Chapter 6 Longititudunal (Panel) Evaluations Using DEA

6.1 Malmquist Index

Monitoring performance over time is essential in health care organizations. The Malmquist index is a method which provides an opportunity to compare the health care facility performance from one period to another. Such a tool was suggested first by Malmquist (1953), then developed as a productivity index by Caves, Christensen and Diewert (1982), and then further developed by Fare, Grosskopf and Lowell (1994) as the Malmquist-DEA performance measure.

The Malmquist DEA calculates DEA efficiency for the following input (or output) oriented CRS models:

- [a] Calculating the frontier in time period-1 (time t) and comparing efficiency scores, $\theta_0^t(x_o^t, y_o^t)$, of health care organizations at period-1 (time t),
- [b] Calculating the frontier in time period-2 (time t + 1) and comparing efficiency scores, $\theta_0^{t+1}(x_0^{t+1}, y_0^{t+1})$, of health care organizations at period 2 (time t + 1),
- [c] Comparing efficiency scores of time period-1 (t), $\theta_0^t(x_0^{t+1}, y_0^{t+1})$, to frontier at time period-2 (t + 1), and
- [d] Comparing efficiency scores of period-2 (t + 1), $\theta_0^{t+1}(x_o^t, y_o^t)$, to frontier at period-1 (t).

Malmquist efficiency is defined as the geometric mean of efficiency scores defined above:

$$M_o = \left[\frac{[a]Period - 1}{[c]Period - 1 \text{ on } Period - 2} * \frac{[d]Period - 2 \text{ on } Period - 1}{[b]Period - 2}\right]^{\frac{1}{2}}$$
(6.1)

or

$$M_o = \left[\frac{\theta_0^{t}(\mathbf{x}_o^{t}, \mathbf{y}_o^{t})}{\theta_0^{t}(\mathbf{x}_o^{t+1}, \mathbf{y}_o^{t+1})} \frac{\theta_0^{t+1}(\mathbf{x}_o^{t}, \mathbf{y}_o^{t})}{\theta_0^{t+1}(\mathbf{x}_o^{t+1}, \mathbf{y}_o^{t+1})}\right]^{\frac{1}{2}}$$
(6.2)

where M_o indicates the efficiency change between period-1(t) and period 2 (t + 1).

The efficiency change is observed as:

If $M_o > 1$, efficiency is decreased from period-1 to period-2. If $M_o = 1$, no change in efficiency from period-1 to period-2. If $M_o < 1$, efficiency is increased from period-1 to period-2.

An important feature of the DEA Malmquist index is that it can decompose the overall efficiency measure into two mutually exclusive components, one measuring change in technical efficiency (catching-up effect) and the other measuring change in technology (innovation). Since the Malmquist efficiency index is the product of these two components, the decomposition can be shown as:

$$M_{o} = \frac{[a]Period - 1}{[b]Period - 2} * \left[\frac{[b]Period - 2}{[c]Period - 1 \text{ on } Period - 2} \right]^{\frac{1}{2}}$$

$$* \frac{[d]Period - 2 \text{ on } Period - 1}{[a]Period - 1} \right]^{\frac{1}{2}}$$
(6.3)

or

$$M_{o} = \frac{\theta_{0}^{t}(\mathbf{x}_{o}^{t}, \mathbf{y}_{o}^{t})}{\theta_{0}^{t+1}(\mathbf{x}_{o}^{t+1}, \mathbf{y}_{o}^{t+1})} \quad * \quad \left[\frac{\theta_{0}^{t+1}(\mathbf{x}_{o}^{t+1}, \mathbf{y}_{o}^{t+1})}{\theta_{0}^{t}(\mathbf{x}_{o}^{t+1}, \mathbf{y}_{o}^{t+1})} * \frac{\theta_{0}^{t+1}(\mathbf{x}_{o}^{t}, \mathbf{y}_{o}^{t})}{\theta_{0}^{t}(\mathbf{x}_{o}^{t}, \mathbf{y}_{o}^{t})}\right]^{\frac{1}{2}}$$
(6.4)

The efficiency component of the index (the first half) measures changes in technical efficiency from period t to period t + 1. That is, it measures how the units being examined have managed to catch up to the frontier. On the other hand, the technical component of the index (the second half) measures changes in the production frontier (i.e., a shift in best-practice technology) from period t to period t + 1. In an input-oriented evaluation, if the values of the Malmquist index and its components are less than 1, equal to 1, or greater than 1, they indicate progress, no change, or regress, respectively (Caves, Christensen and Diewert, 1982; Färe, Grosskopf, Lindgren, and Ross, 1994).

