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Abstract. We define a new algebraic form for Boolean function repre-
sentation, called EXOR-Projected Sum of Products (EP-SOP), consisting
in a four level network that can be easily implemented in practice. De-
riving an optimal EP-SOP from an optimal SOP form is a NP NP -hard
problem; nevertheless we propose a very efficient approximation algo-
rithm, which returns, in polynomial time, an EP-SOP form whose cost
is guaranteed to be near the optimum. Experimental evidence shows that
for about 35% of the classical synthesis benchmarks, EP-SOP networks
have a smaller area and delay with respect to the optimal SOPs (some-
times gaining even 40-50% of the area). Since the computational times
required are extremely short, we recommend the use of the proposed
approach as a post-processing step after SOP minimization.

1 Introduction

The classical approach to logic synthesis is the minimization of two-level SOP
networks [2, 4, 13]. In this framework the resulting networks have a very low delay,
thanks to the fixed number of levels, and the SOP expressions can be computed
in a reasonable amount of time. To build networks with a more compact area,
multi-level network synthesis has been proposed and widely studied [8, 17]. The
drawbacks of this approach are the unbounded number of levels (and therefore
the longer delay), as well as the much larger computational time required to
synthesize the network. In an attempt to establish an effective trade-off between
these two opposite approaches, recent studies have proposed the optimization of
networks with a fixed number of levels (typically, three or four levels) [1, 5–7, 12,
14, 16]. Three levels of logic are enough to produce a minimal network for most of
the Boolean functions; and in many cases three-level logic is a good compromise
between circuit speed, circuit size, and the time needed for the minimization
procedure [15]. Three and four-level logic networks are typically more compact
than the corresponding SOPs, but the computational time required to compute
them can be much longer.

The aim of this paper is to define a network with a bounded number of levels
that can be easily implemented in practice and synthesized in a competitive time
with respect to two-level synthesis. For this purpose, we propose a four-level
network, EXOR-Projected Sum of Products (EP-SOP), which can be built in a
very fast post-processing step from an optimal two-level SOP. We first define
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the algebraic form of EP-SOP networks, and prove that deriving an optimal
EP-SOP from an optimal SOP form is a hard problem (NPNP -hard). We then
describe an approximation algorithm, which returns in polynomial time an EP-
SOP form whose cost is guaranteed to be near the optimum. Our experimental
results show that in about 35% of the classical synthesis benchmarks the EP-
SOP obtained has area and delay smaller then those of an optimal SOP form
(sometimes gaining even 40-50% of the area). The computational times required
are extremely short, thus recommending the use of this approach as a post-
processing step after SOP minimization.

Before defining EP-SOP forms, we introduce them informally through an ex-
ample. Let us consider the Boolean function f shown on the left side of Figure 1.
An optimal SOP representation for f is φ = x1x2x3+x1x2x3+x1x2x3+x1x2x3+
x3x4. The right side of Figure 1 represents the projections of f onto the two sub-
spaces where x1 = x2 and x1 �= x2, respectively. As described in the Karnaugh
maps on the right side of the figure, the projection of f onto the space x1 �= x2

is covered by the optimal SOP form x3 + x3x4, while the projection onto the
space x1 = x2 is covered by x3. Notice that both SOP forms are much more com-
pact than the original one, because minterms, which were not adjacent in the
original Karnaugh map, now merge into new larger prime cubes. For example,
the two products x1x2x3 and x1x2x3, which cannot be merged in the original
Karnaugh map, correspond to the products x2x3 and x2x3, which can be unified
into product x3 in the lower Karnaugh map on the right side.

Since the two subspaces, x1 = x2 and x1 �= x2, have characteristic func-
tions equal to (x1 ⊕ x2) and (x1 ⊕ x2), respectively, f can be expressed as
f ≡ (x1 ⊕ x2) x3 + (x1 ⊕ x2) (x3 + x4). Figure 2 shows how this form can be
easily implemented by using a single 2-fan in EXOR gate and two PLAs.

As the previous example shows, the products of a generic SOP φ can be
classified into two subsets: those that are entirely included into one of the two
subspaces x1 = x2 and x1 �= x2 (for example, in Figure 1 the product x1x2x3

belongs entirely to the subspace x1 �= x2) and those that intersect both of them,
which we will call crossing products (for example, in Figure 1 the product x3x4).
In general, it is not always convenient to project a crossing product, since this
produces two smaller products, which reside into both subspaces. Therefore, we
can choose whether projecting the crossing products or keeping them unpro-
jected. In the second case, the resulting expression also includes a SOP form
(called remainder) containing all the crossing products. We call the overall form
EP-SOP with remainder.

Figure 3 reports the same example of Figure 1, in which the only crossing
product x3x4 is not projected. In this case, the resulting EP-SOP with remainder
form is f ≡ (x1 ⊕ x2) x3 + (x1 ⊕ x2) x3 + x3x4.

