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Even though dynamic programming [2] was origi-
nally developed for the solution of problems which
exhibit discrete types of decisions, it has also been
applied to continuous formulations. In this article,
the application of dynamic programming to the solu-
tion of continuous-time optimal control problems is
discussed. By discretizing the problem, applying the
dynamic programming equations, then returning to
the continuous domain, a partial differential equation
results, the Hamilton–Jacobi–Bellman equation (HJB
equation). This equation is often referred to as the con-
tinuous-time equivalent of the dynamic programming

algorithm. In this article, the HJB equation will first be
derived. A simple application will be presented, in ad-
dition to its use in solving the linear quadratic con-
trol problem. Finally, a brief overview of some solu-
tion methods and applications presented in the litera-
ture will be given.

Problem Formulation

The dynamic programming approach will be applied to
a system of the following form:

(
ż(t) D f (z(t); u(t));
z(0) D z0; 0 � t � T;

(1)

where z(t) 2 Rn is the state vector at time t with time
derivative given by ż(t); u(t) 2 U � Rm is the control
vector at time t,U is the set of control constraints, and T
is the terminal time. The function f (z(t), u(t)) is contin-
uously differentiable with respect to z and continuous
with respect to u. The set of admissible control trajecto-
ries are given by the piecewise constant functions, {u(t):
u(t) 2 U, 8t 2 [0, T]}. It is assumed that for any admis-
sible control trajectory, that a state trajectory zu(t) exists
and is unique.

The objective is to determine a control trajectory
and the corresponding state trajectory whichminimizes
a cost function of the form:

h(zu(T))C
Z T

0
g(zu(t); u(t)) dt; (2)

where the functions g, and h are continuously differen-
tiable with respect to both z and u.

Derivation

The derivation of the Hamilton–Jacobi–Bellman equa-
tion is taken from [3]. The time horizon is first dis-
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cretized into N equally spaced intervals with:

ı D
T
N
:

Also, the state and control are represented by:

zk D z(kı); k D 0; : : : ;N;

uk D u(kı); k D 0; : : : ;N:

The continuous-time system is approximated by:

zkC1 D zk C f (zk; uk)ı:

The cost function is rewritten as:

h(zN)C
N�1X
kD0

g(zk ; uk)ı:

The dynamic programming algorithm is now applied
with the following definitions:
� J�(t, z) is the optimal cost-to-go for the continuous

problem;
� bJ�(t; z) is the optimal cost-to-go for the discrete ap-

proximation.
The dynamic programming equations then take the
form:

bJ�(Nı; z) D h(z); (3)

bJ�(kı; z)
D min

u2U

h
g(z; u)ı CbJ�((k C 1)ı; zC f (z; u)ı)

i
;

k D 0; : : : ;N � 1: (4)

It is assumed thatbJ�(t; z) has the necessary differentia-
bility requirements to write the following Taylor series
expansion:

bJ�((k C 1)ı; zC f (z; u)ı)

DbJ�(kı; z)CrtbJ�(kı; z)ı
CrzbJ�>(kı; z) f (z; u)ı C o(ı); (5)

where o(ı) represents second order terms which satisfy
o(ı)/ı! 0 as ı! 0. Substituting (5) into (4) results in:

bJ�(kı; z) D min
u2U

h
g(z; u)ı CbJ�(kı; z)

CrtbJ�(kı; z)ı CrzbJ�>(kı; z) f (z; u)ıC o(ı)
i
:

(6)

Dividing (6) by ı andbJ�(kı; z), and taking the limit as
ı! 0 with the assumption that

lim
k!1
ı!0
kıDt

bJ�(kı; z) D J�(t; z)

results in

0 D min
u2U

�
g(z; u)Crt J�(t; z)

Crx J�>(t; z) f (z; u)
�
; 8t; z; (7)

with the boundary condition

J�(T; z) D h(z):

This partial differential equation is known as the
Hamilton–Jacobi–Bellman equation (HJB equation).

Sufficiency Theorem

This theorem is presented in [3]. SupposeV(t, z) is a so-
lution to the HJB equation, that is, V is continuously
differentiable with respect to z and t and satisfies:

0 D min
u2U

�
g(z; u)CrtV (t; z)

CrxV>(t; z) f (z; u)
�
; 8z; t; (8)

V (T; z) D h(z); 8z: (9)

Suppose also that ��(t, z) attains the minimum in (8)
for all t and z. Let z�(t) be the state trajectory obtained
from the given initial condition z(0) when the control
trajectory u�(t) = ��(t, z�(t)) is used. (That is, z�(0) =
z(0), ż� D f (z�(t); ��(t; z�(t)))); one also assumes that
this differential equation has a unique solution starting
at any pair (t, z) and that the control trajectory is piece-
wise continuous in time.) ThenV is the unique solution
of the HJB equation and is equal to the optimal cost-to-
go function

V (t; z) D J�(t; z); 8z; t:

Furthermore, the control trajectory, u�(t) is optimal for
all t 2 [0, T].

Example

Consider the simple dynamic system:

ż(t) D u(t)
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with the control bounded by u(t) 2 [� 1, 1] and time
over the range t 2 [0, T]. The cost function is given as:

1
2
z(T)2:

Writing the HJB equation for this system gives

0 D min
u2[�1;1]

�
rtV(t; z)CrzV(t; z)u

�
; 8t; z;

with the boundary condition,

V(T; z) D
1
2
z2:

The obvious choice of a control policy is to drive the
state to zero as fast as possible and keep it there. This
corresponds to the policy:

��(t; z) D � sgn(z) D

8̂
<̂
ˆ̂:

1 if z < 0;
0 if z D 0;
�1 if z > 0:

The cost associated with this policy for a given initial
time and state is:

J�(t; z) D
1
2
(max f0; jzj � (T � t)g)2 :

This function satisfies the terminal condition J�(T, z) =
z2/2. Also,

rt J�(t; z) D max f0; jzj � (T � t)g ;

rz J�(t; z) D sgn(z)max f0; jzj � (T � t)g :

Substituting these expressions into the HJB equation
results in

0 D min
u2[�1;1]

�
1C sgn(z)u

�
max f0; jzj � (T � t)g ;

which can be shown to hold for all (t, z). The minimum
is attained for u =� sgn(z), and one therefore concludes
from the sufficiency theorem presented above that J�(t,
z) is indeed the optimal cost-to-go function.

Linear-Quadratic Problem

Consider a general n-dimensional time-invariant linear
system

ż(t) D Az(t)C Bu(t)

with a cost function defined by

z>(T)QTz(T)

C

Z T

0
z>(t)Qz(t)C u>(t)Ru(t) dt;

where the matrices Q and QT are symmetric positive
semidefinite, and the matrix R is symmetric positive
definite. The HJB equation is written as

0 D min
u2Rm

�
z>Qz C u>Ru

CrtV(t; z)CrzV>(t; z)(Az C Bu)
�
;

V (T; z) D z>QTz: (10)

Try a solution of the form:

V (t; z) D z>K(t)z;

where K(t) is a symmetric n × nmatrix. One then has

rzV (t; z) D 2K(t)z;

rtV(t; z) D z>K̇(t)z:

Substituting the above expressions into (10) results in

0 D min
u2Rm

�
z>Qz C u>RuC z>K̇(t)z

C2z>K(t)AzC 2z>K(t)Bu)
�
: (11)

The minimum is obtained when the gradient with re-
spect to u is zero. This results in

2B>K(T)z C 2Ru D 0

or

u D �R�1B>K(t)z:

Substituting this expression into (11), the following re-
sults:

0 D z>
�
K̇(t)C K(t)AC A>K(t)

�K(t)BR�1B>K(t)C Q
�
z:

Therefore, K(t) must satisfy the following matrix differ-
ential equation:

K̇(t) D �K(t)A� A>K(t)

C K(t)BR�1B>K(t) � Q;

with the terminal condition

K(T) D QT :
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This equation is known as the continuous-time Riccati
equation.

Solution Methods and Applications

In the general case of a nonlinear system, the solu-
tion can not be determined analytically and numerical
methods need to be relied on. The numerical solution
of the Hamilton–Jacobi–Bellman equation is not triv-
ial due to its partial differential nature. Additionally the
HJB equation and accompanying numerical methods
have been used to solve a wide variety of problems.

See [4] for many applications in the area of optimal
control, and for an advocate solution by the method of
characteristics. This classical technique for the solution
of partial differential equations can be found in many
textbooks. See [6] for remarks about the application
of the HJB equation to minimum time optimal con-
trol problems. See [1] for an approximate method for
the solution of the time-invariant HJB equation. The
method consists of a reduction to a set on linear par-
tial differential equations and an approximation via the
Galerkin spectral method. It also presents an extensive
review of various approximation approaches and an ap-
plication for the voltage regulation of a power genera-
tor. See [7] for an alternating direction algorithm for the
solution of HJB equations. See [5] for an application for
the optimal path timing of robot manipulators and for
the approximate solution of the resulting HJB equation
using finite difference methods.

The aforementioned references are a subset of the
various solution methods for and applications of the
Hamilton–Jacobi–Bellman equation.
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Variational expressions, also called for historical rea-
sons variational principles, play a significant role in me-
chanics. They have their origin in the study of problems
of analytical mechanics, which have extensively been
studied in previous centuries, a time where scientists
used to workmultidisciplinary. Today, variational prin-
ciples provide the basis for a correct and efficient mod-
eling of a variety of physical phenomena, for instance,
they provide the theoretical basis of the finite element
method [19].

Variational equalities are the commonly met form
of variational expressions. Having in mind problems
which can be obtained from the minimization of
a smooth (i. e., sufficiently differentiable) potential en-
ergy function, one may consider the variation of this
function at a given point. A necessary condition for this
function to attain a critical point is that every varia-
tion of the function in the neighborhood of this point is
equal to zero. Thus, one formulates a variational equal-
ity problem. In mechanics, the differential of a poten-
tial energy function has the physical meaning of (stored
or consumed) work. Let us consider a problem in elas-
tostatics. In a formulation based on displacements, all
variations of the system ’s variables around a sought
point are called virtual displacements. For obvious rea-
sons the variational equality is called in this case prin-
ciple of virtual work: for small virtual displacements
around the equilibrium the virtual work of the system
is equal to zero. Analogously, one arrives at the princi-
ples of complementary virtual work, or at mixed vari-
ational principles (the latter being derived from saddle
point theorems). At this point it should be mentioned
that a variational formulation may also be written for
certain classes of problems which does not possess a po-
tential.

The introduction of inequality constraints in the
studied problem, or the assumption of nondifferen-
tiable (nonsmooth) potential energy functions, lead
to variational inequalities or more complicated varia-
tional problems. Intuitively speaking, either not all vir-
tual variations of the problem variables around a given
point are permitted (the case of inequality constraints,
for instance, unilateral contact constraints), or, a lin-
ear approximation of the potential energy function
is no more sufficient (the case of nondifferentiable
or nonsmooth energy). Convex problems have cer-
tain theoretical and numerical advantages. They are
connected with monotone operators. This is the case,
e. g., of small displacement and deformation elasto-
statics with monotone material laws or interface and
boundary conditions. These problems lead to varia-
tional inequalities and, in some cases, to convex (pos-
sibly nonsmooth) energy minimization problems (con-
vex superpotentials in the sense of J.-J. Moreau [10]).
The techniques of convex analysis and minimization
can be used for their effective solution. Unilateral
contact problems [10,15,17] and problems of elasto-
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plasticity [7,17] have been studied within this frame-
work.

Hemivariational inequalities are connected with
nonconvex and possibly nonsmooth energy functions.
In elastostatics, convexity is usually lost if the effects
of large displacements or deformations are considered.
Moreover, falling branches in material, interface or
boundary laws lead to nonconvex potentials. The latter
laws may be of a phenomenological nature and may be
used for modeling of delamination and strength degra-
dation effects, fracture, etc. Several methods have been
developed for the study of nonconvex problems. The
notion of the generalized gradient in the sense of F.H.
Clarke has been used by P.D. Panagiotopoulos for the
construction of hemivariational inequalities [16,17,18].
Following the example of nonsmooth analysis, he called
this new field nonsmooth mechanics. A short introduc-
tion to this theory and its applications in mechanics
is outlined in this article. The interested reader may
also consult�Nonconvex energy functions: Hemivari-
ational inequalities and the monographs [14,18].

One should mention that the study of hemivari-
ational inequalities provides an interesting field for
mathematicians and engineers alike. For engineers sev-
eral types of hemivariational inequalities have been
used for the study and the efficient numerical treat-
ment of yet unsolved or partially solved problems,
e. g., in nonmonotone semipermeability problems, in
modeling of delamination of simple and multilayered
plates, in the theory of composite structures and adhe-
sive joints, etc. Several of these concrete practical ap-
plications can not be treated by more naive, without
mathematical justification engineering methods. Fur-
thermore, the potential of this research field can be
estimated if one thinks that nonconvex energy func-
tions are connected with instabilities, complex dynam-
ics, fractals and chaos. Certainly, a lot of work remains
to be done in this area.

Abstract Hemivariational Inequality

The derivation of hemivariational inequalities is based
on the mathematical notion of the generalized gradient
of Clarke (denoted here by @). In contrast to the varia-
tional inequalities, the hemivariational inequalities are
not equivalent to minimum problems, but they give rise
to substationarity problems. A hemivariational inequal-

ity problem reads: find u 2 V such as to satisfy the in-
equality

a(u; v � u)C
Z

˝

j0(u; v � u) d˝ � (l ; v � u);

8v 2 V : (1)

In the abstract form used here, let V be a real Hilbert
space, V 0 be its dual space and such that V � L2(˝)
� V 0, with continuous and dense injections. The prob-
lem is defined in ˝ , which is an open bounded subset
of Rn. Furthermore let (�, �) be the L2(˝) product and
the duality pairing, k � k the norm of V and | � |2 the
L2(˝)-norm. Note that (�, �) extends uniquely fromV ×
L2 (˝) to V × V 0. Further, let V � L2(˝) be compact
and V \ L1(˝) be dense in V for the V-norm, and
have a Galerkin base. The bilinear form a(�, �): V × V
! R is symmetric continuous and coercive, i. e. there
exists c > 0 constant such that

a(v; v) � c kvk2 ; 8v 2 V : (2)

Moreover j: R ! R denotes a locally Lipschitz func-
tion which is defined by the following procedure: let ˇ
2 L1loc(R) and consider

ˇ
(�) D esssupj�1��j�
 ˇ(�1) (3)

and

ˇ
(�) D essinfj�1��j�
 ˇ(�1): (4)

They are increasing and decreasing functions of �, re-
spectively and thus the limits for �! 0+ exist. We de-
note them by ˇ(�) and ˇ(�) respectively and we define
the multivalued function

b̌(�) D [ˇ(�); ˇ(�)]: (5)

If ˇ (�˙ 0) exists for every � 2R, then a locally Lipschitz
function j: R! R can be determined (up to an additive
constant) such that b̌(�) D @ j(�). Finally, in relation
(1) j0 (u, v � u) denotes the generalized gradient of the
nonconvex and nonsmooth locally Lipschitz potential j.
By definition one has the following connection with the
generalized gradient, in the sense of Clarke:

j0(u; v) D fmax hw; vi : w 2 @CL j(u)g : (6)

Speaking in terms of mechanics one identifies relation
(1) to be a virtual work expression in inequality form.
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The first term is the internal work, the second term is
the energy contribution of the nonlinear elements mod-
eled by the nonconvex superpotential j and the right-
hand side term represents the loading contribution. De-
tailed formulations of variational problems, up to the
hemivariational inequality (1) for concrete applications
follow in the next section.

Elastostatics with Nonlinear Boundary Conditions

A variational formulation is a statement that a solution
of an operator equation subjected to certain boundary
and/or initial conditions makes an expression involv-
ing variations of the quantities of the problems equal
to zero or nonnegative. Thus one may distinguish be-
tween the bilateral or equality problems and the uni-
lateral or inequality problems. Certain variational prin-
ciples for a deformable body with nonlinear boundary
interaction effects are derived in this section in order to
demonstrate the hemivariational inequalities and their
relation to classical equations and convex variational
inequalities. Let˝ 2 R3 be an open bounded subset oc-
cupied by a deformable body in its undeformed state.
On the assumption of small deformations we can write
the relation:

Z

˝

�i j(u)"i j(v � u) d˝

D

Z

˝

fi(vi � ui ) d˝ C
Z

�

�i jn j(vi � ui ) d�;

8v 2 V ; (7)

for u 2V . HereV denotes the function space of the dis-
placements which will be defined further. Relation (7)
is the expression of the principle of virtual work for the
body when it is considered free, without constraints on
its boundary � . For the derivation of (7) the following
steps are followed. The elastostatic equilibrium equa-
tion is first considered:

�i j; j C fi D 0; (8)

where the f i is the volume force vector. Relation (8)
is multiplied by the virtual variation vi � ui and then
an integration over ˝ is performed. On the assump-
tion of appropriately smooth functions, the Green –

Gauss theorem is applied. One recalls here the strain-
displacement relation (small deformation theory):

"i j D
1
2
(ui; j C uj;i ): (9)

Let a linearly elastic body be assumed, i. e., the consti-
tutive material relation reads:

�i j D Ci jhk"hk ; (10)

where C = { Cijhk }, i, j, h, k = 1, 2, 3, is the elasticity
tensor which satisfies the well-known symmetry and el-
lipticity properties

Ci jhk D Cjihk D Ckhi j; (11)

Ci jhk"i j"hk � c"i j"hk; 8" D f"i jg: (12)

The bilinear form of linear elasticity ˛(�, �) reads in this
case:

˛(u; v) D
Z

˝

Ci jhk"i j(u)"hk(v) d˝: (13)

For further reference one splits the last term in (7) into
the work of the normal and of the tangential tractions
to the boundary. Then (7) may also be written in the
form:

Z

˝

�i j"i j(v � u) d˝

D

Z

˝

fi(vi � ui ) d˝ C
Z

�

SN(vN � uN ) d�

C

Z

�

STi (vTi � uTi ) d�; 8v 2 V : (14)

Single-Valued Boundary Laws
and Variational Equalities

Let us assume first that on � the classical boundary
conditions SN = 0 and uTi = 0, i = 1, 2, 3, hold. Then
(14) with (13) leads to the following variational equal-
ity:

8̂
<
:̂

Find u 2 V0 D fv : v 2 V ; vTi D 0 on � g

s.t. ˛(u; v) D
Z

˝

fivi d˝; 8v 2 V0:
(15)
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Analogously, one treats all linear or nonlinear bound-
ary conditions which can be expressed in an equality
form. Relation (15), under appropriate smoothness as-
sumptions, imply that the governing equations of the
mechanical problem (8) and the assumed boundary
conditions hold in a weak (integral or energetic) form.

Multivalued, Monotone Laws
and Variational Inequalities

Let us assume now that on � the general monotone
multivalued boundary condition

� S 2 @ j(u) (16)

holds. Here j(u) is assumed to be a convex superpoten-
tial and @denotes the subdifferential of convex analysis.
Moreover, all (normal and tangential) contributions of
boundary displacements u and tractions S are included
in (16), which holds as a multidimensional boundary
condition at each point of the boundary � . Relation
(16) is, by definition of the subdifferential, equivalent
to:

j(v)� j(u) � �Si (vi � ui); 8v D fvig 2 R3: (17)

By using (17) and (7) one gets the variational inequality:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

Find u 2 V with j(u) <1;
s.t. ˛(u; v � u)

C

Z

�

( j(v) � j(u)) d�

�

Z

˝

fi(vi � ui ) d˝;

8v 2 V with j(v) <1:

(18)

It is trivial to formulate analogous variational inequal-
ities for more simple one-dimensional laws. This is the
case where independent contact laws and tangential
(e. g., due to friction) mechanisms are assumed on the
boundary � . One should mention in passing that uni-
lateral contact relations are included in this formula-
tion by means of the indicator function in the place of
j(u). The indicator function is defined by IUad (u) = 0 if
u 2 Uad and +1 otherwise, and includes the inequal-
ity constraints that describe the no-penetration require-
ments.

Multivalued, Nonmonotone Laws
and Hemivariational Inequalities

In this case the basic building element is the defini-
tion of boundary conditions and material laws based
on Clarke subdifferential (6). For instance, let on � the
nonmonotone, possibly multivalued boundary condi-
tion

� S 2 @CL j(u) (19)

hold, where j is a locally Lipschitz superpotential func-
tional. Combining (7) with the inequality

j0(u; v � u) � �Si (vi � ui);

8v D fvig 2 R3; (20)

which defines on � the condition (19), one gets the fol-
lowing hemivariational inequality:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

Find u 2 V
s.t. ˛(u; v � u)C

C

Z

�

j0(u; v � u) d�

�

Z

˝

fi(vi � ui ) d˝;

8v 2 V :

(21)

If instead of (19) one assumes on � that:

� SN 2 @CL jN (uN);�ST 2 @CL jT (uT); (22)

then one gets analogously the hemivariational inequal-
ity:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

Find u 2 V
s.t. ˛(u; v � u)

C

Z

�

j0N (uN ; vN � uN ) d�

C

Z

�

j0T (uT ; vT � uT ) d�

�

Z

˝

fi(vi � ui ) d˝;

8v 2 V :

(23)
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The last type of variational expressions involving j0(�, �)
or j0N (�, �) and j0T (�, �) have been called hemivariational
inequalities by Panagiotopoulos, who introduced and
studied them in mechanics [14,16,17,18]. Note that in
the more general case in which j or jN and jT are not
locally Lipschitz j0(�, �) in (21) and j0N (�, �), j

0
T(�, �) in

(23) are replaced by j"(�, �) and j"N (�, �), j
"
T (�, �). More-

over a combination of monotone subdifferential laws
(cf. (6)) and nonmonotone laws (cf. (19)) for differ-
ent (nonoverlapping) parts of the boundary � is possi-
ble. One then gets variational-hemivariational inequal-
ity problems.

The solution of variational problems, like the vari-
ational equalities, or the hemivariational inequalities
derived previously, satisfies the operator equations of
the problem, e. g. the equation of equilibrium, and the
boundary conditions of the problem in a weak sense.
This means, roughly speaking, that these relations are
satisfied in an integral form, on the body or the bound-
ary of the structure respectively. Analogous considera-
tions are familiar within the weak formulations used in
the finite element method.

Inequality or Nonsmooth Mechanics

A boundary value problem is called bilateral (resp. uni-
lateral) if it leads to variational equality (resp. varia-
tional, or hemivariational inequality) formulations. The
unilateral problems are called inequality problems too.
Inequality problems in mechanics usually character-
ize structures with variable mechanical behavior, i. e.
where the material or boundary law depends on the
direction of the stress or boundary traction variation.
Due to their connection with nonsmooth energy func-
tions, all inequality problems belong to the area called
by Panagiotopoulos nonsmooth mechanics [11,12].

Discretized Hemivariational Inequalities
for Nonlinear Material Laws

In order to make the subject more accessible to engi-
neers a discretized hemivariational inequality is formu-
lated in this section. A finite element discretization is
assumed. All relations are written in an elementary ma-
trix analysis form. An elastic structure with both clas-
sical, linearly elastic and degrading elements is consid-
ered.

The stress equilibrium equations read:

Gs D
�
G Gn

� � s
sn

�
D p (24)

where G is the equilibrium matrix of the discretized
structure which takes into account the stress contribu-
tion of the linear s and nonlinear sn elements and p is
the loading vector.

The strain-displacement compatibility equations
take the form:

e D
�
e
en

�
D G>u D

�
G>

G>n

�
u; (25)

where e, u are the deformation and displacement vec-
tors respectively.

The linear material constitutive law for the structure
reads:

s D K0(e � e0); (26)

where K0 is the natural and stiffness flexibility matrix
and e0 is the initial deformation vector.

The nonlinear material law is considered in the
form:

sn 2 @CL�n(en): (27)

Here �n(�), is a general nonconvex superpotential and
summation over all nonlinear elements gives the total
strain energy contribution of them as:

˚n(en) D
qX

iD1

�(i)
n (en): (28)

Finally classical support boundary conditions complete
the description of the problem.

The discretized form of the virtual work equation
reads:

s>(e� � e)C s>n (e
�
n � en) D p>(u� � u);

8 e�; u�; e�n : (29)

Entering the elasticity law (26) into the virtual work
equation (29), and using (25) we get:

u>GK>0 G
>(u� � u)� (pC GK0e0)>(u� � u)

C s>n (e
�
n � en) D 0;8u� 2 Vad; (30)
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where K = G>K>0 G denotes the stiffness matrix of the
structure, p D pCGK0e0 denotes the nodal equivalent
loading vector and Vad includes all support boundary
conditions of the structure.

Further one considers the nonlinear elements (27)
in the inequality form:

s>n (e
�
n � en) � ˚ o

n (e
�
n � en); 8e�n ; (31)

where ˚ o
n(e�n � en) is the directional derivative of the

potential ˚n. Thus the following discretized hemivari-
ational inequality is obtained:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Find kinematically admissible
displacements u 2 Vad

s.t. u>K(u� � u) � p>(u� � u)
C˚ o

n (u�n � un) � 0;
8u� 2 Vad:

(32)

Equivalently a substationarity problem for the total po-
tential energy can be written:

(
Find u 2 Vad

s.t. ˘ (u) D statv2Vad f˘ (v)g :
(33)

Here the potential energy reads ˘ (v) D 1
2v
>Kv �

p>v C ˚n(v), where the first two terms (quadratic po-
tential) are well-known in the structural analysis com-
munity.

Other Applications inMechanics

Hemivariational inequalities have been used for the
modeling and solution of delamination effects in com-
posite and multilayered plates, in composite structures,
for nonmonotone friction and skin effects and for non-
linear mechanics applications (for instance, in the anal-
ysis of semi-rigid joints in steel structures). Details
can be found in [9,11,12,17,18] and in the citations
given there. Another area of applications are noncon-
vex problems arising in elastoplasticity (cf. [4,5,6]).
Some nonconvex problems in elastoplasticity have been
treated by hemivariational inequality techniques in
[17,18]. Mathematical results which are useful for the
study of hemivariational inequalities can also be found
in [2,3,13,14].

Numerical Algorithms

A number of algorithms based on nonsmooth and non-
convex optimization concepts, on engineering meth-
ods or heuristics and on combination of these two ap-
proaches have been tested till now for the numerical so-
lution of hemivariational inequality problems. Both fi-
nite elements and boundary elements have been used,
the latter for boundary only nonlinear problems; see
� Nonconvex energy functions: Hemivariational in-
equalities and [1,8,9,17].
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The theory of hemivariational inequalities has been cre-
ated by P.D. Panagiotopoulos et al. (see [3,5,6,7]) for
studying nonconvex and nonsmooth energy functions
under nonmonotone multivalued laws. In this setting
many relevant models lead to nonsmooth eigenvalue
problems. A typical example is provided by the analy-
sis of hysteresis phenomena. To illustrate it we present
here the loading and unloading problems with hystere-
sismodes.

Consider a plane linear elastic body ˝ with the
boundary � whose mechanical behavior is described by
the virtual displacement variable u and the scalar pa-
rameter � which determines the magnitude of the ex-
ternal loading on the system. The variable umust satisfy
certain boundary or support conditions. For the sake of
simplicity we assume that u = 0 on � , so the space of
kinematically admissible displacements u is the Sobolev
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space H1
0(˝), that is the closure of C10 (˝) with respect

to the L2-norm of the gradient. Let us suppose that there
exist a fundamental (pre-bifurcation) solution � 7�!
u0(�) and another solution � 7�! u(�) = u0(�) + z(�)
that coincide for � < �0. Then one has lim	!	0 z(�) = 0
and the hysteresis bifurcation mode has the expression

u1(�0) :D lim
	!	0

kz(�)k�1 z(�): (1)

Using the principle of virtual works together with phys-
ically realistic assumptions on the data � and S (see e. g.
[7]), we obtain the relation

a(u1(�0); v)C hS(u1(�0)); vi

� �0

Z

˝

u1(�0)vdx D 0; 8v 2 H1
0(˝): (2)

It is justified to accept that a generalized nonmonotone
reaction-displacement (� S, u) holds in˝ expressed by
the next law

Z

˝

jo(u1(�0); v) dx � hS(u1(�0)); vi ;

8v 2 H1
0(˝); (3)

where j: R ! R stands for a locally Lipschitz function
with the generalized gradient @j and the generalized di-
rectional derivative

jo(x; y) D max fhz; yi : z 2 @ j(x)g

(see [2]). Relations (2) and (3) yield the following eigen-
value problem in hemivariational inequality form: Find
(u = u(�), �) 2 H1

0(˝) × R such that

a(u; v)C
Z

˝

jo(u; v) dx � �
Z

˝

uv dx;

8v 2 H1
0(˝): (4)

Additional information concerning problems of type
(4) can be found in [3,5,6,7].

