
Maritime Inventory Routing Problems M 1947

M

Maritime Inventory
Routing Problems
MARIELLE CHRISTIANSEN1, KJETIL FAGERHOLT1,2

1 Section of Managerial Economics, Finance
and Operations Research, Norwegian University
of Science and Technology, Trondheim, Norway

2 Norwegian Marine Technology Research Institute
(MARINTEK), Trondheim, Norway

Article Outline

Abstract
Introduction
The Basic ISRP

Problem Description
Mathematical Model

Extensions of the ISRP
One Central Supplier or Consumer
Inventory Constraints in Either Production Ports
or Consumption Ports

Variable Production or Consumption Rate
Multiple Products
Use of Spot Charters
Combined Inventory Routing and Cargo Routing
Combining Inventory Routing with Other Planning Aspects

Concluding Remarks
Acknowledgements
References

Abstract

Maritime transportation is a heavily utilized mode
when large quantities of bulk products need to be trans-
ported over long distances. Often, inventories exist at
the loading and/or unloading ports of the sailing legs.
When the ship operator has the responsibility for both

the transportation of the fleet and the inventories at
the ports, the underlying planning problem is a mar-
itime inventory routing problem. Here we introduce
the reader to various applications within maritime in-
ventory routing and present some examples of research
contributions. First we consider and present a math-
ematical model for the basic problem where a single
product is transported and denote this problem the in-
ventory ship routing problem. There exist a lot of ex-
tensions and variants of the problem. These include,
among others, problems with inventories at only one
end, variable production/consumption rates, multiple
products, use of spot charters and problems that com-
bine inventory routing with other planning aspects.
Maritime inventory routing problems are very complex
and to the authors’ knowledge there exist no commer-
cial optimization-based systems for the shipping indus-
try yet. However, it is probably just a question of time
before they become available.

Introduction

In order to survive in a tough global market, many
companies have been forced to change their focus from
competition between companies to competition be-
tween supply chains. Supply chains of companies with
foreign sources of raw materials or with overseas cus-
tomers most often include maritime transportation.
Supply chain management and optimization are active
fields of research, and we can see applications in almost
all industries. So far the focus of such applications has
usually not been much on maritime transportation, so
there is a great potential and need for research in the
area.

A maritime inventory routing problem is defined
here as a combined ship routing and scheduling prob-
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lem and an inventory management problem. The ba-
sic inventory ship routing problem (ISRP) concerns the
transportation of a single product. The product is pro-
duced and stored in inventories at given loading ports
and is transported by sea to inventories at unload-
ing or consumption ports. Inventory capacities are de-
fined in all ports. Further, we assume that information
about production and consumption rates is given in
all ports. To transport the product between the given
production and consumption ports, the planners con-
trol a heterogeneous fleet of ships. The planning prob-
lem is to find routes and schedules for the fleet that
minimize the transportation costs without interrupting
production or consumption at the storages. Depend-
ing on the segment the fleet is operating in, the typical
planning period spans from 1 to 2 weeks up to several
months.

Most ship scheduling problems studied in the liter-
ature are so-called cargo routing problems [1]. In cargo
routing problems, each cargo is specified by a given
loading and unloading port. The quantity of the cargo
is given and normally there exist time windows for
loading and/or unloading. When planning routes and
schedules, the shipping company either seeks to min-
imize the transportation costs for carrying all con-
tracted cargoes or in addition to maximize profit for
optional spot cargoes that may be available. We refer
to [4] for a survey on maritime cargo routing problems.
The cargo routing problems deviate from the ISPRs in
a number of ways. The number of calls at a given port
during the planning horizon is not predetermined in
the ISRP, neither is the quantity to be loaded or un-
loaded at each port call. There is also no predefined
pickup and delivery pair in the ISRP. The combina-
tion of the inventory management and the ship routing
and scheduling makes the ISRP a very complex prob-
lem.

The inventory routing problem has been focused
on in the literature for a couple of decades. Dror and
Ball [8] defined the problem as a distribution prob-
lem in which each customer maintains a local inventory
of a product such as heating oil and consumes a cer-
tain amount of that product each day. Given a cen-
tral supplier (depot), the objective is to minimize the
annual delivery costs while attempting to ensure that
no customer runs out of the product at any time. The
asymmetry between each type of inventory (production

and consumption) with only one central supply node
(depot) will often be found in road-based inventory
routing problems, and more seldom in maritime trans-
portation (ISRP). In the road-based inventory routing
problem, the amount unloaded at each customer is of-
ten small compared to the total capacity of the vehicle.
This is also in contrast with the ISRP, where the ship is
often fully loaded and unloaded.

The objective of this article is to introduce the
reader to various real planning problems within mar-
itime inventory routing. The purpose is not to give
a comprehensive overview of such problems, but rather
to present examples of applications and research in the
area.

The rest of the article is organized as follows: The
first section defines the basic inventory ship routing
problem and the underlying mathematical model. Ex-
tensions of the basic ISRP are addressed next. Finally,
concluding remarks and future research follow.

The Basic ISRP

In order to give an introduction to the various real plan-
ning problems within maritime inventory routing, we
will start with a basic ISRP. First we describe the plan-
ning problem. Then we present an arc-flow formulation
of the problem . The final section is devoted to real ap-
plications of the basic ISRP.

Problem Description

The products transported in maritime inventory rout-
ing problems are usually bulk products, where large
quantities are transported and there are inventories at
both the loading and the unloading ports. In these
problems, the ship operators have a twofold responsi-
bility: transportation and inventory management at the
production and consumption sites. In such planning
situations, the routing and scheduling of the fleet have
to be synchronized with the inventory management at
both production and consumption sites.

In the basic ISRP a single (homogeneous) prod-
uct is transported. The product is produced at the
sources, called loading ports, and consumed at the des-
tinations, called unloading ports. Inventory storage ca-
pacities are given in all ports in addition to the pro-
duction or consumption rate of the product. Here, the
rate is assumed constant during the planning horizon.
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Maritime Inventory Routing Problems, Figure 1
Inventory levels during a planning period for a production and a consumption port

The number of calls at a given port during the plan-
ning period is not predetermined, nor is the quantity
to be loaded or unloaded at each port call. Figure 1
shows an example of a production/consumption and
loading/unloading pattern. For both port types, the port
is called at twice. However, the quantities loaded or
unloaded differ at each call. The reason for this might
be that the ports are visited by ships with different ca-
pacities loading/unloading full loads, or due to partial
loading/unloading. In loading ports, it is important to
ensure that the inventory level is not above the maxi-
mum inventory level when loading starts and not un-
der the minimum inventory level when the loading has
finished. In unloading ports, the opposite has to be
ensured. The inventory level at the beginning of the
planning period can be at any level, as indicated in
Fig. 1.

Therefore, the planning problem is to design routes
and schedules that minimize the transportation cost
without interrupting production or consumption. We
assume no inventory costs because the shipper owns
both the producing sources and the consuming destina-
tions. The ship operator controls a heterogeneous fleet
of ships. We assume that partial loading and unloading
is allowed, such that two ports of the same type (loading
or unloading) may be called at in succession. The ship
is not necessarily empty at the beginning of the plan-
ning horizon, but might have some load onboard. The
ship can be either at a port or at sea at the beginning of
the planning horizon. Figure 2 shows a simplified illus-
tration of the planning problem for a cement producer
in Norway with two production factories and five con-

Maritime Inventory Routing Problems, Figure 2
A simplified planning situation with seven ports and two
ships

sumption ports with inventories. The fleet consists of
two ships. Each port can be called at several times dur-
ing the planning period by the same ship or different
ships.

Mathematical Model

The model of the ISRP will be presented in a compact
and simplified way. In Sect. “Routing,” we describe the
flow network and the objective function. Then, the con-
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ditions for the loading and unloading, the time aspects
and the inventories are described in Sect. “Loading
and Unloading”, “Scheduling” and “Inventory Manage-
ment,” respectively. We base our notation and model
on those of Christiansen et al. [3].

In the upcoming formulation, we have assumed that
the ship may be partially loaded/unloaded, meaning
that multiple cargoes may be onboard a ship simultane-
ously. The model could have been simplified if we had
assumed full loads only or sailing between different port
types (from loading to unloading and vice versa).

Routing In the mathematical description of the net-
work each port is represented by an index i and the set
of ports is given by N . Let V , indexed by v, be the
set of available ships to be routed and scheduled. Not
all ships can visit all ports, and Nv = {feasible ports
for ship v} [{o(v),d(v)} is the set of ports that can be
visited by ship v. The terms o(v) and d(v) represent
the artificial origin port and artificial destination port
of ship v, respectively. Each port can be visited sev-
eral times during the planning horizon, andMi is the
set of possible calls at port i, while Miv is the set of
calls at port i that can be made by ship v. The port call
number is represented by an index m, and Mi is the
last possible call at port i within the planning period.
The set of nodes in the flow network represents the set
of port calls, and each port call is specified by (i,m),
i 2N ;m 2Mi . In addition, we specify flow networks
for each ship vwith nodes (i,m), i 2Nv ;m 2Miv .Av

contains all feasible arcs for ship v, which is a subset of
{i 2Nv ;m 2Miv} × {i 2Nv ;m 2Miv}. Finally, Cijv

represents the variable costs for sailing between port i
and port j with ship v. This includes port, channel and
fuel costs.

In the network flow part of the formulation we use
the following types of variables: the binary flow variable
ximjnv , v 2 V , (i;m; j; n) 2Av equals 1, if ship v sails
from node (i,m) directly to node (j,n), and 0 otherwise,
and the slack variable wim , i 2N , m 2Mi is equal to
1 if no ship takes port call (i,m), and 0 otherwise. The
routing formulation including the objective function is
as follows:

min
X
v2V

X
(i;m; j;n)2Av

Ci jv xim jnv ; (1)

subject to

X
v2V

X
j2Nv

X
n2M jv

xim jnv C wim D 1; 8i 2N ;m 2Mi ;

(2)

X
j2Nv

X
n2M jv

xo(v)1 jnv D 1; 8v 2 V ; (3)

X
i2Nv

X
m2Miv

xim jnv �
X
i2Nv

X
m2Miv

x jnimv D 0;

8v 2 V ; j 2Nvnfo(v); d(v)g; n 2M jv ;

(4)

X
i2Nv

X
m2Miv

ximd(v)1v D 1; 8v 2 V ; (5)

wim � wi(m�1) � 0; 8i 2N ;m 2Mi ; (6)

xim jnv 2 f0; 1g ; 8v 2 V ; (i;m; j; n) 2Av ; (7)

wim 2 f0; 1g ; 8i 2N ;m 2Mi : (8)

The objective function (1) minimizes the total costs.
Constraints (2) ensure that each port call is visited at
most once. Constraints (3)–(5) describe the flow on the
sailing route used by ship v. One or several of the calls in
a specified port can be made by a dummy ship, and the
highest call numbers will be assigned to dummy ships
in constraints (6). These constraints reduce the number
of symmetrical solutions in the solution approach. For
the calls made by a dummy ship, we get artificial start-
ing times and artificial inventory levels within the de-
fined upper and lower limits. Finally, the formulation
involves binary requirements (7) and (8) on the flow
variables and port call slack variables, respectively.

Loading and Unloading The capacity of ship v is
given by VCAPv. Variable limv, v 2 V , i 2 Nvnfd(v)g;
m 2 Miv gives the total load onboard ship v just af-
ter the service is completed at node (i;m), while vari-
able qimv , v 2 V , i 2 Nvnfd(v)g;m 2 Miv represents
the quantity loaded or unloaded at port call (i,m), when
ship v visits (i,m). It is assumed that nothing is loaded
or unloaded at the artificial origin o(v); qo(v)1v D 0.
However, the ships may have cargo onboard, L0v , at the
beginning of the planning horizon; lo(v)1v D L0v . Fur-
ther, constant Ii is equal to 1 if port i is a loading port,
�1 if port i is an unloading port and 0 if port i is o(v) or
d(v). Constraints related to the quantity onboard a ship
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can be formulated as follows:

xim jnv(limv C I j q jnv � l jnv) D 0;
8v 2 V ; (i;m; j; n) 2Av j j ¤ d(v);

(9)

qimv � limv �
X
j2Nv

X
n2M jv

VCAPv xim jnv ;

8v 2 V ; i 2Nv , m 2Miv jIi D 1;
(10)

0 � limv �
X
j2Nv

X
n2M jv

VCAPv xim jnv � qimv ;

8v 2 V ; i 2Nv ;m 2Miv jIi D �1:
(11)

Constraints (9) give the relationship between the bi-
nary flow variables and the ship load at each port call.
Constraints (10) and (11) give the ship capacity inter-
vals at the port calls for loading and unloading ports,
respectively.

Scheduling The time required to load or unload the
ship may constitute a major part of the total time in
many maritime transportation applications. It is there-
fore usual to calculate this as a function of the quantity
loaded/unloaded. The time spent loading/unloading
one unit of a cargo at port i is given by TQi. The term
TSijv represents the sailing time from port i to port j
with ship v. In some ports, there is a minimum required
time, TBi, between the departure of one ship and the ar-
rival of the next ship, due to small port area or narrow
channels from the port to the pilot station. The time
variable tim, (i 2N ;m 2Mi ) [ (i 2 o(v);8v;m D 1)
represents the time at which service begins at node
(i,m). It is assumed that the ship arrives at o(v) at
a given fixed time; to(v)1 D T0v . Finally, let T denote the
planning horizon. The scheduling constraints can now
be written as follows:

xim jnv(tim C TQi qimv C TSi jv � t jn) � 0;

8v 2 V ; (i;m; j; n) 2Av j j ¤ d(v),
(12)

tim � ti(m�1) �
X
v2V

TQi qi(m�1)v C TBiwim � TBi ;

8i 2N ;m 2Minf1g: (13)

Constraints (12) take into account the timing or
scheduling on the route. Note that waiting at a port is
allowed. Constraints (13) prevent service overlap in the
ports and ensure the order of real calls at the same port.
A ship must complete its service before the next ship
starts its service at the same port. If port i does not have

constraints regarding the minimum time between de-
parture of one ship and arrival of the next, TBi D 0. If
port i also allows the service of several ships simultane-
ously, constraints (13) will simply be tim � ti(m�1) � 0,
to ensure the order of calls at the port.

Inventory Management The levels of the inventory
have to be within a given interval at each port [SMNi,
SMXi ]. The production rate Ri is positive if port i is pro-
ducing the product, and negative if port i is consuming
the product. At the beginning of the planning horizon,
the inventory level at each port i is S0i . Finally, sim,
i 2N ;m 2Mi represents the inventory level when
service starts at port call (i,m). The inventory con-
straints of the formulation become

si1 � Ri ti1 D S0i ; 8i 2N ; (14)

si(m�1) �
X
v2V

Ii qi(m�1)v C Ri (tim � ti(m�1)) � sim

D 0 ; 8i 2N , m 2Minf1g; (15)

SMNi � sim � SMXi ; 8i 2N ;m 2Mi , (16)

SMNi � sim �
X
v2V

Ii qimv C Ri(T � tim) � SMXi ;

8i 2N ;m D Mi : (17)

The inventory level at the first call at each port is cal-
culated in constraints (14). From constraints (15), we
find the inventory level at any port call (i,m) from the
inventory level upon arrival at the port in the previous
call (i,m-1), adjusted for the loaded/unloaded quantity
at the port call and the production/consumption be-
tween the two arrivals. The general inventory limit con-
straints at each port call are given in (16). Constraints
(17) ensure that the level of inventory at the end of the
planning horizon is within its limits. It can easily be
shown by substitution that constraints (17) ensure that
the inventory at time T will be within the bounds even
if ports are not visited at their last calls.

A Real Application An application that is close to
the ISRP is a real ship planning problem for ammo-
nia transportation. Norsk Hydro Agri (now named
Yara) produces and consumes ammonia in its facto-
ries worldwide. The planners at the company are re-
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sponsible for keeping the inventory levels within the
predefined upper and lower limits at all Norsk Hy-
dro Agri factories around the world where they pro-
duce and consume ammonia. This requires the plan-
ners to design routes and schedules for their fleet of
heterogeneous ships transporting ammonia from pro-
duction ports to consumption ports. The problem is
described in detail in Christiansen [2]. The overall so-
lution approach is based on a column generation ap-
proach with columns for both the ship routes and the
inventory management sequences [5], where subprob-
lems are solved by dynamic programming for each port
and each ship [6]. Another solution approach to the
same problemwas developed by Flatberg et al. [9]. They
used an iterative improvement heuristic combined with
an linear program (LP) solver to solve this problem.
The heuristic is used to solve the combinatorial prob-
lem of finding the ship routes, and an LP model is used
to find the starting time of service at each call and the
loading/unloading quantities.

Extensions of the ISRP

Most of the real applications of maritime inventory
routing problems have a more complex structure than
the basic ISRP. We present here various extensions of
the ISRP that are described in the literature or have
been experienced in our research group. In many mar-
itime applications, several of the extensions are com-
bined.

One Central Supplier or Consumer

As mentioned in the introduction, the road-based in-
ventory routing problem often has a vehicle routing
problem (VRP) structure, where a central supplier (or
depot) serves a set of customers with a local inventory
and a consumption rate. We can imagine a lot of real
planning problems with such a structure, for instance,
in the gasoline business, delivering gasoline to gas sta-
tions from a refinery or central storage. Milk collection
at farms for transport to a dairy has the opposite struc-
ture, where the customers are producers and the depot
consumes the milk.

In the maritime sector, we can also find this VRP
structure for ship operators dealing with maritime in-
ventory routing problems. The Norwegian oil com-
pany Statoil will start its production of natural gas from

Snøhvit, Melkøya, north of Norway in 2008. Most of
the gas will be cooled down and transported as lique-
fied natural gas (LNG) by LNG tankers. At the mo-
ment the planning problem concerns one source pro-
ducing the gas and several consumption ports. Frich
and Horgen [10] presented a mixed integer program
(MIP) model of the planning problem where this spe-
cial VRP structure is exploited.

Similar maritime inventory routing problems can
be found, for instance, with the Arabian Gulf as the
source for the transportation of both LNG and heavier
oil products.

Inventory Constraints in Either Production Ports
or Consumption Ports

For the ISRP, the inventory management is considered
at both the loading and the unloading ports. However,
many real planning problems concern the design of
routes and schedules for a fleet of ships with inventory
constraints at just one of the port types. There exist for
instance ship operators engaged in vendor managed in-
ventory (VMI) contracts. Here, the ship operator mon-
itors its customers’ inventories and must ensure that
these are kept within predefined limits. Often, the cus-
tomers are concerned about inventories at only the un-
loading ports, while the ship operator has entered into
a contract to supply the product with given quantities
and time windows from the loading ports. The oppo-
site might also be the case, where the customers have
inventories at only loading ports. Then, the ship oper-
ator must also engage in contracts to deliver these vol-
umes with given quantities and time windows.

Variable Production or Consumption Rate

The production and consumption rates are assumed
constant for all port inventories during the planning
period in the ISRP. However, for many real planning
problems this assumption is too coarse, and the pro-
duction and consumption that may vary from day to
day have to be taken into account in the modeling. In-
cluding this aspect into the basic ISRP model would re-
sult in a more complicated model and it would become
harder to solve.

A maritime inventory routing problem for the LNG
business was considered by Grønhaug et al. [11]. Here
the production of LNG at the liquefaction plants and
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the consumption of LNG at the regasification terminals
have to be regarded as variable. In order to overcome
these complicating factors, a time discretized model
was developed, and it was solved by a column gener-
ation approach.

Also Ronen [16] used a time discretized model with
a variable production and consumption rate for an
inventory routing problem for refinery products. The
model focuses on the inventory and not the routing part
of the problem, as the model solution suggests ship-
ment sizes that are assumed to be an input for a cargo
routing problem at a later stage.

Multiple Products

Here we extend the ISRP to the multiproduct case. In
the ISRP several cargoes may be transported simulta-
neously in one ship, but the product is assumed to be
the same. This means that the product does not need to
be transported in separated compartments onboard the
ship or stored in separate stores at the ports.

The problem with multiple products is frequently
encountered by chemical and oil product transport
companies. Al-Khayyal and Hwang [1] gave a math-
ematical formulation for such a problem where the
products are assumed to require dedicated compart-
ments in the ship. For this problem there exist inven-
tory limits and production/consumption rates for each
product in each port. Hwang [13] used a combined La-
grangian relaxation and heuristic approach to solve test
instances of the problem.

The problem described in Ronen [16] also includes
multiple products. Sometimes the stowage onboard the
ship must also be considered in the inventory routing
problem; see, for instance, Haugen and Lund [12] for
the transportation of cement products.

Use of Spot Charters

In some cases the dedicated fleet of ships has insuf-
ficient transportation capacity to provide continuous
production at all sources and consumption at all desti-
nations. In such a case some of the loads can be serviced
by spot charters, which are ships chartered for a single
voyage.

The cement company described by Haugen and
Lund [12] is faced with limited vessel capacity. In some
periods the company makes use of spot charters, while

in peak periods additional road-based transportation
is necessary. In their solution approach, the consump-
tion inventories are sorted according to their impor-
tance and their location regarding what the cost effects
for additional trucks will be. It is ensured that the in-
ventories with highest priority are served by the fleet of
ships.

Combined Inventory Routing and Cargo Routing

The cargo routing problemwas introduced in the intro-
duction. For this problem, there exist predefined car-
goes with specified quantities and time windows. The
cargoes may be contracted or optional spot ones. Often
the companies facing an ISRP trade cargoes with other
operators in order to better utilize the fleet and to en-
sure there is product balance at their own plants.

In the real problem described by Christiansen [2],
the shipper trades ammonia with other operators.
These traded volumes are determined by negotiations.
The ship operator undertakes to load or unload ammo-
nia within a determined quantity interval and to arrive
at a particular port within a given time window. For
these external ports, no inventory management prob-
lem exists.

There also exist shipping companies that have VMI
contracts with some customers, but apart from that are
involved in ordinary cargo routing. This will give these
shipping companies a combined inventory and cargo
routing planning problem.

Combining Inventory Routing
with Other Planning Aspects

The ISRP concerns parts of a supply chain and focuses
on sea transportation and the inventories at both ends
of the sailing leg. In many real planning situations, it
is sensible to consider larger parts of the supply chain.
Persson and Göthe-Lundgren [15] studied a planning
problem that integrates both the shipment planning of
petroleum products from refineries to depots and the
production scheduling at the refineries. Shih [17] and
Liu and Sherali [14] presented two other maritime sup-
ply chain applications where coal is transported.

Rather than considering a larger part of the supply
chain, the ISRP may be combined with other planning
aspects. In Sect. “Multiple Products,” we referred to the
combined ISRP and stowage of different cement prod-
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ucts in various compartments onboard the ships. See
Haugen and Lund [12] for more information about the
case and solution approach.

Concluding Remarks

We have described the maritime inventory routing
problem, which is a combined inventory management
and a ship routing and scheduling problem. The so-
called basic ISRP and several extensions to the ISRP
were presented. In practice, planners are more often
faced with extensions of the ISRP and also the exten-
sions described in combination with each other.

As far as we know, no generic commercial optimiza-
tion-based decision support system exists for solving
maritime inventory routing problems. However, the
shipping industry is experiencing an increased need for
such systems owing to extended planning responsibility
and increased fleet sizes. We expect that such systems
will be available on the market in the years to come.

The basic VRP is computationally very hard. The
maritime inventory routing problem is even more de-
manding owing to the additional degrees of freedom.
Many of the extensions discussed in this article are
barely touched on in the operations research commu-
nity. This means that there exist a lot of research chal-
lenges, in the development of both exact methods and
heuristic solution methods.

Maritime transportation is faced with higher un-
certainty in its operations compared with many other
modes of transportation. This is due to greater depen-
dence on weather conditions and technology. For the
maritime inventory routing problem, we have also un-
certainties in the production and consumption at the
inventories. The consideration of these uncertainty as-
pects is another interesting topic of research.
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Introduction

Progress in digital data acquisition and storage tech-
nology has resulted in the growth of huge databases.
This has occurred in a variety of scientific and engi-
neering research applications [8] as well as medical do-
main [19,20]. Making sense out of these rapidly grow-
ing massive data sets gave birth to a “new” scientific
discipline often referred to as Data Mining. Defining
a discipline is, however, always a controversial task.
The following working definition of the area was re-
cently proposed [9]: Data mining is the analysis of (of-
ten large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways
that are both understandable and useful to the data
owner.

Clearly the term data mining if often used as a syn-
onym for the process of extracting useful information
from databases. However, the overall knowledge dis-
covery from databases (KDD) process is far more com-
plicated and convoluted and involves a number of ad-
ditional pre and post-processing steps [6]. Therefore,
in our definition data mining refers to the ensem-
ble of new, and existing, specific algorithms for ex-
tracting structure from data [8]. The exact definition
of the knowledge extraction process and the expected
outcomes are very difficult to characterize. However,
a number of specific tasks can be identified and, by and
large, define the key subset of deliverables from a data
mining activity. Two such critical activities are classifi-
cation and clustering.

A number of variants for these tasks can be identi-
fied and, furthermore, the specific structure of the data
involved greatly impacts the methods and algorithms
that are to be employed. Before we proceed with the ex-
act definition of the tasks we need to provide working
definitions of the nature and structure of the data.

Basic Definitions

For the purposes of our analysis we will assume that the
data are expressed in the form of n-dimensional fea-
ture vectors x 2 X � <n . Appropriate pre-processing
of the data may be required to transform the data into
this form. Although in many cases this transformations
can be trivial, in other cases transforming the data into
a “workable” form is a highly non-trivial task. The goal
of data mining is to estimate an explicit, or implicit,
function that maps points of the feature vector from the
input space, X � <n , to an output space, C, given a fi-
nite sample. The concept of the finite sample is impor-
tant because, in general, what we are given is a finite
representative subset of the original space (training set)
and we wish to make predictions on new elements of
the set (testing set). The data mining tasks can thus de
defined based on the nature of the mapping C and the
extent to which the train set is characterized.

If the predicted quantity is a categorical value and
if we know the value that corresponds to each elements
of the training set then the question becomes how to
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identify the mapping that connects the feature vector
and the corresponding categorical value (class). This
problem is known as the classification problem (super-
vised learning). If the class assignment is not known
and we seek to: (a) identify whether a small, yet un-
known, number of classes exist; (b) define the mapping
assigning the features to classes then we have a cluster-
ing problem (unsupervised learning).

A related problem associated with superfluous in-
formation in the feature vector is the so-called feature
selection problem. This is a problem closely related to
over-fitting in regression. Having a minimal number
of features leads to simpler models, better generaliza-
tion and easier interpretation. One of the fundamental
issues in data mining is therefore to identify the least
number of features, sub-set of the original set of fea-
tures, that best address the two issues previously de-
fined. The concept of parsimony (Occam’s razor) is of-
ten invoked to bias the search [1]: never do with more
what can be done with fewer.

Although numerous methods exist for addressing
these problems they will not be reviewed here. Nice
reviews of classification and were recently presented
in [8,9]. In this short introduction we will concentrate
on solution methodologies based on reformulating the
clustering, and classification questions as optimization
problems.

Mathematical Programming Formulations

Classification and clustering, and for that matter most
of the data mining tasks, are fundamentally optimiza-
tion problems. Mathematical programming method-
ologies formalize the problem definition and make use
of recent advances in optimization theory and appli-
cations for the efficient solution of the corresponding
formulations. In fact, mathematical programming ap-
proaches, particularly linear programming, have long
been used in data mining tasks.

The pioneering work presented in [13,14] demon-
strated how to formulate the problem of constructing
planes to separate linearly separable sets of points.

In this summary we will follow the formalism put
forth in [2] since it presented one of the most com-
prehensive approaches to this problem. One of the ma-
jor advantages of a formulation based on mathemati-
cal programming is the ease in incorporating explicit

problem specific constraints. This will be discussed in
greater detail later in this summary.

Classification

As discussed earlier the main goal in classification is to
predict a categorical variable (class) based on the values
of the feature vector. The general families of methods
for addressing this problem include [9]:

i) Estimation of the conditional probability of ob-
serving class C given the feature vector x.

ii) Analysis of various proximity metrics and based
the decision of class assignment based on proxim-
ity.

iii) Recursive input space partitioning to maximize
a score of class purity (tree-based methods).

The two-class classification problem can be formulated
as the search of a function that assigns a given input
vector x into two disjoint point sets A and B. The data
are represented in the form of matrices. Assuming that
the set A has m elements and the set B has k elements,
then A 2 <m�n ; B 2 <k�n , describe the two sets re-
spectively. The discrimination in based on the deriva-
tion of hyperplane

P D fxjx 2 <n ; xT! D �g

with normal and distance from the origin j� j
jj!jj2

. The op-
timization problem then becomes to determine! and �
such that the separating hyperplane P defines two open
half spaces

fxjx 2 <n ; xT! < �g

fxjx 2 <n ; xT! > �g

containing mostly points in A and B respectively. Un-
less A and B are disjoint the separation can only be sat-
isfied within some error. Minimization of the average
violations provides a possible approximation of the sep-
arating hyperplane [2]:

min
!;�

1
m
k(�A!Ce�Ce)Ck1C

1
k
k(�B!Ce�Ce)Ck1

In [2] a number of linear programming reformulations
are discussed exploring the properties of the structure
of the optimization problem. In particular an effective
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robust linear programming (RLP) reformulation was
suggested making possible the solution of large-scale
problems:

min
!;�;y;z

eT y
m
C

eTz
k

s.t. � A! C e� C e � y

B! � e� C e � z

y; z � 0:

In [17] it was demonstrated how the above formulation
can be applied repeatedly to produce complex space
partitions similar to those obtained by the application
of standard decision tree methods such as C4.5 [21] or
CART [4].

Clustering

The goal of clustering is the segmentation of the raw
data into groups that share a common, yet unknown,
characteristic property. Similarity is therefore a key
property in any clustering task. The difficulty arises
from the fact that the process is unsupervised. That is
neither the property nor the expected number of groups
(clusters) are known ahead of time. The search for the
optimal number of clusters is parametric in nature and
the optimal point in an “error” vs. “number of clusters”
curve is usually identified by a combined objective the
weighs appropriately accuracy and number of clusters.
Conceptually a number of approaches can be developed
for addressing clustering problems:

i) Distance-based methods, by far the most com-
monly used, that attempt to identify the best k-way
partition of the data by minimizing the distance of
the points assigned to cluster k from the center of
the cluster.

ii) Model-based methods assume the functional form
of a model that describes each of the clusters and
then search for the best parameter fit that models
each cluster by minimizing some appropriate likeli-
hood measure.

There are two different types of clustering: (1) hard
clustering; (2) fuzzy clustering. The former assigns
a data point to exactly one cluster while the latter as-
signs a data point to one of more clusters along with the
likelihood of the data point belonging to one of those
clusters.

The standard formulation of the hard clustering
problem is:

min
c

mX
iD1

min
l
kxi � clkn

That is given m points, x, in an n-dimensional space,
and a fixed number of cluster, k, determine the centers
of the cluster, c, such that the sum of the distances of
each point to a nearest cluster center is minimized. It
was shown in [3] that this general non convex problem
can be reformulated such that we minimize a bilinear
functions over a polyhedral set by introducing a selec-
tion variable ti l :

min
c;d;t

mX
iD1

kX
iD1

ti l (eTdi l )

s.t. � di l � xi � cl � di l
kX

lD1

ti l D 1

ti l � 0

i D 1; : : : ;m; l D 1; : : : ; k:

d is a dummy variable used to bound the components
of the difference x � c. In the above formulation the
1-norm is selected [3].

The fuzzy clustering problem can be formulated as
follows [5]:

min
w

mX
iD1

kX
lD1

w2
i lkx

i � clk2

s.t.
kX

lD1

wil D 1

wil � 1;

where xi ; i D 1; : : : ;m is the location descriptor for the
data point, cl ; l D 1; : : : ; k is the center of the cluster,
wil is the likelihood of a data point i being assigned to
cluster l.

Support Vector Machines

This optimization formalism bares significance resem-
blance to the Support Vector Machines (SVM) frame-
work [25]. SVM incorporate the concept of structural



1958 M Mathematical Programming for Data Mining

risk minimization by determining a separating hyper-
plane that maximizes not only a quantity measuring the
misclassification error but also maximizing the mar-
gin separating the two classes. This can be achieved
by augmenting the objective of the RLP formulation
earlier presented by an appropriately weighted mea-
sure of the separation between the two classes as
(1 � �)(eT yC eTz)C 	

2 k!k
2
2.

In [6] the concept of SVM is extended by introduc-
ing the Proximal support vector machines which clas-
sify points based on proximity to one of two parallel
planes that are pushed as far apart as possible. Non-
linear transformations were also introduced in [6] to
enable the derivation of non-linear boundaries in clas-
sifiers.

Multi-Class Support Vector Machines

Support vector machines were originally designed for
binary classification. Extending to multi-class problems
is still an open research area [10].

The earliest multi-class implementation is the one
against all [22] by constructing k SVM models, where
k is the number of classes. The ith SVM is classifies
the examples of class i against all the other samples in
all other classes. Another alternative builds one against
one [12] classifiers by building k(k�1)

2 models where
each is trained on data from two classes. The emphasis
of current research is on novel methods for generating
all the decision functions through the solution of a sin-
gle, but much larger, optimization problem [10].

Data Mining in the Presence of Constraints

Prior knowledge about a system is often omitted in data
mining applications because most algorithms do not
have adequate provisions for incorporating explicitly
such types of constrains. Prior knowledge can either en-
codes explicit and/or implicit relations among the fea-
tures or models the existence of “obstacles” in the fea-
ture space [24].

One of the major advantages of a mathematical
programming framework for performing data min-
ing tasks is that prior knowledge can be incorporated
in the definition of the various tasks in the form of
(non)linear constraints. Efficient incorporation of prior
knowledge in the form of nonlinear inequalities within
the SVM framework was recently proposed by [15]. Re-

formulations of the original linear and nonlinear SVM
classifiers to accommodate prior knowledge about the
problem were presented in [7] in the context of approx-
imation and in [16] in the context of classifiers.

Data Mining and Integer Optimization

Data mining tasks involve, fundamentally, discrete de-
cisions:
� How many clusters are there?
� Which class does a record belong to?
� Which features are most informative?
� Which samples capture the essential information?
Implicit enumeration techniques such as branch-and-
bound were used early on to address the problem of
feature selection [18].

Mathematical programming inspired by algorithms
for addressing various data mining problems are now
being revisited and cast as integer optimization prob-
lems. Representative formulations include feature se-
lection using Mixed-Integer Linear Programs [11] and
in [23] integer optimization models are used to address
the problem of classification and regression.

Research Challenges

Numerous issues can of course be raised. However, we
would like to focus on three critical aspects

i) Scalability and the curse of dimensionality. Data-
bases are growing extremely fast and problems of
practical interest are routinely composed of mil-
lions of records and thousands of features. The
computational complexity is therefore expected to
grow beyond what is currently reasonable and
tractable. Hardware advances alone will not address
this problem either as the increase in computational
complexity outgrows the increase in computational
speed. The challenge is therefore two-fold: either
improve the algorithms and the implementation of
the algorithms or explore sampling and dimension-
ality reduction techniques.

ii) Noise and infrequent events. Noise and uncertainty
in the data is a given. Therefore, data mining al-
gorithms in general and mathematical program-
ming formulations in particular have to account for
the presence of noise. Issues from robustness and
uncertainty propagation have to be incorporated.
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However, an interesting issue emerges: how do we
distinguish between noise and an infrequent, albeit
interesting observation? This in fact maybe a ques-
tion with no answer.

iii) Interpretation and visualization. The ultimate goal
of data mining is understanding the data and de-
veloping actionable strategies based on the conclu-
sions. We need to improve not only the interpreta-
tion of the derived models but also the knowledge
delivery methods based on the derived models. Op-
timization and mathematical programming needs
to provide not just the optimal solution but also
some way of interpreting the implications of a par-
ticular solution including the quantification of po-
tential crucial sensitivities.
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Introduction

Supply chain management (SCM) is the integration
of key business processes from end users through the
original suppliers to the customers that provides prod-
ucts, services and information that add value to all par-
ties [13,14,17]. It is therefore concerned with the orga-
nization, the planning and the qualitative and quanti-
tative determination of material and information flows
both in and between facilities (vendors, plants, sites and
distribution centres) and between these and the final
consumers. It is a set of important activities in all pro-
ducing facilities and in many organizations [6].

For some restricted production problems, such as
determining an optimal control to a chemical plant,
suitable experimental designs can be enacted, such as
EVolutionary OPeration (EVOP) [4], Taguchi meth-
ods [19], or more complex experimental designs such
as Latin squares, Greek squares and block designs [21].

In general, verification procedures, based on exper-
imental replication and design, cannot be used in the
applied sciences, as non-reversible and unpredictable
changes in the environment occur [18], and the out-
come of the plans cannot be imputed to the effect of the
decision taken rather than to an environmental change,
so there can be no evaluation of the relevance of a for-
mulated supply chain plan.

Thus more complex methodologies than those
based on experimental verification, such as intuition
experimental design or anecdotal evidence, must be
posited. The solution of any SCM problem must be un-
dertaken with respect to a set of principles and proce-
dures to ensure the formulation of expectationally valid

plans, i. e. robust valid feasible policies are determined.
To enable management to formulate good SCM

plans, the methodology proposed should be analysed
for its logical consistency, its statistical correctness and
its adequacy. Essentially, it must be shown that from
acceptable premises or axioms, by suitable deductions
a policy is formulated (syntactically correctness). Since
this policy cannot be tested, but only applied, it must
also be shown that in many other historical derivations
the policies that were formulated by this methodology
turned out to be applicable (semantically adequate).

A dynamic non-linear stochastic system formula-
tion of an SCM model must be estimated and applied.
Thus an optimization algorithm must be specified and
solved which determines simultaneously the adequate
functional form, its parameterization and the optimal
control [6].

Definitions

In this section some fundamental definitions will be
given.

A dynamical system is a precise mathematical ob-
ject [16], and given the flows of the activities of the phe-
nomenon, the input-output relationships must be de-
termined by appropriate estimation methods.

Not every relationship can be modelled by mathe-
matical system theory, since a representation which is
non-anticipatory is required [16], while the condition
that the functionals be sufficiently smooth which was
previously required may be waived.

Dynamical systems have been defined at a high level
of generality to refine concepts and perceive unity in
a diversity of applications, and by appropriate mod-
elling whole hierarchies of phenomena can be repre-
sented as systems defined at different levels.

Definition 1 ([16]) Adynamical system is a composite
mathematical object defined by the following axioms:
1. There is a given time set T, a state set X, a set of

input values U, a set of acceptable input functions
˝ D ! : ˝ ! U , a set of output values Y and a set
of output functions � D � : � ! Y .

2. (Direction of time). T is an ordered subset of the re-
als.

3. The input space˝ satisfies the following conditions:
(a) (Non-triviality). ˝ is non-empty.
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(b) (Concatenation of inputs). An input segment
!(t1;t2], ! 2 ˝ restricted to (t1; t2] \ T . If
!;!0 2 ˝ and t1 < t2 < t3, there is an !00 2 ˝
such that !00(t1;t2] D !(t1;t2] and !00(t2;t3] D !

0
(t2;t3].

4. There is a state transition function ' : T � T �
X � ˝ ! X whose value is the state x(t) D
'(t; �; x; !) 2 X resulting at time t 2 T from the
initial state x D x(�) 2 X at the initial time � 2 T
under the action of the input ! 2 ˝ . � has the fol-
lowing properties:
(a) (Direction of time). � is defined for all t � � , but

not necessarily for all t < � .
(b) (Consistency). '(t; t; x; !) D x for all t 2 T , all

x 2 X and all ! 2 ˝ .
(c) (Composition property). For any t1 < t2 < t3

there results:

'(t3; t1; x; !) D '(t3; t2; '(t2; t1; x; !); !)

for all x 2 X and all ! 2 ˝.
(d) (Causality). If !;!0 2 ˝ and !(�;t] D !

0
(�;t]

then '(t; �; x; !) D '(t; �; x; !0).
5. There is a given readout map � : T � X ! Y

which defines the output y(t) D �(t; x(t)). The
map (�; t]! Y given by � 7! �(�; '(�; �; x; !)),
� 2 (�; t], is an output segment, that is the restric-
tion �(�;t] of some � 2 � to (�; t].

The following mathematical structures in Definition 1
will be indicated by:
� The pair (t; x); t 2 T; x 2 X 8t is called an event;
� The state transition function '(xt; ut) is called a tra-

jectory.
Phenomena may also be modelled through dynamical
systems in the input/output sense, which reflect an ex-
perimental design or a simulative approach, long ap-
plied in science.

Definition 2 A dynamical system in an input/output
sense is a composite mathematical object defined as fol-
lows:
1. There are given sets T, U, ˝ , Y and � satisfying all

the properties required by Definition 1.
2. There is a set A indexing a family of functions

F D f f˛ : T �˝ ! Y ; ˛ 2 Ag;

each member ofF is written explicitly as f˛(t; !) D
y(t), which is the output resulting at time t from the

input ! under the experiment ˛. Each f ˛ is called an
input/output function and has the following proper-
ties:
(a) (Direction of time). There is a map $ : A! T

such that f˛(t; !) is defined for all t � $(˛).
(b) (Causality). Let �; t 2 T and � < t. If !;!0 2 ˝

and !(�;t] D !
0
(�;t], then f˛(t; !) D f˛(t; !0) for

all ˛ such that � D $(˛).

While the input/output approach may determine
a family of functions, which generally vary over the time
interval of realization and across instances, the state-
space approach represents the trajectories in the way in-
dicated, through a unique function. The latter approach
is intuitively more appealing, especially in applications.

The representations are equivalent. It is easy to
transform a given system from a state space for-
mulation into an input/output formulation and vice
versa [2,16], so each may be used as convenience sug-
gests.

It cannot be assumed generally that a dynamical sys-
tem satisfies the conditions of smoothness, nor that it
will meet the necessary and sufficient conditions for an
optimal control to exist. Thus in general, the dynamical
systems to be dealt with may have an awkward struc-
ture, but through the combined estimation and opti-
mization approach a sufficiently good approximation
may be obtained with the required characteristics [6].

A sufficiently general representation of a dynamical
system may be formulated by applying Definition 1, re-
calling the equivalence of an input/output system and
a system in state form:

xtC1 D '(xt; ut) ; (1)

yt D �(xt) ; (2)

where xt 2 X � Rr may simply be taken as an r-dimen-
sional vector in a Euclidean space X, indicating the state
of the system at time t, ut 2 U � Rq may be taken as
a q-dimensional vector in a Euclidean subspace U of
control variables and yt 2 Y � Rp is a p-dimensional
vector in a Euclidean space Y of output variables, in line
with Definitions 1 and 2.

The definition of a dynamical system is based on
defining an intermediary set of states and a transition
function or a family of functions. Neither of these con-
structions is unique, so if it is desired to represent
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a SCM system by such structures, equivalence of the
possible structures must be shown.

Definition 3 Given two states xt0 and x̂t0 belonging to
systems S and Ŝ which may not be identical but have
a common input space ˝ and output space Y , the two
states are said to be equivalent if and only if for all input
segments ![t0;t) 2 ˝ the response segment of S starting
in state xt0 is identical with the response segment of Ŝ
starting in state x̂t0 ; that is

xt0 Š x̂t0 , �(t; '(xt0; ![t0;t))) D �̂(t; '̂(x̂t0 ; ![t0;t)))

8t 2 T; t0 � t;8![t0;t) 2 S; Ŝ :
(3)

Systems S and Ŝ may be two models of a SCM system
solved with different control policies, or they may be
various alternative models of the phenomenon.

Definition 4 A system is in reduced form if there are
no distinct states in its state space which are equivalent
to each other.

Definition 5 Systems S and Ŝ are equivalent S � Ŝ if
and only if to every state in the state space of S there
corresponds an equivalent state in the state space of Ŝ
and vice versa.

Some important conditions are required to make the
representation of the SCM adequate.

The conditions of the system are:
� Reachability
� Controllability
� Observability
� Stability
These conditions are very important since they allow
trajectories to be defined, the initial point of trajecto-
ries to be determined and their stability properties to be
derived. Moreover they can be applied at any moment
in time to determine if the goals of the SCM are still at-
tainable and at what cost. Reachability, controllability
and stability are seldom formally examined and yet at
every period exogenous events can arise to nullify even
the best formulated plan, so these are important instru-
ments for SCM [6].

An important property which distinguishes dynam-
ical systems from their counterparts derived in compar-
ative statics is the distinction between systems which
are simply equivalent and those which are multiply

equivalent [6]. This distinction is crucial if dynamical
systems are considered, while with comparative static
models the distinction does not apply. This is one of the
many reasons that one should insist on solving SCM
dynamic estimation problems with a data-driven for-
mulation [6].

The dynamical system representation of a SCM sys-
tem permits one to verify its specification, whether the
optimal control which determines the final event is
reachable, if the system is controllable throughout the
sequence of events comprising the trajectory, if the sys-
tem is observable and finally if the given solution is
stable, so that small perturbations will not give rise to
explosive perturbations or to chaotic behaviour. In so
doing crucial questions which are important to man-
agement can be answered.

If these conditions are not verified, this will suggest
strategic changes to the SCM system or profound mod-
ification of policies, aspects which are difficult to deter-
mine in advance.

Computationally, these aspects are handled by
adding appropriate constraints in the mathematical
program [6].

Formulation

Consider the monitoring of a set of activities in time
of a supply chain at a given level of aggregation, which
may be at the department, plant or firm level, or a hi-
erarchical system developed through all these organiza-
tional structures. Although the accuracy of the repre-
sentation may depend on the sampling strategy and the
time interval, these aspects will not be considered here.

Thus a given finite-dimensional estimation and op-
timization problem will be considered which may well
be non-linear and dynamic.

Consider the data set of a phenomenon consisting
of measurements (yt; xt ; ut) over (t D 1; 2; : : : ; T) pe-
riods, where it is assumed that yt 2 Rp is a p-dimen-
sional vector, while xt 2 Rr is an r-dimensional vector
of explanatory or state variables of the dynamic pro-
cess of dimension. Also, ut is a q-dimensional vector of
control variables. It is desired to determine functional
forms ' : RrCq ! Rr and � : Rr ! Rp and a set of suit-
able coefficients 
 2 Rm such that:

Min J D
TX

tDTC1

c(xt; ut ; yt); (4)
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xtC1 D '(xt ; ut; yt ;wt) 8t D TC1; : : : ;T �1; (5)

yt D �(xt ; ut ; vt) 8t D T C 1; : : : ;T ; (6)

where wt and vt are stochastic processes also to be de-
termined.

Equation (4) is the objective function for the supply
chain and (5) and (6) are the system equations in state
space formulation and a similar representation may be
adopted for the the input-output formulation [16,20].

The system (4)–(6) could be estimated by a maxi-
mum likelihood method so as to minimize the random
errors, indicated bywt 2 Rr and vt 2 Rp , such that they
will have minimum variance and zero mean value, and
then on the quantified model the optimal control prob-
lem could be solved, usually through an appropriate op-
timization problem.

However, for this type of model with serially cor-
related disturbances, which are also correlated with the
control variables, its estimation will be biased and the
necessary least-squares properties to ensure an asymp-
totically correct estimate may only be fulfilled in ex-
ceptional cases. Thus the two-stage approach, indicated
above, is inappropriate [15].

It is important to apply a suitable data-driven statis-
tical method to determine the most appropriate statisti-
cal form and the most precise values of the parameters,
as when implemented correctly with regard to an ac-
curately specified functional form. Such a method will
provide estimates of parameters that satisfy the statisti-
cal properties [1,18].

Suppose that all the statistical properties that a given
estimate must fulfil are set up as constraints to themaxi-
mum likelihood problem to be solved; then the parame-
ters are defined implicitly by this optimization problem,
which can be inserted into the optimal control system
for policy determination, so that statistically correct es-
timates will always result. Thus the solution yielding the
best policy can be chosen, where T C 1; : : : ;T is the
forecast period, by solving an optimization formulation
of this complex problem. By recursing on the specifi-
cations, i. e. by changing the functional form, increas-
ingly better fits can be obtained. At each iteration, the
best combination of parameterization and policy is ob-
tained.

The unknowns to be determined are the input
and output variables considered and the parameters

of the functional form specified in the current it-
eration, indicated as 
 D f�1; �2g � Rm , respectively
for (5) and (6). Note that m may be much larger than
2r C qC pC 1, the number of variables present in
each system, since the system is non-linear.

The mathematical program will be formulated with
respect to the residual variables, but it is immediate that
for a given functional form, the unknown parameters
will be specified and thus the unknowns of the problem
will also be defined and available. Thus the mathemat-
ical program is fully specified for each functional form
to be considered.

Using the notation given above, the residual terms
are given from Eqs. (5) and (6) as:

wi D x̂iC1 � '(x̂i ; ûi ; ŷi : �1) i D 1; 2; : : : ;N ; (7)

vi D ŷiC1�(xi ; ui ; vi : �2) i D 1; 2; : : : ;N ; (8)

where :̂, as usual, indicates the historical values of a vari-
able, and thus suitable values of �1 and �2 must be de-
termined by the mathematical program such that all the
constraints expressed in terms of wi ; vi8i are specified.

Methods and Applications

Given an experimental data set obtained as a set of mea-
surements of the operation of a phenomenon, it is de-
sired to determine a suitable representation of it in the
form of a model, so as to determine a suitable control
law for the model which can then be extended to the
phenomenon and thus obtain a better performance [3].

Except in some simple cases, the representation as-
sumed by the model and the data that have been col-
lected will condition the results obtainable by enacting
the control law. For models that are non-linear in the
parameters, the interaction between the estimation of
these and the determination of an optimal control is
much more complex than the linear case requiring the
solution of constrained optimization problems which
will determine simultaneously the best estimates and
the optimal control.

Consider the availability of a given data set con-
taining a number of sets of time series data or cross-
sectional data. To determine from these data a suitable
model, a functional form must be selected and a set of
suitable parameters must be estimated which will satisfy
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all the conditions on the model and permit the determi-
nation of a suitable set of control variables, which will
define an optimal control with respect to a predefined
merit function.

Thus from the data set it is desired to derive a suffi-
ciently accurate model of the phenomenon, which can
then be used in control and in prediction.

Statistical estimation methods are important be-
cause, when implemented correctly with regard to an
accurately specified functional form, they will provide
estimates of parameters that have the following proper-
ties [1,18]:
1. The parameter estimates are unbiased.
� As the size of the data set grows larger, the esti-

mated parameters tend to their true values.
2. The parameter estimates are consistent, which will

then satisfy the following conditions:
� The estimated parameters are aymptotically un-

biased.
� The variance of the parameter estimate must tend

to zero as the data set tends to infinity.
3. The parameter estimates are asymptotically efficient.
� The estimated parameters are consistent.
� The estimated parameters have smaller asymp-

totic variance as compared to any other consis-
tent estimator.

4. The residuals have minimum variance, which is en-
sured by the following factors:
� The variance of the residuals must be minimum.
� The residuals must be homoscedastic.
� The residuals must not be serially correlated.

5. The residuals are unbiased (have zero mean).
6. The residuals have a non-informative distribution

(usually, a Gaussian distribution).
� If the distribution of the residuals is informa-

tive, the extra information could somehow be
obtained, reducing the variance of the residuals,
their bias etc., with the result that better estimates
are obtained.

In short, through correct implementation of statisti-
cal estimation techniques the estimates are as close as
possible to their true values, all the information that is
available is applied and the uncertainty surrounding the
estimates and the data fit is reduced to the maximum
extent possible. Thus the estimates of the parameters,
which satisfy all these conditions, are the ‘best’ possible
in a ‘technical’ sense [1].

To ensure that all the statistical properties which the
given estimates of the residuals must fulfil are satisfied
at every iteration, instead of solving an unconstrained
maximum likelihood or least-squares problem [15], the
required statistical properties of the estimates are set
up as constraints, together with the specification of the
model of the phenomenon, and this global optimization
problem is solved for all the undetermined variables.

The parameters of this model to be estimated are
defined implicitly through those constraints which de-
fine the statistical conditions. On solving the global op-
timization problem, the parameter estimates that result
will be defined for the optimal control system for the
policy determination so that statistically correct esti-
mates will always result.

The procedure adopted can be specified easily by us-
ing the same notation as above and by adding an ad-
ditional set of constraints which express the statistical
conditions that must be satisfied by the estimates.

Let

�(xiC1; xi ; ui ; yiC1; yi ;wi ; vi ; �1; �2) � 0
i D 1; 2; : : : ;N;N C 1; : : : ;T (9)

be the set of conditions to be satisfied to obtain esti-
mates, if they exist, which satisfy the statistical proper-
ties indicated above. Then the optimization problem to
be solved is:

Min J D
TX

iDNC1

c(xi ; ui ; yi ); (10)

xiC1 D '(xi ; ui ; yi ;wi : �1) i D 1; 2; : : : ;T ; (11)

yiC1 D �(xi ; ui ; vi : �2) i D 1; 2; : : : ;T ; (12)

0 � �(xiC1; xi ; ui ; yiC1; yi ;wi ; vi ; �1; �2)

i D 1; 2; : : : ;T : (13)

Thus the solution yielding the best policy can be cho-
sen by solving an optimization formulation of this com-
plex problem. By recursing on the specifications, i. e. by
changing the functional form, and increasing the num-
ber of independent variables considered, increasingly
better fits can be obtained, with regard to both the his-
torical data and the predicted optimal control policy.
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Models

Many models of industrial, extractive and financial ac-
tivities require the integration of key processes, but the
most essential aspect is to formulate precise informa-
tion where it is most needed [11,12].

Many optimization models solve satisfactorily sup-
ply chain problems, but apparently no model except
this one integrates information and allocation of goods
and operations dynamically.

This algorithm instead solves the combined prob-
lem, as has been shown elsewhere [6], while a theory-
driven modelling approach to the problem, using mod-
els consisting of two stages, an identification stage and
an optimization stage, can be shown to be dominated
by this data-driven approach.

At present, this seems to be the only viable approach
to solving such complex problems.

Cases

Some non-typical SCM problems are indicated here:
dynamical supply chain management problems for per-
foration oil wells and for finance. Industrial SCMmod-
els are given elsewhere [3,8,9,10].

Dynamic Supply Chain Management Problem
for Extraction Activities

The perforation of oil wells consists of a number of
operations to drive the bit head lower and lower while
ensuring normal functions on the equipment and the
operations. To this end complex measurements are exe-
cuted by software systems indicated as mudlogging sys-
tems. These measurements are designed to assist the
operator in controlling the perforation rate of the bit
head by monitoring a number of crucial operations pe-
riodically.

The settings of some of these operations affect the
rate of perforation, and therefore it is considered ex-
tremely useful to dispose of measurements of these
variables and have predictions over the next few peri-
ods of the possible advancement of the bit head, or of
the rate of perforation, and so enable an optimal con-
trol of the process to be formulated [5].

It should be mentioned that periodically the drilling
process must be halted so that the boring can be lined
with suitable materials. Also, one of the most important

elements of the process is to keep circulating around
the bit-head assembly a concentration of mud lubri-
cants, indicated as mud, which gives the name to the
measuring process. Recall that all these flows and oper-
ations occur in time, so it is considered crucial to spec-
ify dynamic models, unless it is desired to determine the
steady-state rates of the eventual process.

In fact oil drilling processes can be considered as
complex supply chain systems with many phases and
many operations.

The determination of optimal control policies in
processes for the extraction of oil from underground
require that they be formulated as formal procedures,
which are syntactically correct and semantically ade-
quate, so as to permit management to make the neces-
sary investments, not on hearsay or clever promotional
activities, but on the basis of rational knowledge and
confidence in the application.

Figure 1 shows an optimal SCM plan compared to
the actual historical plan implemented. The predicted
trajectory is superimposed on the actual time path of
the perforation process, thus respecting all the interrup-
tions and periods of halting.

In Table 1, six instances to determine optimal con-
trols are indicated, and each entry reflects the drilling
experience of the given well for that week with regard to
the given period. From the active perforation intervals
an intial period was selected randomly and the optimal

Mathematical Programming Methods in Supply Chain Man-
agement, Figure 1
Example of drilling for oil: real-time path (continuous) and
optimal control path (dashed) for the well
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Mathematical Programming Methods in Supply Chain Man-
agement, Table 1
Optimal predicted versus actual increment for 6 oil wells
over 192 periods (8 h) in metres

Well and week Optimal
increment

Real
increment

% difference

FT02D 9 114.0 73.3 35.70
FT02D 16 116.7 83.8 28.19
FT02D 23 73.7 13.45 81.75
GX01 3 94.8 72.2 23.84

GX01 11 57.9 18.8 67.53

control was defined for the next 192 periods (8 h). The
average predicted increment in depth attainable over
the actual one was more than 30% on average.

Dynamic Supply Chain Management Problem
for Finance

The prediction of future quotations on stock exchange
indices is important and consists of the basic instru-
ment to handle financial supply chain management sys-
tems. A financial supply chain system must consider
many types of financial intermediaries, many types of
stocks and stock indices and many types of operations.
Further, there are many possibilities for managing the
monetary holdings, so that a full SCM system is envis-
aged as defined above [7].

Consider the Dow-Jones Industrial Average (DJIA)
stock exchange index over a period of 3 years starting
in April 2001, as shown in Fig. 2, where the continu-
ous line indicates the actual quotations, week by week
over the period, while the 1-week-ahead predictions are
given by the dashed line. As can be easily seen, the two
curves almost coincide, which implies that the predic-
tions 1 week ahead are very good.

Instead, in Table 2 a period of 5 weeks is considered
from April 16, 2004 to May 14, 2004. The quotations
are given every Friday evening at closing time, while the
predictions are made on Fridays just after closing time.
Thus on April 9 predictions were made for the next 5
weeks, as indicated in the second row of the table. After
closing on April 16, 2004, predictions were made for 4
weeks only and are depicted in the third row of the table
and so on for the subsequent weeks. Finally, in the last
row the closing quotations for the week are given.

Mathematical Programming Methods in Supply Chain Man-
agement, Figure 2
Weekly time series of the Dow-Jones Industrial Average

Mathematical Programming Methods in Supply Chain Man-
agement, Table 2
Results for prediction of the Dow-Jones Industrial Average,
147 periods

Period 16/4 23/4 30/4 7/5 14/5
9/4 8652.86 8568.44 9304.81 13306.5 9958.15
16/4 .. 8646.28 8552.54 11514.3 11000.3
23/4 .. .. 8820.73 8806.51 4700.47
30/5 .. .. .. 8518.12 8361.19
7/5 .. .. .. .. 8343.35
Index 8712.88 8855.03 8538.03 8505.54 8432.25

This table allows one to determine with the appro-
priate portfolio model suitable financial policies to for-
mulate optimal financial SCM plans [7].

Conclusions

Optimal dynamic SCM policies may be obtained by
a correct application of statistical inference and mathe-
matical programming techniques.

It has been indicated that these policies are expecta-
tionally valid, which implies that they are syntactically
correct and semantically adequate.

Computational evidence has been presented and in-
dicated in the references.
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See also

� Generalizations of Interior Point Methods for the
Linear Complementarity Problem

� Simultaneous Estimation and Optimization of
Nonlinear Problems
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Introduction

A partial matrix is a matrix whose entries are specified
only on a subset of its positions; a completion of a par-
tial matrix is simply a specification of the unspecified
entries.Matrix completion problems are concerned with
determining whether or not a completion of a partial
matrix exists which satisfies some prescribed property.
We consider here the following matrix properties: pos-
itive (semi) definite matrices, distance matrices, com-
pletely positive matrices, contraction matrices, and ma-
trices of given rank; definitions are recalled below.

In what follows, x�, A� denote the conjugate trans-
pose (in the complex case) or transpose (in the real
case) of vector x and matrix A. A square real symmetric
or complex Hermitian matrix A is positive semidefinite
(psd) if x�Ax � 0 for all vectors x and positive definite
(pd) if x�Ax > 0 for all vectors x 6D 0; then we write: X<
0 (X 0). Equivalently, A is psd (respectively, pd) if and
only if all its eigenvalues are nonnegative (respectively,
positive) and A is psd if and only if A = BB| for some
matrix B. A matrix A is said to be completely positive if
A = BB| for some nonnegative matrix B. An n × n real
symmetric matrix D = (dij) is a Euclidean distance ma-
trix (abbreviated as distance matrix) if there exist vec-
tors v1, . . . , vn 2 Rk (for some k� 1) such that, for all i, j
= 1, . . . , n, dij is equal to the square of the Euclidean dis-
tance between vi and vj. Finally, a (rectangular) matrix
A is a contraction matrix if all its singular values (that
is, the eigenvalues of A�A) are less than or equal to 1.

The set of positions corresponding to the specified
entries of a partial matrix A is known as the pattern of
A. If A is an n × m partial matrix, its pattern can be
represented by a bipartite graph with node bipartition
[1, n] [ [1,m] having an edge between nodes i 2 [1, n]
and j 2 [1,m] if and only if entry aij is specified.

When asking about existence of a psd completion of
a partial n × n matrix A, it is commonly assumed that
all diagonal entries of A are specified (which is no loss
of generality if we ask for a pd completion); moreover,
it can obviously be assumed that A is partial Hermitian,
which means that entry aji is specified and equal to aij 

whenever aij is specified. Hence, in this case, complete
information about the pattern ofA is given by the graph
G = ([1, n], E) with node set [1, n] and whose edge set
E consists of the pairs ij (1 � i < j � n) for which aij
is a specified entry of A. The same holds when dealing

with distance matrix completions (in which case diag-
onal entries can obviously be assumed to be equal to
zero).

An important common feature of the above matrix
properties is that they possess an ‘inheritance structure’.
Indeed, if a partial matrix A has a psd (pd, completely
positive, distance matrix) completion, then every prin-
cipal specified submatrix of A is psd (pd, completely
positive, a distance matrix); similarly, if a partial matrix
A admits a completion of rank � k, then every speci-
fied submatrix of A has rank� k. Hence, having a com-
pletion of a certain kind imposes certain ‘obvious’ nec-
essary conditions. This leads to asking which are the
patterns for the specified entries that insure that if the
obvious necessary conditions are met, then there will
be a completion of the desired type; therefore, this in-
troduces a combinatorial aspect into matrix completion
problems, as opposed to their analytical nature.

In this article we survey some results and provide
references for the various matrix completion problems
mentioned above, concerning optimization and com-
binatorial aspects of the problems. See [32,47] for more
detailed surveys on some of the topics treated here.

Positive Semidefinite Completion Problem

We consider here the following positive (semi) definite
completion problem (PSD): Given a partial Hermitian
matrixA = (aij)ij 2 S whose entries are specified on a sub-
set S of the positions, determine whether A has a psd (or
pd) completion; if, yes, find such a completion. (Here, S
is generally assumed to contain all diagonal positions.)

This problem belongs to the most studied matrix
completion problems. This is due, in particular, to its
many applications, e. g., in probability and statistics,
systems engineering, geophysics, etc., and also to the
fact that positive semidefiniteness is a basic property
which is closely related to other matrix properties like
being a contraction or distance matrix. Equivalently,
(PSD) is the problem of testing feasibility of the follow-
ing system (in variable X = (xij)):

X � 0; xi j D ai j (i j 2 S): (1)

Therefore, (PSD) is an instance of the following
semidefinite programming problem (P): Given Hermi-
tian matrices A1, . . . , Am and scalars b1, . . . , bm, decide
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whether the following system is feasible:

X � 0; Aj � X D b j ( j D 1; : : : ;m) (2)

(where A � X :=
Pn

i; jD1 aij 
 xij for two Hermitian (n ×
n)-matrices A and X).

The exact complexity status of problems (PSD) and
(P) is not known; in particular, it is not known whether
they belong to the complexity class NP. However, it is
shown in [60] that (P) is neither NP-complete nor co-
NP-complete if NP 6D co-NP. However, the semidefi-
nite programming problem and, thus, problem (PSD)
can be solved with an arbitrary precision in polyno-
mial time. This can be done using the ellipsoid method
(since one can test in polynomial time whether a ra-
tional matrix A is positive semidefinite and, if not, find
a vector x such that x�Ax < 0; cf. [24]), or interior point
methods (cf. [3,27,56]). There has been a growing in-
terest in semidefinite programming in the recent years
(1994), which is due, in particular, to its successful ap-
plication to the approximation of hard combinatorial
optimization problems (cf. the survey [20]). This has
prompted active research on developing interior point
algorithms for solving semidefinite programming prob-
lems; the literature is quite large, see [64,65] for exten-
sive information. Numerical tests are reported in [34]
where an interior point algorithm is proposed for the
approximate psd completion problem; it permits to find
exact completions for random instances up to size 110.

Moreover, it is shown in [59] that problem (P) can
be solved in polynomial time (for rational input data Aj,
bj) if either the number m of constraints, or the order n
of the matrices X, Aj in (2) is fixed (cf. also [9]). More-
over, under the same assumption, one can test in poly-
nomial time the existence of an integer solution and
find one if it exists [39].

Call a partial Hermitian matrix A partial psd (re-
spectively, partial pd) if every principal specified sub-
matrix of A is psd (respectively, pd). As mentioned in
the Introduction, being partial psd (pd) is an obvious
necessary condition for A to have a psd (pd) comple-
tion. In general, this condition is not sufficient; for in-
stance, the partial matrix:

A D

0
BB@

1 1 ? 0
1 1 1 ?
? 1 1 1
0 ? 1 1

1
CCA

(‘?’ indicates an unspecified entry) is partial psd, yet no
psd completion exists; note that the pattern of A is a cir-
cuit of length 4. Call a graph chordal if it does not con-
tain any circuit of length � 4 as an induced subgraph;
chordal graphs occur in particular in connection with
the Gaussian elimination process for sparse pd matri-
ces (cf. [21,61]). (An induced subgraph of a graph G =
(V , E) being of the form H = (U, F) where U � V and
F := {ij 2 E: i, j 2 U}.) It is shown in [23] that every
partial psd matrix with pattern G has a psd completion
if and only if G is a chordal graph; the same holds for
pd completions. This extends an earlier result from [16]
which dealt with ‘block-banded’ partial matrices; in the
Toeplitz case (all entries equal along a band), one finds
the classical Carathéodory–Fejér theorem from func-
tion theory.

The proof from [23] is constructive and can be
turned into an algorithm with a polynomial running
time [48]. Moreover, it is shown in [48] that (PSD) can
be solved in polynomial time when restricted to par-
tial rational matrices whose pattern is a graph having
a fixed minimum fill-in; the minimum fill-in of a graph
being the minimum number of edges needed to be
added in order to obtain a chordal graph. This result
is based on the above mentioned results from [39,59]
concerning the polynomial time solvability of (integer)
semidefinite programming with a fixed number m of
linear constraints in (2).

The result from [23] on psd completions of partial
matrices with a chordal pattern has been generalized
in various directions; for instance, considering gen-
eral inertia possibilities for the completions ([17,35]),
or considering completions with entries in a function
ring [37].

If A is a partial matrix having a pd completion, then
A has a unique pd completion with maximum deter-
minant (this unique completion being characterized by
the fact that its inverse has zero entries at all unspeci-
fied positions of A) [23]. In the case when the pattern
of A is chordal, explicit formulas for this maximum de-
terminant are given in [7]. The paper [52] considers the
more general problem of finding a maximum determi-
nant psd completion satisfying some additional linear
constraints.

Further necessary conditions are known for the ex-
istence of psd completions. Namely, it is shown in [8]
that if a partial matrix A = (aij) with pattern G and di-
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agonal entries equal to 1 is completable to a psd matrix,
then the associated vector x := (arccos(aij)/)ij 2 E satis-
fies the inequalities:

X
e2F

xe �
X
e2CnF

xe � jFj � 1

for all F � C; C circuit in G; jFj odd: (3)

Moreover, any partial matrix with pattern G satisfying
(3) is completable to a psd matrix if and only if G does
not contain a homeomorph of K4 as an induced sub-
graph (then, G is also known as series-parallel graph)
[44]. (Here, K4 denotes the complete graph on 4 nodes
and a homeomorph of K4 is obtained by replacing the
edges of K4 by paths of arbitrary length.) The patterns
G for which every partial psd matrix satisfying (3) has
a psd completion are characterized in [6]; they are the
graphs G which can be made chordal by adding a set of
edges in such a way that no new clique of size 4 is cre-
ated. Although (3) can be checked in polynomial time
for rational x [5], the complexity of problem (PSD) for
series-parallel graphs (or for the subclass of circuits) is
not known. A strengthening of condition (3) (involving
cuts in graphs) is formulated in [44].

Another approach to problem (PSD) is considered
in [1,28], which is based on the study of the cone

PG :D
�
X D (xi j)i; j2V :

X � 0; xi j D 0
8i ¤ j; i j … E

	

associated to graphG = (V , E). Indeed, it is shown there
that a partial matrix Awith pattern G has a psd comple-
tion if and only if

X
i2V

ai i xi i C
X
i¤ j;
i j2E

ai jxi j � 0; 8X 2 PG : (4)

Obviously, it suffices to check (4) for all X extremal in
PG (i. e., X lying on an extremal ray of the cone PG).

Define the order of G as the maximum rank of an
extremal matrix in PG. The graphs of order 1 are pre-
cisely the chordal graphs [1,58] and the graphs of or-
der 2 have been characterized in [46]. One might rea-
sonably expect that problem (PSD) is easier for graphs
having a small order. This is indeed the case for graphs
of order 1; the complexity of (PSD) remains however
open for the graphs of order 2 (partial results are given
in [48]).

Euclidean DistanceMatrix Completion Problem

We consider here the Euclidean distancematrix comple-
tion problem (abbreviated as distancematrix completion
problem) (EDM): Given a graph G = (V = [1, n], E) and
a real partial symmetric matrix A = (aij) with pattern
G and with zero diagonal entries, determine whether A
can be completed to a distance matrix; that is, whether
there exist vectors v1, . . . , vn 2 Rk for some k � 1 such
that

ai j D


vi � v j



2 for all i j 2 E: (5)

(here, kvk D
qPk

hD1 v
2
h denotes the Euclidean norm

of v 2 Rk.) The vectors v1, . . . , vn are then said to form
a realization of A. A variant of problem (EDM) is the
graph realization problem (EDMk), obtained by letting
the dimension k of the space where one searches for
a realization of A be part of the input data.

Distance matrices are a central notion in the area
of distance geometry; their study was initiated by A.
Cayley in the 18th century and it was continued in par-
ticular by K. Menger and I.J. Schoenberg in the 1930s.
They are, in fact, closely related to psdmatrices. The fol-
lowing basic connection was established in [63]. Given
a symmetric (n × n)-matrix D = (dij)ni; jD1 with zero di-
agonal entries, consider the symmetric ((n � 1) × (n �
1))-matrix X = (xij)n�1i; jD1 defined by

xi j D
1
2
(din C djn � di j)

for all i; j D 1; : : : ; n � 1:
(6)

Then, D is a distance matrix if and only if X is psd;
moreover, D has a realization in the k-space if and only
if X has rank � k. Other characterizations are known
for distance matrices. As the literature on this topic is
quite large, see the monographs [11,13,14], where fur-
ther references can be found.

Problems (EDM) and (EDMk) have many impor-
tant applications; for instance, to multidimensional
scaling problems in statistics (cf. [49]) and to position-
location problems, i. e., problem (EDMk) mostly in di-
mension k � 3. A much studied instance of the lat-
ter problem is the molecular conformation problem in
chemistry; indeed, nuclear magnetic resonance spec-
troscopy permits to determine some pairwise inter-
atomic distances, the question being then to reconstruct
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the global shape of the molecule from this partial infor-
mation (cf. [13,41]).

In view of relation (6), problem (EDM) can be for-
mulated as an instance of the semidefinite program-
ming problem (P) and, therefore, it can be solved with
an arbitrary precision in polynomial time. Exploiting
this fact, some specific algorithms based on interior
point methods are presented in [2] together with nu-
merical tests. Moreover, problem (EDM) can be solved
in polynomial time when restricted to partial rational
matrices whose pattern is a chordal graph or, more gen-
erally, a graph with fixed minimum fill-in [48]; as in the
psd case, this follows from the fact (mentioned below)
that partial matrices that are completable to a distance
matrix admit a good characterization when their pat-
tern is a chordal graph.

While the exact complexity of problem (EDM) is
not known, it has been shown in [62] that problem
(EDMk) is NP-complete if k = 1 and NP-hard if k �
2 (even when restricted to partial matrices with entries
in {1, 2}). Finding �-optimal solutions to the graph re-
alization problem is also NP-hard for small � ([53]).
The graph realization problem (EDMk) has been much
studied, in particular in dimension k � 3, which is the
case most relevant to applications. The problem can be
formulated as a nonlinear global optimization problem:
f (v) such that v = (v1, . . . , vn)2Rkn, where the cost func-
tion f (�) can, for instance, be chosen as

f (v) D
X
i j2E

(


vi � v j



2 � ai j)2:

Hence, f (�) is zero precisely when the vi’s provide a re-
alization of the partial matrix A. This optimization
problem is hard to solve (as it may have many lo-
cal optimum solutions). Several algorithms have been
proposed in the literature; see, in particular, [13,19,
26,29,31,41,54,57]. They are based on general tech-
niques for global optimization like tabu and pattern
search [57], the continuation approach (which con-
sists of transforming the original function f (�) into
a smoother function having fewer local optimizers,
[53,54]), or divide-and-conquer strategies aiming to
break the problem into a sequence of smaller or easier
subproblems [13,29,31]. In [29,31], the basic step con-
sist of finding principal submatrices having a unique re-
alization, treating each of them separately and then try-
ing to combine the solutions. Thus arises the problem

of identifying principal submatrices having a unique re-
alization, which turns out to be NP-hard [62]. How-
ever, several necessary conditions for unicity of realiza-
tion are known, related with connectivity and generic
rigidity properties of the graph pattern [30,67]. Generic
rigidity of graphs can be characterized and recognized
in polynomial time only in dimension k � 2 ([42,51])
(cf. the survey [43] for more references).

Call a partial matrixA a partial distancematrix if ev-
ery specified principal submatrix of A is a distance ma-
trix. Being a partial distance matrix is obviously a nec-
essary condition for A to be completable to a distance
matrix. It is shown in [4] that every partial distance ma-
trix with pattern G is completable to a distance matrix
if and only if G is a chordal graph; moreover, if all spec-
ified principal submatrices of the partial matrix A have
a realization in the k-space, then A admits a completion
having a realization in the k-space.

As noted in [33], if a partial matrix Awith pattern G
is completable to a distance matrix, then the associated
vector x :D (pai j)i j2E must satisfy the inequalities:

xe �
X

f2Cnfeg

x f � 0

for all e 2 C; C circuit in G: (7)

The graphs G for which every partial matrix (respec-
tively, partial distance matrix) A with pattern G for
which (7) holds is completable to a distance matrix, are
the graphs containing no homeomorph of K4 as an in-
duced subgraph [45] (respectively, the graphs that can
be made chordal by adding edges in such a way that no
new clique of size 4 is created [33]). Note the analogy
with the corresponding results for the psd completion
problem; some connections between the two problems
(EDM) and (PSD) are exposed in [38,45].

Completion to Completely Positive
and Contraction Matrices

Call a matrix doubly nonnegative if it is psd and en-
trywise nonnegative. Every completely positive (cp, for
short) matrix is obviously doubly nonnegative. The
converse implication holds for matrices of order n � 4
(cf. [22]) and for certain patterns of the nonzero entries
in A (cf. [40]). The cp property is obviously inherited by
principal submatrices; call a partial matrix A a partial
cp matrix if every fully specified principal submatrix of
A is cp. It is shown in [15] that every partial cp matrix
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with graph pattern G is completable to a cp matrix if
and only if G is a so-called block-clique graph. A block-
clique graph being a chordal graph in which any two
distinct maximal cliques overlap in at most one node
or, equivalently, a chordal graph that does not contain
an induced subgraph of the form:

Recall that an (n ×m)-matrix A is a contraction ma-
trix if all eigenvalues of A�A are less than or equal to 1
or, equivalently, if the matrix

eA D
�
In A
A� Im

�
(8)

is positive semidefinite. Call a partial matrix A a par-
tial contraction if all specified submatrices of A are con-
tractions. As every submatrix of a contraction is again
a contraction, an obvious necessary condition for a par-
tial matrix A to be completable to a contraction matrix
is that A be a partial contraction. Thus arises the ques-
tion of characterizing the graph patterns G for which
every partial contraction with pattern G can be com-
pleted to a contraction matrix.

As we now deal with rectangular n × m partial ma-
trices A, their pattern is the bipartite graphGwith node
set U [ V , where U, V index the rows and columns
of A and edges of G correspond to the specified entries
of A. We may clearly assume to be dealing with par-
tial matrices whose pattern is a connected graph (as the
partial matrices associated with the connected compo-
nents can be handled separately). Below is an example
of a partial matrix A which is a partial contraction, but
which is not completable to a contraction matrix:

A D

 
? 1p

2
1p
2

1p
2

? 1p
2

!
:

In fact, the graph pattern displayed in this example is
in a sense present in every partial contraction which is
not completable to a contraction. Namely, it is shown in
[36] that the following assertions (i–iii) are equivalent
for a connected bipartite graph G with node bipartition
U [ V :

i) Every partial contraction with pattern G can be
completed to a contraction;

ii) G does not contain an induced matching of size 2
(i. e., if e := uv, e0 := u0v0 are edges in G with u 6D u0

2 U, v 6D v0 2 V , then at least one of the pairs uv0,
u0v is an edge in G; that is, G is nonseparable in the
terminology of [21]);

iii) The graph eG obtained from G by adding all edges
uu0 (u 6D u0 2 V) and vv0 (v 6D v0 2 V) is chordal.

(Note that the implication iii) ! i) is a consequence
of the result on psd completions from [23] mentioned
in the Section on the positive semidefinite completion
problem above, as eG is the graph pattern of the matrix
eA defined in (8).)

Rank Completions

In this section, we consider the problem of determining
the possible ranks for the completions of a given partial
matrix. For a partial matrix A, let mr(A) andMR(A) de-
note, respectively, the minimum and maximum possi-
ble ranks for a completion of A. If B, C are completions
ofA of respective ranks mr(A), MR(A), then changing B
into C by changing one entry of B into the correspond-
ing entry of C at a time permits to construct comple-
tions realizing all ranks in the range [mr(A), MR(A)].
Hence, the question is to determine the two extreme
values mr(A) and MR(A). As we see below, the value
MR(A) can, in fact, be expressed in terms of ranks of
fully specified submatrices of A and it can be computed
in polynomial time; this constitutes a generalization of
the celebrated Frobenius–König theorem (correspond-
ing to the case when specified entries are equal to 0). On
the other hand, determining mr(A) seems to be a much
more difficult task.

We first deal with the problem of findingmaximum
rank completions. Let A be an n ×m partial matrix with
graph pattern G, i. e., G is the bipartite graph (U [ V ,
E) whereU, V index respectively the rows and columns
of A, and the edges of G correspond to the specified en-
tries ofA, and letG denote the complementary bipartite
graph whose edges correspond to unspecified entries of
A. Note that computing MR(A) amounts to computing
the generic rank of A when viewing the unspecified en-
tries of A as independent variables over the field con-
taining the specified entries. For a subset X � U [ V ,
let AX denote the submatrix of A with respective row
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and column index sets {i 2 [1, n]: ui 62 X} and {j 2 [1,
m]: vj 62 X}. Call X a cover of G if every edge of G has at
least one end node in X; that is, if AX is a fully specified
submatrix of A. Clearly, we have: MR(A) � rank(AX)+
|X|. In fact, the following equality holds:

MR(A) D min
X cover of G

rank(AX)C jXj (9)

as shown in [12]. A determinantal version of the result
was given in [25]. In the special case when all specified
entries of A are equal to 0, then MR(A) coincides with
themaximum cardinality of amatching inG and, there-
fore, the minimax relation (9) reduces to the Frobe-
nius–König theorem (cf. [50] for details on the latter
result). Moreover, one can determine MR(A) and con-
struct a maximum rank completion of A in polynomial
time. This was shown in [55] by a reduction to matroid
intersection and, more recently, in [18] where a simple
greedy procedure is presented that solves the problem
by perturbing an arbitrary completion.

We now consider minimum rank completions. To
start with, note that mr(A) may depend, in general, on
the actual values of the specified entries of A (and not
only on the ranks of the specified submatrices of A). In-

deed, consider the partial matrix A D
�

? a b
d ? c
e f ?

�
where a,

b, c, d, e, f 6D 0. Then, mr(A) = 1 if ace = bdf and mr(A)
= 2 otherwise, while all specified submatrices have rank
1 in both cases. Thus arises the question of identifying
the bipartite graphs G for which mr(A) depends only
on the ranks of the specified submatrices of A for ev-
ery partial matrix A with pattern G; such graphs are
called rank determined. The graph pattern of the above
instance A is the circuit C6. Hence, C6 is not rank de-
termined. Call a bipartite graph G bipartite chordal if it
does not contain a circuit of length � 6 as an induced
subgraph. Then, if a bipartite graph is rank determined,
it is necessarily bipartite chordal [12]. It is conjectured
there that, conversely, every bipartite chordal graph is
rank determined. The conjecture was shown to be true
in [66] for the nonseparable bipartite graphs (i. e., the
bipartite graphs containing no inducedmatching of size
2; they are obviously bipartite chordal). Note that a par-
tial matrix A has a nonseparable pattern if and only if it
has (up to row/column permutation) the following ‘tri-
angular’ form:

Then, mr(A) can be explicitly formulated in terms
of the ranks of the specified submatrices of A; in the
simplest case, the formula for mr(A) reads:

mr
�
B ?
C D

�

D rank
�
B
C

�
C rank

�
C D

�
� rank(C):

It is shown in [12] that the above conjecture holds when
the patternG is a path, or whenG is obtained by ‘gluing’
a collection of circuits of length 4 along a common edge.

See also

� Interior Point Methods for Semidefinite
Programming

� Semidefinite Programming and Determinant
Maximization
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Matroids have been defined in 1935 as generalization
of graphs and matrices. Starting from the 1950s they
have had increasing interest and the theoretical results
obtained have been used for solving several difficult
problems in various fields such as civil, electrical, and
mechanical engineering, computer science, and mathe-
matics. A comprehensive treatment of matroids can not
be contained in few pages or even in only one book.
Thus, the scope of this article is to introduce the reader
to this theory, providing the definitions of some differ-
ent types of matroids and their main properties.
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http://orion.math.uwaterloo.ca:80/~hwolkowi/henry/software/readme.html
http://www.zib.de/helmberg/semidef.html
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Historical Overview

In 1935, H. Whitney in [38] studied linear dependence
and its important application in mathematics. A num-
ber of equivalent axiomatic systems formatroids is con-
tained in his pioneering paper, that is considered the
first scientific work about matroid theory.

In the 1950s and 1960s, starting from the Whit-
ney’s ideas, W. Tutte in [25,26,27,28,29,30,31,32,33]
built a considerable body of theory about the struc-
tural properties of matroids, which became popular in
the 1960s, when J. Edmonds in [5,6,7,8,9,10,11] intro-
duced matroid theory in combinatorial optimization.
From 1965 on, a growing number of researchers be-
came interested in matroids. In 1976, D.J.A. Welsh
([34]) published the first book onmatroid theory. In the
1970s, 1980s, and 1990s selected topics have been cov-
ered by a huge number of scientific publications, among
them [1,2,3,12,13,15,17,18,20,21,23,24,35,36,37]. [16]
provides an excellent historical survey, while [21] is
a good book for students.

Definition of aMatroid

Matroids are combinatorial structures often treated in
together with the greedy technique, which yields opti-
mal solutions when applied for solving simple problems
defined on matroids.

In order to provide the definition of a general ma-
troid, some notation and further definitions are needed.

Definition 1 An ordered pair S = (E, I), where E = {e1,
. . . , en} and I � 2E, is an independent system (SI) if and
only if

8A; B � E : B � A 2 I) B 2 I: (1)

E is also called ground set.

Note that the empty set is necessarily a member of I.

Definition 2 The members of I are called independent
sets.

Definition 3 The members of D = 2E \ I are called de-
pendent sets.

Definition 4 The members of the set

B D fA � E : A 2 I; 8 f 2 E n A : B [ f f g … Ig

are calledmaximal independent sets or bases.

In other words, a basis is an independent set which is
maximal with respect to set inclusion operation.

Definition 5 The members of the set

C D fC � E : C 2 D; 8 f 2 C : C n f f g 2 Ig

are called minimal dependent sets or circuits. A 1-
element circuit is a loop.

Definition 6 A matroid M is an independent system
(E, I) such that if A, B 2 I, |A| < |B|, then there is some
element x 2 B \ A such that A [ {x} 2 I.

We say thatM satisfies the exchange property.

Most combinatorial problems can be viewed as the
problem of finding an element in one of the above de-
fined sets corresponding to the optimal objective func-
tion value.

The word matroid is due to Whitney. He studied
matric matroids, in which the elements of E are the rows
of a givenmatrix and a set of rows is independent if they
are linearly independent in the usual sense.

The following theorems express two equivalent ax-
iomatic definitions of matroids in terms of bases and
circuits.

Theorem 7 A nonempty set B of subsets of E is the set
of bases for a matroid M = (E, I) if and only if for all B1,
B2 2 B, B1 6D B2, and x 2 B1 \ B2, there exists an element
y 2 B2 \ B1 such that

B1 [ fyg n fxg 2 B:

Theorem 8 A set C of subsets of E is the set of circuits
for a matroid M = (E, I) if and only if the following two
properties hold:
1) for all X 6D Y 2 C, X 6� Y;
2) for all X 6D Y 2 C and z 2 X \ Y, there exists Z 2 C

such that Z � X [ Y \ {z}.

Other alternative axiomatic characterizations of a ma-
troid need some further definitions.

LetM = (E, I) be a matroid.

Definition 9 For all A � E, let �: 2E N be a function
such that

�(A) D max fjXj : X � A; X 2 Ig :

� is called rank ofM.
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Note that the rank ofM is equal to the rank of E, which
is given by the cardinality of the maximal independent
subset of E. The rank is always well-defined, due to the
following proposition.

Proposition 10 If A is a subset of E and X and Y are
maximal independent subsets of A, then |X| = |Y|.

Proposition 10 claims that the maximal independent
subsets contained in A � E of a given matroid M = (E,
I) have the same cardinality. Choosing A = E, the fol-
lowing corollary holds.

Corollary 11 The bases of any matroid have the same
cardinality.

Definition 12 A subset A of E is called a closed ofM if

�(A[ fxg) D �(A)C 1; 8x 2 E n A;

i. e. if it is not possible to add to A any element without
increasing its rank.

Definition 13 The closure operator forM is a function
� : 2E! 2E such that for all A� E � (A) is the closed of
minimum cardinality that contains A, i. e.

�(A) D A[ fx 2 E n A : �(A[ fxg) D �(A)g :

Definition 14 A subset A of E covers M if and only if
it contains a basis ofM, i. e.

�(A) D �(E):

With these further definitions at hand, the follow-
ing theorems express three other equivalent axiomatic
characterizations of a matroid in terms of its rank.

Theorem 15 A function �: 2E ! N is a rank function
of a matroid M = (E, I) if and only if for all X � E and
for all y, z 2 E the following three properties hold:
1) �(;) = 0;
2) �(X) � �(X [ {y}) � �(X) + 1;
3) �(X) = �(X [ {y}) = �(X [ {z})) �(X [ {y, z}) =
�(X).

Theorem 16 A function �: 2E ! N is a rank function
of a matroid M = (E, I) if and only if for all X 6D Y � E
the following three properties hold:
1) 0� �(X) � |X|;
2) X � Y) �(X) � �(Y);

3) �(X [ Y) + �(X \ Y) � �(X) + �(Y).

Note that the second property of theorem 16 implies
that � is a monotonic function, while the third property
expresses its submodularity.

Theorem 17 A function � : 2E! 2E is a closure opera-
tor of a matroid M = (E, I) if and only if for all X 6D Y �
E and for all x, y 2 E the following four properties hold:
1) X � �(X);
2) Y � X) �(Y) � �(X);
3) �(X) = �(�(X));
4) y 62 �(X), y 2 �(X [ {x})) x 2 �(X [ {y}).

Definition 18 AmatroidM = (E, I) isweighted if there
is an associated weight function w that assigns a strictly
positive weight w(x) to each element x 2 E.

The weight function w extends to subsets A of E by
summation:

w(A) D
X
x2A

w(x):

Minor of Matroids: Restriction and Contraction

A minor of a matroid M = (E, I) is a ‘submatroid’ ob-
tained from deleting or contracting from the ground set
E one or more elements.

A loop is an element y of a matroid such that {y} is
not independent. Equivalently, {y} does not lie in any
independent set, nor in maximal independent sets.

Definition 19 Let M = (E, I) be a matroid. If an ele-
ment {x} is not a loop, the matroid M/x, called a con-
traction ofM, is defined as follows:
1) the ground set ofM/x is E \ {x};
2) a set A is independent in M/x if and only if A [ {x}

is independent inM.

The concept of matroid contraction can be dualized. In
fact, an element y is a coloop if it is contained in every
basis ofM.

Definition 20 Let M = (E, I) be a matroid. If an ele-
ment {x} is not a coloop, the matroidM \ x, called a re-
striction ofM, is defined as follows:
1) the ground set ofM\x is E\ {x};
2) a set A is independent in M\x if and only if it is in-

dependent inM.

The above definitions have been given in terms of re-
striction and contraction of only one element, but they
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can be easily extended to the restriction and contrac-
tion of a set X. The minors obtained will be denotedM\
X andM\X, respectively.

Representability of Matroids

One among the most common canonical examples of
matroids is the vectorial matroid, whose ground set E
is a finite set of vectors from a vector space, while the
independent sets are the linearly independent subsets
of vectors of E. A matroidM = (E, I) is representable on
a field F if there exists some vector space V over F, with
some finite set E of vectors ofV , so thatM is isomorphic
to the vectorial matroid of the set E. A binary matroid
is a matroid representable over GF(2), while a ternary
matroid is representable over GF(3).

In recent literature (as of 1999) the problem of clas-
sifying all the fields over which a given matroid is rep-
resentable and the inverse problem of characterizing all
the matroids that are representable on a given field have
had growing interest. An important result for matroid
representability is the following theorem.

Theorem 21 Amatroid M = (E, I) is representable over
any field if and only if it is representable over GF(2) and
over some field of characteristic other than two.

Amatroid as in the previous theorem is called regular.

Connectivity of Matroids

Connectivity is an important concept in matroid the-
ory.

Definition 22 A matroid M = (E, I) admits a k-
separation if there exists a partition (X,Y) of the ground
set E such that
1) |X| � k, |Y| � k;
2) �(X)+ �(Y) � �(E) � k � 1.

Definition 23 The smallest k such that a matroidM =
(E, I) admits a k-separation is called the connectivity of
M.

If k � 2, M is n-connected for any n � k; if k = 1, M is
disconnected; ifM admits any k-separations for all inte-
gers k,M has infinite connectivity.

An important result for matroid connectivity is the
following theorem.

Theorem 24 A matroid M = (E, I) is disconnected if
and only if there exists a partition (X, Y) of the ground

set E such that every circuit C of M is either a subset of X
or a subset of Y.

Examples of Matroids

In this section some of the most popular types of ma-
troids involved in combinatorial optimization will be
described.

UniformMatroid

Let E be a set of n elements and let I be the family of
subsets A of E such that |A| � k < n. Then M = (E, I) is
called the uniform matroid of rank k and is denoted by
Uk, n.

The sets of the bases and the circuits of Uk, n are

B D fX � E : jXj D kg

and

C D fX � E : jXj D k C 1g ;

respectively.
Moreover, for all A� E,

�(A) D

(
jAj if jAj � K;
K otherwise;

�(A) D

(
A if jAj � K;
E otherwise:

Graphic Matroid

If F is the set of forests of a graph G = (V , E), M = (E,
F) is called a graphic matroid. The circuits ofM are the
graph-theoretic circuits of G, while the rank of a subset
E1 of E is given by

�(E1) D jV j � c(E1);

where c(E1) is the number of connected components of
G1 = (V , E1).

Transversal Matroid

Let E be a finite set, C = {S1, . . . , Sm} a collection of sub-
sets of E, and let T = {e1, . . . , et}� E.

T is called a transversal of C if there exist distinct
integers j(1), . . . , j(t) such that ei 2 Sj(i), i = 1, . . . , t. Let
I be the set of all transversals of E, then M = (E, I) is
a transversal matroid.
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Partition Matroid

Let E be a finite set, ˘ = {E1, . . . , Ep} a partition of E,
that is a collection of disjoint subsets of E covering E,
and d1, . . . , dp p nonnegative integers. A subset A of E
is independent, i. e. A 2 I, if and only if |A \ Ej| � dj,
j = 1, . . . , p. The system M = (E, I) is a matroid, called
a partition matroid.

An example of a partition matroid can be obtained
by considering any digraph G = (V , E) and partitioning
the edges of the set E according to which node is the
head (or, equivalently, the tail) of each. Suppose that dj
= 1, j = 1, . . . , p; then a set A of edges is independent if
no two edges of A have the same head (or, equivalently,
the same tail).

Dual Matroids

LetM = (E, I) be a matroid, and let B be its set of bases.
The dual matroid M is the matroid on the ground

set E, whose bases are the complements of the bases of
M. Thus, a set A is independent in M if and only if A is
disjoint from some basis ofM. Note that M D M.

For a pair of matroids (M;M) and their rank func-
tions, the following propositions hold.

Proposition 25 Let M = (E, I) be a matroid, and let �
be its rank function. Let M D (E; I) be the dual matroid
of M; then

�(A) D jAj C �(E n A) � �(E);

for each A� E.

Proposition 26 Let M be the dual of the matroid M =
(E, I), let A be a subset of E and let A D E n A. If � and
� are the rank functions of M and M respectively, then
1)
ˇ̌
A
ˇ̌
� �(A) D �(E) � �(A);

2) �(E) � �(A) D jAj � �(A).

Proposition 27 Let M = (E, I) be a matroid, then
1) x is a loop in M if and only if x is a coloop in M and

vice versa;
2) If x is not a loop in M, then the dual of M/x is the

matroid Mnx;
3) If x is not a coloop in M, then the dual of M \ x is the

matroid M
x .

As example of the dual of a matroid, let us consider the
vectorial matroid. Suppose that the vectors represent-
ing M are the columns of an m × n matrix A and that

these vectors span Fm. Thus, A has rank m and is the
matrix of a linear transformation T from Fn onto Fm.
LetK be the kernel ofT, and B the matrix of a linear em-
bedding of U into Fn. Note that B is a n × (n � m) ma-
trix (whose columns are the basis for U) and has rank
n � m. Moreover, the columns of the (n � m) × n ma-
trix B| are indexed by the same set as the columns of A
and B|A = 0. B| is the dual matroid M of the vectorial
matroidM.

Greedy Algorithms onWeightedMatroids

Many combinatorial problems for which the greedy
technique gives an optimal solution can be formulated
in terms of finding a maximum-weight independent
subset in a weighted matroid. In more detail, there
is given a weighted matroid M = (E, I) and the ob-
jective is to find an independent set A 2 I such that
w(A) is maximized (also called an optimal subset ofM).
Since the weight w(x) of any element x 2 E is posi-
tive, a maximum-weight independent subset is always
a maximal independent subset.

In the minimum spanning tree problem, for exam-
ple, there are given a connected undirected graph G =
(V , E) and a length function w such thatw(e) is the pos-
itive length of the edge e. The objective is to find an
acyclic subset T of E that connects all of the vertices of
G and whose total length

w(T) D
X
e2T

w(e)

is minimized. This is a classical combinatorial problem
and can be formulated as a problem of finding an op-
timal subset of a matroid. In fact, consider the graphic
weighted matroidMG with weight functionw0 such that
w0(e) =w0 �w(e), wherew0 is larger than themaximum
length of any edge. It can be easily seen that for each e 2
E, w0(e)� 0 and that an optimal subset ofMG is a span-
ning tree of minimum total length in the original graph
G. In more detail, each maximal independent subset A
corresponds to a spanning tree and since

w0(A) D (jV j � 1) � w0 � w(A)

for any maximal independent subset A, the indepen-
dent subset that maximizes w0(A) must minimize w(A).

J.B. Kruskal in [14] and R.C. Prim in [22] proposed
two greedy strategies for solving efficiently the mini-
mum spanning tree, but in the following is reported the
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pseudocode of a greedy algorithm that works for any
weighted matroid. The algorithm GREEDY takes as in-
put a matroid M = (E, I) and a weight function w and
returns an optimal subset A.

set A = ;
sort E[M] = fx1; : : : ; xkg into nonincreasing order
by weight w
FOR i = 1 to t

IF A[ fxig 2 I[M]
set A = A[ fxig

return(A)

Greedy(M,w)

Like any other greedy algorithm, GREEDY always
makes the choice that looks best at the moment. In fact,
it considers in turn each element xi belonging to E[M],
whose element are sorted into nonincreasing order by
weight w and immediately adds x to the building set A
if A [ {xi} is still independent. Note that the returned
set A is always independent, because it is initialized to
the empty set, which is independent by definition of
a matroid, and then at each iteration an element xi is
added to A while preserving the A’s independence. A is
also an optimal subset of the matroid M and therefore,
a minimum spanning tree for the original graph G. To
prove its optimality, it is enough to show that weighted
matroids exhibit the two ingredients whose existence
guarantee that a greedy strategy will solve optimally the
given problem: the greedy-choice property and the opti-
mal substructure property. The proof that matroids ex-
hibit both these properties can be found in [4]. Gener-
ally speaking, the proof of the exhibition of the greedy-
choice property consists of showing that a globally op-
timal solution can be obtained by making a locally opti-
mal (greedy) choice. The proof examines a global opti-
mal solution. It shows that the solution can be modified
so that a greedy choice is made at the first step and that
this choice reduces the original problem into an equiv-
alent problem having smaller size. By induction, it is
proved that a greedy choice can be made at each step.
To show that making a greedy choice reduces the origi-
nal problem into a similar but smaller problem reduces
the proof of correctness to demonstrating that an op-
timal solution must exhibit optimal substructure. The
optimal substructure property is exhibited by a given

problem, if an optimal solution to the problem contains
within it optimal solutions to subproblems. The valid-
ity of this property guarantee the applicability of greedy
strategies as well as dynamic programming algorithms.

See also

� Oriented Matroids
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Maximum constraint satisfaction problems (MAX-
CSPs) generalize maximum satisfiability (MAX-SAT)
to include cases where the variables are no longer re-
stricted to binary (or Boolean) values.

MAX-CSP is NP-complete even in the special case
of binary CSPs. Therefore designing procedures to
compute upper bounds to the exact (unknown) opti-
mum value (maximum number of satisfied constraints)
is a relevant issue. Such bounds may be useful, in par-
ticular, to provide estimates of the quality of solutions
obtained from various heuristic approaches.

This article describes a systematic way of computing
upper bounds for large scale MAX-CSP instances such
as those arising from the so-called radio link frequency
assignment problem (RLFAP). After discussing the gen-
eral relaxation principle and the basic procedure from
which the bounds are derived, we present results of ex-
tensive computational experiments on series of 90 in-
stances of RLFAP including both real test problems and
randomly generated ‘realistic’ test problems (for sizes
ranging from 396 variables and about 1700 constraints
to 831 variables and about 4800 constraints).

These results clearly indicate that the proposed ap-
proach is practically useful to produce fairly accurate
upper bounds for such large MAX-CSP problems.
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Introduction

Constraint satisfaction problems (CSPs) may be viewed
as a generalization of satisfiability (SAT) to include
cases where, instead of taking binary values only (0–1
or true-false) the variables may take on a finite number
(> 2) of given possible values.

For an infeasible CSP, a relevant question, both the-
oretically and practically, is to determine an assignment
of values to variables such that the number of satisfied
constraints is the largest possible. This is the so-called
maximum constraint satisfaction problem (MAX-CSP),
which generalizes in a natural way maximum satisfia-
bility (MAX-SAT).

Since MAX-2SAT is NP-complete (see e. g. [12, pp.
259–260]) even the subclass of MAX-CSP correspond-
ing to binary CSPs (those problems with constraints in-
volving pairs of variables only) is NP-complete. There-
fore, for very large instances such as those arising from
practical applications (e. g. the RLFAP discussed be-
low) one can only hope for approximate solutions us-
ing some of the currently available heuristic approaches
such as: simulated annealing, tabu search, genetic algo-
rithms, or local search of various kinds.

However, for many applications, getting an approx-
imate solution without any information about the qual-
ity of this solution (e. g. measured by the difference be-
tween the cost of this solution and the optimal cost)
may be of little value.

We address in this paper the problem of computing
upper bounds to the optimum cost of MAX-CSP prob-
lems from which estimates on the quality of heuristic
solutions can be derived.

The article is organized as follows. Basic defini-
tions about CSPs and MAX-CSPs are recalled in the
second section. Modeling the so-called radio link fre-
quency assignment problem (RLFAP) in terms of CSP
and MAX-CSP is addressed in the third section. Then
we present a general class of relaxations for MAX-CSP
problems and its specialization to the computation of
MAX-CSP bounds for RLFAP. Finally results of exten-
sive computational experiments carried out on series
of both real test problems and realistic randomly gen-
erated test problems are presented. To our knowledge,
this is the first time extensive computational results of
this kind are reported for such large scale MAX-CSP
problems.

CSP andMAX-CSP

A constraint satisfaction problem (CSP) is defined by
specifying:
� a set of n variables x1, . . . , xn;
� for each variable xi, i 2 I = {1, . . . , n} the domain of

i, i. e. the (finite) set Di of possible values for xi;
� a set ofK constraints 'k, k = 1, . . . ,K. For each k2 [1,

K], constraint 'k is defined by its support set (i. e. the
subset Sk = supp('k) of indices of the variables in-
volved in the constraint) and an oracle which, given
any combination x[Sk ] of values for variables in Sk,
answers TRUE if 'k(x[Sk ]) D TRUE, i. e. if the com-
bination is allowed, FALSE otherwise. (For any S �
{1, . . . , n} and x 2 D1 × � � � × Dn, x[S] denotes the
vector x restricted to components in S.)

Given a CSP specified as above, we define a free assign-
ment as any n-tuple x 2 D = D1 × � � � × Dn. A feasible
assignment (or solution) is a free assignment such that
'k(x[Sk ]) = TRUE for all k = 1, . . . , K.

For simplicity, we restrict here to the case where
each variable takes scalar values only (i. e. real or integer
values), but we note that more general CSPs may be de-
fined with variables taking, for instance, vector values.

The arity of a constraint 'k is the cardinality of its
support set: |Sk| = |supp('k)|. A binary CSP is a con-
straint satisfaction problem in which |supp('k)|� 2 for
all k = 1, . . . , K.

The constraint hypergraph associated with a given
CSP is the hypergraph having vertex set I = {1, . . . , n}
and edge set {S1, . . . , SK}. In case of a binary CSP this is
a graph.

The two examples below are interesting special
cases of the general definition and show NP complete-
ness of arbitrary CSPs.

Example 1 (Satisfiability) SAT is easily recognized as
a special case of CSP where 8i: Di = {TRUE, FALSE}
and where there is a constraint 'k corresponding to
each clause Ck with 'k(x) = TRUE, clause Ck is satis-
fied under truth assignment x.

Example 2 (Hypergraph q-coloring; see [2, Chap. 19])
Let q > 1 be a given integer and H = [V , E] an hyper-
graph with vertex set V and edge set E. The problem is
to assign one out of q colors to each vertex of H so that
each edge of H has vertices of different colors. Clearly
this may be formulated as a CSP problem where there
is one variable xi for each vi 2 V , with domain Di = {1,
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. . . , q}, and one constraint 'k for each edge ek = {i1, . . . ,
ip} 2 E such that '(xi1 ; : : : ; xip ) D TRUE, no two
values in fxi1 ; : : : ; xipg are equal. Note that when H is
a graph (i. e. |ek| = 2 for all ek 2 E), the resulting CSP is
a binary CSP.

For an infeasible CSP, one basic question is to deter-
mine a ‘best possible’ or ‘least infeasible’ assignment. If
the criterion for quality (or degree of ‘feasibility’) of an
assignment x is taken to be the number �(x) of con-
straints satisfied under that assignment, we are led to
the so-calledMAX-CSP problem:
� Given: a CSP defined by its variables x1, . . . , xn, do-

mains D1, . . . , Dn, and constraints '1, . . . , 'K .
� Find: x 2 D1 × � � � × Dn such that

�(x) D
ˇ̌˚
k 2 [1;K] : 'k(x[Sk ]) D TRUE

�ˇ̌

is maximized.

Example 3 (MAX-SAT, MAX-2SAT) Clearly, MAX-
SAT is a special case of MAX-CSP when the given CSP
is a satisfiability problem. The associated decision prob-
lem is NP-complete even for the special case of MAX-
2SAT ([13]), showing that MAX-CSP is NP-complete
even for binary CSPs.

Heuristics for approximately solving the MAX-
SAT problem have been proposed by [17,19,23,27].
A branch and bound algorithm for MAX-SAT based
on probabilistic bounds is described in [3] with com-
putational results up to 100 binary variables and 1000
clauses. The branch and cut algorithm described in [20]
presents computational results for general Max-3SAT
problems up to 100 binary variables and 575 clauses.
For a recent survey on SAT and MAX-SAT, see [9].

For more general MAX-CSP problems, many
heuristic approaches have been investigated such as
tabu search ([4,7]), simulated annealing [5], genetic al-
gorithms [18]. Exact Algorithms for randomMAX-CSP
problems were proposed in [11]. However in the com-
putational experiments reported, the sizes of the prob-
lems for which exact optimal solutions were found are
rather small (144 variables with domains of cardinality
4 and 646 constraints for the largest problems solved in
[11]).

MAX-CSP and the Radio Link Frequency
Assignment Problem

Operating large radio link telecommunication net-
works gives rise to the so-called radio link frequency
assignment problem (RLFAP), which is to choose, for
each transmission link, a specific operating frequency
(among a given list of allowed values) while satisfying
a list of noninterference constraints, (most constraints
usually involving pairs of links). A CSP formulation of
RLFAP is as follows: With n denoting the number of
links, for each link i = 1, . . . , n, there is an associated
variable xi representing the frequency to be assigned to
link i. The domain Di of xi is the (finite) set of allowed
frequencies for link i (frequencies are expressed in Hz,
KHz, MHz or any other specified unit).

Any assignment x 2 S =D1 × � � � ×Dn is not allowed
because a number of constraints, called noninterference
constraints have to be satisfied.

We will only consider here the case of binary nonin-
terference constraints (i. e. involving only pairs of links),
which is relevant to many applications of interest (see
e. g. [15,16]). For a given pair of links i and j, two (ex-
clusive) types of constraints are possible:
� equality constraints of the form

(E)
ˇ̌
xi � x j

ˇ̌
D wi j;

� inequality constraints of the form

(I)
ˇ̌
xi � x j

ˇ̌
� wi j:

The real number wij which represents the requested
slack or minimum requested slack between the two as-
signed frequencies will be called the weight of the con-
straint.

An instance of RLFAP is therefore specified by n
(number of links), a list of domainsD1, . . . ,Dn and a list
of constraints i. e. a list of quadruples of the form (i, j,
wij, Tij) where: i, j are the indices of the two links in-
volved, wij is the weight of the constraint, and Tij its
type ((E) or (I)). The constraint graph associated with
an instance of RLFAP is defined as the undirected graph
Gwith node set {1, . . . , n} and with an edge (i, j) for each
constraint (i, j, wij, Tij). We denote K the total number
of constraints in an instance of RLFAP. Benchmarks of
the RLFAP involving real instances up to 916 variables
and 5744 constraints have been made publicly avail-
able in the context of the European Project CALMA
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(see [8,15]). In those practical instances, the number
of equality constraints (of type (E)) is never more than
n/2, and assignments satisfying all of them can easily
be found. We will denote S0 � S = D1 × � � � × Dn the
set of all such assignments. All assignments x 2 S \ S0

must be disregarded because they are physically mean-
ingless, therefore, from now on, we will only consider
assignments in S0 as possible solution to RLFAP.

An assignment in S0 which satisfies all constraints of
type (I) will be called feasible. The feasibility version of
RLFAP may therefore be stated as the following CSP:
� Given: an instance of RLFAP.
� Question: does there exist a feasible frequency as-

signment?
� Answer: yes or no and, if yes, output a feasible as-

signment x.
Efficient solution methods for RLFAP are of major in-
terest to numerous practical applications in the context
of civilian mobile communication networks as well as
of military networks. Since the available spectrum is
severely limited and the communication needs (traffic
requirements) are continuously increasing, a high pro-
portion of the instances of the RLFAP encountered in
applications turn out to be infeasible.

When faced with an instance which is either infeasi-
ble or which is presumably infeasible (e. g. because run-
ning a heuristic solution method just failed to produce
a feasible solution) a key question for the practitioner
becomes to determine a ‘best possible’ or ‘least infeasi-
ble’ assignment.

This leads to the ‘optimization version’ of the RL-
FAP in the form of the followingMAX-CSP:
� Given: an instance of RLFAP with n variables (links)

and K constraints.
� Question: determine x� 2 S0 such that �(x�) (num-

ber of satisfied constraints) is maximized:

�(x�) D max
x2S0
f�(x)g:

In view of the NP-completeness of MAX-CSP for
binary CSPs, guaranteed optimal solutions to the above
for large scale instances (such as those of the CELAR
benchmarks) cannot be reasonably expected from cur-
rently available techniques in combinatorial optimiza-
tion. A less ambitious, though practically relevant ob-
jective, addressed in the following section, is to try and
obtain good upper bounds to an optimal solution value.

We note here that in the case where an upper bound
b� is found such that b� < K, then we can deduce that
the given RLFAP has no feasible solution. Thus, an in-
teresting by-product of computing bounds will be to
produce proofs of infeasibility of a given instance of RL-
FAP. Clearly, such an information may be of consider-
able importance to the practitioner.

A General Class of Relaxations
for Computing MAX-CSP Bounds

MAX-CSP may be reformulated as the discrete opti-
mization problem

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max z D
KX

kD1

yk

s.t. gk(x) � yk ; 8k D 1; : : : ;K;
yk D 0 or 1; 8k;
x D (x1; : : : ; xn)> 2 S0:

(1)

In the above, for all k = 1, . . . , K, gk(x) � 1 if 'k(x[Sk ])
= TRUE, and gk(x) < 1 if 'k(x[Sk ]) = FALSE. Note that
in the case of RLFAP, this specializes to: gk(x) = |xi �
xj|/wk, where xi and xj are the two variables involved in
constraint k, and wk the weight of constraint k.

A relaxation of an optimization problem such as (1)
is obtained by replacing its solution set by a larger so-
lution set. Clearly if the relaxed problem can be solved
exactly (i. e. to guaranteed optimality) then its optimal
objective function value is an upper bound (in case of
maximization) to the optimum objective function value
of the original problem.

There exists a number of standard ways of relax-
ing an optimization problem such as (1), e. g. using La-
grangian relaxation (e. g. [10]) or considering the so-
called continuous relaxation of some of the variables
(e. g. relaxing the constraints on the yk variables in (1) to
0� yk � 1). However, in our treatment of RLFAP, those
standard relaxations have not been considered because
they do not give rise to easily solvable relaxed problems.
We therefore investigated a different approach accord-
ing to the following general principle.

The relaxations we consider are based on the iden-
tification of those parts of the constraint graph or hy-
pergraph which are responsible for the infeasibility of
the whole problem. Preliminary computational results
obtained in [25] have shown that, at least for MAX-CSP
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problems deriving from RLFAP, it is most often possi-
ble to identify in a given instance an infeasible induced
subproblem of sufficiently reduced size tomake the cor-
responding MAX-CSP bound computable in reason-
able time.

This suggests to consider relaxations of (1) formed
by subproblems induced by properly chosen subsets of
constraints. Thus, ifK0 �K = {1, . . . , K} is the subset of
constraints chosen, the induced relaxation considered
is:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max z D
KX

kD1

yk

s.t. gk(x) � yk ; 8k 2K0;
yk D 0 or 1; 8k D 1; : : : ;K;
x 2 S0:

(2)

Note that, in an optimal solution to (2)

k 2KnK0) yk D 1:

Therefore z, the optimum objective function value of
(2), may be rewritten as:

z D K �
ˇ̌
K0
ˇ̌
C z0;

where z0 is the optimum value of the problem:

R[K0]

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

max z0 D
X
k2K0

yk

s.t. gk(x) � yk ; 8k 2K0;
yk D 0 or 1; 8k 2K0;
x 2 S0:

Clearly, the constraint graph or hypergraph G0 cor-
responding to a relaxation R[K0] is deduced from the
constraint graph or hypergraph G by deleting all edges
associated with the constraints in K \ K0. Also observe
that if G0 has several distinct connected components,
then the solution of R[K0] decomposes into independent
subproblems, one for each connected component.

If the constraint graph or hypergraph G0 is of suffi-
ciently small size, then it is possible to solve R[K0] ex-
actly, and the optimum solution value obtained clearly
leads to an upper bound to the optimum value of the
original problem. When G0 is too large to get the ex-
act optimal solution value of R[K0] then we will content
ourselves with getting an upper bound to this exact op-
timal value (see the procedure SOLVE.RELAX below).

Clearly, any such upper bound still provides a valid up-
per bound to the original problem. Of course, in the
above approach, the quality of the bound derived from
R[K0] essentially depends on how to select the subset
K0. We now describe the selection procedure which has
been used in our computational experiments.

Building Relaxations
for RLFAP UsingMaximum Cliques

We now specialize the general relaxation scheme de-
scribed above to derive bounds for RLFAP. The pre-
sentation below improves and extends our preliminary
work in [25].

The basic idea of our selection procedure for choos-
ing K0 � K is that, for RLFAP, infeasibility is more
likely to occur on subsets of links which are all mutu-
ally constrained, i. e. on subsets of links which induce
a clique (complete subgraph) in the constraint graph.
Since for RLFAP the constraint graphs arising from
applications are always very sparse (less than 1% den-
sity for the CELAR instances), it is known that finding
a clique of maximum cardinality can be efficiently done
even using simple approaches such as implicit enumer-
ation.

In [6] an efficient implicit enumeration based algo-
rithm with good computational results for large sparse
graphs up to 3000 vertices is described; however, it as-
sumes very small maximum clique sizes (in the compu-
tational results presented in [6], maximum clique sizes
do not exceed 11, and the running times seem to in-
crease extremely fast with this parameter). Unfortu-
nately, in view of the fact that, for our large RLFAP
instances, the maximum clique sizes turned out to be
commonly in the range [12, 25], the above algorithm
could not be used.

We therefore worked out a different implementa-
tion of the implicit enumeration technique which al-
lowed us to find guaranteed maximum cliques for all
the test problems treated within acceptable computing
times (see results at the end of the paper). Using this
maximum clique algorithm, the procedure for building
a relaxation to MAX-CSP for RFLAP is as follows.

The heuristic solution method used in our experi-
ments to implement step b1) is a variant of local search
consisting in iteratively improving an initial starting
solution; at each iteration an exact tree search is car-
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ried out to find an optimal solution to a subprob-
lem involving only a few variables. In our computa-
tional experiments we observed that the impact of the
quality of the heuristic solutions produced at step b1)
on the quality of the relaxation obtained at the end
of BUILD.RELAX was practically negligible (the main
reason for this is that � is only used as a stopping crite-
rion in the process of successive extraction ofmaximum
cliques). The computational results shown below con-
firm that bounds of good average quality indeed result
from the above construction.

a Set: G = [X; U]  G (the initial con-
straint graph), i  0

b Current step:
1 Apply a heuristic algorithm to get a good

approximate solution to MAX-CSP on G.
Let � denote the number of constraints
satisfied in this solution.
IF � = jU j go to c) (end of the construc-
tion),
ELSE set: i  i + 1.

2 Look for a maximum clique on G. Let Ci
be the clique obtained, with node set
N(Ci ) and edge set E(Ci ).

3 Let G0 denote the subgraph of G induced
by X nN(Ci) (obtained fromG by deleting
all edges having at least one endpoint in
N(Ci )).
Set G  G0 and return to b).

c IF i = 0, the problem is feasible and step
b1) produces an assignment satisfying all
the constraints. Terminate.
ELSE the relaxation R[K0] obtained cor-
responds to the setK0 of all constraints in
[i

j=1E(Cj).

Procedure BUILD.RELAX

Solving the Relaxed Problem R[K0]

In order to solve the relaxed problem R[K0] we use
a basic procedure called FIND.SOLUTION(R[K0], �)
which, for any integer value � 2 [1, |K0|], answers YES
or NO depending on whether there exists a solution to
R[K0] with objective function value z� � or not. In case
of a YES answer, the procedure also exhibits the corre-
sponding solution. We assume that this procedure is ex-

act i. e. always finds the right answer. Clearly, any value
of � leading to a NO answer produces an upper bound
to the optimal solution value of R[K0].

The procedure SOLVE.RELAX(R[K0]) determines
a decreasing sequence of upper bounds to the optimal
value of R[K0] until either termination is obtained (at
step c)) or the maximum computation time has been
reached.

In the former case, the exact optimum solution
value to R[K0] is obtained; in the latter case, only an
upper bound to this optimal value is produced.

a Initialization: Set   jK0 j.
b Current step:

Apply FIND.SOLUTION(R[K0]; )
IF the answer is NO,
THEN set    � 1 and return to b).
ELSE perform step c).

c A YES answer has been obtained at step b):  is
the optimal solution value to R[K0]. Terminate.

Procedure SOLVE.RELAX(R[K0])

When G0, the constraint graph of R[K0] has sev-
eral distinct connected components corresponding to
subsets of constraints, K01, . . . , K0p, then solving
R[K0] decomposes into the solution of several smaller
subproblems R[K1

0], . . . , R[Kp
0]. In the procedure

SOLVE.RELAX, this decomposability may be exploited
in various possible ways. In our implementation, this is
done by organizing the computation into phases num-
bered t = 0, 1, . . . . The current upper bound value UB
is initialized by: UB |K0|. The current phase t con-
sists in running the procedure FIND.SOLUTION on
each of the subproblems R[K0j], j = 1, . . . , p, with the
parameter � = |K0j| � t. Each time a NO answer is ob-
tained, UB is updated by UB UB � 1. Clearly with
the above process, when a YES answer has been ob-
tained for some subproblem R[Kj

0] during phase t, this
subproblem should not be considered any more at later
phases t0 > t. The computation stops either at the end of
a phase during which a YES answer has been obtained
for all subproblems; or when a user-specified time limit
has been reached.

The basic procedure FIND.SOLUTION has been
implemented as a classical depth first tree search pro-
cess of the implicit enumeration type, (achieved by
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means of a recursive C function). Since getting the ex-
act answer (YES or NO) is essential to the derivation
of our bounds, the procedure FIND.SOLUTION is run
until full completion of the tree search (i. e. when all the
nodes of the tree have been explored implicitly or ex-
plicitly).

Computational Results

In order to validate the above described approach, sys-
tematic computational experiments have been carried
out on two series of test problems.

The first set was composed of 15 infeasible real
problems which arose from actual network engineering
studies carried out on three distinct large radio link net-
works (one in the 2GHz frequency range, one in the 2,
5GHz frequency range and one in the 4GHz frequency
range).

The second series concerned a set of 5 × 15 = 75 ‘re-
alistic’ test problems generated by applying some ran-
dom perturbation to the above 15 real problems. More
precisely, each problem of the second series is gener-
ated from one problem of the first series by changing
the weight wij of each inequality constraint of the form:
|xi � xj| � wij to: ewi j D wi j � (˛ C ˇ˚) where ˚ is
a pseudorandom number drawn from a uniform dis-

Maximum Constraint Satisfaction: Relaxations and Upper
Bounds, Table 1

Prob. n K NF Relaxation
# # var. # const.
1 680 2389 8 44 257
2 680 3367 16 38 339
3 680 4103 24 84 671
4 680 2725 8 74 490
5 680 2576 8 46 311
6 680 2470 8 44 284
7 831 3451 16 16 113
8 831 4802 24 33 248
9 396 1792 12 70 375
10 396 1792 12 70 375
11 396 1792 12 70 375
12 396 1792 12 70 375
13 396 1792 12 70 375
14 396 1792 12 70 375
15 396 1792 12 70 375

Maximum Constraint Satisfaction: Relaxations and Upper
Bounds, Table 2

Prob. HS Best upper bound
# obtained within

15s 5’ 1 h
1 2376 2387 2385 2383
2 3358 3367 3366 3365
3 4090 4102 4098 4098
4 2700 2720 2713 2708
5 2559 2571 2569 2564
6 2457 2467 2464 2459
7 3440 3450 3450 3450
8 4781 4800 4800 4799
9 1762 1786 1780 1777
10 1759 1786 1780 1776
11 1761 1786 1780 1778
12 1764 1786 1780 1776
13 1761 1786 1780 1775
14 1757 1786 1780 1775
15 1764 1786 1783 1777

tribution on [0, 1] and ˛, ˇ are chosen parameters (of
course the pseudorandom drawing is assumed to be in-
dependent from one constraint to the next).

Table 1 presents the characteristics of the 15 real test
problems treated, numbered 1 to 15 and provides for
each problem: number of variables (n), number of con-
straints (K), number of distinct frequencies used (NF)
and the main characteristics of the relaxed subproblem
obtained from the procedure BUILD.RELAX: number
of variables #var, and number of constraints #const.

Table 3 presents in a similar way the characteristics
of the 5 × 15 = 75 test problems deduced from the previ-
ous ones by random perturbation. The 5 instances cor-
responding to each basic problem i are numbered i1, . . . ,
i5. For each instance the values of the parameters ˛ and
ˇ used to generate the instance are displayed together
with the characteristics (number of variables, number
of constraints) of the relaxed subproblem produced by
BUILD.RELAX.

The computation times taken to construct the re-
laxed subproblems (using BUILD.RELAX) on the prob-
lems of Tables 1 and 3, are all between 5 minutes to 35
minutes with an average of about 12 minutes.

Table 2 shows the results obtained on the 15 real
test problems of Table 1 and Table 4 shows the results
for the 5 × 15 problems of Table 3. The computer used
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Maximum Constraint Satisfaction: Relaxations and Upper Bounds, Table 3

Prob. ˛ ˇ Relaxation
# #var. #const.
11 0; 5 1 42 257
12 0; 5 1 42 261
13 0; 8 0; 4 42 261
14 0; 8 0; 4 42 261
15 0; 8 0; 4 42 261
21 0; 5 1 38 339
22 0; 5 1 38 339
23 0; 8 0; 4 38 339
24 0; 8 0; 4 38 339
25 0; 8 0; 4 38 339
31 0; 5 1 54 671
32 0; 5 1 70 460
33 0; 8 0; 4 84 480
34 0; 8 0; 4 84 671
35 0; 8 0; 4 54 671
41 0; 5 1 74 490
42 0; 5 1 74 490
43 0; 8 0; 4 74 490
44 0; 8 0; 4 74 490
45 0; 8 0; 4 74 490
51 0; 5 1 46 311
52 0; 5 1 46 311
53 0; 8 0; 4 46 311
54 0; 8 0; 4 46 311
55 0; 8 0; 4 46 311
61 0; 5 1 44 284
62 0; 5 1 44 284
63 0; 8 0; 4 44 284
64 0; 8 0; 4 44 284
65 0; 8 0; 4 44 284
71 0; 8 0; 4 16 113
72 0; 8 0; 4 16 113
73 0; 8 0; 4 16 113
74 0; 8 0; 4 16 113
75 0; 8 0; 4 16 113
81 0; 5 1 33 248
82 0; 5 1 33 248
83 0; 5 1 33 248
84 0; 5 1 33 248
85 0; 5 1 33 248

Prob. ˛ ˇ Relaxation
# #var. #const.
91 0; 2 1; 6 12 375
92 0; 2 1; 6 12 66
93 0; 2 1; 6 48 66
94 0; 2 1; 6 24 264
95 0; 2 1; 6 36 132
101 0; 2 1; 6 36 375
102 0; 2 1; 6 12 198
103 0; 2 1; 6 48 66
104 0; 2 1; 6 24 264
105 0; 2 1; 6 36 132
111 0; 2 1; 6 36 375
112 0; 2 1; 6 12 198
113 0; 2 1; 6 48 66
114 0; 2 1; 6 24 264
115 0; 2 1; 6 36 132
121 0; 2 1; 6 24 375
122 0; 2 1; 6 12 132
123 0; 2 1; 6 48 66
124 0; 2 1; 6 24 264
125 0; 2 1; 6 36 162
131 0; 2 1; 6 36 375
132 0; 2 1; 6 12 198
133 0; 2 1; 6 48 66
134 0; 2 1; 6 24 264
135 0; 2 1; 6 36 132
141 0; 2 1; 6 36 375
142 0; 2 1; 6 12 198
143 0; 2 1; 6 48 66
144 0; 2 1; 6 24 264
145 0; 2 1; 6 36 132
151 0; 2 1; 6 24 375
152 0; 2 1; 6 12 132
153 0; 2 1; 6 48 66
154 0; 2 1; 6 24 264
155 0; 2 1; 6 36 132

was a PC Pentium 166 workstation with 32Mb RAM.
For each problem we provide: HS, the best heuristic so-
lution value obtained (number of satisfied constraints);
the best upper bounds obtained after 15 seconds, 5min-

utes and 1 hour. The results in Table 2 confirm that
our approach is practical to consistently produce good
bounds for real RLFAP instances within acceptable so-
lution times.



Maximum Constraint Satisfaction: Relaxations and Upper Bounds M 1989

Maximum Constraint Satisfaction: Relaxations and Upper Bounds, Table 4

Prob. HS Best upper bound
# obtained within

15 s 5’ 1 h
11 2376 2386 2383 2378
12 2376 2386 2383 2378
13 2376 2386 2383 2378
14 2376 2386 2383 2378
15 2376 2386 2383 2378
21 3358 3366 3365 3365
22 3358 3367 3365 3365
23 3358 3367 3366 3365
24 3358 3367 3365 3365
25 3358 3367 3366 3365
31 4081 4103 4101 4101
32 4081 4102 4101 4101
33 4086 4102 4098 4098
34 4086 4102 4098 4098
35 4088 4102 4101 4101
41 2700 2720 2713 2708
42 2700 2720 2713 2708
43 2700 2720 2713 2708
44 2700 2720 2713 2708
45 2700 2720 2713 2708
51 2559 2571 2569 2564
52 2559 2572 2569 2564
53 2559 2572 2569 2564
54 2559 2573 2569 2564
55 2559 2573 2569 2564
61 2457 2467 2464 2459
62 2457 2467 2464 2459
63 2457 2467 2464 2459
64 2457 2467 2464 2459
65 2457 2467 2464 2459
71 3438 3450 3450 3450
72 3437 3450 3450 3450
73 3421 3430 3430 3430
74 3414 3424 3424 3424
75 3436 3450 3450 3450
81 4780 4800 4800 4799
82 4783 4800 4800 4799
83 4778 4800 4800 4799
84 4781 4800 4800 4799
85 4781 4800 4800 4799

Prob. HS Best upper bound
# obtained within

15 s 5’ 1 h
91 1779 1791 1791 1791
92 1777 1791 1790 1789
93 1774 1788 1788 1785
94 1777 1790 1789 1789
95 1779 1789 1787 1787
101 1780 1789 1788 1787
102 1780 1791 1790 1788
103 1776 1788 1787 1785
104 1778 1790 1789 1789
105 1777 1789 1788 1788
111 1783 1789 1789 1789
112 1780 1791 1789 1788
113 1777 1788 1788 1786
114 1780 1790 1789 1789
115 1779 1789 1788 1787
121 1779 1790 1790 1789
122 1780 1791 1790 1789
123 1777 1788 1788 1786
124 1780 1790 1789 1787
125 1778 1789 1788 1787
131 1782 1789 1789 1788
132 1777 1790 1789 1789
133 1776 1788 1787 1786
134 1779 1790 1789 1789
135 1777 1789 1788 1788
141 1782 1789 1789 1788
142 1775 1791 1789 1789
143 1775 1788 1787 1786
144 1779 1791 1789 1789
145 1776 1789 1788 1788
151 1780 1790 1790 1789
152 1779 1791 1789 1788
153 1777 1788 1788 1788
154 1781 1790 1789 1788
155 1780 1789 1788 1788

From Tables 2 and 4, it is seen that for all the in-
stances treated, the difference between the heuristic so-
lution values HS and the best upper bounds obtained

are always quite small. More precisely for all the exam-
ples treated, the ratio R = (UB � HS)/UB is most of-
ten well below 1% (Problem 14 in Table 2 is the only
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one for which R > 1%). We note that since HS is only
a lower bound, R is a pessimistic estimate of the relative
difference between the best upper bound obtained and
the optimal, unknown, solution value.

Also, from Table 4, it is seen that the results ob-
tained appear to be fairly stable, in spite of the impor-
tance of the perturbations applied to generate the cor-
responding 75 instances. In addition to practical appli-
cability, and efficiency, this clearly shows good stability
and robustness in the behavior of our algorithms. To
our knowledge, this is the first time a systematic way
of deriving upper bounds to such large scale MAX-CSP
problems has been implemented and fully tested.

To conclude, let us mention that, in view of the
results obtained, the techniques described here have
been included in an industrial software tool for radio
network engineering developed by the French MOD
(DGA/CELAR).

See also

� Frequency Assignment Problem
� Graph Coloring
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Introduction

The MAXIMUM CUT problem (MAX-CUT) is one of the
simplest graph partitioning problems to conceptualize,
and yet it is one of the most difficult combinatorial opti-
mization problems to solve. The objective of MAX-CUT

is to partition the set of vertices of a graph into two sub-
sets, such that the sum of the weights of the edges hav-
ing one endpoint in each of the subsets is maximum.
This problem is known to be NP-complete [18,27];

however, it is interesting to note that the inverse prob-
lem, i. e., that of looking for the minimum cut in a graph
is solvable in polynomial time using network flow tech-
niques [1]. MAX-CUT is an important combinatorial
problem and has applications in many fields including
VLSI circuit design [9,32] and statistical physics [5]. For
other applications, see [16,21]. For a detailed survey of
MAX-CUT, the reader can refer to [33].

Organization

In this paper, we introduce the MAXIMUM CUT prob-
lem and review several heuristic methods which have
been applied. In Subsect. “C-GRASP Heuristic” we de-
scribe the implementation of a new heuristic based op-
timizing a quadratic over a hypercube. The heuristic
is designed under the C-GRASP (Continuous Greedy
Randomized Adaptive Search Procedure) framework.
Proposed by Hirsch, Pardalos, and Resende [23],
C-GRASP is a new stochastic metaheuristic for contin-
uous global optimization problems. Numerical results
are presented and compared with other heuristics from
the literature.

Idiosyncrasies

We conclude this section by introducing the symbols
and notations we will employ throughout this paper.
Denote a graph G D (V ; E) as a pair consisting of
a set of vertices V , and a set of edges E. Let the map
w : E 7! R be a weight function defined on the set of
edges. We will denote an edge-weighted graph as a pair
(G,w). Thus we can easily generalize an un-weighted
graph G D (V ; E) as an edge-weighted graph (G,w), by
defining the weight function as

wi j :D

(
1; if (i; j) 2 E ;
0; if (i; j) 62 E :

(1)

We use the symbol “b :D a” to mean “the expres-
sion a defines the (new) symbol b”. Of course, this
could be conveniently extended so that a statement like
“(1 � �)/2 :D 7” means “define the symbol � so that
(1 � �)/2 D 7 holds”. We will employ the typical sym-
bol Sc to denote the complement of the set S; further let
A n B denote the set-difference, A\ Bc . Agree to let the
expression x  y mean that the value of the variable y
is assigned to the variable x. Finally, to denote the cardi-
nality of a set S, we use | S |. We will use bold for words
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which we define, italics for emphasis, and SMALL CAPS

for problem names. Any other locally used terms and
symbols will be defined in the sections in which they
appear.

Formulation

Consider an undirected edge-weighted graph (G,w),
where G D (V ; E) is the graph, and w is the weight
function. A cut is defined as a partition of the vertex set
into two disjoint subsets S and S̄ :D V n S. The weight
of the cut (S; S̄) is given by the functionW : S � S̄ 7! R
and is defined as

W(S; S̄) :D
X

i2S; j2S̄

wi j : (2)

For an edge-weighted graph (G,w), amaximum cut
is a cut of maximum weight and is defined as

MC(G;w) :D max
8SV

W(S;V n S) : (3)

We can formulate MAX-CUT as the following inte-
ger quadratic programming problem:

max
1
2

X
1�i< j�n

wi j(1 � yi y j) (4)

subject to:

yi 2 f�1; 1g; 8i 2 V : (5)

To see this, notice that each subset V � S :D fi 2
V : yi D 1g induces a cut (S; S̄) with corresponding
weight equal to

W(S; S̄) D
1
2

X
1�i< j�n

wi j(1 � yi y j) : (6)

An alternative formulation of MAX-CUT based on
the optimization of a quadratic over the unit hypercube
was given by Deza and Laurent in [12].

Theorem 1 Given a graph G D (V ; E) with jV j D n,
the optimal objective function value of the MAXIMUM

CUT problem is given by

max
x2[0;1]n

xTW(e � x) ; (7)

where W D [wi j]ni; jD1 is the matrix of edge weights, and
e :D [1; 1; : : : ; 1]T is the unit vector.

Proof 1 Let

f (x) :D xTW(e � x) (8)

denote the objective function from Eq. (7). To begin
with, notice that the matrix W has a zero diagonal,
i. e., wii D 0; 8i 2 1; 2; : : : ; n. This implies that f (x)
is linear with respect to each variable, and thus there
always exists an optimal solution, x� of (7) such that
x� 2 f0; 1gn . Therefore, we have shown that

max
x2[0;1]n

xTW(e � x) D max
x2f0;1gn

xTW(e � x): (9)

The next step is to show that there is a bijection be-
tween binary vectors of length n and cuts in G. Con-
sider any binary vector x̂ 2 f0; 1gn . Now suppose we
partition the vertex set V into two disjoint subsets
V1 :D fijx̂i D 0g and V2 :D fijx̂i D 1g. Then, evaluat-
ing the objective function we have

f (x̂) D
X

(i; j)2V1�V2

wi j; (10)

which is equal toW(V1,V2), the value of the cut defined
by the partition of V D V1

S
V2 (see Eq. (2) above).

Alternatively, consider any partition of V into two
disjoint subsets V1;V2 � V . That is

V D V1
[

V2 and V1
\

V2 D ; :

Now, we can construct the vector x̂ as follows:

x̂i D

(
1; if i 2 V1

0; if i 2 V2 :
(11)

Once again, evaluating the objective function on x̂, we
have

f (x̂) D
X

(i; j)2V1�V2

wi j : (12)

Hence f (x̂) DW(V1;V2) and we have the result.1 Alas,
we have shown the bijection between binary n-vectors

1Notice that the result holds even if (without the loss of gener-
ality) V1 D V and V2 D ;. In this case, a cut induced by (V1;V2)
will be a maximum cut if wi j � 0; 8i; j 2 V .
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and cuts in G. In summary, we have

max
x2[0;1]n

xTW(e � x)

D max
x2f0;1gn

xTW(e � x)

D max
VDV1

S
V2;V1

T
V2D;

X
(i; j)2V1�V2

wi j :

�

There are several classes of graphs for which MAX-
CUT is solvable in polynomial time [25]. These include
planar graphs [11], weakly bipartite graphs with non-
negative edge weights [20], and graphs without K5 mi-
nors [4]. The general problem however is known to be
APX-complete [31]. This implies that unless
P DNP, MAX-CUT does not admit a polynomial
time approximation scheme [30].

Methods

The MAXIMUM CUT problem is one of the most well-
studied discrete optimization problems [27]. Since the
problem isNP-hard in general, there has been an in-
credible amount of research done in which heuristic
techniques have been applied. Before we present the
new heuristic approach, we review some of the prior
work that has been done.

Review of Solution Approaches

There have been many semidefinite and continuous
relaxations based on this formulation. This was first
shown by Lovász in [28]. In 1995, Goemans and
Williamson [19] used a semidefinite relaxation to
achieve an approximation ratio of .87856. This impli-
cation of this work is significant for two reasons. The
first is of course, the drastic improvement of the best
known approximation ratio for MAX-CUT of 0.5 which
had not been improved in over 20 years [36]. Secondly,
and perhaps more significantly is that until 1995, re-
search on approximation algorithms for nonlinear pro-
gramming problems did not receive much attention.
Motivated by the work of Goemans and Williamson,
semidefinite programming techniques were applied to
an assortment of combinatorial optimization problems
successfully yielding the best known approximation
algorithms for GRAPH COLORING [7,26], BETWEEN-

NESS [10], MAXIMUM SATISFIABILITY [13,19], and
MAXIMUM STABLE SET [2], to name a few [29].

As noted in [16], the use of interior point methods
for solving the semidefinite programming relaxation
have proven to be very efficient. This is because meth-
ods such as the one proposed by Benson, Ye, and Zhang
in [6] exploit the combinatorial structure of the re-
laxed problem. Other algorithms based on the nonlin-
ear semidefinite relaxation include the work of Helm-
berg and Rendl [22] and Homer and Peinado [24].

The work of Burer et al. in [8] describes the im-
plementation of a rank-2 relaxation heuristic dubbed
circut. This software package was shown to com-
pute better solutions than the randomized heuristic of
Goemans and Williamson, in general [16]. In a re-
cent paper dating from 2002, Festa, Pardalos, Resende,
and Ribeiro [16] implement and test six random-
ized heuristics for MAX-CUT. These include variants
of Greedy Randomized Adaptive Search Procedures
(GRASP), Variable Neighborhood Search, and path-re-
linking algorithms [35]. Their efforts resulted in im-
proving the best known solutions for several graphs
and quickly producing solutions that compare favor-
ably with the method of Goemans andWilliamson [19]
and circut [8]. For several sparse instances, the
randomized heuristics presented in [16] outperformed
circut.

In [25], Butenko et al. derive a “worst-out” heuris-
tic having an approximation ratio of at least 1/3 which
they refer to as the edge contraction method. The also
present a computational analysis of several greedy con-
struction heuristics for MAX-CUT based on variations
of the 0.5-approximation algorithm of Sahni and Gon-
zalez [36]. With this, we now move on and describe the
implementation of a new heuristic for MAX-CUT based
on the new metaheuristic Continuous GRASP [23].

C-GRASP Heuristic

The Continuous Greedy Randomized Adaptive Search
Procedure (C-GRASP) is a new metaheuristic for con-
tinuous global optimization [23]. The method is an ex-
tension of the widely known discrete optimization algo-
rithm Greedy Randomized Adaptive Search Procedure
(GRASP) [15]. Preliminary results are quite promising,
indicating that C-GRASP is able to quickly converge to
the global optimum on standard benchmark test func-
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procedure GRASP(MaxIter;RandomSeed)
1 f �  0
2 X�  ;
3 for i = 1 to MaxIter do
4 X  ConstructionSolution(G; g; X; ˛)
5 X  LocalSearch(X; N(X))
6 if f (X) � f (X�) then
7 X�  X
8 f �  f (X)
9 end
10 end
11 return X�
end procedure GRASP

Maximum Cut Problem, MAX-CUT, Figure 1
GRASP for maximization

tions. The traditional GRASP is a two-phase procedure
which generates solutions through the controlled use
of random sampling, greedy selection, and local search.
For a given problem˘ , let F be the set of feasible solu-
tions for˘ . Each solution X 2 F is composed of k dis-
crete components a1; : : : ; ak . GRASP constructs a se-
quence {X}i of solutions for ˘ , such that each Xi 2 F.
The algorithm returns the best solution found after all
iterations. The GRASP procedure can be described as
in the pseudo-code provided in Fig. 1. The construction
phase receives as parameters an instance of the prob-
lemG, a ranking function g : A(X) 7! R (whereA(X) is
the domain of feasible components a1; : : : ; ak for a par-
tial solution X), and a parameter 0 < ˛ < 1. The con-
struction phase begins with an empty partial solution X.
Assuming that jA(X)j D k, the algorithm creates a list
of the best ranked ˛k components in A(X), and returns
a uniformly chosen element x from this list. The cur-
rent partial solution is augmented to include x, and the
procedure is repeated until the solution is feasible, i. e.,
until X 2 F.

The intensification phase consists of the implemen-
tation of a hill-climbing procedure. Given a solution
X 2 F, let N(X) be the set of solutions that can found
from X by changing one of the components a 2 X.
Then, N(X) is called the neighborhood of X. The im-
provement algorithm consists of finding, at each step,
the element X� such that

X� :D arg max
X02N(X)

f (X0) ;

where f : F 7! R is the objective function of the prob-
lem. At the end of each step we make the assignment
X�  X if f (X) > f (X�). The algorithm will eventu-
ally achieve a local optimum, in which case the solu-
tion X� is such that f (X�) � f (X0) for all X0 2 N(X�).
X� is returned as the best solution from the iteration
and the best solution from all iterations is returned as
the overall GRASP solution. GRASP has been applied
to many discrete problems with excellent results. For
an annotated bibliography of GRASP applications, the
reader is referred to the work of Festa and Resende
in [17].

Like GRASP, the C-GRASP framework is a multi-
start procedure consisting of a construction phase
and a local search [14]. Specifically, C-GRASP is de-
signed to solve continuous problems subject to box
constraints. The feasible domain is given as the n-
dimensional rectangle S :D fx D (x1; x2; : : : ; xn) 2
Rn : l � x � ug, where l ; u 2 Rn are such that
li � ui , for i D 1; 2; : : : ; n. Pseudo-code for the ba-
sic C-GRASP is provided in Fig. 2. Notice that the al-
gorithm takes as input the dimension n, upper and
lower bounds l and u, the objective function f , and
parameters MaxIters, MaxNumIterNoImprov,
NumTimesToRun, MaxDirToTry, and a number
˛ 2 (0; 1).

To begin with, the optimal objective function
value f � is initialized to �1. The procedure then en-
ters the main body of the algorithm in the for loop
from lines 2–21. The value NumTimesToRun is the
total number of C-GRASP iterations that will be per-
formed. To begin with, more initialization takes place
as the current solution x is initialized as a random point
inside the hyperrectangle, which is generated according
to a function UnifRand([l ; u)) which is uniform onto
[l,u)2. Furthermore, the parameter which controls the
discretization of the search space, h, is set to 1. Next,
the construction phase and local search phases are en-
tered. In line 9, the new solution is compared to the cur-
rent best solution. If the objective function value corre-
sponding to the current solution dominates the incum-
bent, then the current solution replaces the incumbent
and NumIterNoImprov is set to 0. This parameter

2This is the “typical” definition of a Uniform distribution.
That is, P : X 7! R is uniform onto [A,B), if, for any subinter-
val I � [A; B), the measure of P�1(I) equals the length of I.
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procedure C-GRASP(n; l ; u; f (�);MaxIters;MaxNumIterNoImprov;NumTimesToRun;

MaxDirToTry; ˛)
1 f �  �1
2 for j = 1 to NumTimesToRun do
3 x  UnifRand

�
[l ; u)

�
4 h 1
5 NumIterNoImprov 0
6 for Iter = 1 to MaxIters do
7 x  ConstructGreedyRandomized(x; f (�); n; h; l ; u; ˛)
8 x  LocalSearch(x; f (�); n; h; l ; u;MaxDirToTry)
9 if f (x) � f � then
10 x�  x
11 f �  f (x)
12 NumIterNoImprov 0
13 else
14 NumIterNoImprov NumIterNoImprov + 1
15 end if
16 if NumIterNoImprov � MaxNumIterNoImprov then
17 h h/2
18 NumIterNoImprov 0
19 end if
20 end for
21 end for
22 return x�
end procedure C-GRASP

Maximum Cut Problem, MAX-CUT, Figure 2
C-GRASP pseudo-code adapted from [23]

controls when the discretization measure h is reduced.
That is, after a total of MaxNumIterNoImprov iter-
ations occur in which no solution better than the cur-
rent best solution is found, h is set to h/2 and the loop
returns to line 6. By adjusting the value of h, the algo-
rithm is able to locate general areas of the search space
which contain high quality solutions, and then narrow
down the search in those particular regions. The best
solution after a total of NumTimesToRun iterations is
returned as the best solution.

The construction phase of the C-GRASP takes as in-
put the randomly generated solution x 2 S (see Fig. 2,
line 3). Beginning with all coordinates unfixed, the
method then performs a line search on each unfixed
coordinate direction of x holding the other n � 1 direc-
tions constant. The objective function values resulting
from the line search solution for each coordinate direc-
tion are stored in a vector, say V . An element vi 2 V
is then selected uniformly at random from the maxi-

mum (1 � ˛)100% elements of V , and the vi coordinate
direction is fixed. This process repeats until all n coor-
dinates of x have been fixed. The resulting solution is
returned as the C-GRASP solution from the current it-
eration. For a slightly more detailed explanation of this
procedure, the reader is referred to [23].

As for the local search phase, this procedure sim-
ulates the role of calculating the gradient of the ob-
jective function f (�). As mentioned earlier, gradients
are not used in C-GRASP because oftentimes, they are
difficult to compute and result in slow computation
times. Therefore, the gradient is approximated as fol-
lows. Given the construction phase solution x, the lo-
cal search generates a set of directions and determines
in which direction (if any) the objective function im-
proves.

The directions are calculated according to a bijec-
tive function T which maps the interval of integers
[1; 3n) \Z onto their balanced ternary representation.
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Maximum Cut Problem, MAX-CUT, Table 1
Parameters used for C-GRASP

˛ D 0:4 MaxDirToTry D 20

NumTimesToRun D 20 MaxIters D 1000
MaxNumIterNoImrpov = 1

Recall that n is the dimension of the problem under
consideration. That is, T : [1; 3n) \Z 7! f�1; 0; 1gN .
Clearly, as n!1, the number of search directions
grows exponentially. Therefore, only MaxDirToTry
directions are generated3 and tested on the current so-
lution. For each direction d, the point x̂ :D x C hd
is constructed and f (x̂) is computed. Recall that h is
the parameter which controls the density of the search
space discretization. If the constructed point x̂ 2 S
has a more favorable objective value than the cur-
rent point x, then x̂ replaces x, and the process con-
tinues. The phase terminates when a locally optimal
point x� 2 S is found. The point x� is said to be lo-
cally optimal if f (x�) � f (x� C hd)8d 2 f1; 2; : : : ;
MaxDirToTryg. Again, for a slightly more in depth
description of this procedure, the reader should see the
paper by Hirsch et al. [23].

Computational Results The proposed procedure
was implemented in the C++ programming language
and complied using Microsoft® Visual C++ 6.0. It was
tested on a PC equipped with a 1700MHz Intel® Pen-
tium® M processor and 1GB of RAM operating un-
der the Microsoft® Windows® XP environment. The
C-GRASP parameters used are provided in Table 1.
First, we tested the C-GRASP on 10 instances produced
by the Balasundarm–Butenko problem generator in [3].
Though these problems are relatively small, they have
proven themselves to be quite formidable against the
Multilevel Coordinate Search (MCS) black-box opti-
mization algorithm.We also tested the C-GRASP on 12
instances from the TSPLIB [34] collection of test prob-
lems for the TRAVELING SALESMAN PROBLEM. These
problems are also used as benchmark problems for test-
ing MAX-CUT heuristics [19].

For further comparison, all instances were tested us-
ing the rank-2 relaxation heuristic circut [8], as well
as with a simple 2-exchange local search heuristic which

3uniformly at random

procedure LocalSearch(G;MaxIter)
1 f �  �1
2 x�  ;
3 for j = 1 to MaxIter do
4 x  KruskalMST(x;G)
5 x  LocalImprove(x;G)
6 if f (x) � f � then
7 x�  x
8 f �  f (x)
9 end if
10 end for
11 return x�
end procedure LocalSearch

Maximum Cut Problem, MAX-CUT, Figure 3
The 2-exchange local search routine

is outlined in the pseudo-code provided in Fig. 3. The
method receives as input a parameter MaxIter indi-
cating the maximum number of iterations to be per-
formed and G D (V ; E) the instance of the problem
whereupon a maximum spanning tree is found using
Kruskal’s algorithm [1]. The spanning tree, due to its
natural bipartite structure provides a feasible solution
to which a swap-based local improvement method is
applied in line 5. The local improvement works as fol-
lows. For all pairs of vertices (u,v) such that u 2 S and
v 2 S̄, a swap is performed. That is, we place u 2 S̄
and v 2 S. If the objection function is improved, the
swap is kept; otherwise, we undo the swap and exam-
ine the next (u,v) pair. The local search was tested on
the same PC as the C-GRASP. The circut heuristic
was compiled using Compaq® Visual Fortran on a PC
equipped with a 3.60GHz Intel® Xeon® processor and
3.0 GB of RAM operating under the Windows® XP en-
vironement.

Table 2 provides computational results of the al-
gorithms on the 10 Balasundarum–Butenko instances
from [3]. The first three columns provide the instance
name, the number of vertices and the optimal solution.
The solutions from the heuristics are provided next.
The solutions from the Multilevel Coordinate Search
algorithm were provided in [3]. For all of these in-
stances, the time required by the C-GRASP, circut,
and the local search to find their best solutions was frac-
tions of a second. Computing times were not listed for
the MCS algorithm in [3]. Notice that the 2-exchange
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Maximum Cut Problem, MAX-CUT, Table 2
Comparative results from the Balasundaram–Butenko in-
stances from [3]

Name jVj Opt C-GRASP MCS circut LS
G5-1 5 126 126 125 125 126

G5-2 5 40 40 39 40 40
G8-1 8 1987 1802 1802 1987 1987
G8-2 8 1688 1631 1671 1688 1688

G10-1 10 1585 1585 1513 1585 1585
G10-2 10 1377 1373 1373 1377 1377
G15-1 15 399 389 389 399 399
G15-2 15 594 594 593 594 594
G20-1 20 273 267 273 273 273
G20-2 20 285 285 282 285 285

local search computed optimal solutions for each of
these instances, followed closely by circut which
found optimal cuts for all but one problem. As for the
continuous heuristics, the C-GRASP found optimal so-
lutions for 5 of the 10 instances while the MCS proce-
dure produced optimal cuts for only 1 instance. For the
5 instances where C-GRASP produced suboptimal so-
lutions, the average deviation from the optimum was
3.54%.

Table 3 shows results of the C-GRASP, local search,
and circut heuristics when applied to 12 instances
from the TSPLIB collection of test problems for the
TRAVELING SALESMAN problem [34]. The first two
columns provide the instance name and the size of the

Maximum Cut Problem, MAX-CUT, Table 3
Comparative results from TRAVELING SALESMAN PROBLEM instances [34]

Name jVj C-GRASP Time (s) LS Time (s) circut Time (s)
burma14 14 283 0:120 283 0.00 283 :046
gr17 17 24986 0:19 24986 0.00 24986 :047
bays29 29 53990 0:701 53990 0.01 53990 1:109

dantzig42 42 42638 1:832 42638 0.01 42638 1:75
gr48 48 320277 4:216 320277 0.00 320277 3:672
hk48 48 771712 2:804 771712 0.00 771712 2:516
gr96 96 105328 52:425 105328 0.01 105328 14:250
kroA100 100 5897368 66:445 5897368 0.01 5897368 2:359
kroB100 100 5763020 94:175 5763020 0.01 5763020 2:531
kroC100 100 5890745 66:545 5890745 0.01 5890745 2:500
kroD100 100 5463250 94:155 5463250 0.03 5463250 2:547
kroE100 100 5986587 69:64 5986587 0.03 5986587 2:500

vertex set |V |. Next the solutions are provided along
with the associated computing time required by the re-
spective heuristic. Notice that for all 12 instances, the
three heuristics all found the same solutions. Notice
that in terms of computation time, the simplest heuris-
tic, the 2-exchange local search seems to be the best
performing of the three methods tested. The rank-2 re-
laxation algorithm circut is also very fast requiring
only 2.99 s on average to compute the solution. On the
other hand, the C-GRASP method did not scale as well
as the others. We see that there is a drastic increase in
the solution time as the number of vertices increases
beyond 48.

This is not particularly surprising. The philosophi-
cal reasoning behind the slow computation time of the
C-GRASP relative to the discrete heuristics being that
the C-GRASP is a black-box method and does not take
into account any information about the problem other
than the objective function. To the contrary, the local
search and circut specifically exploit the combina-
torial structure of the underlying problem. This allows
them to quickly calculate high quality solutions.

Conclusions

In this paper, we implemented a new metaheuristic for
the MAXIMUM CUT problem. In particular, we pro-
posed the use of a continuous greedy randomized adap-
tive search procedure (C-GRASP) [23], for a contin-
uous formulation of the problem. To our knowledge,
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this is the first application of C-GRASP to continuous
formulations of discrete optimization problems. Nu-
merical results indicate that the procedure is able to
compute optimal solutions for problems of relatively
small size. However, the method becomes inefficient on
problems approaching 100 nodes. The main reason for
this is the fact that C-GRASP is a black-box method,
in that it does not take advantage of any information
about the problem structure. Recall that the only input
to the method is some mechanism to compute the ob-
jective function. A natural extension of the work pre-
sented here is to enhance the C-GRASP framework to
take advantage of the structure of the problem at hand.
Using a priori information about the problem being
considered, one could modify the algorithm to include
these properties which would presumably reduce the
required computation time.
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Abstract

In decision making under uncertainty an important
step is uncertainty quantification. Game theory has
been traditionally used since it injects robustness into
the decision process. Another popular framework is
that of maximum entropy. The purpose of this article
is to briefly explain the two solution concepts and point
out situations in which they are identical.

Background

Consider the following optimization problem:

inf
x2X

F(x) ,
Z
˝

f (x; !) dP(!) ; (1)

where x is the decision vector, ! is a vector represent-
ing the random parameters that are distributed accord-
ing to the probability measure P. We are not concerned
here with the exact properties of f (�; �) for the problem
to be valid, the interested reader is referred to [2] where
the properties of this type of problem are made more
precise. Instead we give two well known and studied ex-
amples of this formulation. The first is the so called two-
stage recourse problem and the second is the chance
constrained formulation. The former can be formulated
as in Eq. (1) with the following definition for the objec-
tive function:

f (x1; !) , fd(x1)C fu(x1; !) ; (2)

and where

fu(x1; !)

, inf
x2(!)
f f2(x1; x2(!); !) j x2(!) 2 X2(!; x1)g :

(3)

In Eq. (2) the objective function is split into two parts,
the deterministic ( fd) and the uncertain part ( fu) of
the problem . The decision to be taken is x1. The full
consequences of following a particular strategy are not
known exactly since the true cost will depend on the
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solution of Eq. (3). The objective is therefore to find the
decision x1 that is best on average.

A different decision model is given by chance con-
strained programming problems. These can be formu-
lated as follows:

inf
x
f f (x) j Pr(g(x; !) � 0) � ˛g ;

where we optimize an objective function and impose
constraints that need to be satisfied with a probability
of above a certain threshold ˛.

These two models have been widely studied and
have found many applications where traditional opti-
mization is used. It is also evident that their usefulness
revolves around our ability to provide a reasonable de-
scription of the uncertainties.

In order to provide a description of the uncertain-
ties a technique based on moment matching can be
used. Under this framework we assume that the deci-
sion maker can not provide an exact description of the
distribution but only knows some of its moments. The
problem is to recover a meaningful probability measure
given this knowledge: suppose a vector of functions
m(!) D [m1(!) : : :mn(!)] and a vector of scalars
� D [�1 : : : �n] are given, the problem is to find a P
such that:

Z
˝

mi(!) dP(!) D �i ; i D 1; : : : ; n
Z
˝

dP(!) D 1 ;

P(!) � 0 ; a:e ;

(4)

where˝ is a compact subset ofRm . ByP wewill denote
the set of of all finite signed measures that are defined
on the �-field F of ˝ . The vector m(!) represents the
(generalized) moments of the distribution. The prob-
lem in Eq. (4) is the so called generalized Hausdorffmo-
ment problem. The aim is to recover a compactly sup-
ported distribution from a finite number of its general,
not necessarily power, moments. This is a variation of
the classical moment problem formulated by Stieltjes.
In [4] one can find a comprehensive summary of the
main results when ˝ D [0; 1]. Prekopa [13] provides
an excellent summary of results that are especially rele-
vant in stochastic optimization problems.

Methods

Solving optimization problems where the uncertainty
is only known through its moments requires some kind
of regularization in order to fix the probability measure
with which the optimization is to be done. Two popular
frameworks are game theoretic and maximum entropy
approaches. Under the game theory framework one se-
lects the distribution with the worst case realization of
the uncertainties. When a maximum entropy solution
is sought, one optimizes with respect to the distribution
with the maximum uncertainty.

Game Theory Approach

When P is unknown or not known exactly then the de-
cision maker assumes that if strategy x is followed then
the consequences of following this strategy will be de-
cided by some law of Nature. Motivated by the appli-
cation oriented requirement for robust decision mak-
ing, we assume that Nature is antagonistic. If we decide
to follow strategy x then Nature will follow strategy P*.
The latter is the solution of the following optimization
problem:

˚(x) D sup
P2P

Z

˝

f (x; !) dP(!) ; (5)

where˚(x) represents the value (outcome) of the game
if strategy x is followed. Obviously ˚(x) � F(x) for
given x 2 X and for all P 2 P. Therefore, after wemini-
mize Eq. (5) for xwe will be guaranteed to attain a value
which is as good as ˚(x) whatever strategy nature de-
cides to follow. The robustness property of the minimax
strategy originates from the latter property. We thus re-
formulate Eq. (1) as follows:

inf
x2X

sup
P2P

Z

˝

f (x; !) dP(!) : (6)

This approach has its origins in game theory and has
been used extensively in many areas of optimization.
See for example [9] for an excellent introduction to
game theory, applications of minimax especially in eco-
nomics and finance can be found in [14]. Numerical al-
gorithms to solve Eq. (6) have been proposed in [5,6].
The general idea of these algorithms is to solve the inner
maximization problem using results for general Cheby-
shev inequalities [4,17]. However these methods re-
quire several global optimization steps to be performed
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at each iteration in order to identify the support of the
measure that maximizes Eq. (5). Moreover it is usually
assumed that the max-function is convex. Algorithms
based on stochastic quasi-gradient methods were pro-
posed in [4,17]. Recently Shapiro et al. [15] proposed
the use of a reference distribution in order to refor-
mulate the minimax problem into a standard stochastic
programming problem. Bertsimas et al. [1] and Lassere
[11] proposed a semidefinite formulation of the inner
maximization problem in Eq. (6).

Maximum Entropy Formulation

The formulation of the moment problem using the
maximum entropy principle was initiated by Jaynes [8].
The derivations in this Section are more or less stan-
dard (see e. g. [12]).We will assume that a multivariate
continuous density is postulated, discrete distributions
share similar properties. Under these assumptions the
maxent formulation is given by:

inf
p2Pc

Q(p; h) D
Z
˝

p(!) ln
p(!)
h(!)

d!

s:t
Z
˝

mi(!)p(!) d! D �i i D 0 : : : n ;
(7)

where Pc denotes the restriction on P to all absolutely
continuous measures w.r.t d!, we will write � � � to
mean that � is absolutely continuous w.r.t �. The func-
tion in the objective function is the so called Kullback
Leibler divergence (see e. g. [3]) and serves as a kind
of distance metric between h(!) and p(!); the former
is a distribution that is assumed to be known. The ob-
jective is to find a p.d.f with the prescribed moments
that is as close to h as possible. If such a function is not
known then we take h(!) � 1 (i. e. the uniform dis-
tribution) and the problem becomes the classical max-
imum entropy formulation. The convex functional de-
fined by Q(p; h) is always strictly positive and is zero
if and only if p D h a.e. It is also worth mentioning
that in general Q(p; h) ¤ Q(h; p). These properties of
Q(p; h) are well known. We refer the interested reader
to [3] for more properties of the entropy function. We
assume that m0(!) D �0 D 1. Note that by consid-
ering general moments as opposed to power moments
allows us to impose fractile constraints, this property is
important in many applications.

While the problem in Eq. (7) is a convex optimiza-
tion problem it cannot be handled using standard nu-

merical algorithms. For this reason one considers the
dual of Eq. (7). The Lagrangian associated with Eq. (7)
is given by:

L(p; �) D
Z
˝

p(!) ln
p(!)
h(!)

d!

C

nX
iD0

�i

�Z
˝

mi (!)p(!) d! � �i

�
:

The dual problem of Eq. (7) is given by:

sup
	

D(�) D inf
p2Pc

L(p; �) : (8)

It is well known that the inner minimization on
Eq. (8) can be done explicitly using functional deriva-
tives [12,16]:

L(pC ıp; �)

D

Z
˝

(p(!)C ıp(!)) ln
�
p(!)
h(!)

�
1C

ıp(!)
p(!)

�	
d!

C

nX
iD0

�i

�Z
˝

mi(!)(p(!)C ıp(!)) d! � �i

�

D L(p; �)C
Z
˝

�
1C ln

�
p(!)
h(!)

�	
ıp(!) d!

C

nX
iD0

Z
˝

�imi(!)ıp(!) d! ;

where to get the last equality we assumed that ıp is
small, used the approximation ln(1 C �) 	 � (which
is valid for small �) and ignored second order terms.
The stationary points of the Lagrangian must therefore
satisfy:

p(!) D h(!) exp

 
�1 �

nX
iD0

�imi(!)

!
: (9)

Using the normalization condition we have:

Z D exp(1C�0) D
Z
˝

h(!) exp

 
�

nX
iD1

�imi(!)

!
d!:

Using the equation above we can write Eq. (9) as fol-
lows:

p(!) D
h(!)
Z exp

 
�

nX
iD1

�imi(!)

!
: (10)
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Finally, using Eq. (10) and the normalization constraint
in Eq. (8) we find the following explicit form for the
dual problem:

sup
	

D(�) D � lnZ �
nX

iD1

�i�i : (11)

The dual formulation given above is more useful than
the primal problem since the dual problem is amenable
to conventional optimization algorithms.

Relationships Between Game Theory
andMaximum Entropy

The minimax approach has proven to be a prudent
method for problems where the nature of the uncer-
tainty is not known exactly. We will approach the prob-
lem somewhat differently by dispensing the usual as-
sumptions of convexity but allowing the decisionmaker
to adopt mixed strategies. Such an approach (in the
context of Stochastic Programming) has been described
in Kolbin [10] but has not received much attention. The
advantage of allowing mixed strategies is that the prob-
lem exhibits a saddle point. Topsøe [18] showed that
if the decision problem has a specific structure (will be
outlined below) then the solution of the maximum en-
tropy problem and that of zero-sum games are dual to
each other. Recently Grünwald et al. [7] has further de-
veloped this approach so that it can be applied to more
general games. This generalization however has been
done at the expense of defining more general entropy
functionals; these do not, in general, render themselves
to numerical algorithms. We believe this relationship to
be very interesting and can under certain conditions be
used as an additional motivation for adopting the max-
imum entropy principle.

Let ˝ be a compact subset of Rn and let F be the
�-field generated by ˝ . We will use ! to denote a ran-
dom vector whose distribution is known to belong to
a family P. The following meaningless formulation of
a stochastic programming problem:

inf
x2X

f (x; !)

s:t gi (x; !) � 0 ; i D 1; : : : ; k

can be placed into a pertinent form by formulating it as
a two-person zero sum game G D (x; !; q). The first
player is the Decision Maker (DM) that selects vectors

x 2 X � Rm . The second player is Nature that selects
an event ! 2 F with probability P(!), it is further as-
sumed that the exact probability measure of Nature is
only known to belong to a certain family P. The func-
tion q represents the outcome of the game given the
strategies the two players decide to follow. Kolbin [10]
suggested the following form:

q(x; !) D f (x; !)C
kX

iD1

ˇi (gi(x; !)) ; (12)

where ˇi(a) is a continuous non-decreasing penalty
function that is 0 when a � 0. An example of
such a function is the max-penalty function given by:
ci maxfgi (x; !); 0g (ci is a penalty parameter).

The DM would like to minimize the outcome of the
game given by Eq. (12) whereas Nature being antago-
nistic would like to maximize this quantity:

inf
x2X

sup
P2P

H(x; P) D
Z
˝

q(x; !) dP(!) : (13)

For the game above to exhibit a saddle point convexity
assumptions need to be imposed on q. Many problems
of interest do not have this property and it is necessary
to resort to mixed strategies for the DM. Using our as-
sumptions that q is continuous, and the compactness of
˝ and X, it can be shown [10] that if we allow the DM
to follow mixed strategies then the game in Eq. (13) will
have a saddle point, i.e:

inf
K2K

sup
P2P

Z
˝�X

q(x; !) dP(!) dK(x)

D sup
P2P

inf
K2K

Z
˝�X

q(x; !) dP(!) dK(x)

D H(K�; P�) ;

(14)

where the set K represents the family of randomized
strategies of the DM.

Assume that the DM selects a probability measure
K 2 K and Nature selects P 2 P and both have their
support in ˝ (or X). Moreover assume that the objec-
tive function of the game has the following functional
form:

H(K; P) D
Z
˝

�p(!) ln k(!) d! ; (15)

where p(!) and k(!) are the Radon–Nikodym deriva-
tives w.r.t d! of P 2 P and K 2 K respectively.
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Topsøe [18] observed that under these conditions the
maximum entropy solution and the minimax solution
coincide. To see why this is the case, suppose that na-
ture selects a probability measure from the following
family:

Pc D

�
dP
d!
j P 2 P;

Z
˝

mi(!) dP(!) D �i ;

i D 1; : : : ; n P � d!
	
;

where P � d! is used to denote that P is absolutely
continuous w.r.t to d!. Kc , the family of admissible
strategies for the DM is defined in an analogous man-
ner. If Nature adopts a maximum entropy distribution,
then its strategy can be found by solving:

sup
p2Pc

M(p) D
Z
˝

�p(!) ln p(!) d! :

The optimal solution will be given by:

p�(!) D expf�1 � ��0 �
nX

iD1

��i mi(!)g :

The optimal strategy of the DM can then be obtained
by solving:

inf
k2Kc

Z
˝

�p�(!) ln k(!) d! :

Using the information inequality [3] we have:
Z
˝

�p�(!) ln k(!) d! �
Z
˝

�p�(!) ln p�(!) d! ;

(16)

the above inequality is satisfied as an inequality if and
only if k(!) D p�(!) a.e. Consequently the optimal
strategy for the DM is the same as Nature’s strategy.

Conversely, assuming that the game has the func-
tional form given in Eq. (15), then the minimax solu-
tion of the game in Eq. (14) is the same as the maximum
entropy solution. Indeed, by using the information in-
equality we have:

sup
p2Pc

Z
˝

�p(!) ln k(!) d!

�

Z
˝

�p�(!) ln k(!) d!

�

Z
˝

�p�(!) ln p�(!) d! D M(p�) ;

where p* is the distribution of maximum entropy. From
the above relationship it follows that:

M(p�) � inf
k2Kc

sup
p2Pc

Z
˝

�p(!) ln k(!) d! ; (17)

if we choose k D p� as the minimizer of the left hand
side of Eq. (14), then:

sup
p2Pc

Z
˝

�p(!) ln p�(!) d! D ���0 �
nX

iD1

��i �i

D M(p�) ;

it follows from above that:

inf
k2K

sup
p2Pc

Z
˝

�p(!) ln k(!) d! � M(p�) ; (18)

and therefore k D p� is indeed theminimizer of the left
hand side of Eq. (14). From the well known property of
minimax problems:

M(p�) D inf
k2K

sup
p2Pc

Z
˝

�p(!) ln k(!) d!

� sup
p2Pc

inf
k2K

Z
˝

�p(!) ln k(!) d! ;

and from:

sup
p2Pc

inf
k2K

Z
˝

�p(!) ln k(!) d!

� inf
k2K

Z
˝

�p�(!) ln k(!) d! D M(p�) ;

we conclude that the game has a saddle point at p D
k D p�.

For games in the form of Eq. (15), the relationship
between game theory and maximum entropy is most
useful both theoretically and practically. For games not
in the form described above can still be approached via
maximum entropy methods but the definition of the
entropy functional is given by amore general functional
form. Grünwald et al. [7] defined the generalized en-
tropy function as:

M(P) D inf
k2K

Z
˝�X

q(x; !) dP(!) dK(x) :

The maximum entropy problem becomes:

max
p2Pc

M(P) : (19)
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They showed that using the generalized definition of
entropy one could find the same results for both game
theory and maximum entropy problems. Even though
the formulation in Eq. (19) is very general, unfortu-
nately there is no general way to solve it. However, the
relationship between the two principles is worth further
investigation.
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Images can be used to characterize the underlying dis-
tribution of certain physical properties, such as density,
shape, and brightness, of an object under investigation.
In many applications where an image is required, only
a finite number of observations and/or indirect mea-
surements can be made. Image reconstruction is a pro-
cedure for processing the measurement data to con-
struct an image of the object. This section introduces
the basic concept of image reconstruction from projec-
tion data. Two types of entropy optimization mod-
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els, namely, the finite-dimensional model and vector-
space model, and three classes of entropy optimiza-
tion methodologies, namely, the discretization meth-
ods, Banach-space methods (e. g., MENT) and Hilbert-
space methods (e. g., finite element method) are in-
cluded. For more details about image reconstruction,
the reader is referred to [2,7,13] and the references
therein.

A very important scientific application of image re-
construction is in computerized tomography (CT) for
medical diagnosis. Physicians need to know, for exam-
ple, the location, shape, and size of a suspected tumor
inside a patient’s brain in order to plan a suitable course
of treatment. With computerized tomography, images
of cross-sections of a human body can be constructed
from data obtained by measuring the attenuation of X-
rays along a large number of straight lines (or strips)
through each cross-section. For ease of introduction,
we illustrate the basic ideas about image reconstruction
with the example of two-dimensional X-ray CT, with
the understanding that the discussion can be general-
ized to higher-dimensional settings.

In this example, the distribution to be determined is
that of the X-ray linear attenuation coefficient of hu-
man body tissues. The total attenuation of the X-ray
beam between a source and a detector is approximately
the integral of the linear attenuation coefficient along
the line between the source and the detector. The un-
known distribution of the X-ray linear attenuation co-
efficient is represented by a density function f of two
variables, which assumes zero-value outside a squared-
shape region. The squared region is usually referred to
as the support of the image.

Two basic types of entropy optimization mod-
els, namely, finite-dimensional model and vector-space
model, are commonly used to decide the density func-
tion f . The finite-dimensional models approximate the
density values over the support of the image at a fi-
nite number of grid points, while the density is ap-
proximated by a real-value function for the entire scan-
ning region in the vector-space models. The latter mod-
els were motivated to reconstruct the image with only
a small number of available projections.

In the finite-dimensional models, the support of the
density f is represented by n (given by the users) reg-
ularly spaced grid points, and the values of the density
function f at these points are denoted by f � (f 1, . . . ,

f n). Assume that m projections are made and the mea-
surement data d� (d1, . . . , dm) are obtained.

The relationship between the unknown density val-
ues f and the observed measurement d can be approxi-
mated by a linear relation

d 	 Af; (1)

where A = [aij] is a projection matrix.
Note that the approximation sign in (1) reflects pos-

sible errors in modeling and measurement. Also note
that, in the classical square pixel model, the image is
discretized by partitioning its support into a finite num-
ber of equi-sized square regions (called pixels or cells)
whose centers are those n sample points. By assuming
that the density function f is constant in each of the
equi-sized pixels, i. e., f = f j throughout pixel j, the value
of aij in the projection matrix is simply the length of the
intersection of the line corresponding to the ith projec-
tion with the pixel surrounding the jth sample point.

Once the projection matrix A is defined and the
measurement d is known, the problem is to find an f
satisfying (1). To cope with the errorsmentioned above,
G.T. Herman [6] suggested that (1) be replaced by an
‘interval constraint’ and a nonnegativity constraint be
added:

d � � � Af � dC �; (2)

f � O; (3)

where � = (�1, . . . , �m) is anm-vector of user-chosen tol-
erance levels. Note that (2) can be replaced by an equiv-
alent system of inequalities

A0f � d0; (4)

with twice as many one-sided inequalities [2,6].
For such an image reconstruction model, we can

adopt either the ‘feasibility approach’ to find a solution
to (2) and (3) directly, or the ‘optimization approach’
to find a solution that is not only feasible in the above
sense but also optimal with respect to a certain crite-
rion. In the literature, at least three different types of
optimization problems have been proposed, namely,
the entropy maximization problem, the quadratic min-
imization problem, and the maximum likelihood prob-
lem.
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The entropy optimization problem seeks to opti-
mize an entropic objective function subject to (2) and
(3) as follows.

Model 1:8̂
ˆ̂̂<
ˆ̂̂̂
:

max �

nX
jD1

f j ln f j

s.t. d � � � Af � dC �;
f � O:

(5)

Some researchers proposed models in which the f j’s are
normalized in such a way that

Pn
jD1 f j = 1, and the pro-

jection matrix and the measurement data differ from
those of Model 1. See, e. g., [4]. In this way, a solu-
tion that is consistent with the measurement data but
remains maximally noncommittal can be found. Note
that an optimal solution to such models can also be in-
terpreted as the most probable solution that is consis-
tent with the measurement data [3].

Other variations of Model 1 exist. Despite possible
modeling and measurement errors, one common prac-
tice is to replace (1) and inequalities (2), and (5) by
a system of equations: Af = d.

A different version of the finite-dimensional en-
tropy optimization model begins with the definition of
an error vector e = (e1, . . . , em)|, where

ei � di �
nX

jD1

ai j f j; i D 1; : : : ;m:

Assume that errors e1, . . . , em exist due to imprecise
measurement and are independent noise terms with
zero mean and known variance �2

i . S.F. Burch et al. [1]
observed that the strong law of large numbers implies
that

Q(f) �
1
m

mX
iD1

�Pn
jD1 ai j f j � di

�2

�2
i

! 1;

as m!1:

Thus, ifm is sufficiently large, the following entropy op-
timization problem with quadratic constraints can be
useful:

Model 2:8̂
ˆ̂̂<
ˆ̂̂̂
:

max �

nX
jD1

f j ln f j

s.t. 1
m (Af� d)>S2(Af� d) D 1;
f j � 0; j D 1; : : : ; n;

where S is a diagonal matrix with 1/� i being its ith di-
agonal element.

Concerns such as the smoothing effect, nonunifor-
mity, peakness, and exactness [14] of a constructed im-
age can also be addressed in this model with proper
modification of the objective functions and constraints.
So far, we have used the square pixel model to illustrate
the idea of entropy optimization for image reconstruc-
tion. Other models exist [2].

For an introduction to the concept of Shannon’s en-
tropy and related entropy optimization principles, i. e.,
principle of maximum entropy and principle of mini-
mum cross-entropy, see � Entropy optimization: Shan-
non measure of entropy and its properties. A large
amount of literature has been devoted to developing it-
erative methods for solving finite-dimensional entropy
optimization problems with linear and/or quadratic
constraints. For details and a unification of such meth-
ods, see [3].

The method currently employed in most CT sys-
tems is the ‘filtered back-projection’ method, which is
based on a finite-dimensional model. (See [5,10] for
details.) Compared to the iterative methods for solv-
ing entropy optimization problems, this method pro-
vides speed, which enables reconstruction of the im-
age while X-ray transmission data are being collected.
Hence the time between scanning and obtaining re-
constructed images is reduced. However, there are sit-
uations where iterative methods produce compara-
ble or better reconstructed images than the filtered
back-projection method, e. g., in image reconstruction
with few projections or in high-contrast image recon-
struction. The ever increasing computer speed and its
companion reduction in cost may increase the de-
sirability of employing iterative methods in CT sys-
tems.

In many situations, e. g., conducting diagnostic ex-
periments on plasma in magnetic confinement devices
or laser target impositions with measurements on fu-
sion reactor cores, only few projections are available,
e. g., less than 10. When the finite-dimensional en-
tropy optimization model is applied, it tends to pro-
duce ‘streaking’ artifacts. This motivated the use of the
vector-space model.

Take the two-dimensional X-ray CT problem as an
example. By assuming that the unknown density func-
tion f (x, y) is continuous over a compact support D
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such that

f (x; y) � 0 and
Z Z

D
f (x; y) dx dy D 1; (6)

G. Minerbo [9] defined the entropy of f (x, y) as

�( f ) D �
Z Z

D
f (x; y) ln[ f (x; y)A] dx dy;

where A is the area of D. Denote the set of continuous,
nonnegative functions with compact support in D by
C+ (D).

The scanning area is partitioned into parallel strips,
each of which is penetrated by an X-ray beam. Let � j, j =
1, . . . , J, be the J distinct projection angles with respect
to the X-axis of the scanning area. Also let M(j) be the
number of parallel beams associated with the jth pro-
jection or view, and Sj1 < � � � < SjM(j) be a set of abscissas
for the jth view. The projection data are assumed to be
in the form of the following ‘strip integrals’:

Pjm( f ) �
Z S j(mC1)

S jm

Z 1
�1

f (s cos � j � t sin � j; s sin � j C t cos � j) dt ds;

where m = 1, . . . , M(j) and j = 1, . . . , J. It is assumed
that, for j = 1, . . . , J,

Z 1
�1

f (s cos � j � t sin � j; s sin � j C t cos � j) dt D 0;

for s < Sj1 or s > SjM( j):

LetGjm denote the observed values of Pjm (f ), form = 1,
. . . ,M(j), and j = 1, . . . , J. Note that (6) implies Gjm � 0
and

PM( j)
mD1 Gjm = 1.

Then the vector-space model results in the follow-
ing optimization problem:

Model 3:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

sup
CC(D)

�( f )

s.t. Pjm( f ) D Gjm ;

m D 1; : : : ;M( j);
j D 1; : : : ; J:

(7)

A finite-dimensional unconstrained dual problem
can be derived by using the technique of Lagrange mul-
tipliers. An algorithm known as MENT [9] was pro-
posed. It was shown that the solutions produced by

MENT converge to a density function f � which satisfies
the constraint (7) with �(f �) = supCC(D) � (f ). How-
ever, the limiting density function f � is not continu-
ous. Actually, as pointed out in [8], f � is piecewise con-
stant and f � 62 C+(D). When few projections are avail-
able and the object being scanned has a simple structure
(or close to circular symmetry in density), some prelim-
inary computational results indicated the potential of
this approach.

Recognizing the fact that the supremum of Model
3 is not attained by any function f 2 C+ (D), M. Klaus
and R.T. Smith [8] defined an alternative formulation
in a richer class of functions than C+(D). More pre-
cisely, they replacedC+ (D) by L2C (D), the set of all non-
negative square integrable functions on D, as the set-
ting. Note that all piecewise-constant functions over D
are contained in L2C(D). Also recognizing that measure-
ments may not be consistent and even be flawed, they
considered an optimization problem where the objec-
tive function is the original entropy functional � (f ) mi-
nus a penalty term corresponding to the residual error
in meeting the measurement constraints, and the con-
straint is that the maximizer lies in a weakly compact
set that is determined by known physical information
about the density function of the object to be scanned.
A corresponding formulation becomes

Model 4:

sup
f2˝

G( f ) � �( f )� �
X
j;m

[Gjm � Pjm( f )]2;

where � > 0 is an adjustable penalty parameter and˝ is
a convex and weakly (sequentially) compact set of non-
negative functions in L2C (D), with a compact support in
D and containing physical information known a priori
about the object to be scanned, e. g., upper and lower
bounds on the density function. (A set ˝ of nonnega-
tive functions in L2C (D) is weakly (sequentially) com-
pact if and only if every sequence in ˝ has a weakly
convergent subsequence whose weak limit lies in ˝ ;
a sequence {f n(x, y)} converges weakly to f (x, y) if and
only if the sequence {hf n(x, y), g(x, y)i} converges to
hf (x, y), g(x, y)} for every g(x, y) 2 L2C (D), where hh1,
h2i �

R R
h1 (x, y) h2 (x, y) dxdy denotes the inner

product of h1 and h2 in the space of L2C (D).)
With the aid of the theory of Hilbert space, it can be

shown [8] that G has a unique maximizer in˝ , for any
given data Gjm,m = 1, . . . ,M(j), j = 1, . . . , J.
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Based on this alternative formulation, the density
function f (x, y) can be approximated by using the fi-
nite element method [11]. For simplicity, assume that D
= [�1, 1] × [� 1, 1]. First, we superimpose a fixed rect-
angular mesh on D, with uniform mesh size h = 1/n in
both the x and y directions. We also use the product of
piecewise linear functions in x and y as the finite ele-
ment space Sh. In this way, a basis for Sh has the form

 k(x; y) D  i (x) l (y); for k D 1; : : : ; (2nC 1)2;

where

l D
�
(k � 1) � (k � 1) (mod 2nC 1)

2nC 1

	
� n;

i D k � (l C n)(2n C 1) � n � 1;

and

 j(t) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

0 if t � ( j � 1)h
or t � ( jC 1)h;

t�( j�1)h
h ; if ( j � 1)h � t � jh;

( jC1)h�t
h ; if jh � t � ( jC 1)h:

It is reasonable to expect that, in practice, one
should know a priori the minimum andmaximum den-
sities of the object being examined. Hence we focus on
a simple constraint set

˝ D

�
f 2 L2C(D) :

0 < a � f � b <1 a.e.;
f D 0 a.e., in R2 n D

	
:

The density function f (x, y) is then approximated in
Sh by

f (x; y) D
NX

kD1

ck k(x; y);

where N = (2n + 1)2 and ck’s are chosen as the optimal
solution of the following finite-dimensional optimiza-
tion problem:

8̂
ˆ̂̂<
ˆ̂̂̂
:

sup
c2RN

G

 NX
kD1

ck k (x; y)

!

s.t. 0 < a �
NX

kD1

ck k (x; y) � b:

This problem can be further reduced to
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

supc2RN �

 NX
kD1

ck k(x; y)

!

��
X
j;m

"
Gjm �

NX
kD1

ckPjm( k(x; y))

#2

s.t. 0 < a � ck � b; k D 1; : : : ;N:

Preliminary computational results reported in [11,
12] indicate some improvements of this alternative ap-
proach over the MENT algorithm when the object un-
der investigation does not have circular symmetry in
density and has a high density area near the edge of the
scanning region.

See also

� Entropy Optimization: Interior Point Methods
� Entropy Optimization: Parameter Estimation
� Entropy Optimization: Shannon Measure of

Entropy and its Properties
� Jaynes’ Maximum Entropy Principle
� Optimization in Medical Imaging
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The maximum flow problem seeks the maximum pos-
sible flow in a capacitated network from a specified
source node s to a specified sink node t without exceed-
ing the capacity of any arc. A closely related problem is
the minimum cut problem, which is to find a set of arcs
with the smallest total capacity whose removal separates
node s and node t. The maximum flow and minimum
cut problems arise in a variety of application settings
as diverse as manufacturing, communication systems,
distribution planning, matrix rounding, and schedul-
ing. These problems also arise as subproblems in the
solution of more difficult network optimization prob-
lems. In this article, we study the maximum flow and
minimum cut problems, briefly introducing the under-
lying theory and algorithms, and presenting some ap-
plications. See [2] for a wealth of additional material
that amplifies on this discussion.

Let G = (N,A) be a directed network defined by a set
N of n nodes and a set A of m directed arcs. We refer
to nodes i and j as endpoints of arc (i, j). A directed path
i1� i2 � � � � � ik is a set of arcs (i1, i2), . . . , (ik�1, ik). Each
arc (i, j) has an associated capacity uij denoting the max-
imum amount of flow on this arc. We assume that each
arc capacity uij is an integer, and let U =max {uij:(i, j) 2
A}. The network has two distinguished nodes, a source
node s and a sink node t. To help in representing a net-
work, we use the arc adjacency list A(i) of node i, which
is the set of arcs emanating from it, that is, A(i) = {(i, j)
2 A:j 2 N}.

The maximum flow problem is to find the maxi-
mum flow from the source node s to the sink node t
that satisfies the arc capacities and mass balance con-
straints at all nodes. We can state the problem formally
as follows.

max v (1)

subject to

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji

D

8̂
<̂
ˆ̂:

v for i D s;
0 for i … fs; tg;
�v for i D t;

(2)

0 � xi j � ui j for all (i; j) 2 A: (3)
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We refer to a vector x = {xij} satisfying (2) and (3) as
a flow and the corresponding value of the scalar variable
v as the value of the flow.We refer to the constraints (2)
as the mass balance constraints, and refer to the con-
straints (3) as the flow bound constraints.

In examining the maximum flow problem, we im-
pose two assumptions:
i) all arc capacities are integer; and
ii) whenever the network contains arc (i, j), then it also

contains arc (j, i).
The second assumption is nonrestrictive since we allow
arcs with zero capacity.

Sometimes the flow vector x might be required to
satisfy lower bound constraints imposed upon the arc
flows; that is, if lij � 0 specifies the lower bound on the
flow on arc (i, j) 2 A, we impose the condition xij � lij.
We refer to this problem as themaximum flow problem
with nonnegative lower bounds. It is possible to trans-
form amaximum flow problemwith nonnegative lower
bounds into a maximum flow problem with zero lower
bounds.

The minimum cut problem is a close relative of
the maximum flow problem. A cut [S; S] partitions the
node set N into two subsets S and S = N � S It consists
of all arcs with one endpoint in S and the other in S. We
refer to the arcs directed from S to S, denoted by (S; S),
as forward arcs in the cut and the arcs directed from S
to S, denoted by (S; S), as backward arcs in the cut. The
cut [S; S] is called an s � t-cut if s 2 S and t 2 S. We
define the capacity of the cut [S; S], denoted as u[S; S],
as
P

(i; j)2(S;S) ui j. A minimum cut in G is an s � t-cut
of minimum capacity. We will show that any algorithm
that determines a maximum flow in the network also
determines a minimum cut in the network.

The remainder of this article is organized as fol-
lows. To help in understanding the importance of the
maximum flow problem, we begin by describing sev-
eral applications. In the next section we present some
preliminary results concerning flows and cuts. We next
discuss two important classes of algorithms for solv-
ing the maximum flow problem: augmenting path algo-
rithms, and preflow-push algorithms. As described in
the next section, augmenting path algorithms augment
flow along directed paths from the source node to the
sink node. The proof of the validity of the augmenting
path algorithm yields the well-known max-flow min-
cut theorem, which implies that the value of a maxi-

mum flow in a network equals the capacity of a mini-
mum cut in the network. In the next section, we study
preflow-push algorithms that ‘flood’ the network so
that some nodes have excesses and then incrementally
‘relieve’ the flow from nodes with excesses by sending
flow from excess nodes forward toward the sink node or
backward toward the source node. In the final section,
we study implications of the max-flowmin-cut theorem
and prove some max-min results in combinatorics.

We would like to design maximum flow algorithms
that are guaranteed to be efficient in the sense that their
worst-case running times, that is, the total number of
multiplications, divisions, additions, subtractions, and
comparisons in the worst-case grow slowly in some
measure of the problem’s size. We say that a maximum
flow algorithm is an O(n3) algorithm, or has a worst-
case complexity of O(n3), if it is possible to solve any
maximum flow problem using a number of computa-
tions that is asymptotically bounded by some constant
times the term n3. We say that an algorithm is a poly-
nomial time algorithm if it’s worst-case running time
is bounded by a polynomial function of the input size
parameters. For a maximum flow problem, the input
size parameters are n,m, and log U (the number of bits
needed to specify the largest arc capacity). We refer to
a maximum flow algorithm as a pseudopolynomial time
algorithm if its worst-case running time is bounded by
a polynomial function of n, m, and U. For example, an
algorithm with worst-case complexity of O(nm log U)
is a polynomial time algorithm, but an algorithm with
worst-case complexity of O(nmU) is a pseudopolyno-
mial time algorithm.

Applications

The maximum flow problem arises in a variety of sit-
uations and in several forms. Sometimes, it arises di-
rectly in combinatorial applications that on the surface
might not appear to be maximum flow problems at all;
at other times, it occurs as a subproblem in the solu-
tion of more difficult network optimization problems.
In this section, we describe three applications of the
maximum flow problem.

Capacity of Physical Networks

An oil company needs to ship oil from a refinery to
a storage facility using the pipelines of its underlying
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distribution network. In this problem context, the re-
finery corresponds to a particular node s in the dis-
tribution network and the storage facility corresponds
to another node t. The capacity of each arc is the
maximum amount of oil per unit time that can flow
along it. The value of a maximum s� t flow deter-
mines the maximum flow rate from the source node s
to the sink node t. Similar applications arise in other
settings, for example, determining the transmission ca-
pacity between two nodes of a telecommunications net-
work.

Feasible Flow Problem

The feasible flow problem consists of finding a feasible
flow satisfying the following constraints:

X

f j : (i; j)2Ag

xi j�
X

f j : ( j;i)2Ag

x ji D b(i)for all i 2 N; (4)

0 � xi j � ui j for all (i; j) 2 A: (5)

We assume that
P

i 2 N b(i) = 0. The following dis-
tribution scenario illustrates how the feasible flow prob-
lem arises in practice. Suppose that merchandise avail-
able at several seaports is desired by other ports. We
know the stock of merchandise available at the ‘supply’
ports, the amount required at the other ports, and the
maximum quantity of merchandise that can be shipped
on a particular sea route. We wish to know whether we
can satisfy all of the demands by using the available sup-
plies.

We can solve the feasible flow problem by solving
a maximum flow problem defined on an augmented
network as follows. We introduce two new nodes,
a source node s and a sink node t. For each node i with
supply (that is, with b(i) > 0), we add an arc (s, i) with
capacity b(i), and for each node i with demand (that is,
with b(i) < 0), we add an arc (i, t) with capacity � b(i).
We refer to the new network as the transformed net-
work. We then solve a maximum flow problem from
node s to node t in the transformed network. It is easy
to show that the model (4)–(5) has a feasible solution
if and only if the maximum flow saturates all the arcs
emanating from the source node, that is, xsj = usj for all
arcs (s, j) 2 A(s). Moreover, if each b(i) and uij is inte-
ger, then model (4)–(5) always has an integer feasible

solution whenever it has a feasible solution (see Theo-
rem 3).

Sometimes in a feasible flow problem arcs have non-
negative lower bounds, that is, the flow bound con-
straints are lij � xij � uij instead of 0 � xij � uij, for
some constants lij � 0 for each (i, j) 2 A. By substituting
yij = xij � lij for xij, we can transform this problem to
the formulation (4)–(5). Then (5) reduces to 0 � yij �
(uij � lij) and (4) reduces to the same set of equations,
but with a different right-hand side vector b0.

Matrix Rounding Problem

This application is concerned with consistent rounding
of the elements, the row sums, and the column sums of
a matrix. We are given a p × q matrix of real numbers
D = {dij}, with row sums ˛i and column sums ˇj. We
can round any real number d to the next smaller integer
bdc or to the next larger integer dde, and the decision
to round up or round down is entirely up to us. The
matrix-rounding problem requires that we round the
matrix elements, and the row and column sums of the
matrix so that the sum of the rounded elements in each
row equals the rounded row sum, and the sum of the
rounded elements in each column equals the rounded
column sum. We refer to such a rounding as a consis-
tent rounding. The matrix-rounding problem arises is
several application contexts, for example, the rounding
of census data to disguise data on individuals.

Using a numerical example, we will show how to
transform a matrix rounding problem into a maximum
flow problem. Figure 1a) shows an instance of the ma-
trix rounding problem and Fig. 1b) gives the maximum
flow network G for this problem. The network G con-
tains a node i corresponding to each row i of the ma-
trix D, a node j corresponding to each column j of D,
a source node s, and a sink node t. The network con-
tains an arc (i, j) corresponding to the ijth element in
the matrix, an arc (s, i) for each row i (this arc repre-
sents the sum of row i), an arc (j, t) for each column j
(this arc represents the sum of column j). For any arc (i,
j), we define its upper bound uij = ddije and lower bound
lij = bdijc. Notice that the flow xij = dij is a real-valued
feasible flow x in the network. Since there is a one-to-
one correspondence between the consistent roundings
of the matrix and feasible integer flows in the corre-
sponding network, we can find a consistent rounding
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Maximum Flow Problem, Figure 1
Network for the matrix rounding problem

by solving a feasible flow problem on the correspond-
ing network. The feasible flow algorithm will produce
an integer feasible flow (because of Theorem 3), which
corresponds to a consistent rounding.

Preliminaries

In this section, we discuss some elementary properties
of flows and cuts. We will use these properties to prove
the celebrated max-flow min-cut theorem and to estab-
lish the correctness of the augmenting path algorithm
described in the next section.

Residual Network

The concept of residual network plays a central role in
the development of maximum flow algorithms. Given
a flow x, the residual capacity rij of any arc (i, j) 2 A
is the maximum additional flow that can be sent from
node i to node j using the arcs (i, j) and (j, i). (Recall
the assumption from the first Section that whenever the
network contains arc (i, j), it also contains the arc (j, i).)
The residual capacity rij has two components:
i) uij � xij, the unused capacity of arc (i, j);
ii) the current flow xji on arc (j, i), which we can cancel

to increase the flow from node i to node j.
Consequently, rij = uij � xij + xji. We refer to the net-
work G(x) consisting of the arcs with positive residual
capacities as the residual network (with respect to the
flow x). Figure 2 gives an example of a residual net-
work.

Flow across an s � t-Cut

Let x be a flow in the network. Adding the mass balance
constraint (2) for the nodes in S, we obtain the equation

v D
X
i2S

2
64

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji

3
75

D
X

(i; j)2(S;S)

xi j �
X

(i; j)2(S;S)

xi j: (6)

The second equality uses the fact that whenever
both the nodes p and q belong to the node set S and
(p, q) 2 A, the variable xpq in the first term within the
bracket (for node i = p) cancels the variable � xpq in
the second term within the bracket (for node j = q).
The first expression in the right-hand side of (6) de-
notes the amount of flow from the nodes in S to nodes
in S, and the second expression denotes the amount of
flow returning from the nodes in S to the nodes in S.
Therefore, the right-hand side denotes the total (net)
flow across the cut, and (6) implies that the flow across
any s� t-cut [S; S] equals v. Substituting xij � uij in the
first expression of (6) and xij � 0 in the second expres-
sion yields: v �

P
(i; j)2(S;S) ui j D u[S; S] implying that

the value of any flow can never exceed the capacity of
any cut in the network. We record this result formally
for future reference.

Lemma The value of any flow can never exceed the ca-
pacity of any cut in the network. Consequently, if the
value of some flow x equals the capacity of some cut
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Maximum Flow Problem, Figure 2
Illustrating the construction of a residual network; a) the original network, with arc capacities and a flow x; b) the residual
network

[S; S], then x is a maximum flow and the cut [S; S] is
a minimum cut.

Themax-flowmin-cut theorem, to be proved in the next
section, states that the value of some flow always equals
the capacity of some cut.

Generic Augmenting Path Algorithm

In this section, we describe one of the simplest and
most intuitive algorithms for solving the maximum
flow problem, an algorithm known as the augmenting
path algorithm.

Let x be a feasible flow in the networkG, and letG(x)
denote the residual network corresponding to the flow
x.We refer to a directed path from the source to the sink
in the residual network G(x) as an augmenting path.
We define the residual capacity ı (P) of an augment-
ing path P as the maximum amount of flow that can be
sent along it, that is, ı (P) = min setrij(i, j) 2 P. Since the
residual capacity of each arc in the residual network is
strictly positive, the residual capacity of an augmenting
path is strictly positive. Therefore, we can always send
a positive flow of ı units along it. Consequently, when-
ever the network contains an augmenting path, we can
send additional flow from the source to the sink. (Send-
ing an additional ı units of flow along an augmenting
path decreases the residual capacity of each arc (i, j) in
the path by ı units.) The generic augmenting path algo-
rithm is essentially based upon this simple observation.

The algorithm identifies augmenting paths in G(x) and
augments flow on these paths until the network con-
tains no such path. The algorithm below describes the
generic augmenting path algorithm.

We can identify an augmenting path P in G(x) by
using a graph search algorithm. A graph search algo-
rithm starts at node s and progressively finds all nodes
that are reachable from the source node using directed
paths. Most search algorithms run in time proportional
to the number of arcs in the network, that is,O(m) time,
and either identify an augmenting path or conclude that
G(x) contains no augmenting path; the latter happens
when the sink node is not reachable from the source
node.

BEGIN
x := 0;
WHILE G(x) contains a directed path from
node s to node t DO
BEGIN

identify an augmenting path P from s to t;
set ı := minfri j : (i; j) 2 Pg;
augment ı units of flow along P;
update G(x);

END;
END;

Generic augmenting path algorithm
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For each arc (i, j) 2 P, augmenting ı units of flow
along P decreases rij by ı units and increases rji by ı
units. The final residual capacities rij when the algo-
rithm terminates specifies a maximum (arc) flow in the
following manner. Since rij = uij � xij + xji, the arc flows
satisfy the equality xij � xji = uij � rij. If uij > rij, we can
set xij = uij � rij and xji = 0; otherwise, we set xij = 0 and
xji = rij � uij.

We use the maximum flow problem given in Fig. 3)
to illustrate the algorithm. Fig 3a) shows the residual
network corresponding to the starting flow x = 0, which
is identical to the original network. The residual net-
work contains three augmenting paths: 1 � 3 � 4, 1 �
2 � 4, and 1 � 2 � 3 � 4. Suppose the algorithm selects
the path 1 � 3 � 4 for augmentation. The residual ca-
pacity of this path is ı = min{r13, r34} = min{4, 5} = 4.
This augmentation reduces the residual capacity of arc
(1, 3) to zero (thus we delete it from the residual net-
work) and increases the residual capacity of arc (3, 1) to
4 (so we add this arc to the residual network). The aug-
mentation also decreases the residual capacity of arc (3,
4) from 5 to 1, and increases the residual capacity of arc
(4, 3) from 0 to 4. Figure 3b) shows the residual network
at this stage. In the second iteration, the algorithm se-
lects the path 1� 2� 3� 4 and augments 1 unit of flow;
Fig. 3c) shows the residual network after the augmenta-
tion. In the third iteration, the algorithm augments one
unit of flow along the path 1 � 2 � 4. Figure 3d) shows
the corresponding residual network. Now the residual
network contains no augmenting path and so the algo-
rithm terminates.

Does the augmenting path algorithm always find
a maximum flow? The algorithm terminates when the
search algorithm fails to identify a directed path inG(x)
from node s to node t, indicating that no such path ex-
ists (we prove later that the algorithm would terminate
finitely). At this stage, let S denote the set of nodes in N
that are reachable in G(x) from the source node using
directed paths, and S D N � S. Clearly, s 2 S and t … S.
Since the search algorithm cannot reach any node in
S and it can reach each node in S, we know that rij =
0 for each (i; j) 2 (S; S). Recall that rij = (uij � xij) +
xji, xij � uij, and xji � 0. If rij = 0, then xij = uij and
xji = 0. Since rij = 0 for each (i; j) 2 (S; S), by substi-
tuting these flow values in expression (6), we find that
v D u[S; S]. Therefore, the value of the current flow x
equals the capacity of the cut. Lemma 1 implies that x is

amaximum flow and [S; S] is aminimum cut. This con-
clusion establishes the correctness of the generic aug-
menting path algorithm and, as a byproduct, proves the
following max-flow min-cut theorem.

Theorem 2 The maximum value of the flow from
a source node s to a sink node t in a capacitated network
equals the minimum capacity among all s � t-cuts.

The proof of the max-flow min-cut theorem shows
that when the augmenting path algorithm terminates,
it also discovers a minimum cut [S; S], with S defined
as the set of all nodes reachable from the source node in
the residual network corresponding to the maximum
flow. For our previous numerical example, the algo-
rithm finds the minimum cut in the network, which is
[S; S] with S = {1}.

The augmenting path algorithm also establishes an-
other important result, the integrality theorem:

Theorem 3 If all arc capacities are integer, then the
maximum flow problem always has an integer maxi-
mum flow.

This result follows from the facts that the initial (zero)
flow is integer and all arc capacities are integer; con-
sequently, all initial residual capacities will be inte-
ger. Since subsequently all arc flows change by integer
amounts (because residual capacities are integer), the
residual capacities remain integer throughout the algo-
rithm. Further, the final integer residual capacities de-
termine an integer maximum flow. The integrality the-
orem does not imply that every optimal solution of the
maximum flow problem is integer. The maximum flow
problem might have noninteger solutions and, most
often, it has such solutions. The integrality theorem
shows that the problem always has at least one integer
optimal solution.

What is the worst-case running time of the algo-
rithm? An augmenting path is a directed path in G(x)
from node s to node t. We have seen earlier that each
iteration of the algorithm requires O(m) time. In each
iteration, the algorithm augments a positive integer
amount of flow from the source node to the sink node.
To bound the number of iterations, we will determine
a bound on the maximum flow value. By definition, U
denotes the largest arc capacity, and so the capacity of
the cut ({s}, S� {s}) is at most nU. Since the value of any
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Maximum Flow Problem, Figure 3
Illustrating the augmented path algorithm: a) the residual network G(x) for x = 0; b) the residual network after augmenting
four units along the path (1� 3� 4); c) the residual network after augmenting one unit along the path (1� 2� 3� 4); d) the
residual network after augmenting one unit along the path (1� 2� 4)

flow can never exceed the capacity of any cut in the net-
work, we obtain a bound of nU on the maximum flow
value and also on the number of iterations performed
by the algorithm. Consequently, the running time of
the algorithm is O(nmU), which is a pseudopolynomial
time bound. We summarize the preceding discussion
with the following theorem.

Theorem 4 The generic augmenting path algorithm
solves the maximum flow problem in O(nmU) time.

