Design of a Model-Driven Web Decision Support
System in Agriculture: From Scientific Models
to the Final Software

Ludovic Tambour, Vianney Houlés, Laurence Cohen-Jonathan,
Valérie Auffray, Pierre Escande, and Eric Jallas

Abstract This chapter aims at introducing a new type of design of decision
support systems (DSSs). The DSS presented here is a software based on cli-
ent—server technology that enables great accessibility by the Web. Its concep-
tion flow has been established to be generic and not explicitly problem-oriented.
In this way, once the first DSS is built, the creation of other DSSs will be easy
and time-saving. The creation of the DSS requires the collaboration of different
experts such as agronomists, computer specialists, and interface experts. Their
communication is improved by the use of the formal language Unified Model-
ing Language (UML) throughout the process of software design. The relevance
of the DSS comes from its use of scientific mechanistic models adapted to the
users’ needs and from a flexible architecture that allows easy software main-
tenance. The chapter is structured as follows: after the introduction, the second
section will explain in detail the methods used to build the scientific models that
describe the biological system. The third section describes the methods for the
validation and implementation of those models, and the fourth section deals
with the transcription of the models into software components processable in
the DSS. Finally, the last section of this chapter describes the architecture of the
client—server application.

1 Introduction
1.1 General Points

Modern agriculture has multiples stakes in economics, environment, society,
health, ethics, and even geopolitics. Farmers must integrate more and more
information with increasing production constraints. Decision support systems
(DSSs) have been developed with the intention of providing farmers with
relevant information for diagnosis assistance or more generally to facilitate

L. Tambour (D<)
SAS ITK, Montpellier, France
e-mail: ludovic.tambour@itkweb.com

P.J. Papajorgji, P.M. Pardalos (eds.), Advances in Modeling Agricultural Systems, 67
DOI 10.1007/978-0-387-75181-8_5, © Springer Science+Business Media, LLC 2009

68 L. Tambour et al.

strategic or operational decision-making in an inaccurate and/or uncertain
environment.

These systems are particularly useful for pest control; indeed, these tools can
provide risk indicators through the use of models running with meteorological
data, or more basically, with a description of land history (preceding crop, soil
management, etc). This enables the farmer to make a more accurate diagnosis
and anticipate treatments or change his strategy. For instance, when the DSS
foresees a low pest pressure, the farmer may favor environmental characteristics
instead of efficiency when planning his phytosanitary program.

In France, the Plant Protection Service (Service de la Protection des Végé-
taux) has been working on disease prediction models since the 1980s and has
included them in DSS since the beginning of the 1990s. More than 30 pests
(insects or diseases) have been studied, and 21 models are currently used in
France[1, 2]. Since then, many other DSSs have appeared. They have benefited
from technological advances in data acquisition and treatment and from the
Internet for the diffusion and update of information. Many agriculture-
oriented institutes are involved in the development of DSSs such as research
centers (INRA,' CIRAD?), technical institutes, cooperatives, and agropharma-
ceutical companies. The aims of DSSs are varied and may concern, for instance,
variety choice (Culti-LIS), weed control (Decid’herb [3]), disease control
(Sépale +), or nitrogen fertilization (Ramses).

Despite this variety of offerings, DSSs are not currently used by farmers. The
cooperative In Vivo, one of the major DSS providers, covers only 1.45 million
hectares with its DSS for fertilization and plant protection [4] among 29.5
million hectares of agricultural lands in France. To be profitable, a DSS must
be simultaneously reliable (scientifically validated) and user-friendly for the
farmers.

With regard to plant phytosanitary protection, major effort is still required
to adapt DSSs to practical needs of farmers. Special attention should be paid to
the following three points:

1. Integration of plant sensitivity. Currently, most DSSs aimed at plant protec-
tion provide a pest risk indicator that depends on weather data but does not
take into account the host plant. It would be more interesting to provide a
risk indicator that considers plant sensitivity, for instance, by modeling the
phenological stage as well as age and surface of the different organs.

2. Integration of the major diseases for a specific crop. Fungicides are indeed
seldom specific to only one disease; each treatment often controls two dis-
eases or more. Moreover, farmers strive, whenever it is possible, to group
together the treatments to limit workload and fee. An efficient DSS should

! Institut National de Recherche Agronomique (French National Institute for Agricultural
Research).

2 Centre de coopération Internationale en Recherche Agronomique pour le Développement
(French Agricultural Research Center for International Development).

Design of a Model-Driven Web DSS in Agriculture 69

therefore take all the major diseases of a crop into account, yet most current
DSSs have been built for only one disease. The aggregation of different DSS
outputs to define a global protection strategy is therefore difficult.

. Modeling the effects of the applied treatments. Most models simulate disease

evolution without any control. They thus provide useful information for the
first treatment but they cannot indicate if other treatments are necessary
afterwards.

The next point depicts the different steps and know-how involved in the

design of a generic DSS that tries to avoid the drawbacks described above.

1.2 Generic Design of Decision Support Systems

The LOUISA project (Layers of UML for Integrated Systems in Agriculture)
launched by the ITK? company is a general design for DSSs in agriculture with
the following characteristics:

1.

It integrates scientific models simulating the entire biological system. This
requires the description of not only each element composing the system but
also the interactions between those elements. The relevance of the informa-
tion simulated by the DSS depends directly on the quality of the models.

. The computing environment is flexible in order to integrate new formalisms,

for example when agricultural knowledge improves.

. The outputs of the models must be useful and easily accessible for the users,

including farmers and farming advisers.

Therefore, the proposed DSS is a Web-based system. The Web-service is

preferred over the stand-alone model because it enables an easy management of
the diffusion of the tool, its update, and communication with linked databases
such as those providing meteorological data.

The design of a DSS involves the following different specialists:

. Agronomists who build the scientific model by conceptualizing the system

and then creating a prototype.

. Computer specialists who translate the scientific model into a processable

model. This model needs to be easy to implement in the final DSS and must
be simultaneously composed of independent components reusable in other
DSS:s.

. Web interface specialists who define the functionalities of the DSS and

design an appropriate and user-friendly interface considering the needs of
users.

3 See http://www.itkweb.com.

70 L. Tambour et al.

Those specialists have their own language, needs, aims, and tools. In such a
multidisciplinary team, communication is the keystone of success. In our case,
UML [5] is used by all specialists to facilitate this communication.

The developed DSS greatly depends on the agronomic knowledge and
technologies. As these elements can evolve quickly, attention has been paid to
flexibility throughout the design of the DSS.

The different stages of a DSS construction are depicted in the flowchart of
Fig. 1.

The first phase is to establish the document of requirements specification,
which defines the technical characteristics and functionalities of the complete
DSS. Then two main objects are performed: the model and the interface. The
model is first studied from a scientific point of view. A prototype is created to
verify that the outputs are consistent. Once the model is validated, it is tran-
scribed by computer specialists who are interested in the practical integration of
the model into the DSS. The design of the interface can be done directly from
the requirements specification. Thus, model and interface can be designed
simultaneously and evenly matched into the DSS.

The next section describes in detail these phases on the basis of a practical
case of DSS. For each phase, we will present our experience and progress, the
encountered difficulties, and will justify our choices.

1.3 Development of DSS Software for Phytosanitary
Plant Protection

This document illustrates a practical use of the generic DSS design LOUISA.
The example taken here is a DSS designed for phytosanitary plant protection
against diseases, although other aspects of the crop management could have
been chosen as well.

The aim of this DSS is to enable farmers to choose their phytosanitary
program with the support of risk indicators illustrating parasite pressure and
short-term predictions of contamination risks.

Requirements

Conceptualization specification
Design
Scientific
model v
L Web
Transcription Interface
Processable
model
. Integration Integration
Fig. 1 Flowchart of the s w bDSS
construction of the DSS cb soltware

Design of a Model-Driven Web DSS in Agriculture 71

These indicators are obtained by means of scientific model simulating the
behavior of the entire biological system. This system is composed of three
submodels:

e Host plant
e Disease
® Phytosanitary products (pesticides).

The three submodels interact with each other and are driven by meteorolo-
gical data including daily measures and short-term predictions. The accuracy of
the model could be improved using an hour time-step for weather data, however
we preferred the daily time-step as these data are far more easily obtained by
farmers nowadays.

The main functionalities of the application are synthesized in the UML use-
case diagram in Fig. 2.

Decision Support System

/Manage personal
account

Consult weather
report

/

Administrator

Manage database

Update weather data
at11 pm

g

\

Farmer Consult parasitic
pressure

\

«include» Weather Service

T
Run models
T
Predict Glslez
contamination risks

Update phytosanitary

program

Fig. 2 UML Use-case diagram of the functionalities of a DSS intended for phytosanitary
plant protection

72 L. Tambour et al.

This diagram depicts the different actors of the systems, human and non-
human, and their interactions with the system. The main actor within the
software is the farmer. The functionalities related to this user are

e Connection and disconnection to a server

e Personal account management including registration of land characteristics
and cropping practices

e Access to weather data (daily records and predictions)

e Access to current parasitic pressure thanks to simulated indicators

e Access to contamination risks predictions thanks to simulations using pre-
dictive weather data

e Update of the phytosanitary program according to the DSS suggestions,
taking into account simulated risk indicators and phytosanitary products
regulations.