We can observe that EP-SOP expressions can be seen as Boolean factorized
forms. Factorization of literal terms is a widely studied field in multi-level logic
[3, 17]. Most of the proposed methods produce disjoint factorization (see [8] for
an introduction). In contrast, the factorization of an EP-SOP form is not dis-
joint since a literal can stay simultaneously in the projected SOPs and in the



VLSI-SoC: Research Trends in VLSI and Systems on Chip 243

x1 = x2

00 01 11 10

10 0

1

0

x2

0 0 1 1

1

x3 x4
00 01 11 10

1

1

0

x2

1

1 1

1 1

0

0

x3 x4x1 = x2

x1 x2

x3 x4

00

01

11

10

00 01 11 10

1 10 0

1 1 0 1

1

0 1 1

1 0

0

1

Fig. 1. Karnaugh maps of a function f (left side) and its projections onto x1⊕x2 (right
side, top) and x1 ⊕ x2 (right side, bottom).

corresponding EXORs. For example, in the EP-SOP form (x1 ⊕ x2) (x2x4 +
x3x4) + (x1 ⊕ x2) (x2x3 + x3x4) the literal x2 appears both in the EXORs and
in the SOPs.

Finally, EP-SOP forms share some similarities with another model of Boolean
function representation: the Linearly-Transformed BDDs [10, 11]. LTBDDs are
binary decision diagrams whose nodes are labeled with EXORs of variables,
instead of just single variables. Thus, the node on the first level of a LTBDD,
if labeled with an EXOR, defines the same kind of decomposition on which
EP-SOPs are based.

The remainder of this paper is organized as follows. Section 2 describes the
algebraic expression for EP-SOPs with and without remainder. Section 3 char-
acterizes the computational complexity of the problem. Section 4 presents an
approximation algorithm for EP-SOP synthesis, and proves that its solution is
nearly optimal. In the end, Section 5 discusses the experimental results.

2 EP-SOP representation of Boolean functions

The following two sections formally describe EP-SOP expressions with and with-
out remainder, and show how to derive them from an original optimal SOP form.

2.1 EP-SOP without remainder

Let us consider a SOP form φ, and a couple of variables xi and xj , where without
loss of generality i < j. The space {0, 1}n can be partitioned into two disjoint
subspaces: the space defined by the characteristic function χ⊕ = (xi ⊕ xj), i.e.,
the space where xi = xj , and its complement defined by the function χ⊕ =
(xi ⊕ xj), i.e., the space where xi �= xj .

We can write φ as the sum (union) of its two projections, φ⊕ and φ⊕, onto
these two spaces. Even if the projections allow us to eliminate a variable ad
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Fig. 2. EP-SOP-network without remainder for the function in Figure 1.

libitum between xi and xj , we always remove xi (the one with lower index). In
order to perform the two projections we must project one by one the products
p ∈ φ, considering four cases.

Algorithm 1 (Project. onto (xi ⊕ xj) and (xi ⊕ xj) for EP-SOP) Given a
SOP form φ = p1 + p2 + · · · pm, for each p in {p1, p2, . . . , pm} project p in φ⊕
or in φ⊕ using the following strategy:

1. If p contains both xi and xj (possibly complemented), i.e., p = xixjq, where
q is a product of literals, p has no projection onto the subspace where xi �= xj.
Thus, no product will be added to φ⊕. By contrast, the projection of p = xixjq
onto the subspace where xi = xj gives the product xjq, which will be added to
φ⊕. The three other cases (p = xixjq, p = xixjq, p = xixjq) can be handled
in a similar way.

2. If p contains xi (possibly complemented) and not xj, i.e., p = xiq, where q
is a product of literals, the projection of p onto the subspace where xi �= xj

gives the product xjq, which will be added to φ⊕. The projection of p onto
the subspace where xi = xj gives the product xjq, which will be added to φ⊕.
The other case (p = xiq) can be handled in a similar way: xjq will be added
to φ⊕, and xjq will be added to φ⊕.

3. If p contains xj (possibly complemented) and not xi, i.e., p = xjq, where
q is a product of literals, the projections of p onto both subspaces leave the
product unchanged, thus p = xjq will be added to both φ⊕ and φ⊕. The other
case (p = xjq) can be handled in the same way, by adding p to both φ⊕ and
φ⊕.

4. If p does not contain xi, xi, xj, xj, the projections of p onto both subspaces
leave the product unchanged, thus p will be added to both φ⊕ and φ⊕.

Observe that the last three type of products are indeed crossing products,
which are projected onto the two spaces, while the products containing both xi

and xj are projected only onto one of them.

Example 1. Let us consider the Boolean function f shown on the left side of
Figure 1. An optimal SOP representation for f is φ = x1x2x3 + x1x2x3 +
x1x2x3 + x1x2x3 + x3x4. Suppose to project φ onto the spaces (x1 ⊕ x2) and
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(x1 ⊕ x2). The first product in φ contains both x1 and x2, thus it is not a cross-
ing product (strategy 1 of Algorithm 1). Since x1 is complemented and x2 is
not complemented we project this product onto the space (x1 ⊕ x2) (in fact,
x1 �= x2). The projected product is x2x3. The unique crossing product of φ is
x3x4, since it does not contain x1 and x2. This product will be inserted in both
the spaces without removing any literal. The overall projection will return the
form (x1 ⊕ x2) (x2x3+x2x3+x3x4)+(x1 ⊕ x2) (x2x3 + x2x3 + x3x4) . Note that
the SOP forms of the projected spaces are not minimal. Minimizing them we
obtain (x1 ⊕ x2) x3 + (x1 ⊕ x2) (x3 + x3x4).

We can now formally define the EP-SOP expressions. These forms can be
derived starting from a SOP representation φ of a Boolean function f in two
steps.

