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Facilities layout (FL) is concerned with the placement,
relative to one another, of the facilities of some physi-
cal system. This area differs from planar multifacilities
location (MFL; cf. also � Multifacility and Restricted
Location Problems) in that in FL the facilities are all as-
sumed to have a significant physical area and are to be

placed in a finite total area which represents their phys-
ical system. In MFL the facilities are assumed to be di-
mensionless points.

The aim of FL is to produce a scale plan (in some
scenarios called a block plan) of the physical system to
be designed. The plan depicts the facilities of the system
(each one having its given area and shape) laid out rel-
ative to each other. An example of a simple block plan
is shown in Fig. 1.

The identification of effective plans depends upon
interfacility relationships, which may be quantitative
(e. g. transportation costs) or qualitative (e. g. utility
scores, called REL chart scores, based on facility adja-
cency). Each FL problem involves optimizing one or
more objective functions based on the given interfacil-
ity relationship.

FL is an important application area of optimiza-
tion. This is partly because increased global competi-
tion in manufacturing has spurred renewed efforts to

Facilities Layout Problems, Figure 1
A block plan with 11 facilities, including the exterior region,
indicated as facility 1
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reduce production costs. Efficient physical layout de-
sign of manufacturing plants is critical in the quest to
achieve and maintain competitive productivity. Indeed,
up to 70% of the operating costs of a manufacturing sys-
tem are related to materials handling and layout. This is
because improved layout design often brings about re-
ductions in materials handling, transportation, conges-
tion, and work-in-process.

There are applications of FL techniques in areas
other than manufacturing plant design. Examples in-
clude the design of office blocks and other commer-
cial buildings, hospitals and other public services, and
university campuses, government agencies, and sports
complexes. As will become evident in the following dis-
cussion, most FL models are NP-hard in the strong
sense (cf. also � Complexity Theory; � Complexity
Classes in Optimization). This has reinforced the search
for effective heuristics for them.

One of the earliest and best-known FL heuristics is
termed CRAFT (coordinate relative allocation of facil-
ities technique) [1]. It requires an initial block plan as
input, which it attempts to improve by exchanging the
positions of two or three facilities at a time. In con-
trast to this improved procedure, many other early FL
heuristics are construction procedures which build up
the final block plan iteratively, by placing facilities se-
quentially. The serial decision process requires, at each
step:
i) a selection of which facility is to be placed next in

the block plan being constructed, and
ii) a decision as to where this facility is going to be

placed.
Early construction procedures include: COREL-
LAP [23] and ALDEP [32].

One of the major FL optimization models is based
on the quadratic assignment problem (QAP; cf. also
� Quadratic Assignment Problem). For overviews on
this subject see [4,5,29]. Formulations of various FL
problems based on the QAP involve minimizing the
total transportation cost between all pairs of facilities.
This total cost comprises a sum of components calcu-
lated according to the distance and the amount of work
flow between each pair of facilities. The constraints
of the QAP model are based on the assumption that
the block plan is tessellated into a grid of unit squares
(called locations) and that no two facilities are to be as-
signed the same location. Many of these models assume

that all the facilities are of equal area. However, when
facilities have unequal areas or irregular shapes, addi-
tional constraints must be added. The facilities are par-
titioned into a number of subfacilities of unit area. The
problem then is to locate the subfacilities so that all the
subfacilities of each facility are assigned adjacent loca-
tions in an appropriate configuration. As the QAP is
NP-hard, most FL applications of it are concerned with
heuristics. A QAP model of a common FL problem is:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
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:
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ai jkr xi jxkr

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j D 0 or 1; i; j D 1; : : : ; n;

where

n D the number of subfacilities,
ci j D the cost per unit time period of assigning sub-

facility i to location j. (These costs are usually
one-time relocation costs which are converted
to an annual equivalent.)

djr D the cost per movement or interaction over the
distance from location i to location r,

fi k D the number of moves per time period in the
workflow from subfacility i to subfacility k,

Si D the set of locations to which subfacility i may
be feasibly assigned,

ai jkr D

(
fi kd jr if i ¤ k or j ¤ r;
ci j if i D k and j D r;

xi j D

8̂
<̂
ˆ̂:

1 if subfacility i
is assigned to location j;

0 otherwise:

If there are more locations than subfacilities, a num-
ber of dummy facilities can be introduced with zero cij
and f ik values. The f ik values are set to relatively high
levels if subfacilities i and k belong to the same facility,
thereby ensuring their adjacency. The cij values are set
to relatively high values when j 62 Si.

A second major FL optimization model is based on
graph theory (GT) and involves maximizing the sum



Facilities Layout Problems F 977

of the REL chart scores corresponding to the pairs of
facilities that are adjacent in the block plan. The for-
mulations can accommodate specifications that the re-
gion exterior to the block plan is one of the facilities,
and that the facilities are of unequal areas and vari-
ous shapes. GT models represent facilities and the pos-
sible adjacency of pairs of facilities in the block plan
by the vertices and edges of a graph, respectively. The
REL chart scores are used to weight the edges of the
graph. The objective is to identify the planar subgraph
(termed an adjacency graph) of this graph with the
largest total weight in terms of its REL chart scores.
The optimal adjacency graph specifies which pairs of
facilities are to be placed adjacent to each other in the
block plan. As this model was shown to be NP-hard in
[13], most research concentrates on heuristics. How-
ever, some GT algorithms for FL problems guarantee-
ing optimality, do exist. The algorithm in [12] involves
a series of tests for determining whether a proposed ad-
jacency graph being constructed is planar or not. In [6]
an integer programming formulation based on the GT
approach is discussed. It employs a Lagrangian relax-
ation procedure (cf. also � Integer Programming: La-
grangian Relaxation) for the derivation of bounds to be
used in a branch and bound algorithm (cf. also � Inte-
ger Programming: Branch and Bound Methods). Ap-
proaches to enforce connectivity of subgraphs corre-
sponding to facilities are taken from k-cardinality tree
models ([14] and [7]) which can also incorporate for-
bidden areas [10,11].

Early GT heuristics first identify the adjacency
graph and then attempt to construct a block plan cor-
responding to the information provided by the graph.
Examples include the heuristics of [3,9,24] and [27].
The comparisons in [28] show that the results of [27]
are invariably so close to optimality that the quest for
heuristics which find good quality adjacency graphs can
now be considered essentially solved. More recent GT
heuristics build up the adjacency graph and its corre-
sponding block plan simultaneously, such as the heuris-
tics of [37].

It has been observed that many of the previously
mentioned techniques are not computationally feasible
for some of the large scale numerical instances of FL
problems encountered in industry and often identify lo-
cal optima which are clearly far from globally optimal.
This has given rise to many investigations into whether

the more recently developed random search procedures
(such as simulated annealing (SA; cf. also � Simulated
Annealing Methods in Protein Folding) and genetic al-
gorithms (GA; cf. also � Genetic Algorithms)) could
be used to devise useful FL heuristics. There is a fun-
damental difference between SA and GA. That is, GA
must, of necessity, deal with a set of possible solutions
to the problem in hand, while SA considers only one
possible solution at a time. Because GA explores the set
of all feasible solutions by combining the characteristics
of various single feasible solutions, it sometimes covers
a larger portion of the solution space than SA, within
the same computational time. Thus, it appears to be the
more successful of the two for FL problems.

SA can be applied to FL problems in a variety of
ways. There exist SA improvement heuristics for FL
problems with
i) multiple floors, (based on the improvement ap-

proach) [26],
ii) multiple objectives based on both transportation

costs and REL chart scores [33].
For further information see [16] and [22]. However,
it appears that the logarithmic cooling schedule of SA
causes its FL heuristics to perform relatively slowly. For
this reason it seems that GA heuristics are more effec-
tive for FL problems. For instance the GA approach to
solve the QAP, devised in [35], can be applied to QAP
models of FL problems, such as the one given earlier.
However, this GA heuristic has only a single solution
giving rise to a mutant, which means that parallelism is
lost to a certain extent.

To overcome this deficiency, it is possible to design
more effective GA heuristics for FL problems by adopt-
ing a small mutation rate and a large crossover rate.
A heuristic with efficient crossover operators with low
level mutation has been devised in [34]. Further heuris-
tic attempts to tackle the QAP include tabu search (see
e. g. [2]) or the reverse elimination method [36].

The approaches to FL described so far have been
classical in the sense that they have nearly all embraced
single objective functions. In contrast, there have been
developments in FL models with multiple criteria. Ex-
amples include: a multifactor plant layout methodology
devised in [15], a layout planning system with multiple
criteria and a variable domain representation in [18],
an expert system using priorities for solving multiple
criteria facilities layout problems in [25], and a multi-
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attribute decision theoretic approach for layout design
in [31].

There are numerous computer programs in exis-
tence which implement FL heuristics. Three early ones
from the 1960s: CRAFT, CORELAP, and ALDEP have
already been discussed. In the 1970s two improvement-
style heuristics, both based on CRAFT, appeared to be
among the best of those proposed then. FRAT (facili-
ties relative allocation technique) [21] assumes that all
the facilities have equal areas. TSP (terminal sampling
procedure) [17] carries out the interchange of the place-
ment, in the block plan, of pairs of facilities on a se-
lective basis. The program has the ability to use im-
proved block plans as input and to fix the placement of
certain facilities. Three of the large number of FL pro-
grams written in the 1980s will be mentioned. SPACE-
CRAFT [20] is an extension of CRAFT to multifloor FL
problems. See [17] for a perturbation scheme, and [18]
for a new FL system which accommodates a variety of
types of spaces, including solid, circulation, and empty.
A multicriteria objective function involves transporta-
tion cost, REL chart scores, the percentage of unused
area, and block plan structure.

The 1990s saw a different type of FL program
emerging: the decision support system (DSS). One such
example, called layout manager [8] is a user-friendly
menu-driven DSS which provides for the choice be-
tween a number of optimality criteria including, among
others, transportation cost and REL chart scores. The
system is written in Pascal, within the Microsoft Win-
dows environment.
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A typical assumption in facility location models is that
the cost customers face in patronizing facilities is in-
dependent of the actions of other customers (with the
possible exception of capacity restrictions). For exam-
ple, many classical facility location models assume that
customers patronize the facility (or are served by the fa-
cility) that minimizes the cost of travel between the fa-
cility and the customer (e. g., see, [12,13]). Other facility
location models incorporate marketing considerations,
and assume that customers patronize the facility that is
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‘most attractive’ to them, where attractiveness depends
not only on travel cost, but also on attributes of each fa-
cility such as size, goods offered, and number of servers
(e. g., see [15]).

However, in many situations, the cost customers
face in patronizing a facility is a function of the actions
of other customers. For example, waiting time for ser-
vice may be longer in a store that is patronized by many
customers than in a store with fewer customers. An am-
bulance that serves a large, heavily-populated area is
likely to incur longer delays in providing service than an
ambulance serving a smaller, less-populated area. These
are examples of negative externalities associated with
the market share of the facility. Conversely, in some
cases the externalities could be positive: for example,
a crowded nightclub is likely to be more popular than
one that attracts fewer patrons.

If facilities provide essential services (e. g., gasoline,
drivers’ licenses), customer demand may be constant,
regardless of the costs customers face in obtaining ser-
vices. However, for facilities that provide nonessential
services (e. g., fast-food restaurants, retail stores), cus-
tomer demand might be a function of the total cost of
receiving service.

This chapter discusses models for the location of
facilities that incorporate not only travel cost but also
negative externalities associated with the market share
of the facility. Various problem formulations are dis-
cussed, and selected references are provided. A more
comprehensive discussion is given in [10]. The case of
positive externalities is not discussed because, for such
problems, degenerate solutions tend to occur (e. g., the
optimal solution may be to locate all facilities at the
same point, with any point in the region being opti-
mal).

One can consider two different situations regard-
ing the allocation of customer demands to facilities.
In a user-optimizing environment, customers patron-
ize the facility that minimizes their total cost, in this
case travel cost plus externality cost. Such a situation
occurs, for example, in customers’ selection of grocery
stores and bank branches. In a system-optimizing envi-
ronment, customers are assigned to facilities by a cen-
tral agent. An example is the assignment of voters to
polling places.

In the system-optimizing environment, allocation
of customer demands can be considered as part of the

location optimization problem, similar to many mod-
els of facility location that do not incorporate exter-
nalities. In the user-optimizing environment, however,
models of facility location have at their core a customer-
choice equilibrium problem: equilibrium occurs when
each customer frequents the facility that minimizes his
total travel cost plus externality cost. For purely neg-
ative externalities, the equilibrium utilization of facili-
ties (total demand satisfied by each facility) is unique,
although the equilibrium user-choice pattern (alloca-
tion of individual customer demands to facilities) may
not be unique ([8,18]). This result holds whether de-
mands are inelastic or elastic with respect to total cus-
tomer cost. Determination of the user-choice equilib-
rium can be written as a nonlinear complementarity
problem (analogous to [1]), and also as a network flow
problem [21] which can be solved using network opti-
mization techniques (e. g., [20]).

This article discusses models for the location of fa-
cilities in both types of customer choice environments.
A distinction is made between facilities with mobile
servers (e. g., ambulances) that travel to fixed customers
and return to their home location between calls and fa-
cilities that house fixed servers (e. g., postal clerks).

Location of Mobile Servers

Some of the first location models to incorporate ex-
ternalities were developed in the context of emergency
service vehicle location. In such models, the servers
(the emergency service vehicles) travel to customers,
and the externality cost is the servers’ queueing de-
lay. A system-optimizing environment is assumed: cus-
tomers are assigned to service regions of the servers.
Models for determining the home location of such mo-
bile servers have considered a variety of location ob-
jectives, including minimization of mean response time
to customers (travel time plus queue delay), minimiza-
tion of the maximum response time to any customer,
equalization of server workloads, and other objectives.
Examples of such models can be found in [3,4,5,7,11],
and [19].

Location of Fixed Service Facilities

Most other facility location models that incorporate ex-
ternality costs have assumed fixed service facilities.
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System-Optimizing Environment

In the system-optimizing environment, since cus-
tomers are assigned centrally to facilities, it is natu-
ral to think only of noncompeting facilities. For the
case of fixed customer demands, a natural objective
in locating facilities (and allocating customers to fa-
cilities) is to minimize total customer cost. This prob-
lem is a generalized p-median problem. Such a model
might be appropriate for the location of certain pub-
lic facilities such as voters’ polling places. O. Berman
and R.C. Larson [2] presented a p-median problem
that includes queueing-like congestion of the facilities.
In the system-optimizing environment with elastic de-
mands, a natural objective is to locate facilities to max-
imize the total demand served by facilities (i. e., max-
imum facility utilization). Such a model might be rel-
evant for the location of fast-food franchises or clinics
for preventive childcare (e. g., inoculations). This facil-
ity location problem is a generalized p-median prob-
lem with an embedded demand equilibrium [18]. For
the case of discrete customer demands on a network,
S. Kumar [18] proved a nodal optimality theorem and
showed that the problem can be formulated as a nonlin-
ear integer convex programming problem and solved
using branch and bound (see also [10]).

User-Optimizing Environment

In the user-optimizing environment with fixed service
facilities, one can distinguish between noncompeting
and competing facilities. For the case of noncompet-
ing facilities in the user-optimizing environment with
inelastic demand, a natural location objective is to min-
imize total customer cost. This framework might be ap-
propriate for the location of public facilities such as So-
cial Security Offices. Assuming discrete customer de-
mands, the problem can be written as a mixed integer
bilevel program [10] (given a set of fixed facility loca-
tions, one can then determine the user-choice equilib-
rium utilization of facilities). M.L. Brandeau and S.S.
Chiu [8] considered the case of two such facilities on
a tree network with nodal demands. They character-
ized the optimal facility locations, and presented an al-
gorithm for finding those locations.

A typical location objective for the case of com-
peting facilities (whether or not externalities are con-
sidered) is maximization of market share. When ex-

ternalities are not considered, problems of competi-
tive facility location involve a locational equilibrium;
when negative externality costs and user-optimizing
customer choice are considered, such problems also in-
volve a customer-choice equilibrium. E. Kohlberg [17]
considered the location of competing identical facilities
on a line with uniformly distributed, inelastic demands
where customers select a facility based on the sum of
travel time plus waiting time for service. For the case
of two facilities, the optimal locations occur at the mid-
point of the line, and for the case of more than two fa-
cilities, Kohlberg [17] showed that a locational equilib-
rium does not occur. R.M. Braid [6] analyzed the lo-
cational equilibrium for two congested public facilities
located by competing governmental jurisdictions in an
inelastic-demand environment. Brandeau and Chiu [9]
analyzed the case of two competing facilities on a tree
network with inelastic demands and a general negative
externality function. Such a model might be appropri-
ate for the location of similar competing grocery stores.
They assumed a Stackelberg game (with a leader and
a follower). They characterized the optimal locations of
the leader and the follower, and presented an algorithm
for finding those locations.

Kumar [18] considered the location decision of
a profit-maximizing firm that locates one facility in a re-
gion where a number of competitors are already located
and in which customer demand is elastic. An example
application is the location of competing retail outlets.
The problem is a bilevel programming problem which
can be heuristically solved using a gradient projection
ascent approach (e. g., [14]).

Resource Allocation with Externalities

If facilities are already located, changing facility loca-
tions may be expensive. An alternative is to allocate re-
sources to change the characteristics of the facility (e. g.,
through training or technological improvements). The
question is how to balance the cost of change with the
associated benefits (e. g., increased market share, low-
ered total customer cost). Resource allocation problems
of this type are discussed in [10] and [16].

See also

� Combinatorial Optimization Algorithms in
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Facility location problems deal with the question of
where to locate certain facilities, so that they can sat-
isfy some kind of demand of a certain set of customers,
and so that the total cost is minimized. If the facili-
ties are factories or warehouses and the goods will be
shipped from the facilities to the customers, one can as-
sume that the shipments will be made so as to minimize
the transportation costs. (See also � Facility Location
with Staircase Costs and � Stochastic Transportation
and Location Problems.) However, if the facilities are
hospitals or supermarkets, transportation will consist of
customers traveling by their own means to/from the fa-
cility, and in such a case, it is not certain that each cus-
tomer will behave exactly so as to minimize the trans-
portation costs.

So in public facility location problems where the
clients are free to make their own choice of facility,
one should probably expect different results than those
minimizing the transportation costs. Modeling such
situations, the objective cannot only be to minimize
the total transportation and facility costs. The effect
of spatial interaction has been used to improve loca-
tionmodels of this type. Simple plant location problems
with spatial interaction between the travelers have been
treated in [3,4,6,19,20,22,23], modeled as a nonlinear,
mixed integer programming problem.

In [15] a different model is derived, in a similar way
as used in [14], that does not use the approximation
yielding entropy terms. The model is called the ‘exact’
formulation of the simple plant location problem with
spatial interaction, because of the usage of the classical
way of deriving the gravity model, without doing any
approximation.

Assuming integer requirements on the transported
amounts enables an exact linearization of the nonlinear
costs. This yields a linear, pure zero-one model, to the
price of a significantly increased number of variables.

Luckily the model has a special structure that can be
exploited by several different solution methods.

Model

We now describe a public facility location model, with
m possible locations for supply points (plants) and n de-
mand points (client zones). The fixed cost for opening
plant i is ai. At demand point j the demand (the num-
ber of clients in zone j) iswj. Trips will be made between
the demand points and the opened plants so that the de-
mand is satisfied. The transportation costs for one trip
between plant i and demand point j (i. e. the cost for
a client at zone j to get service at plant i) is cij.

The following variables are introduced.

zi D
�

1 if a plant at location i is opened;
0 if not;

xi j D

8̂
ˆ̂̂<
ˆ̂̂̂
:

the number of trips between
plant i and demand point j
(i. e. the number of clients
in zone j getting service at plant i):

The total cost for transportation and opening plants
is

v1 D min
mX
iD1

nX
jD1

ci jxi j C
mX
iD1

aizi :

As for the spatial interaction, one may note that
several microstates (obtained by identifying every sin-
gle client’s trip) may yield the same macrostate (the x-
solution). The macrostate given by the largest number
of microstates is the most probable solution, according
to [29]. Maximizing the number of microstates yielding
x yields another objective function for finding the most
likely x-solution.

v2 D min
mX
iD1

nX
jD1

ln(xi j!):

A suitable objective function is now obtained by
combining these two parts, v
 D v2 C �v � 1, where
the weight � reflects the sensitivity of the system to the
costs. For large values of � , it is very important to min-
imize the costs, while for smaller values of � , the costs
are not very important.
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The best value of the parameter � , being the weight
of how much the clients take the costs into account,
must be found by calibrating the model against a real
life situation. Considering a certain situation, one can
assume that � is fixed and given.

The following model (SPLPS) is obtained:

v� D min
mX
iD1

nX
jD1

ln(xi j!)C �

0
@

mX
iD1

nX
jD1

ci jxi j C
mX
iD1

aizi

1
A

such that
mX
iD1

xi j D wj; 8 j (1)

xi j � wjzi � 0; 8i; j (2)

xi j � 0; integer; 8i; j (3)

zi 2 f0; 1g; 8i: (4)

SPLPS is a pure integer problem, with a nonlinear
objective function that actually is defined only in the
integer points.

If � is so large that the logarithmic part is negligible,
we get pure cost minimization. The model is then iden-
tical to the simple plant location problem, SPLP, and
can be efficiently solved by for example a dual ascent
method, [5].

In previous work, a continuous relaxation of x
together with Stirling’s approximation, ln(xij!) 	 xij
ln(xij)� xij, have been used, yielding a nonlinear, mixed
integer programming problem.

Now we linearize the cost function for each vari-
able xij in the interval 0 � xij � wj, with break points
at each integer point. This does not introduce any
error (as Stirling’s approximation would). The num-
ber of variables then depends on the values of the
demands.

We get ci jk D ln(k!) � ln((k � 1)!) C � ci j D
ln(k) C � ci j. Note that ci jk > ci jk�1, [18], which in-
dicates convexity of the resulting cost functions.

Then we do the substitution xij =
P

k xijk, where xijk
is the amount of xij that falls in the interval (k � 1, k).
The following model (SPLPE) is obtained:

v� D min
mX
iD1

nX
jD1

w jX
kD1

ci jk xi jk C
mX
iD1

�aizi

such that

mX
iD1

w jX
kD1

xi jk D wj; 8 j; (5)

xi jk � zi � 0; 8i; j; k; (6)

xi jk 2 f0; 1g; 8i; j; k; (7)

zi 2 f0; 1g; 8i: (8)

This is a large linear integer programming problem
withm(1 +

Pn
jD1 wj) binary variables. The fact that it is

a pure 0–1-problem is favorable when it comes to solu-
tion methods. The coefficients in the constraints (6) are
all reduced to one, so the formulation is probably quite
strong.

Solution Methods

It is in principle possible to solve SPLPEwith a standard
integer programming code, but the size of the model
prohibits this for all instances but very small ones. As
the model is fairly new, one cannot find many solution
methods proposed in the literature.

A dual ascent procedure for this problem has been
developed, see [17]. Another method, based on the
same dual, is Lagrangian relaxation and subgradient
optimization, investigated in [18]. Solution methods
based on primal and dual decomposition techniques
can also be used, see [16], where one conclusion is that
Benders decomposition seems to be an efficient solu-
tion method. In [13], the dual ascent approach is in-
serted in a branch and bound framework, and applied
to a somewhat more general problem.

We will briefly describe these methods below.

The Dual Ascent and Adjustment Method

A dual ascent procedure can be used to, in principle,
solve the LP-dual of the LP relaxation of SPLPE, by in-
creasing the dual variables in small steps, in such a way
that an ascent of the dual function is obtained in each
step. Furthermore, a dual adjustment procedure can be
used to temporarily decrease dual variables that block
further improvement.

Let ˛j denote the dual variables corresponding to
constraint set 1 of the LP relaxation of SPLPE, ˇijk the
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dual variables corresponding to constraint set 2 and
ıi the dual variables corresponding to the constraints
zi � 1. The LP-dual will be as follows:

v� D max
nX

jD1

wj˛ j C

mX
iD1

ıi

such that

˛ j � ˇi jk � ci jk ; 8i; j; k; (9)

nX
jD1

w jX
kD1

ˇi jk � ıi � �ai ; 8i; (10)

ˇi jk � 0; 8i; j; k; (11)

ıi � 0; 8i: (12)

The basic steps are to make moves in the dual vari-
ables ˛j. For fixed ˛ D ˛, the LP-dual is trivially solv-
able, yielding

ˇi jk D max(0; ˛ j � ci jk); 8i; j; k;

and

ıi D max

0
@0;

nX
jD1

w jX
kD1

ˇi jk � �ai

1
A ; 8i:

Now let kij be such that

˛ j � ci jk ; 8k � ki j; ˛ j < ci jk ; 8k > ki j;

and

qi j D

(
1 if ˛ j D ci jk i j
0 if not:

Also, let

si D
nX

jD1

w jX
kD1

max(0; ˛ j � ci jk )

and define I>={i: si > � ai}, I=={i: si = �ai}, I< = {i: si <
�ai and I� = I> [ I=.

The complementary slackness conditions are

xi jk D zi ; 8k � ki j � qi j; 8i; j;

xi jk D 0; 8k > ki j; 8i; j;

zi D 1; 8i 2 I>;

zi D 0; 8i 2 I<:

Now define

wl
j(˛) D

X
i2I>

(ki j � qi j)

and

wu
j (˛) D

X
i2I�

ki j:

Then it can be shown, [17], that

wl
j(˛) �

mX
iD1

w jX
kD1

xi jk � wu
j (˛):

This means that wl
j and w

u
j are lower and upper bounds

on the left-hand sides of constraints (9). In order to
obtain feasibility (optimality in the dual) the intervals
between these bounds should contain the right-hand
sides wj. The following is proved in [17]: If wl

j(˛) �
wj � wu

j (˛);8 j, then ˛ is optimal in the LP relaxation
of SPLPE.

The dual ascent method is now to increase ˛j in
small steps, so that wl

j(˛) and wu
j (˛) increase. The in-

crease of a certain ˛j is bounded by the closest break-
point, induced by the dual constraints of either set 1
(corresponding to enabling or forcing the increase of
yet another xijk) or set 2 (corresponding to enabling or
forcing the increase of yet another zi).

The bounds wl
j and wu

j will approach wj from be-
low, and wl

j will not be allowed to exceed wj. The in-
crease of ˛ is repeated, in each step for the jwhich yields
the largest distance between wu

j and wj, until optimum
is found or improvement is blocked (i. e. a further in-
crease of any ˛j would result in wl

j > wj). In the last case
we use an adjustment procedure, which decreases some
˛j, in order to allow the increase of other ˛j’s. Then
the ascent phase above is repeated. More details can be
found in [17].

Dual Ascent and Branch-And-Bound

The dual ascent and adjustment procedure only solves
the LP relaxation of the problem, so to find the ex-
act integer optimum, the procedure must be used
within a branch and bound framework. The subprob-
lem in each node of the branch and bound tree is then
solved with the dual ascent procedure, in the sense that
lower bounds on the optimal objective function value
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and sometimes feasible primal solutions are obtained.
Branches are cut off when the lower bound exceeds the
best upper bound known.

One can note that if all the z-variables are fixed in
SPLPE, then the problem is trivially solvable, and the
x-variables will attain integer values even if the con-
straints xijk 2 {0, 1} are replaced by 0 � xijk � 1, so
it may be regarded as an LP-problem. Furthermore it
is proved, in [13], that the dual ascent procedure accu-
rately solves the problem when all z-variables are fixed,
within a finite number of steps.

Therefore, it is natural to do the branching over the
z-variables. Fixed z-variables are handled as follows in
the dual ascent phase. Let I0 = {I: zi is fixed to 0} and
I1 = {I: zi is fixed to 1}. For all i 2 I0 [ I1, the dual
variables ıi are removed, and the corresponding dual
constraints in set 2 are removed. For all i 2 I1 the cor-
responding primal constraints in set 2 are redundant,
so we can assume that ˇijk = 0, 8 i 2 I1, 8j, k. Also,
xijk = 0, 8 i 2 I0, 8 j, k.

All elements of I0 [ I1 must be removed from I>,
I=, I< and I�. It is not necessary to calculate si for i 2
I0 [ I1. After these changes, the bounds wl

j and wu
j are

calculated as above.
Some supporting hyperplanes, and breakpoints, are

removed from the dual function, as a result of the fixa-
tions, so in the dual ascent procedure, fewer steps often
need to be taken. (Sometimes the increase of some ˛j
is limited by the breakpoint where a facility is opened.
This will not occur if the facility is fixed open or closed.)

In the worst case, the branch and bound method
will enumerate all z-solutions. Thus we have the fol-
lowing result: The dual ascent method within a branch
and bound framework will find the exact optimum of
SPLPE within a finite number of steps.

In practice branching is done when the dual ascent
and adjustment procedure stops, which not necessar-
ily means that the LP-optimum is found. In many cases
unnecessary branching is done, and we must expect the
branch and bound tree to be larger than it would be for
an LP-based branch and bound method.

Branching is done over any zi, i 2 I=, since any value
between 0 and 1 is optimal for such a zi, i. e. the com-
plementary slackness conditions allow for nonintegral
values of zi.

The original dual ascent method starts from zero
(no facilities opened and nothing sent). However, for

very small values of � in SPLPS many facilities will be
opened, while for very large values of � the z-solution
obtained for the ordinary uncapacitated facility loca-
tion problem, SPLP, by for examples the dual ascent
method DUALOC, [5], might be optimal or close to
optimal in SPLPS. In such cases one can use these so-
lutions as starting solutions.

The choice of which dual variable, ˛j, to increase
first in the dual ascent procedure, could be done cycli-
cally in j, but it seems better to choose the j which ex-
hibits the maximal residual, i. e. the largest gap between
wl

j and wj.

Lagrangian Relaxation
with Subgradient Optimization

Lagrangian relaxation is a well known and often used
approach for approximate solution of integer and
mixed integer problems, see for example [8] and [7].
The Lagrangian relaxation of SPLPE is obtained by re-
laxing the demand constraints, using multipliers ˛j. We
obtain the following Lagrangian dual:

(LD) vL D max'(˛);

where, for fixed multipliers, ˛ D ˛, the Lagrangian re-
laxation takes the following form:

(DS)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

'(˛) D min
mX
iD1

nX
jD1

w jX
kD1

ci jk xi jk

C

mX
iD1

�aizi

C

nX
jD1

˛ j

 mX
iD1

w jX
kD1

xi jk � wj

!

s.t. xi jk � zi � 0; 8i; j; k;
xi jk 2 f0; 1g; 8i; j; k;
zi 2 f0; 1g; 8i:

(DS) separates into m problems, one for each fa-
cility, containing one binary variable and a number of
continuous variables, and is trivially solvable. It has the
‘integrality property’, i. e. the y-solution will obtain in-
tegral values even if the integrality constraints are re-
moved. This property implies that the optimal value of
LD is the same as that of the LP relaxation.
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In order to solve the Lagrangian dual, we use
the well known technique subgradient optimization,
see [25,26] and [9]. We use a subgradient, �, of the dual
function '(˛) to find a search direction for updating
the multipliers, ˛:

� j D

mX
iD1

w jX
kD1

xi jk � wj; 8 j;

where x denotes the optimal solution of (DS) at ˛. Let-
ting ˛(l ) denote the multiplier values in iteration l, we
obtain the multipliers in the next iteration by setting

˛(lC1) D ˛(l ) C t(l )�(l );

where t(l) and �(l) are the stepsize and the search di-
rection. Several ways of choosing the stepsize, t(l), have
been suggested. Here we use the one that is suggested
by [26]:

t(l ) D �l
ev � '(˛(l ))

�(l )

2

;

whereev is an upper bound of vL and �l should be as-
signed a value in the interval ("1, 2 � "1), where "1 > 0,
in order to ensure convergence.

Termination of the subgradient search procedure
occurs when kd(l)k < �, t(l) < �, l >M, v�'(˛(l )) � � or
v � v < 1. The last criterion indicates optimality, since
all feasible solutions are integral, i. e. v� is integral.

Benders Decomposition

We have noted that if all z-variables were fixed, the so-
lution would not be changed if the constraints xijk 2
{0,1} were replaced by 0� xijk � 1. Therefore one might
regard SPLPE as a mixed integer programming prob-
lem. This opens up the possibility of solving the prob-
lem with Benders decomposition, [1]. Below we give
a short description of how the method can be applied
to SPLPE, as done in [16].

In the Benders subproblem, (PS), we fix z to z,
which makes the subproblem separable into several
trivial knapsack problems:

(PS) h(z) D
nX

jD1

hj(z)C
mX
iD1

�ai zi ;

where, 8 j,
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

hj(z) D min
mX
iD1

w jX
kD1

ci jk xi jk

s.t.
mX
iD1

w jX
kD1

xi jk D wj;

xi jk � zi ; 8i;
xi jk 2 f0; 1g; 8i; k:

(PS) is feasible if and only if
P

i zi � 1. The dual solu-
tion (˛, ˇ) is also easy to calculate.

The Benders master problem is given below.

(PM)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

vPM D min
nX

jD1

q j C

mX
iD1

�aizi

s.t. q j � wj˛
(l )
j �

mX
iD1

w jX
kD1

ˇ
(l )
i jk zi ;

8l ; j;
mX
iD1

zi � 1;

zi 2 f0; 1g; 8i:

The Benders decomposition method is to iterate be-
tween the master problem, (PM), and the subproblem,
(PS). (PM) yields a lower bound on v�, and z to be used
in (PS). (PM) yields an upper bound on v� (for inte-
gral z) and a new dual solution, (˛(l)j , ˇ

(l)
ijk), which is used

to form a new cut for the master problem. The method
has exact finite convergence.

The proportion of z-variables is much smaller in
SPLPE than in SPLP, which is promising for the
Benders decomposition approach. However, as shown
computationally in [16], (PM) often is very difficult to
solve. A suggested modification, [24], is to use the LP re-
laxation of (PM), by replacing zi 2 {0, 1} with 0� zi� 1,
in initial iterations (for example until the LP-bounds
are within 1% of each other). A good set of Benders cuts
is thus generated before the integer master problem is
solved. It is possible since any dual feasible solution of
(PS) yields a valid Benders cut, and z only appears in
the dual objective function.

If z is not integer, (PS) might not yield integer x-
solutions, but is still easily solvable. The bounds ob-
tained from the master problem and subproblem are
not valid for the integer problem, but for the LP relax-
ation of SPLPE.
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Mean Value Cross Decomposition

An alternate way of solving the LP relaxation of the
problem is to use the method mean value cross de-
composition, [10,11,12]. This method is a modifica-
tion of the subproblem phase of ordinary cross de-
composition, [28], but also a generalization of the
Kornai–Liptak method, [21], and a generalization of
the Brown–Robinson methods for polyhedral games,
[2,27].

The method uses the Lagrangian relaxation and the
subproblem of Benders decomposition, both described
in previous sections, but nomaster problems. The input
to one of the problems consists of the mean value of
all the previous solutions of the other subproblem. The
method has asymptotic convergence.

Comparisons and the Role of �

The parameter � reflects the relation between the trans-
portation costs and the effects of the spatial interaction
in the objective function, and its value should be chosen
specifically for each real life situation.

For very small values of � , the optimal solution is
zi = 1, 8 i, while for large values of � , the optimal z-
solution can be obtained by DUALOC. In these cases
the problem is then completely solved by simply solv-
ing the primal subproblem, (PS), once. In computa-
tional tests in [16,17,18] and [13], this occurs when �
is smaller than 0.0001 or larger than 0.1, while for � =
0.01 the differences to the solutions mentioned above
are the largest.

The conclusions of the computational tests in [16,
17,18] and [13] are the following. Ordinary Benders de-
composition seems to be more efficient than direct so-
lution with a general integer programming code. How-
ever, direct solution with a standard IP-code can only
solve small problems, due to memory requirements,
and the ordinary Benders decomposition method also
fails for many of the problems. The integer master
problem is simply too hard.

The modified Benders decomposition method
(starting with the LP relaxation of the master problem)
eliminates the weaknesses of the Benders approach, and
is a very efficient method.

The approximate methods mean value cross de-
composition and Lagrangian relaxation with dual sub-
gradient optimization are much quicker than ordinary

Benders, but not better than modified Benders decom-
position. For some large problems, these methods give
large gaps between the upper and lower bounds.

The dual ascent method is also quite quick, but
leaves gaps between the upper and lower bounds of
varying size. In [18] it is noted that the dual ascent
method and the Lagrangian method complement each
other in an interesting way.

The best methods seems to be the modified Benders
decomposition method and the dual ascent method
with branch and bound. These methods are capable of
solving quite large problems (up to almost 3,000,000
variables) optimally.

Finally we wish to point out that none of these
methods explicitly store the whole x-matrix, and that
this is what enables the solving of large problems.

Conclusion

We have described the simple plant location problem
with spatial interaction, applied an exact linearization
to the problem, and described a couple of solution
methods for the resulting large integer programming
problem. Although the model has a large number of
variables, the methods are able to solve it quite effi-
ciently. The problem is very well suited for the ap-
proaches of Benders decomposition, Lagrangian relax-
ation, and dual ascent. These methods actually manage
to solve the problem without storing all of the variables,
and especially the dual ascent method uses relatively
small amounts of computer memory.

We conclude that the model is solvable and useful
in practice.
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Location of facilities, plants, or other units for produc-
tion or distribution, is an important problem in many
different situations. The same type of problem can oc-
cur when one is installing equipment in for example
telecommunication networks, or when installing ma-
chines in a factory.

The common circumstances in these situations are
the following. A number of units, ‘facilities’, produc-
ing a certain service, may be located at certain possible
points. The service commodity is then to be sent from
the facilities to certain ‘customer’ points, which have
a certain demand for the service. The main complica-
tion is that the costs for production of the service is not
linear, instead there is a fixed cost for placing a facil-
ity at a certain location. In addition there may be linear
costs for producing and shipping the commodity to the
customers.

In the literature, see for example [3,4,6,8,13] and [1],
one can find the traditional capacitated plant location
model, where the total cost for satisfying demand con-
sists of two parts, namely linear transportation costs
and fixed costs for opening/installing the facilities. In
this model there is one fixed cost for each facility.
(Other variants can be found in � Stochastic trans-
portation and location problems and� Facility location
problems with spatial interaction.)

However, in practice, there is often a need for con-
sidering several different possible sizes of each facility.
This leads to a facility location problem with staircase
shaped costs. This approach will not only allow differ-
ent sizes, but also different production costs at different
levels of production at a facility.

For example, in telecommunications there are al-
most always several different sizes for the fibers, cables,

switches, controllers and other connections that must
be dimensioned when installing a new network. In such
problems staircase shaped costs will occur at several dif-
ferent levels, both for the activities at nodes as well as
along links. One situation where the specific location
model discussed here is quite appropriate is the instal-
lation of video servers for a video-on-demand service
on a telecommunication network.

Mathematical Model

We define a staircase cost function as a finite piece-
wise linear nondecreasing function with a finite set of
discontinuities, each corresponding to a certain size of
a facility. Letm be the number of possible location sites,
n the number of customers and qi the number of pos-
sible sizes at location site i. Furthermore, Dj is the de-
mand of customer j, pik is the unit cost of production at
a facility at location site i and size k, Sik is the capacity
of a facility of size k at location site i, f ik is the fixed cost
for a facility of size k at location site i, and cij is the cost
for sending one unit from location site i to customer j.

The following variables are used: tik is the produc-
tion within level k at facility i (where level k of the stair-
case corresponds to an operating facility of size k), xij is
the amount shipped from location i to customer j, and
yik is set to 1 if the facility at site i is of size k or larger
and 0 otherwise.

The capacities and costs for increasing the size of
a facility are	 Sik = Sik � Sik� 1 and	 f ik = f ik � f ik� 1

� (pik � pik� 1) Sik� 1, where Si0 = 0 and f i0, = 0, see
Fig. 1. Note that 0 � tik � 	 Sik, 8i, k, and if the total
production at facility i requires more than size k, then
tik =	 Sik.

v� D min
mX
iD1

nX
jD1

ci jxi j

C

mX
iD1

qiX
kD1

(pik tik C	 fi k yik);

such that
mX
iD1

xi j D Dj; 8 j; (1)

nX
jD1

xi j D
qiX
kD1

tik; 8i; (2)
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tik � 	Sik yik ; 8i; k; (3)

tik�1 � 	Sik�1yik ; 8i; k > 1; (4)

xi j � 0; 8i; k; (5)

yik D 0 or 1; 8i; k: (6)

It is natural to assume that pik � 0, 	 f ik � 0, 	 Sik
> 0 for all i, k and Dj > 0 for all j. The constraints (1) en-
sure that all the demandmust bemet for each customer,
while (2) ensure that, for each location, the amount
shipped also is produced. Constraint sets (3) and (4)
ensure that the level of production corresponds to the
correct level on the staircase cost function for each fa-
cility. One might note that from constraints (3) and (4)
follows that yik + 1 � yik.

This is a linear mixed integer programming prob-
lem with mn +

Pm
iD1 qi continuous variables andPm

iD1 qi integer variables. The proportion of integer
variables is higher than in the ordinary facility lo-
cation problem. Because of this, and because of the
structure of the problem, solving the problem with
a general code for mixed integer programming prob-
lems is probably not very efficient for large (real life)
instances.

One aspect of the structure of the problem is that if
y is kept fixed (i. e. the sizes of the facilities are given),
the remaining problem is simply a standard network
flow problem, and hence x and t will attain integer
values.

Another important aspect of the structure of the
problem is the potential separability. There are several

Facility Location with Staircase Costs, Figure 1

possibilities of making the model separable by relaxing
different sets of constraints.

It is also possible to use a problem formulation with
f and S instead of 	 f and 	 S. This yields constraints
of SOS1-type (onemust ensure that only one of the pos-
sible sizes is used at a facility), and a somewhat smaller
problem (less constraints). The LP relaxation is quicker
to solve and the optimal objective function value is the
same as that of the model above (i. e. the duality gaps
of the two formulations are the same). However, solv-
ing the model with general mixed integer codes, the
alternate model seems to produce larger branch and
bound trees. Concerning the methods discussed below,
the two models in most cases behave in identical man-
ners.

Solution Methods

Methods for models with staircase cost functions or
for models capable of modeling such functions can be
found in for example [2,11,14,15] and [12]. We will be-
low describe some possibilities.

If the exact solution is to be found (and verified),
the only reasonable way seems to be to resort to branch
and bound, in some sense. This matter in general is ex-
tensively discussed in the literature, and although there
might be some considerations for the staircase cost case
that differ from the single fixed cost case, when it comes
to branching and search strategies, we will not dwell on
it here.

Assuming a standard branch and bound frame-
work, the main question is how to solve the subprob-
lems, i. e. how to get the bounds, especially the lower
bounds. This will be discussed more below.

However, an alternative is to move the branch and
bound procedure into a Benders master problem, i. e.
use a Benders decomposition framework in order to
obtain the exact solution. This will also be briefly de-
scribed below.

We will start with procedures for obtaining upper
and lower bounds on the optimal objective function
value. The upper bounds correspond to feasible solu-
tions obtained, while the lower bounds are used to get
estimates of the quality of the feasible solutions. If all
cost coefficients are integral, we note that a lower bound
that is within one unit from the upper bound indicates
that the upper bound is optimal.
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Primal Heuristics

There is a well-known ADD heuristic for the capaci-
tated plant location problem, [13], which can be mod-
ified to suit the staircase cost facility location problem,
see [12]. This heuristic can be improved by combining
it with certain priority rules, [6].

If for each plant it is decided to which level of pro-
duction it can be used (i. e. the y-variables are fixed),
the resulting problem is an unbalanced transportation
problem. Let Li denote the level (size) of plant i, and
initiate the heuristic by setting Li = 0, 8i. Let I = {i: Li
< qi}. The ADD heuristic consists of the repeated use
of the following step: Increase the size (set Li = Li + 1)
of the location site i 2 I that provides the largest reduc-
tion of the total cost. Terminate the procedure when no
more reduction is possible.

In order to avoid ADD increasing the level of pro-
duction in the order of ‘decreasing’ capacity until a fea-
sible solution is found, we apply a generalization of
one of the priority rules discussed in [6]. These priority
rules provides a better phase-1 solution than the ADD
heuristic itself. Two examples of priority rules, PR1 and
PR2, for choosing the location site i 2 I where the size
is to be increased (Li = Li + 1), are given below. (They
correspond to P1 and P3 in the notation of [6]).
PR1) Choose site i 2 I in the order of decreasing quo-

tients 	 Si;LiC1/	 f i;LiC1, until the location sites
are able to serve the entire demand.

PR2) Choose site i 2 I in the order of increasing values
of

1
bn/3c

bn/3cX
jD1

ci j C
	 fi;LiC1

	Si;LiC1
;

until the location sites are able to serve the en-
tire demand. (c is c sorted according to increasing
values.)

In [13] the ADD heuristic is outperformed by the
heuristic DROP but [6] show that ADD with prior-
ity rules produce solutions with equally good objective
function values as DROP, in less computational time.

Linearization

A widely used way of obtaining a lower bound is di-
rect LP relaxation. The integer requirements (6) are re-
placed with the constraints 0 � yik � 1, 8i, k. We also

include the redundant constraints tik �	 Sik, 8i, k, and
possibly yik � yik� 1 for all i, k > 1. The optimal objec-
tive function value of the LP relaxation is denoted by
vLP, and vLP � v�. The duality gap, the difference be-
tween v� and vLP, is in most cases larger than zero. The
LP-problem is large, but sparse, and can be solved with
a standard LP-code.

Convex Piecewise Linearization

Since the binary variables yik are only included to give
the correct cost for the production, they can be elim-
inated if we use an approximation of the costs. If the
staircase cost function is underestimated with a piece-
wise linear and convex function, we get a problem,
much easier to solve, which gives a lower bound on v�,
denoted by vCPL, see [14] and [11]. For explicit expres-
sions of how to construct the convex piecewise lin-
earization see [11].

The resulting problem is a linear minimal cost net-
work flow problemwith parallel arcs, which is quite eas-
ily solvable by a standard network code. The x- and t-
part of the solution is feasible in the original problem,
so we can generate an upper bound by evaluating this
solution in the correct cost function, which is done by
finding the correct values of y.

In [10] it is proved that the convex piecewise lin-
earization and the LP relaxation are equivalent, in the
sense that vCPL = vLP and an x-solution that is opti-
mal in one of the problems is also optimal in the other
problem. Utilizing the network structure, we thus get
a quicker way of solving the LP relaxation.

Benders Decomposition

In [11] a Benders decomposition approach is used, and
combined with the convex piecewise linearization de-
scribed above.

The Benders subproblem is simply obtained by fix-
ing the integer variables, i. e. fixing the sizes of the fa-
cilities. The resulting problem is minimal cost network
flow problem, similar to a transportation problem, but
with certain intervals (given by the facility sizes) for the
supplies.

However, the Benders master problem obtained
by a standard application of the Benders approach, is
much too hard to solve. The number of integer variables
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is much larger than in an ordinary location problem
with the same numbers of facilities and customers. One
way around this is to combine the Benders approach
with the convex piecewise linearization.

An improved piecewise linearization is obtained by
branching at certain production levels. A staircase cost
function is divided into two parts by the branching, and
a binary variable is introduced, indicating which of the
parts that is to be used. In each of the two parts, con-
vex piecewise linearization is used. In this manner, one
could design a branch and bound method for solving
the problem, similar to what is described in [14].

Considering the model after a number of branch-
ings, we have an approximation (a relaxation) of the
original problem, with a much smaller number of in-
teger variables. On this problem we then apply Benders
decomposition.

In principle one could let each subproblem in the
branch and bound method be solved exactly with
Benders decomposition, thereby obtaining basically
a branch and bound method, which employs Benders
decomposition to solve the branch and bound subprob-
lems. This is however very inefficient.

The other extreme is standard application of Ben-
ders decomposition to the original problem, in which
case the Benders approach employs branch and bound
to solve the Benders subproblems. This is also quite in-
efficient in practice.

A more efficient method is to combine the two
approaches, Benders decomposition and branch and
bound on a more equal level. This can be done the fol-
lowing way.
1) Solve the initial convex piecewise linearization (with

a network code).
2) Do one or more branchings, where the error of the

approximation at the obtained solution is largest.
3) Solve the obtained problem with Benders decompo-

sition (to a certain accuracy).
4) Repeat 2) and 3), until optimality.
There are two very important comments to the above
algorithm.
A) When one returns to step 3) after having done

branchings, one can recalculate and reuse all the
Benders cuts obtained before the branchings. (This
is described in detail in [11].)

B) The stopping criterion for the Benders method, i. e.
the required accuracy in step 3), is a very important

control parameter. One should in initial iterations
require a low accuracy, and gradually, as the method
approaches the optimal solution, require higher and
higher accuracies.

The effect of combining comments A) and B) is that one
should only do a few Benders iteration in each main
iteration, since the number of Benders cuts will auto-
matically increase, as the old cuts are recalculated and
kept.

The main conclusion of the computational tests
done in [11] is that only a small part of all the integer
variables (in average 4%) need to be included by the im-
proving piecewise linearization technique, when solv-
ing a problem to reasonable accuracy. In other words,
only a small subset of the possible sizes need to be in-
vestigated.

Lagrangian Relaxation
and Subgradient Optimization

Now we will describe a Lagrangian heuristic, found
in [12], in more detail. Lagrangian relaxation and sub-
gradient optimization are used to obtain a near-optimal
dual solution, and act as a base for an efficient primal
heuristic. Based on the solution of the Lagrangian re-
laxation one can construct a transportation problem
which yields primal feasible solutions, and can be used
during the subgradient process.

An important aspect of the Lagrangian approach is
that a method yielding good feasible primal solutions
can be based on dual techniques.