The second major actor is the administrator, who must manage the database.

The weather service is the last actor and, more precisely, a non-human
secondary actor. The DSS must be connected to the weather service to get
measured and predictive weather data. “Update weather data at 11 pm” is an
inner use-case executed by the system, because the update is made at this fixed
hour without the intervention of an actor or another use-case.

The next sections describe the different phases of the DSS design. First, the
scientific model is described globally and decomposed into three submodels
(e.g., host plant, parasite, and phytosanitary protection) interacting with each
other and their environment. Another section deals with the scientific models
set-up and validation. The next section describes the transcription of the scien-
tific model into a processable model using UML, and finally, the last section
concerns the software architecture.

2 Design of the Scientific Model

2.1 Description of the “Plant—Parasite—Phytosanitary
Protection” System

Developing the scientific model means formalizing the system and describing
the relationships between its components with equations. In the following
example, the system has three components (the plant, the parasite, and the
phytosanitary protection) that interact together and with the environment,
which includes both climate and soil.

To develop the scientific model, different information sources are used
including scientific publications, farming magazines, field data, and expert
knowledge; each source has advantages as well as drawbacks.

In general, scientific publications describe a particular phenomenon accu-
rately thanks to models, in the best case, or at least with a qualitative description.

Design of a Model-Driven Web DSS in Agriculture 73

Concerning our example, it is possible to find models describing the influence of
temperature and humidity on disease development in the scientific literature but
it is not sufficient for describing the entire system. For instance, no model is
available that treats the influence of plant growth on phytosanitary protection.
Moreover, the final aim of published models is more often the understanding of
biological phenomena rather than their use in DSSs. Before integrating a pub-
lished model in a DSS , it must be verified that the inputs are consistent with the
DSS specification requirements. Moreover, published models may not be generic
but only valid for specific experimental conditions.

Farming magazines provide general information that cannot directly be used
to construct models but may help in formalizing and expressing hypotheses. For
instance, advice concerning pesticides spray frequency can be useful informa-
tion with respect to the phytosanitary protection model and its interaction with
the crop and the climate. This information source is also helpful for keeping in
touch with the concerns of farmers.

In the case when accumulated information is not sufficient for describing a
system, it is recommended to interact with experts and to use field data.

The conception of the scientific model is not a simple bibliographic search
and compilation. Published models are not prefabricated bricks that can be
assembled to build the DSS. To be integrated in a coherent system, models must
first be adapted with specific regard to their accuracy in relation with the DSS
needs. Moreover, lack of information has to be filled in with new formalisms
coming from hypotheses that will be tested and validated. Even if specific
published models are useful, it is important to consider their collaboration for
modeling the entire system. The scientific model is just an element that must
serve the final aim of the DSS, taking into account technical constraints and
specific concerns of farmers.

For a DSS designed for phytosanitary protection, a few judicious risk
indicators have been selected:

e Parasitic pressure
e Phytosanitary protection level
e Plant sensitivity that may depend on specific organs and their age.

These risk indicators must be part of the outputs generated by the model.
The UML class diagram in Fig. 3 expresses the relationships between concepts/
entities and the outside user.

The system has five components, which are the submodels plant, parasite,
and phytosanitary protection added to the soil and the climate. In this con-
ceptual view, climate has an influence on the four other components. For
instance, rain refills the soil with water and washes off phytosanitary products.
The plant is the medium for the parasite’s development. The phytosanitary
protection destroys the parasite but its efficiency may decrease because of rain
and plant growth (the latter phenomenon is called “dilution” in the diagram).
The soil provides the plant with water and nutrients and modifies the

74 L. Tambour et al.

System
Soil
Modifies
Grows in
Plant Climate
Get
sensitivity '7
Dilutes Modifies
Washes
Supports off
Get
pressure
Farmer
& Parasite Destroys Product

Get phytosanitary protection level

Fig. 3 UML class diagram of the whole system and its components

microclimate. For example, a soil with high water retention can increase
humidity and thus favor the development of some parasites.

For the moment, soil behavior is not explicitly modeled. As a first approach,
the plant grows without soil-limiting factors (i.e., neither water stress nor
nitrogen stress, for example). In the same way, the soil influence on the para-
site’s development (through action on microlimate) was not modelled, because
of the scarcity of knowledge on the issue.

It could, of course, be possible to add more relationships in this diagram. For
example, the influence of the parasite’s development on plant growth or the effect
of the plant on microclimate could be modeled. For an initial approach, we
decided to model only the most influential phenomena regarding the three selected
risk indicators. Once a prototype is built, the outputs of the model can be
compared with observed data. In case of discrepancies due to excessive simplifica-
tion, the model can be made more complex by adding more relationships.

2.2 The Plant Model

Plant models can be divided into three groups according to their abstraction
level:

Design of a Model-Driven Web DSS in Agriculture 75

® Big leaf models. In these models, the plant is considered as a homogeneous
structure. Organs, such as leaves, are not modeled individually but aggre-
gated into one large organ. This is for instance the case for the “CERES-
maize” [6] and “STICS” [7] models.

e Topological models. These models describe the structure and the relative
position of organs with relationships such as organ X bears organ Y. Each
organ is described individually regarding its behavior and its attributes. For
example, the rice model “EcoMersitem” [8] and grapevine model [9] can be
cited.

® Architectural models. These models are even more accurate than topological
models by adding information about organs geometry and spatial position.
An example of this kind of model is “COTONS” [10].

An output of the model concerns plant sensitivity to a particular parasite.
This sensitivity depends on the plant’s phenological stage as well as on the age
and surface of susceptible organs. For this reason, a topological model seems to
be the most appropriate for the DSS. Indeed, a big leaf model cannot simulate
properly the age and surface of each organ (e.g., leaves), and all the details
provided by an architectural model do not seem useful to simulate the selected
indicators. Modeling at the organ scale is also convenient for flexibility. For
example, if knowledge concerning fruit growth improves and gives birth to a
new model, it is possible to integrate it without rewriting the entire plant model.

The topological model can describe the plant’s structure. However, it is not
sufficient for the DSS needs, as plant evolution modeling involves other sub-
models (Fig. 4):

® Phenological model. This submodel aims to determine the major plant phe-
nological stages such as growth start, flowering, fruit setting, and so forth.
The phenological model drives the appearance of organs type (e.g., fruits
appear with fruit setting), and the equations describing organs evolution
may change according to phenological stage.

Weather data

J

Topological plant model
- Phenological model C——> Phenological stage
- Organogenesis model C—> Organs’ age
Fig. 4 Inputs and outputs of - Morphogenesis model C—> Organs’ surface
the plant model

76 L. Tambour et al.

® Organogenesis model. This submodel determines the apparition of new
organs. It adds dynamics to the plant model by describing the evolution of
plant topology with time.

® Morphogenesis model. This model simulates the growth of each organ
individually.

The chosen topological model considers the above-ground part of a plant as
a group of phytomers (Fig. 5). A phytomer is a cell cluster that will evolve into
organs having the same age, and it can be considered as the basic plant element.
Organs coming from a phytomer can vary with plants or within a plant. For
example, a plant can have vegetative phytomers composed of a node, an
internode, a leaf, and a bud and fruiting phytomers composed of a node, an
internode, a leaf, a flower, and a bud.

A plant’s structure can thus be modeled in terms of axes (e.g., branches for
trees and tillers for graminaceae). Each axis is composed of a series of phyto-
mers, and each phytomer may bear another axis as its bud itself can evolve into
a new phytomer. Assuming this organization, describing a plant consists of
determining the composition of its phytomers and defining the rules driving
their evolution. For instance, the following questions have to be answered:
where are the fruiting phytomers? In what conditions does a bud develop into
a new phytomer? The rules describing the plant’s structure can be determined
with support of a statistical analysis using Markov chain models [11, 12, 13].

The evolution of an individual organ is influenced by its surroundings and is
narrowly linked with the rest of the plant [14], meaning that the organogenesis
and morphogenesis models have to be regulated by the status of the whole
plant. Regulations are taken into account through parameters included in the
equations describing organogenesis and morphogenesis.

If there is no limiting factor, phytomer emission (organogenesis) and organ
growth (morphogenesis) are only driven by thermal time (timescale depending
on temperature), although the equations can vary with the type of axis. For
instance, equations describing the phytomer emission rhythm (also called

-+—— Node

-s+—— Internode

Fig. 5 Topology of a plant
modeled as a group of
vegetative phytomers

Design of a Model-Driven Web DSS in Agriculture 77

plastochrone) and the final size of leaves can be different between a phytomer
constituting the main axis and another phytomer constituting a secondary axis.

Phenology has a major impact on the plant and on its organs. For example,
during the vegetative stage, only vegetative phytomers appear, whereas during
the reproductive stage, both vegetative and fruiting phytomers can appear.
Phytomer emission rhythm and vegetative organ growth can also be slowed
down from fruit setting on because of preferential carbohydrates allocation to
fruits.