First we project φ onto the two subspaces (xi⊕xj) and (xi⊕xj), as explained
before, and we obtain the following expression.

Definition 1. Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f .
Given a couple of variables xi and xj, the (i, j)-EP-SOP of f is the expression

ξij = (xi ⊕ xj)φ⊕ + (xi ⊕ xj)φ⊕ ,

where φ⊕ and φ⊕ are the projections of φ onto the spaces (xi⊕xj) and (xi⊕xj),
respectively.

After the projection we can further minimize the two SOPs φ⊕ and φ⊕ in
order to minimize the EP-SOP ξij .

Definition 2. Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of
f . Given a couple of variables xi and xj, the minimal (i, j)-EP-SOP of f is the
expression

ξ
(min)
ij = (xi ⊕ xj)φ

(min)
⊕ + (xi ⊕ xj)φ

(min)

⊕ ,

where φ
(min)
⊕ and φ

(min)

⊕ are two minimal SOP forms representing the projections
of φ onto the spaces (xi ⊕ xj) and (xi ⊕ xj), respectively.

In the previous definitions we have fixed a single couple of variables, but
we are interested in finding the minimal EP-SOP representation of a Boolean
function, i.e., the expression containing the minimum number of products among
all possible minimal EP-SOP with respect to any couple of variables.

Let |φ| denote the number of products in a SOP φ, and |ξ| = |φ⊕|+ |φ⊕| the
overall number of products in an EP-SOP ξ.

Definition 3. The minimal EP-SOP representation of a Boolean function f is
given by the EP-SOP expression ξMIN such that

|ξMIN | = min
i,j

|ξ(min)
ij | .
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Fig. 3. Karnaugh maps of a function f (left side), its projections onto x1 ⊕x2 (center,
top) and x1 ⊕ x2 (center, bottom), and the remainder (right side).

2.2 EP-SOP with remainder

As already noted, when we project a SOP form onto the two spaces (xi⊕xj) and
(xi ⊕ xj), some products will appear only once in the final expression, precisely
the products containing the two literals defining the projection spaces, while the
other products (crossing products) will appear twice, one in each projected SOP.

In order to keep the number of products as small as possible, we introduce
the notion of EP-SOP with remainder.

Algorithm 2 (Proj. onto (xi ⊕ xj) and (xi ⊕ xj) for EP-SOP with rem.)
Given a SOP form φ = p1 + p2 + · · · pm, for each p in {p1, p2, . . . , pm} project p
in φ⊕ or in φ⊕, or insert it in the remainder ρ using the following strategy:

1. If p contains both xi and xj (possibly complemented), i.e., p = xixjq, where
q is a product of literals, p has no projection onto the subspace where xi �= xj.
Thus, no product will be added to φ⊕. By contrast, the projection of p = xixjq
onto the subspace where xi = xj gives the product xjq, which will be added to
φ⊕. The three other cases (p = xixjq, p = xixjq, p = xixjq) can be handled
in a similar way.

2. Otherwise (p is a crossing product) insert p in the remainder.

For example, let us consider the Boolean function f shown on the left side
of Figure 3. The unique crossing product of φ is x3x4 since it does not contain
x1 and x2. This product will be inserted now in the remainder. The overall pro-
jection will return the form: (x1 ⊕ x2) (x2x3 +x2x3)+(x1 ⊕ x2) (x2x3 + x2x3)+
x3x4. Minimizing the projected SOPs we obtain (x1 ⊕ x2) x3 + (x1 ⊕ x2) x3 +
x3x4.

Formally we have:

Definition 4. Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f .
Given a couple of variable xi and xj, the (i, j)-EP-SOP with remainder of f is
the expression

ψij = (xi ⊕ xj)φ′
⊕ + (xi ⊕ xj)φ′

⊕ + ρ ,
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where φ′
⊕ and φ′

⊕ are the two projections of the products of φ containing both
xi and xj (possibly complemented) onto the spaces (xi ⊕ xj) and (xi ⊕ xj),
respectively, and ρ is the sum of all crossing products of φ.

In other words we project onto the subspaces (xi ⊕ xj) and (xi ⊕ xj) only
the products that entirely reside in them, while the crossing products are not
projected, but are inserted in the remainder ρ. Again for this form, we can
further minimize the projected SOPs φ′

⊕ and φ′
⊕ in order to obtain a more

compact expression:

Definition 5. Let f : {0, 1}n → {0, 1}, and let φ be a SOP representation of f .
Given a couple of variable xi and xj, the minimal (i, j)-EP-SOP with remainder
of f is the expression

ψ
(min)
ij = (xi ⊕ xj)φ

′(min)
⊕ + (xi ⊕ xj)φ

′(min)

⊕ + ρ(min) ,

where φ
′(min)
⊕ and φ

′(min)

⊕ are two minimal SOP forms representing the projec-
tions of the products of φ containing both xi and xj (possibly complemented)
onto the spaces (xi ⊕ xj) and (xi ⊕ xj), respectively, and ρ(min) is the optimal
sum of all other products of φ.

The overall minimal form (with respect to any possible couple of variables)
is described as follows. Let |ψ| denote the number of products in an EP-SOP
with remainder, i.e., |ψ| = |φ′

⊕| + |φ′
⊕| + |ρ|.

Definition 6. The minimal EP-SOP with remainder representation of a Boolean
function f is given by the EP-SOP expression ψMIN such that

|ψMIN | = min
i,j

|ψ(min)
ij | .

