R′|t′] and M′′ = [R′′|t′′] for the first, second and third location re-

spectively. Here, R′ =
[

cosθ ′ sinθ ′

−sinθ ′ cosθ ′

]
and R′′ =

[
cosθ ′′ sinθ ′′

−sinθ ′′ cosθ ′′

]
are the rotations,

and t′ = [t ′x,t ′z]T and t′′ = [t ′′x ,t ′′z ]T are the translations (Fig. 8.4).
We have studied two methods to recover the robot and landmarks locations from

these relations: the algorithm presented in [4], which is based on the decomposition
of the tensor into two intrinsic homographies [21], and the method from [1]. Both
methods give almost identical results, but the SFM algorithm from [4] is a little
easier to implement (see Algorithm 8.1). They both provide two symmetric solutions
for the location parameters, defined up to a scale for the translations. This two-
fold ambiguity [1] is one of the drawbacks of using only three views to solve this
problem, it can be solved using a fourth view or some additional information such as
odometry. Once the relative location of the sensor has been estimated, the location
of the landmarks can be obtained by solving the projection equations (8.5) for each
landmark [4].

Algorithm 8.1 (Robot Motion from the 1D Trifocal Tensor [4]).
1. Decompose the trifocal tensor (computed for images 1, 2 and 3) into its intrinsic homographies.

We get 6 of those homographies, but we need just three to find the epipoles, for example HX
32,

HZ
32 and HX

12:

HX
32 =

[
−T112 −T122

T111 T121

]

HZ
32 =

[
−T212 −T222

T211 T221

]

HX
12 =

[
−T211 −T221

T111 T121

]
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2. Compose an homology (H), to reproject the points of one image to the same image. The only
points that will stay invariant under this reprojection are the epipoles (e = He), as they are the
eigenvectors of H.

H = (HZ
32)

−1 ∗HX
32

[e21 e23] = eigenVectors(H)

with [e21 e23] being the epipoles in the image 2 of the camera 1 and 3 respectively. A second
solution will be obtained swapping both epipoles.

3. Project the epipoles in the image 2 to the other cameras using any of the intrinsic homographies

e31 = HX
32 ∗ e21 ; e32 = HX

32 ∗ e23

e12 = HX
12 ∗ e21 ; e13 = HX

12 ∗ e23

4. Compute the camera motion from the epipoles as

θ ′ = arctan( e12(2)
e12(1) )− arctan( e21(2)

e21(1) )[
t ′x t ′z

]
= scale ∗ [e12(1) e12(2)]T

Those are the motion parameters from image 2 to 1. The parameters from image 3 to 1 (θ ′′, t ′′x′′
z

1 2 3
T :

u× [I|0]x = 0

u′ × [R′|t′]x = 0

u′′ × [R′′|t′′]x = 0

where × indicates the cross product. They can be explicitly developed to solve the position of
the landmarks x defined up to an overall scale factor.

8.3 Local Image Features

The main parts of the localization processes explained in previous section are based
on the analysis and matching of local image features. Choosing the feature to use is a
very important practical issue, the purpose is to find the simplest and fastest feature
that provides all the invariant properties required. There are many local features
developed in the last years for image analysis, with the outstanding SIFT [11] as the
most popular. In the literature, there are several works studying the different features
and their descriptors, for instance [14] evaluates the performance of the state of the
art in local descriptors, and [13] shows an study on the performance of different
features for object recognition.

We have used different features with the developed algorithms in our previous
works, to try to evaluate their efficiency for the aimed robotic tasks. The three kind
of features used in the experiments in next section are

- Line segments, with their line support regions. We used the extraction method
and descriptors explained in [17].

x =
(x ,x ,x )

) are computed in a similar way, substituting in the expressions above the subindex 2 by 3.and t
5. Recover landmarks location from the projection equations (8.5) for each landmark



122

- SIFT (Scale Invariant Feature Transform). The original code provided by D. Lowe
[11] was used.

- SURF (Speeded Up Robust Features), a recently developed local feature, whose
original extraction method provided by the authors [2] was used as well, which
allows a flexible descriptor length. We will use the simpler descriptor, SURF-36,
(36 descriptors per feature) for the topological localization, since at that stage
speed is more important. However for the metric localization, where higher ac-
curacy is necessary, we will extract the 64-descriptors features.

The following section shows localization experiments using all these features,
showing some advantages and disadvantages of using one or another.

8.4 Experiments

This section shows experimental results using the methods explained in this work
for robot localization with different image data sets. The data sets used are Almere
(publicly available [22]) and data set LV, which were acquired with omnidirectional
vision sensors with hyperbolic mirror and were explained in more detail in [17],
and another data set of conventional images, the data set ZGZ, that consists of 630
outdoor images from an urban environment.

8.4.1 Topological Localization: Room/Building Recognition

This section presents several results applying the explained methods for room recog-
nition in case of indoor omnidirectional images, and for building/scene recognition
in case of outdoor conventional images.

Room recognition with omnidirectional images. In a first topological localization
experiment, robot localization is performed with respect to a reference topological
map using omnidirectional images. Initially it is necessary to build the reference
map, also named visual memory (VM). Here it was built manually, grouping the
images in rooms, as its automatic construction was not the case of study. We used
both data sets of omnidirectional images mentioned previously (Almere and data set
LV), that where divided in reference images and test images. In case of the first data
set, images were frames from robot tour videos, then every 5th even image was used
as reference, and every 5th odd image was used as test. From the second data set, as
images were already sparser, every image was localized with regard to the rest.

In this experiment, the global descriptor used is based on color invariant mo-
ments, similar to those used in [17]. A summary of the room recognition rates
obtained for the different local features studied (Sec. 8.3) is shown in Table 8.1.
Those results were studied in more detail in [16]. The time information in column
Time/Timesur f in this experiment is just a comparative of the relative speed of the
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localization using each of the three evaluated features. It does not intend to evaluate
their maximal speed, note that the experiments were run in Matlab and were not op-
timized for speed. Then, the surf execution time (Timesur f ) is taken as reference and
the others are relative to it. Column % Ok shows the percentage of tests where the
image selected as most similar to the current one was correct, and the second col-
umn shows the matching approach used in that case. Both of them (NN-based and
Pyramidal-based) performed similarly for lines and SURF. However, using SIFT
much better results were obtained with the NN-based approach (only a 60% of cor-
rect classifications with the Pyramidal based approach while the 85% was obtained
with the NN-based one). This result is not surprising, since the Pyramidal matching
method is not convenient for features with very long descriptor sets.

Table 8.1 Room recognition results (the number after each feature type shows the length of its
descriptor set).

feature used matching approach % Ok Time/Timesur f

lines-22 Pyramidal-based 81% 0.1
surf-36 Pyramidal-based 96% 1
sift-128 NN-based 85% 3

These results are the average results using test images, from both LV and Almere
data sets, that were obtained under similar conditions (illumination, noise, occlu-
sions, ...) than the reference images and they do not include big baselines between
images, therefore the performance is acceptable with the three studied features.
However, when the test images have higher variances, as shown in some of the
experiments in [16], radial lines performance decreases dramatically. As it was also
concluded there, the best compromise between correctness in the results and effi-
ciency in the localization process was obtained with the SURF features.

This topological localization approach is quite robust, as we reduced the size of
the reference images to the half and the performance stayed similar to the presented
results. So reducing the reference image set is not the main problem for the correct-
ness in the topological localization, but it can be a problem for the accuracy in a next
step towards the metric localization, because a big variation between reference and
current images can makes the robust local feature matching fail, as it will be seen in
next section 8.4.2 results.

Building recognition with conventional images. In a second topological local-
ization experiment, we will use only SURF features, as they showed the best per-
formance versus execution time trade-off. The data set used in this case consists of
outdoors conventional images from a urban environment. Now the localization con-
sists of recognizing the scene (building) where the current view is taken, as part of
an autonomous urban guide. The visual memory contains 600 reference images ob-
tained with a conventional camera, from which 100 images correspond to labelled
buildings (10 buildings, both day and night images). The test set consist of other 30
images from the labelled buildings, obtained from different days.
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In this experiment the global descriptor used was a histogram computed over the
Hue color band of the images (in the HSV image color space). Table 8.2 shows the
average correct recognition rates (%Ok) and execution times for all tests. Most fail-
ures were due to the pre-filtering, i.e., the global descriptor evaluation discarded too
many or all images from the correct reference location. Then, skipping the global
descriptor based pre-filtering increases the recognition rates close to 100%. How-
ever, as the reference set is quite big, it is necessary to include the pre-filtering step
if we require an efficient answer. Note that although the matching time (column
matching time) using the NN-based approach is higher than using the Pyramidal
one, it requires being able to pre-load the pyramidal matching structures, otherwise
the whole process execution time (matching + structures build) is much lower for
the NN-based method. Then, the Pyramidal matching is convenient only if it is pos-
sible to load the Pyramid search structures in advance, otherwise the advantage of
the linear complexity matching method is hidden by the high cost of building its
data structures. In this experiment, we consider a urban tourist guide whose goal
was to recognize the building in the current view, therefore we can stop at this
point (topological localization) of the hierarchical process. As mentioned before,
it is convenient to apply a geometric constraint to the reference images with higher
probability of being the current location. Here we perform a RANSAC based esti-
mation of a Fundamental matrix and robust set of matches [9] between the current
view and the five reference images with higher Pv. Then, the Pv is re-computed only
with the correspondences that passed this robust estimation [9] and based on this
we choose the current location. Without this robust selection process the rate of cor-
rect recognitions shown in Table 8.2 decreased from 90% to 80%. Two examples
of the reference image selected as most probable location with the two different
approaches are shown in Fig. 8.5.

Table 8.2 Building recognition results using SURF features with a 600 reference images set. Both
approaches using Hue histograms as global descriptor and two view geometric constraints to make
a robust selection of the current location.

similarity evaluation approach %Ok matching time matching + structures build time
NN-based 90 % 1.35 s.

Pyramidal-based 90 % 0.2 s. 12.45 s.

8.4.2 Metric Localization

Other previous works, such as [20] and [15], contain extensive experiments with
simulated data to evaluate more accurately the metric localization results obtained
from the 1D trifocal tensor. This section shows an example of metric localization
to remark some of the conclusions previously mentioned. In this experiment, the
1D trifocal tensor for omnidirectional images [20] was robustly estimated using the
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Current view Location result Location result
(NN-based approach) (Pyramidal-based approach)

Fig. 8.5 Two examples of building recognition. Top: an example where both approaches (NN-
based and Pyramidal-based) succeed; Bottom: example with night images, where the Pyramidal-
based approach failed.

bearing from local features correspondences. An example of the robust matching
obtained with radial lines or with SURF is shown in Fig. 8.6, together with the 2D
reconstruction of the scene (the matched features and the robot locations) obtained
from the tensor estimated in each case. Results using SIFT, both for matching and
reconstruction, were very similar to SURF’s ones.

A more detailed evaluation of the same experiment is summarized in Table 8.3,
with the localization errors for rotation, translation direction (parameters detailed
in Fig. 8.4) and landmarks location. Any of the three local feature studied (lines,
SURF and SIFT) provides accuracy enough for the metric localization, as long as
the variance between the used images does not make its matching process fail. The
less robust features are the radial lines, as they are not able to deal with as big
image changes as SIFT or SURF. In this example we can observe the fact that radial
lines provide a less stable matching. In some executions they give a good result (see
results in Fig. 8.6), but other times its robust estimation process fails because there
were too many outliers in the initial matching sets. Then, the process incorrectly
includes some wrong correspondence in the final trifocal tensor estimation, what
makes the accuracy of the corresponding metric localization decrease.

8.5 Conclusion

Some results in vision research are difficult to be used in robotic applications, prob-
ably due to the current divergence of computer vision and robotics communities.
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Fig. 8.6 Omnidirectional images (from dataSet LV ) with robust matches and reconstruction of the
scene from the motion parameters obtained with 1D tensor estimated with those matches (land-
marks from 1D TT) or with the ground truth motion (landmarks from GT).

Here, we show experiments and results that intend to do accessible for robotic re-
searchers some results in the frontier.
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Table 8.3 Robot metric localization errors estimating the 1D tensor with different features (statis-
tics from 50 executions). The number after each feature type shows the length of its descriptor
vector.

Robot localization error Landmarks reconstruction error (m)
Feature rotation transl. direction mean mean

used θ ′ (std) θ ′′ (std) t ′ (std) t ′′ (std) in x-coord. (std) in z-coord. (std)
lines-22 0.9o (6) 1.8o (11) 7.5o (25) 6.5o (13) 0.7 (1) 1.6 (2.8)
surf-64 1.1o (0.1) 2.1o (0.1) 0.4o (0.4) 8.7o (0.3) 0.2 (0.02) 0.2 (0.06)
sift-128 0.8o (0.1) 1.9o (0.1) 0.9o (0.5) 8.7o (0.3) 0.1 (0.01) 0.2 (0.01)

In the case of applying object recognition methods for scene identification, the
adaptation is quite straightforward, maybe a more difficult decision is to find the
most convenient kind of feature that finds a proper balance between invariant prop-
erties and fast computations.

In the case of Structure From Motion methods applied in robot localization, most
of the mathematics can be recovered from computer vision papers, and in this work
we summarized its particularization to the 1D bearing-only observations with planar
sensor motion, which is useful in robotics. In the research areas of omnidirectional
vision systems as well as bearing-only localization and mapping, navigation or vi-
sual servoing, two view relations like the fundamental matrix or the homography
have been extensively used, but the use of other multi-views constraints, like the
tensors, are yet poorly studied despite its attractive properties.
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omnidirectional images to hierarchical localization. Robotics and Autonomous Systems 55(5),
372–382 (2007)

18. Newman, P., Cole, D., Ho, K.: Outdoor slam using visual appearance and laser ranging. In:
IEEE Int. Conf. on Robotics and Automation, pp. 1180–1187 (2006)

19. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(3), 416–431 (2006)
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Chapter 9
More Vision for SLAM

Simon Lacroix, Thomas Lemaire and Cyrille Berger

9.1 Introduction

SLAM has been identified as a key problem in mobile robotics for over 20 years
[4, 46], and has received much attention since, especially these last 10 years. An
overview of the problem and the main proposed solutions can be found in [10, 11].
Dozens of robots now use on-board SLAM solutions on an everyday basis in labo-
ratories.