Lagrangian relaxation, [7], in combination with
subgradient optimization, [9] is a commonly used tech-
nique for generating lower bounds on the optimal ob-
jective function value of mixed integer programming
problems. Here we apply Lagrangian relaxation to con-
straint set (2), and denote the Lagrangian multipliers by
ui. For fixed values of u, the subproblem separates into
several smaller problems:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

�1 j(u) D min
mX
iD1

(ci j C ui )xi j

s.t.
mX
iD1

xi j D Dj;

xi j � 0;
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8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

�2i (u) D min
qiX
kD1

((pik � ui )tik C	 fi k yik )

s.t. tik � 	Sik yik ; 8k;
tik�1 � 	Sik�1yik ; 8k > 1;
tik � 0;
yik D 0 or 1

The first set of subproblems consists of n continu-
ous knapsack problems, which are trivially solvable.
The second set of subproblems consists of m one-
dimensional staircase cost problems. The solution can
be found by calculating the minimizer ki for each i, as
follows:

�2i(ui) D min
kiD0;:::;qi

k iX
kD1

((pik � ui )tik C	 fi k yik):

The resulting solution is

y0i k D

(
1; 8k � ki ;
0; 8k > ki ;

t0i k D

(
	Sik ; 8k � ki ;
0; 8k > ki :

Note that the subproblem has the integrality prop-
erty, [7], so max �(u) = vLP.

The Lagrangian dual,

max �(u) D
nX

jD1

�1 j(u)C
mX
iD1

�2i (u)

can be solved by standard subgradient optimiza-
tion, [9], in order to get the best lower bound. One can
use enhancements such as modified directions, [5], dr

= �r + ˛ dr � 1, where �r is the subgradient generated in
iteration r and dr is the direction used in iteration r.

A steplength shortening is obtained by setting
� = �\2 when there has not been any improvement of v
for N1 consecutive iterations. When there has not been
any improvement of v for N2 iterations, the subgradient
optimization procedure is terminated. The subgradient
is given by � ri =

Pn
jD1 xij

0 �
Pqi

kD1 tik
0 for all i, where xij0

and tik0 are the optimal solutions to the subproblems.
Reasonable choices for the parameters are N1 D 6,
N2 D 25, and ˛ = 0.7.

One can use a heuristic based on the solution of the
Lagrangian relaxation to try to get a feasible solution.

The obtained values of yik0 are used to calculate the
supply at each location and a transportation problem
is solved. The solution to the transportation problem is
feasible in the original problem if constraint sets (3) and
(4) are satisfied, which easily can be achieved. The val-
ues of the flow variables xij are taken directly from the
solution to the transportation problem. The total pro-
duction ti is then calculated as ti =

Pn
j = 1 xij. One can

then easily find tik as the part of ti that lies within level
k, and the yik solution is simply yik = 1 if tik > 0 and 0 if
not. Finally all unnecessary production capacity at each
location i is removed.

The complete Lagrangian heuristic, LH, also in-
cludes the following. The convex piecewise lineariza-
tion, CPL, is solved with an efficient network code. The
Lagrangian multipliers are initiated with a convex com-
bination of the appropriate node prices obtained by
solving CPL and minj cij, with the largest weight on the
former. The primal procedure to generate feasible so-
lutions is used every third iteration in the subgradient
procedure.

Note that CPL yields vCPL = vLP, so the subgradi-
ent procedure cannot improve the lower bound, which
is quite unusual in methods of this kind. The motiva-
tion behind using the subgradient procedure is not to
get lower bounds, but to get primal solutions (upper
bounds).

Computational Results

In [12] the heuristic procedures are tested by solving
a number of randomly generated test problems, with up
to 50 locations, 100 destinations and 20 sizes of each
location (yielding 6000 continuous variables and 1000
integer variables). The conclusions of the tests are the
following.

A standard mixed integer programming code (in
this case LAMPS) needs extremely long solution times
for finding the exact optimum. The ADD heuristics
produce solutions with relative errors in the range of
1%–20% (in average 11%), but also requires quite long
solution times (although not as long as the MIP-code).

The convex piecewise linearization CPL, combined
with exact integer evaluation of the solutions obtained,
yields solutions that all are better than those obtained
by the ADD heuristics, with relative errors between
0.8% and 10% (in average 4%), in a much shorter time
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(in average 1000 times quicker than the ADD heuris-
tics). So CPL dominates the ADD heuristics completely,
both with respect to solution time and solution quality.

The Lagrangian heuristic, LH, produces solutions
with relative errors between 0.4% and 3.2% (in average
1.5%), with solution times in average 20 times shorter
than the ADD heuristics, but of course significantly
longer than CPL.

Comparison to other tests is difficult, since other
computers and codes are used. The Benders approach
in [11] seems to be slower than the Lagrangian ap-
proach. However, on modern computers and with
modernMIP-codes, its performance may well improve.

Conclusion

The capacitated facility location problem with staircase
costs has many important applications. Computational
results indicate that it is possible to find near-optimal
solutions to such problems of reasonable size in a rea-
sonable time, i. e. that this better model can be used in-
stead of, for example, the ordinary capacitated facility
location problem in appropriate situations.
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Farkas’ lemma is the most well-known theorem of the
alternative or transposition theorem (cf. � Linear opti-
mization: Theorems of the alternative). Given anm × n
matrix A and a vector b (of dimension m) it states that
either the set

S :D
˚
y : y>A � 0; y>b < 0

�

or the set

T :D fx : Ax D b; x � 0g

is empty but not both sets are empty. This result has
a long history and it has had a tremendous impact on
the development of the duality theory of linear and
nonlinear optimization.

J. Farkas (1847–1930) was professor of Theoretical
Physics at the Univ. of Kolozsvár in Hungary. His inter-
est in the subject is explained in the first two sentences
of his paper [5]:

The natural and systematic treatment of analytic
mechanics has to have as its background the in-
equality principle of virtual displacements first
formulated by Fourier and later by Gauss. The
possibility of such a treatment requires, however,
some knowledge of homogeneous linear inequal-
ities that may be said to have been entirely miss-
ing up to now.

J.B.J. Fourier [7] seems to have been the first who es-
tablished that a mechanical system has a stable equilib-
rium state if and only if some homogeneous system of
inequalities, like in the definition of the above set S, has
no solution. This observation became known as theme-
chanical principle of Fourier. By Farkas’lemma this hap-
pens if and only if the set T is nonempty.

It is almost obvious that if the set T is not empty,
then the set S will be empty and we have equilibrium.

This follows easily by noting that the sets S and T can-
not be both nonempty: if y 2 S and x 2 T then the con-
tradiction

y>b D y>(Ax) D (y>A)x � 0

follows, because y> A � 0 and x � 0. This shows that
the condition ‘T is not empty’ is certainly a sufficient
condition for equilibrium. The hard part is to prove
that this is also a necessary condition for equilibrium.
The proof has a long history. First, the condition with-
out proof for special cases was given by A. Cournot in
1827 and for the general case by M. Ostrogradsky in
1834. Farkas published his condition first in 1894 and
1895, but the proof contains a gap. A second attempt,
in 1896, is also incomplete. The first complete proof was
published in Hungarian, in 1898 [3], and in German in
1899 [4]. This proof is included in Farkas’ best known
paper [5]. For more details and references, see the his-
torical overviews [9] and [10].

Nowadays (1998) many different proofs of Farkas’
lemma are known. For quite recent proofs, see,
e. g., [1,2,8]. An interesting derivation has been given
by A.W. Tucker [11], based on a result that will be re-
ferred to as Tucker’s theorem. (See � Tucker homoge-
neous systems of linear relations.) The theorem states
that for any skew-symmetric matrix K (i. e., K = � K>)
there exists a vector x such that

Kx � 0; x � 0; x C Kx > 0:

By taking

K D

0
BB@

0 0 A �b
0 0 �A b
�A> A> 0 0
b> �b> 0 0

1
CCA ;

Tucker’s theorem implies the existence of nonnegative
vectors z1, z2 and x and a nonnegative scalar t such
that

Ax � tb � 0; (1)

� Ax C tb � 0; (2)

�A>z1 C A>z2 � 0;

b>z1 � b>z2 � 0;
(3)
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and

z1 C Ax � tb > 0;

z2 � Ax C tb > 0;

x � A>z1 C A>z2 > 0;

t C b>z1 � b>z2 > 0: (4)

If t = 0, then, putting y = z2 � z1, (3) and (4) yield a vec-
tor in the set S. If t > 0, since the above inequalities are
all homogeneous, one may take t = 1 and then (1) and
(2) give a vector in the set T. This shows that at least one
of the two sets S and T is nonempty, proving the hard
part of Farkas’ lemma.

It is worth mentioning a result of C.G. Broyden [1]
who showed that Tucker’s theorem, and hence also
Farkas’ lemma, follows from a simple property of or-
thogonal matrices. The result states that for any or-
thogonal matrix Q (so QQ> = Q> Q = I) there exists
a unique sign matrix D and a positive vector x such that
Qx = Dx; a sign matrix is a diagonal matrix whose di-
agonal elements are equal to either plus one or minus
one.

The key observation here is that if K is a skew-
symmetric matrix, then

Q D (I C K)�1(I � K)

is an orthogonal matrix, where I denotes the identity
matrix; Q is known as the Cayley transform of K [6].
The proof of this fact is straightforward. First, for each
vector x one has

x>(I C K)x D x>x;

whence I + K is an invertible matrix. Furthermore, us-
ing K> = � K, one may write

Q>Q D (I C K)(I � K)�1(I C K)�1(I � K)

D (I C K)(I � K2)�1(I � K):

Multiplying both sides from the left with (I � K) one
gets

(I � K)QQ> D (I � K2)(I � K2)�1(I � K)

D (I � K);

and multiplying both sides with (I � K)�1 one finds
QQ> = I, showing that Q is orthogonal indeed.

Therefore, by Broyden’s theorem, there exists a sign
matrix D and a positive vector z such that

(I C K)�1(I � K)z D Dz:

This can be rewritten as

(I � K)z D (I C K)Dz;

whence

z � Kz D Dz C KDz;

or

z � Dz D K(z C Dz):

Defining x = z + Dz one has x� 0, Kx� 0 and x + Kx =
2z > 0, proving Tucker’s theorem.

See also

� Farkas Lemma: Generalizations
� Linear Optimization: Theorems of the Alternative
� Linear Programming
�Motzkin Transposition Theorem
� Theorems of the Alternative and Optimization
� Tucker Homogeneous Systems of Linear Relations
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The key to identifying optimal solutions of constrained
nonlinear optimization problems is the Lagrange mul-
tiplier conditions. One of the main approaches to estab-
lishing such multiplier conditions for inequality con-
strained problems is based on the dual solvability char-
acterizations of systems involving inequalities. J. Farkas
[7] initially established such a dual characterization for
linear inequalities which was used in [23] to derive nec-
essary conditions for optimality for nonlinear program-
ming problems. This dual characterization is popularly
known as Farkas’ lemma, which states that given any
vectors a1, . . . , am and c in Rn, the linear inequality c>x
� 0 is a consequence of the linear system a>i x� 0, i = 1,
. . . , m, if and only if there exist multipliers �i � 0 such
that c =

Pm
iD1 �iai. This result can also be expressed as

a so-called alternative theorem: Exactly one of the fol-
lowing alternatives is true:
i) 9x 2 Rn, a>i x � 0, c>x < 0,
ii) 9�i � 0, c =

Pm
iD1 �iai.

This lemma is the key result underpinning the lin-
ear programming duality and has played a central role
in the development of nonlinear optimization theory.
A large variety of proofs of the lemma can be found
in the literature (see [5,25,26]). The proof [3,5] that
relies on the separation theorems has led to various
extensions. These extensions cover wide range of sys-
tems including systems involving infinite-dimensional
linear inequalities, convex inequalities and matrix in-
equalities. Applications range from classical nonlinear
programming to modern areas of optimization such
as nonsmooth optimization and semidefinite program-
ming. Let us now describe certain main generalizations
of Farkas’ lemma and their applications to problems in
various areas of optimization.

Infinite-Dimensional Optimization

The Farkas lemma for a finite system of linear inequal-
ities has been generalized to systems involving arbi-
trary convex cones and continuous linear mappings be-
tween spaces of arbitrary dimensions. In this case the
lemma holds under a crucial closure condition. In sym-
bolic terms, the main version of such extension to arbi-
trary dual pairs of vector spaces states that the following
equivalence holds [6]:

�
A(x) 2 S) c(x) � 0

�
, c 2 A>(S�); (1)

provided the cone A>(S�) is closed in some appropri-
ate topology. HereA is a continuous linear mapping be-
tween two Banach spaces, S is a closed convex cone hav-
ing the dual cone S� [5]. The closure condition holds
when S is a polyhedral cone in some finite-dimensional
space. For simple examples of nonpolyhedral convex
cones in finite dimensions where the closure condition
does not hold, see [1,5]. However, the following asymp-
totic version of Farkas’ lemma holds without a closure
condition:

�
A(x) 2 S) c(x) � 0

�
, c 2 cl(A>(S�)); (2)

where cl(A>(S�)) is the closure of A>(S�) in the ap-
propriate topology. These extensions resulted in the
development of asymptotic and nonasymptotic first
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order necessary optimality conditions for infinite-
dimensional smooth constrained optimization prob-
lems involving convex cones and duality theory for
infinite-dimensional linear programming problems
(see e. g. [12]). Smooth optimization refers to the opti-
mization of a differentiable function. A nonasymptotic
form of an extension of Farkas’ lemma that is differ-
ent from the one in (1) is given in [24] without the
usual closure condition. For related results see [4]. An
approach to the study of semi-infinite programming,
which is based on generalized Farkas’ lemma for infi-
nite linear inequalities is given in [12].

Nonsmooth Optimization

The success of linear programming duality and the
practical nature of the Lagrange multiplier conditions
for smooth optimization have led to extensions of
Farkas’ lemma to systems involving nonlinear func-
tions. Convex analysis allowed to obtain extensions in
terms of subdifferentials replacing the linear systems
by sublinear (convex and positively homogeneous) sys-
tems [8,31]. A simple form of such an extension states
that the following statements are equivalent:

� g(x) 2 S) f (x) � 0 (3)

0 2 cl

"
@ f (0)C

[
	2S�

@(�g)(0)

#
; (4)

where the real valued function f is sublinear and lower
semicontinuous, and the vector function g is sublinear
with respect to the cone S and vg is lower semicontinu-
ous for each v 2 S�. When f is continuous the statement
(4) collapses to the condition

0 2 @ f (0)C cl

" [
	2S�

@(�g)(0)

#
: (5)

This extension was used to obtain optimality conditions
for convex optimization problems and quasidifferen-
tiable problems in the sense of B.N. Pshenichnyi [27].
A review of results of Farkas type for systems involving
sublinear functions is given in [13,14].

Difference of sublinear (DSL) functions which arise
frequently in nonsmooth optimization provide useful
approximations for many classes of nonconvex nons-

mooth functions. This has led to the investigation of
results of Farkas type for systems involving DSL func-
tions.

A mapping g: X! Y is said to be difference sublin-
ear (DSL) (with respect to S) if, for each v 2 S�, there are
(weak 
) compact convex sets, here denoted @(vg)(0)
and @(vg)(0), such that, for each x 2 X,

vg(x) D max
u2@(v g)(0)

u(x) � max
w2@(v g)(0)

w(x);

where X and Y are Banach spaces. If Y = R and S =
R+ then this definition coincides with the usual no-
tion of a difference sublinear real-valued function. Thus
a mapping g is DSL if and only if vg is a DSL function
for each v 2 S�. The sets @(vg)(0) and @(vg)(0) are the
subdifferential and superdifferential of vg, respectively.
For a DSL mapping g: X ! Y we shall often require
a selection from the class of sets

n
@(vg)(0) : v 2 S�

o
.

This is a set, denoted (wv), in which we select a single
element @(vg)(0) for each v 2 S�. An extension of the
Farkas lemma for DSL systems states that the following
statements are equivalent [10,20]:
i) � g(x) 2 S) f (x) � 0;
ii) for each selection (wv) with wv 2 @(vg)(0), v 2 S�,
@ f (0) � @ f (0)C B,

where B D cl cone co
�S

v2S�(@(vg)(0)� wv )
�
. A uni-

fied approach to generalizing the Farkas lemma for sub-
linear systems which uses multivalued functions and
convex process is given [2,17,18].

Global Nonlinear Optimization

Given that the optimality of a constrained global opti-
mization problem can be viewed as the solvability of ap-
propriate inequality systems, it is easy to see that an ex-
tension of Farkas’ lemma again provides a mechanism
for characterizing global optimality of a range of nonlin-
ear optimization problems. The �-subdifferential analy-
sis here allowed to obtain a new version of the Farkas
lemma replacing the linear inequality c(x) � 0 by a re-
verse convex inequality h(x) � 0, where h is a convex
function with h(0) = 0. This extension for systems in-
volving DSL functions states that the following condi-
tions are equivalent.
i) � g(x) 2 S) h(x)� 0;
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ii) for each selection (wv) with wv 2 @(vg)(0), v 2 S�

and for each � � 0,

@�h(0) � cl cone co

"[
v2S�

(@(vg)(0)� wv)

#
:

Such an extension has led to the development of con-
ditions which characterize optimal solutions of various
classes of global optimization problems such as convex
maximization problems and fractional programming
problems (see [19,20]).

However, simple examples show that the asymp-
totic forms of the above results of Farkas type do not
hold if we replace the DSL (or sublinear) system by
a convex system. Ch.-W. Ha [15] established a ver-
sion of the Farkas lemma for convex systems in terms
of epigraphs of conjugate functions. A simple form of
such a result [29] states that the following statements
are equivalent:
i) (8i 2 I) gi(x)� 0) h(x) � 0;
ii) epi h� � cl cone co [ [i 2 I epi g�i ],
provided the system

i 2 I; gi (x) � 0

has a solution. Here h and, for each i 2 I, gi are
continuous convex functions, I is an arbitrary index
set, and h� and g�i are conjugate functions of h and
gi respectively. This result has also been employed
to study infinite-dimensional nonsmooth nonconvex
problems [30]. A basic general form of the Farkas
lemma for convex system with application to multi-
objective convex optimization problems is given in [11].
Extensions to systems involving the difference of con-
vex functions are given in [21,29]. A more general re-
sult involving H-convex functions [29] with application
to global nonlinear optimization is given in [29].

Nonconvex Optimization

The convexity requirement of the functions involved in
the extended Farkas lemma above can be relaxed to ob-
tain a form of Farkas’ lemma for convex-like system.
Let F: X × Y ! R and let f : X! R, where X and Y are
arbitrary nonempty sets. The pair (f , F) is convex-like
on X if

(9˛ 2 (0; 1))(8x1; x2 2 X)(9x3 2 X);

f (x3) � ˛ f (x1)C (1 � ˛) f (x2)

and (8y 2 Y):

F(x3; y) � ˛F(x1; y)C (1 � ˛)F(x2; y):

If the pair (f , F) is convex-like on X, there is x0 2 X with
(8y 2 Y) F(x0, y)� 0 and if a regularity condition holds
then the following statements are equivalent [21]:

8y 2 Y ; F(x; y) � 0 H) f (x) � 0;

(8� < 0)(9� 2 �)(8x 2 X)

f (x)C
X
y2Y

�yF(x; y) > �;

where� is the dual cone of the convex cone of all non-
negative functions on Y . An asymptotic version of the
above result holds if the regularity hypothesis is not
fulfilled. This extension has been applied to develop
Lagrange multiplier type results for minimax prob-
lems and constrained optimization problems involving
convex-like functions. For related results see [16].

Semidefinite Programming

A useful corollary of the Farkas lemma, which is often
used to characterize the feasibility problem for linear in-
equalities, states that exactly one of the following alter-
natives is true:
i) 9x 2 Rn a>i x � bi, i = 1, . . . ,m,
ii) 9�i � 0

Pm
iD1 �iai = 0,

Pm
iD1 bi�i = � 1.

This form of the Farkas lemma has also attracted vari-
ous extensions to nonlinear systems, including sublin-
ear and DSL systems [20] with the view to character-
ize the feasibility of such systems. The feasibility prob-
lem, which has been of great interest in semidefinite pro-
gramming, is the problem of determining whether there
exists an x 2 Rn such that Q(x) � 0, for real symmetric
matrices Qi, i = 0, . . . , m, where � denotes the partial
order, i. e. B�A if and only ifA� B is positive semidef-
inite, andQ(x) =Q0 �

Pm
iD1 xi Qi. However, simple ex-

amples show that a direct analog of the alternative does
not hold for the semidefinite inequality systems Q(x)�
0 without additional hypothesis on Q. A modified dual
conditions which characterize solvability of the system
Q(x) � 0 is given in [28].

See also

� Farkas Lemma
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Feasible sequential quadratic programming (FSQP)
refers to a class of sequential quadratic programming
(SQP) methods that have the additional property that
all iterates they construct satisfy the inequality con-
straints. Thus, for the problem

8̂
<̂
ˆ̂:

min
x2Rn

f (x)

s.t. g j(x) � 0; j D 1; : : : ;mi ;

hj(x) D 0; j D 1; : : : ;me ;

(1)

where f , the gjs, and the hjs are smooth, FSQP methods
generate a sequence {xk} such that gj(xk) � 0 for all j
and all k.

From the application’s point of view, enforcing fea-
sibility of the iterates with respect to inequality con-
straints is often an important attribute. First, it may be
the case that the objective function is simply not defined
when certain constraints are violated, for example, with
problems involving dynamical systems, in which stabil-
ity is needed in order for, say, certain steady state er-
rors to be well defined. Second, it may be crucial that
a (suboptimal) solution satisfying certain ‘hard’ con-
straints be available after a prescribed amount of time
has elapsed, too short to allow convergence to the op-
timal solution. This is the case, for instance in certain
real-time control applications. A third situation where
feasibility of successive iterates is desirable is in the con-
text of trade-off exploration for design problems. In-
deed, trade-offs between ‘soft’ design specifications can-
not be meaningfully explored unless ‘hard’ specifica-
tions are satisfied. From the point of view of numerical
algorithms, while maintaining feasibility of successive
iterates obviously requires special attention, it also has
important beneficial side effects. Namely,
i) the objective function can be forced to decrease at

each iteration, and thus can serve as merit func-
tion in the line search, thereby avoiding the complex
issue of choice of an appropriate surrogate merit
function; and

ii) as pointed out below, in the context of SQP type
methods, the quadratic programs successively con-
structed all have a nonempty feasible set, which is
not the case in general for ‘infeasible’ methods.

Methods that generate feasible iterates have regained
much popularity in recent years with the in-depth in-
vestigation of barrier-based interior point methods, suc-
cessively in the context of linear, convex-quadratic,

general convex, and nonconvex problems, the class of
problems of interest here. Contributions to the latter
can be found in the classical book [4] as well as, e. g.,
in [11] (see [14] for a ‘modern’ presentation) and [3],
and in many recent reports. In those methods, each
search direction is typically obtained via the solution of
a linear system of equations. FSQP algorithms, on the
other hand, being of the SQP type, involve the solution
of quadratic programs as subproblems. While they are
often impractical for problems with large numbers of
variables, SQP-type algorithms are particularly suited
to various classes of engineering applications where the
number of variables is not too large but evaluations
of objective/constraint functions and of their gradients
are highly time consuming. Indeed, because these al-
gorithms use quadratic programs as successive models,
progress between (expensive) function evaluations is
typically significantly better than with algorithms mak-
ing use of mere linear systems of equations as models.

FSQP algorithms are of the feasible direction type
in that, while they allow iterates to lie on constraint
boundaries, small enough displacements along the
search directions they generate always yield feasible
points. Indeed, whenever the current iterate lies on or
near a nonlinear constraint boundary, the search di-
rection tends to point toward the interior of the feasi-
ble set. In that respect FSQP algorithms are analogous
to interior point methods. Early feasible direction al-
gorithms (see, e. g., [12,16]) were first order methods,
i. e., only first derivatives were used and no attempt was
made to accumulate and use second order information.
As a consequence, such algorithms converged linearly
at best. E. Polak proposed several extensions to these
algorithms which take second order information into
account when computing the search direction (see [12,
Sect. 4.4]). Some of the search directions proposed by
Polak can be viewed as modified SQP directions but the
fast local convergence rate usually associated with SQP
is not preserved. In [1], a feasible SQP algorithm is pro-
posed with emphasis on avoiding costly line searches
by making it likely that a full step along the constructed
direction is acceptable as a next iterate, even early on
in the optimization process. The price paid however is
again the loss of fast local convergence.

In this article, we focus on feasible SQP methods
which, under appropriate assumptions, preserve the
fast rate of convergence of standard SQPmethods. Such
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methods have been considered early on by J.N. Her-
skovits and L.A.V. Carvalho [5] and in [2,6,8,9,10], and
recently also by L. Qi and Z. Wei [13].

Main Ideas

For simplicity, consider the case where only inequality
constraints are present, i. e., me = 0. Suppose that the
current estimate xk for the solution of (1) is feasible, i. e.,
gj(xk) � 0 for all j. The basic SQP direction, d0k , is ob-
tained by solving the quadratic programming problem

8<
:
min
d0

1
2

˝
d0;Hkd0

˛
C
˝
r f (xk); d0

˛

s.t. g j(xk)C
˝
r g j(xk); d0

˛
� 0; 8 j;

(2)

where Hk is the Hessian of the Lagrangian, or an esti-
mate thereof. While, in general, QP (2) may be incon-
sistent, feasibility of xk, which we seek to enforce, guar-
antees that it admits a feasible point. Indeed, in particu-
lar, d0k = 0 is always feasible. Assume thatHk is symmet-
ric positive definite. Then QP (2) has a unique solution
d0k . It is a simple exercise to show that, in addition, d0k
has the interesting property of being a first order de-
scent direction for f at xk, i. e., hr f (xk), d0ki < 0.

Suppose now that some constraint, say g j0 , is active
at xk, i. e., g j0 (xk) = 0. Then, if the j0th constraint is also
active in QP (2), then hr g j0 (xk), d0ki = 0, so that d0k is
tangent to the feasible set. Quite possibly, as a result,
g j0 (xk + td0k ) may be positive for small t, making it dif-
ficult, or impossible, to locate a next feasible iterate in
direction d0k . Thus d

0
k is not an appropriate search di-

rection for FSQP.However any, however small, amount
of tilting of d0k towards the interior of the feasible set
makes it a feasible direction. The challenge in FSQP
type methods is to tilt d0k enough that a sizable step
can be made within the feasible set, but little enough
that the fast local convergence properties of sequential
quadratic programming are preserved.

With appropriate titling of the basic SQP search di-
rection, and an appropriate line search along the re-
sulting direction d (yielding a next iterate xk + tkdk for
some tk 2 (0, 1]) a globally convergent feasible SQP al-
gorithm can be constructed. However, the result would
be unsatisfactory if the algorithm thus obtained did not
exhibit a fast local convergence rate, a property that is
generally expected from SQP-type methods. For such
rate (in particular, a superlinear rate) to take place, it

is critical that a full step of one be eventually taken,
i. e., that, when xk is close to the solution, tk be equal
to one. Here a difficulty already arises in the context
of classical (nonfeasible) SQP methods, where it may
happen that the line search rule prevents the full step
from being taken. This possible conflict between global
convergence and fast local convergence is known as the
Maratos effect. In the context of FSQP methods, this
difficulty is compounded by the fact that, in order to
be acceptable, in addition to satisfy an appropriate de-
scent criterion, the next iterate must be feasible. This
imposes further demands on the Maratos-effect avoid-
ance scheme. Two schemes have been proposed in the
literature: second order correction with arc search, and
nonmonotone line search.

Algorithms

Following is a simple example of an FSQP algorithm,
taken from [10].

Parameters: ˛ 2 (0; 1/2); ˇ 2 (0; 1).
Data: x0 2 X; H0 = H>0 > 0.
Step 0. Initialization: Set k = 0.
Step 1. Computation of a search arc.

Compute d0k . If d
0
k = 0, stop.

Compute d1k and �k and set
dk = (1 � �k )d0k + �kd

1
k .

Compute correction d̃k .
Step 2. Arc search.

Compute tk , the first number t in the sequence
f1; ˇ; ˇ2; : : :g satisfying f (xk + tdk + t2d̃k ) �
f (xk) + ˛thr f (xk); dki, g j(xk + tdk + t2d̃k) � 0;
j = 1; : : : ;mi .

Step 3. Updates.
Compute Hk+1 = H>k+1 > 0.
Set xk+1 = xk + tkdk + t2k d̃k .
Set k = k + 1.
Go back to Step 1.

Algorithm: Simple FSQP

Here, d1k is a feasible direction and a direction of first
order descent for f , � 2 (0, 1] goes to zero fast enough
(like k d0k k

2) when d0k goes to zero, andedk is a correc-
tion that aims at insuring that the full step of one will be
accepted when xk is close enough to a solution; compu-
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tation ofedk involves constraint values at xk+ dk. Under
standard assumptions this algorithm is known to gen-
erate sequences whose limit points are Karush–Kuhn–
Tucker points. Under strengthened assumptions, in-
cluding the assumption thatHk is updated in such away
that it approximates well, in a certain sense, the Hessian
of the Lagrangian as a solution is approached, conver-
gence can be shown to be Q-superlinear or 2-step su-
perlinear. See [10] for details. A refined version of the
algorithm of [10] is implemented in the CFSQP/FFSQP
software (see [15]). Refinements include the capability
to handle equality constraints [6], minimax and con-
strained minimax problems and to efficiently handle
problems with large numbers of inequality constraints
and minimax problems with large numbers of objec-
tive functions [8]. Also note that an FSQP method with
drastically reduced amount of work per iteration has
been recently proposed [7].

Applications

Applications abound where FSQP-type algorithms are
of special interest. In particular, as stressed above, such
algorithms are particularly appropriate for problems
where the number of variables is not too large but func-
tions evaluations are expensive, and feasibility of iter-
ates is desirable (or imperative). Furthermore, prob-
lems with a large number of inequality constraints (or
minimax problems with large numbers of objective
functions), such as finely discretized semi-infinite op-
timization problems, can be handled effectively, mak-
ing FSQP especially well-suited for problems involving,
e. g., time or frequency responses of dynamical systems.
Pointers to a large number of applications can be found
on the web, at the URL listed above. Application areas
include all branches of engineering, medicine, physics,
astronomy, economics and finances, to mention but
a few.

See also

� Optimization with Equilibrium Constraints:
A Piecewise SQP Approach

� Sequential Quadratic Programming: Interior Point
Methods for Distributed Optimal Control Problems

� Successive Quadratic Programming
� Successive Quadratic Programming: Applications in

Distillation Systems

� Successive Quadratic Programming: Applications in
the Process Industry

� Successive Quadratic Programming: Decomposition
Methods

� Successive Quadratic Programming: Full Space
Methods

� Successive Quadratic Programming: Solution by
Active Sets and Interior Point Methods
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In recent years (1990) feedback set problems have been
the subject of growing interest. They have found ap-
plications in many fields, including deadlock preven-
tion [90], program verification [79], and Bayesian in-
ference [2]. Therefore, it is natural that in the past
few years there have been intensive efforts on exact
and approximation algorithms for these kinds of prob-
lems. Exact algorithms have been proposed for solving
the problems restricted to special classes of graphs as
well as several approximation algorithms with provable
bounds for the cases that are not known to be polyno-
mially solvable. The most general feedback set problem
consists in finding a minimum-weight (or minimum
cardinality) set of vertices (arcs) that meets all cycles
in a collection C of cycles in a graph (G, w), where w
is a nonnegative function defined on the set of vertices
V(G) (on the set of edges E(G)). This kind of problem is
also known as the hitting cycle problem, since one must
hit every cycle in C. It generalizes a number of prob-
lems, including the minimum feedback vertex (arc) set
problem in both directed and undirected graphs, the
subset minimum feedback vertex (arc) set problem and
the graph bipartization problem, in which one must re-
move a minimum-weight set of vertices so that the re-
maining graph is bipartite. In fact, if C is the set of all
cycles in G, then the hitting cycle problem is equivalent
to the problem of finding the minimum feedback vertex
(arc) set in a graph. If we are given a set of special ver-
tices and C is the set of all cycles of an undirected graph
G that contains some special vertex, then we have the
subset feedback vertex (arc) set problem and, finally, if
C contains all odd cycles of G, then we have the graph
bipartization problem. All these problems are also spe-
cial cases of vertex (arc) deletion problems, where one
seeks a minimum-weight (or minimum cardinality) set
of vertices (arcs) whose deletion gives a graph satis-
fying a given property. There are different versions of
feedback set problems, depending on whether the graph
is directed or undirected and/or the vertices (arcs) are
weighted or unweighted. See [30] for a complete sur-
vey, and [91] for a general NP-hardness proof for al-
most all vertex and arc deletion problems restricted to

http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.html
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planar graphs. These results apply to the planar bipar-
tization problem, the planar (directed, undirected, or
subset) feedback vertex set problems, already proved to
be NP-hard [33,46]. Furthermore, it isNP-complete for
planar graphs with no indegree or outdegree exceeding
three [46], general graphs with no indegree or outde-
gree exceeding two [46], and edge-directed graphs [46].

The scope of this article is to give a complete state-
of-art survey of exact and approximation algorithms
and to analyze a new practical heuristic method called
GRASP for solving both feedback vertex and feedback
arc set problems.

Notation and Graph Representation

Throughout this paper, we use the following notation
and definitions.

A graph G = (V , E) consists of a finite set of vertices
V(G), and a set of arcs E(G)� V(G) × V(G).

An arc (or edge) e = (v1, v2) of a directed graph (di-
graph) G = (V , E) is an incoming arc to v2 and an out-
going arc from v1 and it is incident to both v1 and v2. If
G is undirected, then e is said to be only incident to v1
and v2.

For each vertex i 2 V(G), let in(i) and out(i) denote
the set of incoming and outgoing edges of i, respec-
tively. They are defined only in case of a digraph G. If G
is undirected, we will take into account only the degree
�G(i) of i as the number of edges that are incident to i
in G.

�(G) denotes the maximum degree among all ver-
tices of a graph G and it is called the graph degree.

A vertex v 2 G is called an endpoint if it has degree
one, a linkpoint if it has degree two, while a vertex hav-
ing degree higher than two is called a branchpoint.

A path P in G connecting vertex u to vertex v is a se-
quence of arcs e1, . . . , er in E(G), such that ei = (vi, vi + 1),
i = 1, . . . , r, with v1 = u and vr + 1 = v. A cycle C in G is
a path C = (v1, . . . , vr), with v1 = vr .

A subgraph G0 = (V 0, E0) of G = (V , E) induced by
V 0 is a graph such that E0 = E \ (V 0 × V 0). A graph G is
said to be a singleton, if |V(G)| = 1. Any graph G can be
partitioned into isolated connected componentsG1, . . . ,
Gk and the partition is unique. Similarly, every feedback
vertex set V 0 of G can be partitioned into feedback ver-
tex sets F1, . . . , Fk such that Fi is a feedback vertex set of
Gi. Therefore, following the additive property and de-

noting by �(G, w) the weight of a minimum feedback
vertex (arc) set for (G, w), we have:

�(G;w) D
kX

iD1

�(Gi ;w):

The Feedback Vertex Set Problem

Formally, the feedback vertex set problem can be de-
scribed as follows. Let G = (V , E) be a graph and let w:
V(G) ! R+ be a weight function defined on the ver-
tices of G. A feedback vertex set of G is a subset of ver-
tices V 0� V(G) such that each cycle in G contains at
least one vertex in V 0. In other words, a feedback ver-
tex set V 0 is a set of vertices of G such that by removing
V 0 from G along with all the edges incident to V 0, re-
sults in a forest. The weight of a feedback vertex set is
the sum of the weights of its vertices, and a minimum
feedback vertex set of a weighted graph (G, w) is a feed-
back vertex set of G of minimum weight. The weight
of a minimum feedback vertex set will be denoted by
�(G, w). The minimum weighted feedback vertex set
problem (MWFVS) is to find a minimum feedback ver-
tex set of a given weighted graph (G, w). The special
case of identical weights is called the unweighted feed-
back vertex set problem (UFVS).

Mathematical Model
of the Feedback Vertex Set Problem

As a covering-type problem, the feedback vertex set
problem admits an integer zero-one programming for-
mulation. Given a feedback vertex set V 0 for a graph
(G,w),G = (V , E), and a set of weightsw= {w(v)}v 2 V(G),
let x = {xv}v 2 V(G) be a binary vector such that xv = 1 if
v 2 V 0, and xv = 0 otherwise. Let C be the set of cy-
cles in (G, w). The problem of finding the minimum
feedback vertex set of G can be formulated as an integer
programming problem as follows:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X

v2V (G)

w(v)xv

s.t.
X

v2V (� )

xv � 1; 8� 2 C;

0 � xv � 1 integer; v 2 V (G):

If one denotes by Cv the set of cycles passing through
vertex v 2V(G), then the dual of the corresponding lin-
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ear programming relaxation is a packing problem:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max
X
� 2C

y�

s.t.
X
� 2Cv

y� � w(v); 8v 2 V (G);

y� � 0; 8� 2 C:

Polynomially Solvable Cases

Given the NP-completeness of the feedback vertex set
problem, a recent line of research has focused on iden-
tifying the largest class of specially structured graphs
on which such problems remain polynomially solvable.
A pioneering work is due to A. Shamir [79], who pro-
posed a linear time algorithm to find a feedback vertex
set for a reducible flow graph. C. Wang, E. Lloyd, and
M. Soffa [90] developed anO(|E(G)|�|V(G)|2) algorithm
for finding a feedback vertex set in the class of graphs
known as cyclically reducible graphs, which is shown to
be unrelated to the class of quasireducible graphs. Al-
though the exact algorithm proposed by G.W. Smith
and R.B. Walford [83] has exponential running time in
general, it returns an optimal solution in polynomial
time for certain types of graphs. A variant of the al-
gorithm, called the Smith–Walford-one algorithm, se-
lects only candidate sets F of size one and runs in
O(|E(G)|�|V(G)|2) time. The class of graphs for which it
finds a feedback vertex set is called Smith–Walford one-
reducible. In the study of feedback vertex set problems
a set of operations called contraction operations has had
significant impact. They contract the graph G(V , E),
while preserving all the important properties relevant
to the minimum feedback vertex set. See [56] for a de-
tailed analysis of these reduction procedures which are
important for the following two reasons. First, a class of
graphs of increasing size is computed, where the feed-
back vertex set of each graph can be found exactly.
Second, most proposed heuristics and approximation
algorithms use the reduction schemes in order to re-
duce the size of the problem. Another line of research
on polynomially solvable cases focuses on other spe-
cial classes, including chordal and interval graphs, per-
mutation graphs, convex bipartite graphs, cocomparabil-
ity graphs and on meshes and toroidal meshes, butter-
flies, and toroidal butterflies. The feedback vertex set on
chordal and interval graphs can be viewed as a special
instance of the generalized clique cover problem, which

is solved in polynomial time on chordal graphs [20,93]
and interval graphs [65]. For permutation graphs, an
algorithm due to A. Brandstädt and D. Kratsch [8]
was improved by Brandstädt [7] to run in O(|V(G)|6)
time. More recently (1994), Y.D. Liang [58] presented
an O(|V(G)|�|E(G)|) algorithm for permutation graphs
that can be easily extended to trapezoid graphs while
keeping the same time complexity. On interval graphs,
C.L. Lu and C.Y. Tang [61] developed a linear-time
algorithm to solve the minimum weighted feedback
vertex set problem using dynamic programming. S.R.
Coorg and C.P. Rangan [19] present an O(|V(G)|4)
time and O(|V(G)|4) space exact algorithm for cocom-
parability graphs, which are a superclass of permuta-
tion graphs. More recently, Liang and M.S. Chang [13]
developed a polynomial time algorithm, that by ex-
ploring the structural properties of a cocomparability
graph uses dynamic programming to get a minimum
feedback vertex set in O(|V(G)2| |E(G)|) time. A re-
cent (1998) line of research [63] on polynomially solv-
able cases focuses on special undirected graphs having
bounded degree and that are widely used as connection
networks, namely mesh, butterfly and k-dimensional
cube connected cycle (CCCk).

Approximation Algorithms and Provable Bounds
on Undirected Graphs

A 2 log2|V(G)|-approximation algorithm for the un-
weighted minimum feedback vertex set problem on
undirected graphs is contained in a lemma due to P.
Erdös and L. Posa [25]. This result was improved in [66]
to obtain a performance ratio of O(

p
log jV (G)j). R.

Bar-Yeruda, D. Geiger, J. Naor, and R.M. Roth [2] gave
an approximation algorithm for the unweighted undi-
rected case having ratio less than or equal to 4 and
two approximation algorithms for the weighted undi-
rected case having ratios 4 log2 |V(G)| and 2�2(G), re-
spectively. To speedup the algorithm, they show how to
preprocess the input valid graph by applying the cor-
responding undirected versions of the Levy–Lowe re-
duction transformations. For the feedback vertex set
problem in general undirected graphs, two slightly dif-
ferent 2-approximation algorithms are described in [3]
and [1]. These algorithms improve the approximation
algorithms of [2]. They also can find a loop cutset
which, under specific conditions, is guaranteed in the
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worst case to contain less than four times the number
of variables contained in a minimum loop cutset. Sub-
sequently, A. Becker and Geiger [4] applied the same
reduction procedure from the loop cutset problem to
the minimum weighted feedback vertex set problem
of [2], but their result is independent of any condition
and is guaranteed in the worst case to contain less than
twice the number of variables contained in a minimum
loop cutset. They [4] propose two greedy approxima-
tion algorithms for finding the minimum feedback ver-
tex set V 0 in a vertex-weighted undirected graph (G,
w), one of them having performance ratio bounded by
the constant 2 and complexity O(m+n log n), where m
= |E(G)| and n = |V(G)|. In [17], F.A. Chudak, M.X.
Goemans, D. Hochbaum, and D.P. Williamson showed
how the algorithms due to Becker and Geiger [3] and
V. Bafna, P. Berman, and T. Fujito [1] can be explained
in terms of the primal-dual method for approxima-
tion algorithms that are used to obtain approximation
algorithms for network design problems. The primal-
dual method starts with an integer programming for-
mulation of the problem under consideration. It then
simultaneously builds a feasible integral solution and
a feasible solution to the dual of the linear program-
ming relaxation. If it can be shown that the value of
these two solutions is within a factor of ˛, then an ˛-
approximation algorithm is found. The integrality gap
of an integer program is the worst-case ratio between
the optimum value of the integer program and the op-
timum value of its linear relaxation. Therefore, by ap-
plying the primal-dual method it is possible to proof
that the integrality gap of the integer program under
consideration is bounded. In fact, Chudak et al., after
giving a new integer programming formulation of the
feedback vertex set problem, provided a proof that its
integrality gap is at most 2. They also gave the proofs of
some key inequalities needed to prove the correctness
of their new integer programming formulation.

Theorem 1 Let V 0 denote any feedback vertex set of
a graph G = (V, E), E 6D ;, let � denote the cardinal-
ity of the smallest feedback vertex set for G, and let E(S)
denote the subset of edges that have both endpoints in
S� V(G), b(S) = |E(S)| � |S|+1. Then

X
v2V 0

[	G(v) � 1] � b(V(G)); (1)

X
v2V 0

	G(v) � b(V(G))C �: (2)

If every vertex in G has degree at least two, and V 0M is
any minimal feedback vertex set (i. e. 8 v 2 V 0M, V 0M\
{v} is not a feedback vertex set), then

X
v2V 0M

	G(v) � 2(b(V(G))C �) � 2: (3)

G. Even, Naor, B. Schieber, and L. Zosin [28] showed
that the integrality gap of that integer program for the
standard cycle formulation of the feedback vertex set
problem is˝(log n). The new integer programming for-
mulation given in [17] is as follows:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
X

v2V (G)

w(v)xv

s.t.
X
v2S

(	S(v) � 1)xv � b(S);

S � V (G) : E(S) ¤ ;;
xv 2 f0; 1g; v 2 V (G):

The linear programming relaxation is:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
X

v2V (G)

w(v)xv

s.t.
X
v2S

(	S(v) � 1)xv � b(S);

S � V (G) : E(S) ¤ ;;
xv � 0; v 2 V (;G);

and its dual is:
8̂
ˆ̂̂<
ˆ̂̂̂
:

max
X
S

b(S)yS

s.t.
X
S :v2S

(	S (v) � 1)yS � wv ; v 2 V(G);

yS � 0; S � V(G) : E(S) ¤ ;:

For the subset feedback vertex problem, the authors
of [28] showed that it can be approximated in poly-
nomial time by a factor of min{2 �(G), 8 log(|V 0|+1),
O(log ��)}, where �� denotes the value of the opti-
mal fractional solution. In [28] the authors also pro-
posed a technique, called bootstrapping, that enhances
the O(log |V 0|) to a factor of O(log ��/ˇ), where ˇ de-
notes the minimum weight of a vertex. The bootstrap-
ping technique iteratively uses a graph partition algo-
rithm. The output of each iteration is by itself a subset
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feedback vertex set and is used as part of the input of
the next iteration. After O(log |V 0|) iterations the algo-
rithm gives as output a subset feedback vertex set having
weight at most O(�� log ��). Even, Naor and Zosin [26]
improved this result proposing an 8-approximation al-
gorithm. The main tool that they used in developing
their approximation algorithm and its analysis is a new
version of multicommodity flow, called relaxed multi-
commodity flow, a hybrid of multicommodity flow and
multiterminal flow, in which there are additional con-
straints, called intercommodity constraints. For each arc,
the authors considered the maximum flow among all the
commodities, which is shipped along it. They required
that for each vertex v 2 V(G) the sum of the maximum
flows shipped along its incident arcs be bounded by four
times the capacity of v. By considering the multicommod-
ity flow, the vertices for which the intercommodity con-
straints are tight play an important role from the point
of view of the connectivity of the graph. They are called
intersatured vertices. The main result of [26] is a theo-
rem that bounds the weight of the vertices that must be
intersatured, so as to satisfy a given demand vector by
the sum of demands.

Approximation Algorithms and Provable Bounds
on Directed Graphs

In general, problems on undirected graphs are relatively
easier to handle than problems on directed graphs,
since more graph theory can be utilized. Not surpris-
ingly, the approximation results obtained so far for the
undirected version are stronger than those for the di-
rected version. In fact, none of the algorithms referred
to in the previous subsections apply to the feedback
vertex set problem in directed graphs and, in contrast
with the undirected version, no analytical results are
known for the directed case. A very recent direction of
research on approximation algorithms in the directed
version focuses on the complete equivalence among all
feedback set (and/or feedback subset) problems and
among these and the directed minimum capacity mul-
ticut problem in circular networks. An exhaustive de-
scription of the procedures that reduce any feedback
set problem to any other or any of them to the directed
minimum capacity multicut problem and vice versa are
formalized and used in [27] to obtain an approxima-
tion algorithm for the subset feedback arc set problem

of a weighted directed graph G = (V , E), where the in-
teresting cycles to be hit are contained in a set of spe-
cial vertices X � V(G), where |X| = k. The weight of
the feedback arc set found by their approximation al-
gorithm is O(�� log2|X|), where �� is the weight of
an optimal fractional feedback set. Nevertheless, their
approach can be used to solve any other feedback set
problem as well as the directed minimum capacity mul-
ticut problem. Even et al. [27] also proposed an algo-
rithm for approximating the minimum weighted sub-
set vertex set problem in the weighted and directed
case, leading to a result that holds for any other feed-
back set problem as well. This approach is an algorith-
mic adaptation of a theoretical result due to P.D. Sey-
mour [78], who proved that the integrality gap in the
case of the unweighted feedback vertex set problem can
be at most O(log �� log log ��), where �� is defined as
above. Even et al. observe that all existence arguments
contained in the proof of Seymour’s statement can be
made constructive and thus, with some additional oper-
ations, an algorithm for the unweighted feedback vertex
set problem having an approximation factor of O(log
�� log log ��) can be obtained. Further modifications
of the algorithm lead to a polynomial time approxi-
mation scheme applicable to the weighted problem. In
O(|E(G)|�|V(G)|2) time the algorithm finds a feedback
vertex set having weight

O
�
min f�� log �� log log ��;

�� log jV (G)j log log jV (G)jg
�
:

All the observations contained in [27] improve
the O(log2 |V(G)|)-approximation algorithm for this
case [54]. In the case of directed planar graphs,
H. Stamm [86] presented an O(|V(G)|log |V(G)|)-
approximation algorithm, whose performance guaran-
tee is bounded by the maximum degree of the graph
and an O(|V(G)|2) time approximation algorithm with
performance guarantee no more than the number of
cyclic faces in the planar embedding of the graph mi-
nus 1. M. Cai, X. Deng, and W. Zang [10] obtained
a 2.5-approximation algorithm for the minimum feed-
back vertex set problem on tournaments, improving the
previously known algorithm with performance guaran-
tee of 3 by E. Speckenmeyer [85]. Let H be the triangle-
vertex incidence matrix of a tournament T and let e be
the all-one vector. In [10], necessary and sufficient con-
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ditions are established for the linear system {x: Hx � e,
x � 0} to be a totally dual integral system (TDI).

Definition 2 A rational linear system {x:Ax� b, x� 0}
is called totally dual integral, if the optimization prob-
lem max {y| b: y| A � c|, y � 0} has an integral opti-
mum solution y for every integral vector c for which the
maximum is finite.

It has been shown that any rational polyhedron P has
a TDI system P = {x: Ax � b} representation with A in-
tegral, and that, if P is full-dimension, there is a unique
minimal TDI system P = {x: Ax � b} with A and b inte-
gral if and only if P is integral. In [11] the authors have
extended this approach to the feedback vertex set prob-
lems and the cycle packing problem in bipartite tourna-
ments, where a bipartite tournament is an orientation
of a complete bipartite graph. For the aforementioned
problems they have found strongly polynomial time al-
gorithms, which are a consequence of a min-max relax-
ation on packing and covering directed cycles.

