
A New Methodology to Automate

the Transformation of GIS Models

in an Iterative Development Process

André Miralles and Thérèse Libourel

Abstract In the majority of research today in areas such as evaluation of flood

risks, management of organic waste as it applies to plants, and mapping

ecological conditions of rivers, scientific advances are often aimed toward the

development of new software or the modification of existing software. One of

the particulars for software developed for agricultural or environmental fields

is that this software manages geographic information. The amount of geo-

graphic information has greatly increased over the past 20 years. Geographic

Information Systems (GISs) have been designed to store this information and

use it to calculate indicators and to create maps to facilitate the presentation

and the appropriation of the information. Often, the development of these

GISs is a long and very hard process. Since the early 1970 s, in order to help

project managers, software development processes have been designed and

applied. These development processes have also been used for GIS develop-

ments. In this chapter, the authors present a new methodology to realize GIS

more easily and more interactively. This methodology is based on model

transformations, a concept introduced by the Object Management Group

(OMG) in its approach called model driven architecture (MDA). When soft-

ware is developed, models are often used to improve the communication

between users, stakeholders, and designers. The changes of a model can be

seen as a process where each action (capture of user concepts, modification

of concepts, removal of concepts, etc.) transforms the model. In the MDA

approach, the OMG recommends automation of these actions using model

transformations. The authors have developed a complete set of model trans-

formations that enable one to ensure the evolution of a GIS model from the

analysis phase to the implementation phase.

A. Miralles (*)
Centre for Agricultural and Environmental Engineering Research, Earth Observation
andGeoInformation for Environment andLandDevelopmentUnit,Montpellier, France
e-mail: andre.miralles@teledetection.fr

P.J. Papajorgji, P.M. Pardalos (eds.), Advances in Modeling Agricultural Systems,
DOI 10.1007/978-0-387-75181-8_2, � Springer ScienceþBuisness Media, LLC 2009

19

1 Introduction

The development of a software application is becoming increasingly difficult.

Since the earliest developments of software, many methodologies have been

designed and used to help the project leader in developing software. Over the

past 15 years, Ivar Jacobson, Grady Booch, and James Rumbaugh have been

major contributors to the improvement of the methodologies used to develop

software [12]. They define a software development process as the set of activities

needed to transform a user’s requirements into a software system (Fig. 1).
These authors have also formalized the various ‘‘ingredients’’ taking part in

the process of developing a computer application. This model is called the 4Ps

model (Fig. 2).
This model dictates that the Result of a Project is a Product that requires

People in order to describe the studied domain (actors) and to manage it

(analysts, designers, programmers, etc.). The realization of the Project is con-

ducted in accordance with Templates defining, organizing, and explaining the

successive steps of the development Process. In order to manage the develop-

ment Process, Tools facilitating the expression of the needs, the modeling, the

project planning, and so forth, are needed.
This description of the development process paints a set of variety of topics

and issues that a project manager in charge of application development should

address. To illustrate the intrinsic complexity of a development, Muller and

Gaertner [21] use two metaphors reported here in extenso:

Template

Product

Process

Result

Project AutomationPeople Tools
Participants

Fig. 2 The 4 Ps software development process [12]

Software Development
Process

User’s
requirements

Software
SystemFig. 1 Software

development process [12]

20 A. Miralles and T. Libourel

� The first one is related to the management of the project: the development of
software can be seen as the crossing of an ocean in a boat. The departure day
is known; the arrival is not so well-known. In the course of the trip, it will be
necessary to brave storms and to repair damage.

� The second one concerns the multidisciplinary character of necessary com-
petencies to make a development. They write: if the computer programmer
had produced furniture, he would begin by planting acorns, would cut up
trees into planks, would dig the soil in search of iron ore, would manufacture
ironworks to make his nails, and would finish by assembling everything to
obtain a piece of furniture. . . . A mode of development which rests on the
shoulders of some heroic programmers, gurus, and other magicians of soft-
ware does not constitute a perennial and reproducible industrial practice.

These two metaphors perfectly illustrate the challenge with which the project
leader and the programmers are confronted when they take on the realization of a
data-processing application. This challenge is not entirely imaginary. The statistics
of Ref. 30 give an idea of the difficulty. According to these statistics, the failure risk
of the development of an application is 23%, the risk of drift is 49%, and only 28%
of the developments are finishedwithin the foreseen delay andwithin the projected
budget. These figures are from an investigation carried out on more than 150,000
developments achieved in the United States in 2000. It is noteworthy that in this
investigation, the developments aimed at creating a new application are grouped
with those aimed at the evolution of an existing application. Thus, it is quite likely
that the figure of 28% is overestimated, as the failure risk linked to achieving a new
application is much larger than the risk linked to the evolution of an application.