CRS output orientation can be handled similarly. However, for VRS the following constraint should be added to the model:

$$\sum_{j=1}^n \lambda_j = 1 \quad j = 1, \dots n$$

6.2 Malmquist-DEA Efficiency Example

To illustrate the use of DEA based Malmquist index, we will use the ongoing example, in which we will consider the existing data belonging to period-1. Additional

84

6.2 Malmquist-DEA Efficiency Example

			ndow <u>H</u> elp		EAFrontier -	. 8
Verdana	• 10 •		Section Reads West		8 #8 🙆 - <u>A</u>	•
C15 -	₹ 100100100 100100100	To Keply	with Change	s Eng Keview	2	
A	В	С	D	E	F	
Hospital	Nursing Hours	Medical Supply		Inpatient	Outpatient	
H1	567	2678		409	211	
H2	350	1200		90	85	
НЗ	445	1616		295	186	
H4	2200	1450		560	71	
HS	450	890		195	94	
H6	399	1660		209	100	
H7	156	3102		108	57	
H8	2314	3456		877	252	
H9	560	4000		189	310	
H10	1669	4500		530	390	
	C15 • Hospital H1 H2 H3 H4 H5 H6 H7 H8 H9	K B Hospital Nursing Hours H1 567 H2 350 H3 445 H4 2200 H5 450 H6 399 H7 156 H8 2314 H9 560	C15 K A B C Hospital Nursing Hours Medical Supply H1 567 2678 H2 350 1200 H3 445 1616 H4 2200 1450 H5 450 890 H6 399 1660 H7 156 3102 H8 2314 3456 H9 560 4000	C15 ✓ A B C D Hospital Nursing Hours Medical Supply Ha 567 2678 H2 350 1200 Ha 1616 Ha 2200 1450 H3 445 1616 Ha 2200 1450 Ha 1660 H4 399 1660 1	A B C D E Hospital Nursing Hours Medical Supply Inpatient H1 567 2678 409 H2 350 1200 90 H3 445 1616 2955 H4 2200 1450 560 H5 450 890 1955 H6 399 1660 209 H7 156 3102 108 H8 2314 3456 877 H9 560 4000 189	A B C D E F Hospital Nursing Hours Medical Supply Inpatient Outpatient H1 567 2678 409 211 H2 350 1200 90 85 H3 445 1616 295 186 H4 2200 1450 560 71 H5 450 890 195 94 H6 399 1660 209 100 H7 156 3102 108 57 H8 2314 3456 877 252 H9 560 4000 189 310

🖾 м	icrosoft Excel	- ExampleData-M	almquist				
:0)	Eile Edit View	w Insert Format	Tools Data	Window Help	Adobe PDF D	EAFrontier .	. 8 ×
	🖞 🗄 Verdana	- 10 -	BIU		\$ % , 3	8 - A - A	-
	2200	MISSIE	R. B YVR	aply with Changes	s End Review	-	
	D16 -	fx.					
	A	В	С	D	E	F	
1	Hospital	Nursing Hours	Medical Supp	ly	Inpatient	Outpatient	
2	H1	600	2500		415	222	
з	H2	375	1250		95	95	
4	НЗ	475	1700		300	200	
5	H4	2260	1500		565	80	
6	H5	475	900		200	99	
7	H6	415	1600		225	111	
8	H7	175	3000		110	60	-
9	H8	2360	3500		900	245	
10	H9	590	3900		250	€ 300	
11	H10	1800	4200		650	450	
19	Period1	>Period2/		<	1		>