Note that if we start from a minimal SOP, the remainder is already minimal,
i.e., the number of its products cannot be further reduced: |ρ(min)| = |ρ|.

We cannot decide in advance which one of the two EP-SOP expressions
(with or without remainder) is the more compact. On one hand, if we project
the crossing products in the two spaces we could further minimize them. On the
other hand it could be more convenient kipping them in the remainder.

For example, consider the minimal SOP form φ = x1x2x3 + x1x2x3 + x3x4

and the couple x1 and x2. The minimal (1, 2)-EP-SOP without remainder is
(x1 ⊕ x2) x3x4 + (x1 ⊕ x2) (x3 + x3x4), while the minimal (1, 2)-EP-SOP with
remainder is (x1 ⊕ x2) x3 + x3x4. In this case the form with remainder is clearly
more compact.

Alternatively consider the minimal SOP form φ = x1x2x3x4 + x1x2x3x4 +
x1x2x3 + x1x2x3x4 + x1x3x4 + x2x3x4 and the couple x1 and x2. The minimal
(1, 2)-EP-SOP without remainder is (x1 ⊕ x2) (x3x4 +x3x4)+ (x1 ⊕ x2) (x2x3 +
x3x4), while the minimal (1, 2)-EP-SOP with remainder is (x1 ⊕ x2) (x3x4) +
(x1 ⊕ x2) (x2x3 + x3x4) + x1x3x4 + x2x3x4. In this case the form without re-
mainder is more convenient.
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3 Computational Complexity

In this section we analyze the computational complexity of the following problem:
given a minimal SOP form φ for a Boolean function f and a couple of variables
xi and xj , find a minimal (i, j)-EP-SOP of f .

Since projecting φ is easy (polynomial), as shown in Section 2, the core of
the problem is the minimization of the two projected SOPs. In general φ

(min)
⊕

and φ
(min)

⊕ are different from the projections φ⊕ and φ⊕, even if φ is already in
minimal form. Indeed, projecting the single products of φ, we have no guarantee
that the resulting SOP forms φ⊕ and φ⊕ are still prime and irredundant.

Notice that the more common projections of a minimal SOP form φ onto
the spaces xi and xi (Shannon projections) are guaranteed to be minimal. For
instance, the projection (Shannon decomposition) with respect to x1 and x1 of
the minimal SOP form φ = x1x2x3 + x1x2x3 + x1x3x4 is x1(x2x3) + x1(x2x3 +
x3x4), and the two projected SOP forms are already minimal.

In [19], the decision version of the problem of finding a minimal SOP rep-
resentation of a Boolean function f starting from any SOP for f (SOP-2-MIN
SOP) has been proved to be NPNP -complete. Finding φ

(min)
⊕ and φ

(min)

⊕ from
φ⊕ and φ⊕ when the starting SOP φ is minimal, could nevertheless be an easy
(polynomial) problem? We show here that the answer to this question is negative,
since the problem under study turns out to be at least as difficult as SOP-2-MIN
SOP. Let us first formally define the two problems.

Problem 1 (SOP-2-MIN SOP).
instance: A SOP formula φ and an integer k.
question: Is there a SOP φ′ with at most k products and for which φ′ ≡ φ?

Problem 2 (MIN SOP-2-MIN (i, j)-EP-SOP).
instance: Minimal SOP formula φ, a couple of variables xi and xj .
question: Find the minimal (i, j)-EP-SOP ξ

(min)
ij :

ξ
(min)
ij = (xi ⊕ xj)φ

(min)
⊕ + (xi ⊕ xj)φ

(min)

⊕ .

The proof of the hardness of MIN SOP-2-MIN (i, j)-EP-SOP is based on the
concept of polynomial time Turing reduction, defined as follows.

Definition 7. A problem Π is Turing-reducible to a problem Π ′, Π �T Π ′, if
there is an algorithm A that solves Π by using a hypothetical subroutine S for
solving Π ′ such that, if S were a polynomial time algorithm for Π ′, then A would
be a polynomial time algorithm for Π.

Let us consider the complexity of the following problem:

Problem 3 (MIN SOP+PRODUCT-2-MIN SOP).
instance: A minimal SOP formula φ for a Boolean function f and a product p.
question: Find a minimal SOP formula for the function f + p
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Lemma 1. MIN SOP+PRODUCT-2-MIN SOP is a NPNP -hard problem.

Proof. We show that the problem SOP-2-MIN SOP is Turing-reducible to MIN
SOP+PRODUCT-2-MIN SOP.

Consider a SOP φ = p1 + p2 + ... + pm for a function f depending on n
variables. In order to find a minimal SOP φ′ for f , we can proceed iteratively as
follows.

First we compute a minimal SOP for the function p1 + p2. Note that this
corresponds to deriving a minimal SOP φ(1) for the union of the minimal SOP
p1 and a product p2.

In general, step i of this iterative process would consist in computing a min-
imal SOP φ(i) for the function φ(i−1) + pi, defined as the union of a minimal
SOP, φ(i−1), and the product pi.

If we could perform this step in polynomial time, then we could solve the
problem SOP-2-MIN SOP in polynomial time, performing m − 1 iterations.

Based on the previous lemma, we can now prove our main complexity result.