Water stress and nitrogen deficiency can also be factors slowing down
phytomer emission and organ growth. Stresses are generally modeled at the
plant scale.

2.3 Parasite Model

The risk indicators selected for the DSS concern phytosanitary protection,
plant sensitivity, and parasitic pressure. The latter element is the most impor-
tant factor to decide phytosanitary products application, which is why the
parasite submodel interacts with all the other submodels. As the DSS is not
designed to deal with yield prediction, the effects of the parasite on the plant are
not modeled. Thus, it is also assumed that there is no retrospective effect on the
parasite. In reality, as parasites weaken or destroy parts of the plant that
represent their support, their own development should also be affected, but
this phenomenon is voluntary neglected.

The following description of the parasite model concerns diseases in general
resulting from bacteria, viruses, or fungi. Parasites transform into several
biological stages during their development. For instance, fungi have two prin-
cipal forms: sexual and asexual. Other forms can be added, specialized in
propagation, development, or survival during critical periods (winter for tem-
perate zones, dry period for tropical zones). The evolution from one form to
another is modeled more or less accurately depending on the chosen formalism.

Three main kinds of models are used to simulate disease evolution:

e Epidemiologic models
e Mechanistic models
e Intermediate models based on the parasite biological forms.

Epidemiologic models [15] describe disease progression by means of a single
equation with the following type:

dx
= KX(1)- (1= X(1),

where X stands for the modeled variable that is often the surface colonized by
the disease, ¢ stands for the time, and k& is the disease amplification factor. This

78 L. Tambour et al.

differential equation is solved by approximating the temporal derivative term
by finite differences method resulting in:

AX =k-At-X(1,) - (1 — X(t)),

with AX = X(#,41) — X(¢,)standing for the variation of X during
At = t,.1 — t, corresponding with the model time-step.

Factor k is difficult to determine because it varies with climate and plant
evolution. In epidemiologic models, disease progression is modeled globally
without distinguishing the different parasite forms.

Mechanistic models describe the different physical, chemical, and biological
processes involved in disease development and simulate accurately the para-
site’s biological cycle (e.g., [16, 17]). This kind of model requires a meticulous
description of plant structure, microclimate, and the parasite’s biological pro-
cesses. Such a complexity can be useful for research purposes but it requires too
many inputs to be integrated in the DSS. Moreover, increasing complexity often
leads to less reliability and may result in erroneous outputs [18]. These models
are also specific to a particular parasite and are hardly adaptable to other
parasites.

An intermediate complexity model consists of representing each parasite’s
biological form as a stock containing a quantity of items. The evolution of items
from one form to another is modeled but not necessarily in a mechanistic way.
For instance, to pass from an ungerminated to a germinated fungus spore, an
empirical relationship calculating the germination rate according to climate can
be used instead of the description of the physical and chemical reactions
involved. The number of items in a stock can also increase by intern multi-
plication without implicating the other stocks. This intermediate complexity is
easier to understand and set up compared with mechanistic models and more
factors can be explicitly integrated compared with epidemiologic models.
Furthermore, this type of model is more generic. Indeed, the number of stocks
and equations driving the transitions can be adapted to model another disease.
For all the above-mentioned reasons, this kind of model has been chosen.

Most diseases start with an initiation phase followed by an amplification
phase corresponding with epidemic cycles. Figure 6 depicts this general repre-
sentation of diseases with the Stella formalism [19]. Rectangles on the left-hand
side (stages 1 and 2) illustrate the stocks during the initiation phase; rectangles
forming a cycle (stages 3 to 6) illustrate the amplification phase. The movement
of items from one stage to the next is controlled by a flow. This flow can depend
on factors related to weather conditions, the plant, or the disease itself. This
dependency is depicted by a circle named “Factor” on the figure. Each stock can
also be affected by mortality, depicted by a flow named “Mort.” for mortality.
There is no stock following mortality so that items concerned by mortality are
destroyed. Of course, Fig. 6 has only illustrative value, and the number of stocks
depicted will depend on the considered disease.

Design of a Model-Driven Web DSS in Agriculture 79

Facfor 1 Facfor 2 Facfor 3
Stage 1 Stage 2 Stage 3 Stage 4
N N
p— V] - V]
! Flow 1 Flow 2 VAN ’ Flow 3 lI
Mort 1 Mort 2 Mort 3 Nbort 4
Factor 6 Flow 6 Flow 4 Factor 4
Facfor §
Stapje 6 Stagg §
Flow §
tbort 6 hhort §

Fig. 6 A virtual parasite’s biological
(according to the Stella formalism [19])

Disease development can also be considered from the plant point of view. In
this case, stocks would represent the different status of plant (e.g., healthy,
contaminated in latency, contaminated and infectious, contaminated and no
longer infectious), while from the parasite’s point of view, stocks symbolize the
different biological forms such as larval and adult forms for insects. Items con-
tained in these stocks can be surface units for the plant and individuals for the
parasite. The choice of this point of view will depend on knowledge availability.

It is then necessary to determine the different factors influencing disease
development.

Of course, phytosanitary protection has a major influence, although a priori
all crop management techniques can positively or negatively influence disease
development. For example, pruning modifies susceptible organs available for
contamination. Therefore, the parasite submodel must use outputs from the
plant and the phytosanitary protection submodels as inputs.

Weather data must also be used as inputs, because the climate influences the
disease development. It is thus necessary to analyze a priori the weather data in
terms of availability, accuracy, and costs. A simple model using few inputs
should be preferred compared with a more complex model using inputs hardly
available or inaccurately measured [18].

The influence of crop location characteristics on disease development can be
modeled by an impact on microclimate. For instance, the water absorption and
retention characteristics of the soil influence the humidity in the plant vicinity.
Another example is the land slope that influences the plant’s microclimate and
the radiations intercepted by the plant.

80 L. Tambour et al.

This point shows that the pest model choice depends on its biological cycle,
its action on the plant, and, most of all, on the existing scientific knowledge.
Even if different kinds of model can be distinguished, there is no fixed metho-
dology for building a pest model. It is essential to adapt the model to the
project’s global aim. In particular, special attention must be paid to the accu-
racy needed because a useless increase of complexity often leads to lower
reliability.

2.4 The Phytosanitary Protection Model

Phytosanitary products contain chemical molecules operating on the metabo-
lism of parasites in order to limit their development or to stimulate plant defense
processes. As these molecules are often toxic and polluting, they should be
applied only when necessary (Integrated Pest Management concept). The aim
of the DSS is precisely the adaptation of applications of phytosanitary products
to the needs.

Existing DSSs are usually focused on pests without taking into account
phytosanitary protection. Yet the necessity of a phytosanitary product applica-
tion depends not only on the parasitic pressure but also on the current plant
protection level. It would be useful to determine an application remanence,
taking into account the plant’s development, climate (including rain and radia-
tion), and characteristics of phytosanitary products.

The phytosanitary protection model has to simulate a protection level that is
one of the three selected risk indicators for the DSS. This protection level takes
into account:

e Active period of products corresponding with the duration of effectiveness of
molecules.

e Plant growth: A product applied at time ¢ will be less efficient at ¢+ + Atz
because of the plant’s volume and surface increase. The effect of the plant
growth depends on product properties.

e Rain wash-off.

e Spraying quality depending on equipment and weather conditions, in parti-
cular wind and humidity.

There are three types of phytosanitary products:

® Protective products. They have a surface action and protect only the sprayed
surfaces.

® FEradicant products. They can penetrate plant tissues and are thus protected
from rain wash-off. Their penetration speed depends on the characteristics of
products and on weather conditions.

e Systemic products. They are capable of moving throughout a plant using the
vascular system and thus they can protect organs created after spraying.
They are very useful when the crop has an intense growth phase.

Design of a Model-Driven Web DSS in Agriculture 81

Each product operates on specific stages of a parasite’s cycle. For instance, in
the case of fungicides, protective products usually block spore germination:
using the formalism depicted in Fig. 6, this action can be modeled by decreasing
the flow linking the stocks “ungerminated spore” and “germinated spores.”

To model plant phytosanitary protection, each product has to be character-
ized in terms of biological action on parasites, active period, rain wash-off
sensitivity, and efficacy decrease due to crop growth. Thanks to this submodel,
the DSS can provide a graph simulating the decrease of plant protection with
time.

3 The Scientific Model ’s Set Up and Validation
3.1 Principle

Once the formalisms are chosen, the scientific model needs calibration. This
operation consists of determining the parameters values that minimize devia-
tions between simulations and observations.

The parameters values can be specific to particular situations such as the
geographic zone, the cultivated variety, or, of course, the parasite. In reality,
these situation-dependent parameters express variations of factors that are not
explicitly modeled and their value must be adapted according to the case [20].
For example, rather than modeling the influence of soil on parasite develop-
ment, a set of parameters can be proposed for each type of soil.

A model can have an important number of parameters but they do not have
the same influence. Some parameters will have a low impact on the model; it is
thus unnecessary to spend energy to optimize these parameters. On the con-
trary, other parameters are essential and have a large impact on simulations. A
widely used method for determining the influence of parameters is called
sensitivity analysis [21, 22].