Fig. 6.1 Malmquist data for the example problem

data from the same hospitals was gathered from another time period (year) and labeled as period-2. The top part of Fig. 6.1 illustrates period-1 and the bottom part of Fig. 6.1 shows the data belonging period-2. As the reader can observe, the data setup is similar to the cross-sectional (single time period) version, however, for each period under consideration a new Excel sheet must be present. Health care managers and researchers can include more than two periods; however, the evaluation of Malmquist-DEA must be carried by choosing any two periods at a time. 6 Longititudunal (Panel) Evaluations Using DEA

9	File Edit View	w Insert Format	Tools Data	Window Help	Adobe PDF	DE	AFrontier	- 1
Verd	dana 1916 -	• 10 • B I		. . .	🧶 Σ - 21 % • 1.8 -93 es End Review		Envelopment Mode Myltiplier Model Restricted Multiplie Slack-based Model	rs
	A	B	С	D	E	-	Measure Specific M	iodel
1	Hospital	Nursing Hours	and the second se	у	Inpatient		Malmquist	he
2	H1	600	2500	<u></u>	41		About DEA	N
3	H2	375	1250		9		Quit DEA	
4	НЗ	475	1700		30		Zuic DEM	
5	H4	2260	1500		56	5	80	
6	HS	475	900		20	0	99	
7	H6	415	1600		22	5	111	
8	H7	175	3000		11	0	60	
9	H8	2360	3500		90	0	245	
10	H9	590	3900		25	0	300	
11	H10	1800	4200		65	0	450	
12	11111111111					-		

Fig. 6.2 Setup for Malmquist-DEA

To evaluate performance over time using Malmquist-DEA, select the Malmquist option from the DEAFrontier menu, as shown in Fig. 6.2. This will prompt another window for the selection of time periods from the available set. As shown in Fig. 6.3, our example contains only two periods; thus we choose both. In order to select the second period, the user should hold the Ctrl key then click into the designated box. Selection of the model orientation (input or output) completes the selection process, as shown in Fig. 6.3. Click OK to run the model.

Once the model runs, the health care manager and researcher can view a file containing outputs in several spreadsheets. Naturally, the raw data from period-1 and period-2 are the essential parts of this file. The Malmquist-Index file shown in Fig. 6.4 displays the summary information for the Malmquist-DEA. The three columns of information display the results for each hospital, as shown in the formulation earlier in Sect. 6.

The reader can verify that "Malmquist Index=Efficiency Change * Frontier Shift" by multiplying the values in the last two columns of the report shown in Fig. 6.4. As discussed earlier, if $M_o > 1$, efficiency is decreased from period-1 to period-2; hence H1, H3, H4, H7 and H9 exhibit such a decrease. On the other hand, if $M_o < 1$, efficiency is increased from period-1 to period-2; hospitals H2, H5, H6, H8 and H10 all increased their efficiency between these two periods.

To further investigate the components of the Malmquist index, we can observe efficiency independently in each period. Fig. 6.5a,b show the independent efficiency evaluations of period-1 [a] and period-2 [b].

Using these independent evaluations to compare hospitals in Fig. 6.5a,b, we observe that inefficient hospitals H2, H6, and H10 increased their efficiency in the second period, while H7 decreased its efficiency score.

6.2 Malmquist-DEA Efficiency Example

second	l one)	Itrl Key for selecting the
	Period1 Period2	ок
4		Cance 1
	Model Orienta	tion
	Model Orienta • Input-Oriented	