Theorem 1. MIN SOP-2-MIN (i, j)-EP-SOP is NPNP -hard.

Proof. To prove the thesis, it is enough to show that the MIN SOP+PRODUCT-
2-MIN SOP problem is Turing-reducible to MIN SOP-2-MIN (i, j)-EP-SOP.

Consider a minimal SOP φ(min) for a function f , depending on n variables
x1, x2, . . ., xn, and a product p. Then consider the SOP

Φ = xn+1φ
(min) + xn+2p ,

where xn+1 and xn+2 are two additional variables. Suppose that φ(min) contains
t products.

First of all observe that Φ is a minimal SOP form. Indeed, xn+1φ
(min) is

minimal and does not cover the points of the cube described by xn+1xn+2p.
Thus we need at least a product to cover these points. This means that a minimal
SOP must contain at least t + 1 products, and this immediately implies that Φ
is minimal.

Now, let us derive an EP-SOP from Φ with respect to the couple of additional
variables xn+1 and xn+2. We get the following expression:

ξn+1,n+2 = (xn+1 ⊕xn+2)(xn+2φ
(min) +xn+2p)+ (xn+1 ⊕xn+2)(xn+2φ

(min) +xn+2p) .

If we could derive ξ
(min)
n+1,n+2 in polynomial time, then we would be able to

minimize the two expressions (xn+2φ
(min) +xn+2p) and (xn+2φ

(min) +xn+2p) in
polynomial time. This implies that we could solve in polynomial time an instance
of MIN SOP+PRODUCT-2-MIN SOP since, from the second expression, we
have (xn+2φ

(min) + xn+2p)(min) = xn+2 · (φmin + p)(min).
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4 Polynomial time approximation algorithms

In the previous section we have shown that, even if we start from a minimal SOP
form and we fix a couple of variables xi and xj , finding a minimal (i, j)-EP-SOP
is a hard problem. In this section we will show how it is possible to find a good
solution to the latter problem in polynomial time.

In a minimization framework, a p-approximation algorithm (i.e., an algorithm
with approximation ratio p) guarantees that the cost C of its solution is such that
C/C∗ ≤ p, where C∗ is the cost of an optimal solution [9]. Both heuristics and
approximation algorithms do not guarantee the minimality of their solution,
but while we cannot perform any evaluation on the result of a heuristic, an
approximation algorithm gives guaranteed near-optimum solutions.

We now describe a polynomial approximation algorithm for the problem of
finding the minimal EP-SOP (minimal EP-SOP with remainder) representation
of a function f starting from a minimal SOP φ for f that guarantees an approx-
imation ratio of 4 (2). The main idea is to select the most frequent couple of
variables in the minimal SOP representation, and project the expression with
respect to this couple. The two projected SOPs will be further synthesized with
a SOP polynomial heuristic. The overall algorithm is described below.

Algorithm 3 (Approximation Algorithm) Given a minimal SOP expres-
sion φ:

Step 1 Select the couple of variables xi and xj simultaneously appearing (pos-
sibly complemented) with the highest frequency in the products of φ.

Step 2 Project φ onto the spaces (xi ⊕ xj) and (xi ⊕ xj) as described in Algo-
rithms 1 or 2.

Step 3 Minimize the two projected SOPs using a polynomial time heuristic
(e.g., Espresso not exact).

Notice that the two versions (with and without remainder) differ only in the
projection Step 2 discussed in Section 2. The three steps can be performed in
polynomial time.

We now prove that the proposed synthesis strategy is indeed an approxima-
tion algorithm for the two EP-SOP minimization problems.

Consider first the problem without remainder. In order to prove that the
cost |ξ(min)

ij | of our solution is such that |ξ(min)
ij |/|ξMIN | is upper bounded by a

constant, where |ξMIN | is the cost of an optimal solution, we first find a lower
bound for |ξMIN |, as shown in Lemma 2 and then an upper bound for |ξ(min)

ij |, as
shown in Theorem 2. We follow a similar strategy for EP-SOPs with remainder
using Lemma 3 and Theorem 3.

Let us consider a minimal SOP form φ for a Boolean function f and a minimal
EP-SOP without remainder ξMIN .

Lemma 2.
|ξMIN | ≥ 1

2
|φ| .
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Proof. Let us suppose that the variables xh and xk are such that

ξ
(min)
hk = (xh ⊕ xk)φ(min)

⊕ + (xh ⊕ xk)φ(min)

⊕ = ξMIN .

We build a SOP φhk starting from ξ
(min)
hk . Let φ

(min)
⊕ =

∑|φ(min)
⊕ |

i=1 pi and φ
(min)

⊕ =
∑|φ(min)

⊕
|

i=1 qi . Thus

φhk = (xh ⊕ xk)
|φ(min)

⊕ |∑
i=1

pi + (xh ⊕ xk)

|φ(min)

⊕
|∑

i=1

qi

= xhxk

|φ(min)
⊕ |∑
i=1

pi + xhxk

|φ(min)
⊕ |∑
i=1

pi + xhxk

|φ(min)

⊕
|∑

i=1

qi + xhxk

|φ(min)|
⊕

|∑
i=1

qi .

Since φ is minimal, we have that |φhk| ≥ |φ|. Moreover, since

|φhk| = 2|ξ(min)
hk | = 2(|φ(min)

⊕ | + |φ(min)

⊕ |) ≥ |φ| ,

the thesis immediately follows:

|ξMIN | = |ξ(min)
hk | = |φ(min)

⊕ | + |φ(min)

⊕ | ≥ 1
2
|φ| .