The augmenting path algorithm is possibly the simplest
algorithm for solving the maximum flow problem. Em-
pirically, the algorithm performs reasonably well. How-
ever, the worst-case bound on the number of iterations
is poor for large values of U. For example, ifU = 2n, the

bound is exponential in the number of nodes. More-
over, as shown by known examples, the algorithm can
indeed perform these many iterations. A second draw-
back of the augmenting path algorithm is that if the ca-
pacities are irrational, the algorithm might not termi-
nate. For some pathological instances of the maximum
flow problem, the augmenting path algorithm does not
terminate in a finite number of iterations and although
the successive flow values converge to some value, they
might converge to a value strictly less than the max-
imum flow value. (Note, however, that the max-flow
min-cut theorem is valid even if arc capacities are irra-
tional.) Therefore, if the augmenting path algorithm is
to be guaranteed to be effective in all situations, it must
select augmenting paths carefully.
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Researchers have developed specific implementa-
tions of the generic augmenting path algorithms that
overcome these drawbacks. Of these, the following
three implementations are particularly noteworthy:
i) the maximum capacity augmenting path algorithm

which always augments flow along a path in the
residual network with the maximum residual ca-
pacity and can be implemented to run in O(m2 log
U) time;

ii) the capacity scaling algorithm which uses a scal-
ing technique on arc capacities and can be imple-
mented to run in O(nm log U) time;

iii) the shortest augmenting path algorithm which aug-
ments flow along a shortest path (as measured by
the number of arcs) in the residual network and
runs in O(n2m) time.

These algorithms are due to J. Edmonds and R.M. Karp
[6], H.N. Gabow [9], and E.A. Dinic [5], respectively.
L.R. Ford and D.R. Fulkerson [8] and P. Elias, A. Fen-
stein and C.E. Shannon [7] independently developed
the basic augmenting path algorithm.

Generic Preflow-Push Algorithm

Another class of algorithms for solving the maximum
flow problem, known as preflow-push algorithms, is
more decentralized than augmenting path algorithms.
Augmenting path algorithms send flow by augment-
ing along a path. This basic operation further decom-
poses into the more elementary operation of sending
flow along individual arcs. Sending a flow of ı units
along a path of k arcs decomposes into k basic opera-
tions of sending a flow of ı units along each of the arcs
of the path. We shall refer to each of these basic opera-
tions as a push. The preflow-push algorithms push flows
on individual arcs instead of on augmenting paths.

A path augmentation has one advantage over a sin-
gle push: it maintains conservation of flow at all nodes.
The preflow-push algorithms violate conservation of
flow at all steps except at the very end, and instead
maintain a ‘preflow’ at each iteration. A preflow is a vec-
tor x satisfying the flow bound constraints and the fol-
lowing relaxation of the mass balance constraints (2):

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji � 0

for all i 2 N � fs; tg: (7)

Each element of a preflow vector is either a real
number or equals + 1. The preflow-push algorithms
maintain a preflow at each intermediate stage. For
a given preflow x, we define the excess for each node
i 2 N � {s, t} as

e(i) D
X

f j : ( j;i)2Ag

x ji �
X

f j : ( j;i)2Ag

xi j:

We refer to a node with positive excess as an active
node.We adopt the convention that the source and sink
nodes are never active. In a preflow-push algorithm, the
presence of an active node indicates that the solution is
infeasible. Consequently, the basic operation in this al-
gorithm is to select an active node i and try to remove
the excess by pushing flow out of it. When we push flow
out of an active node, we need to do it carefully. If we
just push flow to an adjacent node in an arbitrary man-
ner and the other nodes do the same, then it is conceiv-
able that some nodes keep pushing flow among them-
selves resulting in an infinite loop, which is not a de-
sirable situation. Since ultimately we want to send the
flow to the sink node, it seems reasonable for an active
node to push flow to another node that is ‘closer’ to the
sink. If all nodes maintain this rule, then the algorithm
could never encounter an infinite loop. The concept of
distance labels defined next allows us to implement this
algorithmic strategy.

The preflow-push algorithms maintain a distance
label d(i) with each node in the network. The distance
labels are nonnegative (finite) integers defined with re-
spect to the residual network G(x).We say that distance
labels are valid with respect to a flow x if they satisfy the
following two conditions:

d(t) D 0; (8)

d(i) � d( j)C 1 for every arc (i; j)

in the residual network G(x): (9)

We refer to the conditions (8) and (9) as the validity
conditions. It is easy to demonstrate that d(i) is a lower
bound on the length of any directed path (as measured
by number of arcs) from node i to node t in the residual
network, and thus is a lower bound on the length of the
shortest path between nodes i and j. Let i = i1 � � � � �
ik � t be any path of length k in the residual network
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from node i to node t. The validity conditions (8), (9)
imply that d(i) = d(i1) � d(i2) + 1, d(i2)� d(i3) + 1, . . . ,
d(ik) � d(t) + 1 = 1. Adding these inequalities shows
that d(i) � k for any path of length k in the residual
network, and therefore any (shortest) path from node i
to node t contains at least d(i) arcs. We say that an arc
(i, j) in the residual network is admissible if it satisfies
the condition d(i) = d(j) + 1; we refer to all other arcs as
inadmissible.

The basic operation in the preflow-push algorithm
is to select an active node i and try to remove the ex-
cess by pushing flow to a node with smaller distance
label. (We will use the distance labels as estimates of the
length of the shortest path to the sink node.) If node
i has an admissible arc (i, j), then d(j) = d(i) � 1 and
the algorithm sends flow on admissible arcs to relieve
the node’s excess. If node i has no admissible arc, then
the algorithm increases the distance label of node i so
that node i has an admissible arc. The algorithm termi-
nates when the network contains no active nodes, that
is, excess resides only at the source and sink nodes. The
next algorithm describes the generic preflow-push al-
gorithm.

BEGIN
set x := 0 and d( j) := 0 for all j 2 N ;
set xs j = us j for each arc (s; j) 2 A(s);
d(s) := n;
WHILE residual network G(x) contains an ac-
tive node
DO

BEGIN
select an active node I;
push/relabel(i);

END;
END;

procedure push/relabel(i);
BEGIN

IF network contains an admissible arc (i; j)
THEN push ı := minfe(i); ri; jg units of flow
from node i to node j
ELSE replace d(i) by

minfd( j) + 1 : (i; j) 2 A(i); ri j > 0g;
END;

The generic preflow-push algorithm

The algorithm first saturates all arcs emanating
from the source node; then each node adjacent to node
s has a positive excess, so that the algorithm can be-
gin pushing flow from active nodes. Since the prepro-
cessing operation saturates all the arcs incident to node
s, none of these arcs is admissible and setting d(s) =
n will satisfy the validity condition (8), (9). But then,
since d(s) = n, and a distance label is a lower bound on
the length of the shortest path from that node to node
t, the residual network contains no directed path from
s to t. The subsequent pushes maintain this property
and drive the solution toward feasibility. Consequently,
when there are no active nodes, the flow is a maximum
flow.

A push of ı units from node i to node j decreases
both the excess e(i) of node i and the residual rij of arc
(i, j) by ı units and increases both e(j) and rji by ı units.
We say that a push of ı units of flow on an arc (i, j)
is saturating if d = rij and is nonsaturating otherwise.
A nonsaturating push at node i reduces e(i) to zero. We
refer to the process of increasing the distance label of
a node as a relabel operation. The purpose of the rela-
bel operation is to create at least one admissible arc on
which the algorithm can perform further pushes.

It is instructive to visualize the generic preflow-push
algorithm in terms of a physical network: arcs represent
flexible water pipes, nodes represent joints, and the dis-
tance function measures how far nodes are above the
ground. In this network, we wish to send water from
the source to the sink. We visualize flow in an admis-
sible arc as water flowing downhill. Initially, we move
the source node upward, and water flows to its neigh-
bors. Although we would like water to flow downhill
toward the sink, occasionally flow becomes trapped lo-
cally at a node that has no downhill neighbors. At this
point, we move the node upward, and again water flows
downhill toward the sink.

Eventually, no more flow can reach the sink. As we
continue to move nodes upward, the remaining excess
flow eventually flows back toward the source. The al-
gorithm terminates when all the water flows either into
the sink or flows back to the source.

To illustrate the generic preflow-push algorithm, we
use the example given in Fig 4. Figure 4a) specifies the
initial residual network. We first saturate the arcs ema-
nating from the source node, node 1, and set d(1) = n
= 4. Fig 4b) shows the residual graph at this stage. At
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Maximum Flow Problem, Figure 4
Illustrating the preflow-push algorithm: a) the residual network G(x) for x = 0; b) the residual network after saturating arcs
emanating from the source; c) the residual network after pushing flow on arc (2, 4); d) the residual network after pushing
flow on arc (3, 4)

this point, the network has two active nodes, nodes 2
and 3. Suppose that the algorithm selects node 2 for the
push/relabel operation. Arc (2, 4) is the only admissi-
ble arc and the algorithm performs a saturating push
of value ı = min {e(2), r24} = min{2, 1} = 1. Fig 4c)
gives the residual network at this stage. Suppose the al-
gorithm again selects node 2. Since no admissible arc
emanates from node 2, the algorithm performs a relabel
operation and gives node 2 a new distance label d(2) =
min{d(3)+ 1, d(1)+ 1} = min{2, 5} = 2. The new residual
network is the same as the one shown in Fig 4c) except
that d(2) = 2 instead of 1. Suppose this time the algo-
rithm selects node 3. Arc (3, 4) is the only admissible
arc emanating from node 3, and so the algorithm per-
forms a nonsaturating push of value ı = min{e(3), r34}
= min{4, 5} = 4. Fig 4d) specifies the residual network
at the end of this iteration. Using this process for a few

more iterations, the algorithm will determine a maxi-
mum flow.

The analysis of the computational (worst-case)
complexity of the generic preflow-push algorithm is
somewhat complicated. Without examining the details,
we might summarize the analysis as follows. It is pos-
sible to show that the preflow-push algorithm main-
tains valid distance labels at all steps of the algorithm
and increases the distance label of any node at most
2n times. The algorithm performs O(nm) saturating
pushes and O(n2m) nonsaturating pushes. The nonsat-
urating pushes are the limiting computational opera-
tion of the algorithm and so it runs in O(n2m) time.

The preflow-push algorithm has several attractive
features, particularly its flexibility and its potential for
further improvements. Different rules for selecting ac-
tive nodes for the push/relabel operations create many



Maximum Flow Problem M 2019

different versions of the generic algorithm, each with
different worst-case complexity. As we have noted, the
bottleneck operation in the generic preflow-push algo-
rithm is the number of nonsaturating pushes and many
specific rules for examining active nodes can produce
substantial reductions in the number of nonsaturating
pushes. The following specific implementations of the
generic preflow-push algorithms are noteworthy:
i) the FIFO preflow-push algorithm examines the ac-

tive nodes in the first-in, first-out (FIFO) order and
runs in O(n3) time;

ii) the highest label preflow-push algorithm pushes
flow from an active node with the highest value of
a distance label and runs in O(n2 m1/2) time; and

iii) the excess-scaling algorithm uses the scaling of arc
capacities to attain a time bound of O(nm + n2

logU).
These algorithms are due to A.V. Goldberg and R.J.
Tarjan [10], J. Cheriyan and S.N. Maheshwari [4],
and R.K. Ahuja and J.B. Orlin [3], respectively. These
preflow-push algorithms are more general, more pow-
erful, and more flexible than augmenting path algo-
rithms. The best preflow-push algorithms currently
outperform the best augmenting path algorithms in
theory as well as in practice (see, for example, [1]).

Combinatorial Implications
of the Max–FlowMin–Cut Theorem

The max-flow min-cut theorem has far reaching con-
sequences. It can be used to prove several important
results in combinatorics that appear to be difficult to
prove using other means. We will illustrate the use of
the max-flow min-cut theorem to prove two such im-
portant results.

Network Connectivity

Given a directed network G = (N, A) and two specified
nodes s and t, we are interested in the following two
questions:
i) what is the maximum number of arc-disjoint (di-

rected) paths from node s to node t; and
ii) what is the minimum number of arcs that we should

remove from the network so that it contains no di-
rected paths from node s to node t.

We will show that these two questions are closely re-
lated. The second question shows how robust a net-

work, for example, a telecommunications network, is to
the failure of its arcs.

In the network G, let us define the capacity of each
arc as equal to one. Consider any feasible flow x of value
v in the resulting unit capacity network.We can decom-
pose the flow x into flows along v directed paths from
node s to node t, each path carrying a unit flow. Now
consider any s� t-cut [S; S] in the network. The capac-
ity of this cut is

ˇ̌
ˇ(S; S)

ˇ̌
ˇ that is, equals the number of

forward arcs in the cut. Since each path joining nodes s
and t contains at least one arc in the set (S; S), the re-
moval of all the arcs in (S; S) disconnects all paths from
node s to node t. Consequently, the network contains
a disconnecting set of arcs of cardinality equal to the
capacity of any s � t-cut [S; S]. The max-flow min-cut
theorem immediately implies the following result:

Corollary 5 The maximum number of arc-disjoint
paths from s to t in a directed network equals the min-
imum number of arcs whose removal will disconnect all
paths from node s to node t.

Matchings and Covers

The max-flowmin-cut theorem also implies a max-min
result concerning matchings and node covers in a di-
rected bipartite network G = (N1 [ N2, A), with arc
set A � N1 × N2. In the network G, a subset M � A
is a matching if no two arcs in M have an endpoint in
common. A subset C � N1N2 is a node cover of G if ev-
ery arc in A has at least one endpoint in the node set
C. Suppose we create the network G0 from G by adding
two new nodes s and t, as well as arcs (s, i) of capacity 1
for each i 2 N1 and arcs (j, t) of capacity 1 for each j 2
N2. All other arcs in G0 correspond to the arcs in G and
have infinite capacity. It is possible to show that each
matching of cardinality v defines a flow of value v in G0,
and each s� t cut of capacity v induces a corresponding
node cover with v nodes. Consequently, the max-flow
min-cut theorem establishes the following result:

Corollary 6 In a bipartite network G = (N1 [ N2, A),
the maximum cardinality of any matching equals the
minimum cardinality of any node cover of G.

These two examples illustrate important relationships
between maximum flows, minimum cuts, and many
other problems in the field of combinatorics. The max-
imum flow problem is of interest because it provides
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a unifying tool for viewing many such results, because it
arises directly in many applications, and because it has
been a rich arena for developing new results concerning
the design and analysis of algorithms.
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Abstract

Maximum-likelihood detection is a generic NP-hard
problem in digital communications which requires
efficient solution in practice. Some existing quasi-
maximum-likelihood detectors achieve polynomial
complexity with significant bit-error-rate performance
degradation (e. g. LMMSE Detector), while others ex-
hibit near-maximum-likelihood bit-error-rate perfor-
mance with exponential complexity (e. g. Sphere De-
coder and its variants). We present an efficient subopti-
mal detector based on a semidefinite relaxation, called
SDR Detector, which enjoys near-maximum-likelihood
bit-error-rate with worst-case polynomial complexity.
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SDR Detector can be implemented with recently devel-
oped Interior-Point methods for convex optimization
problems. For large systems SDR Detector provides
a constant factor approximation for the maximum-
likelihood detection problem. In high signal-to-noise
ratio region SDR Detector can solve the maximum-
likelihood detection problem exactly. Efficient imple-
mentations of SDR Detector empirically deliver a near-
optimal bit-error-rate with running time that scales
well to large problems and in any signal-to-noise ratio
region.

Keywords and Phrases

Maximum-likelihood detection; Multiple-input
multiple-output systems; Multiuser detection;
Semidefinite relaxation

Introduction

Maximum-Likelihood (ML) detection is a fundamental
problem in digital communications. Under the mild as-
sumption of equiprobable transmitted signals ML De-
tector achieves the best Bit-Error-Rate (BER). In gen-
eral, the ML detection problem is NP-hard due to the
discrete nature of a signal constellation. The exhaus-
tive search can be applied for small problem sizes, how-
ever this strategy is not practical for large systems. Large
communication systems often arise in schemes with ef-
ficient rate and diversity utilization, e. g. the systems
based on Linear Dispersion Codes [6]. Various subopti-
mal detectors that have been developed to approximate
ML Detector can be divided into two major categories:
� Accelerated versions of ML Detector with expo-

nential complexity (e. g. versions of Sphere De-
coder [3,16]),

� Polynomial complexity detectors with significant
degradation in the BER performance (e. g. Linear
Minimum Mean Square Error (LMMSE) Detector,
Matched Filter, Decorrelator, etc.).

We focus on an alternative detector which is based
on a semidefinite relaxation of the ML detection prob-
lem. This detector, called SDR Detector hereafter, en-
joys a worst-case polynomial complexity while deliver-
ing a near-optimal BER performance. In the next sub-
section we will introduce notations and a system model
used throughout the text.

Formulation

SystemModel

Consider a vector communication channel with n
transmit and m receive antennas. In wireless commu-
nications a Rayleigh fading model is widely used in
scenarios with significantly attenuated line-of-sight sig-
nal component. An abundant research is based on this
model which is used in profound theoretical results on
channel capacity, diversity and multiplexing gain. De-
fine a fading coefficient from the ith transmit antenna
to the kth receive antenna to be a Gaussian zero-mean
unit-variance, N (0; 1), variable Hki , with a Rayleigh
distributed amplitude jHki j and a uniformly distributed
phase �(Hki). The coefficients Hki are assumed to
be spatially and temporarily independent and identi-
cally distributed (i.i.d.). The transmitted signals s D
[s1; : : : ; sn]T are drawn from a discrete n-dimensional
complex set Cn . The communication system is operat-
ing at an average Signal-to-Noise Ratio (SNR) denoted
by �. Noise samples at each receive antenna, vk ; k D
1; : : : ;m, are modelled as i.i.d. N (0; 1) random vari-
ables. With these notations a Rayleigh memoryless vec-
tor channel can be represented by:

y D
p
�/n H sC v : (1)

The coefficient
p
�/n ensures that the expected

value of SNR at each receive antenna is equal to � inde-
pendent of problem dimension n. Channel model (1) is
quite generic and can be used to describe other commu-
nication systems, for example, a synchronous CDMA
multi-access channel, where n denotes the number of
users in the system.

In the sequel, we will assume that the receiver has
perfect information of the fading matrix H. In prac-
tice H is estimated by sending training signals which
are known to the receiver. Given the vector of received
signals y and the channel state H, the optimal detector
computes an estimate of transmitted signals such that
the probability of an erroneous decision is minimized.
For equiprobable input signals the minimal error prob-
ability is achieved by ML Detector given by:

sML D argmax
s2Cn

p(yjs;H) ;

where p(�j�) is a conditional probability density func-
tion and sML denotes the ML estimate of transmitted
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signals. For Gaussian noise this optimization problem
can be stated in the form of the Integer Least Squares
(ILS) problem:

sML D argmin
s2Cn
ky �

p
�/n H sk2 : (2)

In general, this optimization problem is NP-hard
and the discrete constraint set Cn of dimension n is the
source of intractability. We are interested in an efficient
polynomial time approximation algorithm for (2) with
theoretical performance guarantees. In the next section
we will briefly discuss common approaches to solving
problem (2).

Connection with Unconstrained Optimization

Several strategies have been developed to overcome
high computational complexity of ML Detector. Some
detectors achieve polynomial complexity by relaxing
the integer constraint in the ML detection problem (2),
e. g. LMMSE Detector, Decorrelator, and Matched Fil-
ter [5]. From the perspective of optimization theory
these detectors can be jointly treated by dropping the
discrete constraint in (2) and imposing a penalty func-
tion instead. For the BPSK constellation the relaxed
problem can be written as:

ŝ D arg min
s2Rn
ky �

p
�/n H sk2 C � ksk2 : (3)

The modified optimization problem is usually fol-
lowed by a rounding procedure which projects the opti-
mal solution of the relaxed problem onto set Cn . Select-
ing proper values for � , we can specialize (3) to LMMSE
Detector, Decorrelator, or Matched Filter. An appeal-
ing advantage of this approach is that it can be solved
analytically:

ŝ D sign
���

n
HTHC �I

��1
HTy

�
: (4)

This strategy achieves complexity O(n3) while sac-
rificing the BER performance.

Another type of detectors preserves the near-ML
BER while reducing the high complexity of the exhaus-
tive search. The work originates in [3,16] with the al-
gorithm to find the shortest vector on a lattice, known
as the so-called Sphere Decoder. The algorithm reduces
the exhaustive search to an ellipse centered at the zero-
forcing estimate of the transmitted signals:

sZF D
p
n/�

�
HTH

��1 HTy :

Different variants of this approach use various in-
telligent strategies of the radius selection and order-
ing of points to be searched inside the ellipse. In high
SNR region for small problem sizes Sphere Decoder
empirically demonstrates fast running time [7]. How-
ever, a thorough theoretical analysis [9,10] has shown
that both the worst-case and expected complexity of
this algorithm is still exponential.

Semidefinite Relaxation Strategy

We consider an alternative approach to solve (2) which
is based on a convex relaxation of the ML detec-
tion problem. Convexity of an optimization problem
is a good indicator of problem tractability. Efficient
and powerful algorithms with complexity O(n3:5) have
recently been developed to solve convex optimization
problems (e. g. Interior-Point methods). These algo-
rithms make efficient use of theoretically computable
stopping criteria, enjoy robustness, and offer the cer-
tificate of infeasibility when no solution exists. All these
properties render convex optimization methods a pri-
mary tool for various fields of engineering.

There are several generic types of convex problems,
the simplest one being a Linear Program (LP), i. e. the
optimization problem with a linear objective function
and linear constraints. An LP allows natural generaliza-
tion of the notion of an inequality constraint to a so-
called Linear Matrix Inequality (LMI). Instead of the
regular componentwise meaning of the inequality in
LP, LMI X � 0 implies that X belongs to the cone of
symmetric positive semidefinite matrices, i. e. all eigen-
values of X are non-negative. Such generalization leads
us to a generic class of Semi-Definite Programs (SDP),
which can be written in the standard form as follows:

min Q � X

s.t. Ak � X D bk; k D 1; : : : ;K;

X � 0 ;

(5)

where (�) denotes inner product in the matrix space:
Q � X D Tr(QX). The class of SDP problems (5) in-
cludes Linear Programs as well as Second Order Cone
Programs as special cases. It is quite remarkable that
any problem (5) in the broad class of SDP problems can
be solved in polynomial time, which makes it a valu-
able asset for solving engineering problems, includ-
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ing filter design, control, VLSI circuit layout design,
etc. [2].

In addition to application in numerical solvers, SDP
formulation (5) is widely used for analysis and design of
approximation algorithms for NP-hard problems. Tra-
ditional approaches involve relaxation of an NP-hard
problem to an LP, which can be easily solved in poly-
nomial time. With the invent of Interior-Point meth-
ods for non-linear convex optimization problems some
approximation algorithms have been significantly im-
proved [4]. Such advanced non-linear approximation
algorithms use weaker relaxations, thereby preserving
most of the structure of the original NP-hard problem.
The class of SDP problems represents a perfect candi-
date for design of approximation algorithms since the
SDP form is quite generic. The solution to the original
NP-hard problem is generated from the solution of the
relaxed SDP problem by a randomized or determinis-
tic rounding procedure. For example, as will be shown
later, the ML detection problem can be formulated as

fML :D min Q � X

s.t. Xi;i D 1; i D 1; : : : ; nC 1

X � 0

X is rank-1 :

(6)

Relaxing the rank constraint of X reduces the prob-
lem to the standard SDP form (5):

fSDP :D min Q � X

s.t. Xi;i D 1; i D 1; : : : ; nC 1

X � 0 :

(7)

A subsequent rounding procedure generates an es-
timate of the transmitted signals with an objective value
denoted fSDR based on the optimal solution Xopt of this
SDP problem.

Since SDR Detector outputs an estimate that be-
longs to the feasible set of the ML detection problem,
the optimal objective value fSDR of SDR Detector satis-
fies fML � fSDR. Let fopt ( fapr) denote the optimal objec-
tive value of an NP-hard problem (approximation algo-
rithm) in minimization form, then the approximation
algorithm with ratio c � 1 guarantees to provide a so-
lution with objective value fapr such that fapr � c fopt.
The quality of SDR Detector can be measured in terms

of approximation ratio c such that:

fML � fSDR � c fML; c � 1 ;

where c is independent of problem size.
Relaxation (5) was first applied to combinatorial op-

timization in [4] where the authors relaxed MAX-CUT
problem to an SDP problem in the standard form (5).
This strategy resulted in a substantial improvement of
the approximation ratio for MAX-CUT problem, as
compared to the classical relaxation to an LP. Unfor-
tunately, we can not pursue this approach because the
ML detection problem involves minimization instead
of maximization (for a positive semidefinite matrix Q)
used in the formulation of MAX-CUT problem. More-
over, the ML detection problem does not allow a con-
stant factor approximation algorithm for the worst case
realizations of H and v. However, from the perspective
of digital communications we are interested in the av-
erage performance of SDR Detector over many channel
and noise realizations. It turns out that SDR Detector
allows a probabilistic approximation ratio for the ran-
dom channel model (1). In high SNR region a typical
behavior of the detection error probability is

Pe ' e��(�) ;

where function �(�) varies for different detectors.
For example, �ml(�) D O(�) for ML Detector,
and �lmmse(�) D O(p�) for LMMSE Detector [5].
When a suboptimal detector is deployed instead of ML
Detector, the incurred BER deterioration can be ex-
pressed in terms of the log-likelihood ratio:

log(Pe (sdr))
log(Pe (ml))

D
�sdr(�)
�ml(�)

� c(�) :

Therefore, the approximation ratio c(�) is an essen-
tial step in bounding the SNR gap between two detec-
tors. Before we proceed with the probabilistic analysis
of the performance, let us consider the empirical BER
performance of SDRDetector in numerical simulations
for channel model (1).

Bit-Error-Rate Performance

The detector based on a semidefinite relaxation (SDR)
consists of two parts: a solver of relaxation (7) and
a randomized rounding procedure. The SDP in (7) can
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Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 1
Bit-Error-Rate as a function of Signal-to-Noise Ratio for dif-
ferent detectors

be efficiently solved using Interior Point (IP) methods
with complexity O(n3:5). For this purpose we use Se-
DuMi optimization toolbox for Matlab. The random-
ized rounding procedure projects the solution of the
SDP (7) onto the original discrete constraint set and will
be discussed in details in the next section.

Figure 1 shows a comparison of the BER per-
formance of the SeDuMi-based SDR Detector [13],
LMMSE Detector, Matched Filter, Decorrelator,
Nulling and Cancelling strategy, Sphere Decoder, and
ML Detector. We observe a significant BER improve-
ment of SDR Detector compared to other polynomial
complexity detectors. Sphere Decoder with adjustable
radius search [16] delivers the BER performance of ML
Detector (with probability 1) with running time that
scales exponentially [9] with problem size.

In many real-time/embedded applications a detec-
tion latency is upper bounded and, in general, prema-
ture decisions cause significant BER degradation. For
simulation purposes we suppose that an engineering
system is designed with BPSK modulation, operates at
SNR = 10 dB and allows 6.3ms per bit detection la-
tency. Figure 2 demonstrates the BER performance of
this system under the upper bound on the detection la-
tency. The exponential complexity of Sphere Decoder
reveals itself between dimensions 40 and 60 where we
observe a rapid BER degradation because the running
time of Sphere Decoder exceeds the fixed detection time

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 2
BER degradation due to the limit on detection time. Simu-
lation parameters: BPSK modulation, SNR = 10dB and time
limit per bitD 6:3ms

threshold for most channel realizations. At the same
time, the running time of SDR Detector scales grace-
fully with problem size and, in most cases, the detector
completes detection in time. As a result, SDR Detector
does not suffer any significant BER degradation even
for large problem sizes. In fact, the number of late de-
tections for SDRDetector does not exceed 1% for all di-
mensions shown in Fig. 2. For different values of SNR
and latency per bit we obtain essentially similar curves
for both detectors. Such behavior is indicative of the
exponentially growing computational effort of Sphere
Decoder and comparably modest computational power
required by SDR Detector.

In the next section we will discuss the details of the
SDP relaxation (11) and the randomized rounding pro-
cedure. After that we present theoretical guarantees that
substantiate the observed empirical behavior of SDR
Detector.

Method

SDR Detector consists of two components: an SDP
solver and a randomized rounding procedure.

SDP Solver

A transformation of the original ML detection prob-
lem (2) into the standard SDP form (5) will help
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us localize the place in (2) that makes the problem
NP-hard. We start with homogenizing the objective
function:

ky �
p
�/n Hsk2

D [s 1]T
�

(�/n)HTH �
p
�/n HTy

�
p
�/n yTH kyk2

� �
s
1

�

D � Tr(QxxT ) ;

where matrix Q 2 R(nC1)�(nC1) and vector x 2 RnC1

are defined as

Q D
�

(1/n) HTH �
p
1/n� HTy

�
p
1/n� yTH kyk2/�

�
; x D

�
s
1

�

(8)

Notice, that matrix Q is composed of the parame-
ters that are known at the receiver. We linearize the ob-
jective function by introducing a variable matrix X to
comply with the standard SDP form (5):

fML :D min Tr(QX)

s.t. X D xxT

Xi;i D 1; i D 1; : : : ; nC 1 :

(9)

In this problem formulation we discarded con-
straint xnC1 D 1 on the last entry of vector x because
the problem is not sensitive to the sign of vector x.
If x̂nC1 D �1 we output �x̂ as the solution to (9).
Constraint X D xxT is equivalent to the set fX � 0;
rank(X) D 1g, where notation X � 0 implies that
matrix X is symmetric positive semidefinite. Thus, we
complete the transformation of the original ML Detec-
tion problem over BPSK constellation to the equivalent
form stated in (6):

fML :D min Tr(QX)

s.t. Xi;i D 1; i D 1; : : : ; nC 1

X � 0

X is rank-1 :

(10)

The rank-1 constraint is the only non-convex con-
straint in (10) which makes the above problem in-
tractable. SDR Detector relaxes the rank constraint and
solves the following convex optimization problem:

fSDP :D min Tr(QX)

s.t. Xi;i D 1; i D 1; : : : ; nC 1

X � 0 :

(11)

To reveal the difference between this relaxation and
the one in (3) we can take one step further by relaxing
the set of constraints fXi;i D 1; i D 1; : : : ; n C 1g into
fTr(X) D nC1g while keeping constraint X � 0 intact.
This extra relaxed problem can be solved analytically
and leads to the solution

ŝ D
�

n

��
n
HTH

��1
HTy ;

which is exactly the soft output of Decorrelator (4)
with � D 0. The relaxation in (11) compares favor-
ably to the relaxations in (3) because it requires less
modifications of the ML problem, although complex-
ityO(n3:5) of (11) is higher than O(n3) for the detectors
in (3).

Since we dropped the rank constraint in (11), a so-
lution Xopt of (11) is no longer rank-1, hence, we need
to project Xopt onto the feasible set of the original ML
detection problem. Such projection is usually done by
a rounding procedure which can be either determinis-
tic like in (4) or randomized [13]. It can also vary de-
pending on the processing power available for the algo-
rithm. In the next section we will consider a random-
ized rounding procedure based on the principal eigen-
vector of matrix Xopt.

Randomized Rounding Procedure

There are various rounding procedures that can be used
to extract a rank-1 approximation of Xopt. Widely used
approaches and their analysis can be found in [4,13,14].
For our purposes we consider the randomized strat-
egy based on the principal eigenvector of matrix Xopt.
Notice that in the noise-free case, we have v D 0 and
a transmitted vector s belongs to the kernel of matrix Q
which is defined in (8). The optimal objective function
is 0 and is achieved by the vector of transmitted sig-
nals s. Thus, in the noise-free case, the optimal solution
of problem (11) is a rank-1 matrix:

Xopt D

�
s
1

� �
sT 1

�
:

The structure of the optimal matrix Xopt in the
noise-free case suggests that the principal component of
the eigen-decomposition contains most reliable infor-
mation on the transmitted signals in high SNR region.
It turns out that the optimal matrix Xopt has a strong
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principal component even in low SNR region, justifying
the randomized rounding procedure presented below:
� INPUT: Solution Xopt of (11), and number D of ran-

domized rounding tries.
� OUTPUT: Quasi-ML estimate sSDR and the best

achieved objective value fSDR.
� RANDOMIZED ROUNDING PROCEDURE:

1. Take a spectral decomposition Xopt DPnC1
iD1 �iuiuT

i and set vi D
p
�iui ; i D 1; : : : ;

nC 1.
2. Pick vi corresponding to the principal eigenvec-

tor vmax D argmax1�i�nC1 fkvikg.
3. For each entry xi define Bernoulli distribution:

Prfxi D C1g D (1C vmax
i )/2;

Prfxi D �1g D (1 � vmax
i )/2 ;

(12)

where vmax
i denotes the ith entry of vector vmax .

4. Generate a fixed number D of i.i.d. (n+1)-di-
mensional vector samples x̄d ; d D 1; : : : ;D, such
that each entry of (x̄d )i ; i D 1; : : : ; nC1, is drawn
from distribution (12).

5. For all D samples, set x̄d :D �x̄d if (n+1)-st entry
of x̄d is equal to �1.

6. Pick xSDR :D argmind x̄TdQx̄d and set the best
achieved objective value fSDR :D xTSDRQxSDR.

7. Return fSDR and sSDR which is given by vector
xSDR with the last bit discarded.

This randomized rounding procedure is designed to
ensure that output sSDR is equal to the vector of trans-
mitted signals with high probability. Whenever there is
an error, the procedure selects sSDR to reduce the num-
ber of bits in error.

Cases

Performance of SDR Detector

Constant Factor Optimality of SDR Detector The
core component of SDR Detector is an approximation
algorithm based on the convex relaxation (11) of the
original ML detection problem. In this section we an-
alyze the approximation ratio of this algorithm.

A technique pioneered in [4] is widely used in
optimization literature to derive a constant factor
optimality for SDP-based relaxations. After the opti-
mal solution Xopt of problem (11) has been obtained

the randomized rounding procedure used in [4] defines
Gaussian distribution N (0;Xopt) (compare with (12))
and implements the n-dimensional sign(�) operator
with uniformly generated cutting hyperplanes:
� Generate D i.i.d. samples x̄1; : : : ; x̄D from Gaussian

distributionN (0;Xopt).
� Let xi D sign(x̄i) and set the solution xSDR that

achieves minimum:

fSDR :D xTSDRQxSDR D min
i

xTi Qxi :

The best objective value fSDR achieved with this ran-
domized rounding procedure can be upper bounded as
follows [4]:

E f fSDRg D E
˚
xTSDRQxSDR

�

�P E
˚
xTi Qxi

�

D Tr
�
QE

˚
xixTi

��

D
2

Tr
�
Q arcsin(Xopt)

�
;

(13)

where the inequality above holds in probability for suf-
ficiently many samples D, and the last equality follows
from that fact that for any scalar random samples x̄i
and x̄ j drawn fromN (0; 1) we have:

E fsign(x̄i) sign(x̄i)g D
2

arcsin

�
E
˚
x̄i x̄ j

��
:

By taking Taylor expansion of arcsin(Y), we can see
that for any matrix Y, such that Y � 0;Yii D 1 the
following inequality holds:

arcsin(Y) � Y : (14)

Suppose that Q � 0, then we have the following
upper bound:

Tr
�
Q arcsin(Xopt)

�
� Tr(QXopt) ; (15)

which allows us to bound fSDR as a constant factor away
from fML:

fML � E f fSDRg �P 2

Tr(QXopt)

D
2

fSDP �

2

fML ;

where the first inequality holds because an output of
SDR Detector belongs to the feasible set of the ML
problem (10), the second inequality follows from (13)
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combined with (15), the third equality is the definition
of fSDP , and the last inequality holds because the SDP
problem (11) is a relaxation of the ML problem (10).
Therefore, given Q � 0, we obtain a 2/-approxima-
tion ratio for the algorithm. Unfortunately, for ML de-
tection problem the reverse inequality takes place (8):

Q D
�

(1/n)HTH �
p
1/n� HTy

�
p
1/n� yTH kyk2/�

�
� 0 :

We can attempt to cure the problem with inequality
similar to (14) in the reverse direction for some con-
stant c:

arcsin(Y) � cY; for all Y � 0; with Yii D 1 :

For this inequality to hold, c must be growing
linearly with problem dimension n. Hence, in the
limit n ! 1 the constant c together with the approx-
imation ratio of the algorithm grow unbounded. That
is, we can not obtain a constant factor approximation
by applying the standard technique of [4] to the analy-
sis of the SDP relaxation in (11).

The technique presented above applies to any neg-
ative semidefinite matrix Q, hence, in the context of
suboptimal detection it attempts to obtain a constant
factor optimality for the worst-case channel realization.
However, from the perspective of digital communica-
tions, we are interested in the average performance of
SDR Detector over many channel realizations. Unlike
the technique we have discussed above, a probabilis-
tic analysis of Karush–Kuhn–Tucker (KKT) optimality
conditions of the semidefinite problem (11) allows us to
claim a constant factor optimality for SDR Detector in
probability [11].

The optimal objective value fSDR achieved by SDR
Detector is within a constant factor c(�; �) away from
the optimal ML objective value in probability:

lim
n;m!1

m/n! � � 1

P
�
fSDR
fML
� c(�; �)

	
D 1;

where c(�; �) D 1C
2(1Cp�)2ˇ
��˛ � 1

;

(16)

and f˛; ˇg are given by

˛ D

� 1
3 ; if � D 1
1
2 ; if � > 1

ˇ D

(
4 3p4; if � D 1
4
q

�
��1 ; if � > 1

The statement implies that the log-likelihood ratio of
SDR and ML Detectors is bounded in probability by
a constant which is fully specified by SNR only.

Performance of SDR Detector in High SNR Region
We have argued in Sect. “Randomized Rounding Pro-
cedure” that the selected randomized rounding pro-
cedure provides the optimal solution in the noise-free
case. The optimality condition can be extended to the
case of large finite SNR: for sufficiently high SNR SDR
Detector solves ML detection problem in polynomial
time.

For given system dimension n and SNR � (both fi-
nite), the solution Xopt of the relaxed problem (11) is
rank-1 if channel matrix H and noise v realizations sat-
isfy:

�min(HTH) >
r

n
�
kHTvk1 : (18)

Since random matrix HTH is full rank with prob-
ability 1, this claim can also be interpreted as follows:
for any given n there exists a sufficiently high (finite)
SNR level such that (18) holds and Xopt is rank-1. In
general, if (18) does not hold Xopt may still be rank-1.
Notice that if condition (18) is satisfied the solution of
the SDP problem (11) belongs to the feasible set of (10),
thus, Xopt is also the solution of the ML detection prob-
lem. Hence, under the specified conditions SDR Detec-
tor solves the original ML detection problem.

The asymptotic performance of SDR Detector for
fixed problem size and �!1 has been analyzed in [8],
where it is shown that for Rayleigh fading H SDR De-
tector achieves maximum diversity, i. e.

lim
�!1

log Pfssdr ¤ sg
log �

D lim
�!1

log Pfsml ¤ sg
log �

D �
n
2
:

Simulation Results

In this section we compare the running time and the
BER performance of various implementations of the
detectors based on the semidefinite relaxation (11) and
that of Sphere Decoder:
� SDP detector [13] implemented with SeDuMi tool-

box [15] for convex optimization problems.
� SDR Detector that is based on a dual-scaling

interior-point method (DSDP implementation [1])
and a dimension reduction strategy [12].
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� SDRDetector [12], implemented with a dual-scaling
interior-point method, a dimension reduction strat-
egy, and warm start with a truncated version of
Sphere Decoder.

� Sphere Decoder [16].
Figures 3 and 4 demonstrate the average running time
and the BER performance achieved by the above detec-
tors for problem size n D 60. Notice, the running time
of DSDP-based (SeDuMi-based) detector is insensitive
to SNR, and the BER performance shows 1 dB (2-dB)

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 3
Running time comparison, n D 60

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 4
Bit-error-rate comparison, n D 60

SNR loss. Sphere Decoder is faster than the semidefi-
nite relaxation-based detectors in high SNR regime but
becomes significantly slower for SNR lower than 10 dB.
SDR Detector matches the speed of Sphere Decoder in
high SNR region, matches the running time of other
semidefinite relaxation-based detectors in low SNR
regime, and enjoys the near-ML BER performance.

Figures 5 and 6 compare the average running time
for large problems and in low SNR region. The run-
ning time of polynomial complexity detectors (SDR

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 5
Running time for large problems, 
 D 10dB

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 6
Running time in low SNR regime, n D 40
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Detector, SeDuMi and DSDP-based) scales well in both
regimes, remaining in the sub-second region, while the
running time of Sphere Decoder deteriorates in both
scenarios.

Conclusions
We have considered the maximum likelihood detection
problem. Among various quasi-ML detectors SDR De-
tector offers a near-optimal BER performance with the
worst-case polynomial complexity. We have analyzed
the underlying structure of the SDP relaxation which is
the core of SDR Detector. For a given SNR SDR Detec-
tor delivers a constant factor approximation of the log-
likelihood ratio for the original ML detection problem
in probability, where the constant factor is indepen-
dent of problem size. SDRDetector solves ML detection
problem exactly in high SNR region. Numerical simu-
lations of BER and running time empirically demon-
strate the advantages of SDR Detector as compared to
the computationally expensive ML Detector.
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The maximum partition matching problem was intro-
duced recently in the study of routing schemes on in-
terconnection networks [2]. In this article, we study the
basic properties of the problem. An efficient algorithm
for the maximum partition matching problem is pre-
sented.
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Definitions andMotivation

Let S = {C1, . . . , Ck} be a collection of subsets of the
universal set U = {1, . . . , n} such that [k

iD1 Ci = U, and
Ci \ Cj = ; for all i 6D j. A partition (A, B) of S pairs two
elements a and b in U if a is contained in a subset in A
and b is contained in a subset inB. A partition matching
(of order m) of S consists of two ordered subsets L =
{a1, . . . , am} and R = {b1, . . . , bm} of m elements of U
(the subsets L and Rmay not be disjoint), together with
a sequence of m distinct partitions of S: (A1, B1), . . . ,
(Am, Bm) such that for all i = 1, . . . ,m, the partition (Ai,
Bi) pairs the elements ai and bi. Themaximum partition
matching problem is to construct a partition matching
of orderm for a given collection S withmmaximized.

The maximum partition matching problem arises
in connection with the parallel routing problem in in-
terconnection networks. In particular, in the study of
the star networks [1], which are attractive alternatives
to the popular hypercubes networks. It can be shown
that constructing an optimal parallel routing scheme in
the star networks can be effectively reduced to the max-
imum partition matching problem. Readers interested
in this connection are referred to [2] for a detailed dis-
cussion.

The maximum partition matching problem can be
formulated in terms of the 3-dimensional matching
problem as follows: given an instance S = {C1, . . . , Ck}
of the maximum partition matching problem, we con-
struct an instance M for the 3-dimensional matching
problem such that a triple (a, b, P) is contained in M
if and only if the partition P of S pairs the elements a
and b. However, since the number of partitions of the
collection S can be as large as 2n and the 3-dimensional
matching problem is NP-hard [4], this reduction does
not hint a polynomial time algorithm for the maximum
partition matching problem.

In the rest of this article, we study the basic proper-
ties for the maximum partition matching problem, and
present an algorithm of running time O(n2 log n) for
the problem. We first introduce necessary terminolo-
gies that will be used in our discussion.

Let  = hL, R, (A1, B1), . . . , (Am, Bm)i be a partition
matching of the collection S, where L = {a1, . . . , am} and
R = {b1, . . . , bm}. We will say that the partition (Ai, Bi)
left-pairs the element ai and right-pairs the element bi.
An element a is said to be left-paired if it is in the set

L. Otherwise, the element a is left-unpaired. Similarly
we define right-paired and right-unpaired elements. The
collections Ai and Bi are called the left-collection and
right-collection of the partition (Ai, Bi). The partition
matching  may also be written as [(a1, b1), . . . , (am,
bm)] if the corresponding partitions are implied.

For the rest of this paper, we assume thatU = {1, . . . ,
n} and that S = {C1, . . . , Ck} is a collection of pairwise
disjoint subsets of U such that [k

iD1 Ci = U.

Case I. Via Pre-Matching when kSk is Large

A necessary condition for two ordered subsets L = {a1,
. . . , am} and R = {b1, . . . , bm} of U to form a partition
matching for the collection S is that ai and bi belong to
different subsets in the collection S, for all i = 1, . . . , m.
We say that the two ordered subsets L and R of U form
a pre-matching � = {(ai, bi): 1 � i � m} if ai and bi do
not belong to the same subset in the collection S, for all
i = 1, . . . , m. The pre-matching � is maximum if m is
the largest among all pre-matchings of S.

A maximum pre-matching can be constructed ef-
ficiently by the algorithm pre-matching given below,
where we say that a set is singular if it consists of a sin-
gle element. See [3] for a proof for the correctness of the
algorithm.

Input : the collection S = fC1; : : : ;Ckg of subsets
of U

Output : a maximum pre-matching � in S
1. T = S; � = ;;
2. WHILE T contains more than one set but

does not consist of exactly three singular
sets
DO

2.1. pick two sets C and C0 of largest cardinal-
ity in T;

2.2. pick an element a in C and an element b
in C0;

2.3. � = � [ f(a; b); (b; a)g;
2.4. C = C � fag; C0 = C0 � fbg;
2.5. if C or C0 is empty now, delete it from T;

3. IF T consists of exactly three singular sets
C1 = fa1g, C2 = fa2g, and C3 = fa3g
THEN
� = � [ f(a1; a2); (a2; a3); (a3; a1)g.

Algorithm pre-matching
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In the following, we show that when the cardinality
of the collection S is large enough, a maximum parti-
tion matching of S can be constructed from the maxi-
mum pre-matching � produced by the algorithm pre-
matching.

Suppose that the collection S consists of k subsets
C1, . . . , Ck and 2k � 4n. The pre-matching � contains at
most n pairs. Let (a, b) be a pair in � and let C and C0

be two arbitrary subsets in S such that C contains a and
C0 contains b. Note that the number of partitions (A, B)
of S such that C is in A and C0 is in B is equal to 2k� 2 �

n. Therefore, at least one such partition can be used to
left-pair a and right-pair b. This observation results in
the following theorem.

Theorem 1 Let S = {C1, . . . , Ck} be a collection of
nonempty subsets of the universal set U = {1, . . . , n} such
that [k

iD1 Ci = U and Ci \ Cj = ;, for i 6D j. If 2k � 4n,
then a maximum partition matching in S can be con-
structed in time O(n2).

Proof Consider the following algorithm partition-
matching-I.

Input: the collection S = fC1; : : : ;Ckg of subsets
of U

Output: a partition matching � in S
1. construct a maximum pre-matching � of

S;
2. FOR each pair (a; b) in � DO

use an unused partition of S to pair a and
b.

Algorithm partition-matching-I

Suppose the pre-matching � constructed in step 1
is � = {(a1, b1), . . . , (am, bm)}. According to the above
discussion, for each pair (ai, bi) in � , there is always an
unused partition of S that left-pairs a and right-pairs b.
Therefore, step 2 of the algorithm partition-matching-I
is valid and constructs a partition matching  for the
collection S. Since each partition matching for S in-
duces a pre-matching in S and � is a maximum pre-
matching, we conclude that the partition matching  is
a maximum partition matching for the collection S.

By carefully organizing the elements in U and
the partitions of S, we can show that the algorithm
partition-matching-I runs in time O(n2). See [3].

Case II. Via GreedyMethod when kSk is Small

Now we consider the case 2k < 4n. Since the number
2k of partitions of the collection S is small, we can ap-
ply a greedy strategy that expands a current partition
matching by trying to add each of the unused partitions
to the partition matching. We show in this section that
a careful use of this greedy method constructs a maxi-
mum partition matching for the given collection.

Suppose we have a partition matching  = [(a1,
b1), . . . , (ah, bh)] and want to expand it. The partitions
of the collection S then can be classified into two classes:
h of the partitions are used to pair the h pairs (ai, bi), i =
1, . . . , h, and the rest 2k � h partitions are unused. Now
if there is an unused partition P = (A, B) such that there
is a left-unpaired element a in A and a right-unpaired
element b in B, then we simply pair the element a with
the element b using the partition P, thus expanding the
partition matching  .

Now suppose that there is no such unused parti-
tion, i. e., for all unused partitions (A, B), either A con-
tains no left-unpaired elements or B contains no right-
unpaired elements. This case may not necessarily imply
that the current partition matching is the maximum.
For example, suppose that (A, B) is an unused parti-
tion such that there is a left-unpaired element a in A
but no right-unpaired elements in B. Assume further
that there is a used partition (A0, B0) that pairs elements
(a0, b0), such that the element b0 is in B and there is
a right-unpaired element b in B0. Then we can let the
partition (A0, B0) pair the elements (a0, b), and then let
the partition (A, B) pair the elements (a, b0), thus ex-
panding the partition matching  . An explanation of
this process is that the used partitions have been incor-
rectly used to pair elements, thus in order to construct
a maximum partition matching, we must re-pair some
of the elements. To further investigate this relation, we
need to introduce a few notations.

For a used partition P of S, we put an underline on
a set in the left-collection (resp. the right-collection) of
P to indicate that an element in the set is left-paired
(resp. right-paired) by the partition P. The sets will be
called the left-paired set and the right-paired set of the
partition P, respectively.

Definition 2 A used partition P is directly left-
reachable from a partition P1 = (A1, B1) if the left-
paired set of P is contained in A1 (the partition P1
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can be either used or unused). The partition P is di-
rectly right-reachable from a partition P2 = (A2, B2) if
the right-paired set of P is contained in B2. A partition
Ps is left-reachable (resp. right-reachable) from a parti-
tion P1 if there are partitions P2, . . . , Ps� 1 such that Pi

is directly left-reachable (resp. directly right-reachable)
from Pi� 1, for all i = 2, . . . , s.

The left-reachability and the right-reachability are tran-
sitive relations.

Let P1 = (A1, B1) be an unused partition such that
there are no left-unpaired elements in A1, and let Ps =
(As, Bs) be a partition left-reachable from P1 and there
is a left-unpaired element as inAs.We show howwe can
use a chain justification to make a left-unpaired element
for the collection A1.

By the definition, there are used partitions P2, . . . ,
Ps� 1 such that Pi is directly left-reachable from Pi� 1,
for i = 2, . . . , s. We can further assume that Pi is not di-
rectly left-reachable from Pi� 2 for i = 3, . . . , s (otherwise
we simply delete the partition Pi� 1 from the sequence).
Thus, these partitions can be written as

P1 D (fC1g [ A01;B1);

P2 D (fC1;C2g [ A02;B2);

P3 D (fC2;C3g [ A03;B3);
: : :

Ps�1 D (fCs�2;Cs�1g [ A0s�1;Bs�1);

Ps D (fCs�1;Csg [ A0s ;Bs);

where A1
0, . . . , As

0 are subcollections of S without an
underlined set.

We can assume that the left-unpaired element as in
As D fCs�1;Csg[A0s is in a nonunderlined set Cs inAs

(otherwise we consider the sequence P1, . . . , Ps� 1 in-
stead). We modify the partition sequence into

P1 D (fC1g [ A01;B1);

P2 D (fC1;C2g [ A02;B2);

P3 D (fC2;C3g [ A03;B3);
:::

Ps�1 D (fCs�2;Cs�1g [ A0s�1;Bs�1);

Ps D (fCs�1;Csg [ A0s ;Bs):

The interpretation is as follows: we use the partition
Ps to left-pair the left-unpaired element as (the right-

paired element in the right-collection Bs is unchanged).
Thus, the element as� 1 in the set Cs� 1 of the parti-
tion Ps used to left-pair becomes left-unpaired.We then
use the partition Ps� 1 to left-pair the element as� 1 and
leave an element as� 2 in the setCs� 2 left-unpaired, then
we use the partition Ps� 2 to left-pair as� 2, etc. At the
end, we use the partition P2 to left-pair an element a2
in the set C2 and leave an element a1 in the set C1 left-
unpaired. Therefore, this process makes an element in
the left-collection A1 = {C1} [ A1

0 of the partition P1

left-unpaired.
The above process will be called a left-chain justifi-

cation. Thus, given an unused partition P1 = (A1, B1)
in which the left-collection A1 has no left-unpaired el-
ements and given a used partition Ps = (As, Bs) left-
reachable from P1 such that the left-collection As of Ps

has a left-unpaired element, we can apply the left-chain
justification that keeps all used partitions in the par-
tition matching  and makes a left-unpaired element
for the partition P1. A process called right-chain justifi-
cation for right-collections of the partitions can be de-
scribed similarly.

A greedy method based on the left-chain and right-
chain justifications is presented in the following algo-
rithm greedy-expanding.

Input: the collection S = fC1; : : : ;Ckg of subsets
of U

Output: a partition matching �exp in S
1. �exp = ;;
2. repeat until no more changes

IF there is an unused partition P = (A;B)
that has a left-unpaired element a inA and
a right-unpaired element b in B
THEN pair the elements (a; b) by the par-
tition P and add P to the matching �exp
ELSE IF a left-chain justification or a
right-chain justification (or both) is appli-
cable to make an unused partition P =
(A;B) to have a left-unpaired element in
A and a right-unpaired element in B
THEN apply the left-chain justification
and/or the right-chain justification

Algorithm greedy-expanding

In case 2k < 4n, a careful organization of the ele-
ments and the partitions can make the running time
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of the algorithm greedy-expanding bounded by O(n2

log n). Briefly speaking, we construct a graph G of 2k

vertices in which each vertex represents a partition of
S. The direct left- and right- reachabilities of partitions
are given by the edges in the graph G, so that checking
left- and right- reachabilities and performing left- and
right- chain justifications can be done efficiently. Inter-
ested readers are referred to [3] for a detailed descrip-
tion.

After execution of the algorithm greedy-expanding,
we obtain a partition matching exp. For each partition
P = (A, B) not included in exp, either A has no left-
unpaired elements and no used partition left-reachable
from P has a left-unpaired element in its left-collection,
or B has no right-unpaired elements and no used par-
tition right-reachable from P has a right-unpaired ele-
ment in its right-collection.

Definition 3 Define Lfree to be the set of partitions P
not used by exp such that the left-collection of P has
no left-unpaired elements and no used partition left-
reachable from P has a left-unpaired element in its left-
collection, and define Rfree to be the set of partitions P0

not used by exp such that the right-collection of P0 has
no right-unpaired elements and no used partition right-
reachable from P0 has a right-unpaired element in its
right-collection.

According to the algorithm greedy-matching, each par-
tition not used by exp is either in the set Lfree or in the
set Rfree. The sets Lfree and Rfree may not be disjoint.

Definition 4 Lreac to be the set of partitions in exp that
are left-reachable from a partition in Lfree, and define
Rreac to be the set of partitions in exp that are right-
reachable from a partition in Rreac.

According to the definitions, if a used partition P is
in the set Lreac, then all elements in its left-collection
are left-paired, and if a used partition P is in the set
Rreac, then all elements in its right-collection are right-
paired.

We first show that if Lreac and Rreac are not disjoint,
then we can construct a maximum partition matching
from the partition matching exp constructed by the al-
gorithm greedy-expanding. For this, we need the fol-
lowing technical lemma.

Lemma 5 If the sets Lreac and Rreac contain a common
partition and the partition matching exp has less than
n pairs, then there is a set C0 in S, |C0| � n/2, such that
either all elements in each set C 6D C0 are left-paired and
every used partition whose left-paired set is not C0 is con-
tained in Lreac, or all elements in each set C 6D C0 are
right-paired and every used partition whose right-paired
set is not C0 is contained in Rreac.

For a proof, see [3].

Theorem 6 If Lreac and Rreac have a common partition,
then the collection S has a maximum partition matching
of n pairs, which can be constructed in linear time from
the partition matching exp.

Proof If exp has n pairs, then exp is already a maxi-
mum partition matching. Thus we assume that exp has
less than n pairs. According to the above lemma, we can
assume, without loss of generality, that all elements in
each set Ci, i = 2, . . . , k, are left-paired, and that every
used partition whose left-paired set is not C1 is in Lreac.
Moreover, |C1| �

Pk
iD2 |Ci|.

Let t =
Pk

iD2 |Ci| and d = |C1|. Then we can assume
that the partition matching exp consists of the parti-
tions

P1; : : : ; Pt ; PtC1; : : : ; PtCh

where P1, . . . , Pt are used by exp to left-pair the ele-
ments in [k

iD2 Ci, and Pt+ 1, . . . , Pt+ h are used by exp

to left-pair the elements in C1, h < d. Moreover, all par-
titions P1, . . . , Pt are in the set Lreac. Thus, the set C1

must be contained in the right-collection in each of the
partitions P1, . . . , Pt .

We ignore the partitions Pt+ 1, . . . , Pt+ h and use the
partitions P1, . . . , Pt to construct a maximum partition
matching of n pairs. Note that {P1, . . . , Pt} also forms
a partition matching in the collection S.

For a partition (A, B) of S, we say that the partition
(B, A) is obtained by flipping the partition (A, B). In
the following algorithm partition-flipping, we show that
a maximum partition matching of n pairs can be con-
structed by flipping d partitions in the partitions P1, . . . ,
Pt .
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Input: a partition matching fP1; : : : ; Ptg that left-
pairs all elements in[k

i=2Ci , t =
Pk

i=2 jCi j,
and the set C1 is contained in the right-
collection of each partition Pi , i = 1; : : : ; t,
d = jC1j � t

Output: a maximum partition matching in S with
n pairs.

1. if not all elements in the set C1 are
right-paired by P1; : : : ; Pt , replace a
proper number of right-paired elements
in [k

i=2Ci by the right-unpaired elements
in C1 so that all elements in C1 are
right-paired by P1; : : : ; Pt ;

2. suppose that the partitions P1; : : : ; Pt�d
right-pair t � d elements b1; : : : ; bt�d in
[k

i=2Ci , and that Pt�d+1; : : : ; Pt right-pair
the d elements in C1;

3. suppose that P1; : : : ; Pt�d are the t � d
partitions in fP1; : : : ; Ptg that left-pair the
elements b1; : : : ; bt�d ;

4. flip each of the d partitions in
fP1; : : : ; Ptg � fP1; : : : ; Pt�dg to get d
partitions P0

1; : : : ; P0
d to left-pair the d

elements in C1. The right paired element
of each P0

i is the left-paired element before
the flipping;

5. fP1; : : : ; Pt ; P0
1; : : : ; P0

d g is a partition
matching of n pairs.

Algorithm partition-flipping

Step 1 of the algorithm is always possible: since C1 is
contained in the right-collection of each partition Pi, i =
1, . . . , t, and t � d, for each right-unpaired element b in
C1, we can always pick a partition Pi that right-pairs an
element in [k

iD2 Ci, and let Pi right-pair the element b.
We keep doing this replacement until all d elements in
C1 get right-paired. At this point, the number of parti-
tions in {P1, . . . , Pt} that right-pair elements in [k

iD2 Ci

is exactly t� d. Step 3 is always possible since the parti-
tions P1, . . . , Pt left-pair all elements in [k

iD2 Ci.
Now we verify that the constructed sequence {P1,

. . . , Pt , P1
0, . . . , Pd

0} is a partition matching in S. No
two partitions Pi and Pj can be identical since {P1, . . . ,
Pt} is supposed to be a partition matching in S. No two
partitions Pi

0 and Pj
0 can be identical since they are ob-

tained by flipping two different partitions in {P1, . . . ,
Pt}. No partition Pi is identical to a partition Pj

0 because

Pi has C1 in its right-collection while Pj
0 has C1 in its

left-collection. Therefore, the partitions P1, . . . , Pt , P1
0,

. . . , Pd
0 are all distinct.

Each of the partitions P1, . . . , Pt left-pairs an ele-
ment in [k

iD2 Ci, and each of the partitions P1
0, . . . , Pd

0

left-pairs an element in C1. Thus, all elements in the
universal set U get left-paired in {P1, . . . , Pt , P1

0, . . . ,
Pd
0}.
Finally, the partitions P1, . . . , Pt right-pair all ele-

ments in C1 and the elements b1, . . . , bt� d in [k
iD2 Ci.

Now by our selection of the partitions, the partitions
P1
0, . . . , Pd

0 precisely right-pair all the elements in [k
iD2

Ci � {b1, . . . , bt� d}. Thus, all elements in U also get
right-paired in {P1, . . . , Pt , P1

0, . . . , Pd
0}.

This concludes that the constructed sequence {P1,
. . . , Pt , P1

0, . . . , Pd
0} is a maximum partition matching

in the collection S. The running time of the algorithm
partition-flipping is obviously linear.

Now we consider the case when the sets Lreac and Rreac

have no common partitions.

Theorem 7 If Lreac and Rreac have no common parti-
tions, then the partition matching exp is a maximum
partition matching.

Proof Let Wother be the set of used partitions in exp

that belong to neither Lreac nor Rreac. Then Lfree [ Rfree

[ Lreac [ Rreac [Wother is the set of all partitions of the
collection S, and Lreac [ Rreac [Wother is the set of par-
titions contained in the partition matching exp. Since
all sets Lreac, Rreac, and Wother are pairwise disjoint, the
number of partitions in exp is precisely |Lreac| + |Rreac|
+ |Wother|.

Now consider the set WL = Lfree [ Lreac. Let UL be
the set of elements that appears in the left-collection of
a partition inWL. We have
� Every P 2 Lreac left-pairs an element in UL;
� Every element in UL is left-paired;
� If an element a in UL is left-paired by a partition P,

then P 2 Lreac.
Therefore, the partitions in Lreac precisely left-pair the
elements in UL. This gives |Lreac| = |UL|. Since there are
only |UL| elements that appear in the left-collections in
partitions in Lfree [ Lreac, we conclude that the parti-
tions in WL = Lfree [ Lreac can be used to left-pair at
most |UL| = |Lreac elements in any partition matching
in S.
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Similarly, the partitions in the setWR = Rfree [ Rreac

can be used to right-pair at most |Rreac| elements in any
partition matching in S.

Therefore, any partition matching in the collection
S can include at most |Lreac| partitions in the setWL, at
most |Rreac| partitions in the setWR, and at most all par-
titions in the setWother. Consequently, amaximum par-
tition matching in S consists of at most |Lreac| + |Rreac|
+ |Wother| partitions. Since the partition matching exp

constructed by the algorithm greedy-expanding con-
tains just this many partitions, exp is a maximum par-
tition matching in the collection S.

Now it is clear how the maximum partition matching
problem is solved.

Theorem8 The maximum partition matching problem
is solvable in time O(n2 log n).

Proof Suppose that we are given a collection S = {C1,
. . . , Ck} of pairwise disjoint subsets of U = {1, . . . , n}.

In case 2k � 4n, we can call the algorithm partition-
matching-I to construct a maximum partition match-
ing in time O(n2).

In case 2k < 4n, we first call the algorithm greedy-
expanding to construct a partition matching exp and
compute the sets Lreac and Rreac. If Lreac and Rreac have
no common partition, then according to the previous
theorem, exp is already a maximum partition match-
ing. Otherwise, we call the algorithm partition-flipping
to construct a maximum partition matching. All these
can be done in time O(n2 log n). A detailed analysis of
this algorithm can be found in [3].

See also

� Assignment and Matching
� Assignment Methods in Clustering
� Bi-objective Assignment Problem
� Communication Network Assignment Problem
� Frequency Assignment Problem
� Quadratic Assignment Problem
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In the maximum satisfiability (MAX-SAT) problem
one is given a Boolean formula in conjunctive normal
form, i. e., as a conjunction of clauses, each clause be-
ing a disjunction. The task is to find an assignment of
truth values to the variables that satisfies the maximum
number of clauses.

Let n be the number of variables and m the number
of clauses, so that a formula has the following form:

^
1�i�m

0
@ _

1�k�jCi j

li k

1
A ;

where |Ci| is the number of literals in clause Ci and lik
is a literal, i. e., a propositional variable uj or its nega-
tion uj , for 1 � j � n. The set of clauses in the formula
is denoted by C. If one associates a weight wi to each
clause Ci one obtains the weighted MAX-SAT problem,
denoted as MAX W-SAT: one is to determine the as-
signment of truth values to the n variables that maxi-
mizes the sum of the weights of the satisfied clauses. In
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the literature one often considers problems with differ-
ent numbers k of literals per clause, defined as MAX-k-
SAT, or MAX W-k-SAT in the weighted case. In some
papers MAX-k-SAT instances contain up to k literals
per clause, while in other papers they contain exactly k
literals per clause. We consider the second option un-
less otherwise stated.

MAX-SAT is of considerable interest not only from
the theoretical side but also from the practical one. On
one hand, the decision version SAT was the first exam-
ple of an NP-complete problem [16], moreover MAX-
SAT and related variants play an important role in the
characterization of different approximation classes like
APX and PTAS [5]. On the other hand, many issues
in mathematical logic and artificial intelligence can be
expressed in the form of satisfiability or some of its
variants, like constraint satisfaction. Some exemplary
problems are consistency in expert system knowledge
bases [46], integrity constraints in databases [4,23], ap-
proaches to inductive inference [35,40], asynchronous
circuit synthesis [32]. An extensive review of algorithms
for MAX-SAT appeared in [9].

M. Davis and H. Putnam [19] started in 1960 the
investigation of useful strategies for handling resolu-
tion in the satisfiability problem. Davis, G. Logemann
and D. Loveland [18] avoid the memory explosion of
the original DP algorithm by replacing the resolution
rule with the splitting rule. A recent review of advanced
techniques for resolution and splitting is presented in
[31].

The MAX W-SAT problem has a natural integer
linear programming formulation. Let yj = 1 if Boolean
variable uj is ‘true’, yj = 0 if it is ‘false’, and let the
Boolean variable zi = 1 if clause Ci is satisfied, zi = 0
otherwise. The integer linear program is:

max
mX
iD1

wizi

subject to the constraints:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

X

j2UCi

y j C
X
j2U�i

(1 � y j) � zi ;

i D 1; : : : ;m;
y j 2 f0; 1g; j D 1; : : : ; n;
zi 2 f0; 1g; i D 1; : : : ;m;

where UCi and U�i denote the set of indices of variables
that appear unnegated and negated in clause Ci, respec-
tively. If one neglects the objective function and sets all
zi variables to 1, one obtains an integer programming
feasibility problem associated to the SAT problem [11].

The integer linear programming formulation of
MAX-SAT suggests that this problem could be solved
by a branch and bound method (cf. also � Integer
programming: Branch and bound methods). A usable
method uses Chvátal cuts. In [35] it is shown that
the resolvents in the propositional calculus correspond
to certain cutting planes in the integer programming
model of inference problems.

Linear programming relaxations of integer linear
programming formulations of MAX-SAT have been
used to obtained upper bounds in [27,33,55]. A lin-
ear programming and rounding approach for MAX-2-
SAT is presented in [13]. A method for strengthening
the generalized set covering formulation is presented
in [47], where Lagrangian multipliers guide the genera-
tion of cutting planes.

The first approximation algorithms with a ‘guaran-
teed’ quality of approximation [5] were proposed by
D.S. Johnson [38] and use greedy construction strate-
gies. The original paper [38] demonstrated for both of
them a performance ratio 1/2. In detail, let k be the
minimum number of variables occurring in any clause
of the formula, m(x, y) the number of clauses satisfied
by the feasible solution y on instance x, and m�(x) the
maximum number of clauses that can be satisfied.

For any integer k � 1, the first algorithm achieves
a feasible solution y of an instance x such that

m(x; y)
m�(x)

� 1 �
1

k C 1
;

while the second algorithm obtains

m(x; y)
m�(x)

� 1 �
1
2k
:

Recently (1997) it has been proved [12] that the sec-
ond algorithm reaches a performance ratio 2/3. There
are formulas for which the second algorithm finds
a truth assignment such that the ratio is 2/3. Therefore
this bound cannot be improved [12].

One of the most interesting approaches in the de-
sign of new algorithms is the use of randomization.
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During the computation, random bits are generated
and used to influence the algorithm process. In many
cases randomization allows to obtain better (expected)
performance or to simplify the construction of the
algorithm. Two randomized algorithms that achieve
a performance ratio of 3/4 have been proposed in
[27] and [55]. Moreover, it is possible to derandom-
ize these algorithms, that is, to obtain deterministic al-
gorithms that preserve the same bound 3/4 for every
instance. The approximation ratio 3/4 can be slightly
improved [28]. T. Asano [2] (following [3]) has im-
proved the bound to 0.77. For the restricted case of
MAX-2-SAT, one can obtain a more substantial im-
provement (performance ratio 0.931) with the tech-
nique in [21]. If one considers only satisfiable MAX
W-SAT instances, L. Trevisan [54] obtains a 0.8 ap-
proximation factor, while H. Karloff and U. Zwick
[41] claim a 0.875 performance ratio for satisfiable in-
stances of MAX W-3-SAT. A strong negative result
about the approximability can be found in [36]: Unless
P = NPMAXW-SAT cannot be approximated in poly-
nomial time within a performance ratio greater than
7/8.

MAX-SAT is among the problems for which local
search has been very successful: in practice, local search
and its variations are the only efficient and effective
method to address large and complex real-world in-
stances. Different variations of local search with ran-
domness techniques have been proposed for SAT and
MAX-SAT starting from the late 1980s, see for ex-
ample [30,52], motivated by previous applications of
‘min-conflicts’ heuristics in the area of artificial intel-
ligence [44].

The general scheme is based on generating a start-
ing point in the set of admissible solution and trying to
improve it through the application of basic moves. The
search space is given by all possible truth assignments.
Let us consider the elementary changes to the current
assignment obtained by changing a single truth value.
The definitions are as follows.

Let U be the discrete search space: U = {0, 1}n, and
let f be the number of satisfied clauses. In addition, let
U(t) 2 U be the current configuration along the search
trajectory at iteration t, and N(U(t)) the neighborhood
of point U(t), obtained by applying a set of basic moves
�i (1 � i � n), where �i complements the ith bit ui of
the string: �i (u1, . . . , ui, . . . , un) = (u1, . . . , 1 � ui, . . . ,

un):

N(U (t)) D
n
U 2 U : U D �i ; U (t); i D 1; : : : ; n

o
:

The version of local search that we consider starts
from a random initial configuration U(0) 2 U and gen-
erates a search trajectory as follows:

V D BESTNEIGHBOR(N(U (t))); (1)

U (tC1) D

(
V if f (V) > f (U (t));
U (t) if f (V) � f (U (t))

(2)

where BESTNEIGHBOR selects V 2 N(U(t)) with the
best f value and ties are broken randomly. V in turn
becomes the new current configuration if f improves.
Other versions are satisfied with an improving (or
nonworsening) neighbor, not necessarily the best one.
Clearly, local search stops as soon as the first local opti-
mum point is encountered, when no improving moves
are available, see (2). Let us define as LS+ a modifica-
tion of LS where a specified number of iterations are
executed and the candidate move obtained by BEST-
NEIGHBOR is always accepted even if the f value re-
mains equal or worsens.

Properties about the number of clauses satisfied at
a local optimum have been demonstrated. Letm� be the
best value and k the minimum number of literals con-
tained in the problem clauses. Let mloc be the number
of satisfied clauses at a local optimum of any instance
of MAX-SAT with at least k literals per clause. mloc sat-
isfies the following bound [34]:

mloc �
k

k C 1
m

and the bound is sharp. Therefore, ifmloc is the number
of satisfied clauses at a local optimum, then:

mloc �
k

k C 1
m�: (3)

State-of-the-art heuristics for MAX-SAT are ob-
tained by complementing local search with schemes
that are capable of producing better approximations be-
yond the locally optimal points. In some cases, these
schemes generate a sequence of points in the set of ad-
missible solutions in a way that is fixed before the search
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starts. An example is given by multiple runs of local
search starting from different random points. The al-
gorithm does not take into account the history of the
previous phase of the search when the next points are
generated. The term ‘memory-less’ denotes this lack of
feedback from the search history.

In addition to the cited multiple-run local search,
these techniques are based on Markov processes (simu-
lated annealing; cf. also � Simulated annealing meth-
ods in protein folding), ‘plateau’ search and ‘random
noise’ strategies, or combinations of randomized con-
structions and local search. The use of aMarkov process
to generate a stochastic search trajectory is adopted, for
example in [53].

TheGsat algorithmwas proposed in [52] as amodel-
finding procedure, i. e., to find an interpretation of the
variables under which the formula comes out ‘true’.
Gsat consists of multiple runs of LS+, each run con-
sisting of a number of iterations that is typically pro-
portional to the problem dimension n. An empirical
analysis of Gsat is presented in [24,25]. Different ‘noise’
strategies to escape from attraction basins are added to
Gsat in [50,51].

A hybrid algorithm that combines a randomized
greedy construction phase to generate initial candidate
solutions, followed be a local improvement phase is the
GRASP scheme proposed in [48] for the SAT and gen-
eralized for the MAX W-SAT problem in [49]. GRASP
is an iterative process, with each iteration consisting
of two phases, a construction phase and a local search
phase.

Different history-sensitive heuristics have been pro-
posed to continue local search schemes beyond lo-
cal optimality. These schemes aim at intensifying the
search in promising regions and at diversifying the
search into uncharted territories by using the infor-
mation collected from the previous phase (the history)
of the search. Because of the internal feedback mecha-
nism, some algorithm parameters can be modified and
tuned in an on-line manner, to reflect the characteris-
tics of the task to be solved and the local properties of
the configuration space in the neighborhood of the cur-
rent point. This tuning has to be contrasted with the off-
line tuning of an algorithm, where some parameters or
choices are determined for a given problem in a prelim-
inary phase and they remain fixed when the algorithm
runs on a specific instance.

Tabu search is a history-sensitive heuristic proposed
by F. Glover [26] and, independently, by P. Hansen and
B. Jaumard, that used the term ‘SAMD’ (steepest as-
cent mildest descent) and applied it to the MAX-SAT
problem in [34]. The main mechanism by which the
history influences the search in tabu search is that, at
a given iteration, some neighbors are prohibited, only
a nonempty subset NA(U(t)) � N(U(t)) of them is al-
lowed. The general way of generating the search trajec-
tory that we consider is given by:

NA(U (t)) D allow(N(U (t)); : : : ;U (t)); (4)

U (tC1) D BESTNEIGHBOR(NA(U (t))): (5)

The set-valued function allow selects a nonempty sub-
set of N(U(t)) in a manner that depends on the entire
previous history of the search U(0), . . . , U(t). A spe-
cialized tabu search heuristic is used in [37] to speed
up the search for a solution (if the problem is satis-
fiable) as part of a branch and bound algorithm for
SAT, that adopts both a relaxation and a decomposi-
tion scheme by using polynomial instances, i. e., 2-SAT
and Horn-SAT.

Different methods to generate prohibitions produce
discrete dynamical systems with qualitatively different
search trajectories. In particular, prohibitions based on
a list of moves lead to a faster escape from a locally op-
timal point than prohibitions based on a list of visited
configurations [6]. In detail, the function allow can be
specified by introducing a prohibition parameter T (also
called list size) that determines how long a move will
remain prohibited after its execution. The fixed tabu
search algorithm is obtained by fixing T throughout the
search [26]. A neighbor is allowed if and only if it is ob-
tained from the current point by applying a move that
has not been used during the last T iterations. In detail,
if LU(�) is the last usage time of move � (LU(�) = �
1 at the beginning):

NA(U (t)) D
n
U D �U (t) : LU(�) < (t � T)

o
:

The reactive tabu search algorithm of [10], defines
simple rules to determine the prohibition parameter by
reacting to the repetition of previously-visited configu-
rations. One has a repetition if U(t + R) = U(t) for R � 1.
The prohibition period T depends on the iteration t and
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a reaction equation is added to the dynamical system:

T(t) D react(T(t�1);U (0); : : : ;U (t)):

An algorithm that combines local search and
nonoblivious local search [8], the use of prohibitions,
and a reactive scheme to determine the prohibition pa-
rameter is the Hamming-reactive tabu search algorithm
proposed in [7], which contains also a detailed experi-
mental analysis.

Given the hardness of the problem and the rele-
vancy for applications in different fields, the empha-
sis on the experimental analysis of algorithms for the
MAX-SAT problem has been growing in recent years
(as of 2000).

In some cases the experimental comparisons have
been executed in the framework of ‘challenges,’ with
support of electronic collection and distribution of soft-
ware, problem generators and test instances. An exam-
ple is the the Second DIMACS algorithm implemen-
tation challenge on cliques, coloring and satisfiability,
whose results have been published in [39]. Practical and
industrial MAX-SAT problems and benchmarks, with
significant case studies are also presented in [20]. Some
basic problem models that are considered both in theo-
retical and in experimental studies of MAX-SAT algo-
rithms are described in [31].

Different algorithms demonstrate a different degree
of effort, measured by number of elementary steps or
CPU time, when solving different kinds of instances.
For example, in [45] it is found that some distributions
used in past experiments are of little interest because
the generated formulas are almost always very easy to
satisfy. It also reports that one can generate very hard
instances of k-SAT, for k � 3. In addition, it reports the
following observed behavior for random fixed length 3-
SAT formulas: if r is the ratio r of clauses to variables (r
=m/n), almost all formulas are satisfiable if r < 4, almost
all formulas are unsatisfiable if r > 4.5. A rapid transi-
tion seems to appear for r 	 4.2, the same point where
the computational complexity for solving the generated
instances is maximized, see [17,42] for reviews of ex-
perimental results.

Let � be the least real number such that, if r is larger
than �, then the probability of C being satisfiable con-
verges to 0 as n tends to infinity. A notable result found
independently by many people, including [22] and [14]

is that

� � log 8
7
2 D 5:191:

A series of theoretical analyses aim at approximat-
ing the unsatisfiability threshold of random formulas
[1,15,29,43].

See also

� Greedy Randomized Adaptive Search Procedures
� Integer Programming
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Introduction

In multiproduct and multipurpose batch plants, dif-
ferent products can be manufactured via the same or
a similar sequence of operations by sharing available
pieces of equipment, intermediate materials, and other
production resources. They are ideally suited to manu-
facture products that are produced in small quantities
or for which the production recipe or the customer de-
mand pattern is likely to change. The inherent opera-
tional flexibility of this type of plant provides the op-
portunity for increased savings through the realization
of an efficient production schedule which can reduce
inventories, production and transition costs, and pro-
duction shortfalls.

The problem of production scheduling and plan-
ning for multiproduct and multipurpose batch plants
has received a considerable amount of attention dur-
ing the last two decades. Extensive reviews have been
written by Reklaitis [10], Pantelides [9], Shah [11]
and more recently by Floudas and Lin [4,5]. Most
of the work in the area of multiproduct batch plants
has dealt with either the long-term planning prob-
lem or the short-term scheduling problem. Both plan-
ning and scheduling deal with the allocation of avail-
able resources over time to perform a set of tasks re-
quired to manufacture one or more products. How-
ever, long-term planning problems deal with longer
time horizons (e. g., several months or years) and are
focused on higher level decisions such as timing and
location of additional facilities and levels of produc-
tion. In contrast, short-term scheduling models address
shorter time horizons (e. g., several days) and are fo-
cused on determining detailed sequencing of various
operational tasks. The area of medium-term schedul-
ing, however, which involves medium time horizons
(e. g. several weeks) and still aims to determine de-
tailed production schedules, can result in very large-
scale problems and has received much less attention in
the literature.

For medium-term scheduling, relatively little work
has been presented in the literature. Medium-term
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scheduling can be quite computationally complex, thus
it is common for mathematical programming tech-
niques to be used in their solution. The most widely
employed strategy to overcome the computational dif-
ficulty is based on the idea of decomposition. The
decomposition approach divides a large and com-
plex problem, which may be computationally expen-
sive or even intractable when formulated and solved
directly as a single MILP model, to smaller subprob-
lems, which can be solved much more efficiently.
There have been a wide variety of decomposition ap-
proaches proposed in the literature. In addition to de-
composition techniques developed for general forms
of MILP problems, various approaches that exploit
the characteristics of specific process scheduling prob-
lems have also been proposed. In most cases, the de-
composition approaches only lead to suboptimal so-
lutions, however, they substantially reduce the prob-
lem complexity and the solution time, making MILP
based techniques applicable for large, real-world prob-
lems.

In this chapter, we propose an enhanced State-Task
Network MILP model for the medium-term produc-
tion scheduling of a multipurpose, multiproduct indus-
trial batch plant. The proposed approach extends the
work of Ierapetritou and Floudas [6] and Lin et al. [8]
to consider a large-scale production facility and ac-
count for various storage policies (UIS, NIS, ZW), vari-
able batch sizes and processing times, batch mixing and
splitting, sequence-dependent changeover times, inter-
mediate due dates, products used as raw materials, and
several modes of operation. The methodology consists
of the decomposition of the whole scheduling period
into successive short horizons of a few days. A decom-
position model is implemented to determine each short
horizon and the corresponding products to be included.
Then, a novel continuous-time formulation for short-
term scheduling of batch processes with multiple in-
termediate due dates is applied to each short horizon
selected, leading to a large-scale mixed-integer linear
programming (MILP) problem. The scheduling model
includes over 80 pieces of equipment and can take
into account the processing recipes of hundreds of dif-
ferent products. Several characteristics of the produc-
tion plant are incorporated into the scheduling model
and actual plant data are used to model all parame-
ters.

Problem Statement

In the multiproduct batch plant investigated, there are
several different types of operations (or tasks) termed
operation type 1 to operation type 6. The plant has
many different types of units and over 80 are mod-
eled explicitly. Hundreds of different products can be
produced and for each of them, one of the processing
recipes shown in Fig. 1 or a slight variation is applied.
The recipes are represented in the form of State-Task
Network (STN), in which the state node is denoted by
a circle and the task node by a rectangle. The STN rep-
resentation provides the flow of material through vari-
ous tasks in the production facility to produce different
types of final products and does not represent the actual
connectivity of equipment in the plant.

For the first type of STN shown in Fig. 1, raw ma-
terials (or state F) are fed into a type 1 unit and un-
dergo operation type 1 to produce an intermediate
(or state I1). This intermediate then undergoes oper-
ation type 3 in a type 3 unit to produce another in-
termediate (or state I2). This second intermediate is
then sent to a type 4b unit before the resulting in-
termediate material (or state I3) is sent to a type 6
unit to undergo an operation type 6 task to pro-
duce a final product (or state P). The information on
which units are suitable for each product is given. All
the units are utilized in a batch mode with the ex-
ception of the type 5 and 6 units, which operate in
a continuous mode. The capacity limits of the type 1,
type 2, and type 3 units vary from one product to an-
other, while the capacity limits of the types 4a, 4b, 5
and 6 units are the same for all suitable products. The
processing time or processing rate of each task in the
suitable units is also specified. Also, some products re-
quire other products as their raw materials, creating
very complicated state-task networks.

The time horizon considered for production
scheduling is a few weeks or longer. Customer orders
are fixed throughout the time horizon with specified
amounts and due dates. There is no limitation on ex-
ternal raw materials and we apply the zero-wait storage
condition or limited intermediate storage capacity for
all materials based on actual plant data. There are two
different types of products produced, category 1 and 2.

The sixth STN shown in Fig. 1 shows a special type
of product, denoted as a campaign product. For this
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Medium-Term Scheduling of Batch Processes, Figure 1
State-task network (STN) representation of plant

type of product, raw materials are fed into up to three
type 1 units and undergo operation type 1 to produce
an intermediate, or state I1. This intermediate is then
sent to one of two type 4a units before being processed
in the type 5 unit, which is a continuous unit. Finally,
the intermediate material (or state I3) is sent to a type 6
unit, producing a final campaign product (or state P).
Because product changeovers in the type 5 unit can be
undesirable, there was a need to introduce the ability
to fix campaigns for continuous production of a single
product in the type 5 unit, called campaign mode pro-
duction.

Formulation

The overall methodology for solving the medium-
range production scheduling problem is to decom-
pose the large and complex problem into smaller
short-term scheduling subproblems in successive time
horizons [8]. The flowchart for this rolling horizon
approach is shown in Fig. 2. The first step is to input
relevant data into the formulation. Then, if necessary,
campaign mode production is determined. Next, the
overall medium-term scheduling problem is consid-
ered. A decomposition model is formulated and solved

to determine the current time horizon and correspond-
ing products that should be included in the current
subproblem. According to the solution of the decom-
position model, a short-term scheduling model is for-
mulated using the information on customer orders, in-
ventory levels, and processing recipes. The resulting
MILP problem is a large-scale, complex problem which
requires a large computational effort for its solution.
When a satisfactory solution is determined, the relevant
data is output and the next time horizon is considered.
The above procedure is applied iteratively in an auto-
matic fashion until the whole time horizon under con-
sideration has been scheduled.

Note that the decomposition model determines how
many days and products to consider in the shorter
scheduling horizon subject to an upper limit on the
complexity of the resulting mathematical model. Prod-
ucts are selected for the scheduling horizon if there is an
order for the product, if the product has an order within
a set amount of time into the future, if the product is
used as a raw material for another product which is in-
cluded, if the product was still processing in the previ-
ous scheduling horizon, or if the product is a campaign
product and is included in a campaign for the current
horizon.
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Medium-Term Scheduling of Batch Processes, Figure 2
Flowchart of the rolling horizon approach

Models

A key component of the rolling horizon approach is
the determination of the time horizon and the products
which should be included for each short-term schedul-
ing subproblem. We extend the two-level decomposi-
tion formulation of Lin et al. [8] which partitions the
entire scheduling horizon into shorter subhorizons by
taking into account the trade-off between demand sat-
isfaction, unit utilization, and model complexity. In the
first level, the number of days in the time horizon and
the main products which should be included are de-
termined. In the second level, additional products are

added to the horizon so that each of the first-stage units,
or type 1 units, are fully utilized.

Short-Term Scheduling Model

Once the decomposition model has determined the
days in the time horizon and the products to be in-
cluded, a novel continuous-time formulation for short-
term scheduling with multiple intermediate due dates is
applied to determine the detailed production schedule.
This formulation is based on the models of Floudas and
coworkers [6,7,8] and is expanded and enhanced in this
work to take into account specific aspects of the prob-
lem under consideration. The proposed short-term
scheduling formulation requires the following indices,
sets, parameters and variables:

Indices:

d days;
i processing tasks;
j units;
k orders;
n event points representing the beginning of a task;
s states;

Sets:

D days in the overall scheduling horizon;
Din days in the current scheduling horizon;
I processing tasks;
Ij tasks which can be performed in unit (j);
Ik tasks which process order (k);
Ics tasks which consume state (s);
Ips tasks which produce state (s);
Iin tasks which are included in the current schedul-

ing horizon;
IT5 tasks which are used to determine the type 5

unit campaign;
IT6b tasks which are used to perform operation

type 6 for category 1 products;
J units;
Ji units which are suitable for performing task (i);
Jp units which are suitable for performing only

processing tasks, or operation type 1, 2, 3, and
5 tasks;

JT1 units which are suitable for performing only op-
eration type 1 tasks;
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JT4 units which are suitable for performing only op-
eration type 4a and 4b tasks;

JT5 units are which used to determine the type 5
unit campaign;

JT6 units which are suitable for performing only op-
eration type 6 tasks;

K orders;
Ki orders which are processed by task (i);
Ks orders which produce state (s);
K in orders which are included in the current

scheduling horizon;
N event points within the time horizon;
S states;
Sk states which are used to satisfy order (k);
Scat1 states which are category 1 final products;
Scat2 states which are category 2 final products;
Scpm states which have minimum or maximum stor-

age limitations;
Sf states which are final products, after operation

type 6;
Si states which are intermediate products, before

operation type 6;
Sin states which are included in the current

scheduling horizon;
Sp states which are either final or intermediate

products;
Srw states which are products and are used as raw

materials for other products;
Sst states which have no intermediate storage;
ST5 states which are used to determine the type 5

unit campaign;
Sunl states which have unlimited intermediate stor-

age;
S0 states which are external raw materials;

Parameters:

Bmax
s the maximum suitable batch size used to

produce product state (s);
Bmin
s the minimum suitable batch size used to

produce product state (s);
C a large constant (e. g., 10000);
capmax

ij maximum capacity for task (i) in unit (j);
capmin

ij minimum capacity for task (i) in unit (j);
dems demand for state (s) in the current

scheduling horizon;
demrw

s demand for raw material product state
(s);

demtot
s total demand for state (s) in the overall

horizon;
duekksd due date of order (k) for state (s) on day

(d);
ExtraTimei amount of time needed for operation

type 3 task after processing task (i);
FixedTimeij constant term of processing time for task

(i) in unit (j);
H time horizon;
mintasks the minimum number of tasks that must

occur in the first-stage processing units,
JT1;

Nmax the maximum number of event points in
the scheduling horizon;

prawss0 0-1 parameter to relate final product (s)
to its raw material product (s0);

prices price of state (s);
priors priority of product state (s);
priorraws priority of raw material state (s);
RateCTij variable term of processing time for task

(i) in unit (j);
rkksd amount of order (k) for state (s) on day

(d);
startj the time at which unit (j) first becomes

available in the current scheduling hori-
zon;

stcapmax
s maximum capacity for storage of state (s);

stcapmin
s minimum capacity for storage of state (s);

˛ coefficient for the demand satisfaction of
individual orders term;

ˇ coefficient for the due date satisfaction of
individual orders term;

� coefficient for the overall demand satis-
faction slack variable term;

ı coefficient for the minimum inventory
requirement in dedicated units term;

� coefficient for the artificial demands on
raw material states term;

� coefficient for the minimizing of binary
variables term;

� coefficient for the minimizing of active
start times term;

� a small constant (e. g., 0.01);
�cis proportion of state (s) consumed by task

(i);
�
p
is proportion of state (s) produced by task

(i);
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� ii0 sequence-dependent setup time between
tasks (i) and (i0);

� coefficient for the satisfaction of orders
term;

! coefficient for the overall production
term;

Continuous Variables:

B(i , j , n) amount of material undertaking task (i)
in unit (j) at event point (n);

D(s , n) amount of state (s) delivered at event
point (n);

Df (s , n) amount of state (s) delivered after the last
event point;

kD(k , s , n) amount of state (s) delivered at event
point (n) for order (k);

kDf (k , s , n) amount of state (s) delivered after the last
event point for order (k);

sla1(k , s , d) amount of state (s) due on day (d) for or-
der (k) that is not delivered;

sla2(k , s , d) amount of state (s) due on day (d) for or-
der (k) that is over delivered;

slcap(s , n) amount of state (s) that is deficient in its
dedicated storage unit at event point (n);

sll(s) amount of state (s) due in the current
time horizon but not made;

sllraw(s) amount of raw material product state (s)
artificially due in the current time hori-
zon but not made;

slorder(k) 0-1 variable indicating if order (k) was
met;

slt1(k , s , d) amount of time state (s) due on day (d)
for order (k) is late;

slt2(k , s , d) amount of time state (s) due on day (d)
for order (k) is early;

ST(s , n) amount of state (s) at event point (n);
STF(s) final amount of state (s) at the end of the

current time horizon;
STO(s) initial amount of state (s) at the beginning

of the current time horizon;
Tf(i , j , n) time at which task (i) finishes in unit (j)

at event point (n);
Ts(i , j , n) time at which task (i) starts in unit (j) at

event point (n);
tot(s) total amount of state (s) made in the cur-

rent time horizon;

tts(i , j , n) starting time of the active task (i) in unit
(j) at event point (n);

Binary Variables:

wv(i , j , n) assigns the beginning of task (i) in unit (j)
at event point (n);

y(i , k , n) assigns the delivery of order (k) through
task (i) at event point (n);

On the basis of this notation, the mathematical
model for the short-term scheduling of an industrial
batch plant with intermediate due dates involves the
following constraints:

X
i2Iin;I j

wv(i; j; n) � 1 ;

8 j 2 J; n 2 N; n � Nmax

(1)

capmin
i j � wv(i; j; n) � B(i; j; n)

� capmax
i j � wv(i; j; n) ;

8i 2 Iin; j 2 Ji ; n 2 N; n � Nmax

(2)

st(s; n) D 0; 8s 2 Sin; Sst ;

s … Scpm; Sunl; n 2 N; n � Nmax (3)

st(s; n) � stcapmin
s � slcap(s) ;

8s 2 Sin; Scpm; n 2 N; n � Nmax (4)

st(s; n) � stcapmax
s ;

8s 2 Sin; Scpm; n 2 N; n � Nmax (5)

ST(s; n) D ST(s; n � 1) � D(s; n)

C
X

i2Ips

�
p
i s

X
j2J i

B(i; j; n � 1)

�
X
i2Ics

�ci s

X
j2J i

B(i; j; n) ;

8s 2 Sin; n 2 N; n > 1; n � Nmax

(6)

ST(s; n) D STO(s) � D(s; n)

�
X
i2Ics

�ci s

X
j2J i

B(i; j; n) ;

8s 2 Sin; n 2 N; n D 1

(7)

STF(s) D ST(s; n) � D f (s; n)

C
X

i2Ips

�
p
i s

X
j2J i

B(i; j; n) ;

8s 2 Sin; n 2 N; n D Nmax

(8)
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Tf(i; j; n) D Ts(i; j; n)C FixedTimei j � wv(i; j; n)

C RateCTi j � B(i; j; n) ;

8i 2 Iin; j 2 Jp [ JT6; Ji ; n 2 N; n � Nmax

(9)

Tf(i; j; n) � Ts(i; j; n) ;

8i 2 Iin; j 2 JT4; Ji ; n 2 N; n � Nmax (10)

Tf(i; j; n) D H; 8s 2 Sin; Sst; s … Sunl ;

i 2 Iin; Ips ; j 2 JT4; Ji ; n 2 N; n D Nmax (11)

Ts(i; j; n C 1) � Tf(i; j; n)
C ExtraTimei � wv(i; j; n) ;

8i 2 Iin; j 2 Ji ; n 2 N; n < Nmax

(12)

Ts(i; j; n C 1) � Tf(i0; j; n)C (�i 0 i C ExtraTimei 0)

�wv(i0; j; n) � H[1 � w(i0; j; n)] ;

8 j 2 J; i; i0 2 Iin; I j; i ¤ i0; n 2 N; n < Nmax

(13)

Ts(i; j; nC 1) � Tf(i0; j0; n)

� H[1 � wv(i0; j0; n)] ;
8s 2 Sin; i 2 Iin; Ics ; i0 2 Iin; Ips ;

j 2 Ji ; j0 2 Ji 0 ; j ¤ j0; n 2 N; n < Nmax

(14)

Ts(i; j; n C 1) � Tf(i0; j0; n)C H[2 � wv(i0; j0; n)

� wv(i; j; n C 1)] ;

8s 2 Sin; Sst; s … Sunl; i 2 Iin; Ics ; i0 2 Iin; Ips ;

j 2 Ji ; j0 2 Ji 0 ; j ¤ j0; n 2 N; n < Nmax

(15)

The allocation constraints in (1) express the require-
ment that for each unit (j) and at each event point
(n), only one of the tasks that can be performed in the
unit (i. e., i 2 I j) should take place. The capacity con-
straints in (2) express the requirement for the batch-
size of a task (i) processing in a unit (j) at event point
(n); B(i; j; n), to be greater than the minimum amount
of material, capmin

i j , and less than the maximum amount
of material, capmax

i j , that can be processed by task (i) in
unit (j). The storage constraints in (3) enforce that those
states with no intermediate storage have to be con-
sumed by some processing task or storage task immedi-
ately after they are produced. Constraints (4) represent

the minimum required storage for state (s) in a dedi-
cated storage tank where this amount can be violated,
if necessary, by an amount slcap(s) which is penalized
in the objective function. Constraints (5) represent the
maximum available storage capacity for state (s) based
on the maximum storage capacity of the dedicated stor-
age tank. According to the material balance constraints
in (6), the amount of material of state (s) at event point
(n) is equal to that at event point (n � 1) increased
by any amounts produced at event point (n � 1), de-
creased by any amounts consumed at event point (n),
and decreased by the amount required by the market
at event point (n);D(s; n). Constraints (7)–(8) repre-
sent the material balance on state (s) at the first and
last event points, respectively. The duration constraints
in (9) represent the relationship between the starting
and finishing times of task (i) in unit (j) at event point
(n) for all processing tasks (i. e., Jp) and all operation
type 6 tasks (i. e., JT6) where FixedTimeij are the fixed
processing times for batch tasks and zero for contin-
uous tasks and RateCTij are the inverse of processing
rates for continuous tasks and zero for batch tasks, re-
spectively. Constraints (10) also represent the relation-
ship between the starting and finishing times of task (i)
in unit (j) at event point (n), but for operation type 4a
and 4b tasks (i. e., JT4). They do not impose exact du-
rations for tasks in these units but just enforce that all
tasks must end after they start. Constraints (11) are
written only for tasks in units which are processing
a nonstorable state (i. e., Sst and not Sunl) and enforce
that task (i) taking place at the last event point (n) must
finish at the end of the horizon.

The sequence constraints in (12) state that task (i)
starting at event point (nC 1) should start after the end
of the same task performed in the same unit (j) which
has finished at the previous event point, (n) where extra
time is added after task (i) at event point (n), if nec-
essary. The constraints in (13) are written for tasks (i)
and (i0) that are performed in the same unit (j) at event
points (nC 1) and (n), respectively. If both tasks take
place in the same unit, they should be at most consec-
utive. The third set of sequence constraints in (14) re-
late tasks (i) and (i0) which are performed in different
units (j) and ( j0) but take place consecutively accord-
ing to the production recipe. The zero-wait constraints
in (15) are written for different tasks (i) and (i0) that
take place consecutively with the intermediate state (s)
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having no possible intermediate storage and thus sub-
ject to the zero-wait condition.

X
i2Iin;
Ik ;IT6b

X
n2N

n�Nmax

y(i; k; n)C slorder(k) � 1 ;

8k 2 K in

(16)

X

i2Iin;Ik ;IT6b

X
n2N

n�Nmax

y(k; i; n)

�
X

s2S in;Scat1
s ls>0

X
d2D in

rkksd>0

�
rkksd
Bmin
s

�
; 8k 2 K in

(17)

X
k2K in;Ki

X
j2J i

suiti j � y(i; k; n)

�
X

j2J i ;JT6
wv(i; j; n) ;

8i 2 Iin; IT6b; n 2 N; n � Nmax

(18)

X
k2K in;Ki

y(i; k; n) �
X

j2J i ;JT6
wv(i; j; n) ;

8i 2 Iin; IT6b; n 2 N; n � Nmax

(19)

kD(k; s; nC 1)C kD f (k; s; nC 1) �X
j2J i

B(i; j; n) � C � (1 � y(i; k; n)) ;

8s 2 Sin; Scat1; k 2 K in;Ks ;

i 2 Ik ; IT6b; n 2 N; n < Nmax

(20)

D(s; n) D
X

k2K in;Ks

kD(k; s; n) ;

8s 2 Sin; Scat1; n 2 N; n � Nmax
(21)

D f (s; n) D
X
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8s 2 Sin; Scat1; n 2 N; n D Nmax
(22)

X
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kD(k; s; nC 1)C kDf (k; s; nC 1)

�

C sla1(k; s; d) � rkksd ;

8s 2 Sin; Scat1; k 2 K in;Ks ;
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(23)

X
n2N

n<Nmax

�
kD(k; s; nC 1)C kDf (k; s; n C 1)

�

C stf (s) � sla2(k; s; d) � rkksd ;

8s 2 Sin; Scat1; k 2 K in;Ks ;

d 2 Din; rkksd > 0

(24)

Tf(i; j; n) � slt1(k; s; d; n) � duek(k; s; d)
C H � (2 � wv(i; j; n) � y(i; k; n)) ;

8s 2 Sin; Scat1; k 2 K in;Ks ; i 2 Iin; Ik ; IT6b ;

j 2 Ji ; n 2 N; n � Nmax; d 2 Din; rkksd > 0

(25)

Tf(i; j; n)C slt2(k; s; d; n) � (duek(k; s; d) � 24)

� H � (2 � wv(i; j; n) � y(i; k; n)) ;

8s 2 Sin; Scat1; k 2 K in;Ks ; i 2 Iin; Ik ; IT6b ;

j 2 Ji ; n 2 N; n � Nmax; d 2 Din; rkksd > 0
(26)

The order satisfaction constraints in (16)–(23) are
written to ensure that all orders for category 1 prod-
ucts are met on-time and with the required amount.
Both under and overproduction as well as early and late
production are represented with slack variables that are
penalized in the objective function. Note that these con-
straints can be modified to represent different require-
ments for production, if desired. Constraints (16) try to
ensure that each order (k) is met at least one time with
an operation type 6 task (i), where task (i) is suitable for
order (k) if i 2 Ik and is a operation type 6 task for a cat-
egory 1 product if i 2 IT6b. Similarly, constraints (17)
enforce the condition that each order (k) for category
1 product state (s) on day (d) can be met with at most
drkksd / Bmin

s e tasks. Constraints (18) and (19) link the
delivery of order (k) through task (i) at event point (n)
to the beginning of task (i) in any suitable unit (j) at
event point (n) so that every category 1 operation type 6
task must be linked to at least one order delivery and
vice versa. Thus, constraint (18) enforces that if a bi-
nary variable is activated for operation type 6 task (i),
then at least one order delivery must be activated. Sim-
ilarly, constraint (19) ensures that if no binary variables
are activated for operation type 6 task (i) at event point
(n), then no delivery variables can be activated. Con-
straints (20) relate the individual order delivery vari-
ables to the batch-size of the operation type 6 task used
to satisfy the order. If an order (k) is met by task (i) at
event point (n) (i. e., y(i; k; n) D 1), then at least one
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operation type 6 task is active for task (i) at event point
(n) and thus at least one B(i; j; n) variable is greater
than zero. Constraints (21) and (22) relate the individ-
ual order delivery variables to the overall delivery vari-
ables used in the material balance constraints.

Constraints (23) and (24) determine the under and
overproduction, respectively, of order (k) for state (s)
on day (d). Constraints (23) try to enforce the indi-
vidual order delivery variables to exceed the amount
due for order (k) (i. e., rkksd) where slack variables
sla1(k; s; d) are activated in the case of underproduc-
tion. Similarly, constraints (24) try to enforce the indi-
vidual order delivery variables plus any amount of the
product state left at the end of the horizon not to ex-
ceed the amount due for order (k) where slack variables
sla2(k; s; d) are activated in the case of overproduction.
Constraints (25) and (26) determine the late and early
production, respectively, of order (k) for state (s) on day
(d). Constraints (25) try to enforce the finishing time of
task (i) used to satisfy order (k) at event point (n) to be
less than the due date of order (k) where slack variables
slt1(k; s; d; n) are activated in the case of late produc-
tion. Similarly, constraints (26) try to enforce the fin-
ishing time of task (i) used to fulfill order (k) at event
point (n) to be greater than the beginning of the day (d)
on which the order is due (i. e., duek(k; s; d) � 24). Oth-
erwise, slack variables slt2(k; s; d; n) are activated indi-
cating early production.

tot(s) D stf (s)C
X
n2N

n�Nmax

�
D(s; n)C D f (s; n)

�
;

8s 2 Sin
(27)

X
n2N

n�Nmax

�
D(s; n)C D f (s; n)

�
C sll(s) � dems ;

8s 2 Sin; Scat1
(28)

tot(s)C sll(s) � dems ; 8s 2 Sin; Scat2 (29)

X

i2Iin;Ips

X
j2J i

X
n2N

n�Nmax

B(i; j; n)C sllraw(s) � demraw
s ;

8s 2 Sin; Srw; s0 2 Sin; Sf; praws0s > 0 ;

dems0 > 0; demraw
s > 0

(30)

Constraints (27)–(29) are used to determine the
overall underproduction for both category 1 and 2

products in the current time horizon. First, con-
straints (27) determine the total production for all
product states (s) (i. e., tot(s)) in the current horizon.
Then, constraints (28) sum the overall delivery vari-
ables for category 1 products and activate the slack vari-
ables sll(s) if the sum does not exceed the demand for
category 1 product state (s). Similarly, constraints (29)
calculate the amount of underproduction (i. e., sll(s))
for category 2 product state (s) based on it’s overall
demand in the time horizon. The slack variable sll(s)
is then penalized in the objective function where cat-
egory 1 and 2 products can be penalized at different
weights. Constraints (30) determine the amount of un-
derproduction for intermediate product states (s) that
are needed as raw materials for final product states
(s0).

The bound constraints are used to impose lower and
upper bounds on the continuous variables including
slack variables. They are also used to fix some binary
and continuous variables to be zero when necessary.

Tf(i; j; n) � start j; 8i 2 I; j 2 Ji ; n 2 N
Ts(i; j; n) � start j; 8i 2 I; j 2 Ji ; n 2 N

Tf(i; j; n) � H; 8i 2 I; j 2 Ji ; n 2 N

Ts(i; j; n) � H; 8i 2 I; j 2 Ji ; n 2 N
STO(s) D 0; 8s … S0

STF(s) � demtot
s ; 8s 2 Sf

tot(s) � demtot
s ; 8s 2 Sf

D(s; n);Df (s; n) D 0; 8s … Sp or n 2 N; n > Nmax
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X
d2D in

X
k2K in
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or s … Sk or n 2 N; n > Nmax
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X
d2D in
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8s 2 Sk ; n 2 N; n � Nmax

slcap(s; n) � stcapmin
s ; 8s 2 Scpm

sla1(k; s; n); sla2(k; s; n) D 0; 8k … K in or s … Sk
or d … Din or rk(k; s; d) D 0

sla1(k; s; n) � rk(k; s; d); 8k 2 K in ;

s 2 Sk ; d 2 Din
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sla2(k; s; n) � demtot
s ; 8k 2 K in ;

s 2 Sk ; d 2 Din

slt1(k; s; d; n); slt2(k; s; d; n) D 0; 8k … K in

or s … Sk or d … Din or

rk(k; s; d) D 0 or n 2 N; n > Nmax

slt1(k; s; d; n) � H � duek(k; s; d); 8k 2 K in ;

s 2 Sk ; d 2 Din; n 2 N; n � Nmax

slt2(k; s; d; n) � duek(k; s; d); 8k 2 K in ;

s 2 Sk ; d 2 Din; n 2 N; n � Nmax

sll(s) � dems ; 8s 2 Sp

sllraw(s) � demraw
s ; 8s 2 Srw
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or n 2 N; n > Nmax

D(s; n);D f (s; n) D 0; 8s … Sin
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(31)

There are several different objective functions that can
be employed with a general short-term scheduling
problem. In this work, we maximize the sale of final
products while penalizing several other terms includ-
ing the slack variables introduced previously. The over-
all objective function is as follows:
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where each of the coefficients is used to balance the rel-
ative weight of each term in the overall objective func-
tion. The first term is the maximization of the value of
the final products and is the main term of the objective
function. The second term seeks to minimize the sum
of the starting times of all active processing tasks. This
is done to encourage all tasks to start as early as possi-
ble in the scheduling horizon. Note that this results in
a bilinear term which can replaced with an equivalent
linear term and set of constraints [3]. The third term
seeks to minimize the number of active binary variables
in the final production schedule. The fourth term seeks
to minimize the slack variable that is activated when
product state (s) does not meet its overall demand for
the time horizon. Coefficient priors allows the ability
to assign different weights to different product states.
The fifth term minimizes the number of category 1 or-
ders (k) that are not filled in the time horizon. The sixth
term minimizes the amount of over and underproduc-
tion of orders for category 1 products in the time hori-
zon where the coefficient � allows over and underpro-
duction to be penalized by different amounts. The sev-
enth term seeks to minimize the amount of early and
late production of orders for category 1 products due
in the time horizon where the coefficient � allows early
and late production to be penalized to different degrees.
The eighth term minimizes the slack variables activated
when insufficient rawmaterial state (s) is produced dur-
ing the time horizon where priorraws allows different
states to be penalized by different amounts. The ninth,
and final, term seeks to minimize the slack variables ac-
tivated when insufficient intermediate state (s) is stored
in its dedicated storage tank at each event point. Typical
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values for each of the coefficients are as follows: ! D 1;
� D 1; � D 10; � D 1000; � D 1000; ˛ D 2000;
ˇ D 500; � D 0:01; � D 50; ı D 10.

Cases

In this section, an example problem is presented to
demonstrate the effectiveness of the rolling horizon
framework. The example utilizes the proposed frame-
work to determine the medium range production
schedule of an industrial batch plant for a two-week
time period which satisfies customer orders for vari-
ous products distributed throughout the time period.
The example is implemented with GAMS 2.50 [1] and
solved using CPLEX 9.0 [2] with a 3.20GHz Linux
workstation. The dual simplex method is used with
best-bound search and strong branching. A relative op-
timality tolerance equal to 0.001% was used as the ter-
mination criterion along with a three hour time limit
and an integer solution limit of 40.

The distribution of demands for the entire two-
week time period is shown in Fig. 3 where the amounts
are shown in relative terms. There are two categories
of products, category 1 and 2, and a total of 67 dif-
ferent products have demands. There are two different
campaign products that can be scheduled for campaign
mode production and an additional eight intermediate
products are used to make final products, even though
they do not have demands. It is assumed that no final
products are available at the beginning of the time hori-
zon although some intermediate materials are available.
Also, we assume no limitation on external rawmaterials
and the zero-wait condition is applied to all intermedi-
ate materials unless they are used as raw materials for

Medium-Term Scheduling of Batch Processes, Figure 3
Distribution of demands

other final products. In this case, unlimited interme-
diate storage is allowed. Note that finite intermediate
storage is effectively modeled for those intermediates
that have a dedicated storage task with a given capac-
ity limit. In addition, there are two types of connections
made between each consecutive short-term scheduling
horizon in the rolling horizon framework: the initial
available time for each unit and the inventory of inter-
mediate materials.

Case 1: Nominal Run
without Campaign Mode Production

The example problem considers the production
scheduling of an industrial batch plant where no type 5
unit campaign is imposed. Instead, demands for both
campaign products are created throughout the time
horizon with a total demand for each product equal to
the production that would be imposed by a campaign.
The total time period is 19 days, from D0 to D18. The
rolling horizon framework decomposes the time hori-
zon into 8 individual subhorizons, each with its own
products and demands. The results of the decomposi-
tion for each time horizon can be seen in Table 1.

The final production schedule for the entire time
period can be seen in Fig. 4 and 5 where the process-
ing units (operation type 1, 2, 3, and 5) are shown in
the first figure and the other units (operation type 4a,
4b, and 6) are shown in the second. Each short-term
scheduling horizon is represented with a different color
beginning with black for the first horizon, red for
the second horizon, green for the third horizon, etc.
The model and solution statistics for each short-term

Medium-Term Scheduling of Batch Processes, Table 1
Decomposition results for case 1

Days Main Products Additional Products
H1 D0–D2 27 2
H2 D3–D4 31 0
H3 D5–D6 50 0
H4 D7–D8 49 0
H5 D9–D10 37 0
H6 D11–D12 49 0
H7 D13–D14 54 0
H8 D15–D18 45 0
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Medium-Term Scheduling of Batch Processes, Figure 4
Overall production schedule for processing units for case 1
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Medium-Term Scheduling of Batch Processes, Figure 5
Overall production schedule for non-processing units for case 1
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Medium-Term Scheduling of Batch Processes, Table 2
Model and solutions statistics for case 1

Days Event Points Objective Function Binary Variables Continuous Variables Constraints
H1 D0–D2 8 14; 001:69 4880 33,064 187,833
H2 D3–D4 6 4135:24 3660 24,923 125,374
H3 D5–D6 6 �105; 854:81 5478 32,621 258,852
H4 D7–D8 6 �5496:19 5376 32,167 255,696
H5 D9–D10 6 �15; 352:37 4296 27,613 175,939
H6 D11–D12 6 �11; 326:13 5490 32,637 272,802

H7 D13–D14 6 �19; 401:39 5568 32,955 282,632
H8 D15–D18 10 �37; 054:00 7430 46,827 321,162

scheduling horizon can be seen in Table 2 where each
horizon runs for the time limit of three hours.

The total demand for the entire 14-day period is
2323.545 and the total production is 2744.005, where
51.674 of the demands are not met. The production
schedules obtained satisfy demands for almost all the
products, though some due dates are relaxed, and also
produce 18.10% more material than the demands re-
quire. Many of the processing units are not fully uti-
lized, as shown in Table 3, indicating the potential for
even more production in the given time period. Also,
note that the processing units become more idle to-
wards the end of the overall time horizon. This is be-
cause no demands are specified for the days following
day D14 including days D15 to D18. Additional de-
mands at the end of the overall time horizon or in the
following days would generate a more heavily utilized
production schedule.

Conclusions

In this paper, a unit-specific event-based continuous-
time formulation is presented for the medium-term
production scheduling of a large-scale, multipurpose
industrial batch plant. The proposed formulation takes
into account a large number of processing recipes and
units and incorporates several features including var-
ious storage policies (UIS, NIS, ZW), variable batch
sizes and processing times, batch mixing and split-
ting, sequence-dependent changeover times, interme-
diate due dates, products used as raw materials, and
several modes of operation. The scheduling horizon is
several weeks or longer, however longer time periods
can be addressed with the proposed framework. A key
feature of the proposed formulation is the use of a de-

Medium-Term Scheduling of Batch Processes, Table 3
Unit utilization statistics for case 1

Unit Time Used (h) TimeLeft (h) Percent Utilized
Type 1–1 98.00 358.00 21.49%
Type 1–2 341.00 115.00 74.78%
Type 1–3 329.60 126.40 72.15%
Type 1–4 396.00 60.00 80.92%
Type 1–5 283.20 172.80 62.06%
Type 1–6 402.00 54.00 88.16%
Type 1–7 408.00 48.00 89.47%
Type 1–8 281.00 175.00 61.62%
Type 1–9 322.00 134.00 70.61%
Type 1–10 322.20 133.80 70.66%
Type 1–11 312.20 143.80 68.46%
Type 1–12 177.00 279.00 38.82%

Type 1–13 201.00 255.00 44.08%
Type 5 362.04 93.96 79.39%

composition model to split the overall scheduling hori-
zon into smaller subhorizons which are scheduled in
a sequential fashion. Also, new constraints are added
to the short-term scheduling model in order to model
the delivery of orders at intermediate due dates. The ef-
fectiveness of the proposed approach is demonstrated
with an industrial case study. Results indicate that the
rolling horizon approach is effective at solving large-
scale, medium-term production scheduling problems.
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Introduction

The vehicle routing problem (VRP) or the capacitated
vehicle routing problem (CVRP) is often described as
a problem in which vehicles based at a central depot
are required to visit geographically dispersed customers
in order to fulfill known customer demands. Let G D
(V ; E) be a graph where V D fi0; i1; i2; : : : ing is the
vertex set (ii D i0 refers to the depot and the customers
are indexed ii D i1; : : : ; in) and E D f(il ; il1 ) : il ; il1 2
Vg is the edge set. Each customer must be assigned to
exactly one of the k vehicles and the total size of deliv-
eries for customers assigned to each vehicle must not
exceed the vehicle capacity (Qk). If the vehicles are ho-
mogeneous, the capacity for all vehicles is equal and de-
noted by Q. A demand qi l and a service time sti l are
associated with each customer node il. The travel cost
between customers il and il1 is ci l i l1 . The problem is to
construct a low cost, feasible set of routes – one for each
vehicle. A route is a sequence of locations that a vehi-
cle must visit along with the indication of the service it
provides. The vehicle must start and finish its tour at
the depot. The most important variants of the vehicle
routing problem can be found in [12,13,39,54,84].

The vehicle routing problemwas first introduced by
Dantzig and Ramser [21]. As it is an NP-hard prob-
lem, the instances with a large number of customers
cannot be solved in optimality within reasonable time.
Due to the general inefficiency of the exact methods and
their inability to solve large scale VRP instances, a large
number of approximation techniques have been pro-
posed. These techniques are classified into two main
categories, the classical heuristics that were developed
mostly between 1960 and 1990 and the metaheuristics
that were developed in the last fifteen years.

In the 1960s and 1970s the first attempts to solve
the vehicle routing problem focused on route build-
ing, route improvement and two-phase heuristics. In
the 1980s a number of mathematical programming
procedures were proposed for the solution of the
problem. The most important of them can be found
in [6,18,19,22,28,29,33,62,88].

Metaheuristic Algorithms
for the Vehicle Routing Problem

The last fifteen years an incremental amount of meta-
heuristic algorithms have been proposed. Simulated
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annealing, genetic algorithms, neural networks, tabu
search, ant algorithms, together with a number of hy-
brid techniques are the main categories of the meta-
heuristic procedures. These algorithms have the ability
to find their way out of local optima. Surveys in meta-
heuristic algorithms have been published by [27,31,32,
49,50,79].

A number of metaheuristic algorithms have been
proposed for the solution of the Capacitated Vehicle
Routing Problem. The most important algorithms pub-
lished for each metaheuristic algorithm are given in the
following:
� Simulated Annealing (SA) [1,3,47,72] plays a spe-

cial role within local search for two reasons. First,
they appear to be quite successful when applied
to a broad range of practical problems. Second,
some threshold accepting algorithms such as SA
have a stochastic component, which facilitates a the-
oretical analysis of their asymptotic convergence.
Simulated Annealing [2] is a stochastic algorithm
that allows random uphill jumps in a controlled
fashion in order to provide possible escapes from
poor local optima. Gradually the probability allow-
ing the objective function value to increase is low-
ered until no more transformations are possible.
Simulated Annealing owes its name to an anal-
ogy with the annealing process in condensed mat-
ter physics, where a solid is heated to a maximum
temperature at which all particles of the solid ran-
domly arrange themselves in the liquid phase, fol-
lowed by cooling through careful and slow reduc-
tion of the temperature until the liquid is frozen
with the particles arranged in a highly structured lat-
tice andminimal system energy. This ground state is
reachable only if the maximum temperature is suffi-
ciently high and the cooling sufficiently slow. Other-
wise a meta-stable state is reached. The meta-
stable state is also reached with a process known
as quenching, in which the temperature is instan-
taneously lowered. Its predecessor is the so-called
Metropolis filter. Simulated Annealing algorithms
for the VRP are presented in [14,31,63].

� Threshold Accepting Method is a modification
of the Simulated Annealing, which together with
record to record travel [25,26] are known asDeter-
ministic Annealing methods. These methods leave
out the stochastic element in accepting worse solu-

tions by introducing a deterministic threshold de-
noted by Thm > 0, and accept a worse solution if
� D c(S0) � c(S) � Thm , where c is the cost of the
solution. This is the move acceptance criterion and
the subscript m is an iteration index. Dueck and
Scheurer [26] were the first to propose the Thre-
shold Accepting Method for the VRP. Tarantilis
et al. [81,82] proposed two very efficient algorithms
belonging to this class: the Backtracking Adaptive
Threshold Accepting (BATA) and the List-Based
Threshold Accepting (LBTA). Other Determinis-
tic Annealing methods were proposed by Golden
et al. [40], the Record-to-Record Travel Method
and by Li et al. [51].

� Tabu search (TS) was introduced by Glover [34,35]
as a general iterative metaheuristic for solving com-
binatorial optimization problems. Computational
experience has shown that TS is a well established
approximation technique, which can compete with
almost all known techniques and which, by its flexi-
bility, can beat many classic procedures. It is a form
of local neighbor search. Each solution S has an as-
sociated set of neighbors N(S). A solution S0 2 N(S)
can be reached from S by an operation called amove.
TS can be viewed as an iterative technique which
explores a set of problem solutions, by repeatedly
making moves from one solution S to another so-
lution S0 located in the neighborhood N(S) of S [37].
TS moves from a solution to its best admissible
neighbor, even if this causes the objective func-
tion to deteriorate. To avoid cycling, solutions that
have been recently explored are declared forbidden
or tabu for a number of iterations. The tabu sta-
tus of a solution is overridden when certain crite-
ria (aspiration criteria) are satisfied. Sometimes, in-
tensification and diversification strategies are used to
improve the search. In the first case, the search is
accentuated in the promising regions of the feasi-
ble domain. In the second case, an attempt is made
to consider solutions in a broad area of the search
space. Tabu Search algorithms for the VRP are pre-
sented in [7,9,20,30,63,70,71,77,85,89,90].

� Genetic Algorithms (GAs) are search procedures
based on the mechanics of natural selection and nat-
ural genetics. The first GAwas developed by John H.
Holland in the 1960s to allow computers to evolve
solutions to difficult search and combinatorial prob-
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lems, such as function optimization and machine
learning [44]. Genetic algorithms offer a particu-
larly attractive approach for problems like vehicle
routing problem since they are generally quite effec-
tive for rapid global search of large, non-linear and
poorly understood spaces. Moreover, genetic algo-
rithms are very effective in solving large-scale prob-
lems. Genetic algorithms [38,72] mimic the evolu-
tion process in nature. GAs are based on an imita-
tion of the biological process in which new and bet-
ter populations among different species are devel-
oped during evolution. Thus, unlike most standard
heuristics, GAs use information about a population
of solutions, called individuals, when they search for
better solutions. A GA is a stochastic iterative proce-
dure that maintains the population size constant in
each iteration, called a generation. Their basic oper-
ation is the mating of two solutions in order to form
a new solution. To form a new population, a bi-
nary operator called crossover, and a unary opera-
tor, called mutation, are applied [65,66]. Crossover
takes two individuals, called parents, and produces
two new individuals, called offsprings, by swapping
parts of the parents. Genetic Algorithms for the VRP
are presented in [4,5,8,11,45,56,53,60,64].

� Greedy Randomized Adaptive Search Procedure –
GRASP [73] is an iterative two phase search method
which has gained considerable popularity in com-
binatorial optimization. Each iteration consists of
two phases, a construction phase and a local search
procedure. In the construction phase, a randomized
greedy function is used to build up an initial solu-
tion. This randomized technique provides a feasi-
ble solution within each iteration. This solution is
then exposed for improvement attempts in the local
search phase. The final result is simply the best so-
lution found over all iterations. Greedy Randomized
Adaptive Search Procedure algorithms for the VRP
are presented in [17,42,55].

� The use of Artificial Neural Networks to find
good solutions to combinatorial optimization prob-
lems has recently caught some attention. A neural
network consists of a network [76] of elementary
nodes (neurons) that are linked through weighted
connections. The nodes represent computational
units, which are capable of performing a simple
computation, consisting of a summation of the

weighted inputs, followed by the addition of a con-
stant called the threshold or bias, and the applica-
tion of a nonlinear response (activation) function.
The result of the computation of a unit constitutes
its output. This output is used as an input for the
nodes to which it is linked through an outgoing con-
nection. The overall task of the network is to achieve
a certain network configuration, for instance a re-
quired input–output relation, by means of the col-
lective computation of the nodes. This process is of-
ten called self-organization. Neural Networks algo-
rithm for the VRP are presented in [61,83].

� The Ant Colony Optimization (ACO)metaheuris-
tic is a relatively new technique for solving com-
binatorial optimization problems (COPs). Based
strongly on the Ant System (AS) metaheuristic de-
veloped by Dorigo, Maniezzo and Colorni [24], ant
colony optimization is derived from the foraging
behaviour of real ants in nature. The main idea of
ACO is to model the problem as the search for
a minimum cost path in a graph. Artificial ants walk
through this graph, looking for good paths. Each ant
has a rather simple behavior so that it will typically
only find rather poor-quality paths on its own. Bet-
ter paths are found as the emergent result of the
global cooperation among ants in the colony. An
ACO algorithm consists of a number of cycles (it-
erations) of solution construction. During each it-
eration a number of ants (which is a parameter)
construct complete solutions using heuristic infor-
mation and the collected experiences of previous
groups of ants. These collected experiences are rep-
resented by a digital analogue of trail pheromone
which is deposited on the constituent elements of
a solution. Small quantities are deposited during
the construction phase while larger amounts are de-
posited at the end of each iteration in proportion
to solution quality. Pheromone can be deposited
on the components and/or the connections used in
a solution depending on the problem. Ant Colony
Optimization algorithms for the VRP are presented
in [10,15,16,23,57,67,68,69].

� Path Relinking This approach generates new so-
lutions by exploring trajectories that connect high-
quality solutions – by starting from one of these
solutions, called the starting solution and generat-
ing a path in the neighborhood space that leads
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towards the other solution, called the target solu-
tion [36]. Two new metaheuristic algorithms using
the path relinking strategy as a part first of Tabu
Search Metaheuristic is proposed in [43] and second
as a part of a Particle Swarm Optimization Meta-
heuristic is proposed in [52].

� Guided Local Search (GLS), originally proposed by
Voudouris and Chang [86,87], is a general optimiza-
tion technique suitable for a wide range of combi-
natorial optimization problems. The main focus is
on the exploitation of problem and search-related
information to effectively guide local search heuris-
tics in the vast search spaces of NP-hard optimiza-
tion problems. This is achieved by augmenting the
objective function of the problem to be minimized
with a set of penalty terms which are dynamically
manipulated during the search process to steer the
heuristic to be guided. GLS augments the cost func-
tion of the problem to include a set of penalty terms
and passes this, instead of the original one, for mini-
mization by the local search procedure. Local search
is confined by the penalty terms and focuses atten-
tion on promising regions of the search space. Iter-
ative calls are made to local search. Each time local
search gets caught in a local minimum, the penal-
ties are modified and local search is called again
to minimize the modification cost function. Guided
Local Search algorithms for the VRP are presented
in [58,59].

� Particle Swarm Optimization (PSO) is a popu-
lation-based swarm intelligence algorithm. It was
originally proposed by Kennedy and Eberhart as
a simulation of the social behavior of social organ-
isms such as bird flocking and fish schooling [46].
PSO uses the physical movements of the individuals
in the swarm and has a flexible and well-balanced
mechanism to enhance and adapt to the global and
local exploration abilities. The first algorithm for the
solution of the Vehicle Routing Problem was pro-
posed by [52].

� One of the most interesting developments that have
occurred in the area of TS in recent years is the con-
cept of Adaptive Memory developed by Rochat and
Taillard [74]. It is, mostly, used in TS, but its applica-
bility is not limited to this type of metaheuristic. An
adaptive memory is a pool of good solutions that is
dynamically updated throughout the search process.

Periodically, some elements of these solutions are
extracted from the pool and combined differently to
produce new good solutions. Very interesting and
efficient algorithms based on the concept of Adap-
tive Memory have been proposed [74,78,79,80].

� Variable Neighborhood Search (VNS) is a meta-
heuristic for solving combinatorial optimization
problems whose basic idea is systematic change of
neighborhood within a local search [41]. Variable
Neighborhood Search algorithms for the VRP are
presented in [48].
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Introduction

Many decision problems in various areas such as busi-
ness, engineering, economics, and science, including
those in manufacturing, location, routing, and schedul-
ing, may be formulated as optimization problems. Ow-
ing to the complexity of many of these optimization
problems, particularly those of large sizes encountered
in most practical settings, exact algorithms often per-
form very poorly, in some cases taking days or more
to find moderately decent, let alone optimal, solutions
even to fairly small instances. As a result, heuristic al-
gorithms are conspicuously preferable in practical ap-
plications.

As an extension of simple heuristics, a large num-
ber of local search approaches have been developed to
improve given feasible solutions. The main drawback
of these approaches is their inability to continue the
search upon becoming trapped in local optima. This
leads to consideration of techniques for guiding known
heuristics to overcome local optimality. Following this
theme metaheuristics have become a most important
class of approaches for solving optimization problems.
They supportmanagers in decision-making with robust
tools that provide high-quality solutions to important
applications in reasonable time horizons.

We describe metaheuristics mainly from an oper-
ations research perspective. Earlier survey papers on
metaheuristics include those of Blum and Roli [14] and
Voß [95]. Here we occasionally rely on the latter. The
general concepts have not become obsolete, and many
changes are mainly based upon an update to most re-
cent references. A handbook on metaheuristics is avail-
able describing a great variety of concepts by various
authors in a comprehensive manner [44].
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Definitions

The basic concept of heuristic search as an aid to prob-
lem solving was first introduced in [76]. A heuristic is
a technique (consisting of a rule or a set of rules) which
seeks (and hopefully finds) good solutions at a reason-
able computational cost. A heuristic is approximate in
the sense that it provides (hopefully) a good solution for
relatively little effort, but it does not guarantee optimal-
ity.

Heuristics provide simple means of indicating
which among several alternatives seems to be best. That
is, “Heuristics are criteria, methods, or principles for
deciding which among several alternative courses of
action promises to be the most effective in order to
achieve some goal. They represent compromises be-
tween two requirements: the need to make such crite-
ria simple and, at the same time, the desire to see them
discriminate correctly between good and bad choices.
A heuristic may be a rule of thumb that is used to guide
one’s action” [73].

Greedy heuristics are simple iterative approaches
available for any kind of (e. g., combinatorial) optimiza-
tion problem. A good characterization is their myopic
behavior. A greedy heuristic starts with a given feasible
or infeasible solution. In each iteration there are a num-
ber of alternative choices (moves) that can be made to
transform the solution. From these alternatives which
consist in fixing (or changing) one or more variables,
a greedy choice is made, i. e., the best alternative accord-
ing to a given measure is chosen until no such transfor-
mations are possible any longer.

Usually, a greedy construction heuristic starts with
an incomplete solution and completes it stepwise. Sav-
ings and dual algorithms follow the same iterative
scheme: dual heuristics change an infeasible low-cost
solution until reaching feasibility; savings algorithms
start with a high-cost solution and realize the highest
savings as long as possible. Moreover, in all three cases,
once an element has been chosen this decision is (usu-
ally) not reversed throughout the algorithm, it is kept.

As each alternative has to be measured, in general
we may define some sort of heuristic measure (provid-
ing, e. g., some priority values or some ranking infor-
mation) which is iteratively followed until a complete
solution is built. Usually this heuristic measure is ap-
plied in a greedy fashion.

For heuristics we usually have the distinction be-
tween finding initial feasible solutions and improving
them. In that sense we first discuss local search before
characterizing metaheuristics.

Local Search

The basic principle of local search is to successively
alter solutions locally. Related transformations are de-
fined by neighborhoods which for a given solution in-
clude all solutions that can be reached by one move.
That is, neighborhood search usually is assumed to
correspond to the process of iteratively moving from
one solution to another one by performing some
sort of operation. More formally, each solution of
a problem has an associated set of neighbors called
its neighborhood, i. e., solutions that can be obtained
by a single operation called transformation or move.
Most common ideas for transformations are, e. g., to
add or drop some problem-specific individual com-
ponents. Other options are to exchange two com-
ponents simultaneously, or to swap them. Further-
more, components may be shifted from a certain po-
sition into other positions. All components involved
within a specific move are called its elements or at-
tributes.

Moves must be evaluated by some heuristic mea-
sure to guide the search. Often one uses the implied
change of the objective function value, which may pro-
vide reasonable information about the (local) advan-
tage of moves. Following a greedy strategy, steepest de-
scent (SD) corresponds to selecting and performing in
each iteration the best move until the search stops at
a local optimum. Obviously, savings algorithms corre-
spond to SD.

As the solution quality of local optima may be
unsatisfactory, we need mechanisms which guide the
search to overcome local optimality. A simple strategy
called iterated local search is to iterate/restart the local
search process after a local optimum has been obtained,
which requires some perturbation scheme to generate
a new initial solution (e. g., performing some random
moves). Of course, more structured ways to overcome
local optimality may be advantageous.

A general survey of local search can be found in [1]
and the references from [2]. A simple template is pro-
vided in [90].
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Starting in the 1970s (see Lin and Kernighan [66]),
a variable way of handling neighborhoods is still a topic
within local search. Consider an arbitrary neighbor-
hood structure N, which defines for any solution s
a set of neighbor solutions N1(s) as a neighborhood
of depth d D 1. In a straightforward way, a neigh-
borhood NdC1(s) of depth d C 1 is defined as the
set Nd (s) [ fs0j9s00 2 Nd (s) : s0 2 N1(s00)g. In general,
a large d might be unreasonable, as the neighborhood
size may grow exponentially. However, depths of two
or three may be appropriate. Furthermore, temporarily
increasing the neighborhood depth has been found to
be a reasonable mechanism to overcome basins of at-
traction, e. g., when a large number of neighbors with
equal quality exist.

Large-scale neighborhoods have become an impor-
tant topic (see, e. g., [5] for a survey), especially when
efficient ways are at hand for exploring them. Related
research can also be found under various names; see,
e. g., [75] for the idea of ejection chains.

Stochastic local search is pretty much all we know
about local search but is enhanced by randomizing
choices. That is, a stochastic local search algorithm is
a local search algorithm making use of randomized
choices in generating or selecting candidate solutions
for given instances of optimization problems. Random-
ness may be used for search initialization as well as the
computation of search steps. A comprehensive treat-
ment of stochastic local search is given in [58].

Metaheuristics, Figure 1
Simplified metaheuristics inheritance tree

Metaheuristics

The formal definition of metaheuristics is based on
a variety of definitions from different authors based
on [39]. Basically, a metaheuristic is a top-level strat-
egy that guides an underlying heuristic solving a given
problem. In that sense we distinguish between a guiding
process and an application process. The guiding process
decides upon possible (local) moves and forwards its
decision to the application process, which then executes
the move chosen. In addition, it provides information
for the guiding process (depending on the requirements
of the respective metaheuristic) like the recomputed set
of possible moves.

According to [43], “metaheuristics in their modern
forms are based on a variety of interpretations of what
constitutes intelligent search”, where the term “intelli-
gent search” has been made prominent by Pearl [73]
(regarding heuristics in an artificial intelligence con-
text; see also [92] regarding an operations research con-
text). In that sense we may also consider the following
definition: “A metaheuristic is an iterative generation
process which guides a subordinate heuristic by com-
bining intelligently different concepts for exploring and
exploiting the search spaces using learning strategies to
structure information in order to find efficiently near-
optimal solutions” [72].

To summarize, the following definition seems to
be most appropriate: “A metaheuristic is an iterative
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master process that guides and modifies the opera-
tions of subordinate heuristics to efficiently produce
high-quality solutions. It may manipulate a complete
(or incomplete) single solution or a collection of so-
lutions at each iteration. The subordinate heuristics
may be high (or low) level procedures, or a simple lo-
cal search, or just a construction method. The fam-
ily of metaheuristics includes, but is not limited to,
adaptive memory procedures, tabu search, ant systems,
greedy randomized adaptive search, variable neighbor-
hood search, evolutionary methods, genetic algorithms,
scatter search, neural networks, simulated annealing,
and their hybrids” (p. ix in [97]).

We describe the ingredients and basic concepts of
various metaheuristic strategies like tabu search (TS),
simulated annealing (SA), and scatter search. This is
based on a simplified view of a possible inheritance tree
for heuristic search methods, illustrating the relation-
ships between some of the most important methods
discussed below, as shown in Fig. 1.

We also emphasize advances including the impor-
tant incorporation of exact methods into intelligent
search. Furthermore, general frames are sketched that
may subsume various approaches within the meta-
heuristics field.

Metaheuristic Methods

We survey the basic concepts of some of the most
important metaheuristics. We shall see that adaptive
processes originating from different settings such as
psychology (“learning”), biology (“evolution”), physics
(“annealing”), and neurology (“nerve impulses”) have
served as interesting starting points.

Simple Local Search Based Metaheuristics

To improve the efficiency of greedy heuristics, one may
apply generic strategies to be used alone or in combina-
tion with each other, namely, changing the definition
of alternative choices, look ahead evaluation, candidate
lists, and randomized selection criteria bound up with
repetition, as well as combinations with local search or
other methods.

Greedy Randomized Adaptive Search Omitting
a greedy choice criterion for a random strategy, one
can run the algorithm several times and obtain a large

number of different solutions. A combination of best
and random choice seems to be appropriate: We define
a candidate list as a list consisting of a number of (best,
i. e., first best, second best, third best, etc.) alternatives.
Out of this list one alternative is chosen randomly. The
length of the candidate list is given either as an abso-
lute value, a percentage of all feasible alternatives, or
implicitly by defining an allowed quality gap (to the
best alternative), which also may be an absolute value
or a percentage.

Replicating a search procedure to determine a local
optimum multiple times with different starting points
has been given the acronym GRASP and investigated
with respect to different applications. A comprehensive
survey of GRASP and its applications is given in [32].
It should be noted that GRASP goes back to older ap-
proaches [52], which is frequently overlooked in many
applications. The different initial solutions or starting
points are found by a greedy procedure incorporating
a probabilistic component. That is, given a candidate
list to choose from, GRASP randomly chooses one of
the best candidates from this list in a greedy fashion,
but not necessarily the best possible choice.

The underlying principle is to investigate many
good starting points through the greedy procedure and
thereby to increase the possibility of finding a good lo-
cal optimum on at least one replication. The method
is said to be adaptive as the greedy function takes into
account previous decisions when performing the next
choice.

The Pilot Method Building on a simple greedy algo-
rithm such as, e. g., a construction heuristic, the pilot
method [29,30] is a metaheuristic not necessarily based
on a local search in combination with an improvement
procedure. It primarily looks ahead for each possible lo-
cal choice (by computing a so-called “pilot” solution),
memorizing the best result, and performing the respec-
tive move. (Very similar ideas have been investigated
under the name rollout method [13].) One may ap-
ply this strategy by successively performing a greedy
heuristic for all possible local steps (i. e., starting with
all incomplete solutions resulting from adding some
not yet included element at some position to the cur-
rent incomplete solution). The look ahead mechanism
of the pilot method is related to increased neighbor-
hood depths as the pilot method exploits the evaluation
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of neighbors at larger depths to guide the neighbor se-
lection at depth one.

In most applications, it is reasonable to restrict
the pilot process to some evaluation depth. That is,
the method is performed up to an incomplete solu-
tion (e. g., partial assignment) based on this evaluation
depth and is then completed by continuing with a con-
ventional heuristic. For a recent study applying the pi-
lot method to several combinatorial optimization prob-
lems obtaining very good results see [96]. Additional
applications can be found, e. g., in [18,68].

Variable Neighborhood Search The basic idea of
variable neighborhood search (VNS) is to change the
neighborhood during the search in a systematic way.
VNS usually explores increasingly distant neighbor-
hoods of a given solution, and jumps from this solution
to a new one if and only if an improvement has been
made. In this way often favorable characteristics of in-
cumbent solutions, e. g., that many variables are already
at their appropriate value, will be kept and used to ob-
tain promising neighboring solutions.

Moreover, a local search routine is applied repeat-
edly to get from these neighboring solutions to local op-
tima. This routine may also use several neighborhoods.
Therefore, to construct different neighborhood struc-
tures and to perform a systematic search, one needs to
have a way for finding the distance between any two so-
lutions, i. e., one needs to supply the solution space with
some metric (or quasi-metric) and then induce neigh-
borhoods from it. For an excellent treatment of various
aspects of VNS see [51].

Simulated Annealing

Simulated annealing (SA) extends basic local search by
allowing moves to inferior solutions [26,64]. A basic
SA algorithm may be described as follows: Successively,
a candidate move is randomly selected; this move is ac-
cepted if it leads to a solution with an improved objec-
tive function value compared to the current solution,
otherwise, the move is accepted with a probability de-
pending on the deterioration � of the objective func-
tion value. The acceptance probability is computed as
e��/T , using a temperature T as a control parameter.
Usually, T is reduced over time for diversification at an
earlier stage of the search and to intensify later.

Various authors have described a robust concretiza-
tion of this general SA approach [60,62]. An interesting
variant of SA is to strategically reheat the process, i. e.,
to perform a nonmonotonic acceptance function.

Threshold accepting [28] is a modification (or sim-
plification) of SA accepting every move that leads to
a new solution which is “not much worse” (i. e., deteri-
orates not more than a certain threshold which reduces
with temperature) than the older one.

Tabu Search

The basic paradigm of tabu search (TS) is to use infor-
mation about the search history to guide local search
approaches to overcome local optimality (see [43] for
a survey on TS). In general, this is done by a dynamic
transformation of the local neighborhood. Based on
some sort of memory, certain moves may be forbidden;
we say they are set tabu. As for SA, the search may lead
to performing deteriorating moves when no improving
moves exist or when all improving moves of the current
neighborhood are set tabu. At each iteration a best ad-
missible neighbor may be selected. A neighbor, or a cor-
responding move, is called admissible if it is not tabu
or if an aspiration criterion is fulfilled. An aspiration
criterion is a rule to eventually override a possibly un-
reasonable tabu status of a move. For example, a move
that leads to a neighbor with a better objective function
value than encountered so far should be considered as
admissible.

We briefly describe some TS methods that differ es-
pecially in the way in which tabu criteria are defined,
taking into consideration the information about the
search history (performed moves, traversed solutions).

The most commonly used TS method is based on
a recency-basedmemory that stores moves, or attributes
characterizing respective moves, of the recent past
(static TS). The basic idea of such approaches is to pro-
hibit an appropriately defined inversion of performed
moves for a given period. For example, one may store
the solution attributes that have been created by a per-
formed move in a tabu list. To obtain the current tabu
status of a move to a neighbor, one may check whether
(or how many of) the solution attributes that would be
destroyed by this move are contained in the tabu list.

Strict TS embodies the idea of preventing cycling to
formerly traversed solutions. The goal is to provide ne-
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cessity and sufficiency with respect to the idea of not
revisiting any solution. Accordingly, a move is classi-
fied as tabu if and only if it leads to a neighbor that
has already been visited during the previous search.
There are two primary mechanisms to accomplish the
tabu criterion: First, we may exploit logical interde-
pendencies between the sequence of moves performed
throughout the search process, as realized by, e. g., the
reverse elimination method and the cancellation se-
quence method [40,94]. Second, we may store infor-
mation about all solutions visited so far. This may be
carried out either exactly or, for reasons of efficiency,
approximately (e. g., by using hash codes).

Reactive TS aims at the automatic adaptation of the
tabu list length of static TS [12]. The idea is to in-
crease the tabu list length when the tabu memory in-
dicates that the search is revisiting formerly traversed
solutions. A possible specification can be described as
follows: Starting with a tabu list length l of 1 it is in-
creased every time a solution has been repeated. If there
has been no repetition for some iterations, we decrease
it appropriately. To accomplish the detection of a rep-
etition of a solution, one may apply a trajectory-based
memory using hash codes as for strict TS.

For reactive TS [12], it is appropriate to include
means for diversifying moves whenever the tabu mem-
ory indicates that we are trapped in a certain region
of the search space. As a trigger mechanism one may
use, e. g., the combination of at least two solutions each
having been traversed three times. A very simple escape
strategy is to perform a number of random moves (de-
pending on the average of the number of iterations be-
tween solution repetitions); more advanced strategies
may take into account some long-term memory infor-
mation (like the frequencies of appearance of specific
solution attributes in the search history).

Of course there are a great variety of additional in-
gredients that may make TS work successfully, e. g., re-
stricting the number of neighbor solutions to be evalu-
ated (using candidate list strategies).

Evolutionary Algorithms

Evolutionary algorithms comprise a great variety of dif-
ferent concepts and paradigms, including genetic algo-
rithms (GAs) [45,56], evolutionary strategies [55,83],
evolutionary programs [36], scatter search [38,41], and

memetic algorithms [71]. For surveys and references on
evolutionary algorithms see also [9,37,69,78].

GAs are a class of adaptive search procedures based
on principles derived from the dynamics of natural
population genetics. One of the most crucial ideas
for a successful implementation of a GA is the rep-
resentation of an underlying problem by a suitable
scheme. A GA starts, e. g., with a randomly created
initial population of artificial creatures (strings), a set
of solutions. These strings in whole and in part are
the base set for all subsequent populations. They are
copied and information is exchanged between the
strings in order to find new solutions of the underly-
ing problem. The mechanisms of a simple GA essen-
tially consist of copying strings and exchanging par-
tial strings. A simple GA uses three operators which
are named according to the corresponding biological
mechanisms: reproduction, crossover, and mutation.
Performing an operator may depend on a fitness func-
tion or its value (fitness), respectively. As some sort
of heuristic measure, this function defines a means
of measurement for the profit or the quality of the
coded solution for the underlying problem and often
depends on the objective function of the given prob-
lem.

GAs are closely related to evolutionary strategies.
Whereas the mutation operator in a GA serves to pro-
tect the search from premature loss of information,
evolution strategies may incorporate some sort of lo-
cal search procedure (such as SD) with self-adapting
parameters involved in the procedure. On a simpli-
fied scale many algorithms may be coined evolutionary
once they are reduced to the following frame [54]:
1. Generate an initial population of individuals.
2. While no stopping condition is met do.
3. Co-operation.
4. Self-adaptation.
Self-adaptation refers to the fact that individuals (solu-
tions) evolve independently while co-operation refers
to an information exchange among individuals.

Scatter search ideas established a link between early
ideas from various sides – evolutionary strategies, TS,
and GAs. As an evolutionary approach, scatter search
originated from strategies for creating composite deci-
sion rules and surrogate constraints [38]. Scatter search
is designed to operate on a set of points, called ref-
erence points, that constitute good solutions obtained
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from previous solution efforts. The approach system-
atically generates linear combinations of the reference
points to create new points, each of which is mapped
into an associated point that yields integer values for
discrete variables. Scatter search contrasts with other
evolutionary procedures, such as GAs, by providing
unifying principles for joining solutions based on gen-
eralized path constructions in Euclidean space and by
utilizing strategic designs where other approaches re-
sort to randomization. For a very comprehensive treat-
ment of scatter search see [65].

Swarm Intelligence

Swarm intelligence is a relatively novel discipline inter-
ested in the study of self-organizing processes in nature
and human artifacts [15,63]. While researchers in eth-
nology and animal behavior have proposed many mod-
els to explain various aspects of social insect behavior
such as self-organization and shape formation, algo-
rithms inspired by these models have been proposed to
solve optimization problems. Successful examples are
the so-called ant system or ant colony paradigm, the bee
system, and swarm robotics, where the focus is on ap-
plying swarm intelligence techniques to the control of
large groups of cooperating autonomous robots.

The ant system is a dynamic optimization process
reflecting the natural interaction between ants search-
ing for food [23]. The ants’ ways are influenced by two
different kinds of search criteria. The first one is the lo-
cal visibility of food, i. e., the attractiveness of food in
each ant’s neighborhood. Additionally, each ant’s way
through its food space is affected by the other ants’ trails
as indicators for possibly good directions. The inten-
sity of trails itself is time-dependent: With time passing,
parts of the trails are diminishing, while the intensity
may increase by new and fresh trails. With the quan-
tities of these trails changing dynamically, an autocat-
alytic optimization process is started forcing the ants’
search into most promising regions. This process of in-
teractive learning can easily be modeled for most kinds
of optimization problems by using simultaneously and
interactively processed search trajectories.

A comprehensive treatment of the ant system
paradigm can be found in [24]. To achieve enhanced
performance of the ant system it is useful to hybridize
it at least with a local search component.

Miscellaneous

Target analysismay be viewed as a general learning ap-
proach. Given a problemwe first explore a set of sample
instances and an extensive effort is made to obtain a so-
lution which is optimal or close to optimality. The best
solutions obtained provide targets to be sought within
the next part of the approach. For instance, a TS algo-
rithm may resolve the problems with the aim of find-
ing what are the right choices to come to the already
known solution (or as close to it as possible). This may
give some information on how to choose parameters for
other problem instances.

A different method in this context is path relinking
(PR), which provides a useful means of intensification
and diversification. Here new solutions are generated
by exploring search trajectories that combine elite solu-
tions, i. e., solutions that have proven to be better than
others throughout the search. For references on target
analysis and PR see [43].

Recalling local search based on data perturbation
the noising method may be related to the following
approach too. Given an initial feasible solution, the
method performs some data perturbation [87] in or-
der to change the values taken by the objective function
of a respective problem to be solved. On the perturbed
data a local search may be performed (e. g., following
a SD approach). The amount of data perturbation (the
noise added) is successively reduced until it reaches
zero. The noising method is applied, e. g., in [19] for
the clique partitioning problem.

The key issue in designing parallel algorithms is
to decompose the execution of the various ingredients
of a procedure into processes executable by parallel
processors. In contrast to ant systems or GAs, meta-
heuristics like TS or SA, at first glance, have an in-
trinsic sequential nature owing to the idea of perform-
ing the neighborhood search from one solution to the
next. However, some effort has been undertaken to de-
fine templates for parallel local search [20,90,91,93].
A comprehensive treatment with successful applica-
tions is provided in [6]. The discussion of parallel meta-
heuristics has also led to interesting hybrids such as the
combination of a population of individual processes,
agents, in a cooperative and competitive nature (see,
e. g., the discussion of memetic algorithms in [71]) with
TS.
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Neural networks may be considered as metaheuris-
tics, although we have not considered them here; see
[85] for a comprehensive survey of these techniques for
combinatorial optimization. In contrast, one may use
metaheuristics to speed up the learning process regard-
ing artificial neural networks; see [7] for a comprehen-
sive consideration.

Furthermore, recent efforts on problems with mul-
tiple objectives and corresponding metaheuristic ap-
proaches can be found in [61]. See [82] for some ideas
regarding GAs and fuzzy multiobjective optimization.

General Frames

An important avenue of metaheuristics research refers
to general frames (to explain the behavior and the rela-
tionship between various methods) as well as the devel-
opment of software systems incorporating metaheuris-
tics (eventually in combination with other methods).
Besides other aspects, this takes into consideration that
in metaheuristics it has very often been appropriate
to incorporate a certain means of diversification vs.
intensification to lead the search into new regions of
the search space. This requires a meaningful mecha-
nism to detect situations when the search might be
trapped in a certain area of the solution space. There-
fore, within intelligent search the exploration of mem-
ory plays a most important role.

Adaptive Memory Programming

Adaptive memory programming (AMP) coins a gen-
eral approach (or even thinking) within heuristic search
focusing on exploiting a collection of memory com-
ponents [42,89]. An AMP process iteratively con-
structs (new) solutions based on the exploitation of
somememory, especially when combined with learning
mechanisms supporting the collection and use of the
memory. Based on the idea of initializing the memory
and then iteratively generating new solutions (utilizing
the given memory) while updating the memory based
on the search, we may subsume various of the above-
described metaheuristics as AMP approaches. This also
includes exploiting provisional solutions that are im-
proved by a local search approach.

The performance as well as the efficiency of
a heuristic scheme strongly depends on its ability to
use AMP techniques providing flexible and variable

strategies for types of problems (or special instances
of a given problem type) where standard methods fail.
Such AMP techniques could be, e. g., dynamic handling
of operational restrictions, dynamic move selection for-
mulas, and flexible function evaluations.

Consider, as an example, adaptive memory within
TS concepts. Realizing AMP principles depends on
which specific TS application is used. For example, the
reverse elimination method observes logical interde-
pendencies between moves and infers corresponding
tabu restrictions, and therefore makes fuller use of AMP
than simple static approaches do.

To discuss the use of AMP in intelligent agent
systems, one may use the simple model of ant sys-
tems as an illustrative starting point. Ant systems are
based on combining local search criteria with infor-
mation derived from the trails. This follows the AMP
requirement for using flexible (dynamic) move selec-
tion rules (formulas). However, the basic ant system
exhibits some structural inefficiencies when viewed
from the perspective of general intelligent agent sys-
tems, as no distinction is made between successful and
less successful agents, no time-dependent distinction
is made, and there is no explicit handling of restric-
tions providing protection against cycling and duplica-
tion. Furthermore, there are possible conflicts between
the information held in the adaptive memory (diverging
trails).

A Pool Template

In [48] a pool template (PT) is proposed as can be seen
in Fig. 2. The following notation is used. A pool of
p � 1 solutions is denoted by P. Its input and output
transfer is managed by two functions which are called
IF and OF, respectively. S is a set of solutions with car-
dinality s � 1. A solution combination method (proce-
dure SCM) constructs a solution from a given set S, and
IM is an improvement method.

Depending on the method used, in step 1 a pool
is either completely (or partially) built by a (random-
ized) diversification generator or filled with a single so-
lution which has been provided, e. g., by a simple greedy
approach. Note that a crucial parameter that deserves
careful elaboration is the cardinality p of the pool. The
main loop, executed until a termination criterion holds,
consists of steps 2–5. Step 2 is the call of the output
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1. Initialize P by an external procedure
WHILE termination=FALSE DO BEGIN

2. S := OF(P)
3. IF s > 1 THEN S0 := SCM(S)

ELSE S0 := S
4. S00 := IM(S0)
5. P := IF(S00)

END
6. Apply a post-optimizing procedure to P

Metaheuristics, Figure 2
Pool template

function which selects a set of solutions, S, from the
pool. Depending on the kind of method represented in
the PT, these solutions may be assembled (step 3) to
a working solution S0 which is the starting point for the
improvement phase of step 4. The outcome of the im-
provement phase, S00, is then evaluated by means of the
input function, which possibly feeds the new solution
into the pool. Note that a post-optimization procedure
in step 6 is for facultative use. It may be a straightfor-
ward greedy improvement procedure if used for single-
solution heuristics or a pool method on its own. As an
example we quote a sequential poolmethod, the TSwith
PR in [11]. Here a PR phase is added after the pool
has been initialized by a TS. A parallel pool method on
the other hand uses a pool of solutions while it is con-
structed by the guiding process (e. g., a GA or scatter
search).

Several heuristic and metaheuristic paradigms,
whether they are obviously pool-oriented or not, can be
summarized under the common PT frame. We provide
the following examples:
a) Local search/SD: PT with p D s D 1.
b) SA: p D 2; s D 1 incorporating its probabilistic ac-

ceptance criterion in IM. (It should be noted that
p D 2 and s D 1 seems to be unusual at first glance.
For SA we always have a current solution in the
pool for which one or more neighbors are evalu-
ated and eventually a neighbor is found which re-
places the current solution. Furthermore, at all itera-
tions throughout the search the so far best solution is
stored too (even if no real interaction between those
two stored solutions takes place). The same is also
valid for a simple TS. As for local search the current

solution corresponds to the best solution of the spe-
cific search, we have p D 1.)

c) Standard TS: p D 2; s D 1 incorporating adaptive
memory in IM.

d) GAs: p > 1 and s > 1 with population mechanism
(crossover, reproduction, and mutation) in SCM of
step 3 and without the use of step 4.

e) Scatter search: p > 1 and s > 1 with subset genera-
tion inOF of step 2, linear combination of elite solu-
tions by means of SCM in step 3, e. g., a TS for pro-
cedure IM and a reference set update method in IF
of step 5.

f) PR (as a parallel pool method): p > 1 and s D 2 with
a PR neighborhood in SCM. Facultative use of step 4.

Partial Optimization Metaheuristic
Under Special Intensification Conditions

A natural way to solve large optimization problems
is to decompose them into independent subproblems
that are solved with an appropriate procedure. How-
ever, such approaches may lead to solutions of moder-
ate quality since the subproblems might have been cre-
ated in a somewhat arbitrary fashion. Of course, it is not
easy to find an appropriate way to decompose a prob-
lem a priori. The basic idea of POPMUSIC conditions
is to locally optimize subparts of a solution, a posteri-
ori, once a solution to the problem is available. These
local optimizations are repeated until a local optimum
is found. Therefore, POPMUSICmay be viewed as a lo-
cal search working with a special, large neighborhood.
While the acronym POPMUSIC was given by Taillard
and Voß [88] other metaheuristics may be incorporated
into the same framework too [84].

For large optimization problems, it is often pos-
sible to see the solutions as composed of parts (or
chunks [102], cf. the term “vocabulary building”). Con-
sidering the vehicle routing problem, a part may be
a tour (or even a customer). Suppose that a solution can
be represented as a set of parts. Moreover, some parts
are more in relation with some other parts, so a cor-
responding heuristic measure can be defined between
two parts. The central idea of POPMUSIC is to select
a so-called seed part and a set P of parts that are mostly
related to the seed part to form a subproblem.

Then it is possible to state a local search optimiza-
tion frame that consists of trying to improve all sub-
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problems that can be defined, until the solution does
not contain a subproblem that can be improved. In the
POPMUSIC frame of [88], P corresponds precisely to
seed parts that have been used to define subproblems
that have been unsuccessfully optimized. Once P con-
tains all the parts of the complete solution, all subprob-
lems have been examined without success and the pro-
cess stops.

Basically, the technique is a gradient method that
starts from a given initial solution and stops in a local
optimum relative to a large neighborhood structure.
To summarize, both POPMUSIC as well as AMP may
serve as a general frame encompassing various other
approaches.

Hybrids with Exact Methods

Often a new idea or a new paradigm in metaheuristics
is claimed to be the idea by the inventor, while oth-
ers see it as useless in the first instance. However, once
it has been hybridized, things begin to fly. Especially
in population-based metaheuristics, many researchers
have followed this trend. That is, we now see many
hybrid approaches where the successful ingredients of
various metaheuristics have been combined. The term
“hybridization”, however, goes further, as it also refers
to combining metaheuristics with exact methods.

Traditionally, the structure of neighborhoods is de-
termined by local transformations or moves. This usu-
ally refers to relatively small homogeneous neighbor-
hoods. Different types of moves have been used in the
construction of very large and diverse neighborhoods.
In contrast, as a hybrid one may deploy neighborhoods
that are method-based. By this we mean that the basic
structure of a neighborhood is determined by the needs
and requirements of a given (say, exact) optimization
method used to search the neighborhood. That is, given
an incumbent solution one may define the neighbor-
hood so that an exact method can be efficiently used
rather than defining a neighborhood and trying to find
an appropriate method to explore it. This approach was
called corridor method by Sniedovich and Voß [86] as
it literally defines a neighborhood as a sufficiently sized
corridor around a given solution so that a given exact
method behaves well. Iteratively the corridor is moved
through the search space for exploration.

Constraint programming (CP) is a paradigm for rep-
resenting and solving a wide variety of problems ex-
pressed by means of variables, their domains, and con-
straints on the variables. Usually CP models are solved
using depth-first search and branch and bound. Nat-
urally, these concepts can be complemented by local
search concepts and metaheuristics. This idea is fol-
lowed by several authors; see [21] for TS and guided
local search hybrids. Commonalities with the POPMU-
SIC approach can be deduced from [74].

Of course, the treatment of this topic is by no means
complete and various ideas have been developed. One
idea is to transform a greedy heuristic into a search al-
gorithm by branching only in a few (i. e., limited num-
ber) cases when the choice criterion of the heuristic ob-
serves some borderline case or where the choice is least
compelling, respectively. This approach may be called
limited discrepancy search [17,53].

Independent from the CP concept, one may inves-
tigate hybrids of branch and bound and metaheuristics,
e. g., for deciding upon branching variables or search
paths to be followed within a branch and bound tree
(see [103] for an application of reactive TS). Here we
may also use the term “cooperative solver.” Somewhat
related is the local branching concept for solving mixed
integer programs (MIP), which seeks to explore neigh-
borhoods defined through (invalid) linear cuts. The
neighborhoods are searched by means of a general pur-
pose MIP solver [35].

Correspondingly, one of the current research is-
sues refers to exploiting mathematical programming
(MP) techniques in a (meta)heuristic framework or,
correspondingly, granting to MP approaches the cross-
problem robustness and computation time effective-
ness which characterize metaheuristics. Discriminating
landmark is some form of exploitation of a MP formu-
lation, e. g., by means of MIP. In this respect various
efforts have been made towards developing strategies
for making a heuristic sequence of roundings to obtain
feasible solutions for problems represented bymeans of
appropriate MIP [3,34].

Optimization Software Libraries

Besides some well-known approaches for reusable soft-
ware in the field of exact optimization (e. g., CPLEX
or ABACUS; see http://www.ilog.com and http://www.

http://www.ilog.com
http://www.informatik.uni-koeln.de/abacus
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informatik.uni-koeln.de/abacus) some ready-to-use
and well-documented component libraries in the field
of local search based heuristics and metaheuristics have
been developed; see especially the contributions in [98].

The most successful approaches documented in
the literature are the heuristic optimization frame-
work HOTFRAME of [33] and EASYLOCAL++ of [22].
HOTFRAME, as an example, is implemented in C++,
which provides adaptable components incorporating
different metaheuristics and an architectural descrip-
tion of the collaboration among these components and
problem-specific complements. Typical application-
specific concepts are treated as objects or classes:
problems, solutions, neighbors, solution attributes, and
move attributes. On the other hand, metaheuristic con-
cepts such as the different methods described above and
their building blocks such as tabu criteria or diversifi-
cation strategies are also treated as objects. HOTFRAME

uses genericity as the primarymechanism tomake these
objects adaptable. That is, common behavior of meta-
heuristics is factored out and grouped in generic classes,
applying static type variation. Metaheuristics template
classes are parameterized by aspects such as solution
spaces and neighborhood structures.

Applications

Applications of metaheuristics are almost uncountable
and appear in various journals (e. g., Journal of Heuris-
tics), books, and technical reports every day. A helpful
source for a subset of successful applications may be
special issues of journals or compilations such as [25,
77,79,97], just to mention some.

Specialized conferences like the Metaheuristics In-
ternational Conference are devoted to the topic [25,
59,72,80,81,97] and even more general conferences re-
veal that metaheuristics have become part of neces-
sary prerequisites for successfully solving optimization
problems [46]. Moreover, ready-to-use systems such as
class libraries and frameworks have been developed, al-
though they are usually restricted to application by the
knowledgeable user.

Specialized applications also reveal research needs,
e. g., in dynamic environments. One example refers to
the application of metaheuristics for online optimiza-
tion [49].

Conclusions

Over the last few decades metaheuristics have become
a substantial part of the optimization stockroom with
various applications in science and, even more impor-
tant, in practice. Metaheuristics have been considered
in textbooks, e. g., in operations research, and a wealth
of monographs [27,43,70,92] are available. Most impor-
tant in our view are general frames. AMP, an intelligent
interplay of intensification and diversification (such as
ideas from POPMUSIC), and the connection to pow-
erful exact algorithms as subroutines for handable sub-
problems are avenues to be followed.

From a theoretical point of view, the use of most
metaheuristics has not yet been fully justified. While
convergence results regarding solution quality exist
for most metaheuristics, once appropriate probabilis-
tic assumptions are made [8,31,50] these turn out not
to be very helpful in practice as usually a dispro-
portionate computation time is required to achieve
these results (usually convergence is achieved for a
computation time tending to infinity, with a few ex-
ceptions, e. g., for the reverse elimination method
within TS or the pilot method where optimality can
be achieved with a finite, but exponential number of
steps in the worst case). Furthermore, we have to ad-
mit that theoretically one may argue that none of the
metaheuristics described are on average better than
any other; there is no free lunch [101]. Basically this
leaves the choice of a best possible heuristic or related
ingredients to the ingenuity of the user/researcher.
Some researchers related the term “hyperheuristics”
to the question of which (heuristic) method among
a given set of methods to choose for a given prob-
lem [16].

Moreover, despite the widespread success of vari-
ous metaheuristics, researchers occasionally still have
a poor understanding of many key theoretical aspects
of these algorithms, including models of the high-level
run-time dynamics and identification of search space
features that influence problem difficulty [99]. More-
over, fitness landscape evaluations are considered to be
in their infancy too.

From an empirical standpoint it would be most in-
teresting to know which algorithms perform best under
various criteria for different classes of problems. Unfor-
tunately, this theme is out of reach as long as we do not

http://www.informatik.uni-koeln.de/abacus
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have any well-accepted standards regarding the testing
and comparison of different methods.

While most papers on metaheuristics claim to pro-
vide “high-quality” results based on some sort of mea-
sure, we still believe that there is a great deal of room
for improvement in testing existing as well as new ap-
proaches from an empirical point of view [10,57,67].
In a dynamic research process numerical results pro-
vide the basis for systematically developing efficient al-
gorithms. The essential conclusions of finished research
and development processes should always be substan-
tiated (i. e., empirically and, if necessary, statistically
proven) by numerical results based on an appropriate
empirical test cycle. Furthermore, even when excellent
numerical results are obtained, it may still be possible to
compare with a simple random restart procedure and
obtain better results in some cases [47]. However, this
comparison is usually neglected.

Usually the ways of preparing, performing, and pre-
senting experiments and their results are significantly
different. The failing of a generally accepted standard
for testing and reporting on the testing, or at least a cor-
responding guideline for designing experiments, unfor-
tunately implies the following observation: Some re-
sults can be used only in a restricted way, e. g., because
relevant data are missing, wrong environmental set-
tings are used, or simply results are glossed over. In the
worst case nonsufficiently prepared experiments pro-
vide results that are unfit for further use, i. e., any gen-
eralized conclusion is out of reach. Future algorithm re-
search needs to provide effective methods for analyzing
the performance of, e. g., heuristics in a more scientifi-
cally founded way (see [4,100] for some steps into this
direction).

A final aspect that deserves special consideration is
to investigate the use of information within different
metaheuristics. While the AMP frame provides a very
good entry into this area, this still provides an interest-
ing opportunity to link artificial intelligence with oper-
ations research concepts.
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Nicholas Constantine Metropolis was born in Chicago
on June 11, 1915 and died on October 17, 1999 in
Los Alamos. At Los Alamos, Metropolis was the main
driving force behind the development of the MANIAC
series of electronic computers. He was the first to
code a problem for the ENIAC in 1945–1946 (together
with S. Frankel), a task which consumed approximately
1,000,000 IBM punched cards.

Metropolis received his PhD in physics from the
University of Chicago in 1941. He went to Los Alamos
in 1943 as a member of the initial staff of fifty scientists
of the Manhattan Project. He spent his entire career
at Los Alamos, except for two periods (1946–1948 and
1957–1965), during which he was professor of Physics
at the University of Chicago.

Metropolis is best known for the development (joint
with S. Ulam and J. von Neumann) of theMonte-Carlo
method. The Monte-Carlo method provides approxi-
mate solutions to a variety of mathematical problems by
performing statistical sampling experiments on a com-
puter. However, the real use of Monte-Carlo meth-
ods as a research tool stems from work on the atomic
bomb during the second world war. This work involved

a direct simulation of the probabilistic problems con-
cerned with random neutron diffusion in fissile mate-
rial. Metropolis and his collaborators, obtained Monte-
Carlo estimates for the eigenvalues of Schrodinger
equation.

In 1953, Metropolis co-authored the first paper on
the technique that came to be known as simulated an-
nealing [3,8]. Simulated annealing is a method for solv-
ing optimization problems. The name of the algorithm
derives from an analogy between the simulation of the
annealing of solids. Annealing refers to a process of
cooling material slowly until it reaches a stable state.

Metropolis also made several early contributions to
the use of computers in the exploration of nonlinear
dynamics. In the Sixties and Seventies he collaborated
with G.-C. Rota and others on significance arithmetic.
Another contribution of Metropolis to numerical anal-
ysis is an early paper on the use of Chebyshev’s iterative
method for solving large scale linear systems [1].
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Minimax is a principle of optimal choice (of some pa-
rameters or functions). If applied, this principle re-
quires to find extremal values of some max-type func-
tion. Since the operation of taking the pointwise maxi-
mum (of a finite or infinite number of functions) gen-
erates, in general, a nonsmooth function, it is impor-
tant to study properties of such a function. Fortunately
enough, though a max-function is not differentiable, in
many cases it is still directionally differentiable. The di-
rectional differentiability provides a tool for formulat-
ing necessary (and sometimes sufficient) conditions for
a minimum or maximum and for constructing numer-
ical algorithms.

Recall that a function f :Rn!R is calledHadamard
directionally differentiable (H.d.d.) at a point x 2 Rn if
for any g 2 Rn there exists the finite limit

f 0H(x; g) D lim
[˛;g0]![C0;g]

f (x C ˛g0) � f (x)
˛

:

A function f : Rn!R is calledDini directionally dif-
ferentiable (D.d.d.) at a point x 2 Rn if for any g 2 Rn

there exists the finite limit

f 0D(x; g) D lim
˛#0

f (x C ˛g) � f (x)
˛

:

If f is H.d.d., then it is D.d.d. as well and fH 0(x, g) =
f D0(x, g).

Let ˝ � Rn be a convex compact set, x 2 ˝ . The
cone

Nx(˝) D fv 2 Rn : (v; x) D �˝(x)g

is called normal to˝ at x. Here

�˝ (x) D max
y2˝

(v; y)

is the support function of˝ at x.

Amax-function

Let

f (x) D max
y2G

'(x; y); (1)

where ': S × G! R is continuous jointly in x, y on S
× G and continuously differentiable in x there, S � Rn

is an open set, G is a compact set of some space. Under
the conditions stated, the function f is continuous on S.

Proposition 1 The function f is H.d.d. at any point x 2
S and

f 0H(x; g) D max
y2R(x)

(' 0x(x; y); g) D max
v2@ f (x)

(v; g); (2)

where

R(x) D fy 2 G : f (x) D '(x; y)g ;

'x
0(x, g) is the gradient of ' with respect to x for a fixed

y, (a, b) is the scalar product of vectors a and b,

@ f (x) D co
˚
' 0x(x; g) : y 2 R(x)

�
� Rn :

The set @f (x) is called the subdifferential of f at x. It is
convex and compact. Themapping @f is, in general, dis-
continuous.

Remark 2 It turns out that a convex function can also
be represented in the form (1) with ' being affine in x.
For this special (convex) case the set @f (x) is

@ f (x)

D fv 2 Rn : f (z) � f (x) � (v; z � x); 8z 2 Sg :

The discovery of the directional differentiability of
max-functions ([1,2,6]) and convex functions [10] was
a breakthrough and led to the development ofminimax
theory and convex analysis ([4,9,10]).
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AMaximum Function
with Dependent Constraints

Let x � Rn, Y � Rm be open sets and let

f (x) D max
y2a(x)

'(x; g); (3)

where a(x) is a multivalued mapping with compact im-
ages, ': X × Y ! R is Hadamard differentiable as
a function of two variables, i. e. there exists the limit

' 0H([x; y]; [g; v]) D lim
[˛;g0;v 0]![C0;g;v]

1
˛

�
�
'(x C ˛g0; yC ˛v0) � '(x; y)

�
:

Then ' is continuous and 'H
0 is continuous as a func-

tion of direction [g, v].
The function f is called a maximum function with

dependent constraints. Such functions are of great im-
portance and have widely been studied (see [3,5,7,8]).
To illustrate the results let us formulate one of them [5,
Thm. I, 6.3].

Proposition 3 Let a mapping a be closed and bounded,
its images be convex and compact, the support function
a(x, l) = maxv 2 a(x) (v, l) be uniformly differentiable with
respect to parameter l. Let, further, x 2 X and a function
' be concave in some convex neighborhood of the set {[x,
y]: y 2 R(x)} (where R(x) = {y 2 a(x): '(x, y) = f (x)}).
Then f (see (3)) is H.d.d. and

f 0(x; g) D sup
y2R(x)

min
[l1;l2]2V (x;y)

[(l1; g)Ca0(x; l2; g)]; (4)

where

V(x; y) D
n
l D [l1; l2] 2 @'(x; y) : l2 2 Nx;y

o
;

@'(x; y) is the superdifferential of ' at the point [x, y],
and Nx, y is the cone normal to a(x) at y.

Recall that if a function F: Rs! R is concave, Z � Rs is
open, z 2 Z, then the set

@F(z) D
�
v 2 Rs :

F(z0) � F(z) � (v; z0 � z);
8z0 2 Z

	

is called the superdifferential of F at z 2 Z. It is convex
and compact.

AMaxmin Function

Let '(x, y, z): S × G1 × G2! R be continuous jointly in
all variables, S � Rn be an open set, G1 � Rm, G2 � Rp

be compact. Put

f (x) D max
y2G1

min
z2G2

'(x; y; z): (5)

The function f is continuous on S.
Let

˚(x; y) D min
z2G2

'(x; y; z);

R(x) D fy 2 G1 : ˚(x; y) D f (x)g ;

Q(x; y) D fz 2 G2 : '(x; y; z) D ˚(x; y)g :

Fix x 2 S, let D"(" > 0) be an "-neighborhood of the
set {x} × R(x) ×[y 2 R(x)Q(x, y). Assume that the deriva-
tives

@'

@x
;
@'

@y
;
@2'

@x2
;
@2'

@x@y
;
@2'

@y2

exist and are continuous jointly in all variables onD"(x)
and that

�
@2'(x; y; z)

@y2
v; v

�
� 0;

8[x; y; z] 2 D"(x); v 2 Rm :

Assume also that G1 is convex. Let y 2 G1. Put

�(y) D
˚
v D �(y0 � y) : � > 0; y0 2 G1

�
;

� (y) D cl �(y):

Proposition 4 [3, Thm. 5.2] Under the above assump-
tions the function f (see (5)) is Hadamard directionally
differentiable and

f 0H(x; g) D sup
y2R(x)

sup
y2� (y)

min
z2Q(x;y)

��
@'(x; y; z)

@y
; v
�
C

�
@'(x; y; z)

@x
; g
��
:

Remark 5 More sophisticated results on the directional
differentiability of max- and maxmin functions can be
found, e. g., in [8].

Higher-Order Directional Derivatives

The results above are related to the first order direc-
tional derivatives. Using these derivatives, it is possible
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to construct the following first order expansion:

f (x C ˛g) D f (x)C ˛ f 0(x; g)C ox;g(˛); (6)

where f 0 is either fH 0 or fD0.
In some cases it is possible to get ‘higher-order’ ex-

pansions.
Let

f (x) D max
i2I

fi(x); (7)

where I = 1 : N, x = (x1, . . . , xn) 2 Rn, the f i0s are con-
tinuous and continuously differentiable up the lth order
on an open set S � Rr. Fix x 2 S. Then for sufficiently
small ˛ > 0

fi(x C ˛g)

D fi(x)C
lX

kD1

˛k

k!
f (k)i (x; g)C oi (g; ˛ l ); (8)

where

f (k)i (x; g) D
nX

j1;:::; jkD1

@k fi(x)
@x j1 � � � @x jk

g j1 ; : : : ; g jk ;

k 2 1; : : : ; l ;
oi (g; ˛ l )
˛ l !

˛#0
0 (9)

uniformly with respect to g, kgk = 1.
Let us use the following notation

f 0i (x; g) D fi(x);

8i 2 I; R0(x; g) D I;

Rk(x; g) D fi 2 Rk�1(x; g) :

f (k�1)i (x; g) D max
j2Rk�1(x;g)

f (k�1)j (x; g)
	
;

k 2 1; : : : ; l :

Clearly

R0(x; g) � R1(x; g) � R2(x; g) � � � � :

Note that R0(x, g) does not depend on x and g, and R1(x,
g) does not depend on g.

Proposition 6 [3, Thm. 9.1] The following expansion
holds:

f (x C ˛g) D f (x)C
lX

kD1

˛k

k!
f (k)(x; g)C o(g; ˛ l );

8g 2 Rn ; (10)

where

f (k)(x; g) D max
i2Rk (x;g)

f (k)i (x; g);

o(g; ˛ l )
˛ l !

˛#0
0 (11)

uniformly with respect to g, kgk = 1.

The value @kf (x)/ @gk = f (k)(x, g) is called the kth deriva-
tive of f at x in a direction g.

Remark 7 Themapping R1(x, g) is not continuous in x,
while the mappings Rk(x, g) (k � 2) are not continuous
in x as well as in g. Therefore the functions f (k)(x, g) in
(11) are not continuous in x and (if k � 2) in g and, as
a result, expansion (6) is also not ‘stable’ in x.

To overcome this difficulty we shall employ another
tool.

Hypodifferentiability of a Max Function

Let us again consider the case where f is defined by (7).
It follows from (8) that, for� = (�1, . . . ,�n) 2 Rn,

f (x C	)

D max
i2I

"
fi(x)C

lX
kD1

1
k!

f (k)i (x; 	)

#
C o(k	kk):

(12)

Let us use the notation (see (9))

f (k)i (x; 	) D Aik	
k:

The function f (k)i (x,�) is a kth order form of coordinates
�1, . . . ,�n; Aik being the set of coefficients of this form.
Then (12) can be rewritten as

f (x C	)

D max
i2I

"
fi(x)C

lX
kD1

1
k!
Aik	

k

#
C o(k	kk)

D f (x)C max
A2d l f (x)

" lX
kD1

1
k!
Ak	

k

#
C o(k	kk); (13)
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where

dl f (x) D co
n
A(i) D (Ai0; : : : ;Ail ) : i 2 I

o
;

Ai0 D fi(x)� f (x); A D (A0; : : : ;Al );

A0 2 R; A1 2 Rn ;

A2 2 Rn�n ; : : : ;Ak 2

k times‚ …„ ƒ
Rn�����n :

Here,

k times‚ …„ ƒ
Rn�����n is the space of kth order real forms,

e. g. Rn×n is the space of real (n × n)-matrices.
The set dlf (x) is called the kth order hypodifferential

of f at x. It is an element of the space R � Rn � � � � �
l‚ …„ ƒ

Rn�����n . The mapping dlf is continuous in x.

Remark 8 Expansion (13) can be extended to the case
where f is given by (1) and ' is l times continuously
differentiable in x.

Max functions represent a special case of the class of
quasidifferentiable functions (see [5]).
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With the introduction of computers, also started the
interest in having machines play games. Programming
a computer such that it could play, for example chess,
was seen as giving it some kind of intelligence. Start-
ing in the mid fifties, a theory on how to play two
player zero sum perfect information games, like chess
or go, was developed. This theory is essentially based
on traversing a tree called minimax or game tree. An
edge in the tree represents a move by either of the play-
ers and a node a configuration of the game.

Two major algorithms have emerged to compute
the best sequence of moves in such a minimax tree.
On one hand, there is the alpha-beta algorithm sug-
gested around 1956 by I. McCarthy and first published
in [27]. On the other hand, G.C. Stockman [29] intro-
duced the SSS
 algorithm. Both methods try to min-
imize the number of nodes explored in the game tree
using special traversal strategies and cut conditions.

Minimax Trees

A two-player zero-sum perfect-information game, also
called minimax game, is a game which involves ex-
actly two players who alternatively make moves. No
information is hidden from the adversary. No coins
are tossed, that is, the game is completely determinis-
tic, and there is perfect symmetry in the quality of the
moves allowed. Go, checker and chess are such mini-
max games whereas backgammon (the outcome of a die
determines the moves available) or card games (cards
are hidden from the adversary) are not.

A minimax tree or game tree is a tree where each
node represents a state of the game and each edge a pos-
sible move. Nodes are alternatively labeled ‘max’ and
‘min’ representing either player’s turn. A node having
no descendants represents a final outcome of the game.
The goal of a game is to find a winning sequence of
moves, given that the opponent always plays his best
move.

The quality of a node t in the minimax game tree,
representing a configuration, is given by its value e(t).
The value e(t), also called minimax value, is defined re-
cursively as

e(t) D

8̂
ˆ̂<
ˆ̂̂:

f (t) if t is a leave node;
max

s2sons(t)
e(s) if t is labeled ‘max’;

min
s2sons(t)

e(s) if t is labeled ‘min’:

If the considered minimax tree represents a com-
plete game, that is, all possible board configurations, the
function f may be defined as follows:

f (t) D

8̂
<̂
ˆ̂:

C1 if t leads to a winning position;
0 if t leads to a tie position;
�1 if t leads to a losing position;

otherwise f (t) represents an evaluation of the quality of
a board position.

The relation between minimax trees and games is
detailed in the following table.

Minimax tree notion Minimax game notion
Minimax tree All board configurations
Node in the tree Board configuration
Edge from “max” to
“min” node

Move by player “max”

Edge from “min” to
“max” node

Move by player “min”

Node value Quality of board position
Leave node Outcome of a game
Solution path Sequence of moves lead-

ing the best outcome

Sequential Minimax Game Tree Algorithms

Let t be a node of a minimax tree. Then the func-
tion first_son(t) returns the first son node s1 of t and
next_son(si , t) returns the i + 1th son of node t. The
function no_more_sons(s, t) returns true of s is the last
son of t. Otherwise it returns false. The ordering of the
sons introduced by these functions is arbitrary. In prac-
tice it is given by some heuristic function. The func-
tion father(t) returns the father node of t, is_leave(t)
whether or not t is a leave node and node_type(t) the
type of node t.

Minimax Algorithm

The most basic minimax algorithm is called the min-
imax algorithm. It systematically traverses, in a depth
first, left to right fashion, the complete minimax tree.
All nodes are visited exactly once.

Alpha-Beta Algorithm

The first nontrivial algorithm introduced to com-
pute the minimax value of a game tree was the
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alpha-beta algorithm. According to D. Knuth and R.
Moore, McCarthy’s comments at the Dartmouth sum-
mer research conference on artificial intelligence led
to the use of alpha-beta pruning in game playing pro-
grams since the late 1950s. The first published discus-
sion of an algorithm for minimax tree pruning ap-
peared in 1958 (see [11, p. 56]). Two early extensive
studies of the algorithm may be found in [18] and
[27].

The idea behind the alpha-beta algorithm is to tra-
verse the minimax tree in a depth first, left to right fash-
ion. It tries to prune sub-trees that can not influence the
minimax value of the tree. The conditions used to prune
sub-trees are called cut conditions. The idea behind the
suggested cut conditions is to associate to each node
a lower and an upper bound, called ˛ and ˇ bounds.
The bounds of a node are passed to its sons and tight-
ened during the execution of the algorithm. It is easy
to see that if the lower bound of a node t of type ‘max’
is larger than its upper bound then all not visited sons
of node t can be pruned, and similar for nodes of type
‘min’.

FUNCTION AlphaBeta(n; ˛; ˇ) IS
BEGIN

IF is_leave(n) THEN RETURN f (n)
s  first_son(n)
IF node_type(n)=max THEN

LOOP
˛  maxf˛;AlphaBeta(s; ˛; ˇ)g
IF ˛ � ˇ THEN RETURN ˇ

EXIT LOOPWHEN no_more_sons(s; n)
s next_son(s; n)

END LOOP
RETURN ˛

ELSE
LOOP

ˇ  maxf˛;AlphaBeta(s; ˛; ˇ)g
IF ˇ � ˛ THEN RETURN ˛

EXIT LOOPWHEN no_more_sons(s; n)
s next_sons(s; n)

END LOOP
RETURN ˇ

END IF
END AlphaBeta

Pseudocode for the alpha-beta algorithm

It has been proved in [18] that the alpha-beta algo-
rithm correctly calculates the minimax value of a tree.
The above pseudocode describes the alpha-beta algo-
rithm.

The minimax value of a tree T is computed as fol-
lows.

e (root(T)) AlphaBeta (root(T);�1;C1) :

Optimal State Space Search Algorithm SSS�
It has been introduced by Stockman in 1979, [29]. It
originates not in game playing but in systematic pat-
tern recognition. The algorithm was first analyzed and
criticized in [26].

The idea behind the SSS
 algorithm is to use a tree
traversal strategy that is, better than the depth first and
left to right strategy found in the alpha-beta algorithm.
The criteria used to order the nodes yet to visit is an
upper bound of their value. Nodes are stored in non
increasing order of their upper bound in a list called
‘open’.

The SSS
 algorithm first traverses the minimax
tree from top to bottom. Nodes whose sons have not
yet been visited and which cannot yet be pruned are
marked ‘live’. Nodes marked ‘solved’ have already been
visited once and have therefore their best upper bound
associated.

The operation purge(t, open) removes all nodes
from the open list for which the node t is an ancestor.
Due to the fact that the nodes in the open list are sorted
in nonincreasing order of their associated upper bound,
the pruning operation only eliminates nodes that need
no further consideration.

The SSS
 algorithm is described by the following
pseudocode.

FUNCTION SSS� IS
BEGIN

open ;
insert (root, live, +1, open)
LOOP

(s; t;m) remove (open)
IF s= root AND t= solved THEN RETURNm
h Apply the � operator to node s i

END LOOP
END SSS�

Pseudocode for the SSS� algorithm
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The operator � (s) is applied to each node s ex-
tracted from the ‘open’ list.

It is possible to define a dual version of the SSS
,
which may be called SSS
 -dual, in which the computa-
tion of upper bounds is replaced by the computation of
lower bounds. The SSS
 -dual algorithm has been sug-
gested in [21].

Stockman has shown that if the SSS
 algorithm ex-
plores a node, then this node is also explored by the
alpha-beta algorithm. In fact, the alpha-beta algorithm
loses efficiency (in the number of nodes visited) against
the SSS
 algorithm when the value of the minimax tree
is found towards the right of the tree. If the SSS
 algo-
rithm is applied to win-lose trees then it visits exactly
the same nodes in the same order as would the alpha-
beta algorithm.

hApply the � operator to node si �
IF t = live AND node_type = max
AND NOT is_leave(t) THEN
s  first_son(t)
LOOP
insert (s, live, m, open)
EXIT LOOPWHEN no_more_sons(s; t)
s  next_son(s; t)

END LOOP
END IF
IF t = live AND node_type = min
AND NOT is_leave(t) THEN
insert(first_son(t), live, m, open)

END IF
IF t = live AND is_leave(t) THEN
insert(t, solved, min{ f (t);m}, open)

END IF
IF t = solved AND node_type = max
AND NOT no_more_sons(t, father(t)) THEN
insert(next_son(t, father(t)), live, m, open)

END IF
IF t = solved AND node_type = max
AND no_more_sons(t, father(t)) THEN
insert(father(t), solved, m, open)

END IF
IF t = solved AND node_type = min THEN
insert(father(t), solved, m, open)
purge(father(t), open)

END IF

SCOUT: Minimax Algorithm
of Theoretical Interest

In the previous sections, we have described the most
common minimax algorithms. While trying to show
the optimality of the alpha-beta algorithm, J. Pearl [23]
introduced the SCOUT algorithm. His idea was to show
that the SCOUT algorithm is dominated by the alpha-
beta algorithm and to prove that SCOUT achieves
an optimal performance. But counterexamples showed
that the alpha-beta algorithm does not dominate the
SCOUT algorithm because the conservative testing ap-
proach of the SCOUT algorithm may sometimes cut off
nodes that would have been explored by the alpha-beta
algorithm.

The SCOUT algorithm itself recursively computes
the value of the first of its sons. Then it tests to see if the
value of the first son is better that the value of the other
sons. In case of a negative result, the son that failed
the test is completely evaluated by recursively calling
SCOUT.

Although the SCOUT algorithm is more of theoret-
ical interest, there are some problem instances where it
outperforms all other minimax algorithms. A last ad-
vantage of the SCOUT algorithm versus one of its ma-
jor competitors, the SSS
 algorithm, is that its storage
requirements are similar to those of the alpha-beta al-
gorithm.

GSEARCH: Generalized Game
Tree Search Algorithm

In 1986, T. Ibaraki [16] proposed a generalization of
the previously known algorithms to compute the mini-
max value of a game tree. His idea was to use a branch
and bound like approach. Nodes of the considered tree
which have not yet been evaluated are stored in a list
which is ordered according to a given criteria. Different
orderings give different traversal strategies. A lower and
upper bound is associated to each node. These bounds
generalize the ˛ and ˇ values found in the alpha-beta
algorithm.

Finally Ibaraki showed how the algorithm GS}CH is
related to other minimax algorithms like alpha-beta or
SSS
, and proved that his algorithm always surpasses
the alpha-beta algorithm.



Minimax Game Tree Searching M 2083

SSS-2: Recursive State Space Search Algorithm

The SSS-2 algorithm has been proposed byW. Pijls and
A. de Bruin [24]. It is based on the idea of computing
an upper bound for the root node and then repeatedly
transforming this upper bound into a tighter one. They
have shown that the SSS-2 algorithm exactly expands
the same nodes as those to which the SSS
 algorithm
applies the � operator.

Some Variations On The Subject

Computing the minimax value of a game tree may be
seen as aspiring the solution value from a leave node
through the whole tree up to the root node. While mov-
ing closer to the root node, more and more useless sub-
trees will be eliminated, as we have already stated for the
alpha-beta algorithm. The better the ˛ and ˇ bounds,
the more subtrees may be pruned. If, for instance, one
knows that the minimax value will, with high probabil-
ity, be found in the subset ]a, b[, then it may be worth
calling the alpha-beta algorithm as

e  AlphaBeta (root(T); a; b)

If, indeed, the minimax value e(root(T)) belongs to the
set ]a, b[, then the algorithm will correctly return that
value. If the minimax value does not belong to the set
]a, b[, then the value returned will be either a or b, de-
pending on whether the minimax value belongs to ]�
1, a] or [b, +1[. We then say that the alpha-beta al-
gorithm failed low, respectively high. In the case where
the algorithm failed low, the call

e  AlphaBeta (root(T);�1; a C 1)

will return the correct value. But it would also be possi-
ble to reiterate this procedure on a subset ]a1, a + 1[.

The technique of limiting the interval in which the
solution may be found is called aspiration search. If the
minimax value belongs to the specified interval, then
amuch larger number of cut conditions are verified and
the tree actually traversed is much smaller than the one
traversed by the alpha-beta algorithm without initial al-
pha and beta bounds.

Furthermore it is interesting to note that aspiration
search is at the bases of a technique called iterative deep-
ening which is used in many game playing programs.

I. Althöfer [5] suggested an incremental negamax al-
gorithm which uses estimates of all nodes in the mini-

max tree, rather than only those of the leave nodes, to
determine the value of the root node. This algorithm
is useful when dealing with erroneous leave evaluation
functions. Under the assumption of independently oc-
curring and sufficiently small errors, the proposed al-
gorithm is shown to have exponentially reduced error
probabilities with respect to the depth of the tree.

R.L. Rivest [25] proposed an algorithm for search-
ing minimax trees based on the idea of approximating
the min and the max operators by generalized mean
value operators. The approximation is used to guide the
selection of the next leave node to expand, since the ap-
proximation allows to select efficiently that leave node
upon whose value the minimax value most highly de-
pends. B.W. Ballard [6] proposed a similar algorithm
where the value of some nodes (the chance node as he
calls them) is a, possibly weighted, average of the values
of its sons. In fact he considers one additional type of
nodes called chance nodes.

Conspiracy numbers have been introduced by D.A.
McAllester in [22] as a measurement of the accuracy of
the minimax value of an incomplete tree. They measure
the number of leave nodes whose value must change in
order to change the minimax value of the root node by
a given amount.

Parallel Minimax Tree Algorithms

Parallelizing the minimax algorithm is trivial over uni-
form trees. Even on irregular trees, the parallelization
remains easy. The only additional problem arises from
the fact that the size of the subtrees to explore may now
vary. Different processors will be attributed problems
of varying computational volume. All what is needed
then to achieve excellent speedups, is a load-balancing
scheme, that is, a mechanism by means of which pro-
cessors may, during run-time, exchange problems so as
to keep all processors busy all the time.

The parallelization of the alpha-beta and the SSS

algorithms are much more interesting than the more
theoretical minimax algorithm. There exist basically
two approaches or techniques to parallelize the alpha-
beta algorithm. In the first approach, which has been
one of the first techniques used, all processors explore
the entire tree but using different search-intervals. This
approach is at the basic of the algorithm called paral-
lel aspiration search by G. Baudet [7]. The second one
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consists in exploring simultaneously different parts of
the minimax tree.

A Simple Way to Parallelize the Exploration
of Minimax Trees

Exploring a minimax tree in parallel can very simply be
obtained by generating the sons of the root node, and
their sons and so on up to the point where one has as
many son nodes waiting to be explored as there are pro-
cessors. At this point, each processor explores the sub-
tree rooted at one of these nodes, using any given se-
quential minimax algorithm. When all processors have
completed their exploration, the solution for the entire
tree is computed by using the partial results obtained
from each of the processors.

In practice the sons of a node may be ordered in
such a way that any son has a probability of yielding
the locally optimal path that is no smaller than the cor-
responding probabilities for its right neighbors. The
probability to find the optimum in the subtree rooted at
a given son then always decreases when traversing the
sons in a left to right order. Such ordering information
is generally available in game-playing programs, the or-
dering function being a heuristic function based on the
knowledge of the game to be played.

AMandatoryWork First Algorithm

R. Hewett and G. Krishnamurthy [15] proposed an al-
gorithm that achieves an efficiency of roughly 50% for
an number of processors in the range of 2 to 25. All the
nodes that still need to be explored are maintained in
a list called ‘open’ list. This list is ordered with respect to
how the nodes have been reached. More precisely, the
algorithm maintains two lists called ‘open’ and ‘closed’,
and a tree called ‘cut’. The ‘open’ list contains all the
nodes yet to be explored, the ‘closed’ list contains the
expanded nodes not yet pruned and the ‘cut’ tree con-
tains the pruned nodes. The ‘open’ list initially contains
only the root node. All processors fetch nodes from the
‘open’ list and process them if they cannot be discarded,
that is, they do not have any of their ancestors in the
‘cut’ tree. Leave nodes are evaluated and their result is
returned to the parent which may update its value and
check for possible pruning by traversing the ‘cut’ tree
up to the root node applying the usual alpha and beta
cutoffs. If the node selected is not a leave node, it is ex-

panded and its sons are inserted into the ‘open’ list and
itself into the ‘closed’ list.

S.G. Akl et al. [1,2] proposed an algorithm that
uses the same approach for exploring the minimax tree.
Their priority function is computed as

p(ni ) D p(father(ni )) � (bni C 1 � i) � 10(h� f�1);

where ni is the ith son of node father(ni), bni the
branching of node father(ni), h the search depth (the
maximal depth of the minimax tree) and f the depth of
node father(ni) in the minimax tree.

K. Almquist et al. [3] also developed an algorithm
based on the idea of having two categories of unex-
plored nodes which are ordered according to a given
priority function. Furthermore they add to this concept
parallel aspiration search as well as a novel scheduling
algorithm.

In the same direction, V.-D. Cung and C. Roucairol
[9] have proposed a shared memory parallel minimax
algorithm which distinguishes between critical and non
critical nodes. In their algorithm one processor is as-
signed to each node.

In the algorithm by I.R. Steinberg and M. Solomon
[28], which is also a mandatory work first type algo-
rithm, the list containing the speculative work or non
critical nodes is dynamically ordered.

Aspiration Search

The parallel algorithm called aspiration search has been
introduced by Baudet in 1978 [7]. In this algorithm
the search interval ]� 1, + 1[ used by the sequen-
tial alpha-beta algorithm is divided into a certain num-
ber of subintervals that cover the entire range ]� 1,
+ 1[. Now, every processor explores the entire mini-
max tree using one subinterval, different processors be-
ing assigned different intervals. Any processor search-
ing an interval ]ai, ai+1] may either fail low or high. The
principle is the same as in the sequential version of the
algorithm. Exactly one processor will neither fail low,
nor fail high. The value computed by this processor is
the value of the minimax tree to explore.

The implementation of the aspiration search algo-
rithm is really simple. Furthermore, there is no in-
formation exchange needed between processors. If the
nodes in the to explore minimax tree are ordered in
such a way that the alpha-beta algorithm has to explore
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the whole tree, then the speedup obtained by using the
aspiration search algorithm is maximal. But, when the
aspiration search algorithm is applied to randomly gen-
erated trees then Baudet has shown that the speedup is
limited to about six and is independent of the number
of processors used.

Tree-Splitting Algorithm

Among the early parallel minimax algorithms is the
tree-splitting algorithm by R.A. Finkel and J.P. Fishburn
[14]. This algorithm is based on the idea to look at the
available processors as a tree of processors. Each pro-
cessor, except for the ones representing leaves in the
processor tree, have a fixed number pb of son or slave
processors. During the execution of the algorithm a non
leave processor associated with a node n in the minimax
tree spawns the exploration of the sons si of n to its pb
slaves. As soon as one slave returns the next unexplored
son sj is spawned to that slave or the current value is
returned to the father processor if the cut condition is
satisfied. If all the sons of a node have been spawned to
its slaves, the father processor waits for the results of all
its slaves. Leave processors simply compute the value
of their associated node using the sequential alpha-beta
algorithm.

An important advantage of the tree-splitting algo-
rithm over other more elaborated algorithms is that it
may be simply implemented as well on a shared mem-
ory parallel machine as on a distributed memories par-
allel machine.

The tree-splitting algorithm has been implemented
and its execution has been simulated. On a 27 processor
simulated machine, in which each processor has tree
slave sons associated, the average speedup was 5.31 for
trees of depth eight and a branching of three.

PVSPLIT: Principal Variation Splitting Algorithm

It has been proposed by T.A. Marsland andM.S. Camp-
bell [19] and is by far the most often implemented algo-
rithm, especially in chess playing programs. The algo-
rithm is based on the structure of the sequential alpha-
beta algorithm. The idea is to first explore in a sequen-
tial fashion a path from the root node to its leftmost
leave. This path is called the principal variation path.
The traversal is done to obtain alpha and beta bounds.
If the minimax tree to explore is of type best first, then

the explored principal variation path represents the so-
lution path. In a second phase, for each level of the min-
imax tree all the yet to be visited sons are explored in
parallel by using the bounds computed during the prin-
cipal variation path computation and the traversal of
the lower levels of the minimax tree.

The PVSPLIT algorithm is completely described by
the following pseudocode using the negamax notation.

The PVSPLIT algorithm has been implemented in
[20] on a network of Sun workstations. An accelera-
tion of 3.06 has been measured on 4 processors when
traversing minimax trees representing real chess games.
The main problem of the PVSPLIT algorithm is that,
during the second phase, the subtrees explored in par-
allel are not necessarily of the same size.

The PVSPLIT algorithm is most efficient when the
iterative deepening technique is used, because with
each iteration is is increasingly likely that the first move
tried, that is, the one on the principal variation path, is
the best one.

FUNCTION PVSplit(b; ˛; ˇ) IS
BEGIN

IF is_leave(n) THEN RETURN f (n)
s first_son(n)
˛ �PVSplit(s;�ˇ;�˛)
IF ˛ � ˇ THEN RETURN ˛

FOR s0 2 sons(n) � fsg LOOP IN PARALLEL
hwait until a slave node is idlei
vi  �TreeSplit(s0;�ˇ;�˛)
IF vi > ˛ THEN

˛  vi
hUpdate the bounds according to ˛ on all
slavesi

END IF
IF ˛ > ˇ THEN
hTerminate all slave processorsi
RETURN ˛

END IF
END LOOP
RETURN ˛

END PVSplit

Pseudocode for the PVSPLIT algorithm

Synchronized Distributed State Space Search

A completely different approach to parallelizing the
SSS
 algorithm has been taken by C.G. Diderich and
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M. Gengler [10]. The algorithm proposed is called syn-
chronized distributed state space search (SDSSS). It
is an alternation of computation and synchronization
phases. The algorithm has been designed for a dis-
tributed memory multiprocessor machine. Each pro-
cessor manages its own local ‘open’ list of unvisited
nodes.

The synchronization phase may be subdivided in
three major parts. First, the processors exchange infor-
mation about which nodes can be removed from the
local ‘open’ lists. This corresponds to each processor
sending the nodes for which the ‘purge’ operation may
be applied by all the other processors. Next, all the pro-
cessors agree on the globally lowest upper bound m�

for which nodes exist in some of the ‘open’ lists. Fi-
nally all the nodes having the same upper boundm� are
evenly distributed among all the processors. This oper-
ation concludes the synchronization phase.

The computation phase of the SDSSS algorithm
may be described by the following pseudocode.

hComputation phasei �
WHILE hthere exists a node in the open list
having an upper bound of m�i

LOOP
(s; t; m�) remove(open)
IF s = root AND t = solved THEN

BROADCAST ‘the solution has been
found’
RETURN m�

END IF
hApply the � operator to node si

END LOOP

Pseudocode for the computation phase of the SDSSS algo-
rithm

Experiments executing the SDSSS algorithm on an
Intel iPSC/2 parallel machine have been conducted.
Speedups of up to 11.4 have been measured for 32 pro-
cessors.

Distributed Game Tree Search Algorithm

R. Feldman [12] parallelized the alpha-beta algorithm
for massively parallel distributed memory machines.
Different subtrees are searched in parallel by different
processors. The allocation of processors to trees is done
by imposing certain conditions on the nodes which are

be selectable. They introduce the concept of younger
brother waits. This concept essentially says that in the
case of a subtree rooted at s1, where s1 is the first son
node of a node n, is not yet evaluated, then the other
sons s2, . . . , sb of node n are not selectable. Younger
brothers may only be considered after their elder broth-
ers, which has as a consequence that the value of the el-
der brothers may be used to give a tight search window
to the younger brothers.

This concept is nevertheless not sufficient to achieve
the same good search window as the alpha-beta algo-
rithm achieves. Indeed when node s1 is computed, then
the younger brothers may all be explored in parallel us-
ing the value of node s1. Thus the node s2 has the same
search window as it would have in the sequential alpha-
beta algorithm, but this is not true anymore for si, where
i� 3. Indeed if nodes s2 and s3 are processed in parallel,
they only know the value of node s1, while in the se-
quential alpha-beta algorithm, the node s3 would have
known the value of both s1 and s2. This fact forces the
parallel algorithm to provide an information dissemi-
nation protocol.

In case the nodes s2 and s3 are evaluated on proces-
sors P and P0, and processor P finishes its work before
P0, producing a better value than node s1 did, then pro-
cessor P will inform processor P0 of this value, allowing
it to continue with better information on the rest of its
subtree or to terminate its work if the new value allows
P0 to conclude that its computation becomes useless.
The load distribution is realized by means of a dynamic
load balancing scheme, where idle processors ask other
processors for work.

Speedups as high as 100 have been obtained on
a 256 processor machines. In [13], a speedup of 344
on a 1024 transputer network interconnected as a grid
and a speedup of 142 on a 256 processor transputer de
Bruijn interconnected network have been shown.

Parallel Minimax Algorithm with Linear Speedup

In 1988, Althöfer [4] proved that it is possible, to de-
velop a parallel minimax algorithm which achieves lin-
ear speedup in the average case. With the assumption
that all minimax trees are binary win-loss trees, he ex-
hibited such a parallel minimax algorithm.

M. Böhm and E. Speckenmeyer [8] also suggested
an algorithm which uses the same basic ideas as Althöf-
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fer. Their algorithm is more general in the sense that
it needs only to know the distribution of the leave val-
ues and is independent of the branching of the tree ex-
plored.

In 1989, R.M. Karp and Y. Zhang [17] proved that
it is possible to obtain linear speedup on every instance
of a random uniform minimax tree if the number of
processors is close to the height of the tree.