Exact Algorithms

In contrast to the numerous approximation schemes
that have been studied, relatively few exact algorithms
for the feedback vertex set problem have been pro-
posed. To our knowledge, the first algorithm to find an
exact minimal cardinality FVS is due to Smith andWal-
ford [83], who proposed a particular graph partition
technique. Although their algorithm solves the prob-
lem in an arbitrary directed graph in exponential run-
ning time, it returns an optimal solution in polynomial
time for certain types of graphs. Later, exact algorithms
of enumerative nature often used the graph reduction
procedures to speed up the process. One study, [16],
essentially used direct enumeration plus reduction and
reported satisfactory computational results for a set
of partial scan design test problems. T. Orenstein, Z.
Kohavi, and I. Pomeranz [67] proposed a somewhat
more involved exact enumerative procedure based on
graph reduction and efficient graph partitioning meth-
ods. Their algorithm has been designed for identifying
a minimum feedback vertex set in a digital circuit and
it is efficient in random graphs, even though in cliques
or graphs that are ‘almost’ cliques it has an exponential
behavior, since the reduction and partition techniques
cannot be applied.

Somewhat surprising, exact algorithms for feedback
vertex set based on mathematical programming formu-
lation are quite few. Recently (1996), M. Funke and
G. Reinelt [32] considered a special variant of feed-
back problems, namely the problem of finding a max-
imum weight node induced acyclic subdigraph. They
discussed valid and facet defining inequalities for the
associated polytope and developed a polyhedral-based
exact algorithm presenting computational results ob-
tained by applying a branch and cut algorithm.

The Feedback Arc Set Problem

Given a graph G = (V , E) and a nonnegative weight
function w: E(G) ! R+ defined on the arcs of
G, the feedback arc set problem consists of finding
a minimum-weight subset of arcs E0 � E(G) that meets
every cycle in a given collection C of cycles in (G,w). As
in the vertex case, this leads to the minimum feedback
arc set problem (MWFAS) in both directed and undi-
rected graphs, the minimum weighted graph bipartiza-
tion problem via arc removals, and so on.

Mathematical Model
of the Feedback Arc Set Problem

Given an arc weighted graph (G, w), G = (V , E) and the
set C of all cycles inG, the minimumweighted feedback
arc set problem can be formulated as the following in-
teger programming problem:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X

e2E(G)

w(e)xe

s.t.
X
e2�

xe � 1; 8� 2 C;

xe 2 f0; 1g; 8e 2 E(G):

In its relaxation, the constraints xe 2 {0, 1}, 8 e 2 E(G)
are replaced by xe � 0,8 e2 E(G), obtaining a fractional
feedback arc set. As with the feedback vertex set prob-
lem, the feedback arc set problem is a covering problem
and its (linear programming) dual is called a packing
problem. In the case of the feedback arc set problem this
means assigning a dual variable to all interesting cycles
to be hit in the given graph, such that for each arc the
sum of the variables corresponding to the interesting
cycles passing through that arc is at most the weight of
the arc itself.
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State of the Art of Feedback Arc Set Problems

Feedback arc set problems tend to be easier than their
vertex counterparts, especially for planar graphs. In the
directed case feedback vertex and feedback arc set prob-
lems are each reducible to one another. Even, Naor,
Schieber, and Sudan [27] showed how to perform re-
ductions among feedback set problems and feedback
subset problems and vice versa, preserving feasible so-
lutions and their costs. In all reductions, there is a one-
to-one correspondence between feasible solutions and
their corresponding costs. Therefore, an approximate
solution to one problem can be translated to an ap-
proximate solution of the other problem reducible to
this problem. Because most of the reduction procedures
can be performed in linear time, these problems can be
viewed as different representations of the same prob-
lem. Hence, as feedback vertex sets are reduced into
feedback arc sets with the same weight and vice versa,
all of these problems are equally hard to approximate.
In the literature of feedback set problems most of the
proposed algorithms are designed to solve the prob-
lem in vertex-weighted graphs. One of the pioneering
papers on feedback arc set problems is [76], where it
is proved that finding a minimum feedback arc set in
an arc-weighted reducible flow graph is as difficult as
finding a minimum cut in a flow network. The pro-
posed algorithm has complexity O(mn2 log (n2/m)),
where m = |E(G)| and n = |V(G)|. The algorithm was
adapted to solve the problem in the vertex-weighted
case. Shamir’s linear time algorithm [79], used for the
unit-weighted case, cannot be applied to solve the arc-
weighted problem, because any reduction between arc
and vertex set problems does not preserve the reducibil-
ity property. Given a directed graph G = (V , E), a di-
join E0 � E(G) is a set of arcs such that the graph G0

= (V , B), B = E [ {(v, u): (u, v)2 E0} is strongly con-
nected. Given nonnegative weights we, e 2 E(G), the
minimum-weight dijoin problem is to find the dijoin
with minimum weight. The feedback arc set problem in
planar digraphs is reducible to the problem of finding
a minimum-weight dijoin in the dual graph, which is
solvable in polynomial time [39]. Stamm [86] proposed
a simple 2-approximation algorithm for the minimum
weight dijoin problem by superposing two arbores-
cences. It is interesting to observe that, when translated
to the dual graph, all these problems lead to problems

of hitting certain cutsets of the dual graph, problems
which can be approximated within a ratio of 2 by the
primal-dual method. Goemans and Williamson [37]
proposed a primal-dual algorithm that finds a 9/4-
approximate solution to feedback set problems in pla-
nar graphs. The first approximation algorithm for the
feedback arc set problem was given in [54]. The ap-
proximation factor is O(log2 n) in the unweighted case,
where n is the number of vertices of the input graph.
This bound was obtained by using a O(log n) approx-
imation algorithm for a directed separator that splits
the graph into two approximately equally-sized com-
ponents, S and S. This separator can be found by ap-
proximating special cuts called quotient cuts. This result
was improved by Seymour [78], who gave a O(log n log
log n)-approximation algorithm that solves the linear
relaxation of the feedback arc set mathematical model
and then interprets the optimal fractional solution x� as
a length function defined on the arcs. Systematically, in
a recursive fashion, it uses this length function to delete
from the graphG all arcs between S and S. Note that the
linear program can be solved in polynomial time by us-
ing the ellipsoid or an interior point algorithm. Hence,
the quality of the bound in this approach depends on
the way the graph is partitioned. Seymour [78] proved
the following lemma:

Lemma 3 For a given strongly connected digraph G =
(V, E), suppose there exists a feasible solution x to the
feedback arc set problem. If � is the value of the optimal
fractional solution x�, then there exists a partition (S; S)
such that, for some �, 0 < � < 1, the following conditions
hold: If ıC(S) D f(u; v) : (u; v) 2 E(G); u 2 S; v 2 Sg
and ı�(S) D f(v; u) : (v; u) 2 E(G); u 2 S; v 2 Sg,
then the following is true:

X
e2E(S)

w(e)x(e) � ��; (4)

X

e2E(S)

w(e)x(e) � (1 � �)�; (5)

and either
X

e2ıC(S)

w(e) � 20�� log
�
1
�

�
log log � (6)

or
X

e2ı�(S)

w(e) � 20�� log
�
1
�

�
log log�: (7)
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Furthermore, the partition (S; S) can be found in poly-
nomial time.

This Lemma admits a constructive proof, [27]. The al-
gorithm in this proof finds a feedback arc set having
weight O(�� log2|X|), where X is a special set of ver-
tices defining the cycles to be hit and �� is the weight
of an optimal fractional feedback set. The idea is to re-
duce the problem to the directed minimum capacity
multicut problem in circular networks and of adapt-
ing the undirected sphere growing technique described
in [35] to directed circular networks. Then the graph
is decomposed in the following way. A fractional and
optimal solution to the directed feedback set problem
induces a distance metric on the set of arcs (on the set
of vertices) E(G). The approximation algorithm arbi-
trarily picks a vertex v 2 X and solves the shortest path
tree problem rooted at v with respect to the metric in-
duced by the fractional solution. The procedure that
finds the shortest path tree defines layers with respect to
the source v. Each layer is a directed cut that partitions
the graph into two parts. The next step of the approxi-
mation algorithm is to choose a directed cut and to add
the cut to the feedback set constructed so far. The algo-
rithm continues recursively in each part and ends when
the graph does not contain any interesting cycles. The
key of the algorithm is the choice of the criterion to se-
lect the directed cut that partitions the graph. Even et al.
decided to relate the weight of the cut to the cost of the
fractional solution. More recently (1996), Even, Naor,
Schieber, and Zosin [28] showed that, for any weight
function defined on the arcs, the subset feedback arc
set problem can be approximated in polynomial time
by a factor of two. The approximation algorithm con-
sists of successive computations of minimum cuts. Its
approximation factor is estimated by considering the
capacities of minimum cuts as flow paths. When new
minimum cuts are computed, previous flow paths are
updated according to the decomposition of the graph
induced by an optimal solution.

AGRASP for Feedback Set Problems

Although the approximation algorithms guarantee
a solution of a certain quality, for many practical real
world cases, heuristic methods can lead to better so-
lutions in a reasonable amount of CPU time. Meta-
heuristics, such as genetic algorithms, simulated an-

nealing, greedy randomized adaptive search procedures
(GRASP), Lagrangian relaxation, and others have been
developed with successful computational performance
on a wide range of combinatorial optimization prob-
lems. Interestingly, however, feedback vertex set prob-
lems seem to be an exception. For this family of prob-
lems relatively few practical heuristics have been de-
veloped. Furthermore, most of the heuristics that seem
to be quite successful computationally are greedy type
heuristics or generalized greedy type heuristics (e. g.
GRASP). Almost all the efficient heuristics developed
so far employ the solution-preserved reduction rules
studied in [56]. It has been observed in practice that
this group of heuristics greatly reduces the cardinal-
ity of the graph not only at the beginning of the al-
gorithm, but also dynamically during the execution of
node deletion type heuristics. A recent line of research
on heuristic approaches is due to P.M. Pardalos, T.
Qian, and M.G.C. Resende [70] where three variants of
the so-called greedy randomized adaptive search proce-
dure (GRASP) metaheuristic are proposed for finding
approximate solutions of large instances of the feed-
back vertex set problem in a digraph. GRASP is a mul-
tistart method characterized by two phases: a construc-
tion phase and a local search phase, also known as a lo-
cal improvement phase. During the construction phase
a feasible solution is iteratively constructed. One ele-
ment at time is randomly chosen from a restricted can-
didate list (RCL), whose elements are sorted according
to some greedy criterion, and is added to the build-
ing feedback vertex set and removed from the graph
with all its incident arcs. Since the computed solution,
in general, may not be locally optimal with respect to
the adopted neighborhood definition, the local search
phase tries to improve it. These two phases are iterated
and the best solution found is kept as an approximation
of the optimal solution. To improve the efficiency of the
method, Pardalos et al. incorporated in each iteration
of their algorithm solution-preserving graph reduction
techniques in their directed version and that can be
used also to check if a digraph is acyclic, returning an
empty reduced graph in case of positive answer. The
authors employed the following three greedy functions
used to select the node with the maximum G(i) values:
� GA (i) = in(i) + out(i);
� GB (i) = in(i) 
 out(i);
� GC (i) = max {in(i), out(i)}.
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Greedy function GA assigns equal weight to in- and
out-degrees. GB favors the balance between in- and
out-degrees. GC only considers the largest value of the
degrees. As demonstrated in [70], GB produced the
best computational results. GRASP was tested on two
randomly generated problem sets, finding the optimal
solutions to all the problems in the first set, where the
optimal values are known (computed in [32]). Further-
more, this GRASP dominates the pure greedy heuris-
tics in all the test instances with comparable running
time. In [31], Fortran subroutines are given for finding
approximate solutions of both the directed feedback
vertex set problem and the directed feedback arc set
problem using GRASP. The subroutines for solving
approximately the feedback vertex set problem corre-
sponds to the pseudocode algorithm proposed in [70].
The subroutines for solving approximately the feedback
arc set problem uses a linear-time procedure proposed
in [27] in order to reduce the given feedback arc set
problem instance to an equivalent feedback vertex set
problem instance, and then the reduced vertex version
problem is solved.

Future Research

As has been pointed out in [38], fast construction
heuristics combined with local improvement tech-
niques tailored for special applications have been the
‘workhorse’ of combinatorial optimization in practice.
As the design of efficient construction heuristics and
local search procedures will be a key to the effective
computational procedure for feedback set problems,
new approaches are considered that will lead to higher
quality solution. New variants of the classical GRASP
approach are considered, called Reactive GRASP tech-
niques. The first idea along this line has been due to M.
Prais and C.C. Ribeiro [74], who used reactive GRASP
to a matrix decomposition problem arising in the con-
text of traffic scheduling in satellite-division-multiple-
access systems (SS/TDMA). In the reactive GRASP, the
restricted candidate list parameter ˛ is not fixed, but
selfadjusted according to the quality of the solution pre-
viously found during the search. In more detail, the pa-
rameter ˛ is randomly chosen from a set of m prede-
terminated acceptable values A = {˛1, . . . , ˛m}. Associ-
ated with the choice of ˛i there is a probability pi, ini-
tially corresponding to a uniform distribution. During

the search phase some information is collected in order
to change the discrete set of probabilities {pi}i = 1, . . . , m.
Several possible strategies can be explored for this up-
date operation. One among them has been proposed by
Prais and Ribeiro. It is an absolute qualification rule,
based on the average value of the solutions obtained
with each value of ˛ = ˛i. Once chosen the updating
criterion of the probabilities {pi}i = 1, . . . , m, it is possible
to use different values of ˛ at different iterations. There-
fore, different restricted candidate lists can be built and
eventually different solutions can be constructed, which
would never be built by using a single, fixed value of ˛.

T.A. Feo and Resende have discussed in [29] the ef-
fects the parameter ˛ can have on the quality of the
solution and, at least analyzing the results obtained by
Prais and Ribeiro, it seems that ˛ can have an evident
impact on the outcome of a GRASP procedure.

Conclusions

Despite the large body of work on approximation al-
gorithms, computational studies of feedback set prob-
lems seem to be still in their embryonic stage. No mod-
ern metaheuristics, except the GRASP procedure re-
cently (1996) developed in [70] have ever been applied
to the feedback vertex set problem. The size of the gen-
eral problem that can be handled is still quite limited. It
seems that this area of computational research has the
greatest potential for progress and impact in the com-
ing years. It has to be also underlined that, since detect-
ing cycles is a relatively expensive operation, the local
search of feedback vertex set appears to be even more
difficult than other notorious combinatorial problems
like the traveling salesperson or set covering problems.
Therefore, the design of efficient local search proce-
dures and fast construction heuristics will be a key to
the effective computational procedure for feedback set
problems.

See also

� Generalized Assignment Problem
� Graph Coloring
� Graph Planarization
� Greedy Randomized Adaptive Search Procedures
� Quadratic Assignment Problem
� Quadratic Semi-assignment Problem
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49. Klein DJ, Randić M (1987) Innate degree of freedom of
a graph. J Comput Chem 8:516–521
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Let S be a nonempty closed and convex set in a real
Hilbert space H with norm k�k. A sequence (xn)n� 0 of
points in H is said to be Fejér monotone with respect to
S (or simply S-Fejérian) if

8x 2 S 8n 2 N : kxnC1 � xk � kxn � xk : (1)

In words, each point in the sequence is not further from
any point in S than its predecessor. Given x0 2H, a typ-
ical example of S-Fejérian sequence is that generated by
the algorithm

8n 2 N : xnC1 D Txn ;
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where T:H!H is a nonexpansive operator, i. e.,

8(x; y) 2H 2 : kTx � Tyk � kx � yk ; (2)

with nonempty fixed point set S. Under suitable as-
sumptions, the sequence of successive approximations
(xn)n� 0 converges to a point in S [20].

In convex optimization, one frequently encounters
algorithms whose orbits (xn)n� 0 are Fejér monotone
with respect to the solution set. In order to simplify and
standardize the convergence proofs of this broad class
of algorithms, it is important to investigate the notion
of Fejér monotonicity and to bring out some general
convergence principles. These are precisely the objec-
tives of the present article.

Notation and Assumptions

Throughout, the sequence (xn)n� 0 is Fejér monotone
with respect to a nonempty closed and convex set S in
a real Hilbert space H with scalar product h�|�i, norm
k�k, and distance d. For every n 2 N, pn denotes be the
projection of xn onto S, i. e., the unique point pn 2 S
such that kxn � pnk = d(xn, S). Recall that pn is charac-
terized by the variational inequality

8x 2 S : hx � pnjxn � pni � 0: (3)

The expressions xn* x and xn! x denote respectively
the weak and strong convergence of (xn)n� 0 to x. W

and S denotes respectively the sets of weak and strong
cluster points of (xn)n� 0. Finally, Id denotes the iden-
tity operator on H.

Basic Convergence Properties

By way of preamble, some immediate consequences of
(1) are stated below.

Proposition 1 The following assertions hold.
i) (xn)n� 0 is bounded.
ii) 8 x 2 S : (kxn � xk)n�0 converges.
iii) (d(xn, S))n� 0 is nonincreasing.
iv) 8 x 2 S : xn ! x if and only if lim kxn � xk D 0

if and only if S \S 6D ;.

Weak Convergence

In general, Fejér monotone sequences do not converge,
even weakly (consider for instance the {0}-Fejérian se-
quence ((� 1)nx0)n� 0 with x0 6D 0). By virtue of Propo-

sition 1i),W 6D ; and a necessary condition for (xn)n� 0

to converge weakly to a point in S is W � S. A remark-
able consequence of Fejér monotonicity is that this con-
dition is also sufficient. To see this, take y1 and y2 in W,
say xkn * y1 and xln * y2, and x 2 S. By Proposition
1ii),

lim kxkn � xk2 D lim kxln � xk2 :

Therefore, by expanding,

lim kxknk
2 � lim kxlnk

2 D 2 hxjy1 � y2i :

It follows that

S � fx 2H : hxjy1 � y2i D ˛g ; (4)

where ˛ = (limkxknk2 � kxlnk2)/2. Thus, (y1, y2)2 S2

) ˛ = hy1| y1 � y2i = hy2 | y1 � y2i ) y1 = y2. Con-
sequently, the bounded sequence (xn)n� 0 cannot have
more than one weak cluster point in S. This fundamen-
tal property will be recorded as:

Proposition 2 (xn)n� 0 converges weakly to a point in
S if and only if W � S.

Two additional properties are worth mentioning in
connection with weak convergence.
� Let affS be the closed affine hull of S. If y1 6D y2, then

(4) asserts that S is contained in a closed affine hy-
perlane. If affS D H ;W reduces to a singleton and
(xn)n� 0 therefore converges weakly.

� Suppose that xn * x 2 S and let x 2 H. Then the
identities

8n 2 N : kxn � xk2

D kxn � xk2 C 2 hxn � xjx � xi C kx � xk2

together with Proposition 1ii) imply that
(kxn�xk)n� 0 converges.

Strong Convergence

As evidenced by the classical counterexample of [13],
xn * x 2 S » xn ! x 2 S. Accordingly, strong
convergence conditions for Fejér monotone sequences
must be identified.
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First, consider the projected sequence (pn)n� 0. It
follows from (1) and (3) that for every (m, n) 2N2

kpn � pnCmk
2

D kpn � xnCmk
2 C 2 hpn � xnCmjxnCm � pnCmi

C kxnCm � pnCmk
2

� d(xn ; S)2 � d(xnCm; S)2

C 2 hpn � pnCm jxnCm � pnCmi

� d(xn ; S)2 � d(xnCm; S)2:

Consequently, since (d(xn, S))n� 0 converges by Propo-
sition 1iii), (pn)n� 0 is a Cauchy sequence. This estab-
lishes:

Proposition 3 (pn)n� 0 converges strongly.

This result, which is of interest in its own right, also
leads to a simple criterion for the strong convergence of
(xn)n� 0 to a point in S. Indeed, suppose that lim d(xn,
S) = 0. Then, thanks to Proposition 1iii), d(xn, S)! 0,
i. e., xn � pn! 0. On the other hand, by Proposition 3,
pn ! x with x 2 S since S is closed. One thus obtains:

Proposition 4 (xn)n� 0 converges strongly to a point in
S if and only if lim d(xn, S) = 0.

Going back to (4), assume now that (y1, y2) 2S2. Then
˛ = (ky1k2 � ky2k2)/2 and (4) therefore becomes

S �
�
x 2H :

�
x �

y1 C y2
2

ˇ̌
ˇ̌ y1 � y2

�
D 0

	

D fx 2H : kx � y1k D kx � y2kg : (5)

In words, if (xn)n� 0 possesses two distinct strong clus-
ter points y1 and y2, S is contained in the closed affine
hyperplane whose elements are equidistant from y1 and
y2. If affS D H , it results from (5) that (xn)n� 0 pos-
sesses at most one strong cluster point. This happens
in particular when the interior of S is nonempty (Slater
condition). In this case, however, a sharper result holds,
namely (xn)n� 0 converges strongly [22].

Linear Convergence

Proposition 1iii) asserts that (d(xn, S))n� 0 is nonin-
creasing. Assume now that it decreases at a linear rate,
say

9� 2 ]0; 1[ 8n 2 N : d(xnC1; S) � �d(xn ; S): (6)

Then, in view of Proposition 4, xn ! x 2 S. On the
other hand, for every (m, n) 2 N2, (1) yields

kxn � xnCmk

� kxn � pnk C kxnCm � pnk
� 2d(xn ; S):

Thus kxn � xk � 2d(xn ; S) and one reaches the follow-
ing conclusion.

Proposition 5 Suppose that (6) holds. Then (xn)n� 0

converges linearly to a point x 2 S: 8n 2 N : kxn � xk
� 2�nd(x0; S)

Geometric Construction

In order to make the above theoretical convergence re-
sults more readily applicable in concrete problems, it
will henceforth be assumed that (xn)n� 0 has been gen-
erated by the following algorithm.

0 Take x0 2H and set n = 0.
1 Generate a closed affine half-space Hn such

that S � Hn :

2 Compute the projection Pnxn of xn onto Hn
and take �n 2 [0; 2]:

3 Set xn+1 = xn + �n(Pnxn � xn):
4 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 1
General Fejérian scheme

The relaxation parameter �n determines the posi-
tion of the update xn + 1 on the closed segment between
the current iterate xn and its reflection rn = 2Pnxn � xn
with respect to Hn (see Fig. 1.). In some problems, it
is possible to significantly accelerate the progression of
the iterates towards a solution by proper choice of the
relaxation sequence (�n)n� 0 [5].

Hereafter, two properties of the relaxation sequence
will be considered, namely

X
n�0

�n(2 � �n) D C1 (7)

and

(�n)n�0 lies in ["; 2 � "]; where " 2 ]0; 1[ : (8)



Fejér Monotonicity in Convex Optimization F 1019

Fejér Monotonicity in Convex Optimization, Figure 1
A Fejérian iteration

Now fix x 2 S. Then, for every n 2 N,

kxnC1 � xk2

D kxn � xk2 C �2n kPnxn � xnk2

C 2�n hxn � xjPnxn � xni
� kxn � xk2 � �n(2 � �n)d(xn ;Hn)2: (9)

Consequently, (xn)n� 0 is S-Fejérian and
X
n�0

�n(2 � �n)d(xn ;Hn)2 < C1: (10)

Furthermore, if (�n)n� 0 lies in [0, 2 � "] for some
" 2] 0, 1[, then the series

P
n� 0kxn + 1 � xnk2 andP

n�0 hx � xnjxnC1 � xni converge [6,15].
In view of (10), the next two convergence results

are immediate consequences of Proposition 2 and 4, re-
spectively.

Proposition 6 (xn)n� 0 converges weakly to a point in
S if one of the conditions below is fulfilled.
i) (10))W � S.
ii) (7) is in force and lim d(xn, Hn) = 0)W � S.
iii) (8) is in force and

P
n� 0d(xn, Hn)2 < + 1 )

W � S.

Proposition 7 (xn)n� 0 converges strongly to a point in
S if one of the conditions below is fulfilled.
i) (10)) lim d(xn, S) = 0.
ii) (7) is in force and lim d(xn, Hn) = 0) lim d(xn, S)

= 0.
iii) (8) is in force and

P
n� 0d(xn, Hn)2 < +1) lim

d(xn, S) = 0.

To investigate linear convergence, assume that

9� 2 ]0; 1[ 8n 2 N : d(xn ;Hn) � �d(xn ; S) (11)

and that (8) holds. Then x D pn in (11) supplies

d(xnC1; S)2 � kxnC1 � pnk2

� d(xn ; S)2 � "2d(xn ;Hn)2

� (1 � "2�2)d(xn ; S)2:

Whence, Proposition 5 yields:

Proposition 8 Suppose that (8) and (11) hold. Then
(xn)n� 0 converges linearly to a point x 2 S: 8n 2
N : kxn � xk � 2�nd(x0; S) with � = (1 � "2�2)½.

Applications

Several convex optimization methods are now pre-
sented. They are shown to be Fejér monotone and their
convergence is established on the basis of the general
results stated above. For brevity, only weak convergence
is considered; however, strong and linear convergence
results can be derived in a like manner under suitable
assumptions. In each problem, the solution set S is as-
sumed to be nonempty.

Fixed Points of Nonlinear Operators

For every n 2 N, let Tn: H!H be a firmly nonexpan-
sive operator, i. e.,

8(x; y) 2H 2 :

hTnx � Tn yjx � yi � kTnx � Tn yk2 ; (12)

and let Fix Tn = {x2H: Tnx = x} be its fixed point set.
The problem under consideration is to find a common
fixed point of the family (Tn)n� 0, i. e.,

(
Find x 2H
s.t. 8n 2 N : Tnx D x:

(13)

Let S = \n� 0 Fix Tn and

Hn D fx 2H : hx � Tnxnjxn � Tnxni � 0g :

It then follows from (12) that S � Fix Tn � Hn. Thus,
Algorithm 1 takes the following form.
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0 Take x0 2H and set n = 0.
1 Take �n 2 [0; 2].
2 Set xn+1 = xn + �n(Tnxn � xn):
3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 2
Common fixed point

Noting that d(xn, Hn) = k(Id� Tn) xnk, several con-
vergence results can be derived by direct application of
Propositions 6–8. In particular, in the case of a single
nonexpansive operator T (see (2)), the algorithm below
is pertinent.

0 Take x0 2H and set n = 0.
1 Take �n 2 [0; 1].
2 Set xn+1 = xn + �n(Txn � xn):
3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 3
Fixed point

Proposition 9 If
P

n� 0 �n(1 � �n) = +1, any se-
quence generated by Algorithm 3 converges weakly to
a fixed point of T.

Indeed, the assignments Tn (Id + T)/2 and �n 2�n
in Algorithm 2 yield Algorithm 3 as Tn is firmly non-
expansive [3,5] and Fix Tn = Fix T. Next, observe that
(d(xn, Hn))n� 0 = (k(Id � T) xnk/2)n� 0 is nonincreas-
ing by (2). Hence, lim d(xn, Hn) = 0) (Id � T) xn!
0 and it results from the demiclosedness of Id � T [20]
that xkn * x ) (Id � T) x = 0. Thus, Proposition 9
follows from Proposition 6ii).

Zeros of MonotoneMaps

In connection with set-valued maps A, B:H�H a few
definitions and facts need to be recalled [2,27]. First,
A is characterized by its graph gr A = {(x, u) 2 H2: u
2 Ax}. The inverse A�1 of A has graph {(u, x) 2H2: (x,
u) 2 grA} and the linear combination A + � B (� 2R)
has graph

f(x; uC �v) : (x; u) 2 grA; (x; v) 2 gr Bg :

A is monotone if

8(x; u) 2 grA8(y; v) 2 grA :

hx � yju � vi � 0:

If A is monotone and if there exists no monotone map
B 6D A such that gr A � grB then A is maximal mono-
tone. In this case
� gr A is weakly-strongly closed: for every sequence

((yn, vn))n� 0 in H2

8̂
<̂
ˆ̂:

((yn ; vn))n�0 in grA

yn
n
* y

vn
n
! v

) (y; v) 2 grA: (14)

� For every � 2]0, +1[, the resolvent of A, JA� = (Id +
� A)�1, is a single-valued firmly nonexpansive oper-
ator defined on H [17,23].
Of broad interest is the problem of finding a zero of

a maximal monotone map A: H�H [23], i. e.,
(
Find x 2H
s.t. 0 2 Ax:

(15)

For every � 2] 0, + 1[, the solution set S = A�1 0
can be written as S = {x2H: x 2 x + � Ax} = Fix JA� .
Thus, given (�n)n� 0 in ] 0, +1[, the equilibrium prob-
lem (15) can be cast in the form of the common fixed
point problem (13) with (Tn)n� 0 = (JA�n )n� 0. Algo-
rithm 2 is then known as the (relaxed) proximal point
algorithm [17,23].

0 Take x0 2H and set n = 0.
1 Take �n 2 ]0;+1[ and �n 2 [0; 2].
2 Set xn+1 = xn + �n(JA�n xn � xn):
3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 4
Proximal point

Proposition 10 Suppose that
(
(�n)n�0 is in [";C1[
(�n)n�0 is in ["; 2 � "]

where " 2 ]0; 1[ : (16)

Then any sequence generated by Algorithm 4 converges
weakly to a zero of A.

This result is a consequence of Proposition 6iii). In-
deed, for every n 2 N, define yn = xn + (xn + 1 � xn)/�n,
vn = (xn � xn + 1)/(�n �n) and note that vn 2 Ayn. Now
suppose d(xn,Hn)! 0. Then, thanks to (16), xn+ 1 � xn
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! 0 and, in turn, vn! 0 and yn � xn! 0. Hence, xkn
* x) ykn * x) 0 2 Ax by (14).

Weak convergence can also be achieved under vari-
ants of (16), e. g.,

P
n� 0 �

2
n = +1 and 8 n 2 N: �n = 1

[2]. Such results can be deduced from Proposition 6 as
well.

Zeros of the Sum of TwoMonotoneMaps

Take two maximal monotone maps A, B: H�H. An
extension of (15) that captures a wide body of optimiza-
tion and applied mathematics problems is [27]

(
Find x 2H
s.t. 0 2 Ax C Bx:

(17)

In instances when A + B is maximal monotone, one can
approach this problem via Algorithm 4. Naturally, for
this approach to be numerically viable, the resolvents
of A + B should be computable relatively easily. A more
widely applicable alternative is to devise an operator
splitting algorithm, in which the operators A and B are
employed in separate steps [16]. Two Fejérian splitting
algorithms are described below.

First, suppose that B is (single-valued and) co-
coercive in the sense that B�1 � ˛ Id is monotone for
some ˛ 2] 0, +1[, i. e.,

8(x; y) 2H 2 :

hBx � Byjx � yi � ˛ kBx � Byk2 : (18)

Given � 2] 0, 2˛], it follows from (18) that Id � �B is
nonexpansive. Moreover, the solution set S = (A + B)�1

0 can be written as S = {x 2 H: x � � Bx 2 x + �Ax}
= Fix T where T = JA� ı(Id � � B) is nonexpansive as
the composition of two nonexpansive operators. Algo-
rithm 3 can then be implemented by alternating a for-
ward step involving B with a backward (proximal) step
involving A.

0 Take � 2 ]0; 2˛]; x0 2H , and set n = 0.
1 Set xn+1/2 = xn � �Bxn and take �n 2 [0; 1].
2 Set xn+1 = xn + �n(JA� xn+1/2 � xn):
3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 5
Forward-backwardmethod

As a corollary of Proposition 9 we obtain:

Proposition 11 If
P

n� 0 �n(1 � �n) = + 1, any se-
quence generated by Algorithm 5 converges weakly to
a zero of A + B.

The second algorithm is centered around the operator
T = JA� ı(2JB� � Id) + Id � JB� , where � 2 ]0, +1[. This
operator possesses two nice properties: it is firmly non-
expansive and y 2 Fix T , JB� y 2 (A + B)�1 0 [16].
Whence, by putting Tn  T in Algorithm 2, one ob-
tains the Douglas–Rachford method [8,16].

0 Take � 2 ]0;+1[; x0 2H , and set n = 0.
1 Set xn+1/2 = JB� xn and take �n 2 [0; 2].
2 Set xn+1 = xn + �n

�
JA� (2xn+1/2 � xn) � xn+1/2

�
:

3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 6
Douglas–Rachford method

As in Algorithm 5, B is activated at step 1 and A at
step 2. Convergence is established as in Proposition 9

Proposition 12 If
P

n� 0 �n(2 � �n) = + 1, any se-
quence generated by Algorithm 6 converges weakly and
the image of the weak limit under JB� is a zero of A + B.

Variational Inequalities

Let B: H ! H be a single-valued maximal monotone
operator, let ': H !]� 1, + 1] be a proper, lower-
semicontinuous, convex function, and let @': H�H

be its subdifferential, i. e.,

@'(x)

D
\
y2H
fu 2H : hy � xjui C '(x) � '(y)g :

Then @' is maximal monotone [2] and, upon taking A
= @' in (17), one arrives at the variational inequality
problem

8̂
<̂
ˆ̂:

Find x 2H
s.t. 8x 2H :

hx � xjBxi C '(x) � '(x):

(19)

In this context, the resolvent JA� reduces to Moreau’s
prox mapping [18]

prox'� : x 7! arg min
y2H

'(y)C
1
2�
ky � xk2 :
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As a special instance of (17), the variational inequality
problem (19) can be solved via the forward-backward
method (Algorithm 5) and Proposition 11 then yields:

Proposition 13 Suppose that (18) is in force. Take
�2]0, 2˛], x0 2H, and let

8n 2 N :

xnC1 D xn C �n
�
prox'� (xn � �Bxn) � xn

�
; (20)

where (�n)n� 0 is in [0, 1] and
P

n� 0 �n(1� �n) = +1.
Then (xn)n� 0 converges weakly to a solution of (19).

A noteworthy situation is when ' = $Q, where $Q is the
indicator function of a nonempty closed convex set Q,
i. e.,

$Q : x 7!

(
0 if x 2 Q;
C1 if x … Q:

(21)

It follows that @$Q = NQ, where NQ is the normal cone
to Q, i. e.,

NQx D
\
y2Q

fu 2H : hy � xjui � 0g ;

if x 2Q, andNQ x = ; otherwise. In addition, (19) reads
(
Find x 2 Q
s.t. 8x 2 Q : hx � xjBxi � 0;

(22)

and prox�Q� = PQ is the projector onto Q.

Differentiable Optimization

A standard convex programming problem is to mini-
mize a proper, lower-semicontinuous, convex function
f:H! ]�1, +1] over a nonempty closed convex set
Q�H, i. e.,

Find x D argmin
x2Q

f (x): (23)

In view of (21), (23) is equivalent to finding a global
minimizer of $Q + f , i. e., by Fermat’s rule, to finding
a zero of @($Q + f ). If 0 lies in the interior ofQ� {x 2H:
f (x) < +1}, then @($Q + f ) = @$Q + @ f [2] and (23) is
therefore of the form (17) with A =NQ and B = @ f . This
occurs in particular when f is finite and continuous at
a point in Q.

Now suppose that f is differentiable. Then @ f =
{r f } is single-valued and (23) can further be reduced
to (22) with B = r f . The forward-backward scheme
(20) then becomes the projected gradient algorithm

8n 2 N :

xnC1 D xn C �n
�
PQ
�
xn � �r f (xn)

�
� xn

�
:

Proposition 13 provides conditions for weak conver-
gence to a minimizer of f over Q.

Convex Feasibility Problems

Given a family (Si)i 2 I of intersecting nonempty closed
and convex subsets of H, the convex feasibility problem
reads [3,5,6,15]

Find x 2 S D
\
i2I

Si : (24)

At iteration n, select a nonempty finite index set In � I
and, for every i 2 In, let pi, n be an approximate projec-
tion of xn onto Si, i. e., the projection of xn onto a closed
affine half-space Hi, n containing Si. Then

Hi;n D fx 2H : hx � pi;njxn � pi;ni � 0g :

Let

Hn D

8<
:x 2H :

X
i2In

wi;n hx � pi;njxn � pi;ni � 0

9=
;

where the weights (wi, n)i2In are in ]0, 1] and satisfyP
i2Inwi, n = 1. Then S � \i2In Si � \i2InHi, n � Hn

and Pnxn = xn + Ln(xn + 1/2 � xn), where xn + 1/2 =
P

i2In
wi, npi, n and

Ln D

8̂
ˆ̂̂<
ˆ̂̂̂
:

X
i2In

wi;n kpi;n � xnk2




xnC 1
2
� xn





2 if xnC 1

2
¤ xn

1 else.

(25)

Algorithm 1 then turns into Algorithm 7.
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0 Take x0 2H and set n = 0.
1 Take a nonempty finite set In � I:
2 Compute approximate projections (pi;n)i2In of

xn onto (Si)i2In :
3 Take (wi;n)i2In in ]0; 1] such thatP

i2In wi;n = 1:
4 Set xn+1/2 =

P
i2In wi;n pi;n; Ln as in (25):

5 Take �n 2 [0; 2Ln]:
6 Set xn+1 = xn + �n(xn+1/2 � xn):
7 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 7
Convex feasibility

Weak convergence to a point in S follows from
Proposition 6 under various assumptions on the con-
trol sequence (In)n� 0 and the approximate projections
((pi, n)i2In )n� 0 [5,6,15].

Nondifferentiable Optimization

Suppose that f is subdifferentiable in (23), i. e.,

8x 2H : @ f (x) ¤ ;;

and that its minimum value f over Q is known. Then
(23) can be viewed as a special case of (24) with two
sets, namely S1 = Q and S2 D fx 2 H : f (x) � f g.
Now take

H2;n D
n
x 2H : hx � xnjuni � f � f (xn)

o

where un 2@ f (xn). Then S2 �H2, n and

p2;n D

8̂
<
:̂
xn C

f � f (xn)
kunk

2 un if xn … S2

xn otherwise

is called a subgradient projection of xn onto S2 [3,5]. If
Algorithm 7 is implemented by alternating a relaxed
subgradient projection onto S2 with an exact projection
onto S1, i. e.,

8n 2 N : xnC1 D PQ
�
xn C �n

�
p2;n � xn

��
;

one obtains the subgradient projection method of [21].
Weak convergence to a solution of (23) under the as-
sumptions of uniform boundedness of @ f on bounded
sets, (�n)n� 0 is in [0, 2], and (8), follows from Proposi-
tion 6iii [3,5].

Inconsistent Convex Feasibility Problems

When\i 2 ISi = ; and I is finite, (24) can be replaced by
the minimization problem

Find x D arg min
x2H

1
2

X
i2I

wid(x; Si )2 (26)

where (wi)i 2 I is in ]0, 1] and
P

i 2 Iwi = 1. Let (Pi)i 2 I

be the projectors onto (Si)i 2 I , let T =
P

i 2 IwiPi, and
let S be the solution set of (26). Then T is firmly non-
expansive and S = Fix T [5]. By reiterating a previous
argument, one obtains:

Proposition 14 Take x0 2 H, (�n)n� 0 in [0, 2] such
that

P
n� 0 �n(2 � �n) = +1, and let

8n 2 N : xnC1 D xn C �n

 X
i2I

wiPi xn � xn

!
:

Then (xn)n� 0 converges weakly to a solution of (26).

Historical Notes and Comments

In 1922, L. Fejér considered the following problem [12]:
given a closed subset S � Rp and a point y 62 S can one
find a point x 2 Rp such that

8x 2 S : kx � xk < ky � xk :

Inspired by this work, T.S. Motzkin and I.J. Schoenberg
adopted in their 1954 paper [19] the term Fejér mono-
tone to describe sequences satisfying (1). In this paper
(see also [1]), an algorithm was developed to solve sys-
tems of linear inequalities in Rp by successive projec-
tions onto the half-spaces defining the polyhedral so-
lution set S. The concept of Fejér monotonicity was
shown to be an adequate tool to study convergence of
this algorithm. Basic facts such as (5) and (9) can al-
ready be found in [19] and [1], respectively.

In the 1960s, I.I. Eremin extended the use of Fe-
jér monotonicity to more general convex problems in
Hilbert spaces. A summary of his publications cover-
ing the period 1961–1967 is given in [9]. By the end
of the 1960s, most results on Fejér monotonicity in
Hilbert spaces were essentially known and one can find
them scattered in the Soviet literature in the context of
specific convex programming problems. Thus, (4) ap-
pears in [10], Proposition 2 in [4], Propositions 4 and 5
in [14], and Proposition 8 in [14] and [21]. It should be
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noted that Proposition 2 has been implicitly rediscov-
ered many times and that it seems to originate in [24].

Recently, Fejér monotonicity has been reserved
a featured role in several convex optimization pa-
pers [3,6,15,25,26]. It has also proven a valuable tool
in more applied disciplines such as biology, economics,
and engineering [5,11]. Some extensions of the notion
of Féjer monotonicity are discussed in [7].

See also

� Generalized Monotone Multivalued Maps
� Generalized Monotone Single Valued Maps
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems

References

1. Agmon S (1954) The relaxationmethod for linear inequali-
ties. Canad J Math 6:382–392

2. Aubin J-P, Cellina A (1984) Differential inclusions. Springer,
Berlin

3. Bauschke HH, Borwein JM (1996) On projection algorithms
for solving convex feasibility problems. SIAM Rev 38:367–
426

4. Brègman LM (1965) The method of successive projection
for finding a common point of convex sets. Soviet Math
Dokl 6:688–692

5. Combettes PL (1996) The convex feasibility problem in
image recovery. In: Advances in Imaging and Electron
Physics, vol 95. Acad, pp 155–270

6. Combettes PL (1997) Hilbertian convex feasibility prob-
lem: Convergence of projection methods. Appl Math Op-
tim 35:311–330

7. Combettes PL (2001) Quasi-Fejérian analysis of some opti-
mization algorithms. In: Butnariu D, Censor Y, Reich S (eds)
Inherently Parallel Algorithms for Feasibility and Optimiza-
tion and Their Applications. Elsevier, Amsterdam

8. Eckstein J, Bertsekas DP (1992) On the Douglas–Rachford
splitting method and the proximal point algorithm for
maximal monotone operators. Math Program 55:293–
318

9. Eremin II (1968) Methods of Fejér approximations in con-
vex programming. Math Notes 3:139–149

10. Eremin II (1968) On the speed of convergence in the
method of Fejér approximations. Math Notes 4:522–
527

11. Eremin II, Mazurov VD (1979) Nonstationary processes of
mathematical programming. Nauka, Moscow

12. Fejér L (1922) Uber die Lage der Nullstellen von Poly-
nomen, die aus Minimumforderungen gewisser Art ent-
springen. Math Ann 85:41–48

13. Genel A, Lindenstrauss J (1975) An example concerning
fixed points. Israel J Math 22:81–86

14. Gubin LG, Polyak BT, Raik EV (1967) The method of projec-
tions for finding the common point of convex sets. USSR
Comput Math Math Phys 7:1–24

15. Kiwiel KC, Łopuch B (1997) Surrogate projection methods
for finding fixed points of firmly nonexpansive mappings.
SIAM J Optim 7:1084–1102

16. Lions PL, Mercier B (1979) Splitting algorithms for the sum
of two nonlinear operators. SIAM J Numer Anal 16:964–
979

17. Martinet B (1972) Détermination approchée d’un point
fixe d’une application pseudo-contractante. Cas de
l’application prox. CR Acad Sci Paris Sér A Math 274:163–
165

18. Moreau J-J (1962) Fonctions convexes duales et points
proximaux dans un espace Hilbertien. CR Acad Sci Paris Sér
A Math 255:2897–2899

19. Motzkin TS, Schoenberg IJ (1954) The relaxation method
for linear inequalities. Canad J Math 6:393–404

20. Opial Z (1967) Weak convergence of the sequence of suc-
cessive approximations for nonexpansive mappings. Bull
Amer Math Soc 73:591–597

21. Polyak BT (1969) Minimization of unsmooth functionals.
USSR Comput Math Math Phys 9:14–29

22. Raik E (1969) A class of iterative methods with Fejér-
monotone sequences. Eesti NSV Tead Akad Toimetised
Füü-Mat 18:22–26

23. Rockafellar RT (1976) Monotone operators and the prox-
imal point algorithm. SIAM J Control Optim 14:877–
898

24. Schaefer H (1957) Uber die Methode sukzessiver Approxi-
mationen. Jahresber Deutsch Math-Verein 59:131–140

25. Schott D (1991) A general iterative scheme with appli-
cations to convex optimization and related fields. Optim
22:885–902

26. Schott D (1995) Iterative solution of convex problems
by Fejér-monotone methods. Numer Funct Anal Optim
16:1323–1357

27. Zeidler E Nonlinear functional analysis and its applications
II/B – Nonlinear monotone operators. Springer, Berlin

Financial Applications
of Multicriteria Analysis

CONSTANTIN ZOPOUNIDIS

Department Production Engineering
and Management Financial Engineering Lab. Techn.,
University Crete University Campus, Chania, Greece

MSC2000: 91B06, 91B60



Financial Applications of Multicriteria Analysis F 1025

Article Outline

Keywords
Basic Principles of Multicriteria Analysis

Methods
Decision Aid Activity

Multicriteria Character of Financial Problems
and Some Real-World Applications
Investment Decision
Portfolio Management
Some Real-World Applications
Venture Capital Investment
Study Context
Multicriteria Method and Results
The Business Failure Risk
Study Context
Multicriteria Method and Results

Concluding Remarks
See also
References

Keywords

Finance; Investment analysis; Multicriteria analysis;
Decision support; Applications

The financial decisions of an organization (i. e. firm,
bank, insurance company, etc.) are usually considered
in the context of optimization. Concerning the case of
a firm and for a long term period, one meets two types
of decisions: decisions related to the optimal allocation
of funds, and decisions related to the optimal financial
structure. In the short term, one considers decisions re-
lated to the management of working capital, and refers
to the optimization of stocks, cash, accounts receiv-
able and short term debts. The financial theory analyzes
these decisions (short and long terms), but always from
an optimization perspective (for example, theory of cost
of capital, portfolio theory, options theory, etc.). This
perspective has led some researchers to propose tech-
niques of operations research to solve financial decision
problems. The classical modeling of decision problems
in operations research consists in formulating an opti-
mization (maximization or minimization) problem un-
der specific constraints. In fact, it is a best choice prob-
lem.

However, recently, these financial problems have
been examined from a more comprehensive and more
realistic perspective which overcomes the restrictive

framework of optimization [80,84]. For example, in
capital budgeting decision making, K. Bhaskar and P.
McNamee [6] pose the following questions:
a) In assessing investment proposals, do the decision

makers have a single objective or multiple objec-
tives?

b) If decision makers do have multiple objectives,
which are those and what is the priority structure
of the objectives?

In another similar study, Bhaskar [5] refers that mi-
croeconomic theory has largely adopted a single objec-
tive function which is the principle of utility maximiza-
tion for the consumer unit and profit maximization for
firms. To attack the single objective function principle
for firms, Bhaskar [5] addresses three categories of crit-
icism:
a) there exist alternatives to the profit maximization

approach which are based on equally simple hy-
potheses and which can better explain reality;

b) the profit maximization or any other equally simple
hypothesis is too naive to explain the complex pro-
cess of decision making;

c) the real-world firms do not have suitable informa-
tion to enable them to maximize their profits. Fur-
thermore, several other theories of the firm have
been postulated which have proposed different ob-
jectives than that of the traditional microeconomic
theory.

One can cite the revenue maximizing model [3], the
manager’s utility model [74], the satisficing model [64]
and the behavioral models [13].

On the basis of the above remarks it is possible to
distinguish three main reasons which have motivated
a change of view in the modeling of the financial prob-
lems:
1) Formulating the problem in terms of seeking the

optimum, financial decision makers (i. e. financial
analysts, portfolio managers, investors, etc.) get in-
volved in a very narrow problematic, often irrele-
vant to the real decision problem.

2) The different decisions (financial ones) are taken
by the people (i. e. financial managers) and not by
the models; the decision makers get more and more
deeply involved in the decision making process and,
in order to solve problems, it becomes necessary to
take into consideration their preferences, their ex-
periences and their knowledge.
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3) For financial decision problems such as the choice of
investment projects, the portfolio selection, the eval-
uation of business failure risk, etc., it seems illusory
to speak of optimality, since multiple criteria must
be taken into consideration.

In this article, our basic aim is to examine the contribu-
tion of the multicriteria analysis to the study and to the
solution of some financial decision problems. Section
2 presents the basic principles of multicriteria analysis.
The multicriteria character of some financial problems
and some real world applications of the multicriteria
analysis in the field of financial management are given
in section 3. Finally, some discussion and the advan-
tages which resulted by the application of multicriteria
analysis in the field of financial management, are given
in section 4.

Basic Principles of Multicriteria Analysis

Multicriteria analysis, often called multiple criteria de-
cision making (MCDM) by the American School and
multicriteria decision aid (MCDA) by the European
School, is a set of methods which allow the aggrega-
tion of several evaluation criteria in order to choose one
or more alternatives (i. e. investment projects, financial
assets at variable revenue, financial assets at fixed rev-
enue, dynamic firms, etc.). It also deals with the study
of the activity of decision aid to a well-identified deci-
sion maker (i. e. individual, firm, organization, etc.).

The development of multicriteria decision aid
(hence we use this term in the text) began in 1971.
Its principal objective is to provide the decision maker
with tools in order to enable him to advance in solving
a decision problem (for example, the selection of invest-
ment projects for a firm), where several, often conflict-
ing multiple criteria must be taken into consideration.

Methods

The specialists in the field distinguish several categories
of methods in MCDA. The boundaries between these
categories are, of course, rather fuzzy. B. Roy [58] pro-
poses the following three categories of methods:
1) unique synthesis criterion approach disregarding

any incomparability;
2) outranking synthesis approach, accepting incompa-

rability; and

3) interactive local judgement approach with trial-
error iterations.