2 The Software DevelopmentProcess

The creators of the Unified Modeling Language (UML) have deliberately failed
to define a methodology to successfully carry out a project of development [8]
in order to let each designer freely choose themost suitablemethod adapted to his
professional environment. Generally, the designer uses methods of project lead-
ing with the aim of increasing the satisfaction level of the customers or of the
stakeholders while making the development work easier [3] and more rationally

There are a wide variety of software development processes that can be
classified into two large families:

� The so-called traditional methods (waterfall life-cycle, V life-cycle, spiral life-
cycle, unified process, rapid application development, etc.) are derived most
often from the methods used in industrial engineering or in civil engineering
(i.e., building and public works sector) [17].

� The agile methods, of which the most important are extreme programming,
dynamic software development method, adaptive software development,
SCRUM [3, 17], and so forth. Their major characteristics are their potential
for adaptation and common sense in action [3].

Transformation of GIS Models in an Iterative Development Process 21

The software development processes that were used in the 1970 s were essen-

tially of the linear type (Fig. 3); that is to say that the analysis was conducted at

the start of the project. Then, the development of the application was conducted,

step after step, without any intermediate validation from users, stakeholders,

or sponsors. At the end of the process, the application was presented to the

stakeholders. It was not rare that the application did not correspond with the

needs of the users, the stakeholders, or the sponsors. In this case, the project

manager was professionally in a difficult position, especially if the duration of

the development was long (several months and even 1 or 2 years).
This situation is hardly surprising because it is difficult, and even impossible,

for the users or the stakeholders, to conceive the solution in its whole [5]. This

report is all the more true when the scale of the project is substantial.
To avoid facing this type of situation, the project managers have appealed

more and more to the users and the stakeholders during the development

process to validate the application progress.
The experience cumulated during this type of development processes enables

better formalization of the participation of the stakeholders in the development

of computer applications and allows for the proposal of new methods to

conduct the project. The unified process method and extreme programming

method are two key methods coming from this line of thinking.
The unified process method, relying on the modeling language UML, is the

synthesis of the best practices of software development over three decades in

various fields1 [12]. It assumes the adoption of the following four principles: the

development process should be use-case driven, but it should also be iterative

and incremental, architecture-centric, and risk-centric [16, 21, 25].

Program
Design

Coding

Testing

Analysis

System
Requirements

Software
Requirements

Operations

Fig. 3 Typical waterfall cycle for software development process [26]

1 Telecommunication, aeronautic, defense, transport, and so forth.

22 A. Miralles and T. Libourel

The use-case driven development principle has been introduced by Ivar

Jacobson [11] in order to pilot application development according to the

requirements of the users or the stakeholders. A use-case is a sequence of actions,

including variants, that a system (or other entity) can perform, interacting with

actors of the system [23]. This concept enables one to describe what the system

should do. Once implemented, a use-case compulsorily resolves a requirement.

If this is not the case, it is because the need was not properly described. Thus, it

is important to describe the use-cases at the beginning of the project. In this

vision, the use-cases can be used as a planning tool during the development.
The iterative development process (Fig. 4) has been designed to prevent the

drawbacks caused by linear development. In order to do this, the system is

structured into subsystems, and for each iteration, a subsystem is analyzed and

implemented. Therefore, the model evolves following an incremental process.

For Ivar Jacobson, an increment is the result of an iteration [12] that lasts

between 2 and 4 weeks.
The principle of a development process that would be architecture-centric

assumes that the structuring in subsystems must not be a simple description of

the system under a graphic or a textual form, but that it should be materialized

by a model in a case-tool [25].
The aim of a risk-centric development is to put as a priority the achievement

of the systems or subsystems for which the designers have the least experience:

implementation of new technologies, for instance. This principle of develop-

ment enables one to take issues into account very early and to process them by

anticipation.
Extreme programming [1, 4] is a method called agile, which recommends

reducing activities that are not closely related to the production of a code,

including documentation. The code is the main part of the production of the

team. This method is hence often qualified as code-centric development. It is

representative of the agile methods that rely on four values:

� Communication between the users, the stakeholders, and the designer to
prevent situations described in the waterfall method.