Relation (4), as well as other models, motivates the
study of abstract eigenvalue problems for hemivaria-
tional inequalities. The specific case of Problem (4) can
be reformulated as follows: given a Banach space V em-
bedded in L2(˝), i. e. the space of square-integrable
functions on ˝ � RN , a continuous symmetric bilin-
ear form a: V × V! R and a locally Lipschitz function

j: R! R with an appropriate growth condition for its
generalized gradient, find u 2 V and � 2 R such that

a(u; v)C
Z

˝

jo(u; v) dx � �
Z

˝

uvdx;

8v 2 V : (5)

Note that this last mathematical model can also be used
to formulate various other problems in Mechanics like
unilateral bending problems in elasticity.

A general approach for studying the abstract eigen-
value problem (5) is the nonsmooth critical point the-
ory as developed by K.-C. Chang [1]. In that paper the
minimax principles in the critical point theory are ex-
tended from the smooth functionals (see [8]) to the case
of locally Lipschitz functionals. In this respect we asso-
ciate to Problem (5), for each �, the locally Lipschitz
functional I	: V! R,

I	(u) D
1
2
a(u; u)C

Z

˝

j(u) dx �
�

2

Z

˝

u2 dx;

8u 2 V : (6)

Note that a critical point u of I	, i. e. 0 2 @I	 (u), is a so-
lution of (5) because

@I	(u) � a(u; �)� �(u; �)L2

C @

Z

˝

j(u) dx � a(u; �)� �(u; �)L2 C
Z

˝

@ j(u) dx

(see [2]). Thus, to solve (5), it suffices to establish the
existence of nontrivial critical points of the functional
I	 introduced in (6). To this end we proceed along the
lines in [4] by arguing in an abstract framework.

Given a Banach space V and a bounded domain ˝
in Rm,m� 1, let T: V! Ls(˝ ;RN) be a compact linear
operator, where Ls(˝ ;RN) stands for the Banach space
of all Lebesgue measurable functions f : ˝ ! RN for
which |f |s is integrable with 1 < s <1. Let F: V! R be
a locally Lipschitz function and let G: ˝ ×RN ! R be
a (Carathéodory) function such that G(x, y) is measur-
able in x 2 ˝ , locally Lipschitz in y 2 RN and G(x, 0) =
F(0) = 0, x 2˝ . The hypotheses below are imposed
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H1) |w| � c(1 + | y | s� 1), 8w 2 @yG(x, y), x 2 ˝ , y 2
RN , with a constant c > 0;

H2) i) F(v) � r hz, vV i � ˛ k v�V � ˛0, 8v 2 V , z 2
@F(v);

ii) G(x, y) � r hw, y i � � b |y |�0 � b0, for a.e.
x 2 ˝ , y 2 RN , w 2 @yG(x, y), with positive
constants r, ˛, ˛0, b, b0, � , �0, where 1 � �0

< min { � , r�1, s };
H3) any bounded sequence { vn } � V for which there

is zn 2 @F(vn) converging inV� contains a conver-
gent subsequence in V ;

H4) i) lim infv! 0F(v kvk
�p
V > 0;

ii)

lim inf
v!0

F(v) kvk�pV

C j˝j
(s�p)/p

kTkp lim inf
y!0

G(x; y) jyj�p

> 0

uniformly with respect to x, 1 � p < s;
H5)

lim inf
t!C1

F(tv0)t�1/r

< � lim inf
t!C1

t�1/r
Z

˝

G(x; tTv0) dx

for some v0 2 V .
The following statement is our main result in studying
the abstract eigenvalue problem (5).

Theorem 1 Assume that the hypotheses H1)–H5) hold.
Then there exists a nontrivial critical point u 2 V of I: V
! R defined by

I(v) D F(v)C
Z

˝

G(x; (Tv)(x)) dx ; v 2 V :

Moreover, there exists z 2 @F(u) and w 2 Ls(s� 1)(˝ ;RN)
such that

w(x) 2 @yG(x; (Tu)(x)) a.e. x 2 ˝;

hz; viV C
Z

˝

hw(x); (Tv)(x)i dx D 0 ; v 2 V :

Conversely, if u 2 V verifies the relations above, corre-
sponding to some z and w, and the function G(x, �) is
regular at (Tu) (x) (in the sense of F.H. Clarke [2]) for
each x 2˝ , then u is a critical point of I.

The foregoing locally Lipschitz functional I satisfies the
Palais–Smale condition in the sense of Chang [1]. In-
deed, let (vn) be a sequence in V with I(vn)�M and for
which there exists a sequence Jn 2 @I(vn) with Jn! 0 in
V�. Then from H2) and taking into account that

Jn D zn C T�wn ;

zn 2 @F(vn);

wn(x) 2 @yG(x; (Tvn)(x)) a.e. x 2 ˝;

we infer that

M C r kvnkV � F(vn) � r hzn ; vniV

C

Z

˝

(G(x; (Tvn)(x))� r hwn(x); (Tvn)(x)i) dx

� ˛ kvnk�V C C1 kvnk�0V C C2;

with real constants C1, C2, provided that n is large
enough. It is clear that the estimate above implies that
the sequence (vn) is bounded in V . Then a standard ar-
gument based on the assumption H3) allows to con-
clude that (vn) possesses a strongly convergent subse-
quence. Namely, the boundedness of (vn) implies that
(Tvn) is bounded in Ls(˝ ;RN). Thus (wn) is bounded in
Ls/s� 1)(˝ ;RN) due essentially to the assumption H1).
Since T� is a compact operator and Jn ! 0 we de-
rive that (zn) has a convergent subsequence in V�. This
fact combined with the boundedness of (vn) allows to
use the hypothesis H3). The claim that the locally Lips-
chitz functional I verifies the Palais –Smale condition is
proved.

Assumption H4) insures the existence of some con-
stants ı > 0, A > 0 and B > 0, with

A� B j˝j(s�p)/p kTkp > 0;

such that

F(v) � AkvkpV ; kvkV � ı; (7)

and

G(x; y) � �B jyjp ; 8x 2 ˝; jyj � ı:

Combining the inequality above with H1) one obtains
that

Z

˝

G(x; (Tv)(x)) dx � �(A� �) kvkpV ;

kvkV � �; (8)
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for some � > 0 and 0 < � � ı. Indeed, assumption H1)
and Lebourg ’s mean value theorem imply that G fulfills
the following growth condition

jG(x; y)j � a1 C a2 jyjs ;8x 2 ˝; y 2 RN ;

with constants a1, a2 � 0. The two estimates above for
G(x, y) show that

G(x; y) � �B jyjp � (a1ı�s C a2) jyjs ;

8x 2 ˝; y 2 RN :

Then one deduces from the continuity of T that one has
Z

˝

G(x; (Tv)(x))dx

�
�
�B j˝j(s�p)/p kTkp

� (a1ı�s C a2) kTks kvk
s�p
V

�
kvkpV ;

8v 2 V :

Since s > p we see that the numbers � > 0 and � > 0 can
be chosen so small that relation (8) be verified.

By (7) and (8) we arrive at the conclusion that there
exist positive numbers �, � such that

I(v) � �; kvkV D �: (9)

The formula

@t(t�1/rG(x; t y))

D
1
r
t�1�1/r[r

˝
@yG(x; t y); t y

˛
� G(x; t y)];

the absolute continuity property and H2ii) show that

t�1/rG(x; t y) � G(x; y)

D

tZ

1

@� (��1/r (G(x; � y)d� � C jyj�0 C C0

for a.e. x 2 ˝ , y 2 RN , t > 1, where C, C0 are positive
constants. Then one obtains

I(t�v0) � (t�)1/r

�

2
4F(t�v0)(t�)�1/r C C kv0k�0V �

�0�1/r

CC0�
�1/r C ��1/r

Z

˝

G(x; �(Tv0)(x)) dx

3
5

for all t > 1, � > 1, with new positive constants C, C0. In
view of H5) and since �0 < 1/r, we can find � sufficiently
large such that

C kv0k�0V �
�0�1/r C C0�

�1/r

C ��1/r
Z

˝

G(x; �(Tv0)(x)) dx

< � lim inf
�!C1

F(�v0)��1/r :

With such fixed number � , we see that there exists ar-
bitrarily large t satisfying

F(t�v0)(t�)�1/r C C kv0k�0V �
�0�1/r C C0�

�1/r

C ��1/r
Z

˝

G(x; �(Tv0)(x)) dx < 0:

We deduce that

I(tnv0) � 0 (10)

for a subsequence tn!1. The properties (9) and (10)
permit to apply themountain pass theorem in the nons-
mooth version of Chang [1]. This yields the desired crit-
ical point u of I. The other assertions of the first part of
Theorem are direct consequences of the last statement.

The converse part of Theorem follows from the next
formula

@

Z

˝

G(x; u(x)) dx D
Z

˝

@yG(x; u(x)) dx;

8u 2 Ls(˝ ;RN);

which is valid under the growth condition in H1) and
the regularity assumption for G (see [2]). The proof of
Theorem is thus complete.

In the case of problem (4) we choose V = H1
0(˝),

the compact linear operator T: H1
0(˝)! Ls(˝) equal

to the embedding H1
0(˝)� Ls(˝) with 2 < s < 2m(m �

2)�1 ifm� 3,

F(v) D
1
2

Z

˝

(jrvj2 � �v2) dx; 8v 2 H1
0(˝);

where for simplicity we take a(u, v) =
R
˝ r u � r v dx,

and G(x, t) = j(t). A significant possible choice for j is
the following one

j(t) D �
jtjs

s
C

tZ

0

ˇ(�) d�; t 2 R; (11)

where ˇ 2 L1l oc (R) verifies t ˇ(t) � 0 for t near 0, | ˇ(t)
| � c(1 + |t |� ), t 2 R, with constants c > 0, 0 � � < 1.
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Corollary 2 Let j: R! R be given by (11). If �1 denotes
the first eigenvalue of � � on H1

0(˝), then for every �
< �1 the problem (5) with a as above, has a nontrivial
eigenfunction u 2 H1

0(˝) which solves in addition the
nonsmooth Dirichlet problem containing both superlin-
ear and sublinear terms

	uC �uC jujs�2 u 2 [ˇ(u(x)); ˇ(u(x))]

a.e. x 2 ˝; u D 0 on @˝;

where the notations in [1] are used.

The argument consists in verifying the assumptions
H1)–H5) for the functional I = I	, for � < �1, with I	
described in (6). To this end it is sufficient to take r 2
(1/s, 1/2), p = � = 2, �0 = � + 1 and v0 2 H1

0(˝) { 0 }.
Applying Theorem one finds the stated result.

Other related results and applications for eigenvalue
problems in the form of hemivariational inequalities
are given in [3,4,5,6,7] and the references therein.
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Let V = H1(˝ ;RN), N � 1, be a vector valued Sobolev
space of functions square integrable together with their
first partial distributional derivatives in ˝ , ˝ being
a bounded domain in Rm, m > 2, with sufficiently
smooth boundary � . Assume that V is compactly
imbedded into Lp(˝ ;RN) (1 < p < 2m/m � 2), [12]).
We write k � kV and k � kLp(˝ ;RN ) for the norms in V
and Lp(˝ ;RN), respectively. For the pairing over V� ×
V the symbol h �, � iV will be used, V� being the dual of
V .

Let A: V ! V� be a bounded, pseudomonotone
operator. This means that A maps bounded sets into
bounded sets and that the following conditions hold
[3,5]:
i) The effective domain of A coincides with the whole

V ;
ii) If un ! u weakly in V and lim supn!1 h Aun, un
� uV i � 0, then lim infn!1 hAun, un � vV i � h
Au, u � v iV for any v 2 V .
Note that i) and ii) imply that A is demicontinuous,
i. e.

iii) If un! u strongly in V , then Aun! Au weakly in
V�.

Moreover, we assume that V is endowed with a direct
sum decomposition V D bV C V0, where V0 is a finite-
dimensional linear subspace, with respect to which A is
semicoercive, i. e. 8u 2 V there existbu 2 bV and � 2 V0

such that u DbuC � and

hAu; uiV � c(


bu

V )



bu

V ; (1)

where c: R+ ! R stands for a coercivity function with
c(r) ! 1 as r ! 1. Further, let j: RN ! R be a lo-
cally Lipschitz function fulfilling the unilateral growth
conditions ([16,21]):

j0(�; �� �) � ˛(r)(1C j�j� );

8�; � 2 RN ; j�j � r; r � 0; (2)

and

j0(�;��) � k j�j ; 8� 2 RN ; (3)

where 1 � � < p, k is a nonnegative constant and ˛ :R+

! R+ is assumed to be a nondecreasing function from
R+ into R+. Here, j0(�;�) stands for the directional Clarke
derivative

j0(�; �) D lim sup
h!0
	!0C

j(� C hC ��) � j(� C h)
�

; (4)

by means of which the Clarke generalized gradient of j
is defined by [6]

@ j(�) :D
˚
� 2 RN : j0(�; �) � � � �; 8� 2 RN� ;

�; � 2 RN :

Remark 1 The unilateral growth condition (2) is the
generalization of the well known sign condition used
for the study of nonlinear partial differential equations
in the case of scalar-valued function spaces (cf. [27,28]).

Consider the problem of finding u 2V such as to satisfy
the hemivariational inequality

hAu � g; v � uiV C
Z

˝

j0(u; v � u) d˝ � 0;

8v 2 V : (5)

It will be assumed that g 2 V� fulfills the compatibility
condition

hg; �iV <
Z

˝

j1(�) d˝; 8� 2 V0 n f0g; (6)
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where j1: RN ! R [ { +1 } stands for the recession
functional given by (cf. [2,4,10])

j1(�) D lim inf
�!�

t!C1

[� j0(t�;��)]; � 2 RN : (7)

Because of (1), the problem to be considered here
will be referred to as a semicoercive hemivariational in-
equality.

The notion of hemivariational inequality has been
first introduced by P.D. Panagiotopoulos in [22,23] for
the description of important problems in physics and
engineering, where nonmonotone, multivalued bound-
ary or interface conditions occur, or where some non-
monotone, multivalued relations between stress and
strain, or reaction and displacement have to be taken
into account. The theory of hemivariational inequali-
ties (as the generalization of variational inequalities, cf.
[7]) has been proved to be very useful in understand-
ing of many problems of mechanics involving non-
convex, nonsmooth energy functionals. For the gen-
eral study of hemivariational inequalities and their ap-
plications, see [13,14,15,17,18,19,20,21,24,26] and the
references quoted there. Some results in the area of
static, semicoercive inequality problems can be found
in [9,10,25].

To prove the existence of solutions to (5), the
Galerkin method combined with the pseudomonotone
regularization of the nonlinearities will be applied.

Let us start with the following preliminary results.
The regularization ej0R(�; �), R > 0, of the Clarke direc-

tional derivative j0(�;�) will be defined as follows: for any
�, � 2 RN , set

ej0R(�; �) D
8<
:
j0(�; �) if j�j � R;

j0
�
R �
j�j
; �
�

if j�j > R:
(8)

Lemma 2 Suppose that (2) and (3) are fulfilled. Then
for R > 0,

ej0R(�; � � �) � ę(r)(1C j�j� ); 8� 2 RN ;

8� 2 RN ; j�j � r; r � 0: (9)

ej0R(�;��) � k j�j ; 8� 2 RN ; (10)

where ę: RC ! RC is a nondecreasing function inde-
pendent of R.

Proof To establish (9) and (10) it suffices to consider
the case | � | � R and to invoke the estimates

ej0R(�; � � �) D j0
�
R
�

j�j
; � � �

�

� j0
�
R
�

j�j
; �� R

�

j�j

�

C
j�j � R

R
j0
�
R
�

j�j
;�R

�

j�j

�

� ˛(j�j)(1C R� )C
j�j � R

R
kR

� ˛(r)(1C j�j� )C k j�j ;

8�; � 2 RN ; j�j � r; r � 0;

and

ej0R(�;��) D j0
�
R
�

j�j
;��

�

�
j�j

R
j0
�
R
�

j�j
;�R

�

j�j

�
�
j�j

R
kR D k j�j ;

respectively. The proof is complete.

For any R > 0, the following regularization of the primal
problem can be formulated:

(PR)Find (uR ; �R) 2 V � Lq(˝ ;RN);

1/p +1/q = 1, such that

hAuR � g; v � uRiV

C

Z

˝

�R � (v � uR) d˝ D 0; 8v 2 V ; (11)

�R 2 �R(uR); (12)

where

�R(uR) :D

8<
: 2 Lq(˝ ;RN) :

Z

˝

 � v d˝

�

Z

˝

ej0R(uR ; v)d˝; 8 v 2 Lp(˝ ;RN)

9=
; :

In order to show that (PR) has solutions, the follow-
ing auxiliary result is to be applied.
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Lemma 3 Suppose that (1)-(3) and (6) hold. Then there
exists R0 > 0 such that for any R > R0 the set of all u 2 V
with the property that

hAu � g; uiV �
Z

˝

ej0R(u;�u) d˝ � 0 (13)

is bounded in V, i. e. there existsM > 0 (possibly depend-
ing on R > R0), such that (13) implies

kukV �M: (14)

Proof Suppose on the contrary that this claim is not
true, i. e. there exists a sequence { un }1nD1 � V with the
property that

hAun � g; uniV �

Z

˝

ej0R(un ;�un) d˝ � 0; (15)

where k un kV!1 as n!1. By the hypothesis, each
element un can be represented as

un Dbun C en�n ; (16)

where bun 2 bV , en � 0, � n 2 V0, k �n kV = 1, and
hAun ; uniV � c(



bun



V )


bun




V ). Taking into account

(3) it follows that

0 � hAun � g; uniV �

Z

˝

ej0R(un ;�un) d˝

� c(


bun




V )


bun




V � kgkV�



bun



V

� en hg; �niV � k
Z

˝

junj d˝

� c(


bun




V )


bun




V � kgkV� (



bun



V C en)

� k1


bun




V � enk1 k�nkV ; (17)

where k1 = const. The obtained estimates imply that {
en } is unbounded. Indeed, if it would not be so, then
due to the behavior of c(�) at infinity, fbung had to be
bounded. In such a case the contradiction with k un kV
! 1 as n ! 1 results. Therefore one can suppose
without loss of generality that en ! + 1 as n ! 1.
The next claim is that

1
en
bun ! 0 strongly in V : (18)

Indeed, if f


bun




V g is bounded, then (18) follows im-

mediately. If


bun




V ! 1 then c(



bun



V ) ! C1.

From (17) one has

k1 C kgkV� �
�
c(


bun




V ) � kgkV� � k1

� 

bun



V

en
:

Thus, the boundedness of the sequence
( �

c(


bun




V ) � kgkV� � k1

� 

bun



V

en

)1

nD1

results, which in view of

c(


bun




V ) � kgkV� � k1 ! C1 as n!1

implies the assertion (18). The obtained results give rise
to the following representation of un:

un D en
�

1
en
bun C �n

�
;

wherebun/en ! 0 strongly in V and �n! � in V0 as n
!1 for some � 2 V0 with k � kV = 1 (recall that V0

has been assumed to be finite dimensional). Moreover,
the compact imbedding V � Lp(˝ ;RN) permits one to
suppose thatbun/en ! 0 and �n! � a.e. in˝ .

Further, (15), together with the fact that A is semi-
coercive, leads to

0 � hAun � g; uniV �

Z

˝

ej0R(un ;�un)d˝

�
�
c(


bun




V ) � kgkV�

� 

bun



V � en hg; �niV

C en

�

Z

˝

�ej0R
�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�
d˝:

Hence

hg; �niV �
�
c(


bun




V ) � kgkV�

� 1
en



bun



V

C

Z

˝

�ej0R
�
en
�bun

en
C �n

�
;�
bun

en
� �n

�
d˝:

(19)

Now observe that either

�
c(


bun




V ) � kgkV�

� 1
en



bun



V ! 0 as n!1;
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if f


bun




V g is bounded, or

�
c(


bun




V ) � kgkV�

� 1
en



bun



V � 0

for sufficiently large n, if


bun




V ! 1 as n ! 1.

Therefore, for any case

lim inf
n!1

�
c(


bun




V ) � kgkV�

� 1
en



bun



V � 0:

Moreover, by (10) the estimate follows:

� ej0R
�
en
�bun

en
C �n

�
;�
bun

en
� �n

�

� �k
ˇ̌
ˇ̌bun

en
C �n

ˇ̌
ˇ̌ : (20)

This allows the application of Fatou ’s lemma in (19),
from which one is led to

hg; �iV � lim inf
n!1Z

˝

�
�ej0R

�
en
�bun

en
C �n

�
;�
bun

en
� �n

��
d˝

�

Z

˝

lim inf
n!1

�
�ej0R

�
en
�bun

en
C �n

�
;�
bun

en
� �n

��
d˝:

(21)

Taking into account (8) and upper semicontinuity
of j0(�, �), one can easily verify that

lim inf
n!1

�
�ej0R

�
en(
bun

en
C �n);�

bun

en
� �n

��

� � j0
�
R
�

j� j
;��

�
;

which leads to

hg; �iV �
Z

˝

� j0
�
R
�

j� j
;��

�
d˝: (22)

Since j1(�) is lower semicontinuous and V0 is finite di-
mensional, from (6) it follows that a ı > 0 can be found
such that for any � 2 V0 with k �V k = 1,

hg; �iV C ı <
Z

˝

j1(�) d˝: (23)

With the help of Fatou ’s lemma (permitted by (20)) we
arrive at

lim inf
R!1

Z

˝

� j0
�

R
j� j
� ;��

�
d˝ �

Z

˝

j1(�) d˝:

The upper semicontinuity of j0(�;�) allows us to con-
clude the existence of R > 0 and " > 0 such that
Z

˝

� j0
�

R
j� 0j

� 0;�� 0
�

d˝ �
Z

˝

j1(�) d˝ �
ı

2

for each R > R and � 0 2 V0 with k � � � 0 kV < " . As
the sphere {v 2 V0: kvkV = 1 } is compact in V0, there
exists R0 > 0 such that
Z

˝

� j0
�

R
j� j
� ;��

�
d˝ �

Z

˝

j1(�) d˝ �
ı

2
;

for any � 2 V0 with k � kV = 1, R > R0. This combined
with (23) contradicts (22). Accordingly, the existence
of a constant M > 0 has been established such that (13)
implies (14), whenever R > R0. The proof of Lemma 3 is
complete.

Proposition 4 Let us assume all the hypotheses stated
above. Then for any R > R0 the problem (PR) possesses at
least one solution. Moreover, if (uR, �R) is a solution of
(PR), then

kuRkV � M (24)

for some constant M not depending on R > R0.

Proof Let � be the family of all finite-dimensional
subspaces F of V , ordered by inclusion. Denote by iF :
F ! V the inclusion mapping of F into V and by i�F :
V� ! F� the dual projection mapping of V� into F�,
F� being the dual of F. The pairing over F� × F will be
denoted by h �, � iF . Set AF := i�F ° A ° iF and gF := i�Fg.

Fix R > R0. For any F 2 � consider a finite-
dimensional regularization of (PR):

(PF) Find (uF ; �F ) 2 F � Lq(˝ ;RN) 2 F

such that

hAuF � g; viV C
Z

˝

�F � v d˝ D 0;8v 2 F; (25)

�F 2 �R(uF): (26)
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The first task is to show that for each F 2�, (PF) has
solutions. Notice that � R (�) has nonempty, convex and
closed values and if  2 � R (v), v 2 Lp (˝ ;RN), then

k kLq(˝ ;RN ) � KR ; (27)

for some KR > 0 depending on the Lipschitz constant
of j in the ball { � 2 RN : | � | � R }. Moreover, from
the upper semicontinuity of ej0R(�; �) and Fatou ’s lemma
it follows immediately that � R is upper semicontinu-
ous from Lp (˝ ;RN) to Lq (˝ ;RN), Lq (˝ ;RN) being en-
dowed with the weak topology.

Further, let �F : Lq (˝ ;RN)! F� be the operator that
to any  2 Lq(˝ ;RN) assigns �F  2 F� defined by

h�F ; viF :D
Z

˝

 � v d˝ for any v 2 F: (28)

Note that �F is a linear and continuous operator from
the weak topology of Lq (˝ ;RN) to the (unique) topol-
ogy on F�. ThereforeGF : F! 2F� , given by the formula

GF(vF) :D �F�R(vF) for vF 2 F; (29)

is upper semicontinuous.
By the pseudomonotonicity of A it follows that AF :

F ! F� is continuous. Thus, AF + GF � gF : F ! 2F�

is an upper semicontinuous multivalued mapping with
nonempty, bounded, closed and convex values. More-
over, for any vF 2 F and  F 2 GF(vF) one has

hAFvF C  F � gF ; vFiF

� hAvF � g; vFiV �
Z

˝

ej0R(vF ;�vF) d˝: (30)

Hence, in view of Lemma 3, for R > R0 there exists M >
0 not depending on F 2� such that the condition k vF
kV = M + 1 implies

hAFvF C  F � gF ; vFiF � 0: (31)

Accordingly, one can invoke [1, Corol. 3, p. 337] to de-
duce the existence of uF 2 F with

kuFkV �MC 1 (32)

such that 0 2 AFuF + GF(uF) � gF. This implies that for
some �F 2 � R(uF) it follows that  F = �F(�F) and (uF ,
�F) is a solution of (PF).

In the next step it will be shown that (PR), R > R0,
has solutions.

For F 2�, let

WF :D
[

F02�;
F0�F

8̂
<̂
ˆ̂:
uF0 2 V :

(uF0 ; �F0 )
satisfies (PF0 )
for some

�F0 2 Lq(˝ ;RN)

9>>=
>>;
:

The symbol weakcl (WF) will be used to denote the clo-
sure ofWF in the weak topology of V . From (32) one
gets

weakcl(WF) � BV (O;MC 1); 8F 2 �;

where BV (O, M + 1) := {v 2 V kvkV �M + 1 }. Thus,
the family { weakcl(WF ): F 2 � } is contained in the
weakly compact set BV (O, M + 1) of V . Further, for
any F1, . . . , Fk 2�, k = 1, 2, . . . , the inclusionWF1 \ � � �

\WFk �WF results, with F = F1 + � � � + Fk. Therefore,
the family {weakcl(WF ): F 2� } has the finite intersec-
tion property. This implies that \F 2� weakcl (WF) is
not empty. From now on, let uR 2 BV (0, M + 1) belong
to this intersection.

Fix v 2 V arbitrarily and choose F 2� such that uR,
v 2 F. Thus, there exists a sequence {uFn } �WF with
uFn ! uR weakly in V . Let �Fn 2 � R(uFn ) denote the
corresponding sequence for which (uFn , �Fn ) is a solu-
tion of (PFn ) (for simplicity of notation, the symbols {un
} and { �n } will be used instead of uFn and �Fn , respec-
tively). Therefore

hAun � g;w � uniV C

Z

˝

�n � (w � un) d˝ D 0;

8 w 2 Fn: (33)

Since k �n kLq(˝ ;RN ) � KR and Lq (˝ ;RN) is reflexive,
it can also be supposed that for some �R 2 Lq(˝ ;RN),
�n ! �R weakly in Lq(˝ ;RN). By the hypothesis, the
imbedding V � Lp(˝ ;RN) is compact, so un ! uR
strongly in Lp (˝ ;RN). Consequently, by the upper
semicontinuity of � R from Lp (˝ ;RN) to Lq (˝ ;RN)
(L;q (˝ ;RN) being endowed with the weak topology) it
follows immediately that �R 2 � R(uR), i. e. (12) holds.
Moreover,

R
˝ �n �(uR � un)d ˝ ! 0 as n!1 and

(33) with w = uR lead to lim hAun, un � uR iV = 0. Ac-
cordingly, the pseudomonotonicity ofA allows the con-
clusion that hAun, un iV!hAuR, uR iV and Aun!AuR
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weakly inV�. Finally, substituting w = v in (33) and let-
ting n!1 give in conclusion (11) with v 2 V chosen
arbitrarily. Thus the existence of solutions of (PR) has
been established.