A similar result holds for the EP-SOPs with remainder.

Lemma 3.
|ψMIN | ≥ 1

2
(|φ| + |ρ|) ,

where ρ is the remainder of ψMIN .

Proof. Let us suppose that the EP-SOP form

ψ
(min)
hk = (xh ⊕ xk)φ′(min)

⊕ + (xh ⊕ xk)φ′(min)

⊕ + ρ

is minimal, with respect to the overall number of products, among all other
EP-SOPs with remainder, i.e., ψ

(min)
hk = ψMIN .

As in the proof of Lemma 2, we derive a SOP representation φhk for f from
ψ

(min)
hk , and we get

|φhk| = 2(|φ′(min)
⊕ | + |φ′(min)

⊕ |) + |ρ| ≥ |φ| .

Thus
|φ′(min)

⊕ | + |φ′(min)

⊕ | + 1
2
|ρ| ≥ 1

2
|φ| ,

and we immediately derive

|ψMIN | = |ψ(min)
hk | = |φ′(min)

⊕ | + |φ′(min)

⊕ | + |ρ| ≥ 1
2
(|φ| + |ρ|) .



252 Anna Bernasconi, Valentina Ciriani, and Roberto Cordone

We now prove that if we project the starting minimal SOP φ with respect
to the couple of variables xi and xj simultaneously appearing (possibly com-
plemented) with the highest frequency in its products, we get a solution whose
approximation ratio in the worst case is bounded by 4 for the EP-SOP without
remainder, and by 2 for the EP-SOP with remainder.

For a couple of variables xi and xj , let us denote with νij the number of
products in φ containing both xi and xj , possibly complemented.

Theorem 2. Let ξMIN be a minimal EP-SOP of a Boolean function f , and φ a
minimal SOP form for f . Let ξ

(min)
ij be the minimal (i, j)-EP-SOP derived with

respect to the couple of variables (xi and xj) appearing with the highest frequency
in the products of φ. Then

|ξ(min)
ij |

|ξMIN | ≤ |ξij |
|ξMIN | ≤ 4 − 2νij

|φ| .

Proof. Observe that
|ξ(min)

ij | ≤ |ξij | ≤ 2|φ| − νij ,

since the νij products containing the two variables xi and xj appear only once
in ξij , while all other products appear twice. The thesis follows since Lemma 2
implies that |ξMIN | ≥ |φ|

2 .

Observe that in the best case νij = |φ|, thus the bound becomes

|ξ(min)
ij |

|ξMIN | ≤ |ξij |
|ξMIN | ≤ 2 ,

while in the worst case νij = 1 and we have

|ξ(min)
ij |

|ξMIN | ≤ |ξij |
|ξMIN | ≤ 4 − 2

|φ| ≤ 4 .

Theorem 3 shows a similar result for the EP-SOPs with remainder.

Theorem 3. Let ψMIN be a minimal EP-SOP with remainder of a Boolean
function f , and φ be a minimal SOP form for f .

Let ψ
(min)
ij be the minimal (i, j)-EP-SOP with remainder derived with respect

to the couple of variables xi and xj appearing with the highest frequency in the
products of φ. Then

|ψ(min)
ij |

|ψMIN | ≤ |ψij |
|ψMIN | ≤ 2 .

Proof. First observe that

|ψ(min)
ij | ≤ |ψij | = |φ| ,
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since each product of φ appears only once in ψij , in one of the two factors φ′
⊕

and φ′
⊕, or in the remainder ρ, and the two expressions φ′

⊕ and φ′
⊕ are further

minimized. Moreover, Lemma 3 implies that

|ψMIN | ≥ 1
2
(|φ| + |ρ|) .

Now suppose that the projections in ψMIN are performed with respect to the
variables xh and xk. Thus, since |ρ| = |φ| − νhk, with νhk ≤ νij and νij ≤ |φ|,
we get

|ψ(min)
ij |

|ψMIN | ≤ |ψij |
|ψMIN | ≤

|φ|
|φ| − νij/2

≤ |φ|
|φ| − |φ|/2

≤ 2 .

Note that Theorem 2 and Theorem 3 show that the approximation ratios
hold even if the factors φ⊕, φ⊕, φ′

⊕ and φ′
⊕ are not minimized. Therefore, the

algorithms proposed are indeed polynomial approximation algorithms for the
given problems. The resulting EP-SOP without remainder ξij has a size that can
be upper bounded by (4 − 2νij/|φ|)|ξMIN |, i.e., in the worst case by 4|ξMIN |,
while the EP-SOP with remainder ψij has a size that can be upper bounded by
2|ψMIN |.

As a final observation, we would like to point out that the couple of variables,
say xi and xj , with the highest frequency in general does not guarantee that
ξMIN = ξ

(min)
ij and ψMIN = ψ

(min)
ij , as the following counterexample shows.