First SLAM solutions concerned robots evolving on a 2D plane, that perceive
the environment with a laser range finder. It is only quite recently that solutions to
SLAM using vision have been proposed: first using stereovision [16, 41], and then
with monocular cameras. A large amount of contributions to the latter problem have
rapidly been proposed since the pioneer work of [7] (see for example [35, 6, 21, 13]),
and a commercial software is available since 2005 [28] – though only applicable to
robots evolving on a 2D plane.

There are many interests to use vision for SLAM. Besides the advantages of us-
ing a small, low cost and lightweight sensor, vision offers the benefit of perceiving
the environment in a 3D volume, up to infinite distances, and of providing plenty of
information relevant to analyze the perceived scenes. Last – but certainly not least,
the computer vision community has provided numerous formalisms and algorithmic
solutions to a collection of essential problems that are very relevant for the SLAM
problem (feature detection and matching, structure from motion, image segmenta-
tion and classification, object recognition and scene interpretation, image indexing).
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Still, vision-based SLAM solutions do not exploit all the possibilities brought
by vision. The goal of this work is to explore these possibilities. The next section
briefly reviews the SLAM problem and presents the required functionalities, ana-
lyzing the ones that can benefit from vision. Relations between filtering solutions
applied to SLAM and estimation techniques applied to the structure from motion
problem are now clearly established, and will not be detailed here. Section 9.3 is the
main of the paper: it describes how various vision algorithms can benefit to SLAM
in robotics, mainly for the essentials problems of environment modeling and loop
closing. Finally section 9.4

9.2 Overview of the SLAM

BA DC

Fig. 9.1 Main steps of a SLAM process. With the first observations, the robot builds a map of 3
points (A), then it moves and computes an estimate of its position (B), 3 new observations (blue)
are matched with the current map (C), and are fused to update the map and robot pose (D).

9.2.1 Functionalities Required by SLAM

A typical SLAM process is chronologically depicted in figure 9.1, in the case of a
robot evolving in a 2D plane, where the landmarks are corners. The various func-
tionalities involved in this process can be summarized as the following four ones:

- Environment feature selection. It consists of detecting landmarks in the per-
ceived data, i.e. features of the environment that are salient, easily observable
and whose relative position to the robot can be measured.

- Relative measures estimation. Two processes are involved here:

+ Estimation of the landmark location relatively to the robot pose from which it
is observed: this is the observation.

+ Estimation of the robot motion between two landmark observations: this is
the prediction. This estimate can be provided by sensors, by a dynamic model
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of robot evolution fed with the motion control inputs, by assumptions on the
robot motions – such as a constant velocity model.

- Data association. The observations of landmarks are useful to compute robot
position estimates only if they are perceived from different positions: they must
imperatively be properly associated (or matched), otherwise the robot position
can become totally inconsistent.

- Estimation. This is the core of the solution to SLAM: it consists in integrating
the various predictions and observations to estimate the robot and landmarks
positions in a common global reference frame.

In the robotics community, the main effort has been put into the estimation func-
tionality. Various stochastic estimation frameworks have been successfully applied
[8, 49, 26], and important contributions deal with the definition of landmark map
structures that lower the estimation computational complexity and allow to over-
come the difficulties raised by the non-linearities of the problem [32, 33, 14].

However, most of the functionalities involved in SLAM are perception processes.
This is obvious for the landmark detection functionality, that represents the land-
mark with a specific data structure, depending on the considered environment and
on the sensors the robot is equipped with. Also, the relative position of the landmarks
in the sensor frame (the observation) is estimated by processing the perceived data.
As for the data association process, it can be achieved considering only the current
estimated states of the world and the robot (that is positions and associated vari-
ances [29]). But it can be solved much more robustly and easily when tackled as
a perception process, especially to establish loop closures, where perception can
provide correct data associations regardless of the current estimated states.

9.2.2 Vision and SLAM

For all these perception functionalities, vision can obviously provide powerful solu-
tions. Images indeed carry a vast amount of information on the perceived environ-
ment, and many algorithms that process these information can be very effective for
SLAM:

- Detection and modeling of landmarks from images can be performed thanks to
images features extraction processes for instance, as it has mainly been made
up to now in vision-based SLAM approaches (for example using Harris or SIFT
points). But some visual segmentation, classification or tracking processes can
also be very useful for that purpose – not to mention the numerous higher level
approaches to visual object recognition.

- Relative 3D coordinates of the detected landmarks are readily observable with
multi-camera systems. For single cameras, the fact that angular observations are
available has recently lead to the development of various partially observable
SLAM solutions (“bearing-only”). Naturally, solutions to the classic structure
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from motion problem (SFM) developed in the vision community have recently
been successfully applied to vision-based SLAM [35, 27].

- Finally, the data association problem in SLAM is often ill-posed when only con-
sidered within the estimation framework. Although well founded approaches
have been proposed (e.g. [29, 50]), they are hardly efficient when the estimated
states become inconsistent, and they are still challenged by partially observable
SLAM problems – namely by monocular vision SLAM. On the contrary, the vi-
sion literature provide with plenty of approaches that can robustly solve the data
association problem, such as feature matching algorithms, object recognition or
image indexing approaches.
It is important to note here that the data association problem is very different
when it comes to associate landmarks from two consecutive positions than when
it comes to associate landmarks perceived from very different viewpoints, as it
happens when closing loops for instance. In the first case, the problem is easily
solved by feature tracking algorithms, whereas the second case calls for more
complex feature matching algorithms1.

9.3 Vision and Mapping in SLAM

9.3.1 Visual Landmarks for SLAM

In a SLAM context, landmark must satisfy the following two properties:

- They must be detectable in the perceived data,
- and some parameter of their position must be observable, so as to feed an esti-

mation technique.

But to solve the data association problem independently of the robot and land-
marks estimated positions, they must also be represented by a model, that contains
the information required for the data association processes. A landmark model is de-
fined by the specification of the actual landmark nature in the physical world, by the
considered sensor model, and by the specification of the detection and association
algorithms.

The key to a successful vision based SLAM approach relies then on the choice
of the landmark representation (model) and corresponding algorithms that allow to
detect, observe and associate landmarks.

Point Features

Up to now, most vision based SLAM solutions derive landmarks from point fea-
tures detected in the images, be it for stereovision-based approaches [41, 17] or for

1 Of course, using matching algorithms for the first case is often overkill.
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monocular approaches [6, 21]. This is mainly due to the facts that there exist vari-
ous algorithms that extract stable feature points, and that points landmarks are the
simplest geometric objects to handle in a SLAM estimation framework.

Detection

The Harris points are often used, because they have good invariant properties with
respect to image rotations and small scale changes [39]. More recently, SIFT fea-
tures have become very popular: their detection is more scale independent, and the
information associated to them (the local descriptor [22], a vector of scalar values)
is very discriminant, thus allowing to successfully match them.

Geometric representation

The geometric representation of point landmarks is straightforward, their state being
fully represented by the 3 Cartesian coordinates X = (x,y,z). With stereovision,
this state is fully observable: (x,y,z) = h(θ ,φ ,d), where (θ ,φ) are the angles at
which the point is perceived, and d is the computed disparity – in the case of a
rectified image pair. With monocular vision, the state is partially observable, and
the observation function h is:

(
θ
φ

)

=

(
arctan(y/x)

−arctan(z/
√

x2 + y2)

)

The observation error model is not straightforward to derive from the feature de-
tection process. Most of the authors use a fixed estimate of the error on the observed
measures (for example a standard deviation of 0.5 pixel for Harris points [39]),
while some investigated the definition of more precise error models (see [24] for an
error model of the disparity estimate in stereovision). There are probably some more
work to be done regarding this, as good (accurate) error models are a prerequisite
for any SLAM implementation.

Data association

The algorithms to find association between point features perceived vary a lot, de-
pending on whether the viewpoints are close or not. In the second case, the choice
and representation of the point features is essential, as their model must carry
enough information to match them, whereas in the first case the problem is easily
solved by frame-to-frame tracking algorithms, for example using simple correlation
measures.

Various algorithms that match Harris points are available in the literature, some
of them being able to deal with large scale changes. In [38], the Harris points are
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modeled by a vector of local characteristics computed from the “local jet”, a set of
image derivatives. Matches are determined thanks to the computation of the Ma-
halanobis distance between their characteristics, and the geometric configurations
between points is exploited to ensure the elimination of false matches. Extensions
to large scale variations have been presented in [9]. The approach presented in [16],
uses a combination of the points’ signal information computed during their extrac-
tion and of the geometric constraints between detected points. Matches are estab-
lished for groups of points, which allows the estimate of a local affine transformation
between the images: this transformation is exploited to compute correlation scores
between points, and to guide the search for matches (figure 9.2).

Fig. 9.2 Harris points matched with a 1.5 scale change by the algorithm presented in [16] (crosses
shows all the detected points, and squares indicate successful matches).

SIFT features are intrinsically scale independent, and they can be modeled by a
large vector of characteristics computed for their extraction, from which matches
can be found. They are therefore well suited for a visual SLAM implementation
[42, 28].

Nevertheless, these matching algorithms can be challenged by large variations of
illumination conditions, and can be quite time consuming when the memorized land-
marks become numerous, in particular if the robot position estimate is too coarse to
focus the match search. Section 9.3.2 explains how place recognition algorithms can
overcome this latter difficulty.

Map management and representation

In the literature, the maps resulting from a visual point-based SLAM approach are
a set of localized 3D points landmarks with the associated variances (figure 9.3), to
each of which are associated the landmark representation (for instance local image
characteristics). Other useful information could however advantageously be memo-
rized: for instance, the orientations from which points have been perceived during



9 More Vision for SLAM 135

the map building process could help to cast the set of landmarks to search within
when closing loops.

Fig. 9.3 2D projection of the map resulting from a bearing-only SLAM algorithm (the robot moved
along two loops).

One of the interesting issues to deal with in the case of point-based visual SLAM
is the landmark selection issue. Indeed feature points are so numerous in images
that integrating all of them in the SLAM map rapidly yields huge maps, hardly
tractable by the estimation and matching algorithms. Various simple criteria can be
applied to select the points to memorize as landmarks. For instance, since a good
landmark should easily be observable (matched), and landmarks should be regularly
placed in the environment, the following strategy can be applied [19]: each acquired
image is regularly sampled in cells. If there is at least one mapped landmark in a
cell, no new landmark is selected; if not, the most salient feature point (for instance
the one that has the highest Harris low eigenvalue) is selected as a landmark. This
ensures a quite good regularity in the observation space (the image plane - figure 9.4
). Furthermore, a simple selection in the 3D space, such as maintaining a maximum
volumetric density of landmarks, can also help to get rid of useless landmarks.
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Fig. 9.4 Selection of the points that will be kept as landmarks (green squares). Some cells here
contain more than one landmark: indeed, when a landmark leaves a cell, it can move to a cell
where there are already landmarks (a new landmark is then generated in the old cell).

Line Features

If point features do yield successful SLAM solutions, the resulting map is however
very poor, and actually only useful for the SLAM process. Various other higher level
environment representations are required for autonomous mobility (by the trajectory
planning processes for instance). Such representations can be built using dedicated
data processing algorithms, their spatial consistency being ensured by the robot and
landmark localization estimates provided by SLAM [34]. But this would be made
simpler if higher level maps could be handled by SLAM: this is possible using
higher level visual features.

Monocular visual SLAM using line features has only been tackled very recently.
In [45], edges are defined by their two end-points, and the authors use the inverse
depth parametrization [13]. A more convincing approach has been introduced in
[12], and we also recently investigated the problem [20] (figure 9.5). Note that other
approaches use edge information as landmarks, but do not maintain a 3D estimate of
their position. For instance, in [18], vertical edges are used as 2D bearing measures.

Surprisingly, since pioneer work made in the 80’s on SLAM with 3D lines ex-
tracted from stereovision [2], the problem did not retain much attention from the
community (except in [5], where results are only provided in simulation).
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Fig. 9.5 Example of a 3D line segments model built from a sequence of monocular images (from
[20]).

Detection

The vision literature provide with many approaches to extract line segments in im-
ages (such as Hough transform or contour images segmentation). But all these algo-
rithms are very sensitive to noise and illumination: a precise estimate of the segment
extremities is hard to obtain, a single line in the environment is often described as
several line features, and two collinear distinct lines can be detected as a single
line in the image (figure 9.6). Of course, many of these phenomena are caused by
occlusions and some particular viewpoint conditions.

Fig. 9.6 A typical result of a line segment extraction algorithm: some segments are artifacts, and
others are longer or smaller than the actual line in the environment.
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Geometric representation

Because of the difficulties to perceive the segment extremities, it is much more rea-
sonable to consider the parameters of the supporting lines as the state to be estimated
in the SLAM process.

Several sets of parameters can be used to represent a 3D line L in Euclidean
space. The minimal representation consists of 4 scalars: such a minimal represen-
tation is (P1,P2) where P1 = (x1,y1,0)t is the intersection of L with the plane
Π1(z = 0) and P2 = (x2,y2,1)t is the intersection of L with the plane Π2(z = 1).
Several conventions for (Π1,Π2) must be considered, so as to represent all possible
lines with a satisfactory numerical precision (lines parallel to the planes (Π1,Π2)
can indeed not be represented on the basis of these planes). A more intuitive but
non minimal representation of L is (A,u), where A is any point of L, and u is a
direction vector of L. In this representation, the choice of A is arbitrary and A is not
observable since it cannot be distinguished on the line.

An other representation often used in the vision community is the Plücker co-
ordinates [15]. The Euclidean Plücker coordinates are represented by the following
6-vector:

L(6×1) =

(
n = h.n

u

)

(9.1)

n is the normal to the plane containing the line and the origin O of the refer-
ence frame, h is the distance between O and the line and u is a unit vector which
represents the direction of the line. The Plücker constraint has to be satisfied:

n ·u = 0

This ensures that the representation is geometrically consistent. Any point P on the
line satisfies the relation:

P∧u = n (9.2)

The advantage of the Plücker representation is that the projection of a 3D line L
in an image is a 2D line l which is defined by the intersection of the image plane and
the plane defined by n: the canonical representation of l (ax+by+c = 0) is exactly
n expressed in image coordinates.