See also

� Bottleneck Steiner Tree Problems
� Directed Tree Networks
� Shortest Path Tree Algorithms
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We suppose that X and Y are nonempty sets and f : X
× Y ! R. A minimax theorem is a theorem that asserts
that, under certain conditions,

inf
Y
sup
X

f D sup
X

inf
Y

f ;

that is to say,

inf
y2Y

sup
x2X

f (x; y) D sup
x2X

inf
y2Y

f (x; y):

The purpose of this article is to give the reader the
flavor of the different kind of minimax theorems, and of
the techniques that have been used to prove them. This
is a very large area, and it would be impossible to touch
on all the work that has been done in it in the space that
we have at our disposal. The choice that we have made
is to give the historical roots of the subject, and then go
directly to the most recent results. The reader who is
interested in a more complete narrative can refer to the
1974 survey article [35] by E.B. Yanovskaya, the 1981
survey article [8] by A. Irle and the 1995 survey article
[31] by S. Simons.

Von Neumann’s Results

In his investigation of games of strategy, J. von Neu-
mann realized that, even though a two-person zero-
sum game did not necessarily have a solution in pure
strategies, it did have to have one in mixed strategies.
Here is a statement of that seminal result ([19], trans-
lated into English in [21]):

Theorem 1 (1928) Let A be an m × n matrix, and X
and Y be the sets of nonnegative row and column vectors
with unit sum. Then

min
y2Y

max
x2X

xAy D max
x2X

min
y2Y

xAy:

Despite the fact that the statement of this result is quite
elementary, the proof was quite sophisticated, and de-
pended on an extremely ingenious induction argument.
Nine years later, in [20], von Neumann showed that the
bilinear character of Theorem 1 was not needed when
he extended it as follows, using Brouwer’s fixed point
theorem:

Theorem 2 (1937) Let X and Y be nonempty compact,
convex subsets of Euclidean spaces, and f : X × Y! R be
jointly continuous. Suppose that f is quasiconcave on X
and quasiconvex on Y (see below). Then

min
Y

max
X

f D max
X

min
Y

f :

When we say that f is quasiconcave on X, we mean that
� for all y 2 Y and � 2 R, GT(�, y) is convex,
and when we say that f is quasiconvex on Y , we mean
that
� for all x 2 X and � 2 R, LE(x, �) is convex.
Here, GT(�, y) and LE(x, �) are ‘level sets’ associated
with the function f . Specifically,

GT(�; y) :D fx 2 X : f (x; y) > �g

and

LE(x; �) :D fy 2 Y : f (x; y) � �g :

In 1941, S. Kakutani [10] analyzed von Neumann’s
proof and, as a result, discovered the fixed point theo-
rem that bears his name.

Infinite-Dimensional Results for Convex Sets

The first infinite-dimensional minimax theorem was
proved in 1952 by K. Fan ([1]), who generalized Theo-
rem 2 to the case when X and Y are compact, convex
subsets of infinite-dimensional locally convex spaces,
and the quasiconcave and quasiconvex conditions are
somewhat relaxed. The result in this general line that
has the simplest statement is that of M. Sion, who
proved the following ([33]):
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Theorem 3 (1958) Let X be a convex subset of a lin-
ear topological space, Y be a compact convex subset of
a linear topological space, and f : X × Y ! R be upper
semicontinuous on X and lower semicontinuous on Y.
Suppose that f is quasiconcave on X and quasiconvex on
Y. Then

min
Y

sup
X

f D sup
X

min
Y

f :

When we say that f is ‘upper semicontinuous on X’ and
‘lower semicontinuous on Y ’ we mean that, for all y 2
Y , the map x 7�! f (x, y) is upper semicontinuous and,
for all x 2X, the map y 7�! f (x, y) is lower semicontinu-
ous. The importance of Sion’s weakening of continuity
to semicontinuity was that it indicated that many kinds
of minimax problems have equivalent formulations in
terms of subsets of X and Y , and led to Fan’s 1972
work ([4]) on sets with convex sections and minimax
inequalities, which has since found many applications
in economic theory. Like Theorem 2, all these result re-
lied ultimately on Brouwer’s fixed point theorem (or
the related Knaster–Kuratowski–Mazurkiewicz lemma
(KKM lemma) on closed subsets of a finite-dimensional
simplex).

Functional-Analytic Minimax Theorems

The first person to take minimax theorems out of the
context of convex subsets of vector spaces, and their
proofs (other than that of the matrix case discussed in
Theorem 1) out of the context of fixed point theorems
was Fan in 1953 ([2]). We present here a generalization
of Fan’s result due to H. König ([15]). König’s proof
depended on the Mazur–Orlicz version of the Hahn–
Banach theorem (see Theorem 5 below).

Theorem 4 (1968) Let X be a nonempty set and Y be
a nonempty compact topological space. Let f : X × Y !
R be lower semicontinuous on Y. Suppose that:
� for all x1, x2 2 X, there exists x3 2 X such that

f (x3; �) �
f (x1; �)C f (x2; �)

2
on Y ;

� for all y1, y2 2 Y, there exists y3 2 Y such that

f (�; y3) �
f (�; y1)C f (�; y2)

2
on X:

Then

min
Y

sup
X

f D sup
X

min
Y

f :

We give here the statement of theMazur–Orlicz version
of the Hahn–Banach theorem, since it is a very useful
result and it not as well-known as it deserves to be.

Theorem 5 (Mazur–Orlicz theorem) Let S be a sub-
linear functional on a real vector space E, and C be
a nonempty convex subset of E. Then there exists a linear
functional L on E such that L� S on E and infCL = infCS.

See [16,22] and [23] for applications of the Mazur–
Orlicz theorem and the related ‘sandwich theorem’ to
measure theory, Hardy algebra theory and the theory
of flows in infinite networks.

The kind of minimax theorem discussed in this sec-
tion (where X is not topologized) has turned out to be
extremely useful in functional analysis, in particular in
convex analysis and also in the theory of monotone op-
erators on a Banach space. (See [32] for more details of
these kinds of applications.)

Minimax Theorems that Depend
on Connectedness

It was believed for some time that proofs of minimax
theorems required either the fixed point machinery of
algebraic topology, or the functional-analytic machin-
ery of convexity. However, in 1959, W.-T. Wu proved
the first minimax theorem in which the conditions of
convexity were totally replaced by conditions related
to connectedness. This line of research was continued
by H. Tuy, L.L. Stachó, M.A. Geraghty with B.-L. Lin,
and J. Kindler with R. Trost, whose results were all sub-
sumed by a family of general topological minimax the-
orem established by König in [17]. Here is a typical re-
sult from [17]. In order to simplify the statements of
this and some of our later results, we shall write f � :=
supX infYf. f � is the ‘lower value’ of f . If � 2 R, V � Y
and W � X, we write GT(�, V) :=

T
y 2 V GT(�, y) and

LE(W, �) :=
T

x 2W LE(x, �).

Theorem 6 (1992) Let X be a connected topological
space, Y be a compact topological space, and f : X × Y
! R be upper semicontinuous on X and lower semicon-
tinuous on Y. Let � be a nonempty subset of (f �, 1)
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such that inf� = f � and suppose that, for all � 2�, for
all nonempty subsets V of Y, and for all nonempty finite
subsets W of X,

GT(�;V ) is connected in X;

and

LE(W; �) is connected in Y :

Then

min
Y

sup
X

f D sup
X

min
Y

f :

MixedMinimax Theorems

In [34], F. Terkelsen proved the first mixed minimax
theorem. We describe Terkelsen’s result as ‘mixed’ since
one of the conditions in it is taken fromTheorem 4, and
the other from Theorem 6:

Theorem 7 (1972) Let X be a nonempty set and Y be
a nonempty compact topological space. Let f : X × Y !
R be lower semicontinuous on Y. Suppose that,
� for all x1, x2 2 X there exists x3 2 X such that

f (x3; �) �
f (x1; �)C f (x2; �)

2
on Y :

Suppose also that, for all � 2 R and, for all nonempty
finite subsets W of X,

LE(W; �) is connected in Y :

Then

min
Y

sup
X

f D sup
X

min
Y

f :

AMetaminimax Theorem

It was believed for some time that Brouwer’s fixed point
theorem or the Knaster–Kuratowski–Mazurkiewicz
lemma was required to order to prove Sion’s theorem,
Theorem 3. However, in 1966, M.A. Ghouila-Houri
([7]) proved Theorem 3 using a simple combinato-
rial property of convex sets in finite-dimensional space.
This was probably the first indication of the breakdown
of the classification of minimax theorems as either of
‘topological’ or ‘functional-analytic’ type. Further indi-

cation of this breakdown was provided by Terkelsen’s
result, Theorem 7, and the subsequent 1982 results of I.
Joó and Stachó ([9]), the 1985 and 1986 results of Ger-
aghty and Lin ([5] and [6]), and the 1989 results of H.
Komiya ([18]).

Kindler ([11]) was the first to realize (in 1990) that
some abstract concept akin to connectedness might be
involved in minimax theorems, even when the topolog-
ical condition of connectedness was not explicitly as-
sumed. This idea was pursued by Simons with the in-
troduction in 1992 of the concept of pseudoconnected-
ness, which we will now describe. We say that sets H0

and H1 are joined by a set H if

H � H0 [ H1; H \ H0 ¤ ;

and

H \ H1 ¤ ;:

We say that a family H of sets is pseudoconnected if

H0;H1;H 2H and H0 and H1 joined by H

+

H0 \ H1 ¤ ;:

Any family of closed connected subsets of a topological
space is pseudoconnected. So also is any family of open
connected subsets. However, pseudoconnectedness can
be defined in the absence of any topological structure
and, as we shall see in Theorem 8, is closely related to
minimax theorems. Theorem 8 is the improvement of
the result of [29] due to König (see [30]). We shall say
that a subset W of X is good if
� W is finite; and
� for all x 2 X, LE(x, f �) \ LE(W, f �) 6D ;.

Theorem 8 (1995) Let Y be a topological space, and�
be a nonempty subset of R such that inf� = f �. Suppose
that, for all � 2� and for all good subsets W of X,
� for all x 2 X, LE(x, �) is closed and compact; {LE(x,
�) \ LE(W, �)}x 2 X is pseudoconnected; and

� for all x0, x1 2 X, there exists x 2 X such that LE(x0,
�) and LE(x1, �) are joined by LE(x, �) \ LE(W, �).

Then

min
Y

sup
X

f D sup
X

min
Y

f :
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Theorem 8 is proved by induction on the cardinality
of the good subsets of W. Given the obvious topolog-
ical motivation behind the concept of pseudoconnect-
edness, it is hardly surprising that Theorem 8 implies
Theorem 6. What is more unexpected is that Theo-
rem 8 implies Theorems 4 and 7 also. We prefer to
describe Theorem 8 as a metaminimax theorem rather
than a minimax theorem, since it is frequently harder
to prove that the conditions of Theorem 8 are satisfied
in any particular case that it is to prove Theorem 8 it-
self. So Theorem 8 is really a device for obtaining min-
imax theorems rather than a minimax theorem in its
own right.

More recent work by Kindler ([12,13] and [14]) on
abstract intersection theorems has been at the interface
between minimax theory and abstract set theory.

Minimax Theorems andWeak Compactness

There are close connections between minimax theo-
rems and weak compactness. The following ‘converse
minimax theorem’ was proved by Simons in [25]; this
result also shows that there are limitations on the ex-
tent to which one can totally remove the assumption of
compactness from minimax theorems.

Theorem 9 (1971) Suppose that X is a nonempty
bounded, convex, complete subset of a locally convex
space E with dual space E�, and

inf
y2Y

sup
x2X
hx; yi D sup

x2X
inf
y2Y
hx; yi

whenever Y is a nonempty convex, equicontinuous, sub-
set of E�. Then X is weakly compact.

No compactness is assumed in the following, much
harder, result (see [26]):

Theorem 10 (1972) If X is a nonempty bounded, con-
vex subset of a locally convex space E such that every el-
ement of the dual space E� attains its supremum on X,
and Y is any nonempty convex equicontinuous subset of
E�, then

inf
y2Y

sup
x2X
hx; yi D sup

x2X
inf
y2Y
hx; yi :

If one now combines the results of Theorems 9 and
10, one can obtain a proof of the ‘sup theorem’ of R.C.

James, one of the most beautiful results in functional
analysis:

Theorem 11 (James sup theorem) If C is a nonempty
bounded closed convex subset of E, then C is w(E, E�)-
compact if and only if, for all x� 2 E�, there exists x 2 C
such that hx, x�i = maxCx�.

James’s theorem is not easy - the standard proof can be
found in the paper [24] by J.D. Pryce.

See [31] for more details of the connections between
minimax theorems and weak compactness.

Minimax Inequalities for Two orMore Functions

Motivated by Nash equilibrium and the theory of non-
cooperative games, Fan generalized Theorem 2 to the
case of more than one function. In particular, he proved
in [3] the following two-function minimax inequality
(since the compactness of X is not needed, this result
can in fact be strengthened to include Sion’s theorem,
Theorem 3, by taking g = f ):

Theorem 12 (1964) Let X and Y be nonempty com-
pact, convex subsets of topological vector spaces and f , g:
X × Y ! R. Suppose that f is lower semicontinuous on
Y and quasiconcave on X, g is upper semicontinuous on
X and quasiconvex on Y, and

f � g on X � Y :

Then

min
Y

sup
X

f � sup
X

inf
Y

g:

Fan (unpublished) and Simons (see [27]) generalized
König’s theorem, Theorem 4, with the following two-
function minimax inequality:

Theorem 13 (1981) Let X be a nonempty set, Y be
a compact topological space and f , g: X × Y ! R. Sup-
pose that f is lower semicontinuous on Y, and
� for all y1, y2 2 Y there exists y3 2 Y such that

f (�; y3) �
f (�; y1)C f (�; y2)

2
on X;
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� for all x1, x2 2 X there exists x3 2 X such that

g(x3; �) �
g(x1; �)C g(x2; �)

2
on Y ;

and
� f � g on X × Y.
Then

min
Y

sup
X

f � sup
X

inf
Y

g:

Theorems 12 and 13 both unify the theory of mini-
max theorems and the theory of variational inequali-
ties. The curious feature about these two results is that
they have ‘opposite geometric pictures’. This question
is discussed in [27] and [28]. The relationship between
Theorem 12 and Brouwer’s fixed point theorem is quite
interesting. As we have already pointed out, Sion’s the-
orem, Theorem 3, can be proved in an elementary fash-
ion without recourse to fixed point related concepts.
On the other hand, Theorem 12 can, in fact, be used
to prove Tychonoff’s fixed point theorem, which is itself
a generalization of Brouwer’s fixed point theorem. (See
[3] for more details of this.)

A number of authors have provedminimax inequal-
ities for more than two functions. See [31] for more de-
tails of these results.

Coincidence Theorems

A coincidence theorem is a theorem that asserts that if
S: X ! 2Y and T: Y ! 2X have nonempty values and
satisfy certain other conditions, then there exist x0 2 X
and y0 2 Y such that y0 2 Sx0 and x0 2 Ty0. The con-
nection with minimax theorems is as follows: Suppose
that infY supX f 6D supX infYf . Then there exists � 2 R
such that

sup
X

inf
Y

f < � < inf
Y
sup
X

f :

Hence,
� for all x 2 X there exists y 2 Y such that f (x, y) < �;

and
� for all y 2 Y there exists x 2 X such that f (x, y) > �.
Define S: X! 2Y and T: Y! 2X by

Sx :D fy 2 Y : f (x; y) < �g ¤ ;

and

Tx :D fx 2 X : f (x; y) > �g ¤ ;:

If S and T were to satisfy a coincidence theorem, then
we would have x0 2 X and y0 2 Y such that

f (x0; y0) < � and f (x0; y0) > �;

which is clearly impossible. Thus this coincidence the-
orem would imply that

inf
Y
sup
X

f D sup
X

inf
Y

f :

The coincidence theorems known in algebraic topology
consequently give rise to corresponding minimax theo-
rems. There is a very extensive literature about coinci-
dence theorems. See [31] for more details about this.
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The minimum concave transportation problem MCTP
concerns the least cost method of carrying flow on a bi-
partite network in which the marginal cost for an arc is
a nonincreasing function of the flow on that arc. A bi-
partite network contains source nodes and sink nodes,
but no transshipment (i. e., intermediate) nodes. The
MCTP can be formulated as

min
X

(i; j)2A

�i j(xi j) (1)

subject to:
X
j2N

xi j D si ; 8i 2 M; (2)

X
i2M

xi j D dj; 8 j 2 N; (3)

xi j � 0; 8(i; j) 2 A; (4)
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where M is the set of source nodes; N is the set of sink
nodes; si is the supply at source node i, dj is the demand
at sink node j; A = {(i, j) : i 2 M, j 2 N} is the (di-
rected) arc set; xij is the flow carried on arc (i, j); and � ij

(xij) is the concave cost function for arc (i, j). Objective
function (1) minimizes total costs; constraints (2) bal-
ance flow at the source nodes; and constraints (3) bal-
ance flow at the sink nodes. If

P
i 2M si is less (greater)

than
P

j 2 N dj, then a dummy source (sink) node can
be added to setM (N).

MCTPs arise naturally in distribution problems in-
volving shipments sent directly from supply points to
demand points in which the transportation costs ex-
hibit economies of scale [21]. However, the MCTP is
not limited to this class of problems. Specifically, any
network flow problem with arc cost functions that are
not concave can be converted to a network flow prob-
lem on an expanded network whose arc cost functions
are all concave [16]. Then, the expanded network can
be converted to a bipartite network by replacing each
transshipment node with a source node and a sink
node. Arc flow capacities can be removed by adding
additional source nodes, one for each capacitated arc
[19,23].

The fixed charge transportation problem FCTP is
a type of MCTP in which the cost function � ij (xij) for
each arc (i, j) 2 A is of the form

�i j(xi j) D

(
0 if xi j D 0;
fi j C gi j � xi j if xi j > 0;

(5)

where f ij and gij are coefficients with f ij � 0. FCTPs are
commonly used to model network flow problems in-
volving setup costs [9]. Furthermore, a variety of com-
binatorial problems can be converted to FCTPs. For in-
stance, consider the 0–1 knapsack problem KP. The KP
is formulated as

max
nX

kD1

ck � yk (6)

subject to:
nX

kD1

ak � yk � b; (7)

yk 2 f0; 1g; for k D 1; : : : ; n; (8)

with ak � 0 and ck � 0 for k = 1, . . . , n. The KP can
be converted to a FCTP with two source nodes and n +

1 sink nodes. Define an + 1 = b and cn + 1 = 0. Then, the
network is specified asM = {1, 2}, N = {1, . . . , n + 1}, s1
= b, s2 =

Pn
kD1 ak, and dj = aj for j = 1, . . . , n + 1; and

the cost function is of the form of (5) where, for each
arc (i, j) 2 A, the coefficients f ij and gij are given by

fi j D

8̂
<
:̂

nX
kD1

ck if j D 1; : : : ; n;

0 if j D nC 1;
(9)

gi j D

(
�

c j
a j

if i D 1;

0 if i D 2:
(10)

For j = 1, . . . , n sink node j has two incoming arcs, ex-
actly one of which will have nonzero flow in the optimal
solution to the FCTP. If x�1 j > 0 in the FCTP, then y�j =
1 in the KP. If x�2 j > 0 in the FCTP, then y�j = 0 in the
KP.

One consequence of this result is that any integer
programming problem with integer coefficients can (in
principle) be formulated and solved as a FCTP by first
converting the integer program to a KP [10].

Exact solution methods for the MCTP are pre-
dominately branch and bound enumeration procedures
[2,3,4,6,8,11,12,15]. Binary partitioning is used for the
FCTP; and interval partitioning is used for the MCTP
with arbitrary concave arc cost functions. Finite con-
vergence of themethod was shown by R.M. Soland [22].
The convex envelope of the cost function � ij (xij) is
an affine function. Hence, a subproblem in the branch
and bound procedure can be solved efficiently as a lin-
ear transportation problem (LTP) [1]. Fathoming tech-
niques (such as ‘up and down penalties’ and ‘capacity
improvement’) based on post-optimality analysis of the
LTP facilitate the branch and bound procedure for the
MCTP [2,3,18,20]. The LTP is also used in approximate
solution methods for the MCTP which rely on succes-
sive linearizations of the concave cost function, � ij (xij)
[5,13,14].

Test problems for the MCTP are given in
[7,8,12,17,20].
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The minimum cost flow problem seeks a least cost ship-
ment of a commodity through a network to satisfy de-
mands at certain nodes by available supplies at other
nodes. This problem has many, varied applications: the
distribution of a product from manufacturing plants to
warehouses, or fromwarehouses to retailers; the flow of
raw material and intermediate goods through various
machining stations in a production line; the routing of
automobiles through an urban street network; and the
routing of calls through the telephone system. The min-
imum cost flow problem also has many less direct appli-
cations. In this article, we briefly introduce the theory,
algorithms and applications of the minimum cost flow
problem. [1] contains much additional material on this
topic.

Let G = (N,A) be a directed network defined by a set
N of n nodes and a set A of m directed arcs. Each arc
(i, j) 2 A has an associated cost cij that denotes the cost
per unit flow on that arc. We assume that the flow cost
varies linearly with the amount of flow. Each arc (i, j) 2
A has an associated capacity uij denoting the maximum
amount that can flow on this arc, and a lower bound
lij that denotes the minimum amount that must flow
on the arc. We assume that the capacity and flow lower
bound for each arc (i, j) are integers. We associate with
each node i 2 N an integer b(i) representing its sup-
ply/demand. If b(i) > 0, node i is a supply node; if b(i)
< 0, then node i is a demand node with a demand of �
b(i); and if b(i) = 0, then node i is a transshipment node.
We assume that

P
i 2 N b(i) = 0. The decision variables

xij are arc flows defined for each arc (i, j) 2 A.
The minimum cost flow problem is an optimization

model formulated as follows:

Minimize
X

(i; j)2A

ci jxi j (1)

subject to

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji D b(i);

for all i 2 N; (2)

li j � xi j � ui j; for all (i; j) 2 A: (3)

We refer to the constraints (2) as the mass balance con-
straints. For a fixed node i, the first term in the con-
straint (2) represents the total outflow of node i and the
second term represents the total inflow of node i. The
mass balance constraints state that outflow minus in-
flow must equal the supply/demand of each node. The
flow must also satisfy the lower bound and capacity
constraints (3), which we refer to as flow bound con-
straints.

This article is organized as follows. To help in un-
derstanding the applicability of the minimum cost flow
problem, we begin in Section 2 by describing several
applications. In Section 3, we present preliminary ma-
terial needed in the subsequent sections. We next dis-
cuss algorithms for the minimum cost flow problem,
describing the cycle-canceling algorithm in Section 4
and the successive shortest path algorithm in Section 5.
The cycle-canceling algorithm identifies negative cost
cycles in the network and augments flows along them.
The successive shortest path algorithm augments flow
along shortest cost augmenting paths from the supply
nodes to the demand nodes. In Section 6, we describe
the network simplex algorithm.

Applications

Minimum cost flow problems arise in almost all in-
dustries, including agriculture, communications, de-
fense, education, energy, health care, manufacturing,
medicine, retailing, and transportation. Indeed, mini-
mum cost flow problems are pervasive in practice. In
this section, by considering a few selected applications
that arise in distribution systems planning, capacity
planning, and vehicle routing, we give a passing glimpse
of these applications.

Distribution Problems

A large class of network flow problems center around
distribution applications. One core model is often de-
scribed in terms of shipments from plants to ware-
houses (or, alternatively, from warehouses to retailers).
Suppose a firm has p plants with known supplies and q
warehouses with known demands. It wishes to identify
a flow that satisfies the demands at the warehouses from
the available supplies at the plants and that minimizes
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its shipping costs. This problem is a well-known spe-
cial case of the minimum cost flow problem, known as
the transportation problem. We next describe in more
detail a slight generalization of this model that also in-
corporates manufacturing costs at the plants.

A car manufacturer has several manufacturing
plants and produces several car models at each plant
that it then ships to geographically dispersed retail cen-
ters throughout the country. Each retail center requests
a specific number of cars of each model. The firm must
determine the production plan of each model at each
plant and a shipping pattern that satisfies the demand
of each retail center while minimizing the overall cost
of production and transportation.

We describe this formulation through an example.
Figure 1 illustrates a situation with two manufacturing
plants, two retailers, and three car models. This model
has four types of nodes:
i) plant nodes, representing various plants;
ii) plant/model nodes, corresponding to each model

made at a plant;
iii) retailer/model nodes, corresponding to the models

required by each retailer; and
iv) retailer nodes corresponding to each retailer.
The network contains three types of arcs:
i) production arcs;
ii) transportation arcs; and
iii) demand arcs.
The production arcs connect a plant node to a plant/
model node; the cost of this arc is the cost of produc-
ing the model at that plant. We might place lower and
upper bounds on production arcs to control for the
minimum and maximum production of each particu-
lar car model at the plants. Transportation arcs con-
nect plant/model nodes to retailer/model nodes; the
cost of any such arc is the total cost of shipping one
car from the manufacturing plant to the retail cen-
ter. The transportation arcs might have lower or upper
bounds imposed upon their flows to model contractual
agreements with shippers or capacities imposed upon
any distribution channel. Finally, demand arcs connect
retailer/model nodes to the retailer nodes. These arcs
have zero costs and positive lower bounds that equal
the demand of that model at that retail center.

The production and shipping schedules for the au-
tomobile company correspond in a one-to-one fashion
with the feasible flows in this network model. Conse-

quently, a minimum cost flow provides an optimal pro-
duction and shipping schedule.

Airplane Hopping Problem

A small commuter airline uses a plane, with a capacity
to carry at most p passengers, on a ‘hopping flight’ as
shown in Fig. 2a). The hopping flight visits the cities
1, . . . , n, in a fixed sequence. The plane can pick up
passengers at any node and drop them off at any other
node. Let bij denote the number of passengers available
at node i who want to go to node j, and let f ij denote
the fare per passenger from node i to node j. The airline
would like to determine the number of passengers that
the plane should carry between the various origins to
destinations in order to maximize the total fare per trip
while never exceeding the plane’s capacity.

Figure 2b) shows a minimum cost flow formulation
of this hopping plane flight problem. The network con-
tains data for only those arcs with nonzero costs and
with finite capacities: any arc listed without an associ-
ated cost has a zero cost; any arc listed without an as-
sociated capacity has an infinite capacity. Consider, for
example, node 1. Three types of passengers are avail-
able at node 1: those whose destination is node 2, node
3 or node 4. We represent these three types of passen-
gers in a new derived network by the nodes 1 – 2, 1 –
3 and 1 – 4 with supplies b12, b13 and b14. A passenger
available at any such node, say 1 – 3, could board the
plane at its origin node represented by flowing through
the arc (1 – 3, 1) and incurring a cost of � f 13 units (or
profit of f 13 units). Or, the passenger might never board
the plane, which we represent by the flow through the
arc (1 – 3, 3). It is easy to establish a one-to-one corre-
spondence between feasible flows in Fig. 2b) and feasi-
ble loading of the plane with passengers. Consequently,
a minimum cost flow in Fig. 2b) will prescribe a most
profitable loading of the plane.

Directed Chinese Postman Problem

The directed Chinese postman problem is a generic rout-
ing problem that can be stated as follows. In a directed
network G = (N, A) in which each arc (i, j) has an as-
sociated cost cij, we wish to identify a walk of mini-
mum cost that starts at some node (the post office), vis-
its each arc of the network at least once, and returns
to the starting point (see the next Section for the def-
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Minimum Cost Flow Problem, Figure 1
Formulating the production-distribution problem

inition of a walk). This problem has become known as
the Chinese postman problem because a Chinese math-
ematician, K. Mei-Ko, first discussed it. The Chinese
postman problem arises in other settings as well; for in-
stance, patrolling streets by police, routing street sweep-
ers and household refuse collection vehicles, fuel oil de-
livery to households, and spraying roads with sand dur-
ing snowstorms. The directed Chinese postman prob-
lem assumes that all arcs are directed, that is, the postal
carrier can traverse an arc in only one direction (like
one-way streets).

In the directed Chinese postman problem, we are
interested in a closed (directed) walk that traverses each
arc of the network at least once. The network might not
contain any such walk. It is easy to show that a net-
work contains a desired walk if and only if the net-

work is strongly connected, that is, every node in the net-
work is reachable from every other node via a directed
path. Simple graph search algorithms are able to deter-
mine whether the network is strongly connected, and
we shall therefore assume that the network is strongly
connected.

In an optimal walk, a postal carrier might traverse
arcs more than once. The minimum length walk min-
imizes the sum of lengths of the repeated arcs. Let xij
denote the number of times the postal carrier traverses
arc (i, j) in a walk. Any carrier walk must satisfy the fol-
lowing conditions:

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji D 0 for all i 2 N; (4)

xi j � 1 for all (i; j) 2 A: (5)
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Minimum Cost Flow Problem, Figure 2
Formulation of the hopping plane flight problem as aminimum cost flow problem

The constraints (4) state that the carrier enters
a node the same number of times that he or she leaves
it. The constraints (5) state that the carrier must visit
each arc at least once. Any solution x satisfying the sys-
tem (4)–(5) defines a carrier’s walk. We can construct
a walk in the following manner. Given a flow xij, we re-
place each arc (i, j) with xij copies of the arc, each arc
carrying a unit flow. In the resulting network, say G0 =
(N, A0), each node has the same number of outgoing
arcs as it has the incoming arcs. It is possible to decom-
pose this network into at mostm/2 arc-disjoint directed
cycles (by walking along an arc (i, j) from some node i
with xij > 0, leaving an node each time we enter it until
we repeat a node). We can connect these cycles together
to form a closed walk of the carrier.

The preceding discussion shows that the solution
x defined by a feasible walk for the carrier satisfies
conditions (4)–(5), and, conversely, every feasible so-
lution of system (4)–(5) defines a walk of the postman.
The length of a walk defined by the solution x equalsP

(i, j) 2 A cijxij. This problem is an instance of the mini-
mum cost flow problem.

Preliminaries

In this Section, we discuss some preliminary material
required in the following sections.

Assumptions

We consider the minimum cost flow problem subject to
the following six assumptions:
1) lij = 0 for each (i, j) 2 A;
2) all data (cost, supply/demand, and capacity) are in-

tegral;
3) all arc costs are nonnegative;
4) for any pair of nodes i and j, the network does not

contain both the arcs (i, j) and (j, i);
5) the minimum cost flow problem has a feasible solu-

tion; and
6) the network contains a directed path of sufficiently

large capacity between every pair of nodes.
It is possible to show that none of these assumptions,
except 2), restricts the generality of our development.
We impose them just to simply our discussion.
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Graph Notation

We use standard graph notation. A directed graph G =
(N, A) consists of a set N of nodes and a set A of arcs.
A directed arc (i, j) has two endpoints, i and j. An arc (i,
j) is incident to nodes i and j. The arc (i, j) is an outgoing
arc of node i and an incoming arc of node j. A walk in
a directed graph G = (N, A) is a sequence of nodes and
arcs i1, a1, i2, a2, . . . , ir satisfying the property that for all
1 � k� r� 1, either ak = (ik, ik + 1) 2 A or ak = (ik + 1, ik)
2 A. We sometimes refer to a walk as a sequence of arcs
(or nodes) without any explicit mention of the nodes
(or arcs). A directed walk is an oriented version of the
walk in the sense that for any two consecutive nodes
ik and ik + 1 on the walk, ak = (ik, ik + 1) 2 A. A path is
a walk without any repetition of nodes, and a directed
path is a directed walk without any repetition of nodes.
A cycle is a path i1, i2, . . . , ir together with the arc (ir,
i1) or (i1, ir). A directed cycle is a directed path i1, i2,
. . . , ir together with the arc (ir, i1). A spanning tree of
a directed graph G is a subgraph G0 = (N, A0) with A0

� A that is connected (that is, contains a path between
every pair of nodes) and contains no cycle.

Residual Network

The algorithms described in this article rely on the con-
cept of a residual network G(x) corresponding to a flow
x. For each arc (i, j) 2 A, the residual network contains
two arcs (i, j) and (j, i). The arc (i, j) has cost cij and
residual capacity rij = uij � xij, and the arc (j, i) has cost
cji = � cij and residual capacity rji = xij. The residual
network consists of arcs with positive residual capacity.
If (i, j) 2 A, then sending flow on arc (j, i) in G(x) cor-
responds to decreasing flow on arc (i, j); for this reason,
the cost of arc (j, i) is the negative of the cost of arc
(i, j). These conventions show how to determine the
residual network G(x) corresponding to any flow x. We
can also determine a flow x from the residual network
G(x) as follows. If rij > 0, then using the definition of
residual capacities and Assumption 4), we set xij = uij
� rij if (i, j) 2 A, and xji = rij otherwise. We define the
cost of a directed cycle W in the residual network G(x)
as
P

(i, j) 2W cij.

Order Notation

In our discussion, we will use some well-known nota-
tion from the field of complexity theory. We say that

an algorithm for a problem P is an O(n3) algorithm, or
has a worst-case complexity of O(n3), if it is possible to
solve any instance of P using a number of computa-
tions that is asymptotically bounded by some constant
times the term n3. We refer to an algorithm as a poly-
nomial time algorithm if its worst-case running time is
bounded by a polynomial function of the input size pa-
rameters, which for a minimum cost flow problem, are
n, m, log C (the number of bits needed to specify the
largest arc cost), and log U (the number of bits needed
to specify the largest arc capacity). A polynomial time
algorithm is either a strongly polynomial time algorithm
(when the complexity terms involves only n andm, but
not log C or log U), or is a weakly polynomial time al-
gorithm (when the complexity terms include log C or
log U or both). We say that an algorithm is a pseu-
dopolynomial time algorithm if its worst-case running
time is bounded by a polynomial function of n, m and
U. For example, an algorithmwith worst-case complex-
ity of O(nm2 log n) is a strongly polynomial time algo-
rithm, an algorithm with worst-case complexity O(nm2

log U) is a weakly polynomial time algorithm, and an
algorithm with worst-case complexity of O(n2 mU) is
a pseudopolynomial time algorithm.

Cycle-Canceling Algorithm

In this Section, we describe the cycle-canceling algo-
rithm, one of the more popular algorithms for solv-
ing the minimum cost flow problem. The algorithm
sends flows (called augmenting flows) along directed cy-
cles with negative cost (called negative cycles). The algo-
rithm rests upon the following negative cycle optimality
condition stated as follows.

Theorem 1 (Negative cycle optimality condition) A
feasible solution x� is an optimal solution of the mini-
mum cost flow problem if and only if the residual net-
work G(x�) contains no negative cost (directed) cycle.

It is easy to see the necessity of these conditions. If the
residual network G(x�) contains a negative cycle (that
is, a negative cost directed cycle), then by augmenting
positive flow along this cycle, we can decrease the cost
of the flow. Conversely, it is possible to show that if the
residual network G(x�) does not contain any negative
cost cycle, then x� must be an optimal flow.

The negative cycle optimality condition suggests
one simple algorithmic approach for solving the min-



MinimumCost Flow Problem M 2101

Minimum Cost Flow Problem, Figure 3
Cycle-canceling algorithm

imum cost flow problem, which we call the cycle-
canceling algorithm. This algorithmmaintains a feasible
solution and at every iteration improves the objective
function value. The algorithm first establishes a feasi-
ble flow x in the network by solving a related (and eas-
ily solved) problem known as the maximum flow prob-
lem. Then it iteratively finds negative cycles in the resid-
ual network and augments flows on these cycles. The
algorithm terminates when the residual network con-
tains no negative cost directed cycle. Theorem 1 implies
that when the algorithm terminates, it has found a min-
imum cost flow. Figure 3a specifies this generic version
of the cycle-canceling algorithm.

The numerical example shown in Fig. 4a) illustrates
the cycle-canceling algorithm. This figure shows the arc

Minimum Cost Flow Problem, Figure 4
Illustration of the cycle-canceling algorithm. a) the original network with flow x and arc costs; b) the residual network G(x); c)
the residual network after augmenting a unit of flow along the cycle 2 – 1 – 3 – 2; d) the residual network after augmenting a
unit of flow along the cycle 4 – 5 – 6 – 4

costs and the starting feasible flow in the network. Each
arc in the network has a capacity of 2 units. Figure 4b)
shows the residual network corresponding to the ini-
tial flow. We do not show the residual capacities of the
arcs in Fig. 4b) since they are implicit in the network
structure. If the residual network contains both arcs (i,
j) and (j, i) for any pair i and j of nodes, then both have
residual capacity equal to 1; and if the residual network
contains only one arc, then its capacity is 2 (this ob-
servation uses the fact that each arc capacity equals 2).
The residual network shown in Fig. 4b) contains a neg-
ative cycle 1 – 3 – 2 – 1 with cost – 3. By augmenting
a unit flow along this cycle, we obtain the residual net-
work shown in Fig. 4c). The residual network shown in
Fig. 4c) contains a negative cycle 6 – 4 – 5 – 6 with cost –
4.We augment unit flow along this cycle, producing the
residual network shown in Fig. 4d), which contain no
negative cycle. Given the optimal residual network, we
can determine optimal flow using the method described
in the previous Section.

A byproduct of the cycle-canceling algorithm is the
following important result.

Theorem 2 (Integrality property) If all arc capacities
and supply/demands of nodes are integer, then the mini-
mum cost flow problem always has an integer minimum
cost flow.
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This result follows from the fact that for problems
with integer arc capacities and integer node sup-
plies/demand, the cycle-canceling algorithm starts with
an integer solution (which is provided by the maxi-
mum flow algorithm used to obtain the initial feasible
flow) and at each iteration augments flow by an integral
amount.

What is the worst-case computational requirement
(complexity) of the cycle-canceling algorithm? The al-
gorithm must repeatedly identify negative cycles in the
residual network. We can identify a negative cycle in
the residual network in O(nm) time using a shortest
path label-correcting algorithm [1]. How many times
must the generic cycle-canceling algorithm perform
this computation? For the minimum cost flow prob-
lem, mCU is an upper bound on the initial flow cost
(since cij � C and xij � U for all (i, j) 2 A) and �mCU
is a lower bound on the optimal flow cost (since cij
� � C and xij � U for all (i, j) 2 A). Any iteration
of the cycle-canceling algorithm changes the objective
function value by an amount

P
(i, j) 2W ci, j) ı, which is

strictly negative. Since we have assumed that the prob-
lem has integral data, the algorithm terminates within
O(mCU) iterations and runs inO(nm2 CU) time, which
is a pseudopolynomial running time.

The generic version of the cycle-canceling algo-
rithm does not specify the order for selecting nega-
tive cycles from the network. Different rules for select-
ing negative cycles produce different versions of the al-
gorithm, each with different worst-case and theoreti-
cal behavior. Two versions of the cycle-canceling algo-
rithm are polynomial time implementations:
i) a version that augments flow in arc-disjoint negative

cycles with the maximum improvement [2]; and
ii) a version that augments flow along a negative cycle

with minimum mean cost, that is, the average cost
per arc in the cycle [4]).

Successive Shortest Path Algorithm

The cycle-canceling algorithm maintains feasibility of
the solution at every step and attempts to achieve op-
timality. In contrast, the successive shortest path algo-
rithm maintains optimality of the solution at every step
(that is, the condition that the residual network G(x)
contains no negative cost cycle) and strives to attain fea-
sibility. It maintains a solution x, called a pseudoflow

(see below), that is nonnegative and satisfies the arcs’
flow capacity restrictions, but violates the mass balance
constraints of the nodes. At each step, the algorithm se-
lects a node k with excess supply (i. e., supply not yet
sent to some demand node), a node l with unfulfilled
demand, and sends flow from node k to node l along
a shortest path in the residual network. The algorithm
terminates when the current solution satisfies all the
mass balance constraints.

To be more precise, a pseudoflow is a vector x sat-
isfying only the capacity and nonnegativity constraints;
it need not satisfy the mass balance constraints. For any
pseudoflow x, we define the imbalance of node i as

e(i) D b(i)C
X
f j;i)2Ag

x ji �
X
f(i; j)2Ag

xi j

for all i 2 N: (6)

If e(i) > 0 for some node i, then we refer to e(i) as the
excess of node i; if e(i) < 0, then we refer to � e(i) as the
node’s deficit. We refer to a node i with e(i) = 0 as bal-
anced. Let E and D denote the sets of excess and deficit
nodes in the network. Notice that

P
i 2 N e(i) =

P
i 2 N

b(i) = 0, which implies that
P

i 2 E e(i) = �
P

i 2 D e(i).
Consequently, if the network contains an excess node,
then it must also contain a deficit node. The residual
network corresponding to a pseudoflow is defined in
the same way that we define the residual network for
a flow. The successive shortest path algorithm uses the
following result.

Theorem 3 (Shortest augmenting path theorem)
Suppose a pseudoflow (or a flow) x satisfies the optimal-
ity conditions and we obtain x0 from x by sending flow
along a shortest path from node k to some other node l in
the residual network, then x0 also satisfies the optimality
conditions.

To prove this Theorem, we would show that if the resid-
ual network G(x) contain no negative cycle, then aug-
menting flow along any shortest path does not intro-
duce any negative cycle (we will not establish this result
in this discussion). Figure 5 gives a formal description
of the successive shortest path algorithm.

The numerical example shown in Fig. 6a) illustrates
the successive shortest path algorithm. The algorithm
starts with x = 0, and at this value of flow, the residual
network is identical to the starting network. Just as we
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BEGIN
x := 0;
e(i) = b(i) for all i 2 N ;
initialize the sets E and D;
WHILE E ¤ ; DO
BEGIN

select a node k 2 E and a node l 2 D;
identify a shortest path P in G(x) from
node k to node l ;
ı :=min[e(s);�e(t);minfri j : (i; j)2Pg];
augment ı units of flow along the path P and
update x and G(x);

END
END

Minimum Cost Flow Problem, Figure 5
Successive shortest path algorithm

observed in Fig. 4, whenever the residual network con-
tains both the arcs (i, j) and (j, i), the residual capacity of
each arc is 1. If the residual network contains only one
arc, (i, j) or (j, i), then its residual capacity is 2 units.
For this problem, E = {1} and D = {6}. In the residual
network shown in Fig. 6a), the shortest path from node
1 to node 6 is 1 – 2 – 4 – 6 with cost equal to 9. The
residual capacity of this path equals 2. Augmenting two
units of flow along this path produces the residual net-
work shown in Fig. 6b), and the next shortest path from

Minimum Cost Flow Problem, Figure 6
Illustration of the successive shortest path algorithm. a) the residual network corresponding to x = 0; b) the residual network
after augmenting 2 units of flow along the path 1 – 2 – 4 – 6; c) the residual network after augmenting 2 units of flow along
the path 1 – 3 – 5 – 6

node 1 to node 6 is 1 – 3 – 5 – 6 with cost equal to 10.
The residual capacity of this path is 2 and we augment
two unit of flow on it. At this point, the sets E = D = ;,
and the current solution solves the minimum cost flow
problem.

To show that the algorithm correctly solves the min-
imum cost flow problem, we argue as follows. The algo-
rithm starts with a flow x = 0 and the residual network
G(x) is identical to the original network. Assumption 3)
implies that all arc costs are nonnegative. Consequently,
the residual network G(x) contains no negative cycle
and so the flow vector x satisfies the negative cycle op-
timality conditions. Since the algorithm augments flow
along a shortest path from excess nodes to deficit nodes,
Theorem 3 implies that the pseudoflow maintained by
the algorithm always satisfies the optimality conditions.
Eventually, node excesses and deficits become zero; at
this point, the solution maintained by the algorithm is
an optimal flow.

What is the worst-case complexity of this algo-
rithm? In each iteration, the algorithm reduces the ex-
cess of some node. Consequently, if U is an upper
bound on the largest supply of any node, then the al-
gorithm would terminate in at most nU iterations. We
can determine a shortest path inG(x) inO(nm) time us-
ing a label-correcting shortest path algorithm [1]. Con-
sequently, the running time of the successive shortest
path algorithm is n2mU.
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Minimum Cost Flow Problem, Figure 7
Computing flows for a spanning tree

The successive shortest path algorithm requires
pseudopolynomial time to solve the minimum cost flow
problem since it is polynomial in n, m and the largest
supply U. This algorithm is, however, polynomial time
for some special cases of the minimum cost flow prob-
lem (such as the assignment problem for which U =
1). Researchers have developed weakly polynomial time
and strongly polynomial time versions of the successive
shortest path algorithm; some notable implementations
are due to [3] and [5].

Network Simplex Algorithm

The network simplex algorithm for solving the mini-
mum cost flow problem is an adaptation of the well-
known simplex method for general linear programs.
Because the minimum cost flow problem is a highly
structured linear programming problem, when applied
to it, the computations of the simplex method become
considerably streamlined. In fact, we need not explic-
itly maintain the matrix representation (known as the
simplex tableau) of the linear program and can per-
form all of the computations directly on the network.
Rather than presenting the network simplex algorithm
as a special case of the linear programming simplex
method, we will develop it as a special case of the cycle-
canceling algorithm described above. The primary ad-
vantage of our approach is that it permits the network
simplex algorithm to be understood without relying on
linear programming theory.

The network simplex algorithmmaintains solutions
called spanning tree solutions. A spanning tree solution
partitions the arc set A into three subsets:
i) T, the arcs in the spanning tree;
ii) L, the nontree arcs whose flows are restricted to

value zero;

iii) U, the nontree arcs whose flow values are restricted
in value to the arcs’ flow capacities.

We refer to the triple (T, L, U) as a spanning tree
structure. Each spanning tree structure (T, L, U) has
a unique solution that satisfies the mass balance con-
straints (2). To determine this solution, we set xij = 0
for all arcs (i, j) 2 L, xij = uij for all arcs (i, j) 2 U, and
then solve the mass balance equations (2) to determine
the flow values for arcs in T.

To show that the flows on spanning tree arcs are
unique, we use a numerical example. Consider the
spanning tree T shown in Fig. 7a). Assume that U = ',
that is, all nontree arcs are at their lower bounds. Con-
sider the leaf node 4 (a leaf node is a node with exactly
one arc incident to it). Node 4 has a supply of 5 units
and has only one arc (4, 2) incident to it. Consequently,
arc (4, 2) must carry 5 units of flow. So we set x42 = 5,
add 5 units to b(2) (because it receives 5 units of flow
sent from node 4), and delete arc (4, 2) from the tree.
We now have a tree with one fewer node and next se-
lect another leaf node, node 5 with the supply of 5 units
and the single arc (5, 2) incident to it. We set x52 = 5,
again add 5 units to b(2), and delete the arc (5, 2) from
the tree. Now node 2 becomes a leaf node withmodified
supply/demand of b(5) =�10, implying that node 5 has
an unfulfilled demand of 10 units. Node 2 has exactly
one incoming arc (1, 2) and to meet the demand of 10
units of node 2, we must send 10 units of flow on this
arc. We set x12 = 10, subtract 10 units from b(1) (since
node 1 sends 10 units), and delete the arc (1, 2) from
the tree. We repeat this process until we have identi-
fied flow on all arcs in the tree. Figure 7b) shows the
corresponding flow. Our discussion assumed that U is
empty. If U were nonempty, we would first set xij = uij,
add uij to b(j), and subtract uij from b(i) for each arc (i,
j) 2 U, and then apply the preceding method.
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Minimum Cost Flow Problem, Figure 8
Computing node potentials for a spanning tree

We say a spanning tree structure is feasible if its as-
sociated spanning tree solution satisfies all of the arcs’
flow bounds. We refer to a spanning tree structure as
optimal if its associated spanning tree solution is an op-
timal solution of the minimum cost flow problem. We
will now derive the optimality conditions for a span-
ning tree structure (T, L, U).

The network simplex algorithm augments flow
along negative cycles. To identify negative cycles
quickly, we use the concept of node potentials. We de-
fine node potentials (i) so that the reduced cost for
any arc in the spanning tree T is zero. That is, that is, c�i j
= cij � (i) +  (j) = 0 for each (i, j) 2 T. With the help
of an example, we show how to compute the vector 
of node potentials. Consider the spanning tree shown
in Fig. 8a) with arc costs as shown. The vector  has
n variables and must satisfy n � 1 equations, one for
each arc in the spanning tree. Therefore, we can assign
one potential value arbitrary. We assume that (1) = 0.
Consider arc (1, 2) incident to node 1. The condition
c�12 = c12 �  (1) +  (2) = 0 yields  (2) = � 5. We
next consider arcs incident to node 2. Using the con-
dition c�52 = c52 �  (5)+  (2) = 0, we see that  (5)
= � 3, and the condition c�32 = c32 �  (3) +  (2) =
0 shows that  (3) = � 2. We repeat this process until
we have identified potentials of all nodes in the tree T.
Figure 8b) shows the corresponding node potentials.

Consider any nontree arc (k, l). Adding this arc to
the tree T creates a unique cycle, which we denote as
Wkl. We refer to Wkl as the fundamental cycle induced
by the nontree arc (k, l). If (k, l) 2 L, then we define the
orientation of the fundamental cycle as in the direction
of (k, l), and if (k, l) 2 U, then we define the orienta-

tion opposite to that of (k, l). In other words, we de-
fine the orientation of the cycle in the direction of flow
change permitted by the arc (k, l). We let c(Wkl) denote
the change in the cost if we send one unit of flow on the
cycle Wkl along its orientation. (Notice that because of
flow bounds, we might not always be able to send flow
along the cycleWkl.) LetWkl denote the set of forward
arcs in Wkl (that is, those with the same orientation as
(k, l)), and let Wkl denote the set of backward arcs in
Wkl (that is, those with an opposite the orientation to
arc (k, l)). Then, if we send one unit of flow along Wkl,
then the flow on arcs in Wkl increases by one unit and
the flow on arcs in Wkl decreases by one unit. There-
fore,

c(Wkl ) D
X

(i; j)2Wkl

ci j �
X

(i; j)2Wkl

ci j:

Let c� (Wkl) denote the change in the reduced costs
if we send one unit of flow in the cycle Wkl along its
orientation, that is,

c� (Wkl ) D
X

(i; j)2Wkl

c�i j �
X

(i; j)2Wkl

c�i j:

It is easy to show that c� (Wkl) = c(Wkl). This result
follows from the fact that when we substitute c�k l = cij
�  (i) +  (j) and add the reduced costs around any
cycle, then the node potentials (i) cancel one another.
Next notice that the manner we defined node potentials
ensures that each arc in the fundamental cycle Wkl ex-
cept the arc (k, l) has zero reduced cost. Consequently,
if arc (k, l) 2 L, then

c(Wkl ) D c� (Wkl ) D c�k l ;
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and if arc (k, l) 2 U, then

c(Wkl ) D c�(Wkl ) D �c�k l :

This observation and the negative cycle optimality
condition (Theorem 1) implies that for a spanning tree
solution to be optimal, it must satisfy the following nec-
essary conditions:

c�k l � 0 for every arc (i; j) 2 L; (7)

c�k l � 0 for every arc (i; j) 2 U: (8)

It is possible to show that these conditions are also
sufficient for optimality; that is, if any spanning tree so-
lution satisfies the conditions (7)–(8), then it solves the
minimum cost flow problem.

We now have all the necessary ingredients to de-
scribe the network simplex algorithm. The algorithm
maintains a feasible spanning tree structure at each it-
eration, which it successively transforms it into an im-
proved spanning tree structure until the solution be-
comes optimal. The algorithm first obtains an initial
spanning tree structure. If an initial spanning tree struc-
ture is not easily available, then we could use the follow-
ing method to construct one: for each node i with b(i)
� 0, we connect node i to node 1 with an (artificial) arc
of sufficiently large cost and large capacity; and for each
node i with b(i) < 0, we connect node 1 to node i with
an (artificial) arc of sufficiently large cost and capacity.
These arcs define the initial tree T, all arcs in A define
the set L, andU = ;. Since these artificial arcs have large
costs, subsequent iterations will drive the flow on these
arcs to zero.

Given a spanning tree structure (T, L, U), we first
check whether it satisfies the optimality conditions (7)
and (8). If yes, we stop; otherwise, we select an arc (k, l)
2 L or (k, l) 2 U violating its optimality condition as an
entering arc to be added to the tree T, obtain the fun-
damental cycle Wkl induced by this arc, and augment
the maximum possible flow in the cycleWkl without vi-
olating the flow bounds of the tree arcs. At this value
of augmentation, the flow on some tree arc, say arc (p,
q), reaches its lower or upper bound; we select this arc
as an arc to leave the spanning tree T, adding it added
to L or U depending upon its flow value. We next add
arc (k, l) to T, giving us a new spanning tree structure.
We repeat this process until the spanning tree structure

BEGIN
determine an initial feasible tree structure
(T; L;U);
let x be the flow and let � be the corresponding
node potentials;
WHILE (some nontree arc violates its opti-
mality condition) DO
BEGIN

select an entering arc (k; l) violating the opti-
mality conditions;
add arc (k; l) to the spanning tree T, thus
forming a unique cycleWkl ;
augment the maximum possible flow ı in the
cycleWkl and
identify a leaving arc (p; q) that reaches its
lower or upper flow bound;
update the flow x, the spanning tree struc-
ture (T; L;U) and the potentials � ;

END;
END

Minimum Cost Flow Problem, Figure 9
The network simplex algorithm

satisfies the optimality conditions. Figure 9 specifies the
essential steps of the algorithm.

To illustrate the network simplex algorithm, we use
the numerical example shown in Fig. 10a). Figure 10b)
shows a feasible spanning tree solution for the problem.
For this solution, T = {(1, 2), (1, 3), (2, 4), (2, 5), (5, 6)},
L = {(2, 3), (5, 4)} and U = {(3, 5), (4, 6)}. We next com-
pute c�35 = 1. We introduce the arc (3, 5) into the tree,
creating a cycle. Since (3, 5) is at its upper bound, the
orientation of the cycle is opposite to that of (3, 5). The
arcs (1, 2) and (2, 5) are forward arcs in the cycle and
arcs (3, 5) and (1, 3) are backward arcs. The maximum
increase in flow permitted by the arcs (3, 5), (1, 3), (1,
2), and (2, 5) without violating their upper and lower
bounds is, respectively, 3, 3, 2, and 1 units. Thus, we
augment 1 unit of flow along the cycle. The augmenta-
tion increases the flow on arcs (1, 2) and (2, 5) by one
unit and decreases the flow on arcs (1, 3) and (3, 5) by
one unit. Arc (2, 5) reaches its upper bound and we se-
lect it as the leaving arc. We update the spanning tree
structure; Fig. 10c) shows the new spanning tree T and
the new node potentials. The sets L and U become L =
{(2, 3), (5, 4)} and U = {(2, 5), (4, 6)}. In the next iter-
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Minimum Cost Flow Problem, Figure 10
Numerical example for the network simplex algorithm

ation, we select arc (4, 6) since this arc violates the arc
optimality condition. We augment one unit flow along
the cycle 6 – 4 – 2 – 1 – 3 – 5 – 6 and arc (3, 5) leaves
the spanning tree. Figure 10d) shows the next spanning
tree and the updated node potentials. All nontree arcs
satisfy the optimality conditions and the algorithm ter-
minates with an optimal solution of the minimum cost
flow problem.

The network simplex algorithm can select any non-
tree arc that violates its optimality condition as an en-
tering arc. Many different rules, called pivot rules, are
possible for choosing the entering arc, and these rules
have different empirical and theoretical behavior. [1]
describes some popular pivot rules. We call the process
of moving from one spanning tree structure to another
as a pivot operation. By choosing the right data struc-
tures for representing the tree T, it is possible to per-
form a pivot operation in O(m) time.

To determine the number of iterations performed
by the network simplex algorithm, we distinguish two
cases. We refer to a pivot operation as nondegenerate
if it augments a positive amount of flow in the cycle
Wkl (that is, ı > 0), and degenerate otherwise (that is,
ı = 0). During a degenerate pivot, the cost of the span-
ning tree solution decreases by |c�k l |ı. When combined
with the integrality of data assumption (Assumption 2)

above), this result yields a pseudopolynomial bound on
the number of nondegenerate iterations. However, de-
generate pivots do not decrease the cost of flow and
so are difficult to bound. There are methods to bound
the number of degenerate pivots. Obtaining a polyno-
mial bound on the number of iterations remained an
open problem for quite some time; [6] suggested an
implementation of the network simplex algorithm that
runs in polynomial time. In any event, the empirical
performance of the network simplex algorithm is very
attractive. Empirically, it is one of the fastest known
algorithms for solving the minimum cost flow prob-
lem.

See also

� Auction Algorithms
� Communication Network Assignment Problem
� Directed Tree Networks
� Dynamic Traffic Networks
� Equilibrium Networks
� Evacuation Networks
� Generalized Networks
�Maximum Flow Problem
�Multicommodity Flow Problems
� Network Design Problems
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� Network Location: Covering Problems
� Nonconvex Network Flow Problems
� Nonoriented Multicommodity Flow Problems
� Piecewise Linear Network Flow Problems
� Shortest Path Tree Algorithms
� Steiner Tree Problems
� Stochastic Network Problems: Massively Parallel

Solution
� Survivable Networks
� Traffic Network Equilibrium
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The location-allocation problem may be stated in the
following general way: Given the location or distribu-
tion of a set of customers which could be probabilis-
tic and their associated demands for a given product or
service, determine the optimal locations for a number
of service facilities and the allocation of their products
or services to the costumers, so as to minimize total (ex-
pected) location and transportation costs. This problem
finds a variety of applications involving the location of
warehouses, distribution centers, service and produc-
tion facilities and emergency service facilities. In the
last section we are going to consider the development
of an offshore oil field as a real-world application of the
location-allocation problem. This problem involves the
location of the oil platforms and the allocation of the oil
wells to platforms.

It was shown in [25] that the joint location-
allocation problem isNP-hard even with all the demand
points located along a straight line. In the next sec-
tion alternative location-allocation models will be pre-
sented based on different objectives and the incorpo-
ration of consumer behavior, price elasticity and sys-
tem dynamics within the location-allocation decision
framework.

Location-allocation Models

In developing location-allocation models different ob-
jectives alternatives are examined. One possibility is to
follow the approach in [5], to minimize the number of
centers required to serve the population. This objective
is appropriate when the demand is exogenously fixed.
Amore general objective is to maximize demand by op-
timally locating the centers as proposed in [10]. The de-
mand maximization requires the incorporation of price
elasticity representing the dependence of the costumer
preference to the distance from the center. The cost of
establishing the centers can also be incorporated in the
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model as proposed in [13]. An alternative objective to-
wards the implementation of costumer preference to-
wards the nearest center is the minimization of an ag-
gregated weighted distance which is called the median
location-allocation problem.

The simplest type of location-allocation problem is
the Weber problem, as posed in [9], which involves lo-
cating a production center so as to minimize aggre-
gate weighted distance from the different raw mate-
rial sources. The extension of the Weber problem is
the p-median location-allocation problem, which in-
volves the optimal location of a set of p uncapaci-
tated centers to minimize the total weighted distance
between them and n demand locations. Here, each
source is assumed to have infinite capacity. In continu-
ous space, the p-median problem can be formulated as
follows:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min C D
nX

iD1

pX
jD1

Oi�i j ci j

s.t.
pX

jD1

�i j D 1; i D 1; : : : ; n;

�i j D 0; 1; i D 1; : : : ; n; j D 1; : : : ; p;

where Oi is the quantity demanded at location i whose
coordinates are (xi, yi); and �ij is the binary vari-
ables that is assigned the value of 1 if demand point
i is located to center j and zero otherwise. The above
formulation allocate the consumers to their nearest
center while ensuring that only one center will serve
each customer. This however, can lead to dispropor-
tionally sized facilities. In the more realistic situation
where the capacities of the facilities are limited to
supplies of s1, . . . , sn for i = 1, . . . , n facilities then
the location-allocation problem takes the following
form [24]:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min C D
nX

iD1

pX
jD1

wi jci j

s.t
pX

jD1

wi j D si ; i D 1; : : : ; n;

nX
iD1

wi j D dj ; j D 1; : : : ; p;

�i j D 0; 1; i D 1; : : : ; n; j D 1; : : : ; p;

where wij is the amount shipped from facility i located
at (xi, yi) to destination j. In the above formulations the
distance (or the generalized transport cost, which is as-
sumed to be proportional to distance) between the de-
mand point i and the supply point j is represented by
cij. The Euclidean metric:

ci j D
q
(xi � ˛ j)2 C (yi � ˇ j)2

or the rectilinear metric:

ci j D
ˇ̌
xi � ˛ j

ˇ̌
C
ˇ̌
yi � ˇ j

ˇ̌
:

The rectilinear metric is appropriate when the trans-
portation is occurring along a grid of city streets (Man-
hattan norm) or along the aisles of a floor shop [8].

The aforementioned location-allocation models are
based on the assumption that the consumers always
prefer the nearest center to obtain service. In real-
ity however, as reported in the literature from sev-
eral empirical studies [11] there exist several ser-
vices for which consumers choose their service fa-
cility center. The travel patterns of the consumers
for example can produce a variety of allocations
that differ from the nearest center rule. In order
to accommodate such behavior a spatial-interaction
model is incorporated within the uncapacitated p-
median location-allocation model in the following
manner:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
1
ˇ

X
j

Yj
X
i

Si j log(Si j � 1)

C
X
j

X
i

Yj Si j ci j

s.t.
X
j

YjSi j D Oi ; i D 1; : : : ; n;

X
j

Yj D p

Si j � Yj ; i D 1; : : : ; n; j D 1; : : : ; p;
Yj D 0; 1; j D 1; : : : ; p;

where the decision variables include Yj which takes the
value of one if the facility is located at J models. and
zero otherwise;

Si j D AiOiYj exp(�ˇci j)
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that defines the interaction of facility i and consumer j.

Ai D
1P

l Yl exp(�ˇci l )
; i D 1; : : : ;m;

that ensures that the sum of all outflows from the ori-
gin i add up to the amount of demand at that location;
ˇ is either calibrated to match some known interac-
tion data or is defined exogenously. The following re-
lationship holds between the original p-median model
and the spatial-interaction model as shown in [17]. The
value of the optimal objective function at the solution
of the p-median problem is given by:

X
i

X
j

Oi Xi j ci j;

where Xij allocates demand to the nearest of p avail-
able centers. Turning to spatial-interaction model, as
the impedance parameter ˇ increases the term:

Yj exp(�ˇci j)P
l Yl exp(�ˇci l )

of the Sij tends to Xij, where Xij = 1 if the travel time
from i to j is smaller that the travel time from i to
any other facility and zero otherwise. Therefore, the
Sij tends to OiXij and this model allocates the demand
to the nearest facility as the original p-median prob-
lem.

All the models mentioned above consider the static
location-allocation problem where all the activities take
place at one instance. These formulations are suffi-
cient if neither the level nor the location of demand
alters over time. An important factor however, in any
location-allocation problem is the dynamics of the sys-
tem involving demand changes over time. Particularly,
in the competitive environment, an optimal center lo-
cation could become undesirable as new competing
centers develop. Potential directions include the liter-
ature on decision making under uncertainty, [12]. A.J.
Scott [18] proposed a general framework for the inte-
gration of the spatial and discrete temporal dimensions
in the location-allocation models. He proposed a mod-
ification of the location-allocation so as to minimize an
aggregate weighted transport cost over T time periods,
during which time the number nt , level Oit and the lo-
cation (xit , yit) of the demand points change. If the lo-

cations were greatly different the center would be likely
to relocate at some time and costs of relocation are in-
cluded in the model. It was assumed that when a cen-
ter relocates it incurs a fixed cost, ˛. Based on these
ideas the formulation proposed for the uncapacitated
location-allocation problem has the following form:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min ˛1 C

n1X
i

Oi1ci j1

C

TX
t

 
˛�t C

ntX
iD1

Oit ci jt

!

s.t. �t D 0; 1; t D 2; : : : ; T;

where the subscript t refers to different time periods, ˛1
is the cost of establishing the center in the first time pe-
riod. The problem as formulated above is to locate in
the first period one center that takes into account fu-
ture variations. Extending the aspects of this model al-
lows the replacement of a truly dynamic model by a se-
ries of static problems as proposed in [3], thus outlining
a multilayer approach, where the objective is to sequen-
tially locate each period’s facility given the previous pe-
riod’s facility locations in order to minimize the present
period cost. This strategy is appropriate whenever the
period durations are sufficiently long or under uncer-
tainty regarding future data or decisions. An alterna-
tive approach proposed in [24] is a discounted present
worth strategy which is appropriate whenever the fore-
going conditions do not hold. In this case the facilities
are being located one per period and the decisions are
made in a rolling horizon framework.

Solution Approaches

For the uncapacitated location-allocation problem us-
ing Euclidean metric for the distances between each fa-
cility and the different demand points, R.F. Love and
H. Juel [15] showed that this problem is equivalent to
a concave minimization problem for which they used
several heuristic procedures. For the capacitated prob-
lems assuming that the costs are proportional to lqp us-
ing lp distances where p � 1 and q � 1 are integers,
M. Avriel [1] developed a geometric programming ap-
proach. H.D. Sherali and C.M. Shetty [22] proposed
a polar cutting plane algorithm for the case p = q =
1. For the case p = q = 2, Sherali and C.H. Tunc-
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bilek [23] proposed a branch and bound algorithm (cf.
� MINLP: Branch and bound methods; � MINLP:
Branch and bound global optimization algorithm) that
utilizes a specialized tight, linear programming repre-
sentation to calculate strong upper bounds via a La-
grangian relaxation scheme. They exploit the special
structure of the transportation constraints to derive
a partitioning scheme. Additional cut-set inequalities
are also incorporated to preserve partial solution.

For the uncapacitated location-allocation model us-
ing rectilinear distance metric Love and J.G. Morris
[16] have developed an exact two-stage algorithm. R.E.
Kuenne and R.M. Soland [14], have developed a branch
and bound algorithm based on a constructive assign-
ment of customers to sources. The capacitated problem
has been addressed in [19,21] and utilize the discrete
equivalence of the capacitated location-allocation prob-
lem. In particular, [8], and [26] showed that
a) the optimal values of xi and yi for each imust satisfy

xi = ˛j for some j and yi =ˇj for some j, whichmeans
that the rectilinear distance location problem always
has an optimal solution with the sources located at
the grid points of the vertical and horizontal lines
drawn through the existing customer locations; and

b) the optimal source locations lie in the convex hull of
the existing facility locations.

Based on these ideas and by denoting k = 1, . . . , K the
intersection grid points that also belong to the convex
hull of the existing facility locations, [21], introduced
the decision binary variables zik that take the value of
1 if source i is located at point k and zero otherwise.
This leads to the following discrete location-allocation
problem:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

iD1

pX
jD1

KX
kD1

ci jkwi jzik

s.t.
KX

kD1

zik D 1; i D 1; : : : ; n;

pX
jD1

wi j D si ; i D 1; : : : ; n;

nX
iD1

wi j D dj ; j D 1; : : : ; p;

wi j � 0; i D 1; : : : ; n; j D 1; : : : ; p;
zik D 0; 1; i D 1; : : : ; n;

where cijk = cij [|˛k � ˛j| + |ˇk � ˇj|]. The above
model corresponds to a mixed integer bilinear pro-
gramming problem. See [19] for a related version of
this discrete-site location-allocation problem involving
one-to-one assignment restriction and fixed charges.
See [20] for the solution of the problem as a bilinear
programming problem, since the binary variables z can
be treated as positive variables because of the problem
structure that preserves the binariness of z at optimal-
ity. However, in [21] it is proved that it is more useful
to exploit the binary nature of z variables for the effi-
cient solution of the above model. Before giving more
details of this proposed branch and bound based ap-
proach we should mention the heuristic approach pro-
posed in [4], which is very widely used. This so-called
alternating procedure exploited the fundamental con-
cepts of the location-allocation problem and simply
involves allocating demand to centers and relocating
centers until some convergence criterion is achieved.
For the uncapacitated p-median problem, the alternat-
ing procedure involves iterating through the following
equations:

x j D

Pn
iD1

Oi	i j x i
c i jPn

iD1
Oi	i j
c i j

;

y j D

Pn
iD1

Oi	i j y i
c i jPn

iD1
Oi	i j
c i j

;

which are derived from differentiating the objective
function with respect to xj and yj and setting the partial
derivatives to zero. The major drawback of this proce-
dure is that it does not guarantee global optimality. This
is in fact a concern because the spatial configuration of
the local and the global optimummay be very different.
As a rule, repeated runs using numerous starting values
should be undertaken, although there is no guarantee
that the repeatedly found solution would be the global
optimum. Note however that the procedure is general
to all different models of the location-allocation prob-
lem.

Returning to the approach proposed in [21] for the
case of rectilinear capacitated location-allocation prob-
lem, the following linear reformulation of the problem
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is used:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
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:

min
nX

iD1

pX
jD1

KX
kD1

ci jk Xi jk

s.t.
KX

kD1

Xi jk � wi j D 0; 8(i; j);

pX
jD1

Xi jk � si zik D 0; 8(i; k);

�Xi jk C ui jzik � 0; 8(i; j);
KX

kD1

zik D 1; 8i;

pX
jD1

wi j D si ; 8i;

nX
iD1

wi j D dj ; 8 j;

wi j � 0; 8(i; j);
zik D 0; 1; 8i;
Xi jk � 0; 8(i; j; k);

where uij =min{si, dj }. The above model corresponds to
a mixed integer linear programming problem for which
a special branch and bound algorithm is applied based
on the derivation of tight lower bounds via a suitable
Lagrangian dual formulation.

Briefly, for the location-allocation problems that
have embedded spatial-interaction equations dual-
based exact methods, [17], and heuristic approaches,
[2], have been developed.

Application: Development of Offshore Oil Fields

In this section a real world application of the
location-allocation problem is presented considering
the minimum-cost development of offshore oil fields,
[6]. The facilities to be located are the platforms and the
demands to be allocated are the oil wells. For the ini-
tial information about an oil field, locations are decided
upon the production wells which are specified by two
map coordinates and a depth coordinate. The drilling is
performed directionally from fixed platforms. The cost
of drilling depends on the length and angle of the well
from the platform. The platform cost depends on the
water depth and on the number of wells to be drilled
from the platform. Consequently for a large number of
wells (25 to 300) an optimization problem that arises is

to find the number, size and location of the platforms
and the allocation of wells to platforms so as to mini-
mize the sum of platform and drilling costs.

In order to formulate this problem the following in-
dices, parameters and variables are introduced. Let m
denote the number of wells and i the index of well,
n the number of platforms and j the index for plat-
form, zij are then the binary variables that represent
the allocation of the well i to platform j if it takes the
value of 1, otherwise it becomes 0, Sj the capacity of
the platform j representing the number of wells drilled
from this platform, (ai, bi) denote the location coor-
dinates of well i and (xj, yj) the location of platform j,
di j D

p
[(x j � ai)2 C (y j � bi )2] is the horizontal Eu-

clidean distance between well i and platform j, g(dij)
denotes the drilling cost function that depends on dis-
tance dij, P(Sj, xj, yj) is the platform cost which is a func-
tion of platform size Sj and its location. Based on this
notation the location-allocation problem can be formu-
lated as follows:8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
mX
iD1

nX
jD1

zi j g(di j)C
nX

jD1

P(Sj ; x j; y j)

s.t.
nX

jD1

zi j D 1; 8(i);

mX
iD1

zi j D S j ; 8 j;

zi j D 0; 1; 8(i; j);

where the first set of constraints guarantee that each
well is assigned to exactly one platform and the sec-
ond set guarantee that exactly Sj wells are assigned
to each platform. Note that n is fixed in the problem
and is usually small in the size of 3 to 5. The nature
of the problem depends upon the form of the cost of
the drilling function and the platform cost function.
The approach taken in [6] is the alternating location-
allocation method presented in the previous section.
For the specific problem the approach involves the fol-
lowing steps:
a) given fixed platform locations find a minimum cost

allocation of wells to platforms;
b) given fixed allocation of wells to platforms find the

minimum total cost location for each platform.
The procedure alternates between steps a) and b) un-
til convergence is achieved. The convergence criterion
is the following: From the solution of step a) a set of
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n subproblems are generated for each one of the plat-
forms, the solution of these problems result in the re-
location of the platforms. The iterations continue until
no changes are possible. As mentioned above, the so-
lution obtained from this algorithmic procedure is lo-
cally optimum in the sense that for a given assignment
of wells to platforms the solution cannot be improved
by changing locations and for given locations, the so-
lution cannot be improved by altering the assignment
of wells to platforms. The mathematical formulation of
problem a), the allocation subproblem is the following:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
mX
iD1

nX
jD1

zi j g(di j)C
nX

jD1

P(Sj)

s.t.
nX

jD1

zi j D 1; 8(i);

mX
iD1

zi j D Sj; 8 j;

zi j D 0; 1; 8(i; j);

note that the platform cost now depends only on Sj
since the location of the platforms are known. The so-
lution procedure for this problem depends on the form
of the platform cost P(Sj). Five different forms are dis-
cussed in [6]:
1) Single fixed cost with no capacity constraints: P(Sj)

= aj In this case the total cost for platforms is fixed
and the optimal allocation corresponds to the as-
signment of the wells to the closest platform.

2) Single fixed cost with capacity constraints: P(Sj) = aj
and capacity constraints are introduced as inequali-
ties

Pm
iD1 zij � Sj, 8j. In this case the problem cor-

responds to a linear programming model.
3) Linear platform cost: P(Sj) = aj + bj Sj By considering

the following transformation cij0 = cij + bj the prob-
lem takes the form of case 1).

4) Piecewise linear function. In this case the problem
has the structure of ‘transshipment problem’ which
can be solved network flow techniques.

5) Step function: P(Sj) =
PK j

kD1 r
k
j z

k
i j, where Kj are the

number of different size platforms available and rkj
is the cost of kth size of platform j. The problem
in this case is a mixed integer linear programming
problem.
The mathematical formulation for problem b), the

location problem, is the following. Assuming that Aj is

the set of indices for the wells assigned to platform j,
then zij = 1, for i 2 Aj, zij = 0 otherwise and the problem
for platform j takes the form:

min
mX
iD1

X
i2A j

g(di j)C P(x j; y j):

Note that the platform cost is a function of platform lo-
cation only since the size is assumed known. Since the
drilling cost function is convex, if the platform cost is
also convex then the problem corresponds to the min-
imization of a convex function that can be achieved
through a local minimization algorithm. Of course if
the platform cost is nonconvex then global optimal-
ity cannot be guaranteed and global optimization tech-
niques should be considered, [7].

Finally, M.D. Devine and W.G. Lesso, [6], applied
the aforementioned procedure to two test problems one
involving 60 wells and 7 platforms and a second one in-
volving 102 wells and 3 platforms. In both cases they
reported large economic savings in the field develop-
ment.
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Pooling and blending is inherent in many manufactur-
ing plants with limited tankage available to store the
intermediate streams produced by various processes.
Also, chemical products often need to be transported
as a mixture, either in a pipeline, a tank car or a tanker.
In each case, blended or pooled streams are then used
in further downstream processing. In modeling these
processes, it is necessary to model not only product

MINLP: Applications in Blending and Pooling Problems, Fig-
ure 1
General pooling and blending problem

flows but the properties of intermediate streams as well.
The presence of these pools can introduce nonlineari-
ties and nonconvexities in the model of the process, re-
sulting in difficult problems with multiple local optima.

Given a set of components i, a set of products j, a set
of pools k and a set of qualities l, let xil be the amount of
component i allocated to pool l, ylj be the amount going
from pool l to product j, zij be the amount of compo-
nent i going directly to product j and plk be the level
of quality k in pool l. Furthermore, let Ai, Dj and Sl be
upper bounds for component availabilities, product de-
mands and pool sizes respectively, let Cik be the level of
quality k in component i, Pjk be upper bounds on prod-
uct qualities, ci be the unit price of component i and dj
be the unit price of product j. The general pooling and
blending model can then be written as [1]:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max �
X
i;l

ci xi l C
X
l ; j

d j yl j C
X
i; j

(dj � ci )zi j

s.t.
X
l

xi l C
X
j

zi j � Ai

X
l

yl j C
X
i

zi j � Dj

X
i

xi l �
X
j

yl j D 0

X
i

xi l � Sl

�
X
i

Cik xi l C pl k
X
j

yl j D 0

X
l

(pl k � Pjk )yl j

C
X
i

(Ci j � Pjk )zi j � 0

xi l ; yl j ; zi j; pl k � 0:

The first two sets of constraints ensure that the amount
of components used and products made do not ex-
ceed the respective availabilities or demands. The third
and fourth set of constraints are material balance con-
straints around each pool, which ensure that there is no
accumulation or overflow of material in the pools. The
fifth set of constraints relates the quality of each pool
to the quality of the components going into the pool
(in this case, the qualities are assumed to blend linearly,
that is, the pool quality is an average of the qualities of
the components). Finally, the sixth set of equations en-
sures that any upper bound specifications on product
qualities are met. These last two sets of equations are
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bilinear, and can cause significant problems in solving
these models.

The general blending problem has a similar for-
mulation as above, except that the pools need not be
present; the components can be blended directly to
make various products. It should also be noted that
there are various other formulations possible, involv-
ing multiple time periods, tanks and inventories for
components and products, and costs for pooling.More-
over, not all the components need go through all pools.
One example of a simplified pooling model, due to C.A.
Haverly [8,9], is given in Fig. 2, where three compo-
nents with varying sulfur contents are to be blended to
form two products. There is a maximum sulfur restric-
tion on each product. The components have values of
6, 13 and 10, respectively, while the products have val-
ues of 9 and 15, respectively. The mathematical model
for the problem consists of writing mass and sulfur bal-
ances for the various streams, and can be formulated as
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max 9 � (y11 C z31)C 15 � (y12 C z32)
�6x11 � 13x21 � 10 � (z31 C z32)

s.t. x11 C x21 � y11 � y12 D 0
p � y11 C 2z31 � 2:5(y11 C z31) � 0
p � y12 C 2z32 � 1:5(y12 C z32) � 0
p � (y11 C y12) � 3x11 � x21 D 0
y11 C z31 � 100
y12 C z32 � 200:

The variable p represents the sulfur content of the pool
(and of y11 and y12) and is determined as an average of
the sulfur contents of x11 and x21.

Characteristics of Pooling and Blending Problems

Multiple Solutions

The presence of nonconvex constraints needed to de-
fine pool and product qualities often results in multiple
local solutions in these models. For example, consider
the optimal solution of the Haverly pooling problem as
a function of the pool quality p, as shown in Fig. 3.

It can be seen that the problem has three solutions:
1) A local maximum of 125 at p = 2.5 with x11 = 75, x21

= 25, y11 = 100 and all other variables zero;
2) a saddle point region with 1 < p < 2, all flows zero

and profit of zero; and

MINLP: Applications in Blending and Pooling Problems, Fig-
ure 2
Haverly pooling problem

MINLP: Applications in Blending and Pooling Problems, Fig-
ure 3
Optimal solution to Haverly pooling problem

3) a global maximum of 750 at p = 1.5 with x11 = 50,
x21 = 150, y12 = 200 and all other variables zero.

It is not uncommon for a large pooling problem to have
many dozen local optima, with the objective function
varying by small amounts but with all the flow and qual-
ity variables taking on vastly different values.
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Nonlinear Blending

For the sake of simplicity, it is often assumed in for-
mulating these models that the qualities to be tracked
blend linearly by volume or weight of each component.
In practice, however, this is rarely the case. For exam-
ple, one of the properties commonly tracked in refinery
blends is the Reid vapor pressure (RVP), which mea-
sures the volatility of a blend. Themost commonly used
blending rule for RVP is the Chevron method:
 X

i

xi

!
R1:25 D

X
i

xi r1:25i ;

where ri is the RVP of component i, xi is its volume,
and R is the RVP of the blend. Including such a non-
linear equation in the model can cause difficulty in its
solution. Fortunately, this can be avoided by introduc-
ing a blending index, defined as

ri D r1:25i ; R D R1:25:

Then, all specifications on the blend RVP can be con-
verted using the same index. For example, if there is
a lower bound RL on the blend RVP, then using the
blending index results in the constraints as:
 X

i

xi

!
R D

X
i

xi ri ; R � (RL)1:25:

In some cases, the properties (such as octane number or
pour point) can require complex blending rules which
cannot be simplified using the blending index, and the
full nonlinear blending equation must be included in
the model as is.

Single versus Multiperiod Models

Since components are pooled or blended in the plants
on a regular basis, it is often advantageous to model
these processes using multiple periods. With multi-
period models, it is possible to accumulate material in
the pools or blend tanks, thereby facilitating the alloca-
tion of stocks ahead of time in anticipation of a future
lifting of a valuable product. This requires the model to
incorporate inventories (carry-over stock) in each tank
or pool, resulting in more complex models. It is im-
portant to note that each period does not need to be
of the same duration. Often, the results of the multi-
period models will only be implemented for the first

period, with results for future periods being used for
planning purposes. Therefore, initial periods are typi-
cally of shorter duration (say a day each) while later pe-
riods might be as long as a month. This way, the same
multiperiod model can be used as an operating tool for
the present and a planning tool for the future.

Another important consideration in multiperiod
models is the disposition of stocks at the end of the final
period. If the final inventories/stocks are included sim-
ply as variables, the optimal solution will almost always
set them to zero. In practice, however, this is unrealistic
since it is not desired to run down stocks. This can be
dealt with in several ways:
a) set the final inventory levels to reasonable values

(say the same as inventory levels at the beginning
of the first period);

b) assign a value to final inventory; this way the model
can decide if it is worthwhile to produce stock to sell
at the end of the final period.

Logical Constraints and MINLP Formulations

It is often necessary to impose additional logical con-
straints that dictate how various components are to be
blended in relation to each other. Modeling such con-
straints often requires the addition of integer variables,
as discussed below.
a) If a component is to be used in a particular blend,

then it must be present in at least a certain amount
in the blend. This arises from the fact that it is usu-
ally not practical to blend in infinitesimally small
quantities.
If x represents the volume of such a component,
then introducing a new binary variable ı (i. e. ı is
either 0 or 1) and the constraints

x �Mı � 0;

x � mı � 0

are sufficient to ensure this condition is satisfied.
Here,M is a sufficiently large number, while m rep-
resents the threshold value below which a compo-
nent should not be blended in.

b) Each product can have at most k components in
its blend. This is typically imposed by limitations
on how many streams can be physically blended in
a reasonable amount of time. Again, introducing the
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new variables and constraints as below:
x1 � mı1 � 0;

� � �

xn � mın � 0;

ı1 C � � � C ın � k;

ı1; : : : ; ın 2 f0 � 1gn;

ensures this condition is met.
c) If component A is to be present in the blend, then

component Bmust also be present:

xA � mıA � 0;

xB � mıB � 0;

ıB � ıA:

Each of these logical constraints results in a mixed
integer nonlinear programming (MINLP) model (cf.
also�Mixed integer nonlinear programming). To date
(2000), such models have not been used extensively in
the practical solution of these problems in industry.

Complexity of Models

With the various options of single versus multiperiod
and linear versus nonlinear blending, the models for
pooling and blending can vary significantly in complex-
ity. This is shown pictorially in Fig. 4.

Solution Methods

Pooling problems can be solved using a variety of solu-
tion algorithms. These can be broadly classified as local
and global solution methods.

Local Optimization Approaches

Traditionally, pooling and blending problems have
been solved using various recursion and successive lin-
ear programming (SLP) techniques. The first published
approach for solving the pooling problem was due to
Haverly [8], who proposed the following recursion ap-
proach for solving the problem given in Fig. 2:

1 Start with a guess for the pool quality p.
2 Solve the remaining linear problem for all

other variables.
3 Calculate a new value for p from the solution

in 2).

Unfortunately, this rather simple recursion will
converge to a suboptimal solution regardless of the
starting value for p. This can be partially addressed by
using a ‘distributed recursion’ approach, where an ad-
ditional recursion coefficient f and two additional ‘cor-
rection vectors’ are introduced, modifying the inequal-
ities in the model as follows:

p � y11 C 2z31 � 2:5(y11 C z31)

C f (over � under) � 0;
p � y12 C 2z32 � 1:5(y12 C z32)

C (1 � f )(over � under) � 0:

This formulation serves to distribute the error made in
estimating the pool quality to the two pool destinations.
Recursing on both p and f has a better likelihood of
identifying the optimal solution.

SLP algorithms solve nonlinear models through
a sequence of linear programs (LPs), each of which is
a linearized version of the model around some base
point. These methods consist of replacing nonlinear
constraints of the form

g(x) � 0; h(x) D 0;

with the linearizations

g(xk)Cr g(xk) � (x � xk) � 0;

h(xk)Crh(xk) � (x � xk) D 0

around a base point xk at the kth iteration. The lin-
earized problems can be solved using standard LP
methods. The solution to the problem is used to pro-
vide a value for xkC1. As long as there is an improve-
ment in the objective function value as well as the
feasibility of the original constraints, these methods
can be shown to converge to a local optimum. They
work well for largely linear problems and have there-
fore found widespread use in the refining industry for
solving pooling, blending and general refinery planning
problems [4,11]. However, when there are nonlinear
blending constraints, the linearization in the SLP is of-
ten a bad approximation of the original problem, lead-
ing to poor convergence rates and large solution times.

Pooling and blending problems can also be solved
using other nonlinear programming (NLP) meth-
ods such as generalized reduced gradient, successive
quadratic programming or penalty function methods.
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MINLP: Applications in Blending and Pooling Problems, Figure 4
Types of pooling problems

In general, these methods have not found large accep-
tance in solving these problems, mainly due to difficul-
ties with convergence and stability.

Global Optimization Approaches

The recursive, SLP and conventional NLP techniques
all suffer from the drawback that the solution found is
highly dependent on the starting point, and in general
cannot guarantee convergence to the global solution. In
the last dozen years, numerous approaches have been
proposed for the solution of quadratically constrained
optimization problems (such as the pooling/blending
problem). Surveys of these algorithms can be found
in [10,12]. These approaches can generally be classified
as either decomposition-based or branch and bound al-
gorithms.

One of the common approaches to dealing with
the nonconvexities in the pooling problem is to reduce
the bilinear terms to linear terms over a convex enve-
lope [2]. Noting that for any bilinear term p � y,

(p � pL) � (y � yL) � 0;

(p � pU ) � (y � yU ) � 0;

(p � pL) � (y � yU ) � 0;

(p � pU ) � (y � yL) � 0;

where [pL, pU] and [yL, yU] define the ranges for the
variables p and y. This allows the term p � y to be re-
placed by a set of linear inequalities in the model, re-

sulting in a linearized problemwhich provides an upper
bound on the global solution to the original problem.
After solving this problem, the rectangle defined by the
bounds on p and y can be subdivided into smaller rect-
angles, and a new linearized problem can be solved over
each of these subrectangles. By continuously subdivid-
ing these rectangles, the upper bound can be made to
asymptotically approach the global solution. See [7] for
the solution of several pooling problems using this ap-
proach.

Note that the pooling problem is a partially linear
problem. That is, it can be formulated as

8<
:
min
x;p

c>x

s.t. A(p)x � b;
(1)

where p represents the pool quality and x represents all
component flow rates. For such problems, decomposi-
tion approaches provide a natural solution mechanism.
For a fixed value of p, this problem is linear, and pro-
vides an upper bound on the global solution. The solu-
tion to this linear problem (called the ‘primal’ problem)
can be used to generate a Lagrange function of the form

L(x; p) D c>x C � � (A(p)x � b)

where � represents the multipliers or marginal values
for the constraints from the primal problem. Then, the
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‘dual’ problem
8<
:
min
x;p;


�

s.t. � � L(x; p)
(2)

provides an upper bound on the global solution. Prob-
lem (2) contains bilinear terms of the form A(p)x,
which can be underestimated in a variety of ways. C.A.
Floudas and V. Visweswaran [5,6] have developed the
GOP algorithm based on this approach. By alternating
between the primal problem and a series of relaxed dual
problems (developed by successively partitioning the
feasible region), the GOP algorithm guarantees conver-
gence to the global solution. In [13,14], they show that
it is possible to develop properties that reduce the num-
ber of relaxed dual problems that need to be solved, thus
speeding up the overall algorithm. They also report the
solution of numerous pooling and blending problems
using this approach.

Instead of fixing p for the primal problem, it is pos-
sible to solve (1) directly using local optimization tech-
niques. For example, nonsmooth optimization tech-
niques can be effective in finding local solutions to these
problems [1]. The dual problem can also be solved this
way, with the region for p being refined by partition-
ing. See [1] for the solution of several pooling problems
using this approach.

It is important to note that these global optimiza-
tion approaches (and others) for solving the pooling
problem can be computationally intensive. Invariably,
a large number of subproblems need to be solved be-
fore convergence to a global solution can be guaranteed.
Because the subproblems are usually of the same struc-
ture, varying only slightly in the data for the problems,
they can be solved in parallel. See [3] for an implemen-
tation of a distributed parallel version of the GOP al-
gorithm and a successful application to solve pooling
problems of medium size.

Applications

The most common application of pooling and blending
models is in the refining and petrochemical industries.
Crude oil from various sources is often brought into
the refinery and stored in common tanks before being
processed downstream. Similarly, intermediate streams
from various refinery processes (alkylation, reforming,

cracking) are usually sent to common pools fromwhich
finished products such as gasoline and diesel oil are
made. In both cases, it is important to know various
qualities of the stream coming out of the pool (such as
chemical compositions like sulfur or physical proper-
ties such as vapor pressure).

In addition to refinery processes, blending is a fea-
ture of various other manufacturing processes. These
include
� agriculture, where blending livestock feeds or fertil-

izers at minimum cost is very important;
� mining, where different ores are often mixed to

achieve a desired quality;
� various aspects of food manufacturing; and
� pulp and paper, involving blending of raw materials

used to produce paper.

See also

� Chemical Process Planning
� Extended Cutting Plane Algorithm
� Generalized Benders Decomposition
� Generalized Outer Approximation
�MINLP: Application in Facility Location-allocation
�MINLP: Applications in the Interaction of Design

and Control
�MINLP: Branch and Bound Global Optimization

Algorithm
�MINLP: Branch and Bound Methods
�MINLP: Design and Scheduling of Batch Processes
�MINLP: Generalized Cross Decomposition
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�MINLP: Heat Exchanger Network Synthesis
�MINLP: Logic-based Methods
�MINLP: Outer Approximation Algorithm
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In the development of a process, the steady state design
aspects and dynamic operability issues are usually han-
dled sequentially. First, the design engineers develop
and synthesize the structure of the flowsheet and de-
termine the operating parameters and steady-state op-
erating conditions. Then, the control engineer takes the
fixed design and develops a control system to maintain
the system at the desired specifications. During the first
step, the dynamic operation of the process is generally
not considered, and in the second step, changes to the
flowsheet and operating conditions generally can not be
made.

Process design seeks to determine the arrangement
of processing units that will convert the given raw ma-
terials into the desired products. The idea is to develop
a process flowsheet from the large number of possible
design alternatives. Numerous process design methods
and techniques exist for determining the best process
flowsheet and operating conditions. This best design is
determined by optimizing some economic criteria and
the quality of the design is based on its economic value.
Hence, the process is designed to operate at steady state
and issues relating to the process dynamics, operability,
and controllability are usually not considered.

Once the process has been designed, the plans are
handed over to the process control engineer whose task
is to ensure the stable dynamic performance of the pro-
cess. The control engineer is concerned with develop-
ing a control system which maintains the operation of
the process at the desired steady state in the presence
ever-changing external influences. Issues such as dis-
turbances, uncertainty, and changes in production rates
must be addressed so as to maintain product quality
and safe operation. By addressing the design and con-
trol sequentially, the inherent connection between the
two is neglected. For instance, the steady-state design of
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a process may appear to produce great economic prof-
its. However, unfavorable dynamic operation may lead
to a product which does not meet the required specifi-
cations. This may result in an economic loss due to dis-
posal or reworking costs. Thus, a process design with
good controllability aspects may have better economic
value that an economically optimal steady state design
when the dynamic operation is considered. This trade-
off between the steady state design and the dynamic
controllability motivates the treatment of the issues si-
multaneously.

There are additional incentives for employing a si-
multaneous approach. Due to economic and environ-
mental reasons, the recent trend in process design has
been towards more highly integrated process in terms
of both material and energy flows. Processes are also
required to operate under much tighter operating con-
ditions due to environmental and safety issues. Both of
these lead to designs with increased dynamic interac-
tions and processes which are generally more difficult
to control. Thus, the dynamic operation of the process
must be considered at the early stages of the design.

A systematic method for analyzing the interaction
of design and control requires quantitative controllabil-
ity measures of the process. Such measures have been
derived to quantify certain qualitative concepts about
the controllability of the process such as inversion, in-
teraction effects, and directionality problems. A com-
mon measure for controllability is the integral squared
error (ISE) between outputs and their desired levels. Al-
though it is easy to measure, it is not of direct interest in
practice. Other performance criteria such as maximum
deviation of output variables, maximum magnitude of
control variables, or time to return to steady state can
also be used.

Most of the work in the development of control-
lability measures has focused on linear dynamic mod-
els. The control objective is the robust performance of
the process without any restrictions on the controller
structure [15]. One such measure is the structured sin-
gular value, � , which indicates the performance in the
presence of uncertainty. The condition number, � , has
been developed as an indicator of closed-loop sensi-
tivity to model error while the disturbance conditions
number, �d, indicates the sensitivity of the process to
disturbances. The relative gain array (RGA), �, is used
as an indicator of the relationship between control error

and set point changes while the closed-loop disturbance
gain (CLDG) is used to measure the relation between
control error and disturbances. These measures have
been used extensively in applications for controllabil-
ity assessment; however, they can be misleading. While
these indicators give ideas as to the closed loop perfor-
mance of the process, their impact on the economics of
the process is not clear.

PreviousWork

In comparison to the amount of research on the con-
trollability measures, relatively little work has been
placed on methods for systematically determining the
trade-offs between steady-state economics and dynamic
controllability. Although economics continues to be the
driving force in the design of a process, there is no
straightforward method for evaluating the economics
of the dynamic operation of the process. Several meth-
ods have been proposed to address these issues. M.
Morari and J.D. Perkins [14] discuss the concept of con-
trollability and emphasize that the design of a control
system for a process is part of the overall design of the
process. Noting that a great amount of effort has been
placed on the assessment of controllability, particularly
for linear dynamic models, they indicate that very lit-
tle has been published on algorithmic approaches for
determination of process designs where economics and
controllability are traded off systematically.

In order to deal with the controllability issues on
a economic level, a back-off method was presented in
[18] to determine the economic impact of disturbances
on the system. The basic idea is to determine the opti-
mal steady-state operating point such that the feasible
operation is maintained with respect to all constraints
in the presence of uncertainties and disturbances. This
operating point is compared to the optimal steady-
state operating point determined in the absence of dis-
turbances. The economic penalty incurred by backing
away from the disturbances-free operating point to the
feasible operating point can be determined and thus the
cost of the disturbance can be evaluated. This concept
is illustrated in Fig. 1. Point A indicates the nominal
steady-state design, and point B is the back-off point
which corresponds to the design which will not violate
the constraints h1 and h2 in the presence of uncertain-
ties and disturbances.
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Figure 1
Illustration of the back-off approach

The method is further developed in [17], where the
control structure selection problem is analyzed. Perfect
control assumptions are used along with a linearized
model to formulate a mixed integer linear program
(MILP) where the integer variables indicate the pairings
between the manipulated and controlled variables. The
back-off approach incorporated the dynamic operation
of the process into the design, but it only ensures the
feasible operation of the process and does not directly
address controllability aspects.

An approach for determining process designs which
are both steady-state and operationally optimal was
presented in [2]. The controllability of potential designs
is evaluated along with their economic performance
by incorporating a model predictive control algorithm
into the process design optimization algorithm. This
coordinated approach uses an objective function which
is a weighted sum of economic and controllability mea-
sures.

A multi-objective approach was proposed in [9,10]
to simultaneously consider both controllability and
economic aspects of the design. This approach incorpo-
rates both design and control aspects into a process syn-
thesis framework where the trade-offs between various
open-loop controllability measures and the economics
of the process can be observed. The problem is formu-
lated as a mixed integer nonlinear program (MINLP),
where integer variables are utilized for structural al-

ternatives in the process flowsheet. Through the ap-
plication of multi-objective techniques, a process de-
sign which is both economic and controllable is deter-
mined.

A screening approach was proposed in [4], where
the variability in the product quality is used to com-
pare different steady-state process designs. The dy-
namic controllability is measured economically by cal-
culating the amount of material produced that is off-
specification and on-specification. The on-specification
material leads to profits while the off-spec material re-
sults in costs for reworking or disposal.

A back-off technique was also developed in [1] for
the design of steady-state and open-loop dynamic pro-
cesses. Both uncertainties and disturbances are consid-
ered for determining the amount of back-off. In order
to address the fact that back-off approaches address the
feasible operation and do not address controllability as-
pects, [5] introduces a recovery factor which is defined
as the ratio of the amount of penalty recovered with
control to the penalty with no control. This ratio is then
used to rank different control strategies.

The advantage of the back-off approaches is that
they determine the cost increase associated with mov-
ing to the back-off position which is attributed to the
uncertainties and disturbances. A limitation of this ap-
proach is that it can lead to rather conservative designs
since the worst-case uncertainty scenario is considered.
Although the probability of the worst-case uncertainty
occurring may not be high, this is the basis for the final
design. Also, the method has not been applied to the
design/synthesis problem. A fixed design is considered
and then the back-off is considered as a modification of
this design.

The optimal design of dynamic systems under un-
certainty was addressed in [13]. Flexibility aspects as
well as the control design were considered simultane-
ously with the process design. The algorithm is used to
find the economic optimum which satisfies all of the
constraints for a given set of uncertainties and distur-
bances when the control system is included.

S. Walsh and Perkins [23] outline the use of opti-
mization as a tool for the design/control problem. They
note that the advances in computational hardware and
optimization tools have made it possible to solve the
complex problems that arise in design/control. Their
assessment focuses on the control structure selection
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problem where the economic cost of a disturbance is
balanced against the performance of the controller.

The increasing importance of design and control is-
sues had lead tomore andmore discussion on the topic.
One contribution to the area has been [11]. The funda-
mental design and control concepts are described and
several quantitative examples are given which illustrate
the interaction of design and control.

Most of the previous work does not address syn-
thesis issues and does not treat the problem quanti-
tatively. Two methods employ the optimization ap-
proach in process synthesis to arrive at mathematical
programming formulations which are solved to deter-
mine the trade-offs between the steady-state design and
dynamic controllability. The first method [9,10] uses
steady state linear controllability measures while the
second method [20] uses full nonlinear dynamic mod-
els of the process.

Process Synthesis

Mathematical programming has been found to be
a very useful tool for process synthesis. Its application
in analyzing the interaction of design and control has
followed directly along the process synthesis methodol-
ogy.

The goal in process synthesis to determine the struc-
ture and operating conditions of the process flowsheet.
The optimization approach to the synthesis problem in-
volves three steps:
1) The representation of process design alternatives of

interest through a process superstructure.
2) The mathematical modeling of the superstructure.
3) The algorithmic development of solution procedure

to extract the optimal process flowsheet from the su-
perstructure and solution of the optimization prob-
lem.

The key aspect is the postulation of a superstructure
which contains all possible design alternatives of inter-
est. The superstructure must be sufficiently rich so as to
include the numerous design possibilities yet succinct
enough to eliminate redundancies and reduce complex-
ities.

The mathematical model is characterized by the
variables and equations used in the model. Continu-
ous variables are used to represent flowrates, compo-
sitions, temperatures, etc. Binary variables are used to

represent structural alternatives such as the existence of
process units. The modeling of steady-state processes
leads to algebraic equations and constraints and re-
sults in an MINLP. When dynamic models are to be
used, the continuous variables are partitioned into dy-
namic state variables, control variables, and time invari-
ant variables, and the resulting formulation is classified
as amixed integer optimal control problem (MIOCP).

Steady-State Modeling Approach

This approach was outlined in [9,10] and follows the
optimization approach for process synthesis. A system-
atic procedure is presented for incorporating open-loop
steady-state controllability measures into the process
synthesis problem. The problem is formulated mathe-
matically as a MINLP and a multi-objective optimiza-
tion problem is solved to quantitatively determine the
best-compromise solution among the economic and
control objectives. The �-constraint method is used to
determine the noninferior solution set where one objec-
tive can be improved only at the expense of another,
and the best-compromise solution is determined using
a cutting plane algorithm.

In order to apply the process synthesis approach,
the controllability measure must be expressed as a func-
tion of the unknown design parameters. Steady-state
controllability measures are used to simplify the prob-
lem and reduce implementation difficulties that arise
when considering controllability measures as functions
of frequency. The steady-state gains of the process can
be written in an analytical form thus allowing for an al-
gebraic representation.

The starting point for the controllability analysis is
the linear multiple input/multiple output system writ-
ten in the Laplace domain as

z(s) D G(s)u(s)C Gd (s)d(s);

where z are the output variables, u are the control vari-
ables, G(s) is the process transfer function matrix, and
Gd(s) is the disturbance transfer function matrix.

Closed-loop control can be considered by express-
ing the control variable u(s) as

u(s) D Gc(s)(z�(s) � z(s));

where Gc(s) is the controller transfer function and z�

is the desired set-point. This requires that the form of
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controller transfer function be known as well as the
method for calculating the parameters. Since this causes
problems in the formulation of the optimization prob-
lem, the controllability is viewed as a property inherent
to the process and independent of the particular con-
trol system design. The analysis thus considers only the
open-loop controllability measures which depend only
on the process itself.

Since both the process design and controllability
measures can be expressed as functions of the unknown
design parameters, the synthesis problem can be ex-
pressed as a multi-objective MINLP:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min J(x; y)
s.t. h(x; y) D 0

g(x; y) D 0

 D h(x; y)
x 2 X � Rp

y 2 f0; 1gq:

In this formulation, J is a vector of objectives which in-
cludes both the economic objectives and controllabil-
ity objectives. The expressions h and g represent mate-
rial and energy balances, thermodynamic relations, and
other constraints. The controllability measures are in-
cluded in the formulation as 
. The variables in this
problem are partitioned as continuous x and binary y.

The problem is posed with multiple objectives rep-
resenting the competing economic and open-loop con-
trollability measures. Different techniques have been
developed in order to assess the trade-offs among the
objectives quantitatively. In this approach, the nonin-
ferior solution set is generated to determine the set of
solutions in which one objective can be improved only
at the expense of the other(s). The noninferior solution
set for a two objective problem is visually depicted in
Fig. 2.

This noninferior solution set is generated using an
�-constraint method where one objective is optimized
and the others are included as constraints less than a pa-
rameter �. The problem is reduced to a single objec-
tive optimization problemwhich is iteratively solved for
varying values of � to generate the noninferior solution
set.

By reducing the problem to a single objective prob-
lem, MINLP optimization techniques can be applied

MINLP: Applications in the Interaction ofDesign and Control,
Figure 2
Noninferior solution set for a problem with two objectives

to solve the problem. These MINLP techniques in-
clude generalized Benders decomposition (GBD) [7,19],
outer approximation (OA) [3], outer approximation
with equality relaxation (OA/ER) [8], and outer ap-
proximation with equality relaxation and augmented
penalty [22]. These are discussed in detail in [6].

Once the noninferior solution set is determined, the
best compromise solution is determined by applying
a cutting plane algorithm. The trade-offs among the ob-
jectives are quantitatively assessed using weight factors
which come from the slope of the noninferior solution
set.

Dynamic Modeling Approach

The major limitation of the above approach is that is
does not consider the dynamic behavior of the pro-
cess. This approach considers the full dynamic model of
the process and a dynamic controllability measure. An
optimization approach is applied which involves a dy-
namic optimization problem.

One of the initial difficulties with this method is
defining a controllability measure for nonlinear dy-
namic systems. As in the previous method, the control-
lability measure must be capable of being expressed as
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a function of the unknown design parameters. One pos-
sible choice for the controllability measure is the inte-
gral square error (ISE). The benefit of this measure is
that it is easy to calculate and and does reflect the dy-
namics of the process albeit only in the outputs of the
process. One downside of this measure is that there is
no one to one correspondence between the the control
structure and the ISE measure. Thus, different dynamic
characteristics of the process may not be reflected in the
ISE.

The superstructure is the same as in the previ-
ous approach, but a dynamic model is used instead of
a steady-state model. The dynamic modeling of the su-
perstructure leads to a problem that includes differen-
tial and algebraic equations (DAEs) and the formula-
tion is amulti-objective MIOCP. New algorithmic tech-
niques must be developed for the solution of the formu-
lation.

The general formulation for the multi-objective
MIOCP is as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min J(ż1(ti); z1(ti); z2(ti);u(ti); x; y)
s.t. f1(ż1(t); z1(t); z2(t);u(t); x; y; t)D 0

f2(z1(t); z2(t);u(t); x; y; t)D 0
z1(t0) D z01
z2(t0) D z02
h0(ż1(ti); z1(ti); z2(ti);u(ti); x; y) D 0
g0(ż1(ti); z1(ti); z2(ti);u(ti); x; y) � 0
h00(x; y) D 0
g00(x; y) � 0
x 2 X � Rp

y 2 f0; 1gq

ti 2 [t0; tN]
i D 0; : : : ;N:

(1)

Here, z1(t) is a vector of n dynamic variables whose
time derivatives, ż1(t), appear explicitly, and z2(t) is
a vector ofm dynamic variables whose time derivatives
do not appear explicitly, x is a vector of p time invari-
ant continuous variables, y is a vector of q binary vari-
ables, and u(t) is a vector of r control variables. Time t
is the independent variable for the DAE system where
t0 is the fixed initial time, ti are time instances, and tN
is the final time. The DAE system is represented by f1,
the n differential equations, and f2, them dynamic alge-

braic equations. The constraints h0 and g0 are point con-
straints where ti represents the time instance at which
the constraint is enforced and h00 and g00 are general
constraints. The objective functions for the economic
and controllability measures are represented by the vec-
tor J.

The initial condition for the above system is deter-
mined by specifying n of the 2n + m variables z1(t0), ż1
(t0), z2 (t0). For DAE systems with index 0 or 1, the re-
maining n + m values can be determined. In this work,
DAE systems of index 0 or 1 are considered and the ini-
tial conditions for z1(t) and z2(t) are z01 and z02 respec-
tively.

Note that in this general formulation, the y variables
appear in the DAE system as well as in the point con-
straints and general constraints. This has implications
on the solution strategy.

A similar approach to that of the previous approach
is applied to address the multi-objective nature of the
problem. An �-constraint method is applied to reduce
to problem to an iterative solution of single objective
MIOCPs.

MIOCP Solution Algorithm

The strategy for solving the MIOCP is to apply iterative
decomposition strategies similar to existing MINLP al-
gorithms with extensions for handling the DAE system.
The algorithm developed for the solution of theMIOCP
closely parallels existing algorithms for MINLP opti-
mization (GBD, OA, OA/ER, OA/ER/AP). The pres-
ence of the y variables in DAE system for the general
case prohibits the use of Outer Approximation and its
variants. For the special cases where the y variables do
not appear in the DAEs and do participate in a lin-
ear and separable fashion, outer approximation and its
variants can be applied to the problem. The GBD al-
gorithm can be applied to the solution of the general
problem, and the algorithmic development closely fol-
lows those of GBD.

The GBD algorithm is an iterative procedure which
generates upper and lower bounds on the solution of
the MINLP formulation. The upper bound results from
the solution of an NLP primal problem and the lower
bound from an MILP master problem. The bounds on
the solution converge in a finite number of iterations
to yield the solution to the MINLP model. A similar
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methodology is applied to the MIOCP problem, but the
forms of the primal and master problems have to be al-
tered.

Primal Problem

The primal problem is obtained by fixing the y variables
which leads to an optimal control problem. For fixed
values of y = yk, the MIOCP has the following form:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min J(ż1(ti); z1(ti); z2(ti);u(ti); x; yk)
s.t. f1(ż1(t); z1(t); z2(t);u(t); x; yk; t) D 0

f2(z1(t); z2(t);u(t); x; yk; t) D 0
z1(t0) D z01
z2(t0) D z02
h0(ż1(ti); z1(ti); z2(ti);u(ti); x; yk) D 0
g0(ż1(ti); z1(ti); z2(ti);u(ti); x; yk) � 0
h00(x; yk) D 0
g00(x; yk) � 0
x 2 X � Rp

ti 2 [t0; tN]
i D 0; : : : ;N:

(2)

The solution of this optimal control problem can be
handled in several ways: complete discretization, so-
lution of the necessary conditions, dynamic program-
ming, and control parameterization. This work focuses
on the control parameterization techniques which pa-
rameterize only the control variables u(t) in terms of
time invariant parameters. At each step of the optimiza-
tion procedure, the DAEs are solved for given values
of the decision variables and a feasible path for z(t) is
obtained. This solution is used to evaluate the objec-
tive function and remaining constraints. The control
parameterization can either be open loop as described
in [21] or closed-loop such as that described in [17] and
[16] which also includes the control structure selection.

The basic idea behind the control parameterization
is to express the control variables u(t) as functions of
time invariant parameters. This parameterization can
be done in terms of the independent variable t (open
loop):

u(t) D �(w; t):

Alternatively, the parameterization can be done in
terms of the state variables z(t) (closed-loop):

u(t) D  (w; ż(t); z(t)):

In both cases, w are the time invariant control param-
eters. The set of time invariant parameters, x, is now
expanded to include the control parameters:

x D fx;wg:

The set of DAEs (f) is expanded to include parameteri-
zation functions

f(�) D ff(�); �(�);  (�)g

and the control variables are converted to dynamic state
variables:

z D fz;ug:

Through the application of the control parameter-
ization, the control variables are effectively removed
from the problem and the following problem results:
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ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
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ˆ̂̂̂
:̂

min J(ż1(ti); z1(ti); z2(ti); x; yk)
s.t. f1(ż1(t); z1(t); z2(t); x; yk; t) D 0

f2(z1(t); z2(t); x; yk; t) D 0
z1(t0) D z01
z2(t0) D z02
h0(ż1(ti); z1(ti); z2(ti); x; yk) D 0
g0(ż1(ti); z1(ti); z2(ti); x; yk) � 0
h00(x; yk) D 0
g00(x; yk) � 0
x 2 X � Rp

ti 2 [t0; tN]
i D 0; : : : ;N:

(3)

This problem is a nonlinear program with differential
and algebraic constraints (NLP/DAE). This problem is
solved using a parametric method where the DAE sys-
tem is solved as a function of the x variables. The solu-
tion of the DAE system is achieved through an integra-
tion routine which returns the values of the z variables
at the time instances, z(ti), along with their sensitivi-
ties with respect to the parameters, dz/dx(ti). The re-
sulting problem is an NLP optimization over the space
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of x variables which has the form:8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min J(ż1(ti); z1(ti); z2(ti); x; yk)
s.t. h0(ż1(ti); z1(ti); z2(ti); x; yk) D 0

g0(ż1(ti); z1(ti); z2(ti); x; yk) � 0
h00(x; yk) D 0
g00(x; yk) � 0
x 2 X
ti 2 [t0; : : : ; tN ]
i D 0; : : : ;N;

(4)

where the variables ż1(ti), z1(ti), and z2(ti) are deter-
mined through the solution of the DAE system by inte-
gration:

8̂
ˆ̂̂<
ˆ̂̂̂
:

f1(ż1(t); z1(t); z2(t); x; yk; t) D 0;
f2(z1(t); z2(t); x; yk; t) D 0;
z1(t0) D z01;
z2(t0) D z02:

(5)

The functions J(�), g0(�), and h0(�) are functions of
z(ti) which are implicit functions of the x variables
through the integration of the DAE system. For the so-
lution of the NLP the objective and constraints eval-
uations, along with their gradients with respect to x,
are required. These are evaluated directly for the con-
straints g00(x) and h00(x). However, for the functions
J(�), g0(�), and h0(�), the values z(ti), and the gradients
dz/dx(ti), as returned from the integration, are used.
The functions J(�), g0(�), and h0(�) are evaluated directly
and the gradients dJ/dx, dgi0/dx, and dh0/dx are evalu-
ated by using the chain rule:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

d J
dx D

�
@J
@z

� �
@z
@x

�
C
�
@J
@x

�
;

dh0i
dx D

�
@h0i
@z

� �
@z
@x

�
C
�
@h0i
@x

�
;

dg0i
dx D

�
@g0i
@z

� �
@z
@x

�
C
�
@g0i
@x

�
:

(6)

Standard gradient based optimization techniques
can be applied to solve this problem as an NLP. The so-
lution of this problem provides values of the x variables
and trajectories for z(t).

The master problem is formulated using dual infor-
mation and the solution of the primal problem. Pro-
vided that the y variables participate linearly, the prob-
lem is an MILP whose solution provides a lower bound

MINLP: Applications in the Interaction of Design andControl,
Table 1
Constraints and their corresponding dual variables

constraint dual variable
f1 �1(t)
f2 �2(t)
g0 �0
h0 �0
g" �"
h" �"

and y variables for the next primal problem. Dual infor-
mation is required from all of the constraints including
the DAEs whose dual variables, or adjoint variables, are
dynamic. The constraints and their corresponding dual
variables are listed in Table 1.

The dual variables �0, �0, �00, and �00 are gener-
ally obtained from the solution technique for the pri-
mal problem. Dual information from the DAE system
is obtained by solving the adjoint problem for the DAE
system which has the following formulation:

8̂
<̂
ˆ̂:

p D �>1
df1
d ż1
;

ṗ D �>1
df1
dz1
C �>2

df2
dz1
;

0 D �>1
df1
dz2
C �>2

df2
dz2
:

(7)

This is a set of DAEs where the solutions for df1/dż1,
df1/dz1, df2/dz1, df1/dz2, and df2/dz2 are known func-
tions of time obtained from the solution of the primal
problem. The variables �1(t) and �2(t) are the adjoint
variables and the solution of this problem is a backward
integration in time with the following final time condi-
tions:

dJ
dz1
C �0

dh0

dz1
C �0

dg0

dz1
C �>1

df1
dż1
D 0:

Thus, the Lagrange multipliers for the end-time con-
straints are used as the final time conditions for the ad-
joint problem and are not included in the master prob-
lem formulation.

The master problem is formulated using the solu-
tion of the primal problem, xk and zk(t), along with
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MINLP: Applications in the Interaction of Design and Control, Figure 3
Superstructure for reactor-separator-recycle system

MINLP: Applications in the Interaction of Design and Control, Figure 4
Noninferior solution set for the reactor-separator-recycle system
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MINLP: Applications in the Interaction of Design and Control, Figure 5
Dynamic responses of product compositions for three designs

the dual information, �00k, �00k, and �k(t). The master
problem has the following form:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
y;
b

�b

s.t. �b � J(xk ; y)

C

Z tN

t0
�k1 (t)f1(ż

k
1 (t); z

k
1 (t); z

k
2(t); x

k; y; t) dt

C

Z tN

t0
�k2 (t)

f2(zk1 (t); zk2 (t); xk; y; t) dt
C�00kg00(xk ; y)C �00kh00(xk ; y);

k 2 Kfeas;

0 �
Z tN

t0
�k1 (t)

f1(żk1 (t); z
k
1 (t); z

k
2 (t); xk; y; t) dt

C

Z tN

t0
�k2 (t)f2(z

k
1 (t); z

k
2 (t); x

k; y; t) dt

C�00kg00(xk ; y)C �00kh00(xk ; y);
k 2 Kinfeas;

y 2 f0; 1gq:

(8)

The integral term can be evaluated since the profiles
for zk(t) and �k(t) both are fixed and known. Note that
this formulation has no restrictions on whether or not
y variables participate in the the DAE system.

Example: Reactor-Separator-Recycle System

The example problem considered here is the design of
a process involving a reaction step, a separation step,
and a recycle loop. Fresh feed containing A and B flow
into a an isothermal reactor where the first order irre-
versible reaction A! B takes place. The product from
the reactor is sent to a distillation columnwhere the un-
reacted A is separated from the product B and sent back
to the reactor. The superstructure is shown in Fig. 3.

The model equations for the reactor (CSTR) and
the separator (ideal binary distillation column) can be
found in [12]. The specific problem design follows the
work in [10].

For this problem, the single output is the prod-
uct composition. The bottoms (product) composition is
controlled by the vapor boil-up and the distillate com-
position is controlled by the reflux rate. Since only the
product composition is specified, the distillate compo-
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sition set-point is free and left to be determined through
the optimization.

The cost function includes column and reactor cap-
ital and utility costs.

costreactor D 17639D1:066
r (2Dr)0:802;

costcolumn D 6802D1:066
c (2:4Nt)0:802

C 548:8D1:55
c Nt ;

costexchangers D 193023V0:65
ss ;

costutilities D 72420Vss ;

costtotal D
costreactorC costcolumnC costexchangers

ˇpay

C ˇtax[costutilities]:

The controllability measure is the time weighted ISE
for the product composition:

d�
dt
D t(xB � x�B)

2:

The noninferior solution set is shown in Fig. 4, and
Table 2 lists the solution information for three of the
designs in the noninferior solution set. The dynamic
profile for these three designs are shown in Fig. 5.

All of the designs in the noninferior solution set are
strippers. Since the feed enters at the top of the column,
there is no reflux and thus no control loop for the dis-
tillate composition. The controllability of the process is
increased by increasing the size of the reactor and de-
creasing the size of the column. The most controllable
design has a large reactor and a single flash unit.

MINLP: Applications in the Interaction ofDesign and Control,
Table 2
Solution information for three designs

Solution A B C
Cost($) 489; 000 534; 000 736; 000
Capital($) 321; 000 364; 000 726; 000
Utility($) 168; 000 170; 000 10; 000
ISE 0:0160 0:00379 0:0011
Trays 19 8 1
Feed 19 8 1
Vr(kmol) 2057:9 3601:2 15000
V(kmol/hr) 138:94 141:25 85:473
KV 90:94 80:68 87:40
�V (hr) 0:295 0:0898 0:0156
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A wide range of nonlinear optimization problems in-
volve integer or discrete variables in addition to con-
tinuous ones. These problem are denoted as mixed in-
teger nonlinear programming (MINLP) problems. Inte-
ger variables correspond to logical decision describing
whether certain actions do or do not take place, ormod-
eling the sequence according to which those decisions
take place. The nonlinear nature of the MINLP models
may arise from:
� nonlinear relations in the integer domain only
� nonlinear relations in the continuous domain only
� nonlinear relations in the joint domain, i. e., prod-

ucts of continuous and binary/integer variables.
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The general mathematical formulation of the
MINLP problems can be stated as follows:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Y (integer):

Here, x represents a vector of n continuous variables,
y is a vector of integer variables, f (x, y), h(x, y), g(x, y)
represent the objective function, equality and inequality
constraints, respectively. It should be noted, that every
problem of the form just presented, can be transformed
into one where all integer variables have been trans-
formed into binary, i. e., 0–1, variables, by realizing that
every integer yL � y� yU can be expressed through 0–1
variables, z = (z1, . . . , zN), as:

y D yL C z1 C 2z2 C 4z3 C � � � C 2N�1zN ;

N D 1C INT
�
log(yU � yL)

log 2

	
:

Therefore, any MINLP problem can be written as:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Y D f0; 1gm:

In the analysis of MINLP problems two issues are of
paramount importance:
� combinatorial explosion of computational require-

ments as the number of binary variables increases
� NP-hard nature of the problem of determining

the global minimum solution of general nonconvex
MINLP problems.

A complexity analysis of the former is presented in [16],
while the complexity of determining global minimum
solutions of MINLPs is discussed in [15].

Various methods exist for identifying a locally opti-
mum solution ofMINLP problems. These are discussed
in great detail in [9] and in a recent thorough review pa-
per, [6], which presents a comprehensive account of the
various approaches for addressing issues related to the

solution of mixed integer nonlinear optimization prob-
lems.

The main objective in a general branch and bound
algorithm is to perform an enumeration of the alterna-
tives without examining all 0–1 combinations of the bi-
nary variables. A key element in such an enumeration if
the representation of alternatives via a binary tree. The
basic ideas in a branch and bound algorithm are the fol-
lowing. First, a reasonable effort is made in solving the
original problem, by considering for instance the con-
tinuous relaxation of it. If the relaxation does not re-
sult in an integer-feasible solution, i. e., one in which
the binary variables achieve 0–1 at the optimal point,
them the root node is separated into two candidate
subproblems which are subsequently solved. The sep-
aration aims at creating simpler instances of the orig-
inal problem. Until the problem is successfully solved
this process of generating candidate subproblems is re-
peated. Branch and bound algorithms are also known as
divide-and-conquer for that very reason. A basic prin-
ciple common to all branch and bound algorithms is
that the solution of the subproblems aims at generat-
ing valid lower bounds on the original MINLP through
its relaxation to a continuous problem. The relaxation,
in the case of MINLP, results in a nonlinear program-
ming problem (NLP) which, in the general case, is non-
convex and needs to be solved to global optimality so
as to provide a valid lower bound. If the NLP relax-
ation renders an integer solution, then this solution
is referred to as valid upper bound. The generation of
the sequence of valid upper and lower bounds is called
bounding step. The way subproblems are created is by
forcing some of the binary variables to take on a value
of 0 or 1. This is known as the branching step. Nodes
in the tree are pruned when the corresponding valid
lower bound exceeds the valid upper bound, this stage is
know as the fathoming step. The selection of the branch-
ing node, the branching variable and the generation of
the lower bound are very crucial steps whose impor-
tance becomes even more pronounced when address-
ing nonconvex MINLP problems. Two basic strategies
exists regarding the selection of the branching node de-
pending on whether one designs a branch and bound
based on a depth-first or a breadth-first approach. In
the former, the last node created is selected for branch-
ing, in the latter the node that generated the best lower
bound is selected. It is not clear which strategy is the
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best and it is often that the one that minimizes the
computational requirement is selected, [13]. Another
alternative is to select nodes based on the deviation of
the solution from integrality, [12]. The most common
strategy for selecting a branching variable is to select
the variable whose value at the solution of some re-
laxed problem is the farthest from integer, i. e., the most
fractional variable, [17]. In [12] a method based on the
concept of pseudocosts which quantifies the effect of bi-
nary variables is also proposed, which assigns essen-
tially priorities on the order of branching variables. Fi-
nally, one of the most important computational step
is the generation of the lower bound, in other words
the solution of the relaxed problem. The effectiveness
of a branch and bound depends of the quality of the
lower bound that is generated. At every node of the
branch and bound tree a nonlinear-nonconvex NLP is
solved. Two issues are important: the lower boundmust
be valid, in other words the relaxation at a particular
node must underestimate the solution of the original
problem for this node, and the lower bounds must be
tight so as to enhance the fathoming step. The key com-
plexity when dealing with nonconvex MINLPs is that
the relaxation solved at each node is, of course, a non-
convex NLP that has to be solved to global optimal-
ity. With the exception of problems which are convex
in the x and relaxed y-space for which variants of the
branch and bound algorithms will lead the correct so-
lution, [18], in all other cases global optimization algo-
rithms have to be employed for the generation of valid
lower bounds.

In [19] the scope of branch and bound algorithms
was extended to problems for which valid convex un-
derestimating NLPs can be constructed for the con-
vex relaxations. The problems included bilinear and
separable problems for which convex underestimators
can be build [14]. A number of very useful tests were
proposed to accelerate the reduction of solution space.
Namely:
1) Optimality based range reduction tests: For the first

set of tests, an upper bound U on the noncon-
vex MINLP must be computed and a convex lower
bounding NLP must be solved to obtain a lower
bound L. If a bound constraint for variable xi, with
xLi � xi � xUi , is active at the solution of the convex
NLP and has multiplier ��i > 0, the bounds on xi can
be updated as follows:

a) If xi � xUi = 0 at the solution of the convex NLP
and � i = xUi � (U � L)/��i is such that � i > xLi ,
then xLi = � i.

b) If xi � xLi = 0 at the solution of the convex NLP
and � i = xLi + (U � L)/��i is such that � i < xUi ,
then xUi = � i.

If neither bound constraint is active at the solution
of the convex NLP for some variable xj, the problem
can be solved by setting xj = xUj or xj = xLj . Tests sim-
ilar to those presented above are then used to update
the bounds on xj.

2) Feasibility based range reduction tests: In addition
to ensuring that tight bounds are available for the
variables, the constraint underestimators are used
to generate new constraints for the problem. Con-
sider the constraint gi(x, y) � 0. If its underestimat-
ing function g

i
(x; y) D 0 at the solution of the con-

vex NLP and its multiplier is ��i > 0, the constraint

g
i
(x; y) � �

U � L
��i

can be included in subsequent problems.
A global optimization algorithm branch and bound al-
gorithm has been proposed in [20]. It can be applied
to problems in which the objective and constraints are
functions involving any combination of binary arith-
metic operations (addition, subtraction, multiplication
and division) and functions that are either concave over
the entire solution space (such as ln) or convex over this
domain (such as exp).

The algorithm starts with an automatic reformu-
lation of the original nonlinear problem into a prob-
lem that involves only linear, bilinear, linear fractional,
simple exponentiation, univariate concave and univari-
ate convex terms. This is achieved through the intro-
duction of new constraints and variables. The reformu-
lated problem is then solved to global optimality using
a branch and bound approach. Its special structure al-
lows the construction of a convex relaxation at each
node of the tree. The integer variables can be handled
in two ways during the generation of the convex lower
bounding problem. The integrality condition on the
variables can be relaxed to yield a convex NLP which
can then be solved globally. Alternatively, the integer
variables can be treated directly and the convex lower
bounding MINLP can be solved using a branch and
bound algorithm as described earlier. This second ap-
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proach is more computationally intensive but is likely
to result in tighter lower bounds on the global optimum
solution. In order to obtain an upper bound for the op-
timum solution, several methods have been suggested.
The MINLP can be transformed to an equivalent non-
convex NLP by relaxing the integer variables. For exam-
ple, a variable y 2 {0, 1} can be replaced by a continuous
variable z 2 [0, 1] by including the constraint z � z � z =
0. The nonconvex NLP is then solved locally to provide
an upper bound. Finally, the discrete variables could be
fixed to some arbitrary value and the nonconvex NLP
solved locally.

In [1] SMIN was proposed which is designed to ad-
dress the following class of problems to global optimal-
ity:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f (x)C x>A0y C c>0 y
s.t. h(x)C x>A1y C c>1 y D 0

g(x)C x>A2y C c>2 y � 0
x 2 X � Rn

y 2 Y (integer);

where c>0 , c>1 and c>2 are constant vectors, A0,A1 andA2

are constant matrices and f (x), h(x) and g(x) are func-
tions with continuous second order derivatives. The so-
lution strategy is an extension of the ˛BB algorithm for
twice-differentiable NLPs [4,5,7]. It is based on the gen-
eration of two converging sequences of upper and lower
bounds on the global optimum solution. A rigorous
underestimation and convexification strategy for func-
tions with continuous second order derivatives allows
the construction of a lower bounding MINLP problem
with convex functions in the continuous variables. If no
mixed-bilinear terms are present (Ai = 0, 8i), the re-
sulting MINLP can be solved to global optimality us-
ing the outer approximation algorithm (OA), [8]. Oth-
erwise, the generalized Benders decomposition (GBD)
can be used, [10], or the Glover transformations [11]
can be applied to remove these bilinearities and per-
mit the use of the OA algorithm. This convex MINLP
provides a valid lower bound on the original MINLP.
An upper bound on the problem can be obtained by
applying the OA algorithm or the GBD to find a lo-
cal solution. This bound generation strategy is incorpo-
rated within a branch and bound scheme: a lower and
upper bound on the global solution are first obtained
for the entire solution space. Subsequently, the domain

is subdivided by branching on a binary or a continu-
ous variable, thus creating new nodes for which upper
and lower bounds can be computed. At each iteration,
the node with the lowest lower bound is selected for
branching. If the lower bounding MINLP for a node is
infeasible or if its lower bound is greater than the best
upper bound, this node is fathomed. The algorithm is
terminated when the best lower and upper bound are
within a pre-specified tolerance of each other.

Before presenting the algorithmic procedure, an
overview of the underestimation and convexification
strategy is given, and some of the options available
within the algorithm are discussed.

In order to transform the MINLP problem of the
form just described into a convex problem which can
be solved to global optimality with the OA or GBD
algorithm, the functions f (x), h(x) and g(x) must be
convexified. The underestimation and convexification
strategy used in the ˛BB algorithm has previously been
described in detail [3,4,5]. Its main features are exposed
here.

In order to construct as tight an underestimator as
possible, the nonconvex functions are decomposed into
a sum of convex, bilinear, univariate concave and gen-
eral nonconvex terms. The overall function underes-
timator can then be built by summing up the convex
underestimators for all terms, according to their type.
In particular, a new variable is introduced to replace
each bilinear term, and is bounded by its convex enve-
lope. The univariate concave terms are linearized. For
each nonconvex term nt(x) with Hessian matrixHnt(x),
a convex underestimator L(x) is defined as

L(x) D nt(x)�
X
i

˛i (xUi � xi)(xi � xLi ); (1)

where xUi and xLi are the upper and lower bounds on
variable xi, respectively, and the ˛ parameters are non-
negative scalars such that Hnt(x) + 2 diag(˛i) is posi-
tive semidefinite over the domain [xL, xU]. The rigorous
computation of the ˛ parameters using interval Hessian
matrices is described in [3,4,5].

The underestimators are updated at each node of
the branch and bound tree as their quality strongly de-
pends on the bounds on the variables. An unusual fea-
ture of the SMIN-˛BB algorithm is the strategy used to
select branching variables. It follows a hybrid approach
where branching may occur both on the integer and the
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continuous variables in order to fully exploit the struc-
ture of the problem being solved. After the node with
the lowest lower bound has been identified for branch-
ing, the type of branching variable must be determined
according to one of the following two criteria:
1) Branch on the binary variables first.
2) Solve a continuous relaxation of the nonconvex

MINLP locally. Branch on a binary variable with
a low degree of fractionality at the solution. If there
is no such variable, branch on a continuous variable.

The first criterion results in the creation of an integer
tree for the first q levels of the branch and bound tree,
where q is the number of binary variables. At the low-
est level of this integer tree, each node corresponds to
a nonconvex NLP and the lower and upper bounding
problems at subsequent levels of the tree are NLP prob-
lems. The efficiency of this strategy lies in the minimiza-
tion of the number of MINLPs that need to be solved.
The combinatorial nature of the problem and its non-
convexities are handled sequentially. If branching oc-
curs on a binary variable, the selection of that variable
can be done randomly or by solving a relaxation of the
nonconvex MINLP and choosing the most fractional
variable at the solution.

The second criterion selects a binary variable for
branching only if it appears that the two newly
created nodes will have significantly different lower
bounds.Thus, if a variable is close to integrality at the
solution of the relaxed problem, forcing it to take on
a fixed value may lead to the infeasibility of one of the
nodes or the generation of a high value for a lower
bound, and therefore the fathoming of a branch of the
tree. If no binary variable is close to integrality, a con-
tinuous variable is selected for branching.

A number of rules have been developed for the se-
lection of a continuous branching variable. Their aim
is to determine which variable is responsible for the
largest separation distances between the convex under-
estimating functions and the original nonconvex func-
tions. These efficient rules are exposed in [2]. Variable
bound updates performed before the generation of the
convex MINLP have been found to greatly enhance the
speed of convergence of the ˛BB algorithm for contin-
uous problems [2]. For continuous variables, the vari-
able bounds are updated by minimizing or maximiz-
ing the chosen variable subject to the convexified con-
straints being satisfied. In spite of its computational

cost, this procedure often leads to significant improve-
ments in the quality of the underestimators and hence
a noticeable reduction in the number of iterations re-
quired.

In addition to the update of continuous variable
bounds, the SMIN-˛BB algorithm also relies on binary
variable bound updates. Through simple computations,
an entire branch of the branch and bound tree may
be eliminated when a binary variable is found to be
restricted to 0 or 1. The bound update procedure for
a given binary variable is as follows:
1) Set the variable to be updated to one of its bounds

y = yB.
2) Perform interval evaluations of all the constraints in

the nonconvex MINLP, using the bounds on the so-
lution space for the current node.

3) If any of the constraints are found infeasible, fix the
variable to y = 1 � yB.

4) If both bounds have been tested, repeat this proce-
dure for the next variable to be updated. Otherwise,
try the second bound.
In [1] GMIN, which operates within a classical

branch and bound framework, was proposed. The main
difference with similar branch and bound algorithms
[12,17] is its ability to identify the global optimum so-
lution of a much larger class of problems of the form

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Nq;

where N is the set of nonnegative integers and the only
condition imposed on the functions f (x, y), g(x, y) and
h(x, y) is that their continuous relaxations possess con-
tinuous second order derivatives. This increased appli-
cability results from the use of the ˛BB global opti-
mization algorithm for continuous twice-differentiable
NLPs [4,5,7].

At each node of the branch and bound tree, the non-
convex MINLP is relaxed to give a nonconvex NLP,
which is then solved with the ˛BB algorithm. This al-
lows the identification of rigorously valid lower bounds
and therefore ensures convergence to the global opti-
mum. In general, it is not necessary to let the ˛BB al-
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gorithm run to completion as each one of its iterations
generates a lower bound on global solution of the NLP
being solved. A strategy of early termination leads to
a reduction in the computational requirements of each
node of the binary branch and bound tree and faster
overall convergence.

The GMIN-˛BB algorithm selects the node with the
lowest lower bound for branching at every iteration.
The branching variable selection strategy combines sev-
eral approaches: branching priorities can be specified
for some of the integer variables. When no variable has
a priority greater than all other variables, the solution of
the continuous relaxation is used to identify either the
most fractional variable or the least fractional variable
for branching.

Other strategies have been implemented to ensure
a satisfactory convergence rate. In particular, bound
updates on the integer variables can be performed at
each level of the branch and bound tree. These can be
carried out through the use of interval analysis. An in-
teger variable, y�, is fixed at its lower (or upper) bound
and the range of the constraints is evaluated with in-
terval arithmetic, using the bounds on all other vari-
ables. If the range of any constraint is such that this
constraint is violated, the lower (or upper) bound on
variable y� can be increased (or decreased) by one. An-
other strategy for bound updates is to relax the integer
variables, to convexify and underestimate the noncon-
vex constraints and to minimize (or maximize) a vari-
able y� in this convexified feasible region. The resulting
lower (or upper) bound on relaxed variable y� can then
be rounded up (or down) to the nearest integer to pro-
vide an updated bound for y�.
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A general mixed integer nonlinear programming prob-
lem (MINLP) can be written as

(MINLP)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f (x; y)
s.t. h(x; y) D 0

g(x; y) � 0
x 2 Rn

y 2 Zm :

Here x is a vector of n continuous variables and y is
a vector of m integer variables. In many cases, the in-
teger variables y are restricted to the values 0 and 1.
Such variables are called binary variables. The function
f is a scalar valued objective function, while the vec-
tor functions h and g express linear or nonlinear con-
straints. Problems of this form have a wide variety of
applications, in areas as diverse as IR spectroscopy [6],
finance [3], chemical process synthesis [9], topological
design of transportation networks [12], and marketing
[10].

The earliest work on branch and bound algorithms
for mixed integer linear programming dates back to the
early 1960s [7,13,15]. Although the possibility of apply-
ing branch and bound methods to mixed integer non-
linear programming problems was apparent from the
beginning, actual work on such problems did not be-
gin until later. Early papers on branch and bound al-
gorithms for mixed integer nonlinear programming in-
clude [11,14].

A branch and bound algorithm for solving
(MINLP) requires the following data structures. The
algorithm maintains a list L of unsolved subproblems.
The algorithm also maintains a record of the best in-
teger solution that has been found. This solution, (x�,
y�), is called the incumbent solution. The incumbent
solution provides an upper bound, ub, on the objective
value of an optimal solution to (MINLP).

The basic branch and bound procedure is as follows.
1) Initialize: Create the list L with (MINLP) as the ini-

tial subproblem. If a good integer solution is known,
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then initialize x�, y�, and ub to this solution. If there
is no incumbent solution, then initialize ub to +1.

2) Select: Select an unsolved subproblem, S, from the
list L. If L is empty, then stop: If there is an incum-
bent solution, then that solution is optimal; If there
is no incumbent solution, then (MINLP) is infeasi-
ble.

3) Solve: Relax the integrality constraints in S and
solve the resulting nonlinear programming relax-
ation. Obtain a solutionbx,by, and a lower bound, lb,
on the optimal value of the subproblem.

4) Fathom: If the relaxed subproblem was infeasible,
then S will clearly not yield a better solution to
(MINLP) than the incumbent solution. Similarly, if
lb � ub, then the current subproblem cannot yield
a better solution to (MINLP) than the incumbent
solution. Remove S from L, and return to step 2.

5) Integer Solution: Ifby is integer, then a new incum-
bent integer solution has been obtained. Update x�,
y�, and ub. Remove S from L and return to step 2.

6) Branch: At least one of the integer variables yk takes
on a fractional value in the solution to the current
subproblem. Create a new subproblem, S1 by adding
the constraint

yk � bbykc:

Create a second new subproblem, S2 by adding the
constraint

yk � dbyke:

Remove S from L, add S1 and S2 to L, and return to
step 2.

The following example demonstrates how the branch
and bound algorithm solves a simple (MINLP):

8̂
<̂
ˆ̂:

min (y1 � 1
4 )

2 C (y2 � 1
4 )

2 C y23
�2y1 C 2y2 � 1
y binary:

The optimal solution to the initial nonlinear program-
ming relaxation is y = (1/4, 1/4, 0), with an objective
value of z = 0. Both y1 and y2 take on fractional val-
ues in this solution, so it is necessary to select a branch-
ing variable. The algorithm arbitrarily selects y1 as the

MINLP: Branch and BoundMethods, Figure 1
Branch and bound tree for a sample problem

branching variable, and creates two new subproblems
in which y1 is fixed at 0 or 1. In the subproblem with y1
fixed at 0, the optimal solution is y = (0, 1/4, 0), with z =
1/16. Since the optimal value of y2 is fractional, the algo-
rithm again creates two new subproblems, with y2 fixed
at 0 and 1. The optimal solution to the subproblem with
y1 = 0 and y2 = 0 is y = (0, 0, 0), with z = 1/8. This estab-
lishes an incumbent integer solution. The subproblem
with y1 = 0 and y2 = 1 is infeasible and can be eliminated
from consideration. The subproblem with y1 = 1 has an
optimal solution with y = (1, 1/4, 0) and objective value
z = 9/16. Since 9/16 is larger than the objective value of
the incumbent solution, this subproblem can be elim-
inated from consideration. Thus the optimal solution
to the example problem is y� = (0, 0, 0) with objective
value z� = 1/8.

Since each subproblem S creates at most two new
subproblems, the set of subproblems considered by the
branch and bound algorithm can be represented as
a binary tree. The above figure shows the branch and
bound tree for the example problem.

There are a number of important issues in the im-
plementation of a branch and bound algorithm for
(MINLP).

The first important issue is how to solve the non-
linear programming relaxations of the subproblems in
step 3. If the objective function f and the constraint
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functions g are convex, while the constraint functions
h are linear, then the nonlinear programming subprob-
lems in step 3 are convex and thus relatively easy to
solve. A variety of methods have been used to solve
these subproblems including generalized reduced gra-
dient (GRG) methods [11], sequential quadratic pro-
gramming (SQP) [4], active set methods for quadratic
programming [8], and interior point methods [16].

However, if the nonlinear programming subprob-
lems are nonconvex, then it can be extremely diffi-
cult to solve the nonlinear programming relaxation of
S or even obtain a lower bound on the optimal ob-
jective function value. For some specialized classes of
nonconvex optimization problems, including indefinite
quadratic programming, bilinear programming, and
fractional linear programming, convex functions which
underestimate the nonconvex objective function are
known. These convex underestimators are widely used
in branch and bound algorithms for nonconvex nonlin-
ear programming problems. Branch and bound tech-
niques for nonconvex continuous optimization prob-
lems can also been used within a branch and bound al-
gorithm for nonconvex mixed integer nonlinear pro-
gramming problems. For instance, the BARON sys-
tem uses this approach to solve a variety of noncon-
vex mixed integer nonlinear programming problems
[17,18]. This approach is also used in the GMIN-˛BB
algorithm to solve nonconvex 0� 1mixed integer non-
linear programming problems with twice differentiable
objective and constraint functions [1].

The choice of the next subproblem to be solved in
step 2 can have a significant influence on the perfor-
mance of the branch and bound algorithm. In mixed
integer linear programming, a variety of heuristics are
employed to select the next subproblem [2]. One pop-
ular heuristic used in branch and bound algorithms for
MILP is the ‘best bound rule’, in which the subprob-
lem with the smallest lower bound is selected. The best
bound rule is widely used within branch and bound al-
gorithms for (MINLP) [4,11,18]

In step 6, there may be a choice of several vari-
ables with fractional values to be the branching variable.
A simple approach is to select the variable whose value
byk is furthest from being an integer [4,11]. In mixed
integer linear programming, estimates of the increase
in the objective function that will result from forcing
a variable to an integer value are often made. These es-

timates, called ‘pseudocosts’ or ‘penalties’, are used to
select the branching variable. Penalties have also been
used in branch and bound algorithms for mixed inte-
ger nonlinear programming problems [11,18].

The performance of the branch and bound algo-
rithm can be improved by computing lower bounds
on the optimal value of a subproblem without actu-
ally solving the subproblem. In [8], lower bounds on
the optimal objective value of a subproblem are derived
from an optimal dual solution to the subproblem’s par-
ent problem. If this lower bound is larger than the ob-
jective value of the incumbent solution, then the sub-
problem can be eliminated from consideration. In [4],
Lagrangian duality is used to compute lower bounds
during the solution of a subproblem. When the lower
bound exceeds the value of the incumbent solution, the
current subproblem can be discarded.

Another way to improve the performance of
a branch and bound algorithm for (MINLP) is to
tighten the formulation of the nonlinear programming
subproblems before solving them. In the BARONpack-
age, dual information from the solution to a nonlinear
programming subproblem is used to restrict the ranges
of variables and constraints in the children of the sub-
problem [17,18].

In branch and cut approaches, constraints called
cutting planes are added to the nonlinear programming
subproblems [3,19]. These additional constraints are
selected so that they reduce the size of the feasible re-
gion of nonlinear programming subproblems without
eliminating any integer solutions from consideration.
This tightens the formulations of the subproblems and
thus increases the probability that a subproblem can be
fathomed by bound. Furthermore, the use of cutting
planes can make it more likely that an integer solution
will be obtained early in the branch and bound pro-
cess. A variety of cutting planes developed for use in
branch and cut algorithms for integer linear program-
ming have been adapted for use in branch and cut al-
gorithms for nonlinear integer programming. These in-
cludemixed integer rounding cuts [3], knapsack cuts [3],
intersection cuts [3], and lift-and-project cuts [19].

To date, little work has been done to compare
the performance of branch and bound methods for
(MINLP) with other approaches such as outer ap-
proximation and generalized Benders decomposition. B.
Borchers and J.E. Mitchell (1997) compared an ex-
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perimental branch and bound code with a commer-
cially available outer approximation code on a num-
ber of test problems [5]. This study found that the
branch and bound code and outer approximation code
were roughly comparable in speed and robustness. R.
Fletcher and S. Leyffer (1998) compared the perfor-
mance of their branch and bound code for mixed in-
teger convex quadratic programming problems with
their implementations of outer approximation, gener-
alized Benders decomposition, and an algorithm that
combines branch and bound and outer approximation
approaches [8]. Fletcher and Leyffer found that their
branch and bound solver was consistently faster than
the other codes by about an order of magnitude.
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The design of batch processes has been a major area
of research for the past several decades. In conjunc-
tion with the design of batch plants, many different ap-
proaches have been proposed for the determination of
an optimal schedule for the plant. It has been recog-
nized for some time that in order to increase the effi-
ciency of batch processes, the two tasks of design and
scheduling should be considered simultaneously.

The problem is to design a batch process consisting
of M processing steps, in which N products are made,
where all materials follow the same path through the
process. This is commonly known as a multiproduct
batch plant, or a flow-shop.

There are two predominant methods for formulat-
ing the batch process design and scheduling problem.
The first is a continuous-time formulation in which the
scheduling information is incorporated through a plan-
ning horizon constraint. This problem can be formu-
lated as a NLP or MINLP depending on whether the
number of parallel units is fixed or variable. The solu-
tion of this problem does not give the actual schedule,
but does guarantee that a feasible schedule exists. A sep-
arate problem, typically a MILP, must be solved to find
the actual schedule.

The second method for formulating the batch pro-
cess design and scheduling problem is based on a state-
task-network (STN) representation. In this approach,
the planning horizon is discretized into time steps. Each
task must be assigned to both a unit and a time slot. The
formulation results in a large MINLP whose solution
provides both the plant design and the actual sched-
ule.

Continuous-Time Formulations

The early work of [10] was based on the single product
campaign (SPC) scheduling policy. In a single product
campaign, all batches of one product are processed one
after the other, followed by all of the batches of the next
product, and so on.

In this approach, the scheduling information is in-
corporated by way of a planning horizon constraint.
This constraint requires that all products must be com-
pleted before the planning horizon, H, is reached. In
a single product campaign, the time between batches
of product i is based on the maximum processing time
over all of the stages,

tLi D max
j
(ti j);

where tLi is the ‘limiting’ time for product i. The plan-
ning horizon constraint can be written as the sum over
all of the products of the limiting time multiplied by the
number of batches of each product

X
i

Qi

Bi
TLi � H;

where Qi is the total production of i and Bi is the batch
size for i. Because Qi and Bi are variables, this results in
a NLP.
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In [4] the authors formulated the batch process de-
sign and scheduling problem as a MINLP. Their model
was based on the SPC model of [10]. In this problem,
more than one piece of equipment per stage is available
for use in parallel. Rather than solve the MINLP rigor-
ously, they relaxed the number of units per stage to be
continuous and solved the resulting NLP. [5] formu-
lated the MINLP using binary 0-1 variables and solved
it with an outer approximation method. In addition to
the combinatorial nature of the problem due to integer
variables, the solution of the problem is complicated by
the nonconvex form of the planning horizon constraint.

[2] developed extensions of the SPC formulation
to allow more efficient utilization of the batch process
equipment. They considered two mixed-product cam-
paign (MPC) scheduling policies,
i) the unlimited intermediate storage (UIS) policy; and
ii) the zero-wait (ZW) policy.
As its name implies, a mixed product campaign allows
batches of different products to be processed sequen-
tially. For example, a SPC schedule for three batches
each of two products A and B would be, AAABBB,
while a MPC schedule could be ABABAB. In the zero-
wait policy, when a product has completed process-
ing in one stage, it must immediately begin process-
ing in the next stage. Conversely, the UIS policy allows
a product to be stored for a period of time before be-
ginning the next processing step. [7] showed that for
the case of zero cleanup times, the UIS policy is the
most efficient mixed-product campaign policy, while
the ZW policy is the most conservative. [2] incorpo-
rated the new scheduling policies into the batch process
design problem by considering the characteristic cycle
time for each policy. The cycle time becomes the ba-
sis upon which the planning horizon constraint is im-
posed.

[3] used the batch design formulation with mixed-
product campaign schedules to formulate the batch
synthesis, design and scheduling problem. In this for-
mulation the number of stages, M, in the batch process
is not fixed. Instead, each product is required to un-
dergo the same sequence, T, of processing tasks. Units
that each can perform one of the tasks are given, and
in addition, ‘superunits’ are postulated that can com-
bine two or more tasks. The problem is to assign tasks
to units, size the units, and determine the number of
parallel units in the batch process.

Problem Formulation

1) Binary variables

YEXj D

(
1 if unit j exists
0 otherwise;

YCc j D

8̂
<̂
ˆ̂:

1 if unit j contains
c parallel units

0 otherwise;

Yt j D

8̂
<̂
ˆ̂:

1 if task t is assigned
to unit j

0 otherwise;

YFt j D

8̂
<̂
ˆ̂:

1 if t is the first task
processed in unit j

0 otherwise:

2) Design constraints
– Task volume requirement, VT

t , depends on batch
size, Bi, of each product and size factor, Sit, for
each product in each task.

VT
t � Bi Si t :

– The volume of a processing unit j must be large
enough to accomodate task t if task t is assigned
to unit j, (Ytj = 1).

Vj � VT
t � VU

j (1 � Yt j):

– The processing time, ptij, for each product in
each unit is given by the corresponding time fac-
tor, tit , for each product in task t if task t is as-
signed to unit j, (Ytj = 1).

pti j �
X
t

ti tYt j :

– The number of batches, ni, multiplied by the
batch size must satisfy the production require-
ment, Qi, for each product.

niBi � Qi :

3) Parallel equipment constraints
– The number of parallel units in each stage j is de-

termined by the binary variable YCcj multiplied
by the number c,

Nj D
X
c

c � YCc j :
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4) Scheduling constraint
– For the UIS policy with zero cleanup times, the

planning horizon constraint derived by [2] is
used,
X
i

ni pti j � H � Nj:

5) Logical constraints
– If a stage j exists, then at least one processing task

must be assigned to it,
X
t

Yt j � YEXj:

– If a stage j does not exist, there can be no tasks
assigned to it,

Yt j � YEXj:

– If a stage j exists, then one of the tasks assigned
to it must be the first task assigned to stage j,
X
t

YFt j D YEXj :

– There cannot be more than one first task as-
signed to each stage,
X
t

YFt j � 1:

– A task can be the first task assigned to a stage
only if the task is among those assigned to the
stage,

YFt j � Yt j :

– No tasks that occur before the first task assigned
to stage j can be among those assigned to the
stage,

Yt0 j � 1 � YFt j for t0 < t:

– If multiple tasks are assigned to a unit, they must
be consecutive tasks,

Yt j � YFt j C Yt�1; j:

– One and only one binary variable that deter-
mines the number of parallel units in stage jmust
be active,
X
c

YCc j D 1:

6) Objective function
– The objective is to minimize the cost of the plant.

[3] used a fixed-charge cost for each unit, � j, plus
a nonlinear cost function on the size of the unit,

Cost D
X
j

N j

h
� j C ˛ jV

ˇ j
j

i
:

This formulation is a MINLP where all binary variables
participate linearly and separably. However, it is a non-
convex problem due to the cost function, and the bi-
linear terms in the batch size constraints and the plan-
ning horizon constraints. [3] used the outer approxima-
tion method implemented in DICOPT ([11]) to solve
a number of example problems. Due to the nonconvex-
ities in the formulation, there is no guarantee of global
optimality with the outer approximation method, but
they report good results for the examples presented in
the paper.

Two examples are briefly discussed to illustrate the
proposed approach for multiproduct batch plants with
a variety of scheduling policies. The first example con-
sists of three products with four processing tasks and
five potential units and superunits. The MINLP formu-
lation with the SPC policy contains 33 binary variables
and 54 continuous variables. With the ZW policy, the
number of binary variables drops to 8, with 98 contin-
uous variables. For the UIS policy, the formulation has
33 binary variables with 51 continuous variables.

The second example is larger and contains 6 prod-
ucts with 7 potential units and superunits. The SPC pol-
icy formulation contains 46 binary variables and 101
continuous variables. The MINLP formulation for the
ZW policy has 11 binary and 374 continuous variables.
The UIS policy formulation has 46 binary and 95 con-
tinuous variables. In all cases the examples were solved
in less than 50 minutes using GAMS/DICOPT ++ on
Microvax II.

Discrete-Time Formulations

A.P.F.D. Barbosa-Póvoa and S. Macchietto, [1], pro-
posed a MILP formulation to address the problem of
optimal batch design by simultaneously considering
optimizing production schedule. They based their for-
mulation on
a) an extended state-task-network (mSTN) represen-

tation of the batch plant; and
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b) the discrete time representation using uniform time
discretization.

In the STN representation, proposed in [6], all the
materials are represented as states processed through
a set of processing steps (‘tasks’). In order to incorpo-
rate connectivity constraints the extended state-task-
network (mSTN) is proposed involving the alternative
design configurations considering all permitted equip-
ment and connections allocations. Single campaign is
assumed with a cyclic schedule of cycle time T repeated
over a planning horizon H. A cycle represents a se-
quence of operations involving the production of all
products and the utilization of all resources. The op-
erational characteristics such as the allocation of equip-
ments to tasks, batch sizes, task timings, transport of
material and storage profiles are identical in each cycle.
The mathematical formulation they proposed involves:
� allocation constraints for the assignment of the tasks

to the units
� capacity constraints expressing the limiting equip-

ment capability
� connectivity constraints for determining the con-

nection of different units
� dedicated storage constraints
� mass balances
� production requirement constraints
� an objective function, which is chosen to be either

the minimization of the capital cost or the maxi-
mization of plant profit.

The main variables of the formulation are:
a) binary structural variables representing the exis-

tence of an equipment;
b) binary allocation variables for the assignment of

a task to a unit at the beginning of a time period;
c) continuous variables representing the capacity of

a unit;
d) continuous variables corresponding to the batch

size of a task to a unit at each time period;
e) amount of material delivered and received at each

time period;
f) the amount of material transfered at each time pe-

riod; and
g) the amount of material stored at each time period.
The proposed formulation correspond to a mixed in-
teger linear programming (MILP) problem since they
used linear cost functions to express the capital cost of
equipments and time discretization to represent time.

Three examples were solved illustrating:
a) the effect of limited connectivity and connection

cost in the optimal design;
b) the advantages of considering simultaneously the

plant design and plant connectivity rather than op-
timizing first the equipment sizes and then optimiz-
ing plant connectivity.
In later work, Barbosa-Póvoa and C.C. Pantelides,

[1], proposed a new mathematical formulation for the
optimization of batch plant design considering detailed
operation characteristics (i. e., short term schedul-
ing). This formulation also considers a uniform time
discretization, the only difference lies in the plant
representation. The resource-state-task (RTN) plant
representation, [9], was used which corresponds to
a more general and uniform description of all avail-
able production resources. However, the new formu-
lation shares the main characteristics of the previous
presented one with the same basic variables, and con-
straints.

Both formulations share the limitations of the dis-
crete time formulations, which are that:
i) they correspond to an approximation of the time

horizon; and
ii) they result in an unnecessary increase of the number

of binary variables in particular, and in the overall
size of the mathematical model.

A continuous-time formulation was proposed in [12],
based on the STN representation and the scheduling
formulation proposed in [13]. It gives rise to amixed in-
teger nonlinear programming problem which is solved
using a stochastic MINLP optimizer based on an evolu-
tionary algorithm (EA) with simulated annealing (SA)
presented in [12]. The method is based on a guided
stochastic generation of alternative vectors of decision
variables, which explore promising areas of the search
space through selection, crossover, and mutation oper-
ations applied to individuals in a population of solu-
tion candidates. It can be used to deal with nonconvex,
nondifferentiable functions although it has no guaran-
tee of convergence to even a local optimal solution. The
proposed formulation involves the following basic vari-
ables:
� Main design variables representing the discrete deci-

sions of selecting a unit (j), Ej, or a storage (s), Es, or
continuous decisions corresponding to the capacity
of unit storage or utility,Vj,Vs, andUu, respectively.
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� Main operation variables corresponding to the dis-
crete decision of allocation of task (i) in unit (j) at
time Tl, Wijl, and the decision of assigning task (i)
in unit (j) between starting time Tl and end time
Tl0 , and continuous variables, the time of event (l),
Tl, the batch size, the processing time and utility re-
quirement of task (i) allocated to unit (j) starting at
Tl, Bijl, � ijl, Uu

ijl, respectively,
Based on these variables the proposed formulation in-
volves:
1) Processing task models:

Uu
i jl D ˛

u
i jl C ˇ

u
i jB

�ui j
i j l ;

expressing the consumption-generation of utilities
as a function of batch size;

�i j l D ˛i j l C ˇi jB
�i j
i j l

C
X
u

�u
i jU

u
i jl C

X
˛

�˛i jA
˛
j l ;

expressing the dependence of processing time, � ijl,
of batch size, Bijl, utilities, Uu

i jl , and unit availabili-
ties, A˛j l .

2) Batch size constraints:

�min
i j VjWi jl � Bi jl � �

max
i j VjWi jl

imposing the maximum and minimum capability
of unit (j) when task (i) is performed.

3) Timing constraints:

Wi jl (�i j l C Tl ) D
X
l 0>l

Xi jl l 0Tl 0 ;

which establish the relationship between process-
ing time, � ijl, and time of event (l), Tl.

0 � T1 � T2 � � � � � Tlmax � H;

expressing the monotonic increase in event times.
4) Allocation constraints:

0 �
X
i2I j

X
l 00�l 0

Wi jl 00 �
X
i2I j

X
l<l 00

X
l 00�l 0

Xi jl l 00 � Ej;

X
i2I j

X
l 00�lmax

Wi jl 00 D
X
i2I j

X
l<l 00

X
l 00�lmax

Xi jl l 00 ;

Wi jl D
X
l 0>l

Xi jl l 0 ;

expressing the relationship between Wijl and Xijll0

operation variables, [13].

5) Material balances written for state s at event time
Tl:

Csl 0 D Csl 0�1

C
X
i2Is

X
j2J i

�insi j

X
l<l 0

Bi jl Xi jl l 0

�
X
i2Is

X
j2J i

�outsi j Bi jl 0 ;

0 � Csl 0 � Vs0 C Vs :

6) Utility constraints written for utility (u) at event
time Tl:

Uul 0 D Uul 0�1

C
X
i2Iu

X
j2J i

X
l<l 0

Uu
i jl Xi jl l 0

�
X
i2Iu

X
j2J i

Uu
i jl 0Wi jl 0 ;

0 � Uul 0 � Uu ;

Uuc D
X
i2Iu

X
j2J i

X
l

Uu
i jl Ti jlWi jl :

7) Availability constraints written for unit (j) at event
time Tl:

A˛j l 0C1 D
X
i2I j

A˛j l 0˛
˛
i jWi jl 0 �

X
i2I j

ˇ˛i jWi jl 0 ;

A˛j l 0 �
X
i2I j

�˛i jWi jl 0 :

8) Existence constraints:
X
i2I j

Wi jl � Ej;

Vmin
j E j � Vj � Vmax

j E j;

Vmin
s Es � Vs � Vmax

s Es ;

that correspond to logical restrictions on produc-
tion unit and storage tank size if this unit-storage
tank is present at the optimal design.

9) Production constraints:

Cslmax � Rs ;

expressing the requirement of producing at least as
much as the market demands for state (s).
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10) Objective function:

Profit D
X
s2Sp

psCslmax

C
X
s2Si

ps(Cslmax � Cs0)

�
X
s2S f

psCs0 �
X
u

cuUuc ;

the first two terms represent the revenue due to
product and intermediate state production, respec-
tively, whereas the last two terms express the cost
of raw materials and utilities, respectively,

Cost D
X
j

(Ejęj C ějV
e� j
j )

C
X
s

(Esęs C ěsVe� s
s );

the first term represent the cost of installing pro-
duction unit (j), whereas the second term corre-
spond to the cost of storage tank (s).

Objective D Cost � Profit:

This above formulation correspond to a MINLP prob-
lem with decision variables: Wijl, Xijll0 , Bijl, Uu

i jl , Tl that
correspond to plant operation and Ej, Es, Vj, Vs, Uu

that represent design decisions. Nonconvexities appear
in the timing constraints, material balances, utility con-
straints as bilinear products of binary and continuous
variables and in the objective function in power form

of the type Ve� j
j and Ve� ss . The authors proposed an

evolutionary algorithm (EA) with simulated annealing
(SA), [12], to solve this problem. They utilized simu-
lated annealing to improve the poor local search abil-
ity of EA. A suitable encoding procedure is proposed
which results in reduction in the number of constraints
and variables by up to 50%. In particular, they explored
the mathematical structure of the problem in the fol-
lowing sense. If Wijl = 1 and Xijll0 = 1, unit j exists,
it executes operation k which starts at STj = l finishes
at FTj

k = l0 involving task TSjk = i with batch size BSjk
= Bijl and utility usage U j

uk = Uu
i jl . So they proposed

to replace Wijl, Xijll0 , Bijl and Uu
i jl by the operation se-

quence of tasks in units: task sequence TSj = (i1, . . . ,
iN j), task batch size BSj = (B1, . . . , BN j ), task utility

usage U j
u = (Uu

1 , . . . , U
u
N j
), start time STj = (l1, . . . ,

lN j), finish time FTj = (l01, . . . , l0N j ). In this way the
decision variables become (Ej, Vj, Es, Vs, Uu, Tl, TSj,
BSj, Uj

u, STj, FTj). The algorithm starts with an ini-
tial guess and evolves a number of candidate instances
for these variables. The allocation and the capacity con-
straints are automatically satisfied by each candidate so-
lution and Tl are chosen so that the timing constraints
are also satisfied. Two examples are presented to il-
lustrate the applicability of the proposed approach to
solve batch design problem involving detailed schedul-
ing constraints. Linear and nonlinear task processing
times and unit cost models are considered for both the
examples. For the first example considering linear func-
tions for processing times and unit cost models the re-
sults obtained are compared with a discrete time for-
mulation, [8], and found to outperform it in terms of
number of variables which is expected since the for-
mulation is based on the continuous time description
and the computational requirement for the solution of
their model. Considering nonlinear models for pro-
cessing times and unit costs, the resulting model for
a problem with 4 production units, 4 storage tanks, 5
tasks and 4 states, involves 62 integer and 34 contin-
uous variables and 122 constraints. This example was
the largest presented in this work, and required consid-
erable computational effort, 7849.23 CPU seconds on
a SUN ULTRAstation-1.
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Decomposition methods, such as the classical Benders
decomposition (cf.� Generalized Benders decomposi-
tion), [1], and Dantzig–Wolfe decomposition, [3], have
been used to solve many different large structured opti-
mization problems, by decomposing themwith the help
of relaxation of constraints or fixation of variables. The
success of such an approach depends very much on the
structure of the problem. In some cases these methods
are very efficient, but in other cases they are not com-
petitive with other techniques.

However, the simple elegance of these basic princi-
ples has inspired many researchers to propose modifi-
cations of the basic methods, mostly aimed at improv-
ing the efficiency of the methods, but also aimed at ex-
tending the applicability of the approaches.

Dantzig–Wolfe decomposition, originally for linear
programming problems, [3], has been extended to con-
vex nonlinear programming problems, [2], under sev-
eral names, for example generalized linear program-
ming. We will here simply use the term ‘nonlinear
Dantzig–Wolfe decomposition’.
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Benders decomposition, originally for linear mixed
integer programming problems, [1], has been extended
to partly convex nonlinear programming problems, [5],
under the name ‘generalized Benders decomposition’.

On the other hand, among the numerous sugges-
tions for modifications to increase the efficiency, there
is one which in a way shares the simplicity and clear
principle of the basic methods, namely cross decom-
position, [11]. Usually described as a combination of
Benders decomposition and Dantzig–Wolfe decompo-
sition, simultaneously using the two methods in an it-
erative manner, the method borrows its basic conver-
gence properties from these two methods. However,
one can also view cross decomposition as the more gen-
eral method, and Benders and Dantzig–Wolfe decom-
position as modifications of cross decomposition, ob-
tained by excluding one of the subproblems and one of
the master problems.

Cross decomposition was originally developed for
linear mixed integer programming problems, [11], but
the approach is more general and not restricted to such
problems. The first application of cross decomposition
was to the capacitated facility location problem, [12],
and produced a solution method which is recognized
as one of the most efficient existing methods for that
problem. However, another early application was to the
stochastic transportation problem (a convex problem
with linear parts), [10].

Here we will describe ‘generalized cross decompo-
sition’, which was first proposed in [6], and more thor-
oughly treated in [7]. The generalization of the proce-
dure, parallel to that in [5] for generalized Benders de-
composition, enables the solving of nonlinear program-
ming problems with convex parts, for example nonlin-
ear mixed integer programming problems, see for ex-
ample [4].

The Problem

Consider the following general optimization problem.

(P)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

v� D min f (x; y)
s.t. G1(x; y) � 0

G2(x; y) � 0
x 2 X
y 2 Y

where X and Y are compact, nonempty sets. Assume
that X is convex and f , G1 and G2 are proper convex
functions in x for any fixed y 2 Y , i. e. that the problem
is convex in x. Also assume that that f , G1 and G2 are
bounded and Lipschitzian on (X, Y). Note that we do
not assume any convexity in the y-variables. An impor-
tant case is when Y is a (finite) set of integers.

Furthermore we assume the following (as was done
in [5] for generalized Benders decomposition). The op-
timization with respect to x of the Lagrangian func-
tions must be possible to do ‘essentially indepen-
dent’ of y (called property P by A.M. Geoffrion). We
therefore assume that the functions q1, q2, q3 and
q4 exist, such that f (x, y) + u>1 G1(x, y) + u>2 G2(x,
y) = q1(q3(x, u), y, u), 8x, y, u, and eu>1 G1(x; y) C
eu>2 G2(x; y) D q2(q4(x;eu); y;eu), 8x; y;eu, where q3
and q4 are scalar functions, q1 and q2 are increasing
in their first argument, and eu is assumed to belong
to the set of all possible nonnegative, normalized di-
rections C D

˚eu � 0 : e>eu D 1
�
, where e is a vec-

tor of ones. Since f , G1 and G2 are convex in x and
bounded and Lipschitzian on (X, Y), the same applies
to q1 for any fixed u � 0, and to q2 for any fixed
eu 2 C.

The optimal solution of P is denoted by (x�, y�).
We will also mention the case when P is convex, i. e.
where f , G1 and G2 are convex functions (in y too) and
Y is a convex set. Lagrangian duality can be used to get
a dual solution (the optimal Lagrange multipliers), de-
noted by u� = (u�1 , u�2 ).

Let us for convenience introduce the following no-
tation.

L(x; y; u) D f (x; y)C u>1 G1(x; y)C u>2 G2(x; y);
eL(x; y;eu) Deu>1 G1(x; y)Ceu>2 G2(x; y);

L1(x; y; u1) D f (x; y)C u>1 G1(x; y);
eL1(x; y;eu1) Deu>1 G1(x; y):

The Primal Master Problem

Using the primal structure of (P) we can rewrite it as

v� D min
y2V

h(y);
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where 8y = 2 V ,

8̂
ˆ̂̂<
ˆ̂̂̂
:

h(y) D min f (x; y)
s.t. G1(x; y) � 0

G2(x; y) � 0
x 2 X

and

V D
�
y 2 Y : 9x 2 X :

G1(x; y) � 0;
G2(x; y) � 0

	
:

The problem is convex in x, so we can use La-
grangian duality to get, 8y 2 V ,

h(y) D max
u�0

min
x2X

L(x; y; u):

A similar expression can be obtained for V :

V D
�
y 2 Y :

�
maxeu2C min

x2X
eL(x; y;eu)

�
� 0

	
:

The full primal master problem is given below:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

v� D min q
s.t. q � min

x2X
L(x; y; u); 8u � 0;

0 � min
x2X

eL(x; y;eu); 8eu 2 C;

y 2 Y :

This problem has an infinite number of constraints,
one for each nonnegative dual point and one for each
nonnegative dual direction. Each constraint contains an
optimization problem (minimization with respect to x),
which should in theory be solved for all y 2 Y before
the main problem, miny 2 Yh(y), can be solved. How-
ever, we have

min
x2X

L(x; y; u) D q1
�
min
x2X

q3(x; u); y; u
�

and

min
x2X

eL(x; y;eu) D q2
�
min
x2X

q4(x;eu); y;eu
�
:

Since q1 and q2 are proper, convex, bounded and
Lipschitzian on X, and X is compact and convex, the
optima in x (for fixed u andeu) will be attained. q1 and
q2 are increasing in their first argument, so the mini-
mization in x can be made in q3 and q4 instead, and
the value of y will thus not influence the result of this
minimization. The minimization over x can be made
once (for any y) and the result will then be true for all
y 2 Y .

The relaxed primal master problem only contains
a finite number of cuts (with index sets PU and RU)
which gives an approximate description of h(y) and
V , and an optimal objective function value, vPM � v�.
Since the part of the problem that is described by the
constraints is convex in x, vPM will converge asymptot-
ically towards v� as the sets of constraints grow.

The constraints can now be expressed as

q � q1
�
min
x2X

q3(x; u(k)); y; u(k)
�
; 8k 2 PU ;

0 � q2
�
min
x2X

q4(x;eu(k)); y;eu(k)
�
; 8k 2 RU :

The minimization in x can now be made indepen-
dently in each constraint, since the other arguments in
q3 and q4, namely u andeu, are fixed. Since the minima
are attained, we use the notation x(k), 8k 2 PU , andbx(k),
8k 2 RU , for the minimizers of q3 and q4.

Inserting this, we obtain the final form of the relaxed
primal master problem.

(PM)

8̂
ˆ̂̂<
ˆ̂̂̂
:

vPM D min q
s.t. q � L(x(k); y; u(k)); 8k 2 PU ;

0 �eL(bx(k); y;eu(k)); 8k 2 RU ;

y 2 Y :

The constraints in the first set are called value cuts,
and those in the second set are called feasibility cuts.

The Dual Master Problem

Using Lagrangian duality on (P) yields a relaxation and
a lower bound, vL, on v�:

vL D max
u1�0

g(u1)
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where, 8u1 � 0,

8̂
ˆ̂̂<
ˆ̂̂̂
:

g(u1) D min L1(x; y; u1)
s.t. G2(x; y) � 0

x 2 X
y 2 Y :

This leads to a dual master problem, which is a convex-
ification of the problem. If (P) is not convex a duality
gap might occur. We denote the subset of the solutions
that are included by (x(k), y(k)), 8k 2 PX , and obtain the
restricted dual master problem as

(DM)

8̂
ˆ̂̂<
ˆ̂̂̂
:

vDM D max q
s.t. q � L1(x(k); y(k); u1);

8k 2 PX ;
u1 � 0:

The Subproblems

The primal subproblem is a convex problem in x, ob-
tained by fixing y to y.

(PS)

8̂
ˆ̂̂<
ˆ̂̂̂
:

h(y) D min f (x; y)
s.t. G1(x; y) � 0

G2(x; y) � 0
x 2 X:

A solution to (PS) is assumed to consist of both a pri-
mal solution, x(k), and a dual solution, (u(k)1 , u(k)2 ). Due
to the convexity we can use Lagrangian duality without
creating a duality gap.

(PSL) h(y) D sup
u�0

min
x2X

L(x; y; u):

If (PS) is infeasible, (PSL) will be unbounded in u, and
a solution is represented by a direction, eu(k). A valid
cut for the primal master problem also requires a cor-
responding primal solution,bx(k), obtained by solving

min
x2X

eL(x; y;eu(k)):

(Note thatbx(k) is not feasible in (PS).)

The dual subproblem is the following (nonconvex)
problem, obtained by relaxing the first set of constraints
in (P) and fixing the Lagrange multipliers u1 to u1:

(DS)

8̂
ˆ̂̂<
ˆ̂̂̂
:

g(u1) D min L1(x; y; u1)
s.t. G2(x; y) � 0

x 2 X
y 2 Y

To handle unbounded dual solutions,eu1, we can use the
following subproblem:

(UDS)

8̂
ˆ̂̂<
ˆ̂̂̂
:

ev(eu1) D mineL1(x; y;eu1)
s.t. G2(x; y) � 0

x 2 X
y 2 Y :

(UDS) does not produce a bound on v�, but ifev(eu1) � 0
it yields a dual cut that will eliminateeu1.

The Cross Decomposition Algorithm

In the subproblem phase of the cross decomposition
method we iterate between the primal subproblem (PS)
and the dual subproblem (DS) (or (UDS)).

The primal subproblem, (PS), supplies an upper
bound, h(y), on v�, and u1 for the dual subproblem.
The dual subproblem, (DS), supplies a lower bound,
g(u1), on v�, and y for the primal subproblem. If (PS)
has an unbounded solution,eu1, we use (UDS) (instead
of (DS)) to get y.

Unfortunately, the lack of controllability for the im-
portant parts of the solutions, y and u1, which occurs
unless the problem is strictly convex, implies that this
procedure alone cannot be expected to converge to the
optimal solution.

We therefore need to use the master problems to en-
sure convergence. (PM) or (DM) can be solved with all
the constraints generated by the subproblem solutions.
We have all the known results for generalized Benders
or nonlinear Dantzig–Wolfe decomposition to fall back
on, so this technique is well known. After the solution
of one master problem, the subproblem phase is reen-
tered. (We do not switch to Benders or Dantzig–Wolfe
decomposition completely.)
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MINLP: Generalized Cross Decomposition, Figure 1

We will later describe convergence tests that tell us
exactly when to use a master problem. The existence
of such convergence tests is a very important aspect of
cross decomposition. Let us, before getting any further,
give below a short algorithm for cross decomposition
algorithm.

Let us denote the convergence test in step 3 (before
(PS)) by CTP and the convergence test in step 6 (before
(DS)) by CTD. The optimality tests (step 2 and step 5)
are included in the convergence tests, and the decision
about where to go is based on the results of both tests.
The algorithm is pictured in Fig. 1.

0 Get a starting u.
1 Solve (DS) (or (UDS)).
2 IF optimal go to 8.
3 IF not convergence, go to 7A (or 7B).
4 Solve (PS).
5 IF optimal go to 8.
6 IF not convergence go to 7B (or 7A). ELSE

go to 1.
7A Solve (PM). Go to 4.
7B Solve (DM). Go to 1.
8 Stop. The solution from (PS) is optimal.

We can start with either one of the subproblems, so
a good primal starting solution can also be utilized.

If CTP indicates that (PS) will not give further con-
vergence, we use (PM). If CTD indicates failure of con-
vergence for (DS), we can use (DM) (which however
gives certain convergence only if (P) is convex). After
(PM) we go to (PS) and after (DM) we go to (DS), in
order to make use of the output of the master problems.
In the general nonconvex case, it is not necessary to use
(DM). It is even possible to omit the convergence tests
CTD if only (DM) is used.

The Convergence Tests

Returning to the question of convergence in the sub-
problem phase, we make the following definitions of "-
improvements.

‘"-bound-improvement’ is an improvement of at
least " of the upper or lower bound.

‘"-cut-improvement’ is a generation of a new, so far
unknown cut, that is at least " better (i. e. has a value of
at least " higher or lower) than all known cuts at some
point.

Discussing linear mixed integer problems, as in [11],
one can let " = 0. In such a case we simply omit " from
the above notation.

Cut-improvement thus means that a new cut will
be included in one of the restricted master problems
and that the description of the functions h(y) or g(u1)
or the set Y is refined. By ‘improvement’ we will, in
the rest of this paper mean bound-improvement and/or
cut-improvement. When using unbounded solutions
as input no finite bounds are obtained, so bound-
improvement can not appear. Also, a cut giving a cut-
improvement can be a value cut or a feasibility cut, i. e.
generated by output in the form of unbounded as well
as bounded solutions.

Let us by primal cut-improvement denote genera-
tion of a primal cut (for (PM)) and by dual cut-im-
provement denote generation of a dual cut (for (DM)).
We also use the notation ‘primal’ or ‘dual bound-im-
provement’ to indicate which of the two subproblems
that gave the improvement, i. e. primal bound-improve-
ment means that h(y) < v and dual bound-improve-
ment means that g(u1) > v. (v is the least upper bound
known and v the largest lower bound known.)

The convergence tests are originally formulated to
give the answers to the following questions.
� Can y give a bound-improvement in (PS)?
� Can u1 give a bound-improvement in (DS)?
Testing extreme rays, eu1, for convergence, we note
that the subproblem (UDS) can not give bound-
improvement. We call the test of unbounded solutions
CTDU.

We now give the convergence tests, CT, with strict
inequalities, following [11]:
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CTP If L(x(k); y; u(k)) < v, 8k 2 PU , andeL(bx(k); y;eu(k)) < 0, 8k 2 RU , then y will
give primal improvement. If not, use a mas-
ter problem.

CTD If L1(x(k); y(k); u1) > v, 8k 2 PX , then u1
will give dual improvement. If not, use
a master problem.

CTDU IfeL1(x(k); y(k);eu1) > 0, 8k 2 PX , theneu1
will give dual cut-improvement. If not, use
a master problem.

We call CTD and the first part of CTP value conver-
gence tests and CTDU and the second part of CTP fea-
sibility convergence tests. This conforms to the notation
of value and feasibility cuts in the master problems.

One can show that the convergence tests CTP and
CTD are necessary for bound-improvement and suffi-
cient for cut- or bound-improvement, see [7]. The con-
vergence tests CTDU are sufficient for cut-improve-
ment.

However, there can be an infinite number of primal
and/or dual improvements, so one can not be certain
that CT will fail within a finite number of steps. For this
reason it is necessary to consider "-improvements.

We need the following "-convergence tests, CT ":

CTP" If L(x(k); y; u(k)) � v � ", 8k 2 PU , andeL(bx(k); y;eu(k)) � �",8k 2 RU , then y will
give primal "-improvement. If not, use a
master problem.

CTD" If L1(x(k); y(k); u1) � v + ", 8k 2 PX , then
u1 will give dual "-improvement. If not,
use a master problem.

CTDU" IfeL1(x(k); y(k);eu1) � ", 8k 2 PX , theneu1
will give dual "-cut-improvement. If not,
use a master problem.

The "-value convergence tests correspond to the value
cuts of the master problems, and the " used corresponds
directly to a change of " of the bounds ("-bound-
improvement). The "-feasibility convergence tests, on
the other hand, correspond to feasibility cuts of the
master problems, and the " used corresponds to the
‘infeasibility’ it gives some previously feasible points,
which is what we call "-cut-improvement for feasi-
bility cuts. While these "-tests are sufficient for "-

improvement, they are not necessary. To prove ne-
cessity would require an inverse Lipschitz assumption,
namely that for points a certain distance apart, the value
of a function (the feasibility cut) should differ by at least
a certain amount. The following result is proved in [7].

The "-value convergence tests of CTP ", the feasi-
bility convergence tests of CTP and the "-convergence
tests CTD " are necessary for "-bound-improvement.
The "-convergence tests CT " are sufficient for "-
bound- or "-cut-improvement, in the sense that they
are sufficient for one of the following.
I) "-bound-improvement.
II) "-cut-improvement.
III) "1-bound-improvement and "2-cut-improvement,

where "1 + "2 = ".
Now it is possible to verify finiteness of the convergence
tests. A formal proof for this can be found in [7]. The
following reasoning is used.

When the bounded set Y is completely described
with an accuracy better than " by either value cuts or
feasibility cuts, the "-convergence tests will fail (if not
earlier). Each time the "-convergence tests do not fail,
we will get improvement according to one of the three
cases mentioned above.

A finite number of "-bound-improvements is obvi-
ously sufficient to decrease the finite distance between v
and v� to less than ". After an "-cut-improvement, the
new cut describes h(y) with an accuracy better than " in
the area around y where h(y) < L(x(l), y, u(l)) + ". Due
to the Lipschitzian property of the functions f , G1 and
G2, there is a least distance, ı, proportional to ", from
y to any point y violating this inequality, and the "-
convergence tests will fail for any point with a distance
to y less then ı. The bounded set V can be completely
covered by a finite number of such areas.

In the third case, an "1-bound-improvement to-
gether with an "2-cut-improvement, where "1 + "2 = ",
we can ignore the least of "1 and "2, leaving us with the
other one greater or equal to "/2. This yields one of the
two cases above, so exchanging " for "/2 finiteness is
still assured.

For unbounded solutions to (PS), any y satisfying
eL(bx(l ); y;eu(l )) > �" will make the "-convergence tests
fail, and because of the Lipschitzian property of G1 and
G2 there is a least distance, ı (proportional to "), from
y to any y not making the "-convergence tests fail. Thus
an area of a certain least size is made ‘infeasible’, and
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the bounded set Y \ V can be covered by a finite set of
such areas. Thus CTP " will fail within a finite number
of steps.

Note that it is enough that CTP " fails. To obtain
finiteness we do not need to use CTD ", even if it
might be useful in practice. We cannot show that CTD
"will fail within a finite number of steps. Dual "-bound-
improvement can only occur a finite number of times,
but dual "-cut-improvement can occur an infinite num-
ber of times, since the area to be covered by the cuts is
the nonnegative orthant of u1.

We therefore require that (PM) is used regularly.
(One could even skip (DM) completely.) The following
is our main result.

Theorem 1 The generalized cross decomposition algo-
rithm equipped with "-convergence tests CT " finds an
"-optimal solution to (P) in a finite number of steps, if
the generalized Benders decomposition algorithm does.

All the results for generalized Benders decomposition
can be directly used for generalized cross decomposi-
tion, especially the following two.

In [5] it is shown that generalized Benders decom-
position has finite exact convergence if Y is a finite dis-
crete set. The worst case is solving the primal subprob-
lem with each possible y 2 Y , which will give a perfect
description of h(y) and V on Y .

Therefore we know that if Y is a finite discrete
set, the generalized cross decomposition algorithm will
solve P exactly in a finite number of steps.

It is also shown in [5] that generalized Benders de-
composition terminates in a finite number of steps to
an "-optimal solution, i. e. where v � v � " for any
given " > 0, if the set of interesting (u1, u2)-solutions
(possible optimal solutions to the primal subproblem)
is bounded and Y � V . This makes the primal feasibil-
ity cuts (and the corresponding convergence tests) un-
necessary. So for generalized cross decomposition, we
know the following.

If h(y) is bounded from above for all y 2 Y , i. e.
(PS) has a feasible solution for every y 2 Y , then the
cross decomposition algorithm (without UDS and the
"-feasibility convergence tests of CT ") will yield finite
"-convergence, i. e. yield v� v � " in a finite number of
steps, for any given " > 0.

If Y 6� V one might get asymptotic convergence
of the feasibility cuts, i. e. solutions getting closer and

closer to the feasible set, but never actually becomes
feasible. If one is reluctant to base a stopping criterion
on "-feasible solutions, one could use penalty functions,
which transforms feasibility cuts to value cuts and gives
better possibilities of handling cases where Y 6� V . One
could also use artificial variables for this purpose. As for
nonlinear penalty function techniques, one should not
forget the Lipschitzian assumption made.

The practical motivation behind cross decomposi-
tion is to replace the hard primal master problem with
the easier dual subproblem to the largest possible ex-
tent. Therefore the theoretical result that generalized
cross decomposition equipped with "-convergence tests
does not have asymptotically weaker convergence than
generalized Benders decomposition, is quite satisfac-
tory.

Finally one might mention that these approaches
also has been applied to pure (not mixed) integer pro-
gramming problems in [8] (nonlinear) and [9] (linear).
In such cases, various duality gaps appear, and exact so-
lution is not possible. However, the approach may be
useful for obtaining good bounds on the objective func-
tion value, which are to be used in branch and bound
methods.
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The ˛BB global optimization algorithm for continu-
ous twice-differentiable NLPs (cf. � ˛BB algorithm)
[2,4,5,6,8,18] can be used to design global optimiza-
tion algorithms for mixed integer nonconvex problems
[1,3,7]. One such algorithm, the special structure mixed
integer ˛BB algorithm (SMIN-˛BB) is designed to ad-
dress the class of MINLPs in which all the integer
variables are binary variables that participate in linear
or mixed-bilinear terms and in which the nonconvex
functions in the continuous variables have continuous
second order derivatives. This algorithm is an extension
of the ˛BB algorithm and branching is performed on
both the continuous and the binary variables. A second
algorithm, the general structure mixed integer ˛BB al-
gorithm (GMIN-˛BB), guarantees convergence to the
global optimum of a much broader class of problems.
The integer variables may participate in the problem in
a very general way, provided that the continuous relax-
ation of the MINLP is C2 continuous. This article de-
scribes both algorithms.

The SMIN-˛BB Algorithm

The SMIN-˛BB algorithm [1,3,7] guarantees finite �-
convergence to the global solution of MINLPs belong-
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ing to the class
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x;y

f (x)C x>A f yC c>f y

s.t. gi (x)C x>Ag;iyC c>g;iy � 0;
i D 1; : : : ;m;

h(x)C x>Ah;iyC c>h;iy D 0;
i D 1; : : : ; p;

x 2 [xL; xU ]
y 2 f0; 1gq

(1)

where f (x), g(x), and h(x), are continuous, twice-
differentiable functions, m is the number of inequality
constraints, p is the number of equality constraints, q
is the dimension of the binary variable vector, Af , Ag, i

and Ah, i are n × q matrices, and cf , cg, i and ch, i are q-
dimensional vectors.

The main features of any branch and bound algo-
rithm are the strategy used to generate valid lower and
upper bounds for the problem and the selection criteria
for the branching node and the branching variable. Op-
tionally, a procedure to tighten the variable boundsmay
be considered. Each one of these issues is examined in
the context of the SMIN-˛BB algorithm.

Generation of Valid Upper and Lower Bounds

A local solution of the nonconvex MINLP (1) using one
of the algorithms described in [13] constitutes a va-
lid upper bound on the global optimum solution of
that problem. The generalized Benders decomposition
(GBD) [10,14] or a standard MINLP branch and bound
algorithm (B&B) [9,11,15,19,20] may be used to ob-
tain such a solution. When there are no mixed-bilinear
terms, the outer approximation with equality relaxation
(OA/ER) [12,16]may also be used. Alternatively, the bi-
nary variables may be fixed to a combination of 0 and 1
values and the resulting nonconvex NLP may be solved
locally.

A relaxed problem which can be solved to global
optimality must be constructed from problem (1) in
order to obtain a valid lower bound. The class of
MINLPs in which the continuous functions f (x), gi(x),
and hi(x), are convex can be solved to global opti-
mality using the GBD or B &B algorithms, and, when

there are no mixed-bilinear terms, the OA/ER algo-
rithm. To identify a guaranteed lower bound on the so-
lution of the problem, it therefore suffices to construct
convex underestimators for the nonconvex functions
f (x), gi(x), and hi(x), and to solve the resulting prob-
lem with one of these algorithms. The rigorous con-
vexification/relaxation strategy used in the ˛BB algo-
rithm for nonconvex continuous problem [2,4,5,6] al-
lows the construction of the desired lower bounding
MINLP. This scheme is based on a decomposition of
the functions into a sum of terms with special mathe-
matical structure, such as linear, convex, bilinear, trilin-
ear, fractional, fractional trilinear, univariate concave
and general nonconvex terms. A different convex relax-
ation technique is then applied for each class of term.
The fact that a summation of convex functions is it-
self a convex function is then used to construct overall
function underestimators and arrive at a convex lower
bounding MINLP.

Selection of Branching Node

A list of the lower bounds on all the nodes that have not
yet been explored during the branch and bound pro-
cedure is maintained. A number of approaches can be
used to select the next branching node, such as depth-
first, breadth-first or smallest lower bound first. Since
the purpose of the algorithm is to identify the global so-
lution of the problem, all promising regions, that is, all
regions for which the lower bound is less than or equal
to the best upper bound on the solution, must be ex-
plored. The strategy that usually minimizes the num-
ber of nodes to be examined and therefore the CPU re-
quirements of the algorithm is used to choose the next
branching node in the SMIN-˛BB algorithm. Thus, the
node with the smallest lower bound is selected.

Selection of Branching Variable

Several strategies can be used to select the next vari-
able to be branched on. If a continuous variable is judi-
ciously chosen, the partition results in an improvement
of the lower bound on the problem through a tighten-
ing of the convex relaxation of the nonconvex contin-
uous functions. Binary variables have an indirect effect
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on the quality of the convex underestimators as they in-
fluence the range of values that the continuous variables
can take on.

A first branching variable selection scheme exploits
the direct relationship between the range of the con-
tinuous variables and the quality of the lower bounds
and therefore branches only on these variables. One of
the rules available for the ˛BB algorithm [2] is used for
the selection. These are based on the size of the variable
ranges, or on a measure of the quality of the underesti-
mator for each term, or on a measure of each variable ’s
overall contribution to the quality of the underestima-
tors.

A second approach aims to first tackle the combi-
natorial aspects of the problem by branching only on
binary variables for the first q levels of the branch and
bound tree, where q is the number of binary variables.
The nonconvexities are dealt with on subsequent levels
of the tree, by branching on the continuous variables.
The specific binary variable used for branching is cho-
sen randomly or from a priority assigned on the basis of
its effect on the structure of the problem. In particular,
the binary variables that influence the bounds on the
greatest number of variables are given the highest pri-
orities. Once all the binary variables have been fixed, the
problems that must be considered are continuous non-
convex and convex problems for the upper and lower
bound respectively. The bounding of the nodes below
level q is therefore less computationally intensive than
above that level.

A third approach also involves branching on the
continuous and binary variables although the choice
is no longer based on the level in the tree. To in-
crease the impact of binary variable branching on the
quality of the lower bound, such a variable is selected
when a continuous relaxation of the problem indicates
that the two children node will have significantly dif-
ferent lower bounds, and that one of them may even
be infeasible. Thus, if one of the binary variables is
close to 0 or 1 at a local solution of the continuous
relaxation, it is branched on. The degree of closeness
is an arbitrary parameter which can typically be set
to 0.1 or 0.2. If no ‘almost-integer’ binary variable is
found, a continuous variable is selected for branching.
In general, this hybrid strategy results in a faster im-

provement in the lower bounds than the second ap-
proach, but it is more computationally intensive be-
cause a continuous relaxation must be solved before
selecting a branching variable and a larger number of
MINLP nodes may be encountered during the branch
and bound search.

Variable Bound Updates

The tightening of variable bounds is a very important
step because of its impact on the quality of the under-
estimators. For continuous variables, the strategies de-
veloped for the ˛BB algorithm may be used [2]. For
the SMIN-˛BB algorithm, they rely on the solution of
several convex MINLPs in the optimization-based ap-
proach, or the iterative interval evaluation of the con-
straints in the interval-based approach. In this latter
case, the binary variables are relaxed during the inter-
val computation.

PROCEDURE binary variable bound update()
Consider R = f(x; y) 2 F : yi = 0g;
Test interval feasibility of R;
IF infeasible, set yLi = 1;
Consider R = f(x; y) 2 F : yi = 1g;
Test interval feasibility of R;
IF infeasible,

IF yLi = 1, RETURN(infeasible node);
ELSE, set yUi = 0;

RETURN(new bounds yLi and yUi );
END binary variable bound update;

Procedure for binary variable bound updates

In the case of binary variables, successful bound
updates are beneficial in two ways. First, they indi-
rectly lead to the construction of tighter underestima-
tors as they affect the continuous variable bounds. Sec-
ond, they allow a binary variable to be fixed and there-
fore decrease the number of combinations that poten-
tially need to be explored. An interval-based strategy
can be used to carry out binary variable bound updates.
Given the current upper bound f � on the global op-
timum solution, the feasible region F is defined by the
constraints appearing in the nonconvex problem, a new
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constraint f (x)C x>A f yC c>f y � f �, and the box (x,
y) 2 [xL, xU] × [yL, yU]. Consider a variable yi 2 {0, 1 }
whose bounds are being updated. The procedure above
is used.

Algorithmic Procedure

The algorithmic procedure for the SMIN-˛BB algo-
rithm is as follows:

PROCEDURE SMIN-˛BB algorithm()
Decompose functions in problem;
Set tolerance �;
Set f � = f 0 = �1 and f

�
= f

0
= +1;

Initialize list of lower bounds f f 0g;
DO f

� � f � > �

Select node k with smallest lower bound, f k ,
from list of lower bounds;
Set f � = f k ;
(Optional) Update binary and continuous var-
iable bounds;
Select binary or continuous branching variable
Partition to create new nodes;
DO for each new node i
Generate convex lower bounding MINLP;
Find solution f i of convex lower bounding
MINLP;
IF infeasible or f i > f

�
+ �

Fathom node;
ELSE
Add f i to list of lower bounds;

Find a solution f
i
of nonconvex MINLP;

IF f
i

< f
�
THEN Set f

�
= f

i
;

OD;
OD;
RETURN( f

�
and variables values at correspon-

ding node);
END SMIN-˛BB algorithm;

Pseudocode for the SMIN-˛BB algorithm

In order to illustrate the algorithmic procedure,
a small example proposed in [17] is used. It is a sim-
ple design problem where one of two reactors must be
chosen to produce a given product at the lowest possi-
ble cost. It involves two binary variables, one for each
reactor, and seven continuous variables. The formula-

tion is:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min 7:5y1 C 5:5y2 C 7v1 C 6v2 C 5x
s.t. z1 � 0:9

�
1 � e�0:5v1

�
x1 D 0

z2 � 0:8
�
1 � e�0:5v2

�
x2 D 0

x1 C x2 � x D 0
z1 C z2 D 10
v1 � 10y1 � 0
v2 � 10y2 � 0
x1 � 20y1 � 0
x2 � 20y2 � 0
y1 C y2 D 1
0 � x1; x2 � 20; 0 � z1; z2 � 30
0 � v1; v2 � 10; 0 � x � 20
(y1; y2) 2 f0; 1g2

Because of the linear participation of the binary vari-
ables, the SMIN-˛BB algorithm is well-suited to solve
this nonconvex MINLP. It identifies the global solution
of 99.2 after nine iterations, when bound updates are
performed at every iteration and branching takes place
on the binary variables first. Branching variable selec-
tion takes place randomly for the binary variables and
according to the termmeasures for the continuous vari-
ables. At the global solution, the binary variable val-
ues are y1 = 1 and y2 = 0. The steps of the algorithm
are shown in Fig. 1. The boldface numbers next to the
nodes indicate the order in which the nodes were ex-
plored. The lower bound is computed by solving a con-
vex relaxation of the nonconvex problem is indicated
inside each node, and the branching variable selected
for the node is also specified. The domain to which
this branching variable is restricted is displayed along
each branch. A black node indicates the lower bound-
ing problem was found infeasible and a shaded node is
fathomed because its lower bound is greater than the
current upper bound on the solution.

At the first node, the initial lower bound is 11.4 and
an upper bound of 99.2 is found. The binary variable y1
is selected as a branching variable. The region y1 = 0 is
infeasible and can therefore be fathomed (black node),
while an improved lower bound is found for y1 = 1. This
latter region is therefore chosen for exploration at the
second iteration. Variable bound updates reveal that y2
= 1 is infeasible so that y2 can be fixed to zero. Branch-
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MINLP: Global Optimization with˛BB, Figure 1
SMIN-˛BB branch and bound tree

ing on the continuous variables may now begin. The
first selected variable is x1 and regions 0 � x1 � 10 and
10 � x1 � 20 are created. Since the left region has the
lowest lower bound (36.4), it is examined at iteration 3.
Variable bound updates show that this region is in fact
infeasible and it is therefore eliminated without further
processing. The algorithm proceeds to node 4 for which
v1 is selected as a branching variable. The right region,
5 � v1 � 10, is fathomed since it has a lower bound
greater than 99.2. The algorithm progresses along the
branch and bound until, at iteration 9, two nodes are
left open with lower bounds of 99.2. This is within the
accuracy required for this run so the procedure is ter-
minated. One more iteration would reveal that the only
global optimum lies in the right child of node 9.

The SMIN-˛BB algorithm is especially effective for
chemical process synthesis problem such as distillation
network or heat exchanger network synthesis [1,3].

The GMIN-˛BB Algorithm

The GMIN-˛BB algorithm is designed to address the
broad class of problems represented by

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. g(x; y) � 0
h(x; y) D 0
x 2 [xL ; xU ]
y 2 [yL; yU ] \Nq

(2)

where f (x, y), g(x, y), and h(x, y), are functions whose
continuous relaxation is twice continuously differen-
tiable.

The GMIN-˛BB algorithm [2,3,7] extends the ap-
plicability of the standard branch and bound ap-
proaches for MINLPs [9,11,13,15,19,20] by making use
of the ˛BB-algorithm. The most crucial characteristics
of the algorithm are the branching strategy, the deriva-
tion of a valid lower bound on problem (2), and the
variable bound update strategies.

Branching Variable Selection

Branching in the GMIN-˛BB algorithm is carried out
on the integer variables only. When it is a bisection,
the partition takes place either at the midpoint of the
range of the selected variable, or at the value of that
variable at the solution of the lower bounding problem.
It is also possible to branch on more than one variable
at a given node, or to perform k-section on one of the
variables. More than two children node may be created
from a parent node when the structure of the problem is
such that the bounds on a small fraction of the integer
variables affect the bounds on many of the other vari-
ables in the problem. As in the SMIN-˛BB algorithm,
an integer variable is chosen randomly or according to
branching priorities. An additional rule consists of se-
lecting the most or least fractional variable at the solu-
tion of a continuous relaxation of the problem.

Generation of a Valid Lower Bound

A guaranteed lower bound on the global solution of
the current node of the branch and bound tree is ob-
tained by solving a continuous relaxation of the non-
convexMINLP at that node.When the integer variables
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that have not yet been fixed are allowed to vary con-
tinuously between their bounds, the problem becomes
a nonconvex NLP. The validity of the lower bound can
only be ensured if the global solution of this noncon-
vex NLP is identified or if a lower bound on this so-
lution is found. On the other hand, when all integer
variables have been fixed to integer values at a node, no
additional partitioning of this node can take place and
the global optimum solution of the nonconvex NLP is
required to guarantee convergence of the GMIN-˛BB.
Based on these conditions, the ˛BB algorithm can be
used as as subroutine to generate valid lower bounds:
� If at least one integer variable can be relaxed at the

current node, run the ˛BB algorithm for a few itera-
tions to obtain a valid lower bound on the global so-
lution of the continuous relaxation or run the ˛BB
algorithm to completion to obtain the global solu-
tion of the continuous relaxation.

� Otherwise, run the ˛BB algorithm to completion to
obtain the global solution for the current node.

This strategy makes use of the convergence characteris-
tics of the ˛BB algorithm to improve the performance
of the GMIN-˛BB algorithm. The rate of improvement
of the lower bound on the global solution of a non-
convex NLP is usually very high at early iterations and
then gradually tapers off. At later stages of an ˛BB run,
the computationally expensive reduction of the gap be-
tween the bounds on the solution of the continuous
relaxation does not result in a sufficiently significant
increase in the lower bound to affect the performance
of the GMIN-˛BB algorithm and can therefore be by-
passed.

Generation of a Valid Upper Bound

Because of the finite size of the branch and bound tree,
it is not necessary to generate an upper bound on the
nonconvex MINLP at each node in order to guaran-
tee convergence of the GMIN-˛BB algorithm. In the
worst case, the integer variables are fixed at every node
of the last level of the tree, and the solutions of the cor-
responding NLPs provide the upper bounds needed to
identify the global optimum solution. However, upper
bounds play a significant role in improving the conver-
gence rate of the algorithm by allowing the fathoming
of nodes whose lower bound is greater than the smallest
upper bound and therefore reducing the final size of the

branch and bound tree. An upper bound on the solu-
tion of a given node can be obtained in several ways. For
example, if the solution of the continuous relaxation is
integer-feasible, that is, all the relaxed integer variables
have integer values at the solution, this solution is both
a lower and an upper bound on the current node. If the
˛BB algorithm was run for only a few iterations and the
relaxed integer variables are integer at the lower bound,
they can be fixed to these integer values and the result-
ing nonconvex NLP can be solved locally to yield an up-
per bound on the solution of the node. Finally, a set of
integer values satisfying the integer constraints can be
used to construct a nonconvex NLP whose local solu-
tions are upper bounds on the current node solution.

Variable Bound Updates

If the bounds on the integer variables at any given node
can be tightened, the solution space can be significantly
reduced due to the combinatorial nature of the prob-
lem. The allocation of computational resources for this
purpose is therefore a potentially worthwhile invest-
ment. An optimization-based approach or an interval-
based approach may be used to update the variable
bounds. These approaches are similar to those devel-
oped for the ˛BB algorithm but they take advantage of
the integrality of the variables. Thus, in the optimiza-
tion approach, the lower or upper bound on variable yi
is improved by first relaxing the integer variables, and
then solving the convex NLP

y� D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min or maxx;y;w yi
s.t. f̆ (x; y;w) � f �

C(x; y;w)
x 2 [xL; xU ]
y 2 [yL; yU ]
w 2 [wL;wU ]

(3)

where f̆ (x; y;w) denotes the convex underestimator of
objective function, f � denotes the current best upper
bound on the global optimum solution, C (x, y, w) de-
notes the set of convexified constraints, and w is the
set of new variables introduced during the convexifica-
tion/relaxation procedure. Finally, the improved lower
or upper bound is obtained by setting yLi = d y

� e or yUi
= b y� c.
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In the interval-based approach, an iterative proce-
dure is followed based on an interval test which pro-
vides sufficient conditions for the infeasibility of the
original constraints and the ‘bound improvement con-
straint’ f (x; y) � f �, given the relaxed region (x, y) 2
[xL, xU] × [yL, yU]. This set of constraints defines a re-
gion denoted by F. The procedure to improve the lower
(upper) bound on variable yi is as follows:

PROCEDURE interval-based bound update()
Set initial bounds L = yLi and U = yUi ;
Set iteration counter k = 0;
Set maximum number of iterations K;
DO k < K and L ¤ U

Compute ‘midpoint’ M = b(U + L)/2c;
Set left region
f(x; y) 2 F : yi 2 [L; M]g;

Set right region
f(x; y) 2 F : yi 2 [M + 1;U]g;

Test interval feasibility of left(right) region;
IF feasible,

Set U = M (L = M);
ELSE

Test interval feasibility of right(left)
region;
IF feasible,

Set L = M (U = M);
ELSE

IF k = 0,
RETURN(infeasible node);

ELSE
Set L = U (U = L);
Set U = yUi (L = yLi );

Set k = k + 1;
OD;
RETURN(yLi = L (yUi = U));

END interval-based bound update;

Interval-based bound update procedure

The variable bound tightening is performed before
calling the ˛BB algorithm to obtain a lower bound on
the solution of the current node. In many cases, during
an ˛BB run, variable bound updates are also used to
improve the quality of the generated lower bounds. Al-
though the ˛BB algorithm treats the y variables as con-
tinuous, the bound update strategy within the ˛BB al-

gorithm may be modified to account for the true nature
of these variables. A larger reduction in the solution
space can be achieved by adopting one of the integer
bound update strategies described here for the relaxed y
variables. This more stringent approach leads to a lower
bound which is not necessarily a valid lower bound on
the continuous relaxation, but which is always a lower
bound on the global solution of the nonconvex MINLP.