Fig. 6.3 Selection of periods and orientation

1	Ele Edit :	jew Insert Format	Iools Data Window	Help Adobe PDF DE	Frontier Type a	question for he	lp	8
0	2 1 1	3 3 7 13 1 X	1 2 2 · 1 9 -	(* - 1 👷 E - 21 👬	100% -	0		
Verd	ana	- 10 - B I	UEEEM	\$ % , *** *** #	#	A -		
-	-	Nation Value						
-			Han Por Reply with	ghanges Lod Keview				
-	A1 •	fr Inputs			-	-	0	_
	A	В	C	D	E	F	G	_
	Inputs	C C	Outputs		First Period	Second Pe	riod	
	Nursing Ho	Jurs -	Inpatient		Period1	Period2		
	Medical S	yppiy	Outpatient					
4							-	
5			Input-Oriented					
6			CRS					
7	DMU No.	DMUs in Period1		Efficiency Change	Frontier Shift			
8		H1	1.02115	1.00000		h	-	
9		H2	0.93202	0.95265			-	
10			1.00908	1.00000	and the second se		-	
11		H4	1.00941	1.00000			-	
12		HS	0.98405	1.00000			-	
13		H6	0.93288	0.92227	1.01150		-	
14			1.08993	1.05771	1.03046			
15		HB	0.99195	1.00000		12	-	
16	9	H9	1.05036	1.00000	1.05036			
17		H10	0.80889	0.82680	0.97834			

Fig. 6.4 Summary of Malmquist-DEA results for the hospital example

In order to calculate the Malmquist index shown by (6.4), we need to observe period-1 on period-2 and period-2 on period-1, where one period is under evaluation with respect to the other period, and the other period serves as reference. These are the [c] and [d] components of the formula. As shown in Fig. 6.6a "M period1-period2" indicates that period-2 is the reference set, and the Malmquist index for

	A	В	C	D	E	F G	H	1	J	К
1	Inputs	1	Outputs							
2	Nursing	Hours	Inpatient							
3	Medical	Supply	Outpatient		1					
4										
5			Input-Oriented							
6			CRS							1
7	DMU No.	DMUs in Period2	Efficiency	Σì	RTS	Benchmarks	5			
8	1	H1	1.00000	1.000	Constant	1.00) H1	¢.		
9	2	2 H2	0.64600	0.475	Increasing	0.47	5 H3	30.0		
10	3	3 H3	1.00000	1.000	Constant	1.00	D H3			
11	4	H4	1.00000	1.000	Constant	1.00) H4			
12	5	5 H5	1.00000	1.000	Constant	1.00	D H5			
13	6	i H6	0.82166	0.648	Increasing	0.26	7 H1		0.380	НЗ
14	7	' H7	0.91568	0.273	Increasing	0.24	4 H1		0.029	НЗ
15	8	8 H8	1.00000	1.000	Constant	1.00	0 H8			
16	9	H9	1.00000	1.000	Constant	1.00	0 H9			
17	10	H10	0.91071	2.250	Decreasing	2.25	D H3		_	
18										

III · · N Period1 / Malmquist Index / M Period1 / M Period2- Period1 / M Period2 / M Period2 / Period2 / Period2 /

	A	В	С	D	E	F G	H	I	J	K
1	Inputs		Outputs							
2	Nursing	Hours	Inpatient							
3	Medical	Supply	Outpatient							
4										
5			Input-Oriented							
6			CRS							
7	DMU No.	DMUs in Period1	Efficiency	22	RTS	Benchmark	5			
8	1	H1	1.00000	1.000	Constant	1.00	0 H1			
9	2	: H2	0.61541	0.457	Increasing	0.45	7 H3			
10	3	НЗ	1.00000	1.000	Constant	1.00	0 H3			
11	4	H4	1.00000	1.000	Constant	1.00	0 H4			
12	5	H5	1.00000	1.000	Constant	1.00	0 H5			
13	6	H6	0.75780	0.609	Increasing	0.25	8 H1		0.350	НЗ
14	7	' H7	0.96852	0.275	Increasing	0.23	7 H1		0.038	H3
15	8	HB	1.00000	1.000	Constant	1.00	0 H8			
16	9	H9	1.00000	1.000	Constant	1.00	0 H9			
	1.0.17	H10	0 35003	0.007	Decreasing	2.09				

18 H + H Period1 / Malmquist Index M Period1 / M Period2- Period1 / M Period2 / M Period1- Period2 / Period2 /

Fig. 6.5 (b) Independent efficiency evaluation of period-2 [b]

period-1 is under evaluation. Similarly, in Fig. 6.6b "M period2-period1" indicates that period-1 is the reference set, and the Malmquist index for period-2 is under evaluation.