Let us proceed to the boundedness of solutions {uR
}R>R0 of (PR). Suppose on the contrary that this claim is
not true. Then according to (11) and (12) there would
exist a sequence Rn!1 such that k uRn kV !1 as n
!1, and

hAuRn � g; uRn iV �

Z

˝

fj0Rn
(uRn ;�uRn ) d˝ � 0: (34)

From now on, for simplicity of notations, instead of the
subscript ‘Rn’ we write ‘n’. Eq. (34) allows us to follow
the lines of the proof of Lemma 3. First, analogously one
arrives at the representation

un D en
�

1
en
bun C �n

�
;

withbun/en ! 0 strongly in V and �n ! �0 in V0 as n
!1 for some �0 2 V0 with k �0 kV = 1. Secondly, the
counterpart of (21) can be obtained in the form

hg; �iV � lim inf
n!1

Z

˝�
�fj0Rn

�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

��
d˝:

(35)

But

fj0Rn

�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�

D j0
�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�
;

if
ˇ̌bun C en�n

ˇ̌
� Rn and

fj0Rn

�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�

D j0
0
@ Rnˇ̌
ˇ 1
en
bun C �n

ˇ̌
ˇ

�
1
en
bun C �n

�
;�

1
en
bun � �n

1
A ;

if
ˇ̌bun C en�n

ˇ̌
> Rn :. Therefore we easily conclude, us-

ing (7), that

lim inf
n!1

�fj0Rn

�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�

� j1(�0):

Consequently, by Fatou ’s lemma,

hg; �0iV �
Z

˝

j1(�0) d˝;

contrary to (6). Thus, the boundedness of {uR }R>R0 fol-
lows and the proof of Proposition 4 is complete.

The next result is related to the compactness property
of { �R: R > R0 } in L1 (˝ ;RN).

Proposition 5 Let a pair (uR, �R) 2 V × Lq (˝ ;RN) be
a solution of (PR). Then the set
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂
�R 2 Lq(˝ ;RN) :

(uR ; �R)
is a solution of

(PR)
for some uR 2 V ;

R > R0

9>>>>>=
>>>>>;

is weakly precompact in L1 (˝ ;RN).

Proof According to the Dunford–Pettis theorem [8] it
is sufficient to show that for each " > 0 a ı > 0 can be
determined such that for any ! �˝ with meas ! < ı,

Z

!

j�R j d˝ < "; R > R0: (36)

Fix r > 0 and let � 2 RN be such that | � | � r. Then, by
(9), from �R � (�� uR) � ej0R(uR ; � � uR) it results that

�R � � � �R � uR C ę(r)(1C juR j
� ) (37)

a.e. in˝ . Let us set

� �
r
p
N
(sgn�R1 ; : : : ; sgn�RN );

where �Ri , i = 1, . . . , N, are the components of �R and
where sgny = 1 if y > 0, sgn y = 0 if y = 0, and sgny =
� 1 if y < 0. It is not difficult to verify that | � | � r for
almost all x 2˝ and that

�R � � �
r
p
N
j�R j :

Therefore, by (37) the estimate follows

r
p
N
j�R j � �R � uR C ę(r)(1C juR j

� ):
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Integrating this inequality over ! �˝ yields
Z

!

j�R j d˝ �
p
N
r

Z

!

�R �uR d˝C
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p kuRk

�
Lp(˝) d˝: (38)

Thus, from (24) one obtainsZ

!

j�R j d˝

�

p
N
r

Z

!

�R � uR d˝ C
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p�� kuRk

�
V d˝

�

p
N
r

Z

!

�R � uR d˝ C
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p��M� d˝ (39)

(k � kLp(˝ ;RN ) � � k � kV ).
Further, it will be shown thatZ

!

�R � uR d˝ � C (40)

for some positive constant C not depending on ! �˝
and R > R0. Indeed, from (10) one can easily deduce that

�R � uR C k juR j � 0 a.e. in˝:

Thus it follows thatZ

!

(�R � uR C k juR j) d˝

�

Z

˝

(�R � uR C k juR j) d˝;

and consequently
Z

!

�R � uR d˝ �
Z

˝

�R � uR d˝ C 2k1 kuRkV :

But Amaps bounded sets into bounded sets. Therefore,
by means of (11) and (24),

Z

˝

�R � uR d˝ D �hAuR � g; uRiV

� kAuR � gkV� kuRkV � C0; C0 D const;

and consequently, (40) easily follows. Further, from
(39) and (40), for r > 0,

Z

!

j�R j d˝ �
p
N
r

C C
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p��M� d˝: (41)

This estimate is crucial for obtaining (36). Namely, let "
> 0. Fix r > 0 with
p
N
r

C <
"

2
(42)

and determine ı > 0 small enough to fulfill
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p��M� �

"

2
;

provided that meas ! < ı. Thus, from (41) it follows
that for any ! �˝ with meas ! < ı,

Z

!

j�R j d˝ � "; R > R0: (43)

Finally, { �R }R>R0 is equi-integrable and its precom-
pactness in L1 (˝ ;RN) has been proved [8].

Now the main result will be formulated.

Theorem 6 Let A: V ! V� be a pseudomonotone,
bounded operator, j: RN ! R a locally Lipschitz func-
tion. Suppose that (1)-(3) and (6) hold. Then there exist
u 2 V and � 2 L1 (˝ ;RN) such that

hAu � g; v � uiV C
Z

˝

� � (v � u) d˝ D 0;

8v 2 V \ L1(˝ ;RN); (44)
(
� 2 @ j(u) a.e. in˝;
� � u 2 L1(˝):

(45)

Moreover, the hemivariational inequality holds:

hAu � g; v � uiV C
Z

˝

j0(u; v � u)d˝ � 0;

8v 2 V ; (46)
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where the integral above is assumed to take +1 as its
value if j0(u;v � u) 62 L1(˝).

Proof The proof is divided into a sequence of steps.
Step 1. From Propositions 4 and 5 it follows that

from the set { uR, �R }R>R0 of solutions of (PR) a se-
quence { uRn , �Rn } can be extracted with Rn!1 as n
!1 (for simplicity of notations it will be denoted by
(un, �n)), such that

hAun � g; v � uniV

C

Z

˝

�n � (v � un) d˝ D 0;8v 2 V ; (47)

and
8̂
<̂
ˆ̂:

�n 2 �Rn (un);
un ! u weakly in V ;
�n ! � weakly in L1(˝ ;RN)

(48)

for some u 2 V and � 2 L1 (˝ ;RN).
The boundedness of {Aun } in V� (recall that A has

been assumed to be bounded and that k un kV � M)
allows the conclusion that for some B 2 V�,

Aun ! B weakly in V� (49)

(by passing to a subsequence, if necessary). Thus, (47)
implies that the equality

hB � g; viV C
Z

˝

� � v d˝ D 0 (50)

is valid for any v 2 V \ L1(˝ ;RN).
Step 2. Now it will be proved that � 2 @j(u) a.e in

˝ , i. e. the first condition in (45) is fulfilled. Since V is
compactly imbedded into Lp (˝ ;RN), due to (48) one
may suppose that

un ! u strongly in Lp(˝ ;RN): (51)

This implies that for a subsequence of {un } (again de-
noted by the same symbol) one gets un ! u a.e. in ˝ .
Thus, from Egoroff ’s theorem it follows that for any "
> 0 a subset ! �˝ with meas ! < " can be determined
such that un ! u uniformly in ˝ \ ! with u 2 L1

(˝ \ !;RN). Let v 2 L1 (˝ \ !;RN) be an arbitrary

function. From the estimate
Z

˝n!

�n � v d˝ �
Z

˝n!

fj0Rn (un ; v) d˝

D

Z

˝n!

j0(un ; v) d˝; (for large n)

(un remains pointwise uniformly bounded in˝ \! and
Rn !1 as n!1) combined with the weak conver-
gence in L1(˝ ;RN) of �n to �, (51) and with the upper
semicontinuity of

L1(˝ n !;RN ) 3 un 7�!

Z

˝n!

j0(un ; v) d˝;

it follows that
Z

˝n!

� � v d˝ �
Z

˝n!

j0(u; v) d˝;

8v 2 L1(˝ n !;RN ):

But the last inequality allows us to state that � 2 @j(u)
a.e. in ˝ \ !. Since meas ! < " and " was chosen arbi-
trarily,

� 2 @ j(u) a.e. in˝; (52)

as claimed.
Step 3. Now it will be shown that � � u 2 L1(˝),

i. e. the second condition in (45) holds. For this pur-
pose we shall need the following truncation result for
vector-valued Sobolev spaces.

Theorem 7 ([20]) For each v 2 H1(˝ ;RN) there exists
a sequence of functions { "n } � L1(˝) with 0 � "n � 1
such that

f(1� "n)vg � H1(˝ ;RN) \ L1(˝ ;RN)

(1 � "n)v! v strongly in H1(˝ ;RN):
(53)

Remark 8 For the truncation procedure of the form
(53) in the case of a scalar-valued Sobolev space
Wp, m(˝) the reader is referred to [11].

According to the aforementioned theorem, for u 2 V
one can find a sequence { "k } 2 L1(˝) with 0 � "k �
1 such that euk :D (1 � "k)u 2 V \ L1(˝ ;RN) and
euk ! u in V as k!1. Without loss of generality it
can be assumed thateuk ! u a.e. in˝ . Since it is already
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known that � 2 @j(u), one can apply (3) to obtain � � (�
u) � j0(u; �u) � k |u |. Hence

� �euk D (1 � "k)� � u � �k juj : (54)

This implies that the sequence f� �eukg is bounded from
below and � �euk ! � � u a.e. in˝ . On the other hand,
due to (50) one gets

C � h�BC g;eukiV D

Z

˝

� �euk d˝

for a positive constant C. Thus, by Fatou ’s lemma � � u
2 L1(˝), as required.

Step 4. Now the inequality

lim inf
n!1

Z

˝

�n � un d˝ �
Z

˝

� � u d˝ (55)

will be established. It can be supposed that un ! u a.e.
in ˝ , because un ! u strongly in Lp(˝ ;RN). Fix v 2
L1(˝ ;RN) arbitrarily. Since �n 2 � Rn (un), Eq. (9) im-
plies

�n � (v � un) � fj0Rn (un ; v � un)

� ę(kvkL1(˝ ;RN ))(1C junj
� ): (56)

From Egoroff ’s theorem it follows that for any " > 0
a subset ! �˝ withmeas! < " can be determined such
that un! u uniformly in ˝ \ !. One can also suppose
that ! is small enough to fulfill

R
! ę(kvkL1(˝ ;RN ))(1C

junj
� ) d˝ � ", n = 1, 2, . . . , and

R
! ˛(kvkL1(˝ ;RN ))(1

+ k u� ) d˝ � ". Hence
Z

˝

fj0Rn (un ; v � un) d˝

�

Z

˝n!

fj0Rn (un ; v � un) d˝ C "

D

Z

˝n!

j0(un ; v � un) d˝ C " (for large n);

which by Fatou ’s lemma and upper semicontinuity of
j0(�; �) yields

lim inf
n!1

Z

˝

�fj0Rn (un ; v � un) d˝

�

Z

˝

� j0(u; v � u) d˝ � 2":

By arbitrariness of " > 0 and (56) one obtains

lim inf
n!1

Z

˝

�n � un d˝

�

Z

˝

� � v d˝ �
Z

˝

j0(u; v � u) d˝;

8v 2 V \ L1(˝ ;RN): (57)

By substituting v D euk :D (1 � "k)u (witheuk as de-
scribed in the truncation argument of Theorem 7) into
the right-hand side of (57) one gets

lim inf
n!1

Z

˝

�n � un d˝

� lim inf
k!1

Z

˝

� �euk d˝

� lim sup
k!1

Z

˝

j0(u;euk � u) d˝: (58)

Taking into account thateuk ! u a.e. in˝ ,

j0(u;euk � u) D "k j0(u;�u) � "kk juj � k juj

and j� � uj � � �euk D (1 � "k)� � u � �k juj, Fatou ’s
lemma and the dominated convergence can be used to
deduce

lim sup
k!1

Z

˝

j0(u;euk � u) d˝ � 0;

and

lim
k!1

Z

˝

� �euk d˝ D
Z

˝

� � u d˝:

Finally, combining the last two inequalities with (58)
yields (55), as required.

Step 5. The next claim is that

hB � g; uiV C
Z

˝

� � u d˝ D 0: (59)

Indeed, (50) implies

hB � g;eukiV C

Z

˝

� �euk d˝ D 0; (60)
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with feukg as in Step 3. Since � � u 2 L1(˝) and�k juj �
� � euk D (1 � "k)� � u � j� � uj ; by the dominated
convergence,
Z

˝

� �euk d˝ !
Z

˝

� � u d˝:

It means that (59) has to hold by passing to the limit as
k!1 in (60).

Step 6. In this step it will be shown that the pseu-
domonotonicity of A and (47) imply (44). Indeed, (47)
with v 2 V \ L1(˝ ;RN) and (49) allows to state that

lim sup
n!1

hAun ; un � uiV � hB � g; v � uiV

C

Z

˝

� � v d˝ � lim inf
n!1

Z

˝

�n � un d˝:

Substituting v Deuk witheuk as in Step 3 and taking into
account (55) one arrives at lim supn!1 hAun, un � u
iV � 0 (by the application of the limit procedure as k
!1). Therefore the use of pseudomonotonicity of A
is allowed and yields h Aun, un iV ! hAu, u iV and Aun
! B = Auweakly inV� as n!1. Finally, (47) implies
(44), as claimed.

Step 7. In the final step of the proof it will be shown
that (44) and (45) imply (46). For this purpose, choose
v 2 V \ L1(˝ ;RN) arbitrarily. From (2) one has � � (v
� u) � j0(u;v � u) � ˛(kvkL1 (˝ ;RN ))(1 + |u|� ) with � �
(v� u)2 L1(˝) and ˛ (k vL1(˝ ;RN ))(1 + |u |� ) 2 L1(˝).
Hence j0(u;v � u) is finite integrable and consequently,
(46) follows immediately from (44).

Now consider the case j0(u;v � u) 2 L1(˝) with
v 62 V \ L1(˝ ;RN). According to Theorem 7 there
exists a sequence evk D (1 � "k)v such that fevkg �
V \ L1(˝ ;RN) andevk ! v strongly in V . Since

hAu � g;evk � uiV C
Z

˝

j0(u;evk � u) d˝ � 0;

so in order to establish (46) it remains to show that

lim sup
k!1

Z

˝

j0(u;evk � u) d˝ �
Z

˝

j0(u; v � u) d˝:

For this purpose let us observe thatevk�u D (1�"k)(v�
u)C"k(�u) which combined with the convexity of j0(u;
�) yields the estimate

j0(u;evk � u) � (1 � "k) j0(u; v � u)C "k j0(u;�u)

�
ˇ̌
j0(u; v � u)

ˇ̌
C k juj :

Thus the application of Fatou ’s lemma gives the asser-
tion. Finally, the proof of Theorem 6 is complete.

Remark 9 The analogous result to that of Theorem 6
can be formulated for the hemivariational inequality
(46) in which

R
˝(�) d ˝ is replaced by the boundary

integral
R
� (�) d � , provided the imbedding H1(˝) �

Lp(� ) is compact (1 < p < (2m � 2)/(m � 2), [12]).

Example 10 Let us consider a linear elastic body which
in its undeformed state occupies an open, bounded,
connected subset˝ ofR3.˝ is referred to a fixed Carte-
sian coordinate system 0x1x2x3 and its boundary � is
assumed to be Lipschitz regular; n = (ni) denotes the
outward unit normal vector to � . We decompose �
into two disjointed parts � F and � S such that � D
� F [ � S . As usual, the symbols u: ˝ ! R3 and � :˝
! S3 are used to denote the displacement field and the
stress tensor field, respectively. Here S3 stands for the
space of all real-valued 3 × 3 symmetric matrices.

Consider the boundary value problem:
i) The equilibrium equations:

�i j; j C bi D 0 in˝: (61)

ii) The displacement—strain relation:

"i j(u) D
1
2
(ui; j C uj;i ) in˝: (62)

iii) Hook’s law:

�i j D Ci jk l"k l (u) in˝: (63)

iv) The surface traction conditions

�i jn j D Fi on �F : (64)

v) The nonmonotone subdifferential boundary condi-
tions

� S 2 @ j(u) on �S : (65)

Here, S = (Si) = (� ijnj) is the stress vector, and @j(�) is
the generalized gradient of Clarke of a locally Lipschitz
function j: R3!R; the summation convention over re-
peated indices holds and the elasticity tensor C = (Cijkl)
is assumed to satisfy the classical conditions of elliptic-
ity and symmetry [24].

Let V = H1(˝ ;R3). By making use of the standard
technique (cf. [24]), Eqs. (61)-(65) lead to the problem
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of finding u 2 V such as to satisfy the hemivariational
inequality

Z

˝

Ci jk l"i j(u)"k l (v � u) d˝ �
Z

˝

bi(vi � ui ) d˝

�

Z

�F

Fi(vi � ui ) d� C
Z

�S

j0(u; v � u) d� � 0;

8v 2 V : (66)

Define A: V! V� by

hAu; viV D
Z

˝

Ci jk l "i j(u)"k l (v) d˝; u; v 2 V ;

and let V0 := R = { � 2 V : "ij(�) = 0, i, j = 1, 2, 3 }
denote the space of all rigid-body displacements. Then
(1) holds (for details see [24, p. 121]). Accordingly, if
(2) (with � < 4) and (3) are fulfilled and, moreover, the
compatibility conditionZ

˝

bi�i d˝ C
Z

�F

Fi�i d� <

Z

�S

j1(�) d�

is valid for any � 2 R \ { 0 }, then the hypotheses of
the theorem mentioned in Remark 9 are satisfied. Con-
sequently, the existence of solutions to the hemivaria-
tional inequality (66) is ensured.
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Introduction

The Traveling Salesman Problem (TSP) is one of the
most representative problems in combinatorial opti-
mization. If we consider a salesman who has to visit
n cities [46], the Traveling Salesman Problem asks for
the shortest tour through all the cities such that no
city is visited twice and the salesman returns at the
end of the tour back to the starting city. Mathemati-
cally, the problem may be stated as follows: Let G D
(V ; E) be a graph, where V is a set of n nodes and
E is a set of arcs, let C D [ci j] be a cost matrix as-
sociated with E, where cij represents the cost of going
from city i to city j, (i; j D 1; : : : ; n), the problem
is to find a permutation (i1; i2; i3; : : : ; in) of the in-
tegers from 1 through n that minimizes the quantity
ci1 i2 C ci2 i3 C : : :C cin i1 .

We speak of a Symmetric TSP, if for all pairs (i, j),
the distance cij is equal to the distance cji. Otherwise, we
speak of theAsymmetric TSP [7]. If the triangle inequal-
ity holds (ci j � ci i1Cci1 j; 8i; j; i1), the problem is said
to be metric. If the cities can be represented as points
in the plain such that cij is the Euclidean distance be-
tween point i and point j, then the corresponding TSP is
called the Euclidean TSP. Euclidean TSP obeys in par-
ticular the triangle inequality ci j � ci i1 C ci1 j for all
i; j; i1.

An integer programming formulation of the Trav-
eling Salesman Problem is defined in a complete graph

G D (V ; E) of n nodes, with node set V D f1; : : : ; ng,
arc set E D f(i; j)ji; j D 1; : : : ; ng, and nonnegative
costs cij associated with the arcs [8]:

c� D min
X
i2V

X
j2V

ci jxi j (1)

s.t.X
j2V

xi j D 1; i 2 V (2)

X
i2V

xi j D 1; j 2 V (3)

X
i2S

X
j2S

xi j � jSj � 1; 8S � V ; S ¤ ; (4)

xi j 2 f0; 1g; for all i; j 2 V ; (5)

where xi j D 1 if arc (i, j) is in the solution and 0
otherwise. In this formulation, the objective function
clearly describes the cost of the optimal tour. Con-
straints (2) and (3) are degree constraints: they spec-
ify that every node is entered exactly once and left ex-
actly once. Constraints (4) are subtour elimination con-
straints. These constraints prohibit the formation of
subtours, i. e. tours on subsets of less than V nodes. If
there was such a subtour on a subset S of nodes, this
subtour would contain jSj edges and as many nodes.
Constraints (4) would then be violated for this subset
since the left-hand side of (4) would be equal to jSj
while the right-hand side would be equal to jSj � 1.
Because of degree constraints, subtours over one node
(and hence, over n � 1 nodes) cannot occur. For more
formulations of the problem see [34,60].

The Traveling Salesman Problem (TSP) is one of the
most famous hard combinatorial optimization prob-
lems. It has been proven that TSP is a member of the
set of NP-complete problems. This is a class of diffi-
cult problems whose time complexity is probably ex-
ponential. The members of the class are related so that
if a polynomial time algorithm was found for one prob-
lem, polynomial time algorithms would exist for all of
them [41]. However, it is commonly believed that no
such polynomial algorithm exists. Therefore, any at-
tempt to construct a general algorithm for finding op-
timal solutions for the TSP in polynomial time must
(probably) fail. That is, for any such algorithm it is pos-
sible to construct problem instances for which the ex-
ecution time grows at least exponentially with the size
of the input. Note, however, that time complexity here
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refers to the worst case behavior of the algorithm. It can
not be excluded that there exist algorithms whose aver-
age running time is polynomial. The existence of such
algorithms is still an open question. Since 1950s many
algorithms have been proposed, developed and tested
for the solution of the problem. Algorithms for solving
the TSP may be divided into two categories, exact algo-
rithms and heuristic–metaheuristic algorithms.

Heuristics for the Traveling Salesman Problem

There is a great need for powerful heuristics that find
good suboptimal solutions in reasonable amounts of
computing time. These algorithms are usually very sim-
ple and have short running times. There is a huge num-
ber of papers dealing with finding near optimal solu-
tions for the TSP. Our aim is to present the most in-
teresting and efficient algorithms and the most impor-
tant ones for facing practical problems. In the 1960s,
1970s and 1980s the attempts to solve the Traveling
Salesman Problem focused on tour constructionmeth-
ods and tour improvement methods. In the last fifteen
years, metaheuristics, such as simulated annealing,
tabu search, genetic algorithms and neural networks,
were introduced. These algorithms have the ability to
find their way out of local optima. Heuristics and meta-
heuristics constitute an increasingly essential compo-
nent of solution approaches intended to tackle diffi-
cult problems, in general, and global and combinatorial
problems in particular.

When a heuristic is designed, the question which
arises is about the quality of the produced solution.
There are three different ways that one may try to an-
swer this question.
1. Empirical. The heuristic is applied to a number of

test problem instances and the solutions are com-
pared to the optimal values, if there are known, or
to lower bounds on these values [33,35].

2. Worst Case Analysis. The idea is to derive bounds
on the worst possible deviation from the optimum
that the heuristic could produce and to devise bad
problem instances for which the heuristic actually
achieves this deviation [42].

3. Probabilistic Analysis. In the probabilistic analy-
sis it is assumed that problem instances are drawn
from certain simple probability distributions, and it
is, then, proven mathematically that particular solu-

tion methods are highly likely to yield near-optimal
solutions when the number of cities is large [43].

Tour Construction methods build up a tour step
by step. Such heuristics build a solution (tour) from
scratch by a growth process (usually a greedy one) that
terminates as soon as a feasible solution has been con-
structed. The problem with construction heuristics is
that although they are usually fast, they do not, in gen-
eral, produce very good solutions. One of the simplest
tour construction methods is the nearest neighbor-
hood in which, a salesman starts from an arbitrary city
and goes to its nearest neighbor. Then, he proceeds
from there in the same manner. He visits the nearest
unvisited city, until all cities are visited, and then re-
turns to the starting city [65,68].

An extension of the nearest neighborhood method
is the double-side nearest neighborhood method
where the current path can be extended from both of
its endnodes. Some authors use the name Greedy for
Nearest Neighborhood, but it is more appropriately re-
served for the special case of the greedy algorithm of
matroid theory [39]. Bentley [11] proposed two very
fast and efficient algorithms, the K-d Trees and the
Lazily Update Priority Queues. In his paper, it was the
first time that somebody suggested the use of data struc-
tures for the solution of the TSP. A priority queue con-
tains items with associated values (the priorities) and
support operations that [40]:
� remove the highest priority item from the queue and

deliver it to the user,
� insert an item,
� delete an item, and
� modify the priority of an item.
The insertion procedures [68] take a subtour of V
nodes and attempt to determine which node (not al-
ready in the subtour) should join the subtour next
(the selection step) and then determine where in the
subtour it should be inserted (the insertion step). The
most known of these algorithms is the nearest inser-
tion algorithm. Similar to the nearest insertion proce-
dure are the cheapest insertion [65], the arbitrary in-
sertion [12], the farthest insertion [65], the quick in-
sertion [12], and the convex hull insertion [12] algo-
rithms.

There is a number of heuristic algorithms that are
designed for speed rather for quality of the tour they
construct [40]. The three most known heuristic algo-



Heuristic and Metaheuristic Algorithms for the Traveling Salesman Problem H 1501

rithms of this category are the Strip algorithm, pro-
posed by Beardwood et al. [10], the Spacefilling Curve
proposed by Platzmann and Bartholdi [58] and the Fast
Recursive Partitioning heuristic proposed by Bent-
ley [11]. The saving algorithms are exchange proce-
dures. The most known of them is the Clarke-Wright
algorithm [17]. Christofides [12,65] suggested a proce-
dure for solving the TSP based on spanning trees. He
proposed a method of transforming spanning trees to
Eulerian graphs.

The improvement methods or local search meth-
ods start with a tour and try to find all tours that are
“neighboring” to it and are shorter than the initial tour
and, then, to replace it. The tour improvements meth-
ods can be divided into three categories according to
the type of the neighborhood that they use [64]. Ini-
tially, the constructive neighborhood methods, which
successively add new components to create a new so-
lution, while keeping some components of the current
solution fixed. Some of these methods will be presented
in the next section where the most known metaheuris-
tics are presented. Secondly, the transition neighbor-
hood methods, which are the classic local search algo-
rithms (classic tour improvement methods) and which
iteratively move from one solution to another based
on the definition of a neighborhood structure. Finally,
the population based neighborhood methods, which
generalize the two previous categories by considering
neighborhoods of more than one solution.

The most known of the local search algorithms is
the 2-opt heuristic, in which two edges are deleted and
the open ends are connected in a different way in or-
der to obtain a new tour [48]. Note that there is only
one way to reconnect the paths. The 3-opt heuristic
is quite similar with the 2-opt but it introduces more
flexibility in modifying the current tour, because it uses
a larger neighborhood. The tour breaks into three parts
instead of only two [48]. In the general case, ı edges
in a feasible tour are exchanged for ı edges not in that
solution as long as the result remains a tour and the
length of that tour is less than the length of the previ-
ous tour. Lin-Kernighan method (LK) was developed
by Lin and Kernighan [37,49,54] and for many years
was considered to be the best heuristic for the TSP.
The Or-opt procedure, well known as node exchange
heuristic, was first introduced by Or [56]. It removes
a sequence of up-to-three adjacent nodes and inserts it

at another location within the same route. Or-opt can
be considered as a special case of 3-opt (three arcs ex-
changes) where three arcs are removed and substituted
by three other arcs. TheGENI algorithmwas presented
by Gendreau, Hertz and Laporte [22]. GENI is a hybrid
of tour construction and local optimization.

Metaheuristics
for the Traveling Salesman Problem

The last fifteen years an incremental amount of meta-
heuristic algorithms have been proposed. Simulated
annealing, genetic algorithms, neural networks, tabu
search, ant algorithms, together with a number of hy-
brid techniques are the main categories of the meta-
heuristic procedures. These algorithms have the abil-
ity to find their way out of local optima. A number of
metaheuristic algorithms have been proposed for the
solution of the Traveling Salesman Problem. The most
important algorithms published for each metaheuristic
algorithm are given in the following:
� Simulated Annealing (SA) belongs [1,2,45,64] to

a class of local search algorithms that are known
as threshold accepting algorithms. These algorithms
play a special role within local search for two rea-
sons. First, they appear to be quite successful when
applied to a broad range of practical problems. Sec-
ond, some threshold accepting algorithms such as
SA have a stochastic component, which facilitates
a theoretical analysis of their asymptotic conver-
gence. Simulated Annealing [3] is a stochastic al-
gorithm that allows random uphill jumps in a con-
trolled fashion in order to provide possible escapes
from poor local optima. Gradually the probability
allowing the objective function value to increase is
lowered until no more transformations are possi-
ble. Simulated Annealing owes its name to an anal-
ogy with the annealing process in condensed mat-
ter physics, where a solid is heated to a maximum
temperature at which all particles of the solid ran-
domly arrange themselves in the liquid phase, fol-
lowed by cooling through careful and slow reduc-
tion of the temperature until the liquid is frozen
with the particles arranged in a highly structured lat-
tice and minimal system energy. This ground state
is reachable only if the maximum temperature is
sufficiently high and the cooling sufficiently slow.
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Otherwise a meta-stable state is reached. The meta-
stable state is also reached with a process known
as quenching, in which the temperature is instan-
taneously lowered. Its predecessor is the so-called
Metropolis filter. Simulated Annealing algorithms
for the TSP are presented in [15,55,65].