The overall algorithmic procedure for the GMIN-
˛BB algorithm is shown below:

PROCEDURE GMIN-˛BB algorithm()
Set tolerance �;
Set f � = f 0 = �1 and f

�
= f

0
= +1;

Initialize list of lower bounds f f 0g;
DO f

� � f � > �

Select node k with smallest lower bound, f k ,
from list of lower bounds;
Set f � = f k ;
(Optional) Update y variable bounds;
Select integer branching variable(s);
Create new nodes by branching;
DO for each new node i

Obtain lower bound f i on node
IF all integer variables are fixed,

Find global solution f i of nonconvex
NLP with ˛BB algorithm;

ELSE
Relax integer variables;
Run ˛BB algorithm to completion or
for a few iterations to get f i

(Optional) Use integer bound
updates on y variables;

IF f i > f
i
+ �, THEN Fathom node;

ELSE
Add f i to list of lower bounds;

(Optional) Obtain upper bound f
i
on

nonconvex MINLP;
IF f

i
< f

�
THEN Set f

�
= f

i
;

OD;
OD;
RETURN( f

�
and variables values at corres-

ponding node);
END GMIN-˛BB algorithm;

Pseudocode for the GMIN-˛BB algorithm
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MINLP: Global Optimization with˛BB, Figure 2
GMIN-˛BB branch and bound tree

The algorithmic procedure for the GMIN-˛BB al-
gorithm is illustrated using the same example as for the
SMIN-˛BB algorithm. The branch and bound tree is
shown in Fig. 2, using the same notation as previously.

At the first node, the continuous relaxation of the
nonconvex MINLP is solved for 10 ˛BB iterations to
yield a lower bound of 60. No upper bound is found.
Next, the binary variable y2 is chosen for branching and
the continuous relaxation of the problem with y2 = 0
is solved. A lower bound of 92.2 is found as the global
solution to this nonconvex NLP. In addition, this solu-
tion is integer feasible and therefore provides an upper
bound on the global optimum solution of the noncon-
vex MINLP. The region y2 = 1 is then examined and
the global solution of the NLP is found to be 101.7 after
10 ˛BB iterations. This node can therefore be fathomed
and the procedure terminated.

The GMIN-˛BB algorithm has been used to solve
nonconvex MINLPs involving nonconvex terms in the
integer variables and some mixed nonconvex terms.
Branching priorities combined with variable bound up-
dates and a small number of ˛BB iterations for relaxed
nodes allow the identification of the global optimum so-
lution after the exploration of a small fraction of the
maximum number of nodes and with small CPU re-
quirements. In particular, the algorithm has been used
on a pump network synthesis problem [2,3]. Some non-
convex integer problems have also been tackled by the
same approach. For instance, the minimization of trim
loss, a problem taken from the paper cutting industry,
has also been addressed for medium order sizes [3].

Conclusions

The ˛BB algorithm for nonconvex NLPs can be in-
corporated within more general frameworks to address

broad classes of nonconvex MINLPs. One extension
of the algorithm is the SMIN-˛BB algorithm which
identifies the global optimum solution of problems in
which binary variables participate in linear or mixed-
bilinear terms and continuous variables appear in twice
continuously differentiable functions. The partitioning
of the solution space takes place in both the contin-
uous and binary domains. The GMIN-˛BB algorithm
is designed to locate the global optimum solution of
problems involving integer and continuous variables in
functions whose continuous relaxation is twice contin-
uously differentiable. The algorithm is similar to tra-
ditional branch and bound algorithms for mixed inte-
ger problems in that branching occurs on the integer
variables only and a continuous relaxation of the prob-
lem is constructed during the bounding step. It uses the
˛BB algorithm for the efficient and rigorous generation
of lower bounds. Both algorithms are widely applica-
ble and have been successfully tested on a variety of
medium-size nonconvex MINLPs.
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Heat exchanger network synthesis problems arise in
chemical process design when the heat released by hot
process streams is used to satisfy the demands of cold
process streams. These problems have been the subject
of an intensive research effort, and over 400 publica-
tions have been written in the area. See [7,8,9] for re-
views of the area, and [1,3] for detailed analysis of HEN
synthesis.

The discovery by T. Umeda et al. [11] of a ther-
modynamic pinch point that limits heat integration in
a heat exchanger network led to much of this research
effort. They showed that setting minimum temperature
approach, 	Tmin, places a lower bound on the utility
consumption in a heat exchanger network and decom-
posed a heat exchanger network into independent sub-
networks. This enables the heat exchanger network syn-
thesis problem to be decomposed into four subprob-
lems. The first subproblem finds the appropriate min-
imum temperature approach, the second subproblem
minimizes the utility consumption, the third subprob-
lem finds the minimum number of matches and iden-
tifies the matches and their heat duty, and the fourth
finds and optimizes the actual network structure.

See [5] for a systematic scheme for solving these
problems sequentially. First, the utility consumption is
minimized using the linear programming (LP) trans-
shipment model approach of [10]. Second, a set of pro-
cess matches and their heat duties that minimize the
total number of units is found with the mixed integer
linear programming (MILP) strategy of [10]. Then, the
network structure is found [5] by optimizing a super-
structure that contains all possible network configura-
tions embedded within it using a nonlinear program-
ming (NLP) problem. When there is more than one
combination of matches and heat duties that satisfies
the minimum unit criterion, the best combination is
found by exhaustive enumeration. The minimum tem-
perature approach is optimized with a golden section
search that solves all three of these optimization prob-
lems at each iteration.

In the late 1980s it was found, [4,12], that better net-
work designs could be obtained by solving some of the
heat exchanger network design subproblems simulta-
neously. C.A. Floudas and A.R. Ciric [4] combined the
MILP stream matching problem with the NLP super-
structure optimization problem formulated in [5], cre-
ating a mixed integer nonlinear programming problem
(MINLP) that avoided the exhaustive search through all
combinations of matches that minimize the number of
units. In 1990, they [2] formulated the entire heat ex-
changer network design problem as a MINLP. The so-
lution of this problem yields the optimal temperature
approach, utility level, processmatches, heat duties, and
network structure, eliminating the need for a global sec-
tion search for the optimumminimum temperature ap-
proach.

T.F. Yee and I.E. Grossmann [12] used a smaller su-
perstructure proposed in [6] that embodies a sequen-
tial-parallel network structure to formulate an alterna-
tive MINLP for heat exchanger network synthesis. The
solution of this MINLP yielded the utility consumption,
matches and network structure and heat exchanger ar-
eas.

Problem Statement

This article will explore two mixed integer nonlin-
ear programming problems in heat exchanger network
synthesis: combined match-network optimization and
heat exchanger network synthesis without decompo-
sition. The synthesis without decomposition problem
can be stated as follows:

Given:
1) A set of hot process streams and hot utilities i 2 H,

their inlet and outlet temperatures Ti, TO, i, and heat
capacity flow rates Fi;

2) A set of cold process streams and cold utilities j 2 C,
their inlet and outlet temperatures Tj, TO, j, and heat
capacity flow rates Fj; and

3) Overall heat transfer coefficients Uij.
Determine:

A) The stream matches (ij), the heat duty Qij of match
(ij), and the heat exchanger area Aij of match (ij);

B) the piping structure for each stream in the network;
and

C) the temperature and flowrate within each pipe of
the network.
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MINLP: Heat Exchanger Network Synthesis, Figure 1
A superstructure for one hot stream exchanging heat with two cold streams

In the match-network problem, one is also given
� the level of each utility; and
� a minimum temperature approach	Tmin.
These problems can be solved using mixed integer non-
linear programming. The development and application
of these approaches is described in more detail below.

Heat Exchanger Network Superstructures

Mixed integer nonlinear programming approaches to
these problems begin with a superstructure that con-
tains many alternative designs embedded within it. Two
superstructures are particularly interesting.

Figure 1 shows a superstructure of a hot stream,
above the thermodynamic pinch point, that may ex-
change heat with two cold streams [5]. Notice that the
stream can be piped in series, in parallel, and in split-
mix-bypass configurations, as shown in Fig. 2. As we
shall see, this richness leads to nonconvex constraints
in the MINLP. The first network superstructure is cre-
ated by constructing similar structures for every other
stream above the pinch point.

Notice that in this subnetwork, streams H1 and C1,
and all other pairs of hot and cold streams, can ex-
change heat no more than once. H1 and C1 may ex-
change heat again in the subnetwork below the thermo-
dynamic pinch point. The thermodynamic pinch point
has partitioned the temperature range into two inter-
vals, and in each interval, individual process streams
can only exchange heat once.

One could increase the number of times two
streams can exchange heat by partitioning the temper-

ature range further. This is the basic strategy behind
the second superstructure [6,12] shown in Fig. 3. Here,
the temperature range has been partitioned into many
intervals, or stages. Within any particular stage, each
hot stream may exchange heat with each cold stream;
multiple intervals allow any particular match to take
place many times in the network. Unlike the first super-
structure, each stream in each stage is piped in a par-
allel configuration, and the inlet and outlet tempera-
ture of each parallel line is fixed by the temperature
interval. Series piping structures arise when a stream
exchanges heat only once per interval. The superstruc-
ture does not contain split-mix-bypass or series-parallel
structures, but as we shall see that in exchange the non-
convex constraints that arise from the first superstruc-
ture have been eliminated.

Mathematical Models
for HEN Synthesis usingMINLPs

MINLP models of heat exchanger network synthesis
arise when the process stream matches are selected
while simultaneously optimizing the heat exchanger
network; the former is a discrete decision modeled
with integer variables, the latter, a nonlinear optimiza-
tion problem. In this paper, we refer to this as the
match-network problem. MINLPs may also be used
to formulate an optimization problem that simultane-
ously minimizes the utility consumption, selects the
stream matches, and optimizes the network layout, in
heat exchanger network synthesis without decomposi-
tion.



2166 M MINLP: Heat Exchanger Network Synthesis

MINLP: Heat Exchanger Network Synthesis, Figure 2
Stream piping configurations embedded in the superstructure shown in Fig. 1

Match-Network Problem

The MINLP model of the match-network problem has
three components: a transshipment model [10] that
identifies feasible process streammatches and their heat

duties, a superstructure model of all possible network
structures, and an objective function.

The transshipment model partitions the tempera-
ture range into t = 1, . . . , T temperature intervals, us-
ing the inlet and outlet temperatures of the streams and
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MINLP: Heat Exchanger Network Synthesis, Figure 3
Two-stage superstructure

the temperature interval approach temperature (TIAT).
Hot streams release heat into the temperature intervals,
where it either flows to the cold streams in the same in-
terval or cascades down to the next colder interval. The
binary variable Yij denotes the existence of a match be-
tween hot stream i and cold stream j, where heat loads
are qij and Qij, and heat residuals are Rk. The model is
composed by the following constraints:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

X
j2Ct

qi jt C Ri;t � Ri;t�1 D QH
it ; i 2 H; j 2 Ci ;

X
i2R j

qi jt D QC
jt ; j 2 C; t D 1; : : : ; T;

TX
tD1

qi jt D Qi j; i 2 H; j 2 Ci ;

Qi j � UYi j � 0; i 2 H; j 2 Ci ;X
i2H

X
j2Ci

Yi j � Nmax:

The first two constraints in the transshipment model
are the energy balances for each temperature interval.

The total heat load in a match is given by the third con-
straint. The fourth constraint bounds the heat load us-
ing the binary variable Yij and a large fixed constant U.
The last constraint in the above model puts an upper
bound on the number of existing matches, which is the
maximum number of units.

The second part of the match-network synthesis
model is the hyperstructure topology model, which
consists of mass and energy balances for the mixers and
splitters, feasibility constraints, utility load constraint
and bounds on the flow rate heat-capacities.

Mass balances for the splitters at the inlet of the su-
perstructure:
X
k0

f I;kk0 D Fk ; k 2 HCT:

Here, HCT is the set of all process streams and utili-
ties. Mass balances for the mixers at the inlets of the
exchangers:

f I;kk0 C
X
k00

f B;kk0;k00 � f E;kk0 D 0; k0; k 2 HCT:
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Mass balances for the splitters at the outlets of the ex-
changers:

f O;kk0 C
X
k00

f B;kk00;k0 � f E;kk0 D 0; k0; k 2 HCT:

Energy balances for the mixers at the inlets of the ex-
changers:

Tk f I;kk0 C
X
k00

f B;kk0;k00 t
O;k
k0 � f E;kk0 tI;kk0 D 0;

k0; k 2 HCT:

Energy balances over the heat exchangers:

Qi j � f E;ij

�
tI;ij � tO;ij

�
D 0; i 2 H; j 2 C;

Qi j � f E; ji

�
tO; ji � tI; ji

�
D 0:

The minimum temperature approach between a hot
stream and a cold stream:

tI;ij � tO; ji � 	Tmin;

tO;ij � tI; ji � 	Tmin:

Logical relations between the heat-capacity flow rates
and the existence of a match:

f E;ij � FiYi j � 0;

f E; ji � F jYi j � 0:

Lower bounds on the heat-capacity flow rates through
the exchanger:

f E;ij �
Qi j

	Ti j;max
� 0;

f E; ji �
Qi j

	Ti j;max
� 0;

where 	Tij, max equals Ti � Tj. Lastly, the objective
function minimizes the total investment cost:

min
X
i2H

X
j2C

˛

0
BBBBBB@

Qi j

Ui j
tI;ij �t

O; j
i �t

O;i
j Ct I; ji

ln
tI;ij �t

O; j
i

tO;ij �t
I; j
i

1
CCCCCCA

ˇ

Yi j:

The model is a mixed integer nonlinear programming
(MINLP) problem, as the objective function and the en-
ergy balances are nonlinear, and the decision variables
Yij are binary. Notice that the energy balances are bilin-
ear, creating a nonconvex feasible region.

MINLP: Heat Exchanger Network Synthesis, Table 1
Stream data for example problem

Stream Tin(C) Tout(C) FCp(kW/C)
H1 500 320 6
H2 480 380 4
H3 460 360 6
H4 380 360 20
H5 380 320 12
C1 290 660 18
F 700 700

CW 300 320
U = 1:0kW/(m2C)
Annual cost=1200A0:6 for all exchangers
Cs = 140$/kW
Ccw = 10$/kW

MINLP: Heat Exchanger Network Synthesis, Table 2
Match data for example problem; pseudo-pinch method [2]

Match Q(kW) A(m2)
H1-C1 948:454 79:391
H1-CW 131:546 6:280
H2-C1 400:000 29:057
H3-C1 600:000 57:488
H4-C1 400:000 14:880
H5-C1 720:000 25:509
S-C1 3591:546 32:112

Heat Exchanger Network Synthesis
Without Decomposition

MINLP models that optimize utility consumption as
well as process matches, heat duties, and network con-
figurations can also be formulated. See [2] and [12] for
pseudopinch approaches that set the TIAT to a small
value and lets heat flow across the pinch. A strict de-
composition at the pinch can also be maintained by let-
ting TIAT vary, and using integer variables tomodel the
changing structure of the temperature cascade.

Example 1 These techniques are demonstrated with
a problem given in both [12] and [2]. The problem con-
sists of two hot streams, two cold streams, one hot util-
ity (steam), and one cold utility (cooling water). The
stream data is given in Table 1.

Using the pseudopinchmethod with TIAT = 1C and
	Tmin = 0.5C, and allowing HRAT to vary between 1C
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MINLP: Heat Exchanger Network Synthesis, Figure 4
Optimal network configuration for example problem; pseudopinch [2]

MINLP: Heat Exchanger Network Synthesis, Figure 5
Optimal network configuration for example problem; simultaneous approach [12]

and 30C, Ciric and Floudas [2] formulated the prob-
lem as a MINLP problem and solved it using the gener-
alized Benders decomposition algorithm. The optimal
network configuration is pictured in Fig. 3. The net-
work consumes 3592.4kW of steam and 1312.4kW of
cooling water, the HRAT is 8.42C. The annual cost of
the network is $571,080. The match data of this solu-
tion is given in Table 2. Yee and Grossmann [12] used
the same problem to demonstrate the simultaneous op-
timization approach. The problem is again formulated

as a MINLP problem. The optimal network configura-
tion is given in Fig. 4. The annual cost of this network
is $576,640. HRAT is 13.1C. The match data of this net-
work is given in Table 3.

Conclusions

Mixed integer nonlinear programming offer a power-
ful approach to heat exchanger network synthesis. Us-
ing these techniques, stream matching, the combina-
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MINLP: Heat Exchanger Network Synthesis, Table 3
Match data for example problem; simultaneous approach
[12]

Match Q(kW) A(m2)
S-C1 3676:4 32:6
H1-C1 863:6 64:1
H2-C1 400:0 17:1
H3-C1 600:0 47:0
H4-C1 400:0 13:8
H1-CW 216:4 7:9
H5-C1 720:0 18:4

torial component of heat exchanger network synthesis,
can be performed while simultaneously minimizing the
utility consumption and selecting the cost-optimal heat
exchanger network configuration. Merging these tasks
leads to more cost-effective stream matches and lower
exchanger costs.
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There has been an increasing trend to representing lin-
ear and nonlinear discrete optimization problems by
models consisting of algebraic constraints, logic dis-
junctions and logic relations ([1,7,8]). For instance,
a mixed integer program can be formulated as a gen-
eralized disjunctive program as has been shown in [5]:

(DP1)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min Z D
X
k

ck C f (x)

s.t. g(x) � 0

W
i2Dk

2
664

Yik

hik(x) � 0
ck D �i k

3
775 ;

k 2 SD;
˝(Y) D true
x 2 Rn ; c 2 Rm ;

Y 2 ftrue; falsegm;

in which Yik are the boolean variables that establish
whether a given term in a disjunction is true (hik(x)
� 0), while ˝(Y) are logical relations assumed to be
in the form of propositional logic involving only the
boolean variables. Yik are auxiliary variables that con-
trol the part of the feasible space in which the continu-
ous variables, x, lie, and the variables cik represent fixed
charges which are set to a value � ik if the corresponding
term of the disjunction is true. Finally, the logical con-
ditions, ˝(Y), express relationships between the dis-
junctive sets. In the context of optimal synthesis of pro-
cess networks, the disjunctions in (DP1) typically arise
for each unit i in the following form:

2
4

Yi

hi(x) � 0
ci D �i

3
5_

2
4
:Yi

Bi x D 0
ci D 0

3
5 ; i 2 I; (1)

in which the inequalities hi apply and a fixed cost � i
is incurred if the unit is selected (Yi); otherwise (:Yi)
there is no fixed cost and a subset of the x variables is set
to zero with the matrix Bi. An important advantage of

the above modeling framework is that there is no need
to introduce artificial parameters for the ‘big-M’ con-
straints that are normally used in MINLP to model dis-
junctions.

M. Turkay and I.E. Grossmann [9] proposed a logic
version of the outer approximation algorithm for
MINLP [3] for solving problem (DP1), and in which
the disjunctions are given as in equation (1), and all
the functions are assumed to be convex. The algorithm
consists of solving a sequence of NLP subproblems and
master problems, which are as follows.

For fixed values of the boolean variables, Ybi k D true
and Yik = false forbi ¤ i, the corresponding NLP sub-
problem is as follows:

(NLPD)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min Z D
X
k

ck C f (x)

s.t. g(x) � 0

for Ybi k D true :

(
hik(x) � 0
ck D �i k

for Yik D false :

(
Bix D 0
ck D 0

k 2 SD;
x 2 Rn ; ci 2 R1:

Note that for every disjunction k 2 SD only constraints
corresponding to the boolean variable Ybi k that is true
are imposed. Also, fixed charges � ik are only applied
to these terms. Assuming that K subproblems (NLPD)
are solved in which sets of linearizations l = 1, . . . , K
are generated for subsets of disjunction terms L(ik) = {l:
Yl
ik = true}, one can define the following disjunctive OA

master problem:

(MDP1) min Z D
X
k

ck C f (x)

such that

˛ � f (xl )Cr f (xl )>(x � xl );

g(xl )Cr g(xl )>(x � xl ) � 0;

l D 1; : : : ; L;

_
i2Dk

2
4
Yik

hik(x`)Crhik(x`)>(x � x`) � 0
ck D �i k

3
5 ;
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k 2 SD;

˝(Y) D true;

˛ 2 R; x 2 Rn ; c 2 Rm ;

Y 2 ftrue; falsegm:

It should be noted that before applying the above
master problem it is necessary to solve various subprob-
lems (NLPD) so as to produce at least one linear ap-
proximation of each of the terms in the disjunctions.
Selecting the smallest number of subproblems amounts
to the solution of a set covering problem, which is of
small size and easy to solve [9].

The above problem (MDP1) can be solved by the
methods described in [1] and [7]. It is also interesting
to note that for the case of process networks Turkay and
Grossmann [9] have shown that if the convex hull rep-
resentation of the disjunctions in (1) is used in (MDP1),
then assuming Bi = I and converting the logic relations
˝(Y) into the inequalities Ay � a, leads to the MILP
problem,

(MIPDF) min Z D
X
k

ck C f (x)

such that

˛ � f (xl )Cr f (xl )>(x � xl );

g(xl )Cr g(xl )>(x � xl ) � 0;

l D 1; : : : ; L;

rxzi hi (xl )>xzi CrxNi
hi(xl )>x1Ni

�
h
�hi(x`)Crx hi(x`)>x`

i
yi ;

` 2 Ki
L; i 2 I;

xNi D x1Ni
C x2Ni

;

0 � x1Ni
� xUNi

yi ;

0 � x2Ni
� xUNi

(1 � yi );
Ay � a;

x 2 Rn ; x1Ni
� 0; x2Ni

� 0;

yf0; 1gm;

where the vector x is partitioned into the variables for
each disjunction i according to the definition of the ma-
trix Bi. The linearization set is given by Ki

L = {`: Y`i =
true, ` = 1, . . . , L} that denotes the fact that only a sub-
set of inequalities were enforced for a given subprob-
lem `. It is interesting to note that the logic-based outer
approximation algorithm represents a generalization of

the modeling/decomposition strategy [5] for the syn-
thesis of process flowsheets.

Turkay and Grossmann [9] have also shown that
while a logic-based generalized Benders method [4] can-
not be derived as in the case of the OA algorithm, one
can exploit the property for MINLP problems that per-
forming one Benders iteration [2] on the MILP master
problem of the OA algorithm, is equivalent to generat-
ing a generalized Benders cut. Therefore, a logic-based
version of the generalized Benders method consists of
performing one Benders iteration on the MILP master
problem (MIPDF). It should also be noted that slacks
can be introduced to (MDP1) and to (MIPDF) to re-
duce the effect of nonconvexities as in the augmented-
penalty MILP master problem [10].

Finally, it should be noted that S. Lee and Gross-
mann [6] have developed a new branch and bound
method and a MINLP reformulation that is based on
the convex hull of each of the disjunctions in (DP1)
with nonlinear inequalities.
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Mass integration in the form of mass exchanger net-
works, MEN, appears in the chemical industries as an
economic alternative in waste treatment, feed prepara-
tion, product separation, recovery of valuable materials,
etc. The MEN involves a set of rich streams, wherefrom
one or more components are removed bymeans of lean
streams (mass separating agents) in mass transfer op-
erations that do not require energy (constant pressure
and temperature).

The MEN synthesis/design problem is posed as
a combinatorial problem, involving discrete and con-
tinuous decisions (e. g. the mass exchange opera-
tions/matches and the unit sizes, respectively), that
both affect the overall mass integration cost.

When the mass transfer operations can take place at
different temperatures, heat integration of the rich and

MINLP: Mass and Heat Exchanger Networks, Figure 1
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lean streams is also considered within a combinedmass
and heat exchanger network, MHEN, synthesis prob-
lem.

In isothermal MEN synthesis, the simultaneous op-
timization of the mass exchange operations, the mass
separating agent flows and the network configuration
has been formulated by K.P. Papalexandri, E.N. Pis-
tikopoulos and C.A. Floudas [9] as an MINLP problem
based on:
a) theMEN superstructure of synthesis/design alterna-

tives;
b) modeling of mass exchange in each mass exchanger;

and,
c) minimization of a total annualized network cost.
Details are given below

MEN Superstructure

TheMEN superstructure for a given set of rich and lean
streams includes all possible mass exchange operations
(mass exchange matches) between the network streams
in all possible network configurations. Its main features
are:
� Each potential match between a rich and a lean

stream corresponds to a potential mass exchanger
(one-to-one correspondence).
Multiple mass exchange matches between two
streams may be considered (i. e. streams integrated
at different points in the network), increasing thus
the considered MEN structures and the combinato-
rial complexity of the synthesis problem. Note that,
this is not similar to an a priori decomposition of the
network into separable subnetworks.

� Each stream entering the network is split towards all
its potential mass exchanger units.

� After each mass exchanger, a splitter is considered
for each stream, where the stream is split towards
its final mixer and all the other potential stream ex-
changers.

� Prior to each potential mass exchanger, a mixer is
considered for each participating stream, where the
flow from the initial splitter and connecting (bypass)
flows from all the other exchangers of the stream are
merged into the flow towards the exchanger.

� A mixer is considered at the network outlet of each
stream, where flows from all the potential stream ex-
changers are merged into the outlet flow.

MINLP: Mass and Heat Exchanger Networks, Figure 2
Rich stream superstructure

MINLP: Mass and Heat Exchanger Networks, Figure 3
Lean stream superstructure

For example, for a rich stream i and its mth and m0th
possible exchangers with lean streams j and j0 respec-
tively, we have Fig. 2

In Fig. 2, c = 1, . . . , C are the transferable compo-
nents. All possible configurations for the two exchang-
ers ((ijm) and (ij0m0) in series, or in parallel), result by
‘deleting’ appropriate connecting streams. Stream dele-
tion corresponds to zero stream flows (e. g. gIi j0m0 = gOi jm
= 0 and gBi j0 jm0m = 0 results in the exchangers in series).

For a lean stream j and itsmth andm0th exchangers
with rich streams i and i0, we have Fig. 3.

The MEN superstructure is described by mass bal-
ances for the overall streams and each transferable com-
ponent at the exchangers, splitters and mixers of the su-
perstructure:

8̂
ˆ̂̂<
ˆ̂̂̂
:

gEi jm(y
I
i jmc � yOi jmc ) D Mi jmc ;

i 2 R; c D 1; : : : ;C;
l Ei jm(x

O
i jmc � xIi jmc) D Mi jmc ;

i 2 S; c D 1; : : : ;C;

(1)
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8̂
<̂
ˆ̂:

X
j2S;m

gIi jm � Gi D 0; i 2 R;

X
i2R;m

l Ii jm � Lj D 0; i 2 S;
(2)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

gOi jm C
X

j02S;m0
gBi j j0mm0 � gEi jm D 0;

l Oi jm C
X

i 02S;m0
l Bi i 0 jmm0 � l Ei jm D 0;

i 2 R; j 2 S; m D 1; : : : ;M;

(3)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

gIi jm C
X

j02S;m0
gBi j0 jm0m � gEi jm D 0;

l Ii jm C
X

i 02S;m0
l Bi 0 i jm0m � l Ei jm D 0;

i 2 R; j 2 S; m D 1; : : : ;M;

(4)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

gIi jm y
s
i c C

X
j02S;m0

gBi j0 jm0m y
O
i j0m0 c

�gEi jm y
I
i jmc D 0;

l Ii jmx
s
jc C

X
i 02S;m0

l Bi 0 i jm0mx
O
i 0 jm0 c

�l Ei jmx
I
i jmc D 0;

i 2 R; j 2 S;
c D 1; : : : ;C; m D 1; : : : ;M;

(5)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

X
j2S;m

gOi jm y
O
i jmc � Gi yti c D 0;

i 2 R; c D 1; : : : ;C;X
i2R;m

lOi jmx
O
i jmc � Ljxt

jc D 0;

i 2 S; c D 1; : : : ;C;

(6)

where the inlet, outlet, exchanger and exchanger-
connecting flows of the rich and lean streams (gI , gO,
gE, gB and lI , lO, lE, lB, respectively) and the intermediate
compositions of components (molar fractions xI , xO, yI ,
yO) are illustrated in the corresponding superstructure
figures.

ModelingMass Exchange

The existence of each potential mass exchanger in the
network is denoted by a binary variable:

Ei jm D

8̂
<̂
ˆ̂:

1; when the mth exchanger
between streams i and j exists;

0; otherwise;

and defined by
8̂
ˆ̂̂<
ˆ̂̂̂
:

gEi jm � Ei jmU � 0;
l Ei jm � Ei jmU � 0;
Mi jmc � Ei jmU � 0;
gEi jm ; l

E
i jm; Mi jmc � 0;

(7)

where Mijmc is the mass exchange load of component c
in mass exchanger (ijm), andU a large positive number.

In each potential mass exchanger a component c is
transferred from the rich to the lean stream when the
rich composition is greater than the equilibrium com-
position with respect to the lean stream:

yc � f (xc);

where f (xc) is the mass transfer equilibrium relation,
that may account for reactive mass transfer also.

Feasibility of mass transfer is ensured imposing the
above constraint at the inlet and outlet of the streams,
i. e. (for counter-current flows):
(
�yIi jmc C f (xOi jmc)C �i jc � (1 � Ei jm)U � 0;
�yOi jmc C f (xIi jmc)C �i jc � (1 � Ei jm)U � 0;

(8)

where �ijc is a minimum composition difference that is
required for feasible mass exchange in a unit of finite
size (e. g. imposed frommechanical constraints). When
f (xc) is not convex the constraints in (8) cannot guar-
antee feasible mass transfer throughout the exchanger.
In this case f (xc) can be approximated by a set of con-
vex functions and feasible mass transfer be ensured
considering the constraints in (8) also for intermedi-
ate exchanger points, that define the convex parts. Note
that, the mass-transfer feasibility or driving-force con-
straints in (8) are activated only when the correspond-
ing exchanger exists (Eijm = 1).

The size of each potential mass exchanger (number
of mass transfer stages, Nst, etc.) is calculated as a func-
tion of the variable mass transfer, through appropriate
design equations (e. g. for perforated-plate columns the
Kremser equation):

Nst
i jm D Nst(gEi jm ; l

E
i jm; x

I
i jmc ; x

O
i jmc ; y

I
i jmc ; y

O
i jmc ): (9)

Minimizing Network Cost

The total network cost comprises
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� the annualized capital cost of the mass exchangers,
that may be discontinuous (involve a fixed charge
cost factor), and

� the annualized operating cost, i. e. the cost of the
mass separating agents.
Consequently, the MEN MINLP synthesis model is

formulated as follows:

(P1) min

X
i jm

�
AC1

i jmEi jm C AC2
i jm(N

st
i jm)

�
C
X
j

AC3
j L j

such that

(2) � (9)

gIi jm ; g
E
i jm ; g

B
i j j0mm0 ; g

O
i jm � 0;

yIi jmc ; y
O
i jmc � 0;

i 2 R; j; j0 2 S;

m;m0 D 1; : : : ;M;

c D 1; : : : ;C;
l Ii jm; l

E
i jm; l

B
i i 0 jmm0 ; l

O
i jm � 0;

xIi jmc ; x
O
i jmc � 0;

i 2 R; j; j0 2 S;

m;m0 D 1; : : : ;M;

c D 1; : : : ;C;

Ei jm D 0; 1;

i 2 R; j; j0 2 S;

m;m0 D 1; : : : ;M:

(P1) is a nonconvex MINLP problem and global
optimization methods are required to guarantee global
optimal solutions.

The main advantage of the simultaneous MEN syn-
thesis model (P1), as opposed to the sequential MEN
synthesis method, is that the trade-off between the cap-
ital and operating costs is systematically considered.
Also,
� (P1) derives the optimal network with respect to all

the transferable components, considering the mass
transfer of each component separately within the
calculated mass-transfer stages of each exchanger.

� Forbidden mass exchange matches, limited mass
exchange and/or forbidden exchanger connections
can be explicitly considered in (P1).

� Variable target compositions are straightforwardly
handled.

When the mass exchange matches and mass exchange
loads are fixed (e. g. when these are determined within
a sequential MEN synthesis framework), (P1) reduces
to an NLP and can be solved to derive a network con-
figuration and unit sizes with minimum capital cost.

Extending the concept of cost optimality of the mass
exchanger network, two special cases have been studied:
� MEN and regeneration networks.

When regenerating agents are available for some
(or all) lean streams, the total mass integration cost
involves also the regeneration cost. The regener-
ation network can be considered simultaneously
within the MINLP MEN synthesis model [9], ac-
counting for all the regeneration alternatives of the
lean streams and employing binary variables to de-
note the existence of the regenerating exchangers.
In this case, the mass separating agents behave as
lean streams in the mass exchangers of the main
MEN and as rich streams in the regenerating mass
exchangers. The regeneration network is not nec-
essarily separable from the main MEN, as a lean
stream may be partly regenerated before being used
as a separating agent in another mass exchanger.
Thus, the lean stream superstructures involve all the
possible interconnections between the exchangers of
the mainMEN and the regenerating exchangers. For
example, for a lean stream j and its mth and m0th
exchangers with rich stream i and regenerant k we
have Fig. 4.
The overall superstructure of mass exchange and re-
generation alternatives involves also the superstruc-
tures of the regenerating agents, that have variable
flows, while the overall network cost includes the
main MEN and the regeneration cost (capital and
operating cost).

� Flexible mass exchange networks.
The ability of MEN to accommodate variations in
the rich stream flows and inlet compositions in an
efficient manner affects cost optimality. A multi-
period MINLP MEN synthesis model has been sug-
gested in [7], to derive mass exchange networks,
flexible to accommodate in an optimal manner dif-
ferent mass integration requirements. In the mul-
tiperiod MINLP model a weighted operating cost
is optimized simultaneously with the capital cost
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MINLP: Mass and Heat Exchanger Networks, Figure 4
Regenerable lean stream superstructure

MINLP: Mass and Heat Exchanger Networks, Figure 5
Regenerating stream superstructure

for mass exchangers that can operate feasibly un-
der the different conditions. The MEN superstruc-
ture is extended to include control variables that
enhance flexibility (as exchanger-bypassing streams
and overall bypass streams that are accordingly pe-
nalized).

When the alternative mass transfer operations take
place at different and/or variable temperatures, heat
integration between the network streams can be si-
multaneously considered within a combined MEN and
HEN synthesis problem [7]. The available rich and lean
streams define hot, cold or hot-and-cold streams in the
heat integration problem, depending on whether their
supply and target compositions are above or below the
mass exchange temperatures. Thus, their heat exchange
alternatives include both hot- and cold-side matching.
Inlet and outlet temperatures and compositions inmass
and heat exchangers are variables. The combined mass
and heat exchanger superstructure involves all the pos-
sible mass and heat exchangers of a stream and all the
possible interconnections between them, Fig. 6.

The combined MEN and HEN superstructure is de-
scribed by

� mass balances at the superstructure splitters (i. e. the
initial stream splitters and the splitters after each
side of the possible mass and heat exchangers), simi-
lar to (2) and (3), and considering all the connecting
flows;

� mass balances for overall flows and transferable
components at the superstructure mixers (i. e. the fi-
nal stream mixers and the mixers prior to each side
of the potential mass and heat exchangers), similar
to (4), (5) and (6), and considering all the connect-
ing flows;

� energy balances at the superstructure mixers;
� mass balances at the mass exchangers, similar to (1),

and
� energy balances at the heat exchangers.
The MHEN synthesis model also involves
� binary variables, to denote the existence of mass and

heat exchangers, and their definition (mixed integer
constraints),

� driving force constraints for mass exchange (8) at
the potential mass exchangers, and for heat ex-
change at the potential heat exchangers (based on
	Tmin),

� design equations for the potential mass and heat ex-
changers, and

� a total annualized network cost.
and is formulated as a (nonconvex) MINLP.

The simultaneous MHEN synthesis model ad-
dresses systematically the trade-off between capital and
operating cost of mass and heat integration. The MEN
and HEN are not assumed separable. Thus, better inte-
gration can be achieved, as it is allowed for a stream to
be partly heated for a particular mass exchange opera-
tion and then heated further for final purification.
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MINLP: Mass and Heat Exchanger Networks, Figure 6
Combined MEN and HEN superstructure

In the simple case when the temperatures of the
mass exchange operations are given or can be prepos-
tulated, the rich and lean streams define hot (or cold)
streams before participating to mass exchangers and
cold (or hot) streams afterwards [11].

The final mass and heat exchanger network struc-
ture results from the flows of the superstructure sub-
streams. Alternatively, the use of binary variables has
been suggested in [7] to denote the existence of ex-
changer connections. This, although increasing the
combinatorial complexity of the MINLP synthesis
model, allows for:
i) explicit piping cost considerations,
ii) structural constraints to be easily modeled, and
iii) the solution of simple NLP subproblems within

a decomposition-based MINLP solution method.
Mass exchange networks have been introduced as an
end-of-pipe treatment alternative. However, the extent
of mass recovery and the corresponding cost are closely
related to the reactive and mixing operations in a pro-
cess. A. Lakshmanan and L.T. Biegler [6] have sug-
gested a MINLP model for the synthesis of optimal re-
actor networks, where the thermodynamic feasibility of
mass integration and its implications are taken simul-
taneously into account, applying the first and second
thermodynamic laws for mass exchange, i. e.
� Total mass balance for the mass integrated streams

(resulting process and available rich and lean
streams);

X
i2R

Gi (ysi c � yti c) D
X
j2S

Lj(xt
jc � xsjc ) (10)

and

� feasibility of mass exchange above (and below) each
candidate mass exchange pinch:

8<
:

Mass lost by all the rich
streams below each pinch
point candidate

9=
;

�

8<
:

Mass gained by all the lean
streams below each pinch
point candidate

9=
; � 0

i. e.
X
i2R

Gi

�
�
max(0; yp � yti c) �max(0; yp � ySi c)

�

�
X
j2S

Lj

�
h
max(0; xp � xSjc ) �max(0; xp � xt

jc )
i

� 0

(11)

Note that the thermodynamic feasibility requirements
in (11) involve nondifferentiable terms if inlet and
outlet compositions are variables (position of streams
with respect to candidate pinch points). These can be
handled either employing differentiable approximation
functions [6], or introducing binary variables [2,3,5].

The main assumption in MEN is that mass transfer
operations are isothermal. In the general case these can
be followed (or caused) by heat transfer, as in distilla-
tion. Assuming constant counter-current molar flows,
M.J. Bagajewicz and V. Manousiouthakis showed in
[1] that distillation columns can be handled as pure
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mass transfer operations and derived targets for en-
ergy consumption and separation of a ‘key’ component,
employing the first and second thermodynamic laws
in (10) and (11), within an MINLP-based MHEN se-
quential synthesis framework. The problem of energy-
induced separations has been addressed by M.M. El-
Halwagi, B.K. Srinivas and R.F. Dunn in [4], translating
the energy-based separation tasks into simple energy-
requiring operations (heating and cooling tasks) and
deriving targets for energy consumption and the corre-
sponding mass recovery, based on thermodynamic fea-
sibility constraints.

Extending the concept of mass exchange to non-
isothermal mass transfer operations Papalexandri and
Pistikopoulos introduced a mass/heat transfer mod-
ule [8], where mass is transferred between different
phases or reacting species if that is thermodynamically
feasible, i. e. if that decreases the total Gibbs free energy
of the system. Mass and energy balances, taking into
account possible reactions, and mass-transfer driving-
force constraints based on total Gibbs free energy are
employed to model the mass/heat transfer module as
an aggregate of differential mass and energy transfer
phenomena. Considering a superstructure of mass/
heat and heat exchange modules in a process and all
possible interconnections between them, process syn-
thesis tasks can be formulated as mass/heat and heat
exchange superstructure MINLP problems, where bi-
nary variables are employed to denote the existence
of mass/heat and heat exchangers. Then, process op-
erations (conventional and/or hybrid) and networks
are derived as combinations of mass/heat and heat
exchange phenomena [8,10].

See also

� Global Optimization of Heat Exchanger Networks
�MINLP: Global Optimization with ˛BB
�MINLP: Heat Exchanger Network Synthesis
�Mixed Integer Linear Programming: Heat

Exchanger Network Synthesis
�Mixed Integer Linear Programming: Mass and Heat

Exchanger Networks
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The outer approximation algorithm (OA algorithm)
([1,2,9]) addresses mixed integer nonlinear programs of
the form:

(P)

8̂
<̂
ˆ̂:

min Z D f (x; y)
s.t. g j(x; y) � 0 ; j 2 J ;

x 2 X ; y 2 Y ;

where f (�), g(�) are convex, differentiable functions, J is
the index set of inequalities, and x and y are the con-
tinuous and discrete variables, respectively. The set X
is commonly assumed to be a convex compact set, e. g.
X = {x: x 2 Rn, Dx � d, xL � x � xU}; the discrete set Y
corresponds to a polyhedral set of integer points, Y = {y:
y 2 Zm, Ay � a}, and in most cases is restricted to 0� 1
values, y 2 {0, 1}m. In most applications of interest the
objective and constraint functions f (�), g(�) are linear in
y (e. g. fixed cost charges and logic constraints).

The OA algorithm is based on the following theo-
rem [1]:

Theorem 1 Problem (P) and the following mixed-
integer linear program (MILP) master problem (M-OA)
have the same optimal solution (x�, y�),

(M� OA) min ZL D ˛

such that

˛ � f (xk ; yk)Cr f (xk; yk)
�
x � xk

y � yk

�
;

g j(xk ; yk)Cr g j(xk ; yk)
�
x � xk

y � yk

�
� 0 ;

j 2 J ; k 2 K� ;

x 2 X ; y 2 Y ;

where

K� D

8<
:k :

(xk; yk) is the optimal
solution to (NLP1)

for all feasible yk 2 Y

9=
; ;

(NLP1)

8̂
<̂
ˆ̂:

min Zk
U D f (x; yk)

s:t: g j(x; yk) � 0 ; j 2 J ;
x 2 X ;

where Zk
U is an upper bound to the optimum of problem

(P).

Note that since the functions f (x, y) and g(x, y) are
convex, the linearizations in (M-OA) correspond to
outer approximations of the nonlinear feasible region
in problem (P). Also, since the master problem (M-OA)
requires the solution of all feasible discrete variables yk,
the following MILP relaxation is considered, assuming
that the solution of K NLP subproblems is available:

(RM� OA) min ZK
L D ˛

such that

˛ � f (xk; yk)Cr f (xk; yk)
�
x � xk

y � yk

�
;

g j(xk; yk)Cr g j(xk ; yk)
�
x � xk

y � yk

�
� 0 ;

j 2 J ; k D 1; : : : ;K ;

x 2 X ; y 2 Y :

Given the assumption on convexity of the functions
f (x,y) and g(x,y), the following property can be easily
be established,

Property 2 The solution of problem (RM-OA), corre-
sponds to a lower bound to the solution of problem (P).

Note that since function linearizations are accumulated
as iterations proceed, the master problems (RM-OA)
yield a nondecreasing sequence of lower bounds, Z1

L �

� � � � ZK
L , since linearizations are accumulated as itera-

tions k proceed.
The OA algorithm as proposed by M.A. Duran and

I.E. Grossmann [1] consists of performing a cycle of
major iterations, k = 1, . . . , K, in which (NLP1) is solved
for the corresponding yk, and the relaxed MILP mas-
ter problem (RM-OA) is updated and solved with the
corresponding function linearizations at the point (xk,
yk). The (NLP1) subproblems yield an upper bound
that is used to define the best current solution, UBK =
min(Zk

U ). The cycle of iterations is continued until this
upper bound and the lower bound of the relaxed master
problem, are within a specified tolerance.

It should be noted that for the case when the prob-
lem (NLP1) has no feasible solution, there are two ma-
jor ways to handle this problem. The more general op-
tion is to consider the solution of the feasibility prob-
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lem,

(NLFP)

8̂
<̂
ˆ̂:

min u
s:t: g j(x; yk) � u ; j 2 J ;

x 2 X ; u 2 R1 :

R. Fletcher and S. Leyffer [2] have shown that for
infeasible NLP subproblems, if the linearization at the
solution of problem (NLFP) is included, this will guar-
antee convergence to the optimal solution.

For the case when the discrete set Y is given by 0–1
values in problem (P), the other option to ensure con-
vergence of the OA algorithm without solving the fea-
sibility subproblems (NLFP), is to introduce the follow-
ing integer cut whose objective is to make infeasible the
choice of the previous 0–1 values generated at the K
previous iterations [1]:

(ICUT)

8̂
<
:̂

X

i2Bk

yi �
X

i2Nk

yi �
ˇ̌
ˇBk

ˇ̌
ˇ� 1 ;

k D 1; : : : ;K ;

where Bk = {i:yki = 1 }, Nk = {iyki = 0 }, k = 1, . . . , K.
This cut becomes very weak as the dimensionality of
the 0–1 variables increases. However, it has the useful
feature of ensuring that new 0–1 values are generated at
each major iteration. In this way the algorithm will not
return to a previous integer point when convergence is
achieved. Using the above integer cut the termination
takes place as soon as ZK

L � UBK .
The OAmethod generally requires relatively few cy-

cles or major iterations. One reason for this behavior is
given by the following property:

Property 3 The OA algorithm trivially converges in
one iteration if f (x, y) and g(x, y) are linear.

The proof simply follows from the fact that if f (x, y) and
g(x, y) are linear in x and y the MILP master problem
(RM-OA) is identical to the original problem (P).

It is also important to note that the MILP master
problem need not be solved to optimality. In fact given
the upper bound UBK and a tolerance " it is sufficient
to generate the new (yK , xK) by solving,

(M� OAF) min ZK
L D 0˛

such that
˛ � UBk � " ;

˛ � f (xk ; yk)Cr f (xk; yk)
�
x � xk

y � yk

�
;

g j(xk ; yk)Cr g j(xk ; yk)
�
x � xk

y � yk

�
� 0 ;

j 2 J ; k D 1; : : : ;K ;
x 2 X ; y 2 Y :

While in (M-OA) the interpretation of the new
point yK is that it represents the best integer solution to
the approximating master problem, in (M-OAF) it rep-
resents an integer solution whose lower bounding ob-
jective does not exceed the current upper bound UBK ;
in other words it is a feasible solution to (M-OA) with
an objective below the current estimate. Note that in
this case the OA iterations are terminated when (M-
OAF) is infeasible.

Another interesting point about the OA algorithm
is the relationship of its master problem with the one
of the generalized Benders decomposition method [3],
which is given by:

(RM� GBD) min ZK
L D ˛

such that
˛ � f (xk ; yk)Cry f (xk; yk)>(y � yk)

C (�k)>
h
g(xk; yk)Cr g(xk ; yk)(y � yk)

i
;

k 2 KFS ;

(�k)>
h
g(xk ; yk)Cr g(xk ; yk)(y � yk)

i
;

k 2 KIS ;

x 2 X ; ˛ 2 R1 ;

where KFS is the set of feasible subproblems (NLP1)
and KIS the set of infeasible subproblems whose solu-
tion is given by (NLFP). Also |KFS � KIS | = K. The
following property, holds between the twomethods [1]:

Property 4 Given the same set of K subproblems, the
lower bounds predicted by the relaxed master problem
(RM-OA) are greater or equal to the ones predicted by
the relaxed master problem (RM-GBD).

The above proof follows from the fact that the La-
grangian and feasibility cuts in (RM-GBD) are surro-
gates of the outer approximations in the master prob-
lem (M-OA). Given the fact that the lower bounds of
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MINLP: Outer Approximation Algorithm, Table 1
Summary of computational results

Method Subproblems Master LPs
problems solved

BB 5 (NLP1)
OA 3 (NLP2) 3 (M-PID) 19 LPs
GBD 4 (NLP2) 4 (M-GBD) 10 LPs
ECP � 5 (M-MIP) 18LPs

MINLP: Outer Approximation Algorithm, Figure 1
Progress of iterations of OA and GBD for MINLP in MIP-EX

GBD are generally weaker, this method commonly re-
quires a larger number of cycles or major iterations. As
the number of 0–1 variables increases this difference be-
comes more pronounced. This is to be expected since
only one new cut is generated per iteration. Therefore
user-supplied constraints must often be added to the
master problem to strengthen the bounds. As for the
OA algorithm, the trade-off is that while it generally
predicts stronger lower bounds than GBD, the compu-
tational cost for solving the master problem (M-OA) is
greater since the number of constraints added per iter-
ation is equal to the number of nonlinear constraints
plus the nonlinear objective.

The OA algorithm is also closely related to the ex-
tended cutting plane (ECP) method by T. Westerlund

and F. Peterssen [8]. The main difference lies that in
the ECPmethod noNLP subproblem is solved, and that
linerization simply takes place over the predicted con-
tinuous points from the MILP master problem, which
in turn will normally only include linearizations of the
most violated constraints.

Extension of the OA algorithm [4] include the
LP/NLP based branch and bound [6], which avoids the
complete solution of the MILP master problem (M-
OA) at each major iteration. The method starts by solv-
ing an initial NLP subproblem which is linearized as
in (M-OA). The basic idea consists then of perform-
ing an LP-based branch and boundmethod for (M-OA)
in which NLP subproblems (NLP1) are solved at those
nodes in which feasible integer solutions are found. By
updating the representation of the master problem in
the current open nodes of the tree with the addition of
the corresponding linearizations, the need of restarting
the tree search is avoided. Another important extension
has been the method by Fletcher and Leyffer [2] who
included a quadratic approximation based on the Hes-
sian of the Lagrangian to the master problem (M-OAF)
in order to capture nonlinearities in the 0–1 variables.
Note that in this case the optimal solution of the mixed
integer quadratic program (MIQP), ZK , does not pre-
dict valid lower bounds in this case, and hence the con-
straint ˛ � UBK � " is added, with which the search is
terminated when no feasible solution can be found in
the MIQP master.

Finally, in order to handle equations in problem
(P), G.R. Kocis and Grossmann [5] proposed the equal-
ity relaxation strategy, in which linearizations of equa-
tions are converted into inequalities for the MIP mas-
ter problem according to the sign of the Lagrange
multipliers of the corresponding NLP subproblem. J.
Viswanathan and Grossmann [7], further proposed to
add slack variables to this MILP master problem, and
an augmented penalty function. Since in this gener-
ally nonconvex case the bounding properties do not ap-
ply, the algorithm was modified so as to start with the
NLP relaxation of problem (P). If no integer solution is
found, iterations between the MILP and NLP subprob-
lems take place until there is no improvement in the ob-
jective function. This idea was precisely implemented in
the commercial codeDICOPT, which can also bemodi-
fied to the original OA algorithm, if the user knows that
the functions f (x, y) and g(x, y) are convex.
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Example 5 In order to illustrate the performance of the
OA algorithm, a simple numerical MINLP example is
considered.

(MIP � EX)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min Z D y1 C 1:5y2 C 0:5y3
Cx21 C x22

s.t. (x1 � 2)2 � x2 � 0
x1 � 2y1 � 0
x1 � x2 � 4(1 � y2) � 0
x1 � (1 � y1) � 0
x2 � y2 � 0
x1 C x2 � 3y3
y1 C y2 C y3 � 1
0 � x1 � 4; 0 � x2 � 4
y1; y2; y3 D 0; 1 :

The optimum solution to this problem corresponds to
y1 = 0, y2 = 1, y3 = 0, x1 = 1, x2 = 1, Z = 3.5. Figure 1
shows the progress of the iterations of the OA and GBD
algorithm with the starting point y1 = y2 = y3 = 1. As
can be seen the lower bounds predicted by the OA algo-
rithm are considerably stronger than the ones predicted
by GBD. In particular at iteration 1, the lower bound of
OA is 1.0 while the one of GBD is �23.5. Nevertheless,
since this is a very small problem GBD requires only
onemore iteration than OA (4 versus 3). It is interesting
to note that the NLP relaxation of this problem is 2.53,
which is significantly lower than the optimal mixed in-
teger solution. Also, as can be seen in Table 1, an NLP-
based branch and bound method requires the solution
of 5 NLP subproblems, while the ECP method requires
5 successive MILP problems.
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Reactive distillation (RD) occurs when a reaction takes
place in the liquid holdup on the trays, in the reboiler,
or in the condenser of a distillation column. Reactive
distillation can increase the conversion of equilibrium
limited reactions by continuously separating products
and reactants, improve the selectivity in some kineti-
cally limited reaction systems, and separate azeotropic
and isomeric mixtures by converting one species into
another that is easy to remove. It can also create a natu-
ral heat integration that uses an exothermic heat of re-
action to create vapor boilup in a distillation column,
and reduce capital costs by completing several process-
ing steps in a single vessel. Reactive distillation is used
commercially to produce methyl tert-butyl ether [13],
esters including methyl acetate [1], and nylon 6, 6 [9].
It has also been proposed for hydrolysis reactions [7],
ethyl- ene glycol synthesis [11], and cumene produc-
tion [12]. See [7] for a review of the area.

As a result of increasing interest in the reactive
distillation technique, systematic reactive distillation
design methods have gained much importance. See
[2,3,4,5] for residue curve maps, a powerful tool for vi-
sualizing distillation problems, to reactive distillation.
In [7] this work was extended by including kinetic ef-
fects when the Damkohler number is fixed. In [14] syn-
thesis of reactive distillation with multiple reactions is
studied.

Reactive distillation poses a challenging problem for
optimization based design techniques. Unlike in con-
ventional distillation, holdup volume is an important
design variable in reactive distillation, since the reac-
tion generally takes place in the liquid body on the
tray. The constant molar overflow assumption of con-
ventional distillation design is not valid unless the re-

action has thermal neutrality and is stoichiometrically
balanced. For an optimal solution one should take into
account that the feed to the column may be distributed.
This, in addition to the holdup volume, liquid and va-
por flows, composition and temperature profiles, num-
ber of trays and feed location(s) becomemajor variables
of an optimization problem which searches for a min-
imum of a cost function. The constraints of this op-
timization problem are material and energy balances,
vapor-liquid equilibria, mole fraction summations, ki-
netic and thermodynamic relationships, and logical re-
lationships between the variables. The resulting opti-
mization model is a mixed integer nonlinear program-
ming problem since it involves the optimum number of
trays and feed tray locations which are integer variables.
The cost function and the material and energy balances
cause the nonlinearity of the problem.

There are two approaches to RD design via MINLP
methods. One addresses reactive distillation through
heat and mass exchanger networks [10], and the other
addresses it through distillation column superstruc-
tures [6,8].

Problem Statement

The general problem of the reactive distillation column
synthesis problem can be stated formally as follows.
Given:
� the chemical species, i = 1, . . . , I, involved in the dis-

tillation; desired products, i 2 P, and their produc-
tion rates PI ;

� the set of chemical reactions, j = 1, . . . , J;
� rate expressions rj or an equilibrium constant Kj for

each reaction j;
� heat of vaporization and vapor-liquid equilibrium

data;
� cost of downstream separations;
� cost cs and composition xis of all feedstocks, s = 1

. . .S;
� the cost of the column as a function of the number

of trays and the internal vapor flow rate, C(V , N);
� the form of the catalyst.
Determine:
� the optimum number of trays;
� the trays where reactions take place;
� the holdup on each tray where a kinetically limited

reaction takes place;
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� the reflux ratio;
� the condenser and reboiler duties; and
� the feed location(s).
Such that the total cost is minimized while producing
the correct amount of product.

Distillation Based Superstructure Approaches

One approach to MINLP based reactive distillation col-
umn design uses a superstructure that contains many
different alternative designs embedded within it. Two
different superstructures have been proposed; they dif-
fer in their treatment of the liquid reflux and vapor
boilup, and in their heat management. See [6] for
a structure that varies the number of trays and always
recycles the liquid reflux to the top tray and the va-
por boilup to the bottom tray (Fig. 1). More recently
(1997), Z.H. Gumus and A.R. Ciric [8] modified the su-
perstructure presented in [15] recycling vapor boilup
and liquid reflux to each tray by adding a decanter to
the distillate stream and side heaters and coolers to each
tray (Fig. 2). In both of these superstructures, the num-
ber of trays may vary between 1 and some upper bound
K. Each feed stream is split, and a portion is sent to each
tray in the superstructure. In kinetically limited reac-
tions, the hold-up volume may vary, and, in reactions
systems with a solid catalyst, some trays will have reac-
tion while others do not.

MINLP: Reactive Distillation Column Synthesis, Figure 1
Superstructure for optimum feed location(s) and number of
trays [6]

MINLP: Reactive Distillation Column Synthesis, Figure 2
Tray-by-tray superstructure of [8]

The structure shown in Fig. 1 is appropriate for re-
active distillation processes with a single liquid phase
and kinetically limited reactions that are catalyzed with
a solid catalyst. Representing the existence of each tray
with an integer variable Yk leads to a mixed integer
nonlinear programming problem whose solution ex-
tracts a design with the number of trays, feed tray lo-
cations, reactive trays, holdup volumes, reflux ratio and
boilup ratio that minimize the total cost. Assumed va-
por liquid equilibrium on each tray, no reaction in the
vapor phase, homogeneous liquid phase, negligible en-
thalpy of liquid streams, constant heat of vaporization
leads to the MINLP shown below [6]:

min Z D co C
X
sk

cs Fsk C cRQB C cCQC

C cTD1:55 �
X�

2Yk C 1:27
Wk

D2

�

C cSHD
X
k

0
@Ho C

X
k0�k

2C 1:27
Wk0

D2

1
A

0:802

� (Yk � YkC1)

subject to

X
s

xisFs1 � L1xi1(1 � ˇ)

C L2xi;2 � V1Ki1xi1 C
X
j

�i j�1 j D 0; (1)
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"X
s

xisFsk C Vk�1Ki;k�1xik�1 C LkC1xi;kC1

�Lkxik � VkKikxik C
X
j

�i j�i k

3
5Yk D 0;

k D 2; : : : ;K; (2)
2
4�Vk�1 � �Vk �

X
j

	Hj� jk

3
5Yk D 0; (3)

Dist D
X
k

(Vk � LkC1)(Yk � YkC1); (4)

Bi D (1 � ˇ)L1xi1; (5)

Bi D Pi ; i 2 P; (6)
"X

i

xik � 1

#
(Yk � Yk�1) D 0; (7)

"X
i

Kikxik � 1

#
Yk D 0; (8)

xdi � Kikxik � 1C yk � ykC1 � 0; (9)

xi;kC1 � xdi � 1C yk � ykC1 � 0; (10)

X
i

xdi D 1; (11)

� jk D Wk f j(xik; Tk ); (12)

Kik D Kik(xik; Tk ); (13)

Vk � FmaxYk � 0; (14)

X
s

Fsk � FmaxYk � 0; (15)

LkC1 � FmaxYk � 0; (16)

Wk �WmaxYk � 0; (17)

QB D ˇ�L1; (18)

QC D
X
k

�Vk(Yk � YkC1); (19)

D4 � CDˇ
2L21; (20)

D � Dmin; (21)

YkC1 � Yk : (22)

In this model, constraints (1) and (2) are the com-
ponent balances of species i over the bottom tray and
the remaining trays k; constraint (3) is the energy bal-
ance around tray k. The distillate flow is found with
constraint (4). Distillate flow is calculated as the differ-
ence between the vapor flow leaving the top tray and
the liquid flow entering it. Note that the term Yk �

Yk+1 will be nonzero only for top tray, and zero for all
others. Constraint (5) calculates the bottoms flow rate
and constraint (6) specifies the production rate. Sum-
mation equations for the mole fractions are given in
constraints (7) and (8). Constraints (9)–(11) identify
the top tray and set the distillate and liquid reflux com-
position equal to the composition of the vapor leaving
the top tray. Reaction rates are given in constraint (12),
and the vapor liquid equilibrium constant is found by
constraint (13). Constraints (14)–(17) ensure that when
Yk equals zero and tray k does not exist, the flows onto
and off of the tray are zero. Constraints (18) and (19)
calculate the reboiler and condenser duties, while con-
straints (20) and (21) find the column diameter. The last
constraint ensures that tray k + 1 does not exist if tray k
does not exist.

In [6] this technique is demonstrated with the syn-
thesis of a reactive distillation column that makes ethy-
lene glycol from ethylene oxide and water. The main
reaction is

C2H4OCH2O! C2H6O2:

Further reaction of ethylene glycol gives the unde-
sired byproduct diethylene glycol:

C2H4OC C2H6O2 ! C4H10O3

Ethylene glycol is produced using reactive distilla-
tion because the large volatility difference between the
product and the reactants allows the continuous re-
moval of EG from the reaction zone and absorption
of the heat of reaction by the separation results in cost
cuts.

The problem is solved using the reaction, physical
property and cost data given in Table 1. The production
rate is taken as 25 kg.mol/h of ethylene glycol. When
the problem is solved without specifying the number of
feed trays or their locations the solution obtained us-
ing GAMS is a 10-tray distillation column with a total
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MINLP: Reactive Distillation Column Synthesis, Table 1
Ethylene glycol system; reaction, physical property and cost
data

Reaction Rate �H
(mol/cm3.s) (kJ/mol)

1 3:15	109exp
h

�9:547
T(K)

i
xEOxH2O �80

2 6:3	109exp
h

�9:547
T(K)

i
xEOxEG �13:1

Component K for P = 1 atm

EO 71:9 exp
˚
5:72

� T�469
T�35:9

��

H2O 221:2 exp
˚
6:31

� T�647
T�52:9

��

EG 77 exp
˚
9:94

� T�645
T�71:4

��

DEG 47 exp
˚
10:42

� T�681
T�80:6

��

EO feedstock: $43:7/kmol
Water feedstock: $21:9/kmol
Downstream separation: $0:15/kmol H2O

in effluent
Csh = $222/yr
CT = $15:7/yr
CR = $146:8/kW.yr
CC = $24:5/kW.yr
CO = $10; 000/yr

annualized cost of 15.69 × 106/yr. The reaction zone is
above tray 4 and the feed is distributed to each tray in
the reaction zone. When the problem is slightly modi-
fied by adding constraints on the feed tray number, the
solution changes to a 10-tray column with a total annu-
alized cost of 15.73 × 106/yr. The reaction zone is be-
tween trays 4 and 10 and water is fed to tray 10 while
ethylene glycol enters the column at tray 4. The selectiv-
ity reached by both columns is the same. (Fig. 3) shows
the solutions. The column specifications are given in
Table 2.

Heat andMass Exchange Networks

In this approach, process units are defined as combi-
nations of heat and mass exchanger blocks, and the al-
ternatives for the synthesis are explored simultaneously
in a superstructure. A reactive distillation column can
be described as a combination of mass/heat exchanger
units with a condenser and a reboiler [10]. Heat and
mass transfer takes place between the contacting vapor

and liquid phases and from reactants to products. Mul-
tiple feeds and products and side heating and cooling
tasks can be included in the description in the form of
multiple mass and heat exchanger blocks between liq-
uid and vapor streams. Its phase and quality define each
stream. The quality indicator describes the leanness or
richness of a stream in different components. Heat and
mass transfer occurs between vapor and liquid streams
of the same quality or between liquid and liquid (reac-
tant and product) streams. For example, consider the
reaction

AC B! CC D:

Then there are liquid and vapor streams LABCD
and VABCD in general notation. The streams lean
in a component, for example in A, have that letter
in parentheses, e. g. L(A)BCD or V(A)BCD. All pos-
sibilities of such streams, i. e. LAB(CD), VAB(CD),
L(ABC)D, V(ABC)D, L(AB)C(D), V(AB)C(D), etc.,
and all the possible matches between them are con-
sidered within the structure. The possible matches are
liquid-vapor matches of the same stream and all liquid-
liquid matches.

This model describes exchangers with simple mass
and energy balances and constraints defining phase and
feasibility. Mass and heat generated or consumed by
chemical reactions are included in the balances. Mass
transfer is driven by a minimum concentration ap-
proach while a minimum temperature approach is the
driving force for heat transfer. Concentration and tem-
perature approach constraints are considered at each
end of the exchanger. Equilibrium can be represented
by a zero concentration approach, which means no
driving force for mass transfer.

In the synthesis framework for an optimal pro-
cess network, one should start with the construction
of the stream sets containing all the initial, intermedi-
ate, and final process streams. The key is the availabil-
ity of the physical and chemical property information
on the streams. When the information is not enough
to identify the individual streams, especially the inter-
mediate streams, a general set of one vapor and one
liquid stream is constructed, which contain all compo-
nents involved in the process. The second step is to list
all the possible streammatches. Engineering knowledge
plays an important role in this step. One should be care-
ful about not listing redundant or meaningless stream
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MINLP: Reactive Distillation Column Synthesis, Figure 3
Optimal distributed and two-feed columns for ethylene glycol production

MINLP: Reactive Distillation Column Synthesis, Table 2
Column specifications for ethylene glycol production

Feed type Diam. (m) Height (m) Boilup ratio Reboiler duty (MW) Condenser duty (MW)
Distr. 1:3 12 0:958 6:7 7:31
Two-feed 1:3 12 0:96 6:9 7:5

MINLP: Reactive Distillation Column Synthesis, Figure 4
Mass/heat exchange network representation of a multifeed
reactive distillation column

matches since these will only make the problem more
complex. Knowledge about the system is the key in this
screening stage. Developing the mass/heat exchange

network superstructure is the next step in the frame-
work. All possible interconnections between the stream
splitters and mixers should be taken into considera-
tion. The last step is the optimization of the superstruc-
ture. Usually, the objective function of the optimization
problem is a cost function. If the cost function includes
only operating cost, which depends on the raw mate-
rial and utility consumption, the objective function can
be easily formulated from the superstructure. If, how-
ever, capital investment costs are involved in the ob-
jective cost function, the formulation is not straightfor-
ward from the superstructure, since process unit spec-
ifications are not considered in the superstructure. In
this case, capital cost is to be approximated using cost
functions that take operating conditions into account.
Separation difficulty can be used in evaluating the capi-
tal cost of a distillation tray.

K.P. Papalexandri and E.N. Pistikopoulos [10] used
the production of ethylene glycol from ethylene ox-
ide and water to demonstrate this approach. The re-
actions involved in this production were given be-
fore. Physical properties, cost and reaction data are
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MINLP: Reactive Distillation Column Synthesis, Figure 5
Steps of the synthesis framework

the same as given earlier in Table 1. The difference
from the example problem studied in [6] is the objec-
tive, which is the minimization of operating cost only.
The set of streams include the intermediate streams
L{EO, H2O, EG, DEG} and V{EO, H2O, EG, DEG} and
the product streams L(EG) and L(DEG). Five liquid-
liquid mass/heat exchange matches and 15 liquid-vapor
mass/heat exchange matches are considered. Repre-
senting each match with a binary variable, and consid-
ering all possible interactions between units, the prob-
lem is formulated as a mixed integer nonlinear pro-
gramming problem with the objective of minimizing
operating cost, which includes rawmaterial cost, purifi-
cation, and utility cost. The optimal reactive distillation
column obtained is pictured in Fig. 6. The column has
two reaction zones and multiple feeds, and the operat-
ing cost is 1.17 × 106 $/yr.

Conclusions

This paper discussed the MINLP applications in reac-
tive distillation design problems. Twomain approaches
are studied: distillation based superstructure approach
that uses rigorous tray-by-tray method to model reac-
tive distillation, and heat and mass exchanger network
superstructure approach that realizes reactive distilla-
tion processes as combinations of several mass/heat ex-
changers with a condenser and a reboiler. Examples are
included to demonstrate the approaches.

MINLP: Reactive Distillation Column Synthesis, Figure 6
Optimal reactive distillation column for ethylene glycol pro-
duction
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The trim-loss problem is one of the most demanding
optimization problems in the paper-converting indus-
try. It appears when an order specified by a customer is
to be satisfied by cutting out a set of product reels from
a wider raw paper reel.

The products in the order are characterized by
width and quality. In a paper-converting mill the raw
paper can be printed, coated and cut. In a typical paper-
converting mill, there may be hundreds of different
products to be produced. When considering the trim-
loss problem, width is the most important property
while the main problem is to determine such cutting
patterns that minimize waste production, the trim loss.

In the optimization problem, beyond the number
of cutting patterns needed, the appearance of each cut-
ting pattern needs to be determined at the same time as
having to decide how many times the cutting patterns
ought to be repeated.

The customer widths and the raw paper widths are
often more or less independent of each other. This
makes it combinatorially very demanding to produce
a cutting plan that minimizes the trim loss. Even if
the trim-loss problem is in its basic form an integer
problem, it has often been solved by linear program-
ming (LP) methods [3] or some heuristic algorithms
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MINLP: Trim-loss Problem, Figure 1
The cutting procedure

[4]. A good survey of widely used solution methods for
trim-loss and assortment problems is given in [7].

When using an LP-approach to solve an integer
problem the biggest difficulty is to convert the continu-
ous solution such that the integer variables obtain in-
teger values. The rounding methods are heuristic [8]
and often fail to give the optimal integer solution even
though the solution may be fairly good.

Problem Formulation

The trim-loss problem is a bilinear nonconvex integer
nonlinear programming (INLP) problem. The appear-
ance of a cutting pattern needs to be determined by in-
teger variables and the bilinearity comes from the de-
mand constraints.

A cutting pattern tells how many times a certain
product is cut out from the raw paper. Let a cutting pat-
tern have the index j and a product the index i. Assume
a customer demand with I different products and fur-
ther assume that the maximum allowed number of dif-
ferent cutting patterns is J. Further let mj be the num-
ber of times a certain cutting pattern is repeated and nij
be the number of times a product i appears in cutting
pattern j. If the demand of a product i is expressed by
ni, order, the demand constraints can be written as

ni;order �

JX
jD1

mj � ni j � 0;

i D 1; : : : ; I;

mj; ni j 2 ZC:

(1)

The negative bilinear terms make the problem noncon-
vex. Both of the variables in the term are integer vari-
ables and consequently the problem is a bilinear inte-

ger optimization problem. It is not possible to replace
one of the variables nij with a continuous variable be-
cause this would violate the product specification. In
theory it is possible to replace themj with a continuous
variable but this may easily dissatisfy the desired prod-
uct reel length and diameter requirements. Therefore,
in the following study it is preferable to keep both mj

and nij as integers.
While raw paper reels of the same width are often

glued together to form a continuous raw paper reel the
problem can be simplified by omitting the raw paper
length and assuming that the pattern lengths are equal.

Besides the demand constraint, certain constraints
are needed to keep the problem feasible. Let the width
of a product i be expressed by bi and the width of the
raw paper used for cutting pattern j by Bj, max. The trim-
loss width cannot exceed, for instance, 200mmowing to
the machinery. This limit is represented by�j. Further-
more, the maximum number of products that can be
cut out from a pattern often has a physical restriction.
The outcoming product reels have to form an angle big
enough so that the reels do not attach together, yet with
too big an angle between the outermost reels the paper
may be torn off. Let this upper limit be Nj, max.

Besides the total number of patterns, the pattern
changes are also of interest when doing the optimiza-
tion. This is due to the fact that the machinery normally
needs to be stopped for a knife change which causes
a production stop. Let therefore the variable yj be 1 if
the cutting pattern j exists and 0 if not. The sum of yj
variables then indicates howmany different cutting pat-
terns are needed to satisfy the production and the sum
of mj indicates the total number of all patterns which
are related to the running metres of the raw material.

Now the basic formulation can be written in math-
ematical form. The objective is to minimize the total
number of patterns and the number of pattern changes.

min
m j;ni j;y j

8<
:

JX
jD1

c j � mj C Cj � y j

9=
; (2)

subject to

IX
iD1

bi � ni j � Bj;max � 0; (3)
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�

IX
iD1

bi � ni j C Bj;max �	 j � 0; (4)

IX
iD1

ni j � Nj;max � 0; (5)

y j � mj � 0; (6)

mj � Mj � y j � 0;
j D 1; : : : ; J;

(7)

ni;order �

JX
jD1

mj � ni j � 0;

i D 1; : : : ; I;

mj; ni j 2 Z; y j 2 f0; 1g:

(8)

The Mj gives the upper bound for corresponding mj

variables. When using an objective as in (2) the con-
straint (6) becomes irrelevant. The width constraints
are given in (3)–(4) and the constraint (5) restricts the
number of cuts in a pattern. The binary variables, yj, are
defined in (6)–(7).

The functionality of the variables are demonstrated
in the following figure where the raw-paper width is
Bj, max. Note that the pattern lengthmay typically be e. g.
6500m.

The last constraint, the demand constraint (8), is an
integer bilinear constraint where both variables in bi-
linear terms are pure integers. This makes the problem
a nonconvex MINLP problem where the nonconvexity
appears in the integer variables.

There are very few methods available that are ca-
pable of solving similar nonconvex MINLP problems.
Some heuristic methods such as simulated annealing
[9] may find the global optimal solution within infinite
time but algorithmic methods have not been proven to
converge with such types of problems. Only recently
(1999) some advancements have been reported in [1]
and [11].

However, it is fully possible to transform the trim-
loss problem into convex or linear form and use some
established MINLP or MILP solver to solve the result-
ing problem to global optimality. Some linear trans-
formations are presented in [6] and methods to trans-
form the nonconvex problem into a convex form can be
found in [10] and [5].

Linear Transformations

As can be seen from (2)–(8), all constraints but the last
demand constraint are linear. This means that the prob-
lem should be fairly well bounded already by the linear
part of the problem and thus a linear formulation strat-
egy seems to be fully possible.

However, this linear transformation requires new
variables and constraints that may complicate the prob-
lem. Using a standard approach, by rewriting one of
the integer variables in the bilinear term by binary vari-
ables, the following is obtained.

mj D

KX
kD1

2k�1 � ˇ jk ;

mj 2 R; ˇ jk 2 f0; 1g:

(9)

K is the number of binary variables needed. By defin-
ing Lij to be the upper bound for respective nij variables
and introducing a new slack-variable sijk the following
constraints will create a necessary link between the nij
and sijk variables:

si jk � ni j � 0; (10)

� si jk C ni j � Li j � (1 � ˇ jk ) � 0; (11)

si jk � Li j � ˇ jk � 0: (12)

Using the above constraints the bilinear demand con-
straint can be written in linear form

ni;order �

JX
jD1

KX
kD1

2k�1 � si jk � 0: (13)

Themj could also be represented by special ordered sets
(SOS) where at most, one of the binary variables are al-
lowed to be nonzero.

mj D

KX
kD1

k � ˇ jk ;

KX
kD1

ˇ jk � 1 : (14)

It should be noted that the usage of this kind of trans-
formation may enlarge the integrality gap unless for in-
stance the nij variables in equations (3)–(5) are replaced
with corresponding variables sijk.

The same transformation can be modified such that
nij is replaced by a binary representation and mj is de-
fined through the slack-variables sijk.
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MINLP: Trim-loss Problem, Figure 2
The integer variables

ParameterizationMethods

Beyond the linear transformation, the problem can be
written in linear form by simply parameterizing one of
the variables in the bilinear term. This method though
may lead to global optimality only in such cases where
all the possible combinations have been considered.
This strategy may be good for smaller problems but it
may also generate far toomany integer variables in solv-
ing larger trim-loss problems.

It is quite easy to generate all the possible combi-
nations of nij variables satisfying the constraints (3)–
(5). This strategy results in a problem where these con-
straints can be removed and where the nij variables in
the resulting linear demand constraint are parameters:

ni;order � mj � n0i j � 0 ; mj 2 Z : (15)

The same type of parameterization strategy may also be
applied to the other variable mj but in this case it may
be more difficult to define the exact values of the pa-
rameters. One strategy is to use the upper boundsMj or
define all the mj variables to be equal to one and make
sure that a sufficient amount of the variablesmj are con-
sidered.

Another alternative is to combine the parameter-
ization and transformation methods so that a proper
amount of parameterized variables are combined with
original variables. This strategy may be very efficient
but often requires such information that may be dif-
ficult to obtain from a larger problem without any
knowledge of the solution.

Convex Transformations

In the previous sections a number of methods were
presented where the nonconvex problem can be trans-

formed or parameterized into linear form. The main
drawback for this linear transformation strategy is the
large number of extra constraints and continuous vari-
ables. The parameterization strategy results in a formu-
lation with a few constraints but many extra integer
variables.

In the following a number of convexification meth-
ods are presented. Generally, the convex formulations
need fewer extra constraints and continuous variables
as the linear strategies and no extra integer variables as
is the case with the parameterization methods. Thus,
the convex transformation could be expected to result
in formulations which are easier to solve especially for
larger-scale orders. This creates an interesting problem,
where the integer search space is reduced at the expense
of more complex nonlinear functions, which could, in
principle, be used as benchmarks for the performance
of MINLP algorithms.

The basic principle for the convex transformation is
to first expand the bilinearity in the demand constraint

mj �ni j D (mjC�)(ni jC�)�� � (mjCni j)��2: (16)

In the following text, the translation constant � = 1 is
used for simplicity. The second step is to substitute the
bilinear term in the original demand constraint

ni;order �

JX
jD1

(mj C 1)(ni j C 1)

C

JX
jD1

(mj C ni j)C J � 0: (17)

It should be noted that the transformations that follow
need to consider the whole problem not only individual
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functions, which makes the transformation techniques
more demanding. A transformation of a single function
may cause linear constraints to become nonlinear if one
is unaware of this fact.

Exponential Transformation

The demand constraint is originally a negative bilinear
constraint. The exponential transformation can only be
applied to a positive bilinear constraint. Therefore, one
of the variables in the bilinear term needs to be substi-
tuted with its reversed value.

ri j D Nj;max � ni j (18)

and the demand constraint is modified to

ni;order �

JX
jD1

mj � Nj;max C

JX
jD1

mj � ri j: (19)

Now the exponential transformation can be applied.
The transformation is of the form

mj C 1 D eM j ; ri j C 1 D eRi j (20)

and the variables are defined as

mj D

L jX
lD1

ˇ j l � l ; (21)

Mj D

L jX
lD1

ˇ j l � ln(l C 1); (22)

ri j D
KiX
kD1

ˇi jk � k; (23)

Ri j D

KiX
kD1

ˇi jk � ln(k C 1); (24)

L jX
lD1

ˇ j l � 1;
KiX
kD1

ˇi jk � 1; (25)

ˇ j l ; ˇi jk 2 f0; 1g; Mj; Ri j 2 R:

When combining these definitions, the demand con-
straint can be written in convex form

ni;order � J C
JX

jD1

eM jCRi j

�

JX
jD1

0
@(Nj;max C 1) �

L jX
lD1

ˇ j l � l C
KiX
kD1

ˇi jk � k

1
A � 0:

(26)

This transformation can also be achieved in slightly an-
other way but using this strategy also requires updating
some of the constraints in (3)–(7).

Square-Root Transformation

This transformation is almost equivalent to the previ-
ous one. A main difference is that it can be applied
straight to the negative bilinear constraint and thus no
rij variables need to be defined. The constraint (21) is
valid but the constraint (23) needs to be modified to

ni j D

KiX
kD1

ˇi jk � k: (27)

Note that the equations in (25) are valid. The transfor-
mation is of the form

mj C 1 D
q
Mj; ni j C 1 D

q
Ni j: (28)

The transformation variablesMj and Nij are defined as

Mj D 1C
L jX
lD1

ˇ j l � l(l C 2); (29)

Ni j D 1C
KiX
kD1

ˇi jk � k(k C 2); (30)

ˇ jk ; ˇi jk 2 f0; 1g; Mj ;Ni j 2 R:

and the resulting convex demand constraint is

ni;order C J �
JX

jD1

q
Mj � Ni j

C

JX
jD1

0
@

L jX
lD1

ˇ j l � l C
KiX
kD1

ˇi jk � k

1
A � 0: (31)
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Logarithmic and Square-Root Transformation

The square-root and the logarithmic functions can be
combined, resulting in a third convex transformation.
It is directly applicable to the negative bilinear function
and the transformation can be written as

mj C 1 D
q
Mj; ni j C 1 D lnNi j: (32)

Themj, nij andMj variables are defined as in the square-
root transformation and the Nij is defined as

Ni j D e C
KiX
kD1

ˇi jk � (ekC1 � e) (33)

and the following convex demand constraint is ob-
tained

ni;orderC J �
JX

jD1

q
Mj � lnNi j

C

JX
jD1

0
@

L jX
lD1

ˇ j l � l C
KiX
kD1

ˇi jk � k

1
A � 0: (34)

It can be noted in equation (34) that the only difference
to the former transformation is the third term of the
demand constraint.

Inverted Transformation

The following transformation can be applied to a pos-
itive bilinear constraint. Thus the same definition of rij
has to be done as for the exponential transformation.
The transformation has the form

mj C 1 D
1
Mj
; ri j C 1 D

1
Ri j
: (35)

The definitions of the transformation variables follow:

Mj D 1C
L jX
lD1

ˇ j l �

�
1

l C 1
� 1

�
; (36)

Ri j D 1C
KiX
kD1

ˇi jk �

�
1

k C 1
� 1

�
: (37)

The demand constraint is obtained exactly in the same
way as before

ni;order � J C
JX

jD1

1
Mj � Ri j

�

JX
jD1

0
@(Nmax C 1) �

L jX
lD1

ˇ j l � l C
KiX
kD1

ˇi jk � k

1
A � 0:

(38)

Modified Square-Root Transformation

As the last transformation, a modification to the pre-
viously presented square-root transformation is intro-
duced. In such cases where the variable mj may take
large values, it may bemore efficient to use another type
of binary representation.

mj D

L0jX
lD1

2l�1 � ˇ j l ; (39)

where Lj0 = blog2(mj, max)c+ 1 if mj, max is the upper
bound for the respective mj variable. This modification
reduces the required number of binary variables and
the transformation variable Mj needs to be redefined.
The definition also requires additional slack-variables
and constraints. In the following, the square-root trans-
formation is used:

Mj D 1C
L0jX
lD1

(s2l�2 C 2l ) � ˇ j l

C

L0jX
l ;mD1;m<l

2lCm�1 � s jlm ; (40)

� s jlm � 1C ˇ j l C ˇ jm � 0; (41)

2 � s jlm � ˇ j l � ˇ jm � 0;

l ;m D 1; : : : ; L0j ; m < l : (42)

By adding the extra constraints and defining Nij as in
the square-root strategy, the demand constraint can be
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written in convex form as follows

ni;orderC J �
JX

jD1

q
Mj � Ni j

C

JX
jD1

0
@

L jX
lD1

ˇ j l � 2l�1 C
KiX
kD1

ˇi jk � k

1
A � 0: (43)

Five methods for transforming the originally noncon-
vex trim-loss problem into convex form have been dis-
cussed. Three of them were directly applicable to a neg-
ative bilinear function but for two methods some op-
erations were needed to change the demand constraint
into a positive bilinear constraint.

Example: A Numerical Problem

In this last section a numerical example is solved with
all of the presented methods. To improve the perfor-
mance of the solution procedure some extra linear con-
straints need to be defined. They are, however, not spec-
ified here.

In the following example order an upper limit for
products ni, max that are allowed to be produced also has
been defined. Here, the maximal possible overproduc-
tion of any product is 2. This limit is somewhat unnat-
ural and is therefore not used as a constraint. However,
the use of this type of upper bounds makes it possible
to efficiently reduce the combinatorial space.

i bi(mm) ni;order ni;max
1 330 8 10
2 360 16 18
3 380 12 14
4 430 7 9
5 490 14 16
6 530 16 18

Example order

The example demand is a mid-size customer order with
a total weight of 27.5tons. Some important parameters
need to be defined before optimization. The raw paper

width of 2200mm is chosen and a maximal trim loss of
100mm is tolerated. At most 5 products may be cut out
from a cutting pattern. Among the following parame-
ters, the parameter Mj refers to the upper bound of the
respective mj variable and the parameter Ni to the nij
variables. Note, that since the raw paper width is equal
for every pattern the latter upper bound is independent
of the index j.

J = I = 6 Nj;max = 5
c j = 1 Mj = f14; 12; 8; 7; 4; 2g
Cj = 0:1 Ni = f2; 3; 3; 5; 3; 4g
Bj;max = 2200mm Mmin = 15
� j = 100mm

The problem parameters

The parameter Mmin is the lower bound for the sum of
the variablesmj. This sum can easily be calculated in ad-
vance and significantly enhances the optimization per-
formance.

Before doing the actual optimization it should be
pointed out that the results are not comparable. The
main purpose for showing the numerical results is to
demonstrate that the above presented strategies are
fully usable and result in quite efficient solvable formu-
lations. The transformation strategies can be directly
applied to any problem where the bilinear terms con-
tain integer variables.

The methods are divided into three groups of which
the linear transformation and the parameterization
strategies result into MILP formulations. The third
group, the convex transformation strategy produces
MINLP formulations that have in this case been solved
using the extended cutting plane (ECP) algorithm by T.
Westerlund and F. Peterssen [12].

In the parameterization strategies the problem is
redefined by parameterizing certain variables which
means that the resulting problem has already been
partly solved. This may, however, not always be a bene-
fit, especially in such problems where a huge number of
parameters increases the integer search space for other
variables.
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The strategies are numbered as follows:

1. binary representation ofmj

2. binary representation of nij
3. parameterization of nij
4. parameterization ofmj

5. exponential transformation
6. square-root transformation
7. logarithmic and square-root transformation
8. inverted transformation
9. modified square-root transformation

The strategies enlarge the problem both in terms of
variables and constraints. In the following the num-
ber of variables and constraints are given. All the con-
straints are linear except in the convex transformation
strategies where six of the constraints are nonlinear.

The strategies 1–4 are linear formulations of which
3–4 use the parameterization strategy to overcome the
bilinearity. Strategies 5–9 are convex transformations.
The field with combinations gives simply the number of
unconstrained discrete variable combinations as a func-
tion of number of binary variables. This information is
more informative than just the number of variables.

Strategy Constraints Variables Comb.
(I/B/C) 2n

1: 408 36/23/120 298
2: 366 6/88/144 2105

3: 59 51/51/� 2140
4: 201 282/47/� 2634

5: 199 �/169/84 296
6: 199 �/169/84 296
7: 185 �/169/84 296
8: 185 �/169/84 296
9: 225 �/208/84 2118

The MILP problems 1–4 were solved with CPLEX-
5.0 using default settings and the MINLP problems 5–

9 were solved by ‘mittlp’, an ECP application written
by H. Skrifvars. The optimization was done on a Pen-
tium Pro 200MHz running the Linux operating sys-
tem.

The optimization results can be seen in the follow-
ing table.

Strategy Nodes ECP-iter. CPU-
(MILP) (MINLP) time (s)

1: 265 - 7:6
2: 51 - 0:51
3: 2174 - 3:2
4: 265 - 7:7
5: - 4 8:6
6: - 7 66:6
7: - 9 138:6
8: - 10 736:4
9: - 6 49:9

The optimal result has two cutting patterns with the
widths B1 = 2110 mm and B2 = 2170 mm and multi-
plesm1 = 8,m2 = 7. The appearances of the patterns are
given by the following variables: n1, 1 = 1, n2, 1 = 2, n6, 1
= 2, n3, 2 = 2, n4, 2 = 1, n5, 2 = 2

Conclusions

The study above is not a fair comparison. Experience
has shown that the performance order is highly depen-
dent on the specific problem. In order to get an idea
of which of the methods is, in average the most effi-
cient one, tens of problems of different sizes need to
be solved. However, the study illustrates that it is fully
possible to apply the transformation methods to a well
explored real industrial problem.

In the present study the trim-loss problem was used
as an example case but the transformation methods are
general and can be applied to any problem with similar
type of bilinear constraints.



2198 M MINLP: Trim-loss Problem

Notation

i product index
j cutting pattern index
I number of products in the order
J number of possible cutting patterns
mj number of times the pattern j is used
nij number of product i in pattern j
rij reversed value of nij
ni, order number of product i ordered
bi width of product i
Bj, max width of raw paper of pattern j
�j max. trim-loss width
Nj, max max. number of products in pattern j
yj binary variable that is one ifmj > 0
cj , Cj cost coefficients
Mj upper bound / transformation variable
ˇ jl , ˇ jk binary variables for definingmj

Lij upper bound

sijk slack-variable for linear transformations
ˇ ijk binary variables for defining nij or rij
nij0 fixed nij values
� translation constant
Nij transformation variable
Rij transformation variable
l, k,m indices of binary variables
Lj , Ki number of binary variables needed

See also

� Branch and Price: Integer Programming with
Column Generation

� Decomposition Techniques for MILP: Lagrangian
Relaxation

� Integer Linear Complementary Problem
� Integer Programming
� Integer Programming: Algebraic Methods
� Integer Programming: Branch and Bound Methods
� Integer Programming: Branch and Cut Algorithms
� Integer Programming: Cutting Plane Algorithms
� Integer Programming Duality
� Integer Programming: Lagrangian Relaxation
� LCP: Pardalos–Rosen Mixed Integer Formulation
�Mixed Integer Classification Problems
�Multi-objective Integer Linear Programming
�Multi-objective Mixed Integer Programming
�Multiparametric Mixed Integer Linear

Programming

� Parametric Mixed Integer Nonlinear Optimization
� Set Covering, Packing and Partitioning Problems
� Simplicial Pivoting Algorithms for Integer

Programming
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Time-dependent Traveling Salesman Problem
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Introduction/Background

In the past two decades, biologists have sequenced more
and more complete genome sets for various species. To
reveal secrets of life hiding in enormous genome data,
the mechanism which conducts gene expression is con-
tinuously researched and discussed. Gene transcrip-
tion, a primary gateway to gene function, is controlled
by a complex regulatory mechanism. In this mecha-
nism, many specific regulatory proteins bind to local
regions of a gene upstream, called transcription factor
binding sites (TFBS) or motifs, to control the gene ex-
pression. Therefore, the discrimination of TFBSs be-
comes an essential task for genome function analysis.
Finding TFBSs is a challenging issue because motifs
are mostly orientation- and position- independent to
transcription starting points, and usually with some de-
gree of ambiguity. Experimental methods like DNAmi-
croarray (DeRisi et al., 1997; Lockhart et al., 1996) and

SAGE (Velculescu et al., 2000) are capable of precisely
elucidating motifs, but too laborious and time consum-
ing to analyze enormous genome data. More and more
computer based methods - such as enumeration meth-
ods, probability models and heuristics - are being de-
veloped to help motif finding. The modeling of in silico
motif finding has two parts: scoring function and algo-
rithm. The simplest scoring function is given by sum-
ming up the number of base matches in a regulatory
region. Generally it needs a predefined shared pattern
for accuracy. Another scoring criterion is position-spe-
cific scoring matrices (PSSM) or its variant, informa-
tion content (IC, Schneider et al., 1986), [44]. Though
more computing is required, PSSM and IC are the most
popular scoring functions, owing to their pattern-free
property.

Current motif finding algorithms can generally be
categorized as the probabilistic approaches and the
deterministic approaches. Popular probabilistic algo-
rithms are the expectation maximization [22], Gibbs
sampling [21] and hidden Markov model (HMM).
These are used to develop various sample-driven tools
like MEME [3], CONSENSUS [17], AlignACE [19],
ANN-spec [54], BioProspector [24], MotifSampler
[48], GLAM [13], The Improbizer [1], QuickScore [38],
SesiMCMC [11] and TFBSfinder [51].

There are many discrepancies among determinis-
tic methods. A representative one is the consensus-
based approach, [45] which tests all 4m m-wide pat-
terns and promises an optimal solution, but is very time
consuming and impractical for large m [33,49]. Many
heuristics are developed to prune the huge searching
space, including testing only the substrings in the se-
quences [15,26], specifying a shared pattern to restrict
the locations of mismatches [5,7,38,41], constructing
suffix tree with fixed mismatches [30,31] and clustering
approaches [6,23,34].

The methods for determining a consensus pattern
can be split into two parts. The first part is the model
for describing the shared pattern, and the second part
is the algorithm for identifying the optimal consensus
sequence according to its shared pattern. This study be-
longs to the second part. A consensus based motif find-
ing problem is, given a set of sequences known to con-
tain binding sites for a common factor but not knowing
where the site are, to discover the location of the sites in
each sequence [45].
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Ecker et al. (2002) utilized optimization techniques
to reformulate the maximum likelihood approach for
motif finding problems. They adopted a probabilistic
model and formulated a well-designed nonlinear model
with reference to the expectation maximization algo-
rithm of Lawrence and Reilly [22]. Their method, how-
ever, occasionally only finds a feasible solution or a lo-
cal optimum, which means the best solution may not
be found. Additionally, no further structural feature in
the target motif can be embedded conveniently in their
model.

Definitions

This study introduces a linear programming method
for solving amotif finding problem to reach the globally
optimal consensus sequence. Two examples of search-
ing for CRP-binding sites and for FNR-binding sites in
the Escherichia coli genome are used to illustrate the
proposed method. The motif finding problem is firstly
formulated as a nonlinear mixed 0-1 program for the
alignment of DNA sequences; each of the four bases
are coded with two binary variables and a matching
score is designed. This nonlinear mixed 0-1 program is
then converted into a linear mixed 0-1 program by lin-
earization techniques. Owing to some special features
of the binary relationships, this linear 0-1 program in-
cludes 2m binary variables where m is the number of
active letters in the consensus. This method makes the
number of binary variables independent of the num-
ber of sequences and the size of each sequence. That
means the proposed method is computationally effi-
cient in solving a motif finding problem with a large
data size. Secondly, the proposed method is guaran-
teed to find the global optimum instead of a local op-
timum. Thirdly, many kinds of specific features ac-
companied with the target motif can be formulated as
logical constraints and embedded into the linear pro-
gram.

An example of searching CRP-binding sites, as dis-
cussed in Stormo et al. [44] and Ecker et al. (Ecker et al.,
2002), is described as follows. Given eighteen letter se-
quences, each 105 positions long, where each position
contains a letter from the set {A, T, C, G}, find a con-
sensus sequence of length16 with the pattern

L1L2L3L4L5 
 
 
 
 
 
L6L7L8L9L10

where Li 2{A, T, C, G} and 
’s mean the positions of
ignored letters.

Restated, the problem is to specify
(i) the Li’s of the consensus sequence pattern, and
(ii) the location of the site in each given sequence

which can fit most closely the consensus sequence.

Formulation

This study firstly formulates a motif finding problem as
a nonlinear mixed 0-1 program. This nonlinear mixed
0-1 program is then converted into a linear mixed
0-1 program using linearization techniques. To reduce
the computational burden, many 0-1 variables in this
linear mixed 0-1 program can actually be solved as con-
tinuous variables by an all or nothing assignment tech-
nique which greatly improves the computational effi-
ciency of this program.

Here we use the example data in [44], as listed in
Appendix, to describe the proposed method. First, we
represent the data in Appendix as an 18*105 data ma-
trix D:

D D

2
6664

b1;1 b1;2 � � � b1;105
b2;1 b2;2 � � � b2;105
:::

:::
: : :

:::

b18;1 b18;2 � � � b18;105

3
7775 (1)

where bl ;p is the letter in the position p of the sequence l.
Recall the example discussed in previous section:

the consensus sequence we want to find has 16 posi-
tions (ten Li’s and six ignored letters). A sequence has
90 corresponding sites, so an 18*900 data matrix D0 is
generated from D.

D0D

2
6664

d11;1 � � � d
10
1;1 d11;2 � � � d

10
1;2 � � � d11;90 � � � d

10
1;90

d12;1 � � � d
10
2;1 d12;2 � � � d

10
2;2 � � � d12;90 � � � d

10
2;90

:::
:::

: : :
:::

d118;1 � � � d
10
18;1 d118;2 � � � d

10
18;2 � � � d

1
18;90 � � � d

10
18;90

3
7775

(2)

where

di
l ;s D

(
bl ;iCs�1 (for i D 1; 2; : : : ; 5)
bl ;iCsC5 (for i D 6; 7; : : : ; 10) ;

and s D 1 : : : 90 is the starting position of each candi-
date site.
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Mixed 0-1 Linear Programming Approach for DNA Transcrip-
tion Element Identification, Table 1
Base code in the determined consensus sequence

Base ui vi ai ti ci gi
A 0 0 1 0 0 0
T 1 1 0 1 0 0
C 0 1 0 0 1 0
G 1 0 0 0 0 1

For Li 2{A, T, C, G}, two binary variables ui and vi
can be used to express Li, an element of the consensus
sequence, as shown in Table 1.

Table 1 indicates that if Li is A, T, C, or G respec-
tively, then ai D 1, ti D 1, ci D 1 or gi D 1, which im-
plies following conditions.

ai D (1 � ui )(1� vi )

ti D uivi
ci D (1 � ui )vi
gi D ui(1 � vi)

(3)

Now we let Scorel be the degree of fitting to the
found consensus sequence, specified as

Scorel D
90X
sD1

zl ;s
�
�1l ;s C �

2
l ;s C : : : � � � C �

10
l ;s
�

(4)

where � i
l ;s is the element of candidate sites extracted

from D0. The constraints associated with (4) are below:
(i)

90X
sD1

zl ;s D 1; zl ;s 2 f0; 1g for all l and s : (5)

(ii)

� i
l ;s D

8̂
ˆ̂̂<
ˆ̂̂̂
:

ai if di
l ;s D A

ti if di
l ;s D T

ci if di
l ;s D C

gi if di
l ;s D G :

(6)

Clearly, 0 � Scorel � 10, and the objective is to maxi-
mize the total sum of Scorel .

Methods/Applications

Consider the sample data in Fig. 1 for instance:

Score1 D

z1;1(a1 C a2 C g3 C a4 C c5 C t6 C t7 C t8
C g9 C a10)

C z1;2(a1 C g2 C a3 C c4 C t5 C t6 C t7 C g8
C a9 C t10)

z1;3(g1 C a2 C c3 C t4 C g5 C t6 C g7 C a8
C t9 C c10) (7)

Score2 D

z2;1(g1 C a2 C t3 C t4 C a5 C c6 C g7 C g8
C c9 C g10)

C z2;2(a1 C t2 C t3 C a4 C t5 C g6 C g7 C c8
C g9 C t10)

C z2;3(t1 C t2 C a3 C t4 C t5 C g6 C c7 C g8
C t9 C c10) (8)

All zl ;s in (4) are binary variables. Equation (5) im-
plies that for a sequence l, only one site is chosen to
contribute to Scorel . Suppose the kth site is selected,
then zl ;k D 1 and zl ;s D 0 for all s 2 f1; 2; : : : ; 90g,
s ¤ k. Since a huge amount of zl ;s (i. e., jl j 
 jsj) are
involved, to treat zl ;s as binary variables would cause
a heavy computational burden. Therefore zl ;s should
be resolved as continuous variables rather than binary
variables. An important proposition is introduced be-
low:

Proposition 1 (All or nothing assignment) Let
zl ;s � 0 be continuous variables instead of binary vari-
ables. If there is a k, k 2 f1; 2; : : : ; 90g, such thatP10

iD1 �
i
l ;k D max

nP10
iD1 �

i
l ;s for s D 1; 2; : : : ; 90

o
,

then assigning zl ;k D 1 and zl ;s D 0 for all s ¤ k,
s 2 f1; 2; : : : ; 90g, can maximize the value of Scorel.

Proof Since
P

s zl ;s D 1 and zl ;s � 0, it is true that
max

nP
s(zl ;s

P
i �

i
l ;s)
o
� max

˚P
i �

i
l ;s for s D 1;

2; : : : ; 90
�
D
P

i �
i
l ;k . �
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Remark 1 The objective function
P

l Scorel can be
rewritten as

f (x) D
10X
iD1

8<
:ai

X
(l ;s)2SAi

zl ;s C ti
X

(l ;s)2STi

zl ;s

Cci
X

(l ;s)2SCi

zl ;s C gi
X

(l ;s)2SGi

zl ;s

9=
; (9)

where SAi D f(l ; s)jdi
l ;s D Ag, STi D f(l ; s)jdi

l ;s D Tg,
SCi D f(l ; s)jdi

l ;s D Cg, and SGi D f(l ; s)jdi
l ;s D Gg

for i D 1; 2; : : : ; 10.

This result implies that SAi (or STi, SCi, SGi) is a set
composed of (l, s) in which the product term zl ;s ai (or
zl ;s ti , zl ;s ci , zl ;s gi respectively) appears on the right
hand side of (4) because � i

l ;s D ai .
For instance, the sum of Score1 and Score2 in (7)

and (8) becomes

Score1 C Score2 D a1(z1;1 C z1;2 C z2;2)C : : :

C a10z1;1 C � � � C g1(z1;3 C z2;1)C � � � C g10z2;1 :
(10)

Some logical constraints can be conveniently expressed
by binary variables. For instance, the constraint that
a CRP dimer binds a symmetrical site requires that

if Li D

(
A then L11�i D T ;
C then L11�i D G :

Such a logical structure can be conveniently formulated
with the following constraints:

ui C u11�i D 1
vi C v11�i D 1

)
for i D 1; 2; 3; 4; 5 (11)

where ui ; vi ; u11�i ; v11�i 2 f0; 1g.
With reference to Table 1, clearly if Li D A (i. e.,

ui D 0 and vi D 0) then L11�i D T (i. e., u11�i D
1 andv11�i D 1) and vice versa; (ii) if Li D C (i. e.,
ui D 0 and vi D 1) then L11�i D G (i. e., u11�i D
1 and v11�i D 0) and vice versa.

Models

Amotif finding problem can be formulated as a nonlin-
ear mixed 0-1 program based on these constraints:

Program 1 (Nonlinear Mixed 0-1 Program)

Maximize
18X
lD1

Scorel D
10X
iD1

8<
:ai

X
(l ;s)2SAi

zl ;s

Cti
X

(l ;s)2STi

zl ;s C ci
X

(l ;s)2SCi

zl ;s

Cgi
X

(l ;s)2SGi

zl ;s

9=
;

(12)

subject to
90X
sD1

zl ;s D 1 ; zl ;s � 0 for all l ; s

ai D (1 � ui)(1 � vi )

ti D uivi
ci D (1 � ui)vi
gi D ui (1 � vi )

9>>>>=
>>>>;

Conservative

constraints for

i D 1; 2; : : : ; 10

ui C u11�i D 1

vi C v11�i D 1

)
Logical constraints
for i D 1; 2; : : : ; 5

ui ; vi 2 f0; 1g
for i D 1; 2; : : : ; 5

0 � ui ; vi � 1

for i D 6; 7; : : : ; 10

0 � ai ; ti ; ci ; gi � 1

for i D 1; 2; : : : ; 10 :

This program intends to solve fai ; ti ; ci ; gig for
i D 1; 2; : : : ; 10 thus to maximize the total degree of
fitting to the consensus sequence for the given 18
sequences, subjected to a possible logical constraint.
A very important feature of Program 1 is that we can
treat zl ;s as continuous variables rather than binary
variables, which can improve the computational effi-
ciency dramatically. We can ensure all found zl ;s still
have binary values as discussed in the next section.

Linearization of Program 1 Program 1 is a mixed
nonlinear 0-1 program where qi

P
zl ;s for qi 2 fai ; ti ;

gi ; cig and uivi are product terms. These product terms
can be linearized directly by the following propositions:

Proposition 2 The product term �i D qi
P

zl ;s , where
�i is to be maximized and qi 2 f0; 1g, can be linearized
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as follows:

�i �
X

zl ;s CM(qi � 1)

�i � 0

�i �
X

zl ;s

�i � M qi

(13)

where M is a big constant larger than or equal to the
number of sequences.

Proof If qi D 1 then �i D
P

zl ;s ; and otherwise
�i D 0.

�

Proposition 3 The product term wi D uivi , where
ui ; vi 2 f0; 1g, can be linearized as follows:

wi � ui

wi � vi
wi � 0

wi � ui C vi � 1 :

(14)

Denote Z(ai) D ai
P

(l ;s)2SAi
zl ;s , Z(ti) D ti

P
(l ;s)2STi

zl ;s , Z(ci) D ci
P

(l ;s)2SCi
zl ;s , and Z(gi ) D

gi
P

(l ;s)2SGi

zl ;s . Program 1 is then linearized into Program 2 based
on Proposition 2 and Proposition 3.

Program 2 (Linear Mixed 0-1 Program)

Maximize
18X
lD1

Scorel

D

10X
iD1

�
Z(ai)C Z(ti )C Z(ci)

C Z(gi )
�

subject to
90X
sD1

zl ;s D 1; zl ;s � 0 for all l ; s

(15)

ai D 1 � ui � vi C wi

ti D wi

ci D vi � wi

gi D ui � wi

wi � ui

wi � vi
wi � 0
wi � ui C vi � 1

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

Conservative constraints
for i D 1; 2; : : : ; 10

ui C u11�i D 1

vi C v11�i D 1

)
Logical constraints

for i D 1; 2; : : : ; 5X
(l ;s)2SAi

zl ;s CM(ai � 1) � Z(ai) �
X

(l ;s)2SAi

zl ;s

0 � Z(ai ) � M aiX
(l ;s)2STi

zl ;s CM(ti � 1) � Z(ti) �
X

(l ;s)2STi

zl ;s

0 � Z(ti) � M tiX
(l ;s)2SCi

zl ;s CM(ci � 1) � Z(ci ) �
X

(l ;s)2SCi

zl ;s

0 � Z(ci ) � M ciX
(l ;s)2SGi

zl ;s CM(gi � 1) � Z(gi) �
X

(l ;s)2SGi

zl ;s

0 � Z(gi ) � M gi

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>; C

on
st
ra
in
ts
fo
rl
in
ea
riz

in
g
pr
od

uc
tt
er
m
s

ui ; vi 2 f0; 1g for i D 1; 2; : : : ; 5
0 � ui ; vi � 1 for i D 6; 7; : : : ; 10

0 � ai ; ti ; ci ; gi � 1 for D 1; 2; : : : ; 10

zl ;s ’s are treated as non-negative continuous variables
for l D 1; 2; : : : ; 18 and s D 1; 2; : : : ; 90 where M can
be any value greater than or equal to 18 :

In Program 2, since ui and vi are binary variables, ai, ti,
ci, and gi should have binary values following (3). Al-
though zl ;s are treated as continuous variables, the val-
ues of zl ;s should be 0 or 1. This is because the optimal
solution of a linear program should be a vertex point
satisfying

P
s zl ;s D 1 for all l.

Consider the following proposition.

Proposition 4 Let the optimal solution of Program 2
be x� D (Z�; u�; v�) and

P
s zl ;s D 1. Assume that

a sequence l contains sites s1; s2; : : : ; sk such that
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0 < z�l ;s j < 1 for j D 1; 2; : : : ; k, then,

X
i
� i
l ;s1 D

X
i
� i
l ;s2 D � � � D

X
i
� i
l ;sk

D max
nX

i
� i
l ;s

o
;

where � i
l ;s j are specified in (6) :

Proof For
P

s zl ;s D 1, if sp; sq 2 fs1; s2; : : : skg whereP
i �

i
l ;s p >

P
i �

i
l ;sq , then to maximize Scorel DP

l ; j zl ;s j
P

i �
i
l ;s j requires zl ;sq D 0. This conflicts with

the observation that 0 < zl ;sq < 1, therefore
P

i �
i
l ;s1 DP

i �
i
l ;s2 D � � � D

P
i �

i
l ;sk . �

After solving Program 2 we can obtain the globally
optimum solution “TGTGA******TCACA” with objec-
tive value 147. The related nonzero zl ;s values indicate
the starting positions of the binding sites in the 18 se-
quences, as listed below:

z1;64 D z2;58 D z3;79 D z4;66 D z5;53 D z6;63 D z7;27
D z8;42 D z9;12 D z10;17 D z11;64 D z12;44 D z13;51
D z14;74 D z15;20 D z16;56 D z17;87 D z18;81 D 1

All other zl ;s ’s have value 0.
In Program 2 the total number of 0-1 variables is

2m and the total number of the continuous variables
is 20mC jl j 
 jsj. Since the number of 0-1 variables is
independent of the lengths of l and s, a motif finding
problem with many long sequences can be solved effec-
tively.

Suboptimal Consensus Sequences Program 2 can
find the exact global optimum solution. Sometimes the
second best and the third best solution may also be use-
ful. It is very convenient for the proposed method to
find a complete set of consensus sequences by adding
some extra constraints. For instance, the second best
solution of Program 2 can be obtained conveniently by
solving the following program:

Maximize
18X
lD1

Scorel (16)

subject to (i) The same constraints in Model 1

(ii) t1 C g2 C t3 C g4 C a5 C t6 C c7C

a8 C c9 C a10 � 9 (new constraint)

Mixed 0-1 Linear Programming Approach for DNA Transcrip-
tion Element Identification, Figure 1
A small example of finding consensus sequence: a two se-
quences to be compared; b Schematic representation of the
candidate sites; c The associated D0 matrix

The new constraint is used to force the program to
find a new solution different from the solution of Pro-
gram 2. The found second best consensus sequence is
“TTTGA******TCAAA” with score 129. Similarly we
can find another solution by adding following con-
straint into (16).

t1C t2C t3C g4C a5C t6C c7C a8C a9C a10 � 9

The found third best consensus sequence is
“AAATT******AATTT” with score 129.

Extend to Find Unknown Binding Sites A more
complicated motif finding problem is to search for the
consensus sequence with an uncertain pattern format
where the number of ignored letters between the two
half sites is unknown. An example is to find a consen-
sus sequence of length 2 
 5C k with the pattern

L1L2L3L4L5 
 � � � 
 L6L7L8L9L10

where k, the number of 
’s, is an unknown integer be-
tween 0 and 10.

Program 2 can be modified slightly to treat this type
of motif finding problem. Firstly we expand D in (1) as
D0 below:

D0 D [D0(0)D0(1)D0(2) : : : : : :D0(10)]
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Mixed 0-1 Linear Programming Approach for DNA Transcription Element Identification, Figure 2
The relationship between computational time and various factors involved in a consensus basedmotif finding problem. This
figure illustrates the computational timeof solving Program 2with a various sequences sizes; b various number of sequences
and c various independent positions
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Mixed 0-1 Linear Programming Approach for DNA Transcription Element Identification, Figure 3
Computational time of Program 3 with various numbers of possible k’s. The number enclosed in the common site is the
solution of k

in which

D0(k) D
2
6664

d11;1;k � � � d
10
1;1;k d11;2;k � � � d

10
1;2;k � � � d

1
1;90;k � � � d

10
1;90;k

d12;1;k � � � d
10
2;1;k d12;2;k � � � d

10
2;2;k � � � d

1
2;90;k � � � d

10
2;90;k

:::
:::

: : :
:::

d118;1;k � � � d
10
18;1;k d

1
18;2;k � � � d

10
18;2;k � � � d

1
18;90;k � � � d

10
18;90;k

3
7775

where k 2 f0; 1; : : : ; 10g.

di
l ;s;k D

(
bl ;iCs�1 (for i D 1; 2; 3; 4; 5)
bl ;iCsCk�1 (for i D 6; 7; 8; 9; 10)

� i
l ;s:k D ai ; ti ; ci or gi when di

l ;s:k D ‘A’, ‘T’,

‘C’, or ‘G’ respectively :

The cases with k larger than 10 are not considered since
they are relatively rare. A linear mixed 0-1 program for
solving this example is formulated below:

Program 3

Maximize
2mX
iD1

�
Z(ai )C Z(ti)C Z(ci)C Z(gi )

�
(15)

subject to (i)
10X
kD0

96�kX
sD1

zl ;s;k D 1 ;

zl ;s;k � 0 for all l ; s; k

(ii)
X
s

z1;s;k D
X
s

z2;s;k D : : :

D
X
s

z18;s;k for k 2 f0; 1; : : : ; 10g

(iii) the same conservative and logical
constraints in Program 2

(iv) the same constraints for linearizing
product terms in Program 2 but
replace zl ;s by zl ;s:k :

Constraints (i) and (ii) are used to ensure that
when a specific k is chosen then

P
s zl ;s;k D 1 andP

s zl ;s;k0 D 0 for k0 ¤ k.
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Mixed 0-1 Linear Programming Approach for DNA Transcription Element Identification, Table 2
FNR binding sites found by Program 3

Cases

Finding CRP Binding Sites with a Given Pattern

Several experiments are tested here, using the exam-
ple in the Appendix, to analyze the effect of sequence
length and number of sequences on the computational
time. All examples are solved by LINGO [40], a widely
used optimization software, on a personal computer
with a Pentium 4 2.0G CPU. A software package named
“Global Site Seer” is developed based on Program 2 for
finding DNA motifs. This software is available from
http://www.iim.nctu.edu.tw/~cjfu/gss.htm.

Figure 2 illustrates the experimental results for an-
alyzing the time complexity. Figure 2a is the computa-
tional time given various sequence lengths, where the
number of sequences is fixed at 18. The results show
that the computational time changes only slightly even
if the sequence length is increased from 105 to 1050.

Figure 2b is the computational time with various num-
bers of sequences. It shows that the solving time is
roughly proportional to the number of sequences. The
proposed model is quite promising for finding DNA
motifs in a dataset with a large sequence length and
a large number of sequences. Figure 2c shows that the
computational time rises exponentially as the number
of independent positions increases.

Using Program 3 to search CRP binding
sites, we obtain the globally optimal solution
“TGTGA******TCACA” with score 147, which is ex-
actly the same solution found in Program 2. The second
best solution is “GTGAA****TTCAC” with score 134.
The relationship between the computational time and
the number of possible k’s (i. e. jkj) is linear, as shown
in the experiment result listed in Fig. 3. The number of
ignored letters k is between 0 and k̄, the upper bound
of k, and thus we have jkj D k̄ C 1 in this experiment.

http://www.iim.nctu.edu.tw/~cjfu/gss.htm
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Finding FNR-binding Sites with an Ambiguous
Shared Pattern Program 3 is also applied to solve
an example of searching for binding sites of fumarate
and nitrate reduction regulatory protein (FNR) in E.
coli. Both CRP and FNR belong to the CRP/FNR helix-
turn-helix transcription factor superfamily [47]. The
sequence data, which is taken from GenBank, con-
tains 12 DNA sequences with lengths varied from 96
to 781. Owing to the dimer structure of the binding
protein, the consensus sequence in this example also
has a constraint of inverse symmetry. The RegulonDB
database [18] lists the found regulatory binding sites for
eight of these twelve sequences while the exact posi-
tions of the other four sequences are not listed yet. Solv-
ing this example by Program 3 we obtained the global
optimal consensus sequence as “TTGAT****ATCAA”
with score 107, which is the same consensus sequence
as indicated by [47]. Table 2 illustrates the result includ-
ing the consensus sequence and the predicted binding
sites for all of the 12 sequences. Some sites downstream
of the transcription start (i. e. with positive indices)
are also listed because there are a few known cases
in which regulatory sites appear within transcription
units [47]. The proposed method has found some sites
not listed in RegulonDB, but which have scores higher
than those listed in RegulonDB (e. g. the third solution
in the Operon ansB row of Table 2). The best predicted
sites in the four undetermined sequences are also listed
in Table 2.

Conclusions

This study proposes a linear mixed 0-1 programming
approach for finding DNA motifs. Compared to the
widely used maximum likelihood methods, the pro-
posed method can reach a global optimum rather than
finding a local optimum or a feasible solution. Addi-
tionally, by utilizing binary variables, some logical con-
straints can be embedded into the models. It is also con-
venient to find the complete set of the second, third,
etc. best consensus sequences. Since the number of bi-
nary variables is fully independent of the number of
sequences and the length of a sequence, the proposed
method can treat motif finding problems with many
long sequences. For finding motifs with many indepen-
dent positions in an acceptable time, this study also pro-
poses a method for distributed computing.

The proposed method can also be conveniently ex-
tended to treat more complicated motif finding prob-
lems. In this study an extension of the linear program is
designed to find DNAmotifs with an unknown number
of ignored letters between the two half sites. The result
of searching for FNR-binding sites shows that the ex-
tended model can find not only the locations of known
binding sites listed in the RegulonDB database but also
those not yet delimitated.
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Introduction

The G-group classification problem, also known as the
G-group discriminant problem, involves a population
partitioned into G distinct (and predefined) groups.
The object is to construct a scalar- or vector- valued
scoring function f : <p !< so that the group to which
a population member with observed attributes x 2 <P

belongs can be determined, with best possible accuracy,
from its score f (x). The scoring function f is usually re-
stricted to a particular class (most commonly, linear).
By a wide margin, the majority of studies have focused
on the two-group case. Construction of f is based on
training samples from the various groups. Themost rea-
sonable criterion for choosing f may be expected mis-
classification cost, but many studies make the simpli-
fying assumptions that all misclassifications are equally
expensive and that groups are represented in the train-
ing samples in proportion to their prior probability of
being encountered, in which case the criterion reduces

Mixed Integer Classification Problems, Figure 1
Optimal linear classifier (� =misclassified)
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to minimizing the number of misclassifications in the
combined training samples. Figure 1 illustrates an opti-
mal choice of linear classifier f in a two-group problem.

Classical discriminant analysis relies on distribu-
tional assumptions. In the two-group case with nor-
mally distributed attributes, the scalar-valued discrimi-
nant function that minimizes expectedmisclassification
cost is known to be linear if the two groups have identi-
cal covariance structures and quadratic if not. In both
cases, direct estimation of f is straightforward. Non-
parametric approaches, making no distributional as-
sumptions, have utilized an eclectic assortment of tech-
niques, among them neural networks, metaheuristics,
and mathematical programming. Although some con-
sideration has been given to nonlinear programming
methods, the bulk of the work involving mathematical
programming has utilized either linear or mixed inte-
ger linear programming models, or support vector ma-
chines (quadratic programs) [8]. See [10] and � lin-
ear programming models for classification (elsewhere
in this volume) for an overview of the subject.

When f is linear, the problem of minimizing the
number of misclassifications is a special case of the
slightly more general problem of dropping the small-
est (or least costly) set of constraints necessary to ren-
der an inconsistent set of linear inequalities consis-
tent. This problem crops up in a variety of contexts,
including pattern recognition [18], machine learn-
ing/data mining [5] and the analysis of infeasible lin-
ear programs [6]. Thus methods from those areas may
be applicable to discriminant problems. For instance,
Soltysik and Yarnold [15] applied the algorithm of
Warmack and Gonzalez [18] to the two-group linear
discriminant problem.

Formulation

The following is a typical mixed integer programming
model for the two-group case, using a scalar linear dis-
criminant function:

min
2X

gD1

gCg

Ng

NgX
nD1

zgn

s.t. X1wC w0 � 1 �M � z1 � 0

X2wC w0 � 1CM � z2 � 0

w;w0 free; zg 2 f0; 1gNg :

(1)

Matrix Xg is an Ng � p training sample from group g,
while g and Cg are respectively the prior probabil-
ity of group g and the cost of misclassifying a mem-
ber of that group.M is a sufficiently large positive con-
stant, and 0 and 1 denote vectors, all of whose en-
tries are respectively 0 or 1. The discriminant func-
tion f (x) D w0xC w0 is intended to produce nega-
tive scores for members of the first group and positive
scores for members of the second group. Bivalent indi-
cator variable zgn takes value 1 if the nth training obser-
vation from group g is classified incorrectly and 0 if it is
classified correctly.

The discriminant function is linear as written, but
various nonlinear functions can be generated by em-
bedding the attribute space<p in a higher-dimensional
space. Support vector machines are particularly adept
at this. Polynomial functions, for instance, are easily ac-
commodated in (1) by expanding the sample matrices
to include powers and products of attributes.

A score of zero results in an ambiguous classifica-
tion. Some authors deal with this by changing the first
two constraints of (1) to

X1wC w0 � 1 �M � z1 � �" � 1
X2wC w0 � 1CM � z2 � C" � 1 ;

where " is a small positive constant. This formulation is
nearly as general, although it is mathematically possible
that infelicitous choices of " and M could rule out an
otherwise desirable solution.

Problem (1) is known to be NP-hard [1]. At the
same time, using the finite VC-dimension of linear clas-
sifiers [16,17], it can be shown that the error rate of
the solution to (1) converges in probability to the op-
timal error rate as sample size grows [2]. Assuming
availability of sufficient data, a key question is whether
the problem remains tractable when the training sam-
ple is large enough to provide a suitably accurate so-
lution. There is grounds for (cautious) optimism, in
that progress in hardware, software and algorithms ad-
vances the boundaries of what is tractable, while for
a given problem instance the sample size needed for ac-
curacy is static.

While there will often be a unique best choice of
training observations to misclassify (i. e., unique opti-
mal values of z1 and z2), there commonly will be in-
finitely many choices for the coefficients w, w0 of a dis-
criminant function that misclassifies those observations
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only. To select from among those coefficient solutions,
authors often introduce additional terms in the objec-
tive function. As an example, Bajgier and Hill [4] used
a formulation similar to the following:

min
2X

gD1

g

Ng

NgX
nD1

h
Cgzgn C "1d�gn � "2d

C
gn

i

s.t. X1wC w0 � 1C dC1 � d�1 �M � z1 �0

X2wC w0 � 1 � dC2 C d�2 CM � z2 �0
w;w0 free; dCg ; d

�
g � 0; zg 2 f0; 1gNg :

The deviation variables dCg and d�g measure the amount
by which each score falls on the correct and incorrect
side of the zero cutoff, respectively. The objective func-
tions rewards the former and penalizes the latter, using
small positive objective coefficients "1 and "2 to prevent
improvements in these terms from inducing unneces-
sary misclassifications.

The motivation for formulation (1) is simple: if
the training samples are representative of the overall
population, the discriminant function that minimizes
misclassification costs on the training samples should
come close to minimizing expected misclassification
cost on the overall population. Models like (1) tend to
be computationally expensive, however. As is typical
with mixed integer programming models, computation
time increases modestly with the number of attributes
(p) but more dramatically with the number of zero-one
variables (N1 C N2, the combined sample size). More-
over, the constant M must be chosen large enough that
the best choice of w and w0 is not rendered infeasible
by a misclassified observation with score larger than
M in magnitude; but the larger M is, the weaker the
bounds in a branch-and-bound solution of the prob-
lem, and thus the longer the solution time. Codato and
Fischetti [7] reported success using a form of Benders
cut to eliminate M.

In the special case where all attribute variables are
discrete, it is likely that some observation vectors will
appear more than once in the training samples. When
that occurs, the number of zero-one variables can be re-
duced from one per observation to one per distinguish-
able observation, yielding a variation of (1) in which the
objective function is replaced with

min
X2

gD1

gCg

Ng

XKg

kD1
Ngkzgk :

In this formulation [3], Kg is the number of distinct at-
tribute vectors x in the training sample from group g,
Ngk is the number of repetitions of the kth distinct ob-
servation from group g, and the matrices Xg contain
only one copy of each such observation.

Multiple Groups

WhenG > 2 groups are involved, the problem becomes
considerably more complicated. In a practical applica-
tion with multiple groups, it is plausible that misclassi-
fication costs would depend not only on the group to
which a misclassified point belonged but also the one
into which it was classified. Thus an appropriate objec-
tive function might look like

GX
gD1

g

Ng

GX
hD1
h¤g

Cgh

NgX
nD1

zghn ;

where Cgh is the cost of classifying a point from group g
into group h and zghn is 1 if the nth observation of
group g is classified into group h and 0 otherwise. This
represents a substantial escalation of the number of in-
dicator variables. As a consequence, most research on
the multiple group problem assumes that misclassifica-
tion costs depend only on the correct group.

Few models, and fewer computational results,
have been published for the multiple group problem.
Gehrlein [9] presented one of the earliest scalar-valued
mixed integer models for the case G > 2. The range
of his discriminant function is partitioned into sepa-
rate intervals corresponding to the groups. His model,
adapted to the preceding notation, is

min
GX

gD1

gCg

Ng

NgX
nD1

zgn

s.t. XgwC w0 � 1 �M � zg � Ug � 1 � 0

XgwC w0 � 1CM � zg � Lg � 1 � 0

Ug � Lg � 0
Lh � Ug CMyhg � "

ygh C yhg D 1

w;w0; L;U free;

zg 2 f0; 1gNg ; y 2 f0; 1gG(G�1) :

The first three constraints are repeated for g D

1; : : : ;G while the next two are repeated for all pairs g;
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h D 1; : : : ;G such that g ¤ h. Observations are clas-
sified into group g if their scores fall in the interval
[Lg ;Ug]. Variable ygh D 1 if the scoring interval for
group g precedes that for group h. Parameter " > 0 dic-
tates a minimum separation between intervals.

Using a single scalar-valued discriminant function
with G > 2 groups is restrictive; it assumes that the
groups project onto some line in an orderly manner.
In [9], Gehrlein also suggested a model using a vector-
valued discriminant function f () of dimension G. Ob-
servation x would be classified into the group corre-
sponding to the largest component of f(x). The model
increases the number of coefficient variables and the
number of constraints but not the number of 0-1 vari-
ables, the primary determinant of execution time. The
model is:

min
GX

gD1

gCg

Ng

NgX
nD1

zgn

s.t. Xgwg C wg0 � 1 � Xgwh � wh0 � 1CM � zg
� " � 1

wg ;wg0 free; zg 2 f0; 1gNg :

Herew0gxC wg0 is the gth component of f(x) and " > 0
is the minimum acceptable difference between the cor-
rect component of the scoring function and the largest
incorrect component. The sole constraint is repeated
once for each pair g; h D 1; : : : ;G such that g ¤ h.

Methods

Advances in computer hardware, optimization soft-
ware and algorithms for the mixed integer classifica-
tion problem have allowed progressively larger train-
ing samples to be employed: where Koehler and Eren-
guc [11] were restricted to combined training samples
of 100 in 1990 (on a mainframe), Rubin [13] was able
to handle over 600 observations in 1997 (on a per-
sonal computer). Nonetheless, a variety of heuristics
have been developed to find near optimal solutions to
the problem. Several revolve around this property of
the problem: if the training samples can be classified
with perfect accuracy by a linear function, then prob-
lem (1) can be solved as a linear program, with the
zgn deleted, to obtain a discriminant function. Deletion
of the zgn reduces the objective function to a constant

0. Although this is perfectly acceptable, heuristics may
substitute an objective function from one of the linear
programming classification models, to encourage the
chosen discriminant function to separate scores of the
two groups as much as possible. This often also neces-
sitates inclusion of a normalization constraint, to keep
the resulting linear program from being unbounded.
Alternatively, (1) may be solved heuristically to deter-
mine which training observations to misclassify, and
then a linear programming model using the remaining
observations may be employed to select the final dis-
criminant function.

The BPMM heuristic of [11] solves the linear pro-
gram dual to a relaxation of the mixed integer prob-
lem, notes which observations would be misclassified
by the resulting discriminant function, and then solves
the dual of each linear relaxation obtainable by delet-
ing one of those observations. Solving the dual problem
tends to be more efficient than solving the primal, since
there will typically be more observations than attributes
(N1 C N2 � p). The heuristics presented in [14] also
operate on the dual of the linear relaxation of the mixed
integer problem, restricting basis entry to force certain
dual variables to take value zero (equivalent to relaxing
the corresponding primal constraints, thus allowing the
associated observations to be misclassified).

As noted earlier, comparatively few computational
studies involve mixed integer models for multiple
groups. Pavur proposed a sequential mixed integer
method to handle multiple groups [12], constructing
a vector-valued scoring function from a sequence of
scalar functions. An initial mixed integer model sim-
ilar to Gehrlein’s is solved to obtain the first scalar
function. Thereafter, a sequence of similar mixed in-
teger models is solved, with each model bearing addi-
tional constraints compelling the scores produced by
the next scoring function to have sample covariance
zero with the scores of each of the preceding functions.
The covariance constraints impose a sort of probabilis-
tic “orthogonality” on the dimensions of the composite
(vector-valued) scoring function.

See also

� Deterministic and Probabilistic Optimization
Models for Data Classification

� Integer Programming
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� Linear Programming Models for Classification
� Optimization in Boolean Classification Problems
� Statistical Classification: Optimization Approaches
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Heat exchanger networks use the waste heat released by
hot process streams to heat the cold process streams of
a chemical manufacturing plant, reducing utility costs
by as much as 80%. Heat exchanger network synthesis
has been an active area of process research ever since
the energy crisis of the 1970s, and over 400 research pa-
pers have been published in the area. See [1,2,4,5,6], for
recent reviews.

In 1979, T. Umeda et al. [8] discovered a thermo-
dynamic pinch point that limits the energy savings of
a heat exchanger network, establishes minimum util-
ity levels, and partitions the heat exchanger network
into two independent subnetworks. This discovery rev-
olutionized heat exchanger network synthesis: with it,
designers could compute utility levels a priori, then
seek the heat exchanger network structure that uses the
minimum utility consumption while also minimizing
the total investment cost. This remaining problem re-
quires matching the hot utilities and process streams
that release heat with the cold process streams and util-
ities that require heat, choosing the network structure
of each stream, and designing the individual heat ex-
changer networks. In general, this is a mixed integer
nonlinear programming problem (MINLP), but can be
decomposed into two smaller problems by first select-
ing the matches between hot and cold process streams
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and utilities by minimizing the total number of units,
then optimizing the network structure. The first prob-
lem is a mixed integer linear programming problem
that will be discussed in detail here.

UsingMILP Models
to Find the MinimumNumber of Units

Stated formally, the minimum-units problem is:
Given
1) A set of hot process streams and utilities i 2 H, and

for each hot stream i:
a) the inlet and outlet temperatures TI

i and TO
i ;

b) either the heat capacity flow rate FCPi or the heat
duty Qi.

2) A set of cold process streams j 2C, and for each cold
stream j:
a) the inlet and outlet temperatures TI

j and TO
j ;

b) either the heat capacity flow rate FCpj or the heat
duty Qj,

3) The minimum temperature difference between hot
and cold streams exchanging heat, � Tmin.

Identify a set of stream matches (ij) and their heat du-
ties Qij that
a) meets the heating and cooling needs of each stream;

and
b) minimizes the total number of matches.

S.A. Papoulias and I.E. Grossmann [7] formulated
this as a mixed integer programming problem using
a transshipment model, by making an analogy between
heat exchanger networks and transportation networks.
In the transshipment analogy, hot process streams, the
sources of heat, are similar to manufacturing plants, the
sources of goods, while cold process streams, the heat
sinks, are akin to stores and shopping malls, the sinks
of manufactured goods.

The analogy is not perfect, as heat only flows from
a high temperature to a lower one, in obedience to the
second law of thermodynamics. Partitioning the tem-
perature range of the heat exchanger network into in-
tervals can capture this heat flow pattern. Each interval
sends excess, or residual, heat to the interval below it,
just as excess manufactured goods are sent to a discount
warehouse.

The hot side of this temperature cascade is created
by ordering TI

i and TI
j + � Tmin from the highest to

the lowest value, creating t = 1, . . . , TI temperature in-

Mixed Integer Linear Programming: Heat Exchanger Net-
work Synthesis, Table 1
Stream data.QCW = 8395.2 kW ,�Tmin = 10°C

Stream T in(ı) Tout(ı) FCp(kW/K)
H1 159 77 228:5
H2 159 88 20:4
H3 159 90 53:8
C1 26 127 93:3
C2 118 149 196:1

tervals. Temperatures on the cold side of the cascade
equal the temperature on the hot side minus �Tmin.
Hot stream i releases QH

i t units of heat to temperature
interval t. QH

i t is equal to

QH
it D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

FCPi (Tt�1 � Tt)
if TI

i � Tt�1 and TO
i � Tt ;

FCPi (Tt�1 � TO
i )

if TI
i � Tt�1 and TO

i � Tt ;

Q
if TI

i D TO
i and Tt�1 D TI

i :

Cold stream j absorbs QC
jt units of heat from tempera-

ture interval t. QC
jt equals

QC
jt D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

FCPj(Tt�1 � Tt)
if TI

j � Tt �	Tmin and
TO
j � Tt�1 �	Tmin;

FCPj(T0
j � Tt�1)

if TI
j � Tt �	Tmin and
TO
j � Tt�1 �	Tmin;

Qj

if TI
j D TO

j and TI
j D Tt�1 �	Tmin:

Any excess heat sent to interval t from hot stream i
cascades down to interval t+1 through the residual flow
Rit . Process utilities may be treated as process streams,
or may be placed at the top or bottom of the cascade.

This transshipment model of heat flow leads to the
following mixed integer linear programming problem:

min
X
i; j

yi j
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subject to

Ri;t � Ri;t�1 C
X
j

qi jt D QH
it ;

i D 1; : : : ;H; t D 1; : : : ; TI;
(1)

X
i

qi jt D QC
jt ; j D 1; : : : ;C; t D 1; : : : ; TI; (2)

Qi j D
X
t2TI

qi jt ; i D 1; : : : ;H; j D 1; : : : ;C; (3)

Qi j � Ui j yi j; i D 1; : : : ;H; j D 1; : : : ;C; (4)

(
qi jt � 0;
Rt � 0;

i D 1; : : : ;H; j D 1; : : : ;C; t D 1; : : : ; TI;

(5)

R0 D RT D 0; (6)

yi j D f0; 1g; i D 1; : : : ;H; j D 1; : : : ;C: (7)

In this formulation, yij is a binary variable which is
one if a match between hot process stream i and cold
process stream j occurs, and zero otherwise; qijt is the
amount of heat exchanged between hot stream i and
cold stream j in temperature interval t, Rit is the resid-
ual heat flow associated with hot stream i that cascades
down from temperature interval t to temperature in-
terval t+1, and Qij is the heat duty of match (i, j). The
overall objective function minimizes the total number
of units. Constraint (1) is the energy balance for hot
stream i around temperature interval t and constraint
(2) is the energy balance for cold stream j around tem-
perature interval t. Constraint (3) finds the overall heat
duty of match (ij). Constraint (4) sets this heat duty to
zero when match (ij) does not exist. The nonnegativ-
ity constraints prevents heat flow from a low tempera-
ture to a higher one. Note that the residual heat flows
into the first temperature interval and out of the last
temperature interval are zero when there are no utili-
ties above or below the cascade. The objective function
and the constraints are linear, and the formulation in-
volves both continuous and integer variables, making
this a mixed integer linear programming problem.

Lower bounds on the solution of this problem are
given by linear programming problems where some in-
teger variables are fixed to either zero or one and the
remainder are treated as continuous variables. The ac-
curacy of these bounds depends upon the parameters
Uij is the fourth constraint. When these parameters are
very large, the lower bounds will be quite far from the
solution of the MILP.

The smallest acceptable value ofUij is the minimum
of the cooling requirements of stream i and the heating
requirements of stream j:

Ui j D min

(X
t2TI

QH
i t ;
X
t2TI

QCjt

)
:

Example 1 This example is from [3] and features three
hot streams, two cold streams, and a cold utility. Table 1
gives the inlet and outlet stream temperatures and the
flowrate heat capacities of each process stream and the
cooling water duty.

Temperatures on the hot side of the cascade are
159°C, 128°C, and 36°C, while temperatures on the cold
side are 149°C, 118°C and 26°C. There are two temper-
ature intervals. Table 2 gives the heat released from hot
streams to the temperature intervals, while Table 3 gives
the heat absorbed by the cold streams from the temper-
ature intervals.

Mixed Integer Linear Programming: Heat Exchanger Net-
work Synthesis, Table 2
QH
it , heat released from hot stream i to temperature interval t

Stream Temperature Interval
TI-1 TI-2

H1 7083:5 11635:5
H2 632:4 816:0
H3 1667:8 2044:4

Mixed Integer Linear Programming: Heat Exchanger Net-
work Synthesis, Table 3
QC
it , heat absorbed by cold stream i from temperature inter-

val t

Stream Temperature Interval
TI-1 TI-2

C1 839:7 8583:6
C2 6079:1
CW 8395:2
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Mixed Integer Linear Programming: Heat Exchanger Network Synthesis, Table 4
Four solutions which satisfy minimum number of matches

Solution 1 Solution 2 Solution 3 Solution 4
Match Duty (Qi j) Match Duty (Qi j) Match Duty (Qi j) Match Duty (Qi j)
H1�C1 9423:3 H1�C1 7974:9 H1�C1 5711:1 H1�C1 4262:7
H1�C2 6079:1 H1�C2 6079:1 H1�C2 6079:1 H1�C2 6079:1
H1�CW 3234:6 H1�CW 4683:0 H1�CW 6946:8 H1�CW 8395:2
H2�CW 1448:4 H2�C1 1448:4 H2�CW 1448:4 H2�C1 1448:4
H3�W 3712:2 H3�CW 3712:2 H3�C1 3712:2 H3�C1 3712:2

In this example, the minimum number of units is 5,
and there are four solutions to this MILP that meet this
minimum (cf. Table 4).

Conclusions

Mixed integer linear programs are used in heat ex-
changer network synthesis to identify the minimum
number of units, and a set of matches and their heat
loads meeting the minimum. These MILPs are based
upon a transshipment model of heat flow.
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Separation networks involving mass transfer operations
that do not require energy (e. g. absorption, liquid-
liquid extraction, ion-exchange etc.) are characterized
as mass exchange networks (MEN). These appear in
the chemical industries mostly in waste treatment, but
also, in feed preparation, product separation, recovery
of valuable materials, etc. Amass exchanger, in this con-
text, is any counter-current, direct-contact mass trans-
fer unit, where one or more components are trans-
ferred at constant temperature and pressure from one
process stream, which is characterized as rich stream,
to another process or utility stream, characterized as
lean stream. Mass integration aims to the purification
of the rich streams and the recovery of valuable or haz-
ardous materials at the minimum total cost (invest-
ment and operating cost of auxiliary streams). In the
specific case, when the mass transfer operations take
place at the same temperature, or heating/cooling re-
quirements are negligible, the integration problem is
limited to the synthesis of a mass exchanger network
(MEN) only. When mass exchange operations at dif-
ferent temperature levels are encountered, mass and
heat exchanger networks (MHEN) may be considered
simultaneously.

MEN synthesis involves a set of rich streams, in
terms of one or more components, R = {i: i = 1, . . . ,NR},
with known flowrates, Gi, inlet and outlet compositions
for the components of interest, ysic, y

t
ic (exact values or

bounds) respectively, and a set of process or auxiliary
lean streams (mass separating agents, MSAs), S = {j: j =
1, . . . , NS} with known cost, inlet and outlet composi-
tions for the same components, xsjc, xtjc (exact values or
bounds), as shown in Fig. 1.

The synthesis problem refers to the selection of the
appropriate lean streams and their flowrates, Lj, the
mass exchange operations (mass exchange matches), the
mass transfer load for each separator and its required
size, and the configuration of the overall network.

Mass transfer in each mass exchanger is governed
by the first and second thermodynamic laws, as is heat
transfer in heat exchangers. Mass transfer of a compo-
nent c from a rich to a lean stream is feasible if the com-
position of c in the rich phase is greater than the equi-

Mixed Integer Linear Programming: Mass and Heat Ex-
changer Networks, Figure 1

librium composition with respect to the lean phase:

yc � f (xc)C �; (1)

where f (xc) is the equilibrium relation and � is a min-
imum composition difference that ensures feasible mass
transfer in a separator of finite size, in analogy to�Tmin

in heat exchangers. This analogy led to the development
of synthesis methods for mass exchanger networks em-
ploying mixed integer optimization techniques, simi-
lar to heat exchanger networks (cf. Mixed Integer Lin-
ear Programming:Mass and Heat Exchanger Networks;
� MINLP: Mass and Heat Exchanger Networks), that
are categorized into the sequential synthesis and the si-
multaneous synthesismethods.

The sequential MEN synthesis method, introduced
in [3] and [4] involves the following steps:
1) Minimum cost of mass separating agents (minimum

utility problem), to determine the optimal flows of
the mass separating agents.

2) Minimum number of mass exchanger units, for
fixed MSA flows, to determine the mass exchange
matches.

3) Network configuration and separator sizes for fixed
mass exchange operations.

The first two synthesis steps involve the solution of lin-
ear and mixed integer linear problems.

A useful tool of the sequential MEN synthesis
method is the composition interval diagram, CID,
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where thermodynamic feasibility of mass transfer is ex-
plored mapping the rich and the lean streams on equiv-
alent composition scales, that are derived from themass
transfer feasibility requirements in (1). In general, the
composition equivalent scales and the minimum com-
position difference, �, are defined for each component
of interest and each pair of rich and lean streams. In the
simple case of a single component, where mass transfer
is independent of the presence of other components in
the rich streams, the CID is constructed as illustrated in
Fig. 2.

Feasible rich-to-lean mass transfer is guaranteed
within a composition interval when the equilibrium re-
lation f (xc) is convex within the interval. When f (xc) is
convex in the whole composition range, only inlet com-
positions are required to construct the CID [8].

The minimum cost of mass separating agents is
found employing a transshipment model, where the
components of interest are the transferred commodi-
ties, the rich and the lean streams are considered as
sources and sinks respectively, and the composition in-
tervals define the intermediate nodes [4]. Themodel in-
volves energy balances around the temperature inter-
vals (intermediate nodes):

(TP1)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
j

c jL j

s.t. ık�1 C
X
i2Rk

WRi
k

D ık C
X
j2Sk

WS j
k

0 � Lj � Lupj ; j 2 S;
ı0 D ıNint D 0;
ık � 0; k D 1; : : : ;Nint � 1;

where
� Rk is the set of rich streams, present in interval k;
� Sk is the set of lean streams, present in interval k;
� N int is the number of composition intervals;
� WRi

k is the mass exchange load of rich stream i in
interval k,

WRi
k D Gi(yk �max(ykC1; yti ));

� WSjk is the mass exchange load of lean stream j in
interval k,

WSj
k D Lj(min(xt

j ; x jk ) � x jkC1);

Mixed Integer Linear Programming: Mass and Heat Ex-
changer Networks, Figure 2
Composition interval diagram

� ık is the residual mass exchange load in interval k.
Problem (TP1) results in the optimal flows of the mass
separating agents and the identification of the pinch
points, i. e. the thermodynamic bottlenecks in mass
transfer. The pinch points are defined by zero residual
flows and divide the mass exchange network into sub-
networks. Mass transfer between different subnetworks
(i. e. across the pinch) increases the cost of mass sepa-
rating agents.

An assumption in (TP1) is that molar flows of the
rich and the lean streams are constant. If significant
flowrate variations take place, compositions and mass
exchange loads are calculated based on nontransferable
components.

The following cases are distinguished:
� Fixed inlet and outlet compositions.

Then, (TP1) is an LP problem.
Whenmultiple components are considered, the CID
is defined for all the components of interest and
(TP1) corresponds to the multicommodity trans-
shipment model. The pinch points are then deter-
mined by the component that requires the greater
MSA flows.

� Variable outlet compositions.
Then, the mass exchange loads of the rich and lean
streams in their final intervals (defined by the up-
per and lower bounds on their outlet compositions)
are variables. Problem (TP1) can still be solved as an
LP [9], considering the variable mass exchange loads
explicitly in the model.

Variable inlet compositions usually require flexible
mass exchange networks to accommodate the varia-
tions and define a different problem. For a single com-
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ponent it has been shown that the minimum MSA cost
corresponds to the lower bounds of the inlet composi-
tions [8].

For nonconvex equilibrium relations, (TP1) cannot
guarantee feasible mass transfer throughout the com-
position range, while the predicted MSA cost is a lower
bound to the actual minimum one. B.K. Srinivas and
M.M. El-Halwagi suggested in [14] an iterative proce-
dure to calculate the minimum required MSA cost, that
involves two major steps:
i) a ‘feasibility problem’, where ‘critical’ composition

levels are identified and included in the CID (non-
convex NLP step, that requires global optimization
methods), and

ii) (TP1) with updated intervals, which calculates in-
creasing lower bounds to the minimumMSA cost.

Instead of target outlet compositions for the rich
streams, it may be of interest to remove a certain total
mass load of pollutants. Then, (TP1) is solved with vari-
able rich outlets and a fixed total mass exchange load
[10]:

Mc D
X
i

Gi (ysi � yti )

The minimum-utility-cost problem has been alter-
natively formulated as an LP or MINLP problem, based
on total mass balances and the following property:

8<
:

Mass lost by all the rich
streams below each
pinch point candidate

9=
;

�

8<
:

Mass gained by all the lean
streams below each
pinch point candidate

9=
; � 0 (2)

and employing binary variables to denote the relative
position of variable outlet compositions with respect to
each pinch point candidate in the CID [5,6,8,9].

The minimum number of mass exchange opera-
tions (units) for fixed MSA cost is determined in each
subnetwork in a second step, in an attempt to minimize
the fixed cost of the separators. The minimum number
of mass exchangers is found employing the expanded
transshipment model, where the existence of a mass ex-
change match-separator in a subnetwork is denoted by

a binary variable:

Ei jm D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1; when streams i; j
exchange mass
in subnetwork m

0; otherwise:

For a single component, the minimum number of mass
exchanger units is given by the following MILP prob-
lem [4]:

(TP2)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X
m

X
i2Rm

X
j2Sm

Ei jm

s.t. ıi k � ıi k�1 C
X
j2Smk

Mi jk DWRi
k ;

k 2 Im ; i 2 Rmk ; m 2 M;X
i2Rmk

Mi jk DWSj
k ;

k 2 Im ; j 2 Smk ; m 2 MX
k2Im

Mi jk � Ei jmUi jm � 0

ıi k � 0; k 2 Im ; i 2 Rm ;

Mi jk � 0; k 2 Im ;
i 2 Rkm ; j 2 Skm
Ei jk D 0; 1; k 2 Im ;
i 2 Rkm ; j 2 Skm ;

where
� Rm is the set of rich streams, present in subnetwork

m,
� Sm is the set of lean streams, present in subnetwork

m,
� Im is the set of intervals in subnetwork m,
� Rkm is the set of rich streams, present in interval k of

subnetwork m, or above,
� Skm is the set of lean streams, present in interval k of

subnetwork m,
� WRi

k is the mass exchange load of rich stream i in
interval k,

� ıik is the residual mass exchange load of rich stream
i in interval k,

� WSjk is the mass exchange load of lean stream j in
interval k, as determined by (TP1),

� Mijk is the mass exchange load between i and j in
interval k,
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� Uijm is an upper bound to the possible mass ex-
change load between i and j in subnetwork m,

Ui jm D min

0
@X

k2Im

WRi
k ;
X
k2Im

WS j
k

1
A :

Srinivas and El-Halwagi have shown [14] that, when the
equilibrium relations around a pinch point are not con-
vex, a mass exchanger can straddle the pinch and still be
thermodynamically feasible. To account for such cases,
exchangers across the pinch points can be considered
introducing extra binary variables:

Ii jp � Mi jp;

Ii jpC1 � Mi jpC1;

Ii jp C Ii jpC1 � 2Bi jp;

Ii jp; Ii jpC1 2 f0; 1g;

Bi jp 2 f0; 1g;

where
� Iijp denotes that streams i and j exchange mass at the

interval directly above pinch point p,
� Iijp+1 denotes that streams i and j exchange mass at

the interval directly below pinch point p,
� Bijp denotes the existence of an exchanger between

streams i and j, across the pinch p.
Then, the number of required units to minimize is
given by:

X
m

0
@X

i2Rm

X
j2Sm

Ei jm �
X
p

Bi jp

1
A :

Note, that Iijp-variables can be relaxed to continuous,
due to total unimodularity of the model with respect to
these variables:

0 � Ii jp; Ii jpC1 � 1

Problem (TP2) may not have a unique solution.
Alternative combinations of mass exchange matches,
featuring the minimum MSA cost, may be generated
by solving (TP2) iteratively and including integer cuts.
These do not necessarily correspond to networks of the
same overall cost.

The expanded transshipment model can also be em-
ployed to determine the minimumMSA cost, consider-
ing variable mass loads for the lean streams. Then, for-
bidden or restricted mass exchange operations can be
explicitly accounted for.

Although (TP2) does not determine the network
structure, stream splitting and exchanger connectivity
may be guided by the resulting mass exchange load dis-
tribution in each composition interval [4]. The actual
network configuration is found in a next step, employ-
ing heuristic methods [3,5] or superstructure methods
(NLP models).

Special cases of mass exchange networks have been
studied:
� MEN and regeneration networks [5,11].

The regeneration of mass separating agents by auxil-
iary streams can be considered simultaneously with
the main MEN, in another mass exchanger network,
where the MSAs behave as the rich streams. In this
case, the CID is extended to include the equivalent
composition scales of the regenerating agents. The
inlet and outlet compositions of the lean streams in
the main MEN are in general variables.

� Reactive mass exchange networks [6,11,14]
Rich-to-lean mass transfer may involve interphase
mass transfer and chemical reaction in the lean
phase, at constant temperature. Mass exchange op-
erations of this kind are considered deriving the
equilibrium relations based on chemical equilib-
rium.

The main advantage of the sequential synthesis method
for mass exchange networks is that simple optimiza-
tionmodels are solved. However, unless theMSA cost is
dominant, as synthesis decisions are fixed from one step
to the next, important trade-offs between operating and
capital cost are not exploited and overall cost optimal-
ity cannot be guaranteed. Furthermore, the minimum
composition difference, � that defines the mass recov-
ery levels in (TP1) and (TP2), is in general, an optimiza-
tion variable for each mass exchanger separately. In the
sequential synthesis method this is fixed arbitrarily to
a possibly conservative value for the construction of the
CID. El-Halwagi and V.Manousiouthakis [4] suggested
a two-level optimization procedure to select a unique �
for all mass exchange operations, based on the impact
of � on the final MEN cost, still, not exploiting the over-
all cost trade-offs.

When isothermal mass exchange operations take
place at different temperature levels, the operating and
overall mass integration costs are affected by the heat-
ing and cooling requirements of the system. Energy
integration between the rich and lean streams can be
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Mixed Integer Linear Programming: Mass and Heat Ex-
changer Networks, Figure 3

considered within a mass and heat exchanger network
synthesis problem (MHEN) to reduce the total cost.
The overall problem is addressed combining MEN and
HEN synthesis tools. The optimal temperature of mass
exchange is defined for each pair of rich and lean
streams by the equilibrium relations that limit mass
transfer

yi � Ki j(T)x j;

where Kij(T) is a known function of temperature.
In the sequential synthesis framework, the overall

minimum operating cost for the network (cost of mass
separating agents and heating/cooling utilities) may be
calculated from a combined mass and heat transship-
ment model. Each stream is considered to consist of
substreams, of the same inlet and outlet composition
and temperature, each of which participates to isother-
mal mass exchange operations at a different temper-
atures. Srinivas and El-Halwagi proved [13], that, for
monotonic dependence of the equilibrium constant on
temperature, the overall utility cost of the combined
MHEN is independent of such a stream decomposition,
see Fig. 3.

Although the mass exchange temperatures (T1, . . . ,
TN) are variables, their relative position with respect to
inlet and outlet stream temperatures (greater or less)
can be prepostulated. Thus, the rich and lean sub-
streams define hot (or cold) streams before their mass
exchange operations and cold (or hot) streams after-
wards, cf. Fig. 4.

A CID is constructed, similarly to the simple MEN
case, involving the several substreams with variable
flows, and thus, variable mass loads in each composi-

(Ril; ySi ;T
S
i )

hot
stream

�
�

���
(Ril; ySi ;Tl)

stream
rich

� (Ril; yti;Tl)
�

�
���
stream
cold

(Ril; yti;T
t
i )

Mixed Integer Linear Programming: Mass and Heat Ex-
changer Networks, Figure 4
Rich substream with Tsi � Tl � Tti

tion interval. Mass exchange is permitted between sub-
streams of the same temperature. A temperature inter-
val diagram, TID, is also constructed, involving the hot
and cold substreams and the available heating and cool-
ing utilities, with variable heat loads per interval, due
to the variable substream flows. In order to avoid dis-
crete decisions (i. e. presence or not of streams in tem-
perature intervals with variable limits), the temperature
range for each mass transfer operation is discretized
and a substream is associated with each candidate tem-
perature [13].

Theminimumutility cost is found from the solution
of the combined LP transshipment model, which, for
a single component is as follows:

(TP3)

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min

0
@X

j2S

c jL j

C
X
n2TI

X
h2HUn

chQHUhn

C
X
n2TI

X
c2CUn

ccQCUcn

1
A

such that

ıl i k � ıl i k�1 C
X
j2S

X
l 0j2SS jk

Mli l 0j k D WRli
k ;

k 2 CI; i 2 R; li 2 RSik ;

X
i2R

X
l 0i2RSik

Ml 0i l j k
DWSl jk ;

k 2 CI; j 2 S; l j 2 SSjk ;

�l s n � �l s n�1

C
X

s02R[S

X
l 0s02CSs0n

Qls l 0s0 n
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C
X

c2CUn

QCls cn D QSls n ;

n 2 TI; s 2 R [ S; ls 2 HSsn ; � h
hn � �

h
hn�1

C
X

s2R[S

X
l s2CSsn

QHhls n D QHUhn ;

n 2 TI; h 2 HUn ;

X
s02R[S

X
l 0s02HSs0n

Ql 0s0 l s n

C
X

h2HUn

QHhls n D QSls n ;

n 2 TI; s 2 R [ S; ls 2 CSsn ;

X
s2R[S

X
l s2HSsn

QCls cn D QCUcn ;

n 2 TI; c 2 CUn ;

ıl i k � 0; k 2 CI; i 2 R; li 2 RSik ;

�l s n � 0; n 2 TI; s 2 R [ S; ls 2 HSsn ;

� h
hn � 0; n 2 TI; h 2 HUn ;

Mli l 0j k
� 0;

k 2 CI; i 2 R; j 2 S;

li 2 RSik ; l 0j 2 SSjk ;

Mli l 0j k D 0;

k 2 CI; i 2 R; j 2 S;

li 2 RSik ; l 0j 2 SSjk ;

(li l 0j) 2 FM;

ıl i0 D ıl i NCI D 0;

i 2 R; li 2 RSi ;

�l s0 D �l s NTI D 0;

s 2 R [ S; ls 2 HSs ;

� h
h0 D �

h
hNTI
D 0;

h 2 HU;

where
� CI is the set of composition intervals k,
� TI is the set of temperature intervals n,

� RSik is the set of substreams of rich stream i, of vari-
able flow, Gli , such that
X
l

Gli D Gi ;

present in interval k, or above,
� SSjk is the set of substreams of lean stream j, of vari-

able flow, Ll j , such that
X
l

Ll j D Lj;

present in interval k,
� HSsn is the set of hot substreams of stream s, present

in interval n, or above,
� CSsn is the set of cold substreams of stream s, present

in interval n,
� HUn is the set of hot utilities, present in interval n,

or above,
� CUn is the set of cold utilities, present in interval n,
� WRli k is the mass exchange load of substream li, in

interval k,

WRli
k D Gli (yk �max(ykC1; yi spt));

� WSl j k is the mass exchange load of substream lj, in
interval k,

WSl jk D Ll j (min(xt
j ; x jk ) � x jkC1);

� ı l i k is the residual mass load of substream li in inter-
val k,

� Mli l 0 j k is the mass exchange load between li and l0j,
in k,

� FM is the set ofmass exchanging substreams that are
at different temperatures,

� QSlsn is the heat load of substream ls in interval n,
� Qls ls00n is the heat exchange load between ls and ls0 0

in interval n,
� � l s n is the residual heat load of hot substream ls in

interval n,
� QHUhn is the heat load of hot utility h in interval n,
� QCUcn is the heat load of cold utility c in interval n,
� QHhlsn is the heat exchange load between hot utility

h and ls in interval n,
� � h

hn is the residual heat load of hot utility h in inter-
val n,

� QCls cn is the heat exchange load between ls and cold
utility c in interval n.
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Problem (TP3) results in the minimum utility cost and
the corresponding flows of separating agents and heat-
ing/cooling utility streams, the optimal decomposition
of each stream into substreams of fixed mass exchange
temperature and the mass and heat exchange pinch
points and corresponding subnetworks.

The minimum operating cost of the combined
MHEN can alternatively be found applying the first and
second thermodynamic laws (property in (2)) on the
composition and temperature interval diagrams [13].

Theminimum number of mass and heat exchangers
is determined in a second step through the expanded
MILP transshipment model, separately in each mass
and heat exchanger subnetwork. The final network con-
figurations and unit sizes are determined in a final step,
applying heuristic rules or superstructure models.

Additional disadvantages of the sequential MHEN
synthesis method, compared to the synthesis of simple
MEN, are that:
i) the mass and heat exchange networks are assumed

separable and
ii) the intermediate mass exchange temperatures are

decided in the first step; this forbids full exploitation
of the mass/heat integration trade-offs, as capital
cost implications of such decision is not accounted
for.

Modeling concepts from the sequential mass and heat
exchanger network synthesis methods, employing LP
and MILP optimization models, have been extended
to explore distillation networks [1], pervaporation sys-
tems [12] and other energy-requiring separation net-
works [2,7].
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Introduction

The global optimization of classes of mixed integer
nonlinear bilevel optimization problems is addressed.
For problems where the integer variables participate in
both the inner and the outer problems, the outer level

may involve general mixed-integer nonlinear functions.
The inner level may involve functions that are mixed-
integer nonlinear in outer variables, linear, polyno-
mial, or multilinear in inner integer variables and linear
in inner continuous variables. The technique is based
on reformulating the mixed-integer inner problem as
continuous by its convex hull representation [11,12]
and solving the resulting nonlinear bilevel optimization
problem by a novel deterministic global optimization
framework.

Formulation

The general mixed-integer nonlinear Bilevel Program-
ming Problem (BLP) formulation is:

min
x

F(x; y)

s.t. G(x; y) � 0
H(x; y) D 0

min
y

f (x; y)

s.t. g(x; y) � 0

h(x; y) D 0

x1; ::; xi 2 <n1 ; y1; ::; y j 2 <n2 ;

xiC1; ::; xn1 2 ZC; y jC1; ::; yn2 2 YIN � ZC :

(1)

where x is a vector of outer problem variables, of which
i are continuous and n1 � i are integer, y is a vector of
inner problem variables, of which j are continuous and
n2 � j are integer, F(x; y) is the outer objective func-
tion, H(x; y) are outer equality constraints, G(x; y) are
outer inequality constraints, f (x; y) is the inner objec-
tive function, h(x; y) are inner equality constraints, and
g(x; y) are inner inequality constraints. The applica-
tions of BLP are many and diverse [4,6,7]; if these prob-
lems involve discrete decisions in addition to continu-
ous ones, then the mixed-integer BLP models arise.

Classes

The nonlinear mixed integer BLP can be classified into
four different categories, depending on the existence of
integer variables in the outer or the inner problems:

(I). Integer Upper, Continuous Lower BLP;
(II). Purely Integer BLP;
(III). Continuous Upper, Integer Lower BLP;
(IV). Mixed-Integer Upper and Lower BLP.
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Mixed Integer Nonlinear Bilevel Programming: Deterministic
Global Optimization, Figure 1
Algorithm flowsheet for type II,III,IV BLPs

The existence of both integer and nonlinear terms
in the above problem classes require special solution
techniques. The specific mathematical structure of the
mixed integer nonlinear BLP is of great import in devel-
oping corresponding solution strategies. Problems of
Type I can be addressed with existing BLP solution ap-
proaches. For problems of Type II, enumeration meth-
ods can be applied. However, BLPs of Type III and IV
are the most difficult to solve.

BLPs with Inner Integer Variables

The conventional solution method of the continuous
BLP is to transform it into a single level problem by re-
placing the inner problem with the set of equations that
define its Karush–Kuhn–Tucker (KKT) optimality con-
ditions. However, the KKT optimality conditions use
gradient information, so the conventional approach is
not applicable when integer inner variables exist. Fur-
thermore, if the integrality constraint is relaxed on the
inner integer variables, the solution of this relaxed BLP
does not provide a valid lower bound on the solution of
the mixed-integer BLP [9]. Note that even if the optimal

solution of the relaxed BLP is integral in y, this may not
be a globally optimal solution of the original BLP [9].
Thus, the conventional KKT-based methods inherently
fail in locating the global optimum.

The BLP with inner mixed-integer variables can be
transformed into an equivalent BLP with inner mixed-
binary (0-1) variables as follows. Every inner prob-
lem integer variable yj, with upper and lower bounds
yLj � y j � yUj is converted into a set of binary variables
using the formula [2]:

y j D yLj C z j1 C 2z j2 C 4z j3 C : : :C 2(N j�1)z jN (2)

where z j is a vector of (0-1) variables and Nj is the min-
imum number of (0-1) variables needed:

Nj D 1C INT

 
log(yUj � yLj )

log(2)

!
(3)

such that INT truncates its real argument to an integer.
The only time that the KKT optimality conditions

are applicable to solve the BLP with mixed-binary y is
when the following property is satisfied [8]:

Property 1 If the inner problem constraint set, Y IN, de-
fines a vertex polyhedral convex hull and all the vertices
of the convex hull lie in YIN, then the optimal inner prob-
lem integer solution is equivalent to its linear program-
ming relaxation. As a result, the Karush–Kuhn–Tucker,
KKT, conditions of relaxed inner linear problem are nec-
essary and sufficient to define the optimal inner problem
integer solution.

The property is also satisfied when outer variables ex-
ist in the inner problem constraints, such that the inner
problem vertex polyhedral convex envelope is defined
parametrically in x. Hence, the integer solution of the
inner problem lies at a vertex of the inner solution set
and the KKT optimality conditions locate the true opti-
mal solution [8].

Here, a global optimization procedure is presented
for BLPs of Type II, III and IV that is based on a refor-
mulation/linearization scheme combined with a global
optimization framework. The idea is that if the inner
problem constraint set has a vertex polyhedral convex
envelope, then Property 1 is satisfied and the mixed-
integer inner problem can be converted into a contin-
uous problem of equivalent form. The application of
the reformulation/linearization technique results in the
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convex hull representation for several classes of inner
problems.

Reformulation/Linearization

Themixed-binary inner problem constraint set is trans-
formed into the continuous domain by converting it
into a polynomial programming problem and then
relinearizing it into an extended linear problem by
a method based on [11]. First, a polynomial factor is
defined as follows:

Fn(J1; J2) D

8̂
ˆ̂<
ˆ̂̂:

 
Q
j2J1

y j

! 
Q
i2J2

(1 � y j)

!
;

J1; J2 � Ny � 1; ::; ny ;

s.t. J1 \ J2 D ;; jJ1 [ J2j D ny

9>>>=
>>>;
:

(4)

Using this polynomial factor, the convex hull of the in-
ner problem, Y IN, is obtained. If the inner optimization
problem is linear, then the 2-step process is as follows:

Step 1 Reformulation. Multiply every constraint, in-
cluding 0 � y � 1, with every factor defined as above
and use the relationship y2j D y j , 8 j D 1; ::; ny to lin-
earize terms polynomial in y. Include in the inner prob-
lem constraint set the nonnegativities on all possible
factors of degree ny (i. e. Fn(J1; J2) � 0 for all (J1; J2) of
order ny).
Step 2 Linearization. Linearize the inner constraints
that are multilinear in y, such as ˘ j2J y j by substitut-
ing a zJ for each set J with jJj � 2, with the elements
of J in increasing order. (i. e. a new variable zij is in-
troduced to substitute for a bilinear term (yi y j D zi j)
and further substitution is performed for multilinear
terms). At constant x, the resulting inner constraint set
describes a polytope with all vertices defined by binary
values and characterizes the convex hull of feasible so-
lutions for any inner problem that is linear or polyno-
mial binary in y-variables.

If the inner optimization problem is mixed-binary
linear or polynomial, the problem constraints are again
multiplied by ny-degree polynomial factors composed
of the ny binary variables and their complements and
the resulting nonlinear problem is linearized by a sub-
stitution of new variables. Additional nonlinear terms
arise from the multiplication of the ny-degree polyno-
mial factors with the inner problem linear continuous

terms in y, that are also linearized through a redefini-
tion [8,12]. This transformation is applicable when in
the mixed-binary inner problem, the continuous y are
0 � y � 1. Note that there are no such restrictions on
the outer problem x-variables in both inner and outer
problems.

Inner ProblemKKT Conditions
and Complementarity

After reformulation/relinearization, the inner problem
is replaced by the set of equations that define its neces-
sary and sufficient KKT optimality conditions:

hri (x; y
�) D 0; i 2 I ;

@ f (x; y�)
@y�

C

JX
jD1

� j
@grj
@y�
C

JX
jD1

��i
@hri
@y�
D 0 ;

grj (x; y
�)C s�j D 0 ; j 2 J

��j s
�
j D 0 ; j 2 J (CS)

��j s
�
j � 0 ; j 2 J

(5)

where f r , hr and g r are the reformulated inner objec-
tive, equality and inequality constraints, � and � are
the Lagrange multipliers of the inner inequality and
equality constraints, and s are the slack variables asso-
ciated with the complementarity constraints.

Active Set Strategy

The complementarity condition constraints, (CS) in-
volve discrete decisions on the choice of the inner prob-
lem active constraint set. The set changes when at least
one inequality function and its Lagrange multiplier are
equal to zero. This imposes a major difficulty in the so-
lution of the transformed problem. To overcome this
difficulty, the Active Set Strategy [5,8] is employed, such
that the complementarity constraints are reformulated
as:

� j � UYj � 0 ; j 2 J

s j � U(1 � Yj) � 0 ; j 2 J

� j; s j � 0 ; j 2 J

Yj 2 f0; 1g :

(6)
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where U is an upper bound on the slack variables s and
Y are the additional binary variables introduced. If con-
straint j is active, (Yj D 1), and if inactive, (Yj D 0).
Note that now the integer variable set includes the bi-
nary variables Y in addition to the outer problem inte-
ger variables.

Transformed BLPP Global Optimization

The problem that results after the reformulated/linear-
ized inner problem is replaced with its KKT optimal-
ity conditions and active set strategy is applied can still
have nonlinear terms due to complementarity and sta-
tionarity conditions. Further, nonlinear terms in the
outer problem variables may exist in either the in-
ner or outer problem constraints. Hence, the result-
ing problem is a mixed-integer (nonlinear) optimiza-
tion problem and should be solved by a global opti-
mization procedure. If the integer variables are all bi-
nary and only appear in linear or mixed-bilinear terms,
the Special structure MINLP-˛BB, SMIN-˛BB [1,3] ap-
proach is employed. If the outer integer variables are
not restricted to binary and/or participate in nonlin-
ear terms, the General structure MINLP-˛BB, GMIN-
˛BB [1,3] approach is employed. The steps of the pro-
posed framework are given below.

Global Optimization Algorithm

Step 1 Establish variable bounds by solving the prob-
lems:

yL, yU = min y, �y s.t. inner problem constraint
setprotect
to obtain simple lower and upper bounds on y,

yL � y � yU.

Step 2 If the inner integer variables are integer, convert
into a set of binary variables by Eq. (2) and Eq. (3).
Step 3 Obtain the vertex polyhedral convex envelope
of the inner problem feasible region via the reformula-
tion/ linearization [11]. The inner problem is now lin-
ear in both inner binary and continuous variables and
parametric in outer problem variables, x.
Step 4 Replace the inner problem with the set of equa-
tions that define its necessary and sufficient KKT opti-
mality conditions. The resulting problem is single level.
Step 5 Solve the resulting single level optimization

problem to global optimality. The inner integer vari-
ables are all separable, linear and binary at the begin-
ning of this step. If the final problem is a Mixed Inte-
ger Linear Problem, (MILP), then use CPLEX. Notice
that the problem will be an MILP only for the simplest
cases. If there are nonlinear continuous variables, but
the integer variables are all binary, linear and separable,
use SMIN-˛BB [1,3] global optimization procedure. If
the outer problem has nonlinear integer terms, then use
GMIN-˛BB [1,3] global optimization procedure.

Illustrative Example

The following problem [10] can not be solved to global
optimality using current deterministic solution ap-
proaches for integer bilevel programming problems in
the literature.

min�
�
�
2
5
x21x2 C 4x22

�
y1 y2

�
�
�x32 C 3x21x2

�
(1 � y1)y2 �

�
2x22 � x1

�
(1 � y2)

s.t. min�
�
x1x22 C 8x32 � 14x21 � 5x1

�
y1y2

�
�
�x1x22 C 5x1x2 C 4x2

�
(1 � y1)y2

� 8x1y1(1 � y2)
s.t. y1 C y2 � 1

0 � x1 � 10

0 � x2 � 10

y1; y2 2 f0; 1g2 ; x 2 < :
(7)

Steps 1–2 Variable bounds are already given in this
problem, with 0 � x � 10, and y1 and y2 are defined
as binary.
Step 3 Determination of the vertex polyhedral con-
vex hull: The inner problem is Ny D 2 degrees,
second degree factors y1y2, y1(1 � y2), (1 � y1)y2,
(1 � y1)(1 � y2) multiply the inner problem constraint
y1 C y2 � 1 � 0 and result in:

y1y2 � 0

y1 C y2 � y1y2 � 1 � 0 :
(8)

Linearization: Assign a new variable for the bilinear
term z12 D y1y2 that leads to the additional constraints:
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z12 � 0

y1 � z12 � 0
y2 � z12 � 0

�y1 � y2 C z12 � �1 :

(9)

From Eqs. (8) and (9), y1 C y2 � z12 � 1 D 0. Substi-
tuting the definition of z12 into Eq. (8), a linear relax-
ation of the inner problem constraint set leads to the
original set of constraints:

y1 C y2 � 1 � 0
1 � y2 � 0

1 � y1 � 0 :

(10)

Hence, the continuous relaxation of the original prob-
lem constraints define the convex hull and no addi-
tional constraints are necessary. The inner problem is
continuous and linear in y1 and y2, and parametric in
the outer problem variables x.
Step 4 Replace the relaxed inner problem with the
equivalent set of equations that define its necessary and
sufficient KKT optimality conditions:

min
�
17
5
x21x2 � 4x22 � x32

�
y1C

�
2
5
x21x2 � 2x22 � x1

�

� y2
�
�
17
5
x21x2 C 2x22 C x32 C x1

�

0 � x1 � 10

0 � x2 � 10

� x21x
2
2 � 8x32 C 14x21 C 5x1 � x1x22 C 5x1x2 C 4x2
� �1 C �2 D 0

� �1 � x21x
2
2 � 8x32 C 14x21 C 13x1 C �3 D 0

� y1 � y2 C 1C s1 D 0
y1 C s2 D 1

y2 C s3 D 1

�1 � UY � 0

s1 C UY � U

Y 2 f0; 1g; s1; �1; y1; y2 � 0;

x1; x2 2 <; y1; y2 � 1 :
(11)

Step 5 The single level problem constraint contains the
following nonlinear terms: x21x2y1, x22 y1, x21x2y2, x22 y2,
x1y2, x21x2, x22, x23, x1x22 , x1x2, x21x22 that should be
underestimated. All integer variables are binary, lin-
ear and separable. Solve the resulting single level prob-

lem to global optimality using SMIN-˛BB [1,3]. The
global optimal solution reported in [10] is at (x�1 ; x�2 ;
y�1 ; y�2 ) D (6:038; 2:957; 0; 1). We identify the lower
global solution at (0, 10, 1, 1). Note that the solution of
this problem by enumeration methods could be labor
intensive due to the presence of continuous variables.

Conclusions

The global optimization framework addresses the solu-
tion of several classes of mixed integer nonlinear bilevel
optimization problems. The outer problem may be
mixed-integer nonlinear in both inner and outer vari-
ables; the inner problem may be mixed-integer nonlin-
ear in outer variables, linear, polynomial or multilinear
in inner integer variables and linear in inner continu-
ous variables. This is based on the reformulation of the
mixed-integer inner problem feasible space to gener-
ate its convex hull, where the vertices correspond to bi-
nary solutions. This allows the equivalence of the inner
optimization problem to the set of equations that de-
fine its KKT optimality conditions, with which it is re-
placed. The resulting single level optimization problem
is solved to global optimality. This is arguably the first
deterministic global optimization technique that can
solve several classes of mixed-integer nonlinear bilevel
optimization problems. Note that if the central decision
maker wants to locate the second-best inner or outer
integer solutions, simple integer cuts [2] can be added
prior to applying the relevant solution strategy.
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Introduction

The mixed-integer nonlinear programming (MINLP)
approach was widely used to model and solve the pro-
cess synthesis problems in chemical engineering filed
during the last two decades within the superstructure
framework that always involves discrete and continu-
ous variables [3,4,5,6,10]. Recently, the successful em-
ployment of the branch-and-cut method for 0–1 inte-
ger programming [7,8] and 0–1 mixed-integer linear
programming [1,2] has spurred great interest in its ap-
plication for 0–1 mixed-integer nonlinear optimization
due to the significant progress of interior point algo-
rithm for convex optimization problems. Stubbs and
Mehrotra [9] generalized the lift-and-project cut or the
disjunctive cut for 0–1 integer or mixed-integer lin-
ear programming proposed in [1,2,7,8], and extended
their method into a branch-and-cut algorithm for the
0–1 mixed-integer nonlinear optimization problem.
The disjunctive cutting plane presented by Stubbs and
Mehrotra [9] is obtained by solving a convex projection
problem, so it is computationally expensive. In [11],
a valid disjunctive cutting plane for mixed-integer non-
linear optimization problems was constructed by solv-
ing a linear programming problem implemented in an
algorithmic package named MINO, i. e., Mixed-Integer
Nonlinear Optimizer.

Formulation

The general 0–1 mixed-integer nonlinear optimization
problems can be formulated as

(P)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

min
x;y

dx

s:t: Ax C Gy � b
gi
�
x; y

�
� 0; i D 1; : : : ; l

x 2 <n ; y 2 f0; 1gq

where the constant vectors and matrices are defined as
d 2 <n ;A 2 <m�n ;G 2 <m�q ; b 2 <m . Let the
feasible region of the standard continuous relaxation of
problem (P) be defined as

C D

8<
:
�
x; y

�
2 <nCq

ˇ̌
ˇ̌
ˇ̌
Ax C Gy � b;
gi
�
x; y

�
� 0; i D 1; : : : ; l ;

0 � y � 1;

9=
;

Hence, the feasible set of ( P ) can be formulated as

C0 D
˚�
x; y

�
2 C : y j 2 f0; 1g ; j D 1; : : : ; q

�
:
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At a generic step of the branch-and-cut algorithm,
let
�
x; y

�
be a solution to the current NLP relaxation of

(P). If any of the components of the binary variables y
are not in f0; 1g, we can add a valid inequality into the
current feasible set such that this inequality is violated
by
�
x; y

�
. We denote by c the family of inequalities to

describe the current feasible set and the newly incorpo-
rated inequalities. We denote by F0; F1 � f1; : : : ; qg the
sets of binary variables that have been fixed at 0 and 1,
respectively. Let

K (C; F0; F1) D
��

x; y
�
2 C

ˇ̌
ˇ̌ y j D 0 for j 2 F0

y j D 1 for j 2 F1

	

And let NLP (C; F0; F1) denote the nonlinear program

min
x;y

dx

s.t.
�
x; y

�
2 K (C; F0; F1)

The active nodes of the enumeration tree are repre-
sented by a list of Swith ordered pairs (F0; F1). LetUBD
represent the current upper bound, i. e., the value of the
best-known solution to problem (P).

Branch-And-Cut Procedure

Input of d; n; q;A;G; b; gi (i D 1; : : : ; l):
(1) Initialization. Set S D f(F0 D �; F1 D �)g, and let

C consist of the nonlinear programming relaxation
of (P) and UBD D 1.

(2) Node Selection. If S D �, stop. Otherwise, choose
an ordered pair (F0; F1) 2 S and remove it from S.

(3) Lower Bounding Step. Solve the nonlinear program
NLP (C; F0; F1). If the problem is infeasible, go to
Step 2. Otherwise, let

�
x; y

�
denote its optimal solu-

tion. If dx � UBD, go to Step 2. If y j 2 f0; 1g ; j D
1; : : : ; q, let

�
x�; y�

�
D
�
x; y

�
, UBD D dx , and go

to Step 2.
(4) Branching versus cutting decision. Should cutting

planes be generated? If yes, go to Step 5, else go to
Step 6.

(5) Cut generation. Generate cutting plane ˛xCˇy �
� valid for (P) but violated by

�
x; y

�
. Add the cuts

into C and go to Step 3.
(6) Branching Step. Pick an index j 2 f1; : : : ; qg such

that 0 < y j < 1. Generate the subproblems corre-
sponding to

�
F0 [ f jg ; F1

�
and

�
F0; F1 [ f jg

�
, add

them into the node set S. Go to Step 2.

When the algorithm terminates, ifUBD <1,
�
x�; y�

�
is an optimal solution to (P), otherwise (P) is infeasible.

Linear Approximation of NLP Relaxation

The continuous relaxation of problem (P) at some node
in an enumeration tree can be described by

(NLP)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

min
x;y

dx

s:t: Ãx C G̃y � b̃;
gi
�
x; y

�
� 0; i D 1; : : : ; l ;

y j D 0; j 2 F0;
y j D 1; j 2 F1;�
x; y

�
2 <nCq ;

where the reformulated linear constraint set consists
of the original linear constraint set and the upper and
lower bound constraints for binary variables, so we
have Ã 2 <(mC2q)�n ; G̃ 2 <(mC2q)�q; b̃ 2 <mC2q . As-
sume that the above NLP continuous problem is feasi-
ble and has a finite minimum at

�
x; y

�
, since otherwise

the node is done. A linear approximation problem at�
x; y

�
for the above NLP problem can be obtained by

(LP)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

min
x;y

dx

s:t: Ãx C G̃ y � b̃;

gi
�
x; y

�
Cr gi

�
x; y

� � x � x
y � y

�
� 0;

i D 1; : : : ; l ;
y j D 0; j 2 F0;
y j D 1; j 2 F1;�
x; y

�
2 <nCq;

where the original convex and differentiable functions
are replaced by their first-order Taylor approximation
at
�
x; y

�
. Accordingly, a MILP problem corresponding

to the MINLP problem at the current node can be de-
scribed by

(MILP)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

min
x;y

dx

s:t: Ãx C G̃ y � b̃;

gi
�
x; y

�
Cr gi

�
x; y

� � x � x
y � y

�
� 0;

i D 1; : : : ; l ;
y j D 0; j 2 F0;
y j D 1; j 2 F1;
x 2 <n ; y 2 f0; 1gq ;
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[11] proved that if the above NLP achieves its optimal
solution at

�
x; y

�
. Then,

�
x; y

�
is also an optimal solu-

tion to the aforementioned LP. The geometrical expla-
nation of the above linear approximation is presented
in Fig. 1, and it is obvious that the mixed-integer set is
expanded after linear approximation.

Disjunctive Cut Generation

For problem (P), it is very attractive to construct the
lift-and-project cut in terms of the approximated LP
instead of the NLP, but the cut still can cut away the
fraction point

�
x; y

�
. Such cut can be derived by impos-

ing the 0–1 integral condition on a binary variable y j
while 0 < y j < 1. In Fig. 1, the short dashed line rep-
resents the cut generated directly by using the convex
hull of the mixed-integer convex set presented by [9],
and the long dashed line stands for the cut to be gener-
ated in [11] based on the linear approximation. For cut
generation, the node sets F0 and F1 can be expanded
to include additional binary variables whose optimal
solutions are taken at 0 or 1 for the NLP problem at
the current node. Then, we redefine these two sets as
F0 D

˚
i : yi D 0

�
and F1 D

˚
i : yi D 1

�
. It is not

difficult to verify that the above NLP and LP problems
have the same optimal solutions if we change the orig-
inal node sets to be the expanded ones. Let the feasible
region of the above LP be defined as

K D K
�
C; F0; F1

�
D

8<
:
�
x; y

�
2 <nCq

ˇ̌
ˇ̌
ˇ̌
Ax C Gy � b
yi D 0; i 2 F0

yi D 1; i 2 F1

9=
;

where A 2 <(mC2qCl )�n ;G 2 <(mC2qCl)�q ; b 2
<mC2qCl , i. e., the newly reformulated linear constraint
set consists of the linear approximation set besides the
original one, as

Ax C Gy � b �

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Ax C Gy � b;
r gx

�
x; y

�
x Cr g y

�
x; y

�
y

� r g
�
x; y

� � x
y

�
� g

�
x; y

�
;

�yi � 0 i D 1; : : : ; q;
yi � 1 i D 1; : : : ; q ;

It should be noted that the node sets have already
been changed to the expanded ones in the above for-

mulation. If we impose the integrality condition on a bi-
nary variable y j for which 0 < y j < 1, the disjunctive
cut can be obtained by choosing a valid inequality for

Pj (K) D conv
�
K \

˚�
x; y

�
2 <nCq : y j 2 f0; 1g

��
;

The convex hull of this union set can be further de-
scribed by its disjunctive form as

Pj(K) D conv
��

K \
n
(x; y) 2 <nCq : y j � 0

o	

[

�
K \

n
(x; y) 2 <nCq : �y j � �1

o	�
;

Let F D f1; : : : ; qg n
�
F0 [ F1

�
denote the set of

free variables at node
�
F0; F1

�
, and the vector cor-

responding to those free variables can be defined as
yF D yn

˚
yi : i 2

�
F0 [ F1

��
. The columns of ma-

trix G corresponding to the fixed binary variables
can be removed from the constraint set by defining
GF
D Gn

˚
Gi : i 2

�
F0 [ F1

��
, and the right-hand side

can be calculated accordingly as b
F
D b�

P
i2F1 Gi . Fi-

nally, the rows in matrices A and GF , and vector b
F
that

correspond to the upper and lower bounds of the fixed
binary variables are removed. After doing the above
operations, we can assume without loss of generality,
that F1 D �. Since if F1 ¤ �, all the variables yk in
F1 can be complemented by 1-yk which amounts re-
placing the columns Gk and the right-hand side with
�Gk and b � Gk , respectively. The reduced LP con-
straint set after removing the fixed binary variables be-
comes

AFx C GF yF � b
F
�

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

Ax C
P
i2F

Gj y j � b

�
P
i2F1

Gj ;

r gx
�
x; y

�
x

C
P
i2F
r g yi

�
x; y

�
y j

� r g
�
x; y

� � x
y

�

�g
�
x; y

�
�
P
i2F1
r g yi

�
x; y

�
;

�yi � 0 i 2 F;
yi � 1 i 2 F ;

where AF
2 <(mC2jFjCl )�n ; GF

2 <(mC2jFjCl )�jFj;

b
F
2 <mC2jFjCl . Then, the feasible region of the above



Mixed-Integer Nonlinear Optimization: A Disjunctive Cutting Plane Approach M 2233

Mixed-Integer Nonlinear Optimization: A Disjunctive Cutting Plane Approach, Figure 1
Linear approximation of themixed-integer nonlinear optimization problem,where themixed-integer convex set is described
by a continuous variable and a binary variable

LP can be reformulated as

K D
n�
x; yF

�
2 <nCjFj

ˇ̌
ˇAFx C GF yF � b

F o

Let
�
x; y

�
be the optimal solution when solving

NLP
�
C; F0; F1

�
. First, we assume that

�
x; y

�
is not fea-

sible to problem (P), and let j be the binary variable in-
dex such that 0 < y j < 1. In [11], a disjunctive cut
generation linear programming is given by

(LP(F))

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

min
P
i2N

zi C
P
i2F

wi

s:t: x D u0 C u1; yF D v0 C v1;
AFu0 C GFv0 � b

F
�0 � 0;

v0; j � 0;
AFu1 C GFv1 � b

F
�1 � 0;

�v1; j � ��1;
�0 C �1 D 1;
�z C x � x; �z � x � �x;
�w C yF � yF ; �w � yF � �yF ;
�0; �1 � 0; x; u0; u1; z 2 <n ;

yF ; v0; v1;w 2 <jFj :

This linear program has 4n C 4 jFj C 2 variables
with 2m C 3n C 7 jFj C 2l C 3 equality or inequality
constraints. After solving this linear program, we get its
solutions denoted by

�
x̃; ỹF ; ũ0; ṽ0; ũ1; ṽ1; z̃; w̃; �̃0; �̃1

�
as well as the dual multipliers. Denote by F

x ; 
F
y ; ı

F
	

the multipliers for the equality constraints, ıF0 ; ıF1 for

the disjunctive inequality constraints, �F
0 ; �

F
1 for the

inequality original constraints, and "FC; "
F
�; '

F
C; '

F
� for

the additional constraints in LP(F), the cut generated in
Theorem 2, i. e. ˛xCˇF yF � � , can be reformulated by
the dual multipliers and the primal solutions to LP(F),
as F

x x C F
y yF � F

x x̃ C F
y ỹF . Since the feasible set

of problem (P) at the node (F0; F1) is contained in the
feasible set of the MILP at that node. Therefore, the in-
equality ˛xCˇF yF � � is valid and proper for problem
(P) at the current node denoted by (F0; F1), and its de-
scendents where the variables in (F0; F1) remain fixed.

Cut Lifting

An important advantage of the cut generated by the
lift-and-project technology is that the multipliers, i. e.,
�F
0 ; ı

F
0 ; �

F
1 ; ı

F
1 , obtained along with the solution

�
x̃; ỹF

�
by solving LP(F) can be used to calculate the closed
form expressions of the coefficients ˇi for the binary
variables in the index set F0 [ F1. First, we lift the in-
equality obtained at the current node into the comple-
mented original space of the MILP problem, that is

( �
x; y

�
2 <nCq :

ˇ̌
ˇ̌
ˇ
Ax C GQ y � b

Q
;

y 2 f0; 1gq

)

Let j 2 f1; : : : ; qg be an index such that 0 < y j < 1
and consider the inequality ˛qx C ˇq y � � q gener-
ated over the complemented original space of the MILP
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problem, this is to solve the linear program LP(Q), as

(LP(Q))

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

min
P
i2N

zi C
P
i2Q

wi

s:t: x D u0 C u1; y D v0 C v1;
Au0 C GQv0 � b

Q
�0 � 0;

v0; j � 0;
Au1 C GQv1 � b

Q
�1 � 0;

�v1; j � ��1;
�0 C �1 D 1;
�z C x � �x; �z � x � �x;
�w C y � y; �w � y � �y;
�0; �1 � 0;
x; u0; u1; z 2 <n ; y; v0; v1;w 2 <q :

Note that more variables and constraints are added
into this linear program compared with LP(F). But,
by using the solutions to LP(F) and its multipliers, we
can obtain the optimal solution to the above LP(Q).
Let

�
x̂; ŷ; û0; v̂0; û1; v̂1; ẑ; ŵ; �̂0; �̂1

�
be the solution to

the linear program LP(Q), which can be constructed
by the solution to the LP(F), as x̃ D x̂, ŷ D ( ỹF ; 0),
û0 D ũ0, û1 D ũ1, v̂0 D (ṽ0; 0), v̂1 D (ṽ1; 0), �̂0 D �̃0,
�̂1 D �̃1, ẑ D z̃, and ŵ D (w̃; 0). Then, the cor-
responding dual multipliers of LP(Q ) denoted by
(̂Q

x ; ̂
Q
y ; �̂

Q
0 ; ı̂

Q
0 ; �̂

Q
1 ; ı̂

Q
1 ; ı̂

Q
	
; "̂

Q
C; "̂

Q
�; '̂

Q
C; '̂

Q
� ), which

is also the solution to the dual linear program DLP(Q),
can be constructed by those to DLP(F), as ̂Q

x D ̃F
x ,

̂
Q
y;i D ̃F

y;i for i 2 F, ̂Q
y;i D min

˚
�̃F
0G

Q
i ; �̃

F
1G

Q
i
�

for i 2 F0 [ F1, ı̂Q0 D ı̃F0 , ı̂
Q
1 D ı̃F1 , ı̂

Q
	
D ı̃F

	
, �̂Q

0 D

(�̃F
0 ; 0), �̂

Q
1 D (�̃F

1 ; 0), "̂
Q
C D "̃

Q
C, "̂

Q
� D "̃Q� ,

'̂
Q
C D ('̃F

C; 0), and '̂Q
� D

�
'̃F
�; 0

�
. The inequal-

ity ˛qx C ˇq y � � q described by ̂Q
x x C ̂Q

y y �
̂Q
x x̂ C ̂Q

y ŷ is valid for the entire enumeration tree,
and cuts away

�
x; y

�
.

Conclusion

A branch-and-cut algorithm is introduced in this sec-
tion to solve 0–1 mixed-integer nonlinear optimiza-
tion problem where the disjunctive cuts are generated
and incorporated into an enumeration process. The
lift-and-project cut generation is performed via linear
programming, as opposed to the convex nonlinear ap-
proach used in [9]. This new approach has the ad-
vantage of making the cut generation computationally
cheaper and overcoming the nondifferential problems.
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A wide range of nonlinear optimization problems in-
volve integer or discrete variables in addition to the
continuous variables. These classes of optimization
problems arise from a variety of applications and
are denoted as mixed integer nonlinear programming
MINLP problems.

The integer variables can be used to model, for in-
stance, sequences of events, alternative candidates, ex-
istence or non-existence of units (in their zero-one rep-
resentation), while discrete variables can model, for in-
stance, different equipment sizes. The continuous vari-
ables are used to model the input-output and inter-
action relationships among individual units/operations
and different interconnected systems.

The nonlinear nature of these mixed integer opti-
mization problems may arise from:
i) nonlinear relations in the integer domain exclu-

sively (e. g., products of binary variables in the
quadratic assignment model);

ii) nonlinear relations in the continuous domain only
(e. g., complex nonlinear input-output model in
a distillation column or reactor unit);

iii) nonlinear relations in the joint integer-continuous
domain (e. g., products of continuous and binary

variables in the scheduling/planning of batch pro-
cesses and retrofit of heat recovery systems).

The book [88] studies mixed integer linear optimiza-
tion and combinatorial optimization, while the [40]
studies mixed integer nonlinear optimization prob-
lems.

The coupling of the integer domain and the contin-
uous domain with their associated nonlinearities make
the class of MINLP problems very challenging from
the theoretical, algorithmic, and computational point
of view. Mixed integer nonlinear optimization prob-
lems are encountered in a variety of applications in
all branches of engineering and applied science, ap-
plied mathematics, and operations research. These rep-
resent very important and active research areas that in-
clude:
� process synthesis

– heat exchanger networks
– retrofit of heat recovery systems
– distillation sequencing
– mass exchange networks
– reactor-based systems
– reactor-separator-recycle systems
– utility systems
– total process systems
– metabolic engineering

� process design
– reactive distillation
– design of dynamic systems
– plant layout
– environmental design

� process synthesis and design under uncertainty
– uncertainty analysis
– dynamic systems
– batch plant design

� molecular design
– solvent selection
– design of polymers and refrigerants
– property prediction under uncertainty

� interaction of design, synthesis and control
– steady state operation
– dynamic operation

� process operations
– scheduling of multiproduct plants
– design and retrofit of multiproduct plants
– synthesis, design and scheduling ofmultipurpose

plants
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– planning under uncertainty
� facility location and allocation
� facility planning and scheduling
� topology of transportation networks
The applications in the area of process synthesis in
chemical engineering include:
i) the synthesis of grassroot heat recovery networks

[24,25,43,138,139,140];
ii) the retrofit of heat exchanger systems [25,95];
iii) the synthesis of distillation-based separation sys-

tems [8,9,90,102,104,131];
iv) the synthesis of mass exchange networks [54,99];
v) the synthesis of complex reactor networks [71,73,

74,119];
vi) the synthesis of reactor-separator-recycle systems

[72];
vii) the synthesis of utility systems [65];
viii) the synthesis of total process systems [28,29,68,69,

75,76,98]; and
ix) the analysis and synthesis of metabolic pathways

[30,58,59,107].
Reviews of the mixed integer nonlinear optimization
frameworks and applications in Process Synthesis are
provided in [40,49,50], and [7], while algorithmic ad-
vances for logic and global optimization in Process Syn-
thesis are reviewed in [44].

The MINLP applications in the area of process de-
sign include:
i) reactive distillation processes [26];
ii) design of dynamic systems [11,14,117,118];
iii) plant layout systems [47,105]; and
iv) environmentally benign systems [27,123].
The MINLP applications in the area of process synthesis
and design under uncertainty include:
i) deterministic and stochastic uncertainty analysis

[1,33,51];
ii) design of dynamic systems under uncertainty

[31,85]; and
iii) design of batch processes under uncertainty

[57,63,108,109].
In the area ofmolecular design, the MINLP applications
include:
i) the computer-aided molecular design aspects of se-

lecting the best solvents [91];
ii) design of polymers and refrigerants [21,22,23,35,

80,111,126]; and
iii) property prediction under uncertainty [81].

The MINLP applications in the area of interaction of
design, synthesis and control include:
i) studies under steady state operation of chemical

processes [78,79,96,97]; and
ii) studies under dynamic operation [85,86,118].
Applications of MINLP approaches have also emerged
in the area of process operations and include:
i) short term scheduling of batch and semicontinuous

processes [85,143];
ii) the design of multiproduct plants [17,18,53];
iii) the synthesis, design and scheduling of multipur-

pose plants [13,36,37,93,94,116,127,128,132,133,
137]; and

iv) planning under uncertainty [62,63,64,77,106].
Reviews of the advances in the design, scheduling and
planning of batch plants can be found in [52,113], while
a collection of recent contributions can be found in the
proceedings of the 1998 FOCAPO meeting.

MINLP applications received significant attention
in other engineering disciplines. These include
i) the facility location in a multi-attribute space [45];
ii) the optimal unit allocation in an electric power sys-

tem [16];
iii) the facility planning of an electric power generation

[19,114];
iv) the chip layout and compaction [32];
v) the topology optimization of transportation net-

works [60]; and
vi) the optimal scheduling of thermal generating units

[48].

Mathematical Description

The general algebraic MINLP formulation can be stated
as:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Y integer:

(1)

Here x represents a vector of n continuous vari-
ables (e. g., flows, pressures, compositions, tempera-
tures, sizes of units), and y is a vector of integer vari-
ables (e. g., alternative solvents or materials); h(x, y) =
0 denote the m equality constraints (e. g., mass, energy
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balances, equilibrium relationships); g(x, y)� 0 are the
p inequality constraints (e. g., specifications on purity of
distillation products, environmental regulations, feasi-
bility constraints in heat recovery systems, logical con-
straints); and f (x, y) is the objective function (e. g., an-
nualized total cost, profit, thermodynamic criteria).

Remark 1 The integer variables ywith given lower and
upper bounds

yL � y � yU

can be expressed through 0–1 variables (i. e., binary),
denoted as z, by the following formula:

y D yL C z1 C 2z2 C 4z3 C � � � C 2N�1zN ;

where N is the minimum number of 0–1 variables
needed. This minimum number is given by:

N D 1C INT
�
log (yU � yL)

log 2

	
;

where the INT function truncates its real argument to
an integer value.

Then, formulation (1) can be written in terms of 0–1
variables:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 f0; 1gq ;

(2)

where y now is a vector of q 0–1 variables (e. g., exis-
tence of a process unit (yi = 1) or nonexistence (yi = 0)).

Challenges in MINLP

Dealing with mixed integer nonlinear optimization
models of the form (1) or (2) present two major chal-
lenges. These difficulties are associated with the nature
of the problem, namely, the combinatorial domain (y-
domain) and the continuous domain (x-domain).

As the number of binary variables y in (2) in-
crease, one is faced with a large combinatorial prob-
lem, and the complexity analysis results characterize
MINLP problems as NP-complete [88]. At the same
time, due to the nonlinearities the MINLP problems

are in general nonconvex which implies the potential
existence of multiple local solutions. The determina-
tion of a global solution of the nonconvex MINLP prob-
lems is also NP-hard, since even the global optimization
of constrained nonlinear programming problems can
be NP-hard [100], and even quadratic problems with
one negative eigenvalue are NP-hard [101]. An excel-
lent book on complexity issues for nonlinear optimiza-
tion is [129].

Despite the aforementioned discouraging results
from complexity analysis, which are worst-case results,
significant progress has been achieved in the MINLP
area from the theoretical, algorithmic, and computa-
tional perspective. As a result, several algorithms have
been proposed for convex and nonconvex MINLP
models, their convergence properties have been inves-
tigated, and a large number of applications now exist
that cross the boundaries of several disciplines. In the
sequel, we will discuss these developments.

Overview of Local Optimization Approaches
for ConvexMINLP Models

A representative collection of local MINLP algorithms
developed for solving convex MINLP models of the
form (1) or restricted classes of (2) includes the follow-
ing:
1) generalized Benders decomposition, GBD, [42,46,

103];
2) outer approximation, OA, [34];
3) outer approximation with equality relaxation,

OA/ER, [67];
4) outer approximation with equality relaxation and

augmented penalty, OA/ER/AP, [131];
5) generalized outer approximation, GOA, [38];
6) generalized cross decomposition, GCD, [61];
7) branch and bound, BB, [15,20,39,55,92,110];
8) feasibility approach, FA, [82];
9) extended cutting plane, ECP, [134,135];
10) logic-based approaches, [124,130].
In the pioneering work [46] on the generalized benders
decomposition, GBD, two sequences of updated up-
per(nonincreasing) and lower (nondecreasing) bounds
are created that converge within � in a finite number
of iterations. The upper bounds correspond to solving
subproblems in the x variables by fixing the y variables,
while the lower bounds are based on duality theory.
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The outer approximation, OA, addresses problems
with nonlinear inequalities, and creates sequences of
upper and lower bounds as the GBD, but it has the dis-
tinct feature of using primal information, that is the
solution of the upper bound problems, so as to lin-
earize the objective and constraints around that point.
The lower bounds in OA are based upon the accu-
mulation of the linearized objective function and con-
straints, around the generated primal solution points.

The OA/ER algorithm extends the OA to handle
nonlinear equality constraints by relaxing them into in-
equalities according to the sign of their associated mul-
tipliers.

The OA/ER/AP algorithm introduces an aug-
mented penalty function in the lower bound subprob-
lems of the OA/ER approach.

The generalized outer approximation, GOA, ex-
tends the OA to the MINLP problems that the GBD ad-
dresses and introduces exact penalty functions.

The generalized cross decomposition, GCD, simul-
taneously utilizes primal and dual information by ex-
ploiting the advantages of Dantzig–Wolfe and general-
ized Benders decomposition.

An overview of these local MINLP algorithms and
extensive theoretical, algorithmic, and applications of
GBD, OA, OA/ER, OA/ER/AP, GOA, and GCD algo-
rithms can be found in [40].

The branch and bound, BB, approaches start by
solving the continuous relaxation of the MINLP and
subsequently perform an implicit enumeration where
a subset of the 0–1 variables is fixed at each node. The
lower bound corresponds to the NLP solution at each
node and it is used to expand on the node with the
lowest lower bound or it is used to eliminate nodes
if the lower bound exceeds the current upper bound.
If the continuous relaxation, NLP in most cases with
the exception of the algorithm of [110] where an LP
problem is obtained, of the MINLP has a 0–1 solution
for the y variables, then the BB algorithm will termi-
nate at that node. With a similar argument, if a tight
NLP relaxation results in the first node of the tree, then
the number of nodes that would need to be eliminated
can be low. However, loose NLP relaxations may result
in having a large number of NLP subproblems to be
solved. The algorithm terminates when the lowest lower
bound is within a prespecified tolerance of the best up-
per bound.

The feasibility approach, FA, rounds the relaxed
NLP solution to an integer solution with the least lo-
cal degradation by successively forcing the superba-
sic variables to become nonbasic based on the reduced
cost information. The premise of this approach is that
the problems to be treated are sufficiently large so that
techniques requiring the solution of several NLP relax-
ations, such as the branch and bound approach, have
prohibitively large costs. They therefore wish to ac-
count for the presence of the integer variables in the for-
mulation and solve the mixed integer problem directly.
This is achieved by fixing most of the integer variables
to one of their bounds (the nonbasic variables) and al-
lowing the remaining small subset (the basic variables)
to take discrete values in order to identify feasible so-
lutions. After each iteration, the reduced costs of the
variables in the nonbasic set are computed to measure
their effect on the objective function. If a change causes
the objective function to decrease, the appropriate vari-
ables are removed from the nonbasic set and allowed
to vary for the next iteration. When no more improve-
ment in the objective function is possible, the algorithm
is terminated. This strategy leads to the identification of
a local solution.

The cutting plane algorithm proposed in [66] for
NLP problems has been extended toMINLPs [134,135].
The ECP algorithm relies on the linearization of one of
the nonlinear constraints at each iteration and the so-
lution of the increasingly tight MILP made up of these
linearizations. The solution of the MILP problem pro-
vides a new point on which to base the choice of the
constraint to be linearized for the next iteration of the
algorithm. The ECP does not require the solution of any
NLP problems for the generation of an upper bound. As
a result, a large number of linearizations are required
for the approximation of highly nonlinear problems
and the algorithm does not perform well in such cases.
Due to the use of linearizations, convergence to the
global optimum solution is guaranteed only for prob-
lems involving inequality constraints which are convex
in the x and relaxed y-space.

An alternative to the direct solution of the MINLP
problem was proposed by [124]. Their approach stems
from the work of [70] on a modeling/decomposition
strategy which avoids the zero-flows generated by the
nonexistence of a unit in a process network. The first
stage of the algorithm is the reformulation of the
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MINLP into a generalized disjunctive program. A vec-
tor of Boolean variables indicate the status of a dis-
junction (True or False) and are associated with the
alternatives. The set of disjunctions allows the repre-
sentation of several alternatives. A set of logical rela-
tionships between the Boolean variables is introduced.
Instead of resorting to binary variables within a single
model, the disjunctions are used to generate a different
model for each alternative. Since all continuous vari-
ables associated with the nonexisting alternatives are
set to zero, this representation helps to reduce the size
of the problems to be solved. Two algorithms are sug-
gested by [124]. They are logic-based variants of the
outer approximation and generalized Benders decom-
position. [130] introduced LOGMIP, a computer code
for disjunctive programming and MINLP problems,
and studied modeling alternatives and process synthe-
sis applications.

Overview of Global Optimization Approaches
for NonconvexMINLP Models

the previous Section we discussed local MINLP algo-
rithms which are applicable to convex MINLP models.
While identification of the global solution for convex
problems can be guaranteed, a local solution is often
obtained for nonconvex problems. The recent book by
[41] discusses the theoretical, algorithmic and applica-
tions oriented advances in the global optimization of
mixed integer nonlinear models. A number of global
MINLP algorithms that have been developed to address
different types of nonconvex MINLPs are presented in
this section. These include:
1) Branch and reduce approach, [115];
2) interval analysis based approach, [125];
3) extended cutting plane approach, [135,136];
4) reformulation/spatial branch and bound approach,

[121,122];
5) hybrid branch and bound and outer approximation

approach, [141,142];
6) The SMIN-˛BB approach, [2,4];
7) The GMIN-˛BB approach, [2,4].
In the sequel, we will briefly discuss the approaches 1)–
7).