In this paper, the classification proposed in [53] is
adopted. It distinguishes four categories:
1) multi-objective mathematical programming;
2) multi-attribute utility theory;
3) outranking relations approach; and
4) preference disaggregation approach.
Multi-objective mathematical programming is charac-
terized by the fact that an action (or alternative) a is
represented by a vector of real variables (x1, . . . , xl). The
set A of the feasible solutions is defined by a set of linear
constraints: A = {x 2 Rl: A � X � b, x � 0} with A a ma-
trix of dimensions m × l and b a vector-matrix m × 1.
The chosen vector must give satisfaction to relatively
several numerical criteria, m in number, and noted as
C1, . . . , Cm, which are linear functions of x. It is pos-
sible to distinguish three different methods inside this
approach:
1) the efficient solutions procedure;
2) the goal programming;
3) the compromise programming.
A synthesis of the studies realized on this category of
methods can be found in [69,72] and [77].

Multi-attribute utility theory (MAUT) is an exten-
sion of the classical utility theory. It seeks to give a rep-
resentation of the preferences of a decision maker by
means of a utility function, aggregating several evalua-
tion criteria: u(g) = u(g1, . . . , gn). In other words, the
problem is to choose the action a which maximizes the
utility function of the decision maker: u[g (a)] = max
u[g (a)].

The criteria (attributes) can be certain or probabilis-
tic (each gi(a) is associated with a probability distri-
bution). In general, one can decompose a multicrite-
ria utility function in real functions u1, . . . , un concern-
ing the independence of criteria. Thus, different utility
function models are obtained. The most studied form
of utility function, from a theoretical point of view, is
the additive form:

u(g1; : : : ; gn) D u1(g1)C � � � C un(gn);

where u1, . . . , un are the marginal utilities defined on
the scales of criteria. For the study of the condition of
independence in utility between criteria (substitution
rate), one can refer to [34]. The latter and [77] present
syntheses of works on the construction of multicriteria
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utility functions both, under certainty and under uncer-
tainty.

The outranking relations approach was developed in
Europe with the elaboration of the ELECTRE methods
(ELimination Et Choix Traduisant la REalité). The con-
cept of outranking in ELECTRE methods is due to Roy,
who is the founder of these methods. The outranking
relation allows to conclude that an action a 2 A (dis-
crete set) outranks an action b 2 A if there are enough
arguments to confirm that a is at least as good as b,
while there is no essential reason to refute this state-
ment. In the ELECTRE methods the aggregation of cri-
teria requires to define the threshold notions of pref-
erence and indifference, concordance and discordance.
In fact, a outranks b if there exists a sufficient majority
of criteria for which a is better classified than b (con-
cordance) and if the unfavorable deviations for the rest
of the criteria (discordance) are not too high. Thus, this
modeling can bring into evidence the cases of incompa-
rability when the multicriteria evaluation of two actions
is very differentiated. A detailed presentation of all out-
ranking methods can be found in [61,63] and [72].

The approach of the disaggregation of preferences is
often used in MCDA as a mean for the modeling of the
preferences of a decision maker or a group of decision
makers. This approach uses the regression methods.
The introduction of regression methods in MCDA is
effected because of the development of the social judge-
ment theory. Multiple regression can, in general, detect,
identify or ‘capture’ the judgement policy of a decision
maker (i. e. disaggregation of the preferences). This one,
particularly if it is in relation with a certain number of
past decisions, might be the expression of a global pref-
erence. The approach by multiple regression is quite
close to the MAUT; their differences are placed at the
level of obtaining the marginal utilities ui(gi) and the
weights pi. For example, for the additive utility func-
tion:

u(g) D
X
i

piui(gi );

the marginal utilities ui(gi) and the weights pi are ob-
tained by direct interrogation of the decision maker
(aggregation methods) as far as it concerns the MAUT
approach, and by indirect interrogation of the deci-
sion maker (disaggregation methods) as far as it con-
cerns the multiple regression approach. The principal

drawback which prevents the closeness of the two ap-
proaches is related to the linearity of the models pro-
posed by multiple linear regression. A rather exhaus-
tive bibliography of the methods of the disaggregation
of preferences can be found in [32] and [53].

Decision Aid Activity

Concerning the activity of decision aid, Roy [58,60]
proposes a methodology of systematic intervention of
multicriteria analysis in the decision process. In brief,
this methodology comprises four levels:
I) Object of the decision and spirit of recommenda-

tion or participation.
II) Analyzing consequences and developing criteria.
III) Modeling comprehensive preferences and opera-

tionally aggregating performances.
IV) Investigating and developing the recommenda-

tion.
It is important to emphasize that these four levels do
not necessarily follow one another in the above men-
tioned order. The activity of decision aid does not nec-
essarily constitute a sequential process; interactions be-
tween the decision maker and the analyst can occur.
This general methodology has contributed to the de-
velopment of several multicriteria methods which have
been applied successfully to real cases. Among these
methods the well-known are the ELECTRE methods
developed by Roy and his collaborators.

Multicriteria Character of Financial Problems
and Some Real-World Applications

The operational research techniques were the first to be
used in the solution of some financial problems. I. Eke-
land [19] wonders

why finance, rather curiously, has remained so
long away from the techniques of operational re-
search (i. e. optimization techniques), except for
those concerning portfolio selection models.

According to the same author, the Capital Asset Pricing
Model (CAPM) is a static optimization model based on
the principle according which, the best portfolio (i. e.
optimal portfolio) is the one which maximizes the ex-
pected return for a given level of risk, in the period
of time considered. For R.W. Ashford et al. [2], the
techniques of operational research can be applied to
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working capital management as well as to the eval-
uation of investment projects. Among the techniques
used for the management of working capital, one could
mention:
� inventory control for the management of stocks;
� dynamic programming, linear programming,

stochastic programming and visual and interac-
tive techniques of simulation for the management
of cash;

� the Markov process and the discriminant analysis
for the management of accounts receivable;

� dynamic programming, linear programming, and
stochastic programming for the management of
short-term debts (current liabilities).

Among the techniques used in the evaluation of in-
vestment projects, one could mention the simulation
methods [23] and those of mathematical statistics [24]
which take into consideration the risk factor. Sim-
ulation methods and linear programming (i. e. the
LONGER program, [51]) are also used in financial
planning (i. e. elaboration of investment and financing
plans). Under these circumstances, the solution of fi-
nancial problems is easy to obtain. It is based on the
fact that the problem is well posed, well-formulated re-
garding the reality involved and on an evaluation cri-
terion (i. e. monocriteria paradigm). But in reality, the
modeling of financial problems is based on a different
kind of logic. In that case, their solution should take
into consideration the following elements (i. e. multi-
criteria paradigm, cf. [59]):
� multiple criteria;
� conflict situation between the criteria;
� complex evaluation process, subjective and ill-

structured;
� introduction of financial decision makers in the

evaluation process.
MCDA has already contributed in a significant man-
ner to the solving of several financial problems such as
venture capital investment, business failure risk, credit
granting, bond rating, country risk, political risk, evalu-
ation of the performance and viability of organizations,
choice of investments, financial planning and portfolio
management.

The multicriteria character of these financial prob-
lems can be easily demonstrated. We will limit here the
analysis on the choice of investment projects and port-
folio management. International literature could actu-

ally provide very important case studies for the rest of
the financial problems [36,80,84].

Investment Decision

The choice of investment projects entails an important
decision for every firm, public or private, large or small
one. In fact, considering its duration, its amount and
its irreversible character an investment decision is re-
garded as a major and strategic one. Therefore, the pro-
cess of an investment decision should be conveniently
modeled. If one considers that, in principle, the in-
vestment decision process consists of four main stages:
perception, formulation, evaluation and choice, the fi-
nancial theory intervenes only in the stages of evalu-
ation and choice [8]. With its empirical financial cri-
teria (i. e. the payback method, the accounting rate of
return) and sophisticated ones, based on discount tech-
niques (i. e. the net present value, the internal rate of
return, the index of profitability, the discounted pay-
back method, etc.), the financial theory proposes either
a ranking from the better to worst when there are many
investment projects in competition or an acceptance
or refusal if there is only one investment project. Al-
though the tools of the financial theory should be im-
proved so that they could take into account time, infla-
tion and risk (i. e. analytical methods, simulation meth-
ods, games theory, CAPM, etc.), there are still prob-
lems concerning the evaluation and selection of invest-
ment projects. Among the most important ones, one
could mention the reduction of the investment notion
in a time series of monetary flows (i. e. inflows, out-
flows), the choice of the discount rate, the conflicts be-
tween financial criteria (i. e. net present value versus
internal rate of return), etc. According to the finan-
cial theory, the discount rate (sometimes rate of return)
plays the role of acceptance or rejection rate (a cut off
rate) of an investment project in the case where the cri-
terion of internal rate of return is used. Thus, one can
see that the investment decision of a firm depends on
one variable only, which is the discount rate. As far as
the conflicts between criteria are concerned, one often
ascertain that the criteria which are supposed to express
the goal of the profitability of projects, could lead to
divergent rankings (for example, the net present value
and the index of profitability or even the net present
value and the internal rate of return). In consequence,
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the financial approach of investment decision seems
limited and unrealistic. It is limited because it remains
in the stages of evaluation and choice, and it is unreal-
istic because it is based only on financial criteria.

MCDA, on the other hand, contributes in a very
original way to the investment decision process. Ini-
tially, it intervenes in the whole process of investment,
from the stages of perception and formulation to the
stages evaluation and choice. Concerning the stages of
perception and formulation, MCDA contributes to the
identification of possible actions (i. e. investment op-
portunities) and to the definition of a set of potential
actions (i. e. possible variants, each variant constituting
an investment project in competition with others). This
set of projects can be global, fragmented, stable or evo-
lutionary. Then, it is necessary to choose a reference
problematic which is well-adapted to the investment
decision problem (i. e. choice, sorting, ranking).
� Choice problematic P.˛: help in choosing the best

investment project or in developing a selection pro-
cedure for investment projects.

� Sorting problematic P.ˇ: help in sorting investment
projects according to norms or in building an as-
signment procedure for investment projects.

� Ranking problematic P.� : help in ranking the in-
vestment projects according to a decreasing prefer-
ence order or in building an ordering procedure for
investment projects.

Concerning the stages of evaluation and choice, MCDA
offers a methodological frameworkmuchmore realistic
than the financial theory, by introducing in the study
of investment projects both quantitative and qualitative
criteria. Criteria such as the urgency of the project, the
coherence of the objectives of the projects with those
of the general policy of the firm [21], the social and
environmental aspects should be taken into considera-
tion in an investment decision. Therefore, MCDA con-
tributes to show the best investment projects accord-
ing to the problematic chosen, to solve the conflicts be-
tween criteria satisfactorily, to set up the relative im-
portance of criteria in the decision making process and
to make known the preferences and the investors’ sys-
tem of values. It is very interesting to mention that
many authors have already used MCDA methods in
the evaluation of investment projects (list non exhaus-
tive): ELECTRE II and ORESTE methods [14]; MAUT
methods [21]; multi-objective mathematical program-

ming [5,35,41]; the Analytic Hierarchy Process (AHP)
method [38]; PROMETHEE method [55,81].

Finally, in order to examine if the firms apply in
reality multiple criteria in their investment decisions,
we present the results of the empirical study of Bhaskar
and McNamee [6]. The two authors, by studying large
United Kingdom companies, have shown that most
companies appear to have more than one objective
when an investment is being appraised (96%). The
most common number of objectives that companies
had was eight. Concerning the objectives priority, most
companies (77%) had profitability as the primary ob-
jective. The next most important objective was com-
pany’s growth. Other criteria less important than the
two above but, which play a role in the investment de-
cisions are the risk, the liquidity, the environment, the
age of assets, the flexibility, the depth of skills, etc. With
these empirical results an answer has been given to the
questions posed in the introduction by the two authors.

Portfolio Management

In the field of portfolio management it is possible to
cite the pioneering work of H.M. Markowitz [46] who,
by developing the optimization model mean-variance
(M-V), is the founder of the classical approach of the
portfolio management. According to [19], the prob-
lem of portfolio choice in the model (M-V) is a mul-
ticriteria one, because the investor will try simultane-
ously to maximize the return and minimize the risk;
but determining the acceptance level of risk, one comes
back to maximize the return, which is a classical mon-
ocriteria problem. After this bicriteria, and even more
the monocriteria (i. e. market model, CAPM) portfo-
lio choice consideration, the development of multi-
factor models has been started where there are more
types of risk and not only market risk [57]. Thus,
the problem of portfolio selection becomes multidi-
mensional. The necessity of having multidimensional
methods (i. e. statistics and econometrics) for the se-
lection of stocks has been presented by specialist re-
searchers in finance [33]. The multidimensional nature
of risk in portfolio management has also been demon-
strated by specialist researchers in multicriteria analy-
sis. See [76,77] and [10] on the ‘Prospect Ranking Vec-
tor (PRV)’ method. Today an arsenal of multidimen-
sional andmulticriteria methods such as factor analysis,
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goal programming, AHP, ELECTRE, MINORA, ADE-
LAIS, etc. have been already applied in the field of port-
folio management [9,25,27,28,29,37,40,47,48,62,82,86].

The multicriteria nature of the problem of portfo-
lio selection is well presented in [37]. The authors study
the problem of the international portfolio selection. Ac-
cording to them, the classical optimization model of
portfolio selection used in a national context can have
even more chance of being sub-optimal in a situation
of international diversification. In fact, in an interna-
tional context, the M-V model does not always con-
stitute a suitable method because, it does not incor-
porate all the criteria that the portfolio managers and
investors use in their stock investment decisions. For
such decisions, the authors propose new criteria such
as: the return of the last five years on a monthly basis,
the standard deviation of the return calculated on the
last five years, the total cost of transactions, the country
risk (or political risk), the direct available coverage for
foreign currencies and the exchange risk. The multicri-
teria methodology used (i. e. ELECTRE IS, ELECTRE
III) has the advantage of offering the portfolio manager
a large set of investment opportunities, and also gives
him the flexibility of choosing the relative importance
of the different criteria during the process of portfolio
selection. Finally, the authors believe that the use of an
optimization model under constraints changes the na-
ture of the portfolio selection problem because a con-
straint does not play the same role as a criterion in
all decision problems. To show this new direction of
research in portfolio management, it is convenient to
mention the special issue of the Canadian journal ‘L’
Actualité Economique}, which is dedicated on the con-
tribution of multicriteria analysis in the study of finan-
cial markets [36].

Some Real-World Applications

In this paragraph two applications of MCDA are briefly
presented. The first one concerns the evaluation of the
venture capital investment and, the second one the
evaluation of the business failure risk.

Venture Capital Investment

Venture capital constitutes today an important source
of financing for small and medium size firms. It plays,
also, an interesting role in the development of the busi-

ness’ spirit. The crucial problem for venture capital in-
vestment is the choice of evaluation criteria and their
aggregation in a global operational model, which will
serve as a basis for the rational and automatic selec-
tion of viable firms. The earlier evaluation models (i. e.
descriptive and statistical) can not explain the invest-
ment decisions in venture capital, since the latter relies
much more on subjective and qualitative elements than
on objectives and quantitative ones [83]. Moreover, the
complexity of the evaluation of venture capital invest-
ment problem has been mentioned in the evaluation
procedures of projects by two French venture capital
firms [80].

Study Context

The data sample coming from two French venture cap-
ital firms, IDI and SIPAREX, was used as the applica-
tion object of MCDA. Although these two firms use
project evaluation procedures, their problem remains
that of the absence of a model able of supporting their
decisions in venture capital investment. In fact, the
variables used in the evaluation procedure are both fi-
nancial variables (i. e. profitability ratios, solvency ra-
tios, liquidity ratios, etc.), and qualitative variables (i. e.
market trend, information security, quality of manage-
ment, market niche/position, etc.). But, although there
are, in both venture capital firms, techniques for the
treatment of financial variables, there is no explicit
model for the elaboration and modeling of the quali-
tative variables. Therefore, it is at this stage of analysis
that the evaluation problem becomes complex. More-
over, the complexity of the evaluation of venture capi-
tal investment problem is also underlined in other stud-
ies [18,26,54,71,83] among others). The role of the ven-
ture capitalist goes beyond that of the simple contribu-
tor to the funds of the firm.

Multicriteria Method and Results

The multicriteria system MINORA (Multicriteria IN-
teractive Ordinal Regression Analysis) was proposed
for the evaluation of firms to the two venture capi-
tal firms. It belongs to the fourth category of MCDA
methods, which is the approach of the disaggregation
of preferences. The MINORA system is both based on
the iterative utilization of an ordinal regression method
and on an appropriate man-machine dialogue. Its aim
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is to construct multicriteria decision models which are
as consistent as possible with the judgement policy of
a decision maker. The decision maker (here the ven-
ture capitalist) expresses his judgement policy by rank-
ing some firms, among those he knows well on the ba-
sis of previous decisions. The system, then, by the use
of the ordinal regression method UTA (UTilitś Addi-
tives [31], estimates optimally the additive utility func-
tion(s), on multiple criteria, which is (are) as consistent
as possible with the decision maker’s ranking. The util-
ity function model is estimated iteratively and interac-
tively. It allows, first, the aggregation of all the criteria
(i. e. financial and/or qualitative) by giving their rela-
tive importance, and second, the automatic and global
evaluation of each firm. With the help of the decision
makers of the two venture capital firms, two evaluation
models were elaborated (one for each venture capital
firm). This paper presents only the global model of IDI.
� The evaluation model for IDI
IDI evaluates firms for financing according to twelve
criteria. The utility function model was then estimated
in the fourth stage of interaction and appeared perfectly
consistent with the objectives of IDI. The equation for
the global model is the following:

u(g) D 0:008u1(g1)

C 0:072u2(g2)C 0:006u3(g3)C 0:197u4(g4)

C 0:105u5(g5)C 0:232u6(g6)C 0:009u7(g7)

C 0:094u8(g8)C 0:047u9(g9)C 0:071u10(g10)

C 0:097u11(g11)C 0:062u12(g12);

where the evaluation criteria are the following:

g1) the sensitivity of sales to the inflation rate;
g2) the sensitivity of value added to the sales varia-

tions;
g3) the sensitivity of labor productivity (value added

per capita) to wage cost increase (wage per capita);
g4) the supplier credit in days;
g5) the available net income;
g6) the quality of management;
g7) the research and development effort;
g8) the extent of diversification;
g9) the market trend;
g10) the market niche/position;
g11) the cash-out method (opportunities for exit);
g12) the world market share.

The model described above is the best adapted to ex-
press the preferences, the knowledge and the experi-
ences of the venture capitalist concerning the quality
of the firms and their final evaluation. A detailed pre-
sentation of the multicriteria method and the results of
the application in the two venture capital firms IDI and
SIPAREX can be found in [80].

The Business Failure Risk

According to a general definition, failure is the situ-
ation that a firm cannot pay lenders, preferred stock
shareholders, suppliers, etc., or a bill is overdrawn, or
the firm is bankrupt according to law. Today, there
is a complete arsenal of evaluation methods for the
business failure risk [16]. Since the late 1980s, methods
close to a qualitative definition of business failure have
been developed. These are multicriteria methods which
present undeniable advantages in matter of evaluation
for the business failure risk [84].

Study Context

The study concerns the evaluation of failure risk of
firms financed by a Greek bank of industrial develop-
ment. This bank finances with stock equity and long
term credit the development of Greek firms and con-
tributes to the renovation of industrial and commercial
firms on a national and regional level. As in the previ-
ous case of the venture capital investment, there is no
model able to provide help to the bank credit managers
in the financing of firms.

Multicriteria Method and Results

ELECTRE TRImethod was proposed for the evaluation
of business failure risk, which is particularly suitable for
multicriteria sorting problems. It belongs to the third
category of MCDA methods, which is the approach of
outranking relations [61,75]. From a finite set of actions
(i. e. firms) evaluated by quantitative and/or qualitative
criteria and from a set of categories previously defined
(i. e. reference actions or reference profiles), ELECTRE
TRI proposes two different procedures of assignment
which allow the classification of all the actions in these
categories. In consequence, ELECTRE TRI consists of
establishing an outranking relation between the actions
to be assigned and the reference profiles. The eventual
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differences between the two assignment procedures, the
pessimistic and the optimistic one, come from the in-
comparability situations between an action and one or
several reference profiles [17,75].

For the case of the evaluation of the business fail-
ure risk, three categories of risk were determined by the
credit managers of the Greek bank:

C1) the failed firms (9 in number);
C2) the risky firms; uncertain category of firms to be

studied further (10 in number);
C3) the healthy firms (20 in number).

These 39 firms were evaluated by seven criteria, five fi-
nancial ratios and two strategic criteria. The criteria are
the following:

x1) Earnings before interests and taxes/Total assets,
x2) Net income/Stockholder’s equity,
x3) Total debts/Total assets,
x4) Financial expenses/Sales,
x5) Administrative and general expenses/Sales,
x6) Managers work experience,
x7) Market niche/position.

From the reference profiles and the thresholds of dis-
crimination (preference model established by the credit
managers of the bank), ELECTRE TRI provided good
percentages of classification, which were of the order
of 82.05% and 89.74% for the optimistic and the pes-
simistic procedures respectively. The pessimistic pro-
cedure gave better results and proved more adaptable
to the problem of evaluation of business failure risk
(it did not give serious classification errors of the type
C1 ! C3 or C3 ! C1). For a detailed presentation of
the multicriteria method and the results, see [84].

Concerning other financial problems which present
a multicriteria character and on which a MCDA
method has been applied, it is possible to provide a list
of published works (non exhaustive).
� Acquisitions of firms: [68].
� Bankruptcy risk: [1,17,67,78,79].
� Country risk: [7,11,12,49,52,70].
� Evaluation of performance of organizations

– Insurance: [45].
– Banks: [43,44,85].
– Firms: [4,15,30,39,42,66,87,88].

� Financial planning: [20,22,73].
� Venture capital: [50,56,65].

Concluding Remarks

This article has shown the contribution of the MCDA
to the solution of some financial decision problems (i. e.
venture capital, business failure risk, investment choice,
portfolio management, etc.). In the past, all these prob-
lems were approached with the use of financial the-
ory in a very narrow framework, that of optimization.
Some researchers took advantage of the optimal char-
acter of these problems in order to propose operational
research techniques (i. e. classical or monocriteria mod-
eling) for their solution. The use of MCDA methods
provides many advantages in financial management,
among which one could mention the following:
� the possibility of structuring complex evaluation

problems;
� the introduction of both quantitative (i. e. financial

ratios) and qualitative criteria in the evaluation pro-
cess;

� the transparency in the evaluation, allowing good
argumentation in financial decisions;

� the introduction of sophisticated scientific methods
in the field of financial management.

In conclusion, MCDAmethods seem to have a promot-
ing future because they offer a highly methodological
and realistic framework to decision problems.

See also

� Bi-objective Assignment Problem
� Competitive Ratio for Portfolio Management
� Decision Support Systems with Multiple Criteria
� Estimating Data for Multicriteria Decision Making

Problems: Optimization Techniques
� Financial Optimization
� Fuzzy Multi-objective Linear Programming
�Multicriteria Sorting Methods
�Multi-objective Combinatorial Optimization
�Multi-objective Integer Linear Programming
�Multi-objective Optimization and Decision Support
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�Multi-objective Optimization: Interaction of Design

and Control
�Multi-objective Optimization: Interactive Methods

for Preference Value Functions
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Finance is concerned with the study of capital flows
over space and time. The theory of financial economics
is a combination of many different theories among
which the theories of finance and economics, mathe-
matical programming, and utility theory are credited
with the biggest contributions.

The current state ofmodern financial economic the-
ory is based upon the fundamental contributions of
economists in the decade of the 1950s. Here we review
some of the major developments. For a more complete
historical breakdown, see [32].

The first major breakthrough was by K. Arrow
and G. Debreu, who, in a series of publications
(cf. [1,2,4,12,13]), introduced an important extension
to the existing economic theory. Their contributions
brought competitive equilibrium theory to a new level
and allowed for the development of modern economic
and finance theory. Specifically, Arrow and Debreu
applied the techniques of convexity and fixed point
theory to a model that followed the neoclassical eco-
nomic foundations of: market clearing, uncertainty,
and individual rationality and then they derived new
fundamental economic properties from these models
(e. g., [3,14]).

F. Modigliani and M. Miller [28], in turn, showed
that the capital structure of a firm, that is, the financial
framework of the firm, usually measured by the debt
to equity ratio, does not affect the value of a firm. In
their work, for the first time, the idea of financial arbi-
trage was used by stating that any investor can use risk-
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less arbitrage in order to avoid the financial structure
of a firm. Their work serves as the base for most of the
research on capital structure.

The other theoretical breakthrough was by H.M.
Markowitz in 1952, the founder of modern portfolio
theory. Markowitz [25] proposed that one of the prin-
cipal objectives of investors, in addition to the maxi-
mization of the returns of their portfolios, is to diver-
sify away as much risk as possible. He claimed that in-
vestors choose assets in a manner so that the risk of
their portfolio matches their risk preferences. He sug-
gested that individuals who cannot bear risk will invest
in assets with low risk, whereas people more comfort-
able with risk will accept investments of higher risk. His
work suggested that the trade-off between risk and re-
turn is distinct for each investor; however, the prefer-
ences of all people lie upon a fictitious curve which is
usually called the ‘frontier of efficient portfolios’. Along
this curve lie all the diversified portfolios that have
the highest return for a given risk, or the lowest risk
for a given return. Markowitz’s model was based on
mean-variance portfolio selection, where the average
and the variability of portfolio returns were determined
in terms of the mean and covariance of the correspond-
ing investments.

Many versions and extensions of Markowitz’s
model have appeared in the literature (cf. [19], and
the references therein). The first important simplifi-
cation of Markowitz’s model was suggested by W.F.
Sharpe [35], through a model known as the diagonal
model, in which ‘the individual covariances between all
securities are assumed to be zero’. According to this
model, the variance-covariance matrix has zeros in all
positions other than the diagonal.

The most significant extension of the models by
Markowitz [25] and Sharpe [35], was the Capital Asset
Pricing Model (CAPM), which was based on the work
of Sharpe [36], J. Lintner [24], and J. Mossin [29]. In
this model the concept of a risk-free asset and market
portfolio were introduced. A risk-free asset is an asset
with a positive expected rate of return and a zero stan-
dard deviation. A market portfolio, on the other hand,
is a portfolio on the efficient frontier of the Markowitz
model which is considered to be desirable by all in-
vestors. The CAPM assumes that all investors will se-
lect a portfolio that will be a linear combination of the
risk-free asset and the market portfolio, and, hence, the

equilibrium prices of all assets can be expressed as a lin-
ear combination of the risk-free price and the price of
the market portfolio. Since some of the assumptions
governing the CAPM were not realistic (such as the ab-
sence of transaction costs), the model was extended and
improved several times in the years that followed. It is,
nevertheless, one of the major breakthroughs in mod-
ern economic and finance theory and forms the basis
for most of the financial models.

Most of the major extensions of the CAPMoccurred
in the decade of the seventies, where a series of papers
either relaxed some of its assumptions, or derived em-
pirical results by applying it to a series of problems.
Among the most significant contributions of that time
were: the extension to a multiperiod economy by R.C.
Merton [27] and the consumption CAPMbyD.T. Bree-
den [6] (which, however, failed empirically due to the
difficulty in observing and computing consumption).

The dissatisfaction with the empirical tests of the
CAPM led to more advanced models, such as the Ar-
bitrage Pricing Theory (APT) by S.A. Ross [34]. The
APT’s main contribution was the inclusion of multiple
risk factors and the generalization of the CAPM, which
was considered to be a special case of APT with only
a single risk factor. In particular, Ross assumed that the
rate of return of every security can be expressed as a lin-
ear combination of some ‘basic’ risk factors.

Another major development in modern financial
economic theory was the derivation of an accurate op-
tion pricing model by F. Black and M. Scholes [5],
which revolutionized the pricing of financial instru-
ments and the entire financial industry. Note that an op-
tion is, in general, the right to trade an asset for a prea-
greed amount of capital. If the right is not exercised af-
ter a predetermined period of time, the option expires
and the holder loses the money paid for holding that
right. A major part of the subsequent literature focused
on different approaches to, simplifications of, and vari-
ations of the Black–Scholes Model (BSM). A significant
simplification of the BSM was done by J.C. Cox, Ross,
and M. Rubinstein [11] (see [27]).

Furthermore, the mean-variance portfolio analysis
that was introduced and mathematically formulated by
Markowitz [25,26] and later simplified by the diago-
nal model of Sharpe [35], was further extended by G.A.
Pogue [33] and J.C. Francis [18], with the introduction
of variance-covariance matrices for both assets and li-
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abilities, applied to the asset-liability management of
banks.

Most of the aforementioned models and theo-
ries were subsequently extended and improved. The
APT of Ross was refined by G. Chamberlain [7] and
G. Connor [8], and the Black–Scholes model was
further explored and significantly generalized (see,
e. g., [10,15,17]).

Themajority of the literature in financial economics
has been based on the assumption that investors can-
not affect the prices at which they buy or sell. Each in-
vestor is considered to be an isolated case, who tries
to maximize his utility function, subject to the prices
that the market provides him. All the participants in the
economy, be they buyers or sellers, have as a goal the
maximization of their profits and the minimization of
their losses. The prices are derived through the market
where investors constantly buy and sell commodities.
The analysis of market equilibrium tries to determine
the prices at which different products will be bought
and sold, and also the amount of each product that each
participant in the economy will hold in an equilibrium
state.

Market equilibrium analysis has its roots in the
last half of the nineteenth century. The work of H.
Gossen [21], W. Jevons [23], and L. Walras [39] initi-
ated the analysis of equilibrium theory. Subsequently,
in the 1930s the study of market equilibrium became
more formal and solid. The work of A. Wald [37,38]
and J.R. Hicks [22] provided, for the first time, proofs of
different qualitative properties of the equilibrium, along
with a detailed study of the conditions under which
an equilibrium could be modeled and derived. Further-
more, the work of Arrow [1] and G. Debreu [12] started
a new era in equilibrium analysis by bringing uncer-
tainty into equilibrium theory, which led to the current
status of market equilibrium theory.

The basic assumption that governs most of the ex-
isting models that address the theory of market equi-
librium is that of perfect competition. Perfect competi-
tion prohibits any participant in the economy (buyer
or seller) from having control over the prices of differ-
ent products or over the actions of other participants.
The price of a product is considered to be a variable, the
value of which is determined by the combined actions
of all the buyers and sellers. Buyers are, hence, ‘price
takers’, in that they modify their holdings of a product

according to the price, ignoring the effects that their
behavior may have on that price. Moreover, perfect
competition assumes that all participants in the econ-
omy have perfect information about the products avail-
able, the current price, and the bids of a specific prod-
uct. Furthermore, the number of the participants in the
economy is assumed to be large enough so that the mar-
ket activity regarding a specific product will be small
compared to the transactions in the overall market.

For definiteness, we present a financial equilib-
rium model due to A. Nagurney [30] (see, also, [32],
and the references therein). The model relaxes the
CAPM assumptions of homogeneous expectations
(cf. [24,29,36]), without imposing restrictions as to the
nature of different sectors (e. g., [20]).

The mathematical framework that is utilized to
develop the multi-sector, multi-instrument financial
equilibrium model is finite-dimensional variational in-
equality theory. Themethodology of finite-dimensional
variational inequalities was first suggested for the mod-
eling, analysis, and computation of multi-sector, multi-
instrument financial equilibrium problems by Nagur-
ney, J. Dong, and M. Hughes [31] and was further
explored by Nagurney [30]. For complete references,
qualitative results, as well as a plethora of financial
equilibrium models and computational approaches,
see [32].

AMulti-Sector, Multi-Instrument Financial
EquilibriumModel

Consider a single country economy with multiple in-
struments and with multiple sectors. We let i denote
a typical instrument, with the total number of instru-
ments available in the economy, denoted by I. We let j
denote a typical sector in the economy, with the num-
ber of sectors denoted by J.

Let ri denote the (nonnegative) price of instrument
i, and group the prices of all the instruments into the
column vector r 2 RI

C. Denote the volume of instru-
ment i that sector j holds as an asset, by Xj

i , and group
the (nonnegative) assets in the portfolio of sector j into
the column vector Xj 2 RI

C. Further, group the assets
of all sectors in the economy into the column vector
X 2 RJI

C. Similarly, denote the volume of instrument i
that sector j holds as a liability, by Y j

i , and group the
(nonnegative) liabilities in the portfolio of sector j into
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the column vector Yj 2 RI
C. Finally, group the liabili-

ties of all sectors in the economy into the column vector
Y 2 RJI

C.
Assume that the total volume of each balance sheet

side of each sector is exogenous. Recall that a balance
sheet is a financial report that demonstrates the status of
a company’s assets, liabilities, and the owner’s equity at
a specific point of time. The left-hand side of a balance
sheet contains the assets that a sector holds at a partic-
ular point of time, whereas the right-hand side accom-
modates the liabilities and owner’s equity held by that
sector at the same point of time. According to account-
ing principles, the sum of all assets is equal to the sum
of all the liabilities and the owner’s equity. Moreover,
we assume that the sectors under consideration act in
a perfectly competitive environment.

Since each sector’s expectations are formed by refer-
ence to current market activity, a sector’s expected util-
ity maximization can be written in terms of optimizing
the current portfolio. Sectors may trade, issue, or liqui-
date holdings in order to optimize their portfolio com-
positions.

We assume that each sector j tries to maximize his
utility function, which we denote as Uj(Xj, Yj, r). We
also assume that the utility function of every sector is
concave, continuous, and twice continuously differen-
tiable. Furthermore, the accounts of each sector must
balance. We denote the total financial volume held by
sector j by Sj. Therefore, the optimization problem that
each sector j faces is given by:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

max U j(X j;Y j; r)

s.t.
IX

iD1

X j
i D S j ;

IX
iD1

Y j
i D S j;

X j
i � 0; Y j

i � 0;
i D 1; : : : ; I;

where the price vector r is an exogenous vector in the
optimization problem of every sector j; j = 1, . . . , J.

We now discuss the feasible set of the sectors. For
each sector j; j = 1, . . . , J, we let

eX j �

(
X j 2 RI

C :
IX

iD1

X j
i D S j

)

denote the constraint set of his assets. Similarly, we let

eY j �

(
Y j 2 RI

C :
IX

iD1

Y j
i D S j

)

denote the constraint set for his liabilities. Then, the
feasible set for a sector j is a Cartesian product, denoted
by � j, where

� j � feX j �eY jg:

Let eX denote the feasible set for the assets of all the sec-
tors, where:

eX � eX1 � : : : � eX j � : : : �eXJ :

Similarly, for the liabilities, let eY denote the feasible set
of the liabilities of all the sectors, that is,

eY � eY1 � : : : �eY j � : : : �eY J :

Also, define � � feX �eYg.
We now present the optimality conditions for a sec-

tor’s utility maximization problem, given above. We
then give the economic conditions determining the in-
strument prices (in equilibrium).

Optimality Conditions

The necessary and sufficient conditions for an optimal
portfolio for sector j are that the vector of assets and lia-
bilities, (Xj�, Yj�) 2 � j, satisfies the following system of
equalities and inequalities: For each instrument i, i = 1,
. . . , I, we must have the following Kuhn–Tucker condi-
tions being satisfied, at an equilibrium price vector r�:

�
@U j(X j�;Y j�; r�)

@X j
i

� �1
j � 0;

�
@U j(X j�;Y j�; r�)

@Y j
i

� �2
j � 0;

X j
i
�

 
�
@U j(X j�;Y j�; r�)

@X j
i

� �1
j

!
D 0;

Y j
i
�

 
�
@U j(X j�;Y j�; r�)

@Y j
i

� �2
j

!
D 0;

where �1
j , �

2
j are the Lagrange multipliers associated

with the constraints. Obviously, a similar set of equali-
ties and inequalities holds for every other sector in the
single country economy.
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Economic System Conditions

Moreover, the economic system conditions that ensure
market clearance at a positive instrument price (and
a possible excess supply of the instrument at a zero
price) are: For each instrument i, i = 1, . . . , I, we must
have that:

JX
jD1

(X j
i
�
� Y j

i
�
)

(
D 0 if r�i > 0;
� 0 if r�i D 0:

This system of equalities and inequalities states that if
the price of a financial instrument is positive, then the
market must clear for that instrument and if the price
is zero, then either there is an excess supply of that in-
strument in the economy or the market clears.

Let K be the feasible set for all the asset and liability
holdings of all the sectors, and all the prices of all the
instruments where K � {� × RI

C}.
Combining the above, we present the following def-

inition of equilibrium.

Definition 1 (financial equilibrium) A vector (X�, Y�,
r�) 2 K is an equilibrium of the single country, multi-
sector, multi-instrument financial model if and only if it
satisfies the system of equalities and inequalities above,
for all sectors j, j = 1, . . . , J, and for all instruments i, i =
1, . . . , I, simultaneously.

The necessary and sufficient conditions for optimal
portfolios, along with the economic conditions for the
instrument prices, are now utilized in obtaining the
variational inequality formulation of the financial equi-
librium conditions.

Theorem 2 (variational inequality formulation) A
vector of assets and liabilities of the sectors, and instru-
ment prices, (X�, Y�, r�) 2 K, is a financial equilibrium
if and only if it satisfies the variational inequality prob-
lem:

JX
jD1

IX
iD1

"
�
@U j(X j�;Y j�; r�)

@X j
i

#
� [X j

i � X j
i
�
]

C

JX
jD1

IX
iD1

"
�
@U j(X j�;Y j�; r�)

@Y j
i

#
� [Y j

i � Y j
i
�
]

C

IX
iD1

JX
jD1

[X j
i
�
� Y j

i
�
] � [ri � r�i ] � 0;

8(X;Y ; r) 2 K:

We now put the variational inequality into standard
form. We first define the J-dimensional column vector
U with components: {U1, . . . , UJ} and let rX U denote
the JI-dimensional vector with components: {rX1 U1,
. . . , rXJUJ} with rX jUj denoting the gradient of Uj

with respect to the vector Xj. The expression rY U is
defined accordingly. We let n = 2JI + I. We define the
n-dimensional column vector x� (X, Y , r)2K, and the
n-dimensional column vector F(x) with components:

F(x) D

0
BBBBBB@

F1(x)
:::

Fb(x)
:::

Fn(x)

1
CCCCCCA
D

0
BBBBBB@

�rXU(X;Y ; r)
�rYU(X;Y ; r)PJ

jD1(X
j
1 � Y j

1 )
:::PJ

jD1(X
j
I � Y j

I )

1
CCCCCCA

n�1

:

Consequently, the variational inequality may be rewrit-
ten as:
� Determine x� 2 K satisfying:

˝
F(x�)>; x � x�

˛
� 0; 8x 2 K:

Other financial equilibrium models, including models
with hedging instruments such as futures and options,
as well as, international financial equilibrium models
can be found in [32], and the references therein.

See also

� Equilibrium Networks
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Oligopolistic Market Equilibrium
� Spatial Price Equilibrium
� Traffic Network Equilibrium
�Walrasian Price Equilibrium

References
1. Arrow KJ (1951) An extension of the basic theorems of clas-

sical welfare economics. Econometrica 51:1305–1323
2. Arrow KJ (1953) Les rôle des valeurs boursières pour la ré-

partition la meilleure des risques. Econométrie Centre Nat
Réch Sci, pp 41–48

3. Arrow KJ (1969) Collected Papers of Kenneth Arrow. Belk-
nap Press

4. Arrow KJ, Debreu G (1954) Existence of an equilibrium for
a competitive economy. Econometrica 22:265–290

5. Black F, Scholes M (1973) The pricing of options and cor-
porate liabilities. J Political Economy 3:637–654



1040 F Financial Optimization

6. Breeden DT (1978) An intertemporal asset pricing model
with stochastic consumption and investment opportuni-
ties. J Financial Economics 7:265–296

7. Chamberlain G (1983) Funds, factors and diversification in
arbitrage pricingmodels. Econometrica 51:1305–1323

8. Connor G (1984) A unified beta pricing theory. J Econom
Theory 34:13–31

9. Cox JC, Huang C (1987) Option pricing theory and its ap-
plications. In: Constantinides G, Bhattacharya S (eds) Fron-
tiers of Financial Theory. Rowman & Littlefield

10. Cox JC, Ingersoll J, Ross SA (1985) An intertemporal
general equilibrium model of asset prices. Econometrica
53:363–384

11. Cox JC, Ross SA, RubinsteinM (1979) Option pricing: A sim-
plified approach. J Financial Economics 7:229–263

12. Debreu G (1951) The coefficient of resource utilization.
Econometrica 19:273–292

13. Debreu G (1959) Theory of value. Yale Univ. Press
14. Debreu G (1970) Economies with a finite set of equilibria.

Econometrica 38:387–392
15. Duffie D (1986) Stochastic equilibria: Existence, spanning

number and the ‘No expected financial gain from trade’
hypothesis. Econometrica 54:1161–1184

16. Duffie D (1988) Security markets. Stochastic models. Acad.
Press, New York

17. Duffie D, Huang C (1985) Implementing Arrow-Debreu
equilibria by continuous trading of few long-lived securi-
ties. Econometrica 53:1337–1356

18. Francis JC (1978) Portfolio analysis of asset and liabil-
ity management in small-medium-and large-sized banks.
J Monetary Economics 3:112–134

19. Francis JC, Archer SH (1979) Portfolio analysis. Prentice-
Hall, Englewood Cliffs, NJ

20. Gonedes NJ (1976) Capital market equilibrium for a class
of heterogeneous expectations in a two-parameter world.
J Finance 31:1–15

21. Gossen H (1854) Entwicklung der Gesetze des Men-
schlichen Verkehrs. Prager

22. Hicks JR (1939) Value and capital. Clarendon Press, Oxford
23. Jevons W (1871) The theory of political economy. MacMil-

lan, New York
24. Lintner J (1965) The valuation of risk assets and the se-

lection of risky investments in stock portfolios and capital
budgets. Rev Economic Stud 47:13–37

25. Markowitz HM (1952) Portfolio selection. J Finance 7:77–
91

26. Markowitz HM (1959) Portfolio selection: Efficient diversifi-
cation of investments. Wiley, New York

27. Merton RC (1973) An intertemporal capital asset pricing
model. Econometrica 41:867–887

28. Modigliani F, Miller M (1958) The cost of capital, corporate
cinance and the theory of corporation finance. Amer Eco-
nomic Rev 48:261–297

29. Mossin J (1966) Equilibrium in a capital asset market.
Econometrica 34:768–783

30. Nagurney A (1994) Variational inequalities in the analysis
and computation of multi-sector, multi-instrument finan-
cial equilibria. J EconomDynam Control 18:161–184

31. Nagurney A, Dong J, Hughes M (1992) Formulation
and computation of general financial equilibrium. Optim
26:339–354

32. NagurneyA, Siokos S (1997) Financial networks: Statics and
dynamics. Springer, Berlin

33. Pogue GA (1970) An extension of the Markowitz portfolio
selection model to include transaction costs, short sales,
leverage policies, and taxes. J Finance 25:1005–1027

34. Ross SA (1976) Arbitrage theory of capital asset pricing.
J Econom Theory 13:341–360

35. SharpeWF (1963) A simplifiedmodel for portfolio analysis.
Managem Sci 9:277–293

36. Sharpe WF (1964) Capital asset prices: A theory of market
equilibrium under conditions of risk. J Finance 19:425–443

37. Wald A (1935) Über die eindeutige positive Losbarkeit
der neuen Productionsgleichungen. Ergebn Math Kolloq
6:12–20

38. Wald A (1936) Über die productionsgleichungen der
Ökonomischen wertlehre. Ergebn Math Kolloq 7:1–6

39. Walras L (1874) Eléments d’economie politique pure. Guil-
laumin

Financial Optimization
JOHN M. MULVEY1, BALA SHETTY2

1 Department Operations Research & Financial
Engineering, Princeton University, Princeton, USA

2 Department Information & Operations
Management, Texas A&M University,
College Station, USA

MSC2000: 91B28

Article Outline

Keywords
Single-Period Models
Multiperiod Models

Parameters
Decision Variables
Model SP

Scenario Generation
Solution Techniques

Direct Solvers
Decomposition Algorithms

Conclusions and Future Directions
See also
References



Financial Optimization F 1041

Keywords

Stochastic programming; Nonlinear optimization;
Network programming

There is great need for an integrative approach to fi-
nancial analysis and planning. The globalization of fi-
nancial markets and the introduction of complex prod-
ucts such as exotic derivatives have increased volatility
and risks. Strides in computers and information tech-
nology has eliminated any delays between the occur-
rence of an event and the impact on the markets —
within the home country and internationally. The do-
main of financial planning provides a rich source of
applications for optimization models and related tools.
Such tools as simulation, estimation, stochastic pro-
cesses, decision support, and artificial intelligence have
become indispensable in several domains of financial
operations [36]. With the continued growth of com-
plex financial instruments and an increased acceptance
of operations research tools by practitioners, optimiza-
tion models are positioned to play a significant role in
financial planning. There is a wealth of literature avail-
able regarding the role of optimization models in finan-
cial planning. See [12,16,23,32,35,37,38].

The primary purpose of this article is to present
an overview of an integrative optimization-based fi-
nancial planning model. In financial applications, the
planner must provide recommendations from among
a large of number of alternatives in which there is
considerable uncertainty. The financial planner must
therefore model the decisional environment as well
as the stochastic elements in a dynamic fashion. The
model presented here encompasses several popular ap-
proaches to the problem of investment strategies, in-
cluding stochastic programs and dynamic stochastic
control [4]. The financial planning model results in
large stochastic optimization problems and efficient al-
gorithms are now available for solving these nonlinear
programs. A brief review of the various algorithms is
also presented.

Single-PeriodModels

The most widely used methods for portfolio selection
are based on the mean/variance approach [20]. Mean-
variance optimization is a mathematical tool that cre-
ates a portfolio of assets with the maximum expected

return for a given level of risk or with the minimum
risk for a given expected return. Over the years, a num-
ber of researchers have extended and refined the orig-
inal model to include transactions costs, trading size
and turnover constraints and other practical require-
ments [30]. Several researchers have provided efficient
procedures for estimating the variance/covariance ma-
trix of returns required by the model, based on factor,
index or scenario analysis [10].

While mean-variance analysis provides a powerful
framework for asset allocation, it suffers from several
limitations. The Markowitz model treats expected re-
turns, standard deviations, and correlations as popula-
tion parameters. These population parameters are not
available, and therefore statistical estimates are used.
The estimation errors thus introduced can distort the
optimization results and could result in major errors in
asset allocation.

Single-period models cannot capture long-term in-
vestment goals. They do not have the ability to con-
sider opportunity costs that should influence decisions
on strategic placement of funds; investment opportu-
nities with maturities exceeding a single period can-
not be included; neither can the impact of anticipated
exogenous supply/demand for funds be properly as-
sessed [21]. Single-period models tend to produce high
portfolio turnovers and opportunistic asset trades. They
cannot accurately account for the effect of transaction
costs. Purchases of asset categories with high transac-
tion costs are disfavored unless they promise high im-
mediate returns. Multiperiod models, properly formu-
lated, can overcome many of these limitations. This is
the focus of our discussion in the next section.

MultiperiodModels

We address financial planning over long horizons
via multistage stochastic programming. The stochas-
tic program brings together all major financial-related
decisions in a single and consistent structure. It inte-
grates investment strategies (also known as asset allo-
cation strategies), liability decisions (e. g., borrowings)
and savings strategies (or re-investment decisions) in
a comprehensive fashion. As such, the system forms
the basis for assessing and managing risks for large in-
stitutional organizations, including banks, savings and
loans, insurance companies, pension plans, and gov-
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ernment entities. Several noteworthy applications of
stochastic programming for financial planning include
the Russell–Yasuda investment system for insurance
companies [6], the Towers Perrin investment system
for pension plans [22], the integrated simulation and
optimization system for the Metropolitan Life Insur-
ance Company [35], and the integrated product man-
agement system [12]. In each case, asset investment de-
cisions are combined with liability choices in order to
maximize the investor’s wealth over time.

We describe a generalized network model for mul-
tiperiod investment planning [23]. While some real-
world issues are difficult to accommodate within the
network context and must be handled as general lin-
ear constraints, the network provides a visual reference
for the financial planning system. We divide the en-
tire planning horizon T into two discrete time inter-
vals T1 and T2 where T1 = {0, . . . , �} and T2 = {� + 1,
. . . , T}. The former corresponds to periods in which in-
vestment decisions are made. Period � defines the date
of the planning horizon; we focus on the investor’s po-
sition at the beginning of period � . Decisions occur at
the beginning of each time stage. Much flexibility exists.
An active trader might see his time interval as short as
minutes, whereas a pension plan advisor will be more
concerned with much longer planning periods such as
the dates between the annual Board of Director’s meet-
ing. It is possible for the steps to vary over time — short
intervals at the beginning of the planning period and
longer intervals towards the end. T2 handles the hori-
zon at time � by calculating economic and other factors
beyond period � up to period T. The investor cannot
render any active decisions after the end of period � .

Asset investment categories are defined by set
A = {1, . . . , I}, with category 1 representing cash.
The remaining categories can include broad investment
groupings such as stocks, bonds, and real estate. The
categories should track well-defined market segment.
Ideally, the co-movements between pairs of asset re-
turns would be relatively low so that diversification can
be done across the asset categories.

In our approach, uncertainty is represented by
a number of distinct realizations. Each complete real-
ization of all uncertain parameters gives rise to a sce-
nario; we denote by S the discrete set of all scenarios.
Several scenarios may reveal identical values for the un-
certain quantities up to a certain period – i. e., they

Financial Optimization, Figure 1
Scenario tree

share common information history up to that period
(see Fig. 1). Scenarios that share common information
up to a specific period must yield the same decisions
up to that period. We will address the representation of
the information structure through a condition known
as nonanticipativity.

We assume that the portfolio is rebalanced at the be-
ginning of each period. Alternatively, we could simply
make no transaction except reinvest any dividend and
interest – a buy and hold strategy. For convenience, we
also assume that the cashflows are reinvested in the gen-
erating asset category and all the borrowing is done on
a single period basis.

For each i 2 A, t 2 T1, and s 2 S, we define the fol-
lowing parameters and decision variables.