� Tabu search (TS) was introduced by Glover [24,25]
as a general iterative metaheuristic for solving com-
binatorial optimization problems. Computational
experience has shown that TS is a well established
approximation technique, which can compete with
almost all known techniques and which, by its flexi-
bility, can beat many classic procedures. It is a form
of local neighbor search. Each solution S has an as-
sociated set of neighbors N(S). A solution S0 2 N(S)
can be reached from S by an operation called amove.
TS can be viewed as an iterative technique which ex-
plores a set of problem solutions, by repeatedly mak-
ing moves from one solution S to another solution
S0 located in the neighborhood N(S) of S [31]. TS
moves from a solution to its best admissible neigh-
bor, even if this causes the objective function to de-
teriorate. To avoid cycling, solutions that have been
recently explored are declared forbidden or tabu for
a number of iterations. The tabu status of a so-
lution is overridden when certain criteria (aspira-
tion criteria) are satisfied. Sometimes, intensification
and diversification strategies are used to improve the
search. In the first case, the search is accentuated in
the promising regions of the feasible domain. In the
second case, an attempt is made to consider solu-
tions in a broad area of the search space. The first
Tabu Search algorithm implemented for the TSP
appears to be the one described by Glover [23,29].
Limited results for this implementation and vari-
ants on it were reported by Glover [26]. Other Tabu
Search algorithms for the TSP are presented in [74].

� Genetic Algorithms (GAs) are search procedures
based on the mechanics of natural selection and nat-
ural genetics. The first GAwas developed by John H.
Holland in the 1960s to allow computers to evolve
solutions to difficult search and combinatorial prob-
lems, such as function optimization and machine
learning [38]. Genetic algorithms offer a particularly
attractive approach for problems like traveling sales-
man problem since they are generally quite effec-
tive for rapid global search of large, non-linear and

poorly understood spaces. Moreover, genetic algo-
rithms are very effective in solving large-scale prob-
lems. Genetic algorithms mimic the evolution pro-
cess in nature. GAs are based on an imitation of the
biological process in which new and better popu-
lations among different species are developed dur-
ing evolution. Thus, unlike most standard heuris-
tics, GAs use information about a population of so-
lutions, called individuals, when they search for bet-
ter solutions. A GA is a stochastic iterative proce-
dure that maintains the population size constant in
each iteration, called a generation. Their basic oper-
ation is the mating of two solutions in order to form
a new solution. To form a new population, a bi-
nary operator called crossover, and a unary opera-
tor, called mutation, are applied [61,62]. Crossover
takes two individuals, called parents, and produces
two new individuals, called offsprings, by swapping
parts of the parents. Genetic algorithms for the TSP
are presented in [9,51,59,64,67].

� Greedy Randomized Adaptive Search Procedure -
GRASP [66] is an iterative two phase search method
which has gained considerable popularity in com-
binatorial optimization. Each iteration consists of
two phases, a construction phase and a local search
procedure. In the construction phase, a randomized
greedy function is used to build up an initial solu-
tion. This randomized technique provides a feasi-
ble solution within each iteration. This solution is
then exposed for improvement attempts in the local
search phase. The final result is simply the best solu-
tion found over all iterations. Greedy Randomized
Adaptive Search Procedure algorithms for the TSP
are presented in [50,51].

� The use of Artificial Neural Networks to find good
solutions to combinatorial optimization problems
has recently caught some attention. A neural net-
work consists of a network [57] of elementary nodes
(neurons) that are linked through weighted con-
nections. The nodes represent computational units,
which are capable of performing a simple compu-
tation, consisting of a summation of the weighted
inputs, followed by the addition of a constant called
the threshold or bias, and the application of a non-
linear response (activation) function. The result of
the computation of a unit constitutes its output. This
output is used as an input for the nodes to which



Heuristic and Metaheuristic Algorithms for the Traveling Salesman Problem H 1503

it is linked through an outgoing connection. The
overall task of the network is to achieve a certain
network configuration, for instance a required in-
put–output relation, by means of the collective com-
putation of the nodes. This process is often called
self–organization. Neural Networks algorithms for
the TSP are presented in [4,6,53,69].

� The Ant Colony Optimization (ACO)metaheuris-
tic is a relatively new technique for solving com-
binatorial optimization problems (COPs). Based
strongly on the Ant System (AS) metaheuristic de-
veloped by Dorigo, Maniezzo and Colorni [19], ant
colony optimization is derived from the foraging
behaviour of real ants in nature. The main idea of
ACO is to model the problem as the search for
a minimum cost path in a graph. Artificial ants walk
through this graph, looking for good paths. Each ant
has a rather simple behavior so that it will typically
only find rather poor-quality paths on its own. Bet-
ter paths are found as the emergent result of the
global cooperation among ants in the colony. An
ACO algorithm consists of a number of cycles (it-
erations) of solution construction. During each it-
eration a number of ants (which is a parameter)
construct complete solutions using heuristic infor-
mation and the collected experiences of previous
groups of ants. These collected experiences are rep-
resented by a digital analogue of trail pheromone
which is deposited on the constituent elements of
a solution. Small quantities are deposited during
the construction phase while larger amounts are de-
posited at the end of each iteration in proportion
to solution quality. Pheromone can be deposited
on the components and/or the connections used in
a solution depending on the problem. Ant Colony
Optimization algorithms for the TSP are presented
in [16,18,19,70].

� One way to invest extra computation time is to ex-
ploit the fact that many local improvement heuris-
tics have random components, even if in their ini-
tial tour construction phase. Thus, if one runs the
heuristic multiple times he will get different results
and can take the best. The Iterated Lin Kernighan
algorithm (ILK) [54] has been proposed by John-
son [39] and it is considered to be one of the best
algorithms for obtaining a first local minimum. To
improve this local minimum, the algorithm exam-

ines other local minimum tours ‘near’ the current
local minimum. To generate these tours, ILK first
applies a random and unbiased nonsequential 4-opt
exchange to the current local minimum and then
optimizes this 4-opt neighbor using the LK algo-
rithm. If the tour obtained by this process is bet-
ter than the current local minimum then ILKmakes
this tour the current local minimum and continues
from there using the same neighbor generation pro-
cess. Otherwise, the current local minimum remains
as it is and further random 4-opt moves are tried.
The algorithm stops when a stopping criterion based
either on the number of iterations or the computa-
tional time is satisfied. Two other approaches are the
Iterated 3-opt and the Chained Lin-Kernighan [5],
where random kicks are generated from the solution
and from these new points the exploration for a bet-
ter solution is continued [40].

� Ejection Chain Method provides a wide variety of
reference structures, which have the ability to gener-
ate moves not available to neighborhood search ap-
proaches traditionally applied to TSP [63,64]. Ejec-
tion Chains are variable depth methods that gener-
ate a sequence of interrelated simple moves to cre-
ate a more complex compound move. An ejection
consists of a succession of operations performed
on a given set of elements, where the mt operation
changes the state of one or more elements which are
said to be ejected in themtC1 operations. Of course,
there is a possibility to appear changes in the state
of other elements, which will lead to other ejections,
until no more operations can be made [27]. Other
Ejection Chain Algorithms are presented in [20,21].

� Scatter Search is an evolutionary strategy originally
proposed by Glover [28,30]. Scatter Search operates
on a set of reference solutions to generate a new
set of solutions by weighted linear combinations of
structured subset of solutions. The reference set is
required to be made up of high quality and diverse
solutions and the goal is to produce weighted cen-
ters of selected subregions that project these centers
into regions of the solution space that are to be ex-
plored by auxiliary heuristic procedures.

� Path Relinking [28,30], combines solutions by gen-
erating paths between them using local search
neighborhoods, and selecting new solutions en-
countered along these paths.
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� Guided Local Search (GLS), originally proposed by
Voudouris and Chang [71,72], is a general optimiza-
tion technique suitable for a wide range of combina-
torial optimization problems. The main focus is on
the exploitation of problem and search–related in-
formation to effectively guide local search heuristics
in the vast search spaces of NP-hard optimization
problems. This is achieved by augmenting the objec-
tive function of the problem to be minimized with
a set of penalty terms which are dynamically manip-
ulated during the search process to steer the heuris-
tic to be guided. GLS augments the cost function of
the problem to include a set of penalty terms and
passes this, instead of the original one, forminimiza-
tion by the local search procedure. Local search is
confined by the penalty terms and focuses attention
on promising regions of the search space. Iterative
calls are made to local search. Each time local search
gets caught in a local minimum, the penalties are
modified and local search is called again tominimize
the modification cost function. Guided Local Search
algorithms for the TSP are presented in [71,72].

� Noising Method was proposed by Charon and
Hudry [13] and is a metaheuristic where if it is
wanted to minimize the function f 1, this method do
not take the true values of f 1 into account but it con-
siders that they are perturbed in some way by noises
in order to get a noised function f 1noised. During the
run of the algorithm, the range of the perturbing
noises decreases (typically to zero), so that, at the
end, there is no significant noise and the optimiza-
tion of f 1noised leads to the same solution as the one
provided by a descent algorithm applied to f 1 with
the same initial solution. This algorithm was applied
to the Traveling Salesman Problem by Charon and
Hudry [14].

� Particle Swarm Optimization (PSO) is a popu-
lation-based swarm intelligence algorithm. It was
originally proposed by Kennedy and Eberhart as
a simulation of the social behavior of social organ-
isms such as bird flocking and fish schooling [44].
PSO uses the physical movements of the individuals
in the swarm and has a flexible and well-balanced
mechanism to enhance and adapt to the global and
local exploration abilities. PSO algorithms for the
solution of the Traveling Salesman Problem are pre-
sented in [32,47,73].

� Variable Neighborhood Search (VNS) is a meta-
heuristic for solving combinatorial optimization
problems whose basic idea is systematic change of
neighborhood within a local search [36]. Variable
Neighborhood Search algorithms for the TSP are
presented in [52].
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Introduction

Heuristic search [7,9] is a common technique for find-
ing a solution in a decision tree or graph containing one
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or more solutions. Many applications in operations re-
search and artificial intelligence rely on heuristic search
as their primary solution method.

Heuristic search techniques can be classified into
two broad categories: depth-first search (DFS) and best-
first search (BFS). As a consequence of its better infor-
mation base, BFS usually examines fewer nodes but oc-
cupies more storage space for maintaining the already
explored nodes.

Depth-First Search

DFS expands an initial state by generating its immedi-
ate successors. At each subsequent step, one of the most
recently generated successors is selected and expanded.
At terminal states, or when it can be determined that
the current state does not lead to a solution, the search
backtracks, that is, the node expansion proceeds with
the next most recently generated state. Practical imple-
mentations use a stack data structure for maintaining
the states (nodes) on the path to the currently explored
state. The space complexity of the stack, O(d), increases
only linearly with the search depth d.

Backtracking is the most rudimentary variant of
DFS. It terminates as soon as any solution has been
found; hence, there is no guarantee for finding an
optimal (least-cost) solution. Moreover, backtracking
might not terminate in graphs containing cycles or
when the search depth is unbounded.

Depth-first branch and bound (DFBB) [6] employs
a heuristic function to eliminate parts of the search
space that cannot contain an optimal solution. It con-
tinues after finding a first solution until the search space
is completely exhausted. Whenever a better solution is
found, the current solution path and its value are up-
dated. Inferior subtrees, i. e., subtrees that are known to
be worse than the current solution, are eliminated.

The alpha-beta algorithm [2] used in game tree
searching is a variant of DFBB that operates on trees
with alternating levels of AND and OR nodes [5]. Be-
cause the strength of play correlates to the depth of the
search, much effort has been spent on devising efficient
parallel implementations (� parallel heuristic search).

Best-First Search

BFS sorts the sequence of node expansions according to
a heuristic function. The A* search algorithm [7] uses

a heuristic evaluation function f (n) = g(n)+ h(n) to de-
cide which successor node n to expand next. Here, g(n)
is the cost of the path from the initial state to the cur-
rent node n and h(n) is the estimated completion cost
to a nearest goal state. If h does not overestimate the re-
maining cost, A* is guaranteed to find an optimal (least-
cost) solution: it is said to be admissible. It does so with
a minimal number of node expansions [9]—no other
search algorithm (with the same heuristic h) can do bet-
ter. This is possible, because A* keeps the search graph
in memory, occupying O(wd) memory cells for trees of
width w and depth d.

Best-first frontier search [4] also finds an optimal
solution, but with a much lower space complexity than
A*. It only keeps the frontier nodes in memory and dis-
cards the interior (closed) nodes. Care must be taken
to ensure that the search frontier does not contain gaps
that would allow the search to leak back into interior re-
gions. The memory savings are most pronounced in di-
rected acyclic graphs. In the worst case, that is, in trees
of width w, it still saves a fraction of 1/w of the nodes
that BFS would need to store.

Iterative-deepening A* (IDA*) [3] simulates A*’s
best-first node expansion by a series of DFSs, each with
the cost-bound f (n) increased by the minimal amount.
The cost-bound is initially set to the heuristic estimate
of the root node, h (root). Then, for each iteration, the
bound is increased to the minimum value that exceeded
the previous bound. Like A* , IDA* is guaranteed to
find an optimal solution [3], provided the heuristic es-
timate function h is admissible and never overestimates
the path to the goal. IDA* obeys the same asymptotic
branching factor as A* [7], if the number of newly
expanded nodes grows exponentially with the search
depth [3]. This growth rate, the heuristic branching fac-
tor, depends on the average number of applicable op-
erators per node and the discrimination power of the
heuristic function h.

Applications

Typical applications of heuristic search techniques may
be found in many areas—not only in the fields of ar-
tificial intelligence and operations research, but also in
other parts of computer science.

In the two-dimensional rectangular cutting-stock
problem [1], we are given a set Rs = {(li ,wi), i = 1,. . . ,m}
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of m rectangles of width wi and length li that are to
be cut out of a single rectangular stock sheet S. Assum-
ing that S is of width W and that the theoretically un-
bounded length is L, the problem is to find an optimal
cut with minimal length expansion. Since the elements
Ri are cut after the cutting pattern has been determined,
we can look at the problem as a bin-packing or vehicle-
routing problem, which are also known to be nondeter-
ministic polynomial-time (NP) complete [8].

Very large scale integration (VLSI) floorplan opti-
mization is a stage in the design of VLSI chips, where
the dimensions of the basic building blocks (cells) must
be determined, subject to the minimization of the to-
tal chip layout area. This can be done with a BFS or
a DFBB approach. Again, only small problem cases can
be solved optimally, because VLSI floorplan optimiza-
tion is also NP-complete.

In the satisfiability problem, it must be determined
whether a Boolean formula containing binary vari-
ables in conjunctive normal form is satisfiable, that is,
whether an assignment of truth values to the variables
exists for which the formula is true.

The 15-puzzle benchmark in single-agent game-tree
search consists of 15 square tiles located in a square
tray of size 4 × 4. One square, the “blank square,” is
kept empty so that an orthogonally adjacent tile can
slide into its position, thus leaving an empty position
at its origin. The problem is to re-arrange a given ini-
tial configuration with the fewest number of moves into
a goal configuration without lifting one tile over an-
other. While it would seem easy to obtain any solution,
finding optimal (shortest) solutions is NP-complete.
The 15-puzzle spawns a search space of 16! 	 2�1013

states.
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Throughout this article, G = (V , E) is an arbitrary undi-
rected and weighted graph unless otherwise specified,
where V = (1, . . . , n} is the vertex set of G and E � V ×
V is its edge set. For each vertex i 2 V , a positive weight
wi is associated with i, collected in the weight vector w
2 Rn. For a subset S � V , the weight of S is defined as
W(S) =

P
i 2 S wi, and G(S) = (S, E \ S × S) is the sub-

graph induced by S. The cardinality of S, i. e., the num-
ber of its vertices, will be denoted by |S|.

A graph G = (V , E) is complete if all its vertices are
pairwise adjacent, i. e. 8i, j 2 V with i 6D j, we have (i,
j) 2 E. A clique C is a subset of V such that G(C) is
complete. The clique number of G, denoted by !(G)
is the cardinality of the maximum clique. The maxi-
mum clique problem asks for cliques of maximum car-
dinality. The maximum weight clique problem asks for
cliques of maximum weight. Given the weight vector
w 2 Rn, the weighted clique number is the total weight
of the maximum weight clique, and will be denoted by
!(G, w).

We should distinguish a maximum clique from
a maximal clique. A maximal clique is one that is
not a proper subset of any other clique. A maximum
(weight) clique is a maximal clique that has the maxi-
mum cardinality (weight).

An independent set (also called stable set or vertex
packing) is a subset of V whose elements are pairwise
nonadjacent. The maximum independent set problem
asks for an independent set of maximum cardinality.
The size of a maximum independent set is the stability
number of G, (denoted by ˛(G)). The maximum weight
independent set problem asks for an independent set
of maximum weight. Given the weight vector w 2 Rn,
the weighted stability number, denoted ˛(G, w), is the
weight of the maximum weight independent set.

The complement graph of G= (V , E) is the graph
G D (V ; E), where E D f(i; j) : i; j 2 V ; i ¤
j and (i; j) … Eg. It is easy to see that S is a clique
of G if and only if S is an independent set of G. Any
result or algorithm obtained for one of the two prob-
lems has its equivalent forms for the other one. Hence
˛(G) D !(G), more generally, ˛(G;w) D !(G;w).

The maximum clique and independent set prob-
lems are well-known examples of intractable combi-
natorial optimization problems [18]. Apart from the
theoretical interest around these problems, they also
find practical applications in such diverse domains as

computer vision, experimental design, information re-
trieval, fault tolerance, etc. Moreover, many important
problems turn out to be easily reducible to them, and
these include, for example, the Boolean satisfiability
problem, the subgraph isomorphism problem, and the
vertex covering problem. The maximum clique prob-
lem has also a certain historical value, as it was one of
the first problems shown to beNP-complete in the now
classical paper of R.M. Karp on computational com-
plexity [64].

Due to their inherent computational complexity,
exact algorithms are guaranteed to return a solution
only in a time which increases exponentially with
the number of vertices in the graph, and this makes
them inapplicable even to moderately large problem
instances. Moreover, a series of recent theoretical re-
sults show that the problems are in fact difficult to solve
even in terms of approximation. Strong evidence of this
fact came in 1991, when it was proved in [32] that
if there is a polynomial time algorithm that approxi-
mates the maximum clique within a factor of 2l og1��n ,
then any NP-hard problem can be solved in ‘quasipoly-
nomial’ time (i. e., in 2l ogO(1)n time). The result was
further refined in [6,7] one year later. Specifically, it
was proved that there exists an � > 0 such that no
polynomial time algorithm can approximate the size
of the maximum clique within a factor of n� , unless
P = NP. Developments along these lines can be found
in [14,15,49].

In light of these negative results, much effort has re-
cently been directed towards devising efficient heuris-
tics formaximum clique and independent set, for which
no formal guarantee of performance may be provided,
but are anyway of interest in practical application. Lack-
ing (almost by definition) a general theory of how these
algorithms work, their evaluation is essentially based on
massive experimentation. In order to facilitate compar-
isons among different heuristics, a set of benchmark
graphs arising from different applications and prob-
lems has recently been constructed in conjunction with
the 1993 DIMACS challenge on cliques, coloring and
satisfiability [63].

In this article we provide an informal survey of re-
cent heuristics for maximum clique and related prob-
lems, and up-to-date bibliographic pointers to the rele-
vant literature. A more comprehensive review and bib-
liography can be found in [18].
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Sequential Greedy Heuristics

Many approximation algorithms in the literature for
the maximum clique problem are called sequential
greedy heuristics. These heuristics generate a maximal
clique through the repeated addition of a vertex into
a partial clique, or the repeated deletion of a vertex from
a set that is not a clique. Decisions on which vertex to be
added in or moved out next are based on certain indica-
tors associated with candidate vertices as, for example,
the vertex degree. There is also a distinction between
heuristics that update the indicators every time a vertex
is added in or moved out, and those that do not. Ex-
amples of such heuristics can be found in [62,89]. The
differences among these heuristics are their choice of
indicators and how indicators are updated. A heuristic
of this type can run very fast.

Local Search Heuristics

Let us define CG to be the set of all the maximal cliques
of G. Basically, a sequential greedy heuristic finds one
set in CG, hoping it is (close to) the optimal set, and
stops. A possible way to improve our approximation
solutions is to expand the search in CG. For example,
once we find a set S 2 C G, we can search its ‘neigh-
bors’ to improve S. This leads to the class of the local
search heuristics [2]. Depending on the neighborhood
structure and how the search is performed, different lo-
cal search heuristics result.

A well-known class of local search heuristics in the
literature is the k-interchange heuristics. They are based
on the k-neighbor of a feasible solution. In the case of
the maximum clique problem, a set C 2 CG is a k-
neighbor of S if |C M S| � k, where k � |S|. A k-
interchange heuristic first finds a maximal clique S 2
CG, then it searches all the k-neighbors of S and re-
turns the best clique found. Clearly, the main factors
for the complexity of this class of heuristics are the size
of the neighborhood and the searches involved. For ex-
ample, in the k-interchange heuristic, the complexity
grows roughly with O(nk).

A class of heuristics designed to search various sets
of CG is called the randomized heuristics. The main in-
gredient of this class of heuristics is the part that finds
a random set in CG. A possible way to do that is to in-
clude some random factors in the generation of a set of
CG. A randomized heuristic runs a heuristic (with ran-

dom factors included) a number of times to find differ-
ent sets over CG. For example, we can randomize a se-
quential greedy heuristic and let it run N times. The
complexity of a randomized heuristic depends on the
complexity of the heuristic and the number N.

An elaborated implementation of the randomized
heuristic for the maximum independent set problem
can be found in [33], where local search is combined
with randomized heuristic. The computational results
in it indicated that the approach was effective in find-
ing large cliques of randomly generated graphs. A dif-
ferent implementation of a randomized algorithm for
the maximum independent set problem can be found
in [5].

Advanced Search Heuristics

Local search algorithms are only capable of finding lo-
cal solutions of an optimization problem. Powerful vari-
ations of the basic local search procedure have been de-
veloped which try to avoid this problem, many of which
are inspired from various phenomena occurring in na-
ture.

Simulated Annealing

In condensed-matter physics, the term ‘annealing’
refers to a physical process to obtain a pure lattice struc-
ture, where a solid is first heated up in a heat bath un-
til it melts, and next cooled down slowly until it solidi-
fies into a low-energy state. During the process, the free
energy of the system is minimized. Simulated anneal-
ing, introduced in 1983 by S. Kirkpatrick, C.D. Gelatt
and M.P. Vecchi [65], is a randomized neighborhood
search algorithm based on the physical annealing pro-
cess. Here, the solutions of a combinatorial optimiza-
tion problem correspond to the states of the physical
system, and the cost of a solution is equivalent to the
energy of the state.

In its original formulation, simulated annealing
works essentially as follows. Initially, a tentative solu-
tion in the state space is somehow generated. A new
neighboring state is then produced from the previous
one and, if the value of the cost function f improves,
the new state is accepted, otherwise it is accepted with
probability exp{� f /�}, where � f is the difference of
the cost function between the new and the current state,
and � is a parameter usually called the temperature in
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analogy with physical annealing, which is varied care-
fully during the optimization process. The algorithm
proceeds iteratively this way until a stopping condition
is met. One of the critical aspects of the algorithm re-
lates to the choice of the proper ‘cooling schedule,’ i. e.,
how to decrease the temperature as the process evolves.
While a logarithmic slow cooling schedule (yielding an
exponential time algorithm) provably guarantees the
exact solution, faster cooling schedules, producing ac-
ceptably good results, are in widespread use. Introduc-
tory textbooks describing both theoretical and practical
issues of the algorithm are [1,66].

E. Aarts and J. Korst [1], without presenting any ex-
perimental result, suggested the use of simulated an-
nealing for solving the independent set problem, using
a penalty function approach. Here, the solution space
is the set of all possible subsets of vertices of the graph
G, and the problem is formulated as one of maximizing
the cost function f (V 0) = |V 0| � � |E0|, where |E0| is the
number of edges in G(V 0), and � is a weighting factor
exceeding 1.

M. Jerrum [61] conducted a theoretical analysis of
the performance of a clique-finding Metropolis process,
i. e., simulated annealing at fixed temperature, on ran-
dom graphs. He proved that the expected time for the
algorithm to find a clique that is only slightly bigger
than that produced by a naive greedy heuristic grows
faster than any polynomial in the number of vertices.
This suggests that ‘true’ simulated annealing would be
ineffective for the maximum clique problem.

Jerrum’s conclusion seems to be contradicted by
practical experience. In [56], S. Homer and M. Peinado
compare the performance of three heuristics, namely
the greedy heuristic developed in [62], a random-
ized version of the Boppana–Halldórsson subgraph-
exclusion algorithm [24], and simulated annealing,
over very large graphs. The simulated annealing algo-
rithm was essentially that proposed by Aarts and Korst,
with a simple cooling schedule. This penalty function
approach was found to work better than the method in
which only cliques are considered, as proposed in [61].
The algorithms were tested on various random graphs
as well as on DIMACS benchmark graphs. The authors
ran the algorithms over an SGI workstation for graphs
with up to 10,000 vertices, and on a Connection Ma-
chine for graphs with up to 70,000 vertices. The overall
conclusion was that simulated annealing outperforms

the other competing algorithms; it also ranked among
the best heuristics for maximum clique presented at the
1993 DIMACS challenge [63].

Neural Networks

Artificial neural networks (often simply referred to as
‘neural networks’) are massively parallel, distributed
systems inspired by the anatomy and physiology of the
cerebral cortex, which exhibit a number of useful prop-
erties such as learning and adaptation, universal ap-
proximation, and pattern recognition (see [50,52] for
an introduction).

In the mid 1980s, J.J. Hopfield and D.W. Tank [57]
showed that certain feedback continuous neural mod-
els are capable of finding approximate solutions to dif-
ficult optimization problems such as the traveling sales-
man problem [57]. This application was motivated by
the property that the temporal evolution of these mod-
els is governed by a quadratic Liapunov function (typi-
cally called ‘energy function’ because of its analogy with
physical systems) which is iteratively minimized as the
process evolves. Since then, a variety of combinatorial
optimization problems have been tackled within this
framework. The customary approach is to formulate
the original problem as one of energy minimization,
and then to use a proper relaxation network to find
minimizers of this function. Almost invariably, the al-
gorithms developed so far incorporate techniques bor-
rowed from statistical mechanics, in particular mean
field theory, which allow one to escape from poor local
solutions. We mention the articles [69,82] and the text-
book [88] for surveys of this field. In [1], an excellent in-
troduction to a particular class of neural networks (the
Boltzmann machine) for combinatorial optimization is
provided.

Early attempts at encoding the maximum clique and
related problems in terms of a neural network were al-
ready done in the late 1980s in [1,12,44,83], and [84]
(see also [85]). However, little or no experimental re-
sults were presented, thereby making it difficult to eval-
uate the merits of these algorithms. In [68], F. Lin and
K. Lee used the quadratic zero-one formulation from
[78] as the basis for their neural network heuristic. On
random graphs with up to 300 vertices, they found their
algorithm to be faster than the implicit enumerative al-
gorithm in [26], while obtaining slightly worse results
in terms of clique size.
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T. Grossman [45] proposed a discrete, determinis-
tic version of the Hopfield model for maximum clique,
originally designed for an all-optical implementation.
Themodel has a threshold parameter which determines
the character of the stable states of the network. The
author suggests an annealing strategy on this parame-
ter, and an adaptive procedure to choose the network’s
initial state and threshold. On DIMACS graphs the al-
gorithm performs satisfactorily but it does not compare
well with more powerful heuristics such as simulated
annealing.