Data association

Although numerous line segment matching and tracking algorithms can be found
in the vision literature [40, 37], the problem of finding outlier-free sets of matches
remains a difficult one. Texture information and epipolar geometry allow to get rid
of most of them, but in SLAM, one can also rely on the estimated states to filter out
the remaining ones, by analyzing the difference between the predicted and observed
states. Also, 3D model based object recognition algorithms can be exploited to deal
with loop-closing.
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Map management and representation

The resulting map of a 3D line segment SLAM approach that estimate the support-
ing line parameters is still far from a 3D wire model of the environment. In order to
get a more precise description of the scene structure, the coordinates of the segment
endpoints must be estimated. These coordinates can hardly be part of the estimated
numerical state, as their observation is affected by noise, segmentation errors and
occlusions, these errors being not at all Gaussians. A dedicated process must there-
fore be defined – for instance a simple heuristic can consist in updating their linear
abscissas by considering the observations that yield the longest segments.

Planar Features

If a wire 3D model of the environment contains more structural information than
a 3D points model, it can still hardly be exploited by other functionalities than lo-
calisation. A natural extension would be to add 3D planar patches and areas to the
model. Again, numerous contributions and vision can be exploited for that purpose
in SLAM, with the very interesting fact that planes carry more geometric informa-
tion to be estimated. Indeed, if one is able to measure the normal of a plan patch
(2 parameters) plus an orientation around this normal, a planar patch is described
by 6 independent parameters: the observation of a single planar landmark provide
enough information to estimate the 6 parameters of the robot position.

Detection

Of course, at least two images taken from different viewpoints are required to extract
planar areas in the perceived scene. The most efficient way to detect such areas is to
determine whether or not there exists a homography H that transforms the plane’s
projection from one image to the other. Considering a plane P and two images I1

and I2 taken from different viewpoints, for all points of P, the coordinates of the
corresponding pixel in I1 and I2 are linked by a homography H. Two areas I p

1 from
I1 and I p

2 from I2, correspond to a planar feature if there is a matrix H such that:

H ∗ I p
1 = I p

1 (9.3)

Moreover, the homography estimate can provide a measure of the planar patch
surface, which is linked with the 3D transformation (R,t) between the two view
points by the following relation:

H ≈ R + t
nT

d
(9.4)

where n is the normal vector of the plane and d its distance to the camera.
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Homographies can be retrieved from two close viewpoints thanks to image align-
ment techniques (a review of image alignment algorithms can be found in [3], and
a very efficient method to track large image patches has been proposed in [23]).

Such algorithms can be used for SLAM in the monocular case: in [25], a nice ap-
proach that also estimates the planar patches normal is presented. However, here the
normal estimate is not precise enough to be part of the landmark states for SLAM:
indeed, image alignment techniques require rather large patches to provide an ac-
curate estimate of the plane normal. Nevertheless, in [25] the normal estimate is
used to predict how the image patches should be warped to ease the point matching
process in case of large viewpoint changes.

Planar patches can of course be more easily detected from stereovision images.
A first natural idea is to use dense points pixel correspondences to detect them. But
fast stereovision algorithms are quite noisy, and the normal vector estimates pro-
vided by plane fitting algorithms applied on sets of neighbouring 3D points are not
reliable2. Finding the homography estimates using an image alignment algorithm,
which is made easier thanks to the knowledge of the epipolar geometry, yields much
better results. Nevertheless, their application on small areas (e.g. 20×20 pixels) can
sometimes provide totally erroneous normal estimates.

Figure 9.7 shows the local planar patches (“facets”) detected from a pair of stere-
ovision images, centred on Harris points in the image pair. To eliminate facets whose
normal estimate is erroneous, there are two possible solutions. The first one consists
in exploiting texture attributes to determine whether the homography estimate is
good or not, and the second is to rely on the behaviour of the data association pro-
cess (see below) to discard wrong facets.

Fig. 9.7 Facets extracted from a single pair of stereovision images. Right: left camera image, with
the matched Harris points on which the facets are centred.

2 Various sophisticated dense stereovision algorithms that provide more precise results exist in the
literature – but they are computationally much more expensive than the fast algorithms used in
robotics.
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Geometric representation

Facets extracted on matched Harris points are naturally described by the point local
characteristics, but their description is extended by the estimate of their normal,
which gives 2 additional positioning parameters (orientation). This description can
be completed by a third orientation parameter, which can for instance be defined by
local gradients computed on the facet pixels (figure 9.8). This additional orientation
provides a full description of the facet position in 3D, which can be advantageously
used for the data association and SLAM estimation processes.

Fig. 9.8 Close view of an extracted facet, with its normal (red) and third orientation (green) esti-
mates.

Data association

We are currently experimenting on an algorithm similar to the Harris point matching
algorithm described in [16]: the principle is to generate match hypotheses on the
basis of local information, and to confirm these hypotheses using geometric con-
straints between neighbouring facets. The geometric constraints are 3D constraints,
and are very much discriminant. Figure 9.9 shows a map of facets built from several
positions.

Higher Level Landmarks

Facets are only the first step toward a higher level of representation of the environ-
ment. In structured environments (that is urban-like and indoor), many objects can
be described using first order geometric primitives. Algorithms that extract large pla-
nar areas from monocular image sequences are now becoming efficient and robust
(see for instance [43, 44]): combined with facets and line segments representations,
they can yield the building of high level maps in a SLAM context. Other approaches
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Fig. 9.9 Planar patches extracted from a set of stereoscopic pairs.

that model and detect non-structured objects can also be very helpful for SLAM (see
for instance a method for detecting tree trunks in [1]).

9.3.2 Loop Closing

As the estimation framework can hardly solve the loop closing problem when the
robot position estimate is poorly known, we rather consider the loop closing process
as a perception process. This implies a re-definition of the loop-closing in SLAM:
instead of defining it as a topological event corresponding to a loop trajectory, we
rather consider that a loop-closure occurs when a mapped landmark that is currently
not being tracked is re-observed – and associated thanks to a landmark matching
algorithm.

We have seen that with good landmark visual representations, various matching
algorithms could be used for the purpose of loop closing. However, relying only
on landmark matching processes to detect loop closures can be an issue: with maps
containing a large number of landmarks, the matching algorithms are challenged and
can be quite time consuming. Image indexing techniques can be of a very good help
here, and have already been successfully applied in various SLAM approaches [36],
and naturally, the problem is made much easier when using panoramic cameras [19,
47]. The literature on “view-based navigation” or “appearance-based localization”
in robotics is already abundant in the robotics community, and progresses in this
domain in computer vision are definitely worth to be considered in visual SLAM
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approaches. Thanks to these approaches, topological loop closures can be efficiently
and robustly detected, which allows to focus landmark matching algorithms.

Using such techniques yields to the definition of a new kind of environment
model, dedicated to loop closure detection, consisting in a database of image in-
dexes and signatures.

9.4 Discussion

The next steps in vision-based SLAM approaches are certainly to focus on the de-
velopment of rich maps, that exhibits the environment 3D structure and semantic
information. We have seen that many vision tools are available for that purpose, and
that some have already lead to interesting results. Much work remains however to
be done to integrate those tools in SLAM solutions. One of the interesting issue is to
focus on the synergies between these tools and the SLAM estimation process. Such
developments also appear promising to tackle two difficult challenges for SLAM,
namely multi-robot SLAM and the integration of SLAM approaches within Geo-
graphic Information Systems (GIS).

Multi Robot SLAM

From the estimation point of view, various contributions solve the multi-robot
SLAM problem, in which robots can observe the position of other robots and of
landmarks mapped by other robots (see for instance [30, 48, 31]). For this prob-
lem, data association between landmarks perceived by the different robots would of
course greatly benefit from the building of high level landmark map representations
– all the more when considering heterogeneous robots (figure 9.10).

SLAM, GIS and Vision

There is currently a tremendous development in the building and exploitation of
Geographic Information Systems, that partly inherits from progresses in computer
vision. Any operational robotic system, be it aerial, terrestrial or even maritime,
should not ignore such initial information on the environment, as it can be of a
very good help to perform SLAM. There are obvious similarities between GIS and
robotic mapping, as the resulting environment models are organized in layers con-
taining information relevant for different processes. Considering the various envi-
ronment models previously sketched (planar regions, segment-based object descrip-
tions, dense models), we end up with an environment model that has the same lay-
ered structure of a usual GIS. The bottom layer is made of the set of landmarks
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Fig. 9.10 Air/ground multi robot cooperation. What landmarks can be used to build a consistent
environment model from the data perceived by the two kinds of robots ?

which are consistently estimated by SLAM. The upper layers are the maps contain-
ing dense data, or possibly other sparse information relevant for the robots or the
mission (see figure 9.11). The only difference is that the layers of a GIS are defined
in a single Earth centered reference frame, whereas the layers of the SLAM maps
are made of local maps anchored in the bottom stochastic layer.

Note also that some visual SLAM approaches have been able to build environ-
ment models from aerial data (e.g. [17]) – a problem that had been exclusively con-
sidered in the GIS community so far.

Again, the problems to solve to integrate SLAM-built maps and GIS models rely
essentially on the data association side. We believe that the development of higher
environment models such as planar regions or segment-based descriptions on the
basis of visual information is a promising way to tackle them.
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Fig. 9.11 The various environment models built by an autonomous robot have a layered structure
akin to the one of a GIS.
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Chapter 10
Maps, Objects and Contexts for Robots

James J. Little and Tristram Southey

10.1 Introduction

When you have brought your new Apple iRobot1 home for the first time, you are
faced with the challenging task of introducing the robot to its new home/workspace.
Of course the robot knows about homes and typical tasks. That’s why you bought
the sleek, stylish robot, in addition to the fact that it promised a simple interface. It
prompts you to take it on a tour of the house, naming the rooms, pointing out the
appliances, and identifying the occupants of the house.

The promise of the now discontinued Aibo whose communication and basic
behaviours show that even simple visual sensors using strong features (SIFT[17])
can enable visual tracking and recognition. Built in to the home robot will be the
necessary concepts – tasks, objects, contexts, locations. Your home vacuum robot
“knows” only about stairs, objects, infrared walls, and random search. Your iRobot
knows about kitchens, doors, stairs, bedrooms, beer (you have the party version of
the iRobot that can bring you beer in the entertainment room). How does the robot
tie the sensory flow it receives to its plans, names, and goals in its repertoire?

This fanciful thought experiment is not so far in the future. For some applications
such as assistive technologies[21, 1] which operate in contexts where rich visual
sensing is deployed, the range of objects may be limited to a care facility where
patients’ rooms are typically constrained in their contents. Here it may be effective
to learn the connection between features of the visual stream and the object in the
scene, and how they influence the actions of the robot.

James J. Little
Department of Computer Science, University of British Columbia, Vancouver, BC, Canada, e-mail:
little@cs.ubc.ca

Tristram Southey
Department of Computer Science, University of British Columbia, Vancouver, BC, Canada, e-mail:
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1 Apologies to two major corporations that may be clashing over naming rights in the future.
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What is needed is knowledge of the structure of the environment: the objects in
the world, their functional relations, their spatial layout and their role in tasks. Vi-
sual sensing offers some solutions. There are many ways to compute features or
keypoints useful for localization and detection/recognition[17]. See Mikolajczyk
and Schmid[22] for a discussion of the performance of feature detectors. Many
techniques used in recognition, mapping and localization begin with these interest
points.

Fig. 10.1 SIFT features found by our stereo-equipped robot. SIFT features in the three stereo
images are matched; horizontal and vertical lines indicate the horizontal and vertical disparities
respectively (from [16]).

Laser and other active sensors are not only becoming more compact, less power
hungry, and less expensive, but also our techniques for solving mapping and local-
ization (SLAM) have become increasingly powerful[35]. Solutions based on pas-
sive visual sensors, both monocular[2] and stereo[27, 29, 30], are capable also of
delivering both excellent localization in and high-quality geometrical descriptions
of unstructured environments. Figure 10.1 shows a set of features during a robot’s
tour of our lab, with their disparities. As the robot moves in the world, it aggre-
gates local stereo information into an occupancy grid[5] where the robot plans paths
and represents the structure of solids and voids. A stereo sensor delivers real-time
data about the presence of obstacles and the full arsenal of probabilistic methods
for localization and estimation of actions are available[29, 30]. Figure 10.2 shows
the occupancy grid constructed for the maximum-likelihood sample at the end of
exploration, and the landmark map constructed for the maximum-likelihood sample
at the end of a traversal of the lab; error ellipses show the spatial uncertainty of
the SIFT feature points (projected from 3D). Note that the stereo cameras provide a
high density of image features which match between the separate camera views and
as the robot moves.



10 Maps, Objects and Contexts for Robots 151

(a)

(b)

Fig. 10.2 (a) Occupancy grid constructed for the maximum-likelihood sample at the end of explo-
ration using a stereo camera. (b) Map of SIFT landmarks constructed for the maximum-likelihood
sample at the end of exploration (from [30]).

During map-building the process of localizing the landmarks removes the dy-
namic scene elements (i.e. things that move). However, we intend that long-term
use of the maps will enable us to track configurations of features that move rigidly
and so label some scene elements as movable. We should then be able to enhance
our robot with knowledge of the separable objects in its environment. Section 10.3
builds on this insight and close observation of moving objects to isolate them and
build 3D model shape and appearance models.

Using these appearance models of objects, and recognizing their semantic type,
we can find them again in the environment. But the robot needs more than geo-
metric maps and objects. To perform its tasks, it needs a structure of its activities,
their constituent actions, and the objects they require. Activities, e.g., cooking, oc-
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cur in prototypical places, e.g., kitchens, which have an expected arrangement of the
objects. The expected local set of objects and their configuration consitutes the con-
text of an object. The remainder of this paper explores the relations between tasks,
objects and contexts for robots using maps.

10.2 Structuring Space

Others have described the connection between metric conceptions and representa-
tions and topological representations that connect regions or places. In [14] Kuipers
describes the Spatial Semantic Hierarchy that builds representations of the spatial
domain at multiple levels: sensorimotor, control, procedures, topology, geometry.
The base level present in many sensed representations is geometry, where metric
quantified information about the position and orientation of objects is maintained.
The more tractable topological representation captures paths and connections be-
tween distinguished locations.

We can look to research in ontological description of objects[34] to assist us.
Researchers have recently explored two important aspects of increasing usability of
systems – using external knowledge and the structured information about the world
in the form of ontologies[34].

We were motivated to pursue this by the work of Kautz and his colleagues[24]
on assistive technologies where they track people in their homes and observe their
everyday activities using RFID tags to sense the people as they use tagged objects. In
a sensored home with cameras the limitations of RFID tagging can be overcome[20].
The objects are labeled with their description, for example, paring knife, spoon, cup,
jug, and so forth. But classification of activities is hampered by the level of detail
of the labels. To improve classification, they use an ontology, a description of the
objects in the world, and their properties. Ontologies are hierarchical, and provide a
variety of levels of abstraction of labels (properties), so that paring knives and butter
knifes are knives, while knives and spoons are both utensils, and whisks are utensils
also, and so forth. By choosing the right level of abstraction, action classification
improves.