� Simplicity of the code so that it is easily understandable and it is possible to
integrate changes.

Requirements

Planning

Initial Planning

Analysis
&

Design

Implementation

Deployment

TestEvaluationFig. 4 Typical iteration flow
in unified process [15]

Transformation of GIS Models in an Iterative Development Process 23

� Feedback, which should be quick from the stakeholders and from the other
members of the development team, enables the developer to have informa-
tion on the quality of his development.

� Courage to tell things as they are and to make difficult decisions like chan-
ging a code structure or throwing it away [6].

The fulfillment of these four values is ensured by 12 practices with the aim of
encouraging quick feedback, favoring the incremental evolution of the code,
seeking simplicity in the produced code, and targeting the code quality.

Among these practices, that of customer on-site2 is probably the most impor-
tant. The aim of this practice is to fluidize the communication between the
customer and the programmers by hosting the customer or his representative
within the team. This practice ensures a strong reactivity and a high feedback.
Themain aim of this practice is tomake up for the lack of detailed specifications.

The main task of the customer is the writing of the user stories, which will
allow one to code the functionalities of the application. A second task that is
just as important as the first one is the determination of the tests that the tester
should implement to validate functionalities. The customer acts by fixing the
priorities among the functionalities, by stating the specifications that have not
been previously defined or that have remained fuzzy during the previous
discussions, and so forth.

The presence of the customer in the team enables him to see the immediate result
of his work of specification and to evaluate the progression of the application. This
closeness also enables him to quickly assess the relevance of his specifications. If the
project drifts or progress is slow, he will immediately realize it.

Actually, the practice of customer on-site gives a high level of interactivity to
the development process, which associated with practice of the test-driven
development reduces the number of bugs by a factor of 5 in some cases.

3 The Model Driven Architecture
3

Model driven architecture (MDA) is a software design approach proposed by
the ObjectManagementGroup (OMG) with the objective of improving applica-
tion developments. It was conceived and formalized in 2001 to improve produc-
tivity but also to resolve problems of software portability, software integration,
and software interoperability encountered during developments [14].

To achieve this objective, the MDA approach recommends that designers
separate the specification of system functionality from the specification of the
implementation of that functionality on a specific technology platform [18]. For
that, the authors of this approach suggest use of two types of models: the
platform independent model (PIM) and the platform specific model (PSM).

2 This role is played by customer or his representative or, by default, by a member of the team.
3 See Chapter 1, ‘‘The Model Driven Architecture Approach: A Framework for Developing
Complex Agricultural Systems.’’

24 A. Miralles and T. Libourel

PIMs aremodels providing a description of the structure and functions of the
system independently of platform specifications. PSMs are models defining
how structure and functions of a system are implemented on a specific platform.

In fact, the MDA approach introduces a separation between concepts and
specifications needed to develop software. PIMs only contain business con-
cepts, whereas PSMs contain implementation concepts. Because all the PIM
business concepts are included in PSMs, a PIM can be seen as a modified subset
of a PSM [7]. Therefore, a PSM always derives from a model PIM through one
or more transformations [18, 19].

Figure 5 illustrates this separation and transformation. If different platforms
are used for the implementations (e.g., same standardized model implemented
into different organizations), then more than one PSMmay be derived from the
same PIM.

The previous transformations, called PIM/PSM transformations, are not the
only ones. In fact, the authors of MDA mention on the one hand the existence
of PSM/PIM transformations converting a PSM into a PIM and, on the other
hand, transformations whose model sources and targets are of the same stan-
dard (PIM/PIM transformations or PSM/PSM transformations).

In the process of development, PSM is not the last step as it is then necessary
to project this model into a programming language. This projection is often
considered as a transformation.

4 The New Interactive Development Method

4.1 The Principle of the Continuous Integration Unified
Process Method

For about 40 years, the major aim of research bearing on the methods of
development of computer applications has been to reduce the gap between the
needs of the actors (users, clients, stakeholders, etc.) and the end product. To
achieve this, the authors of the methods of development seek to associate and to

PIM

Business Concepts

PSM

Business Concepts +
Implementation Concepts

PIM/PSM TransformationsFig. 5 Illustration of the
separation of concepts and
of the transformation notion

Transformation of GIS Models in an Iterative Development Process 25

involve more and more the actors, who are the only ones that have a good
knowledge of the studied system.

In the waterfall life-cycle, the actors act in the analysis phase at the start of the
project, before the development team carries out the application, theoretically
without any other participation of the actors. Practically, the actors mostly act
when the project is of a significant size, but their interventions are not formalized.