To calculate the "Efficiency Change" and "Frontier Shift" components of the (6.3) or (6.4), we shall reorganize efficiency scores calculated from Fig. 6.5a, from Fig. 6.5b [b], from Fig. 6.6a [c], and from Fig. 6.6b [d]. Figure 6.7 displays the summary of these efficiency scores for each hospital in the respective columns, and also includes a summary of the Malmquist index, efficiency change and frontier shift from Fig. 6.4.

Now, if we customize (rewrite) the (6.4) for this example, let us say for hospital H6, then we get

$$M_6 = \frac{\theta_6^1(\mathbf{x}_6^1, \mathbf{y}_6^1)}{\theta_6^2(\mathbf{x}_6^2, \mathbf{y}_6^2)} \quad * \quad \left[\frac{\theta_6^2(\mathbf{x}_6^2, \mathbf{y}_6^2)}{\theta_6^1(\mathbf{x}_6^2, \mathbf{y}_6^2)} \quad * \quad \frac{\theta_6^2(\mathbf{x}_6^1, \mathbf{y}_6^1)}{\theta_6^t(\mathbf{x}_6^t, \mathbf{y}_6^t)}\right]^{\frac{1}{2}}$$

6.2 Malmquist-DEA Efficiency Example

	A	В	C	D	E	F	G	H	I	J
1	Inputs	1	Outputs						1	
2	Nursing H	ours	Inpatient							
З	Medical S	upply	Outpatient							
4		1000								
5			Input-Oriented							
6	1		CRS							
7	DMU No.	DMUs in Period2	Scores	Benchmarks						
8	1	H1	1.00015	0.519	H1		0.687	H3		
9	2	H2	0.66030	0.511	НЗ					
10	3	H3	1.02214	1.075	НЗ					
11	4	H4	1.00630	0.967	H4		0.121	H5		
12	5	H5	1.03196	0.059	НЗ		0.936	H5		
13	6	H6	0.80332	0.121	H1		0.595	H3		
14	7	H7.	0.89120	0.200	H1		0.096	H3		
15	8	H8	1.01038	0.014	H4		1.018	H8		
16	9	H9	0.98679	0.369	НЗ		0.746	H9		
17	10	H10	0.93088	2.419	нз					
18										

H + + H Period1 / Malmquist Index / M Period1 / M Period2- Period1 / M Period2 / M Period1- Period2 / Period2 /

Fig. 6.6 (a) Malmquist index period-1, period-2 is reference [c]

	A	В	C	D	E	F	G	H	I	J	K
1	Inputs	1	Outputs								
2	Nursing H	ours	Inpatient								
з	Medical S	upply	Outpatient								
4											
5			Input-Oriented								
6			CRS								
7	DMU No.	DMUs in Period1	Scores	Benchmarks							
8	1	H1	1.04290	0.986	H1						
9	2	H2	0.60208	0.425	НЗ						
10	3	H3	1.04078	0.069	H1		0.888	3 H3			
11	4	H4	1.02533	0.991	H4						
12	5	H5	0.99930	0.090	H3		0.679	9 H5		0.036	H
13	6	H6	0.75802	0.499	H1		0.007	7 H3			
14	7	H7	1.00093	0.260	H1						
15	8	HB	0.99418	0.022	H4		0.335	5 H5		0.886	H
16	9	H9	1.08869	1.033	H9						
17	10	H10	0.73667	1.950	НЗ						
18											

Fig. 6.6 (b) Malmquist index period-2, period-1 is reference [d]