Surprisingly it is more and more possible to find information supplying ontolog-
ical description for informal situations and objects, amazingly available for many
categories of objects[34]. Ontologies for more formal and technical subjects, such
as geographical entities[18], have been extensively studied.

In order for a home robot to accomplish useful tasks, it must have a description
of the semantic organization of the home. Tasks are completed by a sequences of
activities or sequences of actions. Typical activities might be cooking or washing,
and the actions are taken to be primitive elements like cutting food or heating water.
We call a location in the home where a particular collection of activities occurs a
place. A functional robot needs a map where places and activities are attached to
locations in the map.
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How will the robot acquire information about places and activities? By pointing,
demonstration, download, exploration? If the information is from exploration, we
may face several obstacles in sharing ontologies with the robot. Once the robot
has learned the structure of the environment, will it partition the world into events
homeomorphic to some of our concepts? There certainly will be hidden correlations
between the objects and situations in our world and the actions they foster, and an
exploring robot will uncover some novel dependencies.

We do not yet have hierarchical knowledge of categories of objects, nor their
appearance, but extensive current work on representing the appearance and shape of
objects[15] allows us to use these appearance models in recognition. These models
need not be acquired from images, but their shape can be gotten from CAD models
in the design process. Our work on object discovery (Section 10.3) goes part way
to this goal in an unstructured environment. Object discovery is not recognition,
as in [3], but creation of models of scene elements by identifying independently
moving parts of the scene and then growing a 3D model over several observations.

10.3 Feature-based Object Discovery

Coherently moving groups of features in a map are an indicator of the presence of
a moving rigid object. These features can provide information about both the ap-
pearance and shape of the object. However, because of the difficulty of successfully
matching image features between different views of a moving object, they are typi-
cally sparse, resulting in imperfect information about the object. The goal of object
discovery is to recover more complete object descriptions[33] from these coherent
structures by isolating them from their surroundings using differences in depth or,
more generally, parallax and appearance. This isolation or segmentation allows us
to extract addition information from the input stream. Our work is similar in spirit
to [31] where they build models from two types of features: interest point similar to
SIFT, and MSER[19], tracking the features over long sequences, and then using the
appearance models aggregated over the frames to match objects in other frames of
the movie.

We examine the problem of object discovery, autonomous acquisition of object
models, using a combination of shape, appearance and motion. Our approach is a
multi-stage technique for detecting rigidly moving objects and modeling their ap-
pearance for recognition. First, the stereo camera is used to find a sequence of im-
ages and depth maps of a given scene (Figure 10.3). This is the same information
that is used to construct our maps and so can be collected concurrently.

Then the scene is oversegmented using normalized cuts[28], a technique for seg-
menting a graph based on a weight function between nodes. NCuts can be applied
to an image by treating the pixels as nodes. Our weight function is based on the dif-
ferences in intensity, depth and 2D image position between pixels (Figure 10.3(c)).
SIFT features[17] are matched between sequential pairs of images to identify groups
of rigidly moving features; the 3D movement of these features determines which



154 James J. Little and Tristram Southey

Fig. 10.3 (a) Input image for object discovery by motion, appearance, and shape (b) depth image
from stereo (c) segmentation of the image and depth map using normalized cuts based on both the
pixel intensity and depth.

regions in the segmentation of the scene correspond to rigid objects, grouping over-
segmented regions as necessary (see Figure 10.4). Determining which segmented
regions correspond to which rigid feature group (i.e., which rigidly moving object)
is done through a voting process based on the number of features from each group
in a region.
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Additional features are then extracted from segmented regions and combined
with the rigidly moving image features to create snapshots of the object’s appear-
ance (see Figure 10.4) and shape. Over time, even when objects have ceased moving,
these snapshots are combined to produce models that are effective for recognition.
The models contain shape information, since all feature points contain depth infor-
mation, and appearance, from the aggregation of image regions.

Fig. 10.4 (a) This image shows the position of every feature within the regions corresponding to
the rigidly moving features in the input image, both core features and adjunct features. Features on
cup on the left are indicated with Os while those on the milk box on the right are indicated with
Xs. (b) Object snapshots of the cup and the milk box acquired through region voting.

Our object discovery method envisions a robot system seeing moving objects –
we have ourselves moved the objects in our experiments, but in the future the robot
will continually revisit the scene. Objects that have moved can be indexed through
their SIFT features and our process applied over pairs of images where the robot has
moved instead. Other methods (Ferrari et al.[9], for example) extend local groups of
features to connect them into an appearance model that can be used in recognition.
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10.4 Visual Context

Visual sensing can also situate the operation of a robot in a larger context: pro-
viding image and scene contexts, object categories, object recognition, actions, and
intentions. Connecting the robot to a task and the elements of a scene simplifies
the sensing requirements, by narrowing down the focus. We will see later how José
used this aspect of vision.

Context tells the robot where to look and links with the task through the types of
locations and objects involved in the task. Context directs visual processing by in-
forming the robot “where to look”. Completion of a task requires knowing “where”
and “when to look” which is in turn dependent on a model of the task and environ-
ment.

The control of attention depends on the sequence of the task and exogenous
events that may not be consistent with the normal staging of a robot’s operations.
Most models of visual attention[13, 38] depend on a model of the visual saliency
or novelty of a visual feature or phenomenon, whatever its modality, and model the
spatial structure of the visual attention path and its temporal course. These are essen-
tially bottom-up. The active realization of this concept is shown in Elder [4] where
the high-resolution camera is directed by low-resolution cues to salient regions.

Context can direct attention in a top-down fashion, moving from a global esti-
mation of the category of the scene to relative spatial location of interesting ob-
jects in the scene. In pioneering work, Rimey and Brown[26] showed a selective
vision system that used Bayesian estimation and decision-theoretic control to de-
cide where and how to gather visual evidence. We will see later (Section 10.5) how
POMDPs have become the model of choice for sensing and action. Recently Vogel
and Murphy[40] have used learned information about the spatial arrangement of ob-
jects to speed up search in images. The innovation in Itti and Baldi’s new model[12]
is to draw the attention to spots where the visual event is unlikely given a model of
the image. This introduces a component of the scene and its content via the prior
model.

[37] introduces the concept of the “gist” of the scene, the visual characteris-
tics (cues) that enable us without close inspection to determine the category of a
location. They demonstrated that one could learn the gist, described in terms of re-
sponses to banks of filters, and then discriminate broad categories of scenes such
as corridors, offices, and streets. Whereas localization and recognition using feature
points employs specific discriminative features, gist identification targets descrip-
tors that correspond more to spatial organization and structure, such as parallelism,
rectangular-orientation, or clutter. It is important to note that gist and context are not
the same. Gist is a quantitative feature of a image which can be used to identify the
scene’s type, while context encompasses information about object relative spatial
structure, task dependent object knowledge, and scene type.

In the spirit of [3] we wish to connect semantic and spatial information. They
use a representation of the local appearance of an object and tag the world map with
that appearance representation so that it can be indexed later. Likewise Vasudevan
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et al.[39] take the first steps toward building world models that connect spatial rep-
resentations with the labeled content of the scene.

Relative spatial location of objects, their configuration, often depends on the re-
lation of the objects to the tasks in which they participate. A space is well organized
when the objects are at hand during the accomplishment of a task. It is relatively
unlikely that a desk, for example, will be arranged so that the objects next to the
keyboard and beside the monitor are automotive parts. There is a need for stronger
perception of objects, stability, continuity, identity before identification. Low level
processes can tease out identity and coherence, which precedes the process of cat-
egorization, but stronger spatial information can direct processing to appropriate
locations. Context can also be used to aid in the classification of groups of uncer-
tain objects by bootstrapping, with more easily recognizable objects aiding in the
classification of difficult ones and reinforcing the original classification.

Our current research plans entertain the possibility of learning the spatial rela-
tions between objects in the scene. Constellation models[8] encode varying spatial
configurations of model parts for recognition by Gaussian distributions of relative
part location learned from examples. Conditional random fields now can describe
spatial relations between regions[36, 41]. Both of these representations are 2D,
where full object spatial relations would have to be expressed in 3D. Where do we
get the information for learning spatial configurations of objects in a robot’s world?
Several possibilities arise: housing plans, virtual worlds as in electronic games, on-
line contests such as the ESP game, and finally the world itself, via exploration, and
object recognition and discovery.

By teaching a robot the categories of the objects in its environs we can avoid
the difficult problem of categorization. But will RFID technology obviate this work
entirely, by making object self-identifying? This is possible in some not too near
future, when all legacy appliances have been abandoned, but the task will remain
problematic for some while, and issues of privacy may prevent the wide adoption of
self-identifying objects.

In [10] Bill Gates predicts that robotics will be an exciting field in the coming
years, while promoting Microsoft’s Robot Studio as the software substrate for solv-
ing the difficult control software problems such as concurrency and coordination.
As mentioned in Gates’ article, it can be assumed that the robot agent often works
in an environment where networks of cameras observe the activity of the people and
the robot. Many projects have constructed test homes rich with sensors and context
aware components. It has become apparent that many of the techniques that have
been developed with a view toward applications in surveillance, which often use
networks of cameras, also apply to the world of service robots[20]. The robot can
also be instrumental in recovering the relative geometry of the cameras as it explores
its world[25].
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10.5 Acting in Space

José [6] is a visually-guided mobile robot that uses our visual processes, localiza-
tion, mapping, navigation and human-robot interaction, in the context of a particular
robotic task: serving food to a gathering of people. To accomplish this task, José
must reliably navigate around a room populated by groups of people, politely serv-
ing appetizers to humans. The robot must also monitor the food it has available to
serve, and return to a home base location to refill when the food is depleted. Prob-
lems specific to the serving task are also solved using vision, including finding peo-
ple to serve and monitoring food. As well, the robot’s success depends significantly
on its interaction with users, its “persona”, and its ability to generate appropriate
actions and responses. In José’s planner, we identified specific locations with their
tasks such as refilling the food. Other locations of interest, such as where unserved
people are standing, depend on the history of the actions of the robot. Similarly a
service robot will include in its behaviours defined places where activities occur: the
kitchen, the laundry, for example. Tying the location and its appearance to the sen-
sory process is the problem of grounding, of determining the connection between
beliefs and physical objects and situations, through the sensed data.

We argued in [16] that robots can be modeled as a set of capabilities, processes
that enable behaviours. A collection of tasks can be performed in a role. For ex-
ample, our robot enacted the José role of waiting as well as the Homer (Human
Oriented MEssenger Robot)[7] role. It is tedious if not infeasible to engineer each
role for the robot out of behaviours. It is more sensible to model the environment,
the robot, and its actions by a POMDP[16], which has proven its worth in complex
assistive applications[1].

10.5.1 Selecting Features for Actions

Tasks[16] organize a workspace into sequences of places, while actions and their
effects determine the order of the places. The places then facilitate their associated
actions by providing the necessary objects. When designing planners, whether based
on traditional, though reactive planners, as in [23], or POMDPs, there is a classifi-
cation or recognition step in which the fluent in the planner or the state variable in
the POMDP estimates its discrete state; we envision this process as identifying the
place where the robot is and its actions.

In [11] we demonstrated how to select visual features of the facial communica-
tion pattern in a game, essentially finding the correct aspect of the sensory stream to
correspond with the action. It is important to link the actual elements of the visual
stream that are relevant to a particular task, by representing the connections between
the utility of the action and the sensed features, within the confines of a task. Re-
inforcement learning is the usual solution for learning such connections, but it is
infeasible to test thoroughly the enormous state space.
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The solution we suggest is to “teach” the robot, rather than have it learn by trial
and error. That is, the robot must import the cultural descriptions that adhere to
places, which take their meaning from the actions there. The form of these descrip-
tions will be ontologies of objects and models of their dynamics under actions, ex-
pressed as Bayes nets, for example. For visually guided robots, we will need to
ground the objects in appearances, and connect them with their spatial organization.
Then we can sense, reason, decide, and act with them. Already we have some of the
tools for connecting hierarchical spatial descriptions with probabilistic reasoning
(Smyth and Poole, [32]). There, a system is developed for reasoning about general
hierarchical models combined with qualitative information about the distribution of
properties; the running example is rooms and types of rooms in a house.

10.6 Summary

The challenge of visually guided robotics, particularly as partners with humans, is
to progress from the laboratory into the home. Within constrained applications such
as assistive technologies, the more limited semantics of the scene and smaller range
of activities will likely lead to more rapid progress. To perform tasks robots need
more than the ability to construct maps and recognize objects. They must be able to
identify the relationships and structures of the required objects and actions. Context
then is a recognizable configuration of objects which is a product of the spatial
requirements of the task that the objects can entail. Thus, by endowing locations
and objects with semantic tags and context, this cultural information situates the
embedded system within a richer context useful for performing activities.

The success of these approaches depends on the ability of the robot to assess the
spatial priors over contexts and objects. In any particular application, there has to be
a balance between narrow focus (feature detection for localization, for example) and
broad support (context identification, categorization). The tradeoff between these
two will be driven by the reliability of visual sensing.

The challenge at hand is to acquire the structured information about the world,
the ontology of objects and their spatial organization and appearance, connect it to
maps, and formulate robotic controllers to accomplish complex tasks. Exploration,
recording of layout and appearance, and mining ontologies will deliver valuable
maps, contexts, and theories of the world.
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Chapter 11
Vision-Based Navigation Strategies

Darius Burschka

11.1 Motivation

Navigation and localization are important capabilities of mobile systems allowing
definition of mission goals. Only the knowledge about the absolute and relative po-
sition in an indoor or outdoor environment allows a free definition of mission goals
and path planning in areas not previously traversed by the system. A typical concur-
rent goal is the reconstruction of coherent 3D geometric representations of arbitrary
indoor or outdoor environments from a configurable set of sensors. This represen-
tation is typically used as a reference for localization. The sensor configuration is
thereby defined by the required accuracy and system costs. We investigate monocu-
lar and binocular cameras, laser range finders, and inertial systems as input sources
for this task. The minimal hardware configuration of such a system is a monocular
camera that can be supported by additional sensors to enhance the quality of the
reconstructed models. The goal is to replace expensive inertial systems with a set of
low-cost sensors, like video cameras available on most current computer systems.
The necessary accuracy is achieved through fusion of information over a sequence
of images. The idea is to replace expensive hardware with appropriate algorithmic
techniques to compensate for the imperfections of the low-cost sensors.