In the unified process method, the iterative cycle requires organization of
periodic meetings among the actors of the domain occurring at the beginning of
each iteration, in the analysis phase, and at the end of the iteration to validate
the iteration product.

The practice of customer on-site of the extreme programming method leads
to the hosting of a representative of the actor within the development team.
Within this framework, the actor is at the center of the development.

Actually, the increased participation of the actors enables, on the one hand,
improvement in the capture of knowledge and the expression of the actors’
needs and, on the other hand, to have, at a more or less continuous frequency,
the validation of the evolution of the application. With this type of process, the
semantic side of the application is of a higher quality. The direct consequence is
that the increment developed during the iteration is more stable.

Building on that report, the authors have designed a new method called the
continuous integration unified process, which allows an increase in the interac-
tivity between the actors and the designer.

This newmethod is an extension of the unified process method incorporating
some practices of the extreme programming method. It is based on the follow-
ing report: in the analysis phase, the actors are in a situation similar to that of
the customer on-site in the extreme programming method (see Section 2) – they
are at the heart of the analysis. As communication is the key value of the
extreme programmingmethod, any technique ormethod increasing it will result
in improvement of the quality of the end application. Dialogue around a
prototype is one of these techniques or methods.

It is not rare that during the development of an application, one or several
prototypes are produced so that the actors have a better understanding of what
the end application will be. Then, the actors implicitly validate the concepts of
the field and, if it is a ‘‘dynamic prototype’’ [24], they validate the assumed
functionalities corresponding with their requirements. A prototype is a device
that fluidizes the exchanges between the actors and the designer, but it also
increases the area of shared knowledge [10] called commonness [27]. Moreover,
the implementation of the prototype accelerates learning by the actors of the
modeling language used by the designers [10].

The qualities of the prototype have led the authors to formalize its use in the
analysis phase, a key phase for the capture of the knowledge and the actors’
requirements.

To generate a prototype requires similar development to that of the final
application. In this background, the development process includes simplified
analysis, design, and implementation. If all the activities to develop the

26 A. Miralles and T. Libourel

prototype are done manually, the analysis will be interrupted by nonproductive

slack periods that will prove to be expensive.
This exercise of analysis will quickly become tedious for the actors, and they

will become demobilized and lose interest in the exercise. The result is that the

analysis could be less relevant and the quality of the application could deteriorate.

On the other hand, if the same activities are automated, then the slack periods do

not exist, and the response of the actors to the prototype will be better than in

front of a model for which all the finer points of the modeling language are not

known. Then, the development process of the prototype is made according to a

cycle with a very short duration, which is qualified as rapid prototyping.
Building on these thoughts, the definition of the newmethod is the following:

the continuous integration unified process method superimposes, on the main

cycle of the unified process method, a cycle of rapid prototyping (Fig. 6), which

is provided with a process automating the evolution of the models from the

analysis to the implementation.
The idea of automatic evolution of the models from the analysis up to the

implementation can also be found in the concerns of the MDA community. It is

obvious, from reading the fundamental texts of this approach [18, 19], that this

was one of the objectives that were sought. Some authors [13, 28] describe as full

MDA the complete automation of the evolution of the models. The common

warehouse metamodel (CWM) standard [22] has been created to cover the com-

plete cycle of design, completion, and management of the data warehouses [18].
Naturally, the challenge remains to design and implement a complete set of

model transformations assuming a full MDA process. The authors reach such a

Requirements

Planning

Initial Planning

Design

Implementation

Deployment

Test
Evaluation

Analysis

Automated
Design

Automated
Implementation

AnalysisEvaluation

Main Cycle

Rapid
Prototyping

Cycle

Fig. 6 Continuous integration unified process

Transformation of GIS Models in an Iterative Development Process 27

challenge in generating automatically the structure of the database of a Geo-
graphic Information System (GIS).

Given such a set, the duration of the phases of design and implementation of
the cycle of rapid prototyping is reduced to the unique time of completion of these
transformations, time linked to the volume of concepts contained in the models.

4.2 The Software Development Process Approach:
A Generalization of the MDA Approach

When an application is developed, one of the main preoccupations for a project
manager and for the company in charge of the software development is the
capitalization of knowledge and the re-use of the knowledge accumulated
during development.