A. Jagota [58] developed several variations of the
Hopfield model, both discrete and continuous, to ap-
proximate maximum clique. He evaluated the per-
formance of his algorithms over randomly generated
graphs as well as on harder graphs obtained by gen-
erating cliques of varying size at random and taking
their union. Experiments on graphs coming from the
Solomonoff–Levin, or ‘universal’ distribution are also
presented in [59]. The best results were obtained us-
ing a stochastic steepest descent dynamics and a mean-
field annealing algorithm, an efficient deterministic
approximation of simulated annealing. These algo-
rithms, however, were also the slowest, and this moti-
vated Jagota et al. [60] to improve their running time.
The mean-field annealing heuristic was implemented
on a 32-processor Connection Machine, and a two-
temperature annealing strategy was used. Addition-
ally, a ‘reinforcement learning’ strategy was developed
for the stochastic steepest descent heuristic, to auto-
matically adjust its internal parameters as the process
evolves. On various benchmark graphs, all their algo-
rithms obtained significantly larger cliques than other
simpler heuristics but ran slightly slower. Compared
to more sophisticated heuristics, they obtained signifi-
cantly smaller cliques on average but were considerably
faster.

M. Pelillo [80] takes a completely different approach
to the problem, by exploiting a continuous formulation
of maximum clique and the dynamical properties of the
so-called relaxation labeling networks. His algorithm is
described in the next section.

Genetic Algorithms

Genetic algorithms are parallel search procedures in-
spired from the mechanisms of evolution in natural

systems [45,55]. In contrast to more traditional op-
timization techniques, they work on a population of
points, which in the genetic algorithm terminology, are
called chromosomes or individuals. In the simplest and
most popular implementation, chromosomes are sim-
ply long strings of bits. Each individual has an associ-
ated ‘fitness’ value which determines its probability of
survival in the next ‘generation’: the higher the fitness,
the higher the probability of survival. The genetic algo-
rithm starts out with an initial population of members
generally chosen at random and, in its simplest ver-
sion, makes use of three basic operators: reproduction,
crossover and mutation. Reproduction usually consists
of choosing the chromosomes to be copied in the next
generation according to a probability proportional to
their fitness. After reproduction, the crossover operator
is applied between pairs of selected individuals to pro-
duce new offsprings. The operator consists of swapping
two ormore subsegments of the the strings correspond-
ing to the two chosen individuals. Finally, the mutation
operator is applied, which randomly reverses the value
of every bit within a chromosome with a fixed probabil-
ity. The procedure just described is sometimes referred
to as the ‘simple’ genetic algorithm [45].

One of the earliest attempts to solve the maximum
clique problem using genetic algorithms was done in
1993 by B. Carter and K. Park [27]. After showing
the weakness of the simple genetic algorithm in find-
ing large cliques, even on small random graphs, they
introduced several modifications in an attempt to im-
prove performance. However, despite their efforts they
did not get satisfactory results, and their general con-
clusion was that genetic algorithms need to be heavily
customized in order to be competitive with traditional
approaches, and that they are computationally very ex-
pensive. In a later study [79], genetic algorithms were
proven to be less effective than simulated annealing. At
almost the same time, T. Bäck and S. Khuri [8], work-
ing on the maximum independent set problem, arrived
at the opposite conclusion. By using a straightforward,
general-purpose genetic algorithm called GENEsYs and
a suitable fitness function which included a graded
penalty term to penalize infeasible solutions, they got
interesting results over random and regular graphs with
up to 200 vertices. These results indicate that the choice
of the fitness function is crucial for genetic algorithms
to provide satisfactory results.
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A.S. Murthy et al. [74] also experimented with a ge-
netic algorithm using a novel ‘partial copy crossover’,
and a modified mutation operator. However, they pre-
sented results over very small (i. e., up to 50 vertices)
graphs, thereby making it difficult to properly evaluate
the algorithm.

T.N. Bui and P.H. Eppley [25] obtained encourag-
ing results by using a hybrid strategy which incorpo-
rates a local optimization step at each generation of the
genetic algorithm, and a vertex-ordering preprocessing
phase. They tested the algorithm over some DIMACS
graphs getting results comparable to that in[39]

Instead of using the standard binary representation
for chromosomes, J.A. Foster and T. Soule [36] em-
ployed an integer-based encoding scheme. Moreover,
they used a time weighting fitness function similar in
spirit to those in [27]. The results obtained are inter-
esting, but still not comparable to those obtained using
more traditional search heuristics.

C. Fleurent and J.A. Ferland [35] developed
a general-purpose system for solving graph coloring,
maximum clique, and satisfiability problems. As far
as the maximum clique problem is concerned, they
conducted several experiments using a hybrid genetic
search scheme which incorporates tabu search and
other local search techniques as alternative mutation
operators. The results presented are encouraging, but
running time is quite high.

In [53], M. Hifi modifies the basic genetic algorithm
in several aspects:
a) a particular crossover operator creates two new dif-

ferent children;
b) the mutation operator is replaced by a spe-

cific heuristic feasibility transition adapted to the
weighted maximum stable set problem.

This approach is also easily parallelizable. Experimen-
tal results on randomly generated graphs and also some
(unweighted) instances from the DIMACS testbed [63]
are reported to validate this approach.

Finally, E. Marchiori [71] has developed a sim-
ple heuristic-based genetic algorithm which consists
of a combination of the simple genetic algorithm and
a naive greedy heuristic procedure. Unlike previous ap-
proaches, here there is a neat division of labor, the
search for a large subgraph and the search for a clique
being incorporated into the fitness function and the
heuristic procedure, respectively. The algorithm out-

performs previous genetic-based clique finding proce-
dures over various DIMACS graphs, both in terms of
quality of solutions and speed.

Tabu Search

Tabu search, introduced independently by F. Glover
[41,42] and P. Hansen and B. Jaumard [48], is a mod-
ified local search algorithm, in which a prohibition-
based strategy is employed to avoid cycles in the search
trajectories and to explore new regions in the search
space. At each step of the algorithm, the next solution
visited is always chosen to be the best legal neighbor of
the current state, even if its cost is worse than the cur-
rent solution. The set of legal neighbors is restricted by
one or more tabu lists which prevent the algorithm to
go back to recently visited solutions. These lists are used
to store historical information on the path followed by
the search procedure. Sometimes the tabu restriction is
relaxed, and tabu solutions are accepted if they satisfy
some aspiration level condition. The standard example
of a tabu list is one which contains the last k solutions
examined, where kmay be fixed or variable. Additional
lists containing the last modifications performed, i. e.,
changes occurred when moving from one solution to
the next, are also common. These types of lists are re-
ferred to as short-term memories; other forms of memo-
ries are also used to intensify the search in a promising
region or to diversify the search to unexplored areas.
Details on the algorithm and its variants can be found
in [43] and [51].

In 1989, C. Friden et al. [37] proposed a heuristic for
the maximum independent set problem based on tabu
search. The size of the independent set to search for
is fixed, and the algorithm tries to minimize the num-
ber of edges in the current subset of vertices. They used
three tabu lists: one for storing the last visited solutions
and the other two to contain the last introduced/deleted
vertices. They showed that by using hashing for imple-
menting the first list and choosing a small value for the
dimensions of the other two lists, a best neighbor may
be found in almost constant time.

In [38,86], three variants of tabu search for maxi-
mum clique are presented. Here the search space con-
sists of complete subgraphs whose size has to be max-
imized. The first two versions are deterministic algo-
rithms in which no sampling of the neighborhood is
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performed. The main difference between the two algo-
rithms is that the first one uses just one tabu list (of the
last solutions visited), while the second one uses an ad-
ditional list (with an associated aspiration mechanism)
containing the last vertices deleted. Also, two diversi-
fication strategies were implemented. The third algo-
rithm is probabilistic in nature, and uses the same two
tabu lists and aspiration mechanism as the second one.
It differs from it because it performs a random sampling
of the neighborhood, and also because it allows formul-
tiple deletion of vertices in the current solution. Here
no diversification strategy was used. In [38,86] results
on randomly generated graphs were presented and the
algorithms were shown to be very effective. P. Soriano
and M. Gendreau [87] tested their algorithms over the
DIMACS benchmark graphs and the results confirmed
the early conclusions.

R. Battiti and M. Protasi [13] extended the tabu
search framework by introducing a reactive local search
method. They modified a previously introduced reac-
tive scheme by exploiting the particular neighborhood
structure of the maximum clique problem. In general
reactive schemes aim at avoiding the manual selection
of control parameters by means of an internal feed-
back loop. Battiti and Protasi’s algorithm adopts such
a strategy to automatically determine the so-called pro-
hibition parameter k, i. e., the size of the tabu list. Also
an explicit memory-influenced restart procedure is ac-
tivated periodically to introduce diversification. The
search space consists of all possible cliques, as in the
approach by Friden et al., and the function to be maxi-
mized is the clique size. The worst-case computational
complexity of this algorithm is O(max{n, m}), where
n and m are the number of vertices and edges of the
graph respectively. They noticed, however, that in prac-
tice, the number of operations tends to be proportional
to the average degree of the vertices of the comple-
ment graph. They tested their algorithm over many DI-
MACS benchmark graphs obtaining better results then
those presented at the DIMACS workshop in competi-
tive time.

Continuous Based Heuristics

In 1965, T.S. Motzkin and E.G. Straus [73] established
a remarkable connection between the maximum clique
problem and a certain quadratic programming prob-

lem. Let G = (V , E) be an undirected (unweighted)
graph and let � denote the standard simplex in the n-
dimensional Euclidean space Rn:

	 D
˚
x 2 Rn : xi � 0 for all i 2 V ; e>x D 1

�
;

where the letter e is reserved for a vector of appro-
priate length, consisting of unit entries (hence e>x =P

i 2 Vxi).
Now, consider the following quadratic function,

sometimes called the Lagrangian of G:

g(x) D x>AGx; (1)

where AG = (aij) is the adjacency matrix of G, i. e. the
symmetric n × n matrix where aij = 1 if (i, j) 2 E and
aij = 0 if (i, j) 62 E, and let x� be a global maximizer of g
on�. In [73] it is proved that the clique number of G is
related to g(x�) by the following formula:

!(G) D
1

1 � g(x�)
:

Additionally, it is shown that a subset of vertices S is
a maximum clique of G if and only if its characteris-
tic vector xS, which is the vector of � defined as xSi =
1/|S| if i 2 S and xSi = 0 otherwise, is a global maximizer
of g on �. In [40,81], the Motzkin–Straus theorem has
been extended by providing a characterization of max-
imal cliques in terms of local maximizers of g on�.

One drawback associated with the original Motz-
kin–Straus formulation relates to the existence of spuri-
ous solutions, i. e., maximizers of g which are not in the
form of characteristic vectors [77,81]. In principle, spu-
rious solutions represent a problem since, while provid-
ing information about the cardinality of the maximum
clique, they do not allow us to easily extract its vertices.

During the 1990s, there has been much interest
around theMotzkin–Straus and related continuous for-
mulations of the maximum clique problem. They sug-
gest in fact a fundamentally new way of solving the
maximum clique problem, by allowing us to shift from
the discrete to the continuous domain in an elegant
manner. As pointed out in [76], continuous formula-
tions of discrete optimization problems turn out to be
particularly attractive. They not only allow us to exploit
the full arsenal of continuous optimization techniques,
thereby leading to the development of new algorithms,
but may also reveal unexpected theoretical properties.
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In [77], P.M. Pardalos and A.T. Phillips developed
a global optimization approach based on the Motzkin–
Straus formulation and implemented an iterative clique
retrieval process to find the vertices of the maximum
clique. However, due to its high computational cost
they were not able to run the algorithm over graphs
with more than 75 vertices.

Pelillo [80] used relaxation labeling algorithms to
approximately determining the size of the maximum
clique using the original Motzkin–Straus formulation.
These are parallel, distributed algorithms developed
and studied in computer vision and pattern recogni-
tion, which are also surprisingly related to replicator
equations, a class of dynamical systems widely stud-
ied in evolutionary game theory and related fields [54],
Heuristics for maximum clique and independent set.
The model operates in the simplex � and possesses
a quadratic Liapunov function which drives its dynami-
cal behavior. It is these properties that naturally suggest
using them as a local optimization algorithm for the
Motzkin–Straus program. The algorithm is especially
suited for parallel implementation, and is attractive for
its operational simplicity, since no parameters need
to be determined. Extensive simulations over random
graphs with up to 2000 vertices have demonstrated the
effectiveness of the approach and showed that the algo-
rithm outperforms previous neural network heuristics.

In order to avoid time-consuming iterative proce-
dures to extract the vertices of the clique, L.E. Gibbons,
D.W. Hearn and Pardalos [39] have proposed a heuris-
tic which is based on a parameterized formulation of
the Motzkin–Straus program. They consider the prob-
lem of minimizing the function:

h(x) D
1
2
x>AGx C

 nX
iD1

xi � 1

!2

on the domain:

S(k) D

(
x 2 Rn :

nX
iD1

x2i �
1
k
; xi � 0; 8i

)
;

where k is a fixed parameter. Let x� be a global mini-
mizer of h on S(k), and let V(k) = h(x�). In [39] it is
proved that V(k) = 0 if and only if there exists an in-
dependent set S of G with size |S| � k. Moreover, the
vertices of G associated with the indices of the posi-

tive components of x� form an independent set of size
greater than or equal k.

These properties motivated the following procedure
to find a maximum independent set of G or, equiv-
alently, a maximum clique of G. Minimize the func-
tion h over S(k), for different values of k between pre-
determined upper and lower bounds. If V(k) = 0 and
V(k+ 1) 6D 0 for some k, then the maximum clique of
G has size k, and its vertices are determined by the pos-
itive components of the solution. Since minimizing h
on S(k) is a difficult problem, they developed a heuristic
based on the observation that by removing the nonneg-
ativity constraints, the problem is that of minimizing
a quadratic form over a sphere, a problemwhich is solv-
able in polynomial time. However, in so doing a heuris-
tic procedure is needed to round the approximate solu-
tions of this new problem to approximate solutions of
the original one. Moreover, since the problem is solved
approximately, we have to find the value of the spherical
constraint 1k which yields the largest independent set.
A careful choice of k is therefore needed. The resulting
algorithm was tested over various DIMACS benchmark
graphs [63] and the results obtained confirmed the ef-
fectiveness of the approach.

The spurious solution problem has been solved
in [16]. Consider the following regularized version of
function g:

bg(x) D x>AGx C
1
2
x>x (2)

which is obtained from (1) by substituting the adja-
cency matrix AG of G with

bAG D AG C
1
2
I;

where I is the identity matrix. Unlike the Motzkin–
Straus formulation, it can be proved that all maximiz-
ers ofbg on � are strict, and are characteristic vectors
of maximal/maximum cliques in the graph. In an ex-
act sense, therefore, a one-to-one correspondence exists
between maximal cliques and local maximizers ofbg in
� on the one hand and maximum cliques and global
maximizers on the other hand. In [16,20], replicator
equations are used in conjunction to this spurious-
free formulation to find maximal cliques of G. Note
that here the vertices comprising the clique are directly
given by the positive components of the converged vec-
tors, and no iterative procedure is needed to determine
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them, as in [77]. The results obtained over a set of ran-
dom as well as DIMACS benchmark graphs were en-
couraging, especially considering that replicator equa-
tions do not incorporate anymechanism to escape from
local optimal solutions. This suggests that the basins
of attraction of the global solution with respect to the
quadratic functions g andbg are quite large; for a thor-
ough empirical analysis see also [23]. One may won-
der whether a subtle choice of initial conditions and/or
a variant of the dynamics may significantly improve the
results, but experiments in [22] indicate this is not the
case.

In [19] the properties of the following function are
studied:

bg˛(x) D x>AGx C ˛x>x:

It is shown that when ˛ is positive all the properties
enjoyed by the standard regularization approach [16]
hold true. Specifically, in this case a one-to-one cor-
respondence between local/global maximizers in the
continuous space and local/global solutions in the dis-
crete space exists. For negative ˛’s an interesting pic-
ture emerges: as the absolute value of ˛ grows larger, lo-
cal maximizers corresponding to maximal cliques dis-
appear. In [19], bounds on the parameter ˛ are de-
rived which affect the stability of these solutions. These
results have suggested an annealed replication heuris-
tic, which consists of starting from a large negative
˛ and then properly reducing it during the optimiza-
tion process. For each value of ˛ standard replicator
equations are run in order to obtain local solutions of
the corresponding objective function. The rationale be-
hind this idea is that for values of ˛ with a proper
large absolute value only local solutions correspond-
ing to large maximal cliques will survive, together with
various spurious maximizers. As the value of ˛ is re-
duced, spurious solutions disappear and smaller max-
imal cliques become stable. An annealing schedule is
proposed which is based on the assumption that the
graphs being considered are random. In this respect,
the proposed procedure differs from usual simulated
annealing approaches, which mostly use a ‘black-box’
cooling schedule. Experiments conducted over several
DIMACS benchmark graphs confirm the effectiveness
of the proposed approach and the robustness of the
annealing strategy. The overall conclusion is that the
annealing procedure does help to avoid inefficient lo-

cal solutions, by initially driving the dynamics towards
promising regions in state space, and then refining the
search as the annealing parameter is increased.

The Motzkin–Straus theorem has been generalized
to the weighted case in [40]. Note that the Motzkin–
Straus program can be reformulated as a minimization
problem by considering the function

f (x) D x>(I C AG)x;

where AG is the adjacency matrix of the complement
graph G. It is straightforward to see that if x� is a global
minimizer of f in �, then we have: !(G) = 1/f(x�).
This is simply a different formulation of the Motzkin–
Straus theorem. Given a weighted graphG = (V , E) with
weight vector w, let M(G, w) be the class of symmetric
n × nmatrices B = (bij)i, j 2 V defined as 2bij � bii + bjj if
(i, j) 62 E and bij = 0 otherwise, and bi i D 1/wi for all i
2 V .

Given the following quadratic program, which is in
general indefinite,

(
min f (x) D x>Bx
s.t. x 2 	;

(3)

in [40] it is shown that for any B 2M(G, w) we have:

!(G;w) D
1

f (x�)
;

where x� is a global minimizer of program (3). Further-
more, denote by xS the weighted characteristic vector of
S, which is a vector with coordinates xSi = wi/W(S) if
i 2 S and xSi = 0 otherwise. It can be seen that a sub-
set S of vertices of a weighted graph G is a maximum
weight clique if and only if its characteristic vector xS is
a global minimizer of (3). Notice that the matrix ICAG
belongs toM(G, e). In other words, the Motzkin–Straus
theorem turns out to be a special case of the preceding
result.

As in the unweighted case, the existence of spurious
solutions entails the lack of one-to-one correspondence
between the solutions of the continuous problem and
those of the original, discrete one. In [21] these spuri-
ous solutions are characterized and a regularized ver-
sion which avoids this kind of problems is introduced,
exactly as in the unweighted case (see also [17]). Repli-
cator equations are then used to find maximal weight
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cliques in weighted graphs, using this formulation. Ex-
periments with this approach on both random graphs
and DIMACS graphs are reported. The results obtained
are compared with those produced by a very efficient
maximum weight clique algorithm of the branch and
bound variety. The algorithm performed remarkably
well especially on large and dense graphs, and it was
typically an order of magnitude more efficient than its
competitor.

Finally, wemention the work byMassaro and Pelillo
[72], who transformed the Motzkin–Straus program
into a linear complementarity problem [31], and then
solved it using a variation of Lemke’s well-known algo-
rithm [67]. The preliminary results obtained over many
weighted and unweighted DIMACS graphs show that
this approach substantially outperforms all other con-
tinuous based heuristics.

Miscellaneous

Another type of heuristics that finds amaximal clique of
G is called the subgraph approach (see [11]). It is based
on the fact that a maximum clique C of a subgraph
G0 � G is also a clique of G. The subgraph approach
first finds a subgraph G0 � G such that the maximum
clique of G0 can be found in polynomial time. Then
it finds a maximum clique of G0 and use it as the ap-
proximation solution. The advantage of this approach
is that in finding the maximum clique C � G0, one has
(implicitly) searched many other cliques of G0 (CG0 �

CG). Because of the special structure of G0, this implicit
search can be done efficiently. In [11], G0 is a maxi-
mal induced triangulated subgraph of G. Since many
classes of graphs have polynomial algorithms for the
maximum clique problem, the same idea also applies
there. For example, the class of edge-maximal triangu-
lated subgraphs was chosen in [9,90], and [91]. Some of
the greedy heuristics, randomized heuristics and sub-
graph approach heuristics are compared in [90] and
[91] on randomly generated weighted and unweighted
graphs.

Various new heuristics were presented at the 1993
DIMACS challenge devoted to clique, coloring and sat-
isfiability [63]. In particular, in [10] an algorithm is pro-
posed which is based on the observation that finding
the maximum clique in the union of two cliques can be
done using bipartite matching techniques. In [46] re-

stricted backtracking is used to provide a trade-off be-
tween the size of the clique and the completeness of the
search. In [70] an edge projection technique is proposed
to obtain a new upper bound heuristic for the max-
imum independent set problem. This procedure was
used, in conjunction with the Balas–Yu branching rule
[11], to develop an exact branch and bound algorithm
which works well especially on sparse graphs.

See [3] for a new population-based optimization
heuristic inspired by the natural behavior of human or
animal scouts in exploring unknown regions, and ap-
plied it to maximum clique. The results obtained over
a few DIMACS graphs are comparable with those ob-
tained using continuous-based heuristics but are infe-
rior to those obtained by reactive local search.

Recently, DNA computing [4] has also emerged as
a potential technique for the maximum clique problem
[75,92]. The major advantage of DNA computing is its
high parallelism, but at present the size of graphs this
algorithm can handle is limited to a few tens.

Additional heuristics for the maximum clique/
independent set and related problems on arbitrary or
special class of graphs can be found in [28,29,30,34].

Conclusions

During the 1990s, research on the maximum clique and
related problems has yielded many interesting heuris-
tics. This article has provided an expository survey on
these algorithms and an up-to-date bibliography (as of
2000). However, the activity in this field is so extensive
that a survey of this nature is outdated before it is writ-
ten.

See also

� Graph Coloring
� Greedy Randomized Adaptive Search Procedures
� Replicator Dynamics in Combinatorial

Optimization
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We formulate a generalized local maximum principle
which gives necessary conditions for optimality of ab-
normal trajectories in optimal control problems. The
results are based on a hierarchy of primal construc-
tions of high-order approximating cones (consisting of
tangent directions for equality constraints, feasible di-
rections for inequality constraints, and directions of
decrease for the objective) and dual characterizations
of empty intersection properties of these cones (see
� High-order necessary conditions for optimality for
abnormal points). Characteristic for the theorem is that
the multiplier associated with the objective is nonzero.

We consider an optimal control problem in Bolza
form with fixed terminal time:

(OC) Minimize the functional

I(x; u) D
TZ

0

L(x(t); u(t); t) dt C `(x(T)) (1)
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subject to the constraints

ẋ(t) D f (x(t); u(t); t);

x(0) D 0; q(x(T)) D 0;
u(�) 2 U D fu 2 Lr1(0; T) : u(t) 2 Ug :

The terminal time T is fixed and we make the following
regularity assumptions on the data: L: Rn × Rm ×[0, T]
! R and f : Rn × Rm ×! [0, T] Rn are C1 in (x, u) for
every t 2 [0, T]; both functions and their derivatives are
measurable in t for every (x, u) and the functions and all
partial derivatives are bounded on compact subsets of
Rn ×Rm × [0, T]; `:Rn!R and q:Rn!Rk are C1 and
the rows of the Jacobian matrix qx (i. e. the gradients
of the equations defining the terminal constraint) are
linearly independent; U � Rm is a closed and convex
set with nonempty interior. Let

H(�0; �; x; u; t) D �0L(x; u; t)C � f (x; u; t) (2)

be the Hamiltonian for the control problem. If the
input-trajectory pair (x�, u�) is optimal for problem
(OC), then the local maximum principle [7] states that
there exist a constant �0 � 0, an absolutely continuous
function �:[0,T]! (Rn)� (which we write as a row vec-
tor), which is a solution to the adjoint equation

�̇ D �Hx (�0; �(t); x�(t); u�(t); t);

with terminal condition

�(T) D �0`x(x�(T))C �qx(x�(T)); (3)

(for some row vector � 2 (Rk)�) such that (�0, �(t)) 6D
0 for all t 2 [0, T] and the following local minimum
condition holds for all u 2 U:

hHu(�0; �(t); x�(t); u�(t); t); u � u�(t)i � 0: (4)

Input-trajectory pairs (x�, u�) for which multipli-
ers �0 and � exist such that these conditions are sat-
isfied are called (weak) extremals. If �0 > 0, then it is
possible to normalize �0 = 1 and the extremal is called
normal while extremals with �0 = 0 are called abnor-
mal. Although the terminology abnormal, which has
its origins in the calculus of variations [4], seems to
suggest that these type of extremals are an aberration,
for optimal control problems this is not the case. The
phenomenon is quite general and abnormal extremals

cannot be excluded from optimality a priori. For in-
stance, there exist optimal abnormal trajectories for the
standard problem of stabilizing the harmonic oscilla-
tor time-optimally in minimum time, a simple time-
invariant linear system.

In the abnormal case conventional necessary condi-
tions for optimality provide conditions which only de-
scribe the structure of the constraints. For example, if
there are no control constraints, then these conditions
only involve the equality constraint defined by the dy-
namics and terminal conditions as zero set of an op-
erator F: Z ! Y between Banach spaces. If F0(z�) is
not onto, but ImF0(z�) is closed (and this is always the
case for the optimal control problem) then the standard
Lagrange multiplier type necessary conditions for opti-
mality (which imply the local maximum principle [7])
can be satisfied trivially by choosing a multiplier which
annihilates the image of F0(z�) and setting all other
multipliers to zero.) The corresponding necessary con-
ditions are independent of the objective and describe
only the structure of the constraint yielding little infor-
mation about the optimality of the abnormal trajectory.

Much of the difficulty in analyzing abnormal points
in extremum problems can be traced back to the fact
that the equality constraint is typically no longer a man-
ifold near abnormal points, but intersections of man-
ifolds are common. Hence, in order to develop neces-
sary and/or sufficient conditions for optimality of ab-
normal extremals, it is imperative to analyze different
branches of the zero-set of F. Finding these branches
is at the heart of the matter. Generalizing a result of
E.R. Avakov [2,3] in [10] a high-order generalization of
the classical Lyusternik theorem is given which for gen-
eral p 2 N describes the structure of p-order tangent
directions to an operator equality constraint in a Ba-
nach space for nonregular operators under a more gen-
eral surjectivity assumption involving the first p deriva-
tives of the operator. Based on these results p-order tan-
gent cones to the equality constraint can explicitly be
calculated along critical directions which comprise the
low order terms. Combining these cones with standard
constructions of high-order cones of decrease for the
functional and high-order feasible cones to inequality
constraints, all taken along critical directions, general-
ized necessary conditions for optimality for extremum
problems in Banach spaces can be derived which al-
low to incorporate the objective with a nonzero mul-
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tiplier. Characteristic of these results is that they are
parametrized by critical directions as it is ‘natural’ near
abnormal points.

In [12] (see � High-order necessary conditions for
optimality for abnormal points) an abstract formula-
tion of these results is presented forminimization prob-
lems in Banach spaces. The main result gives a dual
characterization for the empty intersection property of
the various approximating cones along critical direc-
tions, but primal arguments using the cones themselves
are often equally effective. In this article we formulate
these abstract results for the optimal control problem,
but we only consider the so-called weak or local version
of the maximum principle. This result is weaker than
the Pontryagin maximum principle [15] in the sense
that the Pontryagin maximum principle asserts that the
Hamiltonian of the control problem is indeed mini-
mized over the control set at every time along the refer-
ence trajectory by the reference control. The local ver-
sion only gives the necessary conditions for optimality
for this property. However, it is well-known how to use
an argument of A. Ya. Dubovitskii to derive the Pon-
tryagin maximum principle from the local version [7,
Lecture 13] and a preliminary strong version of the re-
sults of this article is given in [9].