Example 2. Let us consider the minimal SOP φ = x1x2x3x4 +x1x2x3x4 +x1x2.
We want to find the two minimal EP-SOP forms. The couple of variables with
the highest frequency is x1 and x2.
The approximation algorithm computes the following form without remainder:

ξ
(min)
12 = (x1 ⊕ x2)x2 + (x1 ⊕ x2)(x2x3x4 + x2x3x4)

and the following form with remainder:

ψ
(min)
12 = (x1 ⊕ x2)x2 + (x1 ⊕ x2)(x2x3x4 + x2x3x4) ,

while the minimal solutions are ξMIN = ξ
(min)
34 = (x3 ⊕ x4)x2 + (x3 ⊕ x4)(x1x2)

and ψMIN = ψ
(min)
34 = (x3 ⊕ x4)(x1x2) + x1x2, respectively.

5 Experimental results

In this section we discuss the computational results obtained by applying the
polynomial approximation algorithm presented above to the standard Espresso

benchmark suite [20]. We consider four different variants of our algorithm. In
fact, we address the minimization of EP-SOP forms both with and without re-
mainder, in order to estimate the practical utility of either form. Moreover, as
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most benchmarks have multiple outputs, the definition of the most frequent
couple of variables can be referred either to the whole set of outputs (global fre-
quency) or to each single output (local frequency). In the former case, we will
determine a single EP-SOP form, projecting the original minimal SOP form φ
with respect to the couple of variables appearing in the largest number of prod-
ucts of φ. In the latter case, we will find the most frequent couple of variables for
each different output and perform independent projections, obtaining separate
EP-SOP forms for the outputs which have been projected onto different couples
of subspaces. In both cases all the SOP forms are synthesized together with
multi-output synthesis. Combining the two approaches related to the use of the
remainder and the two approaches related to the global and local frequency, we
obtain four different algorithms, respectively denoted as NG (no remainder and
global frequency), NL (no remainder and local frequency), RG (remainder and
global frequency), RL (remainder and local frequency).

All computational experiments were performed on a Pentium 1.6 GHz proces-
sor with 1 GB RAM. We report in the following a significant subset of the
experiments.

Table 1 reports a cost-oriented comparison among the original optimal SOP
form determined by Espresso exact and the EP-SOP forms yielded by the
four algorithms: the first column reports the name of the instance, the following
five triples of columns report the computational time in seconds, together with
the area and the delay of physical implementations for the five expressions.
These were evaluated using a technology mapping (mcnc.genlib) provided by
the SIS [18] tool.

The computational time for the EP-SOP forms does not include the time re-
quired to compute the optimal SOP form (which is shown in the second column),
but only the time to factorize it and to heuristically minimize its projections. As
the results show, the overhead added by the last two steps is quite limited.

Of course, the physical implementation of the EP-SOP forms also includes
one or more EXOR gates, whose cost cannot be neglected, as our results clearly
show. First of all, the EXOR part of the network can be expensive, depending on
the technology adopted. Second, some functions benefit from the multi-output
minimization: common products can be shared, thus reducing the overall area.
Comparing the performances of the four algorithms one to another, we can note
how this fact particularly affects the performance of the algorithms NL and RL
referring to the local definition of frequency, while the algorithm performing
better seems to be the RG algorithm.

It should be noticed, however, that the gain obtained by the EP-SOP form
is on about the 35% of instances, and can be quite striking: the gain on instance
adr4 exceeds 50% and for many other instances (e.g., root, z4 ) it exceeds 40%.

Apart from algorithm NL, which only equals some best result, never hit-
ting one alone, even the less effective of the other three algorithms, that is RL,
improves by 45% the cost of instance f51m.

Given that the time required to obtain such improvements is rather limited,
evaluating the EP-SOP forms as a possible alternative to the optimal SOP form
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appears to be an advisable post-processing strategy. We have further investigated

min SOP min EP-SOP

NG NL RG RL

Bench. CPU area delay CPU area delay CPU area delay CPU area delay CPU area delay

addm4 0.14 1172 47.9 0.06 1291 52.5 0.06 975 40.4 0.04 1101 48.5 0.07 906 38.3

adr4 0.04 224 19.2 0.03 174 15.2 0.03 155 16.0 0.03 105 11.1 0.04 141 13.5

amd 0.06 1171 46.7 0.03 1082 43.5 0.05 1040 39.1 0.03 1046 42.4 0.06 1022 38.0

b2 0.23 3876 79.8 0.06 4113 81.3 0.06 4180 81.3 0.04 4169 82.6 0.04 4242 82.6

b4 3.45 645 30.5 0.01 802 33.3 0.01 841 33.1 0.01 717 34.4 0.01 779 32.8

br1 0.01 446 32.5 0.02 353 24.5 0.02 381 25.7 0.02 353 24.5 0.02 381 25.7

br2 0.01 352 26.6 0.01 292 25.5 0.01 314 30.0 0.01 292 25.5 0.01 314 30.0

chkn 0.48 717 43.6 0.04 832 42.2 0.06 777 39.2 0.01 758 36.1 0.01 764 46.7

dc2 0.04 253 23.1 0.01 286 22.4 0.01 236 19.7 0.01 263 21.7 0.01 236 19.7

exps 0.50 3932 114.5 0.06 3778 114.8 0.06 3900 104.6 0.08 3760 112.6 0.09 3877 106.4