Parameters

� rsi;t = 1 + �si;t, where �
s
i;t is the percent return for as-

set i, time period t, under scenario s (projected by
the stochastic modeling subsystem).  s is the prob-
ability that scenario s occurs,

PS
sD1 s = 1.

� w0 is the wealth in the beginning of time period 0.
� � i, t are the transaction costs incurred in rebalancing

asset i at the beginning of time period t (symmet-
ric transaction costs are assumed, i. e., cost of selling
equals cost of buying).

� ˇs
t is the borrowing rate in period t under scenario s.
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Decision Variables

� xsi;t is the amount of money in asset category i, in
time period t, under scenario s, after rebalancing.

� vsi;t is the amount of money in asset category i, in the
beginning of time period t, under scenario s, before
rebalancing.

� ws
t is the wealth at the beginning of time period t,

under scenario s.
� psi;t is the amount of asset purchased for rebalancing

in period t, under scenario s.
� dsi;t is the amount of asset i sold for rebalancing in

period t, under scenario s.
� bst is the amount borrowed in period t, under sce-

nario s.
With these definitions in place, we can present the

deterministic equivalent of the stochastic asset alloca-
tion problem.

Model SP

max Z D
SX

sD1

s f (ws
� ) (1)

such that
X
i

xsi;0 D w0; 8s 2 S; (2)

X
i

xsi;� D ws
� ; 8s 2 S; (3)

vsi;t D rsi;t�1x
s
i;t�1;

8s 2 S; t D 1; : : : ; �; i 2 A;
(4)

xsi;t D vsi;t C psi;t(1 � �i;t) � ds
i;t ;

8s 2 S; i ¤ 1; t D 1; : : : ; �
(5)

xs1;t D vs1;t C
X
i¤1

ds
i;t(1 � �i;t)

�
X
i¤1

psi;t � bst�1(1C ˇ
s
t�1)C bst

8s 2 S; t D 1; : : : ; �;

(6)

xsi;t D xs
0

i;t

for all scenarios s; s0

with identical past up to time t:

(7)

The generalized network model is presented in
Fig. 2. The nonlinear objective function (1) can take
several different forms. If the classical mean-variance
function is employed, then (1) becomes max Z = �

Mean(w� ) � (1 � �) Var(w� ), where Mean(w� ) is the
average total wealth and Var(w� ) is the variance of the
total wealth across the scenarios at the end of period � .
Parameter � indicates the relative importance of vari-
ance as compared with the expected value. This ob-
jective leads to an efficient frontier of wealth at pe-
riod � . An alternative to mean-variance is the von Neu-
mann–Morgenstern expected utility of wealth at period
� . Here, the objective becomes

max Z D
SX

sD1

s Utility(ws
� );

where Utility(W) is the von Neumann–Morgenstern
utility function [15]. The two objective functions are
equivalent under certain conditions on the distribution
of returns and the shape of the utility function [17].

Constraint (2) guarantees that the total initial in-
vestment equals the initial wealth. Constraint (3) rep-
resents the total wealth in the beginning of period � .
This constraint can be modified to include assets, liabil-
ities, and investment goals. Themodified result is called
the surplus wealth [21]. Most investors make allocation
decisions without reference to liabilities or investment
goals. J.M.Mulvey employs the notion of surplus wealth
to the mean-variance and the expected utility models
to address liabilities in the context of asset allocation
strategies. Constraint (4) depicts the wealth vsi;t accu-
mulated at the beginning of period t before rebalancing
in asset i. The flow balance constraint for all assets ex-
cept cash for all periods is given by constraint (5). This
constraint guarantees that the amount invested in pe-
riod t equals the net wealth for asset. Constraint (6) rep-
resents flow balancing constraint for cash. Nonantici-
pativity constraints are represented by (7). These con-
straints ensure that the scenarios with the same past will
have identical decisions up to that period. While these
constraints are numerous, solution algorithms take ad-
vantage of their simple structure.

Model SP is a split variable formulation of the
stochastic asset allocation problem. This formulation
has proven successful for solving the model using tech-
niques such as progressive hedging algorithm of [27]
and quadratic diagonal approximation of [25]. Split
variable formulation is also found beneficial by direct
solvers that use the interior point method [19]. By sub-
stituting constraint (7) back in constraint (2) to (6), we
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Financial Optimization, Figure 2
Generalized network model for each scenario s 2 S

obtain a compact formulation of the stochastic alloca-
tion problem. Constraints for this formulation exhibit
a dual block diagonal structure. This formulation may
be better for some direct solvers [19].

Scenario Generation

Scenario analysis offers an effective, and easily under-
stood tool for addressing the stochastic elements in
a multistage financial model. We define a scenario as
a single deterministic realization of all uncertainties
over the planning horizon. Ideally, the process con-
structs scenarios that represent the universe of possi-
ble outcomes. This objective differs from generation of
a single scenario, say for forecasting and trading strate-
gies. We are interested in constructing a ‘representative’
set of scenarios that are both optimistic and pessimistic
within a risk analysis framework. Such an effort was un-
dertaken by Towers Perrin (one of the largest actuarial
firms in the world) using a system called CAP:Link [22].
The system entails a cascading of a set of submod-
els, starting with the interest rate component. Towers
Perrin employs a version of the Brennan–Schwartz [5]
two-factor interest rate model. The other submodels are
driven by the interest rates and other economic factors.
Towers Perrin has implemented the system in over 14
countries in Europe, Asia, and North America.

Scenario generation requires the estimation of the
input parameters for the modeling of the economic fac-
tors. The ability to choose the ‘correct’ or ‘best’ set of

parameters is essential if such models are to have prac-
tical value. A variety of techniques are available for esti-
mating the economic factors required for projected re-
turns and liabilities. See [24] and [1] for a discussion of
some these techniques. See also [8,9] for a treatment of
the robustness of scenario generation.

Solution Techniques

In this section we review a number of algorithms avail-
able to solve the asset allocation models. We focus on
solutions to multistage stochastic programs possessing
discrete-time decisions with a modest number of sce-
narios – typically under 1000 to 3000 – and nonlin-
ear objective functions addressing risk aversion. The
model’s size depends on the number of decision vari-
ables and the form of the nonanticipativity rules. If
Model SP is selected, the model becomes a convex pro-
gramwhose size hinges on the number of scenarios that
are placed in S.

Direct Solvers

The simplest approach when the objective is linear is
to use an efficient linear programming solver. Although
simpler to handle, LP does not represent risk aversion
well. See [19] for a solution of the multistage asset al-
location problem with a linear objective function us-
ing OB1 and MINOS. OB1 is a primal-dual interior
point algorithm for solving linear programs [18]. MI-
NOS is a nonlinear programming code that can also
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solve LP [28]. On a compact formulation, MINOS out-
performed OB1 on several test problems. The split for-
mulation, however, significantly reduced the time re-
quired by OB1 to yield the fastest solution times.

When the objective is nonlinear, a general purpose
nonlinear programming code can be used for solution.
However, the nonlinear interior point methods have
advantages over these codes. For example, in mean-
variance applications, the covariance matrix can be fac-
tored to convert the mean-variance function into a sep-
arable function. This is achieved by amodest increase in
the number of constraints. R.J. Vanderbei and T.J. Car-
penter [34] show that nonlinear interior point meth-
ods can take advantage of the separable structure de-
spite the increase in the number of constraints. A sim-
ilar transformation is possible with the expected utility
objectives as discussed in [3].

Primal-dual interior point algorithms can be spe-
cialized to solve nonlinear stochastic optimization
problems. See [7] for an extension of a primal-dual in-
terior point procedure for linear programs to the case
of convex separable quadratic objectives. The extension
is tested on the asset allocation problems of [26] and
compared to MINOS. The primal-dual interior point
method compared favorably with MINOS, especially
for the larger test problems. In the direct solution of
nonlinear programs via interior point methods, the pri-
mary computational step is the factorization of the nor-
mal equations ADA|, where A is the coefficient matrix
and D is a diagonal matrix [18]. This factorization is
typically done by means of the Cholesky (LL|) method.
A major difficulty when applying these algorithms to
stochastic optimization problems has to do with the
sparsity structure of A. Several efficient approaches are
now (2000) available to address the sparsity issue, the
most recent being the tree dissection method [2].

Ideas of using parallel computing for stochastic pro-
grams have been around for quite some time [29]; [14].
More recently (1993), E. Rothberg [31] developed an
extremely efficient method for carrying out sparse ma-
trix factorization in a parallel environment. Rothberg’s
factorization coupled with tree dissection concepts pro-
vides some very encouraging results for stochastic pro-
grams. Initial evidence indicates that parallel direct
solvers will be able handle stochastic programs with
over 10,000 scenarios within several minutes of runtime
in a parallel environment.

Decomposition Algorithms

Considerable progress has been made in the design
of efficient decomposition algorithms for solving mul-
tistage stochastic programs. A number of decompo-
sition algorithms are based on the augmented La-
grangian function, such as the progressive hedging al-
gorithm (PHA) and the diagonal quadratic approxi-
mation (DQA). PHA applies to the variable split form
of the multistage stochastic program. The nonantici-
pativity constraints are placed in the objective func-
tion as penalty and multiplier terms, and are progres-
sively enforced by an iterative procedure. Mulvey and
H. Vladimirou [27] compare the performance of the
progressive hedging algorithm to alternative solution
strategies on a set of linear and nonlinear portfolio
management problems. The general purpose optimizer
MINOS [28] solve these test problems in their compact
form. This is the most efficient program formulation
for MINOS because it results in the smallest constraint
matrix, i. e. the size of the basis is minimized. The lin-
ear problems were also solved using the primal-dual
interior code (OB1) of [18]. For nonlinear test cases,
they employ an extension of the primal-dual interior
point method to convex, separable optimization pro-
grams [7]. The staircase formulation obtained by partial
variable splitting is employed in these terms. On linear
problems the progressive hedging algorithm was faster
than MINOS. It was also faster than OB1 when the
compact form was used. Interior point outperformed
PHA for staircase structures. On nonlinear problems,
PHA maintains its superiority over MINOS, particu-
larly on large test problems. The progressive hedging
algorithm also fares well against interior point algo-
rithm on nonlinear problems, outperforming it in sev-
eral cases.

DQA forms an augmented Lagrangian function by
dualizing nonanticipativity constraints. The DQA al-
gorithm approximates the Lagrangian at the current
iterate by a quadratic and separable term [25]. The
outer loop revises the dual variable by the method of
multipliers, whereas the inner loop consists of sep-
arable quadratic or convex terms. DQA is a flex-
ible scheme which can be implemented in many
ways, in particular, in a parallel distributed environ-
ment. Mulvey and A. Ruszczynski [25] compare the
performance of DQA with highly specialized meth-
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ods for linear two-stage problems. The most success-
ful methods found so far are based on Benders de-
composition, suggested for stochastic programming
in [33]. MSLiP [11] is a recent (1990) implemen-
tation of this idea, which allows for solving linear
multistage problems in a nested formulation. Mulvey
and Ruszczynski [25] show that the specialized de-
composition techniques MSLiP and DQA outperform
MINOS.

Conclusions and Future Directions

The proposedmultistage financial planning model pro-
vides a general framework for integrating all asset and
liability decisions for a large financial entity – such as an
insurance company, bank, or pension plan – as well as
for individual investors. This comprehensive approach
measures the risk and rewards of alternative invest-
ment strategies. Without an integrative asset-liability
model, investors are unable to properly measure risks
to their wealth. The usual asset-only approach inade-
quately evaluates the impact of investments on wealth
and achieving investment goals. The main lesson is that
investment models must be tailored to individual cir-
cumstances. The multistage stochastic program pro-
vides an ideal vehicle for developing a financial plan
that fits the investor’s needs.

Future research should continue along several di-
mensions. First, we must increase the size of solvable
stochastic programs so that additional scenarios can
be handled in a practical fashion. There is no fun-
damental reason why we cannot address 10,000 to
100,000 scenarios using parallel and distributed com-
puters. Certainly, the raw computing power will be
available. Whether or not direct solvers or decompo-
sition algorithms are best is a matter for future re-
search.There are a number of algorithmic items to ex-
plore. One is to take further advantage of the struc-
ture of the multistage stochastic program within a par-
allel interior-point algorithm. For instance, we can con-
duct the Cholesky factorization using modern sparse
matrix calculations on parallel or distributed comput-
ers. Rothberg’s approach [31] seems to be a potential
winner. Solving the stochastic program as quickly as
possible will increase the chances that individual in-
vestors and institutions will apply the models. In the
case of decomposition methods, the sparse matrix cal-

culations are key for techniques such as DQA which
use an interior-point algorithm for solving subprob-
lems. Any substantial progress on this issue leads to
immediate gains in the decomposition algorithm. Also,
the restarting issue for interior-point algorithms re-
mains.

Another computational issue involves generating
scenarios. In particular, out-of-sample testing will be
critical in order to compute valid bounds on the model
recommendations. When it applies, dynamic stochas-
tic control can be useful. The control system assists in
the selection of the scenarios – for instance, by generat-
ing importance estimates for adding (or deleting) sce-
narios as they affect the solution to the control prob-
lem. These scenarios should be linked to the stochas-
tic program. Of course, embedding a stochastic pro-
gram within a simulation system such as carried out
in [35] to evaluate the precision of the recommenda-
tions is possible. The approach requires large computa-
tional resources and may be impractical. Linking sim-
ulation and optimization models, however, will be in-
creasingly important, as multistage stochastic programs
become more widespread in practice.

A third issue deals with the automatic calibration
of scenario generation systems using a nonlinear pro-
gram. For example, the two-factor interest rate model
possesses seven parameters, including the correlation
coefficient for the Weiner terms. Setting these parame-
ters requires considerable effort. There are several com-
peting objectives: minimizing deviations on the sum-
mary statistics with respect to historical values; meet-
ing expectations regarding future asset returns such as
stocks and bonds; and avoiding trends that are clearly
unrealistic. The estimation approaches developed in
[24] and [1] address some these issues, but more work
is needed to fully understand both modeling and com-
putational issues of automatic calibration of scenar-
ios.

See also

� Competitive Ratio for Portfolio Management
� Financial Applications of Multicriteria Analysis
� Portfolio Selection and Multicriteria Analysis
� Robust Optimization
� Semi-infinite Programming and Applications in

Finance
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First we review briefly some facts about 2-valued dis-
crete functions (two-atom Boolean algebras). Then we

proceed with various n-valued extensions and general-
izations which are not necessarily always Boolean. The
most general class of systems to be discussed are Pi-
algebras. The logic connectives of these algebras are
partial nonassociative noncommutative general alge-
braic groupoids [13,30].

Associative connectives, such as various families of
t-norms and t-conorms [10] which are widely used
in fuzzy logics are the special instances of PI-algebra
groupoid connectives. References to some applications
of Pi-logic algebras conclude this entry.

Although the primitives of PI-algebras are only par-
tially defined they are functionally complete. Hence one
can represent any finite discrete function by PI-normal
forms.

Definition 1 A finite discrete function of k arguments
f (x1, . . . , xk) is a mapping from the k-fold Cartesian
product of a set A to itself. In symbols: f : A × � � � × A
! A, where A is a finite set containing n elements, A =
{a0, . . . , an� 1}.

For typographic convenience, we shall map the ele-
ments ofA into the finite subsetN of nonnegative num-
bers by the assignment ai = i, namely A = {0, . . . , n� 1}.
This does not imply that the ordering of natural num-
bers is always relevant to our algebraic considerations.
These numbers should just be considered as more con-
venient labels than, say, ai for the elements of a finite
set A.

Boolean 2-Valued Logic Algebras

A Boolean 2-valued function is a discrete function that
takes its values from the two-element set {0, 1}. We can
form 16 different two-argument functions on the set
{0, 1}. The ten nontrivial of these are shown below.

Finite Complete Systems of Many-valued Logic Algebras, Ta-
ble 1
Two-argument connectives of the 2-valued logic

x y ^ _ !  � ˚ ¹ ¸ # j

0 0 0 0 1 1 1 0 0 0 1 1
0 1 0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 0 0 0 0 0
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Some of these operations, also called logic algebra
connectives, play an important role in logic. Hence they
are given special names to stress their meaning and sig-
nificance.

When ‘1’ is interpreted as ‘True’ and ‘0’ as ‘False’,
then _ represents logical AND, ^ (nonexclusive) logi-
cal OR,˚ exclusive logical OR (i. e. XOR). The connec-
tive� is logical equivalence which captures the equiva-
lence of two propositions, and! is an implication op-
erator which captures the validity (truth-value) of the
conditional ‘If __ then __’.

The connectives, together with some inference rules
(e. g. modus ponens, see � Checklist paradigm seman-
tics for fuzzy logics), make a system of classical propo-
sitional logic.

Let us recall that any Boolean function can be ex-
pressed by the conjunctive normal form (CNF) or dis-
junctive normal form (DNF). Let us introduce the no-
tation x� D (x ^ �) _ (x ^ �), where x denotes the
negation of x, and � is a parameter equal either to 0 or
1. Then it is obvious that

x� D

(
x when � D 1;
x when � D 0:

x� is called literal.

Theorem 2 (Normal forms theorem) Every Boolean
function f (x1, . . . , xn) can be represented by their canon-
ical (full) CNF and DNF normal forms.
i) The disjunctive normal form:

_
f (�1;:::;�n )D1

x�11 ^ � � � ^ x�nn :

ii) The conjunctive normal form:
^

f (�1;:::;�n )D0

x�11 _ � � � _ x�nn :

A clause in a DNF consists either of a literal or of
a conjunction of literals. In a CNF, on the other hand,
a clause consists either of a literal or of a disjunction of
literals.

Because we can express any Boolean function by
formulas formed by means of the sets of connectives
CNF-Cset (= {^, _, :}), DNF-Cset (= {_, ^, :}), we
call these sets complete sets of connectives.

A Repertory of Complete Many-Valued
Logic Normal Forms

Important structural relationships that provide the al-
gebraic backbone of various logics are contained in
their normal forms. It is possible to generalize from
two-valued normal forms tomany-valued normal forms
in various ways. We shall discuss here one such gener-
alization, namely partial functionally complete Pinkava
algebras (Pi-algebras) which offer some interesting in-
sights and have also a significant practical value. The
systems were discovered in 1971 by V. Pinkava [24,25]
as a significant generalization of the systems used by
Pinkava in his previous work [21].

Many-Valued Families
of the Pinkava Logic Algebras

Definition 3 ([30,35]) The Pinkava n-valued family of
logical calculi Pi = {A,�, ˘,ˇ, ,!} consists of the par-
tially defined connectives operating on the value-set {0,
. . . , n �1}:

vi Þ v j D

8̂
<̂
ˆ̂:

0 if vi D 0;
1 if vi ¤ 0 & v j D 1;
undefined otherwise;

vi�v j D

8̂
<̂
ˆ̂:

0 if vi D 0;
vj if vi ¤ 0 & vj D 1;
undefined otherwise;

v1 ˇ v2 D

(
vj if vi D 0;
undefined otherwise;

v,! D v C 1 (mod n);

�� D

(
1 if v D �;
0 if v ¤ �;

where i, j 2 {1, 2}.

Note that the carrier and the characteristic functions can
also be generated in the Pinkava logic calculi by the con-
nectives. For example, the characteristic function� can
be generated by ˘, [13].

Theorem 4 (Complete normal forms) Any n-valued
logic function that is obtained by a completion of the par-
tially defined Pinkava connectives of the type {ˇ �, ˘,
,!} defined above is functionally complete and can be
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expressed in the following canonical normal form:

f (v1; : : : ; vn) D
K

f (v1;:::;vn)¤0

�
c��

�
Þn

sD1 ˛s (vs)
��
:

General Pi-Algebras

Families of Pi-Algebras
and their Functionally Complete Normal Forms

The Pinkava logic calculi can be further general-
ized [11,13,14]. These generalizations are called Pi-
algebras. The connectives involved are partial nonasso-
ciative noncommutative general (algebraic) groupoids
in their most general form.Associative connectives, such
as the t-norms and t-conorms [10,44] are special in-
stances of them (see also � Boolean and fuzzy rela-
tions).

Definition 5 (Families of Pi-algebras) Let Pi be an al-
gebra with carrier P such that PI = hP, ˘, �, ˇ, ˚i,
where [13]:
1) hP, ˘i is an arbitrary groupoid with zero z˘, without

divisors of zero, and with the almost absorbing ele-
ment a˘ such that a˘ ˘ p = p ˘ a˘ = a˘ for every p
2 P, p 6D z˘.

2) hP,ˇ i is an arbitrary groupoid with unit eˇ.
3) hP,�i is an arbitrary groupoid with a right zero zr �

and a right unit er �.
4) ˚ is a discrete cyclic shift function ˚ :P! P satisfy-

ing the following conditions: Given a discrete cyclic
order of P, then for every p 2 P it holds that p 4 ˚
(p) and ˚0(p) = p, ˚k + 1(p) = ˚(˚k(p)).

In the above definition a 4 b means that a is a direct
predecessor of b.

Definition 6 Let p1, p2 2 P, and ˚ be a cyclic shift
function. Then the advance ı from p1 to p2 with respect
to˚ is the least ordinal such that˚ı (p1) = p2. We write
ı˚ (p1) = p2. The advance ı� denotes the inverse of ı.

Theorem 7 (Canonical normal forms) Let the ad-
vances ı1, ı2 be defined by the formulas ı1 := (a˘, er �),
ı2 := (z�, eˇ). Then any function f on the carrier P in
a Pi-algebra can be expressed in its canonical normal
form:

f (v1; v2; : : :)

D
K
f¤eˇ

˚ı2
n
˚ı
�

2 (c� )�
�
Þcard P

sD1 ˚
ı1 [�˛s (vs)]

�o
:

The argument scope of the outer connective of the
normal form is ˇf8 f (v1;v2;:::): f¤(eˇ)g. This means that
the values eˇ are omitted.

Theorem 8 (Functional completeness) Any Pi-
algebra is functionally complete if, given the advance ı1
= ı(a˘, er �), it also holds that ı1 = ı(z˘, z�).

Theorem 9 If the right zero zr � is also the zero and the
right unit er � is also the unit of the groupoid hP,�i, then
the following normal form is also functionally complete:

f (v1; v2; : : :)

D
K
f¤eˇ

˚ı2
n
˚ı
�

2 (c� )�
�
�n

sD1˚
ı1 [�˛s (vs)]

�o
:

The Taxonomy of the PI-Algebras
of Many-Valued Logics

The main theoretical question that the PI-algebras an-
swer is: ‘Which features of two-valued Boolean logic
structures disappear and which are preserved and car-
ried over into the extensions and generalizations to
many-valued logics’? The Pi-logic algebras are partial
systems that put under one roof a wide variety of fam-
ilies of functionally complete many-valued logical sys-
tems. Thus they offer a useful framework in which vari-
ous generalizations and extensions can be carried out.
They also provide a sound base for a useful classifi-
cation of many-valued logics by their various proper-
ties. This approach, based on PI-normal forms, use-
fully complements another way of classifying the many-
valued logic connectives by groups of logic transfor-
mations (see� Checklist paradigm semantics for fuzzy
logics).

Special Subfamilies of n-Valued PI-Systems

Because the Pinkava connectives are only partially de-
fined, it is possible by imposing further restrictions on
these connectives to define subclasses of the function-
ally complete Pinkava systems. For example, consider
the restrictions
a) (v,!1 � v,!2 ),! n � 1 = v1 ˇ v2;
b) (v,!n�1

1 ˇ v,!n�1
2 ),! = v1 � v2.

They make the subclass {˘, �, ,!} functionally com-
plete. Imposing some other restrictions we can ob-



Finite Complete Systems of Many-valued Logic Algebras F 1051

tain other subclasses of functionally complete connec-
tives. For example, the Post system, the Aizenberg–
Rabinovich system, the Zhegalkin algebra, and lattice-
type many-valued logic systems can be so obtained.
For further details see e. g. [13,38]. A partial taxon-
omy of various subclasses of the Pinkava systems can
be found in [13, Fig. 8.1] or in [11 p. 279, Fig. 1].
Several important subclasses of the Pinkava systems
are presented in [26]. For the subclasses that are gen-
eralizations of the Sheffer function, see [32]. The sys-
tems particularly suitable for minimizations appear
in [33].

PI-Algebras and a New Variety
of 2-Valued Normal Forms

It is illuminating to look at two-valued well-known spe-
cial instances of logic connectives and classify them in
terms of Pi-algebra connective types. This reveals that
there are other canonical normal forms in addition to
DNF and CNF. For instance, theˇ, which is partial, of-
fers two distinct completions: either Boolean (inclusive)
OR _ or exclusive-OR (nonequivalence) ˚. Although
the connectives� and ˘ are identical in the two-valued
case, both forming Boolean^, they extend each to a dis-
tinct partial connective for n > 2. This is because each
of these connectives plays a different role in the normal
form, serving a different purpose.

In order to explore more fully the richness of Pi-
algebras, one has to look at their taxonomy in the gen-
eral many-valued case. For a more detailed taxonomy
see [13, Fig. 8.1.2] or [11].

Two highlights emerge from this approach:
1) Even in the simple two-valued case, the nor-

mal forms of generalized Pi-algebras subsume not
only the conjunctive and disjunctive normal form
but also the implication, equivalence, exclusive-
or and other normal forms in one unifying pat-
tern.

2) Two distinct general n-valued connectives may ‘col-
lapse’ into a single connective when one sets n =
2. Viewed the other way, a two-valued connective
may ‘bifurcate’ into two distinct types of connec-
tives when more than two values are used. This bi-
furcation of structures and concepts is an interesting
phenomenon that accompanies fuzzification of two-
valued structures.

Theoretical and Practical Importance
of PI-algebras

The Requirement of Functional Completeness

The functional completeness is of primary interest to
a scientist or an engineer engaged in practical applica-
tions of many-valued logic. In such applications it is of-
ten desirable to have the means for generating all possi-
ble finite discrete functions by means of a complete set
of many valued logic connectives.

For example, it is desirable to have a set of logic gates
that can generate any combinatorial switching circuit. In
pattern recognizers implemented by many-valued logic
networks, the set of basic ‘cognitive elements’ has to be
complete, otherwise some patterns may be misclassi-
fied. The completeness is necessary in order to have
the means for representation of all the possible discrete
functions over a finite set of elements.

Similarly, in biological or psychological and medi-
cal models based on abstract classification of patterns
by logic nets the choice of an incomplete set of connec-
tives as the representational base of the model might
yield a bias towards assumptions that are not contained
in the experimental data. For example, in ethological
models of instincts the representation using an incom-
plete set of connectives would represent the a priori
assumption that certain forms of instincts do not ex-
ist. Yet the data might contain the evidence for these,
but this evidence is not representable and will be dis-
carded by an unfortunate choice of the incomplete set
of connectives. In models of neuro-psychological disor-
ders this might cause a priori exclusion of some impair-
ments of the substratum structures, diminishing the
predictive usefulness of such models.

The complexity of the normal forms as well as the
complexity of the minimized many-valued logic (MVL)
expressions depends on the character of the discrete
function (i. e. the data) to be represented, the choice
of an appropriate many-valued logic system of connec-
tives, and the number of the discrete values of the value
set A. Hence, only by the choice of an appropriate MVL
system may we achieve an optimal representation in
each specific application domain.

The choice of a suitable system is usually an itera-
tive process, which requires a comparative evaluation
of several systems, performed in order to optimize the
choice. In order to assess whether a chosen system is
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functionally complete, a set of conditions sufficient to
determine the completeness is required. Alternatively,
a set of rules has to be given that would make it pos-
sible to generate complete systems of required addi-
tional properties directly. The constructive conditions
for completeness given above for the normal forms of
PI-algebras are such rules.

Other conditions for completeness of the same of
greater generality are not so suitable for this purpose
because the number of conditions necessary to test for
completeness increases rapidly with increasing number
of values n of a many-valued logic system. E. Post was
first to give the general conditions for completeness of
2-valued logics (n = 2). These were later generalized by
S.W. Jablonskij (S.V. Yablonskii) [9], J. Slupecki [45],
A. Salomaa [43] and others. The most general condi-
tions known at present are those given by I. Rosen-
berg [41,42] which are the generalization of the Post
conditions for any n-valued finite case.

In all these later cases (unlike for PI-algebras initi-
ated by Pinkava), the number of conditions increases
astronomically with increasing n. For n = 2 (Post) there
are 5 conditions that the logic system has to satisfy. For
n = 3 (Jablonskij) there are 18 conditions. For a seven-
valued MVL system (n = 7), there are 7,848,984 condi-
tions to be tested. The general formula for any finite n
� 2 is given by Rosenberg in [42]. This formula shows
that, for large n, the number is rather prohibitive, hence
of no practical value. On the other hand, PI-algebras
can generate an infinite number of finite functionally
complete systems of connectives for any finite n. This
is so because the Pinkava complete sets of connectives
are only partially specified and the completion of the
‘blanks’ by any values does not invalidate their com-
pleteness.

Satisfiability Problem in Computational
and Descriptive Complexity Theory

Central Importance of the Satisfiability
Problem of Boolean Formulas
in Complexity Theory

The main goal in the complexity theory of algorithms
is to distinguish problems that can be solved efficiently
from those that cannot be. A computational solution to
a problem is practically feasible if it belongs to the com-

plexity class P, that can be computed by a deterministic
algorithm in time bounded by a polynomial function of
the size of the input data.

The central problem of complexity theory in com-
puter science and a major problem of contemporary
logic and mathematics is whether the class P is equal
to the class NP. Problems solvable by nondeterministic
algorithms in polynomial time belong to the class NP.

Problems in the class NP are computationally
tractable only if they are of polynomial complexity, that
is if P = NP.

A successful proof of the conjecture that P 6D NP
would on the other hand indicate that the NP class is of
computationally not tractable exponential complexity.

The class NP contains many practical problems that
can be characterised by the following property: There
is no known way to compute a solution in polynomial
time, but there is a known way to check in polynomial
time whether a potential (e. g. guessed) solution is an
actual solution.

The satisfiability problem [19,20] that concerns
Boolean formulas [5] is closely related to the question
about computational complexity of many other com-
putational problems [6,7].

We say that a Boolean formula is satisfiable if there
exists at least one way of assigning values to its variables
so as to make it true. Finding the answer ‘yes’ or ‘no’ to
this question is called the [2]. If the Boolean formula of
our concern is written solely in the CNF we have the
SAT-CNF problem. SAT-k-CNF is obtained by restrict-
ing SAT-CNF to Boolean formulas in k-CNF, where k-
CNF is composed of clauses, each of which contains at
most k literals [2].

It follows from Cook’s theorem [3] that the ques-
tion whether or not P = NP is equivalent to asking
whether there is a polynomial time deterministic algo-
rithm (PTDA) recognizing the set of satisfiable Boolean
propositional formulas (the SAT problem), or equiva-
lently, a PTDA recognizing the set of propositional tau-
tologies TAUT [19]. This demonstrates the central im-
portance of the SAT problem for computational com-
plexity theory.

In 1971 S.A. Cook [3] proved that every problem X
2 NP is polynomially Turing reducible [1,2] to the ques-
tion about the complexity of TAUT-DNF, i. e. the set of
propositional tautologies coded in DNF. In symbols: X
�

p
T TAUT-DNF.
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This is related to one of the open (as of 1999) funda-
mental problems of logic [19]: Is there a propositional
proof system P in which every tautology has a polyno-
mial size proof? At present it is known only [4] that
there exists a propositional proof system in which ev-
ery tautology has a polynomial size of proof if and only
if NP = co NP, i. e. the class NP is closed under comple-
mentation.

The relation �p
T is a pre-order (see � Boolean and

fuzzy relations) hence it provides the means for com-
paring the relative computational difficulty of prob-
lems [1]. Because it is a pre-order, it may contain vari-
ous equivalence classes (see � Boolean and fuzzy rela-
tions) of problems.

The statement: ‘The SAT problem is NP-complete’
is referred to as the Cook–Levin theorem in the litera-
ture. Using the reducibility relation �p

T together with
this theorem yields a useful technique for providing
proofs of the NP-completeness of other problems. We
say that a problem X is NP-complete [1,2] if
� X 2 NP; and
� Y �p

T X for every problem Y 2 NP.
There is a great number of computational prob-

lems in the graph and set theories, theNP-completeness
of which can be proven by reducing the SAT prob-
lem directly or indirectly to each of them. For ex-
ample dominating set, vertex cover, clique, 3-SAT, 3-
colorability [20]. SAT can be reduced to the clique prob-
lem, which in turn is reducible to the vertex cover prob-
lem. The vertex cover problem is reducible to the dom-
inating set problem. Similarly, there is another chain of
reductions: SAT to 3-SAT to 3-colorability. These re-
duction chains form a part of the semilattice generated
by the reducibility relation.

Open Problems in the Complexity Theory
of PI-algebras (1999)

Computational complexity of PI-logic algebras and
normal forms is an uncharted territory. There is an in-
finite number of ways in which the partially specified
but functionally complete PI-logic normal forms can be
made fully specified, and a large variety of algebraic re-
strictions that can be placed upon them to generate par-
ticular fully defined systems.

Despite of their partial nature, the PI-normal form
have well defined length even before their algebraic

properties are completely specified. Hence one may ex-
pect that they will play some role in placing the upper
bound on descriptive complexity [8] of propositional
systems. This may be a promising direction of research
in the future. It should also be noted that the gener-
alized PI-normal forms allow for description of trans-
formations from lattice based connectives to ring based
connectives. Indeed, both are special instances of PI-
logic algebras (see Theorem 7 and [13]). That might
help to build a bridge between methods for analysis of
algebraic propositional systems [40] with notions of de-
scriptive complexity [8].

Applications of PI-Algebras

In addition to their theoretical significance, the func-
tionally complete PI-systems have found a num-
ber of practical applications in various fields: in
medicine, clinical behavioral sciences and neurol-
ogy [12,22,23,34,36]; in data analysis and classifica-
tion [37,39]; analysis of logical paradoxes [29,38]; au-
tomata theory and systems science [17,31,38]; design
of MVL-switching circuits [11]; in dynamic computer
protection also applicable to distributed an parallel sys-
tems [13,15,16]; logic and theorem proving [18,35]; op-
timization of discrete functions [27,33] and fuzzy log-
ics [28].

See also

� Alternative Set Theory
� Boolean and Fuzzy Relations
� Checklist Paradigm Semantics for Fuzzy Logics
� Inference of Monotone Boolean Functions
� Optimization in Boolean Classification Problems
� Optimization in Classifying Text Documents
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A constraint qualification (CQ) is a condition imposed
on the analytical description of a given set which can
be the constraint set of an optimization problem. CQs
are essential in order to establish optimality conditions,
but they play also a crucial role in duality theory and
perturbation analysis for optimization problems, and in

the study of error bounds and stability for algebraic sys-
tems like systems of equations or/and inequalities. The
notion first order constraint qualification is used if a CQ
is formulated in terms of first order derivatives or gen-
eralized derivatives of the data functions defining the
(constraint) set, or if it is related to optimality or stabil-
ity conditions involving first order terms of the original
data. Roughly speaking, first order constraint qualifica-
tions establish a link between the geometry of the given
set and certain kinds of first order approximations of
the analytical data.

A canonical form of constraints for which con-
straint qualifications have been studied is, for example,
the constraint system of a mathematical programming
problem, i. e.,

(
gi (x) � 0; i 2 I D f1; : : : ;mg;
g j(x) D 0; j 2 J D fmC 1; : : : ; rg;

(1)

where gi : Rn ! R (i = 1, . . . , r) are given functions,
possibly restricted to some subset X � Rn.

Another canonical form are abstract constraints,

G(x) 2 C; (2)

where G maps a Banach space X into a Banach space
Y , and C is a nonempty closed convex cone in Y .
Many of the results reported below similarly hold (with
some technical modifications) under the weaker as-
sumption that C � Y is an arbitrary closed convex
set [4,5,8,40,42]. The inclusion (2) is suitable to repre-
sent also constraints of abstract optimal control prob-
lems, semi-infinite programs, semidefinite optimiza-
tion problems, and others, see, e. g., [5]. Obviously, (1)
is a special case of (2), put X = Rn, Y = Rr, C = {y : yi �
0, i 2 I; yj = 0, j 2 J} and G = (g1, . . . , gr).

The notion ‘constraint qualification’ was introduced
by H.W. Kuhn and A.W. Tucker [22] in developing the
theory of nonlinear programming. However, under the
name regularity conditions, description-depending as-
sumptions were known already in classical variational
and extremum problems. To illustrate the meaning of
first order CQs, let us consider a simple example:

Example 1
(
min 1

2 x
2 C y

s.t. x � y D 0:
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The classical Lagrange conditions x + u = 0, 1 � u = 0,
x � y = 0 are necessary (and sufficient, in this example)
for the optimality of the point (x; y) D (�1;�1) with
associated multiplier u D 1. On the other hand, if the
constraint is equivalently written as

1
2
(x � y)2 D 0;

then the corresponding Lagrange conditions become
x + u(x � y) = 0, 1 � u(x � y) = 0, (x � y)2/2 = 0, which
are contradictory. Trivially, in the first description of
the feasible set, the linearization adequately represents
the possibilities for variation near (x; y), in the second
description, the linearization is inadequate in this re-
spect.

Optimality Conditions

First order necessary optimality conditions in dual
form require certain CQs to hold. Consider the opti-
mization problem

(P)

(
min f (x)
s.t. x 2 M;

where M is the solution set of (1). First suppose that
X = Rn, f : Rn ! R, and gi (8i) are continu-
ously differentiable. For x 2 M define Ix :D
fi 2 I : gi (x) D 0g, write h 2 TM(x) (tangent cone) if
h D limk!1 �k(xk � x, where �k > 0, xk 2M (8k) and
xk ! x, and write h 2 KM(x) (linearization cone) if
hh;Dgi(x)i � 0 for i 2 Ix and

˝
h;Dgj(x)

˛
D 0 for j 2

J.
Then the Karush–Kuhn–Tucker conditions (KKT),
8̂
ˆ̂<
ˆ̂̂:

9u 2 Rr : D f (x)C
X
i2I[J

uiDgi (x) D 0;

x 2 M;
ui � 0; ui gi (x) D 0; i 2 I;

are necessary for x being a local minimizer of (P), pro-
vided that, for example, one of the following CQs is sat-
isfied (see, e. g., [2]):
� Abadie CQ: TM(x) D KM(x).
� Kuhn–Tucker CQ: For every h 2 KM(x) there is

a continuously differentiable function y: [0, ı)!M,
ı > 0, such that y(0) D x and ẏ(0) D h.

� Mangasarian–Fromovitz CQ (MFCQ, [28]): Dgj(x),
j 2 J, are linearly independent, and for some
h ¤ 0, there holds hh;Dgi(x)i < 0, i 2 Ix , and˝
h;Dgj(x)

˛
D 0, j 2 J.

� Linear Independence CQ (LICQ): Dgi (x), i 2 I [ J,
are linearly independent.
There holds (see, e. g., [2]): LICQ ) MFCQ )

Kuhn–Tucker CQ) Abadie CQ; the converse impli-
cations are not true, in general. For further CQs in this
respect, see [2,38]. If no inequalities appear (i. e., I = ;),
the above CQs are classical for optimality conditions in
Euler–Lagrange form. Note that Abadie’s CQ is auto-
matically satisfied at each point of M if gi are affine-
linear for all indices i 2 I [ J.

Now suppose that (P) is a convex program, i. e.,
gi, i 2 I, are convex (but not necessarily differen-
tiable) functions and gj are affine-linear functions with
gradients aj, j 2 J. Then the following CQs are of-
ten used for optimality conditions of Karush–Kuhn–
Tucker type (in subdifferential terms) and saddle-point
conditions ([16,36,41]):
� Basic CQ at x 2 M: Each normal direction h, i. e.,
hh; x � xi � 0 for all x 2 M, has a representation
h D

P
i2Ix �i di C

P
j2J � j a j for some � 2 Rm, �i

� 0, di 2 @gi (x) (for i 2 Ix ), where @gi (x) denotes
theMoreau–Rockafellar subdifferential of gi at x.

� Weak Slater CQ: 9x0 2M such that gi(x0) < 0, i 2 IN ,
where IN := {i 2 I: gi is not affine-linear}.

� Strong Slater CQ: 9x0 2M such that gi(x0) < 0, i 2 I,
is satisfied, and aj, j 2 J, are linearly independent.

The latter naming of CQs is taken from [16]. If no equa-
tions appear, the strong Slater CQ becomes the well-
known and classical Slater CQ [2,36,41]. There holds:
weak Slater CQ) basic CQ; and for a given x 2 M,
the basic CQ is equivalent to a nonsmooth form of the
Abadie CQ [16]. If the gi, i 2 I, are differentiable, then
the strong Slater CQ is equivalent to the MFCQ being
satisfied at any x 2M [33,34]. There are certain forms of
first order optimality conditions which do not require
a CQ, see, e. g., [2,3,32,38].

Next, consider

(bP)
(
min f (x)
s.t. x 2 M;

whereM is the solution set of (2), and f is defined on the
Banach space X. Let f , G be continuously differentiable.
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Denote by Y� the dual space of Y . Then the conditions
8̂
ˆ̂̂<
ˆ̂̂̂
:

9u 2 Y� : D f (x)C hu;DG(x)i D 0;
hu; yi � 0; 8y 2 C;
G(x) 2 C;
hu;G(x)i D 0;

are necessary for x being a local minimizer of (bP), pro-
vided that, for example, the following CQ is satisfied
(see, e. g., [5,34,42]):
� Robinson CQ: 0 2 intfG(x)C DG(x)X � Cg, where

‘int’ denotes the topological interior.
Because the core of a convex set includes its interior,

0 2 corefG(x) C DG(x)X � Cg is a consequence of
the Robinson CQ. In fact, the latter is also sufficient for
Robinson’s CQ to hold, and both CQs are also equiva-
lent to RC[G(x)C DG(x)X � C] D Y , for details one
may consult [5,33,42]. If (bP) is specialized to (P), then
the Robinson CQ and MFCQ are equivalent [34]. Un-
der convexity assumptions on f and G in (bP), an exten-
sion of the strong Slater CQ plays a crucial role for first
order optimality characterizations [37] (see also [40]):
0 2 int(G(x) � C), which becomes G(x) 2 intC if intC
6D ;. In the case of differentiable data, the latter CQ is
equivalent to the Robinson CQ [33,40].

For many other classes of optimization problems,
first order CQs in connection with optimality condi-
tions have been intensively studied. Among them we
refer to CQs in composite optimization [38], optimal
control problems [7,17,31], nonsmooth (nonconvex)
programs [7,38], mathematical programs with equilib-
rium constraints [27], semidefinite programs [39], and
semi-infinite programs [5,15,31,32]. Certain first order
CQs, in particular, Robinson’s CQ and the MFCQ play
an important role in the theory of second order op-
timality conditions (and second order stability analy-
sis), see � Second order constraint qualifications and,
e. g., [3,4,8,39,40].

Duality

If (P) is a convex program, then first order CQs are
closely related to the existence of optimal solutions
of the Lagrange dual problem (D) associated with (P)
and to properties of the perturbation function v(u) :=
inf{f (x): gi(x) � ui, i 2 I, gj(x) = uj, j 2 J}, like con-
tinuity or subdifferentiability [10,36,37]. An important

CQ is
� Calmness: v(0) is finite and the Moreau–Rockafellar

subdifferential @v(0) of v(�) is nonempty.
Under calmness, the dual problem (D) is solv-

able and v(0) coincides with the optimal value of
(D) [10,36,37]. The strong Slater CQ implies calmness.
If v(0) is finite, then the following three conditions are
mutually equivalent:
i) For (1) the strong Slater CQ holds;
ii) v(�) is continuous at 0;
iii) the set of solutions of the dual problem (D) is

nonempty and bounded.

For more details see, e. g., [1,33,36]; for generalizations
to convex problems (bP) with abstract constraints of the
type (2) see, e. g., [33,37,40].

Now suppose that (P) has continuously differen-
tiable data f , gi, and x is a stationary solution solution
of (D), i. e., x satisfies together with some multiplier u
the KKT condition. Then, obviously, LICQ implies that
the multiplier u associated with x is unique. In [25] is
shown that a strengthened form ofMFCQ, the so-called
strict MFCQ, is necessary and sufficient for the unique-
ness of the Lagrange multiplier. Another basic result is
the following: MFCQ holds at x if and only if the set of
all multipliers associated with x is bounded (Gauvin’s
theorem [13]).

Extensions of Gauvin’s theorem to the general
problem (bP) with smooth data can be found, e. g.,
in [8,34,42]. For recent surveys of several aspects of CQs
and duality, see [5,40].

The above relations are also important theoretical
tools for establishing solution techniques which use La-
grangians or dual schemes (see, e. g., [16,29,38]), for
convergence analysis of path following methods (see,
e. g., [14]), for regularity properties guaranteeing finite
termination of algorithms [6,11], and for several stabil-
ity subjects (see the next section).

Stability

If the data couples (f , g) of (P) or (f , G) of (bP), respec-
tively, are embedded in a family F of data, where a ‘dis-
tance’ between two elements of F should be available,
then the question arises how changes of the data in F
affect existence of solutions (local or global optimiz-
ers, stationary solutions, critical points), and whether
‘small’ data perturbations lead to ‘small’ changes of the
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optimal value and solution set, or not. A ‘good’ stabil-
ity behavior is often sensitive to the description of the
constraint set and needs a CQ.

For example, consider a parametric smooth pro-
gram with finite-dimensional variables x and canoni-
cal perturbations (t, a, b) in a finite-dimensional space,
namely,

(P(t; a; b))

8̂
<̂
ˆ̂:

min f (t; x)� ha; xi
s.t. gi (t; x) � bi ; i 2 I;

g j(t; x) D b j; j 2 J;

(3)

with respect to x, where I, J are as above and f , gi are
twice continuously differentiable with respect to (t, x).
Given an initial parameter triple (t; 0; 0) and a KKT
point z D (x; u) of the initial problem, then strong sta-
bility of z (i. e., the existence of a locally unique and
Lipschitzian solution z(t, a, b) of the perturbed KKT
system near z) necessarily requires LICQ to hold at
x [23], while LICQ together with some strong second
order optimality condition characterizes strong stabil-
ity [9,21,23,35].

MFCQ and the strong Slater CQ are very impor-
tant to get other stability properties like strong stabil-
ity, pseudoregularity, upper Lipschitz (or Hölder) con-
tinuity, or upper semicontinuity of the optimal and/or
stationary solution maps under perturbations (see also
the next section). LICQ and MFCQ, respectively, play
an essential role for existence, representations and es-
timates of directional derivatives (studied in differ-
ent forms: standard one-sided directional derivative,
semiderivative, Dini type, Hadamard type, and others)
of the optimal value function. For an introduction into
these interrelations, see [1,5,9,12,19,24,38], while [5,40]
also survey extensions to the class (bP), under the Robin-
son CQ.

In the study of structural (or global) stability of fea-
sible sets and nonlinear finite/semi-infinite programs,
including one-parametric deformations, MFCQ and its
extensions turn out to be fundamental in these settings,
in particular, they characterize the global stability of
compact feasible sets, for surveys see [14,18].

If one is interested in directional stability of optimal
values or optimal solutions under data perturbations,
another type of CQs often comes into play: directional
regularity conditions which are imposed on the con-
straint set of the initial problem P((t; 0; 0)). A typical

example is the
� Gollan CQ at a feasible x in direction d: Dgj(t; x), j
2 J, are linearly independent, and for some h 6D 0,
there holds

˝
(h; d);Dgi (t; x)

˛
< 0, i 2 I(t;x), and˝

(h; d);Dgj(t; x)
˛
D 0, j 2 J.

For this CQ and a natural extension to abstract con-
straints in Banach spaces, see [4,5,40], in which direc-
tional differentiability and second order expansion of
the optimal-value function as well as Lipschitz/Hölder
stability and first order expansion of optimal solutions
under directional regularity conditions are studied.

Metric Regularity

Metric regularity of a parametric constraint system
refers to a certain local error bound for the distance
of some point x to the solution set in terms of the
residuum of the data at x and is closely related to first
order CQs. Consider for example system (1) with X =
Rn under right-hand side perturbations b,

(
gi(x) � bi ; i 2 I;
g j(x) D b j; j 2 J;

(3)

where I and J are as above. Denote by S(b) the solu-
tion set mapping of this system. If gi, 8i 2 I, are con-
tinuously differentiable, and if x 2 S(0), then MFCQ
at x implies that (4) is metrically regular at (x; 0), i. e.,
there exist a neighborhood U of (x; 0) and a constant
L D L(x) such that for (x, b) 2 U,

dist(x; S(b)) � L





�
(gi(x) � bi)C; i 2 I
g j(x) � b j; j 2 J

�



 ; (5)

where c+ := max {c, 0} for c 2 R, and k � k is any norm
in Rr. This was shown in [34], the converse assertion
is also true [8,34]. In the Banach space context of the
system (2) with right-hand side perturbations, the same
equivalence holds when replacing MFCQ by the Robin-
son CQ, see again [8,34].

If gi, i 2 I, are convex (not necessarily differen-
tiable), and gj, j 2 J, are affine-linear, then the strong
Slater CQ implies that (4) is metrically regular at each
(x; 0), x 2 S(0), see [33]. The converse direction is also
true [8]. In fact, in both [8] and [33], the authors prove
these results for convex inclusions in the Banach space
setting (2) using a suitable generalized form of the Slater
CQ.Moreover, under the strong Slater CQ, the estimate
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(5) even holds for all x in X and all b near 0, where the
number L D L(x) is bounded on bounded sets [33].

Note that under mild assumptions on the
parameter-dependence, the same CQs imply metric
regularity under more general perturbations (like in
(3), for example), for details see again [8,24,33,34].

Error Bounds

The role of (first order) CQs for deriving local and
global error bounds will be now discussed for a system
of convex inequalities, i. e., suppose in (1) that J = ;,
and gi, i 2 I, are convex (not necessarily differentiable)
functions. Denote the solution set again byM.