Finally, the model’s performance has to be analyzed in terms of prediction
quality and accuracy regarding to the final user needs.

The following section briefly presents the methods for sensitivity analysis,
parameter estimation, and model assessment. All of these methods are worth
implementation during model design. For more information on this subject, an
exhaustive description of good agronomic modeling practices has been pre-
viously published [23].

The methods described below require high data quantity. Quality and quan-
tity of data directly impact calibration quality, model accuracy assessment, and
consequently model relevance. To be exploitable, a data set must be composed
of variables corresponding with model inputs, observations corresponding with
outputs, and, if possible, intermediate variables corresponding with variables
calculated by the model during the simulation process. The latter variables may
refine the diagnosis and may detect the origin of discrepancies. In the DSS, for

82 L. Tambour et al.

example, leaf area is not an output shown to the farmer, but it is important to
control that it is correctly modeled because it influences parasite growth.

3.2 Methods Used for Sensitivity Analysis, Calibration,
and Validation

Two types of sensitivity analysis are distinguished: local methods and global
methods [24].

Local methods explore the model’s behavior in the vicinity of an input
parameter set. They are used when an approximate value of input parameters
is known.

Global methods explore all the input parameters’ possible values constitut-
ing the parameter space. They often use stochastic methods based on random
number selection inside the parameter space (Monte Carlo methods). They are
preferably used if there is little prior information on input parameter values and
give an accurate idea of importance of parameters. A major drawback of some
global methods is that the effect of a parameter can be hidden if the model is
strongly nonlinear. Some methods are model-independent [21] and cope with
nonlinearity and interaction between factors (e.g., the FAST method [21]).
Global methods generally require a large computing time.

Local and global methods provide sensitivity indicators allowing classifica-
tion of parameters according to their influence on the model, but the obtained
results depend highly on the explored space.

Parameter estimation consists of finding the parameters values minimizing
discrepancies between model outputs and observations. The cost function is a
metric of that discrepancy and is to be minimized. In the famous least-square
method, for instance, the cost function is the sum of squared errors, but many
other cost functions exist that are adapted to different purposes [20]. Observed
data must cover various situations and be numerous enough, with the ideal
number depending on the number of parameters to be estimated. Many algo-
rithms can be used for parameter estimation such as the Gauss—Newton
method, simulated annealing method, or genetic algorithm. The choice of
both cost function and optimization algorithm is not easy. It can be interesting
to test several couples but the most important point is data quality.

After model calibration, the next stage is the model performance assessment.
Concerning a DSS, two complementary analyses should be made [25]. The first
one classically compares model outputs with observations. It may detect bias or
dispersion and assesses calibration quality. The data used here must be different
from those used for calibration. The second analysis concerns recommenda-
tions performed by the model and requires an adapted observed data set. For
instance, if the DSS recommends phytosanitary spraying dates, it would be
useful to have experimental data sets assessing phytosanitary protection with
different spraying dates. The model’s ability to perform recommendations is

Design of a Model-Driven Web DSS in Agriculture 83

validated if the recommended dates are close to the observed spraying dates
leading to the best phytosanitary protection.

Once the model’s reliability is validated, it is interesting to compare the DSS
recommendations with a classic phytosanitary spraying program. The aim of
this phase is the assessment of the DSS benefits, for example, in terms of cost,
plant protection efficiency, or environmental impact.

3.3 The Choice of Modeling and Validation Tools

The design of scientific models requires appropriate modeling tools. In our
experience, an appropriate tool should have the following capabilities:

e To enable quick and easy modeling of agronomic concepts

e To be sufficiently flexible to easily modify the model when changing
assumptions

e To be executable in order to check the modeling assumptions by simulation

e To provide a flexible environment facilitating result validation (e.g., gra-
phics, analysis functions of results).

Many tools and languages are available for model set up. The following is a
historic classification of these tools. For each type, the advantages and draw-
backs are discussed.

The first supports used for modeling were classic procedural languages or
object-oriented languages (e.g., C [26], C++ [27], JAVA [28], Delphi [29]).
These languages are still intensively used, even if they are not well adapted to
model conception and development. They are indeed too verbose to be quickly
implemented and modified. At least 50% of a model written with these lan-
guages is destined to purely computing aspects (e.g., variables’ declaration,
tables’ size management), decreasing the attention that is paid by the agrono-
mist in his modeling task. Moreover, as those languages do not supply a
validation environment, validation methods must be computerized.

To avoid those computing problems, new languages appeared, intended for
numerical computing (MATLAB [30], R [31], Scilab [32]), and formal calculus
such as Mathematica [33], Maple [34]). These languages are similar to program-
ming languages but they suppress pure programming aspects. For instance,
variables are not declared, table size is automatically managed, and simple
functions allow table manipulation. Interpretive languages also supply a wide
range of mathematical functions assisting modeling and validation. These latter
two tasks are concise and also easy to set up and modify. Validation is also
facilitated by command lines coupled with the execution environment. After a
simulation, all the simulated variables are available from the workspace and, by
means of command lines, the user can rapidly visualize, manipulate, and
compare the results. In return, this conciseness makes the code difficult to
understand and to maintain. Moreover, as these languages are interpretive,

84 L. Tambour et al.

their execution is slower. For example, a well-written MATLAB program is at
least 10 times slower than a C ++ program, and this factor can reach 1,000 if the
MATLAB program is written without taking care of executive efficiency.

If numerical computing languages are intended for modeling, most modeling
agronomists are resistant to the use of textual languages as modeling support.
To overcome this problem, graphical modeling environments have been created
(Simulink [30], Stella [19], ModelMaker [35]). By this graphical approach, a
model can be decomposed into submodels (describing a process) linked to each
other by wires symbolizing dependencies. This graphical modeling environment
is easier to handle for a neophyte and further favors the understanding of the
model’s general concepts inside the multidisciplinary modeling team or with
external partners.

On the contrary, these graphical environments are not flexible to change,
especially when models are complex or are decomposed into fine granularity
components. Another drawback is their limited expressive power. Indeed,
available tools impose construction rules that may not be adapted to agronomic
concepts. That is, for instance, the case when modeling conditional aspects or
states (in the UML sense of state) or for dynamic construction/destruction of
components (e.g., simulation of appearance of new organs). Moreover, graphi-
cal modeling environments generally execute simulations far slower than do
compiled or interpretive programs.

Agronomists also use spreadsheet programs (e.g., Excel [36]) for modeling.
These programs allow immediate visualization of numerical results, but they
are not adapted for complex models due to their restriction to spreadsheets, and
their equations edition is not sufficiently clear. However, they are still very
convenient for the quick modeling of simple phenomena.

To develop our scientific model, we chose to use MATLAB because of its
flexibility. This flexibility involves the first model description, its assessment,
and its possible modifications (change flexibility). Prior to the MATLAB
model, a preliminary graphical description was generated with Stella. This
software can also simulate, but we only use the graphical functionality to
study how the model can be decomposed into submodels of approachable
complexity and to depict the phenomena that need studying. Stella graphical
aspect also favors communication between people involved in the DSS
project.

4 Software Architecture of the Scientific Model

The MATLAB model aims at checking the reliability of scientific concepts prior
to their implementation into the final software. Even though MATLAB pro-
vides the environment needed for modeling and analysis, this language is not
suitable for the complex DSS software because of the following problems:

Design of a Model-Driven Web DSS in Agriculture 85

o [ntegration. A MATLAB model cannot be executed out of the MATLAB
environment. Thus, it is difficult to link a MATLAB model with other
software components such as database, Web services, or functional compo-
nents written in another language.

e Performance. MATLAB executes slowly, yet response time is decisive for
software acceptance by users.

® Robustness. MATLAB is devoted to numerical computing but not to pro-
gramming. It is thus not robust enough for software design.

Therefore, the MATLARB scientific model has to be transcribed into a model
using a programming language that we call the processable model. For our
DSS, we have chosen the JAVA [28] language because it is well adapted to
Internet applications programming. The transcription from a scientific
MATLAB model to a processable JAVA model cannot be done directly.
Whereas the scientific model aims at simulating reliable outputs, the JAVA
model must produce a model with the same functionality that is able to be
integrated with other software components and allow quick execution and
flexibility regarding change. This latter point is essential because the scientific
model continues evolving, and the processable model must be able to go along
with this evolution. Using design patterns [37] is a good practice for achieving
flexibility. In software engineering, a design pattern formally describes (via
UML diagrams) a standard solution to a general recurrent computing problem.

This fourth section deals with the processable model design from the
MATLAB model. This design phase uses the UML formalism as specification
support, independently from the programming language. Consequently, the
work presented here can be generalized to any object-oriented programming
language.

4.1 Class Diagram of the Plant—Parasite—Phytosanitary
Protection System

The system is studied with a modular approach [38], allowing the decomposi-
tion of a complex modeling problem into subelements having a more control-
lable complexity. The subelements, called components or classes, are
autonomous and can communicate with each other. A component, for instance,
can be a model of the system (e.g., plant, parasite, phytosanitary protection) or
a part of these models (leaves or fruits). Components contain the objects’
characteristics constituted by attributes and methods. Attributes correspond
with the physical elements to model, and methods correspond with the physical
processes.