f51m 0.09 501 31.5 0.04 413 26.2 0.04 339 26.4 0.04 311 20.5 0.04 273 19.1

in0 0.10 1214 48.3 0.03 1056 48.1 0.05 1015 42.5 0.05 1019 48.0 0.06 989 44.9

in1 0.23 3876 79.8 0.06 4113 81.3 0.06 4180 81.3 0.06 4169 82.6 0.06 4242 82.6

in2 0.09 1112 41.4 0.03 1000 36.7 0.01 1041 37.3 0.03 1002 37.3 0.03 1039 37.9

in5 0.14 905 38.5 0.01 976 39.2 0.01 1040 37.2 0.01 923 40.9 0.01 993 39.7

intb 2.96 2170 57.3 0.44 3392 75.5 0.83 2693 63.2 0.34 2466 57.6 0.67 2526 61.6

luc 0.01 806 41.0 0.01 779 52.8 0.01 883 51.8 0.01 758 52.4 0.01 862 50.6

m1 0.01 208 19.6 0.03 304 21.0 0.03 352 21.2 0.03 308 22.8 0.03 356 22.8

m2 0.01 710 37.8 0.01 833 40.9 0.01 893 40.5 0.01 861 42.5 0.01 921 41.9

m3 0.04 839 38.3 0.01 1286 48.4 0.01 1283 52.2 0.01 1172 51.7 0.01 1235 54.4

m181 0.60 166 18.4 0.01 327 22.4 0.03 311 24.9 0.01 240 22.5 0.01 267 19.8

max128 0.09 1292 58.0 0.09 2055 71.6 0.09 2194 77.6 0.07 2098 71.5 0.07 1975 72.4

mlp4 0.31 734 36.4 0.03 983 43.0 0.04 891 40.1 0.03 839 40.5 0.03 857 40.1

mp2d 0.25 362 26.0 0.01 428 25.3 0.01 420 28.9 0.01 333 23.7 0.01 360 25.5

newcond 0.01 114 17.4 0.01 132 18.6 0.01 124 18.6 0.01 119 18.2 0.01 124 18.6

p82 0.01 239 18.4 0.01 239 25.8 0.01 302 23.9 0.01 241 25.0 0.01 309 24.7

radd 0.39 183 15.7 0.01 196 18.9 0.01 181 19.5 0.01 120 15.1 0.01 158 16.8

rckl 0.04 341 49.7 0.01 495 72.3 0.01 519 72.3 0.01 495 72.3 0.01 519 72.3

rd73 0.03 220 25.6 0.03 389 27.6 0.03 308 28.4 0.03 339 26.9 0.03 264 24.1

risc 0.01 228 18.7 0.02 312 29.0 0.02 435 32.7 0.03 310 29.0 0.02 434 32.5

root 0.35 592 35.5 0.02 367 27.7 0.02 380 25.3 0.03 349 26.5 0.03 350 25.7

sqr6 0.06 278 25.5 0.01 397 27.0 0.01 462 26.2 0.01 330 24.9 0.01 405 26.2

t3 0.40 186 21.5 0.02 193 16.2 0.03 213 15.8 0.02 180 19.8 0.02 206 19.7

tms 0.03 587 35.4 0.01 675 35.2 0.01 754 35.5 0.01 675 35.2 0.01 754 35.5

vg2 0.53 341 18.6 0.04 628 25.7 0.06 581 26.0 0.03 468 22.5 0.04 500 21.4

vtx1 0.17 324 21.3 0.01 441 25.5 0.01 497 21.1 0.01 365 23.4 0.01 465 20.7

x6dn 0.18 1054 36.8 0.01 854 34.9 0.01 870 34.9 0.01 817 34.8 0.01 834 34.8

x9dn 0.20 384 23.0 0.04 496 25.4 0.06 560 24.2 0.04 424 24.7 0.03 528 22.6

z4 0.01 171 18.3 0.01 159 18.6 0.01 165 20.6 0.01 99 14.2 0.01 132 17.9

Table 1. Synthesis time, area and delay of EP-SOP and SOP forms (computed in SIS
after the technology mapping).

whether the Boolean factorization proposed in the present paper actually differs
from similar techniques already known in the literature and applied in synthesis
tools. We have applied the multilevel synthesis routines (script.rugged) of SIS

to the optimal SOP forms and to the four EP-SOP forms, in order to find out
whether they end up with a similar final structure or not. The first remark that
can be done is that in some cases (e.g., b2, exps and in1 ), SIS was unable to
process the optimal SOP form (in a limit time of 12 hours). Starting from the
EP-SOP forms, this happened only for instance in1, and only for the two EP-
SOP forms with remainder. Only few times the final results were identical (10%),
and half of the times the final result obtained starting from an EP-SOP form



256 Anna Bernasconi, Valentina Ciriani, and Roberto Cordone

was better than the one obtained from the optimal SOP form, ranging from 30%
better to 30% worse.

6 Conclusion

Although deriving an optimal EP-SOP form from an optimal SOP form is an
NPNP -hard problem, in this paper we have described a polynomial time ap-
proximation algorithm which guarantees a near-optimal solution. We propose
this algorithm as a post-processing step after the SOP synthesis, in order to
possibly reduce the area of the resulting networks. Our experiments show that
in about 35% of the considered benchmarks the area obtained is smaller, some-
times even by 40-50%.

It could be an interesting development to study different kinds of projection,
such as dividing the Boolean space into subspaces whose characteristic functions
are represented by EXORs with more than two literals. Given the similar nature
of the problem, it could also be interesting to study the relationship between
Linear Transformed BDDs [10] and EP-SOP forms.
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