Branch and Reduce Algorithm
[115] extended the scope of branch and bound algo-
rithms to problems for which valid convex underesti-

mating NLPs can be constructed for the nonconvex re-
laxations. The range of application of the proposed al-
gorithm encompasses bilinear problems and separable
problems involving functions for which convex under-
estimators can be built [10,83]. Because the nonconvex
NLPs must be underestimated at each node, conver-
gence can only be achieved if the continuous variables
are branched on. A number of tests are suggested to ac-
celerate the reduction of the solution space. They are
summarized in the following.

Optimality Based Range Reduction Tests

For the first set of tests, an upper bound U on the non-
convex MINLP must be computed and a convex lower
bounding NLP must be solved to obtain a lower bound
L. If a bound constraint for variable xi, with xLi � xi �
xUi , is active at the solution of the convex NLP and has
multiplier ��i > 0, the bounds on xi can be updated as
follows:
1) If xi � xUi = 0 at the solution of the convex NLP and
� i = xUi � (U � L)/��i is such that � i > xLi , then xLi =
� i.

2) If xi � xLi = 0 at the solution of the convex NLP and
� i = xLi + (U � L)/��i is such that � i < xUi , then xUi =
� i.

If neither bound constraint is active at the solution of
the convex NLP for some variable xj, the problem can
be solved by setting xj = xUj or xj = xLj . Tests similar
to those presented above are then used to update the
bounds on xj.

Feasibility Based Range Reduction Tests

In addition to ensuring that tight bounds are available
for the variables, the underestimators of the constraints
are used to generate new constraints for the problem.
Consider the constraint gi(x, y)� 0. If its underestimat-
ing function gi(x; y) D 0 at the solution of the convex
NLP and its multiplier is ��i > 0, the constraint

gi (x; y) � �
U � L
��i

can be included in subsequent problems.
The branch and reduce algorithm has been tested

on a set of small problems.
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Interval Analysis Based Approach

An approach based on interval analysis was proposed
by [125] to solve to global optimality problems with
a twice-differentiable objective function and once-
differentiable constraints. Interval arithmetic allows the
computation of guaranteed ranges for these functions
[87,89,112]. The approach relies on the same concepts
of successive partitioning of the domain and bound-
ing of the objective function, while the branching takes
place on the discrete and continuous variables. The
main difference with the branch and bound algorithms
is that bounds on the problem solution in a given do-
main are not obtained through optimization. Instead,
they are based on the range of the objective function
in the domain under consideration, as computed with
interval arithmetic. As a consequence, these bounds
may be quite loose and efficient fathoming techniques
are required in order to enhance convergence. [125]
suggested node fathoming tests and branching strate-
gies which are outlined in the sequel. Convergence
is declared when best upper and lower bounds are
within a prespecified tolerance and when the width of
the corresponding region is below a prespecified toler-
ance.

Node Fathoming Tests

The upper-bound test is a classical criterion used in
all branch and bound schemes: If the lower bound for
a node is greater than the best upper bound for the
MINLP, the node can be fathomed.

The infeasibility test is also used by all branch and
bound algorithms. However, the identification of infea-
sibility using interval arithmetic differs from its identifi-
cation using optimization schemes. An inequality con-
straint gi(x, y) � 0 is declared infeasible if its interval
inclusion over the current domain, is positive. If a con-
straint is found to be infeasible, the current node is fath-
omed.

The monotonicity test is used in interval-based ap-
proaches. If a region is feasible, the monotonicity prop-
erties of the objective function can be tested. For this
purpose, the inclusions of the gradients of the objec-
tive with respect to each variable are evaluated. If all the
gradients have a constant sign for the current region,
the objective function is monotonic and only one point
needs to be retained from the current node.

The nonconvexity test is used to test the existence
of a solution (local or global) within a region. If such
a point exists, the Hessian matrix of the objective func-
tion at this point must be positive semidefinite. A suf-
ficient condition is the nonnegativity of at least one
of the diagonal elements of its interval Hessian ma-
trix.

[125] suggested two additional tests to accelerate the
fathoming process. The first is denoted as lower bound
test. It requires the computation of a valid lower bound
on the objective function through a method other than
interval arithmetic. If the upper bound at a node is less
than this lower bound, the region can be eliminated.
The second test, the distrust region method, aims to
help the algorithm identify infeasible regions so that
they can be removed from consideration. Based on the
knowledge of an infeasible point, interval arithmetic is
used to identify an infeasible hypercube centered on
that point.

Branching Strategies

The variable with the widest range is selected for
branching. It can be a continuous or a discrete variable.
In order to determine where to split the chosen variable,
a relaxation of the MINLP is solved locally.
� Continuous Branching Variable: If the optimal

value of the continuous branching variable, x�, is
equal to one of the variable bounds, branch at the
midpoint of the interval. Otherwise, branch at x��
ˇ, where ˇ is a very small scalar.

� Discrete Branching Variable: If the optimal value of
the discrete branching variable, y�, is equal to the
upper bound on the variable, define a region with y
= y� and one with yL � y � y�� 1, where yL is the
lower bound on y. Otherwise, create two regions yL

� y � int(y�) and int(y�) + 1 � y � yU , where yU is
the upper bound on y.

This algorithm has been tested on a small example
problem and a molecular design problem [125].

Extended Cutting Plane for Pseudoconvex MINLPs

The use of the ECP algorithm for nonconvex MINLP
problems was suggested in [135], using a modified al-
gorithmic procedure as described in [136]. The main
changes occur in the generation of new constraints for
the MILP at each iteration (Step 4). In addition to the
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construction of the linear function lk(x, y) at iteration
k, the following steps are taken:
1) Remove all constraints for which li(xk, yk)> gji(xk,

yk). These correspond to linearizations which did
not underestimate the corresponding nonlinear
constraint at all points due to the presence of non-
convexities.

2) Replace all constraints for which li(xk, yk) = gji(xk,
yk) = 0 by their linearization around (xk, yk).

3) If constraint i is such that gi(xk, yk)> 0, add its lin-
earization around (xk, yk).

The convergence criterion is also modified. In addition
to the test used in Step 3, the following two conditions
must be met:
1) (xk� xk�1)|(xk� xk�1) � ı, a pre-specified toler-

ance.
2) yk � yk�1 = 0.
The ECP algorithm for pseudoconvex MINLPs has
been used to address a trim loss problem arising in the
paper industry [136]. A comparative study between the
outer approximation, the generalized Benders decom-
position and the extended cutting plane algorithm for
convex MINLPs was presented in [120].

Reformulation/Spatial Branch
and Bound Algorithm

A global optimization algorithm of the branch and
bound type was proposed in [121]. It can be applied
to problems in which the objective and constraints are
functions involving any combination of binary arith-
metic operations (addition, subtraction, multiplication
and division) and functions that are either concave over
the entire solution space (such as ln) or convex over this
domain (such as exp).

The algorithm starts with an automatic reformu-
lation of the original nonlinear problem into a prob-
lem that involves only linear, bilinear, linear fractional,
simple exponentiation, univariate concave and univari-
ate convex terms. This is achieved through the intro-
duction of new constraints and variables. The reformu-
lated problem is then solved to global optimality us-
ing a branch and bound approach. Its special struc-
ture allows the construction of a convex relaxation at
each node of the tree. It should be noted that due to
the introduction of many new constraints and variables
the size of the convex relaxation of the reformulated

problem increases substantially even for modest size
problems. The integer variables can be handled in two
ways during the generation of the convex lower bound-
ing problem. The integrality condition on the variables
can be relaxed to yield a convex NLP which can then
be solved globally. Alternatively, the integer variables
can be treated directly and the convex lower bounding
MINLP can be solved using a branch and bound algo-
rithm. This second approach is more computationally
intensive but is likely to result in tighter lower bounds
on the global optimum solution.

In order to obtain an upper bound on the optimum
solution, a local MINLP algorithm can be used. Alter-
natively, the MINLP can be transformed to an equiva-
lent nonconvex NLP by relaxing the integer variables.
For example, a variable y 2 {0, 1} can be replaced by
a continuous variable z 2 [0, 1] by including the con-
straint z � z� z = 0.

This algorithm has been applied to reactor selection,
distillation column design, nuclear waste blending, heat
exchanger network design and multilevel pump config-
uration problems.

Hybrid Branch and Bound
and Outer Approximation

[142] proposed a global optimization MINLP approach
for the synthesis of heat exchanger networks without
stream splitting. This approach is a hybrid branch and
bound with outer approximation. It is based on two
alternative convex underestimators for the heat trans-
fer area. The first type of these convex underestima-
tors along with the variable bounds and techniques
for the bound contraction are based on a thermody-
namic analysis. The second type is based on a relax-
ation and transformation so as to employ specific un-
derestimation schemes. These convex underestimators
result in a convex MINLP that is solved using the
Outer Approximation approach and which provides
valid lower bounds on the global solution. This ap-
proach has been applied to five heat exchanger net-
work examples that employ the MINLP model of [138]
that contains linear constraints and nonconvex objec-
tive function.

[141] introduced a deterministic branch and con-
tract approach for structured process systems that have
univariate concave, bilinear and linear fractional terms.
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They proposed properties of the contraction operation
and studied their effect on several applications.

The SMIN-˛BB Algorithm

The SMIN-˛BB global optimization algorithm, pro-
posed by [2] is designed to solve to global optimal-
ity mathematical models where the binary/integer vari-
ables appear linearly and hence separably from the con-
tinuous variables and/or appear in at most bilinear
terms, while nonlinear terms in the continuous vari-
ables appear separably from the binary/integer vari-
ables. These mathematical models become:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x)C x>A0yC c>0 y

s.t. h(x)C x>A1yC c>1 y D 0
g(x)C x>A2yC c>2 y � 0
x 2 X � Rn

y 2 Y integer;

(3)

where c>0 , c>1 and c>2 are constant vectors, A0,A1 andA2

are constant matrices and f (x), h(x) and g(x) are func-
tions with continuous second order derivatives.

The theoretical, algorithmic and computational
studies of the SMIN-˛BB algorithm are presented in
detail in [41].

The GMIN-˛BB Algorithm

The GMIN-˛BB global optimization algorithm pro-
posed in [2] operates within a branch and bound
framework. The main difference with the algorithms of
[56,92] and [20] is its ability to identify the global opti-
mum solution of a much larger class of problems of the
form
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Nq;

where N is the set of nonnegative integers and the only
condition imposed on the functions f (x, y), g(x, y) and
h(x, y) is that their continuous relaxations possess con-

tinuous second order derivatives. This increased appli-
cability results from the use of the ˛BB global opti-
mization algorithm for continuous twice-differentiable
NLPs [3,5,6,12].

The theoretical, algorithmic and computational
studies of the GMIN-˛BB Algorithm are presented in
detail in [41].
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Abstract

This Chapter presents a novel, mixed integer nonlinear
programming (MINLP) model for the well scheduling
problem, where the nonlinear behavior of the reservoir,
wells, pipelines and surface facilities has been incor-
porated into the mathematical formulation. The well
scheduling problem is formulated as a snapshot opti-
mization problem with an objective function that ex-
presses the maximization of an economic index. Dis-
crete decisions here include the operational status of the
wells, the allocation of wells to manifold or separators
and the allocation of surface flowlines to separators.
Continuous decisions include the well oil flowrates, and
the allocation of gas-to-gas lift wells.

A three-step solution strategy is proposed for the
solution of this problem, where logic based relations
and piecewise linear approximations of oil field wells
are integrated in the MINLP formulation. The model
is solved following an Outer Approximation (OA) class
algorithm. A number of examples are presented to il-
lustrate the performance and business value of the pro-
posed strategy; a remarkable increase in oil production
of up to 10% is demonstrated, compared to results ob-
tained via widespread heuristic methods. A further in-
crease of 2.9% can be achieved by dynamic optimiza-
tion based on explicit consideration of the multiphase
flow within the reservoirs of a particular oil field.

Introduction

In an era of globalized business operations, large and
small oil and gas producers alike strive to foster prof-
itability by improving the agility of exploration endeav-
ors and the efficiency of oil production, storage and
transport operations [7]. Consequently, they all face
acute challenges: ever-increasing international produc-
tion, intensified global competition, price volatility, op-
erational cost reduction policies, aggressive financial
goals (market share, revenue, cash flow and profitabil-
ity) and strict environmental constraints (offshore ex-
traction, low sulphur): all these necessitate a high level
of oilfield modeling accuracy, so as to maximize recov-
ery from certified reserves. Straightforward translation
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of all considerations to explicit mathematical objectives
and constraints can yield optimal oilfield network de-
sign, planning and operation policies. Therefore, the
foregoing goals and constraints should be explicitly in-
corporated and easily revised if the generality of pro-
duction optimization algorithms is to be preserved.
This Chapter provides a summary of a new, efficient
MINLP optimization formulation for well schedul-
ing, and a novel strategy towards integration of equa-
tion-oriented process modeling and multiphase reser-
voir computational fluid dynamics (CFD), in order to
include the dynamic behavior of reservoirs into oil and
gas production models.

The problem of fuel production optimization sub-
ject to explicit oilfield constraints has attracted sig-
nificant attention, documented in many petroleum
engineering publications. A comprehensive literature
review by Kosmidis [18] classifies previous algorithms
in 3 broad categories (simulation, heuristic, and math-
ematical programming methods) and underlines that
most are applied either to simple pipeline networks of
modest size, relying on heuristic rules of limited appli-
cability, or are suitable for special structures. Reducing
the computational burden (focus on natural-flow wells
or gas-lift wells only, or reducing well network connec-
tivity discrete variables) is a crucial underlying pattern.

Dynamic oil and gas production systems simula-
tion and optimization is a research trend which has
the clear potential to meet the foregoing challenges of
the international oil and gas industry and assist pro-
ducers in achieving business goals and energy needs.
Previous work [8,19,20,23] has addressed successfully
research challenges in this field, using appropriate sim-
plifying correlations [25] for two-phase flow of oil and
gas in production wells and pipelines. A series of as-
sumptions are routinely adopted to achieve manageable
computational complexity: the fundamental one is the
steady-state assumption for the reservoir model, based
on the enormous timescale difference between different
spatial levels (oil and gas reservoir dynamics evolve in
the order of weeks, the respective timescales of pipeline
networks are in the order of minutes, and the produc-
tion optimization horizon is in the order of days). The
decoupling of reservoir simulation from surface facili-
ties optimization is based on these timescale differences
among production elements [2,25]. While the surface
and pipeline facilities are in principle no different from

those found in any petrochemical plant, sub-surface
elements (reservoirs, wells) induce complexity which
must be addressed via a systematic strategy that has not
been hitherto proposed.

In some petroleum fields, such as the Prudhoe
Bay [22], a production well can be connected to dif-
ferent manifolds that lead to different separators. In
such fields, switching a well from one manifold to an-
other could be an effective way to increase oil produc-
tion and/or reduce production cost by making optimal
use of the existing resources such as the capacity of
separators [9]. However, for best results, the well con-
nection must be optimized simultaneously with the well
oil rate and gas lift rate. The corresponding optimiza-
tion problem is known as well scheduling problem.

Problem Statement

The well scheduling problem in integrated oil and gas
production can be stated as follows: given are (i) a set
of wells, which could be closed (shut in) or connected
to manifolds or separators, (ii) a set of flowlines which
could be connected to separators. The goal is to deter-
mine: (i) the operational status of the wells, i. e. closed
or open, (ii) the connection of wells to manifolds or sep-
arators, (iii) the connection of flow lines to separators,
(iv) the well oil flowrate and the (v) the allocation of gas
to gas lift wells, which maximize the net revenue (oil
sales minus the cost of gas compression), while satisfy-
ing physical laws and operational constraints such as:
(i) a well bore model, (ii) mass, energy and momentum
balances throughout the production network, (iii) up-
per and lower well oil rate constraints and minimum
pressure constraints at the inlet and outlet of the flow-
lines, (iv) maximum oil, gas and water capacity con-
straints in the separators, (v) an upper bound on gas
lift availability and (vi) a maximum number of well
switches. The first step in order to determine the op-
timal well configuration that maximizes the revenue
is to develop a suitable superstructure that includes
all the possible pipeline network configurations. Such
a production network superstructure is shown in Fig. 1
and includes the reservoir (R), the wells (W), the man-
ifolds (M), and the separators (S) nodes as well as the
potential connection of wells to manifolds or separa-
tors and flowlines to separators. Two types of wells are
considered: (i) type A wells that can be connected only
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to manifolds, and (ii) type B wells that can be connected
to separators. It must be noted that a feasible produc-
tion network should satisfy the following requirements:
(i) a type A well should be either shut in or else con-
nected to one manifold, (ii) a type B well should be
either shut in or else connected to one separator, and
(iii) a manifold flowline must be connected to one sep-
arator.

OptimizationModel

This section presents the MINLP optimization model
for the well scheduling problem, based on the following
assumptions:
� the system is under steady state conditions,
� a homogeneous slip model which is applied to de-

termine the pressure drop in the pipelines,
� the temperature of the reservoir is known,
� the operating pressures of the separators are con-

stant, and
� the thermodynamic description of the fluid is based

on the black oil model.
For the development of the MINLP optimization
model, the following sets, variables and parameters are
defined:

Sets
I set of wells
IA set of wells of type A
IB set of wells of type B
M set of manifolds
S set of separators

Indices
i; iA; iB well in set I; IA; IB respectively
m manifold in setM
s separator in set S

Binary decision variables

yi D
�

1 if well i is open
0 otherwise

yi;m D
�

1 if well i is connected to manifold m
0 otherwise

ym;s D

8<
:

1 if manifold m is connected to
separator s

0 otherwise

yi;s D
�

1 if well i is connected to separator s
0 otherwise

Continuous variables
qp;i flowrate in stock tank conditions of phase p from

well i
qp;i;m flowrate in stock tank condition of phase p from

well i to manifold m
qp;m;s flowrate in stock tank condition of phase p from

manifold m to separator s
qp;s flowrate in stock tank condition of phase p in

separator s
Pi;m pressure of well i at the manifold level
Pm manifold pressure
Hi;m total enthalpy of well i at the manifold level
Hm manifold enthalpy

The proposed model includes the following elements:
(i) the well bore model, (ii) the mass, momentum and
energy balances in well, manifold and separator nodes,
(iii) the network logic constraints, (iv) the well and
flowline momentum and energy balances, (v) the max-
imum number of allowable well switches, and (vi) the
objective function.

Wellbore Model

The wellbore model describes the multiphase fluid flow
from the reservoir to the wellbore and comprises the
following equations:

qo;i D PIi (PR;i � Pwf
i ) ; 8i 2 I (1)

qfg;i D fo(qo;i) ; 8i 2 I (2)

qw;i D fw(qo;i) ; 8i 2 I (3)

Ti D TR ; 8i 2 I (4)

Hi D fH(Pwf
i ; Ti ; qo;i ; qw;i ; qg;i) ; 8i 2 I (5)

where Pwf
i is the bottomhole pressure and qfg;i is the

formation gas flowrate in stock tank conditions. Equa-
tions (2) and (3) can be nonlinear in order to model
the case of gas and water coning wells. These nonlin-
ear relations are generated either by using Addington’s
correlations [1] or by repetitively solving a well coning
model for different values of well oil rate qo;i , in or-
der to calculate the corresponding water qw;i and gas
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Mixed Integer Optimization in Well Scheduling, Figure 1
Production network superstructure for the well scheduling problem

flowrates qfg;i . In the latter case, Eq. (2) and (3) are con-
structed via curve fitting to the data series (qo;i , qo;i)
and (qo;i , qfg;i) respectively. For naturally flowing wells,
the total gas flowrate is given by:

qg;i D qfg;i ; 8i 2 D D fi 2 I j natural flowg (6)

while for gas lift wells the total gas flowrate is equal to:

qg;i D qfg;i C qinjg;i ; 8i 2 F D fi 2 I j gas liftg : (7)

Mass, Momentum and Energy Balances in Well,
Manifold and Separator Nodes

A well node of type A can be modeled as a splitter
i 2 IA, which consists of an inlet stream that repre-
sents the fluid flow from the reservoir, and a set of out-
let streams that represents the potential connections of
a well to manifolds as shown in Fig. 2. The mass bal-
ances around the splitter for each phase are given by
the following relations:

qp;i D
X
m

qp;i;m ; 8p 2 fo;w; gg ; i 2 IA : (8)

Similarly, the mass balances around a well node of
type B are given by:

qp;i D
X
s

qp;i;s ; 8p 2 fo;w; gg ; i 2 IB : (9)

There is also an upper and a lower bound in the well
oil flowrates. The upper bound is enforced to prevent

Mixed Integer Optimization in Well Scheduling, Figure 2
Splitter node

sand production [4], while the lower bound is imposed
to satisfy stable flow [27]:

yi qLo;i � qo;i � qUo;i yi ; 8i 2 I : (10)

Equation (10) states that if well i is open (yi D 1), then
the well oil flowrate qo;i is constraint by an upper and
a lower bound, while if well i is shut in (yi D 0), then
the well oil flowrate qo;i is zero.

Manifold Node A manifold node is shown in Fig. 3
and performs two tasks: (i) mixing and (ii) splitting.
The mass balance of the mixer for each phase is given
by:

X
i2IA

qp:i:m D qp:m ; 8p 2 fo;w; gg ; m 2 M : (11)

The splitter allocates the manifold fluid qp;m to one sep-
arator s. The mass balances for each phase around the
splitter are given by:

qp;m D
X
s

qp;m;s ; 8p;m 2 M : (12)
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Mixed Integer Optimization in Well Scheduling, Figure 3
Manifold node

All wells that are connected to manifoldmmust op-
erate at the same pressure (Pm):

LP(1 � yi;m) � Pm
i � Pm � UP (1 � yi;m) ;

8i 2 IA ; m 2 M
(13)

where Pi;m is the pressure of well i at manifold level m,
and LP , UP are the corresponding upper and lower
bounds, respectively. Moreover, if manifold m is con-
nected to separator s, then its inlet pressure must be
greater than the separator pressure:

Ps ym;s � Pm ; 8m 2 M ; s 2 S : (14)

The pressure of the flowline at the separator level Pm;s
is equal to the separator pressure:

Pm;s D
X
s

ym;s Ps : (15)

The energy balance in the manifold is given by:
X
i2IA

Hm
i D Hm ; 8m 2 M (16)

where Hm
i is the enthalpy of well i at manifold level m.

Separator Node Each separator s has a set of inlet
streams coming from the flowlines and type B wells, as
shown in Fig. 4. The mass balances for each phase are
given by the following relation:

X
m

qp;m;s C
X
i2IB

qp;i;s D qp;s ; 8p; s 2 S (17)

while the separator capacity constraints must also be
satisfied:

qp;s � Cp;s ; 8p; s 2 S : (18)

Mixed Integer Optimization in Well Scheduling, Figure 4
Separation node

Finally, the total amount of gas available for gas lift
is restricted by the compressor capacity (CC ):

X
i

qinjg;i � Cc : (19)

Network Logic Constraints

A well of type A could either be shut in, or else con-
nected to one manifold:

X
m

yi;m D yi ; 8i 2 IA (20)

yi;m � yi ; 8i 2 IA ; m 2 M : (21)

The integer Eq. (20) states that if the well is open
(yi D 1) then it should be connected to one manifold,
while Eq. (21) states that if the well is shut in (yi D 0)
then all binary variables yi;m which represent the con-
nection of well i to manifold m are zero.

Similarly, a well of type B could either be shut in, or
else connected to one separator:

X
s

ys;i D yi ; 8i 2 IB (22)

ys;i � yi ; 8i 2 IB ; s 2 S : (23)

Furthermore, it is also necessary to enforce the condi-
tion that each manifold flowline is connected to one
separator:

X
s

ym;s D 1 ; 8m 2 M : (24)
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Moreover, if the connection of well i to manifold m
or separator s does not exist, then its corresponding
flowrates and enthalpies must be zero:

0 � Hm
i � HU yi;m ; 8i 2 IA (25)

0 � qp;i;m � qUp;i;myi;m ; 8p; i 2 IA ; m 2 M (26a)

0 � qp;i;s � qUp;i;s yi;s ; 8p; i 2 IB ; s 2 S (26b)

Well and Flowline Momentum and Energy Balances

1. Naturally flowing wells of type A. Kosmidis [18] dis-
cusses how naturally flowing wells of type A can be
accurately approximated by piecewise linear func-
tions:

qmax
o;i D

X
j

�i; j qd;max
o;i; j ; 8i 2 IA (27a)

Pm
i D

X
j

�i; jPd
i; j ; 8i 2 IA (27b)

Hm
i D

X
j

X
k

�i; j;kHd
i; j;k ; 8i 2 IA (27c)

qo;i D
X
j

X
k

�i; j;kqdo;i; j;k ; 8i 2 IA (27d)

qo;i � qmax
o;i ; 8i 2 IA (27e)

X
j

X
k

�i; j;k D yi ; 8i 2 IA (27f)

�i; j D
X
k

�i; j;k ; �i;k D
X
j

�i; j;k ;

�i;t D
X
j

�i; j; jCt ; 8i 2 IA
(27g)

�i; j ; �i;k ; �i;t � 0 ; SOS ; 8i 2 IA : (27h)

It must be noted that if well i is shut in (yi D 0),
then all continuous variables in constraint (27) are
set equal to zero, as it can be observed from con-
straint (27f). The piecewise linear approximation of
the well model is constructed in a pre-processing
step by discretizing:
(i) the manifold pressure between the valid lower

(LP) and upper (UP) bound, and
(ii) the well oil rate in the interval [qLo;i ; q

U
o;i].

The lower bound (LP ) is equal to the lowest op-
erating pressure of the separators, while the upper
bound (UP ) must be greater than the highest oper-
ating pressure of the separators.

2. Naturally flowing wells of type B. For the case of nat-
urally flowing wells of type B, the oil flowrate qo;i;s
of well i in separator s is given by:

qo;i;s � qd;max
o;i;s yi;s ; 8i 2 IB (28)

where qd;max
o;i;s is calculated in a pre-processing step

for each fixed pressure separator s by setting the
choke fully open.

3. Gas lift wells of type A. These can be accurately ap-
proximated by the following set of mixed integer lin-
ear relations:

qo;i D
X
j

X
k

�i; j;kqdo;i; j;k ; 8i 2 IB (29a)

qinjg;i D
X
j

X
k

�i; j;kq
d;inj
g;i;k ; 8i 2 IB (29b)

Pm
i D

X
j

X
k

�i; j;kPd
i; j ; 8i 2 IB (29c)

Hm
i D

X
j

X
k

�i; j;kHd
i; j;k ; 8i 2 IB (29d)

X
j

X
k

�i; j;k D yi ; 8i 2 IB (29e)

�i; j D
X
j

�i; j;k ; �i;k D
X
k

�i; j;k ;

�i;t D
X
j

�i; j; jCt ; 8i 2 IB
(29f)

�i; j ; �i;k ; �i;t � 0 (SOS) ; 8i 2 IB : (29g)

These relations are constructed in a pre-processing
step by discretizing:
(iii) the manifold pressure in the interval [ LP , UP],

and
(iv) the well gas injection rate in the interval

[0; qinj;Ug;i ], where qinj;Ug;i is the gas injection rate
at the upper bound pressure (UP ), where the
well oil flowrate is reduced despite the increase
in gas injection rate.



Mixed Integer Optimization in Well Scheduling M 2253

4. Gas lift wells of type B. These are connected to a fixed
pressure separator and they can be accurately ap-
proximated as follows:

qo;i;s D
X
j

�i; j;s qdo;i; j;s ; 8i 2 IB ; s 2 S (30a)

qinjg;i;s D
X
j

�i; j;s q
d;inj
g;i; j;s ; 8i 2 IB ; s 2 S (30b)

X
j

�i; j;s D yi;s ; 8i 2 IB ; s 2 S (30c)

�i; j;s � 0 ; SOS : (30d)

Flowline Momentum Balance The momentum bal-
ance in the manifold flowlines is given by:

Pm;s � fP(Pm ;Hm ; qo;m ; qg;m; qw;m) D 0 ;
8m 2 M ; s 2 S

(31)

where Pm;s is the pressure of flowline m at separator
level s.

Remark During construction of the piecewise linear
approximations or calculation of qmax

o;i;s , it is possible
to identify naturally flowing wells of type A or type B
which are unable to flow towards certain manifolds
or separators. To exclude these infeasible connections,
the following logic constraints are incorporated in the
mathematical formulation:

yi;m � 1 � ym;s ; 8i 2 IA (32)

yi;s � 0 ; 8i 2 IB : (33)

Constraint (32) states that if flowline m is connected to
separator s(ym;s D 1), then well i cannot be connected
to manifold m.

MaximumNumber of Well Switches

There is an upper bound on the number of well switches
(for wells of both types A and B) that can be performed
within a day. This is an operational constraint and is
applied to avoid huge flow variations which may even-
tually lead to a surface facility shut down. To consider
and model this requirement, the following binary vari-
ables and parameters are introduced:

Binary variables

cfi D

8<
:

1 if the well i is open and in the
previous day was closed

0 otherwise

cnfi D

8<
:

1 if the well i is closed and in the
previous day was open

0 otherwise

ci;m D

8<
:

1 if the well i of type A is connected
to a new manifold m on this day

0 otherwise

ci;s D

8<
:

1 if the well i of type B is connected to
a new separator s on this day

0 otherwise

cm;s D

8<
:

1 if the flowline m is connected to
a new separator s on this day

0 otherwise :

Parameters
NCmax

A maximum number of switches for the wells of
type A.

NCmax
B maximum number of switches for the wells of

type B.
yb binary parameters representing the well struc-

ture of the previous day.

One switch is accounted for in the following cases:
(i) A well i was closed and is currently open. This case

is modeled by incorporating the following con-
straint in the formulation:

yi � ybi � cfi ; 8i 2 I : (34)

Thus, if well i is open (yi D 1) while it was pre-
viously closed (ybi D 0), then one well switch is
accounted for by forcing the binary variable cfi to
be 1.

(ii) A well i was open and is currently closed. To in-
corporate this well switch in the formulation, the
following constraint is used:

ybi � yi � cnfi ; 8i 2 I : (35)

(iii) A well of type A switches manifold. If well i is
currently connected to manifold m(yi;m D 1) and
it was previously connected to manifold m0 ¤ m
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(that implies ybi;m D 0), then there is one well
switch, which is modeled by the following con-
straint in the formulation:

yi;m � ybi;m � ci;m ; 8i 2 B ; m 2 M (36)

where the set B D fi 2 IA j ybi ¤ 0g is the set of
wells of type A that were open during the previ-
ous day. Constraint (36) is applicable only for wells
of type A that were previously open (ybi ¤ 0), to
avoid double counting a well switch; the case of
a well that was closed (ybi D 0) and is currently
open (yi D 1) is considered by constraint (34).

(iv) Awell of type B switches to a new separator. If well i
is currently connected to separator s(yi;s D 1)
and was previously connected to separator s0 ¤
s(ybi;s D 0), then there is one well switch, which is
modeled by the following constraint in the formu-
lation:

yi;s � ybi;s � ci;s ; 8i 2 C ; s 2 S (37)

where the set C D fi 2 IB j ybi ¤ 0g is the set of
wells of type B that were open during the previous
day.

(v) A manifold flowline switches to a new separator. If
a manifold flowline m is currently connected to
a separator s(ym;s D 1) and was previously con-
nected to separator s0 ¤ s(ybm;s D 0), then there is
one switch, which is accounted for by forcing the
binary variable cm;s to be 1:

ym;s � ybm;s � cm;s ; 8m 2 M ; s 2 S : (38)

The sum of switches for the wells of type A and B
must be less then an upper bound:

X
i2IA

(cfi C cnfi )C
X
i2B

X
m2M

ci;m

C
X
m2M

X
s2S

cm;s � NCmax
A (39)

X
i2IA

(cfi C cnfi )C
X
i2C

X
s2S

ci;s � NCmax
B : (40)

Objective Function

The objective function is the maximization of daily rev-
enue:

max wo
X
i2I

qo;i � wg
X
i2I

qinjg;i (41)

The control variables are:
(i) the well operational status (open or close),
(ii) the well connections to manifolds and separators,
(iii) the flowline connections to separators,
(iv) the well oil flowrates, and
(v) the gas injection rates into gas lift wells.

AnMINLP Formulation
for theWell Scheduling Problem

By defining the vectors xD[P;H], qpD[qo ; qg ; qw ; q
inj
g ],

ys D [yi ; yi;m ; ym;s ; yi;s], c D [cfi ; c
nf
i ; ci;m; ci;s ; cm;s],

	 D [�i; j; �i;k ; �i;t] and ya (the vector of binary vari-
ables that are used to impose the adjacency condition
in SOS-type variables), the mathematical programming
formulation (P) for the well scheduling problem can be
concisely expressed as:

P : max  (qo;i ; q
inj
g;i) (42)

subject to

m1(xi ; qp;i ) D 0 (43)

m2(qp;i ; qp;i;m; qp;i;s ; qp;s ; xi ; xi;m; ys) � 0 (44)

m3(qp;i;m; qp;i;s ; ys) � 0 (45)

m4(qo;i ; q
inj
g;i ; qo;i;s; q

max
o;i;s; q

inj
g;i;sxi;m; �; y

s; ya)

D 0 (46)

m5(xm ; qp;m) D 0 (47)

m6(ys ; c) � 0 : (48)

The equivalence of the equations within the above
model (P) is explained as follows. Equation (42) is
equivalent to the linear objective function (41). Equa-
tion (43) represents the nonlinear wellbore model
Eq. (1)–(7). Equation (44) represents the mixed inte-
ger linear mass, momentum and energy balances in
the wells, manifold and separator nodes and is equiva-
lent to Eq. (8)–(19). Equation (45) represents the mixed
integer linear network logic constraints and is equiv-
alent to Eq. (20)–(26). Equation (46) represents the
well piecewise linear approximation and is equivalent
to Eq. (27)–(30). Equation (47) represents the nonlinear
momentum balance in the flowlines and is equivalent
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to Eq. (31). Finally, Eq. (48) represents the integer logic
relations associated with the ability of naturally flowing
wells to flow and with the relevant well switches, and is
equivalent to Eq. (32)–(40).

The mathematical programming formulation P in-
cludes: (i) binary variables, and (ii) nonlinear equa-
tions. Therefore, it belongs to the class of mixed inte-
ger nonlinear programming (MINLP) problems. There
are two categories of binary variables: the one that is as-
sociated with the structure of the production network
and the well switches (ys ; c), and a second that is used
to impose the adjacency condition on SOS-type vari-
ables (ya). Moreover, the number of nonlinear equa-
tions is equal to the number of coning wells plus the
number of flowlines.

The most popular methods for solving MINLP
problems are those that proceed by solving a sequence
of nonlinear (NLP) and mixed integer linear programs
(MILP) problems. These include Generalized Benders
decomposition (GBD, Geoffrion [3]) and Outer Ap-
proximation (OA, Kocis and Grossmann [5]). The dis-
advantage of GBD is that it may require a significant
number of major iterations of the NLP subproblem and
the MILP master problem. The major advantage of OA
is that it typically requires fewer iterations to achieve
a solution, since its MILP master problem contains
more information than the GBD formulation. Con-
versely, because the OA master problem is richer, it is
also more time-consuming to solve. A detailed review
of the various MINLP algorithms has been published
by Floudas [10].

This Chapter considers an approach based on
Outer Approximation (OA), since it typically requires
fewer iterations when compared to other MINLP tech-
niques. Also, its modified version (Outer Aproxima-
tion/Augmented Penalty (OA/AP), (Viswanathan and
Grossmann, 1990)) has been found to be capable of
handling mild nonconvexities present in the MINLP
problems.

Optimization Strategy

The first NLP subproblem of the OA/AP algorithm
involves solving an optimization problem where the
structure of the pipeline network is the one of the previ-
ous day. The lth NLP subproblem (l > 1) involves fix-
ing the discrete decisions ys and c to a given set of values

(ys(l ); c(l )). Therefore, there is no need to introduce the
logic constraints (45), (48) and hence the NLP subprob-
lem (P) is equivalent to the well operation and gas lift
allocation problem. It must be noted that the solution
of the NLP subproblem provides a lower bound on the
solution of the MINLP problem since the binary vari-
ables ys and c are fixed to values that are not necessarily
optimal.

The master problem is formulated from the lin-
earization of the nonlinear constraints (43) and (47) at
the solution points of the subproblems (l D 1; : : : ; L)
and relaxation of them to inequalities using the sign of
the Lagrange multipliers [17]. It is therefore, a MILP
problem. The master problem provides (i) an upper
bound to the MINLP problem and (ii) a new set of
binary variables ys and c. The master MILP problem is
as follows:

PM : max  (qo;i ; q
inj
g;i) � (wp

l )
Tpl � (wq

l )
Tql (49)

subject to

Tl
�
[rxi m1(xli ; q

l
p:i )rqp;i m1(xli ; q

l
p:i )]

�
(xi � xli )

(qp:i � ql
p:i )

�	
� pl ; 8l D 1; : : : ; L (50)

m2(qp;i ; qp;i;m ; qp;i;s; qp;s ; xi ; xi;m; ys) � 0 (51)

m3(qp;i;m; qp;i;s ; ys) � 0 (52)

m4(qo;i ; q
inj
g;i ; qo;i;s; q

max
o;i;s; q

inj
g;i;sxi;m; �; y

s; ya) D 0 (53)

Tl
�
[rxmm5(xlm; q

l
p;m)rqp;sm5(xlm; q

l
p;m)]

�
xm � xlm

qp;m � ql
p;m

�	
� ql ; l D 1; : : : ; L (54)

m6(ys; c) � 0 (55)

X

n2Gl

ysn �
X

n2NGl

ysn � jG
l j ; 8l D 1; : : : ; L (56)

where wp
l and wq

l are both vectors whose dimension is
equal to the number of equations in (50) and (54), re-
spectively. Each element of these vectors is a positive
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scalar which is greater than the absolute value of the La-
grange multiplier vlj associated with the jth constraint
in (50) and (54) at the lth iteration. Moreover, Tl is a di-
agonal matrix whose elements are defined as follows:

t lj j D

8̂
<
:̂

�1 if � lj < 0
1 if � lj > 0
0 if � lj D 0 :

(57)

Furthermore, pl and ql are vectors whose elements are
positive slack variables associated with each of the con-
straints in Eq. (50) and (54), respectively. Finally, the
constraint (56) is known as an integer cut and is ap-
plied to ensure that any pipeline configuration that has
already been considered is not selected again. The no-
tion jGl j denotes the cardinality of the set Gl whose el-
ements are all the structural binary variables yns that
have a value of 1 at the lth iteration, while NGl is the set
of structural binary variables that have a value of zero at
lth iteration.

The MINLP problem terminates when the differ-
ence of the best lower bound from the NLP subprob-
lems (maxl LBl ) and the current upper bound from the
MILP problem (UBl) are within a prespectified toler-
ance ":

maxl LBl � UBl

UBl � " (58)

or when the MILP problem is integer-infeasible. The
optimal solution is the one given by the best NLP sub-
problem.

However, the solution of the MILP problem on the
full space of both structural and interpolation binary
variables is computationally intensive, since the num-
ber of interpolation binary variables becomes very large
as the number of wells increases. For instance, a prob-
lem with 10 gas lift wells involves about 300 interpola-
tion binary variables. This motivates the need to refor-
mulate the MILP problem (PM), so as to involve only
structural and switching binary variables ys and c. As
mentioned, the master MILP problem is constructed
from (i) linearization of the nonlinear constraints, and
(ii) relaxation of the nonlinear equality constraints us-
ing the sign of Lagrange multipliers. Fortunately, in-
formation for both is available from the solution of
the NLP subproblem. Consider for instance the case of
a gas lift well of type A (29), where the subscript i has

been dropped for simplicity. At the optimal point, three
adjacent � coefficients are active (Williams, 1990). The
active triplet is assumed to be (� j;k ; � jC1;k ; � j;kC1),
without loss of generality. Then the gas lift model (29)
can be written as:

qo D � j;k qdo; j;kC� jC1;k qdo; jC1;kC� j;kC1qdo; j;kC1 (59a)

qinjg D � j;kq
d;inj
g;k C� jC1;kq

d;inj
g;k C� j;kC1q

d;inj
g;kC1 (59b)

Pm D � j;kPd;m
j C � jC1;kPd;m

jC1 C � j;kC1Pd;m
j (59c)

� j;k C � jC1;k C � j;kC1 D 1 (59d)

By substituting Eq. (59d) into (59b) and (59c), both
� jC1;k and � j;kC1 are given by:

� jC1;k D
Pm � Pd;m

j

Pd;m
jC1 � Pd;m

j

(60a)

� j;k D
qinjg � qd;injg;k

qd;injg;kC1 � qd;injg;k

: (60b)

Substituting Eq. (60a) and (60b) into (59a), the follow-
ing equation is obtained:

qo D qo; j;k C
qdo; jC1;k � qdo; j;k
Pd;m
jC1 � Pd;m

j

(Pm � Pd;m
j )

C
qdo; j;kC1 � qdo; j;k
qd;injg;kC1 � qd;injg;k

(qinjg � qinjg;k) : (61)

Equation (61) is the linearization of the nonlinear gas
lift well model, where the derivatives are calculated by
forward finite difference formulae. If Eq. (61) replaces
Eq. (59), a new NLP subproblem is obtained; then, by
applying KKT conditions to both NLP subproblems, it
is easy to prove that the Lagrangemultiplier of Eq. (59a)
is equal to the Lagrange multiplier of Eq. (61). Conse-
quently, the active triplet of �’s is obtained from the so-
lution of the NLP subproblem, along with the Lagrange
multiplier; moreover, the new MILP master problem
(PM 0) is formulated:

PM0 : max  (qo;i ; q
inj
g;i)

� (wp
l )

Tpl � (wq
l )

Tql � (wr
l )
Trl (62)
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subject to

Tl
�
[rxi m1(xli ; q

l
p:i );rqp;i m1(xli ; q

l
p:i )]

�
(xi � xli )

(qp:i � ql
p:i )

�	
� pl ; 8l D 1; : : : ; L (63)

m2(qp;i ; qp;i;m; qp;i;s ; qp;s ; xi ; xi;m; ys) � 0 (64)

m3(qp;i;m; qp;i;s; ys) � 0 (65)

Tl
�
[rxi m4(xli ; q

l
p:i )rqp;i m4(xli ; q

l
p:i )]

�
(xi � xli )

(qp:i � ql
p:i )

�	
� rl ; 8l D 1; : : : ; L (66)

Tl
�
[rxmm5(xlm; q

l
p;s)rqp;sm5(xlm ; q

l
p;s)]

�
xm � xlm
qp;s � ql

p;s

�	
� ql ; l D 1; : : : ; L (67)

m6(ys; c) � 0 (68)

X

n2Gl

ysn �
X

n2NGl

ysn � jG
l j ; 8l D 1; : : : ; L : (69)

The MILP problem (PM0) involves only structural (ys)
and switching (c) binary variables. Figure 5 depicts the
linearization of the nonlinear gas lift model, according
to the foregoing analysis.

Solution Procedure

Based on the foregoing sections, the steps of the
proposed MINLP optimization strategy for the well
scheduling problem are formally presented as follows:
(1) Pre-processing step

1. The reservoir information (productivity index,
GOR and WOR) is updated, using a reservoir
simulator.

2. For each naturally flowing well, the manifold
pressure and the well oil rate are discretized be-
tween a lower and an upper bound. Then, the
well model is simulated for each pair of discrete

points, and the momentum and energy balances
are approximated with piecewise linear func-
tions.

3. For each gas lift well, the manifold pressure
and the gas injection rate are discretized be-
tween a lower and an upper bound. Then, the
well model is simulated for each pair of discrete
points, and the momentum and energy balances
are approximated with piecewise linear func-
tions.

4. If a naturally flowing well cannot flow towards
a separator, then the corresponding logic con-
straint is incorporated into the formulation.

5. If Vertical Flowing Tables are used, then the ap-
proximation of momentum and energy balances
in the wells is simpler: there is no need for well
simulation using each pair of discrete points,
and simple interpolation calculations are used
to approximate the momentum and energy bal-
ances in the wells.

(2) Processing step
This step involves the solution of the MINLP prob-
lem:
1. Set the iteration counter at l = 0, and the upper

bound at UB0 D C1.
2. Solve the NLP subproblem as a sequence of

MILP problems, following the algorithm de-
scribed by Kosmidis [18] 4 to obtain a lower
bound (LBl ).

3. Add linearizations and integer cuts cumula-
tively, and solve the MILP master problem
(PM 0) and update the upper bound (UBl ).

4. If (UBl �maxl LBl )/(LBl ) � " or the MILP
problem is integer-infeasible, then STOP. The
optimal structure is the one which corresponds
to the best lower bound maxl LBl . Else, set
l D l C 1 and go to step (2).2.

(3) Post-processing step
For each well, fix the manifold pressure and the well
oil flowrate and perform a a well simulation (based
on the system of well equations) to calculate the
precise well choke settings.

Example Problems

This section illustrates the performance of the proposed
MINLP algorithm in two different example problems.
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Mixed Integer Optimization in Well Scheduling, Figure 5
Linearization of a gas lift well model

The first example is a small production network which
involves three wells connected to a manifold, and it is
used to illustrate the economic impact of incorporat-
ing discrete decisions in the well scheduling problem.
In the second example, the proposed MINLP optimiza-
tion strategy is applied to a field consisting of 3 sepa-
rators, 2 manifolds and 11 naturally flowing wells. To
evaluate the economic benefits of the proposed MINLP
optimization strategy, heuristic rules are also applied
to the same problem for comparison. Finally, the pro-
posed method is applied to an oil field, which consists
of 22 (both naturally flowing and gas lift) wells.

Example 1

The mathematical formulation and the solution proce-
dure developed in this Chapter has been applied to the
production network presented in Fig. 6. The well char-
acteristics, separator pressures and capacities are given
in Table 1 and 2, respectively. The problem has been
formulated as an MINLP problem, where binary vari-
ables are used to model the operational status of each
(closed or open) well. The MILP problems have been
implemented in GAMS [5] and solved using CPLEX®
as the MIP solver. The problem involves 3 binary vari-
ables, 26 interpolation binary variables and 81 con-

straints. Initially, the manifold pressure and the well
oil flowrate are discretized to construct a piecewise lin-
ear approximation of the well model. Then, the initial
structure (all wells tied to the manifold) has been eval-
uated by solving the corresponding NLP subproblem:
the optimal solution has thus been determined equal
to LB1 D 12010 STB/day. The master MILP problem
is then formulated and solved: the MILP problem so-
lution generates a new production network structure,
where well 1 is shut in. The new structure has then been
evaluated in the NLP subproblem, and a new lower
bound equal to LB2 D 12104:2 STB/day has been deter-
mined. The algorithm terminates, since the MILP mas-
ter problem is found to be integer-infeasible. Therefore,
the optimal structure involves only wells 2 and 3 con-
nected to the manifold, with their chokes fully open.

A typical heuristic rule for maximization of oil pro-
duction states that the well chokes must be fully open
for oil maximization. The application of this heuristic
rule to this particular production network yields an oil
production level equal to 11929.2 STB/day. The results
from the application of heuristic rules and the pro-
posed strategy are summarized in Table 3 and sug-
gest that: (i) these heuristic rules may lead to subop-
timal solutions, and (ii) an increase in oil production
of 175 STB/day is observed when the proposed formal
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Mixed Integer Optimization in Well Scheduling, Table 1
Well characteristics for a three-well production network (illustrative example)

Reservoir / pipeline parameters Well 1 Well 2 Well 3 Flowline

Reservoir pressure (psia) 2370 4650 4250
Productivity index (STB/psia day) 3.0 9.0 3.3
GOR (SCF/STB) 5100 1900 1600
WC 0.93 0.165 0.15
Vertical length (ft) 8000 6000 7000 22000 ft
Horizontal length (ft) 6000 4000 3000 0
Diameter (in) 3 in 3 in 3 in 6 in
Roughness 0.0001 0.0001 0.001 0.0001
Flowrate upper bound (STB/day) 1600 10000 5300
Flowrate lower bound (STB/day) 200 530 470

Mixed Integer Optimization in Well Scheduling, Figure 6
Production network structure for Example 1 (illustrative ex-
ample)

Mixed Integer Optimization in Well Scheduling, Table 2
Surface facilities: separator capacities for Example 1 (illustra-
tive example)

Pressure (psia) 400
Oil Capacity (STB/day) 17000
Gas Capacity (MSCF/day) 33000
Water Capacity (STB/day) 22000

MINLP optimization technique is applied to the well
scheduling problem. The above result can be explained
by considering the interaction of wells that share a com-
mon flowline. This particular three-well network prob-
lem has a well with a very high water cut (well 1), as can

Mixed Integer Optimization in Well Scheduling, Table 3
Comparison of structure and oil production results: heuris-
tics vs. optimization

Structure Objective function (STB/day)
(y1; y2; y3) D (1; 1; 1) 11929.2 (Heuristics)
(y1; y2; y3) D (0; 1; 1) 12104.2 (Optimization)

be seen fromTable 1: this results in increased back pres-
sure in the manifold flowline, which restricts oil pro-
duction from wells 2 and 3. By shutting in well 1, the
pressure drop in the flowline is reduced: the increased
production from wells 2 and 3 thus compensates losses
in oil production by shutting in well 1.

Example 2

The proposed MINLP optimization strategy is also ap-
plied to an oil field that comprises 11 naturally flowing
wells, 2 manifolds and 3 separators: this production
network is depicted in Fig. 7. Two types of wells are
considered: (i) type A wells, designated as TB01, TB02,
TB04, TB05, TB07, TB08D and TB10, and (ii) type B
wells, designated as A11, A13, A15 and A18. All these
are naturally flowing wells and their well oil flowrate
upper bounds are given in Table 4. The surface facil-
ities consist of a high (HP), an intermediate (IP) and
a low (LP) pressure separator, and the respective oper-
ating pressures and capacities are summarized in Ta-
ble 5. Two case studies are considered: the first is a gas
coning oil field, while the second is a water coning oil
field. The well bore model is generated from a reservoir
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Mixed Integer Optimization in Well Scheduling, Figure 7
Production network structure for Example 2a (initial pipeline configuration)

Mixed Integer Optimization in Well Scheduling, Table 4
Maximum flowrate values for wells

TB01 2300 STB/day TB07 7000 STB/day A11 4100 STB/day
TB02 4300 STB/day TB08D 1000 STB/day A13 4200 STB/day
TB04 2500 STB/day TB10 7000 STB/day A15 1800 STB/day
TB05 7500 STB/day A18 1200 STB/day

Mixed Integer Optimization in Well Scheduling, Table 5
Operating pressures and capacities of separators for Example 2a (gas coning)

HP separator IP separator LP separator
Capacity Optimal Capacity Optimal Capacity Optimal

Pressure (psia) 1235 460 165
Oil (STB/day) 15000 12541.9 10000 7191.2 10000 9584.1
Gas (MMSCF/day) 24000 24000 18000 18000 18000 18000
Water (STB/day) 2000 1236.5 4000 2057.8 8000 8000
Total oil production 29317
NLP (LB) 28567 28910 29317 28735 29020
MILP (UB) 32104 31580 31210 30920 30067
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Mixed Integer Optimization in Well Scheduling, Table 6
Optimal well flowrates by MINLP optimization (Example 2a)

Well Qo (STB/day) Qg (MSCF/day) Qw (STB/day)

TB01 2300 5574.83 3552.06
TB05 5685.67 10806.03 1123.67
TB08D Shut in
TB02 632.906 2223.614 0.0
TB04 836.88 1971.94 2055.46
TB07 6647.67 12543.21 109.594
TB10 5814.3 8229.61 2392.47
A11 4100 9151.44 71.62
A13 1291.18 3930.83 1553.64
A15 1800 4917.72 432.51
A18 208.552 650.76 3.213

simulator using a coning model. Details about this sec-
ond example (oil flowrate as a function of bottomhole
pressure, GOR andWC for both cases) are presented by
Kosmidis [18].

Example 2a (gas coning problem) The initial struc-
ture of the production network is shown in Fig. 7,
and five (5) well interconnection changes are allowed
for wells of type A and type B. The MINLP opti-
mization problem involves 89 binary variables, 260 in-
terpolation binary variables, 924 continuous variables,
1082 constraints and the objective is the maximiza-
tion of oil production. The optimization requires 5
OA/AP iterations and the total oil production is
29317.2 STB/day; the optimal production network
structure is presented in Fig. 8. Table 5 summarizes the
amount of oil, gas and water in the separators and the
convergence history of the MINLP algorithm; the in-
dividual well fluid flowrates are reported in Table 6.
A remarkable observation is that the gas capacity of
all separators is fully utilized at the optimal operat-
ing point, as can be observed from the results of Ta-
ble 5.

Example 2b (water coning problem) This problem is
again solved following the proposed MINLP optimiza-
tion strategy. The initial structure of the field is pre-
sented in Fig. 8; the maximum number of allowable
well interconnection changes is seven (7) for wells of
type A and type B. The MINLP problem converges in
6 OA/AP iterations and the optimal structure is de-
picted in Fig. 9. Table 7 presents the amount of oil, gas

and water in the separators and the convergence his-
tory of the MINLP problem, while well fluid flowrates
are reported in Table 8. The results of Table 7 suggest
that the production bottleneck of the oil field is the wa-
ter separator capacity, and the proposed MINLP opti-
mization method manages to allocate and operate the
wells in such a way that the available water separator
capacity is almost fully utilized. The manifold flowline
that is connected to theHP separator in the initial struc-
ture (Fig. 7) is reallocated to the IP separator, since the
latter has a larger water capacity compared to the HP
separator (Table 7).

Heuristic Rules vs. Optimization Examples 2a
and 2b are also both solved with heuristic rules, by
applying the following procedure:
STEP 0. Consider an initial pipeline structure identical
to that of the previous day.
STEP 1. Set the chokes fully open and solve the corre-
sponding production network problem.
STEP 2. If some of the resulting well flowrates from
Step 1 violate their upper bounds, then choke back these
wells until the respective upper bounds are satisfied.
STEP 3. The following two heuristic rules are applied
sequentially (one well at a time):

(i) Choke back the well according to the follow-
ing heuristic rule: if gas and/or water capacity
constraints are violated, then choke back the well
with the highest GOR and/orWC, respectively, un-
til the capacity constraints are satisfied. Terminate
or else go to Step 3 (ii).

(ii) Allocate high GOR wells to the HP separator and
high WC wells to the LP separator, and go back to
Step 1.

It must be noted that: (i) the heuristic rules are applied
sequentially, and (ii) the termination criterion is based
on the satisfaction of the operator. The results from
the application of heuristic rules are based on repeti-
tively applying the procedure described, until the max-
imum number of allowable interconnection changes is
reached. The production network structures resulting
from the application of heuristic rules in Examples 2a
and 2b are depicted in Fig. 10 and 11, respectively.
Tables 9 and 10 summarize the results derived from
both MINLP optimization and heuristic strategies. The
comparison clearly demonstrates the economic bene-
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Mixed Integer Optimization in Well Scheduling, Figure 8
Optimal production network structure by MINLP optimization (Example 2a)

Mixed Integer Optimization in Well Scheduling, Table 7
Optimal surface separator capacities by MINLP optimization (Example 2b)

HP separator IP separator LP separator
Capacity Optimal Capacity Optimal Capacity Optimal

Pressure (psia) 1235 460 165
Oil (STB/day) 15000 5900 10000 9714.5 10000 9684.4
Gas (MMSCF/day) 24000 14069.2 18000 18000 18000 18000
Water (STB/day) 2000 1926.9 4000 4000 8000 8000
Total oil production 25299
NLP (LB) 23210 24820 25170 25299 24870 24320
MILP (UB) 29102 28670 27332 26703 26209 26023

fits from the application of the proposed MINLP opti-
mization strategy, which in both examples achieves of
up to 10% in oil production. There are many reasons
which can explain these superior results: (i) the sim-
plistic nature of heuristic rules, which consider only the
individual well GOR andWC, and neglect other param-

eters (e. g. productivity index, pipeline length and di-
ameter), (ii) heuristic strategies do not account directly
for system interactions, which become important when
the wells share a common flowline, and (iii) heuristic
methods often have ad hoc or unclear termination cri-
teria.
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Mixed Integer Optimization in Well Scheduling, Figure 9
Optimal production network structure by MINLP optimization (Example 2b)

Mixed Integer Optimization in Well Scheduling, Table 8
Optimal well flowrates by MINLP optimization (Example 2b)

Qo (STB/day) Qg (MSCF/day) Qw (STB/day)

TB01 2300 2125.14 3552.1
TB05 5200 10429.3 1874.8
TB08D 757.308 2723.6 375.1
TB02 1427.04 2721.95 2198.01
TB04 Shut in
TB07 6864.4 12937.2 1893.7
TB10 1691.2 2359.6 1573.4
A11 4100 9151.4 1494.4
A13 Shut in
A15 1800 4917.7 432.5
A18 1158.8 2703.2 532.9

Integration of Reservoir Multiphase Flow
Simulation andOptimization

Dynamic oil and gas production systems simulation
and optimization is a research trend with a potential

to meet the challenges faced by the international oil
and gas industry, as has been already demonstrated in
a wide variety of publications in the open literature.
The multiphase flow in reservoirs and wells governs
fuel transport and production, but is mostly handled
by algebraic approximations in modern optimization
applications: true reservoir state variable profiles (ini-
tial/boundary conditions) are generally not known.
Nevertheless, oil reservoirs, wells, pipelines, manifolds
and surface facilities are all equally important ele-
ments of a spatially and temporally distributed complex
system, and the potential contribution of CFDmethods
has not been fully explored so far, even though it is gen-
erally recognized that computing accurate reservoir and
well state variable profiles can be extremely useful for
optimization. This section discusses a strategy for inter-
facing reservoir simulation (ECLIPSE®) with equation-
oriented process optimization (gPROMS®) and presents
a relevant application [13].

The complex multiphase flow in oil production
fields is of paramount importance. Despite intensive
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Mixed Integer Optimization in Well Scheduling, Table 9
Comparison of results: MINLP optimization vs. heuristics (Example 2a)

Example 2a (High GORs) Capacity Optimization Heuristics
Qo (STB/day) Qo (STB/day) Qo (STB/day)

LP 10000 9584.15 9004.296
IP 10000 7191.18 7191.186
HP 15000 12541.894 12321.138
Total 29317.2 28516.6
Benefit (STB/day) 800.5 (+2.3%)

Mixed Integer Optimization in Well Scheduling, Figure 10
Heuristic production network structure (Example 2a)

Mixed Integer Optimization in Well Scheduling, Table 10
Comparison of results: MINLP optimization vs. heuristics (Example 2b)

Example 2b (HighWCs) Capacity Optimization Heuristics
Qo (STB/day) Qo (STB/day) Qo (STB/day)

LP 10000 9684.4 7424.407
IP 10000 9714.5 9311.058
HP 15000 5900 5900
Total 25298.8 22635.5
Benefit (STB/day) 2663.3 (+11.8%)
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Mixed Integer Optimization in Well Scheduling, Figure 11
Heuristic production network structure (Example 2b)

experimentation and extensive CFD simulations to-
wards improved understanding of flow and phase dis-
tribution, commercial optimization applications have
not benefited adequately from accurate sub-surface
multiphase CFD modeling, and knowledge from field
data is not readily implementable in commercial soft-
ware. Model integration can enable the employment
of two-phase reservoir CFD simulation, towards en-
hanced oil or gas production from depleted or gas-rich
reserves, respectively.

The concept of integrated modeling and optimiza-
tion of oil and gas production treats oil reservoirs,
wells and surface facilities as a single (albeit multiscale)
system, and focuses on computing accurate reservoir
state variable profiles (as initial/boundary conditions).
The upper-level optimization can thus benefit from
the low-level reservoir simulation of oil and gas flow,
yielding flow control settings and production resource
allocations. The components of this system are tightly
interconnected (well operation, allocation of wells to
headers andmanifolds, gas lift allocation, control of un-

stable gas lift wells). These are only some of the prob-
lems that can be addressed via this unified framework.
Figure 12 presents the concept of integrated modeling
of oil and gas production systems.

Literature Review and Challenges
for IntegratedModeling and Optimization

A number of scientific publications address modeling
and simulation of oil extraction: they either focus on ac-
curate reservoir simulation, without optimization con-
siderations [15,22], or on optimal well planning and
operations, with reduced [8,23,29,32] or absent [28,30]
reservoir models. A recent paper [16] is the only con-
sidering a three-dimensional field topology (without
additional flow constraints) for well placement op-
timization. Computational Field Dynamics (CFD) is
a powerful technology, suitable for studying the dy-
namic behavior of reservoirs for efficient field opera-
tion [2]. The MINLP formulation for oilfield produc-
tion optimization of Kosmidis [19] uses detailed well
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Mixed Integer Optimization in Well Scheduling, Figure 12
Integrated modeling concept for oil and gas production systems optimization: illustration of the hierarchy of levels and all
production circuit elements

models and serves as a starting point in the case ex-
amined in this section. Therein, the nonlinear reser-
voir behavior, the multiphase flow in pipelines, and sur-
face capacity constraints are all considered (multiphase
flow is handled by DAE systems, which in turn com-
prise ODEs for flow equations and algebraics for phys.
properties). The model uses a degrees-of-freedom anal-
ysis and well bounding, but most importantly approx-
imates each well model with piecewise linear functions
(via data preprocessing).

Here, explicit reservoir flow simulation via a dy-
namic reservoir simulator (ECLIPSE®) is com-
bined with an equation-oriented process optimizer
(gPROMS®), towards integrated modeling and opti-
mization of a literature problem 13. An asynchronous
fashion is employed: the first step is the calculation of
state variable profiles from a detailed description of the
production system (reservoir) via ECLIPSE®. This is
possible by rigorously simulating the multiphase flow
within the reservoir, with real-world physical proper-
ties (whose extraction is laborious [7]). These dynamic
state variable profiles (pressure, oil, gas and water sat-

uration, flows) are a lot more accurate than piecewise
linear approximations [18], serving as initial condi-
tions for the higher-level dynamic optimization model
(within gPROMS®). Crucially, these profiles consti-
tute major sources of uncertainty in simplified models.
Considering the oil and gas pressure drop evolution
within the reservoir and along the wells, one can solve
single-period or multi-period dynamic optimization
problems that yield superior optima, because piece-
wise linear pressure underestimation is avoided. While
integrating different levels (sub-surface elements and
surface facilities – Fig. 12) is vital, interfacing CFD
simulation with MINLP optimization is here pursued
in an asynchronous fashion (given the computational
burden for CFD nested within MINLP).

The concept of integrated modeling and optimiza-
tion is illustrated in Fig. 13.

ProblemDefinition andModel Formulation

Dynamic CFD modeling for explicit multiphase flow
simulation in reservoirs and wells comprises a large
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Mixed Integer Optimization in Well Scheduling, Figure 13
Integrated modeling and optimization of oil and gas production systems: illustration of the explicit consideration of multi-
phase flowwithin reservoirs and wells

number of conservation laws and constitutive equa-
tions for closure: Table 1 presents only the most im-
portant ones, which are implemented in ECLIPSE®. The
black-oil model [25] is adopted in this study, to manage
complexity. More complicated, compositional models
are widely applied [2], accounting explicitly for dif-
ferent hydrocarbon real- or pseudo-species concentra-
tions. A black-oil model allows for multiphase simula-
tion via only 3 phases (oil, water, gas):

Multiphase flow CFD model equations (Nomencla-
ture [19]):
Oil:
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Total pressure gradient:

dP
dx
D �g�m(x) sin(�) �

�w(x)S
A

(73)

Capillary pressure (oil/gas):

Pcog(So ; Sg) D Po � Pg (74)

Capillary pressure (oil/water):

Pcow(So; Sw ) D Po � Pw (75)

Multiphase mixture saturation:

So C Sw C Sg D 1 (76)
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Mixed Integer Optimization in Well Scheduling, Figure 14
Temporal evolution of pressure, oil saturation and gas/oil ratio in an oilfield: the gradual depletion of oil in reservoirs is
explicitly considered for optimization (t:yr)

Multiphase mixture density:

�m(x) D �l (x)El (x)C �g(x)Eg(x) (77)

Multiphase mixture viscosity:

�m(x) D �l (x)El (x)C �g(x)Eg(x) (78)

Multiphase mixture sup. velocity:

Um(x) D
�l (x)
�m(x)

Usl (x)C
�g(x)
�m(x)

Usg (x) (79)

Multiphase mixture holdup closure:

Eg(x)C El (x) D 1 (80)

Drift flux model (gas holdup):

Eg D fd(Usl ;Usg ; mixture properties) (81)

Choke model (for well & valve i):

qL;i D fc(di ; Pi (x�ch); Pi (x
C
ch); ci ; qg;i ; qw;i) (82)
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Mixed Integer Optimization in Well Scheduling, Table 11
Oil production optimization by explicit CFD simulation boundary conditions

Example 2a, Kosmidis et al.[20] Total capacity Via performance indices With explicit reservoir simulation

Oil production (STB/day) 35000 29317.2 30193.7 (+2.9%)
Gas production (MSCF/day) 60000 60000 60000
Water production (STB/day) 14000 11294.3 11720.1 (+3.8%)

Choke setting (for well & valve i):

ci D max(cc ; Pi (x�ch); Pi (x
C
ch)) (83)

Performance (flow vs. pressure):

q j;i D f j(Pwf; j;i); 8i 2 I; 8 j 2 fo;w; gg : (84)

Reduced (1D) multiphase flow balances were solved us-
ing a fully implicit formulation and Newton’s method,
but only for the wells and not for the reservoir [18].
The present section uses: (a) explicit reservoir and
well 3D multiphase flow simulation, (b) elimination
of Eq. (84) (performance relations/preprocessing obso-
lete due to CFD), (c) CFD profiles as initial conditions
(asynchronous fashion) for dynamic optimization. The
MINLP optimization objective (maximize oil produc-
tion) and model structure is adopted from the litera-
ture [20] via a gPROMS®–SLP implementation. Adopt-
ing an SQP strategy can increase robustness as well as
computational complexity.

Reservoir Multiphase Flow Simulation Results

Dynamic multiphase flow simulation results
(ECLIPSE®) are presented in Fig. 14.

Oil Production Optimization Results

Dynamic optimization via explicit CFD simulation of
a particular oil field problem can improve on results
from MINLP optimization: the comparison is pre-
sented in Table 11.

Conclusions

A novel MINLP optimization formulation for the well
scheduling problem has been proposed in this Chapter:
the optimal connectivity of wells to manifolds and sep-
arators is treated simultaneously with the optimal well
operation and gas lift allocation. The algorithm avoids
examining infeasible connections of wells to manifolds
or separators by incorporating appropriate integer cuts

in the formulation: these, along with the incorpora-
tion of operational logic constraints pertinent to the
maximum number of well switches, lead to satisfac-
tory computational performance: convergence has been
achieved in less then 6 iterations in all cases examined.
The business value of the new MINLP formulation has
been investigated by comparing the proposed method
with established heuristic rules, and an increase of up
to 10% in oil production has been observed for the cases
studied [18].

The combination of dynamic multiphase CFD sim-
ulation and MINLP optimization has the potential to
yield improved solutions towards efficiently maximiz-
ing oil production. This Chapter also addresses inte-
grated oilfield modeling and optimization, treating the
oil reservoirs, wells and surface facilities as a com-
bined system: most importantly, it stresses the ben-
efit of computing accurate state variable profiles for
reservoirs via CFD. Explicit CFD simulations via a dy-
namic reservoir simulator (ECLIPSE®, Schlumberger)
are combined with equation-oriented process opti-
mization software (gPROMS®, PSE): the key idea is to
use reduced-order copies of CFD profiles for dynamic
optimization. The literature problem solved shows that
explicit use of CFD results in optimization yields im-
proved optima at additional cost (CPU cost and cost
for efficient separation of the additional water; the per-
centage difference is due to accurate reservoir simu-
lation). These can also be evaluated systematically for
larger case studies under various conditions [14].

References

1. Addington DV (1981) An approach to gas coning corre-
lations for a large grid cell reservoir simulator. J Pet Eng
33:2267–2274

2. Aziz K, Settari A (1979) Petroleum Reservoir Simulation.
Appl Sci Publ, London

3. Benders JF (1962) Partitioning procedures for solving
mixed variables programming problems. Numer Math
4:238–252



2270 M Mixed Integer Programming/Constraint Programming Hybrid Methods

4. Brill JP, Mukherjee H (1999) Multiphase Flow in Wells. SPE
Monograph, Henry L Doherty Series (17), Richardson

5. Brooke A, Kenderick D, Meeraus A (1992) GAMS: A User
Guide. Scientific Press, Redwood City

6. Duran MA, Grossmann IE (1986) A mixed integer nonlin-
ear programming algorithm for process system synthesis.
AIChE J 32:592–606

7. Economides M, Hill AD, Ehlig-Economides CA (1994)
Petroleum Production Systems. Prentice Hall, Englewood
Cliffs

8. Fang WY, Lo KK (1996) A generalized well management
scheme for reservoir simulation. Soc Pet Eng Pap SPE
29124:116–120

9. Fentor DJ (1984) A multilevel well management pro-
gram for modeling offshore fields. Soc Pet Eng Pap SPE
12964:75–82

10. Floudas CA (1995) Nonlinear and Mixed-Integer Optimiza-
tion: Fundamentals and Applications. Oxford University
Press, Oxford

11. Geoffrion AM (1972) Generalized Benders decomposition.
Optim Theory App 10:237–260

12. GeoQuest (2000) Eclipse 300 Technical Description 2000A.
GeoQuest, Schlumberger Information Solutions (SIS),
Houston

13. Gerogiorgis DI, Georgiadis MC, Bowen G, Pantelides CC,
Pistikopoulos EN (2006) Dynamic oil and gas produc-
tion optimization via explicit reservoir simulation. In: Mar-
quardt W, Pantelides C (eds) Proceedings of ESCAPE-
16/PSE2006. Elsevier, Amsterdam, pp 179–184

14. Gerogiorgis DI, Pistikopoulos EN (2006) Wells-to-tankers:
Dynamic oil and gas production optimization via explicit
reservoir CFD simulation. In: Proceedings of the PRES-
CHISA 2006 Conference (CD) Prague

15. Hepguler G, Barua S, Bard W (1997) Integration of field sur-
face and production network with a reservoir simulator.
Soc Pet Eng Pap SPE 38937:88–93

16. Ierapetritou MG, Floudas CA, Vasantharajan S, Cullick AS
(1999) Optimal location of vertical wells: decomposition
approach. AIChE J 45:844–859

17. Kocis GR, Grossmann IE (1987) Relaxation strategy for
the structural optimization of process flowsheets. Ind Eng
Chem Res 45:1869–1880

18. Kosmidis VD (2003) Integrated Oil and Gas Production Op-
timization. PhD Thesis, Department of Chemical Engineer-
ing, Imperial College London

19. Kosmidis VD, Perkins JD, Pistikopoulos EN (2004) Optimiza-
tion of well oil rate allocations in petroleum fields. Ind Eng
Chem Res 43:3513–3527

20. Kosmidis VD, Perkins JD, Pistikopoulos EN (2005) A mixed
integer optimization formulation for the well scheduling
problem on petroleum fields. Comput Chem Eng 29:1523–
1541

21. Litvak ML, Darlow BL (1995) Surface network and well tub-
inghead pressure constraints in compositional simulation.
Soc Pet Eng Pap SPE 29125:325–336

22. Litvak ML, Clark AJ, Fairchield JW, Fossum MP, McDonald
CJ, Wood ARO (1997) Integration of Prudhoe Bay surface
pipeline network and full field reservoir models. Soc Pet
Eng Pap SPE 38885:435–443

23. Lo KK (1992) Optimum lift-gas allocations under multiple
production constraints. Soc Pet Eng Pap SPE 26017

24. Lo KK, Starley GP, Holden CW (1995) Application of linear
programming to reservoir development evaluations. Soc
Pet Eng Pap SPE 26637:52–58

25. Peaceman DW (1977) Fundamentals of Numerical Reser-
voir Simulation. Elsevier, Amsterdam

26. Process Systems Enterprise (PSE) Ltd (2000) gPROMS® Ad-
vanced User Guide. PSE, London

27. Pucknell JK, Mason JNE, Vervest EG (1993) An evaluation of
recent mechanistic models of multiphase flow for predict-
ing pressure drops in oil and gaswells. Soc Pet Eng Pap SPE
26682:1–11

28. Saputelli L, Malki H, Canelon J, Nikolaou M (2002) A criti-
cal overview of artificial neural network applications in the
context of continuous oil field optimization. Soc Pet Eng
Pap SPE 77703:1–11

29. Stewart G, Clark AC, McBride SA (2001) Field-wide produc-
tion optimization. Soc Pet Eng Pap SPE 59459:1–10

30. Van den Heever SA, Grossmann IE (2000) An iterative
aggregation/disaggregation approach for solution of an
MINLP oilfield infrastructure planning model. Ind Eng
Chem Res 39:1955–1971

31. Viswanathan J, Grossmann IE (1990) A combined penalty
function and outer approximationmethod for MINLP opti-
mization. Comput Chem Eng 14:769–782

32. Wang P, Litvak M, Aziz K (2002) Optimization of produc-
tion from mature fields. Proceedings of the 17th World
Petroleum Congress Rio de Janeiro, 2002

33. Williams HP (1990) Model Building in Mathematical Pro-
gramming. Wiley, Chichester

Mixed Integer
Programming/Constraint
Programming Hybrid Methods
ABDERRAHMANE AGGOUN1,
CHRISTOS MARAVELIAS2, ALKIS VAZACOPOULOS3

1 KLS-OPTIM, Villebon sur Yvette, France
2 University of Wisconsin – Madison, Madison, USA
3 Dash Optimization, Englewood Cliffs, USA

Article Outline

Background
Mixed-Integer Programming
Constraint Programming

Methods



Mixed Integer Programming/Constraint Programming Hybrid Methods M 2271

Applications
Conclusions
References

Background

Mixed-Integer Programming

Mixed-Integer Programming (MIP) [5] emerged in the
mid 1950s as an extension of Linear Programming (LP)
to include both integer and continuous variables. It
was developed to address a variety of problems (facil-
ity location, scheduling, design of plants and networks,
etc.) where discrete decisions needed to be made. There
are two main algorithms used to solve MIP models:
branch-and-bound [5,31] and cutting planes. When
the two solution methods are combined we have the
branch-and-cut algorithm, where cutting planes are
added until either an integral solution is found or it be-
comes impossible or too expensive to find another cut-
ting plane. In the latter case, a traditional branch op-
eration is performed and the search for cutting planes
continues for the subproblems. Balas developed an al-
gorithm for 0–1 problems to obtain dual bounds and
check primal feasibility [3]. The idea of cutting planes
was originally proposed by Gomory in [17], and a cut-
ting plane algorithm was presented by Gomory in [18].
A general procedure for bounded programs was pro-
posed by Chvatal in [13].

The results of Edmonds and Fulkerson in the late
1960s led several authors to propose other, specific
types of cutting planes: cover inequalities [4,5], flow
cover inequalities [4], and GUB constraints [51]. Due
to the incorporation of these theoretical results, the
efficiency of the commercial solvers has greatly been
enhanced during the last decade. Advances in prepro-
cessing, more sophisticated branching and node selec-
tion rules, as well as the use of primal heuristics have
also contributed to the improvement of MIP solvers.
Special techniques have also been used extensively for
the solution of MIP problems, when the set of con-
straints exhibits a special structure. Themost popular of
these schemes are Benders decomposition [9] and La-
grangean relaxation [16,19]. More information on MIP
can be found in [38], and [52], while an exposition in
recent progress in solution techniques for MIP models
can be found in [30].

Constraint Programming

Constraint Programming [24,47] is a relatively new
modeling and solution paradigm that was originally de-
veloped to solve feasibility problems, but it has been
extended to solve optimization problems as well. Con-
straint Programming (CP) has emerged as a very in-
teresting sub-field of logic programming that aims at
combining the declarative aspect of logic programming
and constraint solving in an efficient problem solv-
ing environment [29]. Optimization problems in Con-
straint Programming are solved as Constraint Satisfac-
tion Problems (CSP), where we have a set of variables,
a set of possible values for each variable (domain) and
a set of constraints among the variables. Constraints are
solved withmethods and advanced techniques originat-
ing in various areas, from Artificial Intelligence, Oper-
ations Research and Discrete Mathematics. The com-
putation domains handled by CP solvers are quite di-
verse, including Boolean algebra, linear programming,
finite domains, and list and set handling. Successful in-
dustrial applications were implemented with CP solvers
over finite domains in production planning, schedul-
ing and resource applications [44]. Finite domain con-
straints are expressed over variables, which range over
a finite set of possible values. Constraints may be arith-
metic, symbolic or global constraints [1] that have been
developed to efficiently model and solve complex prob-
lems. A CP program is usually structured as follows:
(1) declaration of decision variables, (2) constraints and
(3) the enumeration/optimization. The question to be
answered is as follows: Is there an assignment of values
to variables that satisfy all constraints? Constraint Pro-
gramming is very expressive as continuous, integer, as
well as boolean variables are permitted and moreover,
variables can be indexed by other variables. A CP prob-
lem can be seen as a network of constraints. As soon as
some information becomes available at some points in
this network, constraints are invoked to check consis-
tency and to remove inconsistent values by applying ef-
ficient handling methods. The new domain reductions
are propagated through the network. The solution of
CP models is based on performing constraint propaga-
tion at each node by reducing the domains of the vari-
ables. If an empty domain is found the node is pruned.
Branching is performed whenever a domain of an inte-
ger, binary or boolean variable has more than one ele-
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ment, or when the bounds of the domain of a contin-
uous variable do not lie within a tolerance. Whenever
a solution is found, or a domain of a variable is reduced,
new constraints are added. The search terminates when
no further nodes must be examined.

The effectiveness of CP depends on the propaga-
tion mechanism behind the constraints. Thus, even
though many constructs and constraints are avail-
able, not all of them have efficient propagation mech-
anisms. For some problems, such as scheduling, prop-
agation mechanisms have been proven to be very ef-
fective. Some of the most common propagation rules
for scheduling are the “time-table” constraint [32],
the “disjunctive-constraint” propagation [6,45], the
“edge-finding” [12,39] and the “not-first, not-last” [7].
Constrained-based scheduling algorithms can be found
in [8]. General information on CP can be found
in [24,27,36,47].

Methods

Several authors have compared MIP and CP based ap-
proaches for solving a variety of problems [21,26], and
the main findings are as follows:
� MIP based techniques are very efficient when the LP

relaxation is tight and the models have a structure
that can be effectively exploited.

� CP based techniques are better for highly con-
strained discrete optimization problems.

Since the two approaches appear to have complemen-
tary strengths, in order to solve difficult problems that
are not effectively solved by either of the two, several re-
searchers have proposed models that integrate the two
paradigms. The integration between MIP and CP can
be achieved in two ways [26,48]:
1 By combining MIP and CP constraints into one hy-

brid model. In this case a hybrid algorithm that inte-
grates constraint propagation with linear program-
ming in a single search tree is also needed for the
solution of the model (e. g. see [21,42]).

2 By decomposing the original problem into two sub-
problems: one MIP and one CP subproblem. Each
model is solved separately and information obtained
while solving one subproblem is used for the solu-
tion of the other subproblem [11,28].
Bockmayr and Kasper [10] have presented a uni-

fying framework, called Branch and Infer, which can

be used for the development of various integration
schemes. Hooker et al. [25] have proposed a new mod-
eling paradigm to perform efficient integration of MIP
and CP techniques. In general, it is not clear whether
an integration strategy performs better than a stan-
dalone MIP or CP approach, especially when the prob-
lem at hand is solved effectively by one of the two ap-
proaches. For some problems, however, the integration
of the two approaches has led to significant compu-
tational improvements. Common integration schemes
include the derivation of cuts for MIP formulations
using CP techniques, the use of CP to accelerate col-
umn generation, and the use of CP local search to solve
MIP scheduling problems. Integration schemes are de-
scribed in [21,23,26,27,37], and [48].

MIP/CP Hybrid Schemes are particularly successful
for scheduling problems that often arise in manufac-
turing, chemical and food industry, in transportation
industries and in computing environments. To solve
a scheduling problem one has to (i) allocate limited re-
sources to tasks, and (ii) sequence the tasks allocated to
a single resource. We will refer to the first set of deci-
sions as the assignment problem, and the second set of
decisions as the sequencing problem.

While heuristic methods are widely used, rigorous
optimization methods have also been studied. To solve
some hard scheduling problems to optimality, several
authors have proposed MIP/CP hybrid schemes that
exploit the complementary strengths of Mathematical
and Constraint Programming. The main idea behind
these approaches is to solve a relaxed MIP model to
determine the allocation of machines to tasks, and use
CP to check the feasibility of a given assignment and
to generate cuts that are added in the relaxed MIP
model. Thus, the complementary strengths of the two
methods are combined: Mathematical Programming is
used for optimization (i. e. identify potentially good
assignments) and Constraint Programming to check
feasibility.

Applications

A scheduling problem that has been widely studied us-
ing hybrid schemes is the Multi-Machine Assignment
Scheduling Problem (MMASP) with Release and Due
Times. In this problem a set I of N jobs have to be pro-
cessed on a set J of M machines; the processing of job
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i 2 I D f1; : : :Ng on any machine j 2 J D f1; : : :Mg,
must start after its release time ri and must be com-
pleted before its due time di; the processing time and
processing cost of job i 2 I on machine j 2 J are Pij,
and Cij respectively. The objective is to minimize the
total processing cost. The MMSAP was first studied by
Hooker et al. [22] in a hybrid optimization framework.

A MIP model (M) for the MMASP consists of con-
straints (1)–(6):

min Z D
X
i2I

X
j2J

Ci jxi j (1)

X
j2J

xi j D 1 8i 2 I (2)

si � ri 8i 2 I (3)

si C
X
j2J

Pi jxi j � di 8i 2 I (4)

yi i 0 C yi 0 i � xi j C xi 0 j � 1

8 j 2 J;8i 2 I;8i0 2 Iji < i0 (5)

si C
X
j2J

Pi jxi j � si 0 CM(1 � yi i 0)

8i 2 I;8i0 2 Iji ¤ i0 (6)

where binary xij is 1 if job i is assigned to machine j,
binary yi i 0 is 1 is job i is scheduled before job i0 in the
same machine, and si is the start time of processing of
job i.

Constraint (2) ensures that each job is processed on
exactly one machine. Constraints (3) and (4) restrict
each job to start after its release, and finish before its
due time, respectively. Constraint (5) imposes the con-
dition that if both jobs i and i0 are assigned to the same
machine j (i. e. xi jCxi 0 j�1 D 1), then jobs i and i0must
be sequenced (i. e. yi i 0 D 1 or yi 0 i D 1). Constraint (6)
is a big-M sequencing constraint that is active when yi i 0
is 1.

Hooker et al. [22] and Jain and Grossmann [28]
showed that model (M) is not efficient, due to the poor
LP relaxation caused by the big-M sequencing con-
straint (6). Furthermore, they showed that standalone
CPmodels are not efficient either, due to the large num-
ber of different assignments. To overcome this, the au-
thors proposed a scheme where an IP master problem

and a CP subproblem are solved iteratively. The IPmas-
ter problem is a relaxation ofmodel (M) and it is used to
determine an assignment. The CP subproblem is used
to check feasibility of the current assignment; if infea-
sible, integer cuts are added and the IP master problem
is re-solved; if feasible, the subproblem gives a feasible
sequence, and the algorithm terminates. The IP master
problem consists of constraints (1)–(2), (7) and the in-
teger cuts that are added at each iteration. Constraint
(7) is used to eliminate infeasible assignments:

X
i2I

Pi jxi j � max
i2I
fdig �min

i2I
frig 8 j 2 J (7)

The IP master problem does not include the sequenc-
ing binary variables yi i 0 and big-M constraint (6), it is
solved fast, and at iteration k, yields a complete job-
machine assignment xk. The CP subproblem is then
used to check whether the current assignment xk is fea-
sible. At each iteration k, the set Ikj of jobs assigned on
machine j 2 J, the processing time P̄k

i of each job, and
the domain Dk

i for the start time of job i (i. e. si 2 Dk
i )

are given by (8)–(10), respectively:

Ikj D fijx
k
i j D 1g 8 j 2 J (8)

P̄k
i D

X
j2J

Pi jxk
i j 8i 2 I (9)

Dk
i D [ri ; di � P̄k

i ] 8i 2 I (10)

Thus, the CP subproblem reduces to jJj one-machine
independent problems, and for each one of these prob-
lems we try to find a sequence of jobs in Ikj that sat-
isfies constraint (10) and the non-overlapping of jobs
assigned to machine k (see (5) and (6)). This problem
can be solved using the global constraint cumulative [1],
and various propagation techniques (time-table, dis-
junctive, edge-finding, etc.).

cumulative i2O ((si ; di ; ri) ; l ; e) (11)

The basic version of cumulative, (see detailed exam-
ples in [2]) takes 3 arguments, argument 1 is the set of
operations O where each operation is characterized by
three parameters, which can be either domain variables
or values; the starting time si, the duration di, and the
amount of some resource ri used by the operation. The
second argument l is the upper bound on the resource
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consumption. The third argument e is the completion
time. In this case, Eq. (11) can be written as follows:

cumulative i2I j

��
si ; P̄k

i ; 1
�
; 1; max

i2I j
fdig

�
(12)

The global cumulative constraint is satisfied if the fol-
lowing conditions hold:

X
i2O :s i�t�s iCdi ;t21::l

ri � l AND max
i2O

(siCdi ) � e

(13)

If there is no sequence for machine j that satisfies con-
straint (12), then the current assignment xk is infeasi-
ble. For every infeasible one-machine problem we add
the following integer cut in the cut-pool of the master
problem:

X

i2Ikj

xi j � jIkj j � 1 (14)

If the IP master problem is solved to optimality, the
lower bound provided by the optimal solution Zk of
the IP is non-decreasing, and the first feasible assign-
ment is the assignment that yields the optimal solution
with a minimum assignment cost. A schematic of the
proposed algorithm is given in Fig. 1. The hybrid itera-
tive approach was shown to be considerably faster than
standalone MIP and CP models.

The above hybrid decomposition can also be imple-
mented in a branch-and-cut framework (B&C), where
the IP master problem is not solved to optimality before
adding cuts. In the B&C framework, cuts are added ei-
ther at a (possibly suboptimal) integer solution to the
master problem or a partially feasible node, i. e. a node
with integer assignments for a subset of machines.

Bockmayr and Pisaruk [11] proposed a hybrid
branch-and-cut scheme where the master problem is
solved using an IP solver and the CP solver is called
at a node of the tree, in order to generate integer cuts.
The advantage of this method is that the IP model is
not solved from scratch every time an integer solu-
tion (i. e. an assignment) is found. Furthermore, the au-
thors were able to obtain cuts that are stronger than
the ones proposed by Jain and Grossmann [28]. They
were also able to generate cuts from fractional LP solu-
tions of the IP model. The computational performance

of the proposed hybrid branch-and-cut approach is bet-
ter than the iterative IP/CP approach. Vazacopoulos
and Verma [49] proposed certain Disjunctive and pre-
emptive cuts to a priori forbid infeasible assignments
and developed two hybrid MIP/CP algorithms for the
MMASP. Sadykov and Wolsey [43] studied several
hybrid approaches and developed two IP/CP hybrid
schemes that appear to be better than those previously
proposed. In the first, the authors were able to develop
two classes of tightening inequalities, in the space of xi j
variables, which exclude many infeasible assignments
and thus lead to smaller trees. The tightening inequal-
ities are knapsack constraints, similar to constraint (7),
but for subsets of set I. They also proposed a column
generation algorithm using the tightening inequalities.

While the MMASP has been extensively studied
due to its simple structure, hybrid schemes have also
been developed for more complex scheduling prob-
lems. Harjunkoski and Grossmann [20], Timpe [46]
and Constantino [14] presented hybrid schemes for
complex chemical plants. Maravelias and Gross-
mann [33,34] proposed a general framework for in-
tegrating Mathematical and Constraint Programming
methods for the solution of scheduling problems, while
Maravelias [35] proposed the integration of MIP meth-
ods with heuristic algorithms. Hybrid methods that
combine Mathematical and Constraint Programming
have also been applied to transportation, inventory
management and resource allocation problems.

Conclusions

While the computational efficiency of MIP/CP meth-
ods varies significantly, there is evidence that for some
classes of problems they outperform existing methods.
In general, if the structure of the problem at hand is
exploited by efficient preprocessing and the genera-
tion of strong cuts, it is expected that hybrid schemes
will be more effective because they combine the
complementary strengths of two solution techniques.

The computational performance of hybrid methods
relies on (i) the quality of the decomposition, (ii) the
solution efficiency of the two subproblems, and (iii) the
number of subproblems needed to be solved to prove
optimality. Ideally, the original problem should be de-
composed/reformulated into a tight MIP subproblem
that is easily solved yielding potentially good feasible
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Mixed Integer Programming/Constraint Programming Hybrid Methods, Figure 1
Iterative hybrid IP/CP scheme of Jain and Grossmann [28]

solutions, and a feasibility CP subproblem that is used
to check feasibility and generate cuts.

In particular, MIP/CP methods have been shown to
be very effective in tackling scheduling problems where
both assignment and sequencing decisions have to be
made. The key idea in these methods is the decompo-
sition of the original problem into two sub problems;
Mathematical Programming is used for the assignment
of tasks to resources, while Constraint Programming is
used for the sequencing of tasks on resources.
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Abstract

This chapter presents model based controllers for two
drug delivery systems: (i) surgery under anesthesia and
(ii) insulin delivery for type 1 diabetes. For anesthesia,
a compartmental model is presented and then used for
deriving model predictive controller for simultaneous
control of mean arterial pressure (MAP), cardiac out-
put (CO) and hypnosis. For type 1 diabetes, parametric
control techniques are used for obtaining insulin deliv-
ery rate as an explicit function of the state of the patient.
This reduces the implementation of the model based
controller to function evaluations that can be carried
out on a portable computational hardware.

Introduction

Drug delivery systems aim to provide effective therapy
by minimizing side effects, reducing deviations from
the desired state of the patient and increasing patient
compliance and safety. Automation of a drug delivery
system relies on the mathematical model of the pa-
tient that can take into account the pharmacokinetic
and pharmacodynamic effects of the drugs on various
organs of the body. To reduce the complexity of the
mathematical model, some of the organs are lumped

and then represented as interconnected compartments.
This reduction in complexity is quite important es-
pecially for models that are used for controlling the
amount of drugs to be infused. In this chapter, mod-
els and advanced model based controllers for two drug
delivery systems are presented. In Sect. “Surgery Un-
der Anesthesia”, the first system which is concerned
with the delivery of anesthetics for patients undergoing
surgery is discussed. A compartmental model is pre-
sented that considers a choice of three drugs, isoflu-
rane, dopamine and sodium nitroprusside, and there-
fore allows simultaneous control of mean arterial pres-
sure, cardiac output and hypnosis. This model is then
used for designing model predictive controller and the
performance of the controller is tested for its set-point
tracking capabilities. In Sect. “Blood Glucose Control
for Type 1 Diabetes” model based parametric con-
troller for the regulation of the blood glucose concen-
tration for people with type 1 diabetes is derived. The
key advantage of this controller is that the optimal
drug infusion rate is obtained as an explicit function
of the state of the patient and therefore requires sim-
ple function evaluations for its implementation. Con-
cluding remarks are presented in Sect. “Concluding
Remarks”.

Surgery Under Anesthesia

Anesthesia is defined as the absence or loss of sensa-
tion. In order to provide safe and adequate anesthesia,
the anesthesiologist must guarantee analgesia, provide
hypnosis, muscle relaxation and maintain vital func-
tions of the patient. Anesthesiologists administer anes-
thetics andmonitor a wide range of vital functions, such
as mean arterial pressure (MAP), heart rate, cardiac
output (CO). These vital functions need to be moni-
tored and maintained within tolerable operating ranges
by infusing various drugs and/or intravenous fluids as
shown in Fig. 1. Automation of anesthesia is desirable
as it will provide more time and flexibility to the anes-
thesiologist to focus on critical issues, monitor the con-
ditions that cannot be easily measured and overall im-
prove patient’s safety. Also, the cost of the drugs will
be reduced and shorter time will be spent in the post-
operative care unit. There is a significant amount of
research in the area of developing models and con-
trol strategies for anesthesia [10,14,15,17]. Gentilini et
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Model Based Control for Drug Delivery Systems, Figure 1
Anesthesia control system (adapted from [6])

al. [6] proposed a model for the regulation of MAP
and hypnosis with isoflurane. It was observed that con-
trolling both MAP and hypnosis simultaneously with
isoflurane was difficult. Yu et al. [16] proposed a model
for regulating MAP and CO using dopamine (DP) and
sodium nitroprusside (SNP), but the control of hypno-
sis was not considered.

In the next section, a compartmental model is pre-
sented, which allows the simultaneous regulation of
the MAP and the unconsciousness of the patients. The
model is characterized by: (i) pharmacokinetics for the
uptake and distribution of the drugs, (ii) pharmacody-
namics which describes the effect of the drugs on the vi-
tal functions and (iii) baroreflex for the reaction of the
central nervous system to changes in the blood pres-
sure. The model involves choice of three drugs, isoflu-
rane, DP and SNP. This combination of drugs allows
simultaneous regulation of MAP and hypnosis.

Modeling Anesthesia

The model is based on the distribution of isoflurane in
the human body [15]. It consists of five compartments
organized as shown in Fig. 2.

The compartments 1–5 represent lungs, vessel rich
organs (e. g. liver), muscles, other organs and tissues
and fat tissues respectively.

The distribution of the drugs occurs from the cen-
tral compartment to the peripheral compartments by
the arteries and from the peripheral to the central by
the veins. The first compartment in Fig. 2 is the central

Model Based Control for Drug Delivery Systems, Figure 2
Compartmental model

compartment and heart can be considered to be belong-
ing to the central compartment, whereas compartments
2–5 are the peripheral compartments.

PharmacokineticModeling The uptake of isoflurane
in central compartment via the respiratory system is
modeled as:

V
dCinsp

dT
DQinCin � (Qin ��Q)Cinsp

� fR(VT ��)(Cinsp � Cout) ;

where Cinsp is the concentration of isoflurane inspired
by the patient (g/ml), Cin is the concentration of isoflu-
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rane in the inlet stream (g/ml), Cout is the concentration
of isoflurane in the outlet stream (g/ml), Qin is the inlet
flow rate (ml/min), �Q is the losses (ml/min), V is the
volume of the respiratory system (l), f R is the respira-
tory frequency (l/min), VT is the tidal volume (l) and
� is the physiological dead space (ml). For the central
compartment, the concentration of isoflurane is given
by:

V1
dC1

dt

D

5X
iD2

�
Qi

�
Ci

Ri
� C1

��
C fR(VT�)(CinspC1) ;

where Ci is the concentration of the drug in compart-
ment i (g/ml), Ri is the partition coefficient between
blood and tissues in compartment i,Qi is the blood flow
in compartment i (ml/min). The concentration of DP
and SNP in the central compartment is modeled as fol-
lows:

V1
dC1

dt
D

5X
iD2

�
Qi

�
Ci

Ri
� C1

��
C Cinf �

1
� 1

2

C1V1 ;

where Cinf is the concentration of the drug infused
(g/min), Vi is the volume of compartment i (ml) and
�1/2 is the half-life of the drug (min). Isoflurane is elim-
inated by exhalation and metabolism in liver, the 2nd
compartment, as follows:

V2
dC2

dt
D Q2

�
C1 �

C2

R2

�
� k20C2V2 ;

where k20 is the rate of elimination of isoflurane in the
2nd compartment (min�1). The distribution of isoflu-
rane in compartments 3 to 5 is given by:

Vi
dCi

dt
D Qi

�
C1 �

Ci

Ri

�
; i D 3; : : : ; 5 :

The natural decay of DP and SNP in the body, for
compartment 2 to 5, is given by:

Vi
dCi

dt
D Qi

�
C1 �

Ci

Ri

�
�

1
� 1

2

CiVi ; i D 2; : : : ; 5 :

Pharmacodynamic Modeling The effect of DP and
SNP on two of the heart’s characteristic parameters:

maximum elastance (Emax) and systemic resistance
(Rsys) is given by:

dEff
dt
D k1CN

1 (Effmax � Eff) � k2Eff

Emax D Emax;0
�
1C EffDP�Emax

�

Rsys D Rsys;0
�
1 � EffDP�Rsys � EffSNP�Rsys

�
;

where Eff is the measure of the effect of drug on
the parameters of interest, Rsys is the systemic resis-
tance (mmHg/(ml/min)), Emax is the maximum elas-
tance (mmHg/ml), Emax,0 is nominal maximum elas-
tance, Rsys,0 is nominal systemic resistance, EffDP�Emax

is effect of DP on Emax, EffDP�Rsys is effect of DP on Rsys,
EffSNP�Rsys is the effect of SNP on Rsys, k1, k2 are the rate
constants andN is the non-linearity constant. MAP can
then be expressed as a function of Emax and Rsys as:

MAP2 1
R2
sys
C 2K2MAP � 2K2VLVEmax D 0

K D
AaortaALV

p
�
p
A2
LV � A2

aorta
;

where MAP is the mean arterial pressure (mmHg),
Aaorta is the cross sectional area of the aorta (cm2), ALV

is the cross sectional area of the left ventricle (cm2),VLV

is the mean volume of the left ventricle (ml) and � is the
blood density (g/ml). Isoflurane affects MAP as follows:

MAP D
Q1

5P
iD2

�
gi;0 (1C biCi )

� ;

where, gi,0 is the baseline conductivities (ml/
(min.mmHg)) and bi is the variation coefficient of con-
ductivity (ml/g). There is experimental evidence that
a transportation delay exists between the lungs and the
site of effect of isoflurane on the unconsciousness of the
patient. In order to model this, an effect compartment
is linked to the central compartment. The concentra-
tion of isoflurane within this compartment is related to
the central compartment, which is given by:

dCe

dt
D ke0(C1 � Ce) ;

where Ce is the concentration of isoflurane in the effect
compartment (g/ml), and ke0 is the kinetics in the effect
compartment (min�1). The action of isoflurane can be
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then expressed as follows:

�BIS D �BISMAX
C�e

C�e C EC�50
�BIS D BIS � BIS0

�BISMAX D BISMAX � BIS0 ;

where BIS0 is the baseline value of BIS (assumed to be
100), BISMAX is the maximum value of BIS (assumed to
be 0), EC50 is the patient’s sensitivity to the drug and �
is the measure of the degree of non-linearity.

Baroreflex Baroreflex is obtained from a set of trans-
fer functions relating the mean arterial pressure to the
maximum elastance and the systemic resistance and is
given by:

bfc D
ec(MAP�MAP0)

1C ec(MAP�MAP0) ;

where c is the empirical constant (mmHg).

Control of Anesthesia

The model presented in the previous section was val-
idated by carrying out a number of dynamic simula-
tions for different amounts of drug dosages and distur-
bances using gPROMS [7]. For designing controllers,
this model was linearized at the nominal values of in-
puts: 0.6% vol. of isoflurane, 2 μg/kg/min of DP and
4 μg/kg/min of SNP and outputs: 57.38mmHg of MAP,
61.1 BIS and 1.21 l/min of CO, to obtain a state-space
model of the following form:

xtC1 D Axt C But

yt D Cxt C Dut ;
(1)

subject to the following constraints:

xmin � xt � xmax

ymin � yt � ymax

umin � ut � umax ;

(2)

where xt 2 Rn; yt 2 Rl ; ut 2 Rm , are the state, output
and input vectors respectively and the subscripts min
and max denote lower and upper bounds respectively.

Model predictive control (MPC) [5] problem can then
be posed as the following optimization problem:

min
U

J(U; x(t)) D xTtCNyjtPxtCNyjt

C

Ny�1X
kD0

h
xTtCkjtQxtCkjt C uT

tCkRutCk

i

s:t: xmin � xtCkjt � xmax ; k D 1; : : : ;Nc

ymin � ytCkjt � ymax ; k D 1; : : : ;Nc

umin � utCk � umax ; k D 1; : : : ;Nc

xtCkC1jt D AxtCkjt C ButCk ; k � 0

ytCkjt D CxtCk C DutCk ; k � 0

utCk D KxtCkjt ; Nu � k � Ny ;

(3)

where U D [uT
t ; : : : ; uT

tCNu�1]
T ;Q and R are constant,

symmetric and positive definite matrices, P is given
by the solution of the Riccati or Lyapunov equation,
Ny, Nu and Nc are the prediction, control and con-
straint horizons respectively and the superscript T de-
notes transpose of the vector. Problem (3) is solved
at each time t for the current state xt and the vector
of predicted state variables, xtC1jt; : : : ; xtCNyjt at time
t C 1; : : : ; t C k respectively and corresponding con-
trol actions ut ; : : : ; utCk are obtained.

Results

The model for anesthesia consists of 23 states, 3 out-
puts and 3 inputs. This state-space form of the model
is then adapted for designing model predictive con-
troller by using theMATLABModel Predictive Control
Toolbox™ [11]. For designing the MPC controller, the
following input: 0 � DP � 7 μg/kg.min, 0 � SNP �
10 μg/kg.min, 0 � Isoflurane � 5%vol:, and output
constraints: 40 � MAP � 150mmHg, 40 � BIS � 65,
1 � CO � 6:5 l/min are used. A prediction horizon of
5, control horizon of 3 and sampling time of 0.5 min-
utes are considered. A set point of [20–10 1]0 deviation
from the nominal point of the output variables is given
and the performance of the controller is shown in Fig. 3.
It is observed that the MPC tracks the set point quite
well. The performance of the MPC was also tested by
reducing the model to 15 states and was observed to be
very good. From the above results it can be inferred that
the model based control technology provides a promis-
ing platform for the automation of anesthesia.
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Model Based Control for Drug Delivery Systems, Figure 3
MPC performance for anesthesia

Note that MPC solves a quadratic program at regu-
lar time intervals. In the next section a parametric pro-
gramming approach for control of blood glucose for
type 1 diabetes is presented that does not require repet-
itively solving quadratic programs.

Blood Glucose Control for Type 1 Diabetes

Diabetes is a disease that affects the body’s ability to
regulate glucose. In Type 1 diabetes, the pancreas pro-
duces insufficient insulin, and exogenous insulin is re-
quired to be infused at an appropriate rate to maintain
blood sugar levels within the range of 60–120mg/dl [2].
If insulin is supplied in excess, the blood glucose level
can go well below normal (< 60mg/dl), a condition
known as hypoglycemia. On the other hand, if insulin
is not supplied sufficiently, the blood glucose level is el-
evated above normal (> 120mg/dl), a condition known
as hyperglycemia. Both hypo- and hyperglycemia can be
harmful to an individual’s health. Hence, it is very im-
portant to control the level of blood glucose in the body
to within a reasonable range [9,12]. In the following
sections, advanced model based controllers for regulat-
ing the blood glucose concentration for type 1 diabetes
are presented.

Model Based Control for Drug Delivery Systems, Figure 4
Schematic representation of the Bergmanmodel

Model for Type 1 Diabetes

The Bergman model [1] is used in this study, which
presents a ‘minimal’ model comprising 3 equations to
describe the dynamics of the system. The schematic
representation of the model is shown in Fig. 4. The
modeling equations are:

dG
dt
D �P1G � X(G C Gb)C D(t) (4)

dI
dt
D �n(I C Ib)C U(t)/V1 (5)

dX
dt
D �P2X C P3I : (6)

The states in this model are: G, plasma glucose con-
centration (mg/dl) relative to basal value, I, plasma
insulin concentration (mU/l) relative to basal value,
and X, proportional to I in remote compartment
(min�1). The inputs are:D(t), meal glucose disturbance
(mg/dl/min), U(t), manipulated insulin infusion rate
(mU/min) and Gb, Ib, nominal values of glucose and
insulin concentration (81mg/dl; 15mU/l). The param-
eter values for a Type 1 diabetes are: P1 D 0min�1,
P2 D 0:025min�1, P3 D 0:000013 l/mUmin2,
V1 D 12 l and n D 5/54min [4].

The model, (4)–(6) is linearized about the steady-
state values of Gb D 81mg/dl, Ib D 15mU/l, Xb D 0
and Ub D 16:66667mU/min to obtain the state space
model of the form: xtC1 D Axt C But C Bddt where
the term dt represents the input disturbance glucose
meal. The sampling time considered is 5 minutes,
which is reasonable for the current glucose sensor tech-
nology. The discrete state-space matrices A; B;C and Bd
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are as follows:

A D

2
4

1 �0:000604 �21:1506
0 0:6294 0
0 0:00004875 0:8825

3
5

B D

2
4
�0:000088
0:3335

0:0000112

3
5 ;

C D
�
1 0 0

�
; Bd D

2
4

5
0
0

3
5

The constraints imposed are 60 � G C Gb � 180 and
0 � U C Ub � 100.

Parametric Controller

Parametric programming can be used in the MPC
framework to obtain U as a function of xt by treating
U as optimization variables and xt as parameters as de-
scribed next [3,13]. For simplicity in presentation as-
sume that Ny D Nu D Nc , the theory presented is how-
ever valid for the case when Ny, Nu and Nc are not
equal. The equalities in formulation (3) are eliminated
by making the following substitution:

xtCkjt D Akxt C
k�1X
jD0

AjButCk�1� j (7)

to obtain the following Quadratic Program (QP):

min
U

1
2
UTHU C xTt FU C

1
2
xTt Yxt

s:t:GU � W C Ext ;
(8)

where, U D [uT
t ; : : : ; uT

tCNu�1]
T 2 Rs , is the vector

of optimization variables, s D mNu , H is a con-
stant, symmetric and positive definite matrix and
H; F;Y ;G;W; E are obtained from Q; R and (1) and
(2).

The QP problem in (8) can now be reformulated as
a multi-parametric quadratic program (mp-QP):

Vz(x) D min
z

1
2
zTHz

s:t:Gz � W C Sxt ;
(9)

where, z D U C H�1FTxt; z 2 Rs , and S D E C
GH�1FT .

This mp-QP is solved by treating z as the vector
of optimization variables and xt as the vector of pa-
rameters to obtain z as an explicit function of xt . U
is then obtained as an explicit function of xt by using
U D z � H�1FTxt .

Results

A prediction horizon Ny D 5 and Q/R ratio of 1000
is considered for deriving the control law – this re-
sults in partitioning of the state-space into 31 polyhe-
dral regions. These regions are known as Critical Re-
gions (CR). Associated with each CR is a control law
that is an affine function of the state of the patient. For
example, one of the CRs is given by the following state
inequalities:

� 5 � I � 25

0:0478972G � 0:0002712I � X � 0:104055

0:0261386G � 0:0004641I � X � 0:0576751

� 0:00808846G C 0:00119685I C X � 0
� 0:00660123G C 0:00130239I C X � 0

0:00609435G � 0:00134362I � X � 0

(10)

where the insulin infusion rate as a function of the state
variables for the next five time intervals is given as fol-
lows:

U(1) D 30:139G � 0:44597I � 3726:2X

U(2) D 24:874G � 0:40326I � 3280:4X

U(3) D 20:16G � 0:35946I � 2842:8X
U(4) D 16:002G � 0:31571I � 2424:1X

U(5) D 0

(11)

The complete partitioning of the state-space for G
= 80mg/dl into CRs is shown in Fig. 5. The perfor-
mance of the parametric controller for a 50mg meal
disturbance [8] is as shown in Figs. 6 and 7. The corre-
sponding trajectory of the state variables is also shown
in Fig. 5.

The model based parametric controller of the form
given in (10) and (11) can be stored and implemented
on a simple computational hardware and therefore can
provide effective therapy at low on-line computational
costs.
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Model Based Control for Drug Delivery Systems, Figure 5
Critical regions for type 1 diabetes

Model Based Control for Drug Delivery Systems, Figure 6
Glucose concentration vs. time

Concluding Remarks

Automation of drug delivery systems aims at reducing
patient inconvenience by providing better and person-
alized healthcare. The automation can be achieved by
developing detailed models and by deriving advanced
controllers that can take into account the model as well
as the constraints on state and control variables. In this
chapter, a compartmental model incorporating phar-
macokinetic and pharmacodynamic aspects for deliv-
ery of anesthetic agents has been presented. This model
was then used for the derivation of model predictive
controller. For type 1 diabetes, implementation of ad-
vanced model based controllers through a simple com-

Model Based Control for Drug Delivery Systems, Figure 7
Insulin infusion vs. time

putational hardware was demonstrated by deriving in-
sulin delivery rate as an explicit function of the state
of patient. The developments presented in this chapter
highlight the importance of modeling and control tech-
niques for biomedical systems.

See also

� Nondifferentiable Optimization: Parametric
Programming
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Introduction

We define difficult optimization problems as problems
that cannot be solved to optimality or to any guaran-
teed bound by any standard solver within a reason-
able time limit. The problem class we have in mind
are mixed-integer programming (MIP) problems. Op-
timization, and especially MIP, is often appropriate and
frequently used tomodel real-world optimization prob-
lems. While it started in the 1950s, models have become
larger and more complicated.

A reasonable general framework is mixed-integer
nonlinear programming (MINLP) problems. They
are specified by the augmented vector xT˚ D xT ˚ yT

established by the vectors xT D (x1; : : : ; xnc ) and
yT D (y1; : : : ; ynd ) of nc continuous and nd discrete
variables, an objective function f (x; y), ne equality con-
straints h(x; y), and ni inequality constraints g(x; y).
The problem

min

8̂
<̂
ˆ̂:

f (x; y)

ˇ̌
ˇ̌
ˇ̌
ˇ̌

h(x; y) D 0; h : X � U ! Rne ;

x 2 X � Rnc

g(x; y) � 0; g : X � U ! Rni ;

y 2 U � Znd

9>>=
>>;
(1)

is called a mixed-integer nonlinear programming
(MINLP) problem if at least one of the functions
f (x; y), g(x; y), or h(x; y) is nonlinear. The vector in-
equality, g(x; y) � 0, is to be read componentwise. Any
vector xT˚ satisfying the constraints of (1) is called a fea-
sible point of (1). Any feasible point whose objective
function value is less than or equal to that of all other
feasible points is called an optimal solution. From this



Modeling Difficult Optimization Problems M 2285

definition it follows that the problem might not have
a unique optimal solution.

Depending on the functions f (x; y), g(x; y), and
h(x; y) in (1) we get the following structured problems
known as

Acro-
nym

Type of
opti-
mization

f (x; y) h(x; y) g(x; y) nd

LP Linear
pro-
gram-
ming

cTx Ax� b x 0

QP Quadratic
pro-
gram-
ming

xTQxCcTx Ax� b x 0

NLP Nonlinear
pro-
gram-
ming

0

MILP Mixed-
integer
LP

cTx˚ Ax˚ � b x˚ � 1

MIQP Mixed-
integer
QP

xT
˚
Qx˚CcTx˚ Ax˚ � b x˚ � 1

MINLP Mixed-
integer
NLP

� 1

with a matrix A of m rows and n columns, i. e., A 2
M(m � n; IR); b 2 IRm ; c 2 IRn , and n D nc C nd .
Real-world problems lead much more frequently to
LP and MILP than to NLP or MINLP problems. QP
refers to quadratic programming problems. They have
a quadratic objective function but only linear con-
straints. QP and MIQP problems often occur in appli-
cations of the financial services industry.

While LP problems as described in [31] or [1] can
be solved relatively easily (the number of iterations, and
thus the effort to solve LP problems withm constraints,
grows approximately linearly in m), the computational
complexity of MILP and MINLP grows exponentially
with nd but depends strongly on the structure of the
problem. Numerical methods to solve NLP problems
work iteratively, and the computational problems are
related to questions of convergence, getting stuck in
bad local optima and availability of good initial solu-
tions. Global optimization techniques can be applied to

both NLP and MINLP problems, and its complexity in-
creases exponentially in the number of all variables en-
tering nonlinearly into the model.

While the word optimization, in nontechnical or
colloquial language, is often used in the sense of im-
proving, the mathematical optimization community
sticks to the original meaning of the word related to
finding the best value either globally or at least in a lo-
cal neighborhood. For an algorithm being considered
as a (mathematical, strict, or exact) optimization al-
gorithm in the mathematical optimization community
there is consensus that such an algorithm computes fea-
sible points proven globally (or locally) optimal for lin-
ear (nonlinear) optimization problems. Note that this is
a definition of a mathematical optimization algorithm
and not a statement saying that computing a local opti-
mum is sufficient for nonlinear optimization problems.
In the context of mixed-integer linear problems an op-
timization algorithm [12] and [13] is expected to com-
pute a proven optimal solution or to generate feasible
points and, for a maximization problem, to derive a rea-
sonably tight, nontrivial upper bound. The quality of
such bounds is quantified by the integrality gap – the
difference between the upper and lower bound. What
one considers to be a good-quality solution depends on
the problem, the purpose of the model, and the accu-
racy of the data. A few percent, say 2 to 3%, might be
acceptable for the example discussed by Kallrath (2007,
Encyclopedia: Planning). However, discussion based on
percentage gaps become complicated when the objec-
tive function includes penalty terms containing coeffi-
cients without a strict economic interpretation. In such
cases scaling is problematic. Goal programming as dis-
cussed in ([23], p. 294) might help in such situations to
avoid penalty terms in the model. The problem is first
solved with respect to the highest-priority goal, then
one is concerned with the next level goal, and so on.

For practical purposes it is also relevant to observe
that solving mixed-integer linear problems and the
problem of finding appropriate bounds is often NP-
complete, which makes these problems hard to solve.
A consequence of this structural property is that these
problems scale badly. If the problem can be solved to
optimality for a given instance, this might not be so
if the size is increased slightly. While tailor-made op-
timization algorithms such as column generation and
branch-and-price techniques can often cope with this
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situation for individual problems, it is very difficult for
standard software.

We define difficult optimization problems as prob-
lems that cannot be solved to optimality or within a rea-
sonable integrality gap by any standard MIP solver
within a reasonable time limit. Problem structure, size,
or both could lead to such behavior. However, in many
cases these problems (typically MIP or nonconvex op-
timization problems fall into this class) can be solved if
they are individually treated, and we resort to the art of
modeling.

The art of modeling includes choosing the right
level of detail implemented in the model. On the one
hand, this needs to satisfy the expectations of the owner
of the real-world problem. On the other hand, we are
limited by the available computational resources. We
give reasons why strict optimality or at least safe bounds
are essential when dealing with real-world problems
and why we do not accept methods that do not generate
both upper and lower bounds.

Mapping the reality also forces us to discuss
whether deterministic optimization is sufficient or
whether we need to resort to optimization under un-
certainty. Another issue is to check whether one objec-
tive function suffices or whether multiple-criterion op-
timization techniques need to be applied.

Instead of solving such difficult problems directly
as, for example, a standalone MILP problem, we dis-
cuss how problems can be solved equivalently by solv-
ing a sequence of models.

Efficient approaches are as follows:
� Column generation with a master and subproblem

structure,
� Branch-and-price,
� Exploiting a decomposition structure with a rolling

time horizon,
� Exploiting auxiliary problems to generate safe

bounds for the original problem, which then makes
the original problems more tractable,

� Exhaustion approaches,
� Hybrid methods, i. e., constructive heuristics and

local search on subsets of the difficult discrete
variables leaving the remaining variables and con-
straints in tractable MILP or MINLP problems that
can be solved.

We illustrate various ideas using real-world planning,
scheduling, and cutting-stock problems.

Models and the Art of Modeling

We are here concerned with two aspects of modeling
and models. The first one is to obtain a reasonable rep-
resentation of the reality and mapping it onto a math-
ematical model, i. e., an optimization problem in the
form of (1). The second one is to reformulate the model
or problem in such equivalent forms that is is numeri-
cally tractable.

Models The terms modeling and model building are
derived from the word model. Its etymological roots
are the Latin word modellus (scale, [diminutive of
modus, measure]) and what was to be in the 16th cen-
tury the new word modello. Nowadays, in a scientific
context the term is used to refer to a simplified, ab-
stract, or well-structured part of the reality one is in-
terested in. The idea itself and the associated concept
is, however, much older. Classical geometry, and espe-
cially Pythagoras around 600 B.C., distinguish between
wheel and circle and field and rectangle. Around A.D.
1100 a wooden model of the later Speyer cathedral was
produced; the model served to build the real cathe-
dral. Astrolabs and celestial globes have been used as
models to visualize the movement of the moon, plan-
ets, and stars on the celestial sphere and to compute
the times of rises and settings. Until the 19th cen-
tury mechanical models were understood as pictures
of reality. Following the principles of classical mechan-
ics the key idea was to reduce all phenomena to the
movement of small particles. Nowadays, in physics and
other mathematical sciences one will talk about models
if
� For reasons of simplification, one restricts oneself to

certain aspects of the problem (example: if we con-
sider the movement of the planets, in a first approx-
imation the planets are treated as point masses);

� For reasons of didactic presentation, one develops
a simplified picture for more complicated reality
(example: the planetary model is used to explain the
situation inside atoms);

� One uses the properties in one area to study the sit-
uation in an analogous problem.

A model is referred to as a mathematical model of
a process or a problem if it contains typical mathemat-
ical objects (variables, terms, relations). Thus, a (math-
ematical) model represents a real-world problem in
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the language of mathematics using mathematical sym-
bols, variables, equations, inequalities, and other rela-
tions.

It is very important when building amodel to define
and state precisely the purpose of the model. In science,
we often encounter epistemological arguments. In engi-
neering, a model might be used to construct some ma-
chines. In operations research and optimization, mod-
els are often used to support strategic or operative deci-
sions. All models enable us to
� Learn and understand situations that do not allow

easy access (very slow or fast processes, processes in-
volving a very small or very large region);

� Avoid difficult, expensive, or dangerous experi-
ments; and

� Analyze case studies and what-if-when scenarios.
Tailored optimization models can be used to support
decisions (that is, the overall purpose of the model).
It is essential to have a clear objective describing what
a good decision is. The optimization model should pro-
duce, for instance, optimal solutions in the following
sense:
� To avoid unwanted byproducts as much as possible,
� To minimize costs, or
� to maximize profit, earnings before interest and

taxes (EBIT), or contribution margin.
The purpose of a model may change over time.

To solve a real-world problem by mathematical opti-
mization, at first we need to represent our problem by
a mathematical model, that is, a set of mathematical
relationships (e. g., equalities, inequalities, logical con-
ditions) representing an abstraction of our real-world
problem. This translation is part of the model-building
phase (which is part of the whole modeling process)
and is not trivial at all because there is nothing we
could consider an exact model. Each model is an ac-
ceptable candidate as long as it fulfills its purpose and
approximates the real world accurately enough. Usu-
ally, a model in mathematical optimization consists of
four key objects:
� Data, also called the constants of a model;
� Variables (continuous, semicontinuous, binary, in-

teger), also called decision variables;
� Constraints (equalities, inequalities), also called re-

strictions; and
� Objective function (sometimes even several of

them).

The data may represent costs or demands, fixed oper-
ation conditions of a reactor, capacities of plants, and
so on. The variables represent the degrees of freedom,
i. e., what we want to decide: how much of a certain
product is to be produced, whether a depot is closed
or not, or how much material we will store in the in-
ventory for later use. Classical optimization (calculus,
variational calculus, optimal control) treats those cases
in which the variables represent continuous degrees of
freedom, e. g., the temperature in a chemical reactor or
the amount of a product to be produced. Mixed-integer
optimization involves variables restricted to integer val-
ues, for example counts (numbers of containers, ships),
decisions (yes-no), or logical relations (if product A is
produced, then product B also needs to be produced).
The constraints can be a wide range of mathematical re-
lationships: algebraic, analytic, differential, or integral.
They may represent mass balances, quality relations,
capacity limits, and so on. The objective function ex-
presses our goal: minimize costs, maximize utilization
rate, minimize waste, and so on. Mathematical mod-
els for optimization usually lead to structured problems
such as:
� Linear programming (LP) problems,
� Mixed-integer linear programming (MILP) prob-

lems,
� Quadratic (QP) and mixed-integer quadratic pro-

gramming (MIQP),
� Nonlinear programming (NLP) problems, and
� Mixed-integer nonlinear programming (MINLP)

problems.

The Art of Modeling How do we get from a given
problem to its mathematical representation? This is
a difficult, nonunique process. It is a compromise be-
tween the degree of detail required to model a problem
and the complexity, which is tractable. However, sim-
plifications should not only be seen as an unavoidable
evil. They could be useful for developing understanding
or serve as a platform with the client, as the following
three examples show.
1. At the beginning of the modeling process it can be

useful to start with a “down-scaled” version to de-
velop a feeling for the structure and dependencies
of the model. This enable a constructive dialog be-
tween themodeler and the client. A vehicle fleet with
100 vehicles and 12 depots could be analyzed with
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only 10 vehicles and 2 depots to let the model world
and the real world find each other in a sequence of
discussions.

2. In partial or submodels the modeler can develop
a deep understanding of certain aspects of the prob-
lem which can be relevant to solve the whole prob-
lem.

3. Some aspects of the real world problem could be
too complicated to model them complete or exactly.
During the modeling process it can be clarified, us-
ing a smaller version, whether partial aspects of the
model could be neglected or whether they are essen-
tial.

In any case it is essential that the simplifications be well
understood and documented.

Tricks of the Trade for Monolithic Models

Using state-of-the-art commercial solvers, e. g.,
XPressMP [XPressMP is by Dash Optimization,
http://www.dashoptimization.com] or CPLEX [CPLEX
is by ILOG, http://www.ilog.com], MILP problems can
be solved quite efficiently. In the case of MINLP and
using global optimization techniques, the solution effi-
ciency depends strongly on the individual problem and
the model formulation. However, as stressed in [21] for
both MILP and MINLP problem, it is recommended
that the full mathematical structure of a problem be
exploited, that appropriate reformulations of models
be made, and that problem-specific valid inequalities
or cuts be used. Software packages may also differ with
respect to the ability of presolving techniques, default
strategies for the branch-and-bound algorithm, cut
generation within the branch-and-cut algorithm, and,
last but not least, diagnosing and tracing infeasibilities,
which is an important issue in practice.

Here we collect a list of recommendation tricks that
help to improve the solution procedure of monolithic
MIP problems, i. e., standalone models that are solved
by one call to a MILP or MINLP solver. Among them
are:
� Use bounds instead of constraints if the dual values

are not necessarily required.
� Apply one’s own presolving techniques. Consider,

for instance, a set of inequalities

Bi jkıi jk � Ai jk ; 8fi; j; kg (2)

on binary variables ıi jk . They can be replaced by the
bounds

ıi jk D 0 ; 8f(i; j; k)
ˇ̌
Ai jk < Bi jk g

or, if one does not trust the < in a modeling lan-
guage, the bounds

ıi jk D 0 ; 8f(i; j; k)
ˇ̌
Ai jk � Bi jk � " g

where " > 0 is a small number, say, of the order
of 10�6. If Ai jk � Bi jk , then (2) is redundant. Note
that, due to the fact that we have three indices, the
number of inequalities can be very large.

� Exploit the presolving techniques embedded in the
solver; cf. [28].

� Exploit or eliminate symmetry: sometimes, symme-
try can lead to degenerate scenarios. There are situ-
ations, for instance, in scheduling where orders can
be allocated to identical production units. Another
example is the capacity design problem of a set of
production units to be added to a production net-
work. In that case, symmetry can be broken by re-
questing that the capacities of the units be sorted in
descending order, i. e., cu � cuC1. [29] exploit sym-
metry in order allocation for stock cutting in the pa-
per industry; this is a very enjoyable paper to read.

� Use special types of variables for which tailor-made
branching rules exist (this applies to semicontinu-
ous and partial-integer variables as well as special
ordered sets).

� Experiment with the various strategies offered by
the commercial branch-and-bound solvers for the
branch-and-bound algorithm.

� Experiment with the cut generation within the com-
mercial branch-and-cut algorithm, among them
Gomory cuts, knapsack cuts, or flow cuts; cf. [28].

� Construct one’s own valid inequalities for certain
substructures of problems at hand. Those inequal-
ities may be added a priori to a model, and in the ex-
treme case they would describe the complete convex
hull. As an example we consider the mixed-integer
inequality

x � C� ; 0 � x � X ; x 2 IRC0 ; � 2 IN (3)

which has the valid inequality

x � X � G(K � �) where

K :D
�
X
C

�
and G :D X � C (K � 1) :

(4)

http://www.dashoptimization.com
http://www.ilog.com


Modeling Difficult Optimization Problems M 2289

This valid inequality (4) is the more useful, the more
K and X/C deviate. A special case arising is often the
situation � 2 f0; 1g. Another example, taken from
[39], p. 129 is

A1˛1CA2˛2 � BC x x 2 IRC0 ˛1; ˛2 2 IN

(5)

which for B … IN leads to the valid inequality

bA1c˛1C

�
bA2c˛2 C

f2 � f
1 � f

�
� bBcC

x
1 � f

(6)

where the following abbreviations are used:

f :D B � bBc ;
f1 :D A1 � bA1c ; f2 :D A2 � bA2c : (7)

The dynamic counterpart of valid inequalities added
a priori to a model leads to cutting-plane algorithms
that avoid adding a large number of inequalities
a priori to the model (note, this can be equivalent
to finding the complete convex hull). Instead, only
those useful in the vicinity of the optimal solution
are added dynamically. For the topics of valid in-
equalities and cutting-plane algorithms the reader is
referred to books by Nemhauser and Wolsey [30],
Wolsey [39], and Pochet and Wolsey [32].

� Try disaggregation in MINLP problems. Global op-
timization techniques are often based on convex un-
derestimators. Univariate functions can be treated
easier than multivariate terms. Therefore, it helps to
represent bilinear or multilinear terms by their dis-
aggregated equivalences. As an example we consider
x1x2 with given lower and upper bounds X�i and XCi
for xi ; i D 1; 2. Wherever we encounter x1x2 in our
model we can replace it by

x1x2 D
1
2
(x212 � x21 � x22)

and

x12 D x1 C x2 :

The auxiliary variable is subject to the bounds
X�12 :D X�1 C X�2 and

X�12 � x12 � XC12 ;

X�12 :D X�1 C X�2 ; XC12 :D XC1 C XC2 :

This formulation has another advantage. It allows us
to construct easily a relaxed problem which can be
used to derive a useful lower bound. Imagine a prob-
lem P with the inequality

x1x2 � A : (8)

Then

x212 � X�1 x1 � X�2 x2 � 2A (9)

is a relaxation of P as each point (x1; x2) satisfying
(8) also fulfills (9). Note that an alternative disaggre-
gation avoiding an additional variable is given by

x1x2 D 1
4

�
(x1 C x2)2 � (x1 � x2)2

�
:

However, all of the creative attempts listed above may
not suffice to solve the MIP using one monolithic
model. That is when we should start looking at solv-
ing the problem by a sequence of problems. We have to
keep in mind that to solve a MIP problem we need to
derive tight lower and upper bounds with the gap be-
tween them approaching zero.

Decomposition Techniques

Decomposition techniques decompose a problem into
a set of smaller problems that can be solved in sequence
or in any combination. Ideally, the approach can still
compute the global optimum. There are standardized
techniques such as Benders Decomposition [cf. Floudas
([9], Chap. 6). But often one should exploit the struc-
ture of an optimization to construct tailor-made de-
compositions. This is outlined in the following subsec-
tions.

Column Generation

In linear programming parlance, the term column usu-
ally refers to variables. In the context of column-
generation techniques it has wider meaning and stands
for any kind of objects involved in an optimization
problem. In vehicle routing problems a column might,
for instance, represent a subset of orders assigned to
a vehicle. In network flow problems a column might
represent a feasible path through the network. Finally,
in cutting-stock problems [10,11] a column represents
a pattern to be cut.
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The basic idea of column generation is to decom-
pose a given problem into a master and subproblem.
Problems that might otherwise be nonlinear can be
completely solved by solving only linear problems. The
critical issue is to generate master and subproblems that
can both be solved efficiently. One of the most famous
examples is the elegant column-generation approach
of Gilmore and Gomory [10] for computing the min-
imal number of rolls to satisfy a requested demand for
smaller sized rolls. This problem, if formulated as one
monolithic problem, leads to a MINLP problem with
a large number of integer variables. In simple cases,
such as those described by Schrage ([35], Sect. 11.7),
it is possible to generate all columns explicitly, even
within a modeling language. Often the decomposition
has a natural interpretation. If not all columns can be
generated, the columns are added dynamically to the
problem. Barnhart et al. [2] give a good overview on
such techniques. A more recent review focusing on se-
lected topics of column generation is [25]. In the con-
text of vehicle routing problems, feasible tours contain
additional columns as needed by solving a shortest-
path problem with time windows and capacity con-
straints using dynamic programming [7].

More generally, column-generation techniques are
used to solve well-structured MILP problems involving
a huge number, say, several hundred thousand or mil-
lions, of variables, i. e., columns. Such problems lead to
large LP problems if the integrality constraints of the
integer variables are relaxed. If the LP problem con-
tains so many variables (columns) that it cannot be
solved with a direct LP solver (revised simplex, interior
point method), one starts solving this so-called master
problem with a small subset of variables yielding the
restricted master problem. After the restricted master
problem has been solved, a pricing problem is solved
to identify new variables. This step corresponds to the
identification of a nonbasic variable to be taken into the
basis of the simplex algorithm and the term column gen-
eration. The restricted master problem is solved with
the new number of variables. The method terminates
when the pricing problems cannot identify any new
variables. The simplest version of column generation is
found in the Dantzig–Wolfe decomposition [6].

Gilmore and Gomory [10,11] were the first to gen-
eralize the idea of dynamic column generation to an
integer programming (IP) problem: the cutting-stock

problem. In this case, the pricing problem, i. e., the sub-
problem, is an IP problem itself – and one refers to this
as a column-generationalgorithm. This problem is spe-
cial as the columns generated when solving the relaxed
master problem are sufficient to get the optimal integer
feasible solution of the overall problem. In general this
is not so. If not only the subproblem, but also the master
problem involves integer variables, then the column-
generation part is embedded into a branch-and-bound
method; this is called branch-and-price. Thus, branch-
and-price is integer programming with column gen-
eration. Note that during the branching process new
columns are generated; therefore the name branch-and-
price.

ColumnGeneration in cutting-stock Problems This
section describes the mathematical model for minimiz-
ing the number of roles or trimloss and illustrates the
idea of column generation.

Indices used in this model:

p 2 P :D fp1; : : : ; pNPg for cutting patterns (for-
mats).
Either the patterns are directly generated according
to a complete enumeration or they are generated by
column generation.
i 2 I :D fi1; : : : ; iN Ig given orders or widths.

Input Data We arrange the relevant input data size
here:

B [L] width of the rolls (raw material roles)
Di [-] number of orders for the width i
Wi [L] width of order type i

Integer Variables used in the different model variants:

�p 2 IN0 :D f0; 1; 2; 3; : : :g [�] indicates how of-
ten pattern p is used.
If cutting pattern p is not used, then we have
�p D 0.
˛i p 2 IN0 [�] indicates how often width i is con-
tained in pattern p.
This variable can take values between 0 and Di de-
pending on the order situation.
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Model The model contains a suitable object function

min f (˛i p; �p) ;

as well as the boundary condition (fulfillment of the de-
mand)

X
p

˛i p�p D Di ; 8i (10)

and the integrality constraints

˛i p 2 IN0 ; 8fipg ;

�p 2 IN0 ; 8fpg :
(11)

General Structure of the Problem In this form it
is a mixed-integer nonlinear optimization problem
(MINLP). This problem class is difficult in itself. More
serious is the fact that we may easily encounter several
million variables ˛i p . Therefore the problem cannot be
solved in this form.

Solution Method The idea of dynamic column gener-
ation is based on the fact that one must decide in a mas-
ter problem for a predefined set of patterns how often
every pattern must be used as well as calculate suitable
input data for a subproblem. In this subproblem new
patterns are calculated.

The master problem solves for the multiplicities of
existing patterns and has the shape

min
X
p

�p ;

with the demand-fulfill inequality (note that it is al-
lowed to produce more than requested)

X
i

Ni p�p � Di ; 8i (12)

and the integrality constraints

�p 2 IN0 ; 8fpg : (13)

The subproblem generates new patterns. Structurally it
is a knapsack problem with object function

min
˛i

1 �
X
p

Pi˛i ;

where Pi are the dual values (pricing information) of
the master problem (pricing problem) associated with

(12) and ˛i is an integer variable specifying how often
width i occurs in the new pattern. We add the knapsack
constraint with respect to the width of the rolls

X
i

Wi˛i � B ; 8i (14)

and the integrality constraints

˛i 2 IN0 ; 8fig : (15)

In some cases, ˛i could be additionally bounded by the
number, K, of knives.

Implementation Issues The critical issues in this
method, in which we alternate in solving the master
problem and the subproblem, are the initialization of
the procedure (a feasible starting point is to have one
requested width in each initial pattern, but this is not
necessarily a good one), excluding the generation of the
existing pattern by applying integer cuts, and the termi-
nation.

Column Enumeration

Column enumeration is a special variant of column
generation and is applicable when a small number of
columns is sufficient. This is, for instance, the case in
real-world cutting-stock problems when it is known
that the optimal solution has only a small amount of
trimloss. This usually eliminates most of the pattern.
Column enumeration naturally leads to a type of se-
lecting columns or partitioning models. A collection of
illustrative examples contained in ([35], Sect. 11.7) cov-
ers several problems of grouping, matching, covering,
partitioning, and packing in which a set of given objects
has to be grouped into subsets to maximize or mini-
mize some objective function. Despite the limitations
with respect to the number of columns, column enu-
meration has some advantages:
� No pricing problem,
� Easily applied to MIP problems,
� Column enumeration is much easier to implement.
In the online version of the vehicle routing prob-
lem described in [22] it is possible to generate the
complete set, Cr , of all columns, i. e., subsets of or-
ders i 2 O ; r D jOj, assigned to a fleet of n vehi-
cles, v 2 V . Let Cr be the union of the sets, Crv , i. e.,
Cr D [vD1:::nCrv with Cr D jCr j D 2rn, where Crv
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contains the subsets of orders assigned to vehicle v.
Note that Crv contains all subsets containing 1, 2, or r
orders assigned to vehicle v. The relevant steps of the
algorithm are:
1. Explicitly generate all columns Crv , followed by

a simple feasibility test w.r.t. the availability of the
cars.

2. Solve the routing-scheduling problem for all
columns Crv using a tailor-made branch-and-bound
approach (the optimal objective function values,
Z(�c ) or Z(�cv ), respectively, and the associated
routing-scheduling plan are stored).

3. Solve the partitioning model:

min
�cv

CrvX
cD1

NVX
vD1

Z(�cv )�cv ; (16)

s.t.

CrX
cD1

NVX
vD1

Ii (�cv)�cv D 1 ; 8i D 1; : : : ; r (17)

ensures that each order is contained exactly once, the
inequality

CrX
cD1

�cv � 1 ; 8v 2 V ; (18)

ensuring that at most one column can exist for each
vehicle, and the integrality conditions

�cv 2 f0; 1g ; 8c D 1; : : : ;Cr : (19)

Note that not all combinations of index pairs fc; vg
exist; each c corresponds to exactly one v, and vice
versa. This formulation allows us to find optimal so-
lutions with the defined columns for a smaller num-
ber of vehicles. The objective function and the parti-
tioning constraints are just modified by substituting

NVX
vD1jv2V

�!

NVX
vD1jv2V�

;

the equations

CrvX
cD1

NVX
vD1jv2V�

Ii (�cv)�cv D 1 ; 8i D 1; : : : ; r ;

and the inequality

CrvX
cD1

�cv � 1 ; 8v 2 V� ;

whereV� � V is a subset of the setV of all vehicles.
Alternatively, if it is not prespecified which vehicles
should be used but it is only required that not more
than NV

� vehicles be used, then the inequality

CrX
cD1

NVX
vD1jv2V

�cv � NV
� (20)

is imposed.
4. Reconstruct the complete solution and extract the

complete solution from the stored optimal solutions
for the individual columns.

Branch-and-Price

Branch-and-price (often coupled with branch-and-cut)
refers to a tailor-made algorithm exploiting the decom-
position structure of the problem to be solved. This ef-
ficient method for solving MIP problems with column
generation has been well described by Barnhart et al. [2]
and has been covered by Savelsbergh [34] in the first
edition of the Encyclopedia of Optimization. Here, we
give a list of more recent successful applications in var-
ious fields.
� Cutting stock: [3,38]
� Engine routing and industrial in-plant railroads: [26]
� Network design: [16]
� Lot sizing: [38]
� Scheduling (staff planning): [8]
� Scheduling of switching engines: [24]
� Supply chain optimization (pulp industry): [5]
� Vehicle routing: [7,15]

Rolling Time Decomposition

The overall methodology for solving the medium-
range production scheduling problem is to decom-
pose the large and complex problem into smaller
short-term scheduling subproblems in successive time
horizons, i. e., we decompose according to time.
Large-scale industrial problems have been solved by
Janak et al. [18,19]. A decomposition model is formu-
lated and solved to determine the current horizon and
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corresponding products that should be included in the
current subproblem. According to the solution of the
decomposition model, a short-term scheduling model
is formulated using the information on customer or-
ders, inventory levels, and processing recipes. The re-
sulting MILP problem is a large-scale complex problem
that requires a large computational effort for its solu-
tion. When a satisfactory solution is determined, the
relevant data are output and the next time horizon is
considered. The above procedure is applied iteratively
in an automatic fashion until the whole scheduling pe-
riod under consideration is finished.

Note that the decomposition model determines au-
tomatically how many days and products to consider in
the small scheduling horizon subject to an upper limit
on the complexity of the resulting mathematical model.

An Exhaustion Method

This method combines aspects of a constructive heuris-
tics and of exact model solving. We illustrate the ex-
hausting method by the cutting-stock problem de-
scribed in Sect. “Column Generation in cutting-stock
Problems”; assigning orders in a scheduling problem
would be another example. The elegant column gener-
ation approach by Gilmore and Gomory [10] is known
for producing minimal trimloss solutions with many
patterns. Often this corresponds to setup changes on
the machine and therefore is not desirable. A solution
with a minimal number of patterns minimizes the ma-
chine setup costs of the cutter. Minimizing simultane-
ously trimloss and the number of patterns is possible for
a small case of a few orders only exploiting the MILP
model by Johnston and Salinlija [20]. It contains two
conflicting objective functions. Therefore one could re-
sort to goal programming. Alternatively, we could pro-
duce several parameterized solutions leading to differ-
ent numbers of rolls to be used and patterns to be cut
from which the user would extract the one he likes best.

As the table above indicates, we compute tight lower
bounds on both trimloss and the number of patterns.
Even for up to 50 feasible orders, near-optimal solu-
tions are constructed in less than a minute.

Note that it would be possible to use the branch-
and-price algorithm described in [38] or [3] to solve
the one-dimensional cutting-stock problem with min-
imal numbers of patterns. However, these methods are

not easy to implement. Therefore, we use the following
approaches, which are much easier to program:
� V1: Direct usage of the model by Johnston and

Salinlija [20] for a small number, say, NI � 14, of
orders and Dmax � 10. In a preprocessing step we
compute valid inequalities as well as tight lower and
upper bounds on the variables.

� V2: Exhaustion procedure in which we generate suc-
cessively new patterns with maximal multiplicities.
This method is parameterized by the permissible
percentage waste Wmax, 1 � Wmax � 99. After a few
patterns have been generated with this parameteri-
zation, it could happen that is is not possible to gen-
erate any more patterns with waste restriction. In
this case the remaining unsatisfied orders are gen-
erated by V1 without the Wmax restriction.

Indices and Sets

In this model we use the indices listed in Johnston and
Salinlija [20]:

i 2 I :D fi1; : : : ; iN Ig denotes the sets of width.
j 2 | :D f j1; : : : ; jNPg denotes the pattern; N J � NI .

The patterns are generated by V1, or dynamically
by maximizing the multiplicities of a used pattern.

k 2K :D fk1; : : : ; kNPg denotes the multiplicity in-
dex to indicate how often a width is used in a pat-
tern.
The multiplicity index can be restricted by the ratio
of the width of the orders and the width of the given
rolls.

Variables

The following integer or binary variables are used:

ai jk 2 IN [�] specifies the multiplicity of pattern j.
The multiplicity can vary between 0 and
Dmax :D maxfDig. If pattern j is not used, we have
r j D p j D 0.

p j 2 f0; 1g [�] indicates whether pattern j is used at
all.

r j 2 IN [�] specifies how often pattern j is used.
The multiplicity can vary between 0 and
Dmax :D maxfDig. If pattern j is not used, we have
r j D p j D 0.

˛i p 2 IN [�] specifies how often width i occurs in
pattern p.
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# of # output file flag Wmax comment
rolls pat
--------------------------------------------------------------------
0 5 8 99 lower bound: minimal # of patterns
30 10 pat00.out 9 99 lower bound: minimal # of rolls
34 7 pat01.out 0 20
31 9 pat02.out 1 15
30 8 pat03.out 0 10 minimal number of rolls
32 9 pat04.out 1 8
30 8 pat05.out 0 6 minimal number of rolls
31 8 pat06.out 1 4

The best solution found contains 7 patterns!
The solution with minimal trimloss contain 30 rolls!

Improvement in the lower bound of pattern: 6!
Solutions with 6 patterns are minimal w.r.t.
to the number of patterns.

A new solution was found with only 6 patterns and 36 rolls: patnew.out
36 6 patnew.out 0 99

This width-multiplicity variable can take all values
between 0 and Di .

xi jk 2 f0; 1g [�] indicates whether width i appears
in pattern j at level k.
Note that xi jk D 0 implies ai jk D 0.

The Idea of the Exhaustion Method

In each iteration we generate m at most two or three
new patterns by maximizing the multiplicities of these
patterns, allowing no more than a maximum waste,
Wmax. The solution generated in iteration m is pre-
served in iterationmC 1 by fixing the appropriate vari-
ables. If the problem turns out to be infeasible (this
may happen if Wmax turns out to be restrictive), then
we switch to a model variant in which we minimize the
number of patterns subject to satisfying the remaining
unsatisfied orders.

Themodel is based on the inequalities (2,3,5,6,7,8,9)
in [20], but we add a few more additional ones or mod-
ify the existing ones. We exploit two objective func-
tions: maximizing the multiplicities of the patterns gen-
erated

max
�uX
jD1

r j ;

where u specifies the maximal number of patterns
(u could be taken from the solution of the column-
generation approach, for instance), or minimizing the
number of patterns generated

min
�uX
jD1

p j :

The model is completed by the integrality conditions

r j; ai jk 2 f0; 1; 2; 3; : : :g (21)

p j ; xi jk ; y jk 2 f0; 1g : (22)

The model is applied several times with ai jk � D̃i ,
where D̃i is the number of remaining orders of width
i. In particular, the model has to fulfill the relationships

kai jk > D̃i H) ai jk D 0 ; xi jk D 0

and

ai jk �
�
D̃i

k

�
or ai jk �

�
D̃i C Si

k

�
;

where Si denotes the permissible overproduction.
The constructive method described so far provides

an improved upper bound,  0u , on the number of pat-
tern.
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Computing Lower Bounds

To compute a lower bound we apply two methods.
The first method is to solve a bin-packing problem,
which is equivalent to minimizing the number of rolls
in the original cutting-stock problem described in the
Sect. “Column Generation in Cutting-Stock Problems”
for equal demands Di D 1. If solved with the column-
generation approach, this method is fast and cheap, but
the lower bound,  0l , is often weak. The second method
is to exploit the upper bound,  0u , on the number of pat-
terns obtained and to call the exact model as in V1. It is
impressive how quickly the commercial solvers CPLEX
and XpressMP improve the lower bound yielding  "

l .
For most examples with up to 50 orders we obtain
 0u � 

0
l � 2, but in many cases  0u �  0l D 1 or even

 0u D 
"
l .

Primal Feasible Solutions and HybridMethods

We define hybrid methods as methods based on any
combination of exact MIP methods with constructive
heuristics, local search, metaheuristics, or constraint
programming that produces primal feasible solutions.
Dive-and-fix, near-integer-fix, and fix-and-relax are
such hybrid methods. They are user-developed heuris-
tics exploiting the problem structure. In their kernel
they use a declarative model solved, for instance, by
CPLEX and XpressMP.

In constructive heuristics we exploit the structure
of the problem and compute a feasible point. Once
we have a feasible point we can derive safe bounds
on the optimum and assign initial values to the criti-
cal discrete variable, which could be exploited by the
GAMS/CPLEX mipstart option. Feasible points can
sometimes be generated by appropriate sequences of
relaxed models. For instance, in a scheduling problem
P with due times one might relax these due times ob-
taining the relaxed model R. The optimal solution, or
even any feasible point of R, is a feasible point of P if
the due times are models with appropriate unbounded
slack variables.

Constructive heuristics can also be established by
systematic approaches of fixing critical discrete vari-
ables. Such approaches are dive-and-fix and relax-and-
fix. In dive-and-fix the LP relaxation of an integer prob-
lem is to be solved followed by fixing a subset of frac-
tional variables to suitable bounds. Near-integer-fix is

a variant of dive-and-fix that fixes variables with frac-
tional values to the nearest integer point. Note that
these heuristics are subject to the risk of becoming in-
feasible.

The probability of becoming infeasible is less likely
in relax-and-fix. In relax-and-fix, following Pochet and
Wolsey ([32], pp. 109) we suppose that the binary
variables ı of a MIP problem P can be partitioned
into R disjoint sets S1; : : : ; SR of decreasing impor-
tance. Within these subsets Ur with U � [R

uDrC1S
u for

r D 1; : : : ; R � 1 can be chosen to allow for somewhat
more generality. Based on these partitions, RMIP prob-
lems are solved, denoted Pr with 1 � r � R to find
a heuristic solution to P. For instance in a production
planning problem, S1 might be all the ı variables asso-
ciated with time periods in f1; : : : ; t1g, Su those asso-
ciated with periods in ftu C 1; : : : ; tuC1g, whereas Ur

would would be the ı variables associated with the pe-
riods in some set ftr C 1; : : : ; urg.

In the first problem, P1, one only imposes the in-
tegrality of the important variables in S1 [ U1 and re-
laxes the integrality on all the other variables in S. As
P1 is a relaxation of P, for a minimization problem, the
solution of P1 provides a lower bound of P. The solu-
tion values, ı1, of the discrete variables are kept fixed
when solving Pr . This continues and in the subsequent
Pr , for 2 � r � R, we additionally fix the values of the ı
variables with index in Sr�1 at their optimal values from
Pr�1 and add the integrality restriction for the variables
in Sr [ Ur .

Either Pr is infeasible for some r 2 f1; : : : ; Rg, and
the heuristic failed, or else (xR , ıR) is a relax-and-
fix solution. To avoid infeasibilities one might apply
a smoothed form of this heuristic that allows for some
overlap of Ur�1 and Ur . Additional free binary vari-
ables in horizon r � 1 allow one to link the current hori-
zon r with the previous one. Usually this suffices to en-
sure feasibility. Relax-and-fix comes in various flavors
exploiting time-decomposition or time-partitioning
structures. Other decompositions, for instance plants,
products, or customers, are possible as well.

A local search can be used to improve the solution
obtained by the relax-and-fix heuristic. Themain idea is
to solve repeatedly the subproblem on a small number
of binary variables reoptimizing, for instance, the pro-
duction of some products. The binary variables for re-
solving could be chosen randomly or by ametaheuristic
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such as simulated annealing. All binary variables related
to them are released; the others are fixed to the previous
best values.

Another class of MIP hybrid method is estab-
lished by algorithms that combine a MIP solver with
another algorithmic method. A hybrid method ob-
tained by the combination of mixed-integer and con-
straint logic programming strategies has been devel-
oped and applied by Harjunkoski et al. [14] as well
as Jain and Grossmann [17] for solving scheduling
and combinatorial optimization problems. Timpe [37]
solved mixed planning and scheduling problems with
mixed MILP branch-and-bound and constraint pro-
gramming. Maravelias and Grossmann [27] proposed
a hybrid/decomposiiton algorithm for the short-term
scheduling of batch plants, and Roe et al. [33] pre-
sented a hybrid MILP/CLP algorithm for multipur-
pose batch process scheduling in which MILP is used
to solve an aggregated planning problem while CP is
used to solve a sequencing problem. Other hybrid al-
gorithms combine evolutionary and mathematical pro-
gramming methods; see, for instance, the heuristics by
Till et al. [36] for stochastic scheduling problems and by
Borisovsky et al. [4] for supply management problems.

Finally, one should not forget to add some algorith-
mic component that, for the minimization problem at
hand, would generate some reasonable bounds to be
provided in addition to the hybrid method. The hy-
brid methods discussed above provide upper bounds
by constructing feasible points. In favorite cases, the
MIP part of the hybrid solver provides lower bounds. In
other case, lower bounds can be derived from auxiliary
problems, which are relaxations of the original prob-
lem, and which are easier to solve.

Summary

If a givenMIP problem cannot be solved by an available
MIP solver exploiting all its internal presolving tech-
niques, one might reformulate the problem and obtain
an equivalent or closely related representation of real-
ity. Another approach is to construct MIP solutions and
bounds by solving a sequence of models. Alternatively,
individual tailor-made exact decomposition techniques
could help as well as primal heuristics such as relax-
and-fix or local search techniques on top of a MIP
model.
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In this paper, modeling languages are identified as
a new computer language paradigm and their applica-
tions for representing optimization problems is illus-
trated by examples.

Programming languages can be classified into three
paradigms: imperative, functional, and logic program-
ming [14]. The imperative programming paradigm is
closely related to the physical way of how (the von Neu-
mann) computer works: Given a set of memory loca-
tions, a program is a sequence of well defined instruc-
tions on retrieving, storing and transforming the con-
tent of these locations. The functional paradigm of com-
putation is based on the evaluation of functions. Every
program can be viewed as a function which translates
an input into a unique output. Functions are first-class
values, that is, they must be viewed as values them-
selves. The computational model is based on the �-
calculus invented by A. Church (1936) as a mathemat-
ical formalism for expressing the concept of a compu-
tation. The paradigm of logic programming is based on
the insight that a computation can be viewed as a kind
of (constructive) proof. Hence, a program is a notation
for writing logical statements together with specified al-
gorithms for implementing inference rules.

All three programming paradigms concentrate on
problem representation as a computation, that is, the
problem is stated in a way that describes the process of
solving it. The computation on how to solve a problem
‘is’ its representation. One may call such a notational
system an algorithmic language.

Definition 1 An algorithmic language describes (ex-
plicitly or implicitly) the computation of solving a prob-
lem, that is, ‘how’ a problem can be processed using
a machine. The computation consists of a sequence
of well-defined instructions which can be executed in
a finite time by a Turing machine. The information of
a problemwhich is captured by an algorithmic language
is called algorithmic knowledge of the problem.

Algorithmic knowledge to describe a problem is very
common in our everyday life – one only need to look
at cookery-books, or technical maintenance manuals –
that one may ask whether the human brain is ‘predis-
posed’ to preferably present a problem in describing its
solution recipe.

However, there exists at least one different way to
capture knowledge about a problem; it is the method

which describes ‘what’ the problem is by defining its
properties, rather than saying ‘how’ to solve it. Math-
ematically, this can be expressed by a set {x 2 X: R(x)},
where X is a continuous or discrete state space and R(x)
is a Boolean relation, defining the properties or the con-
straints of the problem; x is called the variable(s). A no-
tational system that represents a problem in this way is
called a declarative language.

Definition 2 A declarative language describes the
problem as a set using mathematical variables and con-
straints defined over a given state space. This space can
be finite or infinite, countable or noncountable. The in-
formation of a problem which is captured by a declar-
ative language is called declarative knowledge of the
problem.

The declarative representation, in general, does not give
any indication on how to solve the problem. It only
states what the problem is. Of course, there exists a triv-
ial algorithm to solve a declaratively stated problem,
which is to enumerate the state space and to check
whether a given x 2 X violates the constraint R(x). The
algorithm breaks down, however, whenever the state
space is infinite. But even if the state space is finite, it
is – for most nontrivial problems – so large that a full
enumeration is practically impossible.

Algorithmic and declarative representations are two
fundamentally different kinds of modeling and rep-
resenting knowledge. Declarative knowledge answers
the question ‘what is?’, whereas algorithmic knowledge
asks ‘how to?’ [4]. An algorithm gives an exact recipe
of how to solve a problem. A mathematical model, i. e.
its declarative representation, on the other hand, (only)
defines the problem as a subspace of the state space. No
algorithm is given to find all or a single element of the
feasible subspace.

Why Declarative Representation

The question arises, therefore, why to present a prob-
lem using a declarative way, since one must solve it
anyway and, hence, represent as an algorithm? The rea-
sons are, first of all, conciseness, insight, and documen-
tation. Many problems can be represented declaratively
in a very concise way, while the representation of their
computation is long and complex. Concise writings fa-
vor also the insight of a problem. Furthermore, in many
scientific papers a problem is stated in a declarative
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way using mathematical equations and inequalities for
documentational purposes. This gives a clear statement
of the problem and is an efficient way to communi-
cate it to other scientists. However, documentation is
by no means limited to human beings. One can imag-
ine declarative languages implemented on a computer
like algorithmic languages, which are parsed and inter-
preted by a compiler. In this way, an interpretative sys-
tem can analyse the structure of a declarative program,
can pretty-print it on a printer or a screen, can classify
it, or symbolically transform it in order to view it as a di-
agram or in another textual form.

Of course, the most interesting question is whether
the declarative way of representing a problem could be
of any help in solving the problem.

Indeed, for certain classes of problems the computa-
tion can be obtained directly from a declarative formu-
lation. This is true for all recursive definitions. A clas-
sical example is the algorithm of Euclid to find the
greatest common divisor (gcd) of two integers. One can
proof that

gcd(a; b) D

(
gcd(b; a mod b); b > 0
a; b D 0;

which is clearly a declarative statement of the prob-
lem. In Scheme, a functional language, this formula can
be implemented directly as a function in the following
way:

(define (gcd a b)
(if(= b 0) a

(gcd b (remainder a b))))

Similar formulations can be given for any other lan-
guage which includes recursion as a basic control struc-
ture. This class of problems is surprisingly rich. The
whole paradigm of dynamic programming can be sub-
sumed under this class.

A class of problems of a very different kind are linear
programs, which can be represented declaratively in the
following way:

fmin cx : Ax � bg

From this formulation – in contrast to the class of
recursive definitions – nothing can be deduced that
would be useful in solving the problem. However, there

exists well-known methods, for example the simplex
method, which solves almost all instances in a very ef-
ficient way. Hence, to make the declarative formulation
of a linear program useful for solving it, one only needs
to translate it into a form, the simplex algorithm accepts
as input. The translation from the declarative formu-
lation {min cx: Ax � b} to such an input-form can be
automated. This concept can be extended to nonlinear
and discrete problems.

AlgebraicModeling Languages

The idea to state the mathematical problem in a declar-
ative way and to translate it into an ‘algorithmic’
form by a standard procedure led to a new language
paradigm emerged basically in the community of op-
erations research at the end of the 1980s, the algebraic
modeling languages (AIMMS [1], AMPL [7], GAMS
[2], LINGO [18], and LPL [12] and others). These lan-
guages are becoming increasingly popular even outside
the community of operations research. Algebraic mod-
eling languages represent a problem in a purely declara-
tive way, although most of them include computational
facilities to manipulate the data as well as certain con-
trol structures.

One of their strength is the complete separation of
the problem formulation as a declarative model from
finding a solution, which is supposed to be computed
by an external program called a solver. This allows
the modeler not only to separate the two main tasks
of model formulation and model solution, but also to
switch easily between several solvers. This is an invalu-
able benefit for many difficult problems, since it is not
uncommon that a model instance can be solved using
onemethod, and another instance is solvable only using
another method. Another advantage of such languages
is to separate clearly between model structure, which
only contains parameters (place-holder for data) but no
data, and model instance, in which the parameters are
replaced by a specific data set. This leads to a natural
separation between model formulation and data gath-
ering stored in databases. Hence, the main features of
these algebraic modeling languages are:
� purely declarative representation of the problem;
� clear separation between formulation and solution;
� clear separation between model structure andmodel

data.
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It is, however, naive to think that one only needs to for-
mulate a problem in a concise declarative form and to
link it somehow to a solver in order to solve it. First
of all, the ‘linking process’ is not so straightforward as
it seems initially. Second, a solver may not exist which
could solve the problem at hand in an efficient way. One
only needs to look at Fermat’s last conjecture which can
be stated in a declarative way as {a, b, c, n 2 N+: an + bn

= cn, a, b, c � 1, n > 2} to convince oneself of this fact.
Even worse, one can state a problem declaratively for
which no solver can exist. This is true already for the
rather limited declarative language of first order logic,
for which no algorithm exists which decides whether
a formula is true or false in general (see [5]).

In this sense, efforts are under way actually in the
design of such languages which focus on flexibly link-
ing the declarative formulation to a specific solver to
make this paradigm of purely declarative formulation
more powerful. This language-solver-interface problem
has different aspects and research goes in many di-
rections. A main effort is to integrate symbolic model
transformation rules into the declarative language in
order to generate formulations which are more use-
ful for a solver. AMPL, for example, automatically de-
tects partially separable structure and computes second
derivatives [8]. This information are also handed over
to a nonlinear solver. LPL, to cite a very different un-
dertaking, has integrated a set of rules to translate sym-
bolically logical constraints into 0–1 constraint [11]. To
do this in an intelligent way is all but easy, because the
resulting 0–1 formulation should be as sharp as pos-
sible. This translation is useful for large mathematical
models which must be extended by a few logical con-
ditions. For many applications the original model be-
comes straightforward while the transformed is com-
plicated but still relatively easy to solve (examples were
given in [11]). Even if the resulting formulation is not
solvable efficiently, the modeler can gain more insights
into the structure of the model from such a symbolic
translation procedure, and eventually modify the origi-
nal formulation.

Second GenerationModeling Languages

Another research activity, actually under way, goes in
the direction of extending the algebraic modeling lan-
guages in order to express also algorithmic knowledge.

This is necessary, because even if one could link an
purely declarative language to any solver, it remains
doubtful of whether this can be done efficiently in all
cases. Furthermore, for many problems it is not useful
to formulate them in a declarative way: the algorithmic
way is more straightforward and easier to understand.
For still other problems a mixture of declarative and
algorithmic knowledge leads to a superior formulation
in terms of understandability as well as in terms of
efficiency, (examples are given below to confirm this
findings).

Therefore, AIMMS integrates control structures
and procedure definitions. GAMS, AMPL and LPL also
allow the modeler to write algorithms powerful enough
to solves models repeatedly.

A theoretical effort was undertaken in [10] to spec-
ify a modeling language which allows the modeler (or
the programmer) to combine algorithmic and declar-
ative knowledge within the same language framework
without intermingle them. The overall syntax structure
of a model (or a program) in this framework is as fol-
lows:

MODELModelName
hdeclarative part of the modeli

BEGIN
halgorithmic part of the modeli

ENDModelName.

Declarative and algorithmic knowledge are clearly sep-
arated. Either part can be empty, meaning that the
problem is represented in a purely declarative or in
a purely algorithmic form. The declarative part consists
of the basic building blocks of declarative knowledge:
variables, parameters, constraints, model checking fa-
cilities, and sets (that is a way to ‘multiply’ basic build-
ing blocks). This part may also contain ‘ordinary decla-
rations’ of an algorithmic language (e. g., type and func-
tion declarations). Furthermore, one can declare whole
models within this part, leading to nested model struc-
tures, which is very useful in decomposing a complex
problem into smaller parts. The algorithmic part, on
the other hand, consists of all control structures which
make the language Turing complete. One may imagine
his or her favorite programming language being imple-
mented in this part. A language which combines declar-
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ative and algorithmic knowledge in this way is called
modeling language.

Definition 3 A modeling language is a notational sys-
temwhich allows one to combine (not tomerge) declar-
ative and algorithmic knowledge in the same language
framework. The content captured by such a notation is
called amodel.

Such a language framework is very flexible. Purely
declarative models are linked to external solvers to be
solved; purely algorithmic models are programs, that is
algorithms + data structures, in the ordinary sense.

Modeling Language
and Constraint Logic Programming

Merging declarative and algorithmic knowledge is not
new, although it is not very common in language de-
sign. The only existing language paradigm doing it is
constraint logic programming (CLP), a refinement of
logic programming [13]. There are, however, impor-
tant differences between the CLP paradigm and the
paradigm of modeling language as defined above.
1) In CLP the algorithmic part – normally a search

mechanism – is behind the scene and the compu-
tation is intrinsically coupled with the declarative
language itself. This could be a strength because the
programmer does not have to be aware of how the
computation is taking place, he or she only writes
the rules in a descriptive, that is declarative, way
and triggers the computation by a request. In reality,
however, it is an important drawback, because – for
most nontrivial problem – the programmer ‘must’
be aware on how the computation is taking place.
Therefore, to guide the computation in CLP, the
declarative program is interspersed with additional
rules which have nothing to do with the description
of the original problem. In a modeling language, the
user either links the declarative part to an external
solver or writes the solver within the language. In
either case, both parts are strictly separated. Why is
this separation so important? Because it allows the
modeler to ‘plug in’ different solvers without touch-
ing the overall model formulation.

2) The second difference is that the modeling lan-
guage paradigm lead automatically to modular de-
sign. This is probably to hottest topic in software

engineering: building components. Software engi-
neering teaches us that a complex structure can be
only managed efficiently by break it down intomany
relatively independent components. The CLP ap-
proach leads more likely to programs that are dif-
ficult to survey and hard to debug and to main-
tain, because such considerations are entirely absent
within the CLP paradigm.

3) On the other hand, the community of CLP has de-
veloped methods to solve specific classes of com-
binatorial problems which seems to be superior to
other methods. This is because they rely on propaga-
tion, simplification of constraints, and various con-
sistency techniques. In this sense, CLP solvers could
be used and linked with modeling languages. Such
a project is actually under way between the AMPL
language and the ILOG solver [6,17].

Hence, while the representation of models is probably
best done in the language framework of modeling lan-
guages, the solution process can taken place in a CLP
solver for certain problems.

Modeling Examples

Five modeling examples are chosen from very different
problem domains to illustrate the highlights of the pre-
sented paradigm of modeling language. The first two
examples show that certain problems are best formu-
lated using algorithmic knowledge, the next two exam-
ples show the power of a declarative formulation, and
a last example indicates that mixing both paradigms is
sometimes more advantageous.

Sorting

Sorting is a problem which is preferably expressed in
an algorithmic way. Declaratively, the problem could be
formulated as follows: Find a permutation  such that
A� i �A� i+1 for all i 2 {1, . . . , n�1} whereA1, . . . , n is an
array of objects on which an order is defined. It is diffi-
cult to imagine a ‘solver’ that could solve this problem
as efficiently as the best known sorting algorithms such
as Quicksort, of which the implementation is straight-
forward.

The reason why the sorting problem is best formu-
lated as an algorithm is probably that the state space is
exponential in the number of items, however, the best
algorithm only has complexity O(n log n).
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The n-Queens Problem

The n-queens problem is to place n queens on a chess-
board of dimension n × n in such a way, that they can-
not beat each other. This problem can be formulated
declarative as follows: {xi, xj 2 {1, . . . , n}:xi 6D xj, xi+ i 6D
xj + j, xi � i 6D xj � j}, where xi is the column position
of the ith queen (i. e. the queen in row i).

Using the LPL [12] formulation:

MODEL nQueens;
PARAMETER n; SET i ALIAS j ::=f1; : : : ; ng;
DISTINCT VARIABLE xfig[1; : : : ; n];
CONSTRAINT Sfi; j : i < jg:

x[i]+ i <> x[ j]+ jAND x[i]� i <> x[ j]� j;
END

the author was able to solve problems for n � 8 us-
ing a general MIP solver. The problem is automatically
translated into a 0–1 problem by LPL. Replacing the
MIP-solver by a tabu search heuristic, problems with
n � 50 were solvable within the LPL framework. Using
the constraint language OZ [19] problems of n � 200
are efficiently solvable using techniques of propagation
and variable domain reductions. However, the success
of all these methods seems to be limited compared to
the best we can attain. In [20,21], Sosic Rok and Gu
Jun presented a polynomial time local heuristic that can
solve problems of n� 3 000 000 in less than oneminute.
The presented algorithm is very simple. The conclusion
seems to be for the n-queens problem that an algorith-
mic formulation is advantageous.

A Two-Person Game

Two players choose at random a positive number and
note it on a piece of paper. They then compare them. If
both numbers are equal, then neither player gets a pay-
off. If the difference between the two numbers is one,
then the player who has chosen the higher number ob-
tains the sum of both; otherwise the player who has cho-
sen the smaller number obtains the sum of both. What
is the optimal strategy for a player, i. e. which numbers
should be chosen with what frequencies to get the max-
imal payoff? This problem was presented in [9] and is

a typical two-person zero-sum game. In LPL, it can be
formulated as follows:

ODEL Game ‘finite two-person zero-sum game’;
SET i ALIAS j := /1 : 50/;
PARAMETER pfi; jg := IF( j > i; IF( j = i + 1;

�i � j;MIN(i; j)); IF( j < i;�p[ j; i]; 0));
VARIABLE xfig;
CONSTRAINT R : SUMfig x[i] = 1;
MAXIMIZE gain: MINf jg(SUMfigp[ j; i] � x[i]);

END Game.

This is an very compact way to declaratively formu-
late the problem and it is difficult to imagine how this
could be achieved using algorithmic knowledge alone.
It is also an efficient way to state the problem, because
large instances can be solved by an linear programming
solver. LPL automatically transforms it into an linear
program. (By the way, the problem has an interest-
ing solution: Each player should only choose number
smaller than six.)

Equal Circles in a Square

The problem is to find the maximum diameter of n
equal mutually disjoint circles packed inside a unit
square.

In LPL, this problem can be compactly formulated
as follows:

MODEL circles ‘pack equal circles in a square’;
PARAMETER n ‘number of circles’;
SET i ALIAS j = 1; : : : ; n;
VARIABLE

t ‘diameter of the circles’;
xfig[0; 1] ‘x-position of the center’;
yfig[0; 1] ‘y-position of the center’;

CONSTRAINT
Rfi; j : i < jg ‘circles must be disjoint’:

(x[i]� x[ j])2 + (y[i] � y[ j])2 � t;
MAXIMIZE obj ‘maximize diameter’: t;
END

C.D. Maranas et al. [15] obtained the best known solu-
tions for all n � 30 and, for n = 15, an even better one
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using an equivalent formulation in GAMS and linking
it to MINOS [16], an well-known nonlinear solver.

The (Fractional) Cutting-Stock Problem

Paper is manufactured in rolls of width B. A set of cus-
tomers W orders dw rolls of width bw(with w 2 W).
Rolls can be cut in many ways, every subset P0 � W
such that

P
i2P0 yi bi � B is a possible cut-pattern, where

yi is a positive integer. The question is how the initial
roll of width B should be cut, that is, which patterns
should be used, in order to minimize the overall paper
waste. A straightforward formulation of this problem is
to enumerate all patterns, each giving a variable, then to
minimize the number of used patterns while fulfilling
the demands. The resulting model is a very large linear
program which cannot be solved.

A well-known method in operations research to
solve such kind of problems is to use a column genera-
tion method (see [3] for details), that is, a small instance
with only a few patterns is solved and a rewarding col-
umn – a pattern – is added repeatedly to the problem.
The new problem is then solved again. This process is
repeated, until no pattern can be added. To find a re-
warding pattern, another problem – named a knapsack
problem – must be solved.

The problem can be formulated partially be algo-
rithmic partially by declarative knowledge. It consists
of two declaratively formulated problems (a linear pro-
gram and an knapsack problem), which are both re-
peatedly solved. In a pseudocode one could formulate
the algorithmic knowledge as follows:

SOLVE the small cutting-stock problem
SOLVE the knapsack problem
WHILE a rewarding pattern was found DO

add pattern to the cutting-stock problem
SOLVE the cutting-stock problem again
SOLVE the knapsack problem again

ENDWHILE

The two models (the cutting-stock problem and the
knapsack problem) can be formulated declaratively. In
the proposed framework of modeling language, the
complete problem can now be expressed as in the pro-
gram below.

MODEL CuttingStock;
MODEL Knapsack(i;w; p;K; x; obj);
SET i;
PARAMETER wfig; pfig; K;
INTEGER VARIABLE xfig;
CONSTRAINT R: SUMfig w � x � K;
MAXIMIZE obj: SUMfig p � x;

END Knapsack.
SET
w ‘rolls ordered’; p ‘possible patterns’;

PARAMETER
afw; pg ‘pattern table’;
dfwg ‘demands’;
bfwg ‘widths of ordered rolls’;
B ‘initial width’;
INTEGER yfwg ‘new added pattern’;
C ‘contribution of a cut’;

VARIABLE
Xfpg ‘number of rolls cut according to p’;

CONSTRAINT
Demfwg: SUMfpg a � X � d;

MINIMIZE obj: SUMfpg X;
BEGIN

SOLVE;
SOLVE Knapsack(w; b;Dem.dual; B; y;C);
WHILE (C > 1) DO
p := p + f‘pattern_’ + str(#p)g;
afw; #pg := y[w];
SOLVE;
SOLVE Knapsack(w; b;Dem.dual; B; y;C);

END;
END CuttingStock.

This formulation has several remarkable properties:
1) It is short and readable. The declarative part consists

of the (small) linear cutting-stock problem, it also
contains, as a submodel, a knapsack problem. The
algorithmic part implements thecolumn generation
method. Both parts are entirely separated.

2) It is a complete formulation, except from the data.
No other code is needed; both models can be solved
using a standard MIP solver (since the knapsack
problem is small in general).

3) It has a modular structure. The knapsack problem
is an independent component with its own name
space; there is no interference with the surrounding
model. It could even be declared outside the cutting-
stock problem.
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4) The cutting-stock problem is only one problem of
a large class of relevant problems which are solved
using a column generation or, alternatively, a row-
cut generation.

Conclusion

It has been shown that certain problems are best formu-
lated as algorithms, others in a declarative way, still oth-
ers need both paradigms to be stated concisely. Com-
puter science made available many algorithmic lan-
guages; they can be contrasted to the algebraic mod-
eling languages which are purely declarative. A lan-
guage, called modeling language, which combines both
paradigms was defined in this paper and examples were
given showing clear advantages of doing so. Its is more
powerful than both paradigms separated.

However, the integration of algorithmic and declar-
ative knowledge cannot be done in an arbitrary way.
The language design must follow certain criteria well-
known in computer science. The main criteria are: reli-
ability and transparency. Reliability can be achieved by
a unique notation to codemodels, that is, by amodeling
language, and by various checking mechanisms (type
checking, unit checking, data integrity checking and
others). Transparency can be obtained by flexible de-
composition techniques, like modular structure as well
as access and protection mechanisms of these structure,
well-known techniques in language design and software
engineering.

Solving efficiently and relevant optimization prob-
lems using present desktop machine not only asks for
fast machines and sophisticated solvers, but also for for-
mulation techniques that allow the modeler to commu-
nicate the model easily and to build it in a readable and
maintainable way.

See also

� Continuous Global Optimization: Models,
Algorithms and Software

� Large Scale Unconstrained Optimization
� Optimization Software

References

1. Bisschop J (1998) AIMMS, the modeling system. Paragon
Decision Techn, Haarlem, www.paragon.nl

2. Brooke A, Kendrick D, Meeraus A (1988) GAMS. A user’s
guide. Sci Press, Marrickville

3. Chvátal V (1973) Linear programming. Freeman, New York
4. Feigenbaum EA (1996) How the ‘what’ becomes the ‘how’.

CommACM 39(5):97–104
5. Floyd RW, Beigel R (1994) The language of machines, an

introduction to computability and formal languages. Com-
puter Sci Press, Rockville

6. Fourer R (1998) Extending a general-purpose algebraic
modeling language to combinatorial optimization: A logic
programming approach. In: Woodruff DL (ed) Advances
in Computational and Stochastic Optimization, Logic Pro-
gramming, and Heuristic Search: Interfaces in Computer
Sci and Oper Res. Kluwer, Dordrecht, pp 31–74

7. Fourer R, Gay DM, Kernighan BW (1993) AMPL, a modeling
language for mathematical programming. Sci Press, Mar-
rickville

8. GAY DM (1996) Automatically finding and exploiting par-
tially separable structure in nonlinear programming prob-
lems. AT&T Bell Lab Murray Hill, New Jersey

9. Hofstadter DR (1988) Metamagicum, Fragen nach der Es-
senz von Geist und Struktur. Klett-Cotta, Stuttgart

10. Hürlimann T (1997) Computer-based mathematical mod-
eling. Habilitations Script. Fac Economic and Social Sci, Inst
Informatics, Univ Fribourg

11. Hürlimann T (1998) An efficient logic-to-IP translation pro-
cedure. Working Paper, Inst Informatics, Univ Fribourg,
ftp://ftp-iiuf.unifr.ch/pub/lpl/doc/APMOD1.pdf

12. Hürlimann T (1998) Reference manual for the LPL
modeling language. Working Paper, version 4.30.
Inst Informatics, Univ. Fribourg, Fribourg, ftp://ftp-
iiuf.unifr.ch/pub/lpl/doc/Manual.ps

13. Jaffar J, Maher MJ (1995) Constraint logic programming:
A survey. Handbook Artificial Intelligence and Logic Pro-
gramming. Oxford Univ Press, Oxford

14. Louden KC (1993) Programming languages – Principles
and practice. PWS/Kent Publ, Boston

15. Maranas CD, Floudas CA, Pardalos PM (1993) New results
in the packing of equal circles in a square. Dept Chemical
Engin, Princeton Univ, Princeton

16. Murtagh BA, Saunders MA (1987) MINOS 5.0, user guide.
Systems Optim Lab, Dept Oper Res, Stanford Univ, Stan-
ford

17. ILOG SA (1997) ILOG solver 4.0 user’s manual; ILOG solver
4.0 reference manual. ILOG, Mountain View

18. Schrage L (1998) Optimization modeling with LINGO.
Lindo Systems, Chicago, www.lindo.com

19. Smolka G (1995) The Oz programming model. In: van
Leeuwen J (ed) Computer Sci Today, 1000 of Computer Sci.
Springer, Berlin, pp 324–343

20. Sosic R, Gu J (1990) A polynomial time algorithm for the
n-queens problem. SIGART Bull 1(3):7–11

21. Sosic R, Gu J (1991) 3,000,000 queens in less than one
minute. SIGART Bull 2(1):22–24

http://www.paragon.nl
http://www.lindo.com


Molecular Distance Geometry Problem M 2305

Molecular Distance
Geometry Problem
CARLILE LAVOR1, LEO LIBERTI2,
NELSON MACULAN3

1 State University of Campinas (IMECC-UNICAMP),
Campinas, Brazil

2 École Polytechnique, LIX, Palaiseau, France
3 Federal University of Rio de Janeiro (COPPE-UFRJ),
Rio de Janeiro, Brazil

MSC2000: 46N60

Article Outline

Introduction
ABBIE Algorithm
Global Continuation Algorithm
D.C. Optimization Algorithms
Geometric Build-up Algorithm
BP Algorithm
Conclusion
Acknowledgements
References

Introduction

This article presents a general overview of some of the
most recent approaches for solving the molecular dis-
tance geometry problem, namely, the ABBIE algorithm,
the Global Continuation Algorithm, d.c. optimization
algorithms, the geometric build-up algorithm, and the
BP algorithm.

The determination of the three-dimensional struc-
ture of a molecule, especially in the protein folding
framework, is one of the most important problems in
computational biology. That structure is very impor-
tant because it is associated to the chemical and biolog-
ical properties of the molecule [7,11,46]. Basically, this
problem can be tackled in two ways: experimentally, via
nuclear magnetic resonance (NMR) spectroscopy and
X-ray crystallography [8], or theoretically, through po-
tential energy minimization [19].

The Molecular Distance Geometry Problem
(MDGP) arises in NMR analysis. This experimental
technique provides a set of inter-atomic distances dij
for certain pairs of atoms (i,j) of a given protein [23,24,
33,56,57]. The MDGP can be formulated as follows:

Given a set S of atom pairs (i,j) on a set of m
atoms and distances di j defined over S, find positions
x1, : : : ; xm 2 R3 of the atoms in the molecule such that

jjxi � x jjj D di j ; 8(i; j) 2 S: (1)

When the distances between all pairs of atoms of
a molecule are given, a unique three-dimensional struc-
ture can be determined by a linear time algorithm [16].
However, because of errors in the given distances, a so-
lution may not exist or may not be unique. In addition
to this, because of the large scale of problems that arise
in practice, the MDGP becomes very hard to solve in
general. Saxe [51] showed that the MDGP is NP-com-
plete even in one spatial dimension.

The exact MDGP can be naturally formulated as
a nonlinear global minimization problem, where the
objective function is given by

f (x1; : : : ; xm) D
X

(i; j)2S

(jjxi � x jjj
2 � d2i j)

2 : (2)

This function is everywhere infinitely differentiable and
has an exponential number of local minimizers. As-
suming that all the distances are correctly given, x 2
R3m solves the problem if and only if f (x) D 0.

Formulations (1) and (2) correspond to the exact
MDGP. Since experimental errors may prevent solu-
tion existence (e. g. when the triangle inequality

di j � dik C dk j

is violated for atoms i, j, k), we sometimes consider an
�-optimum solution of (1), i. e. a solution x1; : : : ; xm
satisfying

jjjxi � x jjj � di jj � � ; 8(i; j) 2 S : (3)

Moré and Wu [41] showed that even obtaining such an
�-optimum solution is NP-hard for � small enough.

In practice, it is often just possible to obtain lower
and upper bounds on the distances [4]. Hence a more
practical definition of the MDGP is to find positions
x1; : : : ; xm 2 R3 such that

li j � jjxi � x jjj � ui j ; 8(i; j) 2 S ; (4)

where lij and uij are lower and upper bounds on the dis-
tance constraints, respectively.
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The MDGP is a particular case of a more general
problem, called the distance geometry problem [6,13,
14,15], which is intimately related to the Euclidean dis-
tance matrix completion problem [1,28,38].

Several methods have been developed to solve the
MDGP, including the EMBED algorithm by Crippen
and Havel [12,25], the alternating projection algorithm
by Glunt et al. [20], spectrial gradient methods by
Glunt et al. [21,22], the multi-scaling algorithm by
Trosset et al. [29,52], a stochastic/perturbation algo-
rithm by Zou, Byrd, and Schnabel [58], variable neigh-
borhood search-based algorithms by Liberti, Lavor, and
Maculan [35,39], the ABBIE algorithm by Hendrick-
son [26,27], the Global Continuation Algorithm by
Moré and Wu [41,42,43,44,45], the d.c. optimization
algorithms by An and Tao [2,3], the geometric build-
up algorithm by Dong, Wu, and Wu [16,17,54], and
the BP algorithm by Lavor, Liberti, and Maculan [37].
Two completely different approaches for solving the
MDGP are given in [34] (based on quantum compu-
tation) and [53] (based on algebraic geometry).

The wireless network sensor positioning problem is
closely related to the MDGP, the main difference being
the presence of fixed anchor points with known posi-
tions: results derived for this problem can often be ap-
plied to the MDGP. Amongst the most notable, [18]
shows that the MDGP associated to a trilateration
graph (a graph with an order on the vertices such that
each vertex is adjacent to the preceding 4 vertices) can
be solved in polynomial time; [40] provides a detailed
study of Semi Definite Programming (SDP) relaxations
applied to distance geometry problems.

ABBIE Algorithm

In [26,27], Hendrickson describes an approach to the
exact MDGP that replaces a large optimization prob-
lem, given by (2), by a sequence of smaller ones. He
exploits some combinatorial structure inherent in the
MDGP, which allows him to develop a divide-and-
conquer algorithm based on a graph-theoretic view-
point.

If the atoms and the distances are considered as
nodes and edges of a graph, respectively, the MDGP
can be described by a distance graph and the solution
to the problem is an embedding of the distance graph
in an Euclidean space. When some of the atoms can be

moved without violating any distance constraints, there
may bemany embeddings. The graph is then called flex-
ible or otherwise rigid.

If the graph is rigid or does not have partial reflec-
tions, for example, then the graph has a unique embed-
ding. These necessary conditions can be used to find
subgraphs that have unique embeddings. The problem
can then be solved by decomposing the graph into such
subgraphs, in which the minimization problems associ-
ated to the function (2) are solved. The solutions found
for the subgraphs can then be combined into a solution
for the whole graph.

This approach to the MDGP has been implemented
in a code named ABBIE and tested on simulated data
provided by the bovine pancreatic ribonuclease A,
a typical small protein consisting of 124 amino acids,
whose three-dimensional structure is known [47]. The
data set consists of all distances between pairs of atoms
in the same amino acid, along with 1167 additional dis-
tances corresponding to pairs of hydrogen atoms that
were within 3.5Å of each other. It was used fragments
of the protein consisting of the first 20, 40, 60, 80 and
100 amino acids as well as the full protein, with two sets
of distance constraints for each size corresponding to
the largest unique subgraphs and the reduced graphs.
These problems have from 63 up to 777 atoms.

Global Continuation Algorithm

In [43], Moré and Wu formulated the exact MDGP in
terms of finding the global minimum of a similar func-
tion to (2),

f (x1; : : : ; xm) D
X

(i; j)2S

wi j(jjxi � x jjj
2 � d2i j)

2 ; (5)

where wij are positive weights (in numerical results
wi j D 1 was used).

Following the ideas described in [55], Moré andWu
proposed an algorithm, called Global Continuation Al-
gorithm, based on a continuation approach for global
optimization. The idea is gradually transform the func-
tion (5) into a smoother function with fewer local min-
imizers, where an optimization algorithm is then ap-
plied to the transformed function, tracing their mini-
mizers back to the original function. For other works
based on continuation approach, see [9,10,30,31,32,49].
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The transformed function h f i	 , called the Gaussian
transform, of a function f : Rn ! R is defined by

h f i	(x) D
1

n/2�n

Z
Rn

f (y) exp
�
�
jjy � xjj2

�2

�
dy ;

(6)

where the parameter � controls the degree of smooth-
ing. The value h f i	(x) is a weighted average of f (x) in
a neighborhood of x, where the size of the neighbor-
hood decreases as � decreases: as �! 0, the average is
carried out on the singleton set fxg, thus recovering the
original function in the limit. Smoother functions are
obtained as � increases.

This approach to the MDGP has been implemented
and tested on two artificial models of problems, where
the molecule has m D s3 atoms located in the three-
dimensional lattice

f(i1; i2; i3) : 0 � i1 < s; 0 � i2 < s; 0 � i3 < sg

for an integer s � 1. In numerical results, it was consid-
ered m D 27; 64; 125; 216.

In the first model, the ordering for the atoms is spec-
ified by letting i be the atom at the position (i1,i2,i3),

i D 1C i1 C si2 C s2 i3;

and the set of atom pairs whose distances are known, S,
is given by

S D f(i; j) : ji � jj � rg ; (7)

where r D s2. In the second model, the set S is specified
by

S D f(i; j) : jjxi � x jjj �
p
rg ; (8)

where xi D (i1; i2; i3) and r D s2. For both models, s is
considered in the interval 3 � s � 6.

In (7), S includes all nearby atoms, while in (8), S in-
cludes some of nearby atoms and some relatively dis-
tant atoms.

It was shown that the Global Continuation Algo-
rithm usually finds a solution from any given starting
point, whereas the local minimization algorithm used
in the multistart methods is unreliable as a method for
determining global solutions. It was also showed that
the continuation approach determines a global solution
with less computational effort that is required by the
multistart approach.

D.C. Optimization Algorithms

In [2,3], An and Tao proposed an approach for solving
the exact MDGP, based on the d.c. (difference of con-
vex functions) optimization algorithms. They worked
inMm;3(R), the space of real matrices of order m � 3,
where for X 2 Mm;3(R), Xi (resp., Xi) is its ith row
(resp., ith column). By identifying a set of positions
of atoms x1; : : : ; xm with the matrix X, XT

i D xi for
i D 1; : : : ;m, they expressed the MDGP by

0 D min
�
�(X)

:D
1
2

X
(i; j)2S;i< j

wi j�i j(X) : X 2Mm;3(R)

9=
; ; (9)

where wi j > 0 for i ¤ j and wii D 0 for all i. The pair-
wise potential �i j : Mm;3(R) ! R is defined for prob-
lem (1) by either

�i j(X) D
�
d2i j � jjX

T
i � XT

j jj
2
�2

(10)

or

�i j(X) D
�
di j � jjXT

i � XT
j jj
�2
; (11)

and for problem (4) by

�i j(X) D min 2

(
jjXT

i � XT
j jj

2 � l2i j
l2i j

; 0

)

Cmax 2

(
jjXT

i � XT
j jj

2 � u2
i j

u2
i j

; 0

)
: (12)

Similarly to (2), X is a solution if and only if it is
a global minimizer of problem (9) and �(X) D 0.

While the problem (9) with �i j given by (9) or (12)
is a nondifferentiable optimization problem, it is a d.c.
optimization problem.

An and Tao demonstrated that the d.c. algorithms
can be adapted for developing efficient algorithms for
solving large-scale exact MDGPs. They proposed vari-
ous versions of d.c. algorithms that are based on differ-
ent formulations for the problem. Due its local char-
acter, the global optimality cannot be guaranteed for
a general d.c. problem. However, the fact that the global
optimality can be obtained with a suitable starting point
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motivated them to investigate a technique for comput-
ing good starting points for the d.c. algorithms in the
solution of (9), with �i j defined by (11).

The algorithms have been tested on three sets of
data: the artificial data from Moré and Wu [43] (with
up to 4096 atoms), 16 proteins in the PDB [5] (from
146 up to 4189 atoms), and the data from Hendrick-
son [27] (from 63 up to 777 atoms). Using these data,
they showed that the d.c. algorithms can efficiently
solve large-scale exact MDGPs.

Geometric Build-up Algorithm

In [17], Dong and Wu proposed the solution of the
exact MDGP by an algorithm, called the geometric
build-up algorithm, based on a geometric relationship
between coordinates and distances associated to the
atoms of a molecule. It is assumed that it is possible to
determine the coordinates of at least four atoms, which
are marked as fixed; the remaining ones are non-fixed.
The coordinates of a non-fixed atom a can be calcu-
lated by using the coordinates of four non-coplanar
fixed atoms such that the distances between any of
these four atoms and the atom a are known. If such
four atoms are found, the atom a changes its status to
fixed. More specifically, let b1, b2, b3, b4 be the four fixed
atoms whose Cartesian coordinates are already known.
Now suppose that the Euclidean distances among the
atom a and the atoms b1, b2, b3, b4, namely da,bi, for
i D 1; 2; 3; 4, are known. That is,

jja � b1jj D da;b1 ;

jja � b2jj D da;b2 ;

jja � b3jj D da;b3 ;

jja � b4jj D da;b4 :

Squaring both sides of these equations, we have:

jjajj2 � 2aTb1 C jjb1jj2 D d2a;b1 ;

jjajj2 � 2aTb2 C jjb2jj2 D d2a;b2 ;

jjajj2 � 2aTb3 C jjb3jj2 D d2a;b3 ;

jjajj2 � 2aTb4 C jjb4jj2 D d2a;b4 :

By subtracting one of these equations from the others,
it is obtained a linear system that can be used to deter-
mine the coordinates of the atom a. For example, sub-
tracting the first equation from the others, we obtain

Ax D b ; (13)

where

A D �2

2
4

(b1 � b2)T

(b1 � b3)T

(b1 � b3)T

3
5 ; x D a ;

and

b D

2
6664

�
d2a;b1 � d2a;b2

�
�
�
jjb1jj2 � jjb2jj2

�
�
d2a;b1 � d2a;b3

�
�
�
jjb1jj2 � jjb3jj2

�
�
d2a;b1 � d2a;b4

�
�
�
jjb1jj2 � jjb4jj2

�

3
7775 :

Since b1, b2, b3, b4 are non-coplanar atoms, the sys-
tem (13) has a unique solution. If the exact distances
between all pairs of atoms are given, this approach can
determine the coordinates of all atoms of the molecule
in linear time [16].

Dong and Wu implemented such an algorithm, but
they verified that it is very sensitive to the numerical
errors introduced in calculating the coordinates of the
atoms. In [54], Wu and Wu proposed the updated ge-
ometric build-up algorithm showing that, in this algo-
rithm, the accumulation of the errors in calculating the
coordinates of the atoms can be controlled and pre-
vented. They have been tested the algorithm with a set
of problems generated using the known structures of 10
proteins downloaded from the PDB data bank [5], with
problems from 404 up to 4201 atoms.

BP Algorithm

In [37], Lavor, Liberti, and Maculan propose an algo-
rithm, called branch-and-prune (BP), based on a dis-
crete formulation of the exact MDGP. They observe
that the particular structures of proteins makes it pos-
sible to formulate the MDGP applied to protein back-
bones as a discrete search problem. They formalize this
by introducing the discretizable molecular distance ge-
ometry problem (DMDGP), which consists of a cer-
tain subset of MDGP instances (to which most protein
backbones belong) for which a discrete formulation
can be supplied. This approach requires that the bond
lengths and angles, as well as the distances between
atoms separated by three consecutive bond lengths are
known.

In order to describe a backbone of a protein with
m atoms, in addition to the bond lengths di�1;i , for i D
2; : : : ;m, and the bond angles �i�2;i , for i D 3; : : : ;m,
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it is necessary to consider the torsion angles !i�3;i , for
i D 4; : : : ;m, which are the angles between the normals
through the planes defined by the atoms i�3; i�2; i�1
and i � 2; i � 1; i.

It is known that [48], given all the bond lengths
d1;2; : : : ; dm�1;m , bond angles �13; : : : ; �m�2;m , and
torsion angles !1;4; : : : ; !m�3;m of a molecule with
m atoms, the Cartesian coordinates (xi1 ; xi2 ; xi3 ) for
each atom i in the molecule can be obtained using the
following formulae:
2
664

xi1
xi2
xi3
1

3
775 D B1B2 : : : Bi

2
664

0
0
0
1

3
775 ; 8i D 1; : : : ;m ;

where

B1 D

2
664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
775 ;

B2 D

2
664

�1 0 0 �d1;2
0 1 0 0
0 0 �1 0
0 0 0 1

3
775 ;

B3 D

2
664

� cos �1;3 � sin �1;3 0 �d2;3 cos �1;3
sin �1;3 � cos �1;3 0 d2;3 sin �1;3

0 0 1 0
0 0 0 1

3
775 ;

and

Bi D

2
664

� cos �i�2;i � sin �i�2;i
sin �i�2;i cos!i�3;i � cos �i�2;i cos!i�3;i

sin �i�2;i sin!i�3;i � cos �i�2;i sin!i�3;i

0 0

0 �di�1;i cos �i�2;i
� sin!i�3;i di�1;i sin �i�2;i cos!i�3;i

cos!i�3;i di�1;i sin �i�2;i sin!i�3;i

0 1

3
775 ;

for i D 4; : : : ;m.
Since all the bond lengths and bond angles are as-

sumed to be given in the instance, the Cartesian coordi-
nates of all atoms of amolecule can be completely deter-
mined by using the values of cos!i�3;i and sin!i�3;i ,
for i D 4; : : : ;m.

For instances of the DMDGP class, for all i D
4; : : : ;m, the value of cos!i�3;i can be computed by
the formula

cos!i�3;i D a/b

where a D d2i�3;i�2 C d2i�2;i � 2di�3;i�2di�2;i
� cos �i�2;i cos �i�1;iC1 � d2i�3;i

and b D 2di�3;i�2di�2;i sin �i�2;i sin �i�1;iC1 ;

(14)

which is just a rearrangement of the cosine law for tor-
sion angles [50] (p. 278), and all the values in the ex-
pression (14) are given in the instance. This allows to
express the position of the i-th atom in terms of the
preceding three, giving 2m�3 possible conformations,
which characterizes the discretization of the problem.

The idea of the BP algorithm is that at each step
the ith atom can be placed in two possible positions.
However, either of both of these positions may be in-
feasible with respect to some constraints. The search is
branched on all atomic positions which are feasible with
respect to all constraints; by contrast, if a position is not
feasible the search scope is pruned.

The algorithm has been tested on the artificial data
fromMoré and Wu [43] (with up to 216 atoms) and on
the artificial data from Lavor [36] (a selection from 10
up to 100 atoms).

Conclusion

This paper surveys some of the methods to solve the
Molecular Distance Geometry Problem, with particular
reference to five existing algorithms: ABBIE algorithm,
global continuation algorithm, d.c. optimization algo-
rithms, the geometric build-up algorithm and the BP
algorithm.
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An important class of difficult global minimization
problems arise as an essential feature of molecular
structure calculations. The determination of a stable
molecular structure can often be formulated in terms
of calculating the global (or approximate global) mini-
mum of a potential energy function (see [6]). Comput-
ing the global minimum of this function is very diffi-
cult because it typically has a very large number of local
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minima which may grow exponentially with molecule
size.

One such application is the well known protein
folding problem. It is widely accepted that the folded
state of a protein is completely dependent on the one-
dimensional linear sequence (i. e., ‘primary’ sequence)
of amino acids from which the protein is constructed:
external factors, such as enzymes, present at the time of
folding have no effect on the final, or native, state of the
protein. This led to the formulation of the protein fold-
ing problem: given a known primary sequence of amino
acids, what would be its native, or folded, state in three-
dimensional space.

Several successful predictions of folded protein
structures have been made and announced before the
experimental structures were known (see [3,9]). While
most of these have been made with a blend of a hu-
man expert’s abilities and computer assistance, fully au-
tomated methods have shown promise for producing
previously unattainable accuracy [2].

These machine based prediction strategies attempt
to lessen the reliance on experts by developing a com-
pletely computational method. Such approaches are
generally based on two assumptions. First, that there
exists a potential energy function for the protein; and
second that the folded state corresponds to the struc-
ture with the lowest potential energy (minimum of the
potential energy function) and is thus in a state of ther-
modynamic equilibrium. This view is supported by in
vitro observations that proteins can successfully refold
from a variety of denatured states. Evolutionary the-
ory also supports a folded state at a global energy min-
imum. Protein sequences have evolved under pressure
to perform certain functions, which formost known oc-
currences requires a stable, unique, and compact struc-
ture. Unless specifically required for a certain function,
there was no biochemical need for proteins to hide their
global minimum behind a large kinetic energy barrier.
While kinetic blocks may occur, they should be limited
to special proteins developed for certain functions (see
[1]).

Molecular Model

Unfortunately, finding the ‘true’ energy function of
a molecular structure, if one even exists, is virtually
impossible. For example, with proteins ranging in size

up to 1, 053 amino acids (a collagen found in ten-
dons), exhaustive conformational searches will never
be tractable. Practical search strategies for the protein
folding problem currently require a simplified, yet suf-
ficiently realistic, molecular model with an associated
potential energy function representing the dominant
forces involved in protein folding [4]. In a one such
simplified model, each residue in the primary sequence
of a protein is characterized by its backbone compo-
nents NH � C˛H � C0O and one of 20 possible amino
acid sidechains attached to the central C˛ atom. The
three-dimensional structure of the chain is determined
by internal molecular coordinates consisting of bond
lengths l, bond angles � , sidechain torsion angles �, and
the backbone dihedral angles �,  , and !. Fortunately,
these 10r � 6 parameters (for an r-residue structure)
do not all vary independently. Some of these (7r � 4
of them) are regarded as fixed since they are found to
vary within only a very small neighborhood of an ex-
perimentally determined value. Among these are the 3r
� 1 backbone bond lengths l, the 3r � 2 backbone bond
angles � , and the r � 1 peptide bond dihedral angles !
(fixed in the trans conformation). This leaves only the r
sidechain torsion angles �, and the r � 1 backbone di-
hedral angle pairs (�, ). In the reduced representation
model presented here, the sidechain angles � are also
fixed since sidechains are treated as united atoms (see
below) with their respective torsion angles � fixed at
an ‘average’ value taken from the Brookhaven Protein
Databank. Remaining are the r � 1 backbone dihedral
angles pairs. These also are not completely indepen-
dent; they are severely constrained by known chemical
data (the Ramachandran plot) for each of the 20 amino
acid residues. Furthermore, since the atoms from one
C˛ to the next C˛ along the backbone can be grouped
into rigid planar peptide units, there are no extra pa-
rameters required to express the three-dimensional po-
sition of the attached O and H peptide atoms. Hence,
these bond lengths and bond angles are also known and
fixed.

Another key element of this simplified polypeptide
model is that each sidechain is classified as either hy-
drophobic or polar, and is represented by only a sin-
gle ‘virtual’ center of mass atom. Since each sidechain
is represented by only the single center of mass ‘virtual
atom’ Cs, no extra parameters are needed to define the
position of each sidechain with respect to the backbone



Molecular Structure Determination: Convex Global Underestimation M 2313

mainchain. The twenty amino acids are thus classified
into two groups, hydrophobic and polar, according to
the scale given by S. Miyazawa and R.L. Jernigan [7].

Corresponding to this simplified polypeptide model
is a simple energy function. This function includes four
components: a contact energy term favoring pairwise
hydrophobic residues, a second contact term favoring
hydrogen bond formation between donor NH and ac-
ceptor C0 = O pairs, a steric repulsive term which re-
jects any conformation that would permit unreason-
ably small interatomic distances, and a main chain tor-
sional term that allows only certain preset values for the
backbone dihedral angle pairs (�, ). Since the residues
in this model come in only two forms, hydrophobic
and polar, where the hydrophobic monomers exhibit
a strong pairwise attraction, the lowest free energy state
involves those conformations with the greatest num-
ber of hydrophobic ‘contacts’ [4] and intrastrand hy-
drogen bonds. Simplified potential functions have been
successful in [10,11], and [12]. Here we use a simple
modification of the energy function from [11].

The Convex Global Underestimator

One practical means for finding the global minimum
of the polypeptide’s potential energy function is to use
a convex global underestimator to localize the search in
the region of the global minimum. The idea is to fit all
known local minima with a convex function which un-
derestimates all of them, but which differs from them by
the minimum possible amount in the discrete L1 norm.
The minimum of this underestimator is used to predict
the global minimum for the function, allowing a more
localized conformer search to be performed based on
the predicted minimum.

More precisely, given an r-residue structure with n
= 2r � 2 backbone dihedral angles, denote a conforma-
tion of this simplified model by � 2 Rn, and the corre-
sponding simplified potential energy function value by
F(�). Then, assuming that k � 2n + 1 local minimum
conformations �(j), for j= 1, . . . , k, have been computed,
a convex quadratic underestimating function U(�) is
fitted to these local minima so that it underestimates
all the local minima, and normally interpolates F(�(j))
at 2n + 1 points. This is accomplished by determining
the coefficients in the function U(�) so that

ı j D F(�( j)) � U(�( j)) � 0 (1)

for j = 1, . . . , k, and where
Pn

jD1 ıj is minimized. That
is, the difference between F(�) and U(�) is minimized
in the discrete L1 norm over the set of k local minima
�(j), j = 1, . . . , k. Of course, this ‘underestimator’ only
underestimates known local minima. The specific un-
derestimating function U(�) used in this convex global
underestimator (CGU) method is given by

U(�) D c0 C
nX

iD1

�
ci�i C

1
2
di�2

i

�
: (2)

Note that ci and di appear linearly in the constraints
of (1) for each local minimum �(j). Convexity of this
quadratic function is guaranteed by requiring that di �
0 for i = 1, . . . , n. Other linear combinations of convex
functions could also be used, but this quadratic func-
tion is the simplest.

Additionally, in order to guarantee thatU(�) attains
its global minimum Umin in the hyperrectangle H� D
f�i : 0 � � i � �i � � i � 2g, an additional set of
constraints are imposed on the coefficients of U(�):

(
ci C � i di � 0;
ci C � i di � 0;

i D 1; : : : ; n: (3)

Note that the satisfaction of (3) implies that ci � 0 and
di � 0 for i = 1, . . . , n.

The unknown coefficients ci, i = 0, . . . , n, and di, i =
1, . . . , n, can be determined by a linear program which
may be considered to be in the dual form. For reasons
of efficiency, the equivalent primal of this problem is
actually solved, as described below. The solution to this
primal linear program provides an optimal dual vec-
tor, which immediately gives the underestimating func-
tion coefficients ci and di. Since the convex quadratic
function U(�) gives a global approximation to the local
minima of F(�), then its easily computed global min-
imum function value Umin is a good candidate for an
approximation to the global minimum of the correct
energy function F(�).

An efficient linear programming formulation and
solution satisfying (1)–(3) will now be summarized. Let
f (j) = F(�(j)), for j = 1, . . . , k, and let f 2 Rk be the vector
with elements f (j) . Also let !(j) 2 Rn be the vector with
elements 1

2 (�
( j)
i )2, i = 1, . . . , n, and let ek 2 Rk be the

vector of ones. Now define the following two matrices
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˚ 2 R(n+1)×k and˝ 2 Rn×k:
8̂
<̂
ˆ̂:
˚ D

 
e>k

�(1) � � ��(k)

!
;

˝ D
�
!(1) � � �!(k)

�
:

(4)

Finally, let c 2 Rn+1, d 2 Rn, and ı 2 Rk be the vectors
with elements ci, di, and ıi, respectively. Then (1)–(3)
can be restated as the linear program (with free vari-
ables c, d, and ı):
� minimize e>k ı
� such that

0
BB@

˚> ˝> 0
�˚> �˝> �Ik
I0n D 0
�I0n �D 0

1
CCA

0
@
c
d
ı

1
A �

0
BB@

f
� f
0
0

1
CCA ; (5)

where D D diag(�1; : : : ; �n), D D

diag(�1; : : : ; �n), Ik is the identity matrix of or-
der k, and I0n is the n × (n + 1) ‘augmented’ matrix
(0 : In where In is the identity matrix of order n.