We will now define the relationships between the classes of the studied
system. As the soil influence is not considered at the present time (cf.
Section 2.1), it is not depicted in the diagrams in order to lighten the figures.

86 L. Tambour et al.

Explanations given here have a generic value and can be applied to any system
decomposed into classes.

As recommended previously in [39], each class diagram element implements
an interface depicted by circles as shown in Fig. 7. The use of interfaces creates a
“plug and play” architecture where each component is interchangeable without
changing the whole implementation; components to interchange only have to
share the same interface. For instance, if the modeling agronomist prefers using
a big leaf plant model instead of the topological model first chosen, the com-
puter scientist only replaces the “PlantTopo” class by a “PlantBigLeaf” class
without modifying the other system components and connections. As a result,
the system is very flexible. Moreover, interface creation only requires minor
additional implementation time, which is not significant compared with the
time saved to implement modifications. For this reason, the plug and play
architecture is systematically used for our complex systems implementation.

Figure 8 depicts the general class diagram with the introduction of a
simulation controller. The simulation controller aims at controlling the model
execution flow and the tasks scheduling. The “singleton” design pattern [37] is
used to instantiate the controller so as to ensure its uniqueness. Indeed, if
several instances of the controller command the same system, a conflict may
be induced.

The control job can be decomposed as follows using pseudo code:

Plant Modifies Climate

IClimate

Modifies

Dilutes

Washes
off

Supports

Parasite Destroys m Protection
Pra

]

IParasite

Fig. 7 General class diagram: “plug and play” architecture

Design of a Model-Driven Web DSS in Agriculture

O

SimulationBoundary Plant

modifies

87

Climate

1

SimulationController

ISimulationController

’ | supports
\

Parasite

IClimate

modifies

dilutes

washes
off

Protection

e

IParasite

destroys 1 m

IProtection

Fig. 8 General class diagram: inclusion of the simulation controller

e Creation of the different components and realization of the components’

connections
e Components initialization

e For date going from the first simulation date until the last date:

— Run the execution of the simulation step corresponding with the simula-

tion date date for each component

— Determine the next simulation date date

e End of the loop

e Components finalization (e.g., save the simulation results).

The creation of concrete class instances is delegated to a factory and follows
the factory design pattern [37]. According to the simulation query, this design
pattern creates different simulation scenarios (including the phytosanitary
protection or not, instantiating the crop “wheat” or “maize,” for example).

A multifrequencies management is added to the modular approach [38] so

that components can run with different time-steps. For example, plant growth
can be modeled at a daily time-step, whereas the light interception component
runs with an hourly time-step in order to take into account the solar angle
variations during the day. To take multifrequency into consideration, the

execution of a component’s simulation step is unlocked in two stages:

88 L. Tambour et al.

e [f date is equal to the next component simulation date nextSimulationDate,
execute:

— Component’s attributes update
— nextSimulationDate update

e End of the IF block.
When the component has a periodic execution, the next simulation date can
be calculated as follows:

— nextSimulationDate = date + sampleRate where sample Rate is the com-
ponent’s execution period.

The calculation of the next simulation date can be even more elaborated by
implementing numerical differential calculus algorithms. These algorithms
allow optimization of a number of simulation steps according to the evolution
of attributes. If the attributes do not evolve much, it is not useful to simulate.
However, if they evolve significantly, the simulation steps need to be reduced.

4.2 The Plant Model

This section describes the software architecture of the plant model. As
explained in Section 2.2, a plant can be seen as a phytomers set having a
determined topology. The plant’s structure evolves with time (organogenesis)
and each organ, through the effect of the environment, evolves individually
(morphogenesis) but in close connection with the entire plant’s status. The
evolution of an individual organ can be reduced due to global constraints
operating at the plant scale, such as water stress or carbohydrates limitation.
Organogenesis and morphogenesis rules can be modified according to the
plant’s phenological stage.

For these reasons, the software architecture of the plant model must take
into account the following elements:

e A topological structure evolving with time

e The individual evolution of organs

e The modification of individual organ evolution according to global factors
(water stress, carbohydrates balance)

e The modification of the evolution rules of organs at phenological key stages.

Concerning the topology, a plant can be implemented as a tree structure in
the computer science sense (Fig. 9) with a node of the tree structure representing
the abstract class “Phytomer. ” The composite relation in Fig. 9 depicts the
structure’s recursion. This relation means that a phytomer (called the parent
phytomer) can bear other phytomers (called the child phytomers), which subse-
quently can bear other phytomers on their turn; child phytomers will constitute
the axis (branch/tiller) held by the parent phytomer. A phytomer may not hold

Design of a Model-Driven Web DSS in Agriculture

Plant

1 1 PlantTopology
g > : : 1

IPlantTopology

Phytomer

89

- listOfChild: List<Phytomer>

]

%| + addChild(Phytomer) : void

+ getChild(int) : void
+ process() : void

+ removeChild(Phytomer) : void

N

VegetativePhytomer

FruitingPhytomer

OtherPhytomer

+ addChild(Phytomer) : void

+ getChild(int) : void

+ process() : void

+ removeChild(Phytomer) : void

+ addChild(Phytomer) : void

+ getChild(int) : void

+ process() : void

+ removeChild(Phytomer) : void

+ addChild(Phytomer) : void

+ getChild(int) : void

+ process() : void

+ removeChild(Phytomer) : void

Fig. 9 Class diagram of the plant’s topology

another phytomer (which is the case when the phytomer’s bud is dormant). In
this case, the phytomer can be seen as the tree structure’s terminal element.

The abstract class “Phytomer” provides the methods for construction and
destruction of phytomers and for the topological structure evolution. For a
plant, the destruction concerns not only a phytomer and its descent but also the
younger siblings. Indeed, when a phytomer is cut, both a part of the main axis
constituted by sibling phytomers and the secondary axes developed from buds
are destroyed. Each concrete class modeling a phytomer (e.g., Vegetative Phy-
tomer, Fruiting Phytomer, Other Phytomer depicted in Fig. 9) inherits from the
abstract class Phytomer. The inheritance link means that these concrete classes
inherit the construction/destruction methods although they define their own
individual growth and evolution methods.

The exact concrete object type is decided during execution according to the
rules defined by the modeling agronomists. It is thus possible to model all kinds
of a plant’s structure, no matter the complexity. This architecture is therefore
very flexible because it can be used to model different plants or varieties of the
same plant with different structures.

In return, it is the computer scientist’s responsibility to prevent absurd
structures from being modeled (e.g., a phytomer cannot bear another phytomer
if its bud is dormant). Indeed, with a tree structure, these errors cannot be
checked during the compilation and are only detected during the execution.

Formal verification tools can aid in error detection. Plant construction rules
can indeed be formalized as grammar in the language theory sense. Postsimula-
tion, a formal verification tool can thus be used to check the plant’s structure
consistency of the grammar.

Recursion also facilitates the complex structures management. For example,
applying a global plant growth method consists of using the phytomer’s own
growth method for each phytomer and then to invoke the growth methods of
the child phytomers. The use of a tree structure can become complex when the
execution order is different from the one naturally imposed by recursion. This
is, for instance, the case if the execution order follows the phytomers creation
order. This problem can be bypassed by using an external iterator.

90 L. Tambour et al.

At the phytomer scale, any concrete phytomer is constituted by a set of
organs (node, internode, leaf, bud, flower, etc.). Phytomers’ content is modeled
with the UML composition concept (Fig. 10) where the phytomer class contains
a reference on its constitutive organs. Both the organ type and number can vary
from one phytomer to another.

Each organ individually manages its own behavior, but this behavior also
depends on global processes operating at the plant’s scale. For example, organ
growth is a function of thermal time (timescale depending on temperature) but
depends also on carbohydrates allowance. This latter factor is determined by a
carbohydrate pool that calculates the global offer produced by leaves photo-
synthesis and then allocates the produced carbohydrates to the organs. Those
global processes are naturally modeled as objects composing the “Plant” class.
The question is therefore how to allow an information or service exchange
between classes managing global and local processes (Fig. 11).

A solution to enable global-local relationships in a tree structure is the use of
the “visitor” design pattern [37]. By definition, this design pattern adds new
functionalities to a composite objects set without modifying the structure itself.

1 InternodeOfAVegetativePhytomer
1
linternode

LeafOfAVegetativePhytomer

VegetativePhytomer

OtherOrganOfAVegetativePhytomer

I0therOrgan

InternodeOfAFruitingPhytomer

linternode

LeafOfAFruitingPhytomer

%

FruitingPhytomer ILeaf

FlowerOfAFruitingPhytomer

:

IFlower

*

: : OtherOrganOfAFruitingPhytomer

I0therOrgan

{

Fig. 10 Two examples of a phytomer’s composition

Design of a Model-Driven Web DSS in Agriculture 91

ThermalTime
?
1
Plant 1 PlantTopology Phytomer
1 1 1 0..*
1

CarbonPool

U ?