Given x 2 M, the system (1) is calledmetrically reg-
ular� at x (or simplymetrically regular at x [26,30]; the
asterisk is used to avoid confusions with the above no-
tion for parametric systems), if there exist a neighbor-
hood U of x and a constant L D L(x) such that for
x 2 U,

dist(x;M) � Lmax fgi (x)C : i 2 Ig : (6)

In [26] was shown that for differentiable functions gi, i
2 I, the Abadie CQ holds at x 2 M if and only if (1) is
metrically regular� at x [26]. For the nondifferentiable
case, it follows by a similar idea of proof that the basic
CQ is equivalent to metric regularity�.

If M is bounded and the strong Slater CQ holds,
then (6) is satisfied for all x 2 Rn, with some
uniform constant L [33]. This property is called
a global error bound, or, an ‘error bound in Hoffman’s
sense’ [20,26,30]. If M is unbounded then additional
asymptotic CQs are required to guarantee the existence
of a global error bound. For a survey of asymptotic CQs
and their interrelations, see [20].

CQs like Abadie’s CQ, MFCQ and the (strong)
Slater CQ are also essential in deriving local and global
error bounds for approximate solutions of convex and
nonconvex mathematical programs and other varia-
tional problems. These questions are for some classes
of programs closely related to the existence of so-called
weak sharp minima introduced in [6,11]. For a gen-
eral survey of error bounds in the sense just discussed
see [30], for the special case of quadratic convex pro-
grams see [26].

In contrast to other applications of CQs, the rela-
tions between CQs and error bounds are still not clar-

ified completely and require strong additional effort in
research.

See also

� Equality-constrained Nonlinear Programming: KKT
Necessary Optimality Conditions

� Inequality-constrained Nonlinear Optimization
� Kuhn–Tucker Optimality Conditions
� Lagrangian Duality: Basics
� Rosen’s Method, Global Convergence, and Powell’s

Conjecture
� Saddle Point Theory and Optimality Conditions
� Second Order Constraint Qualifications
� Second Order Optimality Conditions for Nonlinear

Optimization
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Introduction

The general flow-shop problem [4,60,68], denoted as
n/m/Cmax in the literature, involves n jobs, each re-
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quiring operations on m machines, in the same ma-
chine sequence. The processing time for each opera-
tion is pij, where i 2 f1; 2; : : : ; ng denotes a job and
j 2 f1; 2; : : : ;mg a machine. The problem is to deter-
mine the sequence of these n jobs that produces the
smallest makespan assuming no preemption of oper-
ations. In the simplest case, all jobs are available and
ready to start at time zero and the setup times on ma-
chines are assumed to be sequence-independent and
included in pij. In more realistic situations, however,
jobs are released at different times, thus requiring dy-
namic scheduling and the setup times are sequence-
dependent.

The makespan problem for flow shops has been the
most studied by far in the literature. (The makespan
Cmax is equivalent to the completion time of the last job
to leave the system.) This is partly because:
� Makespan is a simple and useful criterion for heavily

loaded shops when long-term utilization should be
maximized.

� Makespan is the only objective function simple
enough to have available some analytic results for
multimachine problems and to make some branch-
and-bound methods practical for medium-sized
problems.

The minimization of the makespan objective is to a cer-
tain extent equivalent to the maximization of the uti-
lization of the machines. The models, however, tend to
be of such complexity that makespan results are already
relatively hard to obtain. Even harder to analyze are the
flow time and the due-date-related objectives.

Variations

There are a number of variations for the flow shop
scheduling problem [60,68]. Some of them are pre-
sented in the following.

The permutation flow shop problem (PFSP).
A constraint that may appear in the flow-shop en-
vironment is that the queues in front of each ma-
chine operate according to the first in, first out disci-
pline, which implies that the order (or permutation) in
which the jobs go through the first machine is main-
tained throughout the system. This problem can be
formulated as follows. Each of n jobs from the job
set j D f1; 2; : : : ; ng, for n > 1, has to be processed
on m machines 1; 2; : : : ;m in the order given by the

indexing of the machines. Thus, job j; j 2 J, consists
of a sequence of m operations; each of them corre-
sponding to the processing of job j on machine i dur-
ing an uninterrupted processing time pi j � 0. (It is as-
sumed that a zero processing time on a machine cor-
responds to a job performed by that machine in an in-
finitesimal time.) Machine i; i D 1; 2; : : : ;m, can ex-
ecute at most one job at a time, and it is assumed
that each machine processes the jobs in the same or-
der. We represent the job processing order by the per-
mutation  D ((1); : : : ; (n)) on the set j, and we
let P denote the set of all permutations on j. We wish
to find the optimal processing order � 2 P of jobs
minimizing the maximum completion time Cmax()
(makespan) [65,68].

The flow shop scheduling problem with limited
machine availability. In such a problem, n jobs have to
be scheduled on m machines under the makespan cri-
terion and under the assumption that the machines are
not available during the whole planning horizon [6].

No-wait or no-idle flow shop scheduling prob-
lems with deteriorating jobs. Deterioration of a job
means that its processing time is a function of its ex-
ecution start time. A simple linear deterioration func-
tion is assumed and some dominating relationships be-
tween machines can be satisfied. No-wait requirement
is another phenomenon which may occur in flow shops
and implies that the starting time of a job at the first
machine has to be delayed to ensure that the job can
go through the flow shop without having to wait for
any machine. The “no-idle” constraint means that each
machine, once it commences its work, has to process
all operations assigned to it without any interruption.
In [102] it is shown that for the problems to minimize
makespan or weighted sum of completion time, poly-
nomial algorithms still exist, although these problems
are more complicated than the classical ones. In [101]
the general, no-wait and no-idle flow shop schedul-
ing problem with decreasing linear deterioration under
dominant machines is considered.

A hybrid flow shop consists of a series of produc-
tion stages, each of which has several machines operat-
ing in parallel. Some stages may have only onemachine,
but at least one stage must have multiple machines. The
flow of jobs through the shop is unidirectional. Each job
is processed by one machine in each stage and it must
go through one or more stage. Machines in each stage
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can be identical, uniform or unrelated. An extended
survey of the problem is presented in [57].

In [45] the stochastic flow shop problem is pre-
sented and analyzed.

Exact Algorithms
for the Flow Shop Scheduling Problem

Branch and bound is a general method for solving many
types of combinatorial problems. The basic idea of
branching is to conceptualize the problem as a decision
tree. From each decision choice point, called a node,
for a partially completed solution there grow a number
of new branches, one for each possible decision. These
in turn become new nodes for branching again and so
on. Leaf nodes, which cannot branch any further, rep-
resent complete solutions or dead ends. A number of
branch-and-bound procedures have been proposed for
the solution of the flow shop scheduling problem and
its variations [16,19,36,83,95,106,107]. Dynamic pro-
gramming approaches for the solution of the flow shop
scheduling problem have been proposed in [92,105].

Heuristic Algorithms
for the Flow Shop Scheduling Problem

Since the last few decades, pure flow shop schedul-
ing problems have been largely studied. Since the flow
shop minimization problem is NP-hard [87], a num-
ber of heuristic and metaheuristic algorithms have
been proposed for the solution of the problem. High-
performance heuristics have been proposed to mini-
mize the makespan [15,21,61] or the maximum tar-
diness [96]. Some additional characteristics have been
studied for the makespan criterion: non-sequence-
dependent setup and removal times [69,91], minimum
time lags [91], and more recently job-precedence con-
straints [14]. Studies on hybrid flow shop scheduling
problems are relatively recent. The main results deal
with the makespan criterion, and are often limited to
two stages; nevertheless, some work has been done on
lateness criteria [38,43]. A number of heuristics algo-
rithms were proposed in [13]. A worst-case analysis of
heuristics is presented in [85].

In [6] a heuristic approach is proposed to approxi-
mately solve the problem that consists in scheduling the
jobs two by two according to an input sequence, and
using a polynomial algorithm. This algorithm is an ex-

tension of the geometric approach developed for the
two-job shop scheduling problem. An algorithm that
constructs heuristics that use a lower bound to find
a feasible solution for the general m-stage flow shop
scheduling problem with multiple operations and time
lags is described in [75]. A greedy algorithm for the so-
lution of the permutation flow shop model with vari-
able processing times is presented in [28]. A two-
stage heuristic algorithm for the flow-shop problem
with multiple processors is presented in [90]. A bilevel
programming heuristic is presented in [48]. A simple
heuristic is presented in [55].

A two-phase heuristic is presented in [89]. In the
first phase, an initial job sequence is generated using
one of the available well-known and efficient heuris-
tics, while in the second phase the sequence generated
is improved in terms of the makespan using a pair ex-
change mechanism with directionality constraint. The
n-job two-machine flow shop scheduling problem is
studied in [99] with the criterion ofminimizing the sum
of job completion times. The scheduling problem is
first formulated mathematically. Three heuristic meth-
ods are then invented to find near optimal schedules.
Three lower bound generation schemata are designed
to compute three different lower bounds, of which the
tightest one is used. To further reduce the search space,
some dominance properties are proved. Then a branch-
and-bound algorithm is developed to obtain an optimal
schedule. In [100] the flow shop scheduling problem,
with the criterion of minimizing the sum of job com-
pletion times is addressed. Two heuristic approaches
are proposed to deal with this problem. The first ap-
proach focuses on reducing machine idle times and the
second one places efforts on reducing both the machine
idle times and the job queue times.

Complete reviews of the heuristic and metaheuris-
tic algorithms for the solution of the flow-shop prob-
lem and some of its variations are presented in [11,20,
39,60,68,78,97].

Metaheuristic Algorithms
for the Flow Shop Scheduling Problem

Several metaheuristic algorithms have been proposed
for the solution of the flow shop scheduling problem.
In the following an analytical presentation of these al-
gorithms is given:
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� Simulated annealing [1,3,50] plays a special role
within local search for two reasons. First, it appears
to be quite successful when applied to a broad range
of practical problems. Second, some threshold-
accepting algorithms such as simulated annealing
have a stochastic component, which facilitates a the-
oretical analysis of their asymptotic convergence.
Simulated annealing [2] is a stochastic algorithm
that allows random uphill jumps in a controlled
fashion in order to provide possible escapes from
poor local optima. Gradually the probability al-
lowing the objective function value to increase is
lowered until no more transformations are possi-
ble. Simulated annealing owes its name to an anal-
ogy with the annealing process in condensed-matter
physics, where a solid is heated to a maximum
temperature at which all particles of the solid ran-
domly arrange themselves in the liquid phase, fol-
lowed by cooling through careful and slow reduc-
tion of the temperature until the liquid is frozen
with the particles arranged in a highly structured lat-
tice andminimal system energy. This ground state is
reachable only if the maximum temperature is suf-
ficiently high and the cooling sufficiently slow. Oth-
erwise a metastable state is reached. The metastable
state is also reached with a process known as
quenching, in which the temperature is instanta-
neously lowered. Its predecessor is the so-called
Metropolis filter. Simulated annealing algorithms
for the flow shop scheduling problem are presented
in [27,35,40,46,47,52,58,62,63,82,88,94,98,103].

� Tabu search (TS) was introduced by Glover [30,31]
as a general iterative metaheuristic for solving com-
binatorial optimization problems. Computational
experience has shown that TS is a well-established
approximation technique, which can compete with
almost all known techniques and which, by its flexi-
bility, can beat many classic procedures. It is a form
of local neighbor search. Each solution S has an as-
sociated set of neighborsN(S). A solution S0 2 N(S)
can be reached from S by an operation called amove.
TS can be viewed as an iterative technique which ex-
plores a set of problem solutions, by repeatedlymak-
ing moves from one solution S to another solution
S0 located in the neighborhood N(S) of S [32]. TS
moves from a solution to its best admissible neigh-
bor, even if this causes the objective function to de-

teriorate. To avoid cycling, solutions that have been
recently explored are declared forbidden or tabu for
a number of iterations. The tabu status of a so-
lution is overridden when certain criteria (aspira-
tion criteria) are satisfied. Sometimes, intensification
and diversification strategies are used to improve the
search. In the first case, the search is accentuated
in the promising regions of the feasible domain. In
the second case, an attempt is made to consider so-
lutions in a broad area of the search space. TS al-
gorithms for the flow shop scheduling problem are
presented in [5,7,8,12,26,27,37,40,46,63,66,86,104].

� Genetic algorithms (GAs) are search procedures
based on the mechanics of natural selection and nat-
ural genetics. The first GA was developed by John
H. Holland [42] in the 1960s to allow computers
to evolve solutions to difficult search and combi-
natorial problems, such as function optimization
and machine learning. GAs offer a particularly at-
tractive approach for problems like the flow shop
scheduling problem since they are generally quite
effective for rapid global search of large, nonlin-
ear and poorly understood spaces. Moreover, GAs
are very effective in solving large-scale problems.
GAs [34] mimic the evolution process in nature.
GAs are based on an imitation of the biological pro-
cess in which new and better populations among dif-
ferent species are developed during evolution. Thus,
unlike most standard heuristics, GAs use informa-
tion about a population of solutions, called individ-
uals, when they search for better solutions. A GA is
a stochastic iterative procedure that maintains the
population size constant in each iteration, called
a generation. The basic operation is the mating of
two solutions in order to form a new solution. To
form a new population, a binary operator, called
crossover, and a unary operator, called mutation,
are applied [72,73]. Crossover takes two individu-
als, called parents, and produces two new individ-
uals, called offspring, by swapping parts of the par-
ents. GAs for the flow shop scheduling problem are
presented in [5,9,10,17,18,53,59,64,79,80,81,82].

� Scatter search [33] may be viewed as an evolution-
ary (population-based) algorithm that constructs
solutions by combining others. It derives its foun-
dations from strategies originally proposed for com-
bining decision rules and constraints in the context
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of integer programming. The goal of this method is
to enable the implementation of solution procedures
that can derive new solutions from combined ele-
ments in order to yield better solutions than those
procedures that base their combinations only on
a set of original elements. Scatter search algorithms
for the flow shop scheduling problem are presented
in [44,65].

� Variable neighborhood search is a metaheuris-
tic for solving combinatorial optimization prob-
lems whose basic idea is systematic change of the
neighborhood within a local search [41]. Variable
neighborhood search algorithms for the flow shop
scheduling problem are presented in [47,63].

� The use of artificial neural networks to find good
solutions to combinatorial optimization problems
has recently attracted some attention. A neural net-
work consists of a network [67] of elementary nodes
(neurons) that are linked through weighted con-
nections. The nodes represent computational units,
which are capable of performing a simple compu-
tation, consisting of a summation of the weighted
inputs, followed by the addition of a constant called
the threshold or bias, and the application of a non-
linear response (activation) function. The result of
the computation of a unit constitutes its output. This
output is used as an input for the nodes to which it
is linked through an outgoing connection. The over-
all task of the network is to achieve a certain net-
work configuration, for instance, a required input–
output relation, by means of the collective compu-
tation of the nodes. This process is often called self-
organization. A neural networks algorithm for the
flow shop scheduling problem is presented in [86].

� An improvement heuristic based on an adaptive
learning approach is proposed and applied to
the general flow-shop problem. The approach uses
a single-pass or a constructive heuristic and tries
to find improvements iteratively by perturbing the
data using a weight factor, allowing a nondeter-
ministic local neighborhood search. The weights are
modified using strategies similar to neural-networks
training, i. e., weights are reinforced if the solution
improves [4].

� Artificial immune system (AIS) is an intelligent
problem-solving technique that has been used in
scheduling problems for about 10 years. AISs are

computational systems inspired by theoretical im-
munology, observed immune functions, principles
and mechanisms in order to solve problems. Na-
ture and in particular biological systems have always
been fascinating to the human expert owing to their
complexity, flexibility and sophistication. The ner-
vous system inspired the evolution of an artificial
neural network, in the very similar manner immune
systemmotivated the emergence of the AIS. The AIS
can be defined as an abstract or metamorphic com-
putational system using ideas gleaned from the the-
ories and component of immunology [22,23]. AIS
algorithms for the flow shop scheduling problem are
presented in [25,51].

� Particle swarm optimization (PSO) is a popu-
lation-based swarm intelligence algorithm. It was
originally proposed by Kennedy and Eberhart [49]
as a simulation of the social behavior of social or-
ganisms such as bird flocking and fish schooling.
PSO uses the physical movements of the individuals
in the swarm and has a flexible and well-balanced
mechanism to enhance and adapt to the global
and local exploration abilities. PSO algorithms for
the flow shop scheduling problem are presented
in [7,8,54,56,93].

� The ant colony optimization (ACO) metaheuris-
tic is a relatively new technique for solving combi-
natorial optimization problems. Based strongly on
the ant system metaheuristic developed by Dorigo,
Maniezzo and Colorni [24], ant colony optimiza-
tion is derived from the foraging behavior of real
ants in nature. The main idea of ACO is to model
the problem as the search for a minimum cost path
in a graph. Artificial ants walk through this graph,
looking for good paths. Each ant has a rather sim-
ple behavior so that it will typically only find rather
poor-quality paths on its own. Better paths are
found as the emergent result of the global cooper-
ation among ants in the colony. An ACO algorithm
consists of a number of cycles (iterations) of solution
construction. During each iteration a number of
ants (which is a parameter) construct complete so-
lutions using heuristic information and the collected
experiences of previous groups of ants. These col-
lected experiences are represented by a digital ana-
logue of trail pheromone which is deposited on the
constituent elements of a solution. Small quantities
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are deposited during the construction phase, while
larger amounts are deposited at the end of each iter-
ation in proportion to solution quality. Pheromone
can be deposited on the components and/or the con-
nections used in a solution depending on the prob-
lem. ACO algorithms for the flow shop scheduling
problem are presented in [29,70,71,84].

� Greedy randomized adaptive search procedure
(GRASP) [74] is an iterative two-phase search
method which has gained considerable popularity
in combinatorial optimization. Each iteration con-
sists of two phases, a construction phase and a local
search procedure. In the construction phase, a ran-
domized greedy function is used to build up an ini-
tial solution. This randomized technique provides
a feasible solution within each iteration. This solu-
tion is then exposed for improvement attempts in
the local search phase. The final result is simply the
best solution found over all iterations. GRASP al-
gorithms for the flow shop scheduling problem are
presented in [76,77].
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This article consists of three parts: first, a historical in-
troduction to the topic, next an overview of the most
frequent forecasting methods and finally a short de-
scription of modern computer-aided techniques as they
are used nowadays (2000) for instance for forecasts on
financial markets.

Introduction

Prediction ideas and information about uncertain fu-
ture events in general are as old as humanity. Scientific
forecasts are based on predetermined patterns, regular-
ities or conformities with a (natural) law. A theoretical
basis is made up of its components, the parameters of
the model and the conditions for the system.

Predictions of future events are called forecasts and
are concerned with the question of what the world ‘will’
look like [6]. Any organization must be able to make
forecasts concerning their work which aim to reduce
the uncertainty of the environment. For example, busi-
ness firms, in particular, require forecasts for a large
number of events and conditions in all phases of their
operation and forecasts are indispensable for planning
and strategy in everyday life.
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For centuries, the nature of forecasting was the field
of philosophers, who studied problems of inductive in-
ference analytically in order to obtain instruments for
qualitative and quantitative forecasting.

When asking the question of whether the future can
be predicted, or whether it is arbitrary and random, we
first noticed certain regularities in the behavior of na-
ture. These regularities were most obvious in the fields
of physics and astronomy in which it was possible to
make conditional forecasts. They were given their firm
mathematical basis by I. Newton, in the seventeenth
century. We still use his theory of gravity which is able
to predict the motion of (celestial) bodies.

At the turn into the twentieth century, psychology
began to use experimental methods to investigate learn-
ing in humans and other organisms. In doing so, psy-
chologists acquired knowledge about which behavior
could be forecasted and how to reduce uncertainty as
much as possible. During the twentieth century, the
topic of forecasting in general became increasingly im-
portant, especially after quantitative methods had been
developed. Various forecasting methods were given pri-
ority in economics and even more recently the com-
puter has provided research tools, engendering the field
of machine learning. Systematic research on trade cy-
cles and on crises management are the first economic
forecasts, at the same time as early psychological inves-
tigations.

One of the first aims of economics was to become
a science which could make forecasts with the help of
induction. The true measure of the value of economists
is often seen as the accuracy of the forecasts they
make [14].

J.H. Holland, K. Holyoak, R. Nisbett and P. Thagard
in 1986 [18] gave an excellent overview of the various
insights of researchers in psychology, philosophy and
artificial intelligence. Also borrowing from several other
disciplines such as engineering, statistics, biology and
game theory, including experimental economics [20]
they systematically developed principles providing co-
herence of a diverse set of findings on the nature of in-
ductive processes for prospective events in the future.

ForecastingMethods andModels

Obviously there are several possibilities of classification
because of various methodological approaches. Using

a fundamental division, we will generate two groups of
forecasting methods:
i) qualitative methods and
ii) quantitative methods.

Another main distinction consists of a generaliza-
tion of similar situations which can be
i) data based (usually given in the form of a time se-

ries, a chronological sequence of observed data with
respect to a certain variable) expecting that history
repeats itself in a certain way and

ii) theory based, where we assume that external factors
determine events.

It is natural to start with qualitative forecasting meth-
ods predicting future events with a certain subjective
probability: on the one hand we tend to make forecasts
for similar events on the basis of a certain generaliza-
tion, on the other hand we try to predict new events
for those situations where little or no historical data
are available and for events where we expect changes
within the data patterns. Generalization ideas - in a log-
ical and methodological sense - are made on the basis
that events will have properties in a certain analogy to
the past and tend towards the direction of objective pro-
cesses.

Here we want to recommend a well known classifi-
cation by S. Makridakis and S.C.Wheelwright [21]. Our
aim is to discuss a selected subset of these frequently
used methods.

Expert Systems

In questions about future events, a systematic discus-
sion of a group of five to twelve experts (expert systems)
usually yields forecasts with a better hit-rate than indi-
vidual predictions. This belongs to the class of judge-
mental forecast. Using this method, credibility is one of
the most desirable features of a forecast [10].

The Delphi method, developed by members of the
RAND Corporation in the 1960s [11], avoids face-to-
face effects by using a procedure based on a ques-
tionnaire technique. Delphi therefore guarantees three
basic characteristics: anonymity, interaction with con-
trolled feedback, and statistical group responses.

Subjective Curve Fitting

A frequently used method is subjective curve fitting and
extrapolation, which is used in economics, for exam-
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ple, for forecasts on the development of products with
certain life cycles or seasonal fluctuations. Experimen-
tal findings show that there are several gestaltsoriented
rules dominating expectation formations [4,5]. Subjec-
tive curve fitting differs to some extent between the dif-
ferent subjects; frequently we are not only interested in
individual expectations of a single forecasting subject
but also interested in the so-called average opinion of
a whole group as a good predictor for future events. For
example it is a well known hypothesis that the average
expected rate of inflation has an essential influence on
various economic variables.

Technological Comparison

A sensible method is technological comparison [2] and
[15]. Obviously, we should enlarge, compare or com-
bine these qualitative methods with quantitative ones
(combined forecasts), knowing that even models which
best fit the available data are not necessarily the most
accurate ones in predicting beyond this data [23].

Expectations and Decision

The simplest way of modeling expectations of future
events, which is used frequently in economic theory,
is to assume that conditions prevailing today will be
maintained in all subsequent periods analogously. In
cases where no causal explanation from other variables
seems to be appropriate we could simply use extrapola-
tion methods with the given data base to enable at least
a short term forecast. These methods are successfully
used
i) for seasonally adjusted data; and
ii) for cases where a continuation of the historical trend

is to be expected.

Statistical Procedures

The next step is to use statistical procedures which are
in some sense learning and in another sense adaptive
methods. Quantitative forecasting methods, theory and
data based, using knowledge from mathematical statis-
tics started to be successful in the early 1960s beginning
with ideas of R.G. Brown on smoothing methods.

In particular, exponential smoothing is frequently
used for producing short term forecasts [8,9]. Brown
suggested estimating the average of a time series and

used it as an extrapolation for the forecast. With each
new data set and observation respectively, we are able to
revise the mean square error (MSE) applying exponen-
tial smoothing to the squares of the error in the most
recent forecast. Several techniques have been proposed
using exponential smoothing but it is evident that all the
history of a process cannot be described by one and the
same simple model.

Moving AverageModel

In 1970 G.E. Box and G.M. Jenkins introduced more
sophisticated forecasting models which were the first to
take into account the nature of the data and the manner
of the stochastic process to be forecasted. They asked
not only the question of what to forecast and what data
to collect, but also what data to analyze and in what
context to embed the forecast. Their moving average
models [7], enable a successful application. They popu-
larized an approach that combines the moving average
and the autoregressive approaches in [7]. The classes
of autoregressive (integrated) moving averages (ARMA
and ARIMA) processes have been successfully intro-
duced by them and their models are some of the most
frequently used tools for stochastic analysis.

Several ways to model multiple time series are de-
scribed in [16]. Further ARIMA models are given in
[23,24]; [13] gives an excellent comparison of these
models using performance methods.

When enlarging the statistical methods with sensi-
ble associations and connections, econometric methods
should be considered, if causal relationship and changes
in causal variables are expected and can be estimated.

Regression Analysis

Usually it would be sensible to figure out a certain a pri-
ori relationship between the given data sets such that
statistical methods of regression analysis can be used. In
its simplest form, the classical linear regression model is
used to determine an equation relating two sets of data
with each other:
i) the set of observations of the explanatory or inde-

pendent variables (the predictors); and
ii) the set of the associated responses, the observations

of the dependent variables.
This task often seems to be easy at first sight, but when
all details are concerned it becomes a high leveled task.
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Obviously there are some future values which can easily
be forecasted, e. g. the fuel consumption for a certain
period as a relation of velocity.

As our example from the field of finance will
demonstrate, there are, however, enough reasons to as-
sume more complicated situations caused by complex
systems and/or error terms. For example, demand as
the variable of interest can be seen as a function of the
price which takes the role of the predictor.

Econometric Models

Obviously, the standard model using the single regres-
sion equation has been extended in various ways. For
example,
i) disturbances are allowed to be autocorrelated and to

have different variances (heteroskedastic);
ii) by regressors measured with errors or in dynamic

situations (with dependences on lagged values)
stochastic regressors arise.

As proposed already at the foundation of the Econo-
metric Society in Cleveland in 1930 we also use nowa-
days (2000) econometric models which are not only
data based, but also theory oriented.

In econometrics, the single equation regression
model is enlarged and complex systems of simultane-
ous equation models are used, including several equa-
tions and also several dependent variables. These mod-
els are implemented as applied econometrics software
and build, for instance, the basis for national budget
calculations, usually containing several hundred equa-
tions.

Modern Computer Aided Techniques

To predict future movements of financial markets,
technical analysts use time series and apply the statis-
tical and econometrical methods described above. We
enlarge the methods by new techniques which are able
to recognize certain relationships from examples by
generalization with the help of new computer technolo-
gies. The methods used in this application are a compo-
sition of artificial neural networks, genetic algorithms
(see � Genetic algorithms) and fuzzy logic. Obviously
we are not able to go into details, but we try to give
a short characterization for our application.

Neural Networks

These are inspired by the functionality of nerve cells
in the brain. Like humans, they can learn to recognize
patterns by repeated exposure to many different ex-
amples. They can be used to detect salient characteris-
tics whether they are handwritten characters, profitable
loans or good trading decisions. Neural networks learn
to recognize even regularities in data that are inexact
or incomplete. A neural network finds this relationship
by means of a learning cycle where a large amount of
samples are presented repeatedly to the network. Neu-
ral networks cannot guarantee an optimal solution to
a problem. However, properly configured and trained
neural networks can often make consistently good clas-
sifications, generalizations or decisions in a statistical
sense. Neural networks are widely used to identify pat-
terns in the data of financial markets.

Fuzzy Logic

This is a strategy that is not based on amathematical de-
scription of a special system or market but is intended
to model the behavior of a human investor. The ex-
pert’s knowledge is specified in terms of linguistic rules
in which linguistic expressions are associated with fuzzy
sets. Fuzzy set methods tend to overcome the vagueness
of causality. They can be used to explain financial mar-
kets’ developments using fundamental rules as shown
in Fig. 1.

Fuzzy logic is a superset of conventional (Boolean)
logic that has been extended to handle the concept of
partial truth – truth values between ‘completely true’
and ‘completely false’. [25,26]. In other words, a fuzzy
system is a collection of ‘membership functions’ and
rules that are used to reason about data. In our exam-
ple the ranges of the interest rates of Germany and the
USA gives forecasts for the exchange rate between these
currencies. Fuzzy logic enables us to model and predict
market developments on the basis of the experience of
financial experts.

Genetic Algorithms

A genetic algorithm allows us to optimize any given
function. Genetic algorithms are search procedures
based on themechanisms of natural selection, mutation
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Forecasting, Figure 1
Fuzzy Logic rules to predict the US Dollar/Euro fixingj

Forecasting, Figure 2
Genetic algorithm used for optimizing a rulebasis to forecast the US Dollar/Euro fixing

and recombination. A population consisting of chro-
mosomes (i. e., solutions for a function) is created ran-
domly. In the next step each chromosome is evaluated
and given a certain fitness value. The fitness value rep-
resents the feasibility and the optimality of a given so-
lution. Depending on their fitness value a certain per-
centage of the population is selected and deleted. The
surviving individuals are recombined and mutated. Af-
ter the population has been evaluated and the forecast
adjustment based on past data has been decided, the se-
lection process starts again.

The genetic algorithm is used to optimize the cer-
tainty of each rule in the fuzzy logic rulebase. As shown
in Fig. 2 the fitness function of the genetic algorithm
consists of a fuzzy logic rulebase and several mathemat-
ical objects to calculate the forecast error. The forecast
error is used to evaluate the individuals. All rules are ap-
plied to historic financial data and their forecast error is
summed up over the whole horizon.

Rules which are only partly true get lower certainty
values until their certainty corresponds to their actual
influence. Currency markets tend to follow certain reg-
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ularities, detected by expert knowledge or, for example,
the purchasing power theorem.

A similar procedure is applied to neural networks
in order to optimize the topology of the neural network
itself as well as a data mining approach to identify the
input parameters. The genetic algorithm allows us to
cancel out useless time series. When forecasting finan-
cial markets an appropriate and adaptive input param-
eter selection is necessary.

In our case the inputs are knowledge of economic
data to receive forecasts for future developments of fi-
nancial markets.

One goal in system theory is, in order to integrate
the ideas of several disciplines, to have a successful
instrument for analyzing forecasting processes includ-
ing learning and discovery in direction optimality. This
process of searching for the best value that can be real-
ized or attained is based on the events of subjects whose
actions are not able to be forecasted with total certainty.

Finally, we are able to summarize this as follows, us-
ing the different stages we took into account:
� historical comparison based on repeatedly observed

similar events and on statistical data, e. g. business
fluctuations, Harvard’s barometers, chart extrapola-
tions;

� time series analysis, based on proceedings on math-
ematical statistics;

� econometric forecasting models, including stepwise
regression models, as well as vector autoregressive
models (VAR);

� modern techniques, mainly computer aided, and
software which is available as adaptive models,
learning models, artificial neural networks (ANN),
fuzzy set models and evolutionary algorithms.

See also

� Continuous Global Optimization: Applications
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Consider a system ofm linear inequalities in n real vari-
ables

Ax � b; (1)

where x = (x1, . . . , xn)| 2 Rn is the vector of unknowns
and A, b are a given real matrix and vector. Let X =
{x 2 Rn : Ax � b} be the solution set of the system, and
let X[k] denote the projection of X onto the linear space
spanned by the last n � k coordinates:

X[k] D f(xkC1; : : : ; xn) 2 Rn�k :

9(x1; : : : ; xk) 2 Rk

s.t. (x1; : : : ; xn) 2 Xg:

The Fourier–Motzkin method [3,4,5,8,10,12,14,15] suc-
cessively eliminates variables x1, . . . , xn�1 from (1) and
computes matrices A[k] and vectors b[k] such that

X[k] D
n
x[k] 2 Rn�k : A[k]x[k] � b[k]

o
;

k D 1; : : : ; n � 1;

where x[k] = (xk+1, . . . , xn)|.

In order to eliminate variable x1, we first multiply
each of the m inequalities of (1) by an appropriate pos-
itive scalar to make each entry in the first column of
A equal to ˙ 1 or 0. We can thus assume without loss
of generality that the original system of inequalities has
the form

C1 � x1 C ˛i (x[1]) � 0; i 2 MC;

�1 � x1 C ˛i (x[1]) � 0; i 2 M�;

0 � x1 C ˛i (x[1]) � 0; i 2 M0;

where ˛i(x[1]) = ˛i2x2+ � � � + ˛inxn+ ˇi are given affine
forms of x[1] = (x2, . . . , xn)| 2 Rn� 1 and M+, M�, M0

are disjoint sets of (indices of) inequalities partitioning
the entire set of inequalities in (1):

MC [M� [M0 D f1; : : : ;mg:

It is easy to see that for each fixed x[1], the inequalities
with indices i 2M+ [M� can be satisfied by some real
x1 if and only if each upper bound � ˛i(x[1]), i 2 M+

on x1 exceeds each lower bound ˛j(x[1]), j 2M� on the
same variable, i. e., � ˛i(x[1]) � ˛j(x[1]) for all i 2 M+

and j 2 M�. Combining these |M+| |M�| inequalities
with the remaining |M0| inequalities of (1) that do not
depend on x1, we arrive at the system of |M+| |M�| +
|M0| linear inequalities

˛i (x[1])C ˛ j(x[1]) � 0; (i; j) 2 MC �M�;
˛i (x[1]) � 0; i 2 M0;

whose solutions set is X[1]. The above system can be
written as A[1]x[1] � b[1] with appropriate matrix A[1]

and vector b[1]. This gives X[1] = {x[1] 2 Rn�1 : A[1]x[1]

� b[1]}. Eliminating variable x2 from A[1]x[1] � b[1] we
obtain a similar description X[2] = {x[2] 2 Rn�2 : A[2]x[2]

� b[2]} for the second projection and so on. After n �
1 steps of the above procedure we have n � 1 matri-
ces A[k] and vectors b[k] such that X[k] = {x[k] 2 Rn�k :
A[k]x[k] � b[k]}, k = 1, . . . , n� 1.

Solution of Systems of Linear Inequalities
and Linear Programming Problems

If the solution set X = {x 2 Rn: Ax � b} is nonempty,
then so are all the projections X[k] � Rn�k, k = 1, . . . ,
n � 1, and vice versa. In particular, if Ax� b is feasible,
then

X[n�1] D
˚
x[n�1] 2 R : A[n�1]x[n�1] � b[n�1]

�
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is a nonempty interval on the scalar variable x[n�1]

= xn. Given A[n�1] and b[n�1], we can easily find
a point xn 2 X[n�1]. Then, substituting xn D xn into
A[n�2]x[n�2] � b[n�2], we obtain a new feasible system
of linear inequalities whose solution set is the inter-
val
˚
xn�2 2 R : (xn�1; xn) 2 X[n�2]�. Solving this one-

variable system yields a point x[n�2] D (xn�1; xn) 2
X[n�2], which can be substituted in A[n� 3]x[x� 3] �

b[n�3] etc. By repeating such backward substitutions,
the Fourier–Motzkin method can compute a solution
(x1; : : : ; xn) to any feasible system of linear inequalities
Ax � b. ‘Historically, it is the ‘pre-linear programming’
method to solve linear inequalities’ [14].

Now suppose that the input system is infeasible, i. e.
X = {x 2 Rn: Ax � b = ;}. As was pointed out in [10],
the Fourier–Motzkin method can then find nonnega-
tive real multipliers p1, . . . , pm such that

pA D 0; pb D �1; p D (p1; : : : ; pm) � 0: (2)

To see this, observe that each inequality in A[1]x[1] �
b[1] is a positive combination of at most two inequalities
of the original system. Since a nonnegative combina-
tion of nonnegative combinations of some inequalities
is a nonnegative combination of the same inequalities,
we conclude that each inequality in each system A[k]x[k]

� b[k], k = 1, . . . , n � 1, is a nonnegative combination
of the input inequalities. Considering that A[n�1]x[n�1]

� b[n�1] is an infeasible system of linear inequalities
in one variable, A[n�1]x[n�1] � b[n�1] is easily seen to
contain one or two inequalities whose positive com-
bination yields the infeasible inequality 0 � xn � �1.
This is equivalent to (2). In particular, the Fourier–
Motzkin method provides a simple algorithmic proof
of the Farkas lemma (cf. � Farkas lemma; � Farkas
lemma: Generalizations): (1) is feasible if and only if (2)
is infeasible.

The Fourier–Motzkin method can also be used to
solve the general linear programming problem

�� D max
˚
c>x : Ax � b; x 2 Rn� : (3)

For instance, we can eliminate n variables x = (x1, . . . ,
xn) from Ax� b, xn+ 1 � c|x� 0 to determine the inter-
val X[n] = {xn+1 : xn+1 � ��}. Then, letting xn+ 1 = �� and
solving the resulting system yields an optimal solution.

It should be mentioned that there are far more ef-
ficient linear programming algorithms. Note, however,

that (3) calls for projecting X = {x 2 Rn: Ax � b} on
a one-dimensional subspace. After an appropriate lin-
ear transformation, the Fourier–Motzkin method can
project X = {x 2 Rn: Ax � b} on any given subspace
in Rn.

Complexity of the Fourier–MotzkinMethod

Letmk denote the number of inequalities in the kth sys-
tem A[k]x[k] � b[k] generated by the Fourier–Motzkin
method. Since m1 = |M+| |M�| + |M0| � m2, we have
mk � m2

k�1 for all k. So the number of inequalities is at
most squared at each step of the method, which implies
thatmk is bounded by a doubly exponential function in
k, saymk �m2k . The following example shows that with
sufficiently many variables, the kth step of the method
can produce

mk D m2k(1�o(1))

inequalities.

Example 1 [14] Let n = 2k + k + 2 and consider a system
of linear inequalities Ax� bwhich contains as left-hand
sides m D 8

�n
3

�
linear forms ˙xi1 ˙ xi2 ˙ xi3 for all 1

� i1 < i2 < i3 � n. By induction on j = 1, . . . , k it is easy
to show that after eliminating the first j variables, the
resulting system includes among its left-hand sides all
the forms˙ xi1 ˙ � � � ˙ xis with k + 1 � i1 < � � � < is �
n and s = 2j + 2. In particular, for j = k we have at least
22kC2 =m2k(1�o(1)) inequalities in A[k]x[k] � b[k].

Let us now return to the first step of the algorithm
where we replace Ax � b by the |M+| |M�|+|M0| new
inequalities A[1]x[1] � b[1]. As was pointed out already
by J.B.J. Fourier, ‘it nearly always happens that a rather
large number of these new inequalities are redundant’
and ‘their removal greatly simplifies the problem’ [8]. If
the redundant inequalities are systematically removed
at each step of the algorithm, the number mk of in-
equalities generated by kth step of the Fourier–Motzkin
method is bounded by an exponential function in k. As-
sume without loss of generality that X = {x 2 Rn: Ax �
b} is full-dimensional, then each projection X[k] is also
full-dimensional andmk is the number of facets of X[k].
Therefore mk is bounded by the total number of i-faces
of X for i� n � k � 1. Hence

mk �

kC1X
iD1

 
m
i

!
�

mkC1

(k C 1)!
for m!1:
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(This rough estimate can be improved by using the up-
per bound theorem [11]; in particular, mk cannot grow
faster thanmbn/2c.) In the example below, X[k] has

mk �
mkC1

(k C 1)kC1

facets.

Example 2 Let s� 2 be a natural number. Consider the
system ofm = (k+ 1) s linear inequalities

yi j � xi ; i D 1; : : : ; k; j D 1; : : : ; s;

x1 C � � � C xk � zl ; l D 1; : : : ; s;

where xi, yij, and zl are real variables. The elimination
of x1, . . . , xk results in sk+1 = (m/(k + 1))k+1 inequalities

y1 f (1) C � � � C yk f (k) � zl ; l D 1; : : : ; s;

where f ranges over the set of all sk mappings from {1,
. . . , k} to {1, . . . , s}. None of the inequalities above is
redundant. For instance,

y11 C � � � C yk1 � z1

is violated by y11 = � � � = yk1 = 0 and z1 = � � � = zs = 1,
whereas all the other inequalities can be satisfied by giv-
ing the remaining variables yij a high value.

Since detecting the redundancy of an inequality can be
done via linear programming (or by maintaining a list
of vertices and extreme directions of X[k] with the dou-
ble description method [4,13], see also [9,15] and ref-
erences herein), the Fourier–Motzkin method runs in
exponential space and time. It is natural to ask whether
given X = {x 2 Rn: Ax � b} and a number k 2 {1, . . . , n
� 1}, an irredundant description for X[k] = {x[k] 2 Rn�k:
A[k]x[k] � b[k]} can be computed in output-polynomial
time, i. e. by an algorithm that runs in time polynomial
in the total input and output size. This question is open
even in the bit model of computation for rational A and
b, when redundant inequalities can be detected in poly-
nomial time. A related problem is the generation of all
vertices for X = {x 2 Rn: Ax� b}. The vertex generation
problem (or its dual, the convex hull problem) can also
be solved by the double description method, see e. g.
[1], but the question as to whether there is an output-
polynomial vertex generation algorithm remains open.

Finally, we mention that the Fourier–Motzkin
method can be modified to a quantifier-elimination
method for arbitrary semilinear sets

X[k] D f(xkC1; : : : ; xn) 2 Rn�k :

(Q1x1 2 R) � � � (Qkxk 2 R)
F(x1; : : : ; xn) trueg; (4)

where Q1, . . . , Qk 2 {9, 8} are existential and/or uni-
versal quantifiers and F(x1, . . . , xn) is a given Boolean
function ofm threshold predicates

Fi (x) D

(
true if a>i x � bi ;
false otherwise;

with given coefficients ai 2 Rn and bi 2 R, i = 1, . . . , m.
In particular, if Q1, . . . , Qk are all existential quantifies
and F = F1 ^ � � � ^ Fm, we obtain the previously con-
sidered problem of projecting the polyhedral set X = {x
2 Rn: a>i x � bi, i = 1, . . . , m} onto the space spanned
by the last n � k coordinates. In general, (4) can be
transformed into an equivalent quantifier-free repre-
sentation X[k] = {(xk+1,. . . , xn) : G(xk+1,. . . , xn) true},
where G is some Boolean formula whose atoms are new
threshold predicates of (xk+1,. . . , xn) 2 Rn�k. This can
be done, for instance, as follows [6,7]. To eliminate the
rightmost quantifier Qkxk 2 R, write each threshold in-
equality involving xk in the form xk � ˛i(x(k)) or xk �
˛i(x(k)), where the ˛i0 are given affine forms of the re-
maining variables x(k) = (x1, . . . , xk� 1, xk + 1, . . . , xn).
Replace the infinite range xk 2 R by the finite set S of
sample points xk = (˛i(x(k)) + ˛j(x(k)))/2 and xk =˙1.
Now it is easy to see that the expression (9xk 2 R)F(x1,
. . . , xn) is equivalent to the quantifier-free disjunction
_xk2S F(x1, . . . , xn) and that (8xk 2 R)F(x1, . . . , xn) can
be replaced by the equivalent conjunction ^xk2SF(x1,
. . . , xn). Quantifies Qk� 1xk� 1, . . . , Q1x1 can be elimi-
nated in the same way. For a discussion of faster algo-
rithms that eliminate blocks of consecutive identically
quantified variables see [2].

See also

� Linear Programming
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A fractional combinatorial optimization problem
(FCOP) is a combinatorial optimization problem with
an objective function which is a ratio of two (nontriv-
ial) functions. Instances of a FCOP can be expressed in
the general form:

(
max f (x)

g(x) ;

for x 2 X;
(1)

where X � {0, 1}p is a set of (vectors representing)
certain combinatorial structures, and f and g are real-
valued functions defined on X . Numbers f (x), g(x),
and f (x)/g(x) are usually called the cost, the weight,
and the mean-weight cost of structure x. A minimiza-
tion FCOP is equivalent to the corresponding max-
imization problem, if the cost function f can be re-
placed with function � f . The FCOPs which appear in
the literature on combinatorial optimization include:
the minimum ratio spanning-tree problem [2,13,14];
the maximum profit-to-time ratio cycle problem and
the equivalent minimum cost-to-time ratio cycle prob-
lem [1,3,6,11,12,13,14]; the minimum mean cycle prob-
lem [1,10,11]; the maximum mean-weight cut prob-
lem [16]; the maximum mean cut problem [5,9]; and
the fractional 0–1 knapsack problem [7,8].

Consider, as an example, theminimum cost-to-time
ratio cycle problem (MRCP). An instance of this prob-
lem consists of a directed graph G = (V , E), where E =
{e1, . . . , em} is the set of edges, and numbers ci and ti
associated with each edge ei, for i = 1, . . . , m. The ob-
jective is to find a simple cycle � in G which minimizes
the ratio of

P
{ci : ei 2 � } to

P
{ti : ei 2 � }. To ex-

press this instance of the MRCP in the form (1), let X
� {0, 1}m be the set of the characteristic vectors of the
simple cycles in G, and for x = (x1, . . . , xm) 2 {0, 1}m,
let f (x) = � (c1x1 + � � � + cmxm) and g(x) = t1x1 + � � � +
tmxm. The MRCP models the following tramp steamer



1078 F Fractional Combinatorial Optimization

problem [1,12]:V is the set of ports which can be visited
by our cargo ship; E�V ×V is the set of possible direct
port-to-port trips; numbers ci and ti are the cost and the
transit time of trip ei 2 E, respectively; and the objective
is to find a closed tour for the ship which minimizes the
daily cost (or, equivalently, maximizes the daily profit).

A FCOP such that the denominator of the objec-
tive function g(x1, . . . , xp) = x1 + � � � + xp is commonly
called a uniform fractional combinatorial optimization
problem. The minimum mean cycle problem (which is
a special case of the MRCP with all numbers ti equal to
1) is a uniform FCOP. A FCOP such that f (x1, . . . , xp)
= a1x1 + � � � + apxp and g(x1, . . . , xp) = b1x1 + � � � + bpxp
is called a linear fractional combinatorial optimization
problem. All FCOPs mentioned above are linear.

Generic methods for FCO usually follow the para-
metric approach to fractional optimization. Let ı 2 R be
a parameter. Problem:

(
max f (x)� ı � g(x);
for x 2 X;

(2)

is called the parametric problem corresponding to the
fractional problem (1). Let h(ı) denote the optimum
objective value of problem (2). From now on assume
that f (x) > 0, for some x 2 X , and g(x) > 0, for all x 2
X . Function h is continuous, convex, piecewise linear
and strictly decreasing on (� 1, + 1). It has exactly
one root ı� and this root is the optimum objective value
of problem (1). The main generic methods for FCO
are the binary search method, the Newton method, and
Megiddo’s parametric search. They all can be viewed as
methods for finding the root of function h.

The Binary SearchMethod (BSM)

This method maintains an interval [˛, ˇ] containing
the root ı� of function h, and reduces this interval by
half in each iteration by checking the sign of h((˛+
ˇ)/2. Thus to apply the BSM, one needs an algorithm
A0 which for a given ı 2 R calculates the sign of the
optimum objective value of problem (2). For a linear
FCOP such that all numbers |ai| and |bi| are integers
not greater than U (an integral linear FCOP), the BSM
finds an optimum solution in O(log(pU)) iterations.
This follows form the fact that if numbers f (x0)/g(x0)
and f (x00)/g(x00) are not equal, they must differ by at
least 1/(pU)2. Hence, as soon as the length of the search

interval [˛, ˇ] becomes less than 1/(pU)2, it contains
only one value f (x)/g(x), which must be equal to ı�.

The NewtonMethod (NM)

This generic method for fractional optimization, also
called the Newton–Raphson method or the Dinkelbach
method [4], is an application of the classical Newton
method to the problem of finding the root ı� of func-
tion h. The NM computes an increasing sequence ı1,
ı2, . . . of lower bounds on ı�. During iteration i, a so-
lution x(i) of problem (2) for ı = ıi is computed, and
ıi + 1 is set to f (x(i))/g(x(i)) (see Fig. 1). The NM finds an
optimum solution of a FCOP in a finite number of it-
erations, because function h consists of a finite number
(� |X|) of linear segments. The NM solves a uniform
FCOP in at most p + 1 iterations, because function h
corresponding to such a problem consists of at most p
linear segments (since function g yields at most p differ-
ent values). Other bounds on the number of iterations
of the NM for FCO can be derived from the fact that for
each iteration i, except the last one,

h(ıiC1)
h(ıi)

C
g(x(iC1))
g(x(i))

� 1; (3)

which implies that sequence (h(ıi) � g(x(i))) decreases to
0 at a geometric rate. Using this fact one can show that
the NM solves an integral linear FCOP in O(log(pU))
iterations, and any linear FCOP in O(p2 log2p) itera-

Fractional Combinatorial Optimization, Figure 1
The Newtonmethod for FCO
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tions [16,17]. The NM gives the asymptotically fastest
known algorithm for the maximum mean-weight cut
problem [16,17]. Its running time is O(nm2 log n) for
a graph with n nodes andm edges.