Since the matrix in (5) has more rows than columns
(2(k + n) rows and k + 2n + 1 columns, where k � 2n +
1), it is computationally more efficient to consider it as
a dual problem, and to solve the equivalent primal. Af-
ter some simple transformations, this primal problem
reduces to:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f>y1 � f>ek

s.t.

 
˚ I0>n �I0>n
˝ D �D

!0BB@
y1
y2
y3

1
CCA D

 
˚ ek
˝ek

!

y1; y2; y3 � 0

(6)

which has only 2n + 1 rows and k + 2n � 4n + 1
columns, and the obvious initial feasible solution y1 =
ek and y2 = y3 = 0. Furthermore, since the first of the 2n
+ 1 constraints in (6) in fact requires that e>k y1 = 1, then
the function f | y1 � f | ek is also bounded below, and so
this primal linear program always has an optimal solu-
tion. This optimal solution gives the values of c, d, and
ı via the dual vectors, and also determines which values
of f (j) are interpolated by the potential function U(�).
That is, the basic columns in the optimal solution to (6)
correspond to the conformations �(j) for which F(�(j))
= U(�(j)).

Note that once an optimal solution to (6) has been
obtained, the addition of new local minima is very easy.
It is done by simply adding new columns to ˚ and ˝ ,
and therefore to the constraint matrix in (6). The num-
ber of primal rows remains fixed at 2n + 1, independent
of the number k of local minima.

The convex quadratic underestimating function
U(�) determined by the values c 2 Rn+1 and d 2 Rn

now provides a global approximation to the local min-
ima of F(�), and its easily computed global minimum
point �min is given by (�min)i =� ci/di, i = 1, . . . , n, with
corresponding function value Umin given by Umin = c0
�
Pn

iD1 c
2
i /di. The value Umin is a good candidate for

an approximation to the global minimum of the cor-
rect energy function F(�), and so �min can be used as an
initial starting point around which additional configu-
rations (i. e., local minima) should be generated. These
local minima are added to the constraint matrix in (6)
and the process is repeated. Before each iteration of this
process, it is necessary to reduce the volume of the hy-
perrectangleH � over which the new configurations are
produced so that a tighter fit of U(�) to the local min-
ima ‘near’ �min is constructed.

The rate and method by which the hyperrectangle
size is decreased, and the number of additional local
minima computed at each iteration must be determined
by computational testing. But clearly the method de-
pends most heavily on computing local minima quickly
and on solving the resulting linear program efficiently
to determine the approximating function U(�) over the
current hyperrectangle.

If Ec is a cutoff energy, then one means for decreas-
ing the size of the hyperrectangle H� at any step is to
letH� = {�:U(�)� Ec}. To get the bounds ofH�, con-
sider U(�)� Ec where U(�) satisfies (2). Then limiting
� i requires that

nX
iD1

�
ci�i C

1
2
di�2

i

�
� Ec � c0: (7)

As before, the minimum value ofU(�) is attained when
� i = �ci/di, i = 1, . . . , n. Assigning this minimum value
to each � i, except �k, then results in

ck�k C
1
2
dk�2

k � Ec � c0 C
1
2

X
i¤k

c2i
di
� ˇk : (8)
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The lower and upper bounds on �k, k = 1, . . . , n, are
given by the roots of the quadratic equation

ck�k C
1
2
dk�2

k D ˇk : (9)

Hence, these bounds can be used to define the new hy-
perrectangle H� in which to generate new configura-
tions.

Clearly, if Ec is reduced, the size of H� is also re-
duced. At every iteration the predicted global mini-
mum valueUmin satisfies Umin � F(��), where �� is the
smallest known local minimum conformation. There-
fore, Ec = F(��) is often a good choice. If at least one
improved point �, with F(�) < F(��), is obtained in
each iteration, then the search domain H� will strictly
decrease at each iteration, and may decrease substan-
tially in some iterations.

The CGU Algorithm

Based on the preceding description, a general method
for computing the global, or near global, energy mini-
mum of the potential energy function F(�) can now be
described.
1) Compute k � 2n + 1 distinct local minima �(j), for j

= 1, . . . , k, of the function F(�).
2) Compute the convex quadratic underestimator

function given in (2) by solving the linear program
given in (6). The optimal solution to this linear pro-
gram gives the values of c and d via the dual vectors.

3) Compute the predicted global minimum point �min

given by (�min)i = �ci/di, i = 1, . . . , n, with corre-
sponding function value Umin given by Umin = c0 �Pn

iD1 c
2
i /(2di).

4) If �min = ��, where �� = argmin{F(�(j)): j = 1, 2, . . . }
is the best local minimum found so far, then stop
and report �� as the approximate global minimum
conformation.

5) Reduce the volume of the hyperrectangle H� over
which the new configurations will be produced, and
remove all columns from ˚ and ˝ which cor-
respond to the conformations which are excluded
from H�.

6) Use �min as an initial starting point around which
additional local minima �(j) of F(�) (restricted to
the hyperrectangle H�) are generated. Add these

new local minimum conformations as columns to
the matrices ˚ and˝ .

7) Return to step 2.
The number of new local minima to be generated in
step 6 is unspecified since there is currently no theory
to guide this choice. In general, a value exceeding 2n + 1
would be required for the construction of another con-
vex quadratic underestimator in the next iteration (step
2). In addition, the means by which the volume of the
hyperrectangle H� is reduced in step 5 may vary. One
could use the two roots of (7) to define the new bounds
of H�. Another method would be simply to use H� =
{� i: (�min)i � ıi � � i � (�min)i + ıi} where ıi = |(�min)i
� (��)i|, i = 1, . . . , n.

For complete details of the CGU method and its
computational results, see [5,8].

See also

� Adaptive Simulated Annealing and its Application
to Protein Folding

� Genetic Algorithms
� Global Optimization in Lennard–Jones and Morse

Clusters
� Global Optimization in Protein Folding
�Monte-Carlo Simulated Annealing in Protein

Folding
�Multiple Minima Problem in Protein Folding: ˛BB

Global Optimization Approach
� Packet Annealing
� Phase Problem in X-ray Crystallography: Shake and

Bake Approach
� Protein Folding: Generalized-ensemble Algorithms
� Simulated Annealing
� Simulated Annealing Methods in Protein Folding
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Introduction

The role of convexity in optimization theory has in-
creased significantly over the last few decades. Despite
this fact, a wide variety of global optimization problems

are usually encountered in applications in which non-
convex models need to be tackled. For this reason, de-
veloping solution methods for specially structured non-
convex problems has become one of the most active
areas in recent years. Although these problems are diffi-
cult by their nature, promising progress is achieved for
some special mathematical structures. Among the so-
lution methods developed for these special structures,
monotonic optimization, first proposed by Tuy [9], is
presented in this study.

Problems of optimizing monotonic functions of
n variables under monotonic constraints arise in the
mathematical modeling of a broad range of real-world
systems, including in economics and engineering. The
original difficulties of these problems can be reduced by
a number of principles derived from their monotonic-
ity properties. For example, in nonconvex problems in
general, a solution which is known to be feasible or even
locally optimal, does not provide any information about
global optimality and the search should be continued
on the entire feasible space, while for an increasing ob-
jective function, a feasible solution like z, would exclude
the cone z C Rn

C from the search procedure (for a min-
imization objective function). In a similar way, if g(x) in
a constraint like g(x) � 0 is increasing, then by know-
ing that z is infeasible for this constraint, the whole cone
z C Rn

C can be discarded from further consideration.
This kind of information would obviously restrict the
search space and may result in more efficient solution
methods.

To formally present the general framework
of the monotonic optimization problem, consider
two vectors x; x0 2 Rn . We say x0 � x (x0 domi-
nates x) if x0i � xi 8i D 1; : : : ; n. We say x0 > x (x0

strictly dominates x) if x0i > xi 8i D 1; : : : ; n. Let
Rn
C D fx 2 Rnjx � 0g and Rn

CC D fx 2 Rnjx > 0g. If
a; b 2 Rn and a � b, we define the box

�
a; b

�
as the

set of all x 2 Rn such that a � x � b. Similarly, let�
a; b) D fxja � x < bg and (a; b

�
D fxja < x � bg.

A function f : Rn ! R is called increasing on a box�
a; b

�
2 Rn if f (x) � f (x0) for a � x � x0 � b.

A function f is called decreasing if –f is increasing.
Any increasing or decreasing function is referred to as
monotonic. It can be easily shown that the pointwise
supremum of a bounded-above family of increasing
functions and the pointwise infimum of a bounded-
below family of increasing functions are increasing.
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In monotonic optimization, the following problem is
considered:

Maximize (minimize) f (x)

subject to gi (x) � 1 8i D 1; : : : ; m1 ;

hj(x) � 1 8 j D 1; : : : ; m2 ;

x 2 Rn
C ;

(1)

in which f (x), gi(x), and hj(x) are increasing functions
on Rn. A more general definition of this problem is pre-
sented in Sect. “Normal Sets and Polyblocks”. Heuristi-
cally, f (x) may be a cost function (profit function for the
maximize problem), gi(x) may express some resource
availability constraints, while hj(x) may be a family of
utility functions which have to take a value at least as
big as a goal.

The remainder of this article is organized as follows.
We first describe the theory of normal sets and poly-
blocks in Sect. “Normal Sets and Polyblocks”. Mono-
tonic optimization algorithms are presented in Sect.
“Solution Method”. Section “Generalizations” contains
two generalizations of monotonic optimization. Differ-
ent class of applications for whichmonotonic optimiza-
tion is adapted are discussed in Sect. 5 and finally con-
clusions are made in Sect. “Conclusions”.

Normal Sets and Polyblocks

The theory of normal sets and polyblocks is the under-
lying principle for monotonic optimization. In this sec-
tion, the definitions are presented as well as the main
concepts and properties to help the reader to under-
stand the upcoming algorithms. For more details and
proofs see [5,9,10].

Normal Sets

A set G � Rn
C is called normal if for any two points

x; x0 2 Rn
C such that x � x0 > x0 2 G implies x 2 G.

Given any set D � Rn
C, the set N[D], which is called

the normal hull ofD, is the smallest normal set contain-
ing D. In other words, N[D] can be interpreted as the
intersection of all normal sets that contain D. The in-
tersection and the union of a family of normal sets are
normal. If the normal set contains a point u 2 Rn

CC we
say it has a nonempty interior. Suppose that g(x) is an
increasing function over Rn

+. Define the level set of g(x)

as the setG D
˚
x 2 Rn

Cjg(x) � 1
�
. It can be shown that

the level set of an increasing function is a normal set and
it is closed if the function is lower semicontinuous.

Define I(x) D fijxi D 0g, Kx D fx0 2 Rn
Cjx
0
i >

xi 8i … I(x)g, and clKx D
˚
x0 2 Rn

Cjx
0 � x

�
. Then

a point y 2 Rn
C is called an upper boundary point of

a bounded normal set G if y 2 clG while Ky � Rn
CnG.

The set of upper boundary points of G is called the up-
per boundary of G and is denoted by @+G.

For a compact normal set G � [0; b] with
nonempty interior and for every point z 2 Rn

Cn f0g, the
half line from 0 through z meets @+G at a unique point
denoted by G(z), which is defined as G (z) D �z,
� D max f˛ > 0j˛z 2 Gg.

A set H � Rn
C is called a reverse normal set (also

known as conormal) if x0 � x and x 2 H implies
x0 2 H. A reverse normal set in a box [0, b] is defined as
a set like H 2 Rn

C for which 0 � x � x0 � b and x 2 H
implies x0 2 H. As before, rN[D] is the smallest reverse
normal set containing D � Rn

C and is called a reverse
normal hull of set D. Define H D

˚
x 2 Rn

Cjh(x) � 1
�

for the increasing function h(x). Then it can be shown
that H is reverse normal and it is closed if h(x) is upper
semicontinuous.

A point y 2 Rn
C is called a lower boundary point of

a reverse normal set H if y 2clH and x … H 8x < y.
The set of lower boundary points ofH is called the lower
boundary of H and is denoted by @�H.

For the closed reverse normal set H and b 2
intH and every point z 2 [0; b]nH, the half line
from b through z meets @�H at a unique point
�H(z), which is defined as �H(z) D bC �(z � b),
� D max f˛ > 0jbC ˛(z � b) 2 Hg.

Now consider the set of constraints imposed by
increasing functions gi(x) and hj(x) in problem (1).
The feasible space characterized by these sets of con-
straints can properly be presented by normal sets and
reverse normal sets. Define the sets G; H � Rn

C as
G D

˚
x 2 Rn

Cjgi (x) � 1 8i D 1; : : : ; m1
�
and H D˚

x 2 Rn
Cjhj(x) � 1 8i D 1; : : : ; m2

�
. Then by the ba-

sic properties of normal and reverse normal sets which
were described above, G is the intersection of a finite
number of normal sets which is normal. In a similar
way, H is the intersection of a finite number of reverse
normal sets which is reverse normal. Now we can rede-
fine the fundamental problem of monotonic optimiza-
tion, also called the canonical monotonic optimization
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problem, as optimizing amonotonic function on the in-
tersection of a family of normal and reverse normal sets
as follows:

Maximize (minimize) f (x)

subject to x 2 G \ H ;
(2)

in which G � [0; b] � Rn
C is a compact normal set,

H is a close reverse normal set, and f (x) is an in-
creasing function on [0, b]. Tuy [9] proved that if G
has a nonempty interior (if b 2 intH), then the max-
imum (minimum) of f (x) over G \ H, if it exists,
is attained on @CG \ H (G \ @�H). On the basis of
this essential result, it can be shown that for every
arbitrary compact set D � Rn

C, max f f (x)jx 2 Dg D
max f f (x)jx 2 N[D]g. Analogously, for the minimiza-
tion version of the objective function, for any ar-
bitrary set E � Rn

C, we have min f f (x)jx 2 Eg D
min f f (x)jx 2 rN[E]g.

It is worth mentioning that the minimization prob-
lem can be converted to the maximization case by mak-
ing a simple set of transformations. So it can be either
transformed to the maximization problem or treated
separately.

Polyblocks

The role of polyblocks in monotonic optimization is
the same as that of the polytope in convex optimiza-
tion. As the polytope is the convex hull of finitely many
points in Rn, a polyblock is the normal hull of finitely
many points in Rn

+. A set P � Rn
C is a polyblock in

[a; b] � Rn
C if it is the union of a finite number of boxes

[a, z], z 2 T � [a; b]. The set T is called the vertex set of
the polyblock. We call the vertex z 2 T a proper vertex
if z … [0; z0] 8z0 2 Tn fzg, i. e., by removing the vetex z
from T, the new polyblock created by T is not equiva-
lent to P. A vertex which is not proper is called an im-
proper vertex. A polyblock can be defined by the set of
its proper vertices.

A polyblock is a closed normal set and the inter-
section of a set of polyblocks is again a polyblock.
Now suppose that x 2 [a; b] and consider the set
P D [a; b]n(x; b]. Then it is easy to verify that P is
a polyblock with vertices zi D b C (x � b)ei ; 8i D
1; : : : ; n in which ei is the ith unit vector. Using this
property, we can approximate an arbitrary compact
normal set ˝ � Rn

C (with any desired accuracy) by

a nested sequence of polyblock approximation. At each
iteration, a point x … ˝ is found and a new polyblock is
constructed based on that which is a subset of the pre-
vious polyblock but still contains the set˝ .

To present the main idea of the polyblock approx-
imation method in monotonic optimization, we need
one more result on optimizing an increasing function
over a polyblock. Tuy [9] proved that the increasing
function f (x) achieves its maximum over a polyblock
at a proper vertex.

Now consider the problem of maximizing the in-
creasing function f (x) over the arbitrary compact
set ˝ � Rn

C. As mentioned before, we can substi-
tute ˝ by its normal hull. So without loss of gen-
erality, we assume that ˝ is normal. The idea is to
construct a nested sequence of polyblock outer ap-
proximation P1 � P2 � : : : � ˝ in such a way that
maxf f (x)jx 2 Pkg & maxf f (x)jx 2 ˝g.

At iteration k, assume zk is the proper vertex of Pk

whichmaximizes f (x), i. e., zk D argmaxf f (z)jz 2 Tkg,
where Tk is the set of proper vertices of Pk. Then if zk is
feasible in˝ , the initial feasible space, it also solves the
problem. Otherwise, we are interested in a new poly-
block PkC1 � Pknfzkg which still contains ˝ as a sub-
set.

To obtain Pk+1 from Pk, the box [0; zk] is replaced
by [0; zk]nKxk , in which xk is defined as (zk). Math-
ematically, PkC1 D ([0; zk]nKxk )

S
z2Tknfzkg[0; z],

which clearly satisfies the desired property of
˝ � PkC1 � Pknfzkg.

The vertex set of the established polyblock Pk+1,
denoted by Vk+1, contains the proper vertices of
Pk excluding zk and a set of n new vertices, zk; 1;
zk; 2; : : : ; zk; n , defined as zk; i D zk C (xk

i �

zki )e
i . This result is directly followed by the earlier-

mentioned property of polyblocks about the vertices
of [a; b]n(x; b]. Finally, the proper vertex set of Pk+1,
Tk+1, is obtained from Vk+1 by removing its improper
vertices [9,10].

A set P � Rn
C is called a reverse polyblock in

[0, b] if it is the union of a finite number of boxes
[z; b]; z 2 T; T � [0; b]. The set T is called the vertex
set of the reverse polyblock. As before, z is a proper ver-
tex if by removing it from T, the new reverse polyblock
created by T is not equivalent to P. A reverse polyblock
can be defined by the set of its proper vertices. An in-
creasing function f (x) achieves its minimum over a re-
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verse polyblock at a proper vertex. Similar results to
what we had for polyblocks can be developed for re-
verse polyblocks in the very same way. For more details
see [9,10].

SolutionMethod

Consider problem (2) (in the maximization form) as
discussed in Sect. “Normal Sets and Polyblocks” with
the additional assumptions that f (x) is semicontin-
uous on H and G \ H � Rn

CC. The latter assump-
tion implies the existence of a vector a such that
0 < a � x; 8x 2 G \ H. Let Ha D fx 2 Hjx � ag.
For � � 0 as a given tolerance, the solution x0 is called
�-optimal if f (x0) � f (x)� �; 8x 2 G \ H. We at-
tempt to design an algorithm which is capable of find-
ing an �-optimal solution for any given �.

Obviously, b 2 H because otherwise the problem is
infeasible. Let P1 D [0; b] be the initial polyblock and
T1 D fbg its corresponding proper vertex set. If we ap-
ply the polyblock approximation method described in
Sect. “Normal Sets and Polyblocks” to this problem, at
each iteration k, Pk and its proper vertex set, Tk, are ob-
tained from the last iteration. We should notice that ev-
ery vertex z 2 TknHa can be removed since they do not
belong to the initial feasible space. Also suppose that
f (xk) is the best value found for the objective function
so far. Then any vertex z for which f (z) � f (xk)C � is
discarded because no �-optimal solution happens to be
in box [0, z]. These two rules can be applied at each iter-
ation to refine the proper vertex set Tk and delete some
of the vertices from further consideration.

If Tk D ; in some iteration k, it means there is no
solution x for which f (x) > f (xk)C �. So, xk, the best
solution found so far, is �-optimal and the procedure
terminates. Otherwise, let zk D argmax f f (z)jz 2 Tkg.
If zk is feasible in G \ H, it solves the problem. Since
zk 2 H is always true, it is feasible if it belongs to G
and infeasible otherwise. In the case of infeasibility, we
find xk D G (zk) and construct the polyblock Pk+1 as
described in Sect. “Normal Sets and Polyblocks” which
excludes zk while still containing a global optimal so-
lution of the problem. This procedure is repeated until
the termination criteria are satisfied or the problem is
known to be infeasible. This procedure, first proposed
by Tuy [9], is called the polyblock algorithm. Tuy [9] dis-
cussed the convergence of this method and showed that

as k!1, the sequence xk converges to a global opti-
mal solution of the problem.

Now consider the minimization case of problem (2)
in Sect. “Normal Sets and Polyblocks” with addi-
tional assumptions that f (x) is semicontinuous on G
and there exists a vector c such that 0 < c < b and
0 � x � c; 8x 2 G \ H. A nested sequence of reverse
polyblock outer approximation ofG \ H (or a subset of
G \ H in which the existence of at least one optimal so-
lution is guaranteed) is called the reverse polyblock algo-
rithm (copolyblock algorithm) which is devised to solve
this problem [9].

The polyblock approximation algorithm works
properly for relatively small dimension n, typically
n D 10. However, the algorithm converges slowly as
it gets closer to the global optimal solution and needs
a large number of iterations even for a value of n as
small as 5. Tuy et al. [12] presented two main rea-
sons for this drawback of the algorithm. First, the speed
of convergence depends on the way in which we con-
struct the current polyblock from the previous one. Ob-
viously, we prefer to remove a larger portion of the
previous polyblock to have a smaller search space and
a higher speed of convergence. This goal is achieved
by employing more complex rules of constructing the
polyblocks, which imposes some additional computa-
tional effort. The second source of the slowness of the
algorithm is how it selects the solution xk in each it-
eration. These solutions are basically derived from the
monotonicity properties of the problem, while some-
times there may exist some amount of convexity which
can be used to speed up the algorithm.

Tuy and Al-Khayyal [11] introduced the concept of
reduced box and reduced polyblock. It involves tighten-
ing the box in which we are interested to find the up-
per bound of f (x), in such a way that the reduced box
still contains an optimal solution of the problem. Then
based on that, a new procedure is developed to pro-
duce tighter polyblocks. They also redefined the proper
vertex set of polyblocks in the algorithm and suggested
that instead of selecting xk as the last point of G on
the halfline from a through zk, as the original algo-
rithm does, a more complex way can be implemented
by incorporating some of the convexity properties of
the problem. This is by solving the convex relaxation of
the problemmax

˚
f (x)jx 2 G \ H; x 2 [a; zk]

�
which

gives us an upper bound of f (x) over the feasible solu-
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tion x in box [a, xk]. Similar ideas were applied to the re-
verse polyblock algorithm as well. Using these two new
modifications and improvements, they developed new
algorithms and discussed their convergence properties,
namely, the revised polyblock algorithm and the revised
reverse polyblock (copolyblock) algorithm.

Most of the outer approximation procedures, in-
cluding the polyblock algorithm, encounter storage and
numerical problems while solving problems in high di-
mensions. By using branch-and-bound strategies, one
can tackle these difficulties. Bounding is performed
on the basis of the polyblock approximation. As be-
fore, monotonicity cuts and convex relaxation can be
combined to enhance the quality of the bounds in the
corresponding portion of the feasible space. In this
branch-and-bound approach, branching is performed
as partitioning the feasible space into cones pairwise
having no common interior point. The logic behind
using conical partitioning instead of rectangular par-
titioning is the fact that the optimal solution of the
monotonic optimization problem, as discussed before,
is always achieved on the upper boundary of the feasible
normal set. Using conical partitioning is more efficient
and less expensive in terms of the computational time.

The algorithm starts with initial cone Rn
+ and par-

titions it into subcones. For each of these subcones, an
upper bound for the value of the objective function over
the feasible solutions contained in it is derived. Those
cones which are known to not contain an optimal so-
lution are fathomed and the remaining ones are sub-
divided again and the procedure is repeated until the
termination criteria are satisfied. Among the remaining
cones, the one having the maximal bound is the first
candidate for branching. This algorithm, suggested by
Tuy and Al-Khayyal [11], is called the conical algorithm.

For those problems having partial monotonicity
and partial convexity, this branch-and-bound scheme
can be extended to devise a more general method. In
this method, branching is performed on the nonconvex
variables and bounds are computed by Lagrangian or
convex relaxation [6].

To further exploit the monotonic structure of the
problem, reduction cuts are combined with original
monotonicity cuts and a more efficient method is de-
veloped [13]. This method creates branch-and-cut al-
gorithms to solve monotonic optimization problems by
systematic use of these cuts.

Finally, it is worth mentioning that a new concept
of the essential �-optimal solution can be applied to
monotonic optimization problems. The advantage of
the method developed on the basis of this concept is
the finding of an approximate optimal solution which
is more appropriate and more stable than that which is
found by the �-optimal method. For details see [8].

Generalizations

The essential approach used in monotonic optimiza-
tion can be further generalized to cover a wider class
of non-convex general optimization problems. Among
these generalizations, optimization of the difference
of monotonic functions and discrete monotonic opti-
mization are presented here.

Optimization of the Difference
of Monotonic Functions

The underlying idea of monotonic optimization can be
extended to deal with problems including the differ-
ence of monotonic functions. A function f : Rn

C ! R is
said to be a difference of monotonic functions if it is
representable as the difference of two increasing func-
tions: f1 : Rn

C ! R and f2 : Rn
C ! R. Similar to func-

tions presented as the difference of convex functions,
the class of difference of monotonic functions is a lin-
ear space. The pointwise minimum and pointwise max-
imum of a family of difference of monotonic functions
(difference of convex functions) is still a difference of
monotonic functions (difference of convex functions).
The linear combination of a set of difference of mono-
tonic functions is a difference of monotonic functions.
Obviously, any polynomial function can be presented
as the difference of two increasing functions, the first
one includes all terms having positive coefficients and
the second one includes all terms having negative coef-
ficients.

Consider the problem:

Maximize (minimize) f (x) � g(x)

subject to x 2 G \ H ;
(3)

in which G and H are as before and f (x) and g(x)
are increasing functions on [0, b]. Tuy [9] extended
the original polyblock algorithm to solve this prob-
lem. By introducing t as the difference between g(b)
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and g(x) for x 2 [0; b] and regarding the fact that
t is always positive owing the function g(x) being in-
creasing, we rewrite the model as (maximization case)
maxf f (x) C t � g(b)jx 2 G \ H; t D g(b) �
g(x)g. Now g(b) is a constant and can be removed
from the objective function. In the resulting problem,
max f f (x)C tjx 2 G \ H; 0 � t � g(b) � g(x)g, con-
sider the set of constraints. By incrementing the di-
mension of the problem by one, the feasible space can
be presented as D \ E such that D D f(x; t)jx 2
G; t C g(x) � g(b); 0 � t � g(b) � g(0)g and
E D f(x; t)jx 2 H; 0 � t � g(b) � g(0)g. It is easy
to verify that D is a normal set and H is a reverse nor-
mal set in the box [0; b] � [0; g(b) � g(0)]. Also the
function F(x; t) D f (x) C t is an increasing function
on [0; b] � [0; g(b) � g(0)]. So problem (3) is reduced
to problem (2) in Sect. “Normal Sets and Polyblocks”
and can be treated by the original polyblock algorithm.
The additional cost that the presence of difference of
monotonic functions has incurred is the dimension of
the problem incremented by one.

For the minimization case of problem (3), a similar
transformation can be applied to convert this problem
to the minimization case of problem (2).

To make the problem even more general, suppose
that all constraints are also difference of monotonic
functions. Specifically, consider the problem:

Maximize (minimize) f1(x) � f2(x)

subject to gi (x) � hi(x) � 0

8i D 1; : : : ; m ;

x 2 ˝ � [0; b] � Rn
C ;

(4)

in which f 1(x), f 2(x), gi(x), and hi(x) are increas-
ing functions and ˝ is a normal set. By the above
argument, first we can make a proper transforma-
tion and convert the objective function to an increas-
ing function. So without loss of generality, let us as-
sume that f2(x) D 0. Now consider the set of m con-
straints. This set of constraints can be rewritten as
maxi fgi(x) � hi(x)g � 0. Since the pointwise maxi-
mum of a family of difference of monotonic functions
is still a difference of monotonic functions, we can
represent the space imposed by these constraints by
g(x) � h(x) � 0, where both g(x) and h(x) are increas-
ing. By introducing the new variable t � 0 and assum-
ing g(b) � 0 (this assumption is not restrictive), the set

of the following two constraints fully defines the space
mentioned: g(x)C t � g(b), h(x)C t � g(b). The first
constraint gives us the upper bound of g(b) � g(0) for t.

Finally the problem reduces to (maximization case):
maxf f1(x)jg(x)C t � g(b); h(x)C t � g(b);
x 2 ˝; 0 � t � g(b) � g(0)g. This problem is
the same as problem (2) by defining G D f(x; t)j
x 2 ˝; g(x) C t � g(b); 0 � t � g(b) � g(0)g,
which is a subset of the box [0; b] � [0; g(b) � g(0)]
and H D f(x; t)jh(x)C t � g(b)g is defined in RnC1

C .
Increasing the dimension of the problem is the main

drawback of the above mentioned approach. Tuy and
Al-Khayyal [11] presented a direct approach for the
difference of monotonic functions optimization prob-
lem requiring no additional dimension. This method
is referred to as the branch-reduce-and-bound (BRB)
algorithm. As the name of the algorithm suggests, it
contains three main steps, which are branching upon
nonconvex variables, reducing any partition set before
bounding, and bounding over each partition set.

The branching phase is performed by rectangular
subdivision. Every box is divided into two subboxes by
a hyperplane. The reduction phase contains a set of op-
erations by which the box [p, q] is tightened without
losing any feasible solution. This is called a proper re-
duction of [p,q]. This approach takes advantage of the
monotonicity properties of the problem and increases
the rate of convergence in the algorithm. In the bound-
ing phase, for a properly reduced box [p; q], an upper
bound like ˇ is obtained such that ˇ � maxf f1(x) �
f2(x)jgi(x) � hi(x) � 0; 8i D 1; : : : ; m; x 2
[p; q]g. As mentioned before, stronger bounds are ob-
tained by a sequence of polyblock approximations or
by combining monotonicity with convexity present in
the problem. Furthermore, more complex methods can
be applied to improve the quality of the bounds in the
bounding phase.

Discrete Monotonic Optimization

A class of monotonic optimization problems contain-
ing the additional discrete constraints are called discrete
monotonic optimization problems. Specifically, given
a finite set S of points in the box [a,b], the constraint
x 2 S is added to the model. So the problem can be rep-
resented as max f f (x)jx 2 G \ H \ Sg (all the assump-
tions are as in problem (2).
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The original polyblock algorithm is not practical for
these problems. Since the polyblock algorithm is an it-
erative procedure, it does not have the capability to
produce the optimal solution in a finite number of it-
erations. However, by making suitable modifications,
one can use this algorithm to obtain the exact opti-
mal solution of the problem in a finite number of steps
[1,14]. In the new method, monotonicity cuts are ad-
justed on the basis of a special procedure to cope with
discrete requirements. This adjustment consists in up-
dating the vertex of the monotonicity cut by pushing
it deeper inside the polyblock to obtain a tighter space
while keeping all discrete points which are not proven
to be nonoptimal, unaffected.

The algorithm first constructs the normal hull of
G \ S, denoted by G̃, and then tries to solve the prob-
lem max

˚
f (x)jx 2 G̃ \ H

�
in continuous space. This

method is called the discrete polyblock algorithm. For
large-scale instances, a similar BRB algorithm was de-
veloped by Tuy et al. [14].

Applications

Although monotonic optimization is a new approach in
global optimization and there is not a broad literature
on its applications, it can be applied to numerous prob-
lems. In most of these applications, first some transfor-
mations are performed and the problems are reformu-
lated in the proper way. Then monotonic optimization
is applied and other approaches are employed to en-
hance the quality of the bounds. Some of these appli-
cations are briefly introduced in this section.

Polynomial programming: The problem of min-
imizing or maximizing a polynomial function under
a set of polynomial constraints, which is encountered
in a multitude of applications, is called polynomial pro-
gramming. Tuy [9] reformulated this problem as a dif-
ference of monotonic functions problem which can be
solved by the methods described before. Tuy [7] pro-
posed a robust solution approach for polynomial pro-
gramming based on a monotonic optimization scheme.
He developed a BRB procedure to tackle the polynomial
optimization problems of higher dimensions.

Polynomial optimization contains nonconvex
quadratic programming as a special case. So every
polynomial optimization method can be applied to
solve this important class of problems [4,16].

Fractional programming: In fractional program-
ming, we are dealing with functions which are repre-
sented by ratios of other functions. Phuong and Tuy [3]
considered a generalized linear fractional programming
problem. In this problem, the objective function con-
sists of an arbitrary continuous increasing function of
m linear fractional functions and the feasible set is the
polytope D. Linear fractional functions are defined as
the ratio of two linear affine functions. They proposed
a new unified approach which reformulates the prob-
lem and solves it as a monotonic optimization prob-
lem.

Tuy [17] considered a more general class of frac-
tional programming problems which is optimizing
a polynomial fractional function (the ratio of two poly-
nomial functions) under polynomial constraints. His
method to solve the problem is again based on re-
formulating the problem as a monotonic optimization
problem. A branch-and-bound scheme was presented
for problems of higher ranks. Clearly, polynomial pro-
gramming is a special case of this class of problems.

Multiplicative programming: Multiplicative pro-
gramming problems are optimization problems con-
taining products of a number of convex or concave
functions in the objective function or constraints.
Tuy [9] showed that these classes of problems are es-
sentially monotonic optimization problems. Tuy and
Nghia [15] devised a new approach based on the re-
verse polyblock approximation method for a broad
class of problems including generalized linear multi-
plicative and linear fractional programming as special
cases.

For more applications, including Lipschitz opti-
mization, optimization under network constraints, the
Fekete points problem, and the Lennard-Jones potential
energy function, see [9].

Conclusions

We have discussed the recently developed theory of
monotonic optimization as well as its generalizations
and applications. This noble scheme which is capable
of solving a wide range of nonconvex problems is based
on an polyblock outer approximation procedure.

The approach that monotonic optimization uses to
deal with optimization problems is analogous to con-
vex optimization in several respects. Just as we approx-
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imate convex sets by polyhedrons, normal sets, defined
as the level sets of increasing functions, can be approx-
imated by a set of polyblocks in monotonic optimiza-
tion. As the difference of convex functions plays an es-
sential role in convex analysis (because any arbitrary
continuous function can be represented as the differ-
ence of two convex functions), optimization problems
representable as the difference of monotonic functions
can be treated in monotonic optimization.

The performance of this method can be significantly
improved by incorporating some other techniques like
convex relaxation to exploit other properties present in
the problem. In high dimensions, branch-and-bound
or branch-and-cut extensions of the algorithm can be
applied to overcome storage difficulties and increase the
convergence speed.
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We review uses of Monte-Carlo simulated annealing
in the protein folding problem. We will discuss the
strategy for tackling the protein folding problem based
on all-atom models. Our approach consists of two ele-
ments: the inclusion of accurate solvent effects and the
development of powerful simulation algorithms that
can avoid getting trapped in states of energy local min-
ima. For the former, we discuss several models vary-
ing in nature from crude (distance-dependent dielectric
function) to rigorous (reference interaction site model).
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For the latter, we show the effectiveness ofMonte-Carlo
simulated annealing.

Introduction

Proteins under their native physiological conditions
spontaneously fold into unique three-dimensional
structures (tertiary structures) in the time scale of mil-
liseconds to minutes. Although protein structures ap-
pear to be dependent on various environmental fac-
tors within the cell where they are synthesized, it
was inferred by experiments ‘in vitro’ that the three-
dimensional structure of a protein is determined solely
by its amino-acid sequence information [12]. Hence,
it has been hoped that once the correct Hamiltonian
of the system is given, one can predict the native pro-
tein tertiary structure from the first principles by com-
puter simulations. However, this has yet to be accom-
plished. There are two reasons for the difficulty. One
reason is that the inclusion of accurate solvent effects
is nontrivial, because the number of solvent molecules
that have to be considered is very large. The other rea-
son for the difficulty comes from the fact that the num-
ber of possible conformations for each protein is as-
tronomically large [30,60]. Simulations by conventional
methods such as Monte-Carlo or molecular dynamics
algorithms in canonical ensemble will necessarily be
trapped in one of many local-minimum states in the
energy function. In this article, I will discuss a possi-
ble strategy to alleviate these difficulties. The outline of
the article is as follows. In Sect. “Energy Functions of
Protein Systems” we summarize the energy functions
of protein systems that we used in our simulations. In
Sect. “Methods” we briefly review our simulation meth-
ods. In Sect. “Results” we present the results of our pro-
tein folding simulations. Section “Conclusions” is de-
voted to conclusions.

Energy Functions of Protein Systems

The energy function for the protein systems is given by
the sum of two terms: the conformational energy EP for
the protein molecule itself and the solvation free en-
ergy ES for the interaction of protein with the surround-
ing solvent. The conformational energy function EP (in
kcal/mol) for the protein molecule that we used is one
of the standard ones. Namely, it is given by the sum of
the electrostatic term EC, 12-6 Lennard–Jones term ELJ,

and hydrogen-bond term EHB for all pairs of atoms in
the molecule together with the torsion term Etor for all
torsion angles:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

EP D EC C ELJ C EHB C Etor;

EC D
X
(i; j)

332qiq j

�ri j
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Ci j

r12i j
�

Di j
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!
;

Etor D
X
i

Ui
�
1˙ cos(ni�

i )
�
:

(1)

Here, rij is the distance (in Å) between atoms i and j, �
is the dielectric constant, and �i is the torsion angle for
the chemical bond i. Each atom is expressed by a point
at its center of mass, and the partial charge qi (in units
of electronic charges) is assumed to be concentrated at
that point. The factor 332 in EC is a constant to ex-
press energy in units of kcal/mol. These parameters in
the energy function as well as the molecular geometry
were adopted from ECEPP/2 [37,41,57]. The computer
code KONF90 [23,46] was used for all the Monte-Carlo
simulations. For gas phase simulations, we set the di-
electric constant � equal to 2. The peptide-bond dihe-
dral angles ! were fixed at the value 180° for simplicity.
So, the remaining dihedral angles � and  in the main
chain and � in the side chains constitute the variables to
be updated in the simulations. One Monte-Carlo (MC)
sweep consists of updating all these angles once with
Metropolis evaluation [36] for each update.

Solvation free energy of interactions between a so-
lute molecule and solvent molecules, in general, can
be divided into three contributions: hydrophobic term
that corresponds to the work required to create a cav-
ity of the shape of the solute molecule in solution
(the term ‘hydrophobic’ used in this article is differ-
ent from a more standard one; see [11] for clarification
on various definitions), the electrostatic term (includ-
ing the hydrogen-bond energy) between solute and sol-
vent molecules, and the Lennard–Jones term between
solute and solvent molecules.

One of the simplest ways to represent solvent effects
is by the sigmoidal, distance-dependent dielectric func-
tion [20,54]. The explicit form of the function we used
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is given by [43]

�(r) D D �
D � 2
2

�
(sr)2 C 2sr C 2

�
e�sr ; (2)

which is a slight modification of the one used in [9].
Here, we use s = 0.3 and D = 78. It approaches 2 (the
value inside a protein) in the limit the distance r go-
ing to zero and 78 (the value for bulk water) in the
limit r going to infinity. The distance-dependent dielec-
tric function is simple and also computationally only
slightly more demanding than the gas-phase case. But
it only involves the electrostatic interactions. Other sol-
vent contributions are hydrophobic interactions and
Lennard–Jones interactions between protein and sol-
vent.

Another commonly used term that represents sol-
vent contributions is the term proportional to the
solvent-accessible surface area of protein molecule. The
solvation free energy ES in this approximation is given
by

ES D
X
i

�i Ai ; (3)

where Ai is the solvent-accessible surface area of ith
functional group, and � i is the proportionality con-
stant. There are several versions of the set of the propor-
tionality constants and functional groups. Five param-
eter sets were compared for the systems of peptides and
a small protein, and we found that the parameter sets of
[52,59] are valid ones [33]. The term in (3) includes all
the contributions from solvent (namely, hydrophobic,
electrostatic, and Lennard–Jones interactions), and it is
therefore more accurate than the distance-dependent
dielectric function. It is, however, an empirical repre-
sentation, and its validity has to be eventually tested
with a rigorous solvation theory.

The most widely-used and rigorous method of in-
clusion of solvent effects is probably the one that deals
with the explicit solvent molecules with all-atom rep-
resentations. Many molecular dynamics simulations of
protein systems now directly include these explicit sol-
vent molecules (for a review, see, for instance, [4]). An-
other rigorous method is based on the statistical me-
chanical theory of liquid and solution and is called
the reference interaction site model (RISM) [7,21]. The
RISM integral equation for solute-solvent (p-s) correla-

tion functions in Fourier k-space is given by

ehps D ewppecps �ewss C �ehss� ; (4)

whereehps andehss are the matrices of the solute-solvent
and the solvent-solvent total correlation functions, re-
spectively,ecps is the matrix of the solute-solvent direct
correlation functions,ewpp andewss are the intramolecu-
lar correlation matrices for solute and solvent, respec-
tively, and � is the number density matrix of the sol-
vent. The solvation free energy is given by

ES D 4�kBT
Z 1
0

r2F(r) dr; (5)

where F(r) is defined by

F(r) �
X
a;b

�
1
2
hps
ab(r)

2 � cpsab(r) �
1
2
hps
ab(r)c

ps
ab(r)

	
: (6)

Here, the summation indices a and b run over the so-
lute and the solvent sites, respectively. A robust and
fast algorithm for solving RISM equations was re-
cently (as of 1999) developed [24], which made fold-
ing simulations of peptides a feasible possibility [25].
Although this method is computationally much more
time-consuming than the first two methods (terms with
distance-dependent dielectric function and those pro-
portional to surface area), it gives the most accurate
representation of the solvation free energy.

Methods

Once the appropriate energy function of the protein
system is given, we have to employ a simulation method
that does not get trapped in states of energy local min-
ima. We have been advocating the use of Monte-Carlo
simulated annealing [27].

In the regular canonical ensemble with a given in-
verse temperature ˇ � 1/kBT , the probability weight of
each state with energy E is given by the Boltzmann fac-
tor:

WB(E) D exp(�ˇE): (7)

The probability distribution in energy is then given by

PB(T; E) / n(E)WB(E); (8)
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where n(E) is the number of states with energy E.
Since the number of states n(E) is an increasing func-
tion of energy and the Boltzmann factor WB(E) de-
creases exponentially with E, the probability distribu-
tion PB(T; E) has a bell-like shape in general. When the
temperature is high, ˇ is small, and WB(E) decreases
slowly with E. So, PB(T; E) has a wide bell-shape. On
the other hand, at low temperature ˇ is large, and
WB(E) decreases rapidly with E. So, PB(T; E) has a nar-
row bell-shape (and in the limit T ! 0 K, PB(T; E) /
ı(E � EGS), where EGS is the global-minimum energy).
However, it is very difficult to obtain canonical distribu-
tions at low temperatures with conventional simulation
methods. This is because the thermal fluctuations at low
temperatures are small and the simulation will certainly
get trapped in states of energy local minima. Simulated
annealing [27] is based on the process of crystal mak-
ing. Namely, by starting a simulation at a sufficiently
high temperature (much above the melting tempera-
ture), one lowers the temperature gradually during the
simulation until it reaches the global-minimum-energy
state (crystal). If the rate of temperature decrease is suf-
ficiently slow so that thermal equilibrium may be main-
tained throughout the simulation, only the state with
the global energy minimum is obtained (when the fi-
nal temperature is 0 K). However, if the temperature
decrease is rapid (quenching), the simulation will get
trapped in a state of energy local minimum in the vicin-
ity of the initial state.

Simulated annealing was first successfully used to
predict the global-minimum-energy conformations of
polypeptides and proteins [22,61,63] and to refine pro-
tein structures from X-ray and NMR data [5,42] almost
a decade ago. Since then this method has been exten-
sively used in the protein folding and structure refine-
ment problems (for reviews, see [45,62]). Our group has
been testing the effectiveness of the method mainly in
oligopeptide systems. The procedure of our approach is
as follows. While the initial conformations in the pro-
tein simulations are usually taken from the structures
inferred by the experiments, our initial conformations
are randomly generated. Each Monte-Carlo sweep up-
dates every dihedral angle (in both the main chain and
side chains) once. Our annealing schedule is as follows:
The temperature is lowered exponentially from TI =
1000 K to TF = 250 K (the final temperature TF was
sometimes set equal to 100 K, 50 K, or 1 K) [23,46]. The

temperature for the nth MC sweep is given by

Tn D TI�
n�1; (9)

where � is a constant which is determined by TI , TF ,
and the total number ofMC sweeps of the run. Each run
consists of 104 � 106 MC sweeps, and we usually made
10 to 20 runs from different initial conformations.

Results

We now present the results of our simulations based on
Monte-Carlo simulated annealing. All the simulations
were started from randomly-generated conformations.

The first example is Met-enkephalin. This brain
neuro peptide consists of 5 amino acids with the amino-
acid sequence: Tyr-Gly-Gly-Phe-Met. Because it is one
of the smallest peptides that have biological functions,
it has served as a bench mark for testing a new sim-
ulation method. The global minimum conformation
of this peptide for ECEPP/2 energy function in gas
phase (� = 2) is known [31,49]. For KONF90 realiza-
tion of ECEPP/2 energy, the peptide is essentially in
the ground state for EP ��11 kcal/mol [15,49] and the
lowest value is �12.2 kcal/mol [16,17].

In Fig. 1, we show the ‘time series’ of the total con-
formational energy EP (in (1)) obtained by conven-
tional canonical Monte-Carlo simulations at T = 1000,
300, and 50 K.

The thermal fluctuations for the run at T = 50 K in
Fig. 1c are very small and this run has apparently gotten
trapped in states of energy local minima (because the
average energy at 50 K is about �11 kcal/mol [15,16]).
In Fig. 2 we display the time series of energy obtained
by a Monte-Carlo simulated annealing simulation.

This run reaches the global minimum region (EP �
�11 kcal/mol) as the temperature is decreased during
the simulation from 1000 K to 50 K.

We have up to now presented the results in
gas phase (� = 2). In Fig. 3 we compare the super-
posed structures of lowest-energy conformations from
8 Monte-Carlo simulated annealing runs in gas phase,
simple-repulsive solvent, and water (the latter two con-
tributions were calculated by the RISM theory) [26]
with those of 5 structures inferred from NMR experi-
ments ([13, Fig. 2]). The figures were created with Ras-
Mol [55].
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Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 1
Series of energy EP (kcal/mol) of Met-enkephalin from con-
ventional canonical Monte-Carlo runs at T = 1000 K (a), 300 K
(b), and 50 K (c)

Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 2
Time series of energy EP (kcal/mol) of Met-enkephalin from
a Monte-Carlo simulated annealing run

We see a striking similarity between simulation re-
sults in water Fig. 3c and those of NMR experiments
(Fig. 3d). The simulation results in Fig. 3 are from the
same number of MC sweeps. It seems that the presence
of water speeds up the convergence of the backbone
structures in the sense that it requires less number of
MC sweeps for convergence [26].

The solvation free energy based on the RISM theory
is very accurate, but it is also computationally very de-
manding. We are currently trying to solve this problem
making the algorithm more efficient and robust [24].
Hereafter, we discuss how well other solvation theories
can still describe the effects of solvent in the predic-
tion of three-dimensional structures of oligopeptides
and small proteins.

Next systems we discuss are those of homo-
oligomers with length of 10 amino acids. From the
structural data base of X-ray experiments of protein
structures [8] and CD experiments [6], it is known that
certain amino acids have more tendency of ˛-helix for-
mation than others. For instance, alanine is a helix for-
mer and glycine is a helix breaker, while phenylala-
nine has intermediate helix-forming tendency. We have
performed 20 Monte-Carlo simulated annealing runs
of 10,000 MC sweeps in gas phase (� = 2) with each
of (Ala)10, (Leu)10, (Met)10, (Phe)10, (Ile)10, (Val)10,
and (Gly)10 [44]. These amino acids are nonpolar and
we can avoid the complications of electrostatic and
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Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 3
Superposition of the eight conformations of Met-enkephalin
obtained as the lowest-energy structures by Monte-Carlo
simulated annealing in gas phase (a), simple-repulsive sol-
vent (b), and water (c) together with superposition of five
conformations deduced from the NMR experiment (d)

hydrogen-bond interactions of side chains with each
other, with main chain, and with the solvent.

In order to analyze how much ˛-helix formation is
obtained by simulations, we first define ˛-helix state of
a residue. We consider that a residue is in the ˛-helix
state when the dihedral angles (�,  ) fall in the range
(�60 ˙ 45°, �50 ˙ 45°) (Definition I) [23,46]. The
length ` of a helical segment is then defined by the num-
ber of successive residues that are in the ˛-helix state.
The number n of helical residues in a conformation is
defined by the sum of ` over all helical segments in the
conformation. Note that ` = 3 corresponds to roughly
one turn of ˛-helix. We therefore consider a conforma-
tion as helical if it has a segment with helix length `� 3.

The average values of the dihedral angles � and  
for the helical segments based on Definition I (with
helix length ` � 3) are �70° and �37°, respectively,
and the standard deviation is � 10° for ECEPP/2 en-
ergy function [44,46]. Hence, for detailed analyses of
the data we adopt a more stringent criterion for ˛-helix
state (Definition II): The range is (�,  ) = (�70˙ 20°,
�37˙ 20°) [44].

We likewise consider that a residue is in the ˇ-
strand state when the dihedral angles (�,  ) fall in
the range (�130 ˙ 50°, 135 ˙ 45°) [44]. The ˇ-strand
length m is then defined to be the number of succes-
sive residues that are in the ˇ-strand state. We consider
a conformation as ˇ-stranded if it has a segment with
ˇ-strand length m� 3.

In Table 1 we summarize the ˛-helix formation in
the 20 Monte-Carlo simulated annealing runs [44]. The
results are for Definition II of the ˛-helix state.

We see that (Met)10, (Ala)10, and (Leu)10 gave many
helical conformations: 15, 9, and 9 (out of 20), respec-
tively. In particular, (Met)10 and (Ala)10 produced long
helices, some conformations being almost entirely he-
lical (` � 8). On the other hand, (Val)10, (Ile)10, and
(Gly)10 gave few helical conformations: 2, 2, and 1 (out
of 20), respectively. We obtained not only a smaller
number of helices but also shorter helices for these
homo-oligomers than the above three homo-oligomers.
Finally, the results for (Phe)10 indicate that Phe has in-
termediate helix-forming tendency between these two
groups. We thus have the following rank order of helix-
forming tendency for the seven amino acids [44]:

Met > Ala > Leu > Phe > Val > Ile > Gly: (10)
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Monte-Carlo Simulated Annealing in Protein Folding, Table 1
˛-Helix formation in homo-oligomers from 20Monte-Carlo simulated annealing runs

Peptide (Met)10 (Ala)10 (Leu)10 (Phe)10 (Val)10 (Ile)10 (Gly)10
`

3 1 0 4 1 0 2 1
4 2 0 2 2 2 0 0
5 0 1 1 1 0 0 0
6 2 3 2 1 0 0 0
7 2 1 0 0 0 0 0
8 7 4 0 0 0 0 0
9 1 0 0 0 0 0 0
10 0 0 0 0 0 0 0
Total 15/20 9/20 9/20 5/20 2/20 2/20 1/20

This can be compared with the experimentally deter-
mined helix propensities [6,8]. Our rank order (10) is
in good agreement with the experimental data.

We then analyzed the relation between helix-
forming tendency and energy. We found that the dif-
ferences	E = ENH �EH betweenminimum energies for
nonhelical (NH) and helical (H) conformations is large
for homo-oligomers with high helix-forming tendency
(9.7, 10.2, 21.5 kcal/mol for (Met)10, (Ala)10, (Leu)10, re-
spectively) and small for those with low helix-forming
tendency (0.5, 1.6, �3.2 kcal/mol for (Val)10, (Ile)10,
(Gly)10, respectively). Moreover, we found that the
large	E for the former homo-oligomers are caused by
the Lennard–Jones term 	ELJ (13.3, 8.0, 17.5 kcal/mol
for (Met)10, (Ala)10, (Leu)10, respectively). Hence, we
conjecture that the differences in helix-forming ten-
dencies are determined by the following factors [44].
A helical conformation is energetically favored in gen-
eral because of the Lennard–Jones term ELJ. For amino
acids with low helix-forming tendency except for Gly,
however, the steric hindrance of side chains raises ELJ
of helical conformations so that the difference 	ELJ
between nonhelical and helical conformations are re-
duced significantly. The small 	ELJ for these amino
acids can be easily overcome by the entropic effects and
their helix-forming tendencies are small. Note that such
amino acids (Val and Ile here) have two large side-chain
branches at Cˇ , while the helix forming amino acids
such as Met and Leu have only one branch at Cˇ and
Ala has a small side chain.

We now study the ˇ-strand forming tendencies of
these seven homo-oligomers. In Table 2 we summarize

the ˇ-strand formation in 20 Monte-Carlo simulated
annealing runs [44].

The implications of the results are not as obvious as
in the ˛-helix case. This is presumably because a short,
isolated ˇ-strand is not very stable by itself, since hy-
drogen bonds between ˇ-strands are needed to stabi-
lize them. However, we can still give a rough estimate
for the rank order of strand-forming tendency for the
seven amino acids [44]:

Val > Ile > Phe > Leu > Ala > Met > Gly: (11)

Here, we considered Val as more strand-forming than
Ile, since the longer the strand segment is, the harder it
is to form by simulation. Our rank order (11) is again
in good agreement with the experimental data [8].

By comparing (11) with (10), we find that the helix-
forming group is the strand-breaking group and vice
versa, except for Gly. Gly is both helix and strand break-
ing. This reflects the fact that Gly, having no side chain,
has a much larger (backbone) conformational space
than other amino acids.

The helix-coil transitions of homo-oligomer sys-
tems were further analyzed by multicanonical algo-
rithms [3] in [47,48]. The obtained results gave quan-
titative support to those by Monte-Carlo simulated an-
nealing described above [44].

We have so far studied peptides with nonpolar
amino acids each of which is electrically neutral as
a whole. We now discuss the helix-forming tendencies
of peptides with polar amino acids where side chains
are charged by protonation or deprotonation. One ex-
ample is the C-peptide, residues 1–13 of ribonuclease A.
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Monte-Carlo Simulated Annealing in Protein Folding, Table 2
ˇ-Strand formation in homo-oligomers from 20 Monte-Carlo simulated annealing runs

Peptide (Met)10 (Ala)10 (Leu)10 (Phe)10 (Val)10 (Ile)10 (Gly)10
m
3 0 0 2 5 1 7 0
4 0 0 0 1 0 4 0
5 0 0 0 0 2 1 0
6 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
Total 0/20 0/20 2/20 6/20 5/20 12/20 0/20

It is known from the X-ray diffraction data of the whole
enzyme that the segment from Ala-4 to Gln-11 exhibits
a nearly 3-turn ˛-helix [58,64]. It was also found by CD
[56] and NMR [53] experiments that the isolated C-
peptide also has significant ˛-helix formation in aque-
ous solution at temperatures near 0°C.

Furthermore, the CD experiment of the isolated C-
peptide showed that the side-chain charges of residues
Glu-2� and His-12+ enhance the stability of the ˛-helix,
while the rest of the charges of other side chains do
not [56]. The NMR experiment [53] of the isolated C-
peptide further observed the formation of the charac-
teristic salt bridge between Glu-2� and Arg-10+ that
exists in the native structure determined by the X-ray
experiments of the whole protein [58,64].

In order to test whether our simulations can repro-
duce these experimental results, we made 20 Monte-
Carlo simulated annealing runs of 10,000 MC sweeps
with several C-peptide analogues [23,46]. The amino-
acid sequences of four of the analogues are listed in Ta-
ble 3.

The simulations were performed in gas phase (� =
2). The temperature was decreased exponentially from
1000 K to 250 K for each run. As usual, all the simula-
tions were started from random conformations.

In Table 4 we summarize the helix formation of all
the runs [46]. Here, the number of conformations with
segments of helix length ` � 3 are given with Defini-
tion I of the ˛-helix state. From this table one sees that
˛-helix was hardly formed for Peptide IV where Glu-2
and His-12 are neutral, while many helical conforma-
tions were obtained for the other peptides. This is in

Monte-Carlo SimulatedAnnealing in Protein Folding, Table 3
Amino-acid sequences of the peptide analogues of C-
peptide studied by Monte-Carlo simulated annealing

Peptide I II III IV
Sequence
1 Lys+
2 Glu� Glu
3 Thr
4 Ala
5 Ala
6 Ala
7 Lys+
8 Phe
9 Glu� Glu Leu
10 Arg+
11 Gln
12 His+ His
13 Met

accord with the experimental results that the charges of
Glu-2� and His-12+ are necessary for the ˛-helix sta-
bility [56].

Peptides II and III had conformations with the
longest ˛-helix (` = 7). These conformations turned
out to have the lowest energy in 20 simulation runs for
each peptide. They both exhibit an ˛-helix from Ala-5
to Gln-11, while the structure from the X-ray data has
an ˛-helix from Ala-4 to Gln-11. These three confor-
mations are compared in Fig. 4.

As mentioned above, the agreement of the back-
bone structures is conspicuous, but the side-chain
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Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 4
The lowest-energy conformations of Peptide II (a) and Pep-
tide III (b) of C-peptide analogues obtained from 20 Monte-
Carlo simulated annealing runs in gas phase, and the corre-
sponding X-ray structure (c)

Monte-Carlo SimulatedAnnealing in Protein Folding, Table 4
˛-Helix formation in C-peptide analogues from 20 Monte-
Carlo simulated annealing runs

Peptide I II III IV
`

3 4 2 3 1
4 3 2 3 0
5 1 1 0 0
6 0 1 0 0
7 0 1 1 0
Total 8/20 7/20 7/20 1/20

structures are not quite similar. In particular, while the
X-ray [58,64] andNMR [53] experiments imply the for-
mation of the salt bridge between the side chains of
Glu-2� and Arg-10+, the lowest-energy conformations
of Peptides II and III obtained from the simulations do
not have this salt bridge.

The disagreement is presumably caused by the lack
of solvent in our simulations. We have therefore made
multicanonical Monte-Carlo simulations of Peptide II
with the inclusion of solvent effects by the distance-
dependent dielectric function (see (2)) [18,19]. It was
found that the lowest-energy conformation obtained
has an ˛-helix from Ala-4 to Gln-11 and does have
the characteristic salt bridge between Glu-2� and Arg-
10+ [18,19].

Similar dependence of ˛-helix stability on side-
chain charges was observed in Monte-Carlo simulated
annealing runs of a 17-residue synthetic peptide [43].
The pH difference in the experimental conditions was
represented by the corresponding difference in charge
assignment of the side chains, and the agreement with
the experimental results (stable ˛-helix formation at
low pH and low helix content at high pH) was observed
in the simulations by Monte-Carlo simulated annealing
with the distance-dependent dielectric function [43].

Considering our simulation results on homo-
oligomers of nonpolar amino acids, C-peptide, and the
synthetic peptide, we conjecture that the helix-forming
tendencies of oligopeptide systems are controlled by
the following factors [43]. An ˛-helix structure is gen-
erally favored energetically (especially, the Lennard–
Jones term). When side chains are uncharged, the steric
hindrance of side chains is the key factor for the dif-
ference in helix-forming tendency. When some of the
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side chains are charged, however, these charges play
an important role in the helix stability in addition to
the above factor: Some charges enhance helix stability,
while others reduce it.

We have up to now discussed ˛-helix formations
in our simulations of oligopeptide systems. We have
also studied ˇ-sheet formations by Monte-Carlo sim-
ulated annealing [38,39,51]. The peptide that we stud-
ied is the fragment corresponding to residues 16–36
of bovine pancreatic trypsin inhibitor (BPTI) and has
the amino-acid sequence: Ala16-Arg+-Ile-Ile-Arg+-Tyr-
Phe -Tyr -Asn -Ala -Lys+ -Ala -Gly -Leu -Cys -Gln -Thr-
Phe-Val-Tyr-Gly36. An antiparallel ˇ-sheet structure in
residues 18–35 is observed in X-ray crystallographic
data of the whole protein [10].

We first performed 20 Monte-Carlo simulated an-
nealing runs of 10,000 MC sweeps in gas phase (� = 2)
with the same protocol as in the previous simulations
[38]. Namely, the temperature was decreased exponen-
tially from 1000 K to 250 K for each run, and all the
simulations were started from random conformations.
The difference of the present simulation and the pre-
vious ones comes only from that of the amino-acid se-
quences.

The most notable feature of the obtained results is
that ˛-helices, which were the dominant motif in pre-
vious simulations of C-peptide and other peptides, are
absent in the present simulation. Most of the conforma-
tions obtained consist of stretched strands and a ‘turn’
which connects them. The lowest-energy structure in-
deed exhibits an antiparallel ˇ-sheet [38].

We next made 10Monte-Carlo simulated annealing
runs of 100,000 MC sweeps for BPTI(16–36) with two
dielectric functions: � = 2 and the sigmoidal, distance-
dependent dielectric function of (2) [39]. The results
with � = 2 reproduced our previous results: Most of the
obtained conformations have ˇ-strand structures and
no extended ˛-helix is observed. Those with the sig-
moidal dielectric function, on the other hand, indicated
formation of ˛-helices. One of the low-energy confor-
mations, for instance, exhibited about a four-turn ˛-
helix from Ala-16 to Gly-28 [39]. This presents an ex-
ample in which a peptide with the same amino-acid se-
quence can form both ˛-helix and ˇ-sheet structures,
depending on its electrostatic environment.

NMR experiments suggest that this peptide actually
forms a ˇ-sheet structure [40]. The representation of

Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 5
The structure of BPTI(16–36) deduced from X-ray experi-
ments (a) and the lowest-energy conformation of BPTI(16–
36) obtained from 20 Monte-Carlo simulated annealing runs
in aqueous solution represented by solvent-accessible sur-
face area (b)

solvent by the sigmoidal dielectric function (which gave
˛-helices instead) is therefore not sufficient. Hence, the
same peptide fragment, BPTI(16–36), was further stud-
ied in aqueous solution that is represented by solvent-
accessible surface area of (3) by Monte-Carlo simulated
annealing [51]. Twenty simulation runs of 100,000 MC
sweeps were made. It was indeed found that the lowest-
energy structure obtained has a ˇ-sheet structure (ac-
tually, type II0 ˇ-turn) at the very location suggested by
the NMR experiments [40]. This structure and that de-
duced from the X-ray experiments [10] are compared
in Fig. 5. The figures were created with Molscript [29]
and Raster3D [2,35].

Although both conformations are ˇ-sheet struc-
tures, there are important differences between the two:
The positions and types of the turns are different. Since
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the X-ray structure is taken from the experiments on
the whole BPTI molecule, it does not have to agree with
that of the isolated BPTI(16–36) fragment. It was found
[51] that the simulated results in Fig. 5b have remark-
able agreement with those in the NMR experiments of
the isolated fragment [40].

We have so far dealt with peptides with small
number of amino acids (up to 21) with simple sec-
ondary structural elements: a single ˛-helix or ˇ-sheet.
The native proteins usually have more than one sec-
ondary structural elements. We now discuss our at-
tempts on the first-principles tertiary structure predic-
tions of larger and more complicated systems.

The first example is the fragment corresponding to
residues 1–34 of human parathyroid hormone (PTH).
An NMR experiment of PTH(1–34) suggested the ex-
istence of two ˛-helices around residues from Ser-3 to
His-9 and from Ser-17 to Leu-28 [28]. Another NMR
experiment of a slightly longer fragment, PTH(1–37),
in aqueous solution also suggested the existence of the
two helices [32]. One of the determined structures, for
instance, has ˛-helices in residues from Gln-6 to His-9
and from Ser-17 to Lys-27 [32].

For PTH(1–34) we performed 20Monte-Carlo sim-
ulated annealing runs of 10,000MC sweeps in gas phase
(� = 2) with the same protocol as in the previous simu-
lations [50]. Many conformations among the 20 final
conformations obtained exhibited ˛-helix structures
(especially in the N-terminus area). In Fig. 6 we show
the lowest-energy conformation of PTH(1–34) [50].

This conformation indeed has two ˛-helices around
residues from Val-2 to Asn-10 (Helix 1) and fromMet-
18 to Glu-22 (Helix 2), which are precisely the same lo-
cations as suggested by experiment [28], although Helix
2 is somewhat shorter (5 residues long) than the cor-
responding one (12 residues long) in the experimental
data.

A slightly larger peptide fragment, PTH(1–37), was
also studied by Monte-Carlo simulated annealing [34]
to compare with the results of the recent NMR exper-
iment in aqueous solution [32]. Ten simulation runs
of 100,000 MC sweeps were made in gas phase (� = 2)
and in aqueous solution that is represented by the terms
proportional to the solvent-accessible surface area (see
(3)). Although the results are preliminary, the simula-
tions in gas phase did not produce two helices this time
in contrast to the previous work [50], where a short

Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 6
Lowest-energy conformation of PTH(1–34) obtained from20
Monte-Carlo simulated annealing runs in gas phase

second helix was observed, as discussed in the previ-
ous paragraph. The lowest-energy conformation has an
˛-helix from Val-2 to Asn-10. The simulations in aque-
ous solution, on the other hand, did observe the two ˛-
helices. The lowest-energy conformation obtained has
˛-helices from Gln-6 to His-9 and from Gly-12 to Glu-
22. Note that the second helix is now more extended
than the first one in agreement with experiments. This
structure together with one of the NMR structure [32]
is shown in Fig. 7. The figures were again created with
Molscript [29] and Raster3D [2,35].

Generalized-ensemble simulations of PTH(1–37)
are now in progress in order to obtain more quantita-
tive information such as average helicity as a function
of residue number, etc.

The second example of more complicated system is
the immunoglobulin-binding domain of streptococcal
protein G. This protein is composed of 56 amino acids
and the structure determined by an NMR experiment
[14] and an X-ray diffraction experiment [1] has an ˛-
helix and a ˇ-sheet. The ˛-helix extends from residue
Ala-23 to residue Asp-36. The ˇ-sheet is made of four
ˇ-strands: from Met-1 to Gly-9, from Leu-12 to Ala-
20, from Glu-42 to Asp-46, and from Lys-50 to Glu-56.
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Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 7
A structure of PTH(1–37) deduced fromNMR experiments (a)
and the lowest-energy conformation of PTH(1–37) obtained
from 10 Monte-Carlo simulated annealing runs in aqueous
solution represented by solvent-accessible surface area (b)

This structure is shown in Fig. 8a). The figures in Fig. 8
were again created with Molscript [29] and Raster3D
[2,35].

We have performed eight Monte-Carlo simulated
annealing runs of 50,000 to 400,000 MC sweeps with
the sigmoidal, distance-dependent dielectric function
of (2). The lowest-energy conformation so far obtained
has four ˛-helices and no ˇ-sheet in disagreement
with the X-ray structure. This structure is shown in
Fig. 8b).

The disagreement of the lowest-energy structure
(Fig. 8b) so far obtained with the X-ray structure
(Fig. 8a) is presumably caused by the poor representa-
tion of the solvent effects. As can been seen in Fig. 8a),
the X-ray structure has both interior where a well-
defined hydrophobic core is formed and exterior where
it is exposed to the solvent. The distance-dependent di-
electric function, which mimics the solvent effects only

Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 8
A structure of protein G deduced from an X-ray experi-
ment (a) and the lowest-energy conformation of protein G
obtained from Monte-Carlo simulated annealing runs with
the distance-dependent dielectric function (b)

in electrostatic interactions, is therefore not sufficient to
represent the effects of the solvent here.

Conclusions

In this article we have reviewed theoretical aspects of
the protein folding problem. Our strategy in tackling
this problem consists of two elements: 1) inclusion of
accurate solvent effects, and 2) development of power-
ful simulation algorithms that can avoid getting trapped
in states of energy local minima.

We have shown the effectiveness of Monte-Carlo
simulated annealing by showing that direct folding of
˛-helix and ˇ-sheet structures from randomly-gener-
ated initial conformations are possible.
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As for the solvent effects, we considered sev-
eral methods: a distance-dependent dielectric func-
tion, a term proportional to solvent-accessible surface
area, and the reference interaction site model (RISM).
These methods vary in nature from crude but com-
putationally inexpensive (distance-dependent dielectric
function) to accurate but computationally demanding
(RISM theory). In the present article, we have shown
that the inclusion of some solvent effects is very impor-
tant for a successful prediction of the tertiary structures
of small peptides and proteins.
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Many important real-world problems contain stochas-
tic elements and require optimization. Stochastic pro-
gramming and simulation-based optimization are two
approaches used to address this issue. We do not ex-
plicitly discuss other related areas including stochastic
control, stochastic dynamic programming, andMarkov
decision processes. We consider a stochastic optimiza-
tion problem of the form

(SP) z� D min
x2X

E f (x; �);

where x is a vector of decision variables with deter-
ministic feasible region X � Rd, � is a random vector,
and f is a real-valued function with finite expectation,
E f (x; �), for all x 2 X. We use x� to denote an optimal
solution to (SP). Note that the decision xmust be made
prior to observing the realization of �.

A wide variety of types of problems can be expressed
as (SP) depending on the definitions of f and X. Two
of the most commonly-used approaches are rooted in
mathematical programming and in discrete-event sim-
ulation modeling.

In a two-stage stochastic linear program with re-
course [6,14], X is a polyhedral set and f is defined as
the optimal value of a linear program, given x and �,
i. e.,

f (x; �) D cx C

8<
:
min
y�0

qy

s.t. Wy D Tx C h:
(1)

Here, � is the vector of random elements from h, q, T,
andW. A prototypical problem of this nature is a capac-
ity allocation model under uncertain demand and/or
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capacity availabilities. x is a strategic decision allocat-
ing resources while y represents an operational recourse
decision that is made after observing the demand and
availabilities. Example applications of this type include
capacity expansion planning in an electric power sys-
tem [16] and in a telecommunications network [61].
The two-stage model generalizes to a more dynamic,
multistage model (see, e. g., [10]) in which decisions are
made, and random events unfold, over time. For mul-
tistage applications in asset-liability management see
[13] and in hydro-electric scheduling see [39].

In the context of a simulation model, f (x, �) could
represent a performance measure under a design speci-
fied by x. For example, f (x, �) might represent the num-
ber of hours in a workday that a critical machine is
blocked in a queueing network model of a manufac-
turing system in which buffer sizes are determined by
x. In another application, E.L. Plambeck et al. [53] al-
locate constrained processing rates to unreliable ma-
chines with buffers in a fluid serial queueing network
in order to maximize steady-state throughput. In non-
terminating simulations, the expectation in E f (x; �) is
typically with respect to a steady-state distribution.

Note that E f (x; �) can capture objectives not usu-
ally thought of as a ‘mean’. For example, if c represents
random rates of return and x investment amounts, we
might want to maximize the probability of exceeding
a return threshold, T. We can write P(cx � T) D
EI(cx � T) where I(�) is the indicator function that
takes value one if its argument is true and zero oth-
erwise. For more on probability maximization models
(and generalizations of (SP) in which X contains prob-
abilistic constraints) see [54]. See [45] for a discussion
of risk modeling in stochastic optimization.

A more general model than (SP) allows the distri-
bution of � to depend on x. Some simple types of de-
pendencies can effectively be captured in (SP) via mod-
eling tricks, such as the x scaling random elements of
T in (1). General dependencies, however, are difficult
to handle. For work on decision-dependent distribu-
tions when there are a finite number of possibilities see
[26,40].

Regardless of whether it is defined as the expected
value of a mathematical program or as a long-run av-
erage performance measure of a discrete-event simula-
tion model, it is usually impossible to calculate E f (x; �)
exactly- even for a fixed value of x. When the dimension

of the random vector � is relatively low, one approach is
to obtain deterministic approximations of E f (x; �) us-
ing numerical quadrature or related ideas. In stochastic
programming, this corresponds to generating and re-
fining bounds on E f (x; �) within a sequential approx-
imation algorithm [20,24,43]. For problems in which
� is of moderate-to-high dimension and is continu-
ous or has a large number of realizations, Monte-Carlo
simulation is widely regarded as the method of choice
for estimating E f (x; �). As a result, it is not surprising
that Monte-Carlo techniques play a fundamental role
in solving (SP).

In recent years (1999), considerable progress has
been made in solving realistically-sized problems with
a significant number of stochastic parameters and de-
cision variables. The telecommunications model con-
sidered in [61] has 86 random point-to-point demand
pairs and 89 links on which capacity may be installed.
In [53] queueing networks with up to 50 nodes are
studied. Each node represents a machine with random
failures and has a decision variable denoting its as-
signed cycle time. [53] also solves a stochastic PERT
(program evaluation and review technique) problem
with 70 nodes and 110 stochastic arcs. The arcs model
the times required to complete activities and a deci-
sion variable associated with each arc influences (pa-
rameterizes) the distribution of the random activity du-
ration. These problems contain objectives with high-
dimensional expectations and all were solved using
Monte-Carlo methods.
In this article we discuss:
i) several types of Monte-Carlo-based solution proce-

dures that can be used for solving (SP);
ii) methods for testing the quality of a candidate solu-

tionbx 2 X;
iii) variance reduction techniques used in stochastic

optimization; and
iv) theoretical justification for using sampling.

Solution Procedures

Monte-Carlo methods for approximately solving
stochastic optimization problems can typically be clas-
sified on the basis of whether the sampling is external
to, or internal to, the optimization algorithm. Solu-
tion procedures of both types are driven by estimates of
objective function values and/or gradients. Before turn-
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ing to solution procedures we briefly discuss gradient
estimation.

In stochastic programming, gradient (or subgra-
dient) estimates of E f (x; �) are typically available via
duality. In simulation-based optimization, the primary
methods for obtaining gradient estimates are finite dif-
ferences, the likelihood ratio (LR) method (also called
the score function method) [29,57], and infinitesimal
perturbation analysis (IPA) [27,35]. Finite-difference
approximations require minimal structure, needing
only estimates of E f (x; �); however, they result in so-
lution procedures that can converge slowly. The LR
method is more widely applicable than IPA, but when
both apply the IPA approach tends to produce estima-
tors with lower variance. See, for example, [28] for a dis-
cussion of these issues.

In the simplest form of ‘external sampling’ (also
called ‘sample-path optimization’ [55] and the ‘stochas-
tic counterpart’ method [57]) we generate independent
and identically distributed (i.i.d.) replicates �1, . . . , �n

from the distribution of � and form the approximating
problem

(SPn) z�n D min
x2X

1
n

nX
iD1

f (x; � i):

Even when it is possible to construct (SPn) using
i.i.d. variates, it may be preferable to use another sam-
pling scheme in order to reduce the variance of the re-
sulting estimators. Moreover, in nonterminating simu-
lation models, generating i.i.d. replicates from a station-
ary distribution is often impossible (for exceptions see
recent work on exact sampling, e. g., [3,22]), but under
appropriate conditions we may run the simulation for
a length n and replace the objective function in (SPn)
with a consistent estimate of the desired long-run aver-
age performance measure.

After constructing an instance of (SPn) we employ
a (deterministic) optimization algorithm to obtain a so-
lution x�n . In the case of stochastic linear programming,
(SPn) is a large scale linear program. The cutting plane
algorithm of R.M. Van Slyke and R.J-B. Wets [64], its
variant with a quadratic proximal term [58], and its
multistage version [7,9] are powerful tools for solving
such problems. A cutting plane algorithm with a prox-
imal term and IPA-based gradients is used in an exter-
nal sampling method for solving the queueing network

problem in [53]. See [8] for a recent survey of compu-
tational methods for stochastic programming instances
of (SPn).

Intuitively, we might expect solutions of (SPn)
to more accurately approximate solutions of (SP) as
n increases. We discuss results supporting this in
Sect. “Theoretical Justification for Sampling”. In addi-
tion, after having solved (SPn) to obtain x�n it would be
desirable to know whether n was ‘large enough’. More
generally, we would like to be able to test the quality of
a candidate solution (such as x�n ). This is discussed in
the next section.

We now turn to solution procedures based on inter-
nal sampling. These algorithms adapt deterministic op-
timization algorithms by replacing exact function and
gradient evaluations with Monte-Carlo estimates. The
sampling is internal because new observations of � are
generated on an as-needed basis at each iteration of the
algorithm. We briefly discuss stochastic adaptations of
steepest descent and cutting plane methods.

A deterministic steepest descent algorithm for (SP)
forms iterates {x`} using the recursion

x`C1  ˘X

h
x` � �`rE f (x`; �)

i
:

˘X performs a projection onto X and { �` }
are steplengths. It is usually impossible to calculate
rE f (x; �) exactly and it must be estimated. Stochastic
approximation (SA) and stochastic quasigradient (SQG)
algorithms are stochastic variants of a steepest descent
search. The Keifer-Wolfowitz SA method uses unbiased
estimates of E f (x; �) to form finite-difference approx-
imations of the gradient. The Robbins–Monro SA pro-
cedure requires unbiased estimates of rE f (x; �). SQG
methods do not require that E f (x; �) be differentiable
and work under more general assumptions concerning
the estimates of (sub)gradients of E f (x; �). In particu-
lar, the estimates need not be unbiased but the bias must
effectively shrink to zero as the algorithm proceeds. For
convergence properties of SA methods see [49] and for
SQG procedures see [23].

Cutting plane methods are applicable when E f (x; �)
is convex. The iterates {x` } are found by solving a se-
quence of optimization problems of the form

min
x2X

max
`D1;:::;L

E f (x`; �)CrE f (x`; �)(x � x`);
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where L grows as the algorithm proceeds. At each it-
eration a first order Taylor approximation of E f (x; �),
i. e., a cutting plane, is computed at the current iterate
x` and is used to refine the piecewise-linear outer ap-
proximation of E f (x; �). The key idea is that this ap-
proximation need only be accurate in the neighborhood
of an optimal solution. For stochastic linear programs,
G.B. Dantzig, P.W. Glynn [15], and G. Infanger [37,38]
and J.L. Higle and S. Sen [32,34] have developedMonte-
Carlo-based cutting plane methods by using statistical
estimates for the cut intercepts and gradients. Dantzig,
Glynn, and Infanger use separate streams of observa-
tions of � to estimate each cut. The stochastic decom-
position algorithm of Higle and Sen uses common ran-
dom number streams to calculate each cut and employs
an updating procedure to ensure that the statistical cuts
are asymptotically valid (i. e., lie below E f (x; �)). Rela-
tive to SA and SQG methods, cutting plane procedures
avoid potentially difficult projections and, in practice,
have a reputation for converging more quickly, partic-
ularly when X is high dimensional.

Grid search and optimization of metamodels are
two common approaches to optimizing system per-
formance in discrete-event simulation models. In grid
search, X is replaced by a ‘grid’ of points Xm = { x1, . . . ,
xm } and sample-mean estimates

f n(x) D 1/n
nX

iD1

f (x; � i )

are formed at each x 2 Xm. (SP) is then approximately
solved by z�n D minx2Xm f n(x) with x�n being the as-
sociated minimizer. Grid search is attractive because it
requires minimal structure, but in implementing this
procedure, we must exercise care in selecting m and n.
With independent sampling at each grid point, K.B. En-
sor and Glynn [21] consider the rate at which n must
grow relative to m in order to achieve consistency and
they also discuss the method’s limiting behavior when
the rate of growth is at (and slower than) the critical
rate.

A metamodel can be used to approximate a more
complex simulation model which, in turn, is an approx-
imation of the real system. In such a metamodel, es-
timates of E f (x; �) are formed at each point in a set
specified by an experimental design, and the parame-
ters of the postulated response surface are fit to these ob-
served values. The resulting function is then optimized

with respect to x. For more on metamodels see, e. g.,
[11,47]. The review in [25] includes optimization using
response surfaces, and metamodeling has also been ap-
plied in stochastic programming [5].

The grid-search and metamodel approaches are
classified as external sampling procedures if the proce-
dure is executed once. However, it may be desirable to
refine the grid (or the region covered by the experimen-
tal design) in the neighborhood of promising values of
x and repeat the methodology. When it is adaptively re-
peated in this fashion the procedure is classified as an
internal sampling method.

We have not explicitly discussed approaches for
when X is discrete. These range from methods for se-
lecting the best design in simulation to those for solv-
ing stochastic integer programming models. Finally,
sampling-based procedures for multistage stochastic
programs have been proposed in [17].

Establishing Solution Quality

Establishing solution quality is a key concept when us-
ing an approximation scheme to solve an optimization
problem. When applying Monte-Carlo techniques to
(SP), the best we can expect are probabilistic quality
statements. In the context of external sampling, there
has been significant work on studying the behavior of
solutions to (SPn) for large sample sizes (see the last sec-
tion). There are analogous convergence results for al-
gorithms based on internal sampling. Such results take
a number of forms but perhaps the most fundamen-
tal is to show that limit points of the sequence of so-
lutions are, say, almost surely optimal to (SP). Next, it
is desirable to have a statement regarding the rate of
convergence and an associated asymptotic distribution.
These consistency and limiting distribution results are
aimed at justifying sampling-based methods and may
be viewed as establishing solution quality. However,
the approach discussed in this section centers on the
question: Given a candidate solutionbx 2 X, what can
be said regarding its quality? Because candidate solu-
tions may be obtained by internal or external sampling
schemes or via another, heuristic, method, procedures
that can directly test the quality of bx, regardless of its
origin, are very attractive.

One natural way of defining solution quality is by
the optimality gap, E f (bx; �) � z�. An optimal solution
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has an optimality gap of zero, but in our setting we hope
to make probabilistic statements such as

PfE f (bx; �) � z� � �g � ˛; (2)

where � is a random confidence interval width and ˛ is
a confidence level, e. g., ˛ = 0.95. Unfortunately, exact
confidence intervals such as (2) can be difficult to ob-
tain even in relatively simple statistical settings so we
attempt to construct approximate confidence intervals

PfE f (bx; �) � z� � �g 	 ˛: (3)

To form a confidence interval (3) for E f (bx; �)�z� we
estimate the mean of a gap random variable Gn = Un �

Ln that is expressed as the difference between upper and
lower bound estimators and satisfies EGn � E f (bx; �) �
z�.

In many problems it is relatively straightforward to
estimate the performance of a suboptimal decisionbx via
simulation. For example, the standard sample mean es-
timator,Un D 1/n

Pn
iD1 f (bx; � i ), provides an unbiased

estimate of the expected cost of using decision bx, i. e.,
E f (bx; �).

To construct a confidence interval for the optimality
gap we also want an estimate of z�. However, unbiased
estimates of z� are difficult to obtain so an estimator
Ln that satisfies ELn � z� is used. In [51] it is shown
that if the objective in (SPn) is an unbiased estimate of
E f (x; �) then Ez�n � z�, i. e., z�n is one possible lower
bound estimator Ln. Higle and Sen [33] perform a La-
grangian relaxation of a reformulation of (SPn) which
uses explicit ‘nonanticipativity’ constraints. The result-
ing lower bound is weaker in expectation than z�n but
has the computational advantage that the optimization
problem separates by scenario.

Once observations of Gn can be formed, we can
appeal to the batch means method and use the cen-
tral limit theorem [51], or a nonparametric approach
[31,33], to construct approximate confidence intervals
(3). Another approach to examining solution quality
is to test the null hypothesis that the (generalized)
Karush-Kuhn-Tucker (KKT) optimality conditions are
satisfied; see [63]. Higle and Sen [31] also consider the
KKT conditions but use them to derive bounds on the
optimality gap.

Variance Reduction Techniques

When applying the ‘crude’ Monte-Carlo method to es-
timate E f (x; �) for fixed x, we use the standard sample
mean estimator based on i.i.d. terms,

1
n

nX
iD1

f (x; � i ):

The error associated with this estimate is proportional
to

�
var f (x; �)

n

�1/2
: (4)

This error can be decreased by increasing the sample
size. However, obtaining an additional digit of accuracy
requires increasing the sample size by a factor of 100.
If f is defined as the optimal value of a mathematical
program or as the performance measure of a simula-
tion model, increasing the number of evaluations of f in
this fashion can be prohibitively expensive.Variance re-
duction techniques (VRTs) effectively decrease the nu-
merator in (4) instead of increasing the denominator.
Many problems for which crude Monte-Carlo would
yield useless results are instead made computationally
tractable via VRTs. As described in Sect. “Solution Pro-
cedures”, sampling is also used to estimate r Ef (x, �),
but for simplicity we primarily restrict our attention to
VRTs for estimating E f (x; �).

Some VRTs, including control variates (CVs) and
importance sampling (IS), exploit special structures of
f (x, �). Suppose that we have � x(�), with known mean
�� , which is believed to approximate (be positively
correlated with) f (x, �). In CVs we attempt to ‘subtract
out’ variation by generating observations of [f (x, �) �
� x(�)] + �� , which has the same expectation as f (x,
�). (It is common to incorporate a multiplicative fac-
tor with the control variate � x(�) and also possible to
use multiple controls.) In IS we attempt to reduce vari-
ance by generating observations of �� [f (x, �)/ � x(�)].
In CVs observations of � are generated from its origi-
nal distribution. However, in IS the expected value of
the ratio is not the ratio of expectations and, as a re-
sult, there is a change of measure induced by � x that is
required to yield an unbiased estimate. Under the new
IS distribution, we are more likely to sample � where
� x(�) is large, i. e., scenarios that our approximation
function predicts have high cost. In an IS scheme for
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stochastic linear programs, [15,37] use an approxima-
tion function that is separable in the components of
� while [48] utilizes a piecewise-linear approximation.
See [12] for the solution of a stochastic optimization
problem to price American-style financial options us-
ing the simpler European option as a control variate.
These papers report significant variance reduction in
computational results.

Other VRTs exploit correlation structures in the so-
lution methodology.Common random numbers (CRNs)
are often used in simulation when comparing the per-
formance of two systems. The use of CRNs has been
suggested in a stochastic approximation method with
finite differences where the same stream is used for the
forward and backward point estimates [50]. The upper
and lower bounds used to determine solution quality
(see the previous section) may be viewed as two ‘sys-
tems’ and the use of CRNs in estimating their difference
has been advocated in [34,51]. In order to reduce the er-
ror in the resulting response surface, various methods
have been proposed for generating the streams of ob-
servations of � at each point in the experimental design.
The Schruben–Margolin scheme [59] uses a mixture of
CRNs and antithetic variates and an extension [65] also
incorporates CVs.

Another group of VRTs attempts to more regu-
larly spread the sampled observations over the sup-
port of �. Such techniques include stratified sampling
and Latin hypercube sampling as well as quasi-Monte-
Carlo techniques in which the sequence of observa-
tions is deterministic. Empirical results in [30] for two-
stage stochastic linear programming compare the vari-
ance reduction obtained by stratified sampling, anti-
thetic variates, IS, and CVs and suggest that a CV pro-
cedure performs relatively well, particularly on high-
variance problems.

Theoretical Justification for Sampling

In Sect. “Solution Procedures” we formed an approx-
imating problem for external sampling procedures by
using the sample mean estimator of E f (x; �). Here we
redefine (SPn) as

(SPn) z�n D min
x2X

En f (x; �);

with x�n again denoting an optimal solution. In (SP) the
expected value operator E is with respect to the ‘true’

probability measure P while in (SPn), En is with respect
to a measure Pn that is a statistical estimate of P. If
Monte-Carlo methods are used to generate i.i.d. repli-
cates from P then Pn is the associated (random) empir-
ical measure.

Since z�n is an estimator of z� and x�n an estimator of
an optimal solution to (SP), it is natural to study the be-
havior of these estimators for large sample sizes. For ex-
ample, under what conditions do we obtain consistency
and what can be said concerning rates of convergence?
Positive answers to such questions provide theoretical
justification for employing external Monte-Carlo sam-
pling techniques to solve (SP).

In general, (SPn) and (SP) may have multiple op-
timal solutions and so we cannot expect {x�n } to con-
verge. Instead, establishing consistency of x�n amounts
to showing that the accumulation points of the se-
quence are almost surely optimal to (SP). If, for exam-
ple, the samples are i.i.d. then by the strong law of large
numbers we have En f (x; �) ! E f (x; �), a.s., for all x.
Unfortunately, this does not ensure that {x�n } has accu-
mulation points that are optimal to (SP) and that z�n !
z�, a.s. [4].

The notion of epiconvergence plays a fundamental
role in establishing consistency results for x�n and z�n ;
see [4]. A sequence of functions { �n } is said to epi-

converge to � (written �n
epi
! �) if the epigraphs of �n,

{(x, ˇ): ˇ � �n(x) }, converge to that of �. Epiconver-
gence is weaker than classical uniform convergence. P.
Kall [41] provides an excellent review of various types
of convergence, their relations, and their implications
for approximations of optimization models. Epiconver-
gence is a valuable property because of the following re-
sult:

Theorem 1 Suppose �n
epi
! �. If bx is an accumu-

lation point of { x�n , where x�n 2 argmin �n(x), then
bx 2 argmin�(x).

Constrained optimization is captured in this result be-
cause �n and � are defined to be extended-real-valued
functions that take value + 1 at infeasible points.
While it is possible that the sequence of optimizers {x�n}
has no accumulation points, this potential difficulty is
avoided if the feasible region X is compact (i. e., closed
and bounded).

Because of the implications of epiconvergence,
there is considerable interest in determining sufficient
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conditions on f , Pn , and P under which En f (x; �)
epi
!

E f (x; �), a.s. Note that because fPng are random mea-
sures, the epiconvergence of the approximating func-
tions is with probability one (also called epiconsistency).
Under this hypothesis the accumulation points of {x�n }
are almost surely optimal to (SP); see [19].

Sufficient conditions for achieving En f (x; �)
epi
!

E f (x; �), a.s. are examined in [19,42,55], and [56].
Roughly speaking, we will obtain epiconsistency if f
is sufficiently smooth, Pn converges weakly to P with
probability one, and the tails of the distributions are
well-behaved relative to f . See [2,60] for results when
f is discontinuous.

For two-stage stochastic programming in which the
recourse matrix W in (1) is deterministic and Pn is
the empirical measure, [46] contains consistency results
under modest assumptions. We note that is possible to
develop consistency results using other (stronger) types
of convergence of En f (x; �) to E f (x; �); see, for exam-
ple, [52].

There is a large literature on consistency, stability,
and rates of convergence for solutions of (SPn). Much
of this work may be viewed as generalizing earlier re-
sults on constrained maximum likelihood estimation in
[1] and [36]. Under restrictive assumptions, asymp-
totic normality for

p
n(z�n � z�) and

p
n(x�n � x�)

may be obtained, e. g., [19]. However, when inequal-
ity constraints in X play a nontrivial role we cannot,
in general, expect to obtain limiting distributions that
are normal [18,44,62]. See [44] for a limiting distribu-
tion for

p
n(x�n � x�) that is the solution of a (random)

quadratic program.

See also

�Monte-Carlo Simulated Annealing in Protein
Folding

References
1. Aitchison J, Silvey SD (1958) Maximum-likelihood estima-

tion of parameters subject to restraints. Ann Math Statist
29:813–828

2. Artstein Z, Wets RJ-B (1994) Stability results for stochastic
programs and sensors, allowing for discontinuous objec-
tive functions. SIAM J Optim 4:537–550

3. Asmussen S, Glynn PW, Thorisson H (1992) Stationary de-
tection in the initial transient problem. ACM Trans Model-
ing and Computer Simulation 2:130–157

4. Attouch H, Wets RJ-B (1981) Approximation and conver-
gence in nonlinear optimization. In: Mangasarian O, Meyer
R, Robinson S (eds) Nonlinear Programming, vol 4. Acad
Press, New York, pp 367–394

5. Bailey TG, Jensen PA, Morton DP (1999) Response surface
analysis of two-stage stochastic linear programming with
recourse. Naval Res Logist 46:753–778

6. Beale EML (1955) Onminimizing a convex function subject
to linear inequalities. J Royal Statist Soc 17B:173–184

7. Birge JR (1985) Decomposition and partitioning meth-
ods for multistage stochastic linear programs. Oper Res
33:989–1007

8. Birge JR (1997) Stochastic programming computation and
applications. INFORMS J Comput 9:111–133

9. Birge JR, Donohue CJ, Holmes DF, Svintsitski OG (1996)
A parallel implementation of the nested decomposition al-
gorithm for multistage stochastic linear programs. Math
Program 75:327–352

10. Birge JR, Louveaux F (1997) Introduction to stochastic pro-
gramming. Springer, Berlin

11. Box GEP, Draper NR (1987) Empirical model-building and
response surfaces. Wiley, New York

12. BroadieM, Glasserman P (1997) Pricing American-style op-
tions using simulation. J EconomDynam Control 21:1323–
1352

13. Cariño DR, Kent T, Meyers DH, Stacy C, Sylvanus M, Turner
AL, Watanabe K, ZiembaWT (1994) The Russell-Yasuda Ka-
sia model: An asset/liability model for a Japanese insur-
ance company using multistage stochastic programming.
Interfaces 24:29–49

14. Dantzig GB (1955) Linear programming under uncertainty.
Managem Sci 1:197–206

15. Dantzig GB, Glynn PW (1990) Parallel processors for plan-
ning under uncertainty. Ann Oper Res 22:1–21

16. Dantzig GB, Glynn PW, Avriel M, Stone JC, Entriken R,
Nakayama M (1989) Decomposition techniques for multi-
area generation and transmission planning under uncer-
tainty. Report Electric Power Res Inst EPRI 2940-1

17. Dempster MAH, Thompson RT (1999) EVPI-based im-
portance sampling solution procedures for multistage
stochastic linear programmes on parallel MIMD architec-
tures. Ann Oper Res 90:161–184
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Motzkin’s transposition theorem (MTT) [1] is a so-
called theorem of the alternative (cf.� Linear Optimiza-
tion: Theorems of the Alternative). It deals with the
question whether or not a given system of linear in-
equalities has a solution. In the most general case such
a system has the form

(S) Ax � a; Bx > b;

where A and B are matrices of size m × n and p × n, re-
spectively, and where Ax � a contains the ‘larger than
or equal’ inequalities and Bx > b the ‘larger than’ in-
equalities. Note that inequalities of the opposite type
(‘smaller than or equal’ or ‘smaller than’) can be turned
into the appropriate form by multiplying them by �1.

The Motzkin transposition theorem states that the
system (S) has no solution if and only if at least one of
the systems (T1) and (T2) has a solution, where the lat-
ter systems are given by

(T1)

(
y>AC v>B D 0; y>a C v>b > 0;
y � 0; v � 0;

and

(T2)

(
y>AC v>B D 0; y>a C v>b � 0;
y � 0; v � 0; v ¤ 0;

respectively.
In other words, when one has a solution of (T1) or

of (T2) this solution is a certificate for the fact that the
given system (S) is infeasible, i. e., has no solution.

It makes sense to formulate two most useful princi-
ples following from the theorem.

Theorem 1 (Principle A) The system (S) is infeasible
if and only if one can combine the inequalities in (S)
in a linear fashion (i. e., multiply each inequality with
a nonnegative number and add the results) to get the
contradictory inequality 0 > 0 (or 0� 1).

To see that this is exactly what the MTT says, let y and v
denote nonnegative vectors of appropriate sizes. Then
the inequality

�
y>AC v>B

�
x � y>aC v>b (1)

is a consequence of the inequalities in (S), and if the
vector v is not the zero vector, then also the stronger
inequality

�
y>AC v>B

�
x > y>aC v>b (2)

is a consequence of (S). The inequalities (1) and (2) have
certainly solutions if y| A + v| B 6D 0. But if y| A + v| B
= 0 then (1) yields a contradiction if y| a + v| b > 0 and
(2) if y| a + v| b � 0. The first case occurs if (T1) has
a solution and the second case if (T2) has a solution.
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The second principle is:

Theorem 2 (Principle B) If (S) is feasible, then a linear
inequality is a consequence of the inequalities in (S) if
and only if it can be obtained by combining, in a linear
fashion, the inequalities in (S) and the trivial inequality
0 ��1.

This principle can be understood in a similar way: If (S)
is feasible, then c| x � z is an implied inequality if and
only if

Ax � a; Bx > b ) c>x � z;

which is equivalent to the system

Ax � a; Bx > b; �c>x > �z

being infeasible. By Principle A this happens if and only
if there exist nonnegative vectors y and v and a nonneg-
ative scalar � such that
�
y>AC v>B � �c

�
x � y>aC v>b � �z

is a contradictory inequality. Hence y| A + v| B �� c =
0 and y| a + v| b�� z > 0. Since (S) is feasible, we must
have � > 0. Without loss of generality we may assume
� = 1. Then c = y| A + v|B and z � y| a + v| b. This
proves the claim.

The above principles are highly nontrivial and very
deep. Consider, e. g., the following system of 4 inequal-
ities with two variables u, v:

� 1 � u � 1;
� 1 � v � 1:

From these inequalities it follows that

u2 C v2 � 2;

which in turn implies, by the Cauchy inequality, the in-
equality u + v � 2:

uC v D 1 � u C 1 � v �
p
12 C 12

p
u2 C v2 � 2:

The concluding inequality is linear, and is a conse-
quence of the original system, but the above derivation
is ‘highly nonlinear’. It is absolutely unclear a priori why
the same inequality can also be obtained from the given
system in a linear manner as well, as stated by Principle
B. Of course, it can – it suffices to add the inequalities u
� 1 and v � 1.

The MTT is one of the deepest result in the part
of mathematics dealing with linear inequalities and, in
fact, is logically equivalent to other deep results in this
discipline. For example, it is equivalent to the duality
theorem for linear optimization (cf.� Linear Program-
ming). To demonstrate this, consider the linear opti-
mization problem

(P) min
˚
c>x : Ax � b

�
:

Let z� denote the optimal value of (P), where we take z�

= �1 if (P) is unbounded and z� =1 if (P) is infeasi-
ble. Now, a real z is a lower bound on the optimal value
of (P) if and only if c|x � z is a consequence of Ax � b,
or, which is the same, if and only if the system of linear
inequalities

(Sz) Ax � b; �c>x > �z

has no solutions. By the MTT this is the case if and only
if at least one of the systems

(T1z)

(
y>A� y0c D 0; y>b � y0z > 0;
y � 0; y0 � 0

and

(T2z)

(
y>A� y0c D 0; y>b � y0z � 0;
y � 0; y0 > 0

has a solution. Note that the only difference between
these two systems is that (T1z) requires y0 � 0 whereas
(T2z) requires y0 > 0. Also, since the system (T2z) is ho-
mogeneous, without loss of generality we may take y0 =
1. Thus it follows that z is a lower bound on the opti-
mal value of (P) if and only if one of the following two
systems

(T10z) y>A D 0; y>b > 0; y � 0

and

(T20z) y>A D c; y>b � z; y � 0

has a solution. Observe that z does not appear in (T10z).
Therefore, if this system has a solution then each real z
is a lower bound on the optimal value of (P), but this oc-
curs if and only the problem (P) is infeasible. Assuming
that (P) is feasible, it follows that z is a lower bound on
the optimal value of (P) if and only if the system (T20z)
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has a solution. Given a solution y of (T20z) any z sat-
isfying y|b � z is a lower bound and the largest lower
bound provided in this way is y|b. Hence, the largest
possible lower bound on the optimal value of (P) is the
optimal value of the problem

(D) max
˚
b>y : y>A D c; y � 0

�
:

If the problem (P) is unbounded, i. e., if there does not
exists a lower bound on the optimal value of (P), then
the problem (D) must be infeasible. Otherwise the op-
timal value of (D) must coincide with the optimal value
of (P).

The problem (D) is called the dual problem of the
primal problem (P). The above findings can be summa-
rized as follows:

if one of the two problems (P) and (D) is un-
bounded then the other is infeasible; if both
problems are feasible then they have both an
optimal solution and the optimal values are the
same.

This is the duality theorem for linear optimization. Note
that one other case may occur, namely that both prob-
lems are infeasible. It became clear above that (P) is in-
feasible if and only if (T10z) has a solution, so

the primal problem (P) is infeasible if and only if
there exists a dual ray y, i. e., a vector y such that

y>A D 0; y>b > 0; y � 0: (3)

In fact, the latter statement is equivalent to the state-
ment that (3) and Ax� b are alternative systems, which
is the special case of the MTT occurring when B is
vacuous and which is known as Farkas’ lemma. (See
� Linear Optimization: Theorems of the Alternative
and � Farkas Lemma.) In just the same way it can be
derived from a variant of Farkas’ lemma that:

the dual problem (D) is infeasible if and only if
there exists a primal ray x, i. e., a vector x such
that

Ax � 0; c>x < 0: (4)

It has been shown above that the MTT implies the
duality theorem for linear optimization. The converse

is also true: Assuming the duality theorem for linear
optimization, the MTT easily can be proved, showing
that the two results are logically equivalent. This goes in
two steps. Assuming the duality theorem for linear op-
timization, first one derives Farkas’ lemma and then it is
shown that the MTT follows. To derive Farkas’ lemma,
consider the problem

min
˚
0>x : Ax � b

�
:

Clearly, the system Ax � b has a solution if and only if
the optimal value of this problem is zero. By the duality
theorem this holds if and only if the optimal value of
the dual problem

max
˚
b>y : y>A D 0; y � 0

�

is also zero. This holds if and only

y>A D 0; y � 0 ) b>y � 0;

which is true if and only if the system

y>A D 0; y � 0; b>y > 0

has no solution, proving Farkas’ lemma.
To prove the MTT, one derives from Farkas’ lemma

that the ‘weaker’ system

(S1) Ax � a; Bx � b

is infeasible if and only if the system (T1) has a solution.
If (S1) is feasible then one easily verifies that (S) has no
solution if and only if the optimal value of the problem

(P1) min f� : Ax � a; Bx C �e � bg

is a nonnegative real. Here e denotes the all-one vector.
Since (P1) is feasible and below bounded, by the duality
theorem this happens if and only if the optimal value of
the dual problem

(D1) max

8<
:a>yC b>v :

y>AC v>B D 0;
e>v D 1;

y � 0; v � 0

9=
;

is a nonnegative real and, finally, this occurs if and only
if (T2) has a solution. Thus it has been shown that the
MTT is logically equivalent to the duality theorem for
linear optimization.
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So far the issue of how to prove the MTT has not
been touched. One possible approach is to prove the
duality theorem for linear optimization and then derive
the MTT in the above described way. This approach is
now quite popular in text books. For a recent exam-
ple see, e. g., [2]. The easiest way for a direct proof is to
prove first the Farkas’ lemma and then derive the MTT
from this lemma. The latter step uses the easy to ver-
ify statement that (S) has no solution if and only if the
system

Ax � ta � 0;
Bx � tb � se � 0;

t � s � 0;

� s < 0

has no solution. Application of a suitable variant of
Farkas’ lemma to this system yields the MTT. Farkas’
lemma and its proof have a rich history; for a nice and
detailed survey one might consult [3].

See also

� Farkas Lemma
� Linear Optimization: Theorems of the Alternative
� Linear Programming
�Minimum Concave Transportation Problems
�Multi-index Transportation Problems
� Stochastic Transportation and Location Problems
� Tucker Homogeneous Systems of Linear Relations
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Introduction

Data classification is a supervised learning strategy that
analyzes the organization and categorization of data in
distinct classes [14]. Generally, a training set, in which
all objects are already associated with known class la-
bels, is used by classification methods. The data clas-
sification algorithm works on this set by using input
attributes and builds a model to classify new objects.
In other words, the algorithm predicts output attribute
values. Output attribute of the developed model is cate-
gorical [4]. There are many applications of data classifi-
cation in finance [6,14], health care [14], sports [14], en-
gineering [10,14] and science [10]. Data classification is
an important problem that has applications in a diverse
set of areas ranging from finance to bioinformatics.

A broad range of methods exists for data classifica-
tion problem including Decision Tree Induction [14],
Bayesian Classifier [14], Neural Networks (NN) [10],
Support Vector Machines (SVM) [10] and Mathemat-
ical Programming (MP) [1]. An overall view of clas-
sification methods is published by Weiss and Ku-
likowski [21]. A neural network is a data structure that
attempts to simulate the behavior of neurons in a bi-
ological brain [14]. A major shortcoming of the neu-
ral network approach is a lack of explanation of the
constructed model. The possibility of obtaining a non-
convergent solution due to the wrong choice of initial
weights and the possibility of resulting in a non-optimal
solution due to the local minima problem are impor-
tant handicaps of neural network-based methods. SVM
approach operates by finding a hyper surface that will
split the classes so that the distance between the hy-
per surface and the nearest of the points in the groups
has the largest value [19]. The main goal is to generate
a separating hyper surface which maximizes the margin
and produces good generalization ability [10]. In recent
years, SVM has been considered one of the most effi-
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cient methods for two-class classification problems [5].
SVM method has two important drawbacks in multi-
class classification problems; a combination of SVMhas
to be used in order to solve the multi-class classification
problems and some approximation algorithms are used
in order to reduce the computational time for SVM
while learning the large scale of data.

There have been numerous attempts to solve clas-
sification problems using mathematical programming.
A survey of classification methods using mathemati-
cal programming is published by Joachimsthaler and
Stam [11]. The mathematical programming approach
to data classification was first introduced in early
1980’s. Since then, numerous mathematical program-
ming models have appeared in the literature. As an ex-
tension of complement to these, Erenguc and Koehler
provide a comprehensive review [7]. Many distinct
mathematical programmingmethods with different ob-
jective functions are developed in the literature. These
include; minimizing the maximum exterior deviation,
minimizing the weighted sum of exterior deviations,
minimizing ameasure of exterior deviations whilemax-
imizing a measure of interior deviations, minimiz-
ing the number of misclassifications, and minimizing
a generalized distance measure. Most of these methods
modeled data classification as linear programming (LP)
problems to optimize a distance function. Contrary
to LP problems, mixed-integer linear programming
(MILP) problems that minimize the misclassifications
on the design data set are also widely studied [7]. Math-
ematical programming methods have certain advan-
tages over the parametric ones. For instance, they are
free from parametric assumptions and weights to be ad-
justed. Moreover, varied objectives and more complex
problem formulations can easily be accommodated. On
the other hand, obtaining a solution without any dis-
criminating power, unbounded solutions and excessive
computational effort requirement are some of the prob-
lems in mathematical programming based methods.
Koehler [12] surveys the potential problems in math-
ematical programming formulations. There have been
several attempts to formulate data classification prob-
lems as MILP problems [2,8,13,15]. Since MILP meth-
ods suffer from computational difficulties, the efforts
are mainly focused on efficient solutions for two-group
supervised classification problems. Although ways to
solve a multi-class data classification problem exist by

means of solving several two-group problems, such ap-
proaches also have drawbacks including computational
complexity resulting in long computational times [16].

MILP Formulation

The objective in data classification is to assign data
points that are described by several attributes into a pre-
defined number of classes. The use of hyper-boxes for
defining boundaries of the sets that include all or some
of the points in that set as shown in Fig. 1 can be very ac-
curate on multi-class problems. If it is necessary, more
than one hyper-box could be used in order to repre-
sent a class as shown in Fig. 1. When the classes that are
indicated by square and circle data points are both rep-
resented by a single hyper-box respectively, the bound-
aries of these hyper-boxes will overlap. Thus, two boxes
are constructed in order to eliminate this overlapping.
A very important consideration in using hyper-boxes
is the number of boxes used to define a class. If the
total number of hyper-boxes is equal to the number
of classes, then the data classification is very efficient.
On the other hand; if there are as many hyper-boxes of
a class as the number of data points in a class, then the
data classification is inefficient.

Multi-Class Data Classification via Mixed-Integer Optimiza-
tion, Figure 1
Schematic representation of multi-class data classification
using hyper-boxes
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The data classification problem based on this new
idea is built in two parts: training and testing. Determi-
nation of the characteristics of the data points that be-
long to a certain class and differentiation them from the
data points that belong to other classes are the targets
done during the training part. Thus, boundaries of the
classes are formed by the construction of hyper-boxes
in the training step. After the distinguishing character-
istics of the classes are determined, then the effective-
ness of the classification must be tested. Predictive ac-
curacy of the developed model is performed on a test
data set during the test part.

Training Problem Formulation

Training part studies are performed on a training data
set composed of a number of instances i. The data
points are represented by the parameter aim that de-
notes the value of attribute m for the instance i. The
class k that the data point i belongs to are given by the
set Dik . Each existing hyper-box l encloses a number of
data points belonging to the class k. Moreover, bounds
n (lower, upper) of each hyper-box is determined by
solving the training problem.

Given these parameters and the sets, the following
variables are sufficient to model the data classification
problem with hyper-boxes. The binary variable ybl is
indicates whether the box l is used or not. The posi-
tion (inside or outside) of the data point i with regard
to box l is represented by ypbi l . The assigned class k of
box l and data point i is symbolized by ybcl k and ypcik ,
respectively. If the data point i is within the bound n
with respect to attribute m of box l, then the binary
variable ypbni lmn takes the value of 1, otherwise 0. Sim-
ilarly, ypbmilm indicates whether the data point i is
within the bounds of attribute m of box l or not. Fi-
nally, ypik indicate the misclassification of data points.
In order to define the boundaries of hyper-boxes, two
continuous variables are required: Xlmn is the one that
models bounds n for box l on attribute m. Correspond-
ingly, bounds n for box l of class k on attribute m are
defined with the continuous variable XDl ;k;m;n .

The following MILP problem models the training
part of data classification method using hyper-boxes:

min z D
X
i

X
k

ypik C c
X
l

ybl (1)

subject to

XDl kmn � aim ypbi l 8i; k; l ;m; n jn D lo (2)

XDl kmn � aim ypbi l 8i; k; l ;m; n jn D up (3)

XDl kmn � Qybcl k 8k; l ;m; n (4)

X
k

XDl kmn D Xlmn 8l ;m; n (5)

ypbni lmn � (1/Q)(Xlmn�aim) 8i; l ;m; n jn D up

(6)

ypbni lmn � (1/Q)(aim �Xlmn) 8i; l ;m; n jn D lo

(7)

X
l

ypbi l D 1 8i (8)

X
k

ypcik D 1 8i (9)

X
l

ypbi l D
X
k

ypcik 8i (10)

X
k

ybcl k � ybl 8l (11)

ybcl k �
X
i

ypbi l � 0 8l ; k (12)

ybcl k �
X
i

ypcik � 0 8l ; k (13)

X
n

ypbni lmn � ypbmilm � N � 1 8i; l ;m (14)

X
m

ypbmilm � ypbi l � M � 1 8i; l (15)

ypcik � ypik � 0 8i; k … Dik (16)

Xlmn ; XDl kmn � 0 ; ybl ; ybcl k ; ypbi l ; ypcik ;

ypbni lmn ; ypbmilm ; ypik 2 f0; 1g
(17)

The objective function of the MILP problem (Eq. (1))
is to minimize the misclassifications in the data set with
the minimum number of hyper-boxes. In order to elim-
inate unnecessary use of hyper-boxes, the unnecessary
existence of a box is penalized with a small scalar c in
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the objective function. The lower and upper bounds of
the boxes are given in Eqs. (2) and (3), respectively. The
lower and upper bounds for the hyper-boxes are de-
termined by the data points that are enclosed within
the hyper-box. Eq. (4) enforces the bounds of hyper-
boxes exist if and only if this hyper-box is assigned to
a class. Eq. (5) is used to relate the two continuous
variables that represent the bounds of the hyper-boxes.
The position of a data point with respect to the bounds
on attribute m for a hyper-box is given in Eqs. (6)
and (7). The binary variable ypbni lmn helps to iden-
tify whether the data point i is within the hyper-box l.
Two constraints, one for the lower bound and one for
the upper bound, are needed for this purpose (Eqs. (6)
and (7)). Since these constraints establish a relation be-
tween continuous and binary variables, an arbitrarily
large parameter,Q, is included in these constraints. The
Eqs. (8) and (9) state that every data point must be as-
signed to a single hyper-box, l, and a single class, k, re-
spectively. The equivalence between Eqs. (8) and (9)
is given in Eq. (10); indicating that if there is a data
point in the class k, then there must be a hyper-box l
to represent the class k and vice versa. The existence of
a hyper-box implies the assignment of that hyper-box
to a class as shown in Eq. (11). If a class is represented
by a hyper-box, there must be at least one data point
within that hyper-box as in Eq. (12). In the same man-
ner, if a hyper-box represents a class, there must be at
least a data point within that class as given in Eq. (13).
The Eq. (14) represents the condition of a data point be-
ing within the bounds of a box in attribute m. If a data
point is within the bounds of all attributes of a box, then
it must be in the box as shown in Eq. (15). When a data
point is assigned to a class that it is not a member of,
a penalty applies as indicated in Eq. (16). Finally, last
constraint gives non-negativity and integrality of deci-
sion variables. By using this MILP formulation, a train-
ing set can be studied and the bounds of the classes are
determined for a data classification problem.

Testing Problem Formulation

The testing problem for multi-class data classification
using hyper-boxes is straight forward. If a new data
point whose membership to a class is not known ar-
rives, it is necessary to assign this data point to one of
the classes. There are three possibilities for a new data

point when determining its class:
i. the new data point is within the boundaries of a sin-

gle hyper-box,
ii. the new data point is within the boundaries of more

than one hyper-box,
iii. the new data point is not enclosed in any of the

hyper-boxes determined in the training problem.
When the first possibility is realized for the new

data point, the classification is made by directly assign-
ing this data to the class that was represented by the
hyper-box enclosing the data point. Since eliminating
the shared areas between the constructed hyper-boxes
introduces new constraints into the training problem
that makes it computationally very difficult to be solved,
there exists a possibility for a new data point to be
within the boundaries of more than one hyper-box. In
that case, the data point is assigned to the classes of the
hyper-boxes that enclose this specific data point. The
proportion of the number of correct classes to the num-
ber of total assigned classes to that data point deter-
mines the effect of that data point to the accuracy of the
model. In the case when the third possibility applies,
the assignment of the new data point to a class requires
some analysis. If the data point is within the lower and
upper bounds of all but not one of the attributes (i. e.,
m0) defining the box, then the shortest distance between
the new point and the hyper-box is calculated using the
minimum distance between hyper-planes defining the
hyper-box and the new data point. The minimum dis-
tance between the new data point j and the hyper-box
is calculated using Eq. (18) considering the fact that the
minimum distance is given by the normal of the hyper-
plane.

min
l ;m;n

˚ˇ̌�
ajm � Xlmn

�ˇ̌�
(18)

When the data point is between the bounds of smaller
than or equal to M-2 attributes, then the smallest dis-
tance between the point and the hyper-box is obtained
by calculating the minimum distance between edges of
the hyper-box and the new point. An edge is a finite
segment consists of the points of a line that are between
two extreme points Xlmn and Xlm0n . The data point j

is represented by the vector
!

Aj which is composed of

a jm values and
!

P0lmn and
!

P1lmn are the vector forms
of two extreme points. The minimum distance between
the new data point j and one of the segments of the
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hyper-box determined by two extreme points is calcu-
lated using Eq. (25) where (�) indicates the dot product
of the matrices in Eq. (22) and (23).

!

Wjlmn D
!

A j �
!

P0lmn (19)

!

V jlmn D
!

P1lmn �
!

P0lmn (20)

C1 j lmn D
(Wjlmn � Vjlmn )

Wjlmn



 

Vjlmn


 (21)

C2 j lmn D
(Vjlmn � Vjlmn )

Vjlmn



 

Vjlmn


 (22)

b jlmn D
C1 j lmn

C2 j lmn
(23)

Pbjlmn D P0 j lmn C b jlmnVjlmn (24)

min
l ;n

8<
:
sX

m

(ajm � pb jlmn )2

9=
; (25)

When data point is not within the lower and upper
bounds of any attributes defining the box, then the
shortest distance between the new point and the hyper-
box is calculated using the minimum distance between
extreme points of the hyper-box and the new data. The
minimum distance between the new data point j and
one of the extreme points of the hyper-box is calculated
using Eq. (26).

min
l ;n

8<
:
sX

m

(ajm � Xlmn)2

9=
; (26)

The following algorithm assign a new data point j with
attribute values ajm to class k:

Step 0: Initialize inAtt(l,m)= 0.
Step 1: For each l and m, if

Xlmn � ajm � Xlmn0 8n D lo; n0 D up

(27)

Set inAtt(l,m) = inAtt(l,m) + 1.
Step 2: If inAtt(l,m) =M, then go to Step 3. Other-

wise, continue. If inAtt(l,m)�M� 1, then go
to Step 4.

Step 3: Assign the new data point to class kwhere ybcl k
is equal to 1 for the hyper-box in Step 2. Stop.

Step 4: Calculate the minimum given by Eq. (18) and
set the minimum asmin1(l). Calculate the min-
imum given by Eq. (25) and set the minimum
as min2(l). Calculate the minimum given by
Eq. (26) and set the minimum asmin3(l). Select
the minimum between min1(l), min2(l) and
min3(l) to determine the hyper-box l that is
closest to the new data point j. Assign the new
data point to class k where ybcl k is equal to 1
for the hyper-box l. Stop.

Application

We applied the mathematical programming method on
a set of 16 data points in 4 different classes given in
Fig. 2. The data points can be represented by two at-
tributes, 1 and 2.

There are a total of 20 data points; 16 of these points
were used in training and 4 of them used in testing. The
training problem classified the data into 4 four classes
using 5 hyper-boxes as shown in Fig. 3. It is interest-
ing to note that Class1 requires two hyper-boxes while
the other classes are represented with a single hyper-
box only. The reason for having two hyper-boxes for
Class1 is due to the fact that a single hyper-box for this

Multi-Class Data Classification via Mixed-Integer Optimiza-
tion, Figure 2
Data points in the illustrative example and their graphical
representation
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Multi-Class Data Classification via Mixed-Integer Optimiza-
tion, Figure 3
Hyper-boxes that classify the data points in the illustrative
example

class would include one of the data points that belong to
Class3. In order to eliminate inconsistencies in training
data set, the method included one more box for Class1.

After the training is successfully completed, the test
data is processed to assign them to hyper-boxes that
classify the data perfectly. The assignment of the test
data point B to Class2 is straightforward since it is
included in the hyper-box that classifies Class2 (i. e.,
inAtt(l,m) =M for this data point). The test data in
Class1 is assigned to one of the hyper-boxes that clas-
sify Class1. Similarly, the test data in Class3 is also as-
signed to the hyper-box that classifies Class3. Since the
test data in these classes are included within the bounds
of one of the two attributes, the minimum distance is
calculated as the normal to the closest hyper-plane to
these data points. In the case of data point that belongs
to Class4, it is assigned to its correct class since the clos-
est extreme point of a hyper-box classifies Class4. This
extreme point of the hyper-box 5 classifying Class4 is
given by (X5;1;l o; X5;2;l o). The test problem also clas-
sified the data points with 100% accuracy as shown in
Fig. 3.

This illustrative example is also tested by different
data classification models existing in the literature in
order to compare the results and to measure the per-
formance of the proposed model. Table 1 shows the ex-

Multi-Class Data Classification via Mixed-Integer Optimiza-
tion, Table 1
Comparison of different classificationmodels for the illustra-
tive example

Classification Model Prediction
Accuracy

Misclassified
Sample(s)

Neural Networksa 75% A
Support Vector Machinesb 75% D
Bayesian Classifierc 75% C
K-nearest Neighbor Classifierc 75% A
Statistical Regression
Classifiersc

75% C

Decision Tree Classifierc 50% A, C
MILP approach 100% –

a iDA implementation inMS Excel [9] b SVM implementation in
Matlab [3] c WEKA [20]

amined models and their outcomes for this small illus-
trative example.

Neural Networks, Support Vector Machines,
Bayesian, K-nearest Neighbor and Statistical Regres-
sion classifiers have only one misclassified instance
which leads to 75% accuracy value as shown in Table 1.
Neural Networks and K-nearest Neighbor classifier
predicts the class of test sample A as Class3. Support
Vector Machine methodmisclassifies test sample D and
assigns it to Class1 while Bayesian and Statistical Re-
gression classifier classifies test sample C as belonging
to Class2. On the other hand, Decision Tree classi-
fier gives the lowest accuracy value (50%) with two
misclassifications. Sample A and sample C is classi-
fied as Class3 and Class2, respectively. Consequently,
MILP approach in this thesis classifies all of the test
samples accurately and achieves 100% accuracy. As
a result, the MILP approach performs better than other
data classification methods that are listed in Table 1
for the illustrative example. The accuracy of the MILP
approach is tested on IRIS dataset and protein fold-
ing type dataset. The results indicate that the MILP
approach has better accuracy than other methods on
these datasets [17,18].

Conclusion

Multi-class data classification problem can be very ef-
fectively modeled as an MILP problem. One of the
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most important characteristics of the MILP approach
is allowing the use of hyper-boxes for defining the
boundaries of the classes that enclose all or some of
the points in that set. In other words, if necessary,
more than one hyper-box is constructed for a spe-
cific class through the training part studies. Moreover,
well-construction of the boundaries of each class pro-
vides the lack of misclassifications in the training set
and indirectly improves the accuracy of the model.
The model does not require the underlying distribu-
tion of the training data set and learns from the train-
ing set in a reasonable time. With only one parameter
(c: the penalty parameter to minimize the total num-
ber of hyper-boxes), the suggested model is simple and
very effective. Furthermore, the proposed model can be
used for both binary and multi-class data classification
problems without any modifications. Hence, the per-
formance of the model does not depend on the class
related changes.
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Linear multicommodity flow problems (MCF) are lin-
ear programs (LPs) that can be characterized by a set
of commodities and an underlying network. A com-
modity is a good that must be transported from one or
more origin nodes to one or more destination nodes in
the network. In practice these commodities might be
telephone calls in a telecommunications network, pack-
ages in a distribution network, or airplanes in an air-
line flight network. Each commodity has a unique set
of characteristics and the commodities are not inter-
changeable. That is, you cannot satisfy demand for one
commodity with another commodity. The objective of
the MCF problem is to flow the commodities through
the network at minimum cost without exceeding arc ca-
pacities. A comprehensive survey of linear multicom-
modity flow models and solution procedures are pre-
sented in [2].

Integer multicommodity flow (IMCF) problems,
a constrained version of the linear multicommodity
flow problem in which flow of a commodity (specified
in this case by an origin-destination pair) may use only
one path from origin to destination.

MCF and IMCF problems are prevalent in a number
of application contexts, including transportation, com-
munication and production.

MCF Example Applications

� Routing vehicles in traffic networks (dynamic traf-
fic assignment). This involves the determination of
minimum delay routes for vehicles from their ori-
gins to their respective destinations over the traffic
network. The allowable congestion levels determine
the arc capacities. Alternatively, there are no capaci-
ties but the cost on an arc is a function of the amount
of flow on the arc. In the former case, the objective
function is linear while in the latter it is nonlinear.

� Distribution systems planning. In this problem there
are different products (or, commodities) produced
at several plants with known production capacities.
Each commodity has a certain demand in each cus-
tomer zone. The demand is satisfied by shipping
via regional distribution centers with finite stor-
age capacities. A.M. Geoffrion and G.W. Graves
[28] model this problem of routing the commodi-
ties from the manufacturing plants to the customer
zones through the distribution centers as a MCF
problem.

� Import and export models. One of the factors that
may affect export is handling capacity at ports. D.
Barnett, J. Binkley and B. McCarl [8] use a MCF
model to analyze the effect of US port capacities on
the export of wheat, corn and soybean.

� Optimization of freight operations. T. Crainic, J.A.
Ferland and J.M. Rousseau [20] develop a MCF-
based routing and scheduling optimization model
that considers the planning issues for the railroad
industry. More recently, H.N. Newton [48] and C.
Barnhart, H. Jin and P.H. Vance [13] study the
railroad blocking problem using multicommodity
based formulations.

� Freight Assignment in the Less-than-Truckload
(LTL) industry. An LTL carrier has to consolidate
many shipments to make economic use of the vehi-
cles. This requires the establishment of a large num-
ber of terminals to sort freight. Trucking companies
use forecasted demands to define routes for each
vehicle to carry freight to and from the terminals.
Once the routes are fixed, the problem is to deliver
all the shipments with minimum total service time
or cost. This problem is formulated as a MCF prob-
lem in [17] and [24].

� Express Shipment Delivery. D. Kim [40] models the
shipment delivery problem faced by express carri-
ers like Federal Express, United States Postal Ser-
vice, United Parcel Service, etc. as a MCF problem
on a network in space and time.

� Routing messages in a telecommunications or com-
puter network. The network consists of transmis-
sion lines. Each message request is a commodity.
The problem is to route the messages from origins to
the respective destinations at a minimum cost. T.L.
Magnanti et al. [42] and others provide MCF-based
formulations for this problem.



2356 M Multicommodity Flow Problems

� Long-term hydro-generation optimization. The task
in this case is to determine the amount of hydro-
generation at a reservoir in an interval of time, that
minimizes the expected cost of power generation
over a period of time, divided into several intervals.
N. Nabonna [47] showed that this problem can be
modeled as a MCF problem with inflows given as
probabilistic density functions.

� Forest management. For each planning period, for-
est managers have to make decisions concerning the
land areas to be harvested, the volume of timber to
be harvested from these areas, the land areas to be
developed for recreation and the road network to be
built and maintained in order to support both the
timber haulers and recreationists. This problem has
been formulated as a MCF problem in [33].

� Street planning. L.R. Foulds [26] introduced this
problem and modeled it as a MCF problem. The ob-
jective is to identify a set of two-way streets such
that making these streets one-way minimizes the to-
tal congestion cost in the network.

� Spatial price equilibrium (SPE) problem. This prob-
lem requires modeling consumer flows within a gen-
eral network. The SPE problem determines the opti-
mum levels of production and consumption at each
market and the optimal flows satisfy the equilibrium
property. R.S. Segall [59] models and solves the SPE
problem as a MCF problem.

For a more comprehensive description of MCF appli-
cations, see [2,37,57].

IMCF Example Applications

� Airline fleet assignment. Given a time table of flight
arrivals and departures, the expected demand on the
flights and a set of aircraft, the objective is to ar-
rive at a minimum cost assignment of aircraft to the
flights. This problem has been extensively studied in
[1,31].

� Airline crew scheduling. This problem deals with the
minimum cost scheduling of crews. Factors such as
hours of work limitations and Federal Aviation Ad-
ministration regulations must be taken into account
while solving the problem. For an in-depth study see
[5,14].

� Airline maintenance routing problems require that
single aircraft be routed such that maintenance re-

quirements are satisfied and each flight is assigned
to exactly one aircraft. This problem has been stud-
ied in [10,19,25].

� Bandwidth packing problems require that bandwidth
be allocated in telecommunications networks to
maximize total revenue. The demands, or calls, on
the networks are the commodities and the objective
is to route the calls from their origin to their desti-
nation. In the case of video teleconferencing, since
call splitting is not allowed, each call must be routed
on exactly one network path. This IMCF problem is
described in [49].

� Package flow problems, such as those arising in ex-
press package delivery operations, require that ship-
ments, each with a specific origin and destination,
be routed over a transportation network. Each set
of packages with a common origin-destination pair
can be considered as a commodity and often, to fa-
cilitate operations and ensure customer satisfaction,
must be assigned to a single network path. These
problems are cast as IMCF problems in [12].

Formulations

Multicommodity flow problems can be modeled in
a number of ways depending how one defines a com-
modity. There are three major options: a commodity
may originate at a subset of nodes in the network and
be destined for another subset of nodes, or it may orig-
inate at a single node and be destined for a subset of the
nodes, or finally it may originate at a single node and be
destined for a single node. K.L. Jones et al. [34] present
models for each of these different cases. In the interest
of space, we will only consider models for the last case.
The other cases can also be modeled using variants of
the models presented here.

We present two different formulations of the MCF
problem: the node-arc or conventional formulation and
the path or column generation formulation. The MCF
is defined over the network G comprised of node set N
and arc set A. MCF contains decision variables x, where
xki j is the fraction of the total quantity (denoted qk) of
commodity k assigned to arc ij. In the IMCF problem
these variables are restricted to be binary. The cost of
assigning commodity k in its entirety to arc ij equals
qk times the unit flow cost for arc ij, denoted cki j . Arc
ij has capacity dij, for all ij 2 A. Node i has supply of
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commodity k, denoted bki , equal to 1 if i is the origin
node for k, equal to �1 if i is the destination node for k,
and equal to 0 otherwise.

The node-arc MCF formulation is:

minimize
X
k2K

X
i j2A

cki jq
kxk

i j (1)

such that
X
i j2A

xk
i j �

X
ji2A

xk
ji D bki ; 8i 2 N;8k 2 K; (2)

X
k2K

qkxk
i j � di j; 8i j 2 A; (3)

xk
i j � 0; 8i j 2 A; 8k 2 K: (4)

Note that without restricting generality of the prob-
lem, we model the arc flow variables x having values
between 0 and 1. To do this, we scale the demand for
each commodity to 1 and accordingly adjust the coef-
ficients in the objective function (1) and in constraints
(3). Also note the block-angular structure of this model.
The conservation of flow constraints (2) form nonover-
lapping blocks, one for each commodity. Only the arc
capacity constraints (3) link the values of the flow vari-
ables of different commodities.

To contrast, the path-based or column generation
MCF formulation has fewer constraints, and far more
variables. Again, the underlying network G is com-
prised of node set N and arc set A, with qk representing
the quantity of commodity k. P(k) represents the set of
all origin-destination paths in G for k, for all k 2 K. In
the column generation model, the binary decision vari-
ables are denoted ykp , where ykp is the fraction of the total
flow of commodity k assigned to path p 2 P(k). The cost
of assigning commodity k in its entirety to path p equals
qk times the unit flow cost for path p, denoted ckp . ckp rep-
resents the sum of the cki j costs for all arcs ij contained
in path p. As before, arc ij has capacity dij, for all ij 2 A.
Finally, ıpi j is equal to 1 if arc ij is contained in path p 2
P(k), for all k 2 K; and is equal to 0 otherwise.

The path or column generation IMCF formulation
is then:

minimize
X
k2K

X
p2P(k)

ckpq
k ykp (5)

such that
X
k2K

X
p2P(k)

qk ykpı
p
i j � di j; 8i j 2 A; (6)

X
p2P(k)

ykp D 1; 8k 2 K; (7)

ykp � 0; 8p 2 P(k); 8k 2 K: (8)

LP SolutionMethods

Comprehensive surveys of the available multicommod-
ity network flow solution techniques are provided in
[6,37]. Descriptions of these approaches are also pro-
vided in [2,38].

Price-directive decomposition techniques use the
path-based MCF model. To limit the number of vari-
ables considered in finding an optimal solution, col-
umn generation techniques are used. Further details of
price-directive decomposition and column generation
are provided in [18,22,41,45,61].

Resource-directive decomposition techniques at-
tempt to solve MCF problems by allocating arc capac-
ity by commodity and solving the resulting decoupled
minimum cost flow problems for each commodity. Ad-
ditional descriptions of this technique can be found
in [27,30,35,37,39,41,52,60,61].

Computational comparisons of the performance of
price- and resource-directive decomposition methods
can be found in [3,4]. A. Ali, R.V. Helgason, J.L. Ken-
nington, and H. Lall [4] report that specialized de-
composition codes can be expected to run from three
to ten times faster than a general linear program-
ming package. Furthermore, A.A. Assad [7] reports
that resource-directive algorithms converge quickly for
small problems but are outperformed by the price-
directive method for larger MCF problems.

G. Saviozzi [56] uses subgradient techniques on the
Lagrangian relaxation of the bundle constraints and
proposes a method of arriving at an advanced start-
ing basis for the minimum cost multicommodity flow
problem.

Partitioning methods specialize the simplex method
by partitioning the current basis to exploit the un-
derlying network structure. Experiences with primal
partitioning techniques have been reported in [24,32,



2358 M Multicommodity Flow Problems

36,43,51,53,54,55], among others. J.B. Rosen [53] devel-
ops a partitioning strategy for angular problems. J.K.
Hartman and L.S. Lasdon [32] develop a generalized
upper bounding algorithm for multicommodity net-
work flow problems in which the special structure of
the MCF problem is exploited. Their primal partition-
ing procedure, a specialization of the generalized up-
per bounding procedure developed byG.B. Dantzig and
R.M. Van Slyke [21], involves the determination at each
iteration of the inverse of a basis containing only one
row for each saturated arc. Similarly, C.J. McCallum
[44] developed a generalized upper bounding algorithm
for a communications network planning problem. All
of these procedures exploit the block-diagonal problem
structure and perform all steps of the simplex method
on a reduced working basis of dimension m, where m
represents the size of set A.

Interior point methods and parallel computing
techniques have also been applied to MCF problems.
Interior point methods provide polynomial time algo-
rithms for the MCF problems. The best time bound is
due to P.M. Vaidya [62]. G.L. Schultz and R.R. Meyer
[58] provide an interior point method with massive
parallel computing to solve multicommodity flow prob-
lems.

Development of new heuristic procedures for MCF
problems include the primal and dual-ascent heuris-
tics described in [17] and [9], respectively. A. Ger-
sht and A. Shulman [29] use a barrier-penalty method
to find nearly optimal solutions for multicommod-
ity problems, while R. Schneur [62] describes a scal-
ing algorithm to determine nearly feasible MCF solu-
tions.

Recently, price-directive decomposition or col-
umn generation approaches, such as those presented
in [2,11,23,34] have been the most extensively used
method for solving large versions of the linear MCF
problem. The general idea of column generation is that
optimal solutions to large LP’s can be obtained without
explicitly including all columns (i. e., variables) in the
constraint matrix (called the Master Problem or MP).
In fact, only a very small subset of all columns will be in
an optimal solution and all other (nonbasic) columns
can be ignored. In a minimization problem, this im-
plies that all columns with positive reduced cost can be
ignored. The multicommodity flow column generation
strategy, then, is:

0) RMP Construction. Include a subset of columns in
a restricted MP, called the Restricted Master Prob-
lem, or RMP;

1) RMP Solution. Solve the RMP LP;
2) Pricing Problem Solution. Use the dual variables

obtained in solving the RMP to solve the pricing
problem. The pricing problem either identifies one
or more columns with negative reduced cost (i. e.,
columns that price out) or determines that no such
column exists.

3) Optimality Test. If one or more columns price out,
add the columns (or a subset of them) to the RMP
and return to Step 1; otherwise stop, the MP is
solved.

For any RMP in Step 1, let �  ij represent the non-
negative dual variables associated with constraints (6)
and �k represent the unrestricted dual variables asso-
ciated with constraints (7). Since ckp can be represented
as
P

ij 2A cki j ı
p
i j , the reduced cost of column p for com-

modity k, denoted ckpqk , is:

ckpq
k D

X
i j2A

qk(cki j C i j)ı
p
i j � �

k ;

8p 2 P(k);8k 2 K: (9)

For each RMP solution generated in Step 1, the pricing
problem in Step 2 can be solved efficiently. Columns
that price out can be identified by solving one shortest
path problem for each commodity k2K over a network
with arc costs equal to cki j+  ij, for each ij 2 A. Let p

represent a resulting shortest path p
 for commodity k.
Then, if for all k 2 K,

ckp�q
k � 0;

the MP is solved. Otherwise, the MP is not solved and,
for each k 2 K with

ckp�q
k < 0;

path p
 2 P(k) is added to the RMP in Step 3.

IP Solution Methods

The ability to solve large MCF LP’s enables the solu-
tion of large IMCF problems. Successful approaches
for solving large IMCF problems use the path-based or



Multicommodity Flow Problems M 2359

column generation formulation of the problem. Col-
umn generation IP’s can be solved to optimality us-
ing a procedure known as branch and price, detailed in
[15,23,64]. Branch and price, a generalization of branch
and bound with LP relaxations, allows column genera-
tion to be applied at each node of the branch and bound
tree. Branching occurs when no columns price out to
enter the basis and the LP solution does not satisfy the
integrality conditions.

Applying a standard branch and bound procedure
to the final restricted master problem with its existing
columns will not guarantee an optimal (or feasible) so-
lution. After the branching decision modifies RMP, it
may be the case that there exists a column for MP that
prices out favorably, but is not present in RMP. There-
fore, to find an optimal solution we must maintain the
ability to solve the pricing problem after branching.
The importance of generating columns after the ini-
tial LP has been solved is demonstrated for airline crew
scheduling applications in [63]. Although they were un-
able to find even feasible IP solutions using just the
columns generated to solve the initial LP relaxation,
they were able to find quality solutions using a branch
and price approach for crew scheduling problems in
which they generated additional columns whenever the
LP bound at a node exceeded a preset IP target objective
value.

The difficulty of performing column generation
with branch and bound is that conventional integer
programming branching on variables may not be effec-
tive because fixing variables can destroy the structure of
the pricing problem. For the multicommodity flow ap-
plication, a branching rule is needed that ensures that
the pricing problem for the LP with the branching de-
cisions included can be solved efficiently with a shortest
path procedure. To illustrate, consider branching based
on variable dichotomy in which one branch forces com-
modity k to be assigned to path p, i. e., ykp = 1, and the
other branch does not allow commodity k to use path
p, i. e., ykp = 0. The first branch is easy to enforce since
no additional paths need to be generated once k is as-
signed to path p. The latter branch, however, cannot be
enforced if the pricing problem is solved as a shortest
path problem. There is no guarantee that the solution
to the shortest path problem is not path p. In fact, it
is likely that the shortest path for k is indeed path p.
As a result, to enforce a branching decision, the pricing

problem solution must be achieved using a next shortest
path procedure. In general, for a subproblem, involving
a set of a branching decisions, the pricing problem so-
lution must be achieved using a kth shortest path pro-
cedure.

The key to developing a branch and price proce-
dure is to identify a branching rule that eliminates
the current fractional solution without compromising
the tractability of the pricing problem. In general, J.
Desrosiers et al [23] argue this can be achieved by bas-
ing branching rules on variables in the original formu-
lation, and not on variables in the column generation
formulation. This means that branching rules should
be based on the arc flow variables xki j from the node-arc
formulation of the problem. Barnhart et al. [15] develop
branching rules for a number of different master prob-
lem structures. They also survey specialized algorithms
that have appeared in the literature for a broad range of
applications.

M. Parker and J. Ryan [49] present a branch and
price algorithm for the bandwidth packing problem. in
which the objective is to choose which of a set of com-
modities to send in order to maximize revenue. They
use a path-based formulation. Their branching scheme
selects a fractional path and creates a number of new
subproblems equal to the length of the path (measured
in the number of arcs it contains) plus one. On one
branch, the path is fixed into the solution and on each
other branch, one of the arcs on the path is forbidden.
To limit time spent searching the tree they use a dy-
namic optimality tolerance. They report the solution of
14 problems with as many as 93 commodities on net-
works with up to 29 nodes and 42 arcs. All but two of
the instances are solved to within 95% of optimality.

K. Ziarati et al. [16] consider the problem of as-
signing railway locomotives to trains. They model the
problem as an integer multicommodity flow problem
with side constraints and solve using a Dantzig–Wolfe
decomposition technique, where subproblems are for-
mulated as constrained or unconstrained shortest path
problems.

P. Raghavan and C.D. Thompson [50] illustrate the
use of randomized algorithms to solve some integer
multicommodity flow problems. They use randomized
rounding procedures that give provably good solutions
in the sense that they have a very high probability of
being close to optimality.
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Barnhart et al. [12] present a branch and price and
cut algorithm for general IMCF problems where each
commodity is represented by an origin-destination pair
and flow volume. Branch and cut, another variant of
branch and bound, allows valid inequalities, or cuts,
to be added throughout the branch and bound tree.
Branch and price and cut combines column and row
generation to yield very strong LP relaxations at nodes
of the branch and bound tree.

See also
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Introduction

References to Financial Statements Fraud (FSF) and
earnings manipulation have attracted the attention of

market participants, academics, and regulators all over
the world especially in recent years and following the
collapse of Enron. During these years there have also
been several cases of financial statement fraud which
have been undetected by the auditors.

Using normal audit procedures, the detection of fal-
sified financial statements is a difficult task [18,73]).
There are numerous reasons for these difficulties such
as a shortage of knowledge concerning the character-
istics of management fraud, the efforts of managers to
deceive auditors, and difficulties in collecting, analyzing
and synthesizing large quantities of data from several
different sources.

Models of audit reporting have several uses (i. e.
prediction, determination, bankruptcy), as described
by Dopuch et al. [26]. For example, they can provide
a benchmark representing the probability that an audi-
tor would issue a modified audit report on a given com-
pany. Furthermore, these models can be imperative in
an auditing system that enables the users to take pre-
ventive or corrective actions [30,57,80]).

Most of the earlier studies of FSF have used dis-
crete choice models in which the dependent variable
was dichotomous. Mutchler [66] and Levitan and Kno-
blett [60] used discriminant analysis, Dopuch et al. [26]
and Lennox [59] used probit models, Keasey et al. [48],
Bell and Tabor [9], Monroe and Teh [65], Louw-
ers [62], DeFond et al. [25], Citron and Taffler [17],
Menon and Schwartz [63], and Spathis [80] used logit
models, Krishnan [55] used an ordered probit model,
Spathis et al. [79,81]), and Pasiouras et al. [71] used
multicriteria decision aid (UTADIS) and multivariate
statistical techniques (e. g. discriminant and logit anal-
ysis), Gaganis and Pasiouras [35] used discriminant
and logit models, Gaganis et al. [36] used probabilis-
tic neural network models, Gaganis et al. [33] used
nearest neighbor models, Fanning et al. [31] and Fan-
ning and Cogger [30] used artificial neural networks,
and Doumpos et al. [27] used support vector ma-
chines.

In the present study, a multicriteria approach was
followed through the application of the nonparametric
Multi-group Hierarchical DIScrimination (MHDIS)
method with the aim of developing a sorting model to
detect those firms that issue FSF in Greece. TheMHDIS
model was compared with logit analysis in order to test
its efficiency against a benchmark that has been com-
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monly used in previous studies. MHDIS is not based
on statistical assumptions, which often cause problems
during the application of statistical methods (logit and
probit analysis), and furthermore, it can easily incorpo-
rate qualitative data.

Although there have recently been a few attempts
to develop models to detect falsified audit statements in
Greece [15,51,79,81]. The present study differs in sev-
eral respects. First, we have used a more recent and
larger dataset than in previous studies, which contains
more detailed information. The data used corresponds
to the fiscal years 2001–2004 and covers 398 compa-
nies. Spathis et al. [79,81] and Kirkos et al. [51] ex-
amined the same random sample of 76 manufacturing
companies covering the period 1997–1999, and Cara-
manis and Spathis [15] examined a sample of 182 com-
panies. Second, we examined both listed and unlisted
companies from the manufacturing, trade, and ser-
vices sectors in contrast to Spathis et al. [79,81] and
Kirkos et al. [51] who examined only manufacturing
listed companies and Caramanis and Spathis [15] who
considered only listed companies. Third, we used out-
of-time and out-of-sample testing samples. When eval-
uating the classification ability of a model, it is impor-
tant to ensure that it has not been over-fitted to the
training (estimation) dataset. As Stein [83] mentions
“a model without sufficient validation may only be a hy-
pothesis”. Previous research has shown that when clas-
sification models are used to reclassify the observations
of the training sample, the classification accuracies are
biased upward. Thus, it is necessary to classify a set of
observations which were not used during the develop-
ment of the model, using some kind of testing sam-
ple.

The rest of the paper is organized as follows: Sec-
tion “Sample” describes the sample used in this study.
Section “Method” describes the methodology. Section
“Empirical Results” presents the empirical results, and
the Sect. “Conclusions and Further Research” discusses
the concluding remarks and suggests some possible fu-
ture research directions.

Sample

The data used in the study consisted of financial state-
ment information (i. e. balance sheet, income state-
ment, auditors’ opinions, and the notes to financial

statements) of a sample of companies obtained from
ICAP1 database and Athens Stock Exchange (ASE).
Our analysis was restricted to Greek limited (société
anonyme) and limited liability companies, which are
obliged by law to have their financial statements au-
dited, and we focused on the period between 2001 and
2004.

We obtained 199 qualified cases which were dis-
tributed over various sectors2. The next step was to
select unqualified firms. We used a pair-matching
method by sector. Matching of firms is common prac-
tice when conducting classification studies in auditing
as well as in other areas of finance, such as bankruptcy
or acquisitions prediction (e. g. [11,34,50,58,71]). There
are two primary reasons for following this procedure,
which is known as choice-based sampling. The first is
the lower cost of collecting data in comparison with an
unmatched sample [6,46,90]). The second andmost im-
portant is that a choice-based sample provides greater
information content than a random sample [19,45,69]).
Hence, our sample consisted of the same number of
qualified and unqualified cases.

Most of the previous studies concerning the devel-
opment of models to replicate (or predict) auditors’
opinion used training and testing samples from the
same period, or re-sampling techniques such as jack-
knife and bootstrap (e. g. [57,79,81]). However, as Es-
pahbodi and Espahbodi [29] point out, the real test of
a classification model and its practical usefulness is its
ability to classify objects correctly in the future. The
main reason, as stated by Barnes [5], is that given in-
flationary effects, technological and other reasons, such
as accounting policies, it is not reasonable to expect fi-
nancial ratios to be stable over time. To account for
this population drifting, in the present study, we split
our sample of 398 companies into two distinct sam-
ples. The training sample, used for the development
of the models, consisted of 234 companies and cov-
ered the period 2001–2003. The validation sample con-
sisted of the remaining 164 companies and used data
from 2004.

1ICAP is the largest company providing Business Information
and Consulting Services in Greece.

2The sample for this study consists of 164 manufacturing,
122 trade and 110 services companies.
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Financial Variables

Similar to previous studies we used financial ratios as
the indicators of FSF. One of the problems with the se-
lection of suitable ratios is that not only are there many
financial variables which could be potential candidates
for inclusion in the model, but also that previous stud-
ies have, in general, failed to select variables that re-
flect theoretical models of FFS as well. We therefore se-
lected variables that were regarded as important in pre-
vious studies, such as Albrecht and Romney [1], Palm-
rose [70], Dopouch et al. [26], Loebbecke et al. [61],
Green [38], Stice [84], Davia et al. [23], Bell et al. [10],
Schilit [75], Arens and Loebbecke [3], Beasley [7],
Bologna et al. [12], Krishnan and Krishnan [54],
Green and Choi [39], Hoffman [42], Hollman and Pat-
ton [43], Zimbelman [89], Laitinen and Laitinen [57],
Spathis et al. [79,81], Spathis [80], Doumpos et al. [27],
Gaganis et al. [33,36], Gaganis and Pasiouras [35], and
Pasiouras et al. [71]. Table 1 present a full list of the
variables considered in this study. There are 28 finan-
cial variables covering all aspects of the performance of
the selected companies, such as liquidity, leverage, prof-
itability, managerial activity, and annual changes in ba-
sic accounts [20].

An examination of previous research indicates that
the prediction variables range between 6 and 20. Most
of these studies selected the effective independent vari-
ables using a statistical method, in an attempt to reduce
the number of independent variables and the impact of
potential multicollinearity. There is, however, little rel-
evant theory about the selection of independent vari-
ables for the nonlinear methods. From a practical point
of view, developing amodel that considers a large num-
ber of variables poses problems for the applicability of
the model on a daily basis by the auditor. This is because
any application of the model requires that the auditor
collects all necessary data, which leads to increased time
and cost for data collection and management [79]. In
the present study, we used a combination of two statis-
tical analysis methods to examine whether there was an
association between our variables and auditors’ opin-
ions and hence to select our final set.

First, we used the Kruskal–Wallis non-parametric
test to examine the differences between qualified and
unqualified companies. Table 1 present the results of
the Kruskal–Wallis test for the training sample. Only

three variables: 365*Stock/Cost of Sales; Logarithm of
Debt; and Inventories/Total Assets were not statistically
significant at the 10% level. We then reduced the num-
ber of variables to a manageable size using factor anal-
ysis.

This approach can be used to uncover the latent
structure of a set of variables by reducing the attribute
space from a larger number of variables to a smaller
number of factors. The factor loadings were then used
to select a limited set of financial variables.

Finally, seven financial variables were selected,
each being the variable with the highest loading in
each factor. These were: Receivable/Sales; Current As-
sets/Current Liabilities; Current Assets/Total Assets;
Cash/Total Assets; Profit before tax/Total Assets; In-
ventories/Total Assets; and Annual Change in Sales.

Non-financial Variables

In addition to the seven financial variables discussed
above, six non-financial ones were also used. Dop-
uch et al. [26] presented a predictive model of audit
opinion qualifications in which the variables with great-
est predictive power were categorical ones.

Previous studies mainly dealt with the construction
of bankruptcy models for making audit opinions rela-
tive to going concern (e. g. [44,52,53]). Prior research
(e. g. [17,30,41,61,74,79,84]) suggests that financial dis-
tress is very important in the issuing of an audit qual-
ification. Although most of the previous studies used
Altman’s z-score [2] or credit risk assessment of a rat-
ing agency [71] as a proxy of default, such an approach
may not be appropriate in our case. The reason is that
Altman’s z-score was developed for a particular in-
dustry (i. e. manufacturing), under different economic
conditions (i. e. in the 1960s) and for a specific coun-
try (i. e. USA). In the present study, we used a score
(UTADISCR) estimated from the UTADIS bankruptcy
prediction model of Zopounidis et al. [92]. We antici-
pated that the use of this measure, which indicates the
likelihood of default of Greek firms over the 12 months
following the date of its calculation, might provide
more accurate results.

Spathis [80] found that audit qualification decision
was positively associated with company litigation. In
this study, the client litigation variable was coded as
zero if a company had litigation in the year preceding
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Multicriteria Decision Support Methodologies for Auditing Decisions, Table 1
Descriptive statistics

Unqualified Qualified Kruskal–
WallisMean St.Dev Mean St.Dev

INVREC / TA 0:58 0:26 0:53 0:22 2.83 ***
REC / SAL 0:31 0:18 0:52 0:59 16.84 *
CA / CL 1:52 0:60 1:00 0:69 66.07 *
CA / TA 0:75 0:22 0:65 0:22 14.48 *
CASH / CL 0:22 0:28 0:08 0:18 26.59 *
CASH / TA 0:12 0:16 0:05 0:11 13.85 *
ROA 0:19 0:12 �0:12 0:16 157.80 *
PRBT / FA 5:04 11:16 �0:62 1:29 149.09 *
INV / SAL 0:12 0:12 0:27 0:41 6.28 **
SAL / TA 1:52 0:83 1:09 0:84 22.70 *
TD / TA 0:59 0:21 0:90 0:34 66.26 *
PRBT / CL 0:37 0:25 �0:15 0:24 157.60 *
CL / TA 0:56 0:23 0:82 0:34 40.98 *
WC / TA 0:20 0:18 �0:17 0:34 80.45 *
EBIT MARGIN 0:15 0:12 �0:19 0:39 157.17 *
GP / SAL 0:36 0:18 0:13 0:21 72.76 *
GP / TA 0:52 0:33 0:16 0:22 83.78 *
(CA� ST) / CL 1:18 0:47 0:74 0:56 65.87 *
365 * AREC / SAL 126:70 66:49 238:46 330:86 21.81 *
365 * ST / CS 73:29 79:92 113:16 163:22 0.41
SAL / EQ 7:36 10:81 0:05 32:71 31.89 *
SAL / TD 2:84 1:63 1:24 0:87 78.28 *

365 * AP / SAL 139:63 550:32 155:07 249:57 65.98 *
TACH 0:22 0:46 0:10 0:39 11.76 *
SALCH 0:15 0:39 0:10 0:44 5.79 **
LOGTA 7:45 0:53 7:28 0:46 7.50 *
LOGDEPT 7:19 0:54 7:19 0:45 0.05
INV / TA 0:16 0:13 0:16 0:15 0
UTADISCR 0:74 0:10 0:49 0:12 126.51**

Notes: INVREC / TA: (Inventories + Receivable) / Total Assets, REC / SAL: Receivable / Sales, CA / CL: Current Assets / Current
Liabilities, CA / TA: Current Assets / Total Assets, CASH / CL: Cash / Current Liabilities, CASH / TA: Cash / Total Assets, ROA: Profit
before tax × 100 / Total assets, PRBT / FA: Profit (Loss) before tax × 100 / Fixed Assets, INV / SAL: Inventories/Sales, SAL\TA: Sales
/ Total Assets, TD / TA: Total Dept / Total Assets, PRBT / CL : Profit (Loss) before tax × 100 / Current Liabilities, CL / TA: Current
Liabilities / Total Assets, WC / TA: Working Capital / Total Assets, EBIT Margin: Profits before interest and taxes × 100 / Turnover,
GP / SAL: Gross Profit / Sales, GP / TA: Gross Profit / Total Assets, (CA� ST) / CL: (Current assets� Stock ) / Current liabilities, 365 *
AREC / SAL:365 Accounts Receivable / Sales, 365 * ST / CS: 365 * Stock / Cost of Sales, SAL / EQ: Sales / Equity, SAL / TD: Sales / Total
Dept, 365 * AP / SAL: 365* Accounts Payable / Sales, TACH: (Total Assets in year t � Total Assets in year t�1) × 100 / Total Assets
in year t�1, SALCH: (Sales in year t � Sales in year t�1) × 100 / Sales in year t�1, LOGTA: Logarithm of Total Assets, LOGDEPT:
Logarithm of Dept, INV / SAL : Inventories / Total Assets. The Kruskal–Wallis test indicateswhether there are statistically significant
differences between the two groups. ** Significant at the 1% level, * Significant at the 5% level, *** Significant at the 10% level
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the audit opinion and as one otherwise. Skinner [77]
considered companies having litigation in the follow-
ing cases: (a) a lawsuit had been filed in a Greek court;
(b) there had been an allegation of common stock price
fraud; or (c) there had been an allegation of stock ex-
change violation under Greek law.

The most consistent result in all previous research
has been that auditor size can explain the supply of
a higher level of audit quality, defined as the joint prob-
ability of detecting and reporting material financial er-
rors (i. e., [4,8,22,24,25,28,47,48,64,72]). The evidence
concerning the relationship between audit firms and
audit report is mixed. Whereas Warren [88] did find
a significant association between large audit firms and
qualified audit reports, Shank and Murdock [76] found
otherwise.

Previous studies also examined whether the auditor
is one of the Big Four (namely PricewaterhouseCoop-
ers, Deloitte and Touche, KPMG, Ernst and Young) or
not [35]. We use a dummy variable set to zero (Domes-
tic = 0) if the auditor was one of the domestic audit
firms and one if the auditor was one of the foreign audit
firms in Greece (Foreign = 1). In Greece the auditing
profession was liberalized in 1992 by enabling legisla-
tion [37], see Caramanis [13,14]. The competition be-
tween the local Greek and foreign audit companies has
increased since 1992. Nowadays, Greek companies au-
dit a greater percentage of companies than foreign audit
companies. It is possible that smaller companies avoid
paying the premium price levied by the large audit com-
panies, since Krishnan et al. [54] found that smaller
firms in the US are less likely to be audited by the ‘Big
Four’ companies. Furthermore, it is possible that the
partners of domestic audit companies are more likely to
develop close personal relationships with the directors
of Greek client companies. On the other hand, there
is a chance that the domestic audit companies will be
more familiar with the ‘small acceptable standards of
control’ in Greece.

Various papers examine the relationship between
the audit opinion before and after the chance of au-
ditors (switching). Chow and Rice [16], Craswell [21],
Gul et al. [40], and Krishnan et al. [56] found a sig-
nificant positive association between qualified opin-
ions and subsequent auditor switching. As Nieves [68]
points out, two effects may obscure the influence of the
audit report in motivating a change: (a) many auditor

changes may be unrelated to audit opinion; and (b) the
reasons for auditor changes are an internal state which
is not directly observable. We tested the importance
of auditor changes to detection of FFS over a 3-year
period. The 3-year period included the first year of
the financial statements and auditors’ opinions and the
2 years before this first year. We used a dummy variable
(Prior 2 year auditor) that takes a value of one (yes = 1)
if the auditor had been retained and a value of zero if
the firm had switched auditors (no = 0).

Finally, we used two other variables, LOSS and
STOCK. LOSS is an indicator variable whose value is
zero if an auditee experienced a loss in the year of
audit opinion and one (profit) otherwise. Spathis [80]
found a significant difference between qualified and
non-qualified audit reports for this variable. STOCK is
a dummy variable that takes a value of zero (yes = 0) for
companies listed in the Athens Stock Exchange and one
for unlisted companies (no = 1). Ireland [46] reported
that whether a company is listed or unlisted may influ-
ence the auditor’s independence. Listed companies may
have greater supervision and training of their stock ex-
change authority. Furthermore, as Ireland [46] points
out, large companies are more likely to have good ac-
counting systems and internal controls, thus reducing
disagreements and limitations on scope while, at the
same time, auditors are more likely to waive earnings
management attempts (resulting in mis-statements) in
large clients, even after controlling for the materiality of
such attempts [67].

Method

Multicriteria decision making (MCDM) provides the
methodological basis for the combination of qualitative
and quantitative data. MCDA has been applied in fi-
nance as a sophisticated tool to improve the decision-
taking in the turbulent and complex financial environ-
ment that exists nowadays. Spronk et al. [82] thor-
oughly investigated the application of this technique
in the financial field. In the present study we used the
MHDIS method [91].

The problem considered in this case study falls
within the classification problematic that in general
involves the assignment of a finite set of alternatives
A D fa1; a2; : : : ; ang to a set of q ordered classes
C1  C2  � � �  Cq . Each alternative was evaluated
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along a set of m criteria g1, g2; : : : ; gm . In the present
case study the alternatives involved the companies in
the sample, the criteria correspond to the set of seven
financial variables, and six non-financial variables and
there were two classes, the unqualified financial state-
ments (class C1) and the qualified financial statements
(class C2).

MHDIS distinguishes the groups progressively,
starting by discriminating the first group from the oth-
ers, and then proceeds to the discrimination between
the alternatives belonging to the other group. To ac-
complish this task two additive utility functions are de-
veloped in each one of the q� 1 steps, where q is the
number of groups. The first function Uk(a) describes
the alternatives of group C1, and the second function
U�k(a) describes the remaining alternatives that are
classified in lower groups CkC1; : : : ;Cq .

Uk(a) D
mX
iD1

pkiuki(gi )

and U�k(a) D
mX
iD1

p�kiu�ki(gi);

k D 1; 2; : : : ; q � 1:

The corresponding marginal utility functions for each
criterion gi are denoted as uki(gi) and, u�ki

�
gi
�
which

are normalized between 0 and 1, while the criteria
weights pki and p�ki sum up to 1. As mentioned above,
the model is developed in q� 1 steps. In the first step,
the method develops a pair of additive utility functions
U1(a) and U�1(a) to discriminate between the alter-
natives of group C1 and the alternatives of the other
groups C2; : : : ;Cq . On the basis of the above function
forms the rule to decide upon the classification of any
alternative has the following form:

If U1(a) � U�1(a) then a belongs in C1.
Else if U1(a) � U�1(a) then a belongs in (C2,

C3; : : : ;Cq).
The alternatives that are found to belong in class

C1 (correctly or incorrectly) are excluded from fur-
ther analysis. In the next step, another pair of util-
ity functions U2(a) and U�2(a) is developed to dis-
criminate between the alternatives of group C2 and
the alternatives of the groups C3; : : : ;Cq: Similarly to
step 1, the alternatives that are found to belong in
group C2 are excluded from further analysis. This pro-

cedure is repeated up to the last stage (q� 1), when
all groups have been considered. The estimation of the
weights of the criteria in the utility functions as well as
the marginal utility functions is accomplished through
mathematical programming techniques. More specifi-
cally, at each stage of the hierarchical discrimination
procedure, two linear programs and a mixed-integer
one are solved to estimate the two additive utility func-
tions optimally and to minimize the classification error.
Further details of the mathematical programming for-
mulations used in MHDIS can be found in Zopounidis
and Doumpos [91].

Empirical Results

Table 1 presents descriptive statistics which indicate the
magnitude of the difference in the independent vari-
ables between the qualified and unqualified reports over
the period 2001–2003. A comparison between the mean
value of UTADISCR for the qualified and unqualified
companies in the training sample shows that the for-
mer had a lower average value, which was statistically
significant at the 1% level. Hence, many companies that
had manipulated their financial statements were in fi-
nancial distress [30,36,78]). Statistically significant dif-
ferences at the 1% level were also found for two others
variables, namely Inventories/Sales and Sales Annual
Change, between the two groups in the training sam-
ple. Thus, companies with lower sales are more likely
to receive a qualified report than other companies in
Greece.

Furthermore, the variable Profits before tax/Total
Assets (ROA) had lower means for the qualified com-
panies, which was consistent with most of the previ-
ous studies, indicating that firms which receive quali-
fied opinions made less profit [7,61,78,81,86]).

Table 2 illustrates the contribution of each of the
financial and non-financial criteria in our auditing
model. As our study involved two groups (unqualified
and qualified) the hierarchical discrimination process
of MHDIS consisted of only one stage, during which
two additive utility functions were developed. The util-
ity functionU1 characterizes the unqualified companies
whereas the utility function U�1 characterizes those
that were qualified.

ROA is indicated as one of the important crite-
ria in most cases. Particularly in the case of unquali-
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Multicriteria Decision Support Methodologies for Auditing
Decisions, Table 2
Average weights for the criteria in the 2models

MHDIS financial MHDIS No financial
U1 U�1 U1 U�1

REC / SAL 2.28% 3.82% 0.02% 0.02%
CA / CL 7.17% 25.18% 3.99% 16.41%
CA / TA 21.49% 5.02% 15.04% 10.14%
CASH / TA 4.39% 11.23% 16.87% 1.11%
ROA 44.75% 25.71% 28.09% 11.57%
INV / SAL 12.54% 13.74% 10.55% 0.02%
SALCH 7.38% 15.30% 1.50% 3.94%

Profit or Loss in the
year

0.00% 0.00%

Stock Exchange 0.00% 17.49%
Auditor 0.00% 0.00%
Prior 2 years Auditor 9.93% 0.00%
Litigation 0.00% 22.37%
UTADISCR 14.01% 16.94%

Notes: REC / SAL: Receivable / Sales, CA / CL: Current Assets /
Current Liabilities, CA / TA: Current Assets / Total Assets, CASH
/ TA: Cash / Total Assets, ROA: Profit before Tax � 100 / Total
Assets, INV / SAL: Inventories / Total Assets, SALCH: (Sales in
year t � Sales in year t� 1)� 100 / Sales in year t� 1

fied firms, it has a weight that is as high as 44.75% in
the financial model and 28.09% in the non-financial
one. Similar findings were observed in previous stud-
ies [7,61,71,78,81,86]).

The most important criteria that characterized the
qualified firms in the case of the financial model are
ROA and Current Assets/Current Liabilities (CA/CL)
followed by Sales in year t� Sales in year t� 1 (SALCH)
with weights of 25.71, 25.18 and 15.30%, respectively.
Pasiouras et al. [71] also found ROA to be statistically
significant at the 1% level and one of the most impor-
tant criteria for the models. In addition, Ireland [46]
reported that companies with high liquidity (CA/CL)
might increase the likelihood of a qualified audit opin-
ion as assets may have been overstated.

From the non-financial criteria, litigation, STOCK,
UTADISCR and CA/CL were the most important cri-
teria with 22.37, 17.49, 16.94 and 16.41%, respectively,
for qualified companies. A comparison with the results
of previous studies showed that the results were simi-
lar. In particular, Spathis [80] found that litigation and
financial distress were among the most important vari-

Multicriteria Decision Support Methodologies for Auditing
Decisions, Table 3
Classification results (accuracies in %) for the MHDIS and
Logit models

Unqualified Qualified Average
Panel A:Financial Variables

Training(2001-2003)
MHDIS 94.87 95.73 95.30
LA 95.7 95.7 95.7
Holdout (2004)
MHDIS 80.49 87.80 84.15
LA 78.00 86.6 82.3

Panel B: Non-financial Variables
Training (2001-2003)
MHDIS 98.29 98.29 98.29
LA 97.43 95.73 96.58
Holdout (2004)
MHDIS 84.15 91.46 87.81
LA 74.39 93.90 84.15

ables, and Spathis et al. [79] found CA/CL to be among
the most important factors.

Table 3 presents the classification results obtained
from the financial and non financial models. The clas-
sification ability of the models was tested further us-
ing the out-of-time and out-of-sample companies. The
results indicated that the MHDIS models developed
with the selected variables were able to provide a sat-
isfactory distinction between qualified and unqualified
statements.

The overall correct classifications at the training
and holdout stages were 95.3 and 84.15%, respectively.
The differences between the financial and the non-
financial MHDIS models were significant. Overall, the
non-financial MHDIS model provided higher overall
classification accuracy in both the training (92.3%) and
holdout samples (87.81%). This means that the inclu-
sion of non-financial variables in the model yielded
a more accurate distinction between qualified and un-
qualified companies than the inclusion of financial vari-
ables alone.

For benchmarking purposes, we developed addi-
tional models with logit analysis (LA). These models
were developed with the same input variables. In the
case of the financial model, the classification accuracy
in the training sample was 78%, and the correspond-
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ing figure for the holdout sample was 74.3%. In the
case of the non-financial model, however, the classifi-
cation accuracies were 82.3 and 84.15% in the training
and holdout samples, respectively. It is therefore clear
that MHDIS was more efficient than LA during both
the training and holdout stages (for both financial and
non-financial models).

MHDIS achieves more balanced results in terms of
type I and type II errors in the holdout sample.Whereas
Bell and Tabory [9] reported that type II errors aremore
costly than type I errors, Kida [49] argued that type I
errors might result in: (a) a company changing its au-
dit firm (switching), which means loss in audit firm
revenue; (b) a lawsuit by a client against the account-
ing firm; (c) a negative effect on the auditor’s repu-
tation in the business community; (d) a deterioration
in relations with the client; or (e) the so-called self-
fulfilling prophecy – the qualification itself jeopardizes
client survival, which in turn increases the probability
of that consequence.

Conclusions and Further Research

This study investigated the extent to which MHDIS
models based on financial and non-financial variables
could predict auditors’ decisions to issue qualified opin-
ions in the Greek market.

The sample consisted of 199 companies operating
in the Greek manufacturing, trade and service sectors
with FSF between 2001 and 2004, matched by industry
and total assets with 199 non-FSF ones, yielding a to-
tal of 398 companies. We used out-of-time and out-
of-sample testing samples to evaluate the classification
ability of the model and ensure that they were not over-
fitted to the training dataset. The sample was split into
a training dataset of 234 companies using data from the
period 2001–2003 and a validation dataset of 164 com-
panies using data from the year 2004.

Seven financial and six non-financial variables, rep-
resenting all dimensions of companies’ performance,
were selected for inclusion in the models that were de-
veloped through the MHDIS approach. The results in-
dicated that ROA, CA/CL and Current Assets/Total As-
sets A were the important criteria for financial model.
In additional, litigation, stock exchange, UTADISCR
and CA/CL were the most important criteria for the
non-financial model. Furthermore, the non-financial

MHDIS model provides higher overall classification ac-
curacy indicating that the inclusion of non-financial
variables resulted in a more accurate distinction be-
tween qualified and unqualified companies.

By using such models, auditors can simultaneously
screen a large number of firms and direct their atten-
tion to the ones that are more likely to contain mis-
statements, saving time or money. These models can
also be used by policy-makers in an attempt to stop tax
evasion (i. e. the tax evasion consisting of filing fraudu-
lent tax declarations in Italy is estimated to be between
3 and 10% of GNP [87]). In addition, these models can
be useful to investors, managers, banks and others com-
panies to identify ‘red flags’.

The current research could be extended in several
directions. First, future research could be extended to-
wards the inclusion of additional variables such asman-
agers’ experience, market characteristics (i. e. industry
concentration, industry growth), audit fees and non-
audit fees, subsidiaries, and stock prices. Second, com-
panies could be classified into more specific groups.
Third, the inclusion of data from a longer time period,
could allow the consideration of industry and macroe-
conomic effects. Finally, future research could be di-
rected towards the comparison and integration of al-
ternative or additional classification techniques, such
as neural networks, rough sets, expert systems, sup-
port vector machine, and others. The integration of the
models through additional techniques, such as bagging
and boosting, could also be examined.
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Introduction/Background

Over the last 35 years there have been several stud-
ies which have attempted to develop classification
models to predict takeover targets in various coun-
tries and regions of the world, such as the USA [7,8,
10,11,12,15,23,30,34,37], the UK [2,3,4,5,13,28,36],
Canada [9,20,29], Greece [31,38,39], and more recently
the EU [26,27] and Asia [25]. This is not surprising,
since the prediction of acquisitions can be of major in-
terest to stockholders, investors, creditors, and gener-
ally anyone who has established a relationship with the
acquired firm [35].

Most of these studies have used multivariate statis-
tical and econometric techniques such as discriminant
analysis (DA) and logit analysis and only more recently
the parametric nature and the statistical assumptions
and restrictions of those approaches have led re-
searchers to the application of alternative techniques
such as artificial neural networks (ANN) [10], rough
sets (RS) [31], recursive partitioning algorithm [15],
support vector machines [26], and nearest neigh-
bors [26].

A few recent studies have also used multicriteria
decision aid (MCDA, which is the designation usually
used in Europe, or multiple criteria decision making,
MCDM, which is the one usually used in the USA) tech-
niques [13,25,26,27,36,39] which over the last few years
have gained significant recognition among researchers
and have been employed in several studies in bank-
ing, finance, accounting, and management. For exam-
ple, Steuer and Na [33] identified 256 applications that
combine MCDM and finance. One of the characteris-
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tics of these techniques is that they are well suited for
analyzing complex decision problems that involve mul-
tiple and usually conflicting criteria and/or goals. They
can therefore prove particularly useful in the predic-
tion of acquisitions, since there is often not one sin-
gle reason but a number of reasons that lead manage-
ment to the decision to merge with or acquire another
firm. A further advantage of MCDA techniques is that
they do not make any assumptions, as do the traditional
techniques (see Barniv and McDonald [6] for a sum-
mary of the problems related to the use of discriminant,
logit, and probit), about the normality of the variables
or the group dispersion matrices (e. g., DA) and they
are not sensitive to multicollinearity (e. g., logit analy-
sis). In this paper we first present a brief review of the
studies that have appliedMCDA in the prediction of ac-
quisition targets (Sect. “Methods/Applications”). Then,
in Sect. “Formulation”, we outline one of the MCDA
techniques, namely, utilités additives discriminantes
(UTADIS), which is used for the development of our
classifications models. “Cases” describes a case study
and presents the results. Finally, Sect. “Conclusions”
concludes our paper.

Methods/Applications

Zopounidis and Doumpos [39] were the first to pro-
pose the use of MCDA in the prediction of acquisi-
tion targets. They developed a classification model with
the multigroup hierarchical discrimination (MHDIS)
method using a sample of 30 acquired and 30 nonac-
quired Greek firms and ten financial ratios covering
various aspects of a firm’s financial condition. Data
from 1 year prior to the acquisition (year �1) were
used for the development of the model, while years 2
(year �2) and 3 (year �3) before the acquisition were
used to test its discrimination ability. The model clas-
sifies correctly 58.33 and 61.67% of the firms for years
2 and 3 prior to the acquisition, respectively. The au-
thors argue that this poor classification could be at-
tributed to the difficulty of predicting acquisition tar-
gets in general, and not necessarily to the inability of the
proposed approach as a discrimination method. To test
further the proposed technique, its classification accu-
racy was compared with that of DA and UTADIS. The
correct classification accuracy obtained using the pro-
posed method is better for all years than that obtained

using DA. As opposed to the UTADIS method, the clas-
sification accuracy under the proposed approach is sig-
nificantly higher for year �1, the same for for year �2,
and slightly higher for year �3. On the basis of these
results the authors conclude that the iterative binary
segmentation procedure is able to provide results that
are at least favorably comparable with those provided
by UTADIS and outperforms DA.

Tartari et al. [35] also used UTADIS in their study
along with linear DA (LDA), probabilistic neural net-
works (PNN), and RS in an attempt to examine whether
the integration of different methods using a stacked
generalization approach could result in higher classi-
fication accuracies. Their sample consisted of 48 UK
firms, selected from 19 industries/sectors, acquired
during 2001, and 48 nonacquired firms matched by
principal business activity, asset size, sales volume,
and number of employees. Twenty-three financial ra-
tios measuring profitability, liquidity and solvency, and
managerial performance were initially calculated for
each firm for up to 3 years prior to the acquisition
(1998–2000); however, they finally used a set of nine ra-
tios, selected on the basis of factor analysis. Their exer-
cise consisted of two stages. First, UTADIS, LDA, PNN,
and RS were used to develop individual models. The
most recent year (i. e., 2000) was used as a training sam-
ple, while data from the other two years (i. e., 1998 and
1999) were used to test the generalizing performance of
the proposed integration approach. An eightfold cross-
validation approach was employed to develop the base
models using the four methods. The classifications of
the firms obtained were then used as a training sample
for the development of a stacked generalization model.
Finally, the development of the stacked model was per-
formed using the UTADIS method that combines (at
a metalevel) the group assignments of all the fourmeth-
ods considered in the analysis. The use of other meth-
ods to develop the combined model was also examined;
nevertheless the results are inferior to those obtained
with UTADIS. The stacked model performs better (in
terms of the overall correct accuracy rate) than any of
the four methods upon which it is based, throughout all
the years of the analysis. Furthermore, the results indi-
cate that the stacked model provides significant reduc-
tions in the overall error rate compared with LDA, RS,
and UTADIS, although they were less significant com-
pared with PNN.
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In another UK study, Doumpos et al. [13] com-
pared the classification ability of UTADIS against one
of the models developed using DA, logistic regression
(LR), and ANN. The sample included 76 UK firms
acquired during 2000–2002, matched by industry and
size with 76 nonacquired firms. Twenty-nine financial
ratios were initial candidates for model development,
representing profitability, efficiency, activity, financial
leverage, liquidity, and growth; however, the authors fi-
nally selected six variables on the basis of a t test and
correlation analysis. The UTADIS model was first de-
veloped using data drawn from the most recent year
prior to the acquisition (i. e., year �1). The model de-
veloped was then applied to data from 2 and 3 years
prior to the acquisition (years �2 and �3). The average
accuracies were 74.34 and 78.95%, respectively. These
accuracies are higher than the ones obtained by both
DA and LR, and are found to comparable to or better
than those of ANN when tested using data from years
�2 and �3.

Pasiouras et al. [26] used both UTADIS and
MHDIS, among several other classification techniques,
to develop models specifically designed for the EU
banking industry. They developed several models on
the basis of equal and unequal training samples from
the period 1998–2000, using both raw and country-
adjusted variables. The models were tested in equal
and unequal datasets from a future period (2001–2002).
They also developed models that combine the pre-
dictions of the individual models developed in the
first stage, using two integration techniques, namely,
stacked generalization and majority voting. Their re-
sults were mixed and depended on the form of the vari-
ables used, the datasets, and the evaluation measure
considered. Hence, they concluded that there is no clear
winner technique that dominates all the others under
all circumstances. However, UTADIS appears several
times as one of the best techniques. Furthermore, the
stacked model developed through UTADIS also per-
forms relatively well.

Pasiouras et al. [27] also focused on the EU banking
sector, but differentiated their study in two ways from
that of Pasiouras et al. [26]. First, they considered an
additional MCDA technique, namely, PAIRCLAS, that
was applied for the first time in the prediction of acqui-
sitions. Second, they followed a tenfold cross-validation
resampling procedure for the development and eval-

uation of the models. Their sample consisted of 168
banks acquired between 1998 and 2002 matched with
168 nonacquired banks. MHDIS achieved the highest
overall accuracy in the validation dataset, with 68% of
the acquired and 63.3% of the nonacquired banks clas-
sified correctly (implying an overall classification rate
of 65.7%). PAIRCLAS also achieves marginally better
classification accuracies than UTADIS, and its ability to
classify correctly the nonacquired banks (75%) is even
higher than that of MHDIS (72.2%).

In another study, Pasiouras et al. [25] concentrated
on the Asian banking sector. They used a sample of 52
targets and 47 acquirers that were involved in acquisi-
tions in nine Asian banking markets during 1998–2004
and matched them by country and time with an equal
number of banks not involved in acquisitions. The
models were developed and validated through a tenfold
cross-validation approach using UTADIS and MHDIS.
In each case three versions of the model were devel-
oped. The first one distinguished between acquired
and noninvolved banks. The second one distinguished
between acquirers and noninvolved banks. The last
one, was a three-outcome model that simultaneously
distinguished between targets, acquirers, and nonin-
volved banks. For comparison purposes they also devel-
oped models through DA. The results indicate that the
MCDA models are more efficient that the ones devel-
oped through DA. Furthermore, in all cases the mod-
els are more efficient in distinguishing between acquir-
ers and noninvolved banks than between targets and
noninvolved banks. Finally, the models with a binary
outcome achieve higher accuracies than the ones which
simultaneously distinguish between acquirers, targets,
and noninvolved banks.

Formulation

The problem considered in the present study is a clas-
sification one that in general involves the assignment of
a set ofm alternatives A D fa1; a2; : : : ; amg, evaluated
along a set of n criteria g1, g2, . . . , gn, to a set of q classes
C1,C2, . . . ,Cq. In the case of acquisitions, the alterna-
tives are the firms in the sample, the criteria can corre-
spond to financial and nonfinancial variables, and there
are usually two classes, the nonacquired firms (class C1)
and the acquired firms (class C2). Hence, in what fol-
lows we consider the simple two-class case, while details
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on the multiclass case can be found in Doumpos and
Zopounidis [14] and Zopounidis and Doumpos [39].

The UTADIS approach, used in the present study,
implies the development of an additive utility func-
tion that is used to score the firms and decide upon
their classification. The utility function has the follow-
ing general form:

U(a) D
nX

iD1

wiu0i(gi ) 2 [0; 1] ; (1)

where wi is the weight of criterion gi (the criteria
weights sum up to 1) and u0i(gi) is the corresponding
marginal utility function normalized between 0 and 1.
The marginal utility functions provide a mechanism
for decomposing the aggregate result (global utility) in
terms of individual assessment to the criterion level. To
avoid the estimation of both the criteria weights and
the marginal utility functions, it is possible to use the
transformation ui (gi) D wiu0i (gi). Since u

0
i(gi) is nor-

malized between 0 and 1, it becomes obvious that ui(gi)
ranges in the interval [0,wi]. In this way, the additive
utility function is simplified to the following form:

U(a) D
nX

iD1

ui(gi ) 2 [0; 1] : (2)

The utility function developed provides an aggregate
score U(a) of each firm along all criteria. In the case
of acquisitions prediction, this score provides the basis
for determining whether the firm could be classified in
either the group of nonacquired ones or in the group of
acquired ones. The classification rule in this case is the
following (C1 and C2 denote the group of nonacquired
and acquired firms, respectively, while u1 is a cutoff util-
ity point defined on the global utility scale, i. e., between
0 and 1):

U(a) � u1 ) a 2 C1

U(a) < u1 ) a 2 C2

	
: (3)

The estimation of the additive value function and the
cutoff threshold is performed using linear program-
ming techniques so that the sum of all violations of
the classification rule (3) for all the firms in the train-
ing sample is minimized. A detailed description and
derivation of this mathematical programming formu-
lation can be found in Doumpos and Zopounidis [14].

Cases

In this section, our method is illustrated by a case study
from the work of Pasiouras et al. [24]. The dataset con-
sidered in the study consists of 76 firms acquired be-
tween 2000 and 2002, and 76 nonacquired firms, which
operate in manufacturing, construction, and mining–
quarrying–extraction industries in the UK. The sam-
ple was constructed as follows. The acquired firms were
first identified in the Hemscott M&As database and
the financial data were collected from the Financial
Analysis Made Easy database of Bureau van Dijk. After
screening for data availability in FAME, 59 manufac-
turing, six construction, five production and six min-
ing–quarrying–extraction firms had complete financial
data for the 3 years prior to the acquisition and were
included in the sample.

Although the year of acquisition is not common for
all firms in the sample, they were all thought to be ac-
quired in the “zero” year, considered as the year of ref-
erence. The years of activity prior to “zero” are coded as
“year �1” (1 year prior), “year �2” (2 years prior), and
“year �3” (3 years prior).

After the sample described above had been ob-
tained, nonacquired firms were chosen to match the ac-
quired firms. The firms were matched by industry and
size (total assets) and financial data for the nonacquired
companies were taken from the same calendar years as
for the corresponding acquired companies.

Barnes [5] mentions that the problem for the ana-
lyst who attempts to forecast targets is simply a mat-
ter of identifying the best predictive (i. e., explanatory)
variables. Unfortunately, financial theories do not of-
fer much in selecting specific variables among the nu-
merous ones regarded as potential candidates in model
development. Given the large number of possible ra-
tios, it is important to reduce the list of ratios that en-
ter the final model selection process. Hence, a question
that emerges when attempting to select accounting ra-
tios for empirical research is which ones, among the
hundreds, should be used? However, there is no easy
way to determine how many ratios a particular model
should contain. Too few and the model will not cap-
ture all the relevant information. Too many and the
model will overfit the training sample, but underper-
form in a holdout sample, and will most likely have
onerous data input requirements [21]. As Hamer [17]
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points out, the variable set should be constructed on
the basis of (1) minimizing the cost of data collection
and (2) maximizing the model applicability. Huberty
[18] suggests three variable screening techniques that
could be used: logical screening (e. g., financial theory
and human judgment), statistical screening (e. g., test
of differences of two group means such as the t test),
and dimension reduction (e. g., factor analysis). In the
present study we follow the latermost approach as in
Stevens [34], Barnes [2], Kira and Morin [20], Zanakis
and Zopounidis [38], and Tartari et al. [35]. Hence,
a total of 25 variables are initially considered on the
basis of data availability and previous studies, cover-
ing several aspects of firms’ performances such as prof-
itability, efficiency, activity, financial leverage, liquid-
ity, and growth. Factor analysis is then used to reduce
the number of variables to a smaller number of factors
that are linear combinations of the initial variables. The
analysis results in the extraction of seven factors, with
eigenvalues higher than 1. The variable with the highest
loading is selected from each one of the seven compo-
nents for inclusion in the classification models. Conse-
quently, we use the following seven variables:
1. X1: Current assets/current liabilities,
2. X2: Total liabilities/shareholders’ equity,
3. X3: Annual change of total assets,
4. X4: Annual change of current liabilities,
5. X5: Profits before taxes/total assets,
6. X6: Sales/stock,
7. X7: Sales/debtors.
X1 is an indicator of liquidity that has been used in
many previous studies [2,12,20,38]. The views about
liquidity are somewhat mixed. It is possible that firms
with excess liquidity are more likely to be acquired be-
cause of their good short-term financial position and
the availability of cash or near-cash assets [36]. In
this case, there is also an opportunity for the acquir-
ers to finance the acquisition with the target’s own re-
sources [32]. On the other hand, it can be argued that
a firm in need of funds to finance its working cap-
ital requirements is likely to be an acquisition target
because the acquirer, after the acquisition, expects to
bring additional funds into the firm to improve its liq-
uidity [29].

X2 is a measure of financial leverage that has been
used as a proxy for financial leverage in Rege [29],
Palepu [23], and Kim and Arbel [19] among others. Ac-

cording to the financial leverage hypothesis the likeli-
hood of being acquired decreases with the increase in
company debt. There are two reasons why firms with
lower preexisting levels of debt are considered attrac-
tive acquisition targets. The first is that the low debt ra-
tio of the target decreases the probability of future de-
fault of the joint firm, while at the same time it increases
the debt capacity of the new firm. The second is that
in some cases a firm has extremely low debt ratios, the
value of the firm may not be maximized, and low lever-
age can be seen as a sign of inefficient management.

X3 and X4 are measures of annual changes in two
basic elements of the firms (i. e., assets, liabilities).
Firms whose growth rates, as measured by X3, are rela-
tively high can experience problems because their man-
agement and/or structure will not able to deal with and
sustain exceptional growth. It is therefore possible that
a firm which is constrained in this way will become an
acquisition target of a firm with surplus resources or
management available to help [14]. Furthermore, a firm
with high levels of growth might be acquired by firms
that what to take advantage of this increase in assets,
and boost their own growth. Turning to X4, exceptional
increases may indicate that the firm has problems in
meeting its short-term liabilities and can therefore be
acquired to avoid solvency.

Variables X5, X6, and X7 are related to the ineffi-
cient management hypothesis. This hypothesis argues
that if the managers of a firm fail to maximize its market
value, then the firm is likely to be an acquisition target
and inefficient managers will be replaced. Thus, these
takeovers are motivated by a belief that the acquiring
firm’s management can manage better the target’s re-
sources. This view is supported by two specific argu-
ments. First, the firm might be poorly run by its cur-
rent management, partly because the objectives of the
management are at variance with those of the share-
holders. In this case, the takeover threat can serve as
a control mechanism limiting the degree of variance be-
tween management’s pursuits for growth from share-
holders’ desire for wealth maximization. A merger may
not be the only way to improve management, but if dis-
appointed shareholders cannot accomplish a change in
management that will increase the value of their invest-
ment within the firm, either because it is too costly or
too slow, then a merger may be a simpler and more
practical way of achieving their desired goals. Second,
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Multicriteria Methods for Mergers and Acquisitions, Table 1
Weights of the variables (percent) in the utilités additives dis-
criminantes (UTADIS) model (averages over the ten replica-
tions)

Year�1 Year�2 Year�3
X1 11.15 2.45 10.40
X2 23.28 34.04 31.99
X3 5.15 7.43 8.80
X4 15.79 5.71 8.59
X5 14.67 25.08 12.22
X6 14.40 11.31 14.77
X7 15.56 13.97 13.23

the acquirer may simply have better management ex-
perience than the target. There are always firms with
unexploited opportunities to cut costs and increase
sales and earnings, and that makes them natural can-
didates for acquisition by other firms with better man-
agement [1]. Therefore, if the management of the ac-
quirer is more efficient than the management of the
target firm, a gain could result through a merger if the
management of the target is replaced.

Table 1 presents the contribution of the seven crite-
ria in the UTADIS model. To ensure the proper devel-
opment and validation of the models, we follow a ten-
fold cross-validation. Hence, the total sample of 152
firms is randomly split into ten mutually exclusive sub-
samples (folds) of approximately equal size. Then ten
models are developed, using each fold in turn for vali-
dation and the remaining folds for training. Therefore,
in each of the ten replications, the training sample con-
sists of 137 firms and the validation of 15 firms. The
figures presented are the averages over the ten replica-
tions.

X2 (total liabilities/shareholders’ equity) appears to
be the most important criterion in all 3 years with an av-
erage weight that ranges between 23.28 (year �1) and
34.04% (year �3). The profitability and efficiency in-
dicators (X5, X6, X7) also appear to be important in
classifying firms within the two groups, with average
weights between 11.31 and 25.08%. X1 (i. e., current as-
sets ratio) carries a weight above 10% in years �1 and
�3 but it is considerably reduced to 2.45% in year �2.
Finally, X3, which corresponds to the annual growth of
the firm in terms of total assets, is the least important
criterion in all years.

Multicriteria Methods for Mergers and Acquisitions, Table 2
Classification accuracies in percent (averages over ten repli-
cations)

Acquired
firms

Nonacquired
firms

Overall
accuracy

Classification accuracies of the UTADIS model
in the development stage
Year�1 80.1 71.8 75.9
Year�2 81.9 71.1 76.5
Year�3 81.1 70.3 75.7
Classification accuracies in the validation
stage
Year�1
UTADIS 76.2 63.9 70.1
DA 77.9 54.0 65.9
Year�2
UTADIS 75.3 65.5 70.4
DA 77.4 47.2 62.3
Year�3

UTADIS 77.3 63.1 70.2
DA 65.5 50.4 58.0

By comparing the score U(a) of each firm with the
cutoff threshold that was calculated through the esti-
mation of the UTADIS model and rule (3), we can de-
cide whether a firm can be classified as acquired or not
acquired. Table 2 presents the classification results ob-
tained by UTADIS during the development and vali-
dation process. In Table 2 we also present the classifi-
cation results obtained by DA, used for benchmarking
purposes.

The overall classification accuracy of the UTADIS
model during the development stage is around 75%.
Furthermore, the model appears to be quite robust,
with classifications that do not deviate significantly
from one year to another. Unsurprisingly, consistent
with previous studies, the classification accuracy de-
creases in the validation stag; however, the decrease is
relatively small and the overall classification accuracy
is now around 70%. It should be mentioned that while
our model misclassifies around 30% of the firms in the
validation dataset, this is not uncommon for studies on
the prediction of acquisitions targets.

Other studies that used resampling techniques ob-
tained similar results. Bartley and Boardman [7] re-
ported a classification accuracy of 64%, while in a later
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study [8] they obtained classification accuracies be-
tween 69.9 and 79.9%. Similarly, the classification ac-
curacy in the study of Kira and Morin [20] was 66.17%.
The study of Pasiouras et al. [27] that focused on the
EU banking industry also reported classification accu-
racies between 61.6 and 65.7%. As Barnes [14] notes,
perfect prediction models are difficult to develop even
for bankruptcy prediction, where failing firms have
definitely inferior or abnormal performance compared
with healthy firms. The problem with the identification
of acquisition targets is not only that there are poten-
tially many reasons for acquisitions, but also that at the
same time managers do not always act in a manner
which maximizes shareholders’ returns owing to hybris
or agency motives.

While the comparison of the results obtained in the
current study with the ones of previous studies gives
a first indication for the performance of the model, a di-
rect comparison is not appropriate because of differ-
ences in the datasets [16,21], the industry under inves-
tigation, the methods used to validate the models, and
so on. Hence, the comparison of the UTADIS model
with the one developed with DA using exactly the same
dataset, variables, and development and validation pro-
cedures might provide a more accurate indication of
the efficiency (in terms of classification accuracy) of the
MCDAmodel. Looking at the results in Table 2, we see
that UTADIS clearly achieves higher classification ac-
curacies than DA. Furthermore, while the classification
accuracies of DA decrease as we move back in time, the
accuracies of UTADIS remain quite robust, even when
we use data from 3 years prior to the acquisition. Fi-
nally, with the exception of acquired firms in year �1,
UTADIS outperforms DA in classifying correct firms of
both groups (i. e., acquired, nonacquired).

Conclusions

In this paper we first discussed why MCDA could be
useful in the prediction of acquisition targets and pro-
vided a review of relevant studies. Then, we presented
the UTADIS technique and its application on a dataset
of acquired and nonacquired UK firms.

The application indicates that UTADIS not only
outperforms a model developed by DA, but it also
achieves quite robust results, as we use data that move
away from the period of the event.

Future applications of MCDA in the area of acqui-
sitions prediction could focus on the incorporation of
nonfinancial and qualitative data (e. g. managers’ expe-
rience, managers’ educational background) in the anal-
ysis. Although this has been mentioned in the literature
in the past [22,38], there is still a lack of studies that
use such variables in the analysis, usually owing to data
availability. MCDA techniques, like UTADIS, can eas-
ily incorporate qualitative data, and it would be there-
fore interesting to perform such an exercise. Further-
more, it would also be worthwhile to investigate the
classification of firms in more than two groups (e. g.,
acquired, acquirers, noninvolved) as in the study of Pa-
siouras et al. [25]. While the results of the later study
were not promising, the study focused on the bank-
ing industry, which is a special case. Hence, results
from nonfinancial sectors might lead to different con-
clusions. MCDA techniques, like MHDIS, which was
developed with the multigroup discrimination in mind,
might be useful in such applications.
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Decision making problems, according to their nature,
the policy of the decision maker, and the overall ob-
jective of the decision may require the choice of an al-
ternative solution, the ranking of the alternatives from
the best to the worst ones or the sorting of the alterna-
tives in predefined homogeneous classes [30]. For in-
stance, a decision regarding the location of a new power
plant can be considered as a choice problem, since the
objective is to select the most appropriate location ac-
cording to environmental, social and investment crite-
ria. On the other hand, an evaluation of the efficiency of
the different units of a firm can be considered as a rank-
ing problem, since the objective is to estimate the rela-
tive performance of each unit compared to the others.
Finally, a credit granting decision is a sorting problem:
a credit application can be accepted, rejected or submit-
ted for further consideration, according to the business
and personal profile of the applicant. Actually, a wide
variety of decision problems, including financial and
investment decisions, environmental decisions, medi-
cal decisions, etc., are better formulated and studied
through the sorting approach.

The sorting problem, generally stated, involves the
assignment of a set of observations (objects, alterna-
tives) described over a set of attributes or criteria into
predefined homogeneous classes. This type of prob-
lem can also referred to as the ‘discrimination’ problem
or the ‘classification’ problem. Although any of these
three terms can be used to describe the general objec-
tive of the problem (i. e. the assignment of observa-

tions into groups), actually, they refer to two slightly
different situations: the discrimination or classification
problem refers to the assignment of observations into
classes which are not necessarily ordered. On the other
hand, sorting refers to the problem in which the obser-
vations should be classified into classes which are or-
dered from the best to the worst ones. For instance, in
medical diagnosis the classification of patients accord-
ing to their symptoms into several possible diseases is
a discrimination (classification) problem, since it is im-
possible to establish a preference ordering between the
diseases. On the contrary, the evaluation of bankruptcy
risk is a sorting problem, since the non-bankrupt firms
are preferred to the bankrupt ones. In this paper the
terms ‘discrimination’, ‘classification’, and ‘sorting’ will
be used without distinction to refer to the general prob-
lem of assigning observations, objects or alternatives
into classes.

The major practical interest of the sorting prob-
lem, has motivated researchers in developing an arsenal
of methods for studying such problems, with the aim
being the development of quantitative models achiev-
ing the higher possible classification accuracy and pre-
dicting ability. In 1936, R.A. Fisher [8] was the first to
propose a framework for studying classification prob-
lems taking into account their multidimensional na-
ture. The linear discriminant analysis (LDA) that Fisher
proposed has been used for decades as the main classifi-
cation technique and it is still being used at least as a ref-
erence point for comparing the performance of new
techniques that are developed. C. Smith in 1947 [34]
extended Fisher’s linear discriminant analysis propos-
ing quadratic discriminant analysis (QDA) in order to
overcome the restrictive assumption underlying LDA
that groups have equal dispersion matrices. Later on,
several other statistical classification approaches have
been proposed. Among them logit and probit analy-
sis are the most widely used techniques overcoming
the multivariate normality assumption of discriminant
analysis (both linear and quadratic). Although these
techniques overcome most of the statistical restrictions
imposed in discriminant analysis, their parameters are
difficult to explain, especially in multigroup discrimi-
nant problems.

The continuous advances in other fields including
operations research and artificial intelligence led many
scientists and researchers to exploit the new capabili-
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ties of these fields, in developing more efficient classifi-
cation techniques. Among the attempts made one can
mention neural networks, machine learning, fuzzy sets
as well as multicriteria decision aid (MCDA). This ar-
ticle will focus on MCDA and its application in the
study of classification problems with or without or-
dered classes. MCDA provides an arsenal of powerful
and efficient nonparametric classification methods and
approaches, which are free of statistical assumptions
and restrictions, while furthermore they are able to in-
corporate the decision maker’s preferences in a flexible
and realistic way.

The remainder of the article is organized as fol-
lows. Section 2 provides a review of MCDA sorting ap-
proaches and techniques, outlining their basic charac-
teristics, concepts and limitations. In section 3, a new
MCDA sorting method is described and its operation is
depicted through a simple illustrative example. Finally,
section 4 concludes the paper and outlines some pos-
sible future research directions concerning the applica-
tion of MCDA in sorting problems.

Multicriteria SortingMethods

The MCDA methods which have been proposed for
the study of sorting problems can be distinguished ei-
ther according to the approach from which they are
originated (multi-objective/goal programming, multi-
attribute utility theory, outranking relations, preference
disaggregation), or according to the type of problem
that they address (ordered or non-ordered classes). The
review presented in this section will distinguish the
methods according to their origination, but in the same
time the type of problems that they address will also be
discussed.

Goal Programming Approaches

The work of A. Charnes and W.W. Cooper [4] set the
foundations on goal/multi-objective programming, but
it can also be considered as one or the pioneering stud-
ies in the field of MCDA in general. Since then, both
multi-objective and goal programming constitute two
major fields of interest from the theoretical and prac-
tical points of view in the MCDA and operations re-
search communities. In particular, goal programming
approaches, during the 1960s and the 1970s have been
used to elicit attribute weights in multiple criteria rank-

ing decision problems [15,27,35,36]. N. Freed and F.
Glover [9] were among the first to investigate the po-
tentials of goal programming techniques in the dis-
criminant problem. Their aim was to develop a linear
discriminant model so that the minimum distance of
the score of each alternative from a predefined cut-off
point is maximized (maximize the minimum distance-
MMD). To develop this model, they proposed the fol-
lowing goal programming formulation:

8̂
<̂
ˆ̂:

max d
s.t.

X
wixi j C d � c; 8i 2 Group 1;X
wixi j � d � c; 8i 2 Group 2;

where wi is the weight of attribute i, xij is the evaluation
of alternative j on attribute i, and c is the cut-off score
(wi and d are unrestricted in sign). Soon after propos-
ing this model, the same authors proposed a variety of
similar goal programming formulations incorporating
several other discrimination criteria, such as the sum of
deviations (optimize the sum of deviations-OSD), the
sum of interior deviations (minimize the sum of in-
terior deviations-MSID) and the maximum deviation
[10].

These two studies attracted the interest of sev-
eral operational researchers and management scien-
tists. S.M. Bajgier and A.V. Hill [2] proposed a new
goal programming approach in order to minimize the
number of misclassifications using a mixed integer pro-
gramming formulation (MIP) and conducted a first ex-
perimental study to compare theMMDmodel, the OSD
model, and their MIP formulation with LDA. They
concluded that the goal programming formulations are
generally superior to LDA, except for the case of mod-
erate to low overlap between groups and equal disper-
sion matrices, where LDA outperforms all the exam-
ined goal programming formulations.

The performance of goal programming approaches
compared to statistical techniques was an issue that
several researchers tried to investigate using mainly
experimental data sets. Freed and Glover [11] com-
paredMMD,MSID, OSD and LDA and they concluded
that although the presence of outliers pose a greater
problem for the two simpler goal programming for-
mulations (MMD and MSID) than for LDA, generally
the goal programming approaches outperform LDA.
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E.A. Joachimsthaler and A. Stam [18] compared the
LDA, QDA, logistic regression and OSD procedures
and they concluded that these methodologies produce
similar results although the misclassification rates for
LDA and QDA tended to increase with highly kurto-
sis data and increased dispersion heterogeneity. C.A.
Markowski and E.P. Markowski [22] examined the in-
fluence of qualitative attributes on the discriminating
performance ofMMD and LDA. Although the incorpo-
ration of qualitative attributes in LDA violates the nor-
mality assumption, the experimental study of the au-
thors showed that the incorporation of qualitative vari-
ables improved the performance of LDA, while on the
other handMMDdid not appear to be particularly well-
suited for use with qualitative variables. In another ex-
perimental study conducted by P.A. Rubin [32], QDA
outperformed 15 goal programming approaches, lead-
ing the author to indicate that ‘if LP models are to be
considered seriously as an alternative to conventional
procedures, they must be shown to outperform QDA
under plausible conditions, presumably involving non-
Gaussian data’. These experimental studies clearly indi-
cate the confusion concerning the discriminating per-
formance of the goal programming formulations as op-
posed to well known multivariate statistical techniques.
Except for this issue, the research on the field of goal
programming approaches for discriminant problems,
was also focus on the theoretical drawbacks which were
often meet. Markowski and Markowski [23] were the
first to identify two major drawbacks of the goal pro-
gramming formulations (MMD and OSD) proposed by
Freed and Glover [9,10]. More specifically, they proved
that if each quadrant contains at least one case from
the second group, unacceptable solutions will result in
MMD (all coefficients in the discriminant function are
zeros which leads all the observations to be classified
in the same group), while furthermore they showed
that the solutions (discriminant functions) obtained
through the MMD and the OSD models are not stable
when the data are transformed (when there is a shift
from the origin). Except for these two problems, many
goal programming formulations were found to suffer
from two additional theoretical shortcomings [29]:
a) they produce unbounded solutions, and
b) they produce improper solutions.
A solution is considered unbounded if the objective
function can be increased or decreased without limit,

in which case the discrimination rule (function) may be
meaningless, whereas a solution is improper if all obser-
vations fall on the classification hyperplane.

To overcome these problems new goal program-
ming formulations were proposed, including hybrid
models [12,13], nonlinear programming formulations
[37], as well as several mixed integer programming for-
mulations [1,3,5,20,33,38,39].

In the light of this review of goal programming ap-
proaches for discriminant problems it is possible to
identify the following three characteristics of the re-
search in this field:
1) The majority of the proposed models aim at devel-

oping a linear discrimination rule (function). The
extension of the models to develop a nonlinear dis-
criminant function leads to nonlinear programming
formulations which are generally computationally
intensive and difficult to solve. Among the few al-
ternative approaches is the MSM method (mul-
tisurface method) proposed by O.L. Mangasarian
[21] that leads to the construction of a piecewise
linear discrimination surface between two groups
(see also [26] for a revision of the method using
multi-objective programming and fuzzy mathemat-
ical programming techniques).

2) Little research has been made on extending the ex-
isting framework on the multigroup discriminant
problem. E.-U. Choo and W.C. Wedley [5], W. Go-
chet et al. [14], as well as J.M. Wilson [39] applied
goal programming approaches in multigroup dis-
criminant problems, but generally most of the stud-
ies in this field were focused on two-group discrim-
ination trying to extend the original goal program-
ming models of Freed and Glover [9,10] in order to
achieve higher classification accuracy and predict-
ing ability.

3) The models based on the goal programming ap-
proach can be applied in any classification problem
with or without ordered classes.

Outranking Relations Approaches

In contrast to the goal programming approaches, out-
ranking relations procedures study the classification
problem on a completely different basis. The aim of
such procedures is not to develop a discriminant func-
tion (linear or nonlinear), but instead their aim is to
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model the decision makers’ preferences and develop
a global preference model which can be used to as-
sign the alternatives (observations) into the predefined
classes. To achieve the classification of the alternatives
some reference profiles are determined which can be
considered as representative examples of each class.
Through the comparison of each alternative with these
reference profiles the classification of the alternatives is
accomplished.

A representative example of MCDA sorting method
based on the outranking relations approach is the
ELECTRE TRI method proposed by W. Yu [40]. The
aim of ELECTRETRI is to provide a sorting of the alter-
natives under consideration into two or more ordered
categories. In order to define the categories ELECTRE
TRI uses some reference alternatives (reference pro-
files) ri, i = 1, . . . , k � 1, which can be considered as
fictitious alternatives different from the alternatives un-
der consideration. The profile ri is the theoretical limit
between the categories Ci and Ci + 1(Ci + 1 is preferred to
Ci) and ri is strictly better than ri� 1 for each criterion.
To provide a sorting of the alternatives in categories
ELECTRE TRI makes comparisons of each alternative
with the profiles.