Fig. 11 Each phytomer individually manages its own behavior, but this behavior also depends
on global processes operating at the plant’s scale. The problem is here: how to establish
relationships between local and global processes?

Nevertheless, this solution has not been chosen because it breaks the encapsula-
tion principle. The chosen solution consists of passing a reference to the global
object into an argument of organs processes’ methods. Therefore, each organ
manages its processes taking into account the global object (it may also modify
this object’s attributes state) and transmits it to its child.

As explained in Section 2.2, the plant passes through different phenological
stages and its behavior as well as that of its organs can change radically from
one stage to another. The evolution from a stage to the following is generally
modeled in an abrupt way as a response to a discrete event (for instance, if a
defined thermal time sum reaches a threshold). Consequently, a state diagram is
well adapted to model the plant’s phenology (Fig. 12). A state diagram enables
the modeling of the different states of a system and the events ruling the passing
from one state to another. For the plant, the state diagram describes:

updatePhenoStageFromWeather updatePhenoStageFromWeather updatePhenoStageFromWeather

winter dormancy

[threshold] [threshold]

flowering

[threshold]

f simulati date of harvest]

[end of simulation] harvest [! fruitSetting
O,
Final

updatePhenoStageFromWeather

Fig. 12 Example of a state diagram concerning the plant’s phenological stages

92 L. Tambour et al.

e The different phenological stages including winter dormancy, growth start,
flowering, fruit setting, and harvest. These stages correspond with the plant
states (in the UML sense of state).

e The performed actions during a particular stage; for instance, the update of
the thermal time sum.

e The transitions between the states: A transition specifies the event imposing
the state’s change and defines what will be the next state. In the case of
phenological stages, these events are primarily a threshold overshoot or
dates chosen by the farmer (e.g., harvest date).

In the plant model, management of phenological stages is delegated to a class
called “PhenoStageManager” implementing a “state” design pattern [37]
(Fig. 13). This design pattern has been conceived to systematize the implemen-
tation of a state diagram from its schematic representation. In a “state” design
pattern, each phenological stage implements a common interface “IPheno-
Stage.” At any simulation time, the “PhenoStageManager” knows the current
phenological stage by the “currentStage” attribute and can ask for the update of
this phenological stage by executing the object referenced by “currentStage.” If
this execution causes a state change, the manager is informed by the “current-
Stage” attribute modification. As the phenological stages implement a common
interface, the “PhenoStageManager” does not need to know what stage is
concretely executed. This “state” design pattern is thus flexible as regards

Plant
WinterDormancyStage
1
+ updatePhenoStageFromWeather() : void
1
/
/
// GrowthStartStage
/
IPhenoStageManager / + updatePhenoStageFromWeather() : void
/ 4
/ Ve
PhenoStageManager // / FloweringStage
/
- currentStage: IPhenoStage / / .
// 7 + updatePhenoStageFromWeather() : void
+ getPhenoStage() : IPhenoStage / // //
Y 4
/ // // FruitSettingStage
uses /oy s
D/ D/ // /// + updatePhenoStageFromWeather() : void
/ g
«interface» 5 i
Ve
IPhenoStage i HarvestStage

tePh tageFromWeath 2 VoI
+ updatoPhenoStagefromVeatielRLel < —————————— + updatePhenoStageFromWeather() : void

Fig. 13 Class diagram of the state design pattern concerning phenology

Design of a Model-Driven Web DSS in Agriculture 93

changes because it is independent from the phenological stages type and it
allows integration of new stages and removal of others.

4.3 The Parasite Model

As explained in Section 2.3, each parasitic item follows different developmental
stages. The developmental stages of parasites could be modeled like the plant’s
phenological stages by using a “state” design pattern. Yet this solution is not
adapted to simulation of parasites because of the great number of “item” objects
whose management has an important impact on simulation time and memory
space.

The chosen solution models the disease as a stocks set where each stock
simulates a quantity of items having the same developmental stage. This con-
ceptual view is similar to the “flyweight” design pattern [37]. In this approach
(Fig. 14), each object corresponds with a particular developmental stage, and
the relationships between objects model the migration of a given number of
items from one stage to another. Items migration can be seen as an assembly line
where, once operated by a stage, a certain number of items migrate to the next
stage.

Considering the development, stage behavior as a stock can be generalized to
any other developmental stages or type of disease. Noting a developmental
stage N, N—1 the previous stage, and N+ 1 the next, this behavior can be
divided in three methods:

e [temsmigration from stage N —1 to stage N, causing a decrease of N— 1 stage
population and an increase of N stage population.

e Population increase by multiplication (for instance, in the case of mycelium
increase).

e Population decrease due to mortality.

For each method, the number of items either added or subtracted depends on
climate, phytosanitary protection, and plant sensitivity.

Stage 1 Migration Stage 2 Migration Stage 3 Migration Stage 4
Migration Migration
Stage 6 Migration Stage 5

Fig. 14 Object diagram of the parasite model

94 L. Tambour et al.

«interface»
Parasite IParasiteStage
i ; 7 *o—
listOfStage: list<IParasiteStage> g 1.+ |+ deadProcess() : void
+ migrationProcess() : void
+ multplicationProcess() : void

TR %

N
e / \ AN
e / \ ~
g / \ ~
e / \ N
- N
\

Stage 1 Stage 2 Stage 3 OtherStage
+ deadProcess() : void + deadProcess() : void + deadProcess() : void + deadProcess() : void
+ migrationProcess() : void + migrationProcess() : void + migrationProcess() : void + migrationProcess() : void
+ multiplicationProcess() : void + multiplicationProcess() : void + multiplicationProcess() : void + multiplicationProcess() : void

Fig. 15 Class diagram of the parasite model

The concrete classes modeling the developmental stages therefore share a
common interface (Fig. 15). This interface has both the advantage of being
generic to every developmental stage and flexible by allowing any developmen-
tal stages sequence.

5 The Application’s Architecture

This section presents the application’s software architecture and the different
technologies used to ensure its cohesion and function.

5.1 The Three-Tier Architecture and the Design
Pattern “Strategy”

As for many multiplatform Web developments nowadays, the three-tier archi-
tecture is chosen for the DSS software. In this kind of architecture, the gener-
ated application is divided into three separate layers:

e A “presentation” layer corresponding with what the software shows on
screen

e A “business” layer where processes are performed

e A “data” or DAO (data access object) layer managing data access and
storage.

The functioning of this kind of architecture is very simple, as the software
user interacts with an element of the presentation layer, the latter calls the
business layer to calculate the information asked by the user, and then the
business layer asks the DAO layer for the data needed for the calculations.
Communication fluxes then reverse. The DAO layer provides the business layer
with the requested data, the business layer performs the calculations or more

Design of a Model-Driven Web DSS in Agriculture 95

generally the asked service and transmits it to the presentation layer that finally
displays the results. The “normal” operating mode thus induces to a round trip
through the three layers. The presentation layer should never have direct access
to the DAO layer and vice versa.

This organization can be easily adapted to the hardware architecture dis-
tributed on a network. Terminals on user-side present the information (corre-
sponding with the presentation layer), whereas remote computers on server-side
build this information (business layer) and manage data access (DAO layer).

The use of a software architecture based on this three-tier architecture type
offers several advantages.

First of all, computer workload is dispatched. For instance, the client’s PC
on the user side only supports the presentation layer, whereas servers support
the business and data layers.

Another advantage is the possible use of multiplatforms. Computers on both
client and server sides can run under different operating systems and interpret
various programming languages, which is particularly adapted to the Web-
applications context.

Moreover, the organization in layers can improve coupling quality and
control between these modules. As the three-tier architecture distinguishes the
presentation, the business, and the data modules, the code implementing these
elements is also organized in three separate software layers. The coupling
control induced by the three-tier architecture helps conserve the natural inde-
pendence of the different layers.

Coupling control also facilitates work management inside the developing
team. The computer specialists do not have to know all the software develop-
ment aspects and can therefore be specialized in one layer (interface, business,
or data), without being preoccupied by the other layers’ implementation details.
Besides, dialogue between developers is more oriented on functionalities and
less on purely technical problems concerning implementation. Communication
between computer specialists is focused on the services to be provided by each
layer and on the global system’s coherence regarding the requirements specifi-
cation. Therefore, the organization and communication within the develop-
ment team are improved, according to the interaction between the different
software layers of the architecture.

This three-tier architecture is very close to the design pattern “strategy” as
these two conception models aim at improving coupling quality between sepa-
rate software agents. The design pattern strategy uses interfaces allowing one:

® to expose the services provided by software components without showing
their implementation. Therefore, a component knows that another compo-
nent is able to provide a certain service because this latter is exposed by its
interface, but it does not know how this component is implemented to
provide this service.

® to choose, when launching the application, the implementations to use for
each software component by the mean of a configuration file. The whole

96 L. Tambour et al.

application is thus totally flexible. Moreover, an application can evolve by
adding a new implementation in a component without constraints regarding
the other components because they are all independent.