An important milestone towards a high accuracy reconstruction of the environ-
ment is an exact localization in an unknown or partially known environment. The
reference model for localization needs often to be extracted in parallel to the actual
localization task. This process is known in the literature as Simultaneous Localiza-
tion and Mapping (SLAM). The localization is necessary to fuse the sensor readings
from different positions to a consistent and complete 3D model.

In this chapter, we will focus on the localization task from a video camera. We
assume a video camera mounted on a mobile system. The localization implicates
several challenges. The first challenge is an accurate estimation of the 3D pose pa-
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rameters from the available sensor data. Another challenge is to perform the local-
ization in situations, where the reference points or landmarks as we will refer to
them in the following text are not known a-priori and need to be estimated in paral-
lel to the localization process. We propose systems that are capable of simultaneous
localization of the camera and navigation relative to obstacles in the world.

Fig. 11.1 Different types of navigation systems using video cameras: (Marvin) 3D exploration of
indoor environments with stereo [4], (Speedy) obstacle avoidance from dense disparity maps [7],
(Goomba) sentry robot using vision-based control for navigation [5], (car application) Visual
SLAM for traffic sign detection [8].

The problem of Simultaneous Localization and Mapping, also known as SLAM,
has attracted immense attraction especially in the mobile robotics literature. SLAM
addresses the problem of building a map of an environment from a sequence of land-
mark measurements obtained from a moving system. Since the motion especially
of hand-operated devices is unknown, the mapping problem induces a localization
problem. The partial 3D reconstructions can only be fused to a complete model
given an accurate relative localization between them. A solution to the SLAM prob-
lem using Kalman Filters was introduced in a paper by Smith, Self, and Cheese-
man [23]. This paper proposed the use of the Extended Kalman Filter (EKF) for
incremental estimation of the posterior distribution over the robot pose along with
the positions of the landmarks. While many popular SLAM implementations use
laser range information as input to the process to simplify the estimation to pure
localization task, we present an extension to vision-based techniques. The challenge
here is to obtain the necessary information for the SLAM process from a monocular
camera as input source.
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We developed a variety of navigation systems using different approaches rang-
ing from mission planning based on explored 3D models from a binocular setup [4],
over localization relative to obstacles in the world from stereo [7] to monocular ap-
proaches based on visual servoing [5] and a recently developed visual simultaneous
localization and mapping system ((VGPS)SLAM) [10] (see Fig. 11.1). We will give
a short evaluation of the advantages and disadvantages of these systems and discuss
the next steps in our current research.

11.1.1 Related Work

The problem that we address here is a simultaneous estimation of the motion param-
eters R,T (rotation and translation) and the depth information as a metric distance
to the observed points. We address the extension of typical SLAM based on laser
range finders to monocular cameras.

There exist solutions to pose estimation for 3 point correspondences for most
traditional camera models, such as for example orthographic, weak perspective [1],
affine, projective [14, 18] and calibrated perspective [19]. These approaches con-
strain the possible poses of the camera to up to four pairs of solutions in the case
of a calibrated perspective camera. At most one solution from each pair is valid ac-
cording to the orientation constraints and the other solution is the reflection of the
camera center across the plane of the three points.

Many localization approaches for indoor applications use simplifications like as-
sumptions about planarity of the imaged objects in the scene or assume a restricted
motion in the ground plane of the floor that allows to derive the metric navigation
parameters from differences in the images using Image Jacobians in vision-based
control approaches. A true 6DoF localization requires a significant computational
effort to calculate the parameters while solving an octic polynomial equation [22]
or estimating the pose with a Bayesian minimization approach utilizing intersec-
tions of uncertainty ellipsoids to find the true position of the imaged points from a
longer sequence of images [12]. While the first solution still requires a sampling to
find the true solution of the equation due to the high complexity of the problem, the
second one can calculate the result only after a motion sequence with strongly vary-
ing direction of motion of the camera that helps to reduce the uncertainty about the
position of the physical point. In the work of Nister [22], an approach sampling for
the correct solution along the rays of projection solving an octic polynomial to find
the actual camera pose is presented. It is limited to exactly 3 points neglecting any
possible additional information. While it represents a direct solution to the problem,
the high order of the polynomial and the typical noise in real images makes this
solution still very complicated and sensitive to noise.

Our system is motivated by the same idea as the system presented in [17], where
a tracking approach for “2.5D space” was proposed. The system is supposed to
compensate for the drawbacks of classical position-based visual servoing. In the
approach presented in [17], eight landmarks are necessary to estimate the pose of an
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object in space. A reduction to four points is only possible in case that four co-planar
points can be identified. The co-planarity constraint is a special case that is difficult
to enforce in all situations. Additionally, a robust tracking of eight landmarks in the
image is contradictory to our goal to build a compact system running on hardware
with limited computational power that can usually be found on mobile systems. The
smaller the number of landmarks that we need to track, the more processing power
can be dedicated to other important tasks on the robot.

Our pose estimation is based on an image-based approach that compares the
2D projections of an internal 3D model between images. The internal 3D model
is estimated up to scale due to the limitations in the perception of a monocular
camera system (see Section 11.3.3.1). In [11] a recursive model-based object pose
estimation is presented that is based on orthographic projection of points onto cam-
era image. This approach is limited to configurations that can be projected onto a
planar image. In our case, we propose a pose estimation method allowing robust
pose verification from 3 tracked landmarks that can be placed anywhere around the
sensor. Our approach operates in image coordinates of the camera using a novel rep-
resentation for the 3D model that does not require any knowledge about the three-
dimensional position in the world to register the reconstructions to each other.

We propose an approach that we validated in a wide range of applications ranging
from reconstructions from endoscopic medical images to 3D scene reconstructions
in outdoor environments.

We assume to know the initial 3D structure of at least 3 points in the world Pi

with known correspondences in the image frame ni. The system is initialized man-
ually or automatically with an initial set of feature correspondences with a known
metric relation and it maintains these correspondences through tracking in color or
texture. It adds new features to the set to compensate for loss of features that become
occluded or that disappear from the field of view. Further, we assume also a cali-
brated camera measuring directly the angles of incidence. In this chapter, we focus
on strategies for depth recovery from spherical projection and the motion+structure
update.

In the following Section 11.2, we give an overview of possible navigation ap-
proaches with a discussion of their advantages and disadvantages. In Section 11.3,
we describe the way the information about the depth changes due to motion and how
the motion itself is calculated. In Section 11.3.3, we discuss the open challenges for
our monocular navigation system. The accuracy of the algorithm is evaluated in Sec-
tion 11.4. We conclude in Section 11.5 with an overall evaluation of the presented
system and present our future research goals.

11.2 Navigation Alternatives

In this section, we present an overview of navigation approaches that we imple-
mented on our mobile systems in the course of the past years. They lead us to our fi-
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nal approach based on monocular VSLAM. We also discuss lessons that we learned
about the advantages and disadvantages of each of the approaches.

We distinguish between map-based systems that build an intern representation
of the environment as a 2D- or 3D-model and image based approaches deriving the
information directly from an error between an expected and an observed position of
a physical point in the world.

11.2.1 Map-based Navigation

Map-based navigation systems represent an approach to global navigation. The nav-
igation is based on 2.5D or 3D models of the environment. A 3D model as a global
reference allows a localization relative to a specific physical reference point in the
world in opposite to a relative localization between two sensor frames. Relative lo-
calization is common in image-based approaches.

The sensor information is abstracted to a 3D representation and fused from all
sensor readings to a consistent global or local model of the environment. The model
allows planning of arbitrary missions in the environment that may traverse locations
which were only perceived by the sensors, but which were never actually passed
in previous missions. It is possible, because the 3D model allows a prediction of
any new sensor view in the world even for new locations. Their advantage is the
flexibility allowing planning of arbitrary missions even in regions which were not
traversed before, but a significant disadvantage is the necessity of fusion of infor-
mation from the sensor readings requiring an exact localization over a long period
of time to allow a correct registration of all sensor readings in an area. An addi-
tional disadvantage is the abstraction of the information from the direct sensor data
to three-dimensional descriptions which are prone to errors due to calibration errors
in the system.

11.2.1.1 Binocular 3D Reconstruction

At the Lab for Real-Time Computer Systems of the Technical University in Mu-
nich, we built a mobile robot Marvin that reconstructs the 3D world model from the
perception of a binocular camera system [4]. The system is depicted in Fig. 11.2.

The system reconstructs three-dimensional line segments representing the bound-
aries of human made objects. The line segments are stored in a local map (DLM)
fusing the consecutive sensor readings from the sensor in Fig. 11.3. The map is the
central element of the navigation system. It decouples the three major information
flow loops in the system marked as colored regions in Fig. 11.3. They all operate
with different cycle times. There is a fast bidirectional information exchange be-
tween the local map DLM and the sensor system that predicts expected information
for the current view based on the 3D map content and stores back the current recon-
struction.
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Fig. 11.2 Exploration system Marvin using binocular stereo.

Fig. 11.3 The information flow in the map-based exploration system Marvin.

This loop helps to reduce false matches in stereo processing (3D reconstruction
module), because expected information is predicted for each step increasing the
matching score of correct matches between line segments in the stereo images. It
helps also to filter out wrong matches that cannot be verified in a current frame in
Fig. 11.4.

This filtering is based on the assumption that correct matches will always occur
close to their true position with a small positional error due to localization and cam-
era calibration errors. False matches move to varying locations depending on the
viewing position. Correct entries in the map correspond to line segments that could
be reconstructed from different viewing positions in a local environment.

The reconstructed line segments can be abstracted to polygons or even objects
in the spatial prediction module in the right block in Fig. 11.3. This can provide
additional hypotheses about missing lines based on assumptions about underlying
structures that can be provided to the sensor system as local predictions to be veri-
fied or discarded in the current view. This module operates outside of the fast sensor
loop and does not interfere with the sensor processing directly. The calculated infor-
mation about missing parts of hypothetical objects identified in the data is inserted
asynchronously to be verified in the sensor loop when the corresponding region
comes into sensor view.
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xy

Fig. 11.4 Multiple matching candidates for a given segment can be stored in the local map DLR
to be verified from a different location.

11.2.1.2 Monocular VSLAM Systems

In many cases, 3D reconstruction is necessary in large distances to the camera sys-
tem to allow pre-selection of interesting objects for a mission far ahead before the
system moves closer to them. A typical example is a car navigation system, where
the high speed of motion requires analysis of objects in large distance to the car to
give enough time for decision. An example can be a traffic sign detection system

Fig. 11.5 Large baseline can easily be constructed utilizing the motion of the vehicle with monoc-
ular systems.

that analyzes candidates for signs as soon as they become visible [10]. The rela-
tionship between the depth, z, of a scene point and its disparity, D, in two images
separated by baseline B is given by [14]:

D =
B · f

p
· 1

z
, (11.1)

where f is the focal length of the camera and p is the pixel-size on the camera chip.
This relationship is shown in Fig. 11.6 for several values of the distance between the
stereo cameras B. From the graph, it is clear that the larger the value D for a given
landmark, the better the signal to noise ratio of the resulting reconstruction.
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Fig. 11.6 The disparity value drops rapidly with the distance to the imaged landmark.

Some ways of increasing depth accuracy include increasing f (at the cost of
field of view) or decreasing p (i.e. using a higher resolution camera). The former is
generally limited by the need for a reasonably wide field of view; the latter is limited
by the bandwidth and processing necessary to handle higher resolution images.

As a result, the only real flexibility is in the baseline. There are natural limits
set on the maximum width of a binocular system. These limits can be defined, e.g.,
by the width of the car. Any further increase requires a change to a monocular re-
construction that uses the motion of the system as a baseline for reconstruction (see
Fig. 11.7).

Fig. 11.7 Monocular VSLAM system tracking positions of point feature in a sequence of images
to reconstruct their 3D position in parallel to estimation of the motion parameters of the camera
system.

Feature points representing a specific 3D point in the world are tracked in a se-
quence of images to estimate both their 3D position and the relative motion of the
camera to them in a SLAM (simultaneous localization and mapping) approach.

Like in the case of a binocular reconstruction, the resulting system constructs
a global or local 3D model containing in our case points representing centers of
unique patterns in the world. An accurate localization is necessary to fuse the single
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reconstructions from consecutive steps making the processing more complex and
sensitive to reconstruction and localization errors. In case that the system is used
for absolute localization, special care needs to be taken to keep the resulting errors
small. Relaxation techniques known from laser based SLAM approaches are applied
to reconstructed data to minimize the error.

The monocular approach can also be used as a relative localization system pro-
viding just position changes between consecutive sensor readings. In this case, just
the image position of corresponding feature points is analyzed in two image frames
allowing an estimation of relative motion without a necessity of fusion with infor-
mation from previous steps. Here, no global localization is performed. Our monoc-
ular SLAM implementation is a generalization of the Vision-Based Control (VBC)
navigation described in Section 11.2.2.1 below. This generalization allows large dis-
placements between the acquisition points of both images, because an analytic pose
estimation is used instead of a local linearization used in the image Jacobian from
VBC. In both cases, a displacement to a reference pose is calculated.

11.2.2 Image-Based Navigation

Many of the complicated house keeping methods to ensure correct global pose and
exact 3D reconstruction that are necessary for correct data fusion can be avoided
in image-based navigation approaches. Usually, these approaches do not provide
an absolute localization relative to a physical reference point in the world. They
calculate merely a relative motion between sensor readings instead. A fusion to an
absolute pose can be done outside of the navigation module. This navigation method
corresponds more to an inertial unit estimating just changes instead of integrating
them to an absolute value. Possible localization errors appear as noise on the top of
the relative pose estimation values.

11.2.2.1 Vision-Based Control

Many applications of mobile systems involve repeating tasks that require a robot to
move along a pre-defined path. The system does not require significant flexibility
in the choice of the paths, but high robustness is required for a long term operation.
A typical task for this type of systems is a sentry robot or mail-delivery robot re-
peating the same paths in each mission. To avoid the localization problems of the
map-based approaches that suffer from calibration errors which may occur due to
vibrations during operation, these systems use directly the images as a ”model” to
store the correct path. Changes in the projection between an expected and the actual
position of a landmark feature are used to calculate the pose error. This is a relative
localization error relative to the pose from where the reference image was taken.
The system does not need to have any knowledge about the absolute pose in the
world at any time.
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We explain the method at an example of a robot moving in a plane of the floor that
restricts its motion to the two dimensions of the plane (x,z) and the orientationΘ in
Fig. 11.8.