For an alternative a and a profile ri the concordance
index cj(a, ri) is calculated. This index expresses the
strength of the affirmation ‘alternative a is at least as
good as profile ri on criterion j’. In order to compare
the alternative to a reference profile on the basis ofmore
than one criteria, a global concordance index C(a, ri) is
calculated. This index expresses the strength of the af-
firmation ‘a is at least as good as ri according to all cri-
teria’. Setting wj as the weight of the criterion j, C(a, ri)
is constructed as the weighted average of all ci(a, ri).

In contrast to the concordance index, the discor-
dance index Dj(a, ri) expresses the strength of the op-
position to the affirmation ‘alternative a is at least as
good as profile ri according to criterion gj’. The calcula-
tion of the discordance index is based on the definition
of a veto threshold vj(ri) for criterion j and the profile ri.
The veto threshold vj(ri) for criterion j defines the mini-
mum accepted difference between the values of the pro-
file ri and alternative a on the specific criterion so that
we can say that they have totally different preference ac-
cording to criterion j.

Let F(a; ri) be the set consisted of all criteria for
which the discordance index value is greater than the

value of global concordance index. For each affirma-
tion of the type: ‘alternative a outranks profile ri ac-
cording to all criteria’, the credibility index � s(a, ri) is
calculated. If F(a; ri) is empty then � s(a, ri) = C(a, ri),
otherwise the credibility index is calculated as follows:

�s(a; ri) D C(a; ri ) �
Y

j2F

1 � Dj(a; ri)
1 � C(a; ri )

:

If the value of the credibility index of the affirmation ‘al-
ternative a outranks profile ri according to all criteria}
exceeds a predefined cut-off value �, then the proposi-
tion ‘a outranks ri’ can be considered to be valid. De-
noting the outranking relation as S, the preference (P),
indifference (I) and incomparability (R) relations be-
tween alternative a and profile ri can be defined as fol-
lows:
� aIri if and only if aSri and riSa;
� aPri if and only if aSri and no riSa;
� riPa if and only if no aSri and riSa;
� aRri if and only if no aSri and no riSa.
According to these relations two sorting procedures are
applied: the pessimistic and the optimistic one. The
sorting procedure starts by comparing alternative a to
the worst profile r1 and in the case where aPr1, a is com-
pared to the second profile r2, etc., until one of the fol-
lowing two situations appears:
i) aPri and ri + 1Pa or aIri + 1;
ii) aPri and aRri + 1, . . . , aRri +k, ri + k + 1Pa.
If situation i) appears, then alternative a is assigned to
category i + 1 by both pessimistic and optimistic proce-
dures. If situation ii) appears, then a is assigned to cate-
gory i + 1 by the pessimistic procedure and to category
i + k + 1 by the optimistic procedure.

It is clear that the ELECTRE TRI method is a pow-
erful tool for analyzing the decision maker’s preference
in sorting problems involving multiple criteria where
the classes are ordered. However, the major drawback
of the method is the significant amount of informa-
tion that it requires by the decision maker (weights
of the criteria, preference and indifference thresholds,
veto thresholds, etc.). This problem can be overcame
using decision instances (assignment examples) as pro-
posed in [25].

Other MCDA sorting methods based on the out-
ranking relations approach have been proposed in
[24] (N-TOMIC method), [31] and the PROMETHEE
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method as it has been modified in [19]. Furthermore,
P. Perny [28] extended the existing framework of the
sorting methods based on the outranking relations ap-
proach in the case in which the groups are not or-
dered. More specifically, he proposed the construction
of a fuzzy outranking relation in order to estimate the
membership of each alternative for each group, and
suggested two assignment procedures:
a) filtering by strict preference (the assignment rule

consists of testing whether an alternative is pre-
ferred or not to a reference profile reflecting the
lower limit of a group), and

b) filtering by indifference (the assignment rule con-
sists of testing whether an alternative is indifferent
or not to a reference profile representing a prototype
of a group).

Overall the main characteristics of sorting methods
based on the outranking relations approach of MCDA
include their application to both sorting (ordered
classes) as well as discrimination (non ordered classes)
problems, and the significant amount of information
that they require by the decision maker.

Preference Disaggregation Approaches

The preference disaggregation approach refers to the
analysis (disaggregation) of the global preferences of
the decision maker to deduce the relative importance
of the evaluation criteria, using ordinal regression tech-
niques based mainly on linear programming formula-
tions.

In contrast to the outranking relations approach the
global preference model of the decision maker is not
constructed through a direct interrogation procedure
between the decision analyst and the decision maker.
Instead, decision instances (e. g. past decisions) are used
in order to analyze the decision policy of the decision
maker, to specify his/her preferences and construct the
corresponding global preference model as consistently
as possible.

A well known preference disaggregation method is
the UTAmethod (UTilités Additives) proposed in [17].
Given a predefined ranking of a reference set of alterna-
tives, the aim of the UTAmethod is to construct a set of
additive utility functions which are as consistent as pos-
sible with the pre-ordering of the alternatives (and con-
sequently with the decision maker’s preferences). The

form of the additive utility function is the following:

U(g) D
X
j

u j(g j);

where U(g) denotes the global utility of an alternative
described over a vector of criteria g, while uj(gj) is the
partial or marginal utility of an alternative on criterion
gj.

Except for the study of ranking problems, the
methodological framework of the preference disaggre-
gation approach using the UTAmethod is also applica-
ble in sorting problems. The UTADIS method (UTilités
Additives DIScriminantes) [6,16,17,42] is a representa-
tive example. In the UTADIS method, the sorting of the
alternatives is accomplished by comparing the global
utility (scores) of each alternative a, denoted as U(a),
with some thresholds (u1, . . . , uq� 1) which distinguish
the classes C1, . . . , Cq (the classes are ordered, so that C1

is the class of the best alternatives and Cq is the class of
the worst alternatives).

U(a) � u1) a 2 C1

u2 � U(a) < u1) a 2 C2

� � �

uk � U(a) < uk�1) a 2 Ck

� � �

U(a) < uq�1) a 2 Cq :

The objective of the UTADIS method is to estimate
an additive utility function and the utility thresholds
in order to minimize the classification error. The clas-
sification error is measured through two error func-
tions denoted as �+(a) and ��(a), representing the de-
viations of a misclassified alternative from the utility
threshold. The estimation of both the additive utility
model and the utility thresholds is achieved through
linear programming techniques [6,42].

See [7] and [41] for three variants of the UTADIS
method to improve the classification accuracy of the
obtained additive utility models as well as their pre-
dicting ability. The first variant (UTADIS I) except for
the classification errors also incorporates the distances
of the correctly classified alternatives from the util-
ity thresholds which have to be maximized. The sec-
ond variant (UTADIS II) is based on a mixed integer
programming formulation minimizing the number of
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misclassifications instead of their magnitude, while the
third variant (UTADIS III) combines UTADIS I and II,
and its aim is to minimize the number of misclassifica-
tions and maximize the distances of the correctly clas-
sified alternatives from the utility thresholds.

Overall themain characteristics of the application of
the preference disaggregation approach in the study of
sorting problems, can be summarized in the following
three aspects.
1) The information that is required is minimal, since,

similarly to the goal programming approaches, only
a predefined classification of a reference set of alter-
natives is required.

2) The preference disaggregation approach is focused
only on decision problems where the classes are or-
dered, since it is assumed that there is a strict pref-
erence relation between the classes.

3) The classification/sorting models which are devel-
oped have a nonlinear form, since the marginal util-
ities of the evaluation criteria are piecewise linear
and consequently the global utility model is also
nonlinear, in contrast to the linear discriminant
models used in the goal programming approaches.

AMultigroup Hierarchical DiscriminationMethod

In this section a new method is presented for the
study of discrimination problems with two or more
ordered groups (multigroup discrimination). The pro-
posed method is called M.H.DIS (Multigroup Hierar-
chical DIScrimination) and differs from most of the
aforementioned MCDA approaches in two major as-
pects.
1) It employs a hierarchical discrimination approach:

the method does not aim on the development of an
overall global preference model (discriminant func-
tion) which will characterize all the observations (al-
ternatives or objects). Instead the method is try-
ing to distinguish the groups progressively, starting
by discriminating the first group (best alternatives)
from all the others, and then proceeding to the dis-
crimination between the objects which belong to the
other groups.

2) It accommodates three different discrimination cri-
teria in a very flexible and efficient way. The most
common discrimination criterion in the previous
approaches is the minimization of the classification

error which is measured as the deviations of the
scores of the misclassified alternatives from some
cut-off points. However, such an objective does not
necessarily yield the optimal classification rule. For
instance, consider that in a discrimination problem,
three alternatives are misclassified with the follow-
ing deviations from the cut-off point: [0.25, 0.25,
0.25], with the overall objective of minimizing the
total classification error being 0.75. It is obvious,
that this classification result is not optimal, since
a classification result [0, 0, 0.75] yields the same
value for the overall classification error (0.75), but
there is only one misclassified alternative instead of
three. Several mixed integer programming formu-
lations have been proposed to confront this issue,
but their application in real world problems is pro-
hibited by the significant amount of time required
to solve such problems. M.H.DIS employs an effi-
cient mixed integer programming (MIP) formula-
tion for minimizing the number of misclassifica-
tions, once the minimization of the classification er-
ror has been achieved. Furthermore, M.H.DIS also
considers a third criterion in order to achieve the
higher possible discrimination. These three discrim-
ination criteria have been used in previous stud-
ies separately, or in hybrid models [12,13], but they
have never been used through a sequential proce-
dure. Instead, in M.H.DIS initially the classification
error is minimized. Then considering only the mis-
classified alternatives M.H.DIS tries to ‘re-arrange’
their classification error in order to minimize the
number of misclassifications, and finally the maxi-
mum discrimination between the alternatives is at-
tempted.

Model Formulation

Let A = {a1, . . . , an} be a set of n alternatives which
should be classified into q ordered classes C1, . . . , Cq.(C1

is preferred to C2, C2 is preferred to C3, etc.) Each al-
ternative is described (evaluated) along a set G = {g1,
. . . , gm} ofm evaluation criteria. The evaluation of each
alternative a on criterion gi is denoted as gi(a). Ac-
cording to the set A of alternatives, pi different values
for each criterion gi can be distinguished. These pi val-
ues are rank-ordered from the smallest value g1i to the
largest value g pii . Furthermore, among the set of cri-
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teria it is possible to distinguish two subsets: a subset
G1 consisting of m1 criteria for which higher values in-
dicate higher preference, and a second subset G2 con-
sisting of m2 criteria for which the decision maker’s
preference is a decreasing function of the criterion’s
scale. For instance, in an investment decision problem
G1 may include criteria related to the return of an in-
vestment project (projects with higher return are pre-
ferred), while G2 may include criteria related to the
risk of the investment (projects with lower risk are pre-
ferred).

The Hierarchical Discrimination Process

The method proceeds progressively in the classification
of the alternatives into the predefined classes, starting
from class C1 (best alternatives). Initially, the aim is to
identify which alternatives belong in class C1. The al-
ternatives which are found to belong in class C1 (either
correctly or incorrectly) are excluded from further con-
sideration. In a second stage the objective is to identify
which alternatives belong in class C2. The alternatives
which are found to belong in this class (either correctly
or incorrectly) are excluded from further consideration,
and the same procedure continues until all alternatives
have been classified in the predefined classes.

Throughout this hierarchical classification proce-
dure, it is assumed that the decision maker’s prefer-
ences are monotone functions (increasing or decreas-
ing) on the criteria’s scale. This assumption implies that
in the case of a criterion gi 2 G1, as the evaluation of an
alternative on this criterion increases, then the decision
of classifying this alternative into a higher (better) class
is more favorable to a decision of classifying the alterna-
tive into a lower (worst) class. For instance, in the credit
granting problem as the profitability of a firm increases,
the credit analyst will be more favorable in classifying
the firm as a healthy firm, rather than classifying it as
a risky one. A similar implication is also made for each
criterion gi 2 G2.

This preference relation between the several possi-
ble decisions of classifying a specific alternative a into
one of the predefined classes, imposes the following
general classification rule:

The decision concerning the classification of an
alternative a into one of the predefined classes

should be made in such a way that the utility
(value) of such a decision for the decision maker
is maximized.

The utility of a decision concerning the classification of
an alternative a into group Cj can be expressed in the
form of additive utility function:

UC j (a) D
mX
iD1

uC j
i [gi(a)] 2 [0; 1];

where uC j
i [gi(a)] denotes the marginal (partial) utility

of the decision concerning the classification of an al-
ternative a into group Cj according to criterion gi. If
gi 2 G1, then uC j

i (gi) will be an increasing function
on the criterion’s scale. On the contrary, the marginal
utility of a criterion gi 2 G2 regarding the classifi-
cation of an alternative into a lower (worse) class
Ck (k >j) will be a decreasing function on the crite-
rion’s scale. For instance, consider once again the credit
granting problem: since healthy firms are generally
characterized by high profitability, the marginal util-
ity for a profitability criterion for the group of healthy
firms will be an increasing function, indicating that as
profitability increases the preference of decision con-
cerning the classification of a firm in the group of
healthy firms in also increasing. On the other hand,
for the group of risky firms the marginal utility will
be a decreasing function of the criterion’s (profitabil-
ity) values, indicating that as profitability increases the
preference of the decision concerning the classifica-
tion of a firm in the group of risky firms is decreas-
ing.

Consequently, at each stage of the hierarchical clas-
sification procedure that was described above, two util-
ity functions are constructed. The first one corresponds
to the utility of a decision concerning the classification
of an alternative a into class Ck (denoted as UCk (a)),
while the second one corresponds to the utility of a de-
cision concerning the nonclassification of an alternative
a into class Ck (denoted as U�Ck (a)). Based on these
two utility functions the aforementioned general classi-
fication rule can be expressed as follows:

(
if UCk (a) > U�Ck (a); then a 2 Ck ;

if UCk (a) < U�Ck (a); then a … Ck :
(1)
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Multicriteria Sorting Methods, Figure 1
The hierarchical classification procedure

Following this rule, the overall hierarchical discrimina-
tion procedure is presented in Fig. 1.

Estimation of Utility Functions

According to the hierarchical discrimination procedure
which was described above, to achieve the classification
of the alternatives in q classes, the number of utility
functions which must be estimated is 2(q� 1). The esti-
mation of these utility functions in M.H.DIS is accom-
plished through linear programming techniques. More
specifically, at each stage of the hierarchical discrimi-
nation procedure, two linear programs and one mixed
integer program are solved to estimate ‘optimally’ the
two utility functions.

LP1: Minimizing the Overall Classification Error

According to the classification rule (1), to achieve the
correct classification of an alternative a 2 Ck at stage k
(cf. Fig. 1), the estimated utility functions should satisfy

the following constraint:

UCk (a) > U�Ck (a):

Since, in linear programming it is not possible to use
strict inequality constraints, a small positive real num-
ber smay be used as follows:

UCk (a)� U�Ck (a) � s:

If for an alternative a 2 Ck the classification rule at
stage k yields UCk (a) < U�Ck (a), then this alternative is
misclassified, since it should be classified in one of the
lower classes (the specific classification of the alterna-
tive will be determined in the next stages of the hierar-
chical discrimination process). The classification error
in this case is:

e(a) D U�Ck (a) � UCk (a)C s:

Similarly, to achieve the correct classification of an
alternative b 62 Ck at stage k, the estimated utility func-
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tions should satisfy the following constraint:

U�Ck (b) � UCk (b) � s:

If this constraint is not satisfied for an alternative b 62
Ck at stage k, then this fact implies that this alternative
should be classified in class Ck and the classification er-
ror in this case is e(b) = UCk (b) � U�Ck (b) +s.

Moreover, to achieve the monotonicity of the
marginal utilities, the following constraints are im-
posed:

if gi 2 G1

8̂
ˆ̂̂<
ˆ̂̂̂
:

uCk
i (g1i ) D 0

u�Ck
i (gpii ) D 0

uCk
i (g jC1

i ) > uCk
i (g ji )

u�Ck
i (g jC1

i ) < u�Ck
i (g ji )

(2)

if gi 2 G2

8̂
ˆ̂̂<
ˆ̂̂̂
:

uCk
i (gpii ) D 0

u�Ck
i (g1i ) D 0

uCk
i (g jC1

i ) < uCk
i (g ji )

u�Ck
i (g jC1

i ) > u�Ck
i (g ji )

(3)

where g j
i and g jC1

i are two consecutive values of crite-
rion gi(g

jC1
i > g j

i for all gi 2 G). These constraints can
be simplified by setting:

if gi 2 G1

(
wCk

i j; jC1 D uCk
i (g jC1

i ) � uCk
i (g ji )

w�Ck
i j; jC1 D u�Ck

i (g ji ) � u�Ck
i (g jC1

i )

(4)

if gi 2 G2

(
wCk

i j; jC1 D uCk
i (g ji ) � uCk

i (g jC1
i )

w�Ck
i j; jC1 D u�Ck

i (g jC1
i ) � u�Ck

i (g ji )

(5)

The marginal utility of criterion gi at point g
j
i can

then be calculated through the following formulas:

uCk
i (g ji ) D

j�1X
lD1

wCk
i l ;lC1;

u�Ck
i (g ji ) D

pi�1X
lD j

w�Ck
i l ;lC1:

(6)

Using these transformations, constraints (2) and (3)
can be rewritten as follows (a small positive number t
is used to ensure the strict inequality):

wCk
i j; jC1 � t; w�Ck

i j; jC1 � t; 8gi :

Consequently, the initial linear program (LP1) to be
solved can be formulated as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min F D
X
a2A

e(a)

s.t. UCk (a) � U�Ck (a)C e(a) � s;
8a 2 Ck ;

U�Ck (b) � UCk (b)C e(b) � s;
8b … Ck ;

wCk
i j; jC1 � t

w�Ck
i j; jC1 � tX
i

X
j

wCk
i j; jC1 D 1

X
i

X
j

w�Ck
i j; jC1 D 1

e(a); s; t � 0:

LP2: Minimizing the Number of Misclassifications

If after the solution of (LP1), there exist some alterna-
tives a 2 A for which e(a) > 0, then obviously these
alternatives are misclassified. However, as it has been
already illustrated during the discussion of the main
characteristics ofM.H.DIS, it may be possible to achieve
a ‘re-arrangement’ of the classification errors which
may lead to the reduction of the number of misclassi-
fications.

InM.H.DIS this is achieved through amixed integer
programming (MIP) formulation. However, since MIP
formulations are difficult to solve, especially in cases
where the number or integer or binary variables is large,
the MIP formulation used in M.H.DIS considers only
the misclassifications occurred by solving (LP1), while
retaining all the correct classifications. Let C be the set
of alternatives which have been correctly classified after
solving (LP1), andM be the set of misclassified alterna-
tives for which e(a) > 0. The MIP formulation used in
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M.H.DIS is the following (LP2):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min F D
X
a2A

I(a)

s.t. UCk (a)� U�Ck (a) � s;
8a 2 Ck \ C;

U�Ck (b)� UCk (b) � s;
8b … Ck ; b 2 C;

UCk (a)� U�Ck (a)C I(a) � s;
8a 2 Ck \ M;

U�Ck (b)� UCk (b)C I(a) � s;
8b … Ck ; b 2 M;

wCk
i j; jC1 � t

w�Ck
i j; jC1 � tX
i

X
j

wCk
i j; jC1 D 1

X
i

X
j

w�Ck
i j; jC1 D 1

s; t; I(a) integer:

The first set of constraints is used to ensure that
all the correct classifications achieved by solving (LP1)
are retained. The second set of constraints is used only
for the alternatives which were misclassified by (LP1).
Their meaning is similar to the constraints in LP1, with
the only difference being the transformation of the con-
tinuous variables e(a) of LP1 (classification errors) into
integer variables I(a) which indicate whether an alter-
native is misclassified or not. The meaning of the final
two constraints has already been illustrated in the dis-
cussion of the LP1 formulation. The objective of LP2 is
to minimize the number of misclassifications occurred
through the solution of LP1.

LP3: Maximizing the Minimum Distance

Solving LP1 and LP2 the ‘optimal’ classification of the
alternatives has been achieved, where the term ‘optimal’
refers to the minimization of the number of misclassi-
fied alternatives. However, the correct classification of
some alternatives may have been ‘marginal’, that is al-
though they are correctly classified, their global utilities
according to the two utility functions developed may
have been very close. The objective of LP3 is to maxi-
mize the minimum difference between the global util-

ities of the correctly classified alternatives achieved ac-
cording to the two utility functions.

Similarly to LP2, let C be the set of alternatives
which have been correctly classified after solving LP1
and LP2, and M be the set of misclassified alternatives.
LP3 can be formulated as follows:8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max d
s.t. UCk (a)� U�Ck (a)� d � s;

8a 2 Ck \ C;
U�Ck (b) � UCk (b)� d � s;
8b … Ck ; b 2 C;

UCk (a)� U�Ck (a) � s;
8a 2 Ck \M;

U�Ck (b) � UCk (b) � s;
8b … Ck ; b 2 M;

wCk
i j; jC1 � t

w�Ck
i j; jC1 � tX
i

X
j

wCk
i j; jC1 D 1

X
i

X
j

w�Ck
i j; jC1 D 1

d; s; t � 0:

The first set of constraints involves only the cor-
rectly classified alternatives. In these constraints d rep-
resents the minimum absolute difference between the
global utilities of each alternative in the two utility func-
tions. The second set of constraints involves the mis-
classified alternatives and it is used to ensure that they
will be retained as misclassified.

An Illustrative Example

To illustrate the application of the method, consider
a simple example consisting of six alternatives eval-
uated along three evaluation criteria [25] for which
higher values are preferred. The alternatives must be
classified in three ordered classes. Table 1, illustrates the
evaluation of the alternatives on the criteria as well as
the predefined classification.

Distinguishing Between C1 and C2-C3

In the first stage of the hierarchical discrimination pro-
cedure, the aim is to distinguish the alternatives be-
longing in class C1 from the alternatives belonging in
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Multicriteria Sorting Methods, Table 1
Data of the illustrative example (Source: [25])

g1 g2 g3 Class
a1 70 64:75 46:25 C1
a2 61 62 60 C1
a3 40 50 37 C2
a4 66 40 23:125 C2
a5 20 20 20 C3
a6 15 15 30 C3

classes C2 and C3. To achieve this classification two
utility functions are developed, denoted as UC1 (a) and
U�C1 (a).

The utility of the decision of classifying the alterna-
tive a1 in class C1 can be expressed as follows:

UC1 (a1) D uC1
1 (70)C uC1

2 (64:75)C uC1
3 (46:25): (7)

Since for all criteria higher values are preferred, it
is possible to define the following rank-order on each
criterion’s scale (p1 = p2 = p3 = 6).

g1) g11 = 15 < 20 < 40 < 61 < 66 < 70 = g p11 ;
g2) g12 = 15 < 20 < 40 < 50 < 62 < 64.75 = g p22 ;
g3) g13 = 20 < 23.125 < 30 < 37 < 46.25 < 60 = g p33 .

According to relation (4), the following transforma-
tions are then applied (criterion g1):

wC1
11;2 D uC1

1 (20) � uC1
1 (15);

wC1
12;3 D uC1

1 (40) � uC1
1 (20);

wC1
13;4 D uC1

1 (61) � uC1
1 (40);

wC1
14;5 D uC1

1 (66) � uC1
1 (61);

wC1
15;6 D uC1

1 (70) � uC1
1 (66):

The same transformations are also applied to crite-
ria g2 and g3. Then, according to (6), relation (7) can be
re-written in the following way:

UC1 (a) D (wC1
11;2 C wC1

12;3 C wC1
13;4 C wC1

14;5 C wC1
15;6)

C (wC1
21;2 C wC1

22;3 C wC1
23;4 C wC1

24;5 C wC1
25;6)

C (wC1
31;2 C wC1

32;3 C wC1
33;4 C wC1

34;5):

On the other hand, if a1 is classified in class C2 then
the utility of the decision maker will be:

U�C1 (a1) D u�C1
1 (70)C u�C1

2 (64:75)C u�C1
3 (46:25)

m

U�C1 (a1) D w�C1
35;6 :

Following the same methodology, the utilities con-
cerning the classification of the rest of the alternatives
are also formulated.
� Alternative a2:

U�C1 (a2) D uC1
1 (61)C uC1

2 (62)C uC1
3 (60)

m

UC1 (a2) D (wC1
11;2 C wC1

12;3 C wC1
13;4)

C (wC1
21;2 C wC1

22;3 C wC1
23;4 C wC1

24;5)

C (wC1
31;2 C wC1

32;3 C wC1
33;4 C wC1

34;5 C wC1
35;6);

U�C1 (a2) D u�C1
1 (61)C u�C1

2 (62)C u�C1
3 (60)

m

U�C1 (a2) D (w�C1
14;5 C w�C1

15;6 )C (w�C1
25;6 ):

� Alternative a3:

U�C1 (a3) D uC1
1 (40)C uC1

2 (50)C uC1
3 (37)

m

UC1 (a3) D (wC1
11;2 C wC1

12;3)

C (wC1
21;2 C wC1

22;3 C wC1
23;4)

C (wC1
31;2 C wC1

32;3 C wC1
33;4);

U�C1 (a3) D u�C1
1 (40)C u�C1

2 (50)C u�C1
3 (37)

m

U�C1 (a3) D (w�C1
13;4 C w�C1

14;5 C w�C1
15;6 )

C (w�C1
24;5 C w�C1

25;6 )C (w�C1
34;5 C w�C1

35;6 ):

� Alternative a4:

U�C1 (a4) D uC1
1 (66)C uC1

2 (40)C uC1
3 (23:125)

m

UC1 (a4) D (wC1
11;2 C wC1

12;3 C wC1
13;4 C wC1

14;5)
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C (wC1
21;2 C wC1

22;3)C (wC1
31;2);

U�C1 (a4) D u�C1
1 (66)

C u�C1
2 (40)C u�C1

3 (23:125)

m

U�C1 (a4) D (w�C1
15;6 )

C (w�C1
23;4 C w�C1

24;5 C w�C1
25;6 )

C (w�C1
32;3 C w�C1

33;4 C w�C1
34;5 C w�C1

35;6 ):

� Alternative a5:

U�C1 (a5) D uC1
1 (20)C uC1

2 (20)C uC1
3 (20)

m

UC1 (a5) D (wC1
11;2)C (wC1

21;2);

U�C1 (a5) D u�C1
1 (20)

C u�C1
2 (20)C u�C1

3 (20)

m

U�C1 (a5)

D (w�C1
12;3 C w�C1

13;4 C w�C1
14;5 C w�C1

15;6 )

C (w�C1
22;3 C w�C1

23;4 C w�C1
24;5 C w�C1

25;6 )

C (w�C1
31;2 C w�C1

32;3 C w�C1
33;4 C w�C1

34;5 C w�C1
35;6 ):

� Alternative a6:

U�C1 (a6) D uC1
1 (15)C uC1

2 (15)C uC1
3 (30)

m

UC1 (a6) D (wC1
31;2 C wC1

32;3);

U�C1 (a6) D u�C1
1 (15)C u�C1

2 (15)C u�C1
3 (15)

m

U�C1 (a6)

D (w�C1
11;2 C w�C1

12;3 C w�C1
13;4 C w�C1

14;5 C w�C1
15;6 )

C (w�C1
21;2 C w�C1

22;3 C w�C1
23;4 C w�C1

24;5 C w�C1
25;6 )

C (w�C1
33;4 C w�C1

34;5 C w�C1
35;6 ):

According to these expressions of the global utility
of the decision to classify an alternative into class C1 or
into one of the classes C2 and C3, the LP1 formulation
is used to minimize the classification error (s = 0.001, t
= 0.0001).

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min F D e(a1)C e(a2)C e(a3)C e(a4)
Ce(a5)C e(a6)

s.t. UC1 (a1) � U�C1 (a1)C e(a1) � 0:001
UC1 (a2) � U�C1 (a2)C e(a2) � 0:001
U�C1 (a3) � UC1 (a3)C e(a3) � 0:001
U�C1 (a4) � UC1 (a4)C e(a4) � 0:001
U�C1 (a5) � UC1 (a5)C e(a5) � 0:001
U�C1 (a6) � UC1 (a6)C e(a6) � 0:001
wC1

i j; jC1 � 0:0001; w�C1
i j; jC1 � 0:0001;

3X
iD1

5X
jD1

wC1
i j; jC1 D 1;

3X
iD1

5X
jD1

w�C1
i j; jC1 D 1;

8i D 1; 2; 3; 8 j D 1; : : : ; 6;
e(a1); e(a2); e(a3) � 0;
e(a4); e(a5); e(a6) � 0:

The obtained solution is presented in Table 2.
According to this solution, the marginal utilities are cal-
culated.
� Criterion g1:

– uC1
1 (15) = 0,

– u�C1
1 (15) = w�C1

11;2 + w�C1
12;3 + w�C1

13;4 +w�C1
14;5 + w�C1

15;6
= 0.25937,

Multicriteria Sorting Methods, Table 2
Results obtained through the solution of LP1

wC1
11;2 0.00010 w�C1

11;2 0.03708
wC1
12;3 0.00010 w�C1

12;3 0.03708
wC1
13;4 0.09872 w�C1

13;4 0.07406
wC1
14;5 0.00010 w�C1

14;5 0.03708
wC1
15;6 0.09872 w�C1

15;6 0.07406
wC1
21;2 0.00010 w�C1

21;2 0.03708
wC1
22;3 0.00010 w�C1

22;3 0.03708
wC1
23;4 0.09872 w�C1

23;4 0.07406
wC1
24;5 0.13570 w�C1

24;5 0.11104
wC1
25;6 0.09872 w�C1

25;6 0.07406
wC1
31;2 0.00010 w�C1

31;2 0.03708
wC1
32;3 0.09872 w�C1

32;3 0.07406
wC1
33;4 0.09872 w�C1

33;4 0.07406
wC1
34;5 0.13570 w�C1

34;5 0.11104
wC1
35;6 0.13570 w�C1

35;6 0.11104



2392 M Multicriteria Sorting Methods

– uC1
1 (20) = wC1

11;2 = 0.0001,
– u�C1

1 (20) = w�C1
12;3 +w�C1

13;4 +w�C1
14;5 +w

�C1
15;6 = 0.22229,

– uC1
1 (40) = wC1

11;2 +w
C1
12;3 = 0.0002,

– u�C1
1 (40) = w�C1

13;4 +w�C1
14;5 +w�C1

15;6 = 0.18521,
– uC1

1 (61) = wC1
11;2 +w

C1
12;3 +w

C1
13;4 = 0.09892,

– u�C1
1 (61) = w�C1

14;5 + w�C1
15;6 = 0.11114,

– uC1
1 (66) = wC1

11;2 + wC1
12;3 + wC1

13;4 + wC1
14;5 = 0.09902,

– u�C1
1 (66) = w�C1

15;6 = 0.07406,
– uC1

1 (70) = wC1
11;2 + wC1

12;3 + wC1
13;4 + wC1

14;5 + wC1
15;6 =

0.19773,
– u�C1

1 (70) = 0;
� Criterion g2:

– uC1
2 (15) = 0,

– u�C1
2 (15) = w�C1

21;2 + w�C1
22;3 + w�C1

23;4 + w�C1
24;5 +w�C1

25;6
= 0.33333,

– uC1
2 (20) = wC1

21;2 = 0.0001,
– u�C1

2 (20) = w�C1
22;3 + w�C1

23;4 + w�C1
24;5 + w�C1

25;6 =
0.29625,

– uC1
2 (40) = wC1

21;2 + wC1
22;3 = 0.0002,

– u�C1
2 (40) = w�C1

23;4 + w�C1
24;5 + w�C1

25;6 = 0.25917,
– uC1

2 (50) = wC1
21;2 + wC1

22;3 + wC1
23;4 = 0.09892,

– u�C1
2 (50) = w�C1

24;5 + w�C1
25;6 = 0.18511,

– uC1
2 (62) = wC1

21;2 +w
C1
22;3 +w

C1
23;4 +w

C1
24;5 = 0.23462,

– u�C1
2 (62) = w�C1

25;6 = 0.07406,
– uC1

2 (64.75) = wC1
21;2 + wC1

22;3 + wC1
23;4 + wC1

24;5 + wC1
25;6

= 0.33333,
– u�C1

2 (64.75) = 0;
� Criterion g3:

– uC1
3 (20) = 0,

– u�C1
3 (20) = w�C1

31;2 + w�C1
32;3 + w�C1

33;4 +w�C1
34;5 +w�C1

35;6 =
0.40730,

– uC1
3 (23.125) = wC1

31;2 = 0.0001,
– u�C1

3 (23.125) = w�C1
32;3 + w�C1

33;4 + w�C1
34;5 +w�C1

35;6 =
0.37021,

– uC1
3 (30) = wC1

31;2 +w
C1
32;3 = 0.09882,

– u�C1
3 (30) = w�C1

33;4 +w�C1
34;5 +w�C1

35;6 = 0.29615,
– uC1

3 (37) = wC1
31;2 +w

C1
32;3 +w

C1
33;4 = 0.19753,

– u�C1
3 (37) = w�C1

34;5 +w�C1
35;6 = 0.22209,

– uC1
3 (46.25) = wC1

31;2 +wC1
32;3 +wC1

33;4 +wC1
34;5 =

0.33323,
– u�C1

3 (46.25) = w�C1
35;6 = 0.11104,

– uC1
3 (60) = wC1

31;2 +wC1
32;3 +wC1

33;4 +wC1
34;5 +wC1

35;6 =
0.46893,

– u�C1
3 (60) = 0;

Multicriteria SortingMethods, Table 3
Global utilities obtained through the solutionof LP1 (stage1)

UC1 (a) U�C1 (a)
a1 0:8643 0:1110
a2 0:8025 0:1852
a3 0:2967 0:5924
a4 0:0993 0:7034
a5 0:0002 0:9258
a6 0:0988 0:8889

According to these marginal utilities, the global util-
ities are calculated based on the expressions that have
already been presented. Table 3, illustrates the obtained
global utilities according to the two utility functions
that were developed.

It is clear that a1 and a2 are classified in class C1,
since the global utility of a decision concerning the clas-
sification of these two alternatives in class C1 is greater
than the utility concerning their classification in classes
C2 or C3. Similarly, alternatives a3, a4, a5 and a6 are
not classified in class C1, but instead they belong in one
of the classes C2 or C3 (their specific classification will
be determined in the next stage of the hierarchical dis-
crimination process).

Since the correct discrimination between the alter-
natives belonging in class C1 and the alternative not be-
longing in this class has been achieved through LP1,
it is not necessary to proceed in LP2 (minimization of
the number of misclassifications). Hence, the procedure
proceeds in the formulation and solution of LP3 in or-
der to achieve the higher possible discrimination:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

max d
s.t. UC1 (a1) � U�C1 (a1) � d � 0:001

UC1 (a2) � U�C1 (a2) � d � 0:001
U�C1 (a3) � UC1 (a3) � d � 0:001
U�C1 (a4) � UC1 (a4) � d � 0:001
U�C1 (a5) � UC1 (a5) � d � 0:001
U�C1 (a6) � UC1 (a6) � d � 0:001
wC1

i j; jC1 � 0:0001; w�C1
i j; jC1 � 0:0001

3X
iD1

5X
jD1

wC1
i j; jC1 D 1;

3X
i

5X
jD1

w�C1
i j; jC1 D 1;

8i D 1; 2; 3; 8 j D 1; : : : ; 6; d � 0:

According to the obtained solution and following
the same procedure for calculating the marginal utili-
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Multicriteria Sorting Methods, Table 4
Global utilities obtained through the solutionof LP3 (stage1)

UC1 (a) U�C1 (a)
a1 0:9985 0:0001
a2 0:9987 0:0003
a3 0:0008 0:9992
a4 0:0009 0:9993
a5 0:0002 0:9998
a6 0:0002 0:9998

ties, the global utilities of Table 4 are obtained. Obvi-
ously, this new solution provides a better discrimina-
tion of the alternatives, compared to the initial solution
obtained by LP1.

Distinguishing Between C2 and C3

After the solution of LP3, the first stage of the hierarchi-
cal discrimination process is completed, with the cor-
rect classification of a1 and a2 in classC1. Consequently,
these two alternatives are excluded from further consid-
eration (second stage). In the second stage, the aim is to
determine the specific classification of the alternatives
a3, a4, a5 and a6. The following rank-order is defined
on the scale of the three evaluation criteria (p1 = p2 = p3
= 4).

g1) g11 = 15 < 20 < 40 < 66 = g p11 ;
g2) g12 = 15 < 20 < 40 < 50 = g p22 ;
g3) g13 = 20 < 23.125 < 30 < 37 = g p22 .

Then, following the procedure illustrated in the previ-
ous stage, the variables wC1

i j; jC1 and w�C1
i j; jC1 are formu-

lated, and the new form of the LP1 problem is the fol-

Multicriteria Sorting Methods, Table 5
Global utilities obtained through the solutionof LP1 (stage2)

UC2 (a) U�C2 (a)
a3 0:8944 0:1000
a4 0:7333 0:2501
a5 0:2111 0:8000
a6 0:1612 0:7500

lowing (s = 0.001, t = 0.0001):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min F D e(a3)C e(a4)C e(a5)C e(a6)
s.t. UC2 (a3) � U�C2 (a3)C e(a3) � 0:001

UC2 (a4) � U�C2 (a4)C e(a4) � 0:001
U�C2 (a5) � UC2 (a5)C e(a5) � 0:001
U�C2 (a6) � UC2 (a6)C e(a6) � 0:001
wC2

i j; jC1 � 0:0001; w�C2
i j; jC1 � 0:0001

3X
iD1

3X
jD1

wC2
i j; jC1 D 1;

3X
i

3X
jD1

w�C2
i j; jC1 D 1;

8i D 1; 2; 3; 8 j D 1; : : : ; 4;
e(a3); e(a4); e(a5); e(a6) � 0:

Table 5 presents the global utilities of the alterna-
tives according to the solution obtained by LP1 in this
second stage.

The alternatives are correctly classified in their orig-
inal classes, and therefore, it is not necessary to pro-
ceed with LP2 (similarly to the first stage). Instead, the
method proceeds in solving LP3 to achieve better dis-
crimination of the alternatives.
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max d
s.t. UC2 (a3) � U�C2 (a3) � d � 0:001

UC2 (a4) � U�C2 (a4) � d � 0:001
U�C2 (a5) � UC2 (a5) � d � 0:001
U�C2 (a6) � UC2 (a6) � d � 0:001
wC2

i j; jC1 � 0:0001; w�C2
i j; jC1 � 0:0001;

3X
iD1

3X
jD1

wC2
i j; jC1 D 1

3X
iD1

3X
jD1

w�C2
i j; jC1 D 1;

8i D 1; 2; 3; 8 j D 1; : : : ; 4;
d � 0:

Table 6 presents the global utilities calculated ac-
cording to the solution of LP3.

In this point the hierarchical discrimination proce-
dure ends, since all the alternatives have been classified
in the three predefined classes. Moreover, this classifi-
cation is correct. In particular, in stage 1 a1 and a2 have
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Multicriteria Sorting Methods, Table 6
Global utilities obtained through the solutionof LP3 (stage2)

UC2 (a) U�C2 (a)
a3 0:9999 0:0005
a4 0:9997 0:0003
a5 0:0002 0:9996
a6 0:0005 0:7949

been correctly classified in class C1, while in stage 2 a3
and a4 have been correctly classified in class C2, and a5
and a6 have been classified into the final class C3 (cf.
Table 6).

Concluding Remarks and Future Perspectives

The focal point of interest in this article was the applica-
tion of MCDA in the study of sorting or more generally
discrimination (classification) problems. Such types of
problems have major practical interest in several fields
including finance, environmental and energy policy
and planning, marketing, medical diagnosis, robotics
(pattern recognition), etc. The multivariate statistical
classification techniques have been used for decades to
study such problems. However, their inability to pro-
vide a realistic and flexible approach to support real
world decision making problems in situations where
classification is required, led operational researchers,
management scientists as well as practitioners towards
the exploitation of the recent advances in the fields of
operations research, management science, and artificial
intelligence.

Among these ‘alternative’ approaches for the study
of classification problem, MCDA provides an arsenal
of tools and methods to develop classification (sorting)
models within a realistic and flexible context. This arti-
cle outlined the main MCDA classification techniques,
both from the specific type of classification problems
that they address (ordered or non-ordered classes), as
well as from the MCDA approach that they employ
(goal programming, outranking relations, preference
disaggregation).

Furthermore, a newMCDA approach has been pro-
posed. The M.H.DIS method, extends the common
two-group classification framework, through a hier-
archical multigroup discrimination procedure, taking
into account threemain discrimination criteria through
a sequential process. In this way the classification prob-

lem is studied globally, in order to achieved the higher
possible classification accuracy. Except for the illustra-
tive example used in this paper, the M.H.DIS method
has already been used in several financial classification
problems, including the evaluation of bankruptcy risk,
portfolio selection and management, the evaluation
of bank branches efficiency, the assessment of coun-
try risk, company mergers and acquisitions, etc. [43],
providing very encouraging results compared to well
known statistical techniques (discriminant analysis,
logit and probit analysis), and MCDA preference dis-
aggregation techniques (family of UTADIS methods).

An interesting further research direction would be
the exploration of a possible combination of M.H.DIS
with artificial intelligence techniques such as fuzzy sets,
in order to consider the fuzziness which may exist on
the evaluation of alternatives on each evaluation crite-
rion, or on the classification of the alternatives.
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Introduction

The multidimensional assignment problem (MAP) can
be viewed as a higher-dimensional extension of the lin-
ear assignment problem (LAP). While the LAP is often
explained as assigning each person in a group a spe-
cific job so that for each job there is only one per-
son who does it, and for each person there is only one
assigned job. The MAP generalizes evidently two-di-
mensional (people, jobs) LAP by allowing additional
dimensions (space, time, etc.) Hence, the previous ex-
ample of scheduling people to jobs can be extended
to scheduling people to jobs at various time intervals
in different locations, so that each specific parameter
(say, time interval) is coupled with its own unique three
other parameters (person, job, location) and none of
them are in any other assignment (of a person, a job,
a time slot and a person). Such a modified assign-
ment problem is an example of a MAP in four dimen-
sions.

Obviously, the LAP is a special case of the MAP in
two dimensions. On the other hand, the MAP (some-
times referred to as multi-index assignment problem)
is a special case of the multi-index transportation prob-
lem, just like the LAP is a particular instance of the
more general transportation problem.

Interestingly, a broader class of multidimensional
transportation problems was originally considered
about a decade before the LAP was first given its mul-
tidimensional generalization. In fact, a three-dimen-
sional case of the multi-index transportation problem
was first introduced by Schell in 1955 [33], and later
by Haley [19] in 1963. The MAP was initially pre-
sented by Pierskalla [26] in 1966, through first extend-
ing the LAP to its three-dimensional case, and then (in
1968) as a general formulation of MAP in n dimen-
sions [27].

Despite the fact that the LAP can be solved in
polynomial time, the MAP of dimensionality d � 3
is known to be NP-hard in general (the latter state-
ment follows from a reduction of the matching prob-
lem in three dimensions) [16]. In fact, the size of the
MAP increases extremely fast with an increase in di-
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mensions. To be more precise, the size of problem
grows by products of factorials. As a result of the inher-
ent complexity of the problem, only small to medium-
sized instances of the MAP can be solved routinely
at the moment. Most of the exact and heuristic al-
gorithms developed for this problem are enumerative
in nature and/or utilize some form of local neighbor-
hood search. Although many real-life applications of
the MAP, including the data association problem in
target tracking, require solving general problems of di-
mensions higher than three, most of the proposed so-
lution methods deal with widely studied three-dimen-
sional versions such as axial 3-MAP and planar 3-
MAP.

Formulation

Several alternative formulations of the MAP have been
given since Pierskalla introduced it as a 0-1 integer pro-
gramming problem as follows.

Given 1 � p1 � : : : � pd � n; a finite sequence of
positive integers, we want to

minimize
X

1�i1�p1

: : :
X

1�id�pd

ci1 ::: id � xi1 ::: id

subject to
X

1�i2�p2

: : :
X

1�id�pd

xi1 ::: id

D 1; 1 � i1 � p1 ;X
1�i1�p1

: : :
X

1�ik�1�pk�1

X
1�ikC1�pkC1

: : :

X
1�id�pd

xi1 ::: id D 1 ;

1 � ik � pk ; 2 � k � d � 1 ;X
1�i1�p1

: : :
X

1�id�1�pd�1

xi1 ::: id D 1 ;

1 � id � pd ;

xi1 ::: id 2 f0; 1g; 1 � ik � pk ; 1 � k � d ;
(1)

where ci1 ::: id are the cost coefficients.
By introducing dummy variables, we can assume

without loss of generality that p1 D : : : D pd D n;
then the d-dimensional assignment problem can be re-

formulated as follows:

minimize
X

1�i1�n

: : :
X

1�id�n

ci1 ::: id � xi1 ::: id

subject to
X

1�i2�n

: : :
X

1�id�n

xi1 ::: id D 1 ; 1 � i1 � n ;

X
1�i1�n

: : :
X

1�ik�1�nX
1�ikC1�n

: : :
X

1�id�n

xi1 ::: id D 1 ;

1 � ik � n ; 2 � k � d � 1 ;X
1�i1�n

: : :
X

1�id�1�n

xi1 ::: id D 1 ; 1 � id � n ;

xi1 ::: id 2 f0; 1g ; 1 � ik � n ; 1 � k � d :
(2)

The MAP (2) also has an interesting interpretation as
a problem of combinatorial optimization:

Given a d-dimensional cubic matrix, one must find
the permutation of its columns and rows with the mini-
mum sum of the diagonal elements. In other words, this
is an equivalent characterization of (2) in terms of d � 1
permutations 1,2, . . . ,d�1 of the set {1, 2, . . . n}:

minimize
X

1�i�n

ci�1(i) :::�d�1(i) ;

subject to 1; 2 ; : : : ; d�1 2 ˘
n ;

(3)

where˘n is the set of all permutations of {1, 2, . . . n}.
Spieksma [34] gives an alternative compact formu-

lation of the MAP as follows:
Given d sets A1,A2, . . . ,Ad, each of size n, let

A D ˝d
iD1Ai D A1 � A2 � : : : � Ad . In other words,

A is a set of all d-tuples a D (a(1); a(2); : : : ; a(d)) 2 A.
Let xa denote a variable for each a 2 A. Then, given as-
signment costs ca for all a 2 A, the objective function is
written as

P
a2A

caxa .

Given a positive integer k, such that 1 � k � d � 1,
let Q denote the set of all (d � k)-element subsets
of {1, 2, . . . , d}. Each subset F from Q corresponds to
the set of “fixed” indices. Given such F, let AF D

˝ f2FA f . Next, given some g 2 AF , let A(F; g) D
fa 2 Aja( f ) D g( f ); 8 f 2 Fg denote the set of all
d-tuples that coincide with g on the set F of “fixed” in-
dices.
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Then the multi-index assignment problem can be
written as:

maximize/minimize
X
a2A

caxa

subject to
X

a2A(F; g)

xa D 1;

for all g 2 AF ; F 2 Q ;

xa 2 f0; 1g; for all a 2 A :

(4)

Similarly to the linear assignment formulation by
means of a bipartite graph, the MAP can also be stated
using the graph theory terminology in the subsequent
fashion [7]:

Given a complete d-partite graph G D (V1;V2; : : : ;

Vd ; E), where Vi, jVi j D n; i 2 f1; 2; : : : ; dg, denote
mutually disjoint vertex sets, and E is the set of edges
in the graph, a subset of the vertex set V D [d

iD1Vi

is said to be a clique if it meets every set Vi in exactly
one vertex. A d-dimensional assignment is a partition
ofV into n pairwise disjoint cliques. Given a real-valued
cost function c defined on the set of cliques of d-partite
graph G, the d-dimensional assignment problem asks
for a d-dimensional assignment, which minimizes c.

Cases

A special case of the MAP that is based on the graph
theory formulation for MAP was considered by Ban-
delt et al. [6]. The cost function in this particular case
can be represented using some type of function of el-
ementary costs defined on the edges of the d–partite
graph, whereas a general formulation of the MAP us-
ing graphs allows for the cost function to be defined ar-
bitrarily on the set of cliques. In particular, the clique
costs can be decomposed using such functions of edge
costs as a sum of costs (i. e., a sum of the lengths of all
the edges in a given clique), a tour cost (i. e., minimum
cost of a traveling salesman tour in a given clique), a star
cost (i. e., minimum length of a spanning star in a given
clique), and a tree cost (i. e., minimum cost of a span-
ning tree). By using the decomposed costs, one can con-
struct the worst-case bounds on the ratio between the
solution costs found by a simple heuristic, as well as find
the cost of the optimal solution. Specifically, Crama and
Spieksma [10] considered a case of three-dimensional
assignment problem, where the lengths of the edges of
the underlying three-partite graph satisfy the triangle

inequality, and the objective function is defined as the
cost of the triangle formed by three vertices (each from
a different mutually disjoint vertex subsets of the three-
partite graph). When the triangle cost is defined as the
length of the triangle (i. e., sum of the lengths of all its
sides), then there exists a heuristic that gives a feasible
solution that is within 3/2 from the optimum. The latter
bound is decreased to 4/3 in the case when the triangle
cost is defined as the sum of the two shortest sides.

As mentioned earlier, owing to the exponential in-
crease in the size of the problem with an increase in the
number of parameters, it becomes computationally dif-
ficult to solve MAP instances of higher dimensionality.
As a result most solution methods for theMAP are con-
structed for three-dimensional versions of the problem.
Two important types of the three-dimensional assign-
ment problem are the axial three-dimensional assign-
ment problem and the planar three-dimensional as-
signment problem. The distinction between two types
lies in constraints and can be easily explained using the
following simple geometric interpretation [7].

Let each solution be represented by a three-dimen-
sional 0-1 array of size n � n � n. To visualize such an
array of zeros and ones, let us fix a vertex and draw lines
or axes along three dimensions. Next, we partition each
axis onto n intervals. This partition splits the array into
n3 cells so that each cell contains either a 0 or a 1. Given
an axis, say j, each of n intervals on j has a correspond-
ing two-dimensional level surface that consists of n � n
cells and goes through a given interval of j. Alterna-
tively, the interval partition of each axis divides a three-
dimensional solution array into n two-dimensional sur-
faces or “slices” corresponding to each interval on the
axis. The constraints imposed in the axial case guaran-
tee that for each axis and all of its intervals, the n � n
cells in each two-dimensional slice through the inter-
val sum up to 1. In other words, each axial interval is
assigned a value of 1, which constitutes the sum of all
cells that can be projected on that axial interval. This
explains the name “axial.”

In contrast, the constraints of the planar MAP deal
with three planes formed by each possible pair of axes.
For example, consider the plane formed by axes j and
k. Using the above partition, this plane is divided into
n � n squares. For each square on the plane, there is
a corresponding stack of cells that goes along the i axis.
Each cell in the stack is projected onto its square (j�, k�)
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by axis i. The planar constraints require that for each
plane and every square the sum of the cells in an asso-
ciated stack is equal to 1.

Integer programming formulations for each of type
of three-index MAP are given below.

Given a set of n3 cost coefficients cijk, the axial three-
dimensional assignment problem is defined as follows:

minimize
nX

iD1

nX
jD1

nX
kD1

ci jk xi jk

subject to
nX

jD1

nX
kD1

xi jk D 1 ; 1 � i � n ;

nX
iD1

nX
kD1

xi jk D 1 ; 1 � j � n ;

nX
iD1

nX
jD1

xi jk D 1 ; 1 � k � n ;

xi jk 2 f0; 1g ; 1 � i; j; k � n :

(5)

Given n3 cost coefficients cijk, the planar three-dimen-
sional assignment problem can be written in the follow-
ing fashion:

minimize
nX

iD1

nX
jD1

nX
kD1

ci jk xi jk

subject to
nX

iD1

xi jk D 1; 1 � j; k � n ;

nX
jD1

xi jk D 1 ; 1 � i; k � n ;

nX
kD1

xi jk D 1 ; 1 � i; k � n ;

xi jk 2 f0; 1g ; 1 � i; j; k � n :

(6)

The axial three-index MAP given by (5) can also be for-
mulated using n permutations � and  as a combinato-
rial optimization problem:

minimize
nX

iD1

ci�(i)�(i) ; subject to �;  2 ˘n : (7)

Note that the planar three-dimensional assignment
problem has a different combinatorial interpretation in
terms of Latin squares of order n.

Although both axial and planar three-dimensional
assignment problems (just as the general MAP) are

generally NP-hard, there exist a number of polyno-
mially solvable special cases. Particularly, in the case
when the cost coefficients form a so-called Monge ar-
ray [8], the MAP is solved by d � 1 identity-n permuta-
tions f1; 2; : : : ; ng ! f1; 2; : : : ; ng. Another case of
the polynomially solvable MAP is the axial three-di-
mensional assignment problem, where the cost coeffi-
cient can be represented as a product of nonnegative
index factors ci jk D pi � q j � rk , and the objective func-
tion is maximized [9].

Methods

All known exact methods for solving this generally NP-
hard problem are enumerative in nature, and as a result
of the inherent complexity of the problem such meth-
ods are too slow for practical applications of the MAP.
Hence, researchers often use heuristic approaches to
find suboptimal solutions of different MAPs. In fact,
one of the earliest solution methods for the MAP was
a suboptimal method of trisubstitution proposed by
Pierskalla [26] in 1966 to solve a three-dimensional as-
signment problem. Later Frieze and Yadegar [15] devel-
oped a suboptimal procedure for the three-index MAP
using Lagrangian relaxation. Their technique utilized
information contained in the relaxed solution to re-
cover a feasible solution. The key advantage of the La-
grangian relaxation approach is that it allows for com-
puting both upper and lower bounds on the optimum
solution, and therefore this method can be employed to
evaluate solution quality. Consequently, the Lagrangian
relaxation technique was widely used to propose nu-
merous modifications of the original three-dimensional
method by extending it to the general multidimen-
sional case [12,28,29]. For example, one of such algo-
rithms presented by Poore and Robertson [29] in 1997
works by relaxing a d-dimensional assignment prob-
lem to a two-dimensional problem, then maximizing
with regard to the relaxed Lagrangian multipliers, and
next formulating the recovery procedure as a (d � 1)-
dimensional problem. These three steps are repeated
successively until the recovery procedure can be for-
mulated as a two-dimensional problem, which is solved
optimally in polynomial time, and the algorithm termi-
nates.

Most exact methods for solving the MAP are de-
vised primarily for its three-dimensional case. One of
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the earliest exact approaches for the axial three-di-
mensional assignment problem was suggested by Pier-
skalla [27] in 1968. His approach works by enumerating
all feasible solutions using a tree structure, and utilizing
the branch and bound method as follows. For a given
node of the feasible solutions tree, a lower bound is cal-
culated from the corresponding dual subproblem, be-
fore proceeding further on outgoing branches from the
node. If the lower bound is greater than the known low-
est bound, then the outgoing branches are eliminated,
since it is impossible to obtain a better solution along
such branches. Otherwise when the lower bound ob-
tained is less than the known lowest bound, we con-
tinue further from this node, because it might still be
possible to improve our solution in that direction. Al-
though this branch and bound algorithm can easily be
generalized to the multidimensional case, it is too slow
to work effectively for the general MAP.

Since Pierskalla introduced his branch and bound
procedure for the axial three-dimensional assignment
problem, many other branch and bound based ap-
proaches have been developed. Most of them branch
the current problem onto two subproblems by setting
one variable xi jk D 0 or xi jk D 1. Then the size of the
subproblems is decreased. In contrast, a branch and
bound scheme proposed by Balas and Saltzman [5] per-
mits fixing several variables at once at each branching
node by incorporating a special branching strategy that
takes advantage of the problem structure.

The planar three-index MAP can also be solved us-
ing variations of branch and bound. One of the first ap-
plications of this method to the planar case was given
by Vlach [35] in 1967. The algorithm obtains lower
bounds by means of row and column reductions that
are similar to the ones in the axial case. A method
for solving the planar three-dimensional assignment
problem based on a clever combination of branch and
bound with a relaxation heuristic and Lagrangian relax-
ation was developed by Magos and Miliotis [24]. The
upper bounds are calculated by first applying the re-
laxation heuristic and then decomposing the remain-
ing problem into n linear sum assignment problems.
The lower bounds are computed by either a heuristic or
a Lagrangian relaxation depending on the current prob-
lem.

The method introduced by Hansen and Kauf-
man [20] for solving the axial three-dimensional as-

signment problem employs a primal-dual method com-
parable to the well-known Hungarian method for the
LAP.

There have been a number of investigations of
a convex hull of feasible solutions of the three-dimen-
sional assignment problem. Euler et al. [14] examined
the polyhedral structure of the solution polytope for
the planar three-index MAP through its connection to
Latin squares. Euler [13] also studied the axial poly-
tope by investigating the role of odd cycles for a class of
facets of the polytope. The structure of the axial three-
index assignment polytope was also analyzed by Balas
et al. [3,4,32]. They developed linear-time separation al-
gorithms for different classes of facets induced by spe-
cific cliques, and then constructed a polyhedral proce-
dure for solving the axial three-index MAP.

Clemons et al. [11] applied a simulated annealing
algorithm for solving the MAP. Several local neigh-
borhood search procedures were implemented for the
MAP. Greedy randomized adaptive search procedures
(GRASP) were applied by Murphey et al. [25] for solv-
ing the general MAP and later by Lidstrom et al. [22]
and by Aiex et al. [1] for finding solutions of the axial
three-dimensional assignment problem. A tabu search
for the planar three-dimensional assignment problem
was employed by Magos [23] to obtain suboptimal so-
lutions of the planar thee-index assignment problem.

Grundel and Pardalos [18] developed a test prob-
lem generator for testing exact and suboptimal solution
methods for the axial MAP. Several recent studies in-
vestigated various asymptotic properties of the MAPs
with randomly generated assignment cost coefficients.
In particular, Grundel et al. [17] established the lower
and upper bounds for the expected number of local
minima of the MAPs with random costs.

Applications

The MAP can be used to solve various real-life prob-
lems arising in such important areas as capital invest-
ment, dynamic facility location, and satellite launch-
ing [30]. Other applications of the MAP include circuit
board assembly and production planning of goods,
which can be modeled using the axial three-dimen-
sional assignment problem [34]. The planar three-di-
mensional assignment problem has also found many
interesting applications, for instance, school timetables
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and experimental design [21], as well as modeling of
satellite launching [2].

Furthermore, it was shown that such a complex
problem as tracking elementary particles can be inves-
tigated using the five-dimensional assignment problem
as a mathematical model [31]. By solving this com-
plex case of the MAP, one can reconstruct the paths
of charged elementary particles produced by the Large
Electron–Positron Collider.

Many important applications of the general MAP
arise in data association, resource allocation, air traf-
fic control, surveillance, etc. In particular, Poore [28]
has shown that the data association problem arising in
a large class of multiple target tracking and sensor fu-
sion problems can be formulated as a MAP by parti-
tioning the set of observations into false reports and
tracks, and then maximizing the likelihood of selecting
the true partition.

See also

� Assignment and Matching
� Integer Programming: Branch and Bound Methods
�Multi-index Transportation Problems
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The multidimensional knapsack problem (MKP) can be
formulated as:8̂

ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
nX

jD1

p jx j

s.t.
nX

jD1

ri jx j � bi ; i D 1; : : : ;m;

x j 2 f0; 1g; j D 1; : : : ; n;

(1)

where bi � 0, i = 1, . . . ,m, and rij � 0, i = 1, . . . ,m, j = 1,
. . . , n.

Each of the m constraints in (1) is called a knapsack
constraint, so the MKP is also called them-dimensional
knapsack problem.

Other names given to this problem in the literature
are the multiconstraint knapsack problem, the multi-
knapsack problem and the multiple knapsack problem.
Some authors also include the term ‘zero-one’ in their
name for the problem, e. g., the multidimensional zero-
one knapsack problem. Historically the majority of au-
thors have used the name multidimensional knapsack
problem and so we also use that phrase to refer to the
problem. The special case corresponding to m = 2 is
known as the bidimensional knapsack problem or the
bi-knapsack problem.

Many practical problems can be formulated as
a MKP, for example, the capital budgeting problem
where project j has profit pj and consumes rij units of
resource i. The goal is to find a subset of the n projects
such that the total profit is maximised and all resource
constraints are satisfied. Other applications of the MKP
include allocating processors and databases in a dis-
tributed computer system [24], project selection and
cargo loading [53], and cutting-stock problems [26].

The MKP can be regarded as a general statement of
any zero-one integer programming problem with non-
negative coefficients. Indeed much of the early work on
the MKP (e. g., [32,35,52,59]) viewed the problem in
this way.

Most of the research on knapsack problems deals
with the much simpler single constraint version (m =
1). For the single constraint case the problem is not
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strongly NP-hard and effective approximation algo-
rithms have been developed for obtaining near-optimal
solutions. A good review of the single constraint knap-
sack problem and its associated exact and heuristic al-
gorithms is given by S. Martello and P. Toth [42].

Below we give a very brief overview of the literature
relating to the MKP. A more detailed literature review
can be found in [10].

Exact Algorithms

There have been relatively few exact algorithms pre-
sented in the literature.

W. Shih [53] presented a branch and bound algo-
rithm (cf. also � Integer programming: Branch and
bound methods) for the MKP with an upper bound ob-
tained by computing the objective function value asso-
ciated with the optimal fractional solution for each of
the m single constraint knapsack problems separately
and selecting the minimum objective function value
among those as the upper bound.

Another branch and bound algorithm was pre-
sented in [25] with various relaxations of the problem,
including Lagrangian, surrogate and composite relax-
ations being used to compute bounds. Y. Crama and
J.B. Mazzola [11] showed that although the bounds
derived from these relaxations are stronger than the
bounds obtained from the linear programming (LP) re-
laxation, the improvement in the bound that can be re-
alized using these relaxations is limited.

Statistical/Asymptotic Analysis

There have been a few papers considering a statisti-
cal/asymptotic analysis of the MKP.

An asymptotic analysis was presented by K.E.
Schilling [51] who computed the asymptotic (n! 1
with m fixed) objective function value for the MKP
where the rij’s and pj’s were uniformly (and indepen-
dently) distributed over the unit interval and where bi
= 1. K. Szkatula [54] generalized that analysis to the case
where bi 6D 1 (see also [55]).

A statistical analysis was conducted by J.F. Fonta-
nari [18], who investigated the dependence of the ob-
jective function on bi and on m, in the case when pj =
1 and the rij’s were uniformly distributed over the unit
interval.

Early Heuristic Algorithms

Early heuristic algorithms for the MKP were typically
based upon simple constructive heuristics.

S.H. Zanakis [59] gave detailed results comparing
three algorithms from [32,35] and [52]. R. Loulou and
E. Michaelides [40] presented a greedy-like method
based on Toyoda’s primal heuristic [57]. Primal heuris-
tics start with a zero solution, after which a succession
of variables are assigned the value one, according to
a given rule, as long as the solution remain feasible.

Bound Based Heuristics

Bound based heuristics make use of an upper bound on
the optimal solution to the MKP.

M.J. Magazine and O. Oguz [41] presented a heuris-
tic algorithm that combines the ideas of S. Senju and
Toyoda’s dual heuristic [52] with Everett’s generalized
Lagrange multiplier approach [17]. Dual heuristics start
with the all-ones solution, variables are then succes-
sively set to zero according to heuristic rules until a fea-
sible solution is obtained. Their algorithm computes an
approximate solution and uses the multipliers gener-
ated to obtain an upper bound.

H. Pirkul [45] presented a heuristic algorithmwhich
makes use of surrogate duality. The m knapsack con-
straints were transformed into a single knapsack con-
straint using surrogate multipliers. A feasible solution
was obtained by packing this single knapsack in de-
creasing order of profit/weight ratios. These ratios were
defined as pj/

Pm
iD1!i rij, where!i is the surrogate mul-

tiplier for constraint i. Surrogate multipliers were deter-
mined using a descent procedure.

J.S. Lee and M. Guignard [36] presented a heuris-
tic that combined Toyoda’s primal heuristic [57] with
variable fixing, LP and a complementing procedure
from [6].

A. Volgenant and J.A. Zoon [58] extended the
heuristic in [41] in two ways:
1) in each step, not one, but more, multiplier values are

computed simultaneously; and
2) at the end of the procedure the upper bound is

sharpened by changing some multiplier values.
A. Freville and G. Plateau [21] presented an efficient
preprocessing algorithm for the MKP, based on [20],
which provided sharp lower and upper bounds on the
optimal value, and also a tighter equivalent represen-



2404 M Multidimensional Knapsack Problems

tation by reducing the continuous feasible set and by
eliminating constraints and variables.

They also [22] presented a heuristic for the bidi-
mensional knapsack problem which includes problem
reduction, a bound based upon surrogate relaxation
and partial enumeration.

Tabu Search Heuristics

Tabu search (TS) heuristics are based on tabu search
concepts (see [1,29,46]).

F. Dammeyer and S. Voß [12] presented a TS
heuristic based on reverse elimination. R. Aboudi and
K. Jörnsten [2] combined TS with the pivot and com-
plement heuristic [6] in a heuristic that they applied to
the MKP (see also [39]). R. Battiti and G. Tecchiolli [7]
presented a heuristic based on reactive TS (essentially
TS but with the length of the tabu list varied over the
course of the algorithm).

F. Glover and G.A. Kochenberger [28] presented
a TS heuristic with a flexible memory structure that in-
tegrates recency and frequency information keyed to
‘critical events’ in the search process. Their method was
enhanced by a strategic oscillation scheme that alter-
nates between constructive (current solution feasible)
and destructive (current solution infeasible) phases. See
also [30].

A. Løkketangen and Glover [37] presented a heuris-
tic based on probabilistic TS (essentially TS but with the
acceptance/rejection of a potential move controlled by
a probabilistic process). They also [38] presented a TS
heuristic designed to solve general zero-one mixed in-
teger programming problems which they applied to the
MKP.

Genetic AlgorithmHeuristics

Genetic algorithm (GA) heuristics are based on genetic
algorithm concepts (see [1,8,43,46]).

In the GA of [34] infeasible solutions were allowed
to participate in the search and a simple fitness function
which uses a graded penalty term was used. In [56] sim-
ple heuristic operators based on local search algorithms
were used, and a hybrid algorithm based on combining
a GA with a TS heuristic was suggested.

In [48,49] a GA was presented where parent selec-
tion is not unrestricted (as in a standard GA) but is
restricted to be between ‘neighboring’ solutions. Infea-

sible solutions were penalized as in [34]. An adaptive
threshold acceptance schedule (motivated by [14,15])
for child acceptance was used.

In the GA of [33] only feasible solutions were al-
lowed. P.C. Chu and J.E. Beasley [10] presented a GA
based upon a simple repair operator to ensurethat all
solutions were feasible.

Analysed Heuristics

Analysed heuristics have some theoretical underlying
analysis relating to their worst-case or probabilistic per-
formance.

A.M. Frieze and M.R.B. Clarke [23] described
a polynomial approximation scheme based on the use
of the dual simplex algorithm for LP, and analysed the
asymptotic properties of a particular random model.

In [47] a class of generalized greedy algorithms is
proposed in which items are selected according to de-
creasing ratios of their pj’s and a weighted sum of their
rij’s. These heuristics were subjected to both a worst-
case, and a probabilistic, performance analysis.

I. Averbakh [5] investigated the properties of several
dual characteristics of the MKP for different probabilis-
tic models. He also presented a fast statistically efficient
approximate algorithm with linear running time com-
plexity for problems with random coefficients.

Other Heuristics

G.E. Fox and G.D. Scudder [19] presented a heuristic
based on starting from setting all variables to zero(one)
and successively choosing variables to set to one(zero).
See [13] for a heuristic based upon simulated anneal-
ing (SA). See [27] for a heuristic based on ghost image
processes. S. Hanafi and others [31] presented a simple
multistage algorithm within which a number of differ-
ent local search procedures (such as greedy, SA, thresh-
old accepting [14,15] and noising [9]) can be used. They
also presented two TS heuristics.

Multiple–Choice Problems

One problem that is related to the MKP is the multidi-
mensional multiple-choice knapsack problem (MMKP).
Suppose that {1, . . . , n} is divided up into K sets Sk, k
= 1, . . . , K, which are mutually exclusive Sk \ Sl = ;,
8k 6D l, and exhaustive [K

kD1 Sk = {1, . . . , n}. If we then
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add to the formulation of the MKP given previously the
constraint

X
j2Sk

x j D 1; k D 1; : : : ;K; (2)

we obtain the MMKP. Equation (2) ensures that exactly
one variable is chosen from each of the sets Sk, k = 1,
. . . , K.

See [44] for a heuristic for MMKP based on the
MKP heuristic of Magazine and Oguz [41].

The special case of the MMKP corresponding to
m = 1 is known as the multiple-choice knapsack
problem (MCKP) and its LP relaxation as the linear
multiple-choice knapsack problem (LMCKP). Work on
MCKP includes [16], which presented a hybrid dy-
namic programming tree search algorithm incorpo-
rating a Lagrangian relaxation bound; [4], which pre-
sented a heuristic based upon SA; and [3], which pre-
sented a tree search algorithm incorporating a La-
grangian relaxation bound. For work on LMCKP see
[50]. Earlier work on MCKP and LMCKP is cited in [3,
4,16,50].

See also

� Integer Programming
� Quadratic Knapsack
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Modern large scale vehicle design (aircraft, ships, auto-
mobiles, mass transit) requires the interaction of mul-
tiple disciplines, traditionally processed in a sequential
order. Multidisciplinary optimization (MDO), a formal
methodology for the integration of these disciplines, is
evolving towardmethods capable of replacing the tradi-
tional sequential methodology of vehicle design by con-
current algorithms, with both an overall gain in prod-
uct performance and a decrease in design time. The
obstacles to MDO becoming a production methodol-
ogy, in the same sense as quality control, are numerous
and formidable. In aircraft design, for instance, typi-
cal disciplines involved would be aerodynamics, struc-
tures, thermodynamics, controls, propulsion, manufac-
ture, and economics. Detailed analyses in each of these
disciplines could involve tens to hundreds of subrou-
tines and tens of thousands of lines of code. Managing
the software libraries and data alone is a daunting task.

Codes fromdifferent disciplines typically are grossly
incompatible, but even within disciplines, data struc-
tures and solution representations may be incompat-
ible, requiring ‘translation’ routines or recoding. This
incompatibility is particularly acute when stand-alone
packages with interactive interfaces are involved. Most
disciplinary codes, designed years ago for small serial
computers, are very ill-suited to modern parallel archi-
tectures, even with a coarse grained approach.

Detailed, highly accurate disciplinary analyses are
very expensive, requiring sometimes hours on a super-
computer, even when run in parallel. The import of
this is that, regardless of the dimension of the design
space, it can be sampled for accurate function values at
only a relatively small number of points. Other obsta-
cles to achieving true MDO include model verification,
noisy function values, and flawed parallel optimization
methodologies.

Almost every conceivable strategy for MDO has
been proposed. A good recent summary of hierarchi-
cal approaches can be found in [4], and [9] pioneered
nonhierarchical or concurrent approaches. The basic
idea of concurrent methods, and a particular variant
known as concurrent subspace optimization (CSSO), is
to simultaneously and independently optimize each of
the disciplines (or ‘contributing analyses’, as they are
called), and then perform a global coordination that
brings the entire system closer to a globally feasible
and optimal point. Collaborative optimization differs
from CSSO in how the global coordination is managed.
An excellent discussion of these approaches is in the
proceedings [2]. While concurrent methods are intu-
itively appealing and naturally parallelizable, they are
not guaranteed to converge [8].

Trust region model management [1] is a rigor-
ous approach to MDO that shows promise, and as-
pects of CSSO when combined with an extended La-
grangian and response surface approximations, can
lead to a provably convergent MDO method (J.F. Ro-
dríguez, J.E. Renaud and L.T. Watson, [6]). A note-
worthy aspect of the Rodríguez method [6] is that the
convergence proof covers variable fidelity data, which
is crucial in practice.

In a taxonomy of MDO approaches, one distinc-
tion would be between hierarchic or nonhierarchic.
Another distinction is whether parallelism is achieved
between disciplines (concurrent disciplinary computa-
tion) or within disciplines (multipoint, response sur-
face, local/global computation). If response surface ap-
proximations are used, two prevalent approximation
methods are classical least squares and DACE (Design
and Analysis of Computer Experiments).

S. Burgee, A.A. Giunta, V. Balabanov, B. Grossman,
W.H. Mason, R. Narducci, R.T. Haftka, and Watson
[3] has a detailed discussion of the multipoint, classi-
cal least squares approach to response surface construc-
tion, and of the use of parallelism within disciplines (the
pipelined MDO paradigm of Burgee is also provably
convergent). The tack of this approach is to use clas-
sical design of experiments theory, regression statistics,
and low order polynomial approximation models.

The DACE [7] model posits that the output of
a computer analysis program is

Y(x) D ˇ C Z(x);
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where Z(x) is a zero mean stationary Gaussian process.
(This is clearly a fiction since computer output is deter-
ministic. The issue is whether the model has predictive
power.) Using Bayesian statistics, the best unbiased pre-
dictor is

bY(x) D b̌C r(x; S)R�1(YS � 1 � b̌);

where S is a set of observation sites, YS is the vector of
observations at S, r(x, S) is the correlation of xwith sites
S, R is the correlation matrix between sites S, and b̌ is
the estimate of themean. Some parametrized functional
form for the correlation is assumed, and then these cor-
relation parameters and b̌ are computed as maximum
likelihood estimates.

DACE models are more flexible than polynomial
models, but with sparse data in high dimensions neither
DACE nor polynomial models have much predictive
power. To appreciate the problem, observe that a cube
in 30 dimensions has 230 	 109 vertices, and to even
evaluate an algebraic formula at each vertex requires su-
percomputer power.

MDO Paradigm Example

As an illustration, anMDOparadigm for aircraft design
is presented here. The MDO algorithm is a repeat loop,
with a nominal design as its starting point, approximate
optimal designs as loop iterates, and an optimal design
as its ending point (see Fig. 1). At the start of each loop,
aerodynamic shape and mission variables are obtained
from either the nominal starting design or the inter-
mediate approximate optimal design. These shape and
mission variables are then used in the parallel simple
aerodynamic and structural analyses.

The simple aerodynamic analyses are performed on
a regular grid of points in the design space. Simple
aerodynamic calculations evaluate the (aerodynamic)
feasibility of each grid point using tolerances on the
constraints and move limits on the objective function,
eliminating grossly infeasible points, and generating an
approximation domain. The simple structural analyses
use the aerodynamic shape and mission variables in ba-
sic weight equations to calculate approximate weights
needed by the objective function and constraints, fur-
ther refining the approximation domain.

Using the relatively abundant data from the simple
analyses, regression analysis and analysis of variance

Multidisciplinary Design Optimization, Figure 1
MDO paradigm

are used to identify less important terms in the poly-
nomial response surface models. Once the less impor-
tant terms are eliminated, the structure of the reduced-
term polynomial regression models is known, and can
be used later in the generation of response surface ap-
proximations of the optimal weight and necessary aero-
dynamic quantities over the approximation domain.

A genetic algorithm (GA; cf.�Genetic Algorithms)
is used to find sets of approximate D-optimal design
points in the approximation domain obtained from the
parallel simple analyses. The structure of a response
surface model is embodied in the regression matrix X,
which defines the GAmerit function |X|X| (maximized
by a set of points called D-optimal). These D-optimal
design points are input to the detailed aerodynamic
analysis code, which performs detailed analyses at each
of the D-optimal design points in parallel. The analyses
result in accurate aerodynamic quantities, such as wave
drag and other drag components, and accurate aerody-
namic loads.
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The accurate aerodynamic quantities are used to
generate reduced-term polynomial response surface
models for each of the expensive quantities (such as
wave drag). An aerodynamic load calculated in the
detailed aerodynamic analyses is used in a detailed
structural optimization to calculate an accurate optimal
weight for that particular aerodynamic load. This struc-
tural optimization is done (in parallel) for each aero-
dynamic load generated in the detailed aerodynamic
analyses. The accurate optimal weights calculated in the
structural optimization are used to generate a reduced-
term polynomial response surface model for the opti-
mal weight.

All the response surface models are then used in
a configuration optimization to generate an approxi-
mate optimal design, which will be used as the starting
design for the next iteration of the MDO loop. The grid
spacing may possibly be refined for the simple analy-
ses. When some convergence criterion is satisfied, the
MDO loop exits with an optimal design.

Note that the source of parallelism in the present
MDOparadigm is the multipoint approximations within
each discipline, where the disciplines are visited sequen-
tially in a pipeline. This contrasts sharply with CSSO
MDO paradigms, where the source of the parallelism is
processing the disciplines in parallel.

See also
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� Design Optimization in Computational Fluid
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In location planning one is typically concerned with
finding a good location for one or several new facil-
ities with respect to a given set of existing facilities
(clients). The two most common models in planar lo-
cation theory are theWeber problem, where the average
(weighted) distance of the new to the existing facilities
is taken into account and the Weber–Rawls problem,
where the maximum (weighted) distance of the new to
the existing facilities is taken into account.

More precisely, one is given a finite set Ex = {Ex1,
. . . , ExM} of existing facilities (represented by their ge-
ographical coordinates) in the plane R2 and distance
functions dm assigned to each existing facility m 2 M

:= {1, . . . , M}. The set of locations for the N new fa-
cilities one is looking for is denoted X = {X1, . . . , XN}.
The distance between the new facilities is measured by
a common distance d. Additionally, a value wmn is as-
signed to each pair (Exm, Xn), for m 2M, n 2 N := {1,
. . . , N} and a value vrs assigned to each pair (Xr , Xs), for
r, s 2N, s > r, reflecting the level of interaction.

With these definitions themultifacilityWeber objec-
tive function can be written as

X
m2M

X
n2N

wmndm(Exm; Xn)

C
X
r;s2N
s>r

vrsd(Xr ; Xs) :D f (X1; : : : ; XN)

and the multifacility Weber–Rawls objective function
can be written as

max

(
max
m2M
n2N

wmndm(Exm; Xn); max
r;s2N
s>r

vrsd(Xr ; Xs)

)

:D g(X1; : : : ; XN ):

In the corresponding optimization problems we may
additionally assume a feasible region F and we look for

min
fX1;:::;XN g�F

f (X1; : : : ; XN );

and

min
fX1;:::;XN g�F

g(X1; : : : ; XN):

In the first part of this survey it is assumed that F = R2

whereas F will be a restricted set later on.
The models above implicitly assume that the new

facilities can be distinguished, that the amount of inter-
action between each new and existing facility is known

and that the new facilities have mutual communica-
tion. Note, that problems without communication be-
tween the new facilities can be separated into N inde-
pendent 1-facility problems which can be easily solved
by suitable algorithms. Also, in many applications we
want to locate a number of indistinguishable facilities to
serve the overall demand. This implies that we are not
only locating facilities, but we are also allocating exist-
ing facilities (clients) to the new ones. This variation of
the problem is calledmultiWeber ormultiWeber–Rawls
problem and the objective functions can be written as

X
m2M

wmdm(Exm; fX1; : : : ; XNg) Dbf (X)

and

max
m2M
fwmdm(Exm; fX1; : : : ; XNg)g Dbg(X);

respectively, where dm(Exm, {X1, . . . , XN}) :=
minY2X1 ;:::;Xn } dm(Exm, Y).

In order to discuss solution methods, suitable types
of distance functions dm,m 2M, are specified next.

Let B be a compact convex set in the plane contain-
ing the origin in its interior and let Y be a point in the
plane. The gauge of Y (with respect to B) is then defined
as

�B(Y) :D inf f� > 0 : Y 2 �Bg :

This definition dates back to [25]. The distance from
Exm to Y induced by �B is

dm(Exm;Y) :D �Bm (Y � Exm) for m 2M:

In the case where all Bm are convex polytopes with
extreme points Ext(Bm) := {em1 , . . . , emG } we can define
halflines lmi starting at Exm and going through emi . For
the 1-facility case it was proved in [6] for the Weber
problem that there always exists an optimal solution in
the set of intersection points of the halflines lmi for i =
1, . . . , Gm and m 2M. This result carries over to multi-
(facility) Weber problems when each Bm has no more
than 4 extreme points [24]. For more than 4 extreme
points it is in general wrong (see [24] for a counterex-
ample).

In the case where all Bm are polytopes we can give
linear programming formulations for the multifacility
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Weber as well as the multifacility Weber–Rawls prob-
lem [34] using B0

m , the polar set of Bm,m 2M.
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X
m2M

X
n2N

wmnzmn C
X
r;s2N
s>r

vrs z0rs

s.t.
˝
Exm � Xn ; e0m

˛
� zmn ;

8m 2M; n 2N e0m 2 Ext(B0
m);˝

Xs � Xr ; e0
˛
� z0rs ;

8s; r 2N ; s > r; e0 2 Ext(B0);8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min z
s.t. wmn

˝
Exm � Xn; e0m

˛
� z;

8m 2M; n 2N ; e0m 2 Ext(B0
m);

vrs
˝
Xs � Xr ; e0

˛
� z;

8s; r 2N ; s > r; e0 2 Ext(B0):

Even without polyhedral structure we still have a con-
vex optimization problem for which several solution
techniques are available (see [11,12,21,32] and refer-
ences therein).

In the case where we also have to deal with the allo-
cation problem we still can apply discretization results
from the 1-facility case. The allocation part makes the
problem howeverNP-hard (see [22,23]; cf. also�Com-
plexity Theory; � Complexity Classes in Optimiza-
tion). Nevertheless, constructs from computational ge-
ometry (e. g. Voronoi diagrams; cf. also � Voronoi Di-
agrams in Facility Location) can be used to tackle the
allocation part efficiently and allow iterative heuristics
producing in general satisfactory results (see [2,30]).

Further extensions are possible and already investi-
gated including location with attraction and repulsion,
hub location, etc. (see [32] for further references).

A problem common to all forms of multi-(facility)
location problems is, that in an optimal solution loca-
tions of different new facilities may coincide with each
other or with existing facilities. This raises at least two
issues:
� A priori detection of coincidences which result in

a reduction of the dimension of the problem and al-
low the exploitation of differentiability are discussed
in [7,20,31].

� If coincidence is excluded, the theory of restricted
location can be used which is discussed next.

So far, the set F for placing new facilities was the whole
plane R2. Now, the feasibility set F = R2 \ int (R) is con-

sidered, where R � R2 is the restricting set assumed
to be connected in R2. This problem is more compli-
cated than the unrestricted one, since F is in general
not convex. But from a practical point of view it is
a necessary extension of the classical location model,
since forbidden regions appear everywhere: nature re-
serves, lakes, exclusion of coincidence in multifacility,
etc. These problems are called restricted location prob-
lems and have been developed in [1,12,14,15] and [26].
In the following we exclude the trivial case and assume
that none of the optimal solutions of the unrestricted
problem is a feasible solution of the restricted one.

If the objective function h of the location problem
is convex it can be shown that optimal solutions of the
restricted problem can be found on the boundary of R.
Therefore, level curves

LD(z) :D fX 2 Rn : h(X) D zg

and level sets

L�(z) :D fX 2 Rn : h(X) � zg

can be used to reformulate the restricted location prob-
lem as

min fz : LD(z) \ @R ¤ ; and L�(z) � Rg :

A resulting search algorithmwas formulated in [11],
but proved to be inefficient in practical applications.

An efficient approach originally presented in [12,14,
15] identifies finite dominating set (FDS) on the bound-
ary R, i. e. a finite set of locations on @R which contains
an optimal solution. Using this discretization, problems
with gauge distance and convex forbidden region can
be solved by considering as FDS the intersection points
of lmi and the boundary of R (see [15,26,28] and the il-
lustration in the following figure).

The discretization also works for restricted center
problems [16] and can be extended to nonconvex for-
bidden regions (see [15,26]) and also to the case of at-
traction and repulsion (negative weights are allowed),
see [29]. The concept of forbidden regions has been suc-
cessfully applied to a problem in PCB assembly, where
the bins holding the parts to be inserted into the PCB
have to be stored [10]. Of course, the PCB itself has to be
forbidden for placing a bin. A solution approach, where
also the issue of space requirements in a multifacility
setting is addressed can be found in [9,15]. A more gen-
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Multifacility and Restricted Location Problems, Figure 1
Example of a restricted location problem with 4 existing fa-
cilities and an elliptic forbidden region

eral case where the new facility is a line has been consid-
ered in [33]. Algorithms for multifacility problems with
forbidden regions can be found in [8,15,27].

Another type of restricted location problem is one,
where not only placement, but also tresspassing of re-
gions is forbidden. These problems are called barrier lo-
cation problems. The corresponding models are mathe-
matically challenging, since the distance functions (and
thus also the objective functions) are no longer con-
vex. [17] considers Euclidean distances and one circle
as forbidden region. [1] and [4] develop heuristics for
lp distances and barriers that are closed polygons. [19]
and [3] obtain discretization results for l1 distances and
arbitrary shaped barriers by showing an equivalence of
the barrier problem to a network location problem. In
the more general context of gauge distances an FDS is
given in [13] for median problems and in [5] for center
problems. Finally, [18] considers barrier problems if the
distance is an arbitrary norm and the barrier consists of
a line with finitely many passages.
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An ordinary transportation problem has variables with
two indices, typically corresponding to sources (or ori-
gins, or supply points) and destinations (or demand
points). A multi-index transportation problem (MITP)
has variables with three or more indices, correspond-
ing to as many different types of points or resources
or other factors. Multi-index transportation problems
were considered by T. Motzkin [22] in 1952; an appli-
cation involving the distribution of different types of
soap was presented by E. Schell [35] in 1955. MITPs are
also known as multidimensional transportation prob-
lems [4]. There are several versions and special cases of
MITPs:
� The number k of dimensions may be fixed to

a small value; the resulting MITP is called a k-index
transportation problem, k ITP. Quite naturally, the
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best studied cases are the three-index transportation
problems (3ITPs), also known as three-dimensional,
or 3D transportation problems.

� The type of constraints is determined by an integer
m with 0 < m < k, defining m-fold k ITPs (called
symmetric MITPs in [16]; see also [41, Chapt. 8]).
The most common cases are axial MITPs, whenm =
k�1; and planar MITPs, when m = 1; see below for
details.

� Integer solutions may or may not be required. In-
tegrality requirements, which give rise to integer
MITPs, may be necessary since MITPs lack the inte-
grality property enjoyed by ordinary transportation
problems (but see [22] for an exception).

� Unit right-hand sides, in conjunction with integral-
ity requirements, give rise to multi-index assign-
ment problems (MIAPs). (Some authors use this
term for integer MITPs with integer right-hand
sides; the present terminology, consistent with that
for ordinary assignment and transportation prob-
lems, seems preferable.) MIAPs are hard to solve:
the 3IAP is already NP-hard by reduction from the
3-dimensional matching problem [17]. Even worse
[6]: no polynomial time algorithm for the 3IAP can
achieve a constant performance ratio, unless P =NP.

� The objective function is usually a simple linear
combination of the variables, normally a total cost
to be minimized as in equation (1) below. Alterna-
tives, not considered in this article, may include bot-
tleneck objectives [11,36], more general nonlinear
objectives such as in [34], or multicriteria problems
[38].

� There may be additional constraints, such as upper
bounds on the variables, (capacitated MITPs), vari-
ables fixed to the value zero (MITPs with forbidden
cells), or constraints on certain partial sums of vari-
ables (MITPs with generalized capacity constraints).

MITPs with linear objectives and without integral-
ity restrictions are linear programming problems with
a special structure. The most extensively studied inte-
gerMITPs are three-index assignment problems (3IAPs);
see also Three-index Assignment Problem.

Formulations

The following compact notation [31,34] avoids multi-
ple summations and multiple layers of subindices. Let k

� 3 denote the number of dimensions or indices, and K
= { 1, . . . , k }. For i 2 K let Ai denote the set of values of
the ith index. Let A =˝i2KAi =A1 × � � � ×Ak denote the
Cartesian product of these index sets, that is, the set of
all joint indices (k-tuples) a = (a(1), . . . , a(k)) with a(i)2
Ai for all i 2 K. One variable xa is associated with each
joint index a 2 A. Thus, for example in a 3ITP with in-
dex sets I, J and L, the variable xa stands for xij ` when
the joint index is a = (i, j, `).

Given unit costs ca 2R for all a 2 A, a linear objec-
tive function is

min
X
a2A

caxa (1)

and the variables are usually restricted to be nonnega-
tive:

xa � 0 for all a 2 A: (2)

Given the integer m with 0 < m < k, the demand
constraints of the m-fold k ITP are defined as follows.
Let (Kk� m) denote the set of all (k �m)-element subsets
of K; an F 2 (Kk�m) is interpreted as a set of k�m ‘fixed
indices’. Given such an F and a (k � m)-tuple g 2 AF =
˝f2FAf of ‘fixed values’, let

A(F; g) D fa 2 A : a( f ) D g( f ); 8 f 2 Fg

be the set of k-tuples which coincide with g on the fixed
indices. Them-fold demand constraints are

X
a2A(F;g)

xa D dFg

for all F 2

 
K

k � m

!
; g 2 AF ;

(3)

where the right-hand sides dFg are given positive de-
mands associated with the values g for fixed index sub-
set F. These ‘demands’ may also denote supplies or ca-
pacities when the indices represent sources or some
other resource type. When some of these resources are
in excess, the equality in constraints (3)may be replaced
with inequalities. Problem (1)–(3) is a k ITP. Adding
the integrality restrictions

xa 2 N for all a 2 A; (4)

yields an integer MITP.
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As mentioned above, the most common cases arem
= k�1, defining axial MITPs; and m = 1, defining pla-
nar MITPs. For the axial problems, the notation may
simplified by letting dig = dFg when F = { i }. Note that
each variable xa appears in the same number k of axial
and planar demand constraints; however there are onlyP

i 2 K |Ai| axial constraints, versus
P

i 2 K
Q

f 2 K \ { i }

|Af | planar constraints. Of course, it is possible to com-
bine demand constraints with different values of m, so
as to formulate different types of restrictions (e. g., see
[5] and [16]).

Reductions between MITPs are presented in [16],
where it is shown in particular that anm-fold k ITP can
be reduced to a 1-fold k ITP for any m (with 0 < m <
k), thereby generalizing a result in [14]. Thus, an algo-
rithm that solves planar k ITPs is in principle capable of
solving m-fold k ITPs for any m (with 0 <m < k).

Notice that any MITP with arbitrary right hand
sides can be transformed to a MITP with right hand
sides 1. This is a (pseudopolynomial) transformation
and simply involves duplicating a resource with a sup-
ply of q units by q unit-supply resources. There seems
to be little advantage in doing so, except perhaps in con-
verting an integer MITP into one with 0–1 variables.

Another issue is the existence of feasible solutions.
For an axial MITP the requirement of equal total de-
mands

P
g dig =

P
g djg for all i, j 2 K is a necessary

and sufficient condition for the existence of feasible so-
lutions. Feasibility conditions are more complicated for
nonaxial problems; see [40] for a review of results for
planar problems. See also [41, Chapt. 8] for properties
of polytopes associated with (integer) MITPs, including
issues of degeneracy.

Applications

Transportation and Logistics

MITPs are used to model transportation problems that
may involve different goods; such resources as vehicles,
crews, specialized equipment; and other factors such as
alternative routes or transshipment points. Thus index
sets A1 and A2 may represent destinations and sources,
respectively, and the other sets A3, A4, . . . these addi-
tional factors. The type of ‘demand’ constraints used
will reflect the availability of these factors and their in-
teractions. Thus, for example, an axial demand con-
straint (3) with right-hand side d3i will be used for a ve-

hicle type i 2 A3 of which d3i units are globally available
(at identical cost) to all sources and destinations, while
a constraint with F = {2, 3} will be used if there are dFg
vehicles of type g(3) available at the different sources
g(2).

Interesting cases arise when each resource or factor
` 2 Ai corresponds to a point Pi, ` in ametric space, i. e.,
a set with a distance ı, and the unit costs ca are ‘de-
composable’ as defined below. Each joint index a 2 A
may be interpreted as a cluster of points among which
transportation and other activities are conducted. The
unit cost ca reflects the within-cluster transportation
costs associated with these activities; it is decomposable
if it can be expressed as a function of the distances
between pairs of points in the cluster a. Examples in-
clude the diametermaxi, j ı(Pi, a(i), Pj, a(j)), when all these
activities are performed simultaneously; the sum costsP

i, j ı(Pi, a(i), Pj, a(j)) when all activities are performed
sequentially; and the Hamiltonian path or path costs,
when all points Pi ` in the cluster have to be visited in
a shortest sequence.

Other interesting cases arise when one of the indices
denotes time. A simple dynamic location problem [27]
may be modeled as an axial k ITP, where index set A1

may denote the set of facilities (say, warehouses) to be
located; A2 that of candidate locations; and A3 that of
time periods. The costs cijt may include discounted con-
struction and operating costs of these facilities. See [38]
and [33] for other applications of this type.

Timetabling

Other problems involving time and which can be for-
mulated as MITPs arise in timetabling or staffing appli-
cations. To illustrate, consider the following generic sit-
uation. Given are N employees (index i), each of which
can be assigned to one ofM tasks (index j) during each
of T time periods (index k). Moreover, for each pair
consisting of a task and a time period a number rjk is
given denoting the number of employees required for
task j in period k. Also, a number rij is given denoting
the number of periods that task j requires employee i.
An employee can only be assigned to one task during
each time period. Finally, there is a cost-coefficient cijk
which gives the cost of employee i performing task j in
period k. This problem is called the multiperiod assign-
ment problem in [21] (see also the references contained
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therein). To model this as a planar 3ITP, let A1 be the
set of employees; A2 the set of tasks; A3 the set of time
periods;

dFg D

8̂
<̂
ˆ̂:

r jk for F D f2; 3g; 8g D ( j; k);
1 for F D f1; 3g; 8g D (i; k);
ri j for F D f1; 2g; 8g D (i; j);

and require the decision variables to be in { 0, 1 }. A spe-
cial case arises when rjk = 1 for all j, k and N = M.
The polyhedral structure of the resulting planar 3ITP
is investigated in [7]. Other references dealing with
timetabling problems formulated as MITPs are [10,15]
and [12].

Multitarget Tracking

Consider the following (idealized) situation. N objects
move along straight lines in the plane. At each of T time
instants a scan has been made, and the approximate po-
sition of each object is observed and recorded. From
such a scan it is not possible to deduce which object
generated which observation. Also, a small error may
be associated with each observation. A track is defined
as a T-tuple of observations, one from each scan. For
each possible track a cost is computed based on a least
squares criterion associated with the observations in the
track. The problem is now to identify N tracks while
minimizing the sum of the costs of these tracks. This
problem is called the data-association problem in [25].
It can be modeled as an axial integer TIAP as follows:
let Ai be the set of observations in scan i, i = 1, . . . , T,
and let dig = 1, i = 1, . . . , T, g = 1, . . . , N. Not surpris-
ingly, this problem is NP-hard already for T = 3 (see
[37]; notice however that this does not follow from the
NP-hardness of 3IAP due to the structure present in the
cost-coefficients in the objective function of multitarget
tracking problems). Other references dealing with tar-
get tracking problems formulated as axial MIAPs are
[23] and [24]; see also [20].

Tables with Given Marginals

Other statistical applications of MITPs require finding
multidimensional tables with given sums across rows or
higher-dimensional planes, as specified in constraints
(3). The right-hand sides dFg of such constraints are

often known as marginals. In a simple application [3]
arising in the integration of surveys and controlled selec-
tion, each index set represents a population from which
a sample is to be drawn. A (joint) sample is a k-tuple,
one from each population. The marginals are speci-
fied marginal probability distributions over each pop-
ulation, giving rise to axial demand constraints. Given
sample costs ca, the problem is to find a joint probability
distribution, defined by (xa), of all the samples, consis-
tent with these marginal distributions and of minimum
expected cost (1).

In contrast, problems of updating input-output ma-
trices (see [34] and references therein) typically have
nonlinear objectives. In such problems, given are a k-
dimensional array B of data (for example, past input-
output coefficients) and arrays d of marginals (for ex-
ample, forecast aggregate coefficients) with appropri-
ate dimensions. The problem is to determine values xa,
the updated array entries, satisfying the demand con-
straints corresponding to the given marginals, and such
that the resulting updated array X = (xa) differs as little
as possible from the given array B, as specified by an ap-
propriate (nonlinear) objective function. A (nonlinear)
MITP arises when the values xa are constrained to be
nonnegative, a natural requirement in many contexts.

Other Applications

include an axial integer 3ITP model for planning the
launching of weather satellites [27], and an axial integer
5IAP arising in routing meshes in circuit design [9].

Solution Methods

As noted above, MITPs are linear programming prob-
lems with a special structure. There are several propos-
als for extensions of LP (transportation) algorithms to
MITPs (e. g., [4,13] for 3ITPs and [1] for a 4ITP).

As also mentioned earlier, integer MITPS are hard
to solve. Exact algorithms have been proposed for the
axial integer 3IAP (see Three-index Assignment Prob-
lem) and for the planar integer 3IAP (see [39] and
[19]). Other exact approaches for integer MITPs rely
on structure that is present in the particular application
considered (see, e. g., [12]).

Several methods have been proposed to obtain good
approximate solutions to integer MITPs. In [21]results
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are reported for a rounding heuristic on some medium-
sized planar integer 3ITPs. A tabu search algorithm for
this problem is described in [18]. Heuristic solution
approaches based on Lagrangian relaxation are pro-
posed in [26,28] and [29] for multitarget tracking prob-
lems.

One major difficulty with these exact or approxi-
mate solution methods may be the sheer size of MITP
formulations; if, for example, all |Ai| = n then anm-fold
k ITP has nk variables and (km)nk�m constraints. In con-
trast, the two approaches sketched below yield feasible
solutions to axialMITPs much more quickly than sim-
ply writing down all the cost coefficients. In particular,
these algorithms only produce the nonzero variables xa
and their values; all other variables are zero in the solu-
tion. In addition, this solution is integral if all demands
are integral. Of course, the effectiveness of these meth-
ods relies on some assumptions on the cost coefficients
ca, assumptions which are verified in several applica-
tions.

A Greedy Algorithm for Axial MITPs

The greedy algorithm below (a multi-index extension of
the North–West corner rule) finds a feasible solution to
axial MITPs in O(k

P
i |Ai|) time, which is (for fixed k)

linear in the size of the demand data dig . This solution
is in fact optimal if the cost coefficients are known to
satisfy a ‘Monge property’ [3,31,32] defined below. (For
k = 3, this greedy algorithm is already described in [4]
to obtain a basic feasible solution).

Consider the axial k ITP with equality constraints
(3) and assume that each Ai = { 1, . . . , |Ai| }. Recalling
that the demands are denoted dig , assume that

P
g2Ai

dig =
P

g2A1 d1g for all i 2 K, a necessary and sufficient
condition for the problem to be feasible.

PROCEDURE greedy MITP algorithm
WHILE (

P
g2Ai

di g > 0 for all i 2 K) DO
let a(i) = minfg 2 Ai : di g > 0g;
let � = minfdi;a(i) : i 2 Kg;
let xa = �;
FOR i 2 K DO let di;a(i) = di;a(i) ��;

RETURN x
END

A greedy algorithm for axial MITPs

AMonge Property

The join a _ b and meet a ^ b of a, b 2 A are

(a _ b)i D maxfa(i); b(i)g;

(a ^ b)i D minfa(i); b(i)g for all i 2 K:

The cost coefficients (ca) satisfy theMonge property if

ca_b C ca^b � ca C cb for all a; b 2 A:

Note that this is just the submodularity of the function
c: A! R defined on the product lattice A, see [3,31,32].
These references show that the above greedy algorithm
returns an optimal solution for all feasible demands if
and only if the cost function satisfies the Monge prop-
erty. The latter two references also extend the greedy
algorithm
i) to the case of forbidden cells when the nonforbidden

cells form a sublattice of A; and
ii) so that it returns an optimal dual solution.
They also show that optimizing a linear function over
a submodular polyhedron is special case of the dual
problem. It is shown in [32] that the primal problems
are equivalent to the ‘submodular linear programs on
forests’ of [8].

Cost functions c with the Monge property include
typical decomposable costs (as defined above) when all
the points are located on a same line or on parallel lines
(one line for each factor type Ai). For these problems,
the greedy algorithm above amounts to a ‘left to right
sweep’ across the points.

Hub Heuristics for Axial MITPs

The basic idea ([30], extending earlier work on axial
3IAPS [6] and MIAPs [2] with decomposable costs)
is to solve a small number of ordinary transportation
problems and to expand their solutions into a feasible
solution to the original MITP. For a large collection of
decomposable costs arising from applications, the ob-
jective value of this feasible solution is provably within
a constant factor of the optimum.

Given an index h, called the hub, determine, for each
index i 6D h, a feasible solution to the ordinary trans-
portation problem defined by supplies (dij)j 2 A(i) and
(dhg)g 2 A(h). The Expand procedure below then takes as
inputs these solutions y(h) = (yi)i 6D h and expands them
into a feasible solution x(h) to the axial MITP. Its run-
ning time is O(|Ah |

P
i 6D h| Ai|).
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FOR k = 1; : : : ; n;

PROCEDURE Expand(h; y(h))
FOR g := 1 TO nh DO

q := 0;
a(i) := 1 for i 2 K n h;
WHILE(q < dh;g) DO

let ` be such that
y`
a(`);g = minfyra(r);g : r ¤ hg;

x(h)a := y`
a(`);g ;

yra(r);g := yra(r);g � x(h)a for all r 2 K n h;
a(`) := a(`) + 1;
q := q + x(h)a ;

RETURN x(h)
END

The Expand procedure for axial MITPs

In the hub heuristics for decomposable costs, the or-
dinary transportation problems use as cost coefficients
the distances ı(Pij, Phg) between the corresponding
points Pij and Phg in the metric space. The expanded
MITP solution xh would be optimum if the cost func-
tion was that of the star with center h, namely if ca =P

i 6D h ı(Pi, a(i), Ph, a(h)). The triangle-inequality prop-
erty of the distance ı allows one to bound the cost
penalty from using this h-star cost function instead of
the actual decomposable cost function.

In the single hub heuristic, one chooses a hub h 2 K;
solves these k� 1 transportation problems; inputs their
solutions y(h) to Expand; and simply outputs the result-
ing MITP solution x(h). If the distance ı satisfies the tri-
angle inequality, the cost of this solution x(h) is no more
than k � 1 times the optimal cost, in the worst case,
for many common decomposable cost functions. The
multiple-hub heuristic is an obvious extension whereby
one performs the single-hub heuristic k times, once for
each h 2 K, and retains the best solution. This amounts
to solving (K2 ) ordinary transportation problems. Under
the same assumptions as above and for many common
decomposable cost functions, the cost of the resulting
solution is less than twice the optimum cost in the worst
case.

See also

� Generalized Assignment Problem
� Stochastic Transportation and Location Problems
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Multilevel, or hierarchical, programming problems
(MLP) are constrained optimization programs in which
subsets of the solution set are themselves solution sets
of other, lower-level optimization programs. Several
general MLP problem statements exist. They differ
from one another in the specifics of optimization vari-
able distribution among the levels and the definition of
the objectives and constraints at particular levels.

Given a set of objectives {f i}i = 1, . . . ,M with f i:Rn!R
and a vector of variables x 2Rn, partitioned into subsets
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x = (x1, . . . , xM) for some integerM denoting the num-
ber of subsystems, a prototypical form of MLP may be
stated as follows:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

minx12S1 f1(x)
s.t. x2 2 argminx22S2f f2(x)g

:::

xM 2 argminxM2SM f fM(x)g;

where the optimization problem at each level i controls
its own subset of variables xi, while the other subsets
of variables x1, . . . , xi� 1, xi + 1, xM serve as parameters.
The constraint set for each level is Si � {x: hi(x) = 0,
gi(x) � 0} with hi: Rn ! Rmhi and gi: Rn ! Rmgi for
some integers mhi , mgi .

This form of MLP inspired by the work of H.
Stackelberg [92] can be viewed as an M-player Stack-
elberg game [18,84]. Its interpretation is that of M
autonomous players or decision makers seeking to
minimize their (possibly constrained) objective func-
tions while manipulating subsets of decision or design
variables disjoint from those of other decision makers.
The higher-level problems are implicit in the variables
of the lower-level problems. This formulation has been
studied widely in the bilevel case. See, for example, [15]
and the references therein. In general, all problem lev-
els, but the outermost one, may contain a number of
concurrent optimization problems.

A related variant of the problem, known as the gen-
eralized bilevel programming problem, represents the
reaction of the lower-level problem to decisions made
by the upper-level problem via a solution of an equilib-
rium problem stated as a variational inequality:

8<
:
min x2X;

y2Y(x)
f1(x; y)

s.t. h f2(x; y); y � zi � 0 for all z 2 Y(x);

where the upper-level domain X is such that the lower-
level domain Y(x) is not empty. This formulation
was introduced by P. Marcotte in [63] and studied in
[45,64], and [71].

Multilevel problems may be partitioned into two
classes with respect to another criterion [100]. In one
of the classes, upper-level optimization problems de-
pend on the corresponding lower-level ones through

the optimal value functions (or the marginal functions)
of the lower-level problems. An optimal value function
represents the value of a lower-level objective function
at a solution of that lower-level problem. In the other
class, upper-level problems depend on the correspond-
ing lower-level problems through the actual optimal so-
lutions of the latter. An example of two such formula-
tions in engineering design optimization will be given
further.

Multilevel programming problems arise in numer-
ous applications where the structure of the applica-
tion involves hierarchical decision making or where
the sheer size and complexity of the problem neces-
sitates partitioning of the system and processing the
subsystems in a hierarchical fashion. Information on
applications of multilevel optimization in such varied
areas as power systems, water resource systems, ur-
ban traffic systems, and river pollution control can be
found in [36,50,51,52,62,69,70,85], and many other ref-
erences. The use of multilevel algorithms in engineer-
ing control is well documented, for instance, in [46]
and [57].

The broad area ofmultidisciplinary design optimiza-
tion(MDO) – a term that denotes a large set of re-
search subjects and practical techniques for the design
of complex coupled engineering systems – is particu-
larly amenable to the use of multilevel methods, due
to the extreme computational expense and the organi-
zational complexity of the field. For instance, the de-
sign of aircraft involves aerodynamics, structural anal-
ysis, control, weights, propulsion, and cost, to list a few
disciplines. The complexity and expense of each dis-
cipline have assured that most disciplines have devel-
oped into vast, autonomous fields of study, so that prac-
tically feasible optimization methods that involve the
contributing disciplines must take into account such an
autonomy and the hierarchical organization. Maintain-
ing disciplinary autonomy while accounting for inter-
disciplinary subsystem couplings and allowing for inte-
grated system optimization with respect to system and
interdisciplinary objectives is one of the tasks of MDO.
Overviews of multidisciplinary optimization may be
found in [6] and [90].

Practitioners of engineering have been using mul-
tilevel methods, in some form, since optimization al-
gorithms made their appearance in engineering prob-
lems. The seminal works [60,65], and [98] contributed
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to a systematic development and understanding of hi-
erarchical optimization. Multilevel methods have been
studied extensively in application to multidisciplinary
design ([16,17,22,96,97]) and single-discipline design
areas that give rise to large problems, such as structural
optimization (e. g., [74,87,91]). Engineering multilevel
optimization has always had a strong connection with
multi-objective optimization (e. g., [53]).

Problem Formulation

The procedure of formulating an engineering design
problem as a multilevel or a bilevel problem is difficult
and depends on the complexity and size of the prob-
lem. The general components in formulating a multi-
level optimization problem are as follows:
� The original problem is studied to determine its

structure. Structure is of paramount importance in
deciding to adopt a particular formulation. For in-
stance, most formulations assume that the problem
subsystems share only a relatively small number of
variables, i. e., that the bandwidth of interdisciplinary
coupling is relatively small.

� The problem is partitioned into a system (or upper-
level) problem and subsystem (or lower-level) prob-
lems. Decisions are made on inclusions of particular
variables and constraints into the system and sub-
systems. Decisions are also made on the form of the
system and subsystem objectives.

� Finally, algorithms are selected for solving the sys-
tem and subsystem optimization problems. One
must distinguish a formulation of the problem from
the algorithm used to solve that formulation. While
some of the multilevel formulations can be eas-
ily shown to be mathematically equivalent to the
original problem with respect to solution sets, they
may not be equivalent with respect to other at-
tributes, such as constraint qualifications and opti-
mality conditions. Hence the numerical properties
of algorithms applied to different formulations vary
widely [8,9,10].

Problem decomposition constitutes a special area of
study. In general, decomposition techniques take ad-
vantage of the problem structure and depend on the
strength and bandwidth of couplings among the sub-
systems. Separable and partially separable problems are
particularly amenable to decomposition.

Two types of decomposition may be considered
in design optimization. Coarse-grained decomposi-
tion with respect to disciplines presents no difficulty,
because the design problem initially consists of au-
tonomous parts. The difficulty at this level of problem
formulation is in integration or synthesis. However, in
realistic applications, even though the coarse-grained
decomposition is frequently obvious, the complexity of
the problem requires that a dependence analysis be per-
formed in order to determine the most advantageous
arrangement or sequencing of the disciplinary subsys-
tems in the optimization procedure. Automatic tech-
niques based on graph-theoretic foundations may be
found in [78] and [79], for instance.

Finer-grained decomposition within a particular
discipline may be addressed by a multitude of tech-
niques for decomposition of mathematical programs.
Extensive references on decomposition in general
mathematical programming, beginning with [19] and
[31], and extended in [49] and many others, can be
found in [42] and [43]. Further references to decompo-
sition techniques aimed specifically at design problems
can be found in [95].

General multilevel programming presents an ex-
ceedingly difficult problem, and many multilevel for-
mulations and algorithms of engineering design rely
more on heuristics than on theoretically substantiated
foundations. There are exceptions, for instance, such as
those in [12,29,68], and [75]. While many engineering
multilevel approaches have enjoyed success when ap-
plied to specific problems, insufficient analytical foun-
dation and the difficulty of the problem usually mean
that the approaches are not robust, and extensive ‘fine-
tuning’ of heuristic parameters is required for each new
problem or instance of a problem. Hence, recent years
have seen renewed interest in systematic, analytically
substantiated approaches to MLP. Many such develop-
ments have taken place in bilevel optimization.

Bilevel Optimization

Although bilevel optimization problems (BLP) form
the simplest case of multilevel optimization, they are
very difficult to solve and constitute a fertile research
area. A survey of the field can be found in [28]. A large
bibliography with an emphasis on theoretical develop-
ments is also provided in [94].
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The conventional general bilevel problem may be
posed as follows:
8̂
<̂
ˆ̂:

minx2X f1(x; y)
s.t. h1(x; y) D 0

g1(x; y) � 0;

where y solves for fixed x:
8̂
<̂
ˆ̂:

miny2Y f2(x; y)
s.t. h2(x; y) D 0

g2(x; y) � 0:

The cases of linear and convex problem functions have
been studied widely. A popular class of methods for the
linear bilevel problem (extreme point algorithms) com-
putes global solutions by enumerating extreme points
of the lower-level feasible set (e. g., [27]). Convex bilevel
problems are often solved by branch and bound meth-
ods (e. g., [15]). A survey of methods for linear and con-
vex bilevel programming can be found in [11].

The considerably more difficult case of nonlinear
and nonconvex problem functions has inspired much
research activity as well but has, to date, led to few
computationally successful algorithms. The existing ap-
proaches to nonlinear bilevel optimization can be clas-
sified into several categories.

Penalty-Based Methods

This category uses penalty methods. In some algo-
rithms (e. g., [1]), a barrier function penalizes the
lower-level objective. In double-penalty methods, both
the lower-level problem and the upper-level problem
are approximated by sequences of unconstrained opti-
mization problems [56,61,64]. Single or double-penalty
methods are, in general, expected to converge slowly,
especially for highly nonlinear problems. Thus using
these methods for the usually large and nonlinear de-
sign optimization problems may be difficult.

KKT-Based Methods

The algorithms of this category convert the bilevel
problem into a nonconvex, single-level optimization
problem by using the Karush—Kuhn—Tucker condi-
tions (KKT conditions) of the lower-level problem
as constraints on the upper-level problem [14,15,20,

37,44]. If the lower-level problem is convex, the KKT
formulation is equivalent to the original formulation
[14]. However, even in this case, the KKT conditions
on the lower-level problem include the complementar-
ity slackness condition as a constraint. The form of
the complementarity condition makes the single-level
problem difficult to solve. The KKT formulation suffers
from an additional difficulty. Namely, it is well known
from the study of the sensitivity and stability of non-
linear programming (e. g., [40]) that even if the lower-
level problem behaves exceedingly well in that it satis-
fies such stringent assumptions as strong second order
sufficiency and regularity as a constraint qualification,
the feasible set of the single-level problem will generally
not be differentiable with respect to x. Hence, the per-
formance of gradient-based solvers on the transformed
problem may be adversely affected.

Descent-Based Methods

Another category of algorithms is based on solving
subproblems that result in descent for the upper-level
problem with gradient information of the lower-level
problem used in a number of ways [34,39,59,83].

The remainder of the article will be devoted to
a more detailed description of two specific approaches
to nonlinear, nonconvex problems that arose from the
need to solve engineering design problems. One ap-
proach is a bilevel formulation, the other is an algo-
rithm for solving multilevel formulations.

Examples: Collaborative Optimization

Collaborative optimization (CO) is a general approach
to solving multidisciplinary design optimization prob-
lems by formulating them as nonlinear bilevel pro-
grams of special structure. CO comprises a number of
methods. Its antecedents can be traced to earlier hier-
archical approaches, as in [60] and [98]. The underly-
ing idea of CO appeared in [13,80,81,82,88] and [96,97].
The approach has recently received attention under the
name of collaborative optimization [22,23,86,93].

Given that MDO problems are naturally partitioned
into subsystems along disciplinary lines, CO suggests
an intuitively attractive way to formulate the optimiza-
tion problem so that the autonomy of the disciplinary
subsystem computations is preserved. However, the ap-
proach presents a problem that is difficult to solve by
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means of conventional nonlinear programming soft-
ware [7,58]. The analytical and computational aspects
of CO were addressed in [9], of which the following
discussion is an abstract. As a complete description of
CO is lengthy, only an abbreviated version is consid-
ered here.

It is assumed that the original system is composed of
a number, say M, of interdependent but autonomous
systems, each of which is described by a disciplinary
analysis Ai, i = 1, . . . ,M, expressed in the form

Ai (xi ; yi(xi)) D 0;

where, given a vector of disciplinary design variables
xi, the analysis (frequently represented by a numerical
differential equation solver or simulator) is performed
to yield the vector of state variables or responses yi(xi).
The sets of disciplinary variables xi are not necessarily
disjoint. The disciplinary constraints are usually repre-
sented by inequalities

ci(xi ; yi (xi)) � 0:

Once the system objective and variables and the subsys-
tem constraints and variables are identified, the bilevel
problem is formed as follows:

The constraints of the system problem comprise
the ‘consistency’ (or ‘coupling’ or ‘matching’) condi-
tions that are used to drive the discrepancy among the
inputs and outputs shared by the subsystems to zero.
The values of the constraints are computed by solving
the subsystem optimization problems, and the num-
ber of consistency constraints is related to the number
of subsystems and variables shared among the subsys-
tems. The form of the consistency constraints deter-
mines a particular implementation of CO.

Let � and � represent system-level variables corre-
sponding to inputs and outputs of subsystems, respec-
tively. Then, given M subsystems, the abbreviated sys-
tem program is

(
min F(�; �)
s.t. G(�; �) D 0;

(1)

where

G(�; �) D

0
B@

g1(�; �)
:::

gM(�; �)

1
CA

is the set of system consistency constraints obtained by
solving lower-level subproblems, each of which is of the
form

(
min 1

2

�
k�i � xik2 C k�i � y(xi)k2

�

s.t. ci (xi ; y(xi)) � 0;
(2)

where i is the number of the subsystem. Thus, the ob-
jective of a subsystem optimization problem is always
to minimize the discrepancy between the shared vari-
ables of the subsystems, in a least squares sense, sub-
ject to satisfying the disciplinary constraints, which do
not depend explicitly on the system variables passed
down to the subsystems as parameters. The subsystems
remain feasible during optimization, while interdisci-
plinary feasibility is gradually attained at the system
level via the consistency constraints. Maintaining disci-
plinary feasibility is extremely important from the de-
sign perspective.

The problem now consists of a set of decoupled sub-
problems that can be solved independently and in par-
allel.

One instance of the system-level consistency condi-
tions gives rise to the form in which CO is usually pre-
sented: namely, the consistency condition is intended
to drive to zero the value function of the subproblem
(2). That is,

gi (�; �) D
1
2
k� � x�k2 C k� � y(x�)k2 ; (3)

where x� solves the subsystem optimization problem.
Another instance of system-level consistency condi-

tions matches the system-level variables with their sub-
system counterparts computed in subproblem

gi (�; �) D (� � x�; �� y(x�)): (4)

The behavior of optimization algorithms applied to the
original and CO formulations will differ greatly, as the
formulations are not equivalent with respect to con-
straint qualifications or optimality conditions.

In general, value functions are not differentiable,
and this may cause difficulties for optimization algo-
rithms applied to the system-level problem. However,
under a number of strong assumptions, the constraints
are locally differentiable and can usually be computed.

Derivatives of the system-level constraints with re-
spect to the system-level design variables are the sensi-
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tivities of the minima or the solutions of the subsystem-
level optimization problems to parameters. The area of
sensitivity in nonlinear programming has been studied
extensively. Relevant results can be found in [40] and
[41]. In particular, under the assumptions of sufficient
smoothness, second order sufficiency, regularity as con-
straint qualification, and strict complementarity slack-
ness, the basic sensitivity theorem (BST) proves the ex-
istence of a unique, local, continuously differentiable
solution-multiplier triple for the perturbed problem.
Moreover, locally, the set of active constraints remains
unchanged and regularity and strict complementarity
hold, allowing one to compute derivatives locally. In
fact, under a number of assumptions, stronger state-
ments can be made about the differentiability of the
value function [30,77].

Under the conditions of BST, local first order
derivatives of the consistency constraints (3) have a par-
ticularly simple form because, in the case of CO, the
constraints of the lower-level problems do not depend
on parameters. On the other hand, the first order sen-
sitivities of solutions of the lower-level problem that
form the derivatives of the consistency constraints (4),
while of closed form, are expensive to compute and
involve second order derivatives of the subsystem La-
grangians.

There is another feature of the CO formulation with
compatibility constraints (3) that will cause difficul-
ties for nonlinear programming algorithms applied to
the system-level problem: Lagrange multipliers will al-
most never exist for the equality constrained system
level problem, with all the ensuing consequences. The
nonexistence of Lagrange multipliers is due to the de-
scription of the feasible region that causes the Jaco-
bian of the system-level constraints to vanish at a so-
lution. The formulation with compatibility constraints
(4) aims to address this problem. However, the com-
putation of derivatives for this formulation is clearly
expensive, as it not only involves solving a system of
equations, but also requires the computation of second
order information for the subsystems. The difficulties
are addressed in detail in [9].

In summary, CO is an appealing approach to de-
sign optimization; however, the bilevel nature of the
problem formulation will cause difficulties for con-
ventional nonlinear programming algorithms applied
to the system-level problem. Variations, special algo-

rithms for solution, and alternatives can be found in,
e. g. [33,54,55].

Example: MAESTRO,
a Class of Multilevel Algorithms

Asmentioned earlier, most multilevel formulations and
algorithms for engineering design problems assume
that the bandwidth of coupling among the subsystems
comprised by the multilevel system is small. While
many problems may be stated in this way, it is becom-
ing increasingly important to consider problems with
large bandwidth of coupling where, to use an MDO
expression, ‘everything affects everything else’. MAE-
STRO (a class of multilevel algorithms for constrained
optimization; [2]) is intended for solving large non-
linear programming problems with arbitrary couplings
among the naturally occurring subsystems, i. e., a par-
ticular instance of MDO problems with a single ob-
jective. The class was extended in, e. g., [5] to include
a large class of steps for the nonlinear programming
problem and in [3,4] to incorporate general nonlin-
ear objectives. The class makes no assumptions on the
structure of the problem, such as convexity or separa-
bility.

The algorithms of the class are based on trust re-
gion methodology (see, e. g., [35,38,67]) and are proven
to converge under reasonable assumptions.

The idea of the MAESTRO algorithms is to attain
sequential predicted sufficient decrease conditions for all
the constrained objectives, and is a direct extension of
the multilevel ideas for the equality constrained opti-
mization problem. The approach can be summarized
as follows. Given an initial approximation to the so-
lution of the multilevel problem, the trial step for the
multilevel problem is computed as a sum of a sequence
of substeps, each of which predicts sufficient (or opti-
mal) decrease in the quadratic model of the objective of
a given subproblem, subject to maintaining predicted
decrease in the models of the previous objectives. For
instance, in the case of the unconstrained bilevel prob-
lem, the trial step for the bilevel problem is a sum of two
substeps. The first substep is computed to predict suffi-
cient decrease, via the quadratic model of the innermost
objective f 2, for the subproblem of approximately opti-
mizing

mf2 (s) � f2(xc)Cr f2(xc)>sC
1
2
s>H2(xc)s;
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in the trust region of size ı f2 to produce the substep s f2 ,
where xc is the current approximation to the solution
and H2 is the current approximation to the Hessian of
f 2. The second step s f1 would then approximately mini-
mize the quadratic model of the outermost objective f 1,
constructed at xc C s f2 , in the trust region of size ı f1 ,
subject to constraints that enforce the preservation of
the predicted sufficient or optimal decrease for f 1. The
total trial step is evaluated by using the merit function
designed to account for the sequential processing of the
objectives. The algorithm is shown to converge to crit-
ical points of the bilevel or multilevel problem. Thus,
the essential difference between this approach and the
classical approaches to bilevel optimization is that in-
stead of starting from the optimality conditions for the
bilevel or multilevel problem, the approach attempts to
obtain decrease on the sequence of subproblem mod-
els, while preserving predicted decrease for the previ-
ously processed subproblems, and to measure progress
via the use of an appropriate merit function with rig-
orously updated penalty parameters. It is important to
emphasize that the merit function is used only to eval-
uate the steps, and not to compute them.

The ongoing work is concerned with practical im-
plementation issues and applications to engineering de-
sign problems.

Summary

Multilevel optimization has been an active research
field, both in applied mathematics and in engineer-
ing design. Many open questions remain, in particu-
lar, in the area of practical computational algorithms
for bilevel and multilevel problems. Overviews of some
recent developments can be found in [66].

Understanding the behavior of specific, nonlinear
programming algorithms applied to the system-level
problem of the bilevel or multilevel formulations will
present an interesting and difficult area of inquiry, and
would benefit from the techniques of nonsmooth anal-
ysis and optimization [32,36,47], unconventional no-
tions of constraint qualifications [24,25], and optimality
[99,100].

To facilitate research and testing in the area of algo-
rithms, one may find automatic bilevel and multilevel
problem generators, as well as other sources of multi-
level problems, described in [26,72,73].
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Multilevel optimization methods have been developed
first in the period after 1960. The main scope was to
facilitate the optimization of large scale systems in in-
dustrial processes and to solve trajectory determination
and prediction problems using trajectory decomposi-
tion techniques. The reader may refer in this respect to
the corresponding articles [3] and [26] and to the ref-
erences given there but also to the books [27] and [12].
More recent works on this subject have been published
in [4,14]. It should be mentioned that certain sources
concerning the ideas of multilevel optimization may be
found in well-known treatises of calculus of variations
and theoretical mechanics, cf. e. g. [5,10]. Indeed, the
well-known procedure of variational methods in Me-
chanics of ‘frozen’ variables or constraints has a great
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relationship with the ideas of multilevel optimization.
Also the well-known iterative methods of H. Cross and
G. Kany of linear structural analysis used after 1940
and before the development of computer codes based
on the finite element method (FEM), for the calculation
of framed structures, are nothing than a formulation in
the ‘language’ of structural analysis of a multilevel op-
timization algorithm for the minimization problem of
the complementary energy of the structure, expressed
in terms of the bending moments of the beam and col-
umn connections.

Among the pioneers in the application of the multi-
level optimization methods inmechanics and especially
concerning the calculation of structures involving in-
equality constraints was P.D. Panagiotopoulos [19,20].
The idea was the following: Most mechanical problems
can be expressed as the minimum problems of an ap-
propriately formulated energy function. The decompo-
sition of this initial optimization problem into smaller
subproblems corresponds to the energetic decomposi-
tion of the initial mechanical problem into smaller fic-
titious subproblems. The mutual interaction of these
subproblems yields, after an iterative procedure, the
solution of the initial problem. The aforementioned
method leads to the following three main applications
of the multilevel optimization techniques in the frame-
work of Mechanics and more generally in engineering
sciences.
a) Calculation of large structures.
b) Validation of the simplifying assumptions used for

the calculation of complex structures. Accuracy test-
ing.

c) Accuracy improvement of simplified models used
for the estimation of the behavior of complex struc-
tures.

Note that in the above, the term ‘structure’ can be re-
placed with the term ‘systems’, meaning systems whose
behavior is characterized by the solution of a minimax
problem.

Since most of the multilevel techniques developed
in the early sixties for the trajectory determination
problems in space science are also applicable to sta-
tionarity problems, and since recently it has been
proved that in the dynamic problems involving impact
phenomena the functional of the action is stationary
[22,23] it results that there is also a further application
of the multilevel optimization methods:

d) Calculation of the dynamic behavior of structures
involving impact effects.

To the aforementioned applications the following, clas-
sical one, can be added.
e) Solution of optimal control (minimum of weight or

cost, maximum of strength) in dynamic structural
analysis problems.

This article deals mainly with static systems. Concern-
ing the application d) and e) the reader is referred to
[12,27] in relation with [22,23]. In dynamic problems
analogous methods to the static problems can be devel-
oped.

The classical decomposition techniques which are
applied to optimization problems (cf. in this respect
also [20, pp. 355ff]) have been extended and they can
be applied also to substationarity problems [25], i. e. to
problems of the type

0 2 @ f (x);

where f is a nonconvex nonsmooth energy function
and @ denotes the generalized gradient of F.H. Clarke
[7] as it has been extended by R.T. Rockafellar [25] for
nonLipschitzian functionals. In this case the variational
inequalities of the convex energy problems are replaced
by hemivariational inequalities (cf. e. g. [8,17,20,21])
and instead of a global minimum of the convex po-
tential or complementary energy functionals, the local
minima and maxima are searched and among them the
global minimum as well. For the numerical treatment of
hemivariational inequalities certain numerical methods
have been developed (cf. e. g. [21]) and among them,
the two methods described in [15] are extensions of
the multilevel optimization methods to substationarity
problems.

It should also be noted that most of the domain de-
composition methods are special cases of the multilevel
optimization algorithms, as it results easily if one con-
siders the energy functionals corresponding to the par-
tial differential equations studied. Then the domain de-
composition leads to energy functionals which have to
be minimized on the decomposed parts of the domain.

Finally, it should be mentioned that fractal geome-
tries in optimization problems arising in Mechanics are
treated by means of appropriate multilevel transforma-
tions of the problem as is will be shown further. It is evi-
dent that an optimization problem with many variables
cannot always directly be decomposed into indepen-
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dent optimization subproblems. The aim of the mul-
tilevel optimization is to define with respect to an op-
timization problem, appropriate mutually independent
subproblems. Each of these when solved independently
yields the optimum of the overall problem after an iter-
ative procedure which is called second-level controller.
The decomposition into subproblems is achieved by
choosing some variables, called coordinating variables,
which are freely manipulated by the second-level con-
troller in such a way that the subproblems (first-level of
the problem) have solutions which in fact yield the op-
timum of the initial problem, i. e. before its decomposi-
tion into subproblems. Here, the ideas of [3] are closely
followed.

There are several different methods of transforming
a given constrained optimization problem into a multi-
level optimization problem. All these methods are basi-
cally combination of two methods: the feasible decom-
position method or model coordination method and the
nonfeasible decomposition method or goal coordination
method.

Let us consider the problem
8̂
<̂
ˆ̂:

min
x;u

˘ (x;u)

s.t. f(x;u) D 0
R(x;u) � 0;

(1)

where x is a vector in En, u is a vector in Em, f is an n
vector of C2 functions,˘ is a twice continuously differ-
entiable (C2) function, and R is an r vector of C2 func-
tions. To decompose, coordinating variables s may be
substituted not only for a single variable but also, for
functions g(x, u), so that˘ is splitted intomutually dis-
joint parts and the f and R equations contain no com-
mon x, u, or s variables between the subproblems. Thus
the following problem results:

˘ (x;u; s) D
NX
iD1

˘ (i)(x(i);u(i); s(i))

f(i)(x(i);u(i); s(i)) D 0; i D 1; : : : ;N;

R(i)(x(i);u(i); s(i)) � 0; i D 1; : : : ;N:

The (i) denotes to the ith subproblem or subsystem
which must be optimized. For example in a control
problem x denotes the state, u denotes the control and
x(1) is the state vector for the first subsystem. Also the

coupling equations must be added:

s(i) D g(i)(x( j);u( j)) for all j ¤ i:

The Lagrangian of the new problem reads

ĕ(x;u; s;�;�;�)

D

NX
iD1

˘ (i) C

NX
iD1

�(i)> f(i) C
NX
iD1

�(i)>(R(i) � � (i))

C

NX
iD1

�(i)>(g(i) � s(i)); (2)

where � (i) � 0 are additional slack variables such that

R(i) � � (i) D 0:

ĕ is immediately separable into N individual subsys-
tems, except for its last term.

In the method of nonfeasible decomposition it is as-
sumed that �(i) has a known value. The term �(i) | s(i) is
put in the ith subsystem and all of the �(i)|g(i)(x(j), u(j))
terms associated with the jth variables are put in the jth
subsystem. On the other hand, in the feasible decompo-
sition method it is assumed that s(i) has a known value.
Moreover, all of the �(i) |[g(i)(x(j), u(j)) � s(i)] terms as-
sociated with the jth variables are put in the jth sub-
system. In both cases, the optimization problem is sep-
arable and each subsystem can be optimized indepen-
dently. Equation (2) is rewritten in more compact form
as

ĕ(x; v;�;�;�)

D F(x; v)C �>f(x; v)C �>[R(x; v)� � ]

C �>h(x; v); (3)

where � � 0, v represents u and s and h(x, v) denotes all
g(i) � s(i), � is a Lagrange multiplier vector of the same
dimension as g, � is an r vector including all Lagrange
multipliers, and � is an n vector including all Lagrange
multipliers.

The Kuhn–Tucker theory of nonlinear program-
ming [9] implies that if ˘ (x, v) has a critical point at
(x0, v0) such that the constraint equations in (1), are
satisfied, and if the rank of
"�

@f
@y

�> �
@R
@y

�> �
@h
@y

�>#
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is full and equals the rank of
"�

@f
@y

�> �
@R
@y

�> �
@h
@y

�> �
@˘

@y

�>#
; (4)

where

y �
�
x
v

�

at (x0, v0), then a set of unique Lagrange multipliers �0,
�0 and �0 exist at the critical point. The necessary con-
ditions for a critical point (local minimum) are

@ĕ
@x
D
@ĕ
@v
D 0; �i Ri D 0; R � 0; � � 0; (5)

@ĕ
@�
D f> D 0;

ĕ
@�
D h> D 0: (6)

If ˘ (x, v) is convex, if f i(x, v) and hi(x, v) are convex
for �0i and �

0
i positive, or if f i(x, v), hi(x, v), Ri(x, v) are

concave for �0i , �
0
i ,�

0
i negative, and the above necessary

conditions are satisfied, then ˘ (x0, v0) is the absolute
minimum of (1) and ĕ has a global saddle point at (x0,
v0); that is,

ĕ(x; v;�0;�0;�0) � ĕ(x0; v0;�0;�0;�0)

� ĕ(x0; v0;�;�;�)

for all x, v,�,�, and �. These conditions can be relaxed
to local convexity and concavity such that only a local
minimum and saddle point are assured.

The nonfeasible gradient controller of L.C. Lasdon
and J.D. Schoeffler [11] has the following form: Given
(1), suppose that
a) ĕ has a global saddle point at (x0, v0;�0, �0, �0);

and
b) for any given �, a finite constrained (unique) mini-

mum (constrained by f and R) exists.
Then the iterative procedure given by

iC1� D i�C	�;

where

	� D C�h(x�; v�); with � > 0;

will converge to �0 and the absolute minimum of (1).
Note that a local saddle point can replace a), then the

initial guess on � must be within this saddle region.
However, then the algorithm leads only to a local min-
imum. This Lasdon gradient controller can be consid-
ered as a variant of the modified Arrow–Hurwicz gra-
dient method of K. Arrow, L. Hurwicz and H. Uzawa
[1].

The feasible gradient controller of C.B. Brosilow et
al. [6] has the following form: Given (1), suppose that
a) a finite minimum exists at (x0, v0); and
b) all the conditions of (5) and (6) are fulfilled except

for @ĕ /(@s) D 0, (where v denotes all s and u).
Then the iterative procedure given by

iC1s D isC	s;

where

	s D ��

 
@ĕ
@s

!
; with � > 0;

will converge to s0 = x0 and the minimum of (1).
The good choice of � is important for the gradi-

ent calculations. Then at the second level of the feasible
method, we may write ([3, p. 142]) that

d˘ � D
@ĕ
@s

ds D ��
@ĕ
@s

 
@ĕ
@s

!>
; � > 0:

An estimate of the expected improvement is written as
�˛˘

�
, ˛ > 0, where ˛ is usually 10% or so. Then

� D
˛ ĕ�

�
@ĕ/@s

� �
@ĕ/@s

�> : (7)

In the case of nonfeasible decomposition a similar
equation may be obtained [3]:

� D
˛ ĕ�
g>g

: (8)

Note that 	s and 	� become singular at the optimum
if (7) and (8) are used, respectively, and therefore these
values of	s and	� are not appropriate to obtain exact
solutions.

There is also the possibility to apply a Newton–
Raphson controller both for the feasible and for the
nonfeasible method in the second level (cf. in this con-
text [3, p. 173]).
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For instance examining (5) and (6), it is obvious that
the only necessary condition not satisfied by the subsys-
tems is g = 0 in the nonfeasible decomposition method.
Thus the Newton–Raphson method has as task to solve
g = 0 by an iterative method at the second level.

Note that the main characteristic of the aforemen-
tioned methods, i. e. the decomposition into subsys-
tems and the separable optimization applies also to
nonsmooth convex or nonconvex optimization prob-
lems.

Large Cable Structures

Here a possibility offered in structural analysis by the
multilevel optimization algorithms is presented. Cer-
tain subproblems do not contain inequalities, i. e. are
bilateral, and thus they can be treated by the avail-
able classical (i. e. based only on inequalities) FEM pro-
grams.

In the majority of cable structures the number of ca-
bles and nodes is large, and so an optimization problem
with a large number of unknowns and constraints must
be solved. Here, a multilevel optimization technique
suitable for the solution of this kind of optimization
problem is proposed. The initial optimization problem
is decomposed into a number of subproblems. In the
‘first level’ of the calculation, each subproblem is opti-
mized separately, and in the ‘second level’ the solutions
of these subproblems are combined to yield the overall
optimum.

It is interesting to note that some of these sub-
problems constitute minimization problems without
inequality constraints (corresponding to classical bilat-
eral structures), and the algorithms for their numerical
treatment are much faster. The initial problem is de-
composed into two subproblems: the first involves only
the displacement terms and corresponds to a structure
resulting from the given one by considering that all
the cables act as bars (capable of having compressive
forces), and the second, including only the slackness
terms, corresponds to a hypothetical slack structure. In
order to perform the decomposition, the potential en-
ergy of the structure is written in the form

˘ (u; v) D ˘ 0(u)C˘ 00(v)C u>GK0v; (9)

where

˘ 0(u) D
1
2
u>Ku� u>(GK0e0 C p) (10)

and

˘ 00(v) D
1
2
v>K0v> C v>(a � K0e0): (11)

In the above equations u, v, p, e0 are the displacements,
slackness, loading and initial strain vectors respectively,
K0 is the natural stiffness matrix, K is the stiffness ma-
trix of the assembled structure and G is the equilibrium
matrix. Introducing the variable w the minimization
problem (9) takes the form

min˘ (u; v;w) D ˘ 0(u)C˘ 00(v)C u>GK0w:

The Lagrangian of this problem is

˘1(u; v;w) D ˘ (u; v;w)C �>(v � w);

where � is the vector of the Lagrange multipliers. The
decomposition can be performed by means of two
methods: the nonfeasible gradient controller method of
Lasdon and Schoeffler and the feasible gradient con-
troller method of Brosilow, Lasdon and Pearson [11].
In the nonfeasible gradient controller method the value
of � is supposed to be constant in the first level, say
�1, and the minimization problem decomposes into the
two subproblems

min
u;w
f˘ 0(u)C u>GK0w � �>1 wg

and

min
v

˚
˘ 00(v)C �>1 v : vC p � 0

�
:

After performing the optimization, the values of u, v
and w, e. g. u1, v1 and w1, result. It is obvious that v1
6D w1. The task of the second level is to estimate a new
value of �, e. g. �2 by means of the equation

�2 D �1 C �(v1 � w1); � > 0;

where � is a properly chosen constant (see, e. g., [11]),
and to transmit this value to the first level. The opti-
mization is performed again, new values u2, v2 and w2

result, etc., until the differences vi � wi are made neg-
ligible. The algorithm converges in a finite number of
steps, provided that the minima exist [11].

In the feasible gradient controller method, the value
of w is taken as constant in the first level, e. g. w1, and
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thus the initial problem decomposes into the two sub-
problems

min
u
f˘ 0(u)C u>GK0w1g

and

min
v;


˚
˘ 001 (v)C �

>(v� w001 ) : vC b � 0
�
:

As a result of the optimization, the values of u, v and �,
e. g. u1, v1 and �1 are calculated. By means of the sec-
ond level a new value of w, e. g. w2, is estimated and
transmitted to the first level. This value is given by the
equation

w2 D w1 � �

�
@˘1(u; v;w)

@w

�

wDw1

; � > 0;

where � is a properly chosen constant (see, e. g., [11]).
The optimization yields a new set of values u2, v2 and �2
and the procedure is continued until the difference be-
tween the consecutive values of vector w becomes suffi-
ciently small.

For numerical applications the reader is referred
to [20].

Large Elastoplastic Structures

We consider here the holonomic plasticity model [13],
(extension to nonholonomic plasticity problems is
straightforward) described by the following equations:

e D F0s;

e D e0 C eE C eP ;

eP D N�;

	 D N>s � k;

� � 0; 	 � 0; 	>� D 0;

where F0 is the natural flexibility matrix of the struc-
ture, e the respective strain vector consisting of three
parts, the initial strain e0, the elastic strain eE and the
plastic strain eP , � are the plastic multipliers vector, 	
the yield functions, N is the matrix of the gradients of
the yield functions with respect to the stresses and k is
a vector of positive constants. The potential energy of
the structure is written in the form

˘ (u;�) D ˘ 0(u)C˘ 00(�) � u>GK0N�

where

˘ 0(u) D 1
2u
>Ku � e>0 K0G>u� p>u;

˘ 00(�) D 1
2�
>N>K0N�C e>0 K0N� � k�:

Again, K is the stiffness matrix of the structure and K0

is the inverse of F0.
The solution of the problem can be obtained by

minimizing the potential energy of the structure:

min f˘ (u;�) : � � 0g : (12)

By introducing a new variable w, (12) takes the form

min
˚
˘ (u;�;w) D ˘ 0(u)C˘ 00(�)

�u>GK0Nw : w D �; � � 0
�
: (13)

As in the previous section, the decomposition can be
performed by the two methods of the feasible and
the nonfeasible gradient controller respectively. For the
sake of brevity only the nonfeasible gradient method
will be shown here. The Lagrangian of (13) is first con-
sidered

˘ (u;�;w) D ˘ (u;�;w)C �>(� � w)

and the minimization problem is decomposed in the
following two subproblems

min
u;w

˚
˘ 0(u) � u>GK0Nw � �>w

�
(14)

and

min
�

˚
˘ 001 (�)C �

>� : � � 0
�
: (15)

In the first step it is supposed that the value of � is con-
stant (say �1) and we take as a result from (14) and (15)
the values u1, �1 and w1. Obviously �1 6D w1. Then
the second level controller estimates the new value of
� from the equation

�2 D �1 C �(�1 � w1); � > 0;

and transmits it to the first level, and the procedure is
continued until the differences �i � wi become appro-
priately small.

The same procedure can be applied also to holo-
nomic models including hardening and to nonholo-
nomic plasticity models [13].
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Validation and Improvements
of SimplifiedModels

In mechanics and engineering sciences as well as in
economy, simplified models are often considered for
the treatment of complicated problems, e. g. concern-
ing the calculation of stresses in complex structures. In
these models it is assumed that certain quantities do
not influence considerably the solution of the problem.
By means of the multilevel decomposition, a method
which permits the validation of these models and the
improvement of their accuracy can be developed. This
idea is explained in the sequel.
A. Consider a large structure involving also some ca-
bles and assume that due to the pretension of the
cables the structure is calculated as if the cables are
rods, i. e. by ignoring the fact that a cable may be-
come slack and then it has zero stresses. Then in the
equations (9)–(11) v = 0 and the solution of the mini-
mum problem is obtained by solving an unconstrained
minimization problem, i. e. by a linear system solver.
In order to check whether the solution of the simpli-
fied model is close to the solution of the initial prob-
lem, in which some cables, say r, may become slack,
i. e. vi > 0, i = 1, . . . , r, it is enough to verify whether
the second level controller which gives a value of the
slackness of the cables causes a significant change in
the solution of the first level problem which corre-
sponds to the simplified structure. Also the algorithm
offers an improvement of the solution of the simplified
model.
B. Here, the investigation of the mutual influence of
two subsystems is presented. Consider two substruc-
tures connected together, for instance a cylindrical shell
with a hemispherical shell covering the one end of the
cylinder. The solution of the whole linear elastic struc-
tural compound minimizes, for a given external load-
ing, the potential (or the complementary) energy of the
whole structure. Let x1 (respectively, x2) be the variables
of the cylindrical (respectively, the hemispherical) shell
and let z be the common variables at the contact line
which are common in both structures. In order to de-
compose the potential energy into two minimum prob-
lems, one containing the unknowns of the cylindrical
shell and the other of the hemispherical shell, the com-
mon variables for the cylindrical (respectively, hemi-
spherical) shell are denoted by z1 (respectively, z2) and

thus the initial problem

min
x1;x2;z

f˘ (x1; x2; z) D ˘1(x1; z)C˘2(x2; z)g

is written as

min
x1;x2;z1;z2

f˘1(x1; z1)C˘2(x2; z2) : z1 � z2 D 0g :

Here˘ 1 (respectively,˘ 2) denotes the potential or the
complementary energy of the cylindrical (respectively,
the hemispherical) shell. Thus it can be tested by the
nonfeasible controller method how the difference z1 �
z2 influences the solution of the problem. The proce-
dure is similar in the case of elastoplastic structures with
the difference that the minimum is constrained by in-
equalities.

The above procedure may find applications in esti-
mating the influence of saddles on pipelines of rigidity
rings on long tubes etc.
C. Note that in all the above cases the Lagrange multi-
pliers have a precise meaning: they correspond in the
sense of energy to the chosen coordinating variables,
i. e., if the coordinating variables are stresses (respec-
tively, strains) or forces (respectively, displacements)
then the coordinating Lagrange multipliers are strains
(respectively, stresses) or displacements (respectively,
forces). Thus the feasible and the nonfeasible decom-
position method have a precise mechanical meaning.
In the first case the Lagrange multipliers, i. e. the strains
(respectively, the stress) are controlled while in the sec-
ond one the coordinating variables, i. e. the stress (re-
spectively, the strain) of the links between the two sub-
structures are controlled, in order to achieve the posi-
tion of equilibrium of the whole structure.
D. Some of the resulting substructures may have
a known analytical solution. Then this fact facilitates
the calculation and may be applied as a test for the ac-
curacy of the resulting solution via a numerical tech-
nique, e. g. by the FEM model. The procedure is de-
scribed in [24].
E. The multilevel decomposition method can be used
also as estimator of the sensitivity of the final solution
to small changes of the system to be optimized [24].
This method may be used for example in estimating
how a partial change in a structure influences the stress
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and strain field of the structure without solving twice
the structure.

Decomposition Algorithms
for NonconvexMinimization Problems

In unilateral contact problems with friction, Pana-
giotopoulos proposed in 1975 an algorithm [18] called
later PANA-algorithm for the decomposition of the
quasivariational inequality problems into two classical
variational inequality problems which are equivalent
to two minimization problems. Analogous decomposi-
tion methods of complicated problems using an anal-
ogous to [18] fixed point procedure can be applied to
the treatment of much more complicated problems to-
day involving nonconvex energy functions. This section
is devoted to the study of multilevel decomposition al-
gorithms for problems belonging to the general frame-
work of the substationarity problems.

It is known that the equilibrium of an elastic body
˝ in adhesive contact with a support � is governed by
the following problem [17,21]: Find u 2 V such as to
satisfy the hemivariational inequality

˛(u; v � u)C
Z
�

j0N (uN ; vN � uN )d�

C

Z
�

j0T (uT ; vT � uT)d� � ( f ; v � u); 8v 2 V :

(16)

Here u, v are the displacement fields, f are all the ap-
plied forces, (f , v) – usually a L2 internal product –
is the work of the applied forces, ˛(u, v) is the elastic
strain energy which is usually a coercive form, jN (re-
spectively, jT) denote the nonconvex, locally Lipschitz
generally nonsmooth energy density functions of the
adhesive forces in the normal (respectively, the tangen-
tial) direction to the interface � . It is assumed that the
normal adhesive action is independent of the tangential
adhesive action. Moreover, j0N , j

0
T denote the directional

derivative in the sense of Clarke [7], and uN , vN (respec-
tively, uT , vT) denote the normal (respectively, tangen-
tial) component of the displacement with respect to � .
The solution of the above problem can be obtained in
most cases of practical interest (cf. [21]) under certain
mild hypotheses which guarantee this equivalence, by

solving the substationarity problem

0 2 @I(u) D @
�
1
2
˛(u; u)C

Z
�

jN(uN )d�

C

Z
�

jT (uT )d� � ( f ; u)
	
;

where @ denotes the generalized gradient of Clarke.
In engineering problems the nonconvex superpo-

tentials (cf. e. g. [16]) jN and jT are not independent
but they depend jN (respectively, jT) on the vectors ST
(respectively, SN), where ST , SN are the reactions cor-
responding to uT , uN respectively. In this case a hemi-
variational inequality cannot be formulated. In order to
solve this problem numerically one may apply the fol-
lowing procedure: In the first step it is assumed that SN
is given, say, S(0)N and the problem (S(0)N enters with its
work into (f (0)1 , u))

0 2 @
�
1
2
˛(u; u)C

Z
�

jT (S(0)N ; uT )d� � ( f (0)1 ; u)
	

(17)

is solved. The above problem yields a value of ST , say
S(1)T . Then the problem

0 2 @
�
1
2
˛(u; u)C

Z
�

jN (S(1)T ; uN )d� � ( f (1)2 ; u)
	

(18)

is solved (S(1)T enters with its work into (f (1)2 , u)) yield-
ing a new value of SN , say S(1)N , and so on until the dif-
ferences k S(i)N � S(iC1)

N k and k S(i)T � S(iC1)
T k at each

point of the discretized interface � become appropri-
ately small. Here k � k denotes the R3-norm because
the values are checked pointwise. The first (respectively,
second) problem with jN = 0 (respectively, with jT = 0)
corresponds to the first level (respectively, to the sec-
ond level). Applications of the above procedure can be
found in [15,20,21].

Structures with Fractal Interfaces

In this section the attention is focused on the fractal ge-
ometry of interfaces where their behavior is modeled
by means of an appropriate nonmonotone contact and
friction mechanism. The interfaces of fractal geometry
are analyzed here as a sequence of classical interface
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subproblems. These classical subproblems result from
the consideration of the fractal interface as the unique
‘fixed point’ of a given iterative function system (IFS),
which consists of N contractive mappings wi: R2! R2

with contractivity factors 0 � si < 1, i = 1, . . . , N [2].
According to this procedure, a fractal set A is the ‘fixed
point’ of a transformation W i. e.

A D W(A) D
N[
iD1

Wi(A);

whereWi is defined

Wi (B) D fwi(x) : x 2 Bg ; 8B 2 H(R2):

Generally a fractal set A is given by the relation:

A D lim
n!1

W (n)(B); 8B 2 H(R2);

where H(R2) is the space of all compact subsets of
R2. Thus each level corresponds to a classical geom-
etry approximating the fractal geometry. Within each
level a new optimization problem is solved with the new
data. Thus the multilevel character of the optimization
problem results from the necessity to take into account
the fractal geometry.

In the sequel a linear elastic structure occupying
a subset ˝ of R3 is considered. In its undeformed state
the structure has a boundary � which is decomposed
into two mutually disjoint parts � U and � F . It is as-
sumed that on � U(respectively, � F) the displacements
(respectively, the tractions) are given. In the structure
˝ some cracks with interfaces ˚ of fractal type are
formed. These cracks in brittle materials frequently
propagate along one or more irregular ways. In this case
the fracture system may be considered to be a cluster of
branches propagating in such a way that new branches
in the n + 1 step are successively created from a for-
mer branch at the n step. In other words the fracture
system can be modeled by an IFS procedure. Regarding
now the boundary conditions on ˚ , it is assumed that
nonmonotone, possibly multivalued laws describe the
behavior of each interface in the normal and tangential
directions. More specifically, it is assumed that the fol-
lowing boundary conditions hold:

� SN 2 @ jN(uN ; x);

� ST 2 @ jT (uT ; x):

Then according to the previous section, an equilibrium
position of ˝ is characterized by the hemivariational
inequality (16).

In this case, where the fractured body˝ with fractal
interfaces ˚ is studied, it is necessary to substitute in
(16) the domain � with ˚ . As it has been mentioned
above, ˚ is the fixed point of a given transformation
denoted byW, i. e.

˚ DW˚;

˚ (nC1) DW˚ (n);

˚ (n)
n!1 ! ˚:

Thus, for each approximation ˚ (n) of the fractal inter-
face ˚ a structure˝ (n) must be solved. Since ˚ (n) is an
interface set with classical geometry the solutions u(n)

and � (n) (where u(n) and � (n) are the corresponding dis-
placement and stress fields) are obtained using numer-
ical procedures for the solution of (17) and (18). This
procedure is repeated several times by increasing n; at
the limit n!1, u(n) and � (n) give the solution of the
fractal interface problem.

See also
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Index
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It is well known that, on the one hand, combinatorial
optimization (CO) provides a powerful tool to formu-
late and model many optimization problems, on the
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other hand, a multi-objective (MO) approach is often
a realistic and efficient way to treat many real world ap-
plications. Nevertheless, until recently, Multi-objective
combinatorial optimization (MOCO) did not receive
much attention in spite of its potential applications.
One of the reason is probably due to specific difficul-
ties of MOCO models. We can distinguish three main
difficulties. The first two are the same as those ex-
isting for multi-objective integer linear programming
(MOILP) problem (cf. � Multi-objective Integer Lin-
ear Programming), i. e.
� the number of efficient solutionsmay be very large;
� the nonconvex character of the feasible set requires

to device specific techniques to generate the so-
called ‘nonsupported’ efficient solutions (cf.�Mul-
ti-objective Integer Linear Programming).

A particular single CO problem is characterized by
some specificities of the problem, generally a special
form of the constraints; the existing methods for such
problem use these specificities to define efficient ways
to obtain an optimal solution. For MOCO problem, it
appears interesting to do the same to obtain the set of
efficient solutions. Consequently, and contrary to what
is often done in MOLP and MOILP methods, a third
difficulty is to elaborate methods avoiding to introduce
additional constraints so that we preserve during all the
procedure the particular form of the constraints.

The general form of a MOCO problem is

(P)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

0min
X2S

0 zk(X) D ckX;

k D 1; : : : ;K;
where S D D \ Bn

with X(n � 1);
B D f0; 1g

andD is a specific polytope characterizing the CO prob-
lem: assignment problem, knapsack problem, traveling
salesman problem, etc.

There exists several surveys on MOCO; some are
devoted to specific problems (i. e., the particular form
ofD): the shortest path problem [8], transportation net-
works [2], and the scheduling problem [6,7]; the survey
[9] is more general examining successively the litera-
ture on MO assignment problems, knapsack problems,
network flow problems, traveling salesman problems,
location problems, set covering problems.

In the present article we put our attention on the
existing methodologies for MOCO. First we examine
how to determine the set E(P) of all the efficient solu-
tions and we distinguish three approaches: direct meth-
ods, two-phase methods and heuristic methods. Subse-
quently we analyse interactive approaches to generate
a ‘good compromise’ satisfying the decision maker.

Generation of E(P)

Direct Methods

The first idea is to use intensively classical methods for
single objective problem (P) existing in the literature to
determine E(P). Of course, each time a feasible solution
is obtained the k values zk(X) are calculated and com-
pared with the list bE(P) containing all the feasible solu-
tions already obtained and non dominated by another
generated feasible solution. Clearly, bE(P), called the set
of potential efficient solutions, plays the role of the so-
called ‘incumbent solution’ in single objective methods.
At each step, bE(P) is updated and at the end of the pro-
cedure E(P) D bE(P). Such extension of single objec-
tive method is specially designed for enumerative pro-
cedure based on a branch and bound approach. Unfor-
tunately, in a MO framework, a node of the branch and
bound tree is less often fathomed than in the single ob-
jective case, so that logically such MO procedure is less
efficient.

We describe below an example of such direct
method, extending the well known Martello–Toth pro-
cedure, for the multi-objective knapsack problem for-
mulated as
8̂
ˆ̂̂<
ˆ̂̂̂
:

0max 0 zk(X) D
nX

jD1

c(k)j x j; k D 1; : : : ;K;

nX
jD1

wjx j �W xj D (0; 1):

The following typical definitions are used (k = 1, . . . ,K):
� Ok: variables order according to decreasing values of

ckj /wj.
� r(k)j : the rank of variable j in order Ok.
� 
: variables order according to increasing values ofPK

kD1 r
(k)
j /K.

We assume that variables are indexed according to or-
dinal preference
.
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At any node of the branch and bound tree, variables
are set to 0 or 1; let B0 and B1 denote the index sets of
variables assigned to the values 0 and 1, respectively. Let
F be the index set of free variables which always follow,
in the order 
, those belonging to B1 [ B0. If i � 1 is
the last index of fixed variables, we have B1 [ B0 = { 1,
. . . , i � 1 }; F = { i, . . . , n }.
Initially, i = 1. Let
� W D W �

P
j2B1

wj � 0 be the leftover capacity of
the knapsack.

� Z D
�
zk D

P
j2B1

c(k)j

�
kD1;:::;K

be the criteria val-

ues vector obtained with already fixed variables.
bE(P) contains nondominated feasible values Z and
is updated at each new step.
Initially, zk D 0, 8 k, and bE(P) D ;.

� Z D (zk) be the vector whose components are upper
bounds of feasible values respectively for each ob-
jective at considered node. These upper bounds are
evaluated separately, for instance as in the Martello–
Toth method.
Initially, zk D1, 8 k.

A node is fathomed in the following two situations:
i) if

˚
j 2 F : wj < W

�
D ;; or

ii) z is dominated by z� 2 bE(P).
When the node is fathomed, the backtracking proce-
dure is performed: a new node is build up by setting to
zero the variable corresponding to the last index in B1.
Let t be this index:

B1  B1nftg;

B0  (B0 \ f1; : : : ; t � 1g) [ ftg;

F  ft C 1; : : : ; ng:

When the node is nonfathomed, a new node of the
branch and bound tree is build up for next iteration,
as follows:
� Define s to be the index variable such that

max

8<
:l 2 F :

lX
jDi

w j < W

9=
; :

If wi >W , set s = i � 1.
� If s� i:

B1  B1 [ fi; : : : ; sg;

B0  B0;

F  Fnfi; : : : ; sg:

If s = i � 1,

B1  B1 [ frg;

B0  B0 [ fi; : : : ; r � 1g;
F  Fnfi; : : : ; rg;

with r D min
˚
j 2 F : wj < W

�
.

The procedure stops when the initial node is fathomed
and then E(P) D bE(P). An illustration is given in [10].

Two-Phase Method

Such an approach is particularly well designed for bi-
objective MOCO problems. The first phase consists to
determine the set SE(P) of supported efficient solu-
tions (see � Multi-objective Integer Linear Program-
ming). Let S [ S0 be the list of supported efficient so-
lutions already generated; S is initialized with the two
efficient optimal solutions respectively of objectives z1
and z2. Solutions of S are ordered by increasing value
of criterion 1; let Xr and Xs be two consecutive solu-
tions in S, thus with z1r < z1s and z2r > z2s, where zkl =
zk(Xl). The following single-criterion problem is con-
sidered:

(P	)

8̂
<̂
ˆ̂:

min z	(X) D �1z1(X)C �2z2(X)
X 2 S D D \ B(n)

�1 � 0; �2 � 0:

This problem is optimized with a classical single ob-
jective CO algorithm for the values �1 = z2r � z2s and �2
= z1s � z1r; with these values the search direction z	(X)
corresponds in the objective space to the line defined
by Zr and Zs. Let {Xt : t = 1, . . . , T } be the set of optimal
solutions obtained in this manner and {Zt :t = 1, . . . , T }
their images in the objective space. There are two pos-
sible cases:
� { Zr , Zs } \ {Zt : t = 1, . . . , T } = ;: Solutions Xt are

new supported efficient solutions. X1 and XT , pro-
vided T > 1, are put in S and, if T > 2, X2, . . . , XT � 1

are put in S0. It will be necessary at further steps to
consider the pairs (Xr, X1) and (XT , Xs)

� { Zr , Zs } � {Zt: t = 1, . . . , T }: Solutions {Xt : t =
1, . . . , T } \ { Xr , Xs } are new supported efficient
solutions giving the same optimal value as Xr and
Xs for z	(X); we put them in list S0.
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Multi-objective Combinatorial Optimization, Figure 1
SE(P) = S[ S0

This first phase is continued until all pairs (Xr , Xs) of S
have been examined without extension of S.

Finally, we obtain SE(P) = S [ S0 as illustrated in
Fig. 1.

The purpose of the second phase is to generate the
set NSE(P) = E(P) \ SE(P) of nonsupported efficient
solutions. Each nonsupported efficient solution has its
image inside the triangle M ZrZs determined by two
successive solutions Xr and Xs of SE(P) (see Fig. 1). So
each of the |SE(P)|� 1 triangles M ZrZs are successively
analysed. This phase is more difficult to manage and is
dependent of the particular MOCO problem analysed;
in general, this second phase is achieved using partly
a classical single objective CO method. An example of
such second phase is given in � Bi-objective Assign-
ment Problem and in [14] for the bi-objective knapsack
problem.

Heuristic Methods

As pointed out in [9,10,14], it is unrealistic to extend
the exact methods describe above to MOCO problems
with more than two criteria or more than a few hun-
dred variables; the reason is that these methods are too
consuming time. Because a metaheuristic, simulating
annealing (SA), tabu search (TS), genetic algorithms
(GA), etc., provide, for the single objective problem,
excellent solutions in a reasonable time, it appeared
logical to try to adapt these metaheuristics to a multi-
objective framework.

The seminal work in this direction is the 1993 Ph.D.
thesis of E.L. Ulungu, which gave rise to the so-called
MOSA method to approximate E(P) (see, in particu-
lar, [11]). After this pioneer study, this direction has
been tackled by other research teams: P. Czyzak and A.
Jaszkiewicz ([3]) proposed another way to adapt simu-
lating annealing to a MOCO problem; independently,
[4,5] and [1] did the same with tabu search, the later
combining also tabu search and genetic algorithms; ge-
netic algorithms are also used in [13].

The principle idea of MOSA method can be re-
sumed in short terms. One begins with an initial iterate
X0 and initializes the set of potentially efficient points
PE to just contain X0. One then samples a point Y in
the neighborhood of the current iterate. But instead of
accepting Y if it is better than the current iterate on an
objective: we now accept it if it is not dominated by any
of the points currently in the set PE. If it is not domi-
nated, we make Y the current iterate, add it to PE, and
throw out any point in PE that are dominated by Y . On
the other hand, if Y is dominated, we still make it the
current iterate with some probability. In this way, as we
move the iterate through the space, we simultaneously
build up a set PE of potentially efficient points. The
only complicated aspect of this scheme is the method
for computing the acceptance probability for Y when it
is dominated by a point in PE. The MOSA method is
described in details in [11] and in � Bi-objective As-
signment Problem.

Interactive Determination of a Good Compromise

The general idea of interactive methods is described in
� Multi-objective Integer Linear Programming. Two
types of methods can be distinguished, which we treat
in the following subsections.

Goal Programming

As pointed out in [9], this methodology is often used
by American researchers to treat several case studies.
The general idea of goal programming method is to in-
troduce for each objective k deviation variables d+ and
d�, respectively by excess and by default, with respect
to a certain a priori goal gk, so that goal constraints are
defined. If some priorities expressed by some weights pk
are given, this results in a single-objective problem (Pg)
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defined by the global weighted deviation function:

(Pg)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
KX

kD1

pkd�k

s.t. zk(X)C dCk � d�k D gk ; 8k;
X 2 S D D \ Bn :

When a solution is obtained, the decision maker can
possibly modify the values of the goals gk before a new
iteration is performed. One drawback is that the addi-
tional goal constraints induce the loss of the particular
structure of the initial CO problem, so that a general
ILP software must be used to solve problem (Pg).

Interactive Two-Phase Methods andMOSAMethod

The two-phase methodology described above can eas-
ily be adapted to build interactively a good compro-
mise. At each step of the first phase, the decision maker
can indicate which pair (Xr , Xs) he prefers so that only
a small subset of SE(P) is generated in the direction
given by the decision maker; at the second phase, only
one (or a few number of) triangles M ZrZs is (are) anal-
ysed to verify if there exists in it a more satisfying non-
supported efficient solution. In the same spirit, an inter-
active MOSA method can be designed (see also [12]):
the decision maker gives some goals gk and only the
solutions satisfying zk(X) � gk are putting in the list
of potential efficient solutions. When this list contains
a certain a priori fixed number of solutions, the deci-
sion maker indicates which one is preferred, modifies
the goals gk in a more restrictive sense before to con-
tinue the search with MOSA.

An example of such interactive procedure is given
in [12] for a real case study.

See also

� Bi-objective Assignment Problem
� Combinatorial Matrix Analysis
� Combinatorial Optimization Algorithms in

Resource Allocation Problems
� Combinatorial Optimization Games
� Decision Support Systems with Multiple Criteria
� Estimating Data for Multicriteria Decision Making

Problems: Optimization Techniques
� Evolutionary Algorithms in Combinatorial

Optimization

� Financial Applications of Multicriteria Analysis
� Fractional Combinatorial Optimization
� Fuzzy Multi-objective Linear Programming
�Multicriteria Sorting Methods
�Multi-objective Integer Linear Programming
�Multi-objective Optimization and Decision Support

Systems
�Multi-objective Optimization: Interaction of Design

and Control
�Multi-objective Optimization: Interactive Methods

for Preference Value Functions
�Multi-objective Optimization: Lagrange Duality
�Multi-objective Optimization: Pareto Optimal

Solutions, Properties
�Multiple Objective Programming Support
� Neural Networks for Combinatorial Optimization
� Outranking Methods
� Portfolio Selection and Multicriteria Analysis
� Preference Disaggregation
� Preference Disaggregation Approach: Basic

Features, Examples From Financial Decision
Making

� Preference Modeling
� Replicator Dynamics in Combinatorial
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Introduction

A number of optimization problems are actually mul-
tiobjective optimization problems (MOPs), where the
objectives are conflicting. As a result, there is usually no
single solution which optimizes all objectives simulta-
neously. A number of techniques have been developed
to find a compromise solution to MOPs. The reader is
referred to the recent book by Miettinen [16] about the
theory and algorithms for MOPs. Fractional program-
ming problems(FPPs) arise from many applied areas
such as portfolio selection, stock cutting, game theory,
and numerous decision problems in management sci-
ence. Many approaches for FPPs have been exploited in
considerable details. See, for example, Avriel et al. [3],
Craven [5], Schaible [24,25], Schaible and Ibaraki [26]
and Stancu-Minasian [27,28].

In this paper, we consider the following multiobjec-
tive fractional programming problem:

(MFP) min

f (x)
g(x)

�
D

�
f1(x)
g1(x)

;
f2(x)
g2(x)

; : : : ;
fp(x)
gp(x)

�T

;

s.t.

h(x) � 0; x 2 X ;

where X � Rn is an open set, f i, gi (i D 1; 2; : : : ; p)
are real-valued functions defined on X, and h is an m-
dimensional vector-valued function defined on X. Sup-
pose that fi(x) � 0 and gi (x)> 0 for x 2 X and
i D 1; 2; : : : ; p. Moreover, let f i, gi (i D 1; 2; : : : ; p)
and hj ( j D 1; 2; : : : ;m) be continuously differentiable
over X and denote the gradients of f i, gi and hj at x by
r fi(x);r gi(x) and rhj(x), respectively.

If the parameter p in the problem (MFP) is equal
to 1, then (MFP) corresponds to the following single-
objective fractional programming problem:

(FP) min
f (x)
g(x)

;

s.t. h(x) � 0; x 2 X ;

where X � Rn is an open set, f , g are real-valued func-
tions defined on X, and h is an m-dimensional vector-
valued function defined on X, f (x) � 0 and g(x)> 0
for all x 2 X. Moreover, assume that f (x), g(x) and
hj(x) ( j D 1; 2; : : : ;m) are continuously differentiable
over X.
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Khan and Hanson [10], and Reddy and Mukher-
jee [21] considered the optimality conditions and du-
ality for (FP) with respect to the following generalized
concepts of convexity, respectively.

Definition 1 [6] Let f be a real function defined on an
open set X � Rn and differentiable at x0. Given a map-
ping � : X�X ! Rn , the function f is said to be invex at
x0 with respect to � if, 8x 2 X, the following inequality
holds:

f (x)� f (x0) � r f (x0)T�(x; x0) :

Definition 2 [7] Let f be a real function defined on an
open set X � Rn and differentiable at x0. Given a real
number �, a mapping � : X � X ! Rn and a scalar
function d : X � X ! R, the function f is said to be
�-invex at x0 with respect to � and d if, 8x 2 X, the
following inequality holds:

f (x)� f (x0) � r f (x0)T�(x; x0)C �d2(x; x0) :

The authors of references [10,21] imposed the corre-
sponding generalized convexity on the numerator and
denominator individually for the objective function in
the problem (FP), and then derived some optimality
conditions and duality results. How to extend these
methods to the multiobjective case is still an open prob-
lem [21].

As far as the multiobjective fractional problem
(MFP) is concerned, Jeyakumar and Mond [8] intro-
duced a concept of v-invexity as follows.

Definition 3 Let f : X ! Rp be a real vector function
defined on an open set X � Rn and each component of
f be differentiable at x0. The function f is said to be v-
invex at x0 2 X if there exist a mapping � : X�X ! Rn

and a function ˛i : X�X ! RC n f0g (i D 1; 2; : : : ; p)
such that, 8x 2 X,

fi(x)� fi(x0) � ˛i (x; x0)r fi(x0)T�(x; x0) :

Jeyakumar and Mond [8] obtained some weak effi-
ciency conditions and duality results for a nonconvex
multiobjective fractional programming problem via the
concept of v-invexity, v-pseudoinvexity and v-quasiin-
vexity.

Motivated by various concepts of generalized con-
vexity, Liang et al. [12] introduced a unified formu-
lation of the generalized convexity, which was called

(F; ˛; �; d)-convexity, and obtained some correspond-
ing optimality conditions and duality results for the
single-objective fractional problem (FP). In this paper,
we will extend the methods adopted for the single-
objective problem (FP) in [12] to the multiobjective
problem (MFP).

Definition 4 A function F : Rn ! R is said to be
sublinear if for any ˛1; ˛2 2 Rn ,

F(˛1 C ˛2) � F(˛1)C F(˛2) ; (1)

and for any r 2 RC; ˛ 2 Rn ,

F(r˛) D rF(˛) : (2)

Note that the concept of the sublinear function was
given in Preda [20]. Now, a sublinear function is de-
fined simply as a function that is subadditive and pos-
itively homogeneous, which is free of extraneous sym-
bols in Preda [20]. It follows from (2) that F(0) D 0.

Based upon the concept of the sublinear function,
we recall the unified formulation about generalized
convexity, i. e., (F; ˛; �; d)-convexity, which was intro-
duced in [12] as follows.

Definition 5 Given an open set X � <n , a number
� 2 R, and two functions ˛ : X � X ! RC n f0g and
d : X�X ! R, a differentiable function f over X is said
to be (F; ˛; �; d)-convex at x0 2 X if for any x 2 X,
F(x; x0; � ) : <n ! < is sublinear, and f (x) satisfies the
following condition:

f (x)� f (x0) �F(x; x0;˛(x; x0)r f (x0))

C �d2(x; x0) :
(3)

The function f is said to be (F; ˛; �; d)-convex over X
if, 8x0 2 X, it is (F; ˛; �; d)-convex at x0; f is said to
be strongly (F; ˛; �; d) � convex or (F; ˛) � convex if
�> 0 or � D 0, respectively.

From Definition 5, there are the following special
cases:
(i) If ˛(x; x0) D 1 for all x; x0 2 X, then (F; ˛; �; d)-

convexity is (F; �)-convexity [20].
(ii) If F(x; x0;˛(x; x0)r f (x0)) D r f (x0)T�(x; x0) for

a certain mapping � : X � X ! Rn , then
(F; ˛; �; d)-convexity is �-invexity defined in [7].

(iii) If � D 0 or d(x; x0) � 0 for all x; x0 2 X
and F(x; x0;˛(x; x0)r f (x0)) D r f (x0)T�(x; x0)
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for a certain mapping � : X � X ! Rn , then
(F; ˛; �; d)-convexity reduces to invexity [6].

In the following, �; ˛ and d are referred to as pa-
rameters of (F; ˛; �; d)-convexity. Furthermore, we will
adopt the following conventions.

Let Rn
C denote the nonnegative orthant of Rn and xT

denote the transpose of the vector x 2 Rn . For any two
vectors x D (x1; x2; : : : ; xn)T; y D (y1; y2; : : : ; yn)T 2
Rn , we denote:

x D y implying xi D yi ; i D 1; 2; : : : ; n;

x � y implying xi � yi ; i D 1; 2; : : : ; n;

but x ¤ y;

x < y implying xi < yi ; i D 1; 2; : : : ; n;
x ˜ y implying yi < xi for at leastone i :

A solution of the problem (MFP) is referred to as an
efficient (Pareto optimal) solution, which is defined as
follows.

Definition 6 A feasible solution x0 2 X of (MFP) is
called an efficient solution of (MFP) if there exists no
other feasible solution x 2 X such that

f (x)
g(x)

�
f (x0)
g(x0)

:

In [14], Maeda gave a kind of constraint qualification,
which was called generalized Guignard constraint qual-
ification (GGCQ), under which he derived the follow-
ing Kuhn–Tucker type necessary conditions for a feasi-
ble solution x0 to be an efficient solution to the problem
(MFP):

If x0 is an efficient solution of (MFP) and (GGCQ)
holds at x0 [14], then there exist � D (�1; �2; : : : ; �p)T 2
Rp
C; � > 0;

Pp
iD1 �i D 1 and � D (�1; �2; : : : ; �m)T 2

Rm
C such that

pX
iD1

�ir
fi(x0)
gi (x0)

C

mX
jD1

� jrhj(x0) D 0;

� jh j(x0) D 0; j D 1; 2; : : : ;m :

This paper is organized as follows. In Sect.
“Efficiency Conditions”, efficiency conditions for the
multiobjective fractional problem (MFP) involving (F;
˛; �; d)-convexity are presented. The duality properties
of the problem (MFP) are studied in Sect. “Duality”,

including several duals for (MFP) and some weak and
strong duality theorems. Concluding remarks are given
in the last section.

Efficiency Conditions

First, we present a lemma which indicates that (F; ˛;
�; d)-convexity can be preserved after taking division.

Lemma 1 Let X � Rn be an open set. Assume that p,
q are real-valued differentiable functions defined on X
and p(x) � 0; q(x)> 0 for all x 2 X. If p and �q are
(F; ˛; �; d)-convex at x0 2 X, then p/q is (F; ˛; �; d)-
convex at x0, where ˛(x; x0) D ˛(x;x0)q(x0)

q(x) ; � D

�
�
1C p(x0)

q(x0)

�
and d(x; x0) D d(x;x0)

q
1
2 (x)

.

In the following, we present some sufficient efficiency
conditions for (MFP) under appropriate (F; ˛; �; d)-
convexity assumptions.

Theorem 1 Let x0 be a feasible solution of (MFP). Sup-
pose that there exist � D (�1; �2; : : : ; �p)T 2 Rp

C, � > 0,Pp
iD1 �i D 1 and � D (�1; �2; : : : ; �m)T 2 Rm

C such
that

pX
iD1

�ir
fi(x0)
gi (x0)

C

mX
jD1

� jrhj(x0) D 0 ; (4)

� j h j(x0) D 0; j D 1; 2; : : : ;m : (5)

If f i and �gi (i D 1; 2; : : : ; p) are (F; ˛i ; �i ; di )-
convex at x0, hj ( j D 1; 2; : : : ;m) is (F; ˇ j; � j; c j)-
convex at x0, and

pX
iD1

�i�i
d
2
i (x; x0)
˛ i (x; x0)

C

mX
jD1

� j� j
c2j (x; x0)

ˇ j(x; x0)
� 0 ; (6)

where ˛ i(x; x0) D
˛i (x;x0)g i (x0)

g i (x)
; �i D �i

�
1C f i (x0)

g i (x0)

�
;

and di(x; x0) D di (x;x0)

g
1
2
i (x)

; then x0 is a global efficient so-

lution for (MFP).

Corollary 1 Let x0 be a feasible solution of (MFP).
Suppose that there exist � D (�1; �2; : : : ; �p)T 2 Rp

C;

� > 0;
Pp

iD1 �i D 1; and � D (�1; �2; : : : ; �m)T 2 Rm
C

such that
pX

iD1

�ir
fi(x0)
gi (x0)

C

mX
jD1

� jrhj(x0) D 0;

� j h j(x0) D 0; j D 1; 2; : : : ;m :
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If f i and �gi (i D 1; 2; : : : ; p) are strongly
(F; ˛i ; �i ; di )-convex (or (F; ˛i )-convex) at x0, hj ( j D
1; 2; : : : ;m) is strongly (F; ˇ j; � j; c j)-convex (or (F; ˇ j)-
convex) at x0, then x0 is a global efficient solution for
(MFP).

For i D 1; 2; : : : ; p, if gi (x) D 1 for all x 2 X,
f i(x) need not be nonnegative, and the functions in-
volved are assumed to be invex, �-invex with respect to
� : X�X ! Rn ; d : X�X ! R, (F; �)-convex, or gen-
eralized (F; �)-convex, respectively, then we can obtain
the corresponding results presented in [1,2,9].

Next, we consider a special case of (MFP), in which
the fractional objective functions have the same de-
nominator. For i D 1; 2; : : : ; p, let gi (x) D g(x) in
(MFP). The property about the efficient solution of this
special (MFP) can be obtained similarly as that in The-
orem 1, so we state the following theorem:

Theorem 2 Let x0 be a feasible solution of (MFP). Sup-
pose that there exist � D (�1; �2; : : :, �p)T 2 Rp

C, � > 0,Pp
iD1 �i D 1, and � D (�1; �2; : : : ; �m)T 2 Rm

C such
that

pX
iD1

�ir
fi(x0)
g(x0)

C

mX
jD1

� jrhj(x0) D 0;

� j h j(x0) D 0; j D 1; 2; : : : ;m :

If �g is (F; ˛; �; d)-convex at x0,f i (i D 1; 2; : : : ; p)
is (F; ˛; �i ; d)-convex at x0,hj ( j D 1; 2; : : : ;m)
is (F; ˛; � j; d)-convex at x0, and

Pp
iD1 �i�i CPm

jD1 � j� j � 0, where ˛(x; x0) D (˛(x; x0)g(x0))/g(x),
�i D �i C �( fi(x0))/g(x0) and d(x; x0) D (d(x; x0))/
(g

1
2 (x)), then x0 is a global efficient solution for (MFP).

Finally, we present an equivalent formulation of the
problem (MFP). Let G(x) D

Qp
iD1 gi (x), Gi (x) D

G(x)
g i (x)

(i D 1; 2; : : : ; p). Then (MFP) can be written in
the following form:

(MFP)

min
�
G1(x) f1(x)

G(x)
;
G2(x) f2(x)

G(x)
; : : : ;

Gp(x) fp(x)
G(x)

�T

;

s.t. h(x) � 0; x 2 X:

By Theorem 2, we have the following corollary:

Corollary 2 Let x0 be a feasible solution of (MFP).
Suppose that there exist � D (�1; �2; : : : ;�p)T 2 Rp

C;

� > 0;
Pp

iD1 �i D 1, and � D (�1; �2; : : : ; �m)T 2 Rm
C

such that

pX
iD1

�ir
fi(x0)
gi (x0)

C

mX
jD1

� jrhj(x0) D 0;

� j h j(x0) D 0; j D 1; 2; : : : ;m:

If �G is (F; ˛; �; d)-convex at x0, Gi fi(i D 1; 2; : : : ;
p) is (F; ˛; �i ; d)-convex at x0, h j( j D 1; 2; : : : ;m)
is (F; ˛; � j; d)-convex at x0, and

Pp
iD1 �i�i CPm

jD1 � j� j � 0, where �i D �i C �( fi(x0))/(gi(x0)),
˛(x; x0) D (˛(x; x0)G(x0))/G(x), and d(x; x0) D
(d(x; x0))/(G1/2(x)), then x0 is a global efficient solu-
tion for (MFP).

Under the assumptions of Theorem 2 or Corollary 2,
if � � max

1�i�p
�i , �i D �i (1 C fi(x0)/g(x0)), or �i D

�i (1C fi(x0)/gi (x0)), respectively, then the correspond-
ing results still hold.

Duality

Many types of duals for a given mathematical program-
ming problem. Two well-known duals are the Wolfe
type dual [29] and the Mond-Weir type dual [17]. Re-
cently, the mixed (or general type) dual has been con-
sidered for various optimization problems [1,2,11,13,
18,19,20,30,31,32]. The mixed dual includes the Wolfe
type dual and the Mond-Weir type dual as special cases.
In the sequel, the generalized Mond-Weir dual are dis-
cussed first, and then three other types of duals are pre-
sented, which are based on (F; ˛; �; d)-convexity for
the problem (MFP).

Let M D f1; 2; : : : ;mg and M0;M1; : : : ;Mq be
a partition of M, i. e.,

Sq
kD1 Mk D M;Mk

T
Ml D ;

for k ¤ l . The generalized Mond-Weir dual of (MFP)
is as follows:

max
f (u)
g(u)
C �TM0

hM0(u) e
�
D

�
f1(u)
g1(u)

C �TM0
hM0(u); : : : ;

fp(u)
gp(u)

C �TM0
hM0(u)

�T

;

s.t.
pX

iD1

�ir
fi(u)
gi (u)

C

mX
jD1

� jrhj(u) D 0;
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�TMk
hMk (u) � 0; k D 1; 2; : : : ; q;

� D (�1; �2; : : : ; �p)T 2 Rp
C; � > 0;

pX
iD1

�i D 1;

�Mk 2 RjMk j
C ; k D 0; 1; 2; : : : ; q;

u 2 X ;

where e D (1; 1; : : : ; 1)T and �Mk denotes the column
vector whose subscripts of components belong to Mk.
In particular, if M0 D M;Mk D ;; k D 1; 2; : : : ; q,
then the above dual becomes the Wolfe type dual; if
M0 D ; and q D 1;M1 D M, the Mond-Weir type
dual is obtained. Since the Wolfe type dual is unsuit-
able for single objective fractional programming prob-
lems [15,22,23], the duals with M0 ¤ ; are certainly
unsuitable for (MFP). For the generalized Mond-Weir
type dual, we only consider the caseM0 D ;,M1 D M;
i. e., the Mond-Weir dual.

Mond-Weir Dual

TheMond-Weir dual of the problem (MFP) has the fol-
lowing form:

(MFD1)

max
f (u)
g(u)

D

�
f1(u)
g1(u)

;
f2(u)
g2(u)

; : : : ;
fp(u)
gp(u)

�T

s.t.
pX

iD1

�ir
fi(u)
gi(u)

C

mX
jD1

� jrhj(u) D 0;

�Th(u) � 0;

� D (�1; �2; : : : ; �p)T 2 Rp; � > 0;
pX

iD1

�i D 1;

� D (�1; �2; : : : ; �m)T 2 Rm
C; u 2 X :

Theorem 3 (Weak Duality) Assume that x is a fea-
sible solution of (MFP) and (u; � ; �) is a feasible so-
lution of (MFD1). If f i and �gi (i D 1; 2; : : : ; p)
are (F; ˛i ; �i ; di )-convex at u, h j ( j D 1; 2; : : : ;m) is
(F; ˇ; � j; c j)-convex at u, and the inequality

pX
iD1

� i�i
d
2
i (x; u)
˛ i (x; u)

C

mX
jD1

� j� j
c2j (x; u)

ˇ(x; u)
� 0 (7)

holds, where ˛ i (x; u) D ˛i (x; u)(g(u))/(g(x)), �i D
�i (1 C ( fi(u))/(gi(u))), and di (x; u) D (di (x; u))/

(g
1
2
i (x)), then we have

f (x)
g(x)

˜
f (u)
g(u)

:

Corollary 3 (Weak Duality) Assume that x is a fea-
sible solution of (MFP), and (u; � ; �) is a feasible so-
lution of (MFD1). If fi and �gi (i D 1; 2; : : : ; p) are
strongly (F; ˛i ; �i ; di )-convex (or (F; ˛i )-convex) at u,
and h j ( j D 1; 2; : : : ;m) is strongly (F; ˇ; � j; c j)-convex
(or (F; ˇ)-convex) at u, then

f (x)
g(x)

˜
f (u)
g(u)

:

Theorem 4 (Strong Duality) Assume that x is an ef-
ficient solution of (MFP) and the constraint qualifica-
tion (GGCQ) holds at x [14]. Then there exists (�; �) 2
Rp
C � Rm

C such that (x; � ; �) is a feasible solution of
(MFD1), and the objective function values of (MFP) and
(MFD1) at the corresponding points are equal. If the as-
sumptions about the generalized convexity and the in-
equality (7) in Theorem 3 are also satisfied, then (x; � ; �)
is an efficient solution of (MFD1).

Schaible Dual

In this subsection, we shall consider the following ex-
tended form of the Schaible dual for (MFP) [22,23]:

(MFD2)

max � D (�1; �2; : : : ; �p)T

s.t.
pX

iD1

�iru( fi(u) � �i gi (u))C
mX
jD1

v jrhj(u)

D 0;
fi(u) � �i gi (u) � 0; i D 1; 2; : : : ; p

vTh(u) � 0;

� > 0;
pX

iD1

�i D 1;

� 2 Rp
C; � 2 Rp

C; v 2 Rm
C; u 2 X:

Theorem 5 (Weak Duality). Assume that x is a feasible
solution of (MFP) and (u; � ; �; v) is a feasible solution of
(MFD2). If one of the following holds:
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� (I) fi and �gi (i D 1; 2; : : : ; p) are (F; ˛i ; �i ; di )-
convex at u , h j ( j D 1; 2; : : : ;m) is (F; ˇ; � j; c j)-
convex at u, and

pX
iD1

� i�i (1C�i)
d2i (x; u)
˛i (x; u)

C

mX
jD1

v j� j
c2j (x; u)

ˇ(x; u)
� 0;

(8)

� (II) fi and �gi (i D 1; 2; : : : ; p) are (F; ˛; �i ; d)-
convex at u, h j ( j D 1; 2; : : : ;m) is (F; ˛; � j; d)-
convex at u, and the vectors �; �; v satisfy:

pX
iD1

� i�i (1C �i )C
mX
jD1

v j� j � 0 ; (9)

then

f (x)
g(x)

˜ �:

Theorem 6 (Strong Duality). Assume x is an effi-
cient solution of (MFP), and the constraint qualifica-
tion (GGCQ) holds at x [14]. Then there exist � 2 Rp

C,
� 2 Rp

C, v 2 Rm
C such that (x; � ; �; v) is a feasible

solution of (MFD2) and � D f (x)
g(x) . Furthermore, if all

assumptions in Theorem 5 are satisfied, then the corre-
sponding (x; � ; �; v) is an efficient solution of (MFD2).

Extended Bector Type Dual

For a single-objective fractional programming problem
in [4], Bector used the positivity of the denominator to
transform the inequality constraints and add them to
the objective by Lagrangian mulitipliers for establishing
a kind of dual. Since the denominators in (MFP) need
not be the same, we use the equivalent form (MFP) of
(MFP) to establish the following dual, which is called
the extended Bector type dual of (MFP):

(MFD3)

max

 G1(u) f1(u)CvTM0 hM0 (u)
G(u)
:::

Gp(u) f p(u)CvTM0 hM0 (u)
G(u)

!T

s.t.
pX

iD1

�iru
Gi (u) fi(u)C vTM0

hM0(u)
G(u)

C

qX
kD1

ruvTMk
hMk (u) D 0;

vTMk
hMk (u) � 0; k D 1; 2; : : : ; q;

Gi (u) fi(u)C vTM0
hM0(u) � 0;

i D 1; 2; : : : ; p;
pX

iD1

�i D 1; � D (�1; �2; : : : ; �p)T 2 Rp
C;

� > 0;

u 2 X; vMk 2 RjMk j
C ; k D 0; 1; 2; : : : ; q :

Theorem 7 (Weak Duality) Let x be a feasible so-
lution of (MFP) and (u; �; v) be a feasible solution of
(MFD3). Assume that �G is (F; ˛; �; d)-convex at u,
Gi fi (i D 1; : : : ; p) is (F; ˛; �i ; d)-convex at u and
hj ( j D 1; : : : ;m) is (F; ˛; � j; d)-convex at u. If � �
max
1�i�p

�i and the following inequality holds:

pX
iD1

�i�i

�
1C

Gi (u) fi(u)C vTM0
hM0 (u)

G(u)

�

C
X
j2M0

v j� j C G(u)
qX

kD1

X
j2Mk

v j� j � 0 ; (10)

then we have

f (x)
g(x)

˜
G(u) f (u)C vTM0

hM0(u) e
G(u)

;

where G(u) D diagfG1(u); : : : ;Gp(u)g and each com-
ponent in e 2 Rp is equal to 1.

Theorem 8 (Strong Duality) Assume that x is an effi-
cient solution of (MFP) and the constraint qualification
(GGCQ) holds at x [14]. Then there exists (� ; v) such
that (x; � ; v) is a feasible solution of (MFD3), and the
objective function values of (MFP) and (MFD3) at x and
(x; � ; v), respectively, are equal. If the assumptions and
conditions in Theorem 7 are also satisfied, then (x; � ; v)
is an efficient solution of (MFD3).

Concluding Remarks

In this paper, a unified formulation of the generalized
convexity defined in [12] is adopted, which includes
many other generalized convexity concepts in opti-
mization theory as special cases. Our concept of gen-
eralized convexity is suitable to analyze the efficiency
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conditions and duality of multiobjective fractional pro-
gramming problems. Efficiency conditions and dual-
ity for a class of multiobjective fractional programming
problems are presented. We extend the methods, which
were adopted for single-objective fractional program-
ming problems in [10,12,21], to the case with multi-
ple fractional objectives. We also present the extended
Bector type dual by using an equivalent formulation of
the primal problem. Note that we only consider (MFP)
from a viewpoint of the efficient solution in this paper.
The methods used here can be extended to the study of
(MFP) from a viewpoint of the weak efficient solution.
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From the 1970s onwards, multi-objective linear pro-
gramming (MOLP)methods with continuous solutions
have been developed [8]. However, it is well known
that discrete variables are unavoidable in the linear pro-
grammingmodeling of many applications, for instance,
to represent an investment choice, a production level,
etc.

The mathematical structure is then integer lin-
ear programming (ILP), associated with MOLP giving
a MOILP problem. Unfortunately, MOILP cannot be
solved by simply combining ILP and MOLP methods,
because it has got its own specific difficulties.

The problem (P) considered is defined as

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

0max
X2D

0 zk(X) D
nX

jD1

c(k)j x j;

k D 1; : : : ;K;

where D D

8̂
ˆ̂̂<
ˆ̂̂̂
:
X 2 Rn :

TX � d;
X � 0;

x j integer;
j 2 J

9>>>>=
>>>>;

with T(m � n);
d(m � 1);
X(n � 1);
J � f1; : : : ; ng:

If we denote LD = {X: TX � d, X � 0}, problem (LP)
is the linear relaxation of problem (P):

(LP)

(
0max 0 zk(X); k D 1; : : : ;K;

X 2 LD

A solution X? in D (or LD) is said to be efficient for
problem (P) (or (LP)) if there does not exist any other
solution in D (or LD) such that zk (X)� zk (X?), k = 1,
. . . , K, with at least one strict inequality.

Let E(�) denote the set of all efficient solutions of
problem (�). It is well known (see [8]) that (LP) may be
characterized by the optimal solutions of the single ob-
jective and parametrized problem:

(LP	)

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max
KX

kD1

�kzk(X)

X 2 LD
with �k > 0; 8k;

KX
kD1

�k D 1

This fundamental principle – often called Geof-
frion’s theorem – is no longer valid in presence of dis-
crete variables because the set D is not convex. The set
of optimal solutions of problem (P	), defined as prob-
lem (LP	) in which LD is replaced by D, is only a sub-
set SE(P) of E(P); the solutions in SE(P) are called sup-
ported efficient solutions, while the solutions belonging
to NSE(P) = E(P) \ SE(P) are called nonsupported effi-
cient solutions.

The breakdown of Geoffrion’s theorem for problem
(P) can be illustrated by the following obvious example:

K D 2;

z1(X) D 6x1 C 3x2 C x3;

z2(X) D x1 C 3x2 C 6x3;

D D fX : x1 C x2 C x3 � 1; xi 2 f0; 1gg :

For this problem,

E(P) D f(1; 0; 0); (0; 1; 0); (0; 0; 1)g

while NSE(P) = {(0, 1, 0)}.
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Nevertheless, V.J. Bowman [1] has given a theoreti-
cal characterization of E(P): Setting

Mk D max
X2D

zk(X);

zk D Mk C "k; with "k > 0;
� > 0;

then E(P) is characterized by the optimal solutions of
the problem(PT

	
):

min
X2D

max
k

 
�k (zk � zk(X))C �

 KX
kD1

(zk � zk(X))

!!
;

consisting of minimizing the augmented weighted
Tchebychev distance between zk(X) and zk .

Let us note that another characterization of E(P) is
given in [2] for the particular case of binary variables.
Two types of problems can be analysed:
� Generate E(P) explicitly. Several methods have been

proposed; they are reviewed in [10]. below we will
present two of them, which appear general, charac-
teristic and efficient.

� To determine interactively with the decision maker
a ‘best compromise’ in E(P) according to the pref-
erences of the decision maker. Some of the existing
approaches are reviewed in [11]; below we will de-
scribe three of these interactive methods.

Generation of E(P)

Klein–Hannan Method

See [5]. This is an iterative procedure for sequentially
generating the complete set of efficient solutions for
problem (P) (we suppose that the coefficients c(k)j are
integers); it consists in solving a sequence of progres-
sively more constrained single objective ILP problems
and can be implemented through use of any ILP algo-
rithm.
� (Initialization: step 0) An objective function l 2 {1,

. . . , K} is chosen arbitrarily and the following single
objective ILP problem is considered:

(P0) max
X2D

zl (X):

Let E(P0) be the set of all optimal solutions of (P0)
and let E0(P) be the set of solutions defined as E0(P)
= E(P0) \ E(P). Thus, E0(P) is the subset of non-
dominated solutions in E(P0).

� (Step j, (j �1)) The efficient solutions generated at
the previous steps are denoted by X�r , r = 1, . . . , R,
i. e. [ j�1

iD1Ei(P) = {X�r :r = 1, . . . , R}. In this jth step,
the following problem is solved

(P j)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max
X2D

zl (X)

R\
rD1

0
BB@

K[
kD1
k¤l

zk(X) � zk(X�r )C 1

1
CCA :

The new set of constraints represents the require-
ment that a solution to (Pj) be better on some ob-
jective k 6D l for each efficient solution X�r gener-
ated during the previous steps; an example of imple-
mentation of theseconstraints is given in [5]. The set
of solutions Ej(P) is then defined as Ej(P) = E(Pj)\
E(P), where E(Pj) is the set of all optimal solutions
of (Pj).

The procedure continues until, at some iteration J, the
problem (PJ) becomes infeasible; at this time E(P) =
[

J�1
jD0Ej(P).

Kiziltan–Yucaoglu Method

See [4]. This is a direct adaptation to a multi-objective
framework of the well-known Balas algorithm for the
ILP problem with binary variables.

At node Sr of the branch and bound scheme, the fol-
lowing problem is considered:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

0max 0
X
j2Fr

c jx j C
X
j2Br

c j

s.t.
X
j2F

t jx j � dr

x j D (0; 1)
where Br is the index set of variables

assigned the value one
Fr is the index of free variables
dr D d �

X
j2Br

t j

t j is the jth column of T
cj is the vector of components c(k)j :

The node Sr is called feasible when dr� 0 and infeasible
otherwise. The three basic rules of the branch and bound
algorithm are:
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� (bounding rule) A lower and upper bound vector,
Zr and Zr , respectively, are defined as

Zr D
X
j2Br

c j;

Zr D Zr C Yr ;

where Yr
k =

P
j2Fr max{0, ckj }. The vector Zr is

added to a list bE of existing lower bounds if Zr is
not dominated by any of the existing vectors of bE.
At the same time, any vector ofbE dominated by Zr

is discarded.
� (fathoming rules) In the multi-objective case, the

feasibility of a node is no longer a sufficient condi-
tion for fathoming it. The three general fathoming
conditions are:
– Zr is dominated by some vector ofbE;
– the node Sr is feasible and Zr D Zr ;
– the node Sr is unfeasible and

P
j2 Fr min(0, tij)>

dri for some i = 1, . . . , m.
The usual backtracking rules are applied.

� (branching rule) A variable xl 2 Fr is selected to be
the branching variable.
– If the node Sr is feasible, l 2 f j 2 Fr : c j 6� 0g.
– Otherwise, index l is selected by the minimum

unfeasibility criterion:

min
j2Fr

mX
iD1

max
�
0;�dr

i C ti j
�
:

When the explicit enumeration is complete, E(P) D bE.

InteractiveMethods

Suchmethods are particularly important to solve multi-
objective applications. The general idea is to determine
progressively a good compromise solution integrating
the preferences of the decision maker.

The dialog with the decision maker consist of
a succession of ‘calculation phase’ managed by the
model and ‘information phase’ managed by the deci-
sion maker.

At each calculation phase, one or several new effi-
cient solutions are determined taking into account the
information given by the decision maker at the pre-
ceding information phase. At each information phase,
a few number of easy questions are asked to the deci-
sion maker to collect information about its preferences
in regard to the new solutions.

Gonzalez–Reeves–Franz Algorithm

See [3]. In this method a seteE of K efficient solutions is
selected and updated in each algorithm step according
to the decision maker’s preferences. At the end of the
procedure,eE will contain the most preferred solutions.
The method is divided in two stages: in the first one, the
supported efficient solutions are considered, while the
second one deals with nonsupported efficient solutions.
� (Stage 1): Determination of the best supported effi-

cient solutions. eE is initialized with K optimal so-
lutions of the K single objective ILP problems. Let
us denote by eZ the K corresponding points in the
objective space of the solution of eE. At each itera-
tion, a linear direction of search G(X) is build:G(X)
is the inverse mapping of the hyperplane defined by
the points of eZ in the objective space into the deci-
sion space. A new supported efficient solution X� is
determined by solving the single objective ILP prob-
lemmaxX2DG(X) and Z� is the corresponding point
in the objective space. Then:
– if Z� … eZ and the decision maker prefers solu-

tion X� to at least one solution ofeE: the least pre-
ferred solution is replaced ineE by X� and a new
iteration is performed;

– if Z� … eZ and X� is not preferred to any solution
in eE: eE is not modified and the second stage is
initiated;

– if Z 
 eZ: eZ defines a face of the efficient surface
and the second stage is initiated.

� (Stage 2): Introduction of the best non supported so-
lutions. We will not give details about this second
stage (see [3] or [10]); letus just say that it is per-
formed in the same spirit but considering the single
objective problem
8̂
<̂
ˆ̂:

max G(X)
X 2 D
G(X) � eG � " with " > 0

where eG is the optimal value obtained for the last
function G(X) considered.

Steuer–Choo Method

See [9]. Several interactive approaches of MOLP prob-
lems can also be applied to MOILP; among them, we
mention only the Steuer–Choo method, which is a very
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general procedure based on problem (PT
	
) defined in the

introduction.
The first iteration uses a widely dispersed group of

� weighting vectors to sample the set of efficient solu-
tions. The sample is obtained by solving problem (PT

	
)

for each of the � values in the set. Then the decision
maker is asked to identify the most preferred solution
X(1) among the sample. At iteration j, a more refined
grid of weighting vectors � is used to sample the set
of efficient solution in the neighborhood of the point
zk(X(j)) (k = 1, . . . , K) in the objective space. Again the
sample is obtained by solving several problems (PT

	
)

and the most preferred solution X(j+1) is selected. The
procedure continues using increasingly finer sampling
until the solution is deemed to be acceptable.

The MOMIXMethod

(See [6].) The main characteristic of this method is the
use of an interactive branch and bound concept – ini-
tially introduced in [7] – to design the interactive phase.
� (First compromise): The following minimax opti-

mization, with m = 1, is performed to determined
the compromise eX(1):

(Pm)

8̂
<̂
ˆ̂:

min ı

8k ˘
(m)
k (M(m)

k � zk(X)) � ı;
X 2 D(m)

where
– D(1) � D;
– [m(1)

k , M(1)
k ] are the variation intervals of the cri-

teria k, provided by the pay-off table (see [8]);
– ˘

(1)
k are certain normalizing weights taking into

account these variation intervals (see [8]).

Remark 1 If the optimal solution is not unique, an aug-
mented weighted Tchebychev distance is required in
order to obtain an efficient first solution.

� (Interactive phases): There are integrated in an in-
teractive branch and bound tree; a first step (a depth-
first progression in the tree) leads to the determina-
tion of a first good compromise; the second step (a
backtracking procedure) confirms the degree of sat-
isfaction achieved by the decision maker or it finds
a better compromise if necessary.
– (Depth first progression): For m � 1, let at the

mth iteration

1) eX(m) be themth compromise;
2) z(m)

k be the corresponding values of the crite-
ria;

3) [m(m)
k , M(m)

k ] be the variation intervals of the
criteria; and

4)˘ (m)
k be the weight of the criteria.

The decision maker has to choose, at thismth it-
eration, the criterion lm(1)2 {k: k = 1, . . . , K} he is
willing to improve in priority. Then a new con-
straint is introduced so that the feasible set be-
comes D(m+1) � D(m) \ {zlm(1)(X) > zlm(1)(m)}
Further, the variation intervals [m(mC1)

k ,M(mC1)
k ]

and the weights ˘ (mC1)
k are updated on the new

feasible set D(m+1). The new compromise eX(mC1)

is obtained by solving the problem (Pm+1).
Different tests allow to terminate this first step.
The node (m+1) is fathomed if one of the follow-
ing conditions is verified:
a) D(m+1) = ;;
b)M(mC1)

k �m(mC1)
k � �k 8 k;

c) the vector bZ of the incumbent values (val-
ues of the criteria for the best compromise
already determined) is preferred to the new
ideal point (of componentM(mC1)

k ).
The first step of the procedure is stopped if either
more than q successive iterations do not bring an
improvement of the incumbent pointbZ or more
than Q iterations have been performed.
Note that the parameters �k, q and Q are fixed in
the agreement with the decision maker.

c) (Backtracking procedure): It can be hoped that the
appropriate choice of the criterion zlm(1), at each
levelm of the depth-first progression, has beenmade
so that at the end of the first step, a good compro-
mise has been found.
Nevertheless, it is worth examining some other parts
of the tree to confirm the satisfaction of the deci-
sion maker. The complete tree is generated in the
following manner: at each level, K subnodes are in-
troduced by successively adding the constraints:

zlm (1)(X) > z(m)
lm (1);

zlm (2)(X) > z(m)
lm (2); zlm (1)(X) � z(m)

lm (1);

:::
:::

:::
:::

:::
:::

zlm (K)(X) > z(m)
lm (K); zlm (k)(X) � z(m)

lm (k);
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for all k = 1, . . . , K � 1, where lm(k) 2 {k: k = 1, . . . ,
K} is the kth objective that the decision maker wants
to improve at themth level of the branch and bound
tree.
At each levelm, the criteria are thus ordered accord-
ing to the priorities of the decision maker in regard
with the compromise eX(m).
The usual backtracking procedure is applied; yet it
seems unnecessary to explore the whole tree. In-
deed, the subnode k > K of each branching corre-
spond to a simultaneous relaxation of those criteria
lm(k), k � K, the decision maker wants to improve
in priority!
Therefore, the subnodes k > K D 2 or 3, for in-
stance, do almost certainly not bring any improved
solutions.
The fathoming tests and the stopping tests are again
applied in this second step.
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Amulti-objective (multicriteria) mixed integer program-
ming(MOMIP) problem is a mathematical program-
ming problem that considers more than one objective

function and some but not all the variables are con-
strained to be integer valued. The integer variables can
either be binary or take on general integer values. The
problem may be stated as follows:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max z1 D f1(x)
:::

max zk D fk(x)
s.t. x 2 X

where X � Rn denotes the nonconvex set of feasible so-
lutions defined by a set of functional constraints, x � 0
and xj integer j2 J� {1, . . . , n}. It is assumed that X is
compact (closed and bounded) and nonempty.