Other theories of necessary conditions which are
tailored to abnormal processes include a method
known as ‘weakening equality constraints’ introduced
in [14] and developed further in [5]. References [2,3]
are along the lines of the results described here and
give necessary conditions for optimality of abnormal
extremals based on quadratic approximations. Simi-
larly, both weak and strong versions of a second or-
der generalized maximum principle are given by the
authors in [8]. While mostly optimization related tech-
niques are used in these papers, on a different level [1]
uses differential geometric techniques to develop a the-
ory of the second variation for abnormal extremals.
They give both necessary and sufficient conditions for
so-called corank-1 abnormal extremals (extremals for
which there exists a unique multiplier) in terms of the
Jacobi equation and related Morse indices and nullity
theorems. Second order necessary conditions for op-
timality in the type of accessory problem results with-
out normality assumptions have first been given in [6].
Also, the results in [16] are derived without making
normality assumptions.

Regularity in the Equality Constraint

We model the optimal control problem (OC) in the
framework of optimization theory as a minimization
problem in a Banach space under equality and inequal-
ity constraints. Let Wn

11(0, T) denote the Banach space
of all absolutely continuous functions x: [0, T] ! Rn

with norm jxj D kx(0)k C
R T
0 kẋ(s)k ds and let

Wn
11(0; T) D Wn

11(0; T) \ fx 2 Wn
11(0; T) : x(0) D 0g :

Then the problem is to minimize the functional I
over a class A of input-trajectory pairs (x; u) 2
Wn

11(0; T) � Lm
1(0; T) which is defined by equal-

ity constraints and the convex inequality constraint
u 2 U. The equality constraints can be modeled as
F D

˚
(x; u) 2 Wn

11(0; T) � Lm
1(0; T) : F(x; u) D 0

�
where F is the operator

F : Wn
11(0; T) � Lm

1(0; T)!Wn
11(0; T) � Rk

with F(x, u) given by
0
@x(�)�

(�)Z

0

f (x(s); u(s); s) ds; q(x(T))

1
A :

It is easy to see that the operator F has continuous
Fréchet derivatives of arbitrary order. For instance,
F0(x, u) acting on (�; �) 2 Wn

11(0; T)�Lm
1(0; T) is given

by
0
@�(t)�

tZ

0

fx�C fu� ds; qx (x(T))�(T)

1
A :

All partial derivatives of f are evaluated along a refer-
ence input-trajectory pair (x, u) 2 A. The formulas for
higher order derivatives are given by equally straight-
forward multilinear forms.

We first describe the image of the operator F0(x�,
u�) for a reference input-trajectory pair (x�, u�). De-
note the fundamental matrix of the variational equation
by ˚(t, s), i. e.

@

@t
˚(t; s) D fx(x(t); u(t); t)˚(t; s);

˚(s; s) D Id:

Furthermore, let R� Rn denote the reachable subspace
of the linearized system

ḣ(t) D fx hC fuv; h(0) D 0; (5)
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at time T. It is well-known that R is a linear subspace of
Rn and that R = Rn if and only if equation (5) is com-
pletely controllable. In general we have that

Lemma 1 ImF0(x�, u�) consists of all pairs (a; b) 2
Wn

11(0; T) � Rk such that

b 2 qx(x�(T))

0
@

TZ

0

˚(T; s)ȧ(s) ds C R

1
A : (6)

In particular, ImF0(x�, u�) is closed and of finite codi-
mension.

The following characterizations of the nonregularity of
the operator F and its codimension are well-known.

Proposition 2 The codimension of F0(x�, u�) is
equal to the number of linearly independent solu-
tions to �̇(t) D ��(t) fx(x�(t); u�(t); t) which satisfy
�(t)f u(x�(t), u�(t), t) � on [0, T] and for which �(T)
is orthogonal to ker qx(x�(T)).

Proposition 3 The operator F is nonregular at � = (x�,
u�) if and only if � is an abnormal weak extremal which
satisfies Hu(0, �(t), x�(t), u�(t), t)� 0 on [0, T].

Critical Directions

We describe the set of critical directions along which
high-order tangent approximations to the equality con-
straint F can be set up. Let Z D Wn

11(0; T) � Lm
1(0; T)

and suppose an admissible process z� = (x�, u�) 2 A

and a finite sequence Hp�1 = (h1, . . . , hp � 1) 2 Zp�1
are given. The following operators allow to formalize
high-order approximations to an equality constraint at
nonregular points (see, � High-order necessary condi-
tions for optimality for abnormal points). For k = 1, . . . ,
p� 1, the directional derivatives rkF(z�)(Hk) of F at z�
along the sequence Hk = (h1, . . . , hk) are given by

kX
rD1

1
r!

0
@ X

j1C���C jrDk

F(r)(z�)(hj1 ; : : : ; hjr )

1
A (7)

and we let Gk[F](z�;Hk� 1) denote the Fréchet-
derivatives of the (k� 1)th directional derivative of F at
z� along Hk� 1. Thus formally G1[F](z�) = F0(z�) and

in general for k� 2, Gk = Gk[F](z�;Hk� 1): Z! Y , v!
Gk(v), is given by

Gk(v) D
k�1X
rD1

1
r!

�

0
@ X

j1C���C jrDk�1

F(rC1)(z�)(hj1 ; : : : ; hjr ; v)

1
A :

(8)

We also denote by Rq[F](z�;H`) those terms in the Tay-
lor expansion of F(z� +

Pp
iD1"

ihi) which are homoge-
neous of degree q � 2, but only involve vectors from
H`. The general structure of these remainders is given
by

qX
rD2

1
r!

0
BBBBB@

X
j1C���C jrDq;
1� jk�`;
1�k�r

F(r)(z�)(hj1 ; : : : ; hjr )

1
CCCCCA
: (9)

Let

Yi D

iX
kD1

ImGk[F](z�;Hk�1); i D 1; : : : ; p: (10)

The following conditions are necessary for the existence
of a p-order tangent vector along Hp� 1 [10]:
i) the first p � 1 directional derivatives of F along

Hp� 1 vanish,

r i F(z�)(Hi) D 0;8i D 1; : : : ; p � 1;

ii) the compatibility conditions

Rp�1Ci[F](z�;Hp�1) 2 Yi ;

i D 1; : : : ; p � 1;

are satisfied.
In these equations all partial derivatives of f are eval-
uated along the reference trajectory. These conditions
are also sufficient if the operator F is p-regular at z� in
direction of the sequence Hp� 1 in the sense of the fol-
lowing definition.

Definition 4 Let F: Z! Y be an operator between Ba-
nach spaces. We say the operator F is p-regular at z� in
direction of the sequence Hp� 1 2 Zp� 1 if the following
conditions are satisfied:
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A1) F: Z ! Y is (2p � 1)-times continuously Fréchet
differentiable in a neighborhood of z�.

A2) The subspaces Yi, i = 1, . . . , p, are closed.
A3) The map Gp = Gp[F](z�;Hp� 1),

Gp : Z ! Y1 �
Y2
Y1
� � � � �

Y
Yp�1

v 7! Gp(v) D
�
G1(v); 1G2(v); : : : ; p�1Gp(v)

�
;

where  i: Yi + 1 ! Yi + 1/Yi denotes the canonical
projection onto the quotient space, is onto.

In the sense of this definition 1-regularity corresponds
to the classical Lyusternik condition while 2-regularity
is similar to Avakov’s definition [3]. Under these as-
sumptions vectors hp exist which extend Hp� 1 to p-
order tangent vectors to F at z� [10,12].

For the critical directions for the objective I we fo-
cus on the least degenerate critical case and therefore
make the following assumption:
iii) I0(z�) is not identically zero andr iI(z�)(Hi) = 0 for

i = 1, . . . , p � 1.
The assumption that the first p � 1 directional deriva-
tives vanish is directly tied in with optimality. If there
exists a first nonzero directional derivative r jI(z�)(Hj)
with j < i which is positive, then z� indeed is a local
minimum for any curve z(") = z� +

Pp
iD1"

ihi + o("p),
" > 0, and none of the directions Hp� 1 is of any use in
improving the value. We restrict to " � 0 since we also
want to include inequality constraints. On the other
hand, if r jI(z�)(Hj) < 0, then Hj is indeed a direction
of decrease and arbitrary high-order extensions of this
sequence will give better values. Thus the reference tra-
jectory is not optimal.

We also need to define the critical directions for the
inequality constraintU in the optimal control problem.
More generally, we define a p-order feasible set to an
inequality constraint in a Banach space.

Definition 5 Let S� Z be a subset with nonempty in-
terior. We call v a p-order feasible vector for S at z� in
direction ofHp� 1 = (h1, . . . , hp� 1) 2 Zp� 1 if there exist
an "0 > 0 and a neighborhood V of v so that for all 0<"
� "0,

z� C
p�1X
iD1

"i hi C "
pV � S:

The collection of all p-order feasible vectors v for S at
z� in direction of the sequence Hp� 1 will be called the
p-order feasible set to S at z� in direction of the sequence
Hp� 1 and will be denoted by FS(p)(S;z�, Hp� 1).

It follows from this definition that FS(p)(S;z�, Hp� 1) is
open. It is also clear that FS(p)(S;z�, Hp� 1) is convex,
if S is. Furthermore, if hj 2 FS(j)(S;z�, Hj� 1) for some
integer j < p, then any vector v is allowed as a p-order
feasible direction and thus trivially FS(p)(S;z�, Hp � 1)
= X.

For the optimal control problem and Hp� 1 = ((�1,
�1), . . . , (�p� 1, �p� 1)) let Vp� 1 = (�1, . . . , �p� 1) 2
Lm1(0, T)p denote the sequence of controls. Then the
critical feasible directions for the convex inequality
constraintU in Lm1(0, T) consist of all Hp� 1 for which
iv) FS(p)(U;u�, Vp� 1) is nonempty.

Definition 6 We call a directionHp� 1 a p-regular crit-
ical direction for the extremum problem at z� if the op-
erator F is p-regular at z� alongHp� 1 and if conditions
(i–iv) are satisfied.

p-Order Local Maximum Principle

Theorem 7 below gives a generalized p-order version
of the maximum principle obtained from a dual char-
acterization of the fact that if (x�, u�) is optimal, then
the p-order tangent cones to the set {F = 0}, the p-order
feasible cone to U and the p-order cone of decrease
for the functional I cannot intersect. Notice that we
write covectors like  as row vectors. This is consistent
with a multiplier interpretation of the adjoint variable.
Also we denote partial derivatives by subscripts. For in-
stance, if r if (Hi) denotes the ith directional derivative
of f = f (x, u, t) with respect to the sequence Hi, then
(r if (Hi))x denotes its partial derivative in x. For exam-
ple, suppose H1 = (�1, �1). Then

r1 f (H1) D fx(x; u; t)�1 C fu(x; u; t)�1

and thus

�
r1 f (H1)

�
x D fxx (x; u; t)�1 C fux(x; u; t)�1

and

�
r1 f (H1)

�
u D fxu(x; u; t)�1 C fuu(x; u; t)�1:
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Theorem 7 (p-order local maximum principle) Sup-
pose the admissible process (x�, u�) is optimal for the
optimal control problem (OC). Then for every p-regular
critical direction Hp� 1 there exist a number �0 =
�0(Hp� 1) � 0, vectors ai = a(Hp� 1) 2 (Rk)�, i = 0,
. . . , p � 1, and absolutely continuous functions  (�) =
 (Hp� 1)(�) and �i(�) = �i(Hp� 1)(�), i = 1, . . . , p � 1,
from [0, T] into (Rn)�, which satisfy the following condi-
tions along the optimal trajectory (x�(t), u�(t), t):
a) nontriviality condition: �0 and the functional �:

Lm1(0, T)! R, � 7�! �(�), given by

TZ

0

*
�0Lu C  fu C

p�1X
iD1

�i
�
r i f (Hi)

�
u ; �

+
dt (11)

do not both vanish identically.
b) extended adjoint equation

 ̇(t) D ��0Lx� (t) fx�
p�1X
iD1

�i (t)
�
r i f (Hi)

�
x (12)

with terminal condition

 (T) D �0`x (x�(T))C a0qx (x�(T))

C

p�1X
iD1

ai
�
r i q(x�(T);Hi)

�
x : (13)

c) orthogonality conditions on the additional multipli-
ers: The functions �i(�), i = 1, . . . , p � 1, satisfy

�̇i (t) D ��i(t) fx ; �i (t) fu � 0;

�i (T) D aiqx (x�(T))
(14)

and for j = 1, . . . , i � 1, the following conditions are
satisfied for a.e. t 2 [0, T]:

�i (t)
�
r j f (Hj)

�
x D 0; (15)

�i (t)
�
r j f (Hj)

�
u D 0; (16)

ai
�
r j q(x�(1);Hj)

�
x D 0; (17)

d) separation condition: for all vectors � 2 FS(p)(U;u�,
Vp� 1) we have that

0 � �0Rp[`](Hp�1)C a0Rp[q](Hp�1)

C

p�1X
iD1

aiRpCi [q](Hp�1)

C

TZ

0

*
�0Lu C  fu C

p�1X
iD1

�i (t)
�
r i f (Hi)

�
u ; �

+
dt

C

TZ

0

�0Rp[L](Hp�1)C  (t)Rp[ f ](Hp�1)

C

p�1X
iD1

�i (t)RpCi[ f ](Hp�1) dt:

(18)

Corollary 8 The separation condition d) implies the fol-
lowing p-order local minimum condition: along (x�(t),
u�(t), t) we have for every u 2 U and a.e. t 2 [0, T]:

0 �

*
�0Lu C  (t) fu

C

p�1X
iD1

�i (t)
�
r i f (Hi)

�
u ; u � u�(t)

+
: (19)

In the case of a Lagrangian minimization problem
which has no control constraints, or more generally if
the control takes values in the interior of the control set,
the functional � vanishes identically. In this case we can
normalize �0 = 1 and we obtain the following Corollary:

Corollary 9 (p-order local maximum principle for
Lagrangian problems) Consider the optimal control
problem (OC) without control constraints (U = Rm) and
suppose the admissible process (x�, u�) is optimal. Then
for every p-regular critical direction Hp� 1 there exist
vectors ai = a(Hp� 1) 2 (Rk)�, i = 0, . . . , p� 1, and abso-
lutely continuous functions  (�) =  (Hp� 1)(�) and �i(�)
= �i(Hp� 1)(�), i = 1, . . . , p � 1, from [0, T] into (Rn)�,
which satisfy the conditions b)–d) of Theorem 7 along the
optimal trajectory (x�(t), u�(t), t) for �0 = 1. In particu-
lar, we thus have

Lu C  (t) fu C
p�1X
iD1

�i (t)
�
r i f (Hi)

�
u � 0:
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Example 10 We illustrate Theorem 7 with an example.
Consider the problem to minimize the functional I(x,
u) given by

TZ

0

h
(x1 � 1)2 C xp

2 C (x3 C 1)2 � 2
i
dt (20)

over all (x; u) 2 W3
11(0; T) � L21(0; T) subject to the

dynamics

ẋ(t) D

0
@

0
xp
1

˛xp�1
2 x3

1
AC

0
@

0 1
�1 0
0 �1

1
A
�
u1
u2

�
; (21)

initial condition x(0) = 0 and terminal constraints x1(T)
= 0 and x3(T) = 0. Here p is an integer, p � 2, and ˛
is an arbitrary real number. For simplicity we have not
imposed any control constraints.

It can easily be seen that the reference trajectory �
= (x�, u�) � (0, 0) is an abnormal extremal for each
problem. In fact, setting �(t) = (�, 0, �) with � 6D 0 and
�0 = 0 defines an adjoint vector for � such that Hu �

0. Hence F0(0, 0) is nonregular.
Theorem 7 can be used to eliminate � from opti-

mality for any p� 2. We choose Hp� 1 of the form

Hp�1 D ((�1; �1); (0; 0); � � � ; (0; 0)) (22)

with (�1, �1) 2 F0(0, 0). With this choice of directions
the compatibility conditions ii) simplify considerably
and reduce to the first condition only which becomes

TZ

0

�
�
[2]
1

�p�1 �
�
[3]
1

�
ds D 0:

Here the superscripts denote the components of the
vector �1. We satisfy this by choosing �[3]1 = � �[1]1 �

0 (i. e., �[2]1 � 0). Then choosing a nonzero �[2]1 with
zero boundary conditions defines a nontrivial vector
Hp� 1 of the form (22) for which conditions i) and ii)
in the definition of p-regular critical directions are sat-
isfied. Furthermore, it is easily seen that the operator F
is p-regular in direction ofHp� 1 at � . Finally, these di-

rections are also critical for the objective: we have I0(0,
0)(�1, �1) = 0 and furthermore

r2I(0; 0)(H2) D
1
2
I00(0; 0)((�1; �1); (�1; �1))

D

TZ

0

�
�
[1]
1

�2
C
�
�
[3]
1

�2
ds D 0

provided p > 2. Since no other I-derivatives arise in the
directional derivatives r iI(0, 0)(Hi) for i = 3, . . . , p � 1,
the direction Hp � 1 = ((�1, �1);(0, 0); � � � ;(0, 0)) with
�
[1]
1 = �[3]1 � 0 and a nonzero �[2]1 is a nonzero p-regular

critical direction for the problem to minimize I subject
to F = 0 for any p� 2.

We thus can apply Theorem 7. Since there are no con-
trol constraints we can normalize the multipliers so that
�0 = 1. The additional multipliers �i, i = 1, . . . , p� 1, are
associated with elements in the dual spaces of the quo-
tients Yi + 1/Yi (see � High-order necessary conditions
for optimality for abnormal points). But here Yi = Im
F0(0, 0) for i = 1, . . . , p � 1, and Yp is the full space.
Thus we have �i � 0 for i = 2, . . . , p � 1 and the only
nonzero multipliers are  and �p� 1 which for simplic-
ity of notation we just call �. Now (14) states that � is
an adjoint multiplier for which the conditions of the lo-
cal Maximum Principle for an abnormal extremal are
satisfied. This multiplier is unique and of the form �(t)
= (�, 0, �), but � 2 R could be zero. For the extended
adjoint equation and minimum condition (19) we need
to evaluate the directional derivatives rp� 1f (x, u)(Hi).
Straightforward, but a bit tedious calculations show that

�
r p�1 f (0; 0)(Hi)

�
x D

0
B@
0 0 0
0 0 0

0 0
�
�
[2]
1

�p�1

1
CA

and
�
r p�1 f (0; 0)(Hi)

�
u � 0:

Thus the extended minimum condition reduces to  B
� 0, the minimum condition of the weak maximum
principle. Hence also  2(t)� 0 and  1(t) =  3(t). But
now the extended adjoint equation is given by

 ̇(t) D (2; 0;�2)� �

0
B@
0 0 0
0 0 0

0 0
�
�
[2]
1

�p�1

1
CA
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and thus

4 D  ̇1(t)� ̇3(t)��
�
�
[2]
1 (t)

�p�1
D ��

�
�
[2]
1 (t)

�p�1
:

But we can certainly choose �[2]1 nonconstant to violate
this condition. This contradiction proves that � can-
not be optimal for the problem to minimize I for any
p� 2.

Conclusion

Theorem 7 is based on p-order approximations. If these
remain inconclusive, higher order approximations can
easily be set up. If the operator F is p-regular in di-
rection of Hp� 1, then given a p-regular tangent di-
rection, it is possible to set up higher order approx-
imations of arbitrary order. In fact, only a system of
p linear equations needs to be solved in every step.
These results provide a complete hierarchy of pri-
mal constructions of higher-order approximating di-
rections and dual characterizations of empty intersec-
tion properties of approximating cones which can be
used to give necessary conditions for optimality for in-
creasingly more degenerate structures. For these results
see [13].

See also

� Dynamic Programming: Continuous-time Optimal
Control

� Hamilton–Jacobi–Bellman Equation
� Pontryagin Maximum Principle
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We consider the problem of minimizing a functional I:
X ! R in a Banach space X under both equality and
inequality constraints. The inequality constraints are of
two types, either described by smooth functionals f : X
!R as P = {x 2X: f (x)� 0} or described by closed con-
vex sets C with nonempty interior. The equality con-
straints are given in operator form as Q = {x 2 X : F(x)
= 0} where F: X ! Y is an operator between Banach
spaces. Models of this type are common in optimal con-
trol problems.

The standard first order Lagrange multiplier type
necessary conditions for optimality at the point x� state
that there exist multipliers �0, . . . , �m, y� which do
not all vanish identically such that the Euler–Lagrange
equation

�0I0(x�)C
mX
jD1

� j f 0j (x�)C F 0�(x�)y� D 0; (1)

is satisfied (see for instance [7,9]). This article addresses
the case when the Fréchet-derivative F0(x�) of the op-
erator defining the equality constraint is not onto, i. e.
the regular case. In this case the classical Lyusternik
theorem [14] does not apply to describe the tangent
space to Q and (1) can be satisfied trivially by choos-
ing a nonzero multiplier y� from the annihilator of Im

F0(x�) while setting all other multipliers zero. This gen-
erates so-called abnormal points for which the stan-
dard necessary conditions for optimality only describe
the degeneration of the equality constraint without any
relation to optimality. Here we describe an approach
to high-order necessary conditions for optimality in
these cases which is based a high-order generalization
of the Lyusternik theorem [12]. By using this theo-
rem one can determine the precise structure of poly-
nomial approximations to Q at x� when the surjectiv-
ity condition on F0(x�) is not satisfied, but when in-
stead a certain operator Gp which takes into account
all derivatives up to and including order p is onto.
The order p is chosen as the minimum number for
which the operator Gp becomes onto. If Gp is onto,
then the precise structure of q-order polynomial ap-
proximations to Q at x� for any q � p can be de-
termined. This leads to the notion of high-order tan-
gent cones to the equality constraint Q at points x� in
a nonregular case. Combining these with high-order
feasible cones for the inequality constraints and high-
order cones of decrease, a generalization of theDubovit-
skii–Milyutin theorem is formulated. From this theorem
generalized necessary conditions for optimality can be
deduced which reduce to classical conditions for nor-
mal cases, but give new and nontrivial conditions for
abnormal cases.

First results of this type have been obtained for
quadratic approximations (p = 2) in [3,4,5] and [11].
Some of these conditions have been analyzed further
also in connection with sufficient conditions for opti-
mality, [1,2]. In [10] also quadratic approximations for
problems with inequality constraints are considered.
For the regular case when F0(x�) is onto second or-
der approximating sets were introduced in [6] to derive
second order necessary conditions for optimality, while
higher order necessary conditions for optimality in this
case are given, for instance, in [8] or [15]. These, how-
ever, are not the topic of this article.

A High-Order Formulation
of the Dubovitskii–Milyutin Theorem

Let X and Y be Banach spaces. Let I: X! R be a func-
tional, F: X ! Y an operator, f j: X ! R, j = 1, . . . , m,
functionals and let C � X be a closed convex set with
nonempty interior. We assume that I, the functionals f j
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and the operator F are sufficiently often continuously
Fréchet-differentiable and consider the problem

(P)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
x

I

s.t. x 2 A D
�
\m

jD1Pj

�
\ Q \ C;

Pj D
˚
x 2 X : f j(x) � 0

�

Q D fx 2 X : F(x) D 0g :

We define high-order polynomial approximations
to the admissible domain A. We denote sequences (h1,
. . . , hk) 2 Xk by Hk with the subscript giving the length
of the sequence.

Definition 1 Let Hp� 1 = (h1, . . . , hp� 1) 2 Xp� 1 and
set x(") :D x� +

Pp�1
iD1 "

ihi. We callHp� 1 a (p� 1)-order
approximating sequence to a set S � X at x� 2 Clos S,
respectively we call x:"! x("), a (p � 1)-order approx-
imating curve, if there exist an "0 > 0 and a function r
defined on [0, "0] with values in X, r: [0, "0]! X, with
the property that

x(")C r(") D x� C
p�1X
iD1

"i hi C r(") 2 S (2)

and

lim
"!0

kr(")k
"p�1

D 0: (3)

We call a (p � 1)-order approximating sequence/curve
(p� 1)-order feasible if S is an inequality constraint, re-
spectively (p � 1)-order tangent if S is an equality con-
straint.

Let x� 2 F and assume as given a (p � 1)-order ap-
proximating sequence Hp� 1 = (h1, . . . , hp� 1) 2 Xp� 1

with corresponding (p � 1)-order approximation x(")
:
D x� +

Pp�1
iD1 "

ihi. It is implicitly assumed that x� has
not been ruled out for optimality. Then we extend the
existing (p � 1)-order approximations to p-order ap-
proximations and derive the corresponding necessary
conditions for optimality. The following definitions are
direct generalizations of standard existing definitions
[7].

Definition 2 We call v0 a p-order vector of decrease for
a functional I: X! R at x� 2 X in direction of the se-
quence Hp� 1 = (h1, . . . , hp� 1) 2 Xp� 1 if there exist

a neighborhood V of v0 and a number ˛ < 0 so that for
all v 2 V we have

I

 
x� C

p�1X
iD1

"i hi C "
pv

!

D I(x(")C "pv) � I(x�)C ˛"p: (4)

The collection of all p-order vectors of decrease for I at
x� in direction of the sequence Hp� 1 will be called the
p-order set of decrease to I at x� in direction of the se-
quenceHp� 1 and will be denoted by DS(p)(I;x�,Hp� 1).

Definition 3 We call v0 a p-order feasible vector for an
inequality constraint P at x� 2 X in direction of Hp� 1

if there exist an "0 > 0 and a neighborhood V of v0 so
that for all 0 < "� "0

x� C
p�1X
iD1

"i hi C "
pV D x(")C "pV � P: (5)

The collection of all p-order feasible vectors v0 for P
at x� in direction of the sequence Hp� 1 will be called
the p-order feasible set to P at x� in direction of the se-
quenceHp� 1 and will be denoted by FS(p)(P;x�,Hp� 1).

Note that by definition the p-order set of decrease to I
and the p-order feasible set to P, both at x� in direction
of the sequence Hp� 1, are open.

Definition 4 We call hp a p-order tangent vector to an
equality constraint Q at x� in direction of the sequence
Hp� 1 ifHp = (h1, . . . , hp) 2 Xp is a p-order approximat-
ing sequence to the set Q at x� 2 Q. The collection of
all p-order tangent vectors to Q at x� in direction of the
sequence Hp� 1 will be called the p-order tangent set to
Q at x� in direction of the sequence Hp� 1 and will be
denoted by TS(p)(Q;x�, Hp� 1).

These approximating sets can be embedded into cones
in the extended state-space X × R. This has the ad-
vantage that many classical results like the Minkowski–
Farkas lemma or the annihilator lemma can be directly
applied in calculating dual cones (see also [11]). Let us
generally refer to p-order sets of decrease, feasible sets
and tangent sets as p-order approximating sets and de-
note them by AS(p)(Z;x�, Hp� 1). Then we define the
corresponding approximating cones as follows:

Definition 5 Given a p-order approximating set
AS(p)(Z;x�, Hp� 1) to a set Z � X at x� in direction



1530 H High-order Necessary Conditions for Optimality for Abnormal Points

of the sequence Hp� 1, the p-order approximating cone
to Z at x� in direction of Hp� 1, AC(p)(Z;x�, Hp� 1),
is the cone in X × R generated by the vectors (v, 1) 2
AS(p)(Z;x�,Hp� 1) × R.

Thus we talk of the p-order cone of decrease for the func-
tional I, p-order feasible cones for inequality constraints
and p-order tangent cones for equality constraints, all at
x� in direction of the sequence Hp� 1.

Definition 6 Let C � Z be a cone in a Banach space
Z with apex at 0. The dual (or polar) cone to C consists
of all continuous linear functionals � 2 Z� which are
nonnegative on C, i. e.

C� D f� 2 Z� : h�; vi � 0; 8v 2 Cg : (6)

Then we have

Theorem7 [11,13] (p-order Dubovitskii–Milyutin the-
orem). Suppose the functional I attains a local minimum
for problem (P) at x� 2 A. Let Hp� 1 = (h1, . . . , hp� 1) 2
Xp� 1 be a (p � 1)-order approximating sequence such
that the p-order cone of decrease for the functional I, the
p-order feasible cones for the inequality constraints Pj,
j = 1, . . . , m, and C, and the p-order tangent cone to
the equality constraint Q, all at x� in direction of the
sequence Hp� 1, are nonempty and convex. Then there
exist continuous linear functionals

�0 D (�0; �0) 2
�
DC(p)(I; x�;Hp�1)

��
;

� j D (� j; � j) 2
�
FC(p)( f j; x�;Hp�1)

��
;

for j = 1, . . . , m,

˝ D (�mC1; �mC1) 2
�
FC(p)(C; x�;Hp�1)

��

and

˚ D (�mC2; �mC2) 2
�
TC(p)(Q; x�;Hp�1)

��
;

all depending on Hp� 1, such that

mC2X
jD0

� j � 0;
mC2X
jD0

� j � 0 (7)

hold. Furthermore, not all the �j, j = 0, . . . , m + 2, vanish
identically.