The capitalization of knowledge is not just the problem of separating the
business concepts and implementation concepts according to the MDA vision
presented in Section 3, as at each phase of the development, the type of mobilized
knowledge is different. Thus, another approach involves capitalizing on the
knowledge at each phase of the application development process. The software
development process approach proposed by the authors is founded on this report
[20]. Thus, in this new approach, a model is associated at each one of the phases.

In fact, this approach generalizes the MDA approach by refining the PIMs
into three types of models: the analysis model, the preliminary design model,
and the advanced design model. The first one is used to analyze the system with
the actors, the second one is dedicated to the concepts coming from a domain in
relation to the studied domain (point, line, or polygon from geomatic domain,
for example), and the third is specialized for the description of the computer
concepts or models independent of the programming language (ASCII files,
host, for example). Although the refinement of PSMs is theoretically possible,
we have not worked on this subject for the moment.

4.3 The Software Development Process Model: A Modeling
Artifact for Knowledge Capitalization

To apply the software development process approach, archiving models after
each phase is a solution that is often used, even if it is not formalized. Often,
these archives are also physically independent, so any change, including, for
example, changing the name of a concept, quickly becomes attempting the
impossible, as it is difficult and expensive to pass along the change to all the
archived models. Quickly, the models diverge and their coherence deteriorates.

Software development process model (SPDM) is an artifact that enables one
to keep the models associated with the phases of development coherent. It has
been conceived and implemented byMiralles [20] into case-tools. This modeling

28 A. Miralles and T. Libourel

artifact contains the different models associated with the phases of the software

development process. In the vision of the authors, the software development

process model is the MODEL of the application under development.
Figure 7 shows the software development process model for the development

of software following the two-track unified process method [25], a method

derived from the unified process method. This figure also shows that the

PIM/PSM separation introduced by the MDA approach occurs when the

project moves from the advanced design phase to the implementation phase.

4.4 The Complete Set of Transformations Enabling a Full MDA
Process for Databases

To realize a full MDA4 process for GIS, the first set of transformations imple-

mented into the case-tool is in charge of diffusing the captured business concepts

from the analysis model to the implementation models (see Section 4.4.1).

SDPM

Analysis
Model

Preliminary
Design Model

Advanced
Design Model

SQL
Implementation

Model

C++
Implementation

Model

Java
Implementation

Model

PSM

PIM

Fig. 7 The software development process model

4 Normally, a full MDA process must include the model verification and the model compila-
tion. Currently, the model verification is not made but it is one of the future subjects of
research. The model compilation is held by code generators (C++ and C#, Java, Corba, and
SQL) proposed by case-tool.

Transformation of GIS Models in an Iterative Development Process 29

To describe the spatial properties (point, line, and polygon) and temporal
properties (instant and period) in the analysis model, the authors adopted the
pictogrammic language of Perceptory [2]. These pictograms are introduced into
the business concept via stereotypes (UML concepts with which it is possible to
associate a pictogram). In the analysis model, the stereotype/pictogram couple
only has an informative value. The second type of transformation developed
reifies the stereotype/pictogram couple into UML modeling elements (see
Section 4.4.2).

Finally, the last type of transformation developed is in charge of adapting the
SQL implementation model after cloning the Structured query language (SQL)
code generator of the case-tool (see Section 4.4.3).

4.4.1 Diffusion Transformation and Management of the Software

Development Process Model

This transformation clones a concept from a source model into the next model.
Step by step, the concepts captured in the analysis phase and added into the
analysis model are transferred to the implementation models.

To guarantee the consistency of the software development process model, a
cloning traceability architecture is automatically built by the diffusion transfor-
mation. After cloning, this transformation establishes an individual cloning
traceability link between each one of the source concepts and the cloned con-
cepts. Figure 8 illustrates the cloning traceability architecture.

In an iterative development process, the diffusion transformation adds, with
every iteration, a new clone of the same source into the following model. To
avoid this problem, when an individual cloning traceability link exists, the
diffusion transformation does not clone the concepts but only carries out one
update of the clone.

4.4.2 The GIS Transformations

The GIS Design Pattern Generation Transformation

The spatial and temporal concepts have stable relationships that are completely
known. They constitute recurrent minimodels having the main property of
design patterns5: recurrence [9]. It is this property that led authors to call
these minimodels design patterns. These GIS design patterns do not have the

5 A design pattern systematically names, motivates, and explains a general design that
addresses a recurring design problem in object-oriented systems. It describes the problem,
the solution, when to apply the solution, and its consequences. It also gives implementation
hints and examples. The solution is a general arrangement of objects and classes that solve the
problem. The solution is customized and implemented to solve the problem in a particular
context [9].