Fig. 11.8 The system estimates motion errors based on the difference in the observation between
the expected and the actual position of an imaged point.

A camera system is an angle measuring device. It estimates the direction (αi,βi)
from which a specific point in the world can be seen. The radial distance along
the line of sight is lost in the projection. Each observation with the metric pixel
coordinates (ui,νi) for a focal length f=1 can be converted into two angles (αi,βi)
describing the azimuth and elevation values for a given observation to:

αi = arctan ui = arctan

(
xi

zi

)
, βi = arctan

νi√
1 + u2

i

= arctan
yi√

x2
i + z2

i

Assuming motion in the plane, we can compute the following image Jacobian
relating the change of angles in the observation, (αi,βi), due to changes in motion
in the plane, (xi,zi) to:
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(11.2)
The dependency on the Cartesian coordinates can be avoided considering the

geometry of the system to:
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√
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Note that the image Jacobian is a function of only one unobserved parameter, yi,
the height of the observed point. Furthermore, this value is constant for motion in
the plane. Thus, instead of estimating a time-changing quantity as is the case in most
vision-based control, we only need to solve a simpler static estimation problem for
a constant value yi in case of the motion in the floor plane.

This system is very robust to errors in the calibration, since the goal of the pro-
cessing is to correct an image error to zero, which is independent of the estimates of
the focal length and radial lens distortions. These errors usually just cause the sys-
tem to assume a too large deviation. The correct alignment is still detected correctly.

11.2.2.2 Disparity-based Navigation

Obstacle avoidance systems are essential to protect robots from collisions with the
environment or driving towards staircases or gaps (negative obstacles) while oper-
ating in unknown or partially known environments. Many obstacle avoidance sys-
tems are based on sensors that provide direct 3D measurements, such as laser range
finders and sonar systems [3, 13]. In some cases, e.g. [16], cues from a monocular
camera combined with prior knowledge of supporting surface geometry and appear-
ance have been used. In contrast, our system relies completely on the data from a
real-time stereo system with relative few prior assumptions.

Disparity images are pseudo-images, where each pixel value corresponds to the
disparity D (reciprocal value to the depth distance z, see (11.1)). Two example of
such images are depicted in Fig. 11.9 below. The goal of the binocular system is to
recover all planar structures with a given size and position in space in the current
camera view. In previous work [6], we describe a system that was able to recover
supporting planes from binocular stereo images to detect obstacles in the scene.
This approach relied on the fact that there is a homography between the (u,v,D)
coordinates of a disparity image ([u,v]-image coordinates and disparity D) and the
corresponding Cartesian coordinates from the 3D scene. Here we sketch how we
use the idea to locate and estimate planar structures.

Following the derivation in [6], given a plane Pr in R3,

Pr : arx + bry + crz = dr (11.3)

the equivalent disparity plane is given by
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∀z �= 0 : ar
x
z

+ br
y
z

+ cr =
dr

z
(11.4)

aru + brv + cr = k ·D(u,v) (11.5)

with u =
x
z
, v =

y
z
, k =

dr

B
. (11.6)

where D(u,v) represents the disparity at image coordinates (u,v). Clearly, (11.4)
describes a plane in UVD space. We can write (11.4) in the following form
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with ρ1 =
ar

k
, ρ2 =

br

k
, ρ3 =

cr

k
(11.8)

All pixels in the disparity image that have the in (11.7) predicted disparity value
are removed form the image and the remaining pixels are treated as obstacles.
Ground suppression is fundamental for the entire process. An example of a suppres-
sion is shown in Fig. 11.9. It shows the resolution of the system, which is capable
of distinguishing between the ground plane and objects as low as 1cm above the
ground at a distance of up to 3m. The newspaper disappears as an obstacle as soon
as it lays flat on the ground. Each image triple shows the real image in the upper
left corner, the computed disparity image in the upper right corner and the detected
obstacles at the bottom.

Fig. 11.9 The newspaper is classified as obstacle left, but it disappears in the right image.

The common feature of this navigation category is that all the necessary infor-
mation is derived from the current sensor reading without any necessity of fusion
between different readings. In this case, like already in section 11.2.2.1, we get the
navigation information directly from the image itself.
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11.3 Monocular VSLAM Approach

Since a typical video camera measures only the angle of incidence of the incoming
rays of light, it is useful to remove the dependency on the physical imaging proper-
ties of the sensor and introduce a more generic sensor model. We decided to use a
spherical projection model for our system, where every 3D-point Pi is represented
as a unit vector ni pointing in its direction:

ni =
Pi

||Pi|| ∨ ni =
(uν 1)T

||(uν 1)T || (11.9)

We see in (11.9) that there is a simple relation between the uni-focal (focal length=1)
image coordinates (u,ν) and the projection on the sphere ni.

In the remainder of this section we describe the way, how the motion parame-
ters (R,T ) and the changing 3D structure elements {Di} are recovered. The motion
parameters represent a delta motion to the previous or a reference frame, but, for
simplicity, we will omit the Δ expression in front of them. We use image-based
tracking to maintain the correspondences between the image frames.

11.3.1 3D-Reconstruction

Analogous to the typical binocular approach, the 3D information is extracted using
additional information from a second image or an initial 3D reference model.

11.3.1.1 Reconstruction of Unknown Points.

This processing step is necessary to recover the depth structure for new points that
appeared in the camera images and need to be added to the tracking process. This
processing can also be used for dual camera systems (e.g., two omnidirectional cam-
eras) with known, calibrated displacement (R,T ).

In a parallel binocular system with a distance B between the cameras, the nor-
mal distance Z to an imaged point Pi is estimated from a horizontal shift (metric
disparity) d between both images [25] to

Z =
B · f

d
, f - focal length of the cameras (11.10)

Since we deal here with a monocular system that reconstructs only sparse infor-
mation about a few corresponding points, we want to avoid any warping operation
to the parallel case. In typical structure-from-motion applications, the translation T
is known only up to scale T

m [25]. Therefore, we modified (11.14) in the following
way:
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D′
i

m n′i = R Di
m ni + T

m

(n′i −R ·ni)
−1 · T

m =

⎛

⎝
D′

i
m

Di
m

⎞

⎠
(11.11)

This is the spherical disparity equation with a similar structure to (11.10). The
baseline B of the system is the distance T

m traveled by the camera and it is ”divided”
by the spherical disparity s

s =
(
n′i −R ·ni

)
, (11.12)

which represents a difference vector between the two projections (n′i,ni) rotated to
the coordinate frame of n′i in which T

m is defined. Since there is no significant plane
as it is the case for the image plane of a coplanar binocular system, a normal distance
definition of Z does not make any sense and it is replaced by the radial distance to

the focal points of both projections (Di
m ,

D′
i

m ). The reconstructed depths are scaled
down to the same scale as T. The scale m is preserved in the reconstruction. In the
following text, we will assume m=1 to simplify the notation. It is easy to verify that
all equation are true for any value of m > 0.

11.3.1.2 Update of Known Radial Distances.

The presented system maintains a set of known correspondences that was used to
recover the motion. For these points, the depths {Di} in the previous frame or in
the reference position at the origin are assumed to be known. The task is to update
them to the current depth {D′

i}. Theoretically, the equation (11.11) can be used for
this task, but since some of the data may represent very accurate model information,
a different type of update equation is used. It takes the accurate depth information
instead of the calculated motion information (R,T ) into account.

Since we try to estimate the 6DoF motion, point and line features do not pro-
vide sufficient information to describe all 6 motion parameters. We have chosen a
plane E spawned by 3 feature points {P1,P2,P3} and {P′

1,P
′
2,P

′
3} in both images as

a reference feature that is observed in both images of a sequence. The features must
not be collinear. We construct two vectors v1 = P′

2 −P′
1 ∧ v2 = P′

3 −P′
1 and describe

the plane segment with the diagonal resulting from addition of these two vectors.
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v1 = P′
2 −P′

1 ∧ v2 = P′
3 −P′

1

D = (D1,D2,D3)T

v1 = D′
2n′2 −D′

1n′1 = R ·D2n2 + T −R ·D1n1 −T

v2 = D′
3n′3 −D′

1n′1 = R ·D3n3 −R ·D1n1

v1 + v2 =

= (−2n′1 n′2 n′3) ·D ′ = R · (−2n1 n2 n3) ·D

F ′ ·D ′ = R ·F ·D

⇒ D ′ = F ′−1R ·F ·D
(11.13)

The equation (11.13) introduces the projection matrix F that projects the depth
vector D onto the diagonal vector v1 + v2 in the plane E . It allows a recovery of
the updated depth values D ′ based on the current image data that was used to con-
struct F and F’, and the known geometric structure D from the previous frame.
The equation (11.13) shows that from a known set of relative distances D the new
3D structure D’ after the motion can be reconstructed without any knowledge about
the translation in the system T . It is an important property of this estimation system,
since monocular systems are able to recover the rotation matrix R correctly, while
the translation vector T is estimated only up to an unknown scale factor if there is
no external metric reference in the world used.

11.3.2 Motion Recovery

The reconstruction approaches in the previous section (Section 11.3.1) assumed a
knowledge of the motion parameters (R,T ). In case of a monocular system, these
parameters are unknown and need to be estimated in parallel to the reconstruction
process. We mentioned already in the motivation section that there is no linear rela-
tion between the motion and structure parameters according to (11.14). The typical
structure-from-motion approaches are able to reconstruct the motion from 5-8 point
correspondences between the images. In our case, we assume to have additional in-
formation about the metric distances D to the imaged points that will allow us to re-
duce this number to a minimal set of 3 features. Our goal is to develop an algorithm
that on one hand works with a minimum feature set but on the other hand accepts
additional features if they are available. This is one of the important differences to
the algorithm presented in [22] that operates on 3 points assuming their accurate
detection. In real applications, the feature detection is error-prone and some of the
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errors can be compensated by using additional features in over-determined systems
of equations.

11.3.2.1 Motion-Induced Changes in the Feature Projections

The equation (11.11) describes completely the change in the projection ni → n′i due
to arbitrary motion in all 6 degrees of freedom (R,T ). The motion estimation needs
to be separated from the reconstruction of the depth parameters {Di,D′

i}.

v2

v1

P1

P2

P3

D1

D2

D1’

D3’D2’

D3

Fig. 11.10 Minimum set of three non-collinear points {P1,P2,P3, . . .} in 3D space is used to
recover the motion parameters.

The equation (11.11) shows that any translation T changes the lengths {Di} of
the associated rays of projection. On the other hand, motion is necessary for the
depth reconstruction according to (11.11). We want to recover the motion from ob-
servations of a static set of points.

Recursive Algorithm for Simultaneous Motion and Structure Estimation

Since the influence of motion (R,T) and structure Di is non-linear in

D′
in

′
i = R ·Dini + T, (11.14)

therefore, we need to estimate both in parallel. Instead of sampling the rays for
the correct solution, we use an algorithm that we originally developed for small
positional changes [9, 10], but that proves to be valid for large deviations as well.

The algorithm is based on the idea of alternating refinement of pose and structure
information. For small movements in the scene, the assumption is valid that the
changes are mostly in the pose parameters (especially rotation R) while the distances
to the observed points remain almost the same. Therefore, for each new frame, we
start with an initial guess for distances {D̂i

t} that is chosen for each iteration step t
as follows:

D̂i
t =

{
Dinit , t = 0

Dt−1
i , t �= 0

(11.15)
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These depths are used to calculate guesses for the point positions to

P̂′
i = D̂t

i ·n′i (11.16)

The initial error for a significant change in pose is depicted in Fig. 11.11 as
green(gray) lines and circles. We compute the pose change for these two initial
point sets and use it to refine our guess about the depth structure {D′

i}.

v2

v1

P1

P2

P3

D1

D2

D1’

D3’D2’

D3

Fig. 11.11 The initial depth assumption for a very large deviation in position.

Computing the absolute orientation is the process of determining R̃ and T from
corresponding pairs P̂′

i and Pi. With three or more non-collinear points, R̃ and T can
be obtained as a solution to the following least-squares problem as described in [15].

min
R,T

n

∑
i=1

‖RPi + T− P̂′
i‖2, subject to RT R = I. (11.17)

Such a constrained least squares problem [14] can be solved in closed form using
quaternions [21, 24], or singular value decomposition (SVD) [20, 2, 21, 24]. We use
the SVD method to calculate the rotation matrix in our system as described in [10]
in more detail. We see in (11.13) that the rotation alone is sufficient to estimate the
changes in the distances to the tracked points. The corresponding translation T can
be estimated from the pose change of the corresponding points (Pi,P′

i ) assuming
that the rotation matrix R is known.

This is an iterative approach, where the result of each iteration is used to estimate
new improved guesses of the depth structure Di.

11.3.3 Open Challenges

The presented VSLAM system was tested in different scales ranging from outdoor
navigation down to navigation of endoscopes in medical applications. The system
works reliably if the initial depth structure is known. The correct initialization is still
an open challenge that we try to approach. The second challenge is a compensation
of drifts due to accumulation of errors for the case that the presented system is used
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for global localization and the noise values create an offset value deteriorating the
localization quality.

11.3.3.1 Estimation of the Initial Depth Relations

The initial depth structure is usually initialized in two ways. In case that the system
starts at a known location, like e.g. a landing place or a docking station, a known
reference structure can be observed and a reference projection can be calculated
from it. As an example, the reference structure can be a rectangle on the floor and
the reference view can be a pose with an image plane coplanar to the rectangle with
the focal point 1m above the center of the rectangle. Basic projection equations can
be used to calculate this ”virtual projection”. The depth information for a current
observation can now be estimated using our iterative approach (Section 11.3.2) in
Fig. 11.12.

Fig. 11.12 Initialization from a known reference structure.

A second initialization method is based on the essential matrix computation [25].
The motion parameters can be estimated up to an unknown scale in the translation
in Fig. 11.13. A relation between the projections pi, p∗i in two camera images with
known internal parameters can be expressed with the Essential Matrix Ẽ [14] as

p∗i Ẽpi = 0 (11.18)

The Essential Matrix Ẽ consists of a product of two matrices

Ẽ = R̃ · sk(T),

with sk(T) =

⎛

⎜
⎝

0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

⎞

⎟
⎠

(11.19)
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Fig. 11.13 Initialization from an initial motion. After the initial motion a subset of the initial points
in the left image can still be tracked. It is used for the essential matrix method.