High-Order Directional Derivatives

We describe a formalism to calculate higher derivatives
[12,13] which will be needed to describe high-order ap-
proximating cones. Let F: X ! Y be an operator be-
tween Banach spaces which is sufficiently often contin-
uously Fréchet differentiable in a neighborhood of x� 2
X and consider the Taylor expansion of F along a curve

�(") D x� C
mX
iD1

"i hi :

We have

F(�(")) D F(x�)C
mX
iD1

"ir i F(x�)(h1; : : : ; hi)Cer(");

where r iF(x�)(h1, . . . , hi) is given by

iX
rD1

1
r!

0
@ X

j1C���C jrDi

F(r)(x�)(hj1 ; : : : ; hjr )

1
A (8)

ander(") is a function of order o("m) as "! 0. Note that
r iF(x�)(h1, . . . , hi) simply collects the "i-terms in this
expansion. These terms, which we call the ith-order di-
rectional derivatives of F along the sequence Hi = (h1, . . . ,
hi), 1 � i � m, are easily calculated by straightforward
Taylor expansions. For example,

r1F(x�)(H1) D F 0(x�)h1;

r2F(x�)(H2) D F 0(x�)h2 C
1
2
F 00(x�)(h1; h1):

The higher-order directional derivative r iF(x�) is ho-
mogeneous of degree i in the directions in the sense that

r i F(x�)("h1; : : : ; "i hi) D "ir i F(x�)(h1; : : : ; hi):

In particular, no indices j1 and j2 with j1 + j2 > i can
occur together as arguments in any of the terms in
r iF(x�). Thus all vectors hj whose index satisfies 2j
> i appear linearly in r iF(x�) and are multiplied by
terms which are homogeneous of degree i � j. In fact,
there exist linear operators Gk = Gk[F](x�;Hk� 1), k 2
N, depending on the derivatives up to order k of F
in the point x� and on the vectors Hk� 1 = (h1, . . . ,
hk� 1), which describe the contributions of these com-
ponents. We have G1[F](x�) = F0(x�) and in general
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Gk = Gk[F](x�;Hk� 1): Z! Y , v! Gk(v), is given by

Gk(v) D
k�1X
rD1

1
r!

�

0
@ X

j1C���C jrDk�1

F(rC1)(x�)(hj1 ; : : : ; hjr ; v)

1
A :

(9)

These operators Gk[F](x�;Hk� 1) are the Fréchet-
derivatives of the (k � 1)th directional derivative of F
at x� along Hk� 1. Note that these terms are homoge-
neous of degree k � 1. For simplicity of notation we
often suppress the arguments. For example, we write

G1(v) D F 0(x�)v; G2(v) D F 00(x�)(h1; v);

G3(v) D F 00(x�)(h2; v)C
1
2
F 000(x�)(h1; h1; v):

Given an order p 2 N, it follows that we can separate
the linear contributions of the vectors hp, . . . , h2p� 1 in
derivatives of orders p through 2p � 1 and for i = 1, . . . ,
p, we have an expression of the form

r p�1Ci F(x�)(Hp�1Ci) D
iX

kD1

Gk[F](x�;Hk�1)hpCi�kCRp�1Ci [F](x�;Hp�1):

Here among the terms which are homogeneous of de-
gree p � 1 + i the sum gives the terms which contain
one of the vectors hp, . . . , hp� 1 + i, and the remainder R
combines all other terms which only include vectors of
index � p � 1. The general structure of the remainder
Rq[F](z�;H`) for arbitrary q � 2 and ` is given by

qX
rD2

1
r!

0
BBBBB@

X
j1C���C jrDq;
1� jk�`;
1�k�r

F(r)(x�)(hj1 ; : : : ; hjr )

1
CCCCCA
: (10)

Thus Rq(H`) consists of the terms which are homoge-
neous of degree q, but only involve vectors fromH`. For
example, R3[F](z�;H2) is given by

F 00(z�)(h1; h2)C
1
6
F(3)(z�)(h1; h1; h1):

Note that the remainders only have contributions from
derivatives of at least order two. These operators allow
to formalize high-order approximations to an equality
constraint at nonregular points [13].

High-Order Tangent Cones

We first describe the set of critical directions along
which high-order tangent approximations to the equal-
ity constraint Q can be set up. For a given admissible
process z� 2 A and a finite sequence Hp� 1 = (h1, . . . ,
hp� 1) 2 Xp� 1, let

Yi D

iX
kD1

ImGk[F](x�;Hk�1); i D 1; : : : ; p:

It is clear that the first p � 1 directional derivatives of F
along Hp� 1 must vanish,

r i F(z�)(Hi) D 0; 8i D 1; : : : ; p � 1; (11)

if Hp� 1 is a (p � 1)-order tangent direction. But addi-
tional compatibility conditions of the form

Rp�1Ci[F](x�;Hp�1) 2 Yi ; i D 1; : : : ; p� 1; (12)

are necessary as well if we want to extend Hp� 1 to a p-
order tangent direction Hp = (Hp� 1;hp). Conditions
(11) and (12) are indeed sufficient for the existence of
p-order approximations along Hp� 1 under the follow-
ing regularity condition:

Definition 8 Let F: X! Y be an operator between Ba-
nach spaces. We say the operator F is p-regular at x� in
direction of the sequence Hp� 1 2Xp� 1 if the following
conditions are satisfied:
A1) F: X! Y is (2p � 1)-times continuously Fréchet

differentiable in a neighborhood of x�;
A2) the subspaces Yi, i = 1, . . . , p, are closed;
A3) the map Gp = Gp[F](x�;Hp� 1)

Gp : X ! Y1 �
Y2
Y1
� � � � �

Y
Yp�1

;

v 7! Gp(v) D (G1(v); : : : ; p�1Gp(v));

where  i: Yi + 1 ! Yi + 1/Yi denotes the canonical
projection onto the quotient space, is onto.

In the sense of this Definition, 1-regularity corresponds
to the classical Lyusternik condition while 2-regularity
is similar to Avakov’s definition [5].

Theorem 9 [12] Let Hp� 1 be a sequence so that
r iF(x�)(Hi) = 0 for i = 1, . . . , p � 1, and suppose the
operator F is p-regular at x� in direction of Hp� 1. Then
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TS(p)(Q;x�, Hp� 1) is nonempty if and only if for i = 1,
. . . , p � 1, the compatibility conditions

Rp�1Ci [F](x�;Hp�1) 2 Yi

are satisfied. In this case TS(p)(Q;x�, Hp� 1) is the closed
affine subspace of X given by the solutions to the linear
equation

Gp[F](x�;Hp�1)(v)CRp�1[F](x�;Hp�1) D 0; (13)

where Rp� 1[F](x�, Hp� 1) 2 Z is the point with compo-
nents

�
Rp[F](x�;Hp�1); 1RpC1[F](x�;Hp�1); : : : ;

p�1R2p�1[F](x�;Hp�1)
�
:

This formulation of the result clearly brings out the ge-
ometric structure of the p-order tangent sets as closed
affine linear subspaces of X generated by the kernel of
Gp, kerGp.

Corollary 10 [12] Let Hp� 1 be a sequence such that the
operator F is p-regular at x� in direction of Hp� 1. Sup-
pose the first (p � 1) directional derivatives r iF(x�)(Hi)
vanish for i = 1, . . . , p � 1, and the compatibility condi-
tions Rp� 1 + i[F](x�;Hp� 1) 2 Yi are satisfied for i = 1,
. . . , p. Then the p-order tangent cone to Q = {x 2 X: F(x)
= F(x�)} at x� in direction of Hp� 1, TC(p)(Q;x�, Hp� 1),
consists of all solutions (w, � ) 2 X ×R+ (i. e. � > 0) of the
linear equation

Gp[F](w)C �Rp�1[F](x�;Hp�1) D 0:

For applications to optimization problems we need the
subspace of continuous linear functionals which anni-
hilate Gp. Since the operator Gp is onto, it follows by the
annihilator lemma or the closed-range theorem [9] that

(kerGp)? D Im(G�p );

where G�p :

Z� D Y�1 � (
Y2
Y1

)� � � � � � (
Y

Yp�1
)� ! X�;

denotes the adjoint map. Let

�i : (
YiC1

Yi
)� ! Y?iC1

i

denote the canonical isomorphism. Here?i + 1 denotes
the annihilator in Yi + 1, i. e.

Y?iC1
i D

˚
y� 2 Y�iC1 : hy

�; vi D 0; 8v 2 Yi
�

and we formally set Y0 = {0}, so that Y?1
0 Š Y�1 . Then

we have:

Proposition 11 [11,13] A functional � 2 X� lies in
(kerGp)? if and only if it can be represented in the form

� D

pX
iD1

G�i [F](x�;Hi�1)y�i (14)

for some functionals y�i 2 Y
?i
i�1, i = 1, . . . , p.

Proposition 12 [11,13] The dual or polar p-order tan-
gent cone consists of all linear functionals (�, �) 2 X� ×
R which can be represented in the following form: There
exist functionals y�i 2 Y

?i
i�1, i = 1, . . . , p, and a number r

� 0 such that

� D

pX
iD1

G�i [F](x�;Hi�1)y�i ;

� D

pX
iD1

˝
y�i ; Rp�1Ci [F](x�;Hp�1)

˛
C r:

High-Order Cones of Decrease

We now consider critical directions for the objective I
and determine the p-order sets of decrease of a func-
tional I: X! R. These results also apply to p-order fea-
sible sets to inequality constraints defined by smooth
functionals. We assume as given a (p � 1)-order se-
quence Hp� 1 and we calculate the p-order set of de-
crease of I at x� along Hp� 1. Trivial cases arise if there
exists a first nonzero directional derivative r iI(x�)(Hi)
of I with i � p � 1. In this case we have either
DS(p)(I;x�, Hp� 1) = ; if r iI(x�)(Hi) > 0 or DS(p)(I;x�,
Hp� 1) = X if r iI(x�)(Hi) < 0. In the first case the
sequence Hp� 1 cannot be used to exclude optimality
of x� since indeed x� is a local minimum along the
approximating curve generated by Hp� 1. In the sec-
ond case hi is an ith-order direction of decrease along
Hi� 1 and thus every vector v 2 X is admissible as
a pth order component. The only nontrivial case arises
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if r iI(x�)(Hi) = 0 for all i with i � p � 1 and if I0(x�)
6D 0.

Proposition 13 [13] Suppose I0(x�) 6D 0 and for all i
with i� p� 1 we haver iI(x�)(Hi) = 0. Then the p-order
cone of decrease for the functional I at x� in direction of
Hp� 1, DC(p)(I;x�, Hp� 1), consists of all vectors (w, � ) 2
X × R which satisfy

I0(x�)w C �Rp[I](x�;Hp�1) < 0:

Thus DC(p)(I;x�,Hp� 1) is nonempty, open and convex.
The dual or polar cone to DC(p)(I;x�, Hp� 1) can easily
be calculated using the Minkowski–Farkas lemma [7].

High-Order Feasible Cones to Inequality
Constraints Given by Smooth Functionals

In this section we give the form of the p-order feasible
cones, FC(p)(P;x�, Hp� 1), for inequality constraints P
described by smooth functionals,

P D fx 2 X : f (x) � 0g :

Similar like for sets of decrease, if there exists a first in-
dex i � p � 1 such that r if (x�)(Hi) 6D 0, then the con-
straint will either be satisfied for any p-order vector v 2
X if r if (x�)(Hi) < 0 or it will be violated if r if (x�)(Hi)
> 0. This leads to the definition of p-order active con-
straints.

Definition 14 The inequality constraint P is said to be
p-order active along the sequence Hp� 1 if for all i, i = 1,
. . . , p � 1, we have r if (x�)(Hi) = 0.

Only p-order active constraints enter the necessary
conditions for optimality derived via p-order approx-
imations along an admissible sequence Hp� 1; p-order
inactive constraints generate zero multipliers since
DS(p)(P;x�, Hp� 1) = X (p-order complementary slack-
ness conditions) and can be ignored for high-order ap-
proximations.

Proposition 15 If the constraint P = { x 2 X: f (x) �
0} is p-order active along the sequence Hp� 1, then the
p-order feasible cone, FC(p)(P;x�, Hp� 1), consists of all
vectors (w, � ) 2 X × R+ which satisfy

f 0(x�)w C �Rp[ f ](x�;Hp�1) < 0:

Hence, if f 0(x�) 6D 0, then FC(p)(P;x�, Hp� 1) is
nonempty, open and convex.

High-Order Feasible Cones
to Closed Convex Inequality Constraints

Let C � X be a closed convex set with nonempty in-
terior. Again we assume that Hp� 1 is a (p � 1)-order
feasible sequence. Note that it follows from Definition
3 that FS(p)(C;x�, Hp� 1) is open (since any vector in
the neighborhood V of v also lies in FS(p)(C;x�,Hp� 1)).
It is also clear that FS(p)(C;x�, Hp� 1) is convex, since
C is. Thus FC(p)(C;x�, Hp� 1) is an open, convex cone.
Furthermore, if there exists an integer j < p so that hj
2 FS(j)(C;x�, Hj� 1), then any vector v is allowed as
a p-order feasible direction and thus trivially FS(p)(C;x�,
Hp� 1) = X, i. e. the convex constraint x 2 C is not p-
order active. In this case the necessary conditions for
optimality along Hp� 1 are exactly the same as without
C.

The dual or polar cone FC(p)(C;x�, Hp� 1)� can be
identified with all supporting hyperplanes to FS(p)(C;x�,
Hp� 1) at x�. More precisely, it consists of all linear
functionals (�, �) 2 X� ×R which satisfy

h�; vi C � � 0; 8v 2 FS(p)(C; x�;Hp�1):

Corollary 16 [13] Let C�X be a closed convex set with
nonempty interior and suppose the p-order feasible set
FS(p)(C;x�, Hp� 1) is nonempty. If (�, �) 2 FC(p)(C;x�,
Hp� 1)�, then � is a supporting hyperplane to C at x�.

GeneralizedNecessary Conditions for Optimality

We now give generalized necessary conditions for op-
timality for problem (P) based on general p-order ap-
proximations. We assume as given a sequence Hp� 1 =
(h1, . . . , hp� 1) 2 Xp� 1 with the following properties:
P1) The first p � 1 directional derivatives of F along

Hp� 1 vanish,

r i F(x�)(Hi) D 0; 8i D 1; : : : ; p � 1;

the compatibility conditions

Rp�1Ci[F](x�;Hp�1) 2 Yi

are satisfied for i = 1, . . . , p � 1, and the opera-
tor F is p-regular at x� in direction of the sequence
Hp� 1.
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P2) Either the first nonvanishing derivative
r iI(x�)(Hi) is negative or r iI(x�)(Hi) = 0 for i
= 1, . . . , p � 1.

P3) If the jth constraint is not p-order active, then the
first nonzero derivative r if (x�)(Hi) is negative.

P4) FS(p)(C;x�, Hp� 1) is nonempty.
These conditions guarantee respectively that the cor-
responding p-order approximating cones to the con-
straints or the functional I are nonempty and convex.
The next theorem generalizes the classical first order
necessary conditions for optimality for a mathemati-
cal programming problem with convex inequality con-
straints [7, Thm. 11.4].

Theorem17 If x� is optimal for problem (P), then given
any sequence Hp� 1 = (h1, . . . , hp� 1) 2 Xp� 1 for which
conditions P1)–P4) are satisfied, there exist Lagrange
multipliers � i � 0, i = 0, . . . , m, functionals y�i 2 Y?i

i�1,
i = 1, . . . , p, and a supporting hyperplane h�, vi + � �
0 for all v 2 FS(p)(C;x�, Hp� 1), all depending on the se-
quence Hp� 1, such that the multipliers � i, i = 0, . . . , m,
and � do not all vanish, and

� � �0I0(x�)C
mX
jD1

� j f 0j (x�)C
pX

iD1

G�i y
�
i ; (15)

� � �0Rp[I](x�;Hp�1)

C

mX
jD1

� jRp[ f j](x�;Hp�1)

C

pX
iD1

˝
y�i ; Rp�1Ci [F](Hp�1)

˛
: (16)

Furthermore, the following p-order complementary
slackness conditions hold:
� �0 = 0 if DS(p)(I;x�, Hp� 1) = X;
� � j = 0 if FS(p)(Pj;x�, Hp� 1) = X;
� � = 0 if FS(p)(C;x�, Hp� 1) = X.

Remark 18 This theorem gives the formulation for the
case which is nondegenerate in the sense that the op-
erator Gp is onto and it is this condition which im-
plies the nontriviality of the multipliers � j, j = 0, . . . ,
m, and �. If Gp is not onto, but ImGp is closed, while
all the other conditions remain in effect, then a degen-
erate version of this theorem can easily be obtained by
choosing a nontrivial multiplier ey� 2 (ImGp)?. This
then gives rise to nontrivial multipliers y�i 2 Y

?i
i�1 which

have the property that
Pp

iD1G
�
i y
�
i � 0. Thus (15) still

holds if we set � j = 0, for j = 0, . . . , m, and � = 0. Thus
the difference is that it can only be asserted that not all
of the multipliers � j, j = 0, . . . ,m, y�i 2 Y

?i
i�1, i = 1, . . . , p,

and � do vanish.

See also

� Kuhn–Tucker Optimality Conditions
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The formulation of Hilbert’s thirteenth problem [8]
reads: ‘impossibility of solving the general equation of
degree 7 bymeans of any continuous functions depend-
ing only on two variables’ [21].

On this basis, D. Hilbert proposed that the complex-
ity of functions is specified essentially by the number
of variables. However, as turned out later, this proposal
being valid for analytic functions is not true in the gen-
eral case. In particular, complexity of r times continu-
ously differentiable functions of n variables depends not
on the number of variables n but on the ratio n/r.

It is known that the equation of third degree can be
reduced by translation to

X3 C pX C q D 0;

which has the solution (S. del Ferro, 16th century)

X D

2
4�q

2
C

s
4p3 C 27q2

4(27)

3
5

1/3

C

2
4�q

2
�

s
4p3 C 27q2

4(27)

3
5

1/3

:

The equation of fourth degree can be solved by super-
position of addition, multiplication, square roots, cube
roots and fourth roots.

To try to solve algebraic equations of higher degree
(a vain hope according to N.H. Abel and E. Galois), the

idea of W. Tschirnhausen in 1683 [24] was to adjoin
a new equation, i. e., to

P(X) D 0

one adjoins

Y D Q(X);

where Q is a polynomial of degree strictly less than that
of P, chosen expediently. In this way one can show that
the roots of an equation of degree 5 can be expressed
via the usual arithmetic operations in terms of radicals
and of the solution �(x) of the quintic equation

X5 C xX C 1 D 0

depending on the parameter x. Similarly for the equa-
tion of degree 6, the roots are expressible in the same
way if we include also a function �(x, y), a solution of
a 6th-degree equation depending on two parameters x
and y.

For degree 7 we would have to include also a func-
tion �(x, y, z), solution of the equation

X7 C xX3 C yX2 C zX C 1 D 0:

Hence the natural question: Can �(x, y, z) be expressed
by superposition of algebraic functions of two variables
[10]?

A great number of papers are devoted to the rep-
resentability of functions as superpositions of functions
depending on a smaller number of variables and sat-
isfying certain additional conditions such as algebraic-
ity, analyticity and smoothness. Hilbert was aware of
the fact that superpositions of discontinuous functions
represent all functions of a larger number of variables.
He also knew about the existence of analytic functions
of three variables that cannot be represented by any fi-
nite superpositions of analytic functions of two vari-
ables [8].

In the statement of his 13th problem, Hilbert pro-
ceeded from a result of Tschirnhausen [24], according
to which a root of an algebraic equation of degree n > 5,
i. e., a function f (x1, . . . , xn) determined by an equation

f n C x1 f n�1 C � � � C xn D 0; (1)

can be expressed as a superposition of algebraic func-
tions of n� 4 variables [21]. Hilbert assumed that the



1536 H Hilbert’s Thirteenth Problem

number n� 4 cannot be reduced for n = 6, 7, 8 and also
proved that in order to solve an equation of degree n =
9 it suffices to have functions of n � 5 variables [9]. A.
Wiman [26] extended the latter result to n > 9, while
N. Chebotarev [6] reduced the number of variables in-
volved in the representation of functions to n � 6 for n
� 21 and to n � 7 for n � 121.

Chebotarev was the first to attempt to find topo-
logical obstructions to the representability of algebraic
functions as superpositions of algebraic functions, but
his proofs were not convincing [5,17]. Using topologi-
cal notions related to the behavior of a many-valued al-
gebraic function on and near a branching manifold, it is
proved that algebraic functions cannot be represented
by complete superpositions of integral algebraic func-
tions. Completeness means that the represented func-
tion must involve all the branches of the many-valued
functions and not only one of them as, for example, in
the formulas expressing solutions to equations of the
3rd and the 4th degree [21].

Certain topological obstructions to the representa-
tion by a complete superpositions of algebraic func-
tions were constructed in this way [2]. V. Lin [15] es-
tablished the following, most complete, result: In any
neighborhood of the origin for n � 3 the root f (x1, . . . ,
xn) of equation (1) is not a complete superposition of
entire algebroid functions of fewer than n � 1 variables
and single-valued holomorphic functions of an arbi-
trary number of variables. Thus, from the standpoint of
complete superpositions of entire algebraic functions,
even fourth-degree equations cannot be solved without
using functions of three variables [21].

Hilbert had had another motivation for his thir-
teenth problem: nomography, the method of solving
equations by drawing a one-parameter family of curves.
This problem, arising in the methods of computation
of Hilbert’s time, inspired the development of Kol-
mogorov’s notion of "-entropy [20]. Applications of "-
entropy have its crucial role in theories of approxima-
tion now used in computer science [22].

In Kolmogorov "-entropy, a natural characteristic of
a function class F is

H"(F) D log2 N"(F);

where N"(F) is the minimum number of points in an "-
net in F. Broadly speaking, the "-entropy of a function
class F is the amount of information needed to specify

with accuracy " a function of the class F. A main prob-
lem in "-entropy is estimates for the rate of growth of
H"(F) as "! 0 for Lipschitz functions, classes of ana-
lytic functions and functions possessing a given num-
ber of derivatives. A.N. Kolmogorov showed that the "-
entropy of r times continuously differentiable functions
of n variables grows as "�n/r [20].

Since a digital computer can store only a finite set
of numbers, functions must be replaced by such finite
sets. Therefore, studies in "-entropy are important for
the correct estimation of the possibilities of computa-
tional methods for approximately representing func-
tions, their implementation on computers and their
storage in the computer memory.

Also "-entropy has many other applications [23].
An "-net of Lipschitz functions of n variables is con-
structed to design global optimization algorithms. This
"-net is based on the Kolmogorov’s minimal "-net
of one-dimensional Lipschitz functions and is en-
coded in terms of monotone functions of k-valued
logic. This construction gives a representation of an n-
dimensional global optimization problem by a minimal
number of one-dimensional ones without loss of infor-
mation [13].

Let us briefly recall the history of the solution of
the Hilbert’s thirteenth problem by Kolmogorov and V.
Arnol’d. Hilbert’s problem was first solved on the basis
of ideas by using technique developed by A. Kronrod
[14]. In this way Kolmogorov proved that any contin-
uous function of n � 4 variables can be represented as
a superposition of continuous functions of three vari-
ables [11]. For an arbitrary function of four variables
the representation has the form

f (x1; x2; x3; x4)

D

4X
rD1

hr[x4; gr1(x1; x2; x3); g
r
2(x1; x2; x3)]:

The question whether an arbitrary continuous func-
tion of three variables can be represented as a super-
position of continuous functions of two variables re-
mained open. The method reduced the representabil-
ity of functions of three variables as superpositions of
functions of two variables to a representability prob-
lem for functions defined on universal trees of three-
dimensional space [21].
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Contrary to the expectations of Hilbert and of his
contemporary mathematicians, in 1957 Arnol’d [1],
who was a student of Kolmogorov, solved the latter
problem and gave the final solution to Hilbert’s thir-
teenth problem in the form of a theorem asserting that
any continuous function of n � 3 variables can be rep-
resented as a superposition of functions of two variables
[21].

A few weeks later Kolmogorov showed that any
continuous function f of n variables can be represented
as a superposition

f (x1; : : : ; xn) D
2nC1X
qD1

�q

2
4

nX
pD1

� pq(xp)

3
5 (2)

of continuous functions of one variable and the oper-
ation of addition [12]. In Kolmogorov’s representation
(2) the inner functions �pq are fixed and only the outer
functions �q depend on the represented function f .

The results of [11] do not follow from the theorem
presented in [12] in their exact statements, but their
essence (in the sense of the possibility of representing
functions of several variables by means of superposi-
tions of functions of a smaller number of variables and
their approximation by superpositions of a fixed form
involving polynomials in one variable and addition) is
obviously contained in it [12]. The method for prov-
ing the theorem is more elementary than that in [1,11]
and reduces to direct constructions and calculations. In
Kolmogorov’s opinion, the proof of the theorem was
his most technically difficult achievement [21].

Thorough proofs of Kolmogorov’s theorem and the
lemmas of his paper [12] were published in [16,18,20]
and others. G. Lorenz [16] noted that the outer func-
tions �q can be replaced by a single function �. D.
Sprecher [18] reduced all the inner functions to trans-
lations and extensions of a single function  with the
property that there exits " > 0 and � > 0 such that any
continuous function of n variables can be represented
as

f (x1; : : : ; xn) D
2nC1X
qD1

�[�p (xp C "q)C q)]: (3)

B. Fridman [7] proved that the inner functions �pq

in (2) can be chosen so that they satisfy a Lipschitz con-
dition. Sprecher [19] extended this result to the repre-

sentation (3) (the function  can be chosen to satisfy
a Lipschitz condition).

It follows from Kolmogorov’s representation (2)
and Bari’s representation [3] of any continuous func-
tion of one variable as a sum of three superpositions of
absolutely continuous functions

P
f k ° gk that all con-

tinuous functions of any number of variables can be
represented by means of superpositions of absolutely
continuous functions of one variable and the operation
of addition [21].

In the opposite direction are the results of A. Vi-
tushkin [25] and L. Bassalygo [4]. When we deal with
superpositions of formal series or analytic functions it
can be shown that, for example, almost every entire
function has at an arbitrary point of C3 a germ which
is not expressible by superposition of series in two vari-
ables. So there are many more entire functions of three
variables than of two [10]. The result of Vitushkin is
that there exist r times continuously differentiable func-
tions of n variables that cannot be expressed in terms of
finite superpositions of s � 1 times continuously differ-
entiable functions of k < n variables if n/r > ks [25], rep-
resentability depends on n/r. Bassalygo proved that for
any three functions  k continuous on a square there
exists a continuous function f which cannot be repre-
sented as

P
�k °  k for any continuous �k [4].
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Did you ever watch how a spider catches a fly or
a mosquito? Usually, a spider hides at the edge of its
net. When a fly or a mosquito hits the net, the spider
will pick up each line in the net to choose the tense one
and then goes rapidly along the line to its prey. Why
does the spider chooses the tense line? Some biologists
explain that the line gives the shortest path from the spi-
der to its prey.

Did you heard the following story about a wise gen-
eral? He had a duty to capture a town behind a moun-
tain. When he and his soldiers reached the top of the
mountain, he found that his enemy had already ap-
proached the town very closely from another way. His
dilemma was how to get in the town before the enemy
arrive. It was a challenging problem for the general. The
general solved the problem by asking each soldier to
roll down the mountain in a blanket. Why is this faster?
Physicists tell us that a free ball rolling down a moun-
tain always chooses the most rapid way.