30 A. Miralles and T. Libourel

same statutes as the design patterns described in Ref. 9, but they are funda-

mental design patterns in the geomatic domain. Figure 9 shows an example of

design pattern of the GIS domain. The set of these patterns is called the GIS

design pattern.
Given that the design patterns are always identical, they can be automatically

generated with a case-tool without any difficulty. The GIS design pattern gen-

eration transformation is the transformation in charge of generating the set of

GIS design patterns.

The Pictogram Translation Transformation

Once the GIS design patterns have been created, the business and the spatial

or temporal concepts represented by the pictogram are totally disassociated

(Fig. 10, ‘‘Before’’). The goal of the pictogram translation transformation Tp

SDPM

Implementation Model Container

Farm ParcelUse

Java
Implementation Model

Farm ParcelUse
(…)

Advanced
Design Model

Farm ParcelUse

Preliminary
Design Model

Farm Parcel
Use

Analysis
Model

Farm Parcel
Use

SQL
Implementation Model

Fig. 8 Example of the cloning traceability architecture

Line

lenght()

Point
0..*

2..*

List Pt

Fig. 9 Example of a GIS
design pattern

Transformation of GIS Models in an Iterative Development Process 31

(Fig. 10) is to automatically establish a relationship between the Parcel and

Polygon concepts. This transformation creates an association, called spatial
characteristic.

During the capture of the pictogram, two tagged values are added to the

business concept to specify the role of the spatial concept ({Gis S: Spatial
Role(Geometry)}) and its cardinality ({Gis S: Spatial Cardinality(1)}). By

default, this role and this cardinality have the values Geometry and 1, respec-

tively, but the designer can subsequently modify them. In this association,
the entity name has been allocated to its role, Parcel in this example, and

its cardinality value is 0.1. Once the association has been created, the stereo-
type/pictogram and the two tagged values are deleted because this information

becomes redundant with the association.

Preliminary Design Model

Parcel

{Gis S: Spatial Role(Geometry),
Gis S: Spatial Cardinality(1)}

perimeter()
area()

Polygon

Analysis Model

Parcel

{Gis S: Spatial Role(Geometry),
Gis S: Spatial Cardinality(1)}

Cloning
Traceabilitylink

Before

Tp

Preliminary Design Model

Parcel
Spatial Characteristic

Parcel

0..*

Geometry
1

perimeter()
area()

Polygon

Analysis Model

Parcel

{Gis S: Spatial Role(Geometry
Gis S: Spatial Cardinality(1)} Translation

Traceabilitylink

After

),

Fig. 10 The pictogram translation transformationTP

32 A. Miralles and T. Libourel

To ensure traceability, the transformation Tp creates a traceability link,

called translation traceability link, between the pictogram of the business entity
of the analysis model and the spatial characteristic association.

4.4.3 The SQL Transformation

To achieve a full MDA process, the SQL transformationTSQL has been con-
ceived and implemented. It is applied on the SQL implementation model. The
objective of this transformation is to adapt the SQL implementation model
after cloning (Fig. 11, ‘‘Before’’) to the SQL code generator of the case-tool. To
do this, it adds SQL concepts, such as persistence and key primary (Fig. 11,
‘‘After’’), to the business concepts. These SQL concepts are not systematically
added to all the business concepts but only to a certain number of them.

Persistence is an ‘‘SQL’’ property that should be added to all concepts that
should be converted into tables (Fig. 11, ‘‘After’’). Considering that the ‘‘son’’
concepts involved in a hierarchy of business concepts inherit properties of
‘‘father’’ concepts, the persistence property should be put in the ‘‘root’’ concept
of the hierarchy.

Although the primary key properties are as essential as the concepts involved
in a relationship of association, of aggregation, or of composition, the trans-
formation TSQL systematically adds the primary key property on all the persis-
tent classes (Fig. 11, ‘‘After’’). Just like for persistence, the ‘‘son’’ concepts of a
hierarchy of concepts inherit the primary key of the ‘‘root’’ concept.

Annotated with SQL concepts, the SQL code generator can be applied on
the SQL implementation model to produce the SQL code for creating the
database.