Megiddo’s parametric search (MPS)

LetA1 be an algorithm asA0 above but with the follow-
ing additional property: The value of each computed
arithmetic expression on each possible execution path
of algorithm A1 is a linear function of parameter ı.
Such an algorithm A1 is called a linear algorithm for
a parametric problem. MPS [13,14] solves a FCOP by
following the computation of algorithm A1 for ı = ı�.
All values calculated during this computation are lin-
ear functions of (unknown) ı� and are stored as such.
Thus each comparison amounts to calculating the sign
of the value of an expression s � t ı�, where s and t are
known numbers, and can be resolved by running algo-
rithm A0 for ı = s/t (s/t � ı�, h(s/t) � 0). If the run-
ning times of both A1 and A0 are at most T, then the
overall running time of MPS is O(T2). If algorithm A0

runs in time T0 and algorithm A1 is parallel and runs in
time T1 on P processors, thenMPS can be implemented
in such a way that the overall (sequential) running time
is O(T1P + T0T1 log P): At the kth (parallel) step of the
computation of A1 for ı = ı�, the required signs of Pk

(� P) expressions sk, j � tk, j ı�, j = 1, . . . , Pk, can be
found by at most log Pk + 1 executions of algorithm A0.
The first execution is for ı equal to the median of the
numbers sk, j/tk, j, and its result gives the signs of half of
the expressions. MPS gives, for example, the asymptot-
ically fastest known algorithms for the minimum ratio
spanning-tree problem and the minimum cost-to-time
ratio cycle problem [14]. Their running times are O(m
log2 n log log n) and O(n3 log n log log n), respectively,
for a graph with n nodes and m edges. An extension
of MPS to cases when only approximate algorithms A0

are practical is proposed in [7] and applied there to the
fractional 0–1 knapsack problem.

For some FCOPs, there are specialized algorithms
which do not follow any of the above three generic
methods. The most prominent examples are the O(mn)
[10] and O(m

p
n log(nU)) [15] algorithms for the

maximum mean cycle problem (the latter one is for the
integral case). A detailed treatment of methods for FCO
can be found in [17].
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In various applications of nonlinear programming a ra-
tio of two functions is to be maximized or minimized.
In other applications the objective function involves
more than one ratio of functions. Ratio optimization
problems are commonly called fractional programs.

One of the earliest fractional programs (though not
called so) is an equilibrium model for an expanding
economy introduced by J. von Neumann [50] in 1937.
The model determines the growth rate as the maximum
of the smallest of several output-input ratios. At a time
when linear programming hardly existed, the author
already proposed a duality theory for this nonconcave
program.

However, apart from a few isolated papers like von
Neumann’s, a systematic study of fractional program-
ming began much later. In 1962 A. Charnes and W.W.
Cooper published their classical paper [19] in which
they show that a linear fractional program can be re-
duced to a linear programwith help of a nonlinear vari-
able transformation.

The study of fractional programs with only one ra-
tio has largely dominated the literature in this field un-
til about 1980. Many of the results then known are
presented in the first monograph on fractional pro-
gramming by S. Schaible [57] (1978). Since then two
other monographs solely devoted to fractional pro-
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gramming appeared, authored by B.D. Craven [23]
and I.M. Stancu-Minasian [68]. Each of these includes
a chapter on multi-ratio fractional programs.

Fractional programs have often been studied in
the broader context of generalized convex program-
ming [4]. Ratios of convex and concave functions as
well as composites of such ratios are not convex in gen-
eral, even in the case of linear ratios. But often they
are generalized convex in some sense. From the be-
ginning, fractional programming has benefited from
advances in generalized convexity, and vice versa; see
B. Martos [45]. This is demonstrated by the fact that
the proceedings of each of the five international sym-
posia on generalized convexity contain contributions
on fractional programming; see [16,27,41,63,66]. Frac-
tional programming overlaps also with global optimiza-
tion. Several types of ratio optimization problems have
local, nonglobal optima. For an extensive survey of frac-
tional programming, see [60].

The survey [60] also contains the largest bibliogra-
phy on fractional programming so far (1999). It has al-
most twelve-hundred entries. For a separate, rich bibli-
ography see [68].

Clearly, fractional programming is a dynamic,
growing area of research. It has been encouraging to
observe that over the years research on theory and so-
lution methods has increasingly more focused on those
ratios which are of particular interest in applications.
Since these are spread over a wide range of fields, sur-
veys on fractional programming applications have been
much needed. In the single-ratio case, a first detailed
survey appeared in [57] and became a basis for [58,62]
and for surveys by others. A more recent, detailed sur-
vey of single-ratio fractional programming applications
is found in [68]. For the multi-ratio case, the surveys
in [60,61,62] may be consulted. As various classes of
fractional programs are presented below, the relevance
of each class will be indicated.

Classification

Let f , g, hk (k = 1, . . . , m) denote real-valued functions
which are defined on a set C in the n-dimensional Eu-
clidean space Rn. Consider

q(x) D
f (x)
g(x)

(1)

over the set

S D fx 2 C : hk(x) � 0; k D 1; : : : ;mg ; (2)

assuming that g(x) > 0 on C. The nonlinear program

(P) sup fq(x) : x 2 Sg (3)

is called a (single-ratio) fractional program. In some ap-
plications more than one ratio appears in the objective
function. Examples discussed in this article are

sup
�
min
1�i�p

qi(x) : x 2 S
	

(4)

and

sup

( pX
iD1

qi (x) : x 2 S

)
; (5)

where qi(x) equals the ratio of the numerator f i(x) and
the denominator gi(x) satisfying gi(x) > 0 on C. Prob-
lem (4) is sometimes referred to as a generalized frac-
tional program [62] while (5) is called a sum-of-ratios
fractional program. Both problems (4) and (5) are re-
lated to the multi-objective fractional program

max
˚
(q1(x); : : : ; qp(x)) : x 2 S

�
: (6)

So far, the functions in the numerator and denom-
inator were not specified. If f , g and hk are affine func-
tions (linear plus a constant) and C is the nonnegative
orthant of Rn, then (P) is called a linear fractional pro-
gram. It is of the following form:

sup
�
c>x C ˛
d>x C ˇ

: Ax � b; x � 0
	
; (7)

where c, d 2 Rn, ˛, ˇ 2 R, the superscript | denotes the
transpose, A is anm × nmatrix and b 2 Rm.

In generalization of a linear fractional program, we
call (P) a quadratic fractional program if C is the non-
negative orthant, f , g are quadratic and the hk are affine.

Problem (P) is said to be a concave fractional pro-
gram if the numerator f is concave on C and g, hk are
convex on C, where C is a convex set. In addition, it
is assumed that f is nonnegative on S if g is not affine.
Note that the objective function of a concave fractional
program (3) is generally not a concave function. In-
stead, it is composed of a concave and a convex func-
tion. Even under these restrictive concavity/convexity
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assumptions fractional programs are generally noncon-
cave programs.

The focus in fractional programming is the objec-
tive function and its ratio-structure. The feasible region
is generally assumed to be convex or a convex polyhe-
dron.

Single-ratio Fractional Programs

Consider the problem

(P) sup fq(x) : x 2 Sg ; (8)

where q(x) equals the ratio of the numerator f (x) and
the denominator g(x) with g(x) > 0 on C.

Applications

Fractional programs arise in management decision
making as well as outside of it. They also occur some-
times indirectly in modeling where initially no ratio is
involved. The purpose of the following overview is to
demonstrate the diversity of problemswhich can be cast
in the form of a single-ratio fractional program. Amore
comprehensive coverage which also includes the refer-
ences for the models below is given in [60]. For other
surveys of applications of (8) see [23,57,58,62,68].

Economic Applications

The efficiency of a system is sometimes characterized
by a ratio of technical and/or economical terms. Maxi-
mizing the efficiency then leads to a fractional program.
Some applications are given below.

Maximization of Productivity

P.C. Gilmore and R.E. Gomory [35] discuss a stock cut-
ting problem in the paper industry for which under the
given circumstances it is more appropriate to minimize
the ratio of wasted and used amount of raw material
rather than just minimizing the amount of wasted ma-
terial. This stock cutting problem is formulated as a lin-
ear fractional program. In a case study, J.A. Hoskins
and R. Blom [38] use fractional programming to opti-
mize the allocation of warehouse personnel. The objec-
tive is to minimize the ratio of labor cost to the volume
entering and leaving the warehouse.

Maximization of Return on Investment

In some resource allocation problems the ratio
profit/capital or profit/revenue is to be maximized.
A related objective is return per cost maximization. Re-
source allocation problems with this objective are dis-
cussed in more detail in [47]. In these models the term
‘cost’ may either be related to actual expenditure or may
stand, for example, for the amount of pollution or the
probability of disaster in nuclear energy production.
Depending on the nature of the functions describing re-
turn, profit, cost or capital, different types of fractional
programs are encountered. For example, if the price per
unit depends linearly on the output and cost and capi-
tal are affine functions, then maximization of the return
on investment gives rise to a concave quadratic frac-
tional program (assuming linear constraints). In loca-
tion analysis maximizing the profitability index (rate of
return) is in certain situations preferred to maximizing
the net present value, according to [5] and [8] and the
cited references.

Maximization of Return/Risk

Some portfolio selection problems give rise to a con-
cave nonquadratic fractional program of the form (11)
below which expresses the maximization of the ratio of
expected return and risk. For related concave and non-
concave fractional programs arising in financial plan-
ning see [60]. Markov decision processes may also lead
to the maximization of the ratio of mean and standard
deviation.

Minimization of Cost/Time

In several routing problems a cycle in a network is to
be determined which minimizes the cost-to-time ra-
tio or maximizes the profit-to-time ratio. Also the av-
erage cost objective used within the theory of stochas-
tic regenerative processes [3] leads to the minimization
of cost per unit time. A particular example occurring
within this framework is the determination of the op-
timal ordering policy of classical periodic and continu-
ous review single item inventory models, e. g., [31]. An-
other example of this framework are maintenance and
replacement models. Here the ratio of the expected cost
for inspection, maintenance and replacement and the
expected time between two inspections is to be mini-
mized, e. g., [6,30].
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Maximization of Output/Input

Charnes, Cooper and E. Rhodes [22] use a linear frac-
tional program as a model to evaluate the efficiency
of decision making units (data envelopment analysis
(DEA)). Given a collection of decision making units,
the efficiency of each unit is obtained from the maxi-
mization of a ratio of weighted outputs and inputs sub-
ject to the condition that similar ratios for every deci-
sion making unit are less than or equal to unity. The
variable weights are then the efficiency of each member
relative to that of the others. For an extensive treatment
of DEA see [21].

In the management literature there has been an in-
creasing interest in optimizing relative terms such as
relative profit. No longer are these terms merely used
to monitor past economic behavior. Instead the opti-
mization of rates is getting more attention in decision
making processes for future projects; e. g., [5,37].

Noneconomic applications

In information theory the capacity of a communica-
tion channel can be defined as the maximal transmis-
sion rate over all probabilities. This is a concave non-
quadratic fractional program. The eigenvalue problem
in numerical mathematics can be reduced to the maxi-
mization of the Rayleigh quotient, and hence gives rise
to a quadratic fractional program which is generally
not concave. An example of a fractional program in
physics is given by J.E. Falk [29]. He maximizes the
signal-to-noise ratio of a spectral filter which is a con-
cave quadratic fractional program.

Indirect Applications

There are a number of management science problems
that indirectly give rise to a concave fractional program.
A concave quadratic fractional program arises in loca-
tion theory as the dual of a Euclidean multifacility min-
imax problem. In large scale mathematical program-
ming, decomposition methods reduce the given linear
program to a sequence of smaller problems. In some
of these methods the subproblems are linear fractional
programs. The ratio originates in the minimum-ratio
rule of the simplex method.

Fractional programs are also met indirectly in
stochastic programming, as first shown in [20] and [13].

This will be illustrated by two models below [57,68].
First, consider the stochastic mathematical program:

max
˚
a>x : x 2 S

�
; (9)

where the coefficient vector a is a random vector with
a multivariate normal distribution and S is a (determin-
istic) convex feasible region. It is assumed that the de-
cision maker replaces (9) by a decision problem

max
˚
Pfa>x � kg : x 2 S

�
; (10)

i. e., he wants to maximize the probability that the ran-
dom variable a|x attains at least a prescribed level k.
Then (9) reduces to

max
�
e>x � k
p
x>Vx

: x 2 S
	
; (11)

where e is the mean vector of the random vector a and
V its variance-covariance matrix. Hence the maximum
probability model of the concave program (9) gives rise
to a concave fractional program. If in (9) the linear ob-
jective function is replaced by other types of nonlin-
ear functions, then the maxi- mum probability model
leads to various other concave fractional programs as
demonstrated in [57,68].

Consider a second stochastic program

max f f0(x)C � f1(x) : x 2 Sg ; (12)

where f 0, f 1 are concave functions on the convex fea-
sible region S, f 1 > 0 and � is a random variable with
a continuous cumulative distribution function. Then
the maximum probability model for (12) gives rise to
the fractional program

max
�
f0(x) � k
f1(x)

: x 2 S
	
: (13)

For a linear program (12) the deterministic equivalent
(13) becomes a linear fractional program. If f 0 is con-
cave and f 1 linear, then (13) is still a concave fractional
program. However, if f 1 is also a (nonlinear) concave
function, then (13) is no longer a concave fractional
program. Obviously a quadratic program (12) reduces
to a quadratic fractional program. For more details on
(12), (13) see [57,68].

Stochastic programs (9) and (12) are met in a wide
variety of planning problems. Whenever the maximum
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probability model is used as a deterministic equivalent,
such decision problems lead to a fractional program of
one type or another. Hence, fractional programs are en-
countered indirectly in many different applications of
mathematical programming, although initially the ob-
jective function is not a ratio.

With the recent advent of various interior point
methods for linear programming problems fractional
programming has been given more attention as well.
For instance, K.M. Anstreicher [2] showed that Kar-
markar’s projective algorithm is fundamentally an algo-
rithm for linear fractional programming on a simplex.

M. Gaudioso and M.F. Monaco [34] use quadratic
fractional programs as subproblems in an algorithm for
convex nondifferentiable programs. These arise as du-
als of search direction subproblems.

Theoretical and Algorithmic Results

Most of the algorithms known so far solve linear, or
more generally, concave fractional programs (8). At
least five different strategies are found in the literature
and are reviewed below.

Solving Problem (P) Directly

Concave (linear) fractional programs share some im-
portant properties with concave (linear) programs, due
to the generalized concavity (and in addition, general-
ized convexity in the linear case) of the objective func-
tion q(x) = f (x)/g(x) [4,45]:
1) a local maximum is a global maximum;
2) a maximum is unique if either the numerator is

strictly concave or the denominator is strictly con-
vex;

3) a solution of the Karush–Kuhn–Tucker optimality
conditions is a maximum, assuming f , g, hk are dif-
ferentiable on the open set C;

4) a maximum is attained at an extreme point of the
convex polyhedron S of a linear fractional program
(provided an optimal solution exists).

Because of the properties 1) and 3), it is possible to solve
concave fractional programs by several of the stan-
dard concave programming algorithms. Indeed, it was
shown that certain concave programming methods can
be applied to programs with a quasiconcave objective
function [45]; for example, the Frank–Wolfe lineariza-
tion method [23,45]. M. Boncompte and J.E. Martinez-

Legaz [14] proposed a cutting plane method for con-
cave fractional programs, based on the upper subdif-
ferentiability of the objective function. If (P) is a linear
fractional program, then property 4) can be used to cal-
culate a maximum x by determining a finite sequence
of extreme points xi of S with increasing values q(xi)
converging to x. Thus a simple simplex-like procedure
can solve linear fractional programs [45].

Solving an Equivalent Problem (Peq)

Some of the concave programming algorithms are not
suitable for generalized concave programs [45]. Thus
the choice of concave programming algorithms to solve
concave fractional programs directly is limited. How-
ever, it can be shown that every concave fractional pro-
gram is transformable into a concave program: the vari-
able transformation

y D
x

g(x)
and t D

1
g(x)

(14)

reduces (P) to

(Peq) sup
n
t f
� y
t

�
: (y; t) 2eS

o
(15)

with the regioneS represented by the relations

thk

� y
t

�
� 0; tg

� y
t

�
� 1;

y
t
2 C; t > 0; (16)

and this is a concave program [55]. If (y; t) is an optimal
solution of (Peq), then x D y/t is an optimal solution of
(P). Such a transformation was originally suggested by
Charnes and Cooper [19] who showed that with help of
(14) a linear fractional program can be reduced to a lin-
ear program. Because of the transformability into a con-
cave program, concave fractional programs can indi-
rectly be solved by any concave programming method,
applying the algorithm to the equivalent program (Peq).
Hence through transformation (14) one gains access to
all convave programming algorithms.

To solve (Peq) rather than (P) may be particularly
appropriate when the numerator f and the denomina-
tor g have a certain algebraic structure. For example,
the maximum probability model (11) or certain port-
folio selection models have an affine numerator and
a denominator which is the square root of a convex
quadratic form. In this case (Peq) reduces to a concave
quadratic program, and hence (P) can directly be solved
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by one of the standard quadratic programming tech-
niques [59]. In the special case of a linear fractional pro-
gram (7) transformation (14) yields the linear program

sup
n
c>yC ˛t : (y; t) 2bS

o
(17)

with the feasible regionbS represented by the relations

Ay � bt � 0; d>y C ˇt D 1; y � 0; t > 0:

Hence (7) can be solved by the simplex method [19].
For a comparison with other linear fractional program-
ming methods see [60].

Solving a Dual Problem (D)

One of the disadvantages of solving (P) directly is that
duality concepts of concave programming cannot be
used since basic duality relations are no longer valid for
these nonconcave programs. However, transformation
(14) enables us to gain access to concave programming
duality. Thus a dual fractional program can be defined
as one of the classical duals of the equivalent concave
program (Peq) [55]. For instance, the Lagrangian dual
of (Peq) gives rise to the dual fractional program

(D) inf
�
sup
x2C

�
f (x)� u>h(x)

g(x)
: u � 0

		
; (18)

where h = (h1, . . . , hm)|. As in concave programming,
several duality relationships can be established between
(P) and (D) [55].

Various duals have been suggested in different ap-
proaches [57,59]. However, not much effort has been
devoted to algorithmically using duality. In [56] the
dual is used to calculate bounds in an iterative proce-
dure for concave fractional programs. Much remains to
be done to take full advantage of fractional program-
ming duality in algorithms.

For the dual (D) to be a computationally attractive
alternative to (P) or (Peq), the fractional program (P)
should have a certain amount of algebraic structure in
f , g and hk. Otherwise it may well be easier to solve (P)
rather than a dual of (P). If (P) is a concave quadratic
fractional program with an affine denominator, then
the dual can be written as a linear program with one
additional concave quadratic constraint [59,65].

One advantage of a dual method is that in addi-
tion to an optimal solution of (P) also the sensitivity

of the maximal value of q(x) with regard to right-hand
side changes can be calculated. The dual variables ui

in an optimal solution turn out to be propertional to
the marginal values of q(x) at x [57,58,59]. Sensitivity
and parametric analysis for fractional programming has
been extensively discussed; see [18,23,57,58] and the
cited references.

Solving a Parametric Problem (Pq)

There is a rich class of algorithms based on the follow-
ing parametric problem associated with (P):

(Pq) max f f (x) � qg(x) : x 2 Sg ; (19)

where q 2 R is a parameter. The program (Pq) is some-
times numerically more tractable than the program (P).
For example, (Pq) is a parametric quadratic (linear)
program if (P) is a quadratic (linear) fractional pro-
gram, and (Pq) is a parametric concave program if (P)
is a concave fractional program. M. Sniedovich [67] an-
alyzed the relationship between (Pq) and classical opti-
mization techniques applied to (P).

In the following it is assumed that S is compact and
f , g are continuous on S. Let F(q) denote the optimal
value of the objective function of (Pq). F(q) is a strictly
decreasing, convex function which has a unique zero
q D q. An optimal solution x of (Pq)) is also an optimal
solution of (P) with q D f (x)/g(x). Thus solving (P) is
equivalent to finding the unique root of the nonlinear
equation F(q) = 0. With the properties of F(q) in view,
T. Ibaraki [39] applied various classical search tech-
niques to calculate the zero q D q. These interval-type
algorithms generate a succession of intervals with de-
creasing amplitude containing q D q. Computational
results are reported in [39,62]. The application of New-
ton’s method is commonly referred to as the algorithm
by W. Dinkelbach, who first proposed such a proce-
dure [28]. Its equivalence to Newton’s method was seen
later by Ibaraki. A very efficient version of Dinkelbach’s
method was suggested in [51] improving an earlier vari-
ant in [56].

Interior Point Algorithms

In addition to the four more classical strategies above,
recently new techniques have emerged which are of
the interior point type. The first such method, devel-
oped for linear fractional programs, is due to Anstre-
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icher [2]. In 1994, R.W. Freund and F. Jarre [32]
proposed a method for concave fractional programs.
A polynomial convergence is established and some nu-
merical results are reported.

Most of the computational work in single-ratio frac-
tional programming compares and tests algorithms that
use the parametric program (Pq). Much more work is
needed to compare computationally the various four
approaches above with each other and with the very re-
cent polynomial time interior point methods. Also new
methods need to be developed for certain nonconcave
fractional programs arising in applications; e. g., [59].

This section on single-ratio fractional programming
concludes with a brief discussion of integer fractional
programming. In some of the economic applications
above the variables are restricted to be integers, if in-
divisible goods are involved. Also, a number of combi-
natorial fractional programs with 0–1 variables are of
interest; for instance fractional location problems [5].

Integer Fractional Programming

This is an important, but somewhat neglected field
within fractional programming. In [5] A.I. Barros gives
an overview of some of the advances. Here the para-
metric procedure by N. Megiddo [46] stands out par-
ticularly. T. Radzik [53] provided a detailed survey of
the advances in combinatorial fractional programming.
The survey includes many of his own complexity re-
sults on Dinkelbach’s and Megiddo’s parametric proce-
dures. Among others, Radzik shows that Dinkelbach’s
algorithm solves a combinatorial linear fractional pro-
gram in a strongly polynomial number of iterations, re-
gardless of the constraint structure. Some of the results
in [53] are specialized to cases such as the problem of
profit-to-time cycles and maximum mean-weight cuts.
In the same survey also open problems in combinato-
rial fractional programming are identified.

Leaving the single-ratio case now, the three multi-
ratio fractional programs in (4), (5) and (6) will be ad-
dressed below. Among these, so far best researched is
the following.

Maximization of the Smallest of Several Ratios

Consider the Problem

sup
�
min
1�i�p

qi(x) : x 2 S
	
; (20)

where qi(x) = f i(x)/gi(x) and

S D fx 2 C : hk(x) � 0; k D 1; : : : ;mg :

It is assumed that C � Rn is nonempty, convex and hk
are real-valued convex functions onC. Before analyzing
(20), some applications of this model are outlined.

Applications

In mathematical economics problem (20) may arise
when the growth rate of an expanding economy is de-
termined [50]:

growth rate D max
x

�
min
1�i�p

outputi (x)
inputi (x)

�
; (21)

where x denotes a feasible production plan of the econ-
omy. In management science simultaneous maximiza-
tion of rates such as those discussed earlier can lead to
(20). This is so if either in a worst-case approach the
model

min
1�i�p

fi(x)
gi (x)

! sup (22)

is used or with the help of prescribed ratio goals ri

max
1�i�p

ˇ̌
ˇ̌ fi(x)
gi (x)

� ri

ˇ̌
ˇ̌! inf (23)

is employed. In both cases essentially a max-min frac-
tional program (20) is to be solved. Examples of the sec-
ond approach are found in financial planning with dif-
ferent financial ratios or in the allocation of funds under
equity considerations. Furthermore (20) was recently
used in location analysis; see [5] for details. A third area
of application of model (20) is numerical mathematics.
Given the values Fi of a function F(t) in finitely many
points ti of an interval for which an approximating ratio
of two polynomialsN(t, x1) andD(t, x2) with coefficient
vectors x1, x2 is sought. If the best approximation is de-
fined in the sense of the L1-norm, then the following
problem is to be solved:

max
i

ˇ̌
ˇ̌N(ti ; x1)
D(ti ; x2)

� Fi

ˇ̌
ˇ̌! inf (24)
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with variables x1, x2. Like (23), this problem can be re-
duced to a max-min fractional program (20).

Theoretical and Algorithmic Results

Several authors, including von Neumann [50], have
introduced dual programs for problem (20) employ-
ing different approaches; see [60]. In most duality ap-
proaches the following assumptions are made: C is
nonempty, convex and compact, �f i, gi, hk are lower
semicontinuous, �f i, gi, hk are convex, gi are positive
on C, f i are nonnegative on S, if at least one gi is not
affine, and the feasible region S is nonempty. Let F =
(f 1, . . . , f p)|, G = (g1, . . . , gp)| and h = (h1, . . . , hm)|.
The following dual is derived in [40] with help of the
Farkas lemma (cf. � Farkas lemma; � Farkas lemma:
Generalizations):

inf
u�0;

v�0;v¤0

�
sup
x2C

�
v>F(x) � u>h(x)

v>G(x)

		
: (25)

Under the assumptions above the optimal values in
(20) and (25) coincide, and duality relations much like
those in concave and linear programming hold [40]; see
also [25].

The primal max-min program (20) is associated
with a dual min-max fractional program (25). Such
a symmetry is not obvious in single-ratio fractional
programming duality theory; see (18). Symmetry be-
tween the primal and dual exists also in the following
sense: in both problems a local optimum is a global
optimum. This follows from the fact that the primal
objective function is semistrictly quasiconcave and the
dual objective function is semistrictly quasiconvex [4].
The dual objective function usually involves infinitely
many ratios in contrast to the primal one. However, this
asymmetry disappears in case of a linear problem (20)
where f i, gi, hk are affine and C is the (unbounded) non-
negative orthant of Rn. Then only finitely many ratios
need to be considered in the dual objective function.
In the linear case it can further be shown that in ad-
dition to the usual complementary slackness between
variables in one problem and constraints in the other
one, complementary slackness also exists between cer-
tain variables in one and ratios in the other one [25].
Hence in the linear case of (20) there exist complete

symmetry as well as a close relationship between the
primal and the dual fractional program.

Regarding solution methods for (20), an extension
of Dinkelbach’s algorithm to (20) was introduced by
J.P. Crouzeix, J.A. Ferland and Schaible in [26]. It
proved to have attractive convergence properties and
became the starting point for the design of similar
methods surveyed in [24]. Several of these interval-type
methods have been compared and tested. M. Gugat [36]
proposed a fast interval-type algorithm for (20) which
always converges superlinearly. Boncompte and Mar-
tinez–Legaz [14] used a cutting plane approach, orig-
inally suggested in [52] for a more general class of
quasiconcave problems, employing upper subdifferen-
tiability of the objective function in (20). A computa-
tional comparison with the Dinkelbach-type method
in [26] is carried out too. A different cutting plane
method incorporating the ideas of [52] and [67], again
for a more general class of problems than generalized
fractional programs, is discussed in [7]. In case of prob-
lem (20) the method in [7] reduces to the Dinkelbach-
type method in [26]. Thus the latter can also be viewed
as a cutting plane method.

Most of the algorithms above solve the primal prob-
lem (20). In the linear case the Dinkelbach-type algo-
rithm in [26] can also be applied to the dual because of
symmetry between (P) and (D). Recently a ‘dual’ algo-
rithm for (20) was proposed in the nonlinear case [10].
It can be viewed as an extension of the Dinkelbach-
type algorithm in [26] applied to the dual of a general-
ized linear fractional program. In [9] a new dual of (20)
was proposed as well as an efficient method to solve it.
Less restrictive assumptions ensure superlinear conver-
gence of this new ‘dual’ algorithm. An extensive com-
putational comparison of the Dinkelbach-type method
in [26] with the two dual methods was performed by
Barros, J.B.G. Frenk, Schaible and S. Zhang; see [5,9,10].
The test problems involve quadratic ratios.

Freund and Jarre [33] proposed an interior point
method for solving (20) which extends their method
in [32] for single-ratio problems. Furthermore, A.S. Ne-
mirovsky and Yu.E. Nesterov [48,49] developed several
interior point algorithms for (20) which converge in
polynomial time. The studies above contain thorough
complexity analyses. Summarizing, one can say that
max-min fractional programs have been researched
quite extensively.
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Maximizing a Sum of Ratios

Consider the multi-ratio fractional program

sup

( pX
iD1

qi(x) : x 2 S

)
; (26)

where qi(x) = f i(x)/gi(x), gi(x) > 0.

Applications

Model (26) arises naturally in decision making when
several rates are to be optimized simultaneously and
a compromise is sought which optimizes a weighted
sum of these rates. In light of the applications in the
single-ratio case, numerators and denominators may
represent profit, cost, capital, risk or time, for exam-
ple. Model (26) also includes the case where some ratios
are not proper quotients, i. e., gi(x) = 1. This describes
situations where a compromise is sought between ab-
solute and relative terms like profit and return on in-
vestment (profit/capital) or return and return/risk. Ad-
ditional applications of (26) are surveyed in [61]. To
mention a few, Y. Almogy and O. Levin [1] analyze
a multistage stochastic shipping problem and show that
a deterministic equivalent of this stochastic problem
leads to (26). M.R. Rao [54] discusses various models in
cluster analysis. The problem of optimal partitioning of
a given set of entities into a number of mutually exclu-
sive and exhaustive groups (clusters) gives rise to var-
ious mathematical programming problems, depending
on which optimality criterion is used. If the objective is
to minimize the sum of the average squared distances
within groups, then a minimum of a sum of ratios is to
be determined. H. Konno and M. Inori [42] formulated
a bond portfolio optimization problem in the form (26).

Theoretical and Algorithmic Results

As seen earlier, the case of ratios of concave and convex
functions is of particular interest in applications. Fortu-
nately, it lends itself to a relatively easy analysis of mod-
els (8) and (20). A local maximum is a global one, dual-
ity relations can be established and several efficient so-
lution techniques are available. Unfortunately, for the
sum-of-ratios problem none of this is true any longer
if in (26) all ratios f i(x)/gi(x) are quotients of concave
and convex functions. In particular, a local maximum is
usually not a global one, even in the case of linear ratios.

More often the objective function is not quasiconcave.
I.A. Bykadorov [15] studied certain generalized concav-
ity properties of sums of linear ratios and, more gener-
ally, of sums of ratios of polynomials. Only some lim-
ited theoretical results are known for the sum of con-
cave ratios; see [23] and the surveys [60,61]. In the case
of linear ratios, C.H. Scott and T.R. Jefferson [64] pro-
posed a duality concept for (26) using geometric pro-
gramming duality.

Given the small theoretical basis, it is not surpris-
ing that algorithmic advances have been rather limited
too. Several strategies have been proposed and are sur-
veyed in [61]. The best tested method can be found
in [43]. Separating numerators and denominators with
help of additional variables, problem (26) is embedded
into a higher-dimensional space with a concave objec-
tive function. A global minimum is then found through
approximation techniques. Computational experience
with the related multiplicative program in [43] shows
that the method works quite well for up to about four
terms. However, for more terms in the sum it looses its
efficiency fast. Much work is still necessary to develop
efficient algorithms for (26), even in the case of linear
ratios.

Multi-objective Fractional Programming

The problem of simultaneously maximizing several ra-
tios leads to amulti-objective fractional program

max
˚
(q1(x); : : : ; qp(x)) : x 2 S

�
; (27)

where qi(x) = f i(x)/gi(x), gi(x) > 0. Such a model arises
when in contrast to the previous two models (20) and
(26) a unifying objective is not considered. Instead, the
decision-maker is to be provided with some or all ef-
ficient (Pareto optimal) alternatives. These are feasible
solutions such that no ratio can be further increased
without decreasing at least one of the other ratios. Ap-
plications, for instance in financial planning or pro-
duction planning, can easily be envisioned in light of
the applications of fractional programming described
earlier; see also [44,60,68] and references therein. In
case of concave ratios problem (27) can be seen as
a special case of a semistrictly quasiconcave multi-
objective programming problem; e. g., [17] and articles
in [16,27,41,63,66]. Duality for multi-objective frac-
tional programs has been studied by several authors,
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usually for concave or linear ratios; see [11,68]. For
such problems also equivalences to multi-objective pro-
grams without ratios have been established [68]. These
are formed with help of the numerator and denomina-
tor functions.

Another topic, important from a theoretical and al-
gorithmic point of view, is the question whether the set
E of efficient (Pareto optimal) solutions is connected.
Only partial answers were available until very re-
cently [60]. Meanwhile connectedness has been shown
for continuous concave fractions over a compact con-
vex feasible region. This is a consequence of amore gen-
eral result in [12] for semistrictly quasiconcave objec-
tive functions. Several solution methods for the calcu-
lation of (weakly, proper) efficient solutions have been
proposed for linear and concave ratios; see [44,68] and
cited references. It is noted that the calculation of E
may simplify the solution of the difficult sum-of-ratios
problem [60] since an optimal solution of (26) is an
efficient solution. Such an approach seems to be par-
ticularly promising in case of two ratios. In summary,
some good progress has been made in the analysis of
concave multi-objective fractional programs. However
more work is needed.

Conclusion

Many interesting problems inside and outside manage-
ment decision making gives rise to the optimization of
one or several ratios. Much effort has been devoted to
the analysis of such nonconcave programs. However,
the theoretical basis is still not broad enough, espe-
cially for sum-of-ratios problems and, to a lesser ex-
tend, for multi-objective fractional programs. The com-
putational experience with fractional programs is also
quite limited. Major progress has been made for con-
cave single-ratio andmax-min fractional programs. But
much more work is necessary for the other fractional
programs of interest in applications.

See also

� Bilevel Fractional Programming
� Fractional Combinatorial Optimization
� Quadratic Fractional Programming: Dinkelbach

Method
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Introduction

One of the classes of 0-1 optimization problems is the
maximization (or minimization) of a sum of ratios of

linear 0-1 functions:

max
x2f0;1gn

f (x) D
mX
jD1

aj0 C aTj x

b j0 C bTj x
; (1)

s.t. Dx � c ; (2)

where aj 2 Rn , b j 2 Rn , aj0 2 R, b j0 2 R, D 2 Rk�n

and c 2 Rk . Problem (1)–(2) is referred to as fractional
0-1 programming problem [21], or hyperbolic 0-1 pro-
gramming problem [1,20].

Note that if for some j and x in the feasible region (2)
the term b j0 C bTj x is equal to zero, then problem (1)–
(2) may not have a finite optimum. Therefore, it is usu-
ally assumed that

b j0CbTj x ¤ 0 ; for all x 2 f0; 1gn and j D 1; : : : ;m :
(3)

Furthermore, sometimes we can make a stricter as-
sumption and require that all denominators in (1) are
positive, i. e.,

b j0CbTj x > 0 ; for all x 2 f0; 1gn and j D 1; : : : ;m :
(4)

A special simplified class of (1)–(2) is the so-called
single-ratio fractional (hyperbolic) 0-1 programming
problem:

max
x2f0;1gn

f (x) D
a0 C

Pn
iD1 ai xi

b0 C
Pn

iD1 bi xi
: (5)

Problem (1) can be generalized if instead of linear 0-1
functions we consider 0-1 polynomials:

max
x2f0;1gn

f (x) D
X
j

a j0 C
P

S2A j
a jS

Q
i2S xi

b j0 C
P

T2B j
b jT

Q
i2T xi

; (6)

where Aj and Bj are families of subsets of f1; 2; : : : ; ng.
In general case, problems of type (1), (5) and (6) can

be considered subject to various 0-1 linear and nonlin-
ear constraints. A specific class of fractional 0-1 pro-
gramming problems, where fractional terms appear not
in the objective function, but in the set of constraints, is
discussed in [2]:

max
x2f0;1gn

g(x) D
mX
iD1

wixi ; (7)
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s.t.
msX
jD1

˛s
j0 C

Pn
iD1 ˛

s
ji xi

ˇs
j0 C

Pn
iD1 ˇ

s
ji xi
� ps ; s D 1; : : : ;K ; (8)

where K is the number of fractional constraints.
Finally, we should note here that in contrast to (1)–

(2), (6) and (7)–(8), problem (5) received most of
the attention in the literature. Detailed surveys on
single-ratio fractional combinatorial optimization can
be found in [14,19].

Applications

Applications of constrained and unconstrained ver-
sions of problems (1)–(2), (5), (6), (7)–(8) arise in
scheduling [16], query optimization in data bases and
information retrieval [7], service systems design and fa-
cility location [3,20], graph theory [11], data mining [2]
and other areas [19].

Consider, for example, a problem discussed in [3].
We have a set of customers’ regions with Poisson de-
mand rates ai(i D 1; : : : ; n). These regions can be as-
signed to a service facility with an exponential service
rate b. If we define a 0-1 variable xi corresponding to
each region i such that xi D 1 if region i is serviced by
the service facility (and xi D 0, otherwise) then the ser-
vice facility can be described as an M/M/1 queue with
arrival rate � D

Pn
iD1 ai xi and service rate b. If we as-

sume steady-state conditions (� < b) then the average
waiting time for each customer is equal to

1
b � �

D
1

b �
Pn

iD1 ai xi
; (9)

and the total average waiting time is given by
Pn

iD1 ai xi
b �

Pn
iD1 ai xi

: (10)

Next suppose that the customers’ region i contributes
profit pi and the penalty for delay per unit time/per cus-
tomer is t. Then in order tomaximize the profit we need
to solve the following nonlinear knapsack problem

max
x2f0;1gn

nX
iD1

pi xi � t �
Pn

iD1 ai xi
b �

Pn
iD1 ai xi

; (11)

s.t.
nX

iD1

ai xi � b : (12)

Another interesting application of fractional 0-1
programming can be found in graph theory [11]. Let
G D (V ; E) be an undirected graph. The density d(G)
of G is defined as the maximum ratio of the number of
edges eH to the number of nodes nH over all subgraphs
H � G, i. e.

d(G) D max
HG

eH
nH

; (13)

where eH and nH are the number of edges and nodes
in the subgraph H. Obviously, the problem of finding
d(G) can be formulated as the following fractional 0-1
programming problem:

d(G) D max
x2f0;1gn ; x¤0

Pn
iD1

Pn
jD1 ai jxi x j

2
Pn

jD1 x j
; (14)

where ai j are the elements of the adjacency matrix of
G and n is the number of nodes in G. A similar formu-
lation can also be given for the arboricity � (G) which
is defined as the minimum number of edge-disjoint
forests into which G can be decomposed [11].

Complexity Issues

Constrained problems (1) and (5) where we optimize
a single- or multiple-ratio fractional 0-1 function sub-
ject to linear 0-1 constraints, as well as problem (7)–
(8) are obviously NP-hard since general linear 0-1 pro-
gramming is their special case if we set b ji D 0 and
b j0 D 1 for j D 1; : : : ;m and i D 1; : : : ; n.

An unconstrained single-ratio fractional 0-1 pro-
gramming problem (5), can be solved in polynomial
time, see [7], if condition (4) holds. If the denomi-
nator can take both negative and positive values, i. e.,
only (3) holds, single-ratio problem (5) is known to be
NP-hard [7]. In other words, the sign of the denomi-
nator is “the borderline between polynomial and NP-
hard classes” [7]. Another simple proof of this fact is
given in [1]. Recall the classical SUBSET SUM prob-
lem: Given a set of positive integers S D fs1; : : : ; sng
and a positive integer K, does there exist a vector
x 2 f0; 1gn , such that

nX
iD1

si xi D K ? (15)
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This problem is known to be NP-complete [4]. With
the instance of the SUBSET SUM problem we associate
the following unconstrained single-ratio fractional 0-1
programming problem:

max
x2f0;1gn

1
1 � 2(

Pn
iD1 si xi � K)

: (16)

It is easy to observe that (3) holds and the solution
of (16) is equal to 1 if and only if the SUBSET SUM
has a solution, which implies the necessary result. Fur-
thermore, it can be easily shown that finding an approx-
imate solution of (5) within any positive multiple of the
(negative) optimal value is NP-hard [7].

For multiple-ratio problem (1) with (4) satisfied, the
number of ratios (m D 1, or m � 2) defines complex-
ity of the problem. For m D 1 we have a classical poly-
nomially solvable single-ratio case, while for m D 2,
that is the 2-ratio case, the problem becomes NP-hard
(see [18] or [13]).

Some other aspects of the complexity of uncon-
strained single- and multiple-ratio fractional 0-1 pro-
gramming problems (1) and (5), including complexity
of uniqueness, approximability and local search, are ad-
dressed in [12,13].

Mixed Integer Reformulation

Li [9] and Wu [21] suggested a straightforward lin-
earization technique for (1) based on a simple well-
known idea: a polynomial mixed 0-1 term z D xy,
where x is a 0-1 variable, and y is a continuous vari-
able taking any positive value, can be represented by
the following linear inequalities: (1) y � z � K � Kx;
(2) z � y; (3) z � Kx; (4) z � 0, where K is an upper
bound on y.

Assume that (4) is satisfied. Define a new variable y j
for each ratio in (1) that is

y j D
1

b j0 C
Pn

iD1 b ji xi
: (17)

Then fractional 0-1 programming problem (1) can
be equivalently expressed as:

max
x2f0;1gn

mX
jD1

aj0 y j C
mX
jD1

nX
iD1

ajiu ji

s.t. Dx � c

b j0 y j C
nX

iD1

b jiu ji D 1 j D 1; : : : ;m

yj � Kj(1 � xi ) � uji � Kjxi
j D 1; : : : ;m; i D 1; : : : ; n

0 � uji � y j j D 1; : : : ;m; i D 1; : : : ; n ;
(18)

where a new variable ui j is introduced for each nonlin-
ear term y jxi , and Kj is an upper bound on y j .

Additional, though similar in spirit to (18), linear
mixed 0-1 reformulations as well as other related issues
are carefully discussed in [20].

Solution Techniques

Most of the research efforts have been focused on
solving various classes of single-ratio problem (5).
Among developed solution techniques we should men-
tion branch-and-bound [15], cutting plane [5], enu-
meration [6] and approximation algorithms [8]. How-
ever, most popular methods for solving single-ratio
fractional 0-1 programming (and general fractional
combinatorial) problems are based on the parametric
approach [10,11,14].

For some classes of multiple-ratio fractional 0-1
programming problems, there are developed special-
ized algorithms [2,3,16,17,20]. More recent examples
include a highly efficient cutting-plane algorithm for
solving problem (11)–(12) [3] and a heuristic for solv-
ing special classes of fractionally constrained problems
of type (7)–(8) [2]. Reported computational experi-
ments involved test instances with the size of up to
10,000 variables.

Unfortunately, the fractional programming prob-
lem becomes substantially more difficult if we introduce
additional ratios in the objective function. General mul-
tiple-ratio problem (1)–(2) can be solved utilizing stan-
dard branch-and-bound methods after reformulation
into linear mixed 0-1 programming problem via tech-
niques discussed in [9,20,21]. An improved branch-
and-bound algorithm based on node tightening is de-
veloped in [20].
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In 1956, M. Frank and P. Wolfe [5] published an article
proposing an algorithm for solving quadratic program-
ming problems. In the same article, they extended their
algorithm to the following problem:

min
x2S

f (x); (1)

where f (x) is a convex and continuously differentiable
function on Rn. The set S is a nonempty and bounded
polyhedron of the form S = {x 2 Rn : Ax � b, x �
0}, where A is a m × n matrix and b 2 Rm. The al-
gorithm belongs to the class of feasible direction meth-
ods for nonlinear programming problems. Starting from
a feasible solution, algorithms in this class solve (1) by
iteratively generating a feasible direction that leads to
another feasible solution with an improved objective
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function value. The Frank–Wolfe (FW) algorithm for
(1) can be stated as follows:

0 Select x1 2 S and set k = 1:
1 Let yk = arg miny2Sr f (xk)>y:

IF r f (xk)>(yk � xk) � 0
THEN stop and xk is an optimal solution
ELSE go to Step 2.

2 Let �k = arg min0�	�1 f (x
k + �(yk � xk)):

Set xk+1 = xk + �k(yk � xk) and k = k + 1;
Go to Step 1.

The Frank–Wolfe algorithm

The problem in Step 1 is generally referred to as the
direction finding problem, for the vector dk = (yk � xk)
is a feasible direction at xk. Since rf (xk) is a constant
vector with respect to y, the direction finding problem
is a linear program and can be solved using the sim-
plex algorithm. Doing so implies that dk always points
toward an extreme point since yk is always an extreme
point of S. When xk satisfies the stopping criterion, it
must be globally optimal because the following holds
for all x 2 S:

f (x) � f (xk)Cr f (xk)>(x � xk)

� f (xk)Cr f (xk)>(yk � xk) � f (xk):

The three inequalities follow from the convexity of f (x),
the fact that yk solves the direction finding problem, and
the stopping criterion, respectively.

When xk does not satisfy the stopping criterion,
rf (xk)|(yk� xk)< 0 and the algorithm proceeds to Step
2. In this step, �k is a solution to a line search prob-
lem which has only one a decision variable and can
be solved by a number of algorithms such as bisec-
tion search, golden section method and an inexact line
search technique using, e. g., Armijo’s rule [1]. It is im-
portant to note that the new solution, xk+1, has a better
objective value. To demonstrate, consider the first or-
der Taylor series expansion of f (x) around the point xk,
i. e.,

f (xk C �(yk � xk))

D f (xk)C �r f (xk)>(yk � xk)

C �



yk � xk




˛(xk ;�(yk � xk));

where lim	! 0˛(xk; �(yk � xk)) = 0. Since rf (xk)|(yk

� xk) < 0, the above expansion implies that there ex-
ists a sufficiently small b� 2 (0; 1) such that f (xk C
b�(yk � xk)) < f (xk). Using the fact that �k solves the
line search problem, the following must hold:

f (xkC1) D f (xk C �k(yk � xk))

� f (xk Cb�(yk � xk)) < f (xk):

Thus, xk+1 has a better objective value.
Using standard techniques in nonlinear program-

ming, it can be shown that the sequence of FW iterates,
xk, converges to an optimal solution. This also holds
under a weaker assumption that f (x) is pseudoconvex.
In [14], W.B. Powell and Y. Sheffi eliminate the line
search problem in Step 2 and show that the FW algo-
rithm still converges to an optimal solution as long as
�k satisfies the following conditions:

1X
kD1

�k and lim
k!1

�k D 0:

For example, one suitable choice is �k = 1/k.
The main advantage of the FW algorithm is in its

simplicity. It is easy to understand and implement on
a computer. Computer programs for the simplex and
the line search algorithms already exist and are gener-
ally available. When the constraint matrix A has a net-
work structure (see, e. g., [7,11], and [2]), more effi-
cient network algorithms can be used to solve the di-
rection finding problem and the overall computational
time can be reduced. In addition, the FW algorithm
does not require much computer storage or memory.
However, this feature may be less important as the com-
puter memory becomes available in abundance and at
a cheaper price.

The main disadvantage of the FW algorithm is its
slow convergence rate. (See Fig. 1.) During the early it-
erations, the algorithm tends to decrease the objective
function rather dramatically. However, the FW iterates
tend to zigzag as they slowly approach an optimal so-
lution. In [17], Wolfe shows that the sequence xk con-
verges geometrically to the optimal solution, if it is in
the relative interior of S and f (x) is strongly convex. On
the other hand, if the optimal solution is on the bound-
ary of S, the convergence may be slower.

In practice, there are several modifications that can
accelerate the convergence of the FW algorithm. The
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Frank–Wolfe Algorithm, Figure 1
The problem is: min {kw � xk2: x 2 S} where S is the convex
hull of E1, E2, and E3. The Frank–Wolfe algorithm generates
feasible directions that point toward either E1 or E2. It dra-
matically reduces the objective function during the first two
iterations and zigzags toward the optimal solution, x�, after-
ward

first modification is due to Wolfe [17]. It involves gen-
erating in Step 1 an additional feasible direction,bdk D

zk � xk , where zk = arg maxz 2 Srf (xk)| z. The direc-
tion bdk is generally referred to as the‘away’ direction
since it is constructed from the worst extreme point
with respect to minimizing the objective function. Be-
tween the original and the away directions, only one is
selected for the line search problem in Step 2. Although
the away direction generally leads to a faster conver-
gence in practical applications (see, e. g., [3]), J. Guélat
and P.Marcotte [8] showed that the resulting algorithm
still converges geometrically to an optimal solution un-
der appropriate assumptions. The second modification
is based on the parallel tangents (PARTAN)method in-
troduced in [15]. During the kth iteration, the PARTAN
direction, pk, is defined to be (xk � xk� 2) when k � 3.
When the FW algorithm zigzags, pk intuitively points
toward an optimal solution. (See Fig. 2.)

When integrated together, the PARTAN variant
(see [4] and [10]) of the FW algorithm alternates be-
tween the original and the PARTAN directions when
performing line searches. More formally, the original
Step 2 of the FW algorithm is replaced with the follow-
ing steps:

Frank–Wolfe Algorithm, Figure 2
The PARTAN direction, pk = (xk � xk � 2), points toward an
optimal solution

2 Let �k = arg min0�	�1 f (x
k + �(yk � xk)):

Set zk = xk + �k(yk � xk).
go to Step 3.

3 (PARTAN step)
IF k = 1
THEN set xk+1 = zk
ELSE let

˛k =arg min0�˛�˛k
max

f (xk�1+˛(zk�xk�1));

where ˛k
max is the maximal stepsize in the

direction (zk � xk�1),
set xk+1 = xk�1 + ˛k (zk � xk�1);
set k = k + 1;
return to Step 1:

Finally, the last modification for accelerating the
FW algorithm involves using some or all of the ex-
treme points generated during the current and prior it-
erations. Instead of performing a line search in Step 2,
a typical modification (see, e. g., [6,9,16] and [12]) ei-
ther requires a heuristic, approximate, or exact solution
to the following problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f

 kX
iD1

ˇi yi
!

s.t.
kX

iD1

ˇi D 1;

ˇi � 0; i D 1; : : : ; k:

(2)

The feasible region of (2) is the convex hull of {y1, . . . ,
yk}, each of which is an extreme point of S. Thus, (2)
is an approximation to (1) and this approximation im-
proves as more extreme points are added to (2). Since
the number of extreme points of S is finite, an optimal
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solution to (2) should also solve (1) after a finite number
of iterations. When (2) is solved exactly (or nearly so),
the resulting algorithm is generally known as the simpli-
cial decomposition or column generation technique and
is related to the Dantzig–Wolfe decomposition.

In the above three modifications, the direction find-
ing problems are linear programs with the same struc-
ture. In 1994, A. Migdalas [13] introduced an extension
called the regularized Frank–Wolfe algorithm in which
the direction finding problem has a nonlinear term in
the objective function to control the distance between
yk and xk. For example, one version of the regularized
direction finding problem is:

yk D argmin
y2S
r f (xk)>yC

1
2
(y � xk)>Dk(y � xk);

where Dk is a positive definite matrix.