Do you know the tale of a horse match of Tian Gi?
It is a story set in BC time. Tian Gi was a general in one
of several small counties of China, called Qi. The King
of Qi knew that Tian Gi had several good horses and
ordered Tian Gi to have a horse match with him. The
match consisted of three rounds. In each round, each
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side chose a horse to compete with the other side. Tian
Gi knew that his best horse could not compete with the
best one of the King, his second best horse could not
compete with the second best one of King, and his third
best horse could not compete with the third best one
of the King. Therefore, he did not use his best horse
against the best horse of the King. Instead, he put his
third best horse in the first round against the best one
of the King, his best horse in the second round against
the second best one of the King, and his second best
horse in the third round against the third best one of
the King. The final result was that although he lost the
first round of the match, he won the last two rounds.
Tian Gi’s strategy was the best to win this match. To-
day, economists tell us that many economic systems
and social systems can be modeled into games. Each
contestant in the game tries to maximize certain ben-
efits.

Optimality is a fundamental principle, establishing
natural lows, ruling biologic behaviors, and conducting
social activities. Therefore, optimization started from
the earliest stages of human civilization. Of course,
before mathematics was well established, optimization
could be done only by simulation. One may find many
wise men’s stories in the human history about it. For
example, to find the best way to get out of a mountain,
someone followed a stream, and to find the best way to
get out from a desert, someone set an old horse free and
followed the horse’s trace.

In the 19th century or even today, simulation is still
used for optimizing something. For example, to find
a shortest path on a network, one may make a net with
rope in a proportional size and pull the net tightly be-
tween two destinations. The tense rope shows the short-
est path. To find an optimal location of a school for
three villages, one may drill three holes on a table and
put a piece of rope in each hole. Then tie three rope-
ends above the table together and hang a one-kg-weight
on each rope-end under the table. When this mechani-
cal system is balanced, the knot of the three rope-pieces
points out the location of the school.

The history of optimization in mathematics can be
divided into three periods.

In the first period, one did not know any gen-
eral method to find a maximum/minimum point of
a function. Only special techniques were found to max-
imize/minimize some special functions. A typical func-

tion is the quadratic function of one variable

y D ax2 C bx C c:

The study of quadratic functions was closely related to
the study of constantly-accelerating movement. What
is the highest point that a stone is thrown out with cer-
tain initial speed and certain angle? What is the far-
thest point where a stone thrown with certain initial
speed can reach when throwing angle varies? These
were questions considered by some physicists and gen-
erals. In fact, the stone-throwing machine was an im-
portant weapon in military.

Today (as of 2000), computing maximum/
minimum points of a quadratic function is still an
important technique of optimization, existing in ele-
mentary mathematics books. The technique had been
also extended to other functions such as

y D
x2 C x C 1
x2 C 2x C 3

:

Actually, multiplying both sides by x2+ 2x+3 and sim-
plifying, we obtain

(y � 1)x2 C (2y � 1)x C (3y � 1) D 0:

Since x is a real number, we must have

(2y � 1)2 � 4(y � 1)(3y � 1) � 0:

Therefore,

�8y2 C 12y � 3 � 0;

that is,

2(3 �
p
3) � y � 2(3C

p
3):

It is interesting to note that with this technique we ob-
tained the global maximum and minimum of y.

A new period started in 1646 by P. de Fermat. He
proposed, in his paper [5], a general approach to com-
pute local maxima/minima points of a differentiable
function, that is, setting the derivative of the function to
be zero. Today, this approach is still included in almost
all textbooks of calculus as an application of differenti-
ation. In this period, optimization existed scattered and
disorderly in mathematics. Because optimization had
not become an important branch of applied mathemat-
ics, some mathematicians did not pay so much atten-
tion to results on optimization and some contributions
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were even not put in any publication. This left many
mysteries in the history of optimization.

For example, who is the first person who proposed
the Steiner tree? It was one such mystery. To obtain
a clear view, let us explain it in a little detail.

In the same paper mentioned above, Fermat also
studied a problem of finding a point to minimize the
total distance from it to three given points in the Eu-
clidean plane. Suppose three given points are (x1, y1),
(x2, y2), and (x3, y3). Then the total distance from
a point (x, y) to these three points is

f (x; y) D
3X

iD1

q
(x � xi)2 C (y � yi )2:

By Fermat’s general method, the minimum point of f (x,
y) must satisfy the following equations

@ f
@x
D

3X
iD1

x � xip
(x � xi )2 C (y � yi)2

D 0;

@ f
@y
D

3X
iD1

y � yip
(x � xi )2 C (y � yi)2

D 0:

However, obtaining x and y from this system of equa-
tions seems hopeless. Therefore, Fermatmentioned this
problem again in a letter to A. Mersenne that it would
be nice if a clear solution could be obtained for this
problem.

E. Torricelli, a student of G. Galilei, obtained
a clever solution with a geometric method. He showed
that if three given points form a triangle without an an-
gle of at least 120°, then the solution is a point at which
three segments from it to three given points produce
three angles of 120°. Otherwise, the solution is the given
point at which the triangle formed by the three given
points has an angle of at least 120°.This result can also
be proved by the mechanic system described at the be-
ginning of this article. In the first case, the knot of the
three rope-pieces stays not at any given point and hence
the balance condition of the three forces of equal mag-
nitude yields the condition on the angles. In the second
case, the knot falls in one of the three holes, and the
condition on the angle guarantees that the knot would
not move away from the hole.

Fermat’s problem was extensively studied later and
was generalized to four points by J.Fr. Fagnano in 1775
and to n points by P. Tedenat and S. L’Huiller in 1810.

Fagnano pointed out that it is very easy to find the so-
lution of Fermat’s problem for four points. When four
given points form a convex quadrilateral, the solution
of Fermat’s problem is the intersection of two diago-
nals, i. e., the intersection of two diagonals minimizes
the total distance from one point to four given points.
Otherwise, there must be one of the given points ly-
ing inside the triangle formed by the other three given
points; this given point is the solution.

On March 19, 1836, H.C. Schumacher wrote a let-
ter to C.F. Gauss. In his letter, he mentioned a paradox
about Fermat’s problem: Consider a convex quadrilat-
eral ABCD. It has been known that the solution of Fer-
mat’s problem for four pointsA, B,C, andD is the inter-
section E of diagonals AC and BD. Suppose extending
DA and CB can obtain an intersection F. Now, moving
A and B to F. Then E will also be moved to F. However,
when the angle at F is less than 120°, the point F can-
not be the solution of Fermat’s problem for three given
points F, D, and C.What happens?

On March 21, 1836, Gauss wrote a letter to Schu-
macher in which he explained that the mistake of Schu-
macher’s paradox occurs at the place where Fermat’s
problem for four points A, B, C, and D is changed to
Fermat’s problem for three points F, C, and D. When
A and B are identical to F, the total distance from E
to four points A, B, C, and D equals 2EF + EC + ED,
not EF + EC + ED. Thus, the point E may not be the
solution of Fermat’s problem for F, C, and D. More
importantly, Gauss proposed a new problem. He said
that it is more interesting to find a shortest network
rather than a point. Gauss also presented several pos-
sible connections of the shortest network for four given
points.

Unfortunately, Gauss’ letter was discovered only in
1986. From 1941 to 1986, many publications have fol-
lowed R. Courant and H. Robbins who in their popular
book [2] called Gauss’ problem as the Steiner tree prob-
lem. The Steiner tree has become a popular and impor-
tant name. If you search ‘Steiner tree’ with ‘yahoo.com’
on the internet, then you will receive a list of 4675 web-
pages on Steiner trees. We have no way to change back
the name from Steiner trees to Gauss trees. It may be
worthmentioning that J. Steiner, a geometrician in 19th
century whose name is used for the shortest networks,
has not been found so far to have any significant con-
tribution to Steiner trees.
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G.B. Dantzig, who first proposed the simplex
method to solve linear programming in 1947, stated in
[4]: ‘What seems to characterize the pre- 1947 era was
lack of any interests in trying to optimize’. Due to the
lack of interests in optimization, many important works
appeared before 1947 were ignored. This happened not
only for Steiner trees, but also to other areas of opti-
mization, including some important contributions in
linear and nonlinear programming.

The discovery of linear programming started a new
age of optimization. However, in [4], Dantzig made
the following comment: ‘Linear programming was un-
known prior to 1947’. This is not quite correct; there
were some late exceptions. J.B.J. Fourier (of Fourier se-
ries fame) in 1823 and the well-known Belgian math-
ematician Ch. de la Vallée Poussin in 1911 each wrote
a paper about it. Their work had as much influence on
post- 1947 developments as would finding in an Egyp-
tian tomb an electronic computer built in 3000 BC. L.V.
Kantorovich’s remarkable 1939monograph on the sub-
ject was also neglected for ideological reasons in the
USSR. It was resurrected two decades later after the ma-
jor developments had already taken place in the West.
An excellent paper by F.L. Hitchcock in 1941 on the
transportation problem was also overlooked until after
others in the late 1940s and early 1950s have indepen-
dently rediscovered its properties.

He also recalled how he made his discovery: ‘My
own contribution grew out of my World War II expe-
rience in the Pentagon. During the war period (1941–
1945), I had become an expert on programming-
planning methods using desk calculators. In 1946 I was
mathematical advisor to the US Air Force Comptroller
in the Pentagon. I had just received my PhD (for re-
search I had done mostly before the war) and was look-
ing for an academic position that would pay better than
a low offer I had received from Berkeley. In order to
entice me to not take another job, my Pentagon col-
leagues, D. Hitchcock and M. Wood, challenged me to
see what I could do to mechanize the planning pro-
cess. I was asked to find a way to more rapidly com-
pute a time-staged development, training and logistical
supply program. In those days mechanizing planning
meant using analog devices or punch-card equipment.
There were no electronic computers’.

This challenge problem made Dantzig discover his
great work in linear programming without electronic

computer. But, we have to point out that it is due to
the rapid development of computer technology that ap-
plications of linear programming can be made so wide
and so great, and areas of optimization can have so fast
growing.

In 1951, A.W. Tucker and his student H.W. Kuhn
published the Kuhn–Tucker conditions. This is con-
sidered as an initial point of nonlinear programming.
However, A. Takayama has an interesting comment on
these condition: ‘Linear programming aroused interest
in constraints in the form of inequalities and in the the-
ory of linear inequalities and convex sets. The Kuhn–
Tucker study appeared in the middle of this interest
with a full recognition of such developments. However,
the theory of nonlinear programming when constraints
are all in the form of equalities has been known for
a long time – in fact, since Euler and Lagrange. The
inequality constraints were treated in a fairly satisfac-
tory manner already in 1939 by Karush. Karush’s work
is apparently under the influence of a similar work in
the calculus of variations by Valentine. Unfortunately,
Karush’s work has been largely ignored’. Yet, this is an-
other work that appeared before 1947 and it was ig-
nored. In the 1960s, G. Zoutendijk, J.B. Rosen, P.Wolfe,
M.J.D. Powell, and others published a number of al-
gorithms for solving nonlinear optimization problems.
These algorithms form the basis of contemporary non-
linear programming.

In 1954, L.R. Ford and D.R. Fulkerson initiated the
study on network flows. This is considered as a start-
ing point on combinatorial optimization although Fer-
mat is the first one who studied a major combina-
torial optimization problem. In fact, it was because
of the influence of the results of Ford and Fulker-
son, that interests on combinatorial optimization were
growing, and so many problems, including Steiner
trees, were proposed or re-discovered in history. In
1958, R.E. Gomory published the cutting planemethod.
This is considered as an initiation of integer program-
ming, an important direction of combinatorial opti-
mization.

In 1955, Dantzig published his paper [3] and E.M.L.
Beale proposed an algorithm to solve similar problems.
They started the study on stochastic programming. R.J-
B. Wets in the 1960s, and J.R. Birge and A. Prékopa in
the 1980s made important contributions in this branch
of optimization.
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Now, optimization has merged into almost every
corner of economics. New branches of optimization
appeared in almost every decade, global optimization,
nondifferential optimization, geometric programming,
large scale optimization, etc. No one in his/her whole
life is able to study all branches in optimization. Each
researcher can only be an expert in a few branches of
optimization.

Of course, the rapid development of optimization
is accomplished with recognition of its achievements.
One important fact is that several researchers in opti-
mization have received the Nobel Prize in economics,
including Kantorovich and T.C. Koopmans. They re-
ceived the Nobel Prize on economics in 1975 for their
contributions to the theory of optimum allocation of re-
sources. H.M. Markowitz received the Nobel Prize on
economics in 1990 for his contribution on the quadratic
programming model of financial analysis.

Today, optimization has become a very large and
important interdisciplinary area between mathematics,
computer science, industrial engineering, and manage-
ment science. The ‘International Symposium on Math-
ematical Programming’ is one of major conferences on
optimization. From the growing number of papers pre-
sented in this conference we may see the projection of
growing optimization area:

1949) Chicago, USA, 34 papers;
1951) Washington DC, USA, 19 papers;
1955) Washington DC, USA, 33 papers;
1959) Santa Monica, USA, 57 papers;
1962) Chicago, USA, 43 papers;
1964) London, UK, 83 papers;
1967) Princeton, USA, 91 papers;
1970) The Hague, The Netherlands, 137 papers;
1973) Stanford, USA, about 250 papers;
1976) Budapest, Hungary, 327 papers;
1979) Montreal, Canada, 458 papers;
1982) Bonn, FRG, 554 papers;
1985) Cambridge, USA, 589 papers;
1988) Tokyo, Japan, 624 papers.
(This data is quoted from [1].)

With the current fast growth of computer technology
optimization it is expected to continue its great speed
of developments. These developments may contain in-
clude a deep understanding of the successful heuristics
for combinatorial optimization problems with nonlin-

ear programming approaches. It may also include dig-
ital simulations to some natural optimization process.
As many mysteries and open problems still exist in op-
timization, it will still be an area receiving a great atten-
tion.
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The linear program

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b;

x � 0

(1)

may have an optimal solution, be primal infeasible or
be dual infeasible for a particular set of data c 2 Rn, b
2 Rm, and A 2 Rm × n. In fact the problem can be both
primal and dual infeasible for some data where (1) is
denoted dual infeasible if the dual problem

8̂
<̂
ˆ̂:

max b>y
s.t. A>yC s D c;

s � 0

(2)

corresponding to (1) is infeasible. The vector s is the so-
called dual slacks.

However, most methods for solving (1) assume that
the problem has an optimal solution. This is in partic-
ular true for interior point methods. To overcome this
problem it has been suggested to solve the homogeneous
and selfdual model

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min 0
s.t. Ax � b� D 0;

�A>yC c� � 0;
b>y � c>x � 0;
x � 0; � � 0;

(3)

instead of (1). Clearly, (3) is a homogeneous LP and is
selfdual which essentially follows from the constraints
form a skew-symmetric system. The interpretation of
(3) is � is a homogenizing variable and the constraints
represent primal feasibility, dual feasibility, and re-
versed weak duality.

The homogeneous model (3) was first studied by
A.J. Goldman and A.W. Tucker [2] in 1956 and they
proved that (3) always has a nontrivial solution (x�, y�,

��) satisfying
8̂
ˆ̂̂<
ˆ̂̂̂
:

x�j s
�
j D 0; 8 j

x�j C s�j > 0; 8 j;
���� D 0;
�� C �� > 0;

(4)

where s� := c �� � A> y� � 0 and �� := b> y� � c>

x� � 0. A solution to (3) satisfying the condition (4) is
said to be a strictly complementary solution. Moreover,
Goldman and Tucker showed that if (x�, ��, y�, s�, ��)
is any strictly complementary solution, then exactly one
of the two following situations occurs:
� �� > 0 if and only if (1) has an optimal solution. In

this case(x�, y�, s�)/�� is an optimal primal-dual so-
lution to (1).

� �� > 0 if and only if (1) is primal or dual infeasible.
In the case b> y� > 0 (c> x� < 0) then (1) is primal
(dual) infeasible.

The conclusion is that a strictly complementary solu-
tion to (3) provides all the information required, be-
cause in the case �� > 0 then an optimal primal-dual
solution to (1) is trivially given by (x, y, s) = (x�, y�,
s�)/��. Otherwise, the problem is primal or dual infea-
sible. Therefore, the main algorithmic idea is to com-
pute a strictly complementary solution to (3) instead of
solving (1) directly.

Y. Ye, M.J. Todd, and S. Mizuno [6] suggested to
solve (3) by solving the problem

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min n0z
s.t. Ax � b� � bz D 0;

�A>y C c� C cz � 0;
b>y � c>x C dz � 0;
b>y � c>x � d� D �n0;
x � 0; � � 0;

(5)

where

b :D Ax0 � b�0;

c :D �c�0 C A>y0 C s0;

d :D c>x0 � b>y0 C �0;

n0 :D (x0)>s0 C �0�0;

and

(x0; �0; y0; s0; �0) D (e; 1; 0; 1)
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(e is an n vector of all ones). It can be proved that
the problem (5) always has an optimal solution. More-
over, the optimal value is identical to zero and it is easy
to verify that if (x, � , y, z) is an optimal strictly com-
plementary solution to (5), then (x, � , y) is a strictly
complementary solution to (3). Hence, the problem (5)
can solved using any method that generates an optimal
strictly complementary solution because the problem
always has a solution. Note by construction then (x, � ,
y, z) = (x0, �0, y0, 1) is an interior feasible solution to
(5). This implies that the problem (1) can be solved by
most feasible-interior point algorithms.

X. Xu, P.-F. Hung, and Ye [4] suggest an alternative
solution method which is also an interior point algo-
rithm, but specially adapted to the problem (3).The so-
called homogeneous algorithm can be stated as follows:
1) Choose (x0, �0, y0, s0, �0) such that (x0, �0, s0, �0)>

0. Choose "f , "g > 0 and � 2 (0, 1) and let � := 1� � .
2) k := 0.
3) Compute:

rkp :D b� k � Axk ;

rkd :D c� k � A>yk � sk ;

rkg :D �
k C c>xk � b>yk ;

�k :D
(xk)>sk C � k�k

nC 1
:

4) If k (rkp ;r
k
d ;r

k
g ) k � "f and �k � "g , then terminate.

5) Solve the linear equations

Adx � bd� D �rkp;

A>dy C ds � cd� D �rkd ;

�c>dx C b>dy � d� D �rkg ;

Skdx C Xkds D � Xksk C ��k e;

�kd� C � kd� D � � k�k C ��k ;

for (dx, d� , dy, ds, d�) where Xk := diag(xk) and Sk :=
diag(sk).

6) For some � 2 (0, 1), let ˛k be the optimal objective
value to8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

max �˛

s.t.

0
BBBB@

xk

� k

sk

�k

1
CCCCA
C ˛

0
BBBB@

dx
d�
ds
d�

1
CCCCA
� 0;

˛ � ��1:

7)
0
BBBBB@

xkC1

� kC1

ykC1

skC1

�kC1

1
CCCCCA

:D

0
BBBBB@

xk

� k

yk

sk

�k

1
CCCCCA
C ˛k

0
BBBBB@

dx
d�
dy

ds
d�

1
CCCCCA

8) k = k+ 1.
9) goto 3)
The following facts can be proved about the algorithm
8̂
<̂
ˆ̂:

rkC1
p D (1 � (1 � �)˛k )rkp;
rkC1
d D (1 � (1 � �)˛k )rkd ;
rkC1
g D (1 � (1 � �)˛k )rkg ;

and

((xkC1)>skC1 C � kC1�kC1)

D (1 � (1 � �)˛k)((xk)>sk C � k�k);

which shows that the primal residuals (rp), the dual
residuals (rd), the gap residual (rg), and the comple-
mentary gap (x>s + ��) all are reduced strictly if ˛k > 0
and at the same rate. This shows that (xk, �k, yk, sk, �k)
generated by the algorithm converges towards an opti-
mal solution to (3) (and the termination criteria in step
4) is ultimately reached). In principle the initial point
and the stepsize ˛k should be chosen such that

min
j
(xk

j s
k
j ; �

k�k) � ˇ�k ; for k D 0; 1; : : : ;

is satisfied for some ˇ 2 (0, 1) because this guarantees
(xk, �k, yk, sk, �k) converges towards a strictly comple-
mentary solution. Finally, it is possible to prove that the
algorithm has the complexity O(n3.5L) given an appro-
priate choice of the starting point and the algorithmic
parameters.

Further details about the homogeneous algorithm
can be seen in [3,5]. Issues related to implementing the
homogeneous algorithm are discussed in [1,4].

See also

� Entropy Optimization: Interior Point Methods
� Interior Point Methods for Semidefinite

Programming
� Linear Programming: Interior Point Methods
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� Linear Programming: Karmarkar Projective
Algorithm

� Potential Reduction Methods for Linear
Programming

� Sequential Quadratic Programming: Interior Point
Methods for Distributed Optimal Control Problems

� Successive Quadratic Programming: Solution by
Active Sets and Interior Point Methods
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Let V be an `-dimensional affine space over the field K.
An arrangement of hyperplanes, A, is afinite collection
of codimension one affine subspaces in V , [5].

Some Examples

1) A subset of the coordinate hyperplanes is called
a Boolean arrangement.

2) An arrangement is in general position if at each point
it is locally Boolean.

3) The braid arrangement consists of the hyperplanes
{xi = xj:1� i < j� `}. It is the set of reflecting hyper-
planes of the symmetric group on ` letters.

4) The reflecting hyperplanes of a finite reflection
group is a reflection arrangement.

Combinatorics

An edge X of A is a nonempty intersection of elements
of A. Let L(A) be the set of edges partially ordered by
reverse inclusion. Then L is a geometric semilattice with
minimal element V , rank given by codimension, and
maximal elements of the same rank, r(A). The Moe-
bius function on L is defined by �(V) = 1 and for X>
V ,
P

V � Y � X�(Y) = 0. The characteristic polynomial
of A is �(A, t) =

P
X 2 L�(X)tdimX . The ˇ-invariant of

A is ˇ(A) D (�1)r(A)�(A; 1). For a generic arrange-
ment of n hyperplanes �(A; t) D Pr(A)

kD0 (�1)
k�n

k

�
t`�k .

For the braid arrangement �(A, t) = t(t�1)(t� 2) � � �
(t�(`� 1)). Similar factorizations hold for all reflection
arrangements involving the (co)exponents of the reflec-
tion group. Given a p-tuple of hyperplanes, S = (H1,
. . . , Hp), let \ S = H1 \ � � � \ Hp and note that \ S
may be empty. We say that S is dependent if \ S 6D ;
and codim(\ S)< |S|. Let E(A) be the exterior algebra
on symbols (H) for H 2 A where product is juxtaposi-
tion. Define @: E! E by @1 = 0, @(H) = 1 and for p �
2, @(H1 � � �Hp) D

Pp
kD1(�1)

k�1(H1 � � �cHk � � �Hp). Let
I(A) be the ideal of E(A) generated by {S: \ S = ;} [
{@S:S is dependent}. The Orlik–Solomon algebra of A is
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A(A) = E(A)/I(A). See also connections with matroid
theory [3].

Divisor

The divisor of A is the union of the hyperplanes, N(A).
If K = R or K = C, then N has the homotopy type of
a wedge of ˇ(A) spheres of dimension r(A)� 1, [4].
The singularities of N are not isolated. The divisor of
a general position arrangement has normal crossings,
but this is not true for arbitrary A. Blowing up N along
all edges where it is not locally a product of arrange-
ments yields a normal crossing divisor.

Complement

The complement of A isM(A) = V� N(A).
1) If K = Fq, then M is a finite set of cardinality |M| =
�(A, q).

2) If K = R, then M is a disjoint union of open con-
vex sets (chambers) of cardinality (�1)`�(A, � 1). If
r(A) = `, M contains ˇ(A) chambers with compact
closure, [7].

3) If K = C, then M is an open complex (Stein) mani-
fold of the homotopy type of a finite CW complex.

Its cohomology is torsion-free and its Poincaré polyno-
mial is Poin(M, t) = (�t)`�(A, � t�1). The product
structure is determined by the isomorphism of graded
algebras H�(M)' A(A). The fundamental group of M
has an effective presentation but the higher homotopy
groups of M are not known in general. The comple-
ment of a Boolean arrangement is a complex torus. In
a general position arrangement of n> ` hyperplanes M
has nontrivial higher homotopy groups. For the braid
arrangement, M is called the pure braid space and its
higher homotopy groups are trivial. The symmetric
group acts freely onM with orbit space the braid space
whose fundamental group is the braid group. The quo-
tient of the divisor by the symmetric group is called
the discriminant, which has connections with singular-
ity theory.

Ball Quotients

Examples of algebraic surfaces whose universal cover is
the complex ball were constructed as ‘Kummer’ covers
of the projective plane branched along certain arrange-
ments of projective lines, [2].

Logarithmic Forms

For H 2 A choose a linear polynomial ˛H with H =
ker ˛H and let Q(A) D

Q
H2A ˛H . Let ˝

p[V] denote
all global regular (i. e., polynomial) p-forms on V . Let
˝p(V) denote the space of all global rational p-forms on
V . The space ˝p(A) of logarithmic p-forms with poles
along A is

˝ p(A) D f! 2 ˝ p(V) : Q! 2 ˝ p[V];

Q(d!) 2 ˝ pC1[V]g :

The arrangement is free if˝1(A) is a free module over
the polynomial ring. A free arrangement A has integer
exponents {b1, . . . , b`} so that �(A, t) =

Q
`
kD1(t�bk).

Reflection arrangements are free. This explains the fac-
torization of their characteristic polynomials.

Hypergeometric Integrals

Certain rank one local system cohomology groups of M
may be identified with spaces of hypergeometric inte-
grals, [1]. If the local system is suitably generic, these
cohomology groups may be computed using the alge-
bra A(A). Only the top cohomology group is nonzero
and it has dimension ˇ(A). See [6] for connections with
the representation theory of Lie algebras and quantum
groups, and with the Knizhnik–Zamolodchikov differen-
tial equations of physics.
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A finite set S of hyperplanes inRd defines a dissection of
Rd into connected sets of various dimensions. We call
this dissection the arrangementA(S) of S.

Given a vector � = (�1, . . . , �d) 2 Rd � {0} and
a number �0 2 R, we may define a hyperplane H and
associated halfspaces H�, H+ by

H D
n
x 2 Rd : � � x D �0

o
;

H� D
n
x 2 Rd : � � x < �0

o
;

HC D
n
x 2 Rd : � � x > �0

o
:

Clearly,H,H�,H+ are disjoint andH [H� [H+ = Rd.
We may now specify the location of a point relative

to the set of hyperplanes S = {H1, . . . , Hn}. For a point p
and 1 � j � n, define

s j(p) D

8̂
<̂
ˆ̂:

�1 if p 2 H�j ;
0 if p 2 Hj;

C1 if p 2 HCj :

The vector s(p) = (s1(p), . . . , sn(p)) is called the position
vector of p.

Clearly there are at most 3n possible position vec-
tors, however, in general most of these will not occur.
We say that points p and qlie on the same face if s(p) =
s(q). The nonempty set of points with position vector r
is called the face f (r):

f (r) D
n
p 2 Rd : s(p) D r

o

The nonempty sets of this form are called the faces of
the arrangement A(S). The position vector of a face f (r)
= g is defined to be r,

s( f (r)) D r:

A face f is called a k-face if its dimension is k. Spe-
cial names are used to denote k-faces for special val-
ues of k: a 0-face is called a vertex, a 1-face is called
an edge, a (d�1)-face is called a facet, and a d-face is
called a cell. A face is said to be a subface of another
face g if the dimension of f is one less than the dimen-
sion of g and f is contained in the boundary of g; it fol-
lows that si(f ) = 0 unless si (f ) = si (g) for 1 � i � n.
If f is a subface of g, then we also say that f and g are
incident (upon each other) or that they define an inci-
dence.

An arrangement A(S) of n � d hyperplanes is
called simple if any d hyperplanes of S have a unique
point in common and if any d + 1 hyperplanes have
no point in common. If n < d, we say that A(S)
is simple if the common intersection of the n hy-
perplanes is a (d�n)-flat. For more details see [3,4]
and [5].

As an application of hyperplane arrangements in al-
gorithm design for optimization problems, see [1].In
it the problem of minimizing the Euclidean distance
function on Rn subject to m equality constraints and
upper and lower bounds (box constraints) is consid-
ered. A parametric characterization in Rm of the family
of solutions to this problem is provided, thereby show-
ing equivalence with a problem of search in an arrange-
ment of hyperplanes in Rm. This characterization and
the technique for constructing arrangements due to H.
Edelsbrunner, J. O’Rourke and R. Seidel are used to de-
velop an exact algorithm for the problem. The algo-
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rithm is strongly polynomial running in time
(nm) for
each fixed m.
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