Note that, given a correspondence, we can form a linear constraint on Ẽ. It is
only unique up to scale, therefore, we need 8 matches, then we can form a system
of the form C̃ · e = 0 where e is the vector of the 9 values in Ẽ.

The essential matrix solution gives a valid result only if the corresponding points
did not lie on a super-quadric, like e.g. on a plane. This condition occurs unfortu-
nately quite often in case of flying systems observing the ground. For such a con-
figuration a homography matrix method needs to be used. An important decision is
to recognize that a given feature set is on a plane without any knowledge about the
environment. Our current solution uses the eigenvalues of the essential matrix which
should be equal to (1,1,0) in the ideal case. Noise and detection errors cause them
to deviate from this ideal case. A planar condition can be identified as a result with
two non-zero eigenvalues with a ratio significantly larger than 1. In such a case, the
homography solution is chosen.

11.3.3.2 Compensation of Drifts

A typical off-shelf perspective camera has only a limited field of view. Therefore,
only a small set of landmarks is usually visible in the sensor cone with an opening
angle defined by the focal length of the lens. The shorter the focal length the larger
is the field of view of the camera. There are natural limits on the maximum size of
the field of view. Fish-eye lenses with a wide field of view have usually significant
radial distortions and do not focus in a single point, which deteriorates the quality
of the navigation result that relies on the knowledge of the angle of incidence of the
light rays.

Our camera model represents the imaged points on a sphere (see Fig. 11.14).
They are represented by the normalized direction vectors ni. This allows us to con-
struct a reference view used for the localization in the local area that spans the
entire space. In the initialization, only features contained in the current sensor view
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Fig. 11.14 Points in different directions around the origin of the local coordinate frame are getting
projected on a sphere and represented as direction vectors ni.

are used as the initial reference set, but this view gets extended with additional land-
marks that are reconstructed using the current motion parameters between images
containing a specific landmark. The images used for reconstruction of a specific
landmark do not need to contain the initial reference view. The newly estimated
landmark position gets transformed back to this initial frame. This allows a recon-
struction of landmarks in all directions (360◦ field of view).

This extension of the field of view permits the usage of one unique set of ref-
erence features in a local area independent of the direction of motion. Any noise
or error in the localization results in this case just in a noise in the resulting pose
estimation. Since the localization is calculated always relative to the same reference
structure in the world, we can avoid drifts in the localization that could be caused
by continues integration of the relative motions between consecutive frames. The
reference frames need to be changed because of the limited range in which a given
set can be observed. This hand-off process is an interesting open issue. Interesting
solutions can be used from laser based SLAM approaches.

11.4 Results

11.4.1 Convergence of the Pose Estimation

The presented system estimates the pose change between two frames. This can be
an incremental change between two consecutive frames or the absolute difference
to a reference frame. Depending on the requirements in the system, both modes are
of interest. An important question here is the accuracy of the system for varying
distances from the original configuration.

The number of iterations required to estimate the motion parameters with an
accuracy below 1cm stays below 50 for most large indoor environments tested with
this system. The proof of global convergence is mathematically derived in [15]. The
number of iterations to find the best transformation explaining the changes between
the reference and the current position of the projections varies depending on the
initial differences between the reference model and the current pose.
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Usually, we don not propagate the changes in the λi lengths between the steps.
Instead of calculating the change from the reference position, a relative change to
the previous step can be calculated which converges in very few (le10) iterations.

11.4.2 Reconstruction Results

11.4.2.1 Endoscope Navigation

The system was tested in micro-scale performing pose estimation of the endoscope
camera in a phantom of a human skull. The experimental validation of our approach
was carried out on the setup depicted in Fig. 11.15.

Fig. 11.15 Experimental setup for the validation of the accuracy of the endoscope navigation in a
porcine cadaver head.

We tracked the position of the endoscope with the OptoTrakTM system in the
background to verify the motion estimation results from our system. The result-
ing reconstruction errors had a standard deviation of (0.62, 0.3382) for each of the
cases. The minimal rotational error expressed as Rodrigues vector was r=(0.0017,
0.0032, 0.0004), (-0.0123, -0.0117, -0.0052) for both cases. The error in the esti-
mate of the translation vector was ΔT = (0.05,−0.398,0.2172)T,(−0.29,0.423−
0.4027)T [mm]

11.4.2.2 Outdoor Scene Reconstruction

We used the presented VSLAM system to classify geometric positions of regions
in the image to filter candidates for traffic signs. The system was recovering the
motion of the camera by tracking of features in the images and performing a 3D
reconstruction of the position of the extracted color blobs. Candidates in the right
geometric location relative to the road were additionally checked for planarity by
adding additional points on the surface in Fig. 11.16.
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Fig. 11.16 (Left) Outdoor scene, (right) 3D reconstruction.

11.5 Conclusions

We presented an overview of the navigation approaches tested on our mobile sys-
tems. A theoretical background for our approach for explicit recovery of structure
and motion from a minimum set of 3 corresponding landmarks in spherical pro-
jections was discussed. The presented approach assumes the knowledge about the
initial geometrical relation between the depths to the observed points, which may
be obtained from a 3D model of the world or from more complex structure-from-
motion approaches requiring more points. A good candidate for initialization is,
e.g., the eight point algorithm [25] that delivers an initial guess for the depths to
the points. This information is refined using the presented 3D-reconstruction. This
initial information is updated in the system using a recursive algorithm updating the
motion and depth parameters in parallel.

In opposite to other existing approaches, the presented system presents an ex-
plicit solution for an arbitrary number of point correspondences in monocular im-
age sequences. We require a minimum of 3 landmarks for the structure and motion
recovery, but the system scales easily to more corresponding points, which improve
the error compensation capabilities of the system.

Our future work will focus on improvements in the convergence of the system
by controlled fixation of parameters depending on the feature configuration and on
solving the open challenges mentioned in section 11.3.3.
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Chapter 12
Image-Based Visual Servoing with Extra Task
Related Constraints in a General Framework for
Sensor-Based Robot Systems

Ruben Smits, Duccio Fioravanti, Tinne De Laet, Benedetto Allotta,
Herman Bruyninckx and Joris De Schutter

12.1 Introduction

Robotic tasks of limited complexity, such as simple positioning tasks, trajectory fol-
lowing or pick-and-place applications in well structured environments, are straight-
forward to program. For these kinds of tasks extensive programming support is
available, as the specification primitives for these tasks are present in current com-
mercial robot control software.

While these robot capabilities already fulfill some industrial needs, research fo-
cuses on specification and execution of much more complex tasks. The goal of our
recent research is to open up new robot applications in industrial as well as domestic
and service environments. Examples of complex tasks include sensor-based naviga-
tion, like visual servoing and 3D manipulation in partially or completely unknown
environments, using redundant robotic systems such as mobile manipulator arms,
cooperating robots, robotic hands or humanoid robots, and using multiple sensors
such as vision, force, torque, tactile and distance sensors. Little programming sup-
port is available for these kinds of tasks.

As a result, the task programmer has to rely on extensive knowledge in multiple
fields such as image processing, spatial kinematics, 3D modeling of objects, geo-
metric uncertainty and sensor systems, dynamics and control, estimation, as well as
resolution of redundancy and of conflicting constraints.

The goal of our recent research is to fill this gap. We want to develop program-
ming support for the implementation of complex, sensor-based robotic tasks in the
presence of geometric uncertainty. The foundation for this programming support is a
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generic and systematic approach to specify and control a task while dealing properly
with geometric uncertainty [8].

Previous work on specification of sensor-based robot tasks, such as force con-
trolled manipulation [10, 15, 16, 17] or force controlled compliant motion combined
with visual servoing [3], was based on the concept of the compliance frame [19] or
task frame [5]. In this frame, different control modes, such as trajectory following,
force control, visual servoing or distance control, are assigned to each of the transla-
tional directions along the frame axes and to each of the rotational directions about
the frame axes. The task frame concept has proven to be very useful for the specifi-
cation of a variety of practical robot tasks. However, the drawback of the task frame
approach is that it only applies to task geometries with limited complexity, that is,
task geometries for which separate control modes can be assigned independently to
three pure translational and three pure rotational directions along the axes of a single
frame.

A more general approach is to assign control modes and corresponding con-
straints to arbitrary directions in the six dimensional manipulation space. This ap-
proach, known as constraint-based programming, opens up new applications involv-
ing a much more complex geometry and/or involving multiple sensors that control
different directions in space simultaneously.

Seminal theoretical work on constraint-based programming of robot tasks was
done by Ambler and Popplestone [2] and by Samson and coworkers [22]: this ap-
proach was first applied to vision-based control in [12]. Based on the same theoret-
ical background a more recent work of Mezouar and Chaumette [20] considers the
problem of image-based control with bounded field of view and robot joint limits
constraints, while in [13] visual servoing in despite of change of visibility in image
feature is addressed. Image-based visual servoing with visibility constraint is also
discussed in [6]. Also motion planning research in configuration space methods (see
[18] for an overview of the literature) specifies the desired relative poses as the result
of applying several (possibly conflicting) constraints between object features.

Our own preliminary work on a task specification framework was presented in
[9], while the mature framework is thoroughly discussed in [8].

This paper shows the application of this general framework to the example appli-
cation of image-based visual servoing combined with extra task related constraints
in the 3D Cartesian space, this way showing the power and the practical advantages
of this systematic approach. Extension to other constraints on extra sensor measure-
ments (like distance), other task spaces or joint space is possible.

The paper is structured as follows. Section 12.2 introduces the formulation of
image-based visual servoing with extra task specific constraints in 3D Cartesian
space inside the general framework. Section 12.3 defines the additional feature co-
ordinates that are used to model task constraints. Subsequently, Section 12.4 details
a velocity-based control scheme which uses these additional coordinates. Exper-
imental results are presented in Section 12.5. Finally, Section 12.6 discusses the
proposed approach and summarizes the main conclusions.
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12.2 Application

This work presents the application of the general task specification framework to a
visual servoing application with extra task constraints in Cartesian space . The goal
is to track an object in the image or plan a motion in the image given a planar object
and given a camera attached to the robot end effector (eye in hand configuration).
To select the object, a number of points are selected in the image before execution.
These are the desired positions of the respective image-points. The object is moved
around by a human and the robot tracks the object using feedback control on each
selected image-point. Robot motion is however constrained in Cartesian space: the
robot end effector is not allowed to come too close to a vertical wall. A security bor-
der to the wall is defined for the robot end effector. An overview of the experimental
setup is shown in Fig. 12.1.

Notice that although the image and Cartesian constraints are defined in different
operational spaces they can be easily combined, as shown in the next section.

12.3 Modeling

The general framework introduces additional task related coordinates, denoted as
feature coordinates χf , to facilitate the modeling of both constraints and measure-
ments by the user. These coordinates are defined in object frames and feature frames
that are chosen by the task programmer in a way that simplifies the specification of
the task at hand. First the adopted camera projection model is shown, next frames
and task coordinates assignments for the constrained visual servoing application are
presented.

12.3.1 Camera Model

As for classical IBVS applications, the camera is modeled by its intrinsic matrix K
(an upper triangular 3× 3 matrix containing focal length, principal point and skew
parameter information) and a frame attached to the sensor itself defined as camera
frame (having its z axis coincident with the focal axis and origin in the projection
center) [14]. In this work K is supposed to be known and assumed to be constant (no
zoom). Let P = [Xc Yc Zc]T be the 3D coordinates of a generic target point expressed
in the camera frame; in the normalized image the corresponding normalized image
point homogeneous coordinates are defined by:

m̃ =
[

mT 1
]T =

[
mx my 1

]T =
1
Zc

P . (12.1)

If pixel coordinates are used, the same point is defined by the following equation:
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w

b

Fig. 12.1 Overview of the experiment: the camera is attached to the robot end effector; target
points are projected by the camera in the image plane. The dotted line represents the vertical wall
and the dashed line represents the security border.

p̃ =
[

u v 1
]T = Km̃ . (12.2)
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Since K is known, it is straightforward to find the normalized coordinates m from
the known pixel coordinates p̃ by inverting (12.2) for each image target point of
interest.

12.3.2 Object and Feature Frames

A typical robot task accomplishes a relative motion between objects1. A systematic
procedure is presented to introduce a set of reference frames in which these relative
motions are easily expressed.

The first frame is the “world” reference frame, denoted by w. In this application
the world frame is placed at the base frame of the robot.

The other frames are object and feature frames that are relevant for the task. In
the framework an object can be any rigid object in the robot system (for example a
camera frame, robot end effector or a robot link) or in the robot environment.

In this application the following objects are relevant: the normalized camera-
image and its tracked image-points, the robot end effector and the wall.

A feature, as defined in the framework, is linked to an object, and indicates a
physical entity on that object (such as an image point, vertex, edge, face, surface),
or an abstract geometric property of a physical entity (such as the symmetry axis of
a hollow cylinder).

In this application relevant features are the tracked image-points, and the camera
principal point (in the normalized camera-image) and the distance between the robot
end effector and the wall.

The relative motion between two objects is specified by imposing constraints
on the feasible relative motion between one feature on the first object and a corre-
sponding feature on the second object. Each such constraint needs four frames: two
object frames (called o1 and o2, each attached to one of the objects), and two feature
frames (called f 1 and f 2, each attached to one of the corresponding features of the
objects).

For an application in 3D space, there are in general six degrees of freedom be-
tween o1 and o2. The connection o1→ f 1 → f 2 → o2 forms a kinematic chain, that
is, the degrees of freedom between o1 and o2 are distributed over three sub-motions:
the relative motion of f 1 with respect to o1 (sub-motion I), the relative motion of
f 2 with respect to f 1 (sub-motion II), and the relative motion of o2 with respect to
f 2 (sub-motion III), as shown in Figure 12.2.

Furthermore, two different kind of kinematic chains are recognized, one for each
of the tracked image-points and one for the constraint on the distance between the
robot end effector and the wall (respectively denoted by a and b primes in the fol-
lowing).

1 In general also controlled dynamic interactions between objects can be taken into account, but
the constraint visual servoing example does not involve such interaction.
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q

χfI

χfII

χfIII

Fig. 12.2 Object and feature frames and feature coordinates.