Thus, using the design pattern strategy inside a three-tier architecture pro-
vides interesting advantages [39]. The architecture is easy to maintain because,
as each software module has an independent code, interleaving is minimum.
This architecture is also globally reusable with respect to its components. Each
component is upgradeable and specialized with little interleaving plug-in pro-
viding services. A component can thus be used in another application needing
its services. Furthermore, this architecture is flexible by means of configuration
files and can evolve easily, as components can be added or updated without
impact on the rest of the system.

The three-tier architecture is developed with Spring,* which is an open source
technical framework J2EE (Java 2 Platform, Enterprise Edition) simplifying
implementation [40] and providing a complete and secure solution. Spring
provides a lightweight container application for the objects used by the applica-
tion with the Java Bean standard and enables working on simple POJOs (Plain
Old Java Objects). These objects do not need to implement interfaces linked to
the technical environment. Therefore, the generated code is easy to maintain
and to reuse. In addition, Spring enables three-tier architecture programming in
accordance with the design pattern strategy. On each layer, interfaces are used
to configure the implementation of objects called JAVA beans in a totally
simplified manner. This configuration includes object connection using a pro-
gramming technique called “dependency injection” that will be explained later.
During the application activation, objects implementation and dependencies
between objects are chosen by means of Extensible Markup Language (XML)
configuration files. The application is therefore flexible and upgradeable. Dur-
ing the development, Spring also facilitates the integration of Hibernate, a
technology managing data persistence, inside the three-tier architecture.

5.2 The Three-Tier Architecture Layers and the Technologies Used

5.2.1 The Presentation Layer and Client—Server Communication

In our application, the presentation layer is relatively particular, as it is totally
supported on the client side. It is designed with the Flash® software that also
produces interactive graphical layouts facilitating interactions with potential
users.

As the technologies and platforms usable for the architecture are various,
Web services are chosen to enable information exchanges and more generally

4 See http://www.springframework.org/.
> See http://www.adobe.com/fr/products/flash/.

Design of a Model-Driven Web DSS in Agriculture 97

client-server communications. Data flow is standardized using the XML
markup language with the use of Simple Object Access Protocol (SOAP) and
Web Services Description Language (WSDL), for example.

Web services have the major advantage of facilitating the building of
architectures distributed on heterogeneous systems. Their conception is very
close to the design pattern strategy and the three-tier architecture described
above. Web services operate by exposing the JAVA beans methods of the
business layer to the remote presentation layer. According to its needs, the
latter layer can thus ask for services, considered as a Web service. For exam-
ple, when the user interacts with the interface and asks for a plant growth
simulation, the presentation layer asks to use the “SimulatePlantGrowth”
method exposed by a bean of the business layer. Web services are therefore
very interesting because clients of a service only need to know the URL where
the Web service is exposed and also be able to read the XML WSDL file
describing the technical specifications. Thus, the client can exactly know the
operations supported by the Web service and the parameters needed for the
operation.

The Xfire® environment has been chosen to expose the beans’ methods of the
business layer as Web services. It is an open source SOAP environment for
JAVA from the CodeHaus community. It can be easily integrated to the Spring
environment and allows the generation of WSDL files describing beans’ avail-
able services.

5.2.2 The Business Layer and the Dependency Injection Design Pattern

The business layer exposes business logic—related services through interfaces.
These services can be the computation of plant growth or disease development
for a particular situation, for example, characterized by climate, variety, and
crop practices. To access the data needed for calculation, the business layer calls
methods exposed by beans belonging to the DAO layer. The business layer is
thus linked with the DAO layer but, as explained in a previous paragraph, the
Spring environment preserves the layers’ independence.

The Spring configuration files allow the instantiation of the beans used by
the business layer to provide services as a singleton. According to the singleton
design pattern, the objects only exist in a single copy.

The configuration code also allows dependency injection between objects, no
matter their location. This corresponds with the dependency injection design
pattern [41], also called inversion of control. The two concepts of dependency
injection and AOP (aspect-oriented programming) constitute the Spring envir-
onment’s core. Among other things, AOP allows transaction management.
These notions are illustrated with the following example, corresponding with
an XML Spring configuration file extract:

¢ See http://xfire.codehaus.org.

98 L. Tambour et al.

<?xml version="1.0" encoding="UTF-8"? >

<beans xmlns: = "http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd" " >

<bean id ="simulation"
class ="com.services.simulation.impl.SimulationMP1ServiceImpl" >
<property name ="plantDAQ" ref="plantDAQO" />
<property name = "searchService" ref ="searchService" />
</bean >

<bean id ="searchService"
class ="com.services.search.impl.SearchServiceImpl" >
<property name ="plantDAQ" ref=" plantDAO " />
</bean >

[.]

The above code shows a bean in charge of the service called “simulation”
(<bean id ="simulation"), logically located in the business layer. This bean has
a reference to a bean located in the DAO layer (ref ="plantDAO") and another
one referred to a bean located in its own layer (ref ="searchService"). The class
implementing the bean "simulation" is class="[...] SimulationMP1Service
Impl">. This class has attributes referencing (meaning allowing access to)
"plantDAO" and "searchService" also instantiated by Spring. To provide the
object simulation with these two references, a dependency injection is needed.
These dependencies are simply defined as properties (<property name = "plant-
DAQ") of the simulation bean "simulation." To have access to these properties,
meaning injecting references to the objects "plantDAO" and "searchService,"
Spring uses getters/setters of the "simulation" object. Spring is also able to
generate all the declared dependencies between the application objects. In
concrete terms, the dependencies do not have to be hard coded any more and
are externalized in easy-to-modify XML files. Therefore, to modify interfaces’
implementation and dependencies between objects, it is not necessary to modify
and recompile the classes’ code.

5.2.3 The DAO Layer and Hibernate

Like the business layer, the DAO layer contains singleton beans instantiated by
Spring. In this layer, an interface is defined for each object, such as PlantDAO,
LeafDAO, ObservationDAO, and for each interface; N implementations are

Design of a Model-Driven Web DSS in Agriculture 99

available such as PlantDAOImplA, PlantDAOImplB, LeafDAOImplA, Leaf-
DAOImpIB, LeafDAOImplC, and so forth.

In the architecture, the DAO objects aim at accessing a relational database
management system (RDBMS), but they could access any type of system
providing or storing data. This layer is decoupled from the technology used
for data persistence, so that architecture is more generic and upgradeable.
Persistence of JAVA/J2EE objects to a relational database is in charge of the
Hibernate’ environment. Indeed, this environment facilitates separation, or,
more precisely, improves its quality [42, 43]. Spring is planned to integrate
Hibernate and offers native classes that assist this integration. XML files called
mapping files are used to establish a correspondence between JAVA beans and
database. The link between objects and their backup in the database is called
object relational mapping (ORM). A class, for example “Plant” in the object
sense, corresponds with a table of the database in the relational sense. Each
attribute of this class such as size or age corresponds with a column of this table.
Each object is individually identified with an attribute “id” called the identifier,
also recorded in a column of the table. The use of Spring and Hibernate allows
the achievement of operations such as CRUD (Create, Read, Update, Delete)
in a very simple way inside the database, although more complex queries can
also be built. Regarding optimization, it is important to write queries that will
exactly answer to the business layer objects’ expectations that are usually
accurate. These queries can be decoupled from the DAO classes’ code. It is
possible to store them in mapping files, which favors maintenance operations.

6 Conclusions

This chapter reviews the different design phases of a DSS intended for plant
protection. The final product presented here is a Web software aiming at a large
distribution among farmers. The creation of this software was shown to be
complex and involved a multidisciplinary team. The first work consisted of
identifying the different tasks in accordance with the requirement specifications.
Four main tasks appeared: the design of the scientific model, the processable
model, the interface, and the software architecture, respectively. As the specia-
lists involved in this project belong to different professional domains, particular
attention has been paid to the aspect of communication. The latter has been made
simpler by adapted modeling tools such as UML. Concerning the scientific
model, a major characteristic is the use of mechanistic models to simulate the
biological system. This system is composed of modules, corresponding with the
major actors of the system, evolving in interaction with each other. The behavior
of each module, such as the plant, is precisely described in relation with its
environment by means of equations. This aspect constitutes the basis of the

7 See http://www.hibernate.org/.

100 L. Tambour et al.

tool relevance because the recommendations given by the model are scientifically
based and reflect the system’s behavior in the specified environmental conditions.
Concerning the processable model and the software architecture, particular
attention was paid to flexibility and evolutionary capacity so that applications
can be easily upgraded or adapted to other systems.

This work is the beginning of an important agronomic modeling project.
Even if the example taken concerns only the phytosanitary plant protection,
the creation process is generic and can be applied to other DSSs. Moreover,
the acquired experience will allow a quick design and set up of future DSSs.
The potential use of this DSS is large. Indeed, new models concerning other
pests and other phytosanitary products can be easily introduced in the current
tool as new modules or new functionalities, for example. The integration of
other disease models concerning the same crop opens new work prospects for
the DSS improvement. This will indeed enable a more accurate assessment of
crop damage and subsequently of phytonsanitary protection profitability.
Moreover, it will be possible to take into account the competition between
diseases. Furthermore, these tools also provide a pedagogical purpose aiming
at good farming practices. For instance, concerning phytosanitary protection,
the farmer can adapt his application program according to simple risk indi-
cators that are easily understandable but are still scientifically based.