See also

� Rosen’s Method, Global Convergence, and Powell’s
Conjecture
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The ever growing number of wireless communications
systems deployed around the globe has made the opti-
mal assignment of a limited radio frequency spectrum
a problem of primary importance. At issue are planning
models for permanent spectrum allocation, licensing,
regulation [20] and network design to include; aero-
nautical mobile, land mobile, maritime mobile, broad-
cast, land fixed (point-to-point) and satellite. Further at
issue are on-line algorithms for dynamically assigning
frequencies to users within an established network. In
particular, land cellular mobile systems have been well
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studied (I. Katzela and M. Naghshineh [9] reference
nearly 100 works in cellular dynamic channel assign-
ment).

Frequency assignment problems are typically mod-
eled in graph theoretical terms. That is, a graph G(V , E)
is considered with verticesV(G) = {v1, . . . , vn} and edges
E(G). Each vertex in V(G) represents a transmitter and
two vertices (vi, vj) are adjacent (have an edge between
them) if the corresponding transmitters are not permit-
ted to share the same frequency. The frequency contin-
uum is partitioned into channels (frequencies) of even
width and numbered consecutive integer values. A fre-
quency assignment is then a mapping f of the nonzero
positive integers Z+ to the vertices of the graph such
that no two adjacent vertices receive the same value:

f : V ! ZC

s.t. (vi ; v j) 2 E(G), f (vi) ¤ f (v j):

This formulation, where adjacent vertices cannot share
the same frequency is termed co-channel constrained
and was shown by B.H. Metzger [12] to be equiva-
lent to the well-studied graph coloring problem. Typi-
cally, the objective is to find an assignment of frequen-
cies (colors) to the transmitters (vertices) that mini-
mizes the number of frequencies (colors) used. The
minimum number �(G) for which a �(G)-coloring
exists for G is called the chromatic number. Since
graph K-colorability for arbitrary K is known to be an
NP-complete problem [6], co-channel constrained fre-
quency assignment is also NP-complete.

Consider the restriction that two adjacent vertices
may not receive frequencies that are the same or dif-
fer by exactly k. This FAP is said to be adjacent chan-
nel constrained and when k = 0 is simply the co-
channel problem. Adjacent channel constraints model
harmonic interference (signals that are integer multi-
ples of the fundamental or carrier frequency). In gen-
eral, a set T may be defined which contains zero and
a subset of the positive integers such that no two adja-
cent vertices may receive assignments whose absolute
difference is contained in T,

f : V ! ZC

s.t. (vi ; v j) 2 E(G),
ˇ̌
f (vi) � f (vj)

ˇ̌
… T:

This FAP formulation was introduced byW.K. Hale [7]
and is termed T-coloring. When T = {0}, the co-channel

constrained FAP or graph coloring problem results.
M.B. Cozzens and F.S. Roberts [4] define the number
of unique colors used in a T-coloring as the order and
the total bandwidth used (maximum color minus the
minimum color) as the span. Hence for any T-coloring,
two optimality criteria exist: minimum order, denoted
by �T(G), and minimum span, denoted by spT(G). For
the co-channel constrained FAP �T(G) = spT(G) how-
ever, in general, this is not true. Cozzens and Roberts
show that for any graph and any T the minimum or-
der is equivalent to the chromatic number; �T(G) =
�(G). Hence, T-coloring research has primarily been
focused on characterizing the minimum span using nu-
merous assumptions about the structure of G and value
of T [2,4,5,11,13,16], and [17].

In many situations, the potential for interference
between transmitters may occur on several different
levels, where each level is defined by a separate set of
edges on the common set of vertices. The kth edge set
is denoted by the graph Gk, k = 0, . . . , K. The family of
graphs thus defined and which share an identical vertex
set are sometimes referred to, in unison, as amultigraph
and denoted by G(V , G0, . . . , GK). Since each level rep-
resents a unique interference mechanism, a family of T-
sets must be also defined as T(0), . . . , T(K). Interference
occurs on the kth level when any 2 vertices adjacent in
the kth edge set receive frequencies that differ by a value
in T(k). In graph coloring nomenclature, the multilevel
FAP is denoted by

f : V ! ZC;

(x; y) 2 E(Gk), j f (x)� f (y)j … T(k);

8(x; y) 2 V ; x ¤ y; k D 0; : : : ;K;

where the family of graphs are nested such thatG0� � � �

� GK and the T-sets are reverse nested, as 0 2 T(0) �
� � � � T(K). Cozzens and D.I. Wang develop bounds on
the minimum span for general multigraph T-colorings
in [5]. Excellent reviews on T-coloring and frequency
assignment for single graphs and multigraphs may be
found in [14] and [15].

Since the simplest FAP has been shown to be NP-
complete, it is generally hopeless to pursue exact solu-
tion methods. Approximate heuristic techniques have
been the focus of most research and most of these
techniques fall under the scope of sequential heuristics.
There are three fundamental approaches to sequentially
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coloring the vertices of a graph:
� (frequency exhaustive) Given an ordering of the ver-

tices, attempt to color each vertex, sequentially, the
smallest feasible color. This approach is also called
a greedy coloring.

� (requirement exhaustive) Given an ordering of the
vertices, attempt to assign the first color to each ver-
tex, sequentially. When all vertices have been con-
sidered, attempt to assign the second color to the
unassigned vertices, then the third and so on, fol-
lowing the same vertex ordering.

� (uniform) Given an ordering of the vertices, attempt
to color each vertex, sequentially, the color that has
been least used.

The efficiency of each approach is quite dependent
upon what ordering the vertices are placed in. There are
many rules by which the vertices of a graph can be or-
dered. In a smallest-last ordering, the vertex of smallest
degree in V is denoted v1. This vertex is then deleted
from the graph and the next smallest degree vertex v2
is found and deleted, and so on until all vertices have
been deleted. The smallest-last vertex order is then {vn,
vn� 1,. . . , v1}. The largest-first vertex order sorts the ver-
tices of the graph according to their degree in G: largest
to smallest. D. Brelaz [3] introduced a vertex order-
ing specified by the saturation degree of the vertices,
from highest saturation degree to lowest. The satura-
tion degree of a vertex is defined to be the number of
different colors that exist on the vertices that are adja-
cent. The vertex with the highest saturation degree is
‘most denied’ since it has fewer colors to choose from.
J.A. Zoellner and C.L. Beall [21] compared the three se-
quential approaches with several different vertex order-
ing rules and found that, all else being equal, frequency
exhaustive methods typically yields smaller spans. Hale
[8] expanded upon these results by defining a gener-
alized structure for all sequential coloring algorithms
which consists of three fundamental steps:
1) order the vertices;
2) select the next vertex to color;
3) select the color.
Hale’s procedure is general. It cover all types of vertex
orderings in step 1 and allows for each of the three se-
quential techniques in step 3. Step 2 is added to allow
the coloring sequence to adapt during the process. Hale
introduced new sequential techniques for step 2 that are
adaptive variants of the saturation degree. A very good

review of frequency assignment heuristics can be found
in [10].

Approximate solutions may also be obtained by us-
ing more traditional polyhedral methods on relaxation
problems of the integer program (IP) formulation of
the FAP. A. Wisse [19] developed a minimum order IP
formulation for the FAP which relies on a list coloring
model, that is, the frequencies which may be assigned
are restricted to a finite list (set), designated by F, of
cardinality m. Furthermore, I is designated as the index
set for all transmitters (vertices) and n the cardinality of
I. Define two binary decision variables as

xi f D

(
1 if transmitter i assigned freq f ;
0 else;

y f D

(
1 if freq f used at least once;
0 else:

The IP which results is
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min z D
X
f2F

y f

s.t.
X
f2F

xi f D 1; 8i 2 I;

X
i2I

xi f � ny f ; 8 f 2 F;
X

g: j f�gj…T

x jg � 1 � xi f ;

8 f 2 F; 8(vi ; v j) 2 E(G);
xi f 2 f0; 1g; 8i 2 I; 8 f 2 F
y f 2 f0; 1g; 8 f 2 F:

A minimum span FAP IP formulation may be had by
deleting variable yf and adding �, defined to be the
maximum frequency assigned,
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min �

s.t.
X
f2F

xi f D 1; 8i 2 I;

X

g: j f�gj…T

x jg � 1 � xi f ;

8 f 2 F; 8(vi ; v j) 2 E(G);X
f2F

f xi f � �; 8i 2 I;

xi f 2 f0; 1g; 8i 2 I; 8 f 2 F;
� 2 F:
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Of course a solution to either IP formulation would be
exact, however efficient methods for finding solutions
to this formulation do not yet exist for problems of
large dimension. Linear relaxations of these formula-
tions where 0 � xif � 1, have been successfully devel-
oped and yield fairly good solutions for some moder-
ate size problems [1]. A potential reductionmethod [18]
has also been developed that utilizes the transformation
xif = 2xif � 1, that is, xif 2 {�1, +1}. As a result, any fea-
sible solution to the transformed IPs must satisfy x|x =
mn where x is a vector of xif in Zmn

C . The polyhedron
P formed from the linear relaxation of x and y or � in
the constraints of the IPs is then incorporated into the
problem by minimizing a logarithmic potential func-
tion over the polyhedron as

min
P

"
nm � x>x �

1
N

NX
kD1

wk log sk

#
;

where N is the number of constraints, wk are nonneg-
ative real valued weights, and sk is the slack of con-
straint k. A sequence of iterative solutions are obtained
in a three step process which begins with a nonopti-
mal feasible solution x0. An interior point method is
applied to a quadratic approximation of the potential
function within an ellipsoid centered on the current
feasible point xi. This yields a decent direction	x. The
potential function is then minimized within the ellip-
soid along the line xi+ ˛	x and yields the next iterate
xi+1. The iterate solution is then rounded to an integer
value. The algorithm stops when the rounded solution
is feasible to the original problem. This algorithm was
tested and was found to suffer from slow convergence.
As a result, an alternate quadratic assignment formu-
lation was developed which proved to be much faster.
Define a new binary valued decision variable

qi f jg D

8̂
<̂
ˆ̂:

1 if xi f D 1; x jg D 1; and
(vi ; v j) 2 E(G); j f � gj 2 T;

0 else:

Then the assignment F! x has no interference if

nX
iD1

mX
fD1

nX
jD1

mX
gD1

xi f x jg qi f jg D 0;

which is equivalent to

1
2 x
>Qx D 0;

where Q is a mn × mn matrix containing qifjg . Thus the
new potential function, with the added quadratic term,
is minimized over the polyhedron as

min
P

"
1
2
x>Qx �

1
N

NX
kD1

wk log sk

#
:

Interior point solutions of this potential function con-
verged much more quickly than those of the first for-
mulation.

See also

� Assignment and Matching
� Assignment Methods in Clustering
� Bi-objective Assignment Problem
� Communication Network Assignment Problem
� Graph Coloring
�Maximum Constraint Satisfaction: Relaxations and

Upper Bounds
�Maximum Partition Matching
� Quadratic Assignment Problem
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Some of the main indicators of progress in the math-
ematical sciences have been the occurrences of new
types of numbers. One of the more recent cases are the
complex numbers. Much of modern science cannot be
imagined without their use.

Their introduction into mathematics first had been
motivated by the wish to solve the equation

P(z) D 0; (1)

where P(z) is a polynomial.
If one considers only real numbers, such simple

equations like P(z) = z2 + 1 = 0 have no solutions. In
the field of complex numbers however (1) always at
least one solution, if P is a nonconstant polynomial with
complex coefficients. This fact is known as the funda-
mental theorem of algebra. It was first proved rigor-
ously by C.F. Gauss in 1799. Since then a large number
of proofs have been found. In this article I give some
examples for the main types of proofs: analytic, topo-
logical and algebraic.

Analytic Proofs

Possibly the simplest proof, being based on the Liouville
theorem [3]: Every bounded entire function is a con-
stant.

Assume now that the nonconstant polynomial P(z)
has no zero. Since |P(z)|!1 for |z|!1, the function
f (z) = 1/P(z) is bounded and thus a constant by Liou-
ville’s theorem. But then also P(z) is constant, a contra-
diction.

Another, still simple, proof is based on the argument
principle: The number of zeros of a holomorphic func-
tion f inside a simple closed curve � can be expressed
by the integral

1
2 i

Z

�

f 0(z)
f (z)

dz:

Let P(z) be a polynomial of degree n � 1. Choosing for
� the circle around the origin with radius R > 0, we ob-
tain for the number N of zeros of P(z):

N D
1

2 i

Z

�

P0(z)
P(z)

dz :
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Since

P0(z)
P(z)

D
n
z
C O

�
1
jzj2

�
; jzj ! 1;

we obtain N = n for R � R0. Thus P(z) has n zeros
(counted with multiplicity).

Topological Proofs

Closely related to the second analytic proof, presented
above, is the proof by the concept of homotopy [2].

If X and Y are two topological spaces, then two con-
tinuous maps '0, '1: X ! Y are called homotopic if
there exists a continuous map

' : X � [0; 1]! Y

such that

'(x; 0) D '0(x);

'(x; 1) D '1(x):

We choose X = {z 2 C: |z| = 1}, Y = C � 0. Let
P(z) = zn+ an�1zn� 1 + � � � +a0 = zn+ Q(z), say n � 1,
a0 6D 0).

For sufficiently large R the two maps

'0 : X ! Y ; z 7�! (Rz)n;

'1 : X ! Y ; z 7�! P(Rz)

are homotopic. A homotopy is in fact given by '(z, t) =
(Rz)n + t Q(Rz), z 2 X, t 2 [0, 1]. If there is no zero of
P(z) inside the circle |z| = R, '1 and thus also '0 would
be homotopic with the constant map

'c : X ! Y ; z 7�! a0;

which can be shown to be false by topological means.

Algebraic Proofs

Since there is no purely algebraic system of axioms for
the field of complex numbers there cannot be a purely
algebraic proof. However there is a proof which as the
only result from analysis uses the intermediate value
theorem [1], which we reproduce here.

A statement equivalent to the fundamental theorem
is that C is the algebraic closure of R. We start by show-
ing that every nonconstant polynomial P(z) with real
coefficients has a complex zero. We proceed by induc-
tion.

Let n be the degree of P(z).
i) If n is odd, the claim is an immediate consequence

of the intermediate value theorem.
ii) Let n = 2tu with odd u, t > 0, and assume the claim

has been proven for t � 1.
We select a splitting field S for P(z) over C. Then we
have a decomposition

P(z) D (z � a1) � � � (z � an) in S[z]:

For an arbitrary real number c we form the expres-
sions bij(c) = aiaj + c(ai + aj) and the polynomial Q(z)
=
Q

1� i < j� n (z � bij(c)). The coefficients of Q(z) are
symmetric polynomials in a1, . . . , an over R and thus
real. The degree of Q(z) is n(n � 1)/2 = 2t�1u(2tu� 1)
= 2t�1v for an odd number v. By the induction hypoth-
esis Q(z) has at least one zero in C. Thus bij(c) is in C
for a pair of subscripts (i, j) that may depend on c. If
this construction is carried out for all natural numbers
c with 1 � c � 1 + n(n� 1)/2 one finds c and c0 belong-
ing to the same pair of subscripts, i. e. there is a pair (i, j)
with bij(c) 2 C and bij(c0) 2 C. If one solves the system
of equations

bi j(c) D ai a j C c(ai C aj);

bi j(c0) D ai a j C c0(ai C aj)

one obtains ai D a/2 ˙
p
a2 � 4b2/2 2 C. Thus P(z)

has a complex zero.
Let now P(z) 2 C[z] be irreducible and t a zero of

P(z) in a splitting field of P(z) over C. Then P(z) is the
irreducible polynomial of t over C. Since t is algebraic
over C and C is algebraic over R, t is algebraic over R.
We denote the irreducible polynomial of t over R by
U(z). Then P(z)/U(z) in C[z].

U(z) has at least one zero in C. Since C is normal
over R, U(z) splits into linear factors in C[z]. Thus P(z)
is linear and t 2 C.

See also

� Gröbner Bases for Polynomial Equations
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Fuzzy multi-objective linear programming extends the
linear programming model (LP) in two important as-
pects:
� multiple objective functions representing different

points of view (criteria) used for evaluation of fea-
sible solutions,

� uncertainty inherent to information used in the
modeling and solving stage.
A general model of the FMOLP problem can be pre-

sented as the following system:

[ec1x; : : : ;eckx]!emin (1)

such that

eaixe�ebi ; i D 1; : : : ;m; (2)

x � 0; (3)

whereec1 D [ecl1; : : : ;ecln (l = 1, . . . , k), x = [ x1, . . . , xn]|,
eai D [eai1; : : : ;eain (i = 1, . . . , m). The coefficients with
the sign of wave are, in general, fuzzy numbers, i. e. con-
vex continuous fuzzy subsets of the real line. The wave

over min and relation � ‘fuzzifies’ their meaning. Con-
ditions (2) and (3) define a set of feasible solutions (de-
cisions) X. An additional information completing (1) is
a set of fuzzy aspiration levels on particular objectives,
thought of as goals, denoted byeg1; : : : ;egk .

There are three important special cases of the above
problem that gave birth to the following classes of prob-
lems:
� flexible programming;
� multi-objective linear programming (MOLP) with

fuzzy coefficients;
� flexible MOLP with fuzzy coefficients.

In flexible programming, coefficients are crisp but
there is a fuzzified relation e� between objective func-
tions and goals, and between left- and right-hand sides
of the constraints. This means that the goals and con-
straints are fuzzy (‘soft’) and the key question is the de-
gree of satisfaction. In MOLP with fuzzy coefficients all
the coefficientsare, in general, fuzzy numbers and the
key question is a representation of relation � between
fuzzy left- and right-hand sides of the constraints. Flex-
ible MOLP with fuzzy coefficients concerns the most
general form (1)–(3) and combines the two key ques-
tions of the previous problems.

The two first classes of FMOLP problems use dif-
ferent semantics of fuzzy sets while the third class com-
bines the two semantics. In flexible programming, fuzzy
sets are used to express preferences concerning satisfac-
tion of flexible constraints and/or attainment of goals.
This semantics is especially important for exploiting in-
formation in decision making. The gradedness intro-
duced by fuzzy sets refines the simple binary distinc-
tion made by ordinary constraints. It also refines the
crisp specification of goals and ‘all-or-nothing’ deci-
sions. Constraint satisfaction algorithms, optimization
techniques and multicriteria decision analysis are typi-
cally involving flexible requirements which can be rep-
resented by fuzzy relations.

In MOLP with fuzzy coefficients, the semantics of
fuzzy sets is related to the representation of incom-
plete or vague states of information under the form
of possibility distributions. This view of fuzzy sets en-
ables representation of imprecise or uncertain informa-
tion in mathematical models of decision problems con-
sidered in operations research. In models formulated in
terms of mathematical programming, the imprecision
and uncertainty of information (data) is taken into ac-
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count through the use of fuzzy numbers or fuzzy in-
tervals instead of crisp coefficients. It involves fuzzy
arithmetic and other mathematical operations on fuzzy
numbers that are defined with respect to the famous
Zadeh’s extension principle.

In flexible MOLP with fuzzy coefficients, the uncer-
tainty and the preference semantics are encountered to-
gether. This is typical for decision analysis and opera-
tions research where, in order to deal with both uncer-
tain data and flexible requirements, one can use a fuzzy
set representation.

Below, we make a tutorial characterization of
the three classes of problems and solution meth-
ods. For more detailed surveys see, e. g., [16,18,20,27,
30,32,36,37].

Flexible Programming

Flexible programming has been considered for the first
time in [41] with respect to single-objective linear pro-
gramming. It is based on a general Bellman–Zadeh
principle [2] defining the concept of fuzzy decision as an
intersection of fuzzy goals and fuzzy constraints. A fuzzy
goal corresponding to objective clx is defined as a fuzzy
set in X; its membership function �l : X! [0, 1] char-
acterizes the decision maker’s aspiration of making clx
‘essentially smaller or equal to gl’. A fuzzy constraint
corresponding to aixe�bi is also defined as a fuzzy set
in X; its membership function �i! [0, 1] characterizes
the degree of satisfaction of the ith constraint.

In order to define the membership function �i (x)
for the ith fuzzy constraint, one has to know the tol-
erance margin di � 0 for the right-hand side bi (i =
1, . . . ,m);

�i (x) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1 for aix � bi ;
strictly decreasing from 1 to 0

for bi < aix < bi C di ;
0 for aix � bi C di :

(4)

Specifying a membership level ˛, ˛ 2 [0, 1], in [41]
the set of feasible solutions ofeach fuzzy constraint has
been restricted to the crisp set

Xi
˛ D fx : �i (x) � ˛g ; i D l ; : : : ;m:

Then, the set of feasible solutions of a flexible program-
ming problem is X˛ = \m

iD1 Xi
˛ . The single objective

function is replaced by the fuzzy goal

�G (x) D
minx2X0fcxg

cx
:

To get an optimal solution one has to determine the op-
timal pair (˛�, x�) such that

minf˛�; �(x�)g D supmin/

�
˛;max

x2X˛
f�G(x)g

�
: (5)

If the optimal ˛� was determined a priori, the prob-
lem(5) could be reduced to a crisp mathematical pro-
gramming problem where the objective was to find x�

that maximizes �G (x) on the set X�˛ . In the general case
an iterative algorithm is necessary when beginning with
any ˛1 2 [0, 1], the values ˛k and maxx2X1k {�G (x)}
converge to the optimum step by step.

H.J. Zimmermann [46] has proposed a more in-
tegrative approach to flexible programming allowing
consideration of multiple goals and constraints on
a common ground. An aspiration level gl and a toler-
ance margin dl � 0 have to be assumed for the lth goal
(l = 1, . . . , k) when assessing the membership function
�l(x) as:

�l (x) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1 for clx � gl ;
strictly decreasing from 1 to 0

for gl < clx < gl C dl ;
0 for clx � gl C dl :

(6)

According to the Bellman–Zadeh principle, the set
of fuzzy decisions is characterized by an aggregation of
the component membership functions. If a conjunctive
minimum operator were used for the aggregation, the
membership function would be:

�D(x) D min
l ;i
f�l (x); �i(x)g: (7)

Then, the problem of finding the best decision (solu-
tion) boils down to the following optimization prob-
lem:

(
�D(x) ! max
s.t. x � 0:

(8)

The value of the aggregated function �D(x) can be
interpreted as the overall degree of satisfaction of the
decision maker with k fuzzy goals and m fuzzy con-
straints.
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In case of minimum operator (7), problem (8) be-
comes:

8̂
ˆ̂̂<
ˆ̂̂̂
:

v ! max
s.t. v � �l (x); l D 1; : : : ; k;

v � �i (x); i D 1; : : : ;m;
x � 0:

(9)

In [46,47], Zimmermann has applied linear mem-
bership functions (4), (6) in problem (9) thus getting an
ordinary LP problem. He also proposed to use the prod-
uct operator instead of minimum, however, then (8) be-
comes nonlinear even if linear membership functions
are used. A comprehensive review of various proposi-
tions for modeling the functions �D(x) can be found
in [39,48].

Knowing the membership functions �l(x)(l =
1,. . . , k) for fuzzy goals, one can define a Pareto optimal
solution in the space of membership values, calledan
M-Pareto optimal solution [32]. Some other refine-
ments of the Zimmermann’s approach have been pro-
posed in [1,11].

Definition 1 A solution x� is said to be M-Pareto op-
timal if and only if there does not exist another x 2 X
such that�l(x)��l(x�), l = 1, . . . , k, with strict inequal-
ity holding for at least one l.

The concept of M-Pareto optimal solutions was at the
origin of several interactive methods proposed for flex-
ible programming (see [30,32]). In these methods, the
decision maker determines membership functions for
fuzzy goals and then specifies reference levels for the
membership functions, denoted by �l (l = 1, . . . , k).
Assuming some minimum levels for membershipfunc-
tions of fuzzy constraints, denoted by ti (i = 1, . . . , m),
one gets the following optimization problem:
8̂
<̂
ˆ̂:

max
l
f�l � �l (x)g ! min

s.t. �i (x) � ti ; i D 1; : : : ;m;
x � 0;

which is equivalent to
8̂
ˆ̂̂<
ˆ̂̂̂
:

v ! min
s.t. v � �l � �l (x); l D 1; : : : ; k;

�i (x) � ti ; i D 1; : : : ;m;
x � 0:

(10)

Again, problem (10) becomes an ordinary LP prob-
lem when all membership functions are linear. This ap-
proach is interactive in the sense that the reference lev-
els can be changed from one iteration to another, as well
as the membership functionsof fuzzy goals.

MOLPwith Fuzzy Coefficients

All fuzzy coefficients of the FMOLP problem are given
in a convenient form of L-R fuzzy numbers [13]. An L-
R (flat) fuzzy numberea D (aL; aR ; ˛L ; ˛R)LR is defined
by the membership function:

�ã(r) D

8̂
<̂
ˆ̂:

L
�
aL � r
˛L

�
for r � aL;

1 for aL � r � aR ;

R
�
r� aR
˛R

�
for r � aR ;

where L and R are symmetric bell-shaped reference
functions which are strictly decreasing in [0, 1] and
such that L(0) = R(0) = 1, L(1) = R(1) = 0; [aL, aR] is an
interval of the most possible values, and ˛L and ˛R are
nonnegative left and right ‘spreads’ ofea, respectively.

Experience indicates that an expert can describe the
precise form of a fuzzy number only rarely. Therefore,
as a practical way of getting suitable membership func-
tions of fuzzy coefficients, H. Rommelfanger [26] has
proposed that the expert begins with the specification
of some prominent membership levels ˛ and associates
them with special meanings. After that the expert is
expected tospecify values which belong to the selected
membership levels.

˛ = 1: �ã(r) D 1 means that value r certainly belongs
to the set of possible values;

˛ = �: �ã(r) � �means that the expert estimates that
value r with �ã(r) � � has a good chance of
belonging to the set of possible values;

˛ = ": �ã(r) < " means that value r with �ã(r) < "

has only a very little chance of belonging to the
set of possible values, i. e. the expert is willing
to neglect the corresponding values of r with
�ã(r) < ".

For example, it is reasonable to assume that � = 0.6,
" = 0.1.

For the sake of clarity, let us assume that the refer-
ence functions of all fuzzy coefficients are of two kinds
only: L and R. It should be specified, moreover, that all
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arithmetic operations on fuzzy numbers taking place in
(1), (2) are extended operations in the sense of Zadeh’s
extension principle [45]:

fã�b̃(r) D sup
rDy�z

T( fã(y); fb̃(z)); r 2 R; (11)

where 
 is a real operation 
: R × R! R and T: [0, 1]
× [0, 1]! [0, 1] is any given t-norm.

For any x� 0, the left-hand side of the ith constraint
and the value of the lth objective function can be sum-
marized to the following fuzzy numbers:

eaix D
�
aLi x; a

R
i x; ˛

L
i x; ˛

R
i x
�
LR ; i D 1; : : : ;m;

eclx D
�
cLl x; c

R
l x; �

L
l x; �

R
l x
�
LR ; l D 1; : : : ; k:

In the literature the min t-norm is generally applied.
Then,

aLi x D
nX

jD1

aLi jx j; cLl x D
nX

jD1

cLl j x j; (12)

aRi x D
nX

jD1

aRi jx j; cRl x D
nX

jD1

cRl j x j; (13)

˛L
i x D

nX
jD1

˛L
i j x j; � L

l x D
nX
jD1

� L
l jx j; (14)

˛R
i x D

nX
jD1

˛R
i jx j; �R

l x D
nX
jD1

�R
l jx j: (15)

Obviously, the spreads of these fuzzy numbers extend
when number and values of variables increase. The sim-
ple addition of the spreads of fuzzy coefficients corre-
sponds to the assumption that their uncertainty comes
fromindependent sources. This is not realistic in many
practical situations. For getting a more realistic ex-
tended addition of the left-hand sides of fuzzy con-
straints and of fuzzy objectives, Rommelfanger and T.
Keresztfalvi [29] recommend the use of Yager’s param-
eterized t-norm:

Tp(t1; : : : ; ts)

D max

8<
:0; 1 �

 sX
iD1

(1 � ti)p
!1/p

9=
; ;

t1; : : : ; ts 2 [0; 1]; p > 0: (16)

Then, aLi x, a
R
i x, cLl x, c

R
l x are calculated according to (12)

and (13), however, the spreads ˛L
i x, ˛

R
i x, �

L
l x, �

R
l x are

calculated according to a new, less cumulative formula:

˛L
i x D

0
@

nX
jD1

�
˛L
i j x j

�q
1
A

1/q

;

˛R
i x D

0
@

nX
jD1

�
˛R
i jx j

�q
1
A

1/q

;

� L
i x D

0
@

nX
jD1

�
� L
i jx j

�q
1
A

1/q

;

�R
i x D

0
@

nX
jD1

�
�R
i jx j

�q
1
A

1/q

;

where q = p/(p� 1)� 1.
Coming back to MOLP problem with fuzzy coeffi-

cients, we haveto answer the question how to interpret
the relation between fuzzy left- and right-hand side of
the constraints. If constraints (2) were transformed to
equality constraints (by addition of slack variables on
the left) thenthe equality relation could be interpreted
in terms of weak inclusion of fuzzy sets [12,21]:

eaix �ebi ; i D 1; : : : ;m: (17)

It says that the region of possible values of the left-hand
side should be contained in the tolerance region of the
right-hand side. The LP problem with constraints (17)
is called robust programming problem.

Each constraint (18) is then reduced to four deter-
ministic constraints:

aLi x � bLi ; aRi x � bRi ;

aLi x� ˛
L
i x � bLi � ˇ

L
i ;

aRi xC ˛
L
i x � bRi C ˇ

R
i ;

for i D 1; : : : ;m;

(18)

where ebi D (bLi ; b
R
i ; ˇ

L
i ; ˇ

R
i )LL or ebi D (bLi ; b

R
i ;

ˇL
i ; ˇ

R
i )RR , i = 1,. . . ,m.

In order to transform fuzzy objectives into deter-
ministic equivalents, one can consider a ‘middle’ value
ofeclx at some level � 2 [0, 1], l = 1, . . . , k. The ‘middle’
can be understood [8] as a weighted combination of the
most possible values cLl x and cRl x, and of the smallest
and the greatest (extreme) values at possibility level �.
Thus, the objectives (1) become:

[z1(x); : : : ; zk(x)]! min; (19)
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where zl(x) = w1cLl � w2�
L
l xL
�1(�) + w3cRl x + w4

�R
l xR

�1(�), l = 1, . . . , k; w1, w2, w3, w4 are nonnega-
tive weights, e. g. w1 = w3 = 0.3, w2 = w4 = 0.2. The
deterministicobjectives (19) are linear even if reference
functions L and R are nonlinear.

There exist approaches proposing a substitution of
each objective by several deterministic objectives corre-
sponding to extreme values of several �-level sets [9,28].

Finally, let us mention a comparison technique of
fuzzy numbers, which is based on the compensation
of area determined by the membership functions of
two fuzzy numbers being compared. This technique,
which has been characterized in [17] and [5], and then
in [31] and [15], can be used directly to transform
the comparison of fuzzy left- and right-hand side of
the constraints, and of the fuzzy objectives and fuzzy
goals into nonparametric deterministic equivalents. Al-
though this technique seems intuitive, it has a convinc-
ing theoretical foundation.

Indeed, the semantics of fuzzy numbers consid-
ered in the MOLP problem with fuzzy coefficients is
related to the representation of incomplete or vague
states of information under the form of possibility dis-
tributions. This view of fuzzy numbers is concordant
with the Dempster interpretation of fuzzy numbers as
imprecise probability distributions [10]. In this per-
spective, the comparison of two fuzzy numbers can
be substituted by the comparison of their mean val-
ues defined consistently with the well-known defini-
tion of expectation in probability theory. The idea ex-
ploited in [14] relies on the mathematical fact that,
with respect to a fuzzy number, the possibility mea-
sure corresponds to an upper probability distribu-
tion, while the necessity measure, to a lower proba-
bility distribution of the corresponding random vari-
able. Then it is reasonable to define the mean value
of a fuzzy number as a closed interval whose bounds
are expectations of upper and lower probability distri-
butions. The comparison of two fuzzy numbers boils
down to the comparison if arithmetic means of these
bounds, which is computationally equivalent to the
above mentioned technique based on area compensa-
tion, as shown in [15].

In consequence of application of all these compar-
ison techniques, the MOLP problem with fuzzy co-
efficients is transformed to an associate deterministic
MOLP problem, as (19), (18), (3) above, which should,

preferably, be solved by one of existing interactive pro-
cedures (see, e. g., [43]).

FlexibleMOLP with Fuzzy Coefficients

This problem combines the two semantics of fuzzy sets
considered separately in flexible programming and in
MOLP with fuzzy coefficients. This means that in addi-
tion to fuzzy coefficients in the objective functions and
on the both sides of the constraints, the degree of sat-
isfaction of fuzzy constraints and fuzzy goals is consid-
ered in fuzzy set terms.

A crucial question which has to be answered while
solving a flexible MOLP problemwith fuzzy coefficients
is how to express the minimal conditions on the satis-
faction of fuzzy constraints in deterministic terms.

In most of existing approaches, the minimal condi-
tions on the satisfaction of fuzzy constraints (2) are ex-
pressed by one or two deterministic linear constraints
which substitute the original fuzzy constraints. To give
an idea of these crisp surrogates, let us present them in
common terms from the most pessimistic to the most
optimistic attitude. We assume the following form of
the fuzzy left- and right-hand side of the ith constraint:

eaix D (aLi x; a
R
i x; ˛

L
i x; ˛

R
i x)LR ;

ebi D (bi ; 0; ˇi )LR;

a) (see [3,40])

aRi xC ˛
R
i xR

�1(�) � bi ; � 2 [0; 1];

b) (see [22,25,44])
8̂
<̂
ˆ̂:

aRi x � bi
aRi xC ˛

R
i xR

�1(") � bi C ˇi R�1(");
" 2 [0; 1];

c) (see [4])

aRi xC ˛
R
i xR

�1(�) � bi C ˇi R�1(�);

� 2 [0; 1];

d) (see [8,34,35])
8̂
ˆ̂̂<
ˆ̂̂̂
:

aLi x � bi � ˛L
i xL
�1(�)C ˇi R�1(�);

� 2 [0; 1]; optimistic;
aRi xC ˛

R
i xR

�1(�) � bi C ˇi R�1(�);
� 2 [0; 1]; pessimistic;
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e) (see [23])
8̂
<̂
ˆ̂:

aRi x � bi C ıˇi ;

ı C " 2 [0; 1]; ı � 0; " � 0;
aRi xC (1 � " � ı)˛R

i x � bi C (1 � ")ˇi ;

f) (see [33,19])

aLi x� ˛
L
i xL
�1(˛) � bi C ˇi R�1(˛);

˛ 2 [0; 1]:

In all these approaches, the parameters ˛, ı, ", �, � ,
�, � can be used by the decision maker to control the
degree of satisfaction of fuzzy constraints in an interac-
tive way.

Figure 1 shows results of conditions a)–f) applied
on a common fuzzy constraint. Although it is the case
in Fig. 1, the reference functions L and R need not be
linear in the above conditions.

Another interpretation of fuzzy constraints has
been given in [24]. The ith fuzzy constraint is replaced
by the pessimistic condition proposed in [34] and by
a new objective:

aRi xC ˛
R"
i x � bi C ˇ"i ; (20)

�i (x)! max; (21)

where membership function �i(x) is defined according
to (4). More detailed discussion of the interpretation of
fuzzy constraints can be found in [30].

If fuzzy goals are specified as L-R fuzzy numbers
egl D (gl ; 0; vl )LL (l = 1, . . . , k), then the satisfying con-
ditions

eclxe�eg l ; l D 1; : : : ; k; (22)

can be treated as additional fuzzy constraints. In accor-
dance to the chosen interpretation of the fuzzy inequal-
ity relation, (22) can be substituted by one or two crisp
inequalities listed above or by (20) and (21). Another
proposal has been made by R. Slowinski in [34,35]; the
degree of satisfaction of fuzzy goals is represented there
by the levels of intersection of left reference functions
ofeclx with right reference functions of gl (l = 1, . . . , k):

L

 
cLl x � gl
� L
l xC vl

!
! max; l D 1; : : : ; k: (23)

These crisp objectives substitute the fuzzy ones. In the
case of linear reference functions L, functions (23) be-
come linear fractional:

cLl x � gl
� L
l xC vl

! min; l D 1; : : : ; k: (24)

The crisp objectives (24) and the optimistic and pes-
simistic conditions d) on the satisfaction of fuzzy con-
straints have been used in the FLIP method presented
in [8,34,35,39]. They constitute an associate deter-
ministic multi-objective linear-fractional programming
(MOLFP) problem. In FLIP, the MOLFP problem is
solved using an interactive sampling procedure. In each
calculation step of this procedure, a sample of nondom-
inated points (Pareto optimal solutions) of the MOLFP
problem is generated and then shown to the decision
maker who is asked to select the one that fits best
his/her preferences. If the selected point is not the final
compromise, it becomes a central point of a nondomi-
nated region that is sampled in the next calculation step.
In this way, the sampled part of the nondominated set is
successively reduced (focusing phenomenon) until the
most satisfactory efficient point (compromise solution)
is reached. An important advantage of the method pre-
sented above is that the only optimization procedure
to be used is a linear programming one. Moreover, it
has a simple scheme and allows retractions to the points
abandoned in previous iterations.

The interaction with the decision maker takes place
at two levels: first when fixing the safety parameters and
then in the course of the guided generation and evalu-
ation of the nondominated points of the MOLFP prob-
lem.

Let us precise that the fuzzy goals gl (l = 1, . . . , k)
do not influence the set of nondominated points of the
MOLFP problem; they rather play the role of a visual
reference than that of a preferential information influ-
encing the set of generated proposals for the compro-
mise solution.

An important feature of any software implement-
ing a fuzzy multi-objective programming method is the
presentation of candidate solutions in the interactive
process. In the FLIP software, the Pareto optimal so-
lutions of the MOLFP problem are shown not only nu-
merically but also graphically, in terms of mutual po-
sitions of fuzzy numbers corresponding to original ob-
jectives and aspiration levels on the one hand, and to
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FuzzyMulti-objective Linear Programming, Figure 1
Results of conditions a)–f) applied on a common fuzzy constraint
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left- and right-hand side of original constraints on the
other hand [6]. In this way, the decision maker gets
quite a complete idea of the quality of each proposed
solution.

The quality is evaluated taking into account the fol-
lowing characteristics:
� scores of fuzzy objectives in relation to the goals;
� dispersion of values of the fuzzy objectives due to

uncertainty;
� safety of the solution or, using a complementary

term, the risk of violation of the constraints.
So, the definition of the best compromise involves

not only the scores on particular objectives but also the
safety of the corresponding solution. It is possible due
to visual interaction that needs graphical display of ob-
jectives and constraints for any analyzed solution. The
comparison of fuzzy left- and right-hand side of the
constraints, as well as evaluation of dispersion of the
values of objectives, is practically infeasible on the ba-
sis of numerals only. The graphical presentation of pro-
posed solutions is not only a ‘user friendly’ interface but
the best way for a complete characterization of these so-
lutions.

There exists an implementation of FLIP in Visual
Basic in the MS-Excel environment; it allows a user to
define all safety parameters and the parameter p of the
Yager’s formula (16) for the aggregation of fuzzy objec-
tives and of fuzzy left-hand sides of fuzzy constraints.
The candidates for the best compromise solution are
displayed there both numerically and graphically.

Conclusions

Fuzzy multi-objective linear programming methods
have often been proposed in view of specific applica-
tions (see, e. g., [6,18,30,34,39,44]). This means that the
many proposals described in this article are based on
different assumptions that are verified in different prac-
tical situations. The choice of a procedure for an ac-
tual decision problem should take into account these
assumptions. In any case, the interactive process should
enable the best use of the decision maker’s knowledge
of the problem. Fuzzy multi-objective linear program-
ming can also be seen as a tool for an interactive robust-
ness analysis of MOLP problems. It gives an insight into
sensitivity of proposed solutions on changes of partic-
ular coefficients within some intervals and on changes

of preferences as to degrees of satisfaction of the con-
straints.

See also

� Bi-objective Assignment Problem
� Decision Support Systems with Multiple Criteria
� Estimating Data for Multicriteria Decision Making

Problems: Optimization Techniques
� Financial Applications of Multicriteria Analysis
�Multicriteria Sorting Methods
�Multi-objective Combinatorial Optimization
�Multi-objective Integer Linear Programming
�Multi-objective Optimization and Decision Support

Systems
�Multi-objective Optimization: Interaction of Design

and Control
�Multi-objective Optimization: Interactive Methods

for Preference Value Functions
�Multi-objective Optimization: Lagrange Duality
�Multi-objective Optimization: Pareto Optimal

Solutions, Properties
�Multiple Objective Programming Support
� Outranking Methods
� Portfolio Selection and Multicriteria Analysis
� Preference Disaggregation
� Preference Disaggregation Approach: Basic

Features, Examples From Financial Decision
Making

� Preference Modeling

References

1. Behringer FA (1981) A simplex-based algorithm for the lex-
icographically extended linear maxmin problem. Europ J
Oper Res 7:274–283

2. Bellman RE, Zadeh LA (1970) Decision making in a fuzzy
environment. Managem Sci 17(4):141–164

3. Buckley JJ (1988) Possibilistic linear programming with tri-
angular fuzzy numbers. Fuzzy Sets and Systems 26:135–
138

4. Carlsson C, Korhonen P (1986) A parametric approach to
fuzzy linear programming. Fuzzy Sets and Systems 20:17–
30

5. Chanas S (1987) Fuzzy optimization in networks. In:
Kacprzyk J, Orlowski SA (eds) Optimization Models Using
Fuzzy Sets and Possibility Theory. Reidel, London, pp 303–
327

6. Czyzak P (1990) Application of “FLIP” method to farm
structure optimization under uncertainty. In: Slowinski R,



Fuzzy Multi-objective Linear Programming F 1111

Teghem J (eds) Stochastic versus Fuzzy Approaches to
Multiobjective Mathematical Programming under Uncer-
tainty. Kluwer, Dordrecht, pp 263–278

7. Czyzak P, Slowinski R (1991) "FLIP"-multiobjective fuzzy
linear programming software with graphical facilities.
In: Fedrizzi M, Kacprzyk J, Roubens M (eds) Inter-
active Fuzzy Optimization. Springer, Berlin, pp 168–
187

8. Czyzak P, Slowinski R (1993) A visual interactive method
for MOLP problems with fuzzy coefficients. In: Lowen R,
Roubens M (eds) Fuzzy Logic-State of the Art. Kluwer, Dor-
drecht, pp 321–332

9. Delgado M, Verdegay JL, Vila MA (1989) A general model
for fuzzy linear programming. Fuzzy Sets and Systems
29:21–30

10. Dempster AP (1967) Upper and lower probabilities in-
duced by a multivalued mapping. Ann Math Statist
38:325–339

11. Dubois D, Fortemps Ph (1999) Computing improved op-
timal solutions to max-min flexible constraint satisfaction
problems. Europ J Oper Res 118:95–126

12. Dubois D, Prade H (1980) Systems of linear fuzzy con-
straints. Fuzzy Sets and Systems 3:37–48

13. Dubois D, Prade H (1987) Fuzzy numbers-an overview. In:
Bezdek JC (ed) Analysis of Fuzzy Information: vol 1, Mathe-
matics and Logic. CRC Press, Boca Raton, FL, 3–39

14. Dubois D, Prade H (1987) The mean value of a fuzzy num-
ber. Fuzzy Sets and Systems 24:279–300

15. Fortemps Ph, Roubens M (1996) Ranking and defuzzifica-
tionmethods based on area compensation. Fuzzy Sets and
Systems 82:319–330

16. Inuiguchi M, Ichihashi H, Tanaka H (1990) Fuzzy program-
ming: A survey of recent developments. In: Slowinski R,
Teghem J (eds) Stochastic versus Fuzzy Approaches to
Multiobjective Mathematical Programming under Uncer-
tainty. Kluwer, Dordrecht, pp 45–68

17. Kolodziejczyk W (1986) Orlovsky’s concept of decision-
making with fuzzy preference relation-further results.
Fuzzy Sets and Systems 19:11–20

18. Lai Y-J, HwangC-L (1994) Fuzzymultiple objective decision
making: Methods and applications. Springer, Berlin

19. Luhandjula MK (1987) Multiple objective programming
with possibilistic constraints. Fuzzy Sets and Systems
21:135–146

20. Luhandjula MK (1989) Fuzzy optimization: An appraisal.
Fuzzy Sets and Systems 30:257–282

21. Negoita CV (1981) The current interest in fuzzy optimiza-
tion. Fuzzy Sets and Systems 6:261–269

22. Ramik J, Rimanek J (1985) Inequality between fuzzy num-
bers and its use in fuzzy optimization. Fuzzy Sets and Sys-
tems 16:123–138

23. Ramik J, Rommelfanger H (1993) A single-and a multi-
valued order on fuzzy numbers and its use in linear pro-
gramming with fuzzy coefficients. Fuzzy Sets and Systems
57:203–208

24. Rommelfanger H (1988, 1994) Entscheiden bei
Unschaerfe-Fuzzy Decision Support Systeme. Springer,
Berlin

25. Rommelfanger H (1989) Inequality relations in fuzzy con-
straints and their use in linear fuzzyoptimization. In: Verde-
gay JL, Delgado M (eds) The Interface between Artificial
Intelligence and Operational Research in Fuzzy Environ-
ment. TÜV Rheinland, Köln, 195–211

26. Rommelfanger H (1990) "FULPAL"-an interactive method
for solving (multi-objective) fuzzy linear programming
problems. In: Slowinski R, Teghem J (eds) Stochastic ver-
sus Fuzzy Approaches toMultiobjectiveMathematical Pro-
gramming under Uncertainty. Kluwer, Dordrecht, pp 279–
299

27. Rommelfanger H (1996) Fuzzy linear programming and ap-
plications. Europ J Oper Res 92:512–527

28. Rommelfanger H, Hanuscheck R, Wolf J (1989) Linear pro-
gramming with fuzzy objectives. Fuzzy Sets and Systems
29:31–48

29. Rommelfanger H, Keresztfalvi T (1991) Multi-criteria fuzzy
optimization based on Yager’s parametrized t-norm.
Found Computing and Decision Sci 16:99–110

30. Rommelfanger H, Slowinski R (1998) Fuzzy linear pro-
gramming with single or multiple objective functions. In:
Slowinski R (ed) Fuzzy Sets in Decision Analysis: Opera-
tions Research and Statistics. Kluwer, Dordrecht, pp 179–
213

31. Roubens M (1990) Inequality constraints between fuzzy
numbers and their use in mathematical programming. In:
Slowinski R, Teghem J (eds) Stochastic versus Fuzzy Ap-
proaches to Multiobjective Mathematical Programming
under Uncertainty. Kluwer, Dordrecht, pp 321–330

32. Sakawa M (1993) Fuzzy sets and interactive multiobjective
optimization. Plenum, New York

33. Sakawa M, Yano H (1989) Interactive fuzzy satisficing
method for multiobjective nonlinear programming prob-
lems with fuzzy parameters. Fuzzy Sets and Systems
30:221–238

34. Slowinski R (1986) A multicriteria fuzzy linear program-
ming method for water supply system development plan-
ning. Fuzzy Sets and Systems 19:217–237

35. Slowinski R (1990) "FLIP"-an interactive method for multi-
objective linear programming with fuzzy coefficients. In:
Slowinski R, Teghem J (eds) Stochastic versus Fuzzy Ap-
proaches to Multiobjective Mathematical Programming
under Uncertainty. Kluwer, Dordrecht, pp 249–262

36. Slowinski R (1997) Fuzzy multi-objective linear program-
ming. Belgian J Oper Res Statist Comput Sci 37:83–98

37. Slowinski R (1997) Interactive fuzzy multiobjective
programming. In: Climaco J (ed) Multicriteria analysis.
Springer, Berlin, 202–212

38. Slowinski R, Teghem J (1988) Fuzzy versus stochastic ap-
proaches tomulticriteria linear programming under uncer-
tainty. Naval Res Logist 35:673–695. Reprinted in: Dubois
D, Prade H, Yager R (eds) (1993) Readings in Fuzzy Sets



1112 F Fuzzy Multi-objective Linear Programming

for Intelligent Systems. Morgan Kaufmann, San Mateo, CA,
810–821

39. Slowinski R, Teghem J (1990) Stochastic versus fuzzy ap-
proaches to multiobjective mathematical programming
under uncertainty. Kluwer, Dordrecht

40. Tanaka H, Asai K (1984) Fuzzy linear programming with
fuzzy numbers. Fuzzy Sets and Systems 13:1–10

41. Tanaka H, Okuda T, Asai K (1974) On fuzzy-mathematical
programming. J Cybernetics 3(4):37–46

42. Vanderpooten D, Vincke Ph (1989) Description and
analysis of some representative interactive multicri-
teria procedures. Math Comput Modelling, 12:1221–
1238

43. Verdegay JL (1984) Application of fuzzy optimization in op-
erational research. Control and Cybernetics 13:229–239

44. Wolf J (1988) Lineare Fuzzy Modelle zur Unterstuetzung
der Investitionsentscheidung. Lang-Verlag, Frankfurt am
Main

45. Zadeh LA (1965) Fuzzy sets. Inform and Control 8:338–353
46. Zimmermann HJ (1976) Description and optimization of

fuzzy systems. Internat J General Syst 2:209–216
47. Zimmermann HJ (1978) Fuzzy programming and linear

programming with several objective functions. Fuzzy Sets
and Systems 1:45–55

48. Zimmermann HJ (1985) Applications of fuzzy sets theory
to mathematical programming. Inform Sci 36:29–58



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