Figure 12.3 shows the object and feature frames chosen for the constrained visual
servoing example. For each kinematic chain of the first kind, corresponding to the
tracked image-point i:

- frame o1a fixed to the principal point in the normalized camera-image with the
x- and y-axes along the image axes, and and the z-axis along the focal axis,

- frame f 1a is the same as o1a,
- frames o2a

i have the same orientation as o1a, but are located at each tracked point
in the normalized camera-image,

- frames f 2a
i are the same as the respective o2a

i ,

and for the kinematic chain of the second kind:

- frame o2b fixed to robot end effector,
- frame o1b fixed to the wall, with its y-axis along the wall,
- frame f 1b is translated from o1b along the wall, with its origin corresponding to

the projection of f 2b onto the y-axis of o1b, and its x-axis perpendicular to the
wall.

- frame f 2b is the same as o2b.

The next paragraphs show how the choice of these frames simplifies the mathemat-
ical representation of the sub-motions, the system outputs and the measurements.

12.3.3 Feature Coordinates

Task related feature coordinates χf are introduced to facilitate the task specification
by the user. These coordinates represent the sub-motions between o1 and o2.

For the motion of the tracked image-points in the camera-image the feature co-
ordinates of interest, expressing the sub-motions for each tracked image-point are:

χf
a
i = χfII

a
i =

(
mxi myi

)T
, (12.3)
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w

b

o2b = f 2b

o1b
f 1b

o1a = f 1a

o2a
1 = f 2a

1 o2a
2 = f 2a

2

o2a
3 = f 2a

3o2a
4 = f 2a

4

Fig. 12.3 Definition of the frames: o1a = f 1a is at the principal point of the normalized image,
and o2a

i = f 2a
i are the tracked points in normalized image. o1b on the base of the wall o2b is

on the robot end effector, f 2b is the same as o2b and f 1b is translated along the wall, with its
origin corresponding to the projection of f 2b onto the y-axis of o1b. The isolated dots represent
the desired positions of the respective image-points.

where mxi and myi are expressed in f 1a and represent the position of the tracked
point i, f 2a

i with respect to the principal point of the normalized image. These fea-
ture coordinates can be stored in the vector χf

a :

χf
a =

(
χf

a T
1 ... χf

a T
k

)T
, (12.4)

where k represents the number of tracked image-points.
For constraint on the distance between the robot end effector and the wall, the

feature coordinates expressing the sub-motions are:
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χfI
b = yb , (12.5)

χfII
b =

(
xb zb φb θ b ψb

)T
, (12.6)

χf
b =

(
χfI

b χfII
b T

)T
, (12.7)

where yb is the translation along the wall from o1b to f 1b. xb, zb are Cartesian
coordinates expressed in f 1b, representing the x- and z- translation of the robot end
effector from the wall to the robot end effector , while φb,θ b,ψb represent Euler
XYZ angles between the wall and the robot end effector.

All feature coordinates are grouped into a single vector χf embedding the com-
plete system motion:

χf =
(
χf

a T χf
b T

)T
. (12.8)

12.3.4 Task Specification

To define the desired task, constraints have to be specified on the set of feature
coordinates. Constraints are specified as:

y j (t) = yd j (t) , (12.9)

where y j (t) represents a system output, and yd j (t) the desired output for constraint
j.

To assign the desired position of tracked image-points (or to generate the desired
path in the camera-image for an image-point ), constraints have to be specified on
the following outputs:

y2i−1 = mxiandy2i = myi, (12.10)

for i = 1 · · ·k, while in Cartesian space, the constraint on the distance from the wall
to the robot end effector, has to be specified on:

y2k+1 = xb. (12.11)

12.4 Control

In this section a velocity-based control law is derived for the constrained visual
servoing example. The plant is assumed to be an ideal velocity controlled system,
that is, the robot dynamics are neglected. Hence the system equation is given by:

q̇ = u = q̇d , (12.12)
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where the control input u corresponds to the desired joint velocities q̇d .
On the other hand, the output equation relates the system state to the the outputs

y:
f
(
q,χf

)
= y, (12.13)

The system state, consisting of q and χf is non-minimal, because a dependency
relation exists between q and χf . This dependency relation corresponds to the loop
closure equations, and is expressed as:

l
(
q,χf

)
= 0. (12.14)

In the constrained visual servoing example a loop closure is defined for each of the
kinematic chains defined in Section 12.3.2.

For the derivation of velocity-based control the output (12.13) and the loop clo-
sure equations (12.14) are differentiated with respect to time to obtain equations at
velocity level. The output equation at velocity level is written as:

Cqq̇+Cf χ̇f = ẏ, (12.15)

with Cq = ∂ f
∂q and Cf = ∂ f

∂ χf
. Cq is used for the constraints in joint space and is zero

in our case. Cf is used for the constraints in the different feature spaces.
On the other hand, velocity loop closure for the constraint on the distance to the

wall becomes:

wJq q̇+ wJf χ̇f
b = 0, (12.16)

wherewJf = ∂ lb

∂ χf
b and wJq = ∂ lb

∂q , the robot jacobian are expressed in the base frame,
w.

For IBVS the velocity loop closure is projected in the reduced normalized image-
space using the interaction matrix, JI :

−JI cJqq̇+ χ̇f
a = 0 , (12.17)

wherecJq represents the robot jacobian giving the 6D camera velocity with respect
to the base frame, centered in the camera origin and expressed in the camera frame.
Because JI is known to have singular configurations for 3 points, at least 4 points
have to be tracked. The points do not have to be on the same object. Different objects
could be tracked, the constraints however should be defined in such a way that the
task still makes sense. Tracking independently moving objects only makes sense
if the constraints are not to keep the image-points at the exact desired position in
the image. For this application the image-points are chosen on the same object.
Other visual servoing techniques can also be used if a corresponding jacobian is
available. How to obtain JI will be discussed in 12.4.2. Notice that the previous loop
closure is only valid if the target object is fixed with respect to the world w; (12.17)
neglects indeed image-point motion components given by the relative 3D target-
world motion. However, if the control frequency is sufficiently high, according to the
magnitude of the relative target-world velocity, equation (12.17) can be successfully
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used to track a moving target, as shown in the following. To increase the tracking
performance an estimator could be used to take into account the neglected image
motion component.

From (12.16), (12.17) and (12.8) χ̇f can be solved, yielding:

χ̇f = −Jf
−1Jqq̇. (12.18)

Note that Jf
−1 and Jq are constructed out of the two different velocity loop closures:

Jf
−1 =

(
−JI 02k×6

06×6 wJf
−1

)

, (12.19)

Jq =

(
cJq

wJq

)

, (12.20)

where Jq is known since it is formed by two different known robot jacobians while
Jf can be easily constructed as shown in the next paragraphs. Substituting (12.18)
into (12.15) yields the modified output equation:

Aq̇ = ẏ, (12.21)

where A = Cq −Cf Jf
−1Jq is introduced for simplicity of notation.

12.4.1 Definition of the Constraints

Constraint equation (12.9) is also expressed at velocity level. As a result, the con-
straint equation has to include feedback at position level for tracking or to compen-
sate for drift, modeling errors and disturbances:

ẏ = ẏd + Kp (yd − y) = ẏ◦d , (12.22)

with Kp a matrix of feedback constants (in this case a simple diagonal matrix) and ẏ◦d
the modified constraint at velocity level. For the constraints on the tracked image-
points (tracking case) ẏd is set to zero and yd is assigned equal to the desired position
of each image-point. The visual servoing constraints at velocity level finally for the
x- and y-position of the tracked image-points become:

ẏ j = kv(yd j − y j),

with kv the respective diagonal element from Kp for constraint j = 1 → 2k. In the
case of planning for the image-points ẏd and yd for each image-point can be set as
the result of the planning algorithm.

For the constraint on the distance to the wall:
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ẏd2k+1 = 0,

yd 2k+1 = b,

ẏ2k+1 = kcart(yd 2k+1 − y2k+1),

where b is a positive value representing a security distance to the wall and kcart is
the diagonal element from Kp for the constraint on the distance to the wall.

12.4.2 Obtaining the Constraint Matrices

In the constraint visual servoing example the matrices Cq and Cf are easily found
by inspection. Since no constraints exist directly on the joint level in this example,
Cq = 0. Since each constraint is directly expressed on one feature coordinate, Cf
becomes a simple matrix selecting the appropriate components of χf (12.8):

Cf =

(
I2k×2k 02k×6

01×2k 0 1 0 0 0 0

)

(12.23)

12.4.3 Obtaining the Feature Jacobian

The feature jacobian Jf is composed using the jacobians of the two sub-motions.
The jacobian wJf expresses the motion between the wall and robot end effector
motion and for this application wJf = I6×6. For the camera-image points motion, JI
is obtained from the vision theory. Since we assume to track k image-points, JI will
be a 2k×6 matrix structured as follows:

JI =
[

JT
1 . . . JT

i . . . JT
k

]T
, (12.24)

where the generic entry Ji ( i = 1 → k ) has the form:

⎡

⎢
⎢
⎣

− 1
Zi

0
mxi

Zi
mximyi −(1+m2

xi) myi

0 − 1
Zi

myi

Zi
(1+m2

yi) −mximyi −mxi

⎤

⎥
⎥
⎦ . (12.25)

Ji is the well known interaction matrix [12] for a normalized image-point mi, as
defined in (12.1) : it expresses the relation between the 2D motion of the normalized
image-point and the 6D camera velocity with respect to the world, expressed in
the camera-frame. Ji is both function of the image-point coordinates and of the
correspondent Cartesian 3D point depth Zi with respect to the camera frame.

Notice that point depths are unknown: for this reason approximate fixed values
or on-line updated estimates [7] must be used for Zi to build JI .
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12.4.4 Obtaining the Weighting Matrix

In general the system to be solved (12.21) is over-constrained due to tracking k dif-
ferent points and an extra constraint on the distance to the wall. Therefore a weighted
pseudo-inverse[11, 21] is used to calculate the desired joint velocities, q̇d :

q̇d = A+
W ẏ◦d , (12.26)

where W is a diagonal matrix which contains the weight of each constraint, W =
diag(w2

j). Following the general framework:

wj =
1

Δ jk j
,

where Δ j denotes the tolerance on constraint j and k j is the feedback constant from
Kp for constraint j. Similarly, in this case, the weight of the constraint on the distance
to the wall uses the following function for the weight:

g(x,L, l) = max

(
0,

l
|L− x| −1

)
, (12.27)

with L a limit value where the value x is not allowed to pass and l a value describing
an activation band. Fig. 12.4 shows the value of g(x,L, l) in function of x for L = 0
and l = 0.05. If x is out of the band the g(x,L, l) becomes zero, if x enters the band
g(x,L, l) grows hyperbolically to infinity as x comes closer to the limit L. The weight
of the constraint on the distance to the wall becomes:

wcart =
1

kcart Δcart
g(xb,0,b). (12.28)

By calculating the weight like this it’s made sure that the robot end effector will
never come too close to the wall since the weight goes to infinity as the robot end
effector approaches the wall. This results in a bigger importance of the constraint
on the distance of the wall when solving (12.26).

Because the weight is zero outside the activation band, xb > b, the constraint on
the distance to the wall only influences the object tracking if the distance between
the robot end effector and the wall enters the security zone defined by b.

For the constraints on the image points also an activation band is used: the points
should not leave the image when the Cartesian constraint is activated. It is used on
all borders of the normalized image. Let tl = [ lx ly ]T and br = [Lx Ly ]T respectively
be the top-left and the bottom-right limit corners in the normalized image and l be
the security band in the normalize image. For each normalized tracked image-point
mi, as defined in (12.1), weights are calculated as follows:

w2i−1 =
1

kvΔv
[1+g(mxi,Lx, l)+g(mxi, lx, l)] ,
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Fig. 12.4 The value of g(x,L, l) with respect to x with L = 0 and l = 0.05.

w2i =
1

kvΔv
[1+g(myi,Ly, l)+g(myi, ly, l)] .

tl and br are easily calculated by inversion of (12.2), applied to the correspondent
pixel image corners.

Fig. 12.5 shows the weight wxi of an mxi-position constraint for an image-point
in the normalized image in function of mxi with kv = 0.2, Δv = 0.005m and l =
0.0857m, these values are used for the experiments.

12.5 Results

This task is executed on a velocity controlled industrial robot with a fire-wire cam-
era attached to the end effector. The robot is connected to a PC, with a Linux-
based operating system and a RTAI realtime execution extension. To control the
robot the OROCOS-software[23, 4] is used. The image processing is done using the
OpenCV[1] library.

In the experiment color images of pixel-size 640×480 are processed. Feedback
constants kv = 0.2 and kcart = 0.2 are used. Four image points on the same object are
selected for tracking before execution. These points should be stable on the object,
this way motion of the points corresponds with motion of the object. The object
is moved (by a human) towards the (virtual) wall which is located at −1m of the
base frame of the robot. The activation band is chosen b = 0.05m. This means that
the constraint on the distance to the wall is only activated if the robot end effector
x-position in the base frame passes −0.95m, which is clearly noticeable in Fig. 12.6.
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Fig. 12.5 Weight of an x-position constraint in the image in function of the point’s x-position.

The figure shows the x-position of the robot end effector expressed in the base
frame. As long as the distance of the robot end effector to the wall does not enter
the activation band b, the robot is only tracking the selected image-points. If the
robot enters the security zone, which is the case between 100s and 200s, the control
will try to keep the error for the tracked image-points as small as possible without
coming closer to the wall.

Fig. 12.7 shows the positions of the tracked points in the image. Because the
feedback constant, kv is small the image-points do not stay exactly on the desired
values, defined by the black crosses in Fig. 12.7, but even when the constraint on
the distance of the wall is activated the error on the image points does not enlarge
significantly. Note that the image is not centered in (0,0), this is because the prin-
cipal point is not in the center of the image. Fig 12.8 shows a different experiment
with different selected image-points in a very extreme situation where the object has
passed the security border very far, the robot does not come any closer but still tries
to get the error in the image as small as possible.



12 IBVS with Extra Task Related Constraints in a General Framework 201

Fig. 12.6 X-position of the robot end effector.

12.6 Conclusion

This paper shows how control in different spaces, image space, Cartesian space,
joint space or any other task space can easily be defined in a general task spec-
ification framework without adding complexity in the control of the robot. Over-
constrained systems can be solved using weights between the different constraints.
Inequality constraints are used by defining a hyperbolic function for the weight of
the respective constraint. The experimental results show how the constraints in dif-
ferent spaces are correctly combined.
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Fig. 12.7 Normalized position of the tracked points in the normalized camera-image, the crosses
are the desired positions, the rectangle describes the security-band l for the tracking constraints.
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