In the current context, environmental protection is an absolute priority, and
concerning agriculture, it is essential to aim at more environment-friendly farm-
ing practices in the short-term future. This change is urgent because agriculture is
going to be at the center of major stakes such as global human population growth
and massive biofuel use, requiring huge production. All these conjunctural
factors show that a rapid change in farming practices is necessary. The software
presented in this chapter is designed to help this evolution. Indeed, the developed
DSS allows a better diagnosis and short-term predictions of the current situation,
and, furthermore, it can forecast the consequences of different scenarios tested by
means of simulations. This system can also easily integrate new data or con-
straints to propose recommendations, always with a scientific justification. An
increased use of these kinds of tools can allow a significant reduction of chemical
products in agriculture without detriment to yield or production quality.

References

1. Rouzet J., Pueyo C., “Modeles de prévision et conseil phytosanitaire. Bilan des modéles en
France, aper¢u américain et perspectives”;, Phytoma, 591: 32-36, 2006.

2. Decoin M., “OAD vus par la SAQPV, du c6té des modeles”, Phytoma, 603: 24-25, 2007.

3. Munier-Jolain N.M., Savois V., Kubiak P., Maillet-Mezeray, J. Jouy L., Quere L., “Deci-
d’Herb : un logiciel d’aide au choix d’une méthode de lutte contre les mauvaises herbes
pour une agriculture respectueuse de ’environnement”, Proceeding AFPP — 19iéme con-
férence du Columa — journées internationales sur la lutte contre les mauvaises herbes,
Dijon, Décembre 2004.

4. http://www.invivo-group.com.

Design of a Model-Driven Web DSS in Agriculture 101

10.

15.
16.

17.
18.

19.
. Makowski D., Hillier J., Wallach D., Andrieu B., Jeuffroy M.H., “Parameter estimation

21.
22.
23.

24.

25.

26.

. Booch G., Rumbaugh J., Jacobson 1., “The Unified Modeling Language User Guide”,

Addison-Wesley, 1999.

. Jones C.A., Kiniry J.R., “;CERES-maize, a Simulation Model of Maize Growth and

Development”, A&M University Press, 1986.

. Brisson N., Mary B., Ripoche D., Jeuffroy M.H., Ruget F., Nicoullaud B., Gate P.,

De-vienne-Barret F., Antonioletti R., Durr C., Richard G., Beaudoin N., Recous S.,
Tayot X., Plenet D., Cellier P., Machet J.M., Meynard J.M., Delecolle R., “STICS: a
Generic Model for the Simulation of Crops and Their Water and Nitrogen Balances. 1.
Theory and Parame-terization Applied to Wheat and Corn”, Agronomie, 18: 311-346,
1998.

. Luquet D., Dingkuhn M., Kim H.K., Tambour L., Clément-Vidal A., “ EcoMeristem, a

Model of Morphogenesis and Competition Among Sinks in Rice : 1. Concept, Validation
and Sensitivity Analysis ”, Functional Plant Biology, 33(4): 309-323, 2006.

. Louarn G., “Analyse et mod¢élisation de I'organogenése et de I’architecture du Rameau de

la vigne (Vitis vinifera L.)”, thesis PhD, école nationale supérieure agronomique de
Montpellier, 2005.

Jallas E., Martin P., Sequeira R., Turner S., Crétenet M., Gérardeaux E., “Virtual
COTONS™, the Firstborn of the Next Generation of Simulation Model”, NLAI 1834,
pp- 235-245, Springer, 2000.

. Costes E., Guedon T., “Modelling the Sylleptic Branching on One-Year-Old Trunks of Apple

Cultivars”, Journal of the American Society of Horticultural Science, 122: 53-62, 1997.

. Seleznyova A.N., Thorp T.G., Barnett A.M., Costes E., “Quantitative Analysis of Shoot

Development and Branching Patterns in Actinidia”, Annals of Botany, 89: 471-482, 2002.

. Buhlmann P., Wyner A.J., “Variable Length Markov Chains”, The Annals of Statistics,

27: 480-513, 1999.

. Nozeran R., “Réflexions sur les enchainements de fonctionnement au cours du cycle des

végétaux supérieurs”, Bull. Soc. Bot. Fr., 125: 263-280, 1978.

Vanderplank J.E., “Plant Diseases: Epidemics and Control”, Academic Press, 1963.
Fleming R.A., “Development of a simple mechanistic model of cereal rust progress.*
Phytopathology, 73(2): 308-312, 1983.

Keeling M.J., Rohani P., “Estimating spatial coupling in epidemiological systems: a
mechanistic approach”, Ecology Letters, 5(1): 20-29, 2002.

Passioura J.B., “Simulation models: snake oil, education, or engineering? ” Agronomy
Journal, 88: 690-694, 1996.

http://www.hps-inc.com/edu/stella/stella.htm.

for crop models” in: “Working with Dynamic Crop Models — Evaluation, Analysis,
Parameterization, and Applications”, pp. 101-140, Wallach D., Makowski D., and
Jones J.W. (eds), Elsevier, 2006.

Saltelli A., Chan K., Scott E.M., “Sensitivity Analysis”. Wiley, 2000.

Saltelli A., Tarantola S., Campolongo F., Ratto F., “Sensitivity Analysis in Practice”,
Wiley, 2004.

Wallach D., Makowski D., and Jones J.W, “Working with Dynamic Crop Models —
Evaluation, Analysis, Parameterization, and Applications”, Wallach D., Makowski D.,
and Jones J.W. (eds), Elsevier, 2006.

Monod H., Naud C., Makowski D., “Uncertainty and sensitivity analysis for crop
models”, in: “Working with Dynamic Crop Models — Evaluation, Analysis, Parameter-
ization, and Applications”, pp. 55-96, Wallach D., Makowski D., and Jones J.W. (eds),
Elsevier, 2006.

Wallach D., “Evaluating crop models” in: “Working with Dynamic Crop Models —
Evaluation, Analysis, Parameterization, and Applications”, pp. 11-50, Wallach D.,
Makowski D., and Jones J.W. (eds), Elsevier, 2006.

Delannoy C., “Programmer en langage C”, Eyrolles, 1997.

102 L. Tambour et al.

27. Delannoy C., “Programmer en langage C ++ ”, Eyrolles, 1998.

28. Niemeyer P., Knudsen J., “Introduction a JAVA*, O’Reilly, 2002.

29. Martin M., “Programmeur Delphi 2005”7, CampusPress, 2005.

30. http://www.mathworks.com.

31. http://www.r-project.org.

32. http://www.scilab.org.

33. http://www.wolfram.com.

34. http://www.maplesoft.com.

35. http://www.modelmakertools.com.

36. Cier P., Dorin R., “Excel 2000 en pratique”, Dunod, 1999.

37. Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns Elements of Reusable
Object-Oriented Software”, Addison-Wesley, 1995.

38. Porter C.H., Braga R., Jones J.W., “An Approach for Modular Crop Model Develop-
ment”, Agricultural and Biological Engineering Department, University of Florida,
Gainesville, Florida, available at http://www.icasa.net/modular/downloads.html, 1999.

39. Papajorgji P., Pardalos P., “Software Engineering Techniques Applied to Agricultural
Systems, an Object-Oriented and UML Approach”, Springer, 2005.

40. Johnson R., Hoeller J. “Expert One-on-One J2EE Development without EJB ”, Wiley
Publishing, 2004.

41. Fowler M.,“Inversion of Control Containers and the Dependency Injection pattern”,
http://martinfowler.com/articles/injection.html, 2004.

42. King G., Bauer C., “Hibernate in action”, Manning Publications, 2004.

43. Salvatori O., Patricio A, “Hibernate 3.0”, Eyrolles, 2005.

	Design of a Model-Driven Web Decision Support System in Agriculture: From Scientific Models to the Final Software
	1 Introduction
	1.2 General Points
	1.2 Generic Design of Decision Support Systems
	1.2 Development of DSS Software for Phytosanitary Plant Protection

	2 Design of the Scientific Model
	2.1 Description of the ‘‘Plant-Parasite-Phytosanitary Protection’’ System
	2.2 The Plant Model
	2.3 Parasite Model
	2.4 The Phytosanitary Protection Model

	3 The Scientific Model ’s Set Up and Validation
	3.1 Principle
	3.2 Methods Used for Sensitivity Analysis, Calibration, and Validation
	3.3 The Choice of Modeling and Validation Tools

	4 Software Architecture of the Scientific Model
	4.1 Class Diagram of the Plant-Parasite-Phytosanitary Protection System
	4.2 The Plant Model
	4.3 The Parasite Model

	5 The Application’s Architecture
	5.1 The Three-Tier Architecture and the Design Pattern ‘‘Strategy’’
	5.2 The Three-Tier Architecture Layers and the Technologies Used
	5.2.1 The Presentation Layer and Client-Server Communication
	5.2.2 The Business Layer and the Dependency Injection Design Pattern
	5.2.3 The DAO Layer and Hibernate

	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