TSQL

SQL Implementation SubModel

Surface : real

Parcelle

Before

SQL Implementation SubModel

ID Parcelle: integer
{primaryKey(1)}

Surface : real

Parcelle

{ persistence(persistent) }

After

Fig. 11 The SQL transformationTSQL

Transformation of GIS Models in an Iterative Development Process 33

5 Conclusions

The continuous integration unified process method proposed above presents a

number of advantages. Below, we clarify three important advantages.
The first advantage is to have split research of excellence into the subcate-

gories semantic excellence and technical excellence. This dichotomy introduced

by the continuous integration unified process method has been obtained by

superimposing a cycle of rapid prototyping in the analysis phase onto the main

cycle (Fig. 6). Successive prototypes completed during this cycle of rapid pro-

totyping are devices that form the topics of discussion and criticisms from the

actors. Progressively, these prototypes tend toward ‘‘the ideal application’’ and

the actors of the field need this. To reach this ideal state, the actors describe the

business concepts, and their description becomes finer as one proceeds through

the iterations of the cycle of rapid prototyping. The semantic excellence is then

reached, and the model coming from the phase of analysis in the main cycle

can be stabilized from the semantic point of view. In the phase of design and

implementation of the main cycle, the development team has the leisure to

address and to solve the technical sides linked to the production of the binary

code. During this main cycle, the aim is toward technical excellence.
The second advantage is the capitalization of knowledge. The generalization

of the idea to separate the business concepts from those of implementation,

an idea suggested by the MDA approach, has led to the design of the software

development process approach, which associates a model with each of the

phases of the development cycle of an application. Thus, the software develop-

ment process model, an artifact that reifies the software development process

approach, groups together all the models that are associated with the develop-

ment phases. Thus, the project manager has both a global view of development

through the software development process model and a detailed view through

each model that makes up the software development process model. It can, at

any time, identify at what phase of development a concept has been introduced

(business, from an associated domain, implementation, etc.) by scanning the

content of the models. These models are actually ‘‘capitalization planes’’ of

knowledge implemented at each phase needed to produce the application.
The third advantage is a gain in quality linked to automation of the evolution

by the model transformations. During the development of an application, some

actions or activities are conducted in a repetitive way tens, and even hundreds,

of times. For instance, one should add the persistence and the primary key

properties for all the concepts except those involved in a hierarchy (see

Section 4.4.3). If this activity is done manually, more time will be needed than

if it is done by a transformation that has been designed and implemented in the

case-tools. Moreover, it is not rare that, when done manually, some of the

concepts are forgotten and that these mistakes are noticed during the creation

of the database. In this case, all the implementation process should be resumed.

A designer, who may be poorly experienced in SQL language, may also add this

34 A. Miralles and T. Libourel

information to all the concepts of a hierarchy even though this is not necessary.

In this case, the coherence of the model deteriorates. In the software develop-

ment process approach, nothing forbids the designer to add these SQL proper-

ties in the design or analysis phase. The capitalization is then affected. The

implementation of the transformation TSQL on the SQL implementation model

avoids this problem. The quality of the SQL implementationmodel is better and

the productivity is increased. It is the same for all the other transformations

described in Section 4.4. These thoughts are corroborated by the study con-

ducted by The Middleware Company [29]. This consulting business has been

in charge of conducting a productivity analysis between two teams with

an equivalent competency level: the first one was to develop an application

in a traditional way, and the second one had to create the same application

according to the MDA approach. The team working according to the MDA

approach completed the application with a time savings of 35% and a gain in

quality as the team did not have to correct development bugs. The analysts of

the consulting business attribute this gain in quality to the automated transfor-

mations of the models.

References

1. Beck K. 2000. eXtreme Programming Explained – Embrace Change. Addison-Wesley.
190 pp.

2. Bédard Y, Larrivée S, Proulx M-J, Nadeau M. 2004. Modeling Geospatial Databases
with Plug-ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 Years
of Research and Experimentations on Perceptory. Presented at ER Workshops 2004
CoMoGIS, Shanghai, China.

3. Bénard J-L. 2001. Méthodes agiles (1) – Panorama. Développeur Référence. http://www.
devreference.net/devrefv205.pdf. Last access: September 2004.