Although a MOMIP problem may be nonlin-
ear, models with linear constraints and linear objec-
tive functions have been more often considered. In
a multi-objective mixed integer linear programming
(MOMILP) problem, the functional constraints can be
defined as Ax � b, and the objective functions f i(x) =
cix, i = 1, . . . , k, where A is a m × n matrix, b is a m-
dimensional column vector and ci, i = 1, . . . , k, are n-
dimensional row vectors.

Multi-objective mixed integer programming is very
useful for many areas of application such as commu-
nication, transportation and location, among others.
Integer variables are required in a real-world model
whenever it is sought to incorporate discrete phenom-
ena; for instance, investment choices, production lev-
els, fixed charges, logical conditions or disjunctive con-
straints. However, research on MOMIP has been rather
limited. Concerning multi-objective mathematical pro-
gramming, most research efforts have been so far de-
voted to linear programming with continuous variables
(MOLP). The introduction of discrete phenomena into
multi-objective models leads to all-integer or mixed in-
teger problems that are more difficult to tackle. They
can not be handled by most MOLP approaches be-
cause the feasible set is no longer convex. Also, there
are multi-objective approaches designed for all-integer
problems that do not apply to the mixed integer case.
Therefore, even for the linear case, techniques for deal-
ing with multi-objective mixed integer programming
involve more than the combination of MOLP with
multi-objective integer programming techniques.
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Efficiency and Nondominance

The concept of efficiency (or nondominance) in
MOMIP is defined as usually for multi-objective math-
ematical programming: A solution x 2 X is efficient if
and only if it does not exist another x 2 X such that
fi(x) � fi(x) for all i 2 {1, . . . , k} and fi(x) > fi(x)
for at least one i. A solution x 2 X is weakly efficient
if and only if it does not exist another x 2 X such that
fi(x) > fi(x) for all i 2 {1, . . . , k}.

Let Z � Rk be the image of the feasible region X
in the criterion (objective function) space. A criterion
point z 2 Z corresponding to a (weakly) efficient solu-
tion x 2 X is called (weakly) nondominated. The desig-
nations ‘efficient’, ‘nondominated’ and ‘Pareto optimal’
are often used as synonyms.

Supported and Unsupported
Nondominated Solutions

Since the feasible region is nonconvex, unsupported
nondominated points/solutions may exist in a MOMIP
problem. A nondominated point z 2 Z is unsupported
if it is dominated by a convex combination (which
does not belong to Z) of other nondominated criterion
points (belonging to Z). In Fig. 1 the line segment from
A to B plusD is the set of supported nondominated cri-
terion points. The line segment from C to D excluding
C and D is the set of unsupported nondominated crite-
rion points. Note that convex combinations of B and D

Multi-objective Mixed Integer Programming, Figure 1
Nondominated criterion points of a MOMILP problem

dominate the line segment from C to D, excluding D. C
is a weakly nondominated solution.

Characterization of the Nondominated Set

Unlike MOLP, the nondominated (or efficient) set of
MOMIP problems can not be fully determined by pa-
rameterizing on � the weighted-sums program:

(P	)

8̂
<̂
ˆ̂:
max

( kX
iD1

�i f i(x) : x 2 X

)

where � 2 �:

Here,

� D

(
� 2 Rk :

�i > 0 8i;Pk
iD1 �i D 1

)
:

The unsupported nondominated solutions cannot be
reached even if the complete parameterization on � is
attempted.

Researchers on multi-objective mathematical pro-
gramming early recognized this fact and stated other
characterizations for the nondominated set that fit
MOMIP and, in particular, MOMILP problems. Ba-
sically, two main characterizations are defined. One
consists of introducing additional constraints into the
weighted-sums program. Generally, these constraints
impose bounds on the objective function values. This
form of characterization may be regarded as a partic-
ularization of the general characterization provided by
R.M. Soland [13]. The other is based on the Tchebycheff
theory whose theoretical foundation originated from
V.J. Bowman [3]. More details about these character-
izations and on how they provide the computation of
nondominated solutions will be given later. Although
providing very important theoretical results, the char-
acterizations of the nondominated set do not offer an
explicit means to provide decision support for MOMIP
problems. However, some authors have developed de-
cision support methods for these problems.

Interactive Versus NoninteractiveMethods

Methods may be either noninteractive (in general,
generating methods designed to find the whole or
a subset of the nondominated solutions) or inter-
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active (characterized by phases of human interven-
tion alternated with phases of computation). Gener-
ating methods for MOMIP problems usually require
an excessive amount of computational resources, both
in processing time and storage capacity. Even spe-
cialized generating algorithms developed just for bi-
objective problems, which profit from graphical rep-
resentations on the criterion space, tend to be inad-
equate to deal with large problems. Nevertheless, the
distinction between interactive and generating meth-
ods is not always clear. Some approaches attempt to
find a representative subset of the nondominated set
(generating methods according to the above defini-
tion) and would be easily embodied in an interac-
tive framework. The bi-objective method of R. Solanki
[14] may be regarded as an example of such an ap-
proach.

Taking into account the difficulties mentioned
above, and the large number of nondominated solu-
tions in many problems, special attention to interactive
methods will be paid. First of all, a short remark is made
about the major paradigms followed by the authors of
interactive methods. Some authors admit that the deci-
sion maker’s (DM) preferences can be represented by
an implicit utility function. The interactive process con-
sists in building a protocol of interaction aiming to dis-
cover the optimum (or an approximation of it) of that
implicit utility function. The convergence to this opti-
mum requires no contradictions in the DM’s responses
given throughout the interactive process.

In contrast with implicit utility function ap-
proaches, the open communication approaches are
based on a progressive and selective learning of the
nondominated set. The terminology of open commu-
nication is inspired on the concept of open exchange,
defined by P. Feyerbend [6]. Such multi-objective ap-
proaches are not intended to converge to any ‘best’
compromise solution but to help the DM to avoid the
search for nondominated solutions he/she is not at all
interested in. There are no irrevocable decisions dur-
ing the whole process and the DM is always allowed to
go ‘backwards’ at a later interaction. So, at each inter-
action, the DM is only asked to give some indications
on what direction the search for nondominated solu-
tions must follow, or occasionally to introduce addi-
tional constraints. The process only finishes when the
DM considers to have gained sufficient insight into the

nondominated solution set. Using the terminology of
B. Roy [12], ‘convergence’ must give place to ‘creation’.
The interactive process is a constructive process, not the
search for something ‘pre-existent’.

Although we personally prefer the open commu-
nication methods, we will include in the next section
a tentative classification of both, drawing out some
differences and similarities between them. We adopt
this perspective because this question is not specific
to mixed integer programming and arguments pro or
against each approach, besides being subjective, are the
same as in other multi-objective programming fields.
Furthermore, since MOMIP is still in its early steps,
no behavioral studies exist addressing the use of pro-
cedures within this context.

As we have mentioned before, research on MOMIP
has been rather scarce in comparison to other fields
of the multi-objective mathematical programming,
namely in MOLP. We will mention herein some well-
known methods specially designed for MOMIP or far
more generally applicable.

Computing Processes and Their Use
in InteractiveMethods

Weighted-Sums Programs
with Additional Constraints

The introduction of bounds on the objective function
values into theweighted-sums program (P	) enables this
program to also compute unsupported nondominated
solutions:

(P	;g) max

8<
:

kX
jD1

�i f i(x) : x 2 X; f (x) � g

9=
; ;

where f (x) = (f 1(x), . . . , f k(x)), � 2 � and g is a vector
of objective bounds. Besides the fact that every solution
obtained by (P	, g) is nondominated, there always exists
a g 2 Rk such that (P	, g) yields a particular nondom-
inated solution. Other types of additional constraints
can also be used.

A scalarizing program which consists of the
weighted-sums program combined with additional
constraints is used for computing nondominated solu-
tions in the interactive branch and bound method of
B. Villarreal et al. [18]. The additional constraints are
bounds imposed on integer variables by the branching
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process. This method, which is devoted to MOMILP
problems, received later improvements in [8] and [11].
Starting by applying the well-known (MOLP) Zionts–
Wallenius procedure to the linear relaxation of the
MOMILP problem, the method then employs a branch
and bound phase until an integer solution that satis-
fies the DM is achieved. An implicit utility function is
assumed and the DM’s preferences are assessed using
pairwise evaluations of decision alternatives and trade-
off analysis. In light of the DM’s underlying utility func-
tion, decisions on whether to apply again the Zionts–
Wallenius procedure to the linear relaxation of a can-
didate multi-objective subproblem, or to continue to
branch by appending a constraint on a variable, are suc-
cessively made.

Another method that uses particular forms of (P	, g)
to compute nondominated solutions is due to Y. Ak-
soy [1]. This is an interactive method for bicriterion
mixed integer programs that employs a branch and
bound scheme to divide the subset of nondominated
solutions considered at each node into two disjoint sub-
sets. The branching process seeks to bisect the range of
nondominated values for z2 at the node under consid-
eration, checking whether a nondominated point ex-
ists whose value for z2 is in the middle of the range.
If no such solution exists, that subset is divided us-
ing two nondominated points whose values for z2 are
the closest (one up and the other down) to the mid-
dle value. These nondominated solutions are obtained
by solving (P	, g) optimizing one objective function
and bounding the other. The interactive process re-
quires the DM to make pairwise comparisons in or-
der to determine the branching node and to adjust
the incumbent solution to the preferred nondomi-
nated solution. It is assumed that the DM’s preferences
are consistent, transitive and invariant over the pro-
cess aiming to optimize the DM’s implicit utility func-
tion.

C. Ferreira et al. [5] proposed a decision support
system for bicriterion mixed integer programs. The in-
teractive process follows an open communication pro-
tocol asking the DM to specify bounds for the objec-
tive function values. These bounds are input into (P	, g)
defining subregions to carry on the search for nondom-
inated solutions. Some objective space regions are pro-
gressively eliminated either by dominance or infeasibil-
ity.

Tchebycheff and Achievement Scalarizing Programs

Bowman [3] proved that the parameterization on w
of minx2X k f � f (x)kw generates the nondominated
set, where wi � 0 for all i,

Pk
iD1wi = 1, f is a cri-

terion point such that f > f (x) for all x 2 X and
k f � f (x)kw denotes the w-weighted Tchebycheff met-
ric, that is, max1�i�kfwi j f i � fi(x)jg. This scalarizing
program is equivalent to

(Tw )

8̂
<̂
ˆ̂:

min ˛

s.t. wi

�
f i � fi(x)

�
� ˛; 1 � i � k;

x 2 X; ˛ � 0:

(Tw) may yield weakly nondominated solutions (for in-
stance, point C in Fig. 1). Replacing the objective func-
tion in (Tw) by ˛ � �

Pk
iD1f i(x) with � a small posi-

tive value, all the solutions returned by this augmented
weighted Tchebycheff program are nondominated. R.E.
Steuer and E.-U. Choo [16] proved that there are always
� small enough that enable to reach all the nondomi-
nated set for the finite-discrete and polyhedral feasible
region cases.

Concerning the MOMIP case, although there may
be portions of the nondominated set that the program
is unable to compute, even considering � very small
(for example, the line segment from C to C0 in Fig. 2,
for a given �), this characterization is still possible in
practice. Note that � can be set so small that the DM
is unable to discriminate between those solutions and
a nearby weakly nondominated solution (this corre-
sponds to C0 getting closer to C in Fig. 2).

In [16] and [15] a lexicographic weighted Tcheby-
cheff program is proposed for the nonlinear and
infinite-discrete feasible region cases to overcome this
drawback of the augmented weighted Tchebycheff pro-
gram. The lexicographic approach can also be applied
to the mixed integer (linear) case. However, it is more
difficult to implement since two stages of optimiza-
tion are employed. At the first stage only ˛ is mini-
mized. When the first stage results in alternative op-
tima, a second stage is required. It consists of mini-
mizing �

Pk
iD1f i(x) over the solutions that minimize

˛ in order to eliminate the weakly nondominated solu-
tions.

Besides (Tw) (either the augmented or the lexi-
cographic forms), there are other similar approaches
that also allow to characterize the nondominated set of
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Multi-objective Mixed Integer Programming, Figure 2
Illustration of the augmented weighted Tchebycheff metric

multi-objective mixed integer programs. An approach
of this type consists in discarding the w-vector or fix-
ing it and varying f , the criterion reference point that
represents the DM’s aspiration levels. This scalarizing
program can be denoted by (T f ). There always exist ref-
erence points satisfying f > f (x) for all x 2 X, such
that (T f ) produces a particular nondominated solution
z D f (x). The variation of f can be done according
to a vector direction � , leading to (T fC ). The refer-
ence points are thus projected onto the nondominated
set. Reference points that do not satisfy the condition
f > f (x) for all x 2 X may also be considered pro-
vided that the ˛ variable is defined without sign restric-
tion. This corresponds to the minimization of a dis-
tance from Z to the reference point if the latter is not
attainable and to the maximization of such a distance
if the reference point is attainable. If reference or as-
piration levels are used as controlling parameters, the
(weighted) Tchebycheff metric changes its form of de-
pendence on controlling parameters and should be in-
terpreted as an achievement function [9].

Like (Tw), the simplest form of (T f ) may produce
weakly nondominated solutions. The augmented form
is a good substitute in practice and the lexicographic
approach guarantees that all nondominated solutions
can be reached. In what follows, let (T�) denote either
the simplest, the augmented or the lexicographic form.

Scalarizing programs (Tw), (T f ) and their exten-
sions or slight different formulations are used to gen-
erate nondominated solutions in several (interactive)

methods proposed in literature, namely in the follow-
ing ones.

Steuer and Choo [16] proposed a general purpose
multi-objective programming interactive method that
assumes an implicit DM’s utility function without any
special restriction on shape. The strategy of the inter-
active procedure is to sample series of progressively
smaller subsets of nondominated solutions. At each
interaction, the DM selects his/her preferred solution
from a sample of nondominated solutions obtained
from (Tw) with several w-vectors and the ideal crite-
rion point in the role of f . The solution preferred by
the DM provides information to tighten the set of w-
vectors for the next interaction. The procedure termi-
nates when a nondominated criterion point sufficiently
close to the optimal criterion point of the underlying
utility function is found.

Solanki’s method [14], which is designed for bi-
objective mixed integer linear programs, is an adapta-
tion of the noninferior set estimation (NISE) method
developed by J.L. Cohon for bi-objective linear pro-
grams. It seeks to generate a representative subset of
nondominated solutions by combining the NISE’s key
features with weighted Tchebycheff scalarizing pro-
grams. At each iteration, a new nondominated solution,
say z3, is computed by solving (Tw) for specific w and f ,
assuring that z3 belongs to the region between a pair of
nondominated criterion points previously determined,
say (z1, z2). This pair is then replaced by (z1, z3) and
(z3, z2). The approximation of the nondominated sur-
face is progressively improved, thus decreasing the ‘er-
rors’ associated with the approximate representation of
the pairs. This ‘error’ is measured by the largest range of
the two objectives for the points forming the pair. The
algorithm finishes when the maximum ‘error’ is lower
than a predefined maximum allowable ‘error’.

Another interactive method capable of solving
MOMIP problems was developed by A. Durso [4]. This
method employs a branching scheme considering pro-
gressively smaller portions of the nondominated set by
imposing lower bounds on the criterion values. At each
interaction, the k nondominated solutions that define
the (quasi)ideal criterion point for each new node are
calculated. The DM is then asked to select the node
for branching by choosing the preferred ideal point.
The branching process begins by solving an equally
weighted augmented Tchebycheff program to deter-
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mine a ‘centralized’ nondominated point for the subset
of the node under exploration. Once the DM chooses
the most preferred of the k + 1 nondominated points
already known for this node, saybz, up to k new nodes
(children) are created. Each child inherits its parent’s
bounding constraints and usesbz to further restrict one
of them. Thus, the ith child restricts the ith criterion
by imposing fi(x) � bzi C ı with ı small positive.
This approach may be regarded as an open communi-
cation procedure that terminates when the DM is sat-
isfied with the incumbent solution (the preferred non-
dominated solution obtained so far).

M.J. Alves and J. Clímaco [2] proposed a MOMILP
open communication interactive approach. It combines
the Tchebycheff theory with the traditional branch and
bound technique for solving single-objective mixed in-
teger programs. At each interaction, the DM speci-
fies either a reference point f , which is input in (T f )
to compute a nondominated solution via branch and
bound, or just selects an objective function, say f j,
he/she wants to improve with respect to the previous
nondominated solution. In the latter case, the refer-
ence point is automatically adjusted by increasing the
jth component of f keeping the others equal, in order
to produce new nondominated solutions (directional
search) more suited to the DM’s preferences. This in-
volves an iterative process of sensitivity analysis and
operations to update the branch and bound tree. The
sensitivity analysis takes advantage of the special be-
havior of the parametric scalarizing program (T fC ).
It returns a value � j > 0 such that the structure of the
previous branch and bound tree remains unchanged
for variations in f j up to f j C � j . Therefore, refer-
ence points f C � D ( f 1; : : : ; f j C � j; : : : ; f k) with
� j � � j lead to nondominated solutions that may be
obtained in a straightforward way. If the DM wishes to
continue the search in the same direction, a slight in-
crease over � j , say � j C �, is first considered. In this
case, the previous sensitivity analysis also returns the
best candidate node, i. e., an ancestor of the node that
will produce the next nondominated solution. The pre-
vious branch and bound tree is thus used to proceed to
the next computations. Since further branching is usu-
ally required, an attempt is made to simplify the tree
before enlarging it. The underlying idea is to avoid an
evergrowing tree. This simplification means cutting off
parts of the tree linked by branching constraints no

longer active. In sum, this approach brings together
sensitivity analysis phases meant to adjust the refer-
ence point and simplification/branching operations of
the search tree to compute nondominated solutions.
This process is repeated as long as the DM wishes to
continue the directional search or if the reference point
has not been adjusted enough to yield a nondominated
solution different from the previous one (a situation
that occurs more often in all-integer programs than
in mixed integer models). Computational experiments
have shown that this multi-objective approach succeeds
in performing directional searches. The times of com-
puting phases using simplification/branching opera-
tions have been significantly reduced by this strategy.

Some researchers have developed other methods for
multi-objective integer programming that are also ap-
plicable to the mixed integer case. Good examples of
such approaches are those in [10,17] and [7]. In our
opinion, they all are open communication procedures
that share some key features, namely the concept of
projecting a reference direction onto the nondominated
surface (although this procedure is used in different
ways) and the type of information required about the
DM’s preferences. This information lies fundamentally
in the specification of aspiration levels for the objec-
tive function values (reference points). Some of these
approaches are continuous/integer ([7,10]) working al-
most all the time with nondominated continuous solu-
tions of the linear relaxation of the problem. Whenever
the DM finds a satisfactory continuous solution, an in-
teger nondominated solution close to it is then com-
puted.

Conclusions and Future Developments

Most methods developed so far for MOMIP problems
require an excessive amount of computational effort,
or require too much cognitive load from the DM, or
only address bi-objective problems. In addition, com-
putational experience with real-world applications is
lacking. Although interesting or promising approaches
have been developed, further research efforts must be
made in order to build effective interactive methods
able to handle real-sized problems.
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Koç University, İstanbul, Turkey

MSC2000: 90B50, 90C29, 65K05, 90C05, 91B06



Multi-objective Optimization and Decision Support Systems M 2461

Article Outline

Keywords
Traditional Classification
Multi-Objective Linear Programming
Working in the Outcome Space
Reflections on Optimization Trends
Nonlinear and Integer Problems
Applications
A Related Optimization Problem
Trends
See also
References

Keywords

Multiple criteria decision making; Vector
optimization; Efficient solution; Decision support

Multiple criteria decision making (MCDM) refers to the
explicit incorporation of more than one evaluation cri-
teria into a decision problem. MCDM has been a very
active field of research roughly since the 1970s. Al-
though boundaries might be fuzzy and overlapping,
multicriteria decision analysis (studying the problem of
identifying the ‘most-preferred’ among a finite discrete
set of alternatives), multi-attribute utility theory (using
utility functions explicitly to model a decision maker’s
preferences) and multi-objective optimization (model-
ing the decision problem within a mathematical pro-
gramming framework) have emerged as major fields of
interest under MCDM. For more information on the
general field of MCDM, see [21].

Multi-objective mathematical programming pro-
vides a flexible modeling framework that allows for si-
multaneous optimization of more than one objective
function over a feasible set. Mathematically, the multi-
objective optimization problem can be expressed as:

(MOO)

(
max f (x);
s.t. x 2 X;

where X � Rn is the set of feasible alternatives and f =
(f 1, . . . , f p): Rn!Rp, p� 2, is a vector-valued function.
Note that X can be any set, continuous or discrete, ex-
pressed through constraints, and the objective function
f can be of any form.

The increased flexibility provided by (MOO) also
raises the question of what constitutes a solution to it.

The definition of optimality is no longer valid, as each
objective function would possibly yield a different op-
timal solution. Therefore solving the (MOO) problem
is about studying the inherent trade-offs among con-
flicting objectives. Efficient solutions are the ones that
possess the relevant trade-off information. An xo 2 Rn

is called an efficient solution for the (MOO) problem
if xo 2 X and there exists no x 2 X such that f (x) �
f (xo) with strict inequality holding for at least one com-
ponent. The set of all efficient solutions of the (MOO)
problem is usually denoted by XE. As per the above
definition, the most-preferred solution of the decision
maker should belong to XE, as solutions that are not ef-
ficient, the dominated ones, can be improved upon in
at least one objective without worsening the others.

Since XE is usually a big set, confining the most-
preferred solution to XE does not help identify the
most-preferred solution immediately. In particular, the
difficulty of defining and obtaining the most-preferred
solution, the one that the decision maker would iden-
tify as the solution to the decision-making problem, and
the need for the inevitable involvement of the decision
maker in the solution procedure has resulted in very
different solution approaches to the (MOO) problem.

Traditional Classification

The timing of the involvement of the decision maker
in the solution procedure has been a crucial factor that
distinguishes among various approaches to the (MOO)
problem [13]. A priori methods, methods that use prior
articulation of preferences, ask the decision maker to
specify preference information prior to the application
of an optimization routine. The elicitation of preference
information can be directed towards deriving a util-
ity function that describes the decision maker’s pref-
erences [14], or as in goal programming [7] and com-
promise programming [23], a standard model can be
imposed upon the decision maker. As these methods
reduce the (MOO) problem to a single-objective opti-
mization problem and they aspire to find a single solu-
tion to it, they have received considerable recognition
although their assumptions are usually restrictive.

The interactive methods require the interaction of
the decision maker with the computer while solv-
ing a particular (MOO) problem. Usually, the idea is
to construct a model that proposes solutions to the
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(MOO) problem based on some initial input. The de-
cision maker is then invited to reply to the solution by
providing additional preference information. The in-
teraction between the computer program and the de-
cision maker continues until a satisfying solution is ob-
tained.

Interactive methods are important inmore than one
way. First, they have introduced the means for practi-
cally solving a (MOO) problem [12]. Second, they help
a decision maker learn about the inherent trade-offs of
a problem during the solution process [5]. Third, the
idea underlying the interactive methods constitutes the
major motivation behind the contemporary decision
support systems. Although interactive algorithms have
encountered a certain level of acceptance from practi-
tioners [1,20], they are not without disadvantages. They
usually rely too much on the information provided by
the decision maker, are not able to provide a global look
at XE, and thus at the trade-offs inherent in a prob-
lem, and they focus on finding a single solution whereas
a number of solutions may be compatible with the deci-
sion maker’s preferences. Moreover, their information
requests may be overwhelming for the decision maker.
It has been discussed that interactive methods need to
address behavioral aspects of decision making [16] and
concentrate on interfacing the decision maker[15] as
well as broadening their model base [10]. Although they
do not encompass all the raised issues, some of the in-
teractive (MOO) algorithms have already evolved into
decision support systems that provide a friendly envi-
ronment for modeling as well as problem solving [17].
It can be expected that more decision support systems
to solve problem (MOO) will appear in the near future.

Perhaps the most straight-forward way of ap-
proaching the (MOO) problem is as in vector optimiza-
tion methods. Also referred to as posterior methods,
these methods are based on the sole assumption that
the decision maker prefers more to less in each ob-
jective function in (MOO) hence they propose identi-
fying all of the efficient solutions of (MOO) and pre-
senting them to the decision maker for the identifica-
tion of the most-preferred solution. Along with theo-
retical findings [2,11], some vector optimization meth-
ods have been proposed; however, the methods have
not gained practical recognition in general. The fail-
ure in the implementation of the proposedmethods can
be explained by the heavy computational requirements

of these methods. Perhaps a more important factor is
the difficulty of presenting the efficient set in a ‘legi-
ble’ way to the decision maker. Furthermore, as the ef-
ficient set is usually continuous when the feasible re-
gion is, the task of identifying the most-preferred so-
lution is a monstrous one attributed to the decision
maker.

Multi-Objective Linear Programming

When (MOO) has linear objective functions and a poly-
hedral feasible set, the resulting problem is called amul-
tiple objective linear programming (MOLP) problem.
The MOLP problem has mathematical features that
make it easier to characterize and obtain the efficient set
compared to the more general case. More specifically, it
has been shown that the efficient set of the MOLP prob-
lem consists of a collection of efficient faces of the fea-
sible region. As faces of a polyhedron can be charac-
terized in a number of ways, for instance as the convex
hull of its extreme points if its compact, as the optimal
solution set to a particular optimization problem, or as
a polyhedron itself, it becomes possible to obtain and
present the efficient set [9,18,22].

Yet the computational effort increases with prob-
lem size, and the (MOO) problem cannot be considered
truly solved at this stage without some mechanism that
helps the decision maker identify the most-preferred
solution in this huge and hard-to-explore set. Most of
the vector optimization methods have concentrated on
finding the set of efficient extreme points of the multi-
ple objective linear programming problem. These are
usually methods that rely on simplex-like procedures
or parametric searches that incorporate book-keeping
mechanisms based on the fact that the set of efficient
extreme points is connected. A well-known procedure
that solves (MOLP) for all of its extreme points is AD-
BASE which was developed by R.E. Steuer [19].

Example 1 Consider the MOLP problem [18]:

8̂
ˆ̂̂<
ˆ̂̂̂
:

max x1; x2; x3;
s.t. 2x1 C 3x2 C 4x3 � 12

4x1 C x2 C x3 � 8
x1; x2; x3 � 0:

(1)
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The efficient set is the union of the two shaded efficient
faces E1 and E2. There are 5 efficient extreme points: e1
= (0, 0, 3), e2 = (10/7, 0, 16/7), e3 = (12/10, 32/10, 0), e4
= (0, 4, 0), e5 = (2, 0, 0). If X denotes the feasible region,
The face marked E1 can be characterized as the polyhe-
dron that forces the first constraint in (1) to equality in
the definition of X. It can also be defined as the convex
hull of its four extreme points e1, e2, e3, e4. Finally, it is
the optimal solution set to the optimization problem
(
max �1x1 C �2x2 C �3x3
s.t. x 2 X

for (�1, �2, �3) = (2, 3, 4), and its positive multiples.

In large problems, the set of efficient extreme points
may still contain too many points to be studied by
the decision maker. Moreover, extreme efficient points
may not carry the trade-off information well since some
portions of the efficient set may end up being over-
emphasized whereas some regions are highly missed.
Indeed, there is no reason for a decision maker to be
solely interested in extreme point efficient solutions.
The attractiveness of efficient extreme points mostly lies
in their mathematical properties. With this motivation,
a method that applies to a general set of (MOO) prob-
lems has been suggested to find globally-representative
subsets of the efficient set [6].

Working in the Outcome Space

The outcome set Y = { y 2 Rp: y = f (x) 9 x 2 X }
helps redefine an equivalent problem to (MOO) in p-
dimensional outcome space:

(MOOO)

(
max y
s.t. y 2 Y :

As the number of objectives p is usually much less than
the number of variables n, the structure of Y is simpler
than that of X [4,8]. The ability to work directly with
(MOOO) thus has the potential of providing significant
computational benefits that vector optimization algo-
rithms have tried to realize [3].

Reflections on Optimization Trends

As a field within the general field of optimization,
multi-objective optimization is naturally affected by the
trends that become dominant in optimization. Con-
sequently, interior point methods, genetic algorithms,
neural networks have been applied to the (MOO) prob-
lem in various ways. As there are difficult problems un-
der (MOO) that cannot be yet practically solved, new
developments in the general field of optimization con-
stitute a potential to solve these problems.

Nonlinear and Integer Problems

Most of the algorithms proposed to solve problem
(MOO) concentrate on the fully linear case. In general,
when nonlinearities are introduced, the efficient solu-
tions and the efficient set become difficult to character-
ize. There are some algorithms that allow for nonlin-
earities in the objective functions, and in the constraints
that define the feasible region, but usually in a conserva-
tive way so as to retain some computational tractability.
Similarly, the multiple objective integer programming
problem is a very difficult one to solve due to the addi-
tional complications related to integrality.

Applications

Along with what one can call ‘case studies’, certain
applications that are more generic than a case study
but more specific than problem (MOO) itself have ap-
peared. Typical examples include, but are not limited
to, bicriteria network optimization problems, bicriteria
knapsack problems, and multicriteria scheduling prob-
lems. Since usually these are problems that naturally
involve multiple criteria, the methods developed for
these problems have practical implications. Most of the
methods developed can be categorized under a priori
methods. A typical approach is to form aweighted com-
bination of the objective functions. Recently, interactive
and vector optimization approaches that deal with sim-
ilar problems have also appeared.
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A Related Optimization Problem

A related problem is the problem of optimizing a func-
tion g: Rn !Rp over the efficient set XE. This can be
a difficult global optimization problem depending on
the properties of the objective function g. The problem
is motivated in different ways. Sometimes, in certain
settings, a function that is to serve as a pseudo utility
function is available. Then optimizing this pseudo util-
ity function over the efficient set in a sense corresponds
to solving problem (MOO) itself. In addition, when g
becomes one of the objective functions, then solving
this problem provides the range of values the objective
function takes over the efficient set. This information
is valuable for a decision maker who is trying to make
assessments to solve a problem and is used in some of
the interactive algorithms. The difficulty of the problem
has also resulted in heuristic solution approaches.

Trends

The advances in information technology affect the field
of multiple criteria decision making heavily. Faster
computers and parallel processing opportunities make
it timewise feasible to solve optimization problems that
would be deemed impractical in the past. Improved
graphical capabilities make it feasible to accommo-
date sophisticated user interfaces to invite the decision
maker in the problem solving process more actively and
reliably. The developments in the World Wide Web
present many opportunities to explore for individual
and group decision support. At this point in time, there
is still a need to solve the MOO problem in a rigor-
ous, user-friendly and creative way. The decision sup-
port systems that enable the involvement of the deci-
sionmaker inmodeling and problem solving practically
seem to be the way of solving (MOO) problems. The
vector optimization approaches can also benefit from
a decision support framework in their effort to help the
decision maker identify a most-preferred solution.
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Traditionally, process design and process control are
treated sequentially. Dynamics are not considered dur-
ing the design phase, and flowsheet changes can not be
made during the control phase. The problem with this
approach is that the two are inherently connected as the
design of the process affects its controllability. Thus, the
steady state design and the dynamic operability issues
should be treated simultaneously. Analyzing the inter-
action of design and control addresses the issue of quan-
titatively determining the trade-offs between the steady
state economics and the dynamic controllability.

The interaction of design and control problem is to
determine the process flowsheet which is both the eco-
nomically optimal and controllable. There are different
methods for addressing this problem. One common ap-
proach is to use overdesign where, once the economic
steady state design is determined, surge tanks are added
or equipment sizes are increased in order to handle any
dynamic problems which may arise. This overdesign is
usually based on heuristic rules and will likely move
the design away from its economic optimum. There
is no guarantee that the measures taken will even im-
prove the controllability of the process. Other meth-
ods may examine the dynamic operation of several de-
signs to determine which has the best controllability as-
pects.

There are very fewmethods which address the inter-
action of design and control in a quantitative manner.
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The interaction of design and control can be addressed
through a process synthesis approach involving opti-
mization. This approach involves the representation of
design alternatives through a process superstructure,
the mathematical modeling of the superstructure, and
the development of an algorithm to extract the opti-
mal flowsheet from the superstructure. The simultane-
ous optimization of the design and control of the pro-
cess is handled through multiple objectives represent-
ing the steady state economics and dynamic controlla-
bility. This naturally leads to a multi-objective frame-
work.

Multi-objective Optimization

In any decision making process, the goal is to reach the
best compromise solution among a number of compet-
ing objectives. Many examples of competing objectives
exist in the field of engineering. For example, in the de-
sign of a process, one may have to consider safety and
operational issues as well as economic issues. A decision
making process is necessary when the most economic
design is not the safest or most operable.

The best compromise solution depends on the rela-
tive importance of the conflicting objectives. This rela-
tive importance is not easily determined and is usually
a subjective decision. The one responsible for making
this decision is the decision maker (DM) whose choice
can be based on a number of factors. Since subjective
measures and decisions do not translate well into math-
ematics, a quantitative way of determining the trade-
offs and relative importance among the the objectives
is necessary for a multi-objective optimization frame-
work.

Multi-objective Framework
for the Interaction of Design and Control

In analyzing the interaction of design and control, the
objectives that are considered measure the steady state
economics and the dynamic controllability of the pro-
cess. The optimization approach in process synthesis
serves as the basis for the multi-objective framework for
the interaction of design and control. The procedure in-
volves four steps:
1) Process representation;
2) Mathematical modeling;

3) Generation of noninferior solution set (determine
trade-offs);

4) Best-compromise examination.
The first step is the representation of all the possible de-
sign alternatives through a process superstructure. In
this step, all the units and possible connections of inter-
est are incorporated into the superstructure such that
all designs of interest are included as a subset of the su-
perstructure.

Next, a mathematical model of the superstructure is
developed for the superstructure as well as for for ob-
jective functions. The mathematical formulation is de-
termined by the structure of the process flowsheet and
must include all information needed to evaluate the ob-
jective functions. The objective functions must mea-
sure the economics of the process as well as the con-
trollability of the process. Since the objective related
to the economic performance is determined by steady
state operation and the objective for the controllability
is determined by its dynamic operation, the mathemat-
ical model most contain both steady state and dynamic
information. The mathematical formulation involves
both continuous and discrete variables where discrete
variables are used to indicate the existence of units and
connections within the flowsheet.

Multi-objective Optimization: Interaction ofDesign andCon-
trol, Figure 1
Noninferior solution set for a problem with two objectives
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Once the model has been formulated, an algorithm
is developed and used to determine the quantitative
trade-offs among the competing objectives. Individu-
ally, each objective can be optimized, but together, they
will be in conflict. This means that there is a set of solu-
tions where one objective can be improved only at the
expense of the other objectives. This set of solutions is
called the noninferior solution set which is visually de-
picted for a two objective problem in Fig. 1. This solu-
tion set is also referred to as nondominated and Pareto
optimal and the surface of noninferior solutions implic-
itly defines a function G(J).

Using the information about the trade-offs among
the competing objectives, a strategy for determining
the best compromise solution is developed. This strat-
egy is based on information from the DM and depends
on the relative weights given to the objectives. These
weights are varied systematically to locate the solution
which the DM prefers the most. How to determine
these weights is one of the more interesting aspects of
the problem.

Note that the multi-objective problem can be re-
duced if some of the objectives (presumably those with
very low weights) need not be optimized but simply
brought to a satisfactory level. In this case, these ob-
jectives can be incorporated into the problem as con-
straints.

GeneralMathematical Formulation

The mathematical model is a multi-objective mixed in-
teger nonlinear programming problem which has the
following form:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

OPTIMIZE J(x; y)
s.t. h(x; y) D O

g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(1)

In this formulation, J is a vector of objectives which in-
cludes the economic and controllability objectives. The
expressions h and g represent material and energy bal-
ances, thermodynamic relations, and other constraints.
The controllability measures are included in the formu-
lation as 
. The variables in this problem are partitioned
as continuous x and binary y.

Solution of theMOP

One way to address the solution of the MOP is to for-
mulate it using a utility function U which implicitly re-
lates the multiple objectives in terms of some common
basis:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min U[J(x; y)]
s.t. h(x; y) D O

g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(2)

By introducing the utility function, the vector optimiza-
tion problem has been reduced to a scalar optimiza-
tion problem and MINLP techniques can be applied
to solve the problem. These MINLP techniques in-
clude generalized Benders decomposition (GBD) [4,14],
outer approximation (OA) [2], outer approximation
with equality relaxation (OA/ER) [8], and outer approx-
imation with equality relaxation and augmented penalty
(OA/ER/AP) [16]. These methods are discussed in de-
tail in [3].

With the definition of the noninferior solution set,
the optimization problem can be formulated as

(
min U[J(x; y)]
s.t. G(J) D 0:

(3)

The challenging aspect of the problem is determin-
ing the explicit form of the utility function. One possi-
ble form of the utility function is a weighted linear sum
of the objectives:

U[J(x; y)] D
X
i2I

wi Ji ;

where I is the set of objective functions and wi are the
weights for the objective functions whose value is deter-
mined by the DM. The difficulty that arises is that the
utility function is generally not known. It is, however,
assumed to be convex and continuously differentiable.

The issues surrounding the solution of the multi-
objective optimization problem are determining the
noninferior solution set, determining the utility func-
tion based on information from the DM, and determin-
ing the best-compromise solution.

Different techniques have been developed in order
to assess the trade-offs among the objectives quantita-
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tively. See [7] for a tutorial in multi-objective optimiza-
tion. A review is also available in [17]. Much of the fun-
damental aspects of multi-objective optimization can
be found in [1].

Noninferior Solution Sets

The noninferior solution set can be determined in
a number of ways. One approach is the formulate the
problem as

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min
X
i2I

wi Ji (x; y)

s.t. h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq;

(4)

where the weights wi are selected such that wi � 0 for
all i and

P
i 2I wi = 1. Through a suitable choice of the

weights, the noninferior solution set can be found. This
approach can miss some points in the noninferior solu-
tion set if the solution region is nonconvex. In order to
address this problem, a weighted norm can be used as
follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min

(X
i2I

�
wi Ji(x; y)

�p
) 1/p

s.t. h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(5)

By increasing the size of p, the curvature of the support-
ing function is increased and more noninferior points
can be found. In the extreme of p = 1, all the non-
inferior points can be located. Using the1-norm, the
problem becomes

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min max
i2I

wi Ji (x; y)

s.t. h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(6)

The advantage of this formulation is that the weights
have a physical meaning for the DM. If the DM knows

the desired values for each objective for a given nonin-
ferior point, the weights can be set to the reciprocal of
these values. The noninferior solution will be the one
that is most like the one with the values specified by the
DM. The disadvantage of this formulation is that it can
be difficult to solve.

Another way to determine the noninferior solution
set is through the �-constraint method [6]. In this ap-
proach, all but one of the objectives is incorporated into
the problem as a constraint less than �. This results in
the following formulation:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min J1(x; y)
s.t. Ji (x; y) � �i ; i D 2; : : : ; q;

h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(7)

By varying the values of �i, the points of the noninferior
solution set can be found.

Choosing the Best-Compromise Solution

To this point, the focus has been on determining the
noninferior solution set. Only one of the points can be
chosen as the best solution for the problem, and the task
of the DM is to determine this point. Once the noninfe-
rior solution set is determined, it is presented to the DM
who will choose the solution point he prefers. The selec-
tion of this point is based on the relative importance of
the objectives in the eyes of the decision maker.

Instead of assigning arbitrary weights to the vari-
ous objectives, a systematic approach can applied which
uses the trade-off information in the noninferior solu-
tion set. The slope of the noninferior solution set at any
point reveals how much one objective will be improved
at the expense of another objective. This information is
used in an interactive, iterative cutting plane algorithm
to determine the best compromise solution.

Cutting Plane Algorithm

The cutting plane algorithm described in [11] is based
on [5] and [10]. Marginal rates of substitution were
used to solve problems of the form (2) where U is un-
known, convex, and continuously differentiable. Due to
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convexity, the partial derivatives of U with respect to
each of the arguments in the objective space are posi-
tive. This is expressed mathematically as

@U(J)
@Ji

> 0:

Thus, a decrease in Ji will lead to a decrease in U. In
the interactive scheme, the DM is asked for the positive
trade-off weights,wk

i , for a given solution k. This weight
is defined as the ratio of the change in the utility func-
tion with respect to one function divided by the change
in the utility function with respect to another. This is
expressed mathematically as

wk
i D

@U(Jk ) / @Ji
@U(Jk ) / @J1

where Jk = [J1(xk, yk), . . . , J1(xk, yk)]. A line search along
a feasible direction of steepest descent locates an im-
proved solution for the next iteration.

By exploiting the fact that the utility function is con-
vex, cutting planes can be introduced to reduce the
search to improving directions [10]. Since U is convex,

0 � U(J�) � U(Jk )

� r f U(Jk )(J� � Jk )

�

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min r f U(Jk )(J� Jk)
s.t. h(x; y) D O

g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(8)

This involves the linearization in the objective space
around the point Jk. If the solution to the minimization
is zero, then the optimal solution J? has been found.
If the solution has a negative value, then the direc-
tion leads to an improvement in the objective space.
This minimization can be performed over a number
of points k = 1, . . . , K to find a direction which im-
proves all of them. Cutting planes in the objective space
are formed to find new values of the objectives which
improve the utility function according to the trade-off
weights,r U, which the DM provides. At each iteration

of the algorithm, the following problemmust be solved:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min z

s.t. z �
pX

iD1

wk
i (Ji (x; y)� Ji (xk; yk);

8k D 1; : : : ;K:
h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(9)

The steps of the cutting plane algorithm are the follow-
ing:

1 Determine the initial solution point k = 1 and
determine the values of all the objective func-
tions.
Assign the values of the weights wk

i .
2 Solve (9) to find new values of x and y.

Determine the values of the objective functions
for the new values of x and y.

3 IF the solution to (9) is zero, THEN go to Step 4
ELSE set k = k + 1, update the values xk , yk;
and Jk , generate new weights, and go to Step 2.

4 Terminate with xk and yk as the best-
compromise solution.

Cutting plane algorithm

This algorithm requires the DM to provide only trade-
off weights at each iteration. These weights can be es-
timated by knowledge of the relative importance of the
objectives or by information from the noninferior solu-
tion set.

Multi-objective Optimization
in the Interaction of Design and Control

The interaction of design and control has been recog-
nized as a multi-objective problem bymany researchers
as the objectives representing the steady-state economic
design and dynamic controllability are regarded as non-
commensurable. One of the first challenges in this
problem is determining a suitable controllability objec-
tive. The choice of the controllability objective will dic-
tate the required elements of the mathematical formu-
lation of the problem.
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One of the early works which addressed the multi-
objective nature of the interaction of design and con-
trol was that of [9]. A given set of alternative steady-
state designs was assumed to be known. Bounds on the
dynamic measures of the designs were determined and
used to screen designs and determine the noninferior
solution set. No method was provided for determining
the best-compromise solution.

In the work of [13], singular value decomposition
is used to determine dynamic operability measures.
The controllability is formulated through the lineariza-
tion of the model and is given in terms of the sin-
gular values of the transfer function. This modeling
leads to an infinite-dimensional problem as all frequen-
cies must be considered for the controllability measure.
For the multi-objective optimization, the �-constraint
method was used to determine the noninferior solu-
tion set. The scalar optimization was addressed by ap-
proximating the infinite-dimensional problem and us-
ing an gradient-based algorithm to solve the optimiza-
tion problem and determine the operating parameters
for the process.

The previous methods did not take into account
that the structure of the process flowsheet as well as
the design parameters determine its inherent control-
lability. In order to consider structural alternatives in
the process flowsheet such as the existence of units in
the flowsheet, discrete variables are used in the pro-
cess modeling. This aspect of the process design was
considered by [11,12] in the interaction of design and
control by using the optimization approach to process
synthesis. In this approach, the structure of the pro-
cess flowsheet and the design parameters are consid-
ered simultaneously with the dynamic controllability
of the process. The controllability measures employed
were the open-loop linear controllability measures (sin-
gular value, condition number, relative gain array). The
noninferior solution set was determined using the �-
constraint method, and the best-compromise solution
was found using the cutting plane method described
above.

Further development of the above technique was
addressed by [15] where nonlinear dynamic mod-
els were considered. The problem was formulated as
amulti-objectivemixed integer optimal control problem.
The multi-objective problemwas again solved using the
�-constraint method. The mixed integer optimal con-

trol problem was solved by extending the methods for
solving mixed integer nonlinear optimization to handle
dynamic systems.

Conclusions

Analyzing the interaction of design and control leads to
a multi-objective optimization problem. The key issue
in solving this problem is quantitatively determining
the trade-offs between the steady-state economics and
the dynamic controllability. By using multi-objective
optimization techniques, these characteristics of the
process can be traded off in a systematic manner.

By following the optimization approach to process
synthesis, a mathematical framework can be developed.
This involves developing a superstructure of design al-
ternatives and effective mathematical models for the
different criteria. The algorithmic procedure for solv-
ing the multi-objective problem involves the successive
solution of scalar optimization problems to determine
the noninferior solution set. The final step in the ap-
proach is to determine the best-compromise solution
from those in the noninferior solution set.
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The multi-objective optimization (multiple criteria de-
cision making) problem is the problem of choosing
a most preferred solution when two or more incom-
mensurate, conflicting objective functions (criteria) are
to be simultaneously maximized. Interest in multi-
objective optimization has risen sharply during the past
30 years. There are at least three reasons for this. First,
andmost importantly, is the increasing recognition that
most applied problems in both the private and pub-
lic sectors involve multiple objectives rather than one
objective. Second, a variety of solution algorithms for
multi-objective optimization are now available. Finally,
the enormous improvements in the speed and stor-
age of computers make it practical to apply these al-
gorithms to the solution of realistically-sized problem
applications.

Formally, the statement of the multi-objective opti-
mization problem of interest here is

(V)

(
VMAX f (x) D [ f1(x); : : : ; fp(x)];
s.t. x 2 X:

Here, p� 2, X is a nonempty subset of Rn, each f j, j = 1,
. . . , p, is a real-valued function defined on X or on some
suitable set containing X, and VMAX indicates that, in
some unspecified sense, we are to ‘vector maximize’ the
vector f (x) of objective functions (criteria) over X. The
set X is called the set of decision alternatives or the de-
cision set, and {f (x) 2 Rp: x 2 X }, is called the outcome
set.

There are a large number of diverse solution algo-
rithms for problem (V). All are intended to help the
decision maker (DM) find a most preferred solution to
the problem. In the majority of these algorithms, the
notion of efficiency plays an indispensable role. An effi-
cient (nondominated, noninferior, Pareto optimal) solu-
tion for problem (V) is a solution x 2 X such that there
exists no other solution x 2 X that satisfies f (x) � f (x)
and f (x) ¤ f (x). Let XE denote the set of efficient so-
lutions for problem (V). Notice that if x 2 XE , then
there is no other feasible solution for problem (V) that
achieves at least as large a value as x in each criterion of
the problem and a strictly larger value than x in at least
one criterion of the problem.

In the great majority of instances of problem (V),
the preference value function (value function) v of the
DM is unknown. This is a function v: Rp!R that maps

the outcomes of problem V to real numbers in such
a way that for any two outcomes y1 and y2, the DM
prefers y1 to y2 if and only if v(y1) > v(y2). Although
v is unknown, what is known is that for each objec-
tive function f j, the DM prefers more of f j to less of f j.
Mathematically, this means that v is coordinatewise in-
creasing, i. e., that whenever z; z 2 Rp satisfy z � z and
z j > z j for some j = 1, . . . , p, then v(z) > v(z). It is easy
to show that when v is coordinatewise increasing, any
maximizer x� of v [f (x)] over Xmust satisfy x� 2 XE. In
other words, as long as the DM prefers more to less, the
search for a most preferred solution to problem (V) can
be confined to XE. This is one of the key reasons that
the concept of efficiency is so important to the majority
of the algorithms for problem (V).

The interactive methods constitute one of the most
popular categories of algorithms for solving problem
(V). An interactive method for problem (V) consists of
a sequence of DM-computer interactions designed to
create a sequence of decision alternatives that termi-
nates with a most preferred solution to the problem. In
a majority of cases, the generated alternatives are effi-
cient. Each iteration of the interactive process consists
of three steps. First, an initial solution is found with the
aid of the computer. Typically, this solution is found
by solving a single-objective optimization problem that
generates either an efficient point or, at worst, a feasible
point. Next, the DM is asked to react to the generated
point by answering one or more questions involving his
preferences for it. Last, based upon the answers given,
the computer generates a new point, typically by mod-
ifying parameters in the single-objective optimization
problem. This process continues until either the com-
puter or the DM identifies a most preferred solution.
The value function v of the DM is never needed and, in
fact, is assumed to be unavailable.

There are several advantages to using interactive
methods as compared to other categories of methods
for problem (V). For instance, the preference infor-
mation asked of the DM at each iteration is not dif-
ficult to supply. Furthermore, the DM thereby learns
about his value function, which is often initially vague
or mostly unknown. As the search continues, the DM
also learns about the decision or efficient decision al-
ternatives available and the trade-offs in the objective
functions across these decision alternatives. The op-
timizations required of the computer are also usually
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not difficult to perform. Finally, because the DM is
highly involved in the process, his confidence in the
most preferred solution that is eventually found is en-
hanced.

A frequent criticism of the interactive methods is
that, in practice, the work required of the DM during
the iterations seems to be burdensome for him in many
cases. This may cause the DM to prematurely termi-
nate the search so that a most preferred solution is not
found.

There are literally hundreds of interactive algo-
rithms for problem (V). Many are limited to cases
where problem (V) is a multiple objective linear pro-
gramming problem. Others apply when problem (V)
is a multiple objective convex, nonlinear programming
problem, a multiple objective integer programming
problem, or some other type of multiple objective op-
timization problem. Instead of examining these algo-
rithms individually, we will describe them by groups
according to the characteristics that they possess.

One of the key characteristics of the interactive al-
gorithms concerns the type of information required of
the DM at each iteration. For instance, at each itera-
tion, the DM may be asked to intuitively assign or re-
assign weights to the criteria according to his current
assessment of their relative importance. R.E. Steuer [13]
has shown some important stumbling blocks to this ap-
proach, however. Other algorithms may instead elicit
relaxation quantities from the DM. In these cases, the
DM is asked how much he would be willing to relax
the level of one objective function in order to obtain
possible improvements in the levels of other objective
functions. Some of the oldest interactive algorithms use
this approach [1,9]. Still other types of algorithms ask
the DM various types of trade-off questions. The trade-
off questions are designed to obtain an estimate of the
gradient of the value function of the DM at the current
solution. This approach is also relatively old, but diffi-
cult for the DM to accomplish [5,14]. Finally, a num-
ber of algorithms call for the DM to make paired com-
parisons at each iteration. In a paired comparison, the
DM is given two solutions to compare and must give
his preference for one or the other. Usually, the DM
can accomplish this. But when the two solutions are
quite similar, difficulties can arise [15]. In addition, al-
gorithms that use paired comparisons can sometimes
call for excessive numbers of these comparisons [12].

A second dimension where the interactive algo-
rithms differ is in the approach used to explore the fea-
sible region X or the efficient set XE. Some algorithms
use feasible direction methods [2]. In these algorithms,
at each iteration, the direction to move from a point
that was last found and the distance to move along the
direction are determined with the aid of the DM. By
moving along the direction by the specified amount,
the next solution point is found. In many algorithms,
all such points are efficient. In another group of algo-
rithms, feasible region reduction is used to explore X or
XE. As points in X or in XE are examined in these meth-
ods, portions of X are removed, usually via linear cuts.
Another set of algorithms uses weighting space reduc-
tion. In these algorithms, a weighted sum of f j, j = 1,
. . . , p, is maximized at each iteration, thereby yielding
a point in XE. Based upon the DM’s responses to these
maximizations, portions of the weighting space are re-
moved. Eventually, the portion of the weighting space
remaining is so small that the DM can pick out the set
of weights associated with a most preferred solution.

Other approaches used to explore X or XE include
the trade-off cutting planemethod [10], Lagrange multi-
pliermethods, visual interactivemethods (see, e. g. [7]),
and the branch and bound method [8], among oth-
ers. For further reading concerning these methods, see
[3,4,6,11,12,13].

Another way to group the interactive algorithms for
problem (V) is according to whether or not they han-
dle inconsistencies in the DM’s preference responses.
As human beings, DM’s are prone to giving preference
responses over the course of the solution procedure that
imply inconsistencies such as asymmetries or intransi-
tivities of preference. Some algorithms take no account
of these possible inconsistencies and have been criti-
cized for this [12]. Others attempt to reduce inconsis-
tency by either minimizing the DM’s cognitive burden
or by incorporating tests for inconsistency that are used
as the interactive solution process proceeds.

W.S. Shin and A. Ravindran [12] have compared
various of the classes of interactive algorithms accord-
ing to four criteria that are important in practice. These
criteria are the DM’s cognitive burden, the ease with
which the single-objective optimizations called for can
be used, implemented and solved, the handling of in-
consistency, and the overall quality of the solution pro-
cess and the answers obtained. Although preliminary,
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these comparisons seem to show the relative superior-
ity of the weighting space reduction and other criterion
weight space search methods, and of the visual inter-
active methods. Readers should note, however, that the
rankings in the study are subjectively-obtained by the
authors [7].

For further general reading on interactive methods,
see [2,3,4,6,11,12,13,14].
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As is well known, duality in mathematical program-
ming is based on the property that any closed convex set
can be also represented by the intersection of closed half
spaces including it. Let themulti-objective optimization
problem to be considered here be given by

(P)

(
min f (x) :D ( f1(x); : : : ; fp(x))
over x 2 X;

where

X D
�
x 2 X0 : gi (x) 5 0;

i D 1; : : : ;m; X0 � Rn

	
:

Note here that vector inequalities are commonly used:
for any n-vectors a and b, a > bmeans ai > bi (i = 1, . . . ,
n). Also, a = b means ai = bi (i = 1, . . . , n). On the
other hand, a � b means a = b but a 6D b. Hereafter,
vector inequalities such as g(x) 5 0 will be used instead
of gi (x) 5 0 (i = 1, . . . , m).

Defining a dual problem (D) in some appropriate
way associated with the problem (P), our aim is to show
the property min(P) = max(D). Here min(P) denotes
the set of efficient points of the problem (P) in the ob-
jective function space Rp, and similarly max(D) the one
of the dual problem (D).

Unlike the usual mathematical programming, the
optimal value of the primal problem (and the dual
problem) are not necessarily determined uniquely in
multi-objective optimization. Hence, there have been
developed several kinds of formulation of dual problem
in order to get the desirable property min(P) = max(D).
Regarding Lagrange duality, three typical dualizations
can be seen in linear cases, nonlinear cases and geomet-
ric approaches [6].

Linear Cases

The first result on duality for multi-objective optimiza-
tion seems the one given in [1] for linear cases. This is
formulated as a matrix optimization including the vec-
tor optimization as a special case. Although there have
been several related works, the probably most attractive
one is given in [2] because it is formulated as a natural

extension of traditional linear programming: Let A be
an m × n matrix, C a p × n matrix, and b an m-vector.
Then the primal problem (P) in linear cases is formu-
lated as

(PI)

8̂
<̂
ˆ̂:

min Cx
s.t. Ax = b

x = 0:

Associated with (PI), H. Iserman [2] defined the
dual problem as

(DI)

8̂
<̂
ˆ̂:

max �b
s.t. �A 6= C

� = 0:

Here, the multiplier � = 0 is a p × m matrix whose
elements are all nonnegative.
Then Isermann’s duality is given by
i) � b 6� Cx for all feasible x and �.
ii) Suppose that �b D Cx for some feasible x and

some feasible �. Then � is an efficient solution to
(DI) and x is an efficient solution to (PI).

iii) min(PI) = max(DI).

Nonlinear Cases

The most natural dualization in nonlinear multi-
objective optimization seems to be the one given in
[10].
Consider the problem (P), and assume the following:
i) X0 is a nonempty compact convex set.
ii) f is continuous, and f (X) + Rn

+ is convex in Rp.
iii) gi(i = 1, . . . ,m) are continuous and convex.
Under these assumptions, it can be readily shown that
for every u 2 Rm, both sets X(u) D fx 2 X0 : g(x) 5 ug
and Y(u) D f [X(u)] D fy 2 Rp : y D f (x); x 2 X0;
g(x) 5 ug are compact and convex.

The primal problem (P) can be embedded as (P0) in
a family of perturbed problems (Pu) given by

(Pu) min Y(u):

Defining � = {u 2 Rm: X(u) 6D ; }, the set � is con-
vex. Now in a similar fashion to the ordinary mathe-
matical programming, the perturbed map can be de-
fined by

W(u) D min
˚
f (x) : x 2 X0; g(x) 5 u

�
:
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It is known that for every u 2 � ,W(u) + Rp
C is con-

vex and

W(u)CR
p
C D Y(u)CR

p
C:

In addition, the mapW is monotone and convex on � .
Now, define the vector valued Lagrangian function

with a p ×mmatrix multiplier � as

L(x; �) D f (x)C�g(x):

Associated with this definition, the dual map can be
defined as

˚(�) D min˝(�);

where

˝(�) D
˚
L(x; �) : x 2 X0

�
:

Under the terminology, the dual problem associated
with the primal problem (P) can be given by

(DTS) max
[
�2L

˚(�):

It can be shown that ˚ is concave point-to-set map
on � , namely

˚(˛�1 C (1 � ˛)�2)

� ˛˚(�1)C (1 � ˛)˚(�2)CR
p
C

and ˚(�) + Rp
C is a convex set in Rp for each � 2 L.

Here L is the set of all p × m matrices whose compo-
nents are all positive.

T. Tanino and Y. Sawaragi [10] presented the fol-
lowing as duality in multi-objective optimization:

Theorem 1
i) For any x 2 X and y 2 ˚(�)

y 6� f (x):

ii) Suppose thatbx 2 X,b� 2 L and f (bx) 2 ˚(b�). Then
by D f (bx) is an efficient point to the primal problem
(P) and also to the dual problem (DTS).

iii) Suppose that any efficient solutions to (P) are all
proper and that Slater’s constraint qualification is
satisfied. Then

min (P) � max (DTS):

Remark 2 The above theorem is not complete in the
sense that the relation min(P) = max(D) does not hold.
Regarding conjugate duality, there have been reports
presenting w-min(P) = w-max(D) (see, e. g., [4] and
[9]). Several studies based on geometric consideration
have been made for deriving the relation min(P) =
max(D) using vector valued Lagrangian. This will be
stated in the following

Geometric Duality

Geometric considerations are made in [3], based on the
supporting hyperplanes for epiW, and in [5], based on
the supporting conical varieties for epiW, which is de-
noted by G here.
Define

G D

8<
:(u; y) 2 Rp �Rp :

y = f (x);
u = g(x)
for some x 2 X0

9=
; ;

YG D
˚
y : (0; y) 2 G; 0 2 Rm ; y 2 Rp� :

Associates with the primal problem (P), we consider
the following two kinds of dual problems:

(DN) max
[
�2L

YS(�);

where

YS(�) D
˚
y 2 Rp : f (x)C�g(x) 6� y; 8x 2 X0

�

and

(DJ)
[

>0
	=0

YH�(	;
);

where

YH�(	;
)

D

�
y 2 Rp : h�; f (x)i C h�; g(x)i = h�; yi

8x 2 X0

	
:

Theorem 3
i) For any feasible x in (P) and for any feasible y in (DN)

or (DJ),

y 6� f (x):

ii) Assume that G is closed, that there exists at least
an efficient solution to the primal problem, and that
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these solutions are all proper. Then, under the condi-
tion of Slater’s constraint qualification, the following
holds:

min (P) D max (DN) D max (DJ):

Remark 4 In the above duality, we assumed that the
convex set G is closed and that Slater’s constraint quali-
fication is satisfied, which seem relatively restrictive. In-
stead of these conditions, J. Jahn [3] assumed that YG is
closed and some normality condition.

Define

AG(
) D
˚
˛ : (0; ˛) 2 G(�); 0 2 Rm ; ˛ 2 R1�

YG D fy : (0; y) 2 G; 0 2 Rm ; y 2 Rmg :

Definition 5 The primal problem (P) is said to be J-
normal, if for every � > 0

cl(AG(
)) D AclG(
):

The primal problem (P) is said to be J-stable, if it is
J-normal and for an arbitrary � > 0 the problem

sup
	=0

inf
x2X
h�; f (x)i C h�; g(x)i

has at least one solution.

On the other hand, J.W. Nieuwenhuis [7] suggested an-
other normality condition:

Definition 6 The primal problem (P) is said to be N-
normal, if

clYG D YclG :

Lemma 7 Slater’s constraint qualification (9bx, g(bx) >
0) yields J-stability and N-normality.

Theorem 8 Suppose that YG is closed, minD(P) 6D ;,
and the efficient solutions to (P) are all proper. Then, un-
der the condition of J-stability,

min (P) D max (DN) D max (DJ):

Duality for Weak Efficiency

Define

YS0(�) D
˚
y 2 Rp : f (x)C�g(x) 6< y; 8x 2 X0

�
:

Theorem 9 Suppose that YG is a nonempty subset in
Rp and YG + Rp

C is bounded. Then under the condition
of N-normality

w-min clYG D w-max cl
[
�2L

YS0(�)

D w-max cl
[


2R
p
C
nf0g

	=0

YH�(	;
):

Remark 10 As can be readily seen, by defining inf A,
for a set A 2 Rp, as essentially min cl(A + Rp

C) and sim-
ilarly sup A as essentially min cl(A � Rp

C), we can have
inf(P) = sup(DTS) = sup (DN) = sup(DJ) under some
appropriate stability condition [9].
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The multi-objective optimization (multiple criteria de-
cision making) problem is the problem of choosing
a most preferred solution when two or more incom-
mensurate, conflicting objective functions (criteria) are
to be simultaneously maximized. A central difficulty in
such problems is that, unlike in single objective maxi-
mization problems, there is no obvious or simple way to
define the concept of a most preferred solution. Never-
theless, because the applications of multi-objective op-
timization abound, there has been great interest dur-
ing the past 30 years in seeking appropriate defini-
tions for a most preferred solution and in developing
algorithms that aid the decision maker (DM) to find
such a solution. These applications are in a wide variety
of areas, including, for example, production planning,
finance, environmental conservation, academic plan-
ning, nutrition planning, advertising, facility location,
auditing, blending techniques, transportation planning,
and scheduling, to name just a few.

There are several alternate mathematical formula-
tions of the multi-objective optimization problem [13].
For purposes of modeling the deterministic multiple
objective optimization problems found in management
science/operations research, however, the most popular
form of the problem is denoted

(V)

(
VMAX [ f1(x); : : : ; fp(x)]
s.t. x 2 X:

Here, p� 2, X is a nonempty subset of Rn, each f j, j = 1,
. . . , p, is a real-valued function defined onX or on a suit-
able set containing X, and VMAX indicates that we are
to, in some as-yet unspecified sense, ‘vector maximize’
the vector

f (x) D [ f1(x); : : : ; fp(x)]

of objective functions (criteria) over X. The set X is
called the set of alternatives or the decision set.

Of all of the solution concepts proposed for helping
the DM find a most preferred solution for problem (V),
the concept of efficiency has proven to be of overrid-
ing importance. An efficient (Pareto optimal, noninfe-
rior, nondominated) solution for problem (V) is a point
x 2 X such that there exists no other point x 2 X that
satisfies f (x) � f (x) and f (x) ¤ f (x). Letting XE de-
note the set of all efficient points for problem (V), we
see that whenever x 2 XE , there is no other feasible
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point that does at least as well as x in all of the criteria
for problem (V) and strictly better in at least one crite-
rion. A point x 2 X is called dominated when for some
other point x 2 X, f (x) � f (x) and, for at least one
j = 1, . . . , p, f j(x) > f j(x). Thus, we have the alternate
definition for efficiency that states that a point x is an ef-
ficient solution for problem (V) when x 2 X and there
are no other points in X that dominate x.

One of the reasons for the fundamental importance
of the efficiency concept is that it has proven to be
highly useful in a variety of algorithms for problem
(V). Among these algorithms are the satisficing meth-
ods, compromise programming, most interactive meth-
ods, and the vector maximization method. The latter
method, for instance, seeks to generate either all of XE

or key parts of XE. The generated set is shown to the
DM. Then, based upon the DM’s internal utility (or
value) function, the DM chooses from the generated set
a most preferred solution. For details concerning these
methods for problem (V), see [7,10,12,13,14].

In some cases, it is useful to consider a slightly
relaxed concept of efficiency called weak efficiency.
A point x 2 X is called a weakly efficient (weakly Pareto
optimal, weakly noninferior, weakly nondominated) so-
lution for problem (V) when there is no other point x
2 X such that f (x) > f (x). Let XWE denote the set of
all weakly efficient points for problem (V). Notice that
XE is a subset of XWE. In some cases of problem (V),
such as when the objective functions are ratios of linear
functions, it is easier to analyze and generate points in
XWE than points in XE.

Let U represent a utility function defined on the
spaceRp of the objective functions of problem (V). Sup-
pose thatU is coordinatewise increasing, i. e., that when-
ever z; z 2 Rp satisfy z � z and z j > z j for some j = 1,
. . . , p, then U(z) > U(z). Suppose that x� is an optimal
solution to the single objective problem

(S) max
x2X

U[ f1(x); : : : ; fp(x)]:

Then x� must be an efficient solution for problem (V)
(cf. [11]).

The property in the previous paragraph explains
to a great extent why the concept of efficiency is of
such fundamental value. The assumption that the util-
ity function U in the above paragraph is coordinatewise
increasing implies that in problem (S), for each j = 1, . . . ,

p, more of f j is preferred to less of f j. Thus, if we imag-
ine that U is the utility (or value) function of the DM
over the objective function space of problem (V), then
the previous paragraph implies that whenever the DM
prefers more to less in each objective function of prob-
lem (V), any point that maximizes the DM’s utility for
f (x) over X must be an efficient point in problem (V).
In short, as long as we know that the DM prefers more
to less, we can confine the search for a most preferred
solution to XE. Although the utility function of the DM
is generally not actually available, in virtually all appli-
cations the DM does, indeed, prefer more to less in each
objective function of problem (V). Thus, in essentially
all cases, any most preferred solution for problem (V)
will be found in XE.

Because of the central importance of efficiency,
a great deal of effort has been made by researchers to
delineate the properties of the efficient points and of the
efficient set for problem (V). In what follows, we shall
briefly highlight some of the most important of these
properties.

Consider the single-objective optimization problem

(W)

8̂
<̂
ˆ̂:
max

pX
jD1

wj f j(x);

s.t. x 2 X:

Here, wj, j = 1, . . . , p, are parameters, which are of-
ten thought of as weights associated with the objective
functions f j, j = 1, . . . , p, of problem (V). A number of
so-called scalarization properties for efficient points of
problem (V) are expressed in terms of problem (W).
To present some of these, another efficiency concept,
called proper efficiency, is needed. A point x ° is said to
be a properly efficient solution for problem (V) when x °
2 XE and, for some sufficiently large numberM, when-
ever f i(x) > f i(x °) for some i = 1, . . . , p and some x 2
X, there exists some j = 1, . . . , p such that f j(x) < f j(x °)
and

fi(x) � fi(xı)
f j(xı) � f j(x)

� M:

In words, for each properly efficient solution of prob-
lem (V), for each criterion, the possible marginal gains
in that criterion relative to the losses in the criteria that
have losses cannot all be unbounded from above. Let
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XPRE denote the set of properly efficient solutions for
problem (V), and let w| = (w1, . . . , wp). Then some key
scalarization properties are as follows.
1) If x is the unique optimal solution to problem (W)

for some w � 0, w 6D 0, then x 2 XE .
2) If x is an optimal solution to problem (W) for some

w � 0, w 6D 0, then x 2 XWE .
3) Assume that for each j = 1, . . . , p, f j is a concave

function on the convex set X. Then x 2 XPRE if and
only if x is an optimal solution to problem (W) for
some w > 0.

4) Under the assumptions in property 3), x 2 XWE if
and only if x is an optimal solution to problem (W)
for some w � 0, w 6D 0.

5) Under the assumptions of property 3), if x 2 XE but
x … XPRE , then there exists a w� 0, w 6D 0 with wj =
0 for at least one j = 1, . . . , p such that x is an optimal
solution to problem (W).

6) If each f j, j = 1, . . . , p, is a linear function and X is
a polyhedron, XPRE = XE.

The scalarization properties can be used for various
purposes, including the generation of points inXE,XWE

andXPRE. For instance, when each f j, j= 1, . . . , p, is a lin-
ear function and X is a polyhedron, from properties 3)
and 6), points in XE, including, at least potentially, all
of XE, can be generated by solving problem (W) as the
parameter w > 0 is varied. Under the assumptions of
property 3), the same process will generate points in
XPRE, including, at least potentially, all of XPRE. How-
ever, from properties 3)–5), it is apparent that no such
simple process for generating XE exists, even under the
assumptions of property 3). This is another motivation
for the proper efficiency concept.

Another important issue in efficiency concerns test-
ing. One may want to test a given point for efficiency
in problem (V), and one may want to test whether XE

and XPRE are empty or not. We will present several of
the properties of efficiency that provide some of the the-
ory for these tests. These properties all utilize the single-
objective problem

(T)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
pX

jD1

f j(x);

s.t. f j(x) � f j(xı);
j D 1; : : : ; p;
x 2 X:

Here, x ° is an arbitrary element of Rn. The properties
are as follows.
7) The point x ° 2 Rn belongs to XE if and only if x °

is an optimal solution to problem (T).
8) Suppose that x °2X in problem (T), and that prob-

lem (T) has no finite maximum value. Then XPRE =
; [1].

9) Suppose that the assumptions of property 3) hold,
that x ° 2 X in problem (T), and that problem (T)
has no finite maximum value. Then, if the set

Z D
˚
z 2 Rp : z � f (x) for some x 2 X

�

is closed, XE = ;.
10) Assume that each f j, j = 1, . . . , p, is a linear function

and that X is a polyhedron. Suppose that x ° 2 X
in problem (T), and that problem (T) has no finite
maximum value. Then XE = ;.

11) Any optimal solution to problem (T) belongs to
XE.

Notice from these properties that solving problem (T)
is a useful tool for both testing a point for efficiency and
for investigating the issues of whether XE and XPRE are
empty or not. In the case of testing a point x ° for effi-
ciency, property 7) shows that problem (T) can be used
to obtain a definitive answer, i. e., using property 7), we
will always detect whether or not x ° 2 XE. Further-
more, when property 7) shows that x ° 62 XE, but prob-
lem (T) has an optimal solution x�, then, by property
11), x� 2 XE. Notice also that in this case, x� dominates
x °.

In the case of investigating whether or not XE and
XPRE are empty, however, definitive answers cannot
usually be obtained by using these properties. This is
because none of the properties addresses the issue of
whether or not XE and XPRE are empty when, instead
of having an optimal solution or having no finite max-
imum value, problem (T) has a finite but unattained
maximum value. The one case where the properties can
be used to definitely detect whether or not XE and XPRE

are empty is the case where the objective functions of
problem (V) are all linear and X is a polyhedron. In that
case, problem (T) cannot have a finite but unattained
maximum value. Therefore, properties 7), 10) and 11)
can be used to detect whether or not XE =XPRE is empty
in such cases.

One of the main challenges computationally to gen-
erating all or parts of XE or XWE for the DM to consider
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is that both XE and XWE are, except for trivial cases,
nonconvex sets. Although some researchers have sug-
gested ways to mitigate this problem [5], it generally
remains a major stumbling block for algorithm devel-
opment. In many common cases, however, XE or XWE

possesses a useful, although less valuable, property than
convexity upon which algorithms can be based. This
property is called connectedness. In particular, a set Z
� Rn is connected if, whenever A and B are nonempty
subsets ofRn such that A has no points in common with
the closure of B, and B has no points in common with
the closure of A, Z 6D A [ B. Some common cases of
problem (V) where XE or XWE is connected are given in
the following properties.
12) Assume that for each j = 1, . . . , p, f j is a quasicon-

cave function on X, and that X is a compact convex
set. Then XWE is connected.

13) Assume that for each j = 1, . . . , p, f j is a concave
function on Rn, and that X is a compact convex set.
Then XE is connected.

Recall that a concave function on a convex set is also
quasiconcave on the set. Therefore, from property 12),
it follows that XWE is connected when each objective
function in problem (V) is a concave function onX, and
X is a compact, convex set.

There are a variety of other properties of efficient
points and of the efficient set for problem (V). These in-
clude, for instance, density properties, stability-related
properties, the domination property [2,3,8], and com-
plete efficiency-related properties [4,6]. For further
reading, see [5,7,9,10,12,13,14].
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In this article we will describe some results for sensi-
tivity analysis and parametric programming for linear
models. The solution approach that is described here
is based upon the extension of simplex algorithm for
linear programs (LP) [3,5]. Here we mention some ref-
erences ([1,2,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21],
and [17]); however [3] is recommended for an exten-
sive list of references and [4] for a historical outline on
parametric linear programming.

We will consider right-hand side (RHS) multipara-
metric linear programming problems, where uncertain
parameters are assumed to be bounded in a convex re-
gion. The solution algorithm is based upon character-
izing the given initial convex region by a number of
nonoverlapping smaller convex regions and obtaining

Multiparametric Linear Programming, Figure 1
Definition of critical regions

optimal solutions associated with each of these regions.
The basic assumptions for the application of the algo-
rithm are:
� The given region must be finite and connected.
� One should be able to characterize at least one

(smaller) region.
� One should be able to identify all regions that are

adjacent to a given region.
Consider the following multiparametric linear pro-
gramming problem, when parameters are present on
the right-hand side of the constraints:

8̂
ˆ̂̂<
ˆ̂̂̂
:

z(�) D min
x

c>x

s.t. Ax D bC F�
x � 0
x 2 Rn ; � 2 Rs ;

(1)

where x is a vector of continuous variables; A and F are
constant matrices, and c and b are constant vectors of
appropriate dimensions; � is a vector of uncertain pa-
rameters, such that for each � 2 K, � 2 Rs, (1) has a fi-
nite optimal solution, and has no optimal solution for
� 2 Rs � K. Further, consider the following restriction
on � 2 � , � = {� :G� � g}, where G is a constant ma-
trix and g is a constant vector; see Fig. 1 for a graphical
interpretation for the two parametric case where � is
bounded in the region given by PQRST.

The simplex tableau associated with (1) is given as
follows:

Yx � �F� D xB;

z C �z>x � fmC1� D z(�);

where

Y D B�1A; �F D B�1F; xB D B�1b;

z D c>x; �z D c>B Y � c>;

f>mC1 D c>B
�F; z(�) D c>B xB;

(2)

where � corresponds to the index of basic variables
and B is the corresponding matrix. The (critical) re-
gion within which the above (optimal) tableau is valid
can then be derived as follows. The critical region, CR,
where an optimal solution, z(�)(�) = c>B xB(�), preserves
its optimality, is given by the initial conditions on � :

G� � g (3)
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together with the conditions of primal feasibility. The
conditions of primal feasibility are derived as follows.
The basis B is said to be primal feasible if the condition:

B�1b(�) D xB(�) � 0; (4)

where b(�) = b + F� and xB(�) = xB +�F� , is satisfied.
Then using (2) and (4), the condition of primal feasibil-
ity is given by:

� �F� � xB: (5)

Thus, the critical region corresponding to � is given by
(5) and (3). For illustration purposes, say in Fig. 1, the
initial region of � (condition (3)) is given by PQRST
and the condition of primal feasibility is given by
UVWX (condition (5)), then CR2 is the correspond-
ing critical region. Note that CR2 is obtained by remov-
ing the redundant constraints, PT, QR and RS. In order
to devise a procedure to obtain ‘all’ the critical regions
(CR1 and CR3), and optimal solutions associated with
them, we first state the following:
� Two optimal bases are said to be neighbors if

– there exists some �� 2 K such that both the bases
are optimal, and,

– it is possible to pass from one basis to another by
one dual step.

� The critical regions associated with two different op-
timal bases are said to be neighbors if their corre-
sponding bases are neighbors.

� Two neighboring critical regions lie in opposite half
spaces.

� The optimal value function, z(�), is continuous and
convex; see Fig. 2 for a graphical interpretation for
the case of two parameters.

Based upon the above statements, the solution algo-
rithm for identifying all the critical regions can now be
described. The algorithm consists of twomajor parts. In
the first part, an initial feasible solution is obtained and
the critical region which corresponds to the initial so-
lution is characterized. The second part then starts with
this critical region and identifies all the regions and cor-
responding optimal solutions. The major steps of the
algorithm are as follows:
1) Find a feasible solution:

– Solve (1) by treating � as a free variable to ob-
tain ��. If no feasible solution exists, stop; (1) is
infeasible.

Multiparametric Linear Programming, Figure 2
z(�)is a continuous and convex function of �

– Fix � = �� and solve (1) to obtain an initial basis
B and corresponding critical region.

2) Find all optimal solutions:
– Construct two lists V and W, where V consists

of those optimal bases whose neighboring bases
have been identified, and W consists of those
bases whose neighbors have yet not been iden-
tified.

– Select any basis fromW and identify all its neigh-
boring bases. From all the identified bases, in-
sert inW those bases which are neither in V nor
inW. The optimal solutions (and corresponding
critical regions) are then determined by moving
from the basis to its neighbors by one dual step.

– Repeat the procedure untilW = {;}.
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In this article we describe theoretical and algorithmic
developments in the field of parametric programming
for linear models involving 0–1 integer variables. We
will consider two cases of the problem: single paramet-
ric (when a single uncertain parameter is present) and
multiparametric (when more than one uncertain pa-
rameters are present in the model). For the case when
a single uncertain parameter is present, solution ap-
proaches are based upon
a) enumeration [11,12,13];
b) cutting planes [6]; and
c) branch and bound techniques [8,10].
For the multiparametric case, solution algorithm that
has been proposed is based upon branch and bound
fundamentals [1,2]. While most of the work on single
parametric problems has been reviewed in the two ex-
cellent papers [5] and [7], and has been borrowed here
for the sake of completeness, the work on multipara-
metric problems, the focus of this article, is quite re-
cent and is described in detail. It may bementioned that
while solution approaches for single parametric case
are available for uncertainty in objective function co-
efficients or right-hand side of constraints, for the case
of more than one uncertain parameter the solution ap-
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proach is available only for the right-hand side case.
Next we will describe solution approaches for
a) single parametric mixed integer linear programs for

objective function coefficients parametrization; and
b) single parametric pure integer programs when the

uncertain parameter is present on the right-hand
side of the constraints.

These illustrate some concepts which are based upon
some basic observations. For other solution ap-
proaches, see the literature cited above. Finally we will
present a solution approach for right-hand side multi-
parametric mixed integer linear programs.

Mixed Integer Linear Programming Problems
Involving a Single Uncertain Parameter
in Objective Function Coefficients

These can be stated as follows:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z(�) D min
x;y

(c> C c0�)x C d> y

s.t. Ax C Ey � b;
x 2 Rn ; y 2 f0; 1gl ;
�min � � � �max;

(1)

where x is a vector of continuous variables; y is the vec-
tor of 0–1 integer variables; � is a scalar uncertain pa-
rameter bounded between its lower and upper bounds
�min and �max respectively; A is an (m × n) matrix; E
is an (m × l) matrix; c, c0, d and b are vectors of appro-
priate dimensions. Solution procedure for (1) is based
upon following two features of the formulation in (1).
First feature of this formulation is that, since the uncer-
tain parameter is present in the objective function only,
the feasible region of (1) remains constant for all the
fixed values of � in [�min, �max]. And the second fea-
ture is that, the optimal value of (1) for �min � � � �max

is piecewise linear, continuous, and concave on its fi-
nite domain. The solution is then approached by deriv-
ing valid upper and lower bounds, using the concavity
property of the objective function value, and sharpen-
ing these bounds until they converge to the same value,
as described next. Solving (1) for � fixed at its endpoints
�min and �max, gives upper bounds AB and BC respec-
tively (see Fig. 1); and a linear interpolation, AC, be-
tween the endpoints provides a lower bound to the so-
lution. The region ABC within which the solution will

Multiparametric Mixed Integer Linear Programming, Fig-
ure 1
Derivation of bounds

Multiparametric Mixed Integer Linear Programming, Fig-
ure 2
Sharpening of bounds

lie is then reduced by solving (1) at � int, the intersec-
tion point of two upper bounds AB and BC. This re-
sults (see Fig. 2) in two smaller regions, ADE and EFC,
within which the solution will exist. This procedure is
continued until the difference between upper and lower
bounds becomes zero.

Integer programming problem involving a single
uncertain parameter on the right-hand side of the con-
straints can be stated as follows:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z(�) D min
y

d> y

s.t. Ey � bC r�;
�min � � � �max

y 2 f0; 1gl ;

(2)

where r is a scalar constant and � is a scalar uncer-
tain parameter bounded between �min and �max respec-
tively. For a special case of (2) when r � 0, it may be
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Multiparametric Mixed Integer Linear Programming, Fig-
ure 3
Step function nature of objective function value

noted that as � is increased from �min to �max, the fea-
sible region will enlarge, and hence the objective func-
tion value will decrease or remain the same, i. e., z(� i)
� z(� i+1) for � i � � i+1. Further, since only integer vari-
ables are present in (2), a solution will remain optimal
for some interval of � and then suddenly another solu-
tion will become optimal, and remain so for the next in-
terval (see Fig. 3). The problem thus reduces to solving
(2) at an end point, say �min, and then finding a point � i
at which the current solution becomes infeasible. Solv-
ing (2) at � i + � will give another integer solution. This
procedure is continued until we hit the other end point,
�max.

Consider a multiparametric mixed integer linear
programming problem (mp-MILP) of the following
form:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z(�) D min
x;y

c>x C d> y

s.t. Ax C Ey � bC F�;
G� � g;
x 2 Rn ; y 2 f0; 1gl ; � 2 Rs ;

(3)

where � is a vector of uncertain parameters; F is an (m
× s) matrix, G is an (r × s) matrix, and g is a constant
vector. Solving (3) implies obtaining the optimal solu-
tion to (3) for every � that lies in � = {� :G� � g, �
2 Rs}. The algorithm for the solution of (3) proposed
in [1] is based upon simultaneously using the concepts
of
� branch and bound method for solving mixed inte-

ger linear programming (MILP) problems (see, e. g.,
[9]); and,

� simplex algorithm for solving multiparametric lin-
ear programming (mp-LP) problems [4].

While a solution of (3) by relaxing the integrality con-
dition on y (at the root node) represents a paramet-
ric lower bound, a solution where all the y variables
are fixed (e. g., at a terminal node) represents a para-
metric upper bound. The algorithm proceeds from the
root node (lower bound) towards terminal nodes (up-
per bound) by fixing y variables at the intermediate
nodes. The complete enumeration of the tree is avoided
by fathoming those intermediate nodes which guaran-
tee a suboptimal solution.

At the root node, by relaxing the integrality condi-
tion on y, i. e., considering y as a continuous variable
bounded between 0 and 1, (3) is transformed to an mp-
LP of the following form:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ž(�) D min
x; y̌

c>x C d> y̌

s.t. Ax C Ey̌ � bC F�;
G� � g;
0 � y̌ � 1;
x 2 Rn ; � 2 Rs :

(4)

The solution of (4), given by linear parametric profiles,
ž(�)i , valid in their corresponding critical regions, ČRi ,
represents a parametric lower bound.

Similarly, at a node where all y are fixed, y Dby, (3)
is transformed to an mp-LP of the following form:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

bz(�) D min
x;by

c>x C d>by

s.t. Ax C Eby � bC F�;
G� � g;
by D f0; 1gl ;
x 2 Rn ; � 2 Rs :

(5)

The solution of (5), bz(�)i , valid in its corresponding
critical regions, cCRi , represents a parametric upper
bound.

Starting from the root node, some of the y variables
are systematically fixed (to 0 and 1) to generate inter-
mediate nodes of the branch and bound tree. At an in-
termediate node, where some y are fixed and some are
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Multiparametric Mixed Integer Linear Programming, Fig-
ure 4
Redundant constraints

relaxed, an mp-LP of the following form is formulated:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

z(�) D min
x;y

c>x C d>j by j C d>k y̌k

s.t. Ax C Ejby j C Ek y̌k � bC F�;
G� � g;
by j D f0; 1g;
0 � y̌k � 1;
x 2 Rn ; � 2 Rs ;

(6)

where the subscripts j and k correspond to y that are
fixed and y that are free, respectively. The solution at
an intermediate node, z(�)i , valid in its corresponding
critical regions, CRi , is then analyzed, to decide whether
to explore subnodes of this intermediate node or not, by
using the following fathoming criteria. A given space
in any node can be discarded if one of the following
holds:
� (infeasibility criterion) Problem (6) is infeasible in

the given space.
� (integrality criterion) An integer solution is found in

the given space.
� (dominance criterion) The solution of the node is

greater than the current upper bound in the same
space.

If all the regions of a node are discarded the node can be
fathomed. While the first two fathoming criteria (Infea-
sibility and Integrality) are easy to apply, in order to ap-

Multiparametric Mixed Integer Linear Programming, Fig-
ure 5
Definition of CRint; Case 1

Multiparametric Mixed Integer Linear Programming, Fig-
ure 6
Definition of CRint; Case 2

ply the third one (dominance criteria) we need a com-
parison procedure, which is described next.

The comparison procedure consists of two steps. In
the first step, a region, CRint D cCR\CR, where the so-
lution of the intermediate node and the current upper
bound are valid is defined. This is achieved by removing
the redundant constraints from the set of constraints
which define cCR and CR (for a procedure to eliminate
redundant constraints see [3]); graphical interpretation
of redundant constraints is given in Fig. 4, where C1 is
a strongly redundant constraint and C2 is a weakly re-
dundant constraint.

The results of this redundancy test, which belong to
one of the following 4 cases, are then analyzed as fol-
lows:
� (case 1; Fig. 5) All constraints from CR are redun-

dant. This implies that CR � cCR, and therefore
CRint D cCR.
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Multiparametric Mixed Integer Linear Programming, Fig-
ure 7
Definition of CRint; Case 3

Multiparametric Mixed Integer Linear Programming, Fig-
ure 8
Definition of CRint; Case 4

� (case 2; Fig. 6) All constraints from cCR are redun-
dant. This implies that cCR � CR, and therefore
CRint D CR.

� (case 3; Fig. 7) Constraints from both regions are
nonredundant. This implies that two spaces inter-
sect with each other, and CRint is given by the space
delimited by the nonredundant constraints.

� (case 4; Fig. 8) The problem is infeasible. This im-
plies that two spaces are apart from each other and
CRint = {;}.

Once CRint has been defined, the second step is to com-
pare z tobz, so as to find which of the two is lower. This
is achieved by defining a new constraint:

zdiff(�) D z(�) �bz(�) � 0

and checking for redundancy of this constraint in CRint.
This redundancy test results in following 3 cases:

Multiparametric Mixed Integer Linear Programming, Fig-
ure 9
Compare z(�) :bz(�); Case 1

Multiparametric Mixed Integer Linear Programming, Fig-
ure 10
Compare z(�) :bz(�); Case 2

Multiparametric Mixed Integer Linear Programming, Fig-
ure 11
Compare z(�) :bz(�); Case 3

� (case 1; Fig. 9) The new constraint is redundant.
This implies that z(�) � bz(�) and therefore the
space must be kept for further analysis.
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� (case 2; Fig. 10) The problem is infeasible. This im-
plies that z(�) �bz(�) and therefore the space can be
discarded from further analysis.

� (case 3; Fig. 11) The new constraint is non-
redundant. This implies that z(�) �bz(�) in ABCD,
and therefore the rest of the space can be discarded
from further analysis.

Based upon the above theoretical framework, the steps
of the algorithm can be summarized as follows:

1 Set an upper bound ofbz() =1.
2 Solve the fully relaxed problem (4).

IF an integer solution is found in a critical re-
gion, THEN update the upper bound and dis-
card the region from further analysis.

3 Fix one of the y variables to 0 and 1 to create
two new nodes.
IF no new nodes can be generated, THEN stop.

4 Solve the resulting problem (6).
IF the problem is infeasible THEN go back to
Step 3,
ELSE compare the solution to the current up-
per bound.

5 IF all regions from a node have been analyzed,
THEN go to Step 3.
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Motivation

Proteins are arguably the most complex molecules in
nature. This complexity arises from an intricate bal-
ance of intra- and inter-molecular interactions that de-
fine the native three-dimensional structure of the sys-
tem, and subsequently its biological functionality. The
underlying goal of protein folding research is to under-
stand the formation of these native tertiary structures.
Genetic engineering can be used to produce proteins
with specific amino acid sequences. The next step in-
volves developing the link between the primary protein
sequence and the native structure. The ability to pre-
dict the folding of proteins promises to have important
practical and theoretical ramifications, especially in the
areas of medicinal and biophysical chemistry.

Experimental studies have shown that proteins, un-
der native physiological conditions, spontaneously re-
fold to their unique, native structure after denaturation.
This implies that the formation of the native structure
is controlled primarily by the amino acid sequence. Ac-
cording to Anfinsen’s hypothesis the native structure is
in a state of thermodynamic equilibrium correspond-
ing to the conformation with the lowest free energy.
Through mathematical modeling of protein interaction
energies, the protein folding problem can be addressed
as a conformational search for the global minimum en-
ergy.

There exists two fundamental problems associated
with protein folding in the context of a conforma-
tional search. The first is the ability to correctly model
protein interactions using detailed mathematical equa-
tions. The second is associated with searching the
highly nonconvex energy hypersurface that describes
a given protein. This complexity, coupled with an ex-
ponential growth in the number of local minima as the
size of protein increases, has become known as themul-
tiple minima problem. There exists an obvious need for
the development of efficient global optimization tech-
niques. An efficient method which has been successfully
applied to detailed atomistic models of protein folding
is the ˛BB [1,2,3,17] global optimization algorithm.

Mathematical Description

Proteins are essentially polymer chains composed of
a predefined set of amino acid residues in which neigh-
boring residues are linked by peptidic bonds. Naturally
occurring proteins consist of only 20 different amino
acid residues, and the form of the side chain R (e. g.,
methyl, butyl, benzoic, etc.) defines the differences be-
tween these constituent groups. The chemical structure
of a generic protein is illustrated in Fig. 1. The repeat-
ing unit � NC˛C0 � defines the backbone of the pro-
tein. The protein also possesses amino and carboxyl
end groups, denoted by EAmino and ECarboxyl, respec-
tively.

The geometry of a protein can be fully described by
assigning a three-dimensional coordinate vector ri:

ri D

0
@
xi
yi
zi

1
A :
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Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 1
Generic primary protein structure

These ri specify the position of each atom in the pro-
tein molecule. The bond vector between two atoms (i,
j) connected with a covalent bond is defined as:

ri j D

0
@
x j � xi
y j � yi
z j � zi

1
A :

The corresponding bond length is then equal to the Eu-
clidean distance between these two atoms:

ˇ̌
ri j
ˇ̌
D

q�
x j � xi

�2
C
�
y j � yi

�2
C
�
z j � zi

�2

A covalent bond angle, � ijk, formed by the two adjacent
bond vectors rij and rjk can be computed by the follow-
ing formulas:

cos
�
�i jk

�
D

ri j � r jkˇ̌
ri j
ˇ̌ ˇ̌
r jk
ˇ̌ ; sin

�
�i jk

�
D

ri j � r jkˇ̌
ri j
ˇ̌ ˇ̌
r jk
ˇ̌ :

Here, rij � rjk is the dot product of the bond vectors rij
and rjk and rij × rjk is the cross product.

The dihedral angle !ijkl measures the relative ori-
entation of two adjacent covalent angles � ijk and � jkl.
This angle is defined as the angle between the normals
through the planes defined by atoms i, j, k and j, k, l
respectively, and can be calculated from the following
relations:

cos
�
!i jk l

�
D

�
ri j � r jk

�
�
�
r jk � rk l

�
ˇ̌
ri j � r jk

ˇ̌ ˇ̌
r jk ;�rk l

ˇ̌ ;

sin
�
!i jk l

�
D

�
rk l � ri j

�
� r jk

ˇ̌
r jk
ˇ̌

ˇ̌
ri j � r jk

ˇ̌ ˇ̌
r jk � rk l

ˇ̌ :

Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 2
Illustration of dihedral angle

An alternative to specifying the coordinate vector
for all atoms in a protein molecule is to set bond
lengths, covalent bond angles and independent dihe-
dral angles. A common approximation is to assume
rigid bond lengths and bond angles so that the dihedral
angles can be used to fully characterize the shape of the
protein molecule.

The names of the dihedral angles of a protein chain
follow a standard nomenclature. The dihedral angle
between the normals of the planes formed by atoms
Ci� 1

0NiC˛i andNiC˛i Ci
0 respectively, is called � i, where

i� 1 and i are two adjacent amino acid residues. The
angle defined by the planesNiC˛i Ci

0 and C˛i Ci
0Ni + 1, re-

spectively, is called  i, where i and i + 1 are two adja-
cent amino acid residues. Also, !i is the dihedral an-
gle defined by the planes C˛i Ci

0 Ni + 1 and Ci
0Ni + 1C˛iC1.

Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 3
Dihedral angle conventions
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The letter � is utilized to denote the dihedral angles
which are associated with the side groups Ri. Finally,
the letter � is used to name the dihedral angles asso-
ciated with the two end groups. These conventions are
illustrated in Fig. 3.

Potential EnergyModeling

A number of empirically based molecular mechanics
models have been developed for protein systems, in-
cluding AMBER [24], CHARMM [7], ECEPP/3 [19],
GROMOS [11], MM3 [4]. These models, also known
as force fields, are typically expressed as summations of
several potential energy components, with the mathe-
matical form of individual energy terms based on the
phenomenological nature of that term. A general to-
tal potential energy equation should include terms for
bond stretching (Ebond), angle bending (Eangle), torsion
(Etor) and nonbonded (Enb) interactions:

Epotential D Ebond C Eangle C Etor C Enb

When rigid body approximations are employed, bond
stretching and angle bending energies can be neglected.
For these force fields, torsion angles define a set of inde-
pendent variables that effectively describe any protein
conformation. This approximately reduces the number
of variables by a factor of 3 over those force fields that
use a Cartesian coordinate system to describe flexible
molecular geometries.

One example of a rigid body atomistic level poten-
tial energy model is the ECEPP/3 force field. In this
case, the nonbonded energy terms, Enb, include electro-
static, Eelec, van der Waals, Evdw, and hydrogen bond-
ing, Ehbond, interactions. These energies are calculated
for those atoms that are separated by more than two
atoms; that is, the atoms possess at least a 1–4 rela-
tionship. Electrostatic energies, Eelec, are calculated as
Coulombic forces based on atomic point charges:

Eelec D
QiQj

�Ri j

Here, Qi and Qj represent the two point charges, while
Rij equals the distance between these two points. The �
term describes the dielectric nature of the protein envi-
ronment.

General nonbonded van der Waals interactions,
Evdw, are modeled using a 6–12 Lennard–Jones poten-

tial energy term, which consists of a repulsion and at-
traction term:

Evdw D �i j

2
4
 
R�i j
Ri j

!12

� 2

 
R�i j
Ri j

!6
3
5 :

The energy minimum for a given atomic pair is de-
scribed by the potential depth, �ij, and position, R�i j . For
those atomic pairs that may form a hydrogen bond, the
6–12 potential energy term is replaced by a modified
10–12 Lennard–Jones type term:

Ehbond D �i j

2
45
 
R�i j
Ri j

!12

� 6

 
R�i j
Ri j

!10
3
5 :

Finally, corrective torsional energies, Etor, which are
represented by a three term Fourier series expansion,
are also added:

Etor D
E1

2
(1 � cos �)C

E2

2
(1 � cos 2�)

C
E3

2
(1 � cos 3�):

Each term can be interpreted physically. The 1-x (cos
�) symmetry term accounts for those nonbonded inter-
actions not included in general nonbonded terms. The
2-x (cos 2 �) symmetry term is related to the interac-
tions of orbitals, while the 3-x (cos 3 �) symmetry term
describes steric contributions.

Other specific potential energy terms may also be
added to the general energy equation depending on the
exact protein sequence. For example, the formation of
disulfide bridges can be enforced by adding a penalty
term to constrain the values of particular atomic dis-
tances. Correction terms have also been used to ad-
just conformational energies according to the configu-
rations of proline and hydroxyproline residues.

Solvation EnergyModeling

In general, the energetic description of a protein must
also include solvation effects. A theoretically simple ap-
proach would be to explicitly surround the peptide with
solvent molecules and compute potential energy con-
tributions for intra-and inter-molecular interactions.
These explicit calculations tend to greatly increase the
computational cost of the simulation. In addition, sol-
vent configurations are not rigid, so these calcula-
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tions must consider an average solvent-peptide config-
uration, which is typically generated by a number of
Monte-Carlo (MC) or molecular dynamics (MD) sim-
ulations [14]. Therefore, most simulations of this type
are limited to restricted conformational searches.

An alternative way for effectively considering av-
erage solvent effects is to use implicit solvation mod-
els. One complication involves the solvent’s influence
on electrostatic interaction energies because of the im-
plicit relationship between dielectric effects and solva-
tion. A simple solution has been to modify the repre-
sentation of the dielectric term. In reality, however, the
rigorous treatment of electrostatic interactions involves
the solution of the Poisson–Boltzmann equation.

Other simple and computationally feasible implicit
solvation models are based on empirical representa-
tions of the solvation energy. In these cases, the sol-
vation energy of each functional group is related to
the interaction of the solvent with a hydration shell
for the particular group. The individual terms are then
summed together to provide a total solvation energy for
the system. These solvation contributions can be de-
scribed by the following general equation:

Esolv D

NX
iD1

Si�i :

Typically, Si represents either the solvent-accessible
surface area, Ai, or the solvent-accessible volume of hy-
dration layer, VHSi, for the functional group, and � i is
an empirically derived free energy density parameter.

A number of algorithms have been developed for
calculating solvent-accessible surface areas [8,9,22]. Al-
though several of these are relatively efficient, the ap-
pearance of discontinuities has been one complication
in considering solvent accessible surface areas. In ad-
dition, a large number of parameterization strategies
(JRF, OONS, WE, etc.) have been used to derive ap-
propriate � i parameters [21,23,25]. In the case of the
JRF parameter set, discontinuities can be avoided be-
cause the surface-accessible solvation energies are only
included at local minimum conformations [23]. This is
because the parameters were derived from low energy
solvated configurations of actual tetrapeptides.

Several methods have also been developed for cal-
culating the hydration volumes and corresponding free
energy parameters [6,12]. A recent and computation-

ally inexpensive method, RRIGS, is based on a Gaussian
approximation for the volume of a hydration layer [6].
This method also inherently avoids numerical prob-
lems associated with possible discontinuities so that the
solvation energy contributions can easily be added at
every step of local minimizations.

Problem Formulation

For protein folding, the energy minimization problem
can be formulated as a nonconvex, nonlinear global op-
timization problem in which the energy, E, must be
globally minimized with respect to the dihedral angles
of the protein:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min E(�i ;  i ; !i ; �
k
i ; �

N
j ; �

C
j )

subject to � � �i � 

� �  i � 

� � !i � 

� � �k
i � 

� � �N
j � 

� � �Cj � :

The index i = 1, . . . , NRES defines the number of
residues, NRES, in the protein. In addition, k = 1, . . . ,
Ki denotes the number of dihedral angles in the side
chain of the ith residue, and j = 1, . . . , JN and j = 1, . . . ,
JC indicates the indices of the amino and carboxyl end
groups, respectively. The energy, E, represents the total
potential energy function, Epotential, plus the free energy
of solvation, Esolv. In most cases, this is the exact formu-
lation; that is, energetic and gradient contributions can
be added at each step of the minimization. However, in
the case of surface-accessible hydration using the JRF
parameters, the potential energy function is minimized
before adding the hydration energy contributions. In
other words, gradient contributions from solvation are
not considered.

Even after reducing this optimization problem to
a function of internal variables, the multidimensional
surface that describes the energy function possesses an
astronomically large number of local minima. In addi-
tion, evaluation of the energy, especially with the addi-
tion of solvation, is computationally expensive, which
makes even local minimization slow. A large number
of techniques have been developed to search this non-
convex conformational space. Many methods employ
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stochastic search procedures, while others rely on sim-
plifications of the potential model and/or mathemati-
cal transformations. In addition, the use of statistical
and/or heuristic conformational information is often
required. In general, the major limitation is that there
is no guarantee for convergence to the global minimum
energy structure. A number of recent reviews have fo-
cused on global optimization issues for these systems
[10,20].

The ˛BB global optimization approach has been
extremely effective in identifying global minimum en-
ergy conformations of peptides described by detailed
atomistic models. The development of this determin-
istic branch and bound method was motivated by the
need for an algorithm that could guarantee conver-
gence to the global minimum of nonlinear optimiza-
tion problems with twice-differentiable functions. The
application of this algorithm to the minimization of po-
tential energy functions was first introduced for micro-
clusters [16]. The algorithm has also been shown to be
successful for isolated [5,15], as well as solvated peptide
systems [13].

Global Minimization Using ˛BB

The ˛BB global optimization algorithm effectively
brackets the global minimum solution by develop-
ing converging sequences of lower and upper bounds.
These bounds are refined by iteratively partitioning the
initial domain. Upper bounds on the global minimum
are obtained by local minimizations of the original en-
ergy function, E. Lower bounds belong to the set of so-
lutions of the convex lower bounding functions, which
are constructed by augmenting E with the addition of
separable quadratic terms. By using �L

i ,  
L
i , !

L
i , �

k;L
i ,

�
N;L
j , �C;Lj and �U

i ,  
U
i , !

U
i , �

k;U
i , �N;U

j , �C;Uj to refer
to lower and upper bounds on the corresponding di-
hedral angles, the lower bounding function, L, of the
energy hypersurface can be expressed in the following
manner:

L D E

C

NRESX
iD1

˛�;i
�
�L
i � �i

� �
�U
i � �i

�

C

NRESX
iD1

˛ ;i
�
 L

i �  i
� �
 U

i �  i
�

C

NRESX
iD1

˛!;i
�
!L
i � !i

� �
!U
i � !i

�

C

NRESX
iD1

KiX
kD1

˛�;i;k

�
�
k;L
i � �

k
i

� �
�
k;U
i � �k

i

�

C

JNX
jD1

˛ j;N
�
�
N;L
j � �N

j

� �
�
N;U
j � �N

j

�

C

JCX
jD1

˛ j;C
�
�
C;L
j � �Cj

� �
�
C;U
j � �Cj

�
:

The ˛ represent nonnegative parameters whichmust be
greater or equal to the negative one-half of the mini-
mum eigenvalue of the Hessian of E over the defined
domain. The overall effect of these terms is to over-
power the nonconvexities of the original nonconvex
terms by adding the value of 2 ˛ to the eigenvalues of
the Hessian of E. The convex lower bounding functions,
L, possess a number of important properties which
guarantee global convergence [18]:
i) L is a valid underestimator of E;
ii) L matches E at all corner points of the current box

constraints;
iii) L is convex in the current box constraints;
iv) the maximum separation between L and E is

bounded. This property ensures that feasibility and
convergence tolerances can be reached for a finite
size partition element;

v) the underestimators L constructed over supersets
of the current set are always less tight than the un-
derestimator constructed over the current box con-
straints for every point within the current box con-
straints.

Once solutions for the upper and lower bounding prob-
lems have been established, the next step is to modify
the problem for the next iteration. This is accomplished
by successively partitioning the initial domain into
smaller subdomains. One obvious strategy is to sub-
divide the original hyper-rectangle by bisecting the
longest dimension. In order to ensure nondecreas-
ing lower bounds, the hyper-rectangle to be bisected
is chosen by selecting the region which contains the
infimum of the minima of lower bounds. A nonin-
creasing sequence for the upper bound is found by
solving the nonconvex problem locally and selecting it
to be the minimum over all the previously recorded up-
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per bounds. If the single minimum of L for any hyper-
rectangle is greater than the current upper bound, this
hyper-rectangle can be discarded because the global
minimum cannot be within this subdomain (fathom-
ing step).

The computational requirement of the ˛BB algo-
rithm depends on the number of variables (global) on
which branching occurs. Therefore, these global vari-
ables need to be chosen carefully. Qualitatively, the
branching variables should correspond to those vari-
ables which substantially influence the nonconvexity of
the surface and the location of the global minimum. In
terms of the protein folding problem, it is generally ac-
cepted that the backbone dihedral angles (� and  ) are
the most influential variables. Therefore, in larger prob-
lems, the global variable set should include only the set
of � and variables. In this case, the dihedral angles as-
sociated with the peptide bond (!) and the side chains
(�) are treated as local variables.

Algorithmic Description

The basic steps of the algorithm are as follows:
1) The initial best upper bound is set to an arbitrarily

large value. The original domain is partitioned along
one of the global variable dimensions.

2) A convex function L is constructed in each hyper-
rectangle and minimized using a local nonlinear
solver, with function calls to potential and solvation
models. If a solution is greater than the best upper
bound the entire subregion can be fathomed, other-
wise the solution is stored.

3) The local minima for L are used as initial starting
points for local minimizations of the upper bound-
ing function E in each hyper-rectangle. In solving
the upper bounding problems, all variable bounds
are expanded to (�  , ) domain. These solutions
are upper bounds on the global minimum solution
in each hyper-rectangle.

4) The current best upper bound is updated to be the
minimum of those thus far stored. If a new upper
bound (from step 3) is selected, a separate module is
called to ensure that the absolute value of each gra-
dient in the objective function gradient vector is be-
low a specified tolerance (kcal/mol/deg). The second
derivative matrix is also evaluated to verify that the
upper bound solution is a local minimum.

5) The hyper-rectangle with the current minimum
value for L is selected and partitioned along one of
the global variables.

6) If the best upper and lower bounds are within an
� tolerance the program will terminate, otherwise it
will return to Step 2.

A novel approach has also been proposed for the initial-
ization of the ˛BB algorithm [5]. Specifically, an analy-
sis of 98 proteins from the Brookhaven X-ray data bank
was used to develop dihedral angle distributions in the
form of histograms from�  to  for each dihedral an-
gle of each of the naturally occurring amino acids. Us-
ing this information, a set of reduced domains can be
defined for every dihedral angle of every residue in the
peptide sequence. Overall initialization domains corre-
spond to the Cartesian products of all the sub-domains
of individual residues in the protein. This approach
maintains the guarantee of global optimality over the
considered search space of the reduced domains, and
is deterministic in those subdomains that possess con-
vex underestimators. In addition, all variable bounds
are expanded to the [ �  , ] when solving the up-
per bounding problem. Therefore, although the initial
point of an upper bounding minimization is restricted
to the search space of the corresponding lower bound-
ing problem, the solution may lie outside the original
subdomain.

Example 1 Met-enkephalin (H-Tyr-Gly-Gly-Phe-
Met-OH) is an endogenous opioid pentapeptide found
in the human brain, pituitary, and peripheral tissues. Its
biological function involves a large variety of physiolog-
ical processes, most notably the endogenous response
to pain. The peptide consists of 24 dihedral angles and
a total of 75 atoms, and has played the role of a bench-
mark molecular conformation problem. The energy
hypersurface is extremely complex with the number of
local minima estimated on the order of 1011. The un-
solvated global minimum energy conformation, which
is efficiently located using the ˛BB algorithm, has been
shown to exhibit a type II’ ˇ-bend along the N-C’ pep-
tidic bond of Gly3 and Phe4 [5], as shown in Fig. 4.

The algorithm has also successfully predicted global
minimum energy structures of met-enkephalin using
both solvent-accessible surface area (JRF) and volume
of hydration (RRIGS) models [13]. In both cases, ex-
tended structures were identified, which qualitatively
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Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 4
Global minimum energy structure of unsolvated met-
enkephalin

Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 5
Global minimum energy structure of met-enkephalin using
area based hydration

agrees with experimental results. However, differences
in the role of nonbonded energies and the side chain
conformations have been identified. The global mini-
mum energy conformations of the surface area and vol-
ume of hydration models are shown in Fig. 5 and Fig. 6,
respectively.

See also

� Adaptive Simulated Annealing and its Application
to Protein Folding

Multiple Minima Problem in Protein Folding:˛BBGlobal Op-
timization Approach, Figure 6
Global minimum energy structure of met-enkephalin using
volume based hydration
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Dynamic programming has been an area of active re-
search since its introduction by R. Bellman [1]. More
recently, with the recognition that many applied op-
timization problems require more than one objective,
the study of multicriteria optimization has become
a growing area of research. Included in this area of
multicriteria optimization is the study of multiple ob-
jective dynamic programming (MODP). MODP was
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first used to replace multiple objective linear program-
ming (MOLP) where it was not applicable, such as in
problems with discrete variables. Many of the tech-
niques used are extensions of classical dynamic pro-
gramming. The following is a discussion of some of
the research that has been developed in the area of
MODP.

Using multiple objective dynamic programming to
find the ‘shortest’ path through a network with con-
stant costs is one of the more straightforward uses of
MODP. Work has been done on both forward and
backward MODP in this area. First, we consider a gen-
eral network containing a set of nodes N = {1, . . . , n}
and a set of arcs A = {(i0, i1), (i2, i3), (i4, i5), . . . } �
N × N which indicates connections between nodes.
Each arc (i, j) has an associated cost vector, cij = (cij1,
. . . , cijm) � Rm. A path from node i0 to ip is the se-
quence of arcs P = {(i0, i1), . . . , (ip�1, ip)} where the
first node of each arc is the same as the terminal node
of the preceding arc and each node in the path is
unique. Let ˘ i be the set of all paths from node 1 to
node i. The cost to traverse a path p in ˘ i is [c(p)] =P

(i, j) 2 p[cij]. A path in ˘ i is nondominated if there is
no other path p� in ˘ i with [c(p�)]r � [c(p)]r for r
= 1, . . . , m and [c(p�)]r < [c(p)]r for some r 2 {1, . . . ,
m}.

0 k = 1.
1 Evaluate Ski for all nodes using S

k
i = fci j+Sk�1

i g.
2 If k < N , set k = k + 1 and return to step 1;

otherwise:
3 For each nondominated solution at each node

determined in step 1 and for each r, r =
1; : : : ;m, define Tr as Tr = miniN ;:::;i0P

n c
r
in jn�1, where in is the originated node at

stage n and In is the set of nodes that can be
reached from node n.

4 Given weights Wm 2 Rm
+ , compute the MIN-

SUM as

min

" mX
r=1

(
Wr

PN
k=1 ci j � Tr

Tr

)#
:

H.G. Daellenbach and C.A. DeKluyver [5] gave one
of the earliest algorithms for backward MODP with
constant costs, which finds nondominated paths from
all nodes to the destination node. Their method is ba-

sically an extension of the principle of optimality to
a multicriteria context. They state a principle of Pareto
optimality of MODP: ‘A nondominated policy has the
property that regardless of how the process entered
a given state, the remaining decisions must belong to
a nondominated subpolicy.’ Let Ski be the nondomi-
nated vector of objective values for a node i, exactly k
links from its destination, t. Then the algorithm is given
above.

The resulting Ski vectors give nondominated solu-
tions for the network, but maybe not all of them. They
solve an example in which the weights are not specified.

A few years later, R. Hartley [6] proposed a simi-
lar algorithm that also uses backward MODP to find all
Pareto paths from all nodes in the network to a specified
node. The algorithm is as follows:

LetV0(i) = {1, . . . ,1} for k = 0, 1, . . . , and letVk(t)
= {0, . . . , 0}.

Vk(i) = eff[ [ {cij + Vk�1(j): j 2 � (i)}] for i 2 N (i 6D
t) and k = 1, 2, . . . , where � (i) is the set of nodes such
that (i, j) 2 A. The ‘eff’ operator finds all nondominated
vectors in the set. The associated paths must be handled
separately.

H.W. Corley and I.D. Moon [4] used forward
MODP to find all nondominated paths from a speci-
fied node to all other nodes in a network with multiple
constant costs. They assumed that the network contains
no loops and that cij 6D {0, . . . , 0} for any (i, j) 2 A. Let-
ting G(k)

i be the set of vector costs of all Pareto paths
from node 1 to node i containing k or fewer arcs, the
algorithm follows:

1 Set ci i = (0; : : : ; 0), i = 1; : : : ; n and ci j =
(1; : : : ;1), i ¤ j, if no arc exists from i to
j. Set k = 1 and let G(1)

i = fc1ig, i = 1; : : : ; n.
2 For i = 1; : : : ; n, set Gk+1

i = Vmin[n
j=1
˚
ci j +

gkj : g
k
j 2 G(k)

j
�
.

3 If G(k+1)
i = G(k)

i , i = 1; : : : ; n, stop, otherwise
go to step 4.

4 If k = n� 1, stop. Else, k = k + 1 and go to step
2.

Vmin is an operation that computes the vector costs
of all nondominated paths in a set of vector costs. An
algorithm for Vmin is given in their paper.
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Multiple Objective Dynamic Programming, Figure 1

Table 1 gives the results of the algorithm. The re-
sulting Pareto optimal paths from node 1 to node 6 are
{(1, 2), (2, 5), (5, 6)} and {(1, 3), (3, 5), (5, 6)}.

The following example uses the Corley–Moon algo-
rithm to solve a dynamic routing problem for the net-
work in Fig. 1.

Using multiple objective dynamic programming to
find the shortest path through a network with time-
dependent costs is considerably more complicated than
MODP with constant costs. The monotonicity assump-
tions necessary for the principle of optimality in dy-
namic programming can easily be broken when dealing
with time-dependent costs. Reaching a node later may
be less costly than reaching it earlier. M.M. Kostreva

and M.M. Wiecek [7] extended the work done by
K.L. Cooke and E. Halsey [3] on dynamic program-
ming with one time-dependent cost (travel time) to
dynamic programming with multiple time-dependent
costs. This method uses backward dynamic program-
ming on a discrete time grid to find all nondominated
paths from every node in the network to the destination
node.

Assume the discrete time grid ST = {t0, . . . , t0 + T},
t0 > 0 and the cost functions [cij(t)]k > 0, (i, j) 2 A, for
all t 2 ST . T is the upper bound on total time to travel
from any node in the network to the destination node,
Nd. Also assume that [cij(t)]1 is the time to travel from
node i to node j when the arrival time at node i is time
t. For all i 2 N \ Nd and all t 2 ST , define {[Fi(t)]} as the
set of nondominated vectors associated with the paths
that leave node i at time t and reach nodeNd and define
{[Fi(t)(k)]} as the set of nondominated vectors associ-
ated with the paths that leave node i at time t and reach
node Nd in at most k + 1 links before time t0 + T, where
k = 0, 1, . . . . The following is the principle of optimality
used for this algorithm: ‘A nondominated path p, leav-
ing node i at time t 2 ST and reaching node N at or
before time t0 + T, has the property that for each node
j lying on this path, a subpath p1, that leaves node j at
time tj 2 ST , tj > t, and arrives at node N at or before
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time t0 + T, is nondominated.’ The algorithm is as fol-
lows:

1 Find a time grid of discrete values ST = ft0; : : : ;

t0 + Tg; t0 > 0 and compute [ci j(t)] for all
t 2 ST and all (i; j) 2 A.

2 Modify [ci j(t)] for all t 2 ST and all (i; j) 2 A
as follows:

[ci j(t)]0 =
(
[ci j(t)] if t+[ci j(t)]l � t0+T;

1 if t+[ci j(t)]l > t0+T:

3 Find the initial array [f[Fi(t)(0)]g]; i = 1; : : : ; N ,
for all t 2 ST , where f[FNd (t)(0)]g = f0g, and
f[Fi(t)(0)]g = [ciNd (t)]0 for i 2 NnNd .

4 Find the arrays [f[Fi(t)(k)]g]; i = 1; : : : N , for
all t 2 ST , for k = 1; 2; : : : as follows:

f[Fi(t)(k)]g
=VMINf[ci j(t)]0+f[Fj(t+[ci j(t)]01)(k�1)]gg;

i 2 NnfNdg;
f[Fi(t)(k)]g = f0g:

5 The sequence of sets f[Fi(t0)(k)]g; k = 1; 2; : : : ;

converges to the set f[Fi(t0)]g, the set of non-
dominated vectors associated with the paths
that leave node i at time t0 and reach node Nd .

The following example uses Algorithm One [7] to
solve a dynamic routing problem for the network in
Fig. 2. A grid of discrete values of time S19 = {1, 2, . . . ,
20} for t0 = 1 is established.

Table 2 shows the initial array and the two subse-
quent arrays. So, the set {Eff(EI(t0))} of all nondomi-
nated paths that leave node 1, 2, and 3 at time t0 = 1 are
{(1, 2), (2, 3), (3, 4)}, {(2, 3), (3, 4)}, and {(3, 4)}.

Kostreva and Wiecek [7] also developed an algo-
rithm which uses forward dynamic programming to

Multiple Objective Dynamic Programming, Figure 2

find all nondominated paths from an origin node to
every other node in the network without using a time
grid. Thus, assume t is a continuous variable, t � 0, and
[cij(t)]1 > 0. An assumption must be made about the
cost functions so that the principle of optimality will
hold for these networks: For any arc (i, j) 2 A and all
t1, t2 � 0, if t1 � t2, then:
a) t1 + [cij(t1)]1 � t2 + [cij(t2)] 1, and
b) [cij(t1)]r � [cij(t2)]r for all r 2 {2, . . . , m}. Assuming

the cost functions are monotone increasing with re-
spect to time satisfies this assumption.

1 Find the initial vector f[G(0)
j ]g; j = 1; : : : ; N ,

where f[G(0)
1 ]g = f0g and f[G(0)

j ]g = [c1 j(0)];
j = 2; : : : ; N .

2 Calculate the vectors f[G(k)
j ]g; j = 1; : : : ; N , for

k = 1; 2; : : : ; as follows:

f[Gl
j(tl )

(k)]; l =; : : : ; Njg
= VMINf[Gn

i (t
n)(k�1)] + [ci j(tn)];

n = 1; : : : ; Nig;
j = 2; : : : ; N;

f[Gl
1(t

l )(k)]; l = 1g = f0g:

3 f[G(k)
j ]g; k = 1; 2; : : : ; converges to f[Gj]g, the

set of vector costs of all nondominated paths
which leave the origin node at time t = 0 and
lead to node j.

Assume that node 1 is the origin node. For nodes j
= 2, . . . , N, let [Gu

j (t
u)(k)] be the vector cost of the non-

dominated path uwhich is of at most k links leaving the
origin node at time t = 0 and leading to node j, where
tu is the arrival time of this path at node j. Also, let
{[G(k)

j ]} be the set of vector costs of all nondominated
paths which are of at most k links leaving the origin
node at time t = 0 and leading to node j, where Nj is the
number of nondominated paths. Let {[Gj]} be the set of
vector costs of all nondominated paths which leave the
origin node at time t = 0 and lead to node j. The algo-
rithm is as listed above.

Another way to get around the monotonicity as-
sumption of dynamic programming is to use gener-
alized dynamic programming techniques. See [2] for
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a way to use generalized DP with a multicriteria prefer-
ence function. Basically, generalized DP uses a weaker
principle of optimality than Bellman’s famous version
[1]. Generalized DP finds partial solutions that may
lead to optimal solutions even though locally they are
not optimal solutions according to the preference func-
tion.

In [2] generalized DP is applied to the multicriteria
best path problem. Assuming node 1 to be the origin
and node N to be the destination, let˘ be the set of all
paths in the network. Let

P( j) D fp 2 ˘ : i1 D 1; in D jg

be the set of all paths from the origin to node j. Let

X( j) D fp 2 ˘ : i1 D j; in D Ng

be the set of all paths from node j to the destination
node. The vector cost along each arc is called an arc
length vector, lij = (l1i j , . . . , l

m
i j ) 2 R

m. A path length func-
tion z : ˘ ! Rm assigns a path length vector to every
path p 2˘ where ı is a binary operator on Rm:

z(p) D l1;2 ı � � � ı lin�1;in :

Thus, each different objective can have a different bi-
nary operation. For example, distance would have an
additive binary operator and probabilities would have
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a multiplicative binary operator. Let

Z( j) D fz(p) : p 2 P( j)g

be the set of all length vectors of all paths from the
origin to node j. A multicriteria preference function u:
Rm ! R is defined on the set of path length vectors.
The objective is to maximize this preference function.
The monotonicity assumption says that for all z; z0 2
Z( j); u(z) � u(z0) ) u(z ı l jk ) � u(z0 ı l jk ) for all j,
k 2 S such that (j, k) 2 T. Unfortunately, with multi-
objective problems this assumption is easily violated.
Generalized DP tries to get around this monotonicity
assumption by having local preference relations defined
as �j � Z(j) × Z(j): for z, z0 2 Z(j), where z�jz0 implies
that any subpath from the origin to node jwhose length
is z cannot be used in a path to produce a better overall
path from the origin to the destination node than using
the subpath from the origin to node j whose length is
z0. So, subpath length vector z0 is more locally preferred
even though subpath length vector z may be globally
preferred, u(z0) � u(z). So, for z, z0 2 Z(j), z�jz0 if and
only if 9p0 2X(j) such that u(zız(p)) � u(z0ız(p0)) for
all p 2 X(j). These local preference relations are used to
form the weak principle of optimality. An optimal path
must be composed of subpaths that can be part of an
optimal path.

Unfortunately, in order to get these preference rela-
tions one would have to complete all paths from every
node in the network. Since this is too computationally
intense, the preference relations are relaxed to the refin-
ing local preference relations �j where z �j z0 implies z
�j z0. Using �j avoids having to find the entire relation
�j. Using this relation means that a larger set of maxi-
mal path length vectors will be kept by using �j than if
�j were used. A maximal path length vector is a vector
where there does not exist another vector at that state
that is strictly more preferred. Let

maxl(X; �) D
˚
x 2 X : 9x0 2 X : x�x0 and x0�x

�
:

The following are the equations of generalized DP:

f (1) D fz1g;

f ( j) D maxl
�
[(i; j)2A( f (i) ı li j) � j

�

for j D 2; : : : ;N;

where f f (i) ı li jg D fz ı li j : z 2 f (i)g.

When the monotonicity assumptions are satisfied,
the �j relation can be replaced with the multicriteria
preference function, u, thus reducing to the conven-
tional DP problem. However, when the monotonicity
assumption does not hold the �j relation must be de-
fined by trying exploit any special structures of each
individual problem. Also, using dynamic programming
to find the entire Pareto optimal set can be seen as an-
other special case of generalized DP where zk � zk0 for
all k = 1, . . . , m) z �j z0 (assuming minimization of
each criteria).

The subject of multiple objective dynamic pro-
gramming has developed into a viable body of knowl-
edge capable of providing solutions to applied prob-
lems in which trade-offs among objectives is important.
Among the multiple objective techniques, it is distinc-
tive in its ability to provide the entire Pareto optimal
set. To gain such an advantage, one must be willing to
perform computationally intensive operations on large
sets of vectors.

See also

� Dynamic Programming: Average Cost Per Stage
Problems

� Dynamic Programming in Clustering
� Dynamic Programming: Continuous-time Optimal

Control
� Dynamic Programming: Discounted Problems
� Dynamic Programming: Infinite Horizon Problems,

Overview
� Dynamic Programming: Inventory Control
� Dynamic Programming and Newton’s Method in

Unconstrained Optimal Control
� Dynamic Programming: Optimal Control

Applications
� Dynamic Programming: Stochastic Shortest Path

Problems
� Dynamic Programming: Undiscounted Problems
� Hamilton–Jacobi–Bellman Equation
� Neuro-dynamic Programming

References

1. Bellman RE (1957) Dynamic programming. Princeton Uni-
versity Press, Princeton



Multiple Objective Programming Support M 2503

2. Carraway RL, Morin TL, Moskowitz H (1990) Generalized dy-
namic programming for multicriteria optimization. Europ J
Oper Res 44:95–104

3. Cooke KL, Halsey E (1966) The shortest route through a net-
work with time-dependent internodal transit times. J Math
Anal Appl 14:493–498

4. Corley HW, Moon ID (1985) Shortest paths in networks with
vector weights. J Optim Th Appl 46:79–86

5. Daellenbach HG, DeKluyver CA (1980) Note on multiple ob-
jective dynamic programming. J Oper Res Soc 31:591–594

6. Hartley R (1984) Vector optimal routing by dynamic pro-
gramming. In: Serafini P (ed) Mathematics of Multiobjective
Optimization, pp 215–224

7. Kostreva MM, Wiecek MM (1993) Time dependency in mul-
tiple objective dynamic programming. J Math Anal Appl
173:289–307

Multiple Objective
Programming Support

PEKKA KORHONEN1,2

1 Internat. Institute Applied Systems Analysis,
Laxenburg, Austria

2 Helsinki School Economics and Business Adm.,
Helsinki, Finland

MSC2000: 90C29

Article Outline

Keywords
Introduction
A Multiple Objective Programming Problem
Generating Nondominated Solutions

A Linear Scalarizing Function
A Chebyshev-Type Scalarizing Function

Solving Multiple Objective Problems
Example of a Decision Support System: VIG
Numerical Illustrations
Conclusion
See also
References

Keywords

Multiple criteria decision making; Multiple objective
programming; Multiple objective programming
support; Scalarizing function; Value function

This article gives a brief introduction into multiple ob-
jective programming support. We will overview basic
concepts, formulations, and principles of solving mul-
tiple objective programming problems. To solve those
problems requires the intervention of a decision-maker.
That’s why behavioral assumptions play an important
role in multiple objective programming. Which as-
sumptions are made affects which kind of support is
given to a decision maker. We will demonstrate how
a free search type approach can be used to solve multi-
ple objective programming problems.

Introduction

Before we can consider the concept of multiple objec-
tive programming support (MOPS), we have to first ex-
plain the concept of multiple criteria decision making
(MCDM). Even if there is a variation of different def-
initions, most researchers working in the field might
accept the following general definition: Multiple Cri-
teria Decision Making (MCDM) refers to the solving
of decision and planning problems involving multi-
ple (generally conflicting) criteria. ‘Solving’ means that
a decision-maker (DM) will choose one ‘reasonable’ al-
ternative from among a set of available ones. It is also
meaningful to define that the choice is irrevocable. For
an MCDM problem it is typical that no unique solu-
tion for the problem exists. Therefore to find a solu-
tion for MCDM problems requires the intervention of
a decision-maker (DM). In MCDM, the word ‘reason-
able’ is replaced by the words ‘efficient/nondominated’.
They will be defined later on.

Actually the above definition is a strongly simpli-
fied description of the whole (multiple criteria) deci-
sion making process. In practice, MCDM problems are
not often so well-structured, that they can be consid-
ered just as a choice problem. Before a decision prob-
lem is ready to be ‘solved’, the following questions re-
quire a lot of preliminary work: How to structure the
problem? How to find essential criteria? How to handle
uncertainty? These questions are by no means outside
the interest area of MCDM-researchers. The outrank-
ingmethod by B. Roy [17] and the AHP (the analytic hi-
erarchy process) developed by T.L. Saaty [18] are exam-
ples of the MCDM-methods, in which a lot of effort is
devoted to problem structuring. Both methods are well
known and widely used in practice. In both methods,
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Multiple Objective Programming Support, Figure 1
A variable, criterion, and value space

the presence of multiple criteria is an essential feature,
but the structuring of a problem is an even more im-
portant part of the solution process.

When the term ‘support’ is used in connection with
MCDM, we may adopt a broad perspective and refer
with the term to all research associated with the rela-
tionship between the problem and the decision-maker.
In this article we take a narrower perspective and focus
on a very essential supporting problem in multiple cri-
teria decision making: How to assist a DM to find the
‘best’ solution from among a set of available ‘reason-
able’ alternatives, when the alternatives are evaluated
by using several criteria? Available alternatives are as-
sumed to be defined explicitly or implicitly by means of
a mathematical model. The termmultiple objective pro-
gramming is usually used to refer to dealing with this
kind of model.

The following considerations are general in the
sense that usually it is not necessary to specify how the
alternatives are defined. It is enough to assume that they
belong to set Q. However, in Fig. 1 and Fig. 2 and the
numerical example we consider amultiple objective lin-
ear programming model in which all constraints and
objectives are defined using linear functions.

The article consists of seven sections. In Sect. “A
Multiple Objective Programming Problem”, we give
a brief introduction to some foundations of multiple
objective programming. How to generate potential ‘rea-
sonable’ solutions for a DM’s evaluation is considered
in Sect. “Generating Nondominated Solutions”, and in
Sect. “Solving Multiple Objective Problems”, we will
review general principles to solve a multiple objective
programming problem. In Sect. “Example of a Deci-
sion Support System: VIG”, a multiple criteria decision
support system VIG is introduced, and a numerical ex-

Multiple Objective Programming Support, Figure 2
Illustrating the projection of a feasible and an infeasible as-
piration level point onto the nondominated surface

ample is solved in Sect. “Numerical Illustrations”. Con-
cluding remarks are given in Sect. “Conclusion”.

AMultiple Objective Programming Problem

A multiple objective programming (MOP) problem in
a so-called criterion space can be defined as follows:

(
‘ max ’ q
s.t. q 2 Q;

(1)

where set Q � Rk is a so-called feasible region in a k-
dimensional criterion space Rk. The set Q is of special
interest. Most considerations in multiple objective pro-
gramming are made in a criterion space.

Set Q may be convex/nonconvex, bounded/un-
bounded, precisely known or unknown, consist of finite
or infinite number of alternatives, etc. When Q con-
sists of a finite number of elements which are explicitly
known in the beginning of the solution process, we have
an important class of problems which may be called
e. g. (multiple criteria) evaluation problems. Sometimes
those problems are referred to as discrete multiple crite-
ria problems or selection problems (for a survey see for
example [16]).

When the number of alternatives inQ is infinite and
not countable, the alternatives are usually defined using
a mathematical model formulation, and the problem is
called continuous. In this case we say that the alterna-
tives are only implicitly known. This kind of problem is
referred as amultiple criteria design problem (the terms
‘evalution’ and ‘design’ are adopted from A. Arbel) or
a continuous multiple criteria problem. In this case, the
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set Q is not specified directly, but by means of decision
variables as usually done in single optimization prob-
lems:

(
max q D f (x) D ( f1(x); : : : ; fk(x))
s.t. x 2 X;

(2)

where X � Rn is a feasible set and f : Rn ! Rk. The
space Rn is called a variable space (see Fig. 1). The func-
tions f i, i = 1, . . . , k, are objective functions. The feasible
region Q can now be written as Q = {q: q = f (x), x 2 X}.

The MOP-problem has seldom a unique solution,
i. e. an optimal solution that simultaneously maxi-
mizes all objectives. Conceptually the multiple objective
mathematical programming problem may be regarded
as a value (utility) functionmaximization program:

(
max v(q)
s.t. q 2 Q;

(3)

where v is a real-valued function, which is strictly in-
creasing in the criterion space and defined at least in
the feasible region Q. It is mapping the feasible region
into a one-dimensional value space (see Fig. 1). Func-
tion v specifies the DM’s preference structure over the
feasible region. However, the key assumption in multi-
ple objective programming is that v is unknown. Gen-
erally, if the value function is estimated explicitly, the
system is considered to be in the MAUT category, see
for example [7], (MAUT stands for multiple attribute
utility theory) and can then be solved without any inter-
action of the DM. Typically, MAUT-problems are not
even classified under the MCDM-category. If the value
function is implicit (assumed to exist but is otherwise
unknown) or no assumption about the value function
is made, the system is usually classified under MCDM
[2] or MOP.

Solutions of the MOP-problems are all those alter-
natives which can be the solutions of some value func-
tion v: Q ! R. Those solutions are called efficient or
nondominated depending on the space where the alter-
natives are considered. The term nondominated is used
in the criterion space and efficient in the variable space.
(Some researchers use the term efficient to refer to effi-
cient and nondominated solutions without making any
difference.) Any choice from among the set of efficient
(nondominated) solutions is an acceptable and ‘reason-

able’ solution, unless we have no additional informa-
tion about the DM’s preference structure.

Nondominated solutions are defined as follows:

Definition 1 In (1), q� 2 Q is nondominated if and
only if there does not exist another q 2 Q such that q �
q� and q 6D q�.

Definition 2 In (1), q� 2 Q is weakly nondominated if
and only if there does not exist another q 2 Q such that
q > q�.

Correspondingly, efficient solutions are defined as fol-
lows:

Definition 3 In (2), x� 2 X is efficient if and only if
there does not exist another x 2X such that f (x)� f (x�)
and f (x) 6D f (x�).

Definition 4 In (2), x� 2 X is weakly efficient if and
only if there does not exist another x2X such that f (x)>
f (x�).

The final (‘best’) solution q 2 Q of the problem (1) is
called the most preferred solution. It is a solution pre-
ferred by the DM to all other solutions. At the concep-
tual level, wemay think it is the solution maximizing an
(unknown) value function in problem (3). How to find
it? That is the problem we now proceed to consider.

Unfortunately, the above characterization of the
most preferred solution is not very operational, because
no system can enable the DM to simultaneously com-
pare the final solution to all other solutions with an
aim to check if it is really the most preferred or not.
It is also as difficult to maximize a function we do not
know. Some properties for a good system are, for ex-
ample, that it makes the DM convinced that the final
solution is the most preferred one, does not require too
much time from the DM to find the final solution, to
give reliable enough information about alternatives, etc.
Even if it is impossible to say which system provides the
best support for a DM for his multiple criteria prob-
lem, all proper systems have to be able to recognize,
generate and operate with nondominated solutions. To
generate nondominated solutions for the DM’s evalu-
ation is thus one key issue in multiple objective pro-
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gramming. In the next section, we will consider some
principles.

Generating Nondominated Solutions

Despite many variations among different methods of
generating nondominated solutions, the ultimate prin-
ciple is the same in all methods: a single objective opti-
mization problem is solved to generate a new solution
or solutions. The objective function of this single ob-
jective problemmay be called a scalarizing function, ac-
cording to [25]. It typically has the original objectives
and a set of parameters as its arguments. The form of
the scalarizing function as well as what parameters are
used depends on the assumptions made concerning the
DM’s preference structure and behavior.

Two classes of parameters are widely used in multi-
ple objective optimization:
1) weighting coefficients for objective functions; and
2) reference/aspiration/reservation levels for objective

function values.
Based on those parameters, there exist several ways to
specify a scalarizing function. An important require-
ment is that this function completely characterizes the
set of nondominated solutions:

for each parameter value, all solution vectors
are nondominated, and for each nondominated
criterion vector, there is at least one parameter
value, which produces that specific criterion vec-
tor as a solution

(see, for theoretical considerations, e. g. [26]).

A Linear Scalarizing Function

A classic method to generate nondominated solutions
is to use the weighted-sums of objective functions, i. e.
to use the following linear scalarizing function:

max
˚
�0 f (x) : x 2 X

�
: (4)

If � > 0, then the solution vector x of (4) is efficient,
but if we allow that � � 0, then the solution vector
is weakly-efficient. (see, e. g. [21, p. 215; 221]). Using
the parameter set � = {�: � > 0} in the weighted-
sums linear program we can completely characterize
the efficient set provided the constraint set is convex.

However, � is an open set, which causes difficulties in
a mathematical optimization problem. If we use cl(�)
= {�: � � 0} instead, the efficiency of x cannot be guar-
anteed anymore. It is surely weakly-efficient, and not
necessarily efficient. When the weighted-sums are used
to specify a scalarizing function in multiple objective
linear program (MOLP) problems, the optimal solu-
tion corresponding to nonextreme points of X is never
unique. The set of optimal solutions always consists
of at least one extreme point, or the solution is un-
bounded. In early methods, a common feature was to
operate with weight vectors � 2 Rk, limiting considera-
tions to efficient extreme points (see, e. g., [29]).

A Chebyshev-Type Scalarizing Function

Currently, most solution methods are based on the use
of a so-called Chebyshev-type scalarizing function first
proposed by A. Wierzbicki [25]. We will refer to this
function by the term achievement (scalarizing) func-
tion. The achievement (scalarizing) function projects
any given (feasible or infeasible) point g 2 Rk onto the
set of nondominated solutions. Point g is called a ref-
erence point, and its components represent the desired
values of the objective functions. These values are called
aspiration levels.

The simplest form of achievement function is:

s(g; q;w) D max
k2K

gk � qk
wk

; (5)

where w > 0 2 Rk is a (given) vector of weights, g 2 Rk,
and q 2 Q = {f (x): x 2 X}. By minimizing s(g, q, w) sub-
ject to q 2 Q, we find a weakly nondominated solution
vector q� (see, e. g. [25,26]). However, if the solution is
unique for the problem, then q� is nondominated. If g
2 Rk is feasible, then q� 2 Q, q� � g. To guarantee that
only nondominated (instead of weakly nondominated)
solutions will be generated, more complicated forms for
the achievement function have to be used, for example:

s(g; q;w; �) D max
k2K

�
gk � qk
wk

�
C �

kX
iD1

(gi � qi); (6)

where � > 0. In practice, we cannot operate with a def-
inition ‘any positive value’. We have to use a pre-
specified value for �. Another way is to use a lexico-
graphic formulation [10].
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The applying of the scalarizing function (6) is easy,
because given g 2 Rk, the minimum of s(g, v, w, �) is
found by solving the following LP-problem:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min � C �

kX
iD1

(gi � qi)

s.t. x 2 X
� �

g i�qi
wi

; i D 1; : : : ; k:

(7)

Problem (7) can be further written as:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min � C �

kX
iD1

(gi � qi)

s.t. x 2 X
qC �w � z D g
z � 0:

(8)

To illustrate the use of the achievement scalarizing
function, consider a two-criteria problem with a feasi-
ble region having four extreme points (0, 0), (0, 3), (2,
3), (8, 0), as shown in Fig. 2. In Fig. 2, the thick solid
lines describe the indifference curves when � = 0 in the
achievement scalarizing function. The thin dotted lines
stand for the case � > 0. Note that the line from (2, 3)
to (8, 0) is nondominated and the line from (0, 3) to (2,
3) (excluding the point (2, 3)) is weakly-nondominated,
but dominated. Let us assume that the DM first spec-
ifies a feasible aspiration level point g1 = (2, 1). Us-
ing a weight vector w = [2, 1]0, the minimum value of
the achievement scalarizing function (�1) is reached at
a point v1 = (4, 2) (cf. Fig. 2). Correspondingly, if an as-
piration level point is infeasible, say g2 = (8, 2), then the
minimum of the achievement scalarizing function (+ 1)
is reached at point v2 = (6, 1). When a feasible point
dominates an aspiration level point, then the value of
the achievement scalarizing function is always negative;
otherwise it is nonnegative. It is zero, if an aspiration
level point is weakly-nondominated.

SolvingMultiple Objective Problems

Several dozen procedures and computer implementa-
tions have been developed from the 1970s onwards
to address both multiple criteria evaluation and design

problems. The multiple objective decision procedures
always requires the intervention of a DM at some stage
in the solution process. A popular way to involve the
DM in the solution process is to use an interactive ap-
proach.

The specifics of these procedures vary, but they have
several common characteristics. For example, at each
iteration, a solution, or a set of solutions, is generated
for a DM’s examination. As a result of the examination,
the DM inputs information in the form of trade-offs,
pairwise comparisons, aspiration levels, etc. (see [20]
for a more detailed discussion). The responses are used
to generate a presumably, improved solution. The ulti-
mate goal is to find the most preferred solution of the
DM. Which search technique and termination rule is
used is heavily dependent on the underlying assump-
tions postulated about the behavior of the DM and the
way in which these assumptions are implemented. In
MCDM-research there is a growing interest in the be-
havioral realism of such assumptions.

Based on the role that the value function (3) is sup-
posed to play in the analysis, we can classify the as-
sumptions into three categories:
1) Assume the existence of a value function v, and as-

sess it explicitly.
2) Assume the existence of a stable value function v,

but do not attempt to assess it explicitly. Make as-
sumptions of the general functional form of the
value function.

3) Do not assume the existence of a stable value func-
tion v, either explicitly, or implicitly.

The first assumption is adopted in multi-attribute util-
ity or decision analysis (see, e. g. [7]). Interactive soft-
ware implementing such approaches on personal com-
puters exists.

The second assumption was a basic paradigm used
in interactive multiple criteria approaches in the 1970s.
A classical example is the GDF-method [3]. DM’s re-
sponses to specific questions were used to guide the
solution process towards an ‘optimal’ or ‘most pre-
ferred’ solution (in theory), assuming that the DM be-
haves according to some specific (but unknown) under-
lying value function (see for surveys, e. g. [5,20,21], and
[24]). Interactive software that implements such sys-
tems for a computer have often been developed by the
authors of the above procedures for experimental pur-
poses.
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The approaches based on the assumption on ‘no sta-
ble value/utility function’ typically operate with a DM’s
aspiration levels regarding the objectives on the feasi-
ble region. The aspiration levels are projected via min-
imizing so called achievement scalarizing functions (6)
[23,25]. No specific behavioral assumptions e. g. transi-
tivity are necessary.

In essence, this approach seeks to help the DMmore
or less freely to search the set of efficient solutions.
Interactive software that implements such systems for
a computer have been developed like ADBASE [22],
DIDAS [14], VIG [8], and VIMDA [9]. For an excel-
lent review of several interactive multiple criteria proce-
dures, see [21]. Other well-known books that provides
a deeper background and additional references espe-
cially in the field of multiple objective optimization in-
clude [1,4,5,6,19,27] and [28].

Multiple objective linear programming (MOLP) is
the most commonly studied problem in multiple crite-
ria decision making (MCDM). Most solution methods
are developed for this problem.

Example of a Decision Support System: VIG

Today, many systems use aspiration level projections,
where the projection is performed using Chebyshev-
type achievement scalarizing functions as explained
above. These functions can be controlled either by vary-
ing weights (keeping aspiration levels fixed) or by vary-
ing the aspiration levels (keeping weights fixed). Instead
of aspiration levels, some algorithms asks the DM to
specify the reservation levels for the criteria (see, e. g.
[15]).

An achievement scalarizing function projects one
aspiration (reservation) level point at a time onto the
nondominated frontier. By parametrizing the function,
it is possible to project the whole vector onto the non-
dominated frontier as originally proposed by [11]. The
vector to be projected is called a reference direction vec-
tor and the method reference direction method, cor-
respondingly. When a direction is projected onto the
nondominated frontier, a curve traversing across the
nondominated frontier is obtained. Then an interactive
line search is performed along this curve. The idea en-
ables the DM to make a continuous search on the non-
dominated frontier. The corresponding mathematical
model is a simple modification from the original model

(8) developed for projecting one point:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min � C �

kX
iD1

(gi � qi)

s.t. x 2 X
qC �w � z D g C tr; z � 0;

(9)

where t: 0 ! 1 and r 2 Rk is a reference direc-
tion. In the original approach, a reference direction was
specified as a vector starting from the current solution
and passing through the aspiration levels. The DM was
asked to give aspiration levels for criteria.

The original reference direction approach has been
further developed into many directions. First, [12] im-
proved upon the original procedure by making the
specification of a reference direction dynamic. The dy-
namic version was called Pareto race. In Pareto race,
the DM can freely move in any direction on the non-
dominated frontier he/she likes, and no restrictive as-
sumptions concerning the DM’s behavior are made.
Furthermore, the objectives and constraints are pre-
sented in a uniform manner. Thus, their role can also
be changed during the search process. The method and
its implementation is called Pareto race. The whole
software package consisting of Pareto race is called
VIG.

In Pareto race, a reference direction r is determined
by the system on the basis of preference information
received from the DM. By pressing number keys cor-
responding to the ordinal numbers of the objectives,
the DM expresses which objectives he/she would like to
improve and how strongly. In this way he/she implic-
itly specifies a reference direction. Figure 3 shows the

Multiple Objective Programming Support, Figure 3
Example Pareto race screen
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Pareto race interface for the search, embedded in the
VIG software [8].

Thus Pareto race is a visual, dynamic, search proce-
dure for exploring the nondominated frontier of a mul-
tiple objective linear programming problem. The user
sees the objective function values on a display in nu-
meric form and as bar graphs, as he/she travels along
the nondominated frontier. The keyboard controls in-
clude an accelerator, gears, brakes, and a steering mech-
anism. The search on the nondominated frontier is like
driving a car. The DM can, e. g., increase/decrease the
speed, make a turn and brake at any moment he/she
likes.

To implement those features, Pareto race uses cer-
tain control mechanisms, which are controlled by the
following keys:
� (SPACE) BAR, an ‘accelerator’: Proceed in the cur-

rent direction at constant speed.
� F1, ‘gears (backward)’: Increase speed in the back-

ward direction.
� F2, ‘gears (forward)’: Increase speed in the forward

direction.
� F3, ‘fix’: Use the current value of objective i as the

worst acceptable value.
� F4, ‘relax’: Relax the ‘bound’ determined with key

F3.
� F5, ‘brakes’: Reduce speed.
� F10, ‘exit’.
� num, ‘turn’: Change the direction of motion by in-

creasing the component of the reference direction
corresponding to the goal’s ordinal number i 2 [1,
k] pressed by DM.
An example of the Pareto race screen is given in

Fig. 3. The screen is associated with the numerical ex-
ample described in the next section.

Pareto race does not specify restrictive behavioral
assumptions for a DM. He/she is free to make a search
on the nondominated surface, until he/she believes that
the solution found is his/her most preferred one.

Pareto race is only suitable for solving moderate
size problems. When the size of the problem becomes
large, computing time makes the interactive mode in-
convenient. To solve large scale problems [13] pro-
posed a method based on Pareto race. An (interactive)
free search is performed to find the most preferred di-
rection. Based on the direction, an nondominated curve
can be generated in a batch mode if desired.

Numerical Illustrations

For illustrative purposes, we will consider the following
production planning problem, where a decision maker
(DM) tries to find the ‘best’ product-mix for three prod-
ucts: Product 1, Product 2, and Product 3. The produc-
tion of these products requires the use of one machine
(mach. hours), man-power (man hours), and two crit-
ical materials (crit. mat. 1 and crit. mat. 2). Selling the
products results in profit (profit). Assume that the DM
describes his/her decision problem as follows:

Of course, I would like to make as much profit as
possible. Because it is difficult and quite expen-
sive to obtain critical materials, I would like to
use them as little as possible, but never more than
I have presently in storage (96 units of each).
Only one machine is used to produce the prod-
ucts. It operates without any problems for at least
9 hours. The length of the regular working day
is 10 hours. People are willing to work overtime
which is costly and they are tired the next day.
Therefore, if possible, I would like to avoid it. Fi-
nally, product 3 is very important to a major cus-
tomer, and I cannot totally exclude it from the
production plan.

The traditional single objective programming con-
siders the problem as a profit maximization problem.
The other ‘requirements’ are taken as constraints. The
multiple objective programming takes a ‘softer’ per-
spective. Wemay, for instance, consider the problem as
a four objective problem. The DM would like to make
as much profit as possible, but simultaneously, he/she
would like to use those two critical materials as little as
possible, and in addition to maximize the use of prod-
uct 3. Machine hours and man hours are considered as
constraints, but during the search process the role of

Multiple Objective Programming Support, Table 1
The coefficientmatrix of the production planning problem

Prod. 1 Prod. 2 Prod. 3
mach. hours 1:5 1 1:6
man hours 1 2 1
crit. mat. 1 9 19:5 7:5
crit. mat. 2 7 20 9
profit 4 5 3
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Multiple Objective Programming Support, Table 2
A sample of solutions for the multiple criteria problem

I II III IV
Objectives:
crit. mat. 1 91:46 94:50 93:79 90:00
crit. mat. 2 85:44 88:00 89:15 84:62
profit 30:27 31:00 30:42 29:82
product 3 0:23 0:00 0:50 0:44
Constraints:
mach. hours 9:00 9:00 9:00 9:00
man hours 9:73 10:00 10:00 9:62
Decision Variables:
product 1 3:88 4:00 3:45 3:71
product 2 2:81 3:00 3:03 2:74
product 3 0:23 0:00 0:50 0:44

constraints and objectives may also be changed, if nec-
essary.

We assume that the problem can be modeled as an
MOLP-model. The coefficient matrix of the problem is
given in Table 1.

Thus, we have the following multiple objective lin-
ear programming model:

crit. mat. 1: 9P1 C 19:5P2 C 7:5P3 ! min
crit. mat. 2: 7P1 C 20P2 C 9P3 ! min
profit: 4P1 C 5P2 C 3P3 ! max
product 3: P3 ! max

subject to:

mach. hours: 1:5P1 C P2 C 1:6P3 � 9
man hours: P1 C 2P2 C P3 � 10

The problem has no unique solution. Using the
Pareto race (see Fig. 3) or any other software developed
for multiple objective programming enables a DM to
search nondominated solutions. Which solution he/she
will choose as a final one depends entirely on his/her
own preferences. Actually, all sample solutions except
solution II are somehow consistent with his/her state-
ment above. In solution II, product 3 is excluded from
the production plan.

Conclusion

In this article, we have provided an overview on multi-
ple objective programming support. The emphasis was

how to find the most preferred alternative from among
a set of reasonable (nondominated) alternatives. This
kind of the approach is unique for the multiple criteria
decision making. We have left other features like struc-
turing the problem, finding relevant criteria etc. beyond
this presentation. They are important, but also relevant
in the considerations of any decision support system.
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Multiplicative programming refers to a class of opti-
mization problems containing products of real-valued
functions in the objective and/or in the constraints.
A product of convex functions is called a convex mul-
tiplicative function; similar definitions hold for con-
cave and linear multiplicative functions. Multiplica-
tive functions appear in various areas, including mi-
croeconomics [4], VLSI chip design [10] and modu-
lar design [2]. Especially in multiple objective decision
making, they play important roles [3]. A typical ex-
ample is a bond portfolio optimization studied in [7],
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where a number of performance indices such as aver-
age coupon rate, average terminal yields and average
length of maturity associated with a portfolio (a bundle
of assets) are to be optimized (either minimized ormax-
imized) subject to a number of constraints. One handy
approach to simultaneously optimizing multiple objec-
tives without a common scale is to optimize the geo-
metric mean, or equivalently the product of these ob-
jectives. Thus, we are led to consider a multiplicative
programming problem.

The simplest subclass of multiplicative program-
ming problems is a linearmultiplicative program, which
is a quadratic program of minimizing a product of two
affine functions c>1 x + c10, i = 1, 2, over a polytope D�
Rn:

(
min f (x) D (c>1 xC c10)(c>2 xC c20)
s.t. x 2 D:

(1)

This problem was first studied by K. Swarup [13] many
years ago, but had attracted little attention until the
late 1980s when an intensive research was undertaken
[8,12,14]. In general, the objective function f is indef-
inite; it is quasiconcave on a region where the signs
of c>i x + ci0s are the same, but quasiconvex on a re-
gion where the signs are different [1,8]. Therefore, to
solve (1), we need to solve a quasiconcave minimization
problem:

(
min f (x)
s.t. x 2 D \ S;

(2)

and a quasiconcave maximization problem:
(
max f (x)
s.t. x 2 D \ S;

(3)

where S = {x 2 Rn: c>i x + ci0 � 0, i = 1, 2}. While (2)
belongs to multi-extremal global optimization [6] and
is known to be NP-hard [11] (cf. also � Complexity
Classes in Optimization; � Computational Complex-
ity Theory), problem (3) can be solved using a stan-
dard convex minimization technique because maximiz-
ing f (x) amounts to minimizing a convex function �
log(c>1 x + c10)� log(c>2 x + c20). For the same reason as
(3), certain linear programs with additional linear mul-
tiplicative constraints, e. g. the modular design problem

with xi yj � bij [2], can be handled within the frame-
work of convex programming, if xi, yj � 0.

A generalization of (1) is a convex multiplicative
program, which minimizes a product of several convex
functions f i(x), i = 1, . . . , p, over a compact convex set
D� Rn:

8̂
<̂
ˆ̂:
min f (x) D

pY
iD1

fi(x)

s.t. x 2 D:

(4)

Inmost of the existing solutions to (4), the convex func-
tions f i are assumed to be nonnegative-valued on D.
When f i(x0) = 0 for some i and for some x0 2 D, the
minimum value of (4) is zero; and x0 is a globally opti-
mal solution. We may therefore assume for each i that
f i(x)> 0 for all x 2 D. If f is a concave multiplicative
function instead of a convex one, the problem is equiv-
alent to a concave minimization problem because log
f(x) =

PpD1
i log f i(x) is concave. The convex multi-

plicative program (4) itself can also be transformed into
a concave minimization problem (cf. � Concave Pro-
gramming), though f is not a concave function. For ex-
ample, introducing additional variables yi, i = 1, . . . , p,
we have an equivalent problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
pX

iD1

log yi

s.t. x 2 D
fi(x) � yi ; i D 1; : : : ; p;
y � 0:

(5)

The number p of f is is often very small in comparison
with the dimension n of x; e. g. five or so in applica-
tions to multiple objective optimization. Owing to this
low-rank nonconvexity [9], problem (5) can be solved
far more efficiently than the usual concave minimiza-
tion problem of the same size.

In addition to (1) and (4), there are a number of
studies on problemswith generalized convex multiplica-
tive functions of the forms f (x) =

Qp
iD1 f i(x)+ g(x) and

f (x) =
Pp

iD1 f 2i � 1(x) f 2i(x)+ g(x), where the f is and
g are convex functions. These are all nonconvex min-
imization problems, each of which has an enormous
number of local minima. Nevertheless, algorithms de-
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veloped in the 1990s can locate a globally optimal so-
lution in a reasonable amount of time, by exploiting
special structures of f such as low-rank nonconvexity.
A comprehensive review of the algorithms are given by
H. Konno and T. Kuno in [5].

See also

� Global Optimization in Multiplicative Programming
� Linear Programming
�Multiparametric Linear Programming
� Parametric Linear Programming: Cost Simplex
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Introduction

In this contribution, we consider Multi-Quadratic Pro-
gramming (MQP) problems, where the objective func-
tion is a quadratic function and the feasible region is de-
fined by a finite set of quadratic and linear constraints.
They can be formulated as follows:

min xTQx C cT x
s.t. xTAjx C Bjx � b j ; j D 1; : : : ;m x � 0 ;

(1)

where Aj is an (n � n) matrix corresponding to the
mth quadratic constraint, and Bj is the jth row of the
(m � n) matrix B.
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MQP plays an important role in modeling many
diverse problems. The MQP encompasses many other
optimization problems since it provides a much im-
provedmodel compared to the simpler linear relaxation
of a problem. Indeed, linear mixed 0-1, fractional, bi-
linear, bilevel, generalized linear complementarity, and
many more programming problems are or can easily be
reformulated as special cases of MQP. However, there
are theoretical and practical difficulties in the process of
solving such problems. However, very large linear mod-
els can be solved efficiently; whereas MQP problems are
in general NP-hard and numerically intractable. The
problem of finding a feasible solution is alsoNP-hard.
This is because MQP is a generalization of the lin-
ear complementarity problem [29]. The nonlinear con-
straints in MQP define a feasible region which is in
general neither convex nor connected. Moreover, even
if the feasible region is a polyhedron, optimizing the
quadratic objective function is strongly NP-hard as
the resulting problem is considered to be the disjoint
bilinear programming problem. Therefore, finding a fi-
nite and exact algorithm that solves large MQP prob-
lems is impractical. Even for the convex case (when
Q and Aj are positive semidefinite), there are very few
algorithms for solving MQP problems. However, the
MQP constitutes an important part of mathematical
programming problems, arising in various practical ap-
plications including facility location, production plan-
ning, VLSI chip design, optimal design of water distri-
bution networks, and most problems in chemical engi-
neering design.

The MQP was first introduced in the seminal paper
of Kuhn and Tucker [31]. Later on, the case of MQP
with a single quadratic constraint in the problem was
discussed in [55,56]. The first general approach for solv-
ing MQP problems was proposed in [12], where the
following two Lagrange functions for MQP are consid-
ered:

L1(x; �) D xTQx C cT x

C

mX
jD1

� j(xTAjx � Bjx � b j) ;

L2(x; �; �) D L1(x; �) � �i xi ;

where � and � are the multipliers for the quadratic
and bound constraints respectively. A cutting plane al-
gorithm was applied to solve this problem; that is, the

algorithm solves a sequence of linear master problems
that minimize a piecewise linear function constructed
from the Lagrange functions for constant x, and a pri-
mal problem with either an unconstrained quadratic
function (using L2(x; �; �)) or a quadratic function
over the nonnegative orthant (using L1(x; �)) [21].

Multi-Quadratic Integer Program

In this contribution we consider a multi-quadratic
integer programming (MQIP) problem with bilevel
variables. This problem is a more specific case of
MQP. Recently, multi-quadratic zero-one program-
ming problems were proved equivalent to mixed-
integer programming problems [16]. In that work,
a quadratic zero-one programming was initially proved
equivalent to a mixed integer programming prob-
lem. Then, the result was extended to the case multi-
quadratic programming case.

Throughout this paper, we consider a multi-
quadratic zero-one programming problem, which has
following form:

P1 :: min f (x) D xTAx ; s.t. Bx � b ; xTCx � ˛ ;

x 2 f0; 1gn ; ˛ is a constant :

Notice xTCx � ˛ essentially represent the same the
quadratic constraints as xTAjx C Bjx � b j in problem
(1), due to the binary variables’ property xi xi D xi .

Applications

Bilinear Problem

Each n-dimensional MQP problem can be easily trans-
formed to a 2n-dimensional bilinear problem. A strat-
egy for reducing the necessary dimension of the
resulting bilinear program is also proposed [7,28].
However, on the other hand, bilinear optimization
problems are nothing else but a special instance of
MQP. Pooling problems in petrochemistry, the modu-
lar design problem introduced in [17], in particular the
multiple modular design problem [7,18] or the more
general modularization of product sub-assemblies [46],
and special classes of structured stochastic games [20]
are only some examples of the wide range of applica-
tions of bilinear programming problems. Another large
class of optimization problems are problems with linear
or quadratic functions additionally involving Boolean
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variables (i. e., variables xi 2 R with the constraint
xi 2 f0; 1g). Another widely explored problem is the
problem of packing n 2 N equal circles in a square,
which can be transformed to a MQP problem. One
looks for the maximum radius r of n non-overlapping
circles contained in the unit square. This problem is
equivalent to a MQP problem with a linear objective
function and concave quadratic constraints.

Minimax Problem

A related class of global optimization problems are
minimax location problems [42], which also lead to
quadratic constraints. Production planning and port-
folio optimization are examples where so-called chance
constrained linear programs occur. These are problems,
looking similar to linear programs. However, the ma-
trix describing the linear constraints of such problems
is not deterministic, it is a stochastic one. Under cer-
tain restrictive assumptions it is possible to transform
these stochastic constraints to deterministic quadratic
constraints [42], such that in general a problem of type
MQP is obtained. In [8] it is shown that nonconvex
MQP problems can be used for the examination of spe-
cial instances of nonlinear bilevel programming prob-
lems. Other applications of MQP include the fuel mix-
ture problem encountered in the oil industry [43] and
also placement and layout problems in integrated cir-
cuit design [9,10].

Mixed Integer Problem

As described in the previous section, MQP prob-
lem can be easily linearized to a mixed integer zero-
one problem with the same problem size. In the-
ory and practice, the linearization technique proposed
in [16] has been shown to be superior than other
conventional linearization techniques. In medical ap-
plications, multi-quadratic zero-one problems were
used to model epileptic brains for electrode selection
problems. Basically, multi-quadratic zero-one prob-
lems were solved to identify the location (electrode)
sites of the brain that can detect seizure pre-cursors
(predict seizures) [30,34,36]. In order to operate in
real time, multi-quadratic zero-one problems were lin-
earized to a mixed integer zero-one problem, which is
much faster to solve in practice.

Hence there are many applications of MQP.
Whether the MQP is in practice applicable for solving,
for example, problems resulting from integer program-
ming problems, depends on the numerical efficiency
of the solution method that is used. Up to now only
few methods for solving the considered general case of
MQP were proposed in the literature. Most of them re-
sult frommethods being developed for other more gen-
eral problem classes. In the next section we will discuss
some of the solution techniques.

Solution Techniques

There are many different techniques proposed for solv-
ing this type of problems, most of them are of branch
and bound type or some type of linearization tech-
niques [4,25,26,27,37,38,39,57]. A disadvantage of the
standard linearization technique is the additional vari-
ables for each product xi x j , in which the number
of new variables is O(n2), where n is the number
of initial 0-1 variables [4,25,26,57]. The method pro-
posed in [16] needs only O(kn) additional continu-
ous variables, where k is the number of quadratic con-
straints, and the number of initial 0-1 variables remains
the same. A branch-and-bound algorithm for solving
MQP problems (and other more general problems),
when the objective function is separable and the con-
straint set is linear, was introduced in [19]. The method
evolves solving bounding convex envelope approximat-
ing problems over successive partitions of the feasible
region. This method was later extended to deal with
nonconvex constraints but it generates a number of in-
feasible solutions and does not, in general, converge
in a finite number of iterations [53]. An algorithm for
the solution to linear problems with an additional re-
verse convex constraint was proposed in [15]. The al-
gorithm involves partitioning the feasible region into
subsets contained in cones originating at an infeasi-
ble vertex of the polytope formed by the linear con-
straints while ensuring that an interior point of the
feasible region is contained in each partition. Later
on, an algorithm for the solution to problems with
concave objective functions and separable quadratic
constraint was proposed in [8]. The algorithm uses
piecewise linear approximation for the quadratic con-
straints and solves a MQP problem as a mixed 0-1
linear problem. This algorithm is similar to the solu-
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tion approaches for concave quadratic problems [40]
and for indefinite quadratic problems [35]. During the
last decade, several authors are interested in some spe-
cial cases of MQP. Also, many extensions of MQP
have been discussed in the literature. The problem of
minimizing an indefinite quadratic objective subject
to two-sided indefinite quadratic constraints was dis-
cussed in [54]. Under suitable assumptions, they de-
rived necessary and sufficient optimality conditions and
gave some conditions for the existence of solutions for
this nonconvex program. While several methods have
been suggested for solving MQP problems, numerical
solutions of the general problem are still rarely avail-
able in the literature. By using a double duality argu-
ment, under suitable assumptions, the MQP is proved
to be equivalent to a convex program [6]. In addition,
a problem with a concave quadratic function is proved
to be equivalent to a minimax convex problem, and
thus can be solved in polynomial time via interior-
points methods. The property is no longer true when
Q is an indefinite quadratic function [6].

Linear Forms of MQIP

As aforementioned, MQP problems have a close re-
lationship with mixed integer zero-one problem by
applying linearization schemes, which have been ex-
plored for decades. Although the existing linearization
schemes originally were developed for QP instead of
MQP, they could be easily applied to MQP, since the
quadratic constraints in MQP could be reformulated by
using the same technique in linearization considered
for the quadratic objective. This section will provide
a brief view of major linearization schemes and their
applications on MQP problems.

No matter what specific reformulation of the lin-
earization schemes, the ideas are the same as replacing
the quadratic product xi x j by additional variables. Cur-
rently existing linearization schemes were developed in
four phases.

The prototype of linearization technique arose in
1960s, proposed byWatters [57] and Zangwill [58] (see
also Fortet [22,23]). This approach introduces addi-
tional binary variables wij for replacement of the prod-
ucts xi x j and additional constraints, xi C x j � wi j � 1
and xi C x j � 2wi j;8i; j; for a guarantee of correct re-
placement. Taken this approach, the MQP P1 is trans-

formed as following form:

MIP1 :: min f (x;w) D
X
i

ai i xi

C
X
i

X
j>i

(ai j C aji)wi j; s.t. Bx � b;

X
i

ci i xi C
X
i

X
j>i

(ci j C c ji)wi j � ˛;

xi C x j � wi j � 1;8i; j; xi C x j � 2wi j;

8i; j; x 2 f0; 1gn;wi j 2 f0; 1g ˛ is a constant
and A D (ai j);C D (ci j) :

In this formulation, the quadratic products xi x j in
objective and constraints, xTAx and xTCx, have
been similarly replaced by additional binary vari-
ables wij, and the formulation is consistent with orig-
inal P1 by additional constraints, xi C x j � wi j � 1
and xi C x j � 2wi j;8i; j. Following this seminal work,
Glover and Woolsey [25] provided more concise zero-
one linear programming formulations, where reformu-
lation rules are given under difference conditions to re-
duce the numbers of additional constraints and addi-
tional variables.

In the second phase development of linearization
techniques, researchers recognized the additional bi-
nary variables wij inMIP1 could be relaxed by continu-
ous ones. Such linearization schemes include the mod-
els developed in Glover [24], Glover and Woolsey [26],
and Rhys [45]. One scheme with close relationship of
the linearization prototype was provided in Glover and
Woolsey [26], which introduces additional cut con-
straints xi � wi j and x j � wi j;8i; j enforcing the ad-
ditional continuous variables wij to be binary. However,
this technique doubles the number of additional con-
straints added and thereafter enlarges the size of origi-
nal MQP problems. A straightforward generalization of
xi � xi x j;8 j generated their further improvement of
this technique in [26] that used alternative concise con-
straints (n � i)x j �

P
( j>i) wi j;8i to enforce the ad-

ditional variables to be binary, with somewhat fewer
constraints. Applying such linearization technique, the
MQP P1 has the following representation:

MIP2 :: min f (x;w) D
X
i

ai i xi

C
X
i

X
j>i

(ai j C aji)wi j; s.t. Bx � b;
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X
i

ci i xi C
X
i

X
j>i

(ci j C c ji )wi j � ˛;

xi C x j � wi j � 1;8i; j; (n � i)x j

�
X
( j>i)

wi j;8i; x 2 f0; 1gn;wi j � 0

˛ is a constant and A D (ai j);C D (ci j) :

The main difference between MIP1 and MIP2 is the
continuity of wij and the smaller number of additional
constraints.

Beyond the linearization technique in [26], Glover
first noticed Petersen’s work [41], where the cross prod-
ucts in the model are considered by their upper and
lower bounds. Following this idea, Glover, in [24],
firstly proposed a linearization technique introduc-
ing different continuous variables wi to the pioneer
research. In his linearization scheme, the additional
continuous variables are defined by wi D xi

P
j ai jx j ,

where xi are binary variables in original model and aij
are quadratic coefficients in the objective function. Fur-
ther define the lower and upper bounds of

P
j ai jx j by

A�i D
P

jfai jjai j < 0g and ACi D
P

jfai jjai j > 0g, re-
spectively. Taking the cross products and binary vari-
ables into consideration, the additional inequalities
ACi xi � wi � A�i xi and

P
j ai jx j�A�i (1� xi) � wi �P

j ai jx j � ACi (1� xi) provide the equivalence of orig-
inal QP model. Applied such linearization technique,
the MQP P1 has a different structure as follows:

MIP3 :: min f (w) D
X
i

wi ; s.t. Bx � b;

ACi xi � wi � A�i xi ;8i;
X
j

ai jx j � A�i (1 � xi)

� wi �
X
j

ai jx j � ACi (1 � xi )8i
X
i

vi � ˛;

CCi xi � vi � C�i xi ;8i;
X
j

ci j x j � C�i (1 � xi)

� vi �
X
j

ci j x j � CCi (1 � xi)8i; x 2 f0; 1gn;

˛ is a constant :

Notice, in MIP3, the quadratic constraint xTCx � ˛ is
replaced by a series of inequalities

P
i vi � ˛;C

C
i xi �

vi � C�i xi ;8i;
P

j ci jx j � C�i (1 � xi) � vi �P
j ci jx j � CCi (1 � xi)8i, which follow the definitions

in [24] as: vi D xi
P

j ci jx j , C�i D
P

jfci jjci j < 0g,

and CCi D
P

jfci jjci j > 0g. Compared MIP3 with
MIP1 and MIP2, the most important improvement of
this linearization technique is that the numbers of ad-
ditional variables and constraints reduce from O(n2)
to O(n). Some recent papers [1,2] proposed further-
improved linearization techniques based on the strat-
egy of Glover’s technique, either providing concise for-
mulation or generating tighter upper/lower bounds.

The linearization techniques in the third phase de-
velopment considered the transformation from the di-
rection of tightness instead of problem size. One typical
technique included in this category is the famous Sher-
ali–Adams Reformulation-Linearization Technique (as
RLT in short) [3,4,5,50,51,52] which provides wide-
range applications. The development milestones of
RLT can be found in a recent memorial paper written
by Sherali [47]. Interested readers could follow this pa-
per to find the development details of the linearization
scheme.

Some practical applications of linearization tech-
nique in early 1980s (e. g. [13] considered for solv-
ing notorious quadratic assignment problem) gener-
ated the experiences that the linearization techniques
are practically inefficient although they may have small
problem size. Such experience intrigued some re-
searchers to provide better LP structures with tighter
bounds, which offer better computational efficiencies,
rather than to pursue smaller problem size. The lin-
earization technique shown in [3] provides a struc-
ture having tighter bounds for zero-one QP. The trans-
formation happens not only replacing the cross prod-
ucts xi x j in the model but also reconstructing the con-
straints to obtain the tightness. The example given
in [3] not only includes the additional constraints and
continuous variables, but reconstructs the linear con-
straints by multiplying xj and 1 � x j , respectively. Ap-
plying this linearization technique to MQP, P1 is trans-
formed as follows:

MIP4 :: min f (x;w) D
X
i

ai i xi

C
X
i

X
j>i

(ai j C aji)wi j; s.t.
X
i

Bki xi � ˇk

�
X
i< j

Bkiwi jC
X
i> j

Bkiw jiC (Bk j � ˇk)x j

� 0;
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8 j; k;
X
i

ci i xi C
X
i

X
j>i

(ci j C c ji)wi j � ˛;

xi C x j � wi j � 1;8i; j; xi � wi j; x j � wi j

8i; j; x 2 f0; 1gn;wi j � 0;
where ˛ is a constant and A D (ai j);

C D (ci j);

B D (Bi j); b D (ˇk) :

Notice the linear constraints Bx � b are reconstructed
as by multiplying xj and 1 � x j and then have much
more complicated but tighter representations. The au-
thors also provided the rigorous proof that the con-
struction is tighter than the linearizaiton provided
by Glover [24]. Other than that, this formulation
uses the inequalities xi � wi j and x j � wi j instead of
(n � i)x j �

P
( j>i) wi j which will weaken the model’s

tightness as pointed out by the authors.
Using this idea of multiplying xj and 1 � x j to the

feasible set Adams and Sherali [4] provided a lineariza-
tion strategy to more general MIP with cross products
between continuous and binary variables. Compar-
isons were also provided between the RLT strategy and
the linearization techniques in Watters [57], Zang-
will [58], Petersen [41], Glover and Woolsey [25,26],
and Glover [24]. Along with this direction, Sherali
and Adams [49,50,51] generated a hierarchy of relax-
ations for zero-one polynomial problems. This relax-
ation strategy generalizes the idea in [3] by introduc-
ing a select set of d-degree polynomial terms or factors,
where d is an integer less than the number of binary
variables. Multiplying the feasible set by d-degree poly-
nomial terms, as the authors showed, obtains an equiv-
alent reformulation, for each d D 1; : : : ; n, which can
enforce the binary restrictions on the original x vari-
ables. And these papers also proved that, when d D n,
the resulting linear system characterizes the convex hull
of feasible solutions, and therefore is tighter than any
other linearization techniques.

The most recent development, as the final phase,
of linearization technique is proposed by Chaovalit-
wongse et al. [16]. The authors took the dual vari-
ables into account, and proposed a new linearization
technique based on KKT optimality conditions. Their
approach was originally considered for MQP, and is
not hard to be utilized for zero-one QP problems.
The transformation of MQP P1 using this linearization

strategy can be shown as follows.

MIP5 :: min g(s; x) D eT s �MeTx; s.t.

Ax � y � s CMe D 0; Bx � b;

y � 2M(e � x);Cx � z CM0e � 0;

eTz � M0eTx � ˛; z � 2M0x;

x 2 f0; 1gn; yi ; si ; zi � 0;
where M0 D kCk1 and M D kAk1 :

Notice the additional variables including s; y and z,
which are introduced from the Lagrangian function of
MQP.

Theorem 1 P1 has an optimal solution x0 iff there exist
y0; s0; z0 such that (x0; y0; s0; z0) is an optimal solution
of MIP5.

Proof 1 See [16]. �

To conclude all the linearization schemes shown
herein, we provide a table aggregating the numbers
of additional variables and constraints for these tech-
niques as a brief comparison. Assuming we have k
linear constraints

P
i B ji xi � b j; j D 1; : : : ; k and m

quadratic constraints xTCjx � ˛ j ; j D 1; : : : ;m, in an
MQP. Also assume that the number of binary variables
n� k and n� m. Then the number of additional
variables and constraints of the linearized forms apply-
ing different techniques can be shown in the table as
follows:

Models P1 MIP1 MIP2 MIP3 MIP4 MIP5
Additional
constraints

0 O(n2) O(n2) O(nm) O(n2) O(nm)

Addiontal
variables

0 O(n2) O(n2) O(nm) O(n2) O(nm)

Total
constraints

O(mC k) O(n2) O(n2) O(nm) O(n2) O(nm)

Total
variables

O(n) O(n2) O(n2) O(nm) O(n2) O(nm)

Notice that the problem size is not the only rea-
son of computational efficiencies. The tightness of lin-
earization schemes, as pointed out by [47], may signif-
icantly change the effectiveness of the techniques for
MQP.

In terms of solution methods, there are many stud-
ies in the literature dealing with the MQP.Most of them
apply a technique called semidefinite programming to
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solve the problem. Specifically, these approaches in-
clude special branch-and-bound [9,10,32,44], branch-
and-cut [11], lift-and-project [11], and the state-of-the-
art Interior Point method [14,33]. Some of them have
been applied in the commercial software package, e. g.,
the solvers BARON and CPLEX in GAMS.
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Introduction

Many problems in optimization involve multiple length
and time scales. Perhaps the most commonly stud-
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ied problems in this area are configurational molecu-
lar modeling problems such as phase transitions in wax
formation, the structure of Lennard-Jones (LJ) clusters,
and protein folding. This class of optimization prob-
lems is generally characterized by the presence of many,
many stationary points (i. e., minima, first-order sad-
dles, second-order saddles, etc.) that give the appear-
ance of roughness at the small length scale and quite
different geometric structure at the large length scale.
A good example of the disparity in different length
scales is described in Onuchic et al. [28] who illus-
trate the small-scale geometry of the protein free energy
landscape showing many stationary points (or rough-
ness or frustration) at the small length scale and a fun-
nel shaped geometry for the large length scale. This is
the multi-scale description we adopt in this expose. It is
often acknowledged that finding all stationary points on
these multi-scale objective function surfaces is all but
impossible [8] for many problems of practical interest
and in most cases it is irrelevant. What is of primary
interest from a computational chemistry perspective is
finding the relatively few important stationary points
that describe important physical phenomena – with-
out finding everything else. These important stationary
points include global minima, strong local minima and
important transitions states that describe rate limiting
behavior.

There are many deterministic and/or stochastic
methods that can be used to solve multi-scale global
optimization problems. See, for example, [1,2,3,4,5,6,7,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
29,30,31,32,33,34,35,36]. These methodologies run the
gambit frombranch and boundmethods, to homotopy-
continuation and interval methods, to simulated an-
nealing and genetic algorithms, to terrain and funnel-
ing methods, to specialized techniques.

In this chapter, a deterministic terrain/funneling
approach for multi-scale global optimization is de-
scribed. This approach considers two distinct length
scales and assumes that the geometry of the larger
length scale is funnel shaped. Terrain methods are used
to explore the objective function landscape at small
length scales and gather point-wise and average gradi-
ent and curvature information while funneling meth-
ods are used to make large-scale, monotonically de-
creasing moves at the large length scale and ‘funnel’ it-
erates to the global minimizer.

Formulation

The formulation of the problem under consideration is
straightforward. It is to find the

global min f (z) : subject to z � c(z) (1)

where f D f (z) is a C3 objective function defined on
Rn subject to bounds on variables, c(z), and where z are
the optimization variables. It is assumed that f has two
distinct length scales – a small length scale of consider-
able roughness and a large length scale where f has non-
quadratic behavior. For the discussions that follow, it is
convenient to denote the gradient of f by g D g(z) and
the Hessian matrix of f by h D h(z).

Generally, formulations based on second-order
Taylor series expansion are adequate to describe be-
havior at the small length scale, and methods based on
quadratic approximations of f are well known. How-
ever, since it is assumed that the behavior of the ob-
jective function, f , is non-quadratic at the large length
scale, funneling methods are used to build approxima-
tions to the large-scale geometry of f using the funnel
function given by

F(z) D F0 � � exp[�q(z)] (2)

where q(z) D 1
2 z

TAz C bTz C c, and where � > 0, F0
and c are scalar parameters, b is an n-dimensional vec-
tor, and A is an n x n symmetric matrix. The functional
form of Eq. (2) is interesting because it is non-convex,
has a unique global minimum when A is positive defi-
nite, and contains certain inherent self-scaling charac-
teristics. Figure 1 gives an illustration of the funnel ge-
ometries that can be represented by the functionality of
Eq. (2).

The funnels at the top and the bottom left in Fig. 1
each have unique minimum because A is positive defi-
nite while the one at the bottom right has two minima
since A is indefinite.

Methods

In this sub-section, the global terrain method, a fun-
neling algorithm, and a multi-scale global optimization
method are described.
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Multi-Scale Global Optimization Using Terrain/Funneling Methods, Figure 1
Various Funnel Geometries

A Global Terrain Method for Optimization
at the Small Length Scale

Terrain methods [18,19,20] have described in detail in
a separate chapter in this encyclopedia and are briefly
summarized in this chapter for the purpose of continu-
ity of presentation. Terrain methods are used to locate
sets of stationary and singular points of the objective
function. They do this by following valleys and moving
up and down the landscapes of gTg and f . Key among
the equations used in terrain methods is the characteri-
zation of valleys as solutions, V , to a sequence of general
nonlinearly constrained optimization problems

V D fmin hTgThg such that gTg D L; for all L" �g

(3)

where g and h are defined as before, where L is any given
value (or level) of the least-squares objective function,
and where � is some collection of contours. Terrain
methods require
1) Reliable downhill equation solving
2) Reliable and efficient computation of singular points
3) Efficient uphill movement comprised of predictor-

corrector calculations
4) Reliable and efficient eigenvalue-eigenvector com-

putations

5) Effective bookkeeping
6) A termination criterion to decide when the compu-

tations have finished.
In this chapter, a terrainmethodology is used to find

sets of stationary and singular points and to determine
average gradient and average curvature (or Hessian ma-
trix) information along a given terrain path. Average
gradient and curvature information is calculated from
the mean value theorem using the following equations.

hgi D (1/˛) s g[z(˛)]d˛ (4)

hhi D (1/˛) s h[z(˛)]d˛ (5)

where ˛ is some relevant length of the smooth ter-
rain path connecting any set of stationary and singular
points. It is important for the reader to understand that
it is the set of stationary and singular points as well as
average gradient and Hessian matrix information that
are communicated from the small length scale to the
large length scale. This will be discussed again a little
later in this chapter.
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A Funneling Method for Optimization
at the Large Length Scale

To build iterative global funnel approximations of the
objective function we match function, gradient, and
second derivative information of the true objective
function, f , g and h, with the function, gradient, and
Hessian matrix information, F,G andH respectively, of
the funnel function at various points, where G D G(z)
and H D H(z) are given by

G(z) D � exp[�q(z)][AzC b] (6)

H(z) D � exp[�q(z)][A� (Az C b)(AzC b)T] (7)

Note that if f (z) is used in place of F(z) in Eq. (2), then
it follows that

�(z) D F0 � f (z) D � exp[�q(z)] (8)

where � > 0 is a positive scaling factor that depends on
a single numerical measurement, f (z), and the scalar
parameter, F0. Moreover, replacing G(z) with g(z) and
H(z) with h(z) in Eqs. (6) and (7) respectively give the
equations

[Az C b] D g(z)/� (9)

A D [�hC ggT]/�2 (10)

Equations (8), (9), and (10) show that it is possible to
estimate A and b from values of f (z), g(z), and h(z)
using interpolation formula at two or more iterates.

Interpolating Formulae Let zk be any value of the
unknown optimization variables with corresponding
objective function, gradient and Hessian matrix values
f k, gk and hk respectively. Also let zkC1 be some other
arbitrary but not necessarily nearby or successive iter-
ate with corresponding function, gradient and Hessian
matrix values fkC1, gkC1 and hkC1. Writing Eq. (8) for
zk and zkC1 and then subtracting the latter from the for-
mer, eliminates F0 and gives

�kC1 � �k D fk � fkC1 (11)

Repeating the same algebra using Eq. (10) yields

�2k [�kC1hkC1 C gkC1gTkC1] � �
2
kC1[�k hk C gk gTk ] D 0

(12)

Equations (11) and (12) form a set of [1C n(n C 1)/2]
nonlinear equations in the two unknowns �k and �kC1

when the symmetry of the associated matrices is taken
into account. This together with Eq. (11) gives a to-
tal of [1C n(n C 1)/2] nonlinear equations. For n D 1,
there are two equations and two unknowns. When
n > 1 there are more equations than unknown vari-
ables. However, irrespective of this, two equations for
which �k and �kC1 > 0 can be determined using the
Routh criterion.

Estimating Funnel Parameters Calculated values of
�k and �kC1 can be used to determine the matrixA from
Eq. (10) – using gradient and Hessian matrix informa-
tion either at zk or zkC1. Following this, the parameter b
can be computed by simply rearranging Eq. (9) to give

b D g(z)/� � Az (13)

while F0 can be calculated from F0 D f (z)C � . Like A,
the values of b and F0 can be determined using function
and gradient values at either zk or zkC1.

Finding the Funnel Minimum It is then straightfor-
ward to estimate the unique global minimizer of the
funnel approximation, say y, by simply solving

Ay D �b (14)

Note that Eq. (10) shows that the matrix A is gener-
ated from a rank-one, positive semi-definite correction
to h(z), that the sign definiteness of A can be controlled
by the parameter � , and that � appears to also play the
role of a self-scaling factor.

Communication Between Length Scales One of the
keys to success in any multi-scale global optimization
methodology is the communication between length
scales. In the terrain/funneling approach to multi-scale
global optimization, small-scale calculations communi-
cate average gradient and Hessian matrix information
at two distinct points to the large length scale. The large
length scale optimizations, on the other hand, com-
municate an estimate of the values of the optimization
variables at a converged minimum of the funnel ap-
proximation to the small length scale and identify the
next region on the objective function surface on which
small-scale optimizations should be conducted.
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AMulti-Scale Global Optimization Method

The details of a multi-scale global optimization
methodology based on the terrain and funneling meth-
ods is as follows.
1 Perform two sets of small-scale optimization calcu-

lations using the terrain methodology starting from
two different points on the objective function sur-
face. Calculate average gradient, and average Hes-
sian information along the resulting terrain paths.
Thus at the kth funnel iteration the following infor-
mation is available – zk, f k , gk and hk and zkC1, fkC1,
gkC1 and hkC1 such that fkC1 < f k.

2 Conduct iterative large-scale optimization calcula-
tions with the funneling methodology initialized
using the objective function, average gradient and
average Hessian information from the small-scale
optimization calculations to find a funnel minimum
that also corresponds to a stationary point on the
true objective function surface. To do this,
a) Solve Eqs. (11) and (12) for �k and �kC1.
b) Using �kC1, calculate A and b from Eqs. (10)

and (13) respectively.
c) Determine an estimate of funnel minimum, y,

from Eq. (14).
d) Evaluate f (y), g(y) and h(y).
e) Test f (y) against fkC1. If f (y) < fkC1, then go

to step 2f for the next funnel iteration. Else set
�k D �k/2 and return to step 2a.

f) Set zkC1 D y, fkC1 D f (y), gkC1 D g(y), and
hkC1 D h(y).

g) If jjg(zkC1)jj < ", set y D y�, and go to step 3;
else go to step 2a.

3 Conduct a new set of small-scale terrain calculations
using the funnel minimum from step 2. Calculate
average gradient and average Hessian information
along the resulting terrain path such that new values
of zkC1, fkC1, gkC1 and hkC1 satisfy the condition
fkC1 < fk .

4 Repeat step 2 using the new small-scale information
and zk, f k, gk and hk from step 1.

5 Repeat steps 2 and 3 until there is no further decrease
in the objective function.
Here we describe step 2 of themulti-scale algorithm.

The most effective way to determine �kC1 in step 2a is
to rearrange Eq. (11) for �kC1 in terms of �k and then
substitute the resulting expression into Eq. (12) This

gives a cubic polynomial equation in �k and shows that
there are three possible values of �k and thus three pos-
sible sets of scaling factors (�k , �kC1). Using an equa-
tion solver like Newton’s method, it is easy to find one
solution for �k . The other two values of �k can be deter-
mined by deflation of the cubic equation to a quadratic
equation and by using the quadratic formula. The cor-
rect value of �k is the smallest real valued �k > 0 such
that �kC1 > �k , where �kC1 = f k – fkC1 C �k . Step 2b
is straightforward and step 2c requires the solution of
a system of linear equations. Step 2d evaluates the ac-
tual function, gradient, and Hessian matrix at the fun-
nel iterate y. Step 2e is used to ensure monotonic de-
creasing objective function values by halving �kC1 un-
til f (y) < fkC1 while step 2f replaces the information
associated with zkC1 with that for the funnel iterate y.
Finally, step 2g checks the norm of the gradient of the
objective function and terminates the funnel iterations
once that norm of the gradient falls below the spec-
ified tolerance. Note that any point, y�, that satisfies
the convergence condition in step 2g is simultaneously
a stationary point of f (z) and a minimizer of the funnel
function F(z).

The proposed multi-scale optimization algorithm
is very robust. The reason for this is because if the
funneling algorithm gets trapped at a local minimum,
the methodology returns to the small-scale terrain cal-
culations to get average gradient and average Hessian
information around that local minimum. Replacing
point-wise zero-valued gradient information at a local
minimum with averaged non-zero valued gradient in-
formation forces the optimizer to look for a minimizer
that is deeper in funnel. By forcing movement further
down the funnel in this way, the multi-scale algorithm
will continue to improve the value of the objective func-
tion in a monotonic fashion until it reaches the global
minimum at the bottom of the funnel.

Application

In this sub-section, a simple illustration of the multi-
scale global optimization methodology is given us-
ing the classical thirteen-particle Lennard-Jones (LJ13)
problem. This example was selected because it is the
first in the series of Lennard-Jones clusters that truly
has a single funnel based on the Mackay icosahedron
structure with the global minimum lying at the bot-
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tom of the funnel [8]. The LJ13 cluster has 33 unknown
Cartesian coordinates, 1509 minima, 116,835 first-
order and second-order transition states, and many
higher order transition states [9].

Small Scale Terrain Optimization

Small-scale optimization calculations were performed
using the terrain methodology from two different start-
ing points. From the first starting point, which corre-
sponds to an energy of E = �38.8572, six (6) station-
ary and singular points along a terrain path were calcu-
lated requiring 4832 function and gradient evaluations
and 616.68 s of computer time. Average gradient and
Hessian information was accumulated along the terrain
path defined the path integrals given by Eqs. (4) and (5).
From a second and quite different starting point on the
objective function surface another set of small-scale op-
timization calculations was performed using the terrain
methodology. The energy at this second starting point
was E = �38.4246, and five (5) stationary and singular
points were calculated requiring 1415 function and gra-
dient evaluations and 214.25 s of computer time. Again,
average gradient andHessian information was accumu-
lated along the terrain path using the path integrals us-
ing Eqs. (4) and (5).

Large Scale Funneling Optimization

To build an approximation of the large-scale geometry,
two singular points – one from each of the two sets of
terrain calculations – were selected. Using the function
values at these singular points as well as average gra-
dient and average Hessian information, funnel param-
eters were determined and a first estimate of the fun-
nel minimum was calculated. We then replaced one of
the singular points with this estimate of the funnel min-
imum and repeated the funnel optimization calcula-
tions until jj gjj < " D 1 x 10�4. Figure 2 summarizes
these results, which are shown by the curve of dark or
black diamonds. The resulting structure for LJ13 is also
shown in Fig. 2. Twenty (20) funneling iterations were
required for convergence to the global minimum at
E = �44.3268 on the LJ13 energy surface.

Robustness

Terrain/funnel calculations were performed using
many other arbitrary starting points on the potential

Multi-Scale Global Optimization Using Terrain/Funneling
Methods, Figure 2
Multi-Scale Terrain/Funneling Calculations for the LJ13 Clus-
ter

energy surface for the LJ13 cluster to illustrate the ro-
bustness of this multi-scale optimization method. Re-
sults for some of these calculations are also shown in
Fig. 2 by the two light gray curves with diamonds. Note
that these multi-scale optimization calculations using
the terrain/funneling approach also converge easily and
monotonically to the global minimum in 32 and 27 fun-
nel iterations respectively from these starting points. In
all cases, the funneling portion of the overall multi-scale
algorithm finds the global minimum in less than 0.35 s.

Reliability – Avoiding Traps at Local Minima

To show that the proposed optimization approach does
not get trapped at local minima, terrain/funneling cal-
culations were repeated from a different set of initial
terrain calculations. In particular, small-scale terrain
calculations starting from points on the energy surface
corresponding to energy values of E1 = �39.1597 and
E2 = �38.4246 were performed and average gradient
and average Hessian information gathered along the re-
sulting terrain paths. Using this information, the fun-
neling algorithm converged to a localminimum on the
potential energy surface at E3 = �41.4445 in 18 funnel
iterations. The results of these calculations correspond
to the gray curve that terminates at E = �41.4445 in
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Fig. 2. This local minimum was then used as a start-
ing point to perform a third set of small-scale terrain
calculations and to gather average gradient and aver-
age Hessian information in the valley around the local
minimum. Using this average information around the
local minimum, E3, together with average information
around E1, a second set of iterative funneling calcula-
tions was performed. In this case, the funneling calcu-
lations located the global minimum at E = �44.3268
on the energy surface in 16 funnel iterations. This sec-
ond set of funnel iterations is shown by the red curve in
Fig. 2.

Those readers interested in the numerical details
of the LJ13 illustration are encouraged to contact the
author, who is quite willing to provide all computer-
generated numerical results for this example.
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Many problems in finance, economics and other appli-
cations require that decisions xt 2 Rn

t are made periodi-
cally over time, depending on observations of uncertain
data (�t , � t) in future periods t = 1, . . . , T. Here, it is
distinguished between random data �t 2 
t � RK

t that
influence prices in the objective function and random
data � t 2 � t � RL

t that affect the demand on the right-
hand side of constraints in an optimization problem.

Once an observation (�t, � t) becomes available, the
decision maker has to determine a policy xt that min-
imizes the costs �t(xt � 1, xt , �t) in t plus the expected
costs in the subsequent periods t + 1, . . . , T, subject to

a set of constraints f t(xt� 1, xt) � h(� t). Both the objec-
tive function and the constraints may depend on the se-
quences of observations �t = (�1, . . . , �t), � t = (�1, . . . , � t)
up to t and earlier decisions xt� 1 = (x0, . . . , xt� 1). Ob-
viously, an action xt must be selected after (�t , � t) is ob-
served but before the future outcomes �t+ 1, . . . , �T and
� t+ 1, . . . , �T are known, i. e. the decision is based only
on information available at time t. Hence, one obtains
a sequence of decisions with the property x0, x1(�1, �1),
. . . , xT(�T , �T), called nonanticipativity. This results in
a multistage stochastic program, which may be written
in its dynamic representation as a series of nested two-
stage programs (with �T+ 1(�) := 0, see [4]):

�t(xt�1; �t ; � t) :D min
�
�t(xt�1; xt; �t)

C

Z
�tC1(xt�1; xt; �t ; �tC1; �

t ; �tC1) dPtC1

	
;

t D 0; : : : ; T; (1)

where the expectation is taken w.r.t. the probability
measure Pt+ 1 (�t+ 1, � t+ 1|�t, � t) of the joint distribution
of (�t+ 1, � t+ 1), subject to

ft(xt�1; xt) � h(� t); xt � 0: (2)

In case of discrete distributions, it is well known
that one can immediately transform the stochastic mul-
tistage program given by (1) and (2) into a (large) de-
terministic equivalent problem which can be solved by
standard optimization tools, possibly combined with
decomposition techniques to exploit the special struc-
ture of the problem (see e. g. [1,9,10]). However, if the
distribution is continuous with some density function,
it is in general impossible to do the integration in (1)
exactly. One way to overcome this difficulty is to ap-
proximate the (continuous) probability measure Pt by
a discrete one Qt. In MSP, this is usually done by con-
structing a scenario tree which can be illustrated as fol-
lows:

Together with the associated scenario probabilities,
this tree is defined formally as

A :D
�
(�T ; �T ) : (�t ; �t) 2At(�t�1; � t�1)

8t > 0

	
;

q(�T ; �T ) :D
TY

tD1

qt(�t; �t j�t�1; � t�1):
(3)
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Multistage Stochastic Programming: Barycentric Approxi-
mation, Figure 1

The scenario tree represents an approximation of
the discrete-time process (�t , � t ; t = 1, . . . , T), and
At(�) denotes the set of finitely many outcomes for (�t ,
� t) conditioned on the history (�t� 1, � t� 1). Again, this
results in a sparse large scale program. Naturally, the
question arises how good the accuracy of the associated
(deterministic) optimization problem is, and if the set
of scenarios can be improved w.r.t. the accuracy.

For convex optimization problems where the ran-
dom data are decomposable in two groups, one that de-
termines the cost function and the second one affecting
the demand, it can be shown (see [4] for details) that
the value function (1) is a saddle function for all t = 1,
. . . , T under the following conditions:
i) �t(�) is concave in �t ,
ii) the left-hand sides of the constraints are determin-

istic, and
iii) the distribution function of Pt(�| �t� 1, � t� 1) de-

pends linearly on the past.
Then, (1) is concave in �t and convex in (xt , � t). The
situation where assumptions i)–iii) are fulfilled is called
the entire convex case.

This underlying saddle property of the value func-
tion motivates the application of barycentric approxi-
mationwhich derives two scenario treesAu andAl. The
associated approximate deterministic programs pro-
vide upper and lower bounds to the original problem.
In this sense, barycentric approximation is a general-
ization of the inequalities due to H.P. Edmundson [2]
and A. Madansky [8] (see e. g. � Stochastic Programs
with Recourse: Upper Bounds) and J.L. Jensen [6] that
is applicable to saddle functions of correlated random
data. Here, it is assumed that
t � RK

t and � t � RL
t are

regular simplices whose vertices are denoted by u�t , �t
= 0, . . . , Kt , and v
t ,�t = 0, . . . , Lt . Both
t and� t may
depend on prior observations (�t� 1, � t� 1) although this
is not stressed in the notation for simplicity.

To illustrate the way the discretization is performed,
assume that a two-stage problem is given (the time in-
dex is omitted here) with deterministic objective, i. e.
only the right-hand side coefficients h(�) are random
(see e. g. [7]). For any � 2 � , the barycentric weights
�0(�), . . . , �L(�) w.r.t. the simplex� are given by

�0 C � � � C �L D 1;

�0v0 C � � � C �LvL D �:
(4)

Since �(x, �) is convex in � for all x, '(�) :D �(bx; �)
is a convex function for any fixed first-stage decision
bx. Due to convexity, '(�) is bounded from above for
all � 2 � by a linear function � (�) =

PL

D0 �
(�)

v
. To construct the ‘classical’ Edmundson–Madansky
upper bound (EM) for

R
'(�) dP over the simplex � ,

� is replaced by a discrete random variable with the
same expectation, attaining values v0, . . . , vL. To ob-
tain the corresponding probabilities, � has to be re-
placed by overl ine� D

R
� dP in (4), and the sys-

tem must be solved for �0, . . . , �L. Then,
R
'(�) dP �PL


D0 �
(�)v
, and the weights may be interpreted as
the probabilities of the discrete outcomes.

On the other hand, a lower bound can be found
using Jensen’s inequality: '(�) �

R
'(�) dP, i. e. by

evaluation of the function for the expectation of �, and
the tangent  (�) to '(�) at � is a lower bound to the
original function. Both linear approximations  (�) and
� (�) to the convex value function for a given policy are
shown in Fig. 2.

From a computational viewpoint, the original func-
tion '(�) is replaced by two linear affine functions.
Clearly,  (�) and � (�) can be integrated easily over the
support of �. If there is only randomness in the objec-

Multistage Stochastic Programming: Barycentric Approxi-
mation, Figure 2
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Multistage Stochastic Programming: Barycentric Approxi-
mation, Figure 3

tive with deterministic right-hand sides, a lower and an
upper bound can be constructed by applying the same
procedure to the dual concave (maximization) prob-
lem, deriving an upper bound from Jensen’s inequality
and a lower approximation with the EM-rule.

Barycentric approximation combines these con-
cepts for stochastic objective and right-hand sides [3]
and extends them to the multistage case [4,5]. It derives
distinguished points, so-called generalized barycenters,
where the value function (1) must be supported by two
bilinear functions to minimize the error induced by the
approximation. This is shown in Fig. 3 for Kt = Lt = 1,
where the minorant is supported at �0 and �1 and the
majorant at �0 and �1.

Let �t, 0(�t), . . . , �t, Kt(�t), � t , 0(� t), . . . , � t , Lt(� t)
be the barycentric weights w.r.t. 
t and � t defined
analogously to (4). For both simplices, the generalized
barycenters and their probabilities are given by

�
t D
�
q(�
t )

��1
�

KtX
�tD0

u�t

Z
��t (�t)�
t (�t) dPt ;

q(�
t ) D
Z
�
t (�t) dPt ; �t D 0; : : : ; Lt ;

��t D
�
q(��t )

��1
�

LtX

tD0

v
t

Z
��t (�t)�
t (�t) dPt ;

q(��t ) D
Z
��t (�t) dPt ; �t D 0; : : : ;Kt :

Note that the integrand �
t(�t)���t (� t) is a bilinear
function in (�t , � t) since the barycentric weights �
t
and ��t are linear in their components. Obviously, a bi-
linear function is easy to integrate which was the inten-
tion of the approximation.

The generalized barycenters ��t , �t = 0, . . . , Kt , are
supporting points of the minorant. They are combined
with the vertices u�t and weighted with the correspond-
ing probabilities q(��t ) to obtain discrete outcomes for
the lower approximation of the original measure Pt .
This way, one derives a discrete probability measure Ql

t
with support

suppQl
t D f(u�t ; ��t ) : �t D 0; : : : ;Ktg :

Analogously, �
t , �t = 0, . . . , Lt , are supporting
points for the majorant with assigned probabilities
q(�
t). This induces a discrete measure Qu

t for the up-
per approximation with

suppQu
t D

˚
(�
t ; v
t ) : �t D 0; : : : ; Lt

�
:

Both measures represent the solutions of two corre-
sponding moment problems. The advantageous feature
from a computational viewpoint is that the generalized
barycenters and their probabilities are completely de-
termined by the first moments of �t and � t , and by
the bilinear cross moments E(��t ��
t), �t = 0, . . . , Kt ,
�t = 0, . . . , Lt . Note that the covariance of two ran-
dom variables is derived from the first moments and
the corresponding cross moments. Therefore, the mea-
suresQu

t andQl
t incorporate implicitly a correlation be-

tween �t and � t . However, cross moments (or covari-
ances, respectively) between different elements of �t are
not taken into account (the same holds for the compo-
nents of � t). Hence, the formulae given above are appli-
cable without the assumption of independent random
variables.



2530 M Multistage Stochastic Programming: Barycentric Approximation

Applying the approximation scheme dynamically
over time, one obtains two barycentric scenario trees
Al and Au with their path probabilities of type (3).
The set of outcomes at stage t = 1, . . . , T is given by
Al(�t� 1, � t� 1) = supp Ql

t(�|�t� 1, � t� 1) and Au(�t� 1,
� t� 1) = supp Qu

t (�|�t� 1, � t� 1). Substituting Pt in (1)
by the discrete measures Ql

t and Qu
t yields two value

functions

 t(xt�1; �t ; � t) :D min
�
�t(xt�1; xt ; �t)

C

Z
 tC1(xt�1; xt ; �t ; �tC1; �

t ; �tC1) dQl
tC1

	
;

�t(xt�1; �t ; � t) :D min
�
�t(xt�1; xt; �t)

C

Z
�tC1(xt�1; xt; �t ; �tC1; �

t ; �tC1) dQu
tC1

	

for t = 0, . . . , T with  T+ 1(�) = �T+ 1(�) := 0. According
to [4], these are lower and upper bounds to the original
value function, i. e.

 t(xt�1; �t ; � t) � �t(xt�1; �t ; � t) � �t(xt�1; �t ; � t):

In the entire convex case, the accuracy of the approx-
imation is quantifiable by the difference between the
upper and lower bound. If required, the approxima-
tion can be improved by partitioning the simplices 
t

and � t . In case that the subsimplices become arbitrar-
ily small, the extremal measures converge to Pt , and the
convergence of the upper and lower bounds to the ex-
pectation of the value function is guaranteed (see [5] for
details).
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