	M Period 1 [a]	M Period 2 [b]	M Period1-Period2 [c]	Period2-Period [d]	-1		
DMU No.	Input-Oriented CRS Efficiency	Input-Oriented CRS Efficiency	Input-Oriented CRS Scores	Input-Oriented CRS Scores	CRS Malmquist Index		
						Efficiency	Frontier
						Change	Shift
	1.00000	1.00000	1.00015	1.04290	1.02115	1.00000	1.02115
2	0.61541	0.64600	0.66030	0.60208	0.93202	0.95265	0.97834
3	1.00000	1.00000	1.02214	1.04078	1.00908	1.00000	1.00908
4	1.00000	1.00000	1.00630	1.02533	1.00941	1.00000	1.00941
5	1.00000	1.00000	1.03196	0.99930	0.98405	1.00000	0.98405
6	0.75780	0.82166	0.80332	0.75802	0.93288	0.92227	1.01150
7	0.96852	0.91568	0.89120	1.00093	1.08993	1.05771	1.03046
8	1.00000	1.00000	1.01038	0.99418	0.99195	1.00000	0.99195
	1.00000	1.00000	0.98679	1.08869	1.05036	1.00000	1.05036
10	0.75297	0.91071	0.93088	0.73667	0.80889	0.82680	0.97834

Fig. 6.7 Summary of efficiency scores

6 Longititudunal (Panel) Evaluations Using DEA

	А	В	$\sqrt{A^*B}$	С	M./C	D	E	$\sqrt{D * E}$
DMU No.	[a]/[c]	[d]/[b]	M_{o}	[a]/[b] Efficiency Change	Frontier Shift	[b]/[c]	[d]/[a]	Frontier Shift
1	0.99985	1.042902	1.02115	1.0000	1.02115	0.99985	1.04290	1.02115
2	0.93202	0.932018	0.93202	0.9527	0.97834	0.97834	0.97834	0.97834
3	0.97834	1.040778	1.00908	1.0000	1.00908	0.97834	1.04078	1.00908
4	0.99374	1.025328	1.00941	1.0000	1.00941	0.99374	1.02533	1.00941
5	0.96903	0.999296	0.98405	1.0000	0.98405	0.96903	0.99930	0.98405
6	0.94333	0.922543	0.93288	0.9223	1.01150	1.02283	1.00029	1.01150
7	1.08676	1.093097	1.08993	1.0577	1.03046	1.02747	1.03346	1.03046
8	0.98972	0.994179	0.99195	1.0000	0.99195	0.98972	0.99418	0.99195
9	1.01338	1.088690	1.05036	1.0000	1.05036	1.01338	1.08869	1.05036
10	0.80889	0.808889	0.80889	0.8268	0.97834	0.97834	0.97834	0.97834

Fig. 6.8 Detailed calculations of Malmquist-DEA index

and, substituting the respective efficiency values, θ_6^* , from Fig. 6.7, we obtain:

$$M_{6} = \frac{0.75780}{0.82166} * \left[\frac{0.82166}{0.80332} * \frac{0.75802}{0.75780}\right]^{\frac{1}{2}}$$
$$M_{6} = 0.92227 * \left[1.022825 * 1.000291\right]^{\frac{1}{2}}$$
$$M_{6} = 0.92227 * \left[1.023123\right]^{\frac{1}{2}}$$
$$M_{6} = 0.92227 * 1.01150$$
$$M_{6} = 0.93288$$

Figure 6.8 shows the correspondence of these calculated scores for all ten hospitals (DMUs). The reader can observe that hospital H6's Malmquist index, M_6 , is 0.93288 as shown in column M_0 in Fig. 6.8. The components of this index, efficiency change and frontier shift values, were also obtained while calculating M_6 as 0.92227 and 1.01150, respectively.

Independent calculation of the frontier shift is also demonstrated in Fig. 6.8, in columns D and E, where the square root of the cross product of this calculation yields the frontier shift.

It should be noted that when more than two periods involved in the evaluation, one can perform Malmquist index for any pair of periods given that periods are identified properly on Excel worksheets. Ozgen and Ozcan (2004) study demonstrated seven year evaluation of performance for dialysis centers using Malmquist index (see Chap. 13, Sect. 13.2 for further information).

6.3 Summary

This chapter demonstrated the longitudinal evaluations of performance using the Malmquist-DEA index. In doing so, we can identify changes in efficiency from one

6.3 Summary

period to another, but can also determine whether this change is due to pure efficiency improvement and/or due to technological changes in service delivery, such as medical innovations, which caused a shift in the efficiency frontier. As health care organizations adopt many new technologies, frontier change is expected, provided there is a long enough duration lag to capture this effect.