4. Bénard J-L, Bossavit L, Médina R, Williams D. 2002. Gestion de projet eXtreme
Programming. Eyrolles. 298 pp.

5. Booch G, Rumbaugh J, Jacobson I. 2000. Guide de l’utilisateur UML. Eyrolles. 500 pp.
6. Cros T. 2001. La conception dans l’eXtreme Programming. Développeur Référence.

http://www.devreference.net/devrefv201.pdf. Last access: September 2004.
7. Desfray P. 1994. Object Engineering – The Fourth Dimension. Addison-Wesley. 342 pp.
8. Fayet E. 2002. Forum Utilisateurs Rational – Le discours de la méthode. Développeur

Référence. http://www.devreference.net/devrefv220.pdf. Last access: September 2004.
9. GammaE, HelmR, JohnsonR, Vlissides J. 2001. Design patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional. 416 pp.
10. Guimond L-E. 2005. Conception d’un environnement de découverte des besoins pour le

développement de solutions SOLAP. Thèse. Université Laval, Québec. 124 pp.
11. Jacobson I. 2003. Use Cases – Yesterday, Today, and Tomorrow. http://www.ivarjacob

son.com/html/content/publications_papers.html; http://www.ivarjacob son.com/publi
cations/uc/UseCases_TheRationalEdge_Mar2003.pdf. Last access: August 2005.

12. Jacobson I, Booch G, Rumbaugh J. 1999. The Unified Software Development Process.
Addison-Wesley. 463 pp.

13. Kleppe A. 2004. Interview with Anneke Kleppe. Code Generation Network. http://www.
codegeneration.net/tiki-read_article.php articleId=21. Last access: August 2006.

Transformation of GIS Models in an Iterative Development Process 35

14. Kleppe A, Warmer J, Bast W. 2003. MDA Explained: The Model Driven Architecture—
Practice and Promise. Addison-Wesley Professional. 170 pp.

15. Kruchten PB. 1999. The Rational Unified Process: An Introduction. Addison-Wesley
Professional. 336 pp.

16. Larman C. 2002. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Prentice Hall PTR. 627 pp.

17. Larman C. 2002. UML et les Design Patterns. CampusPress. 672 pp.
18. Miller J, Mukerji J. 2001. Model Driven Architecture (MDA). OMG. http://www.omg.

org/cgi-bin/apps/doc? 07-01.pdf. Last access: September 2004.
19. Miller J, Mukerji J. 2003. MDA Guide Version 1.0.1. OMG. http://www.omg.org/cgi-

bin/doc? -01. Last access: May 2006.
20. Miralles A. 2006. Ingénierie des modèles pour les applications environnementales. Thèse

de doctorat. Université Montpellier II, Montpellier. http://www.teledetection.fr/ingeni
erie-des-modeles-pour-les-applications-environnementales-3.html. 322 pp.

21. Muller P-A, Gaertner N. 2000. Modélisation objet avec UML. Eyrolles. 520 pp.
22. OMG. 2001. Common Warehouse Metamodel – Version 1.0. OMG. http://www.omg.

org/cgi-bin/doc ?ad/2001-02-01. Last access: June 2004.
23. OMG. 2003. UnifiedModeling Language – Specification – Version 1.5. http://www.omg.

org/cgi-bin/apps/doc? formal/03-03-01.pdf. 736 pp.
24. Région Wallonne. 2004. Le prototypage: Définition et objectifs. Portail Wallonie.
25. Roques P, Vallée F. 2002. UML en Action – De l’analyse des besoins à la conception en

Java. Eyrolles. 388 pp.
26. Royce WW. 1970. Managing the Development of Large Software Systems. Presented at

IEEE Westcon, Monterey, CA.
27. Schramm WL. 1954. How communication works. In: The Process and Effects of Com-

munication. University of Illinois Press. pp. 3–26.
28. Softeam. 2005. Formation sur les Modèles Objet et UML.
29. The Middleware Company. 2003. Model Driven Development for J2EE Utilizing a

Model Driven Architecture (MDA) Approach – Productivity Analysis.

36 A. Miralles and T. Libourel

	A New Methodology to Automate the Transformation of GIS Models in an Iterative Development Process
	1 Introduction
	2 The Software DevelopmentProcess
	3 The Model Driven Architecture
	4 The New Interactive Development Method
	4.1 The Principle of the Continuous Integration Unified Process Method
	4.2 The Software Development Process Approach: A Generalization of the MDA Approach
	4.3 The Software Development Process Model: A Modeling Artifact for Knowledge Capitalization
	4.4 The Complete Set of Transformations Enabling a Full MDA Process for Databases
	4.4.1 Diffusion Transformation and Management of the Software Development Process Model
	4.4.2 The GIS Transformations
	The GIS Design Pattern Generation Transformation
	The Pictogram Translation Transformation

	4.4.3 The SQL Transformation

	5 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

