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The Scaled ABS Class: General Properties

ABS methods were introduced by [1], in a paper deal-
ing originally only with solving linear equations via

what is now called the basic or unscaled ABS class. The
basic ABS class was later generalized to the so-called
scaled ABS class and subsequently applied to linear least
squares, nonlinear equations and optimization prob-
lems, see [2]. Preliminary work has also been initiated
concerning Diophantine equations, with possible exten-
sions to combinatorial optimization, and the eigenvalue
problem. There are presently (1998) over 350 papers
in the ABS field, see [11]. In this contribution we will
review the basic properties and results of ABS meth-
ods for solving linear determined or underdetermined
systems and overdetermined linear systems in the least
squares sense.

Let us consider the linear determined or underde-
termined system, where rank(A) is arbitrary

Ax D b; x 2 Rn ; b 2 Rm ; m � n; (1)

or

a>i x � bi D 0; i D 1; : : : ;m; (2)

where

A D

0
B@
a>1
:::

a>m

1
CA : (3)

The steps of the scaled ABS class algorithms are as fol-
lows:
A) Let x1 2 Rn be arbitrary, H1 2 Rn, n be nonsingular

arbitrary, v1 be an arbitrary nonzero vector in Rm;
set i = 1.

B) Compute the residual ri = Axi � b. If ri = 0, stop (xi
solves the problem); else compute si = HiA|vi. If si
6D 0, then go to C). If si = 0 and � = v>i ri = 0, then
set xi + 1 = xi, Hi + 1 = Hi and go to F), else stop (the
system has no solution).
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C) Compute the search vector pi by

pi D H>i zi ; (4)

where zi 2 Rn is arbitrary save for the condition

v>i AH
>
i zi ¤ 0: (5)

D) Update the estimate of the solution by

xiC1 D xi � ˛i pi ; (6)

where the stepsize ˛i is given by

˛i D
v>i ri
r>i Api

: (7)

E) Update the matrix Hi by

HiC1 D Hi �
HiA>viw>i Hi

w>i HiA>vi
; (8)

where wi 2 Rn is arbitrary save for the condition

w>i HiA>vi ¤ 0: (9)

F) If i = m, then stop (xm + 1 solves the system), else
define vi + 1 as an arbitrary vector in Rm but linearly
independent from v1, . . . , vi, increment i by one and
go to B).

ThematricesHi appearing in step E) are generalizations
of (oblique) projection matrices. They probably first ap-
peared in [16]. They have been named Abaffians since
the first international conference on ABS methods (Lu-
oyang, China, 1991) and this name will be used here.

The above recursion defines a class of algorithms,
each particular method being determined by the choice
of the parameters H1, vi, zi, wi. The basic ABS class is
obtained by taking vi = ei, ei being the ith unitary vector
in Rm. The parameters wi, zi, H1 have been introduced
respectively by J. Abaffy, C.G. Broyden and E. Spedi-
cato, whose initials are referred to in the name of the
class. It is possible to show that the scaled ABS class is
a complete realization of the so-called Petrov–Galerkin
iteration for solving a linear system (but the principle
can be applied to more general problems), where the
iteration has the form xi + 1 = xi � ˛ipi with ˛i, pi cho-
sen so that the orthogonality relation r>iC1vj = 0, j = 1,

. . . , i, holds, the vectors vj being arbitrary linearly inde-
pendent. It appears that all deterministic algorithms in
the literature having finite termination on a linear sys-
tem are members of the scaled ABS class (this statement
has been recently shown to be true also for the quasi-
Newton methods, which are known to have under some
conditions termination in at most 2n steps: the iterate
of index 2i � 1 generated by Broyden’s iteration cor-
responds to the ith iterate of a certain algorithm in the
ABS class).

Referring [2] for proofs, we give some of the general
properties of methods of the scaled ABS class, assum-
ing, for simplicity, that A has full rank.
� Define Vi = (v1, . . . , vi), Wi = (w1, . . . , wi). Then

Hi + 1A|Vi = 0, H>iC1Wi = 0, meaning that vectors
A|vj, wj, j = 1, . . . , i, span the null spaces of Hi + 1

and its transpose, respectively.
� The vectors HiA|vi, H>i wi are nonzero if and only

if ai, wi are linearly independent from a1, . . . , ai� 1,
w1, . . . , wi� 1, respectively.

� Define Pi = (p1, . . . , pi). Then the implicit factor-
ization V>i A

>
i Pi = Li holds, where Li is nonsingular

lower triangular. From this relation, if m = n, one
obtains the following semi-explicit factorization of
the inverse, with P = Pn, V = Vn, L = Ln

A�1 D PL�1V>: (10)

For several choices of the matrix V the matrix L is
diagonal, hence formula (10) gives a fully explicit
factorization of the inverse as a byproduct of the
ABS solution of a linear system, a property that
does not hold for the classical solvers. It can also
be shown that all possible factorizations of the form
(10) can be obtained by proper parameter choices in
the scaled ABS class, another completeness result.

� Define Si and Ri by Si = (s1, . . . , si), Ri = (r1, . . . , ri),
where si =HiA|vi, ri =H>i wi. Then the Abaffian can
be written in the formHi+1 =H1 � SiR>i and the vec-
tors si, ri can be built via aGram–Schmidt type itera-
tions involving the previous vectors (the search vec-
tor pi can be built in a similar way). This representa-
tion of the Abaffian in terms of 2i vectors is compu-
tationally convenient when the number of equations
is much less than the number of variables. Notice
that there is also a representation in terms of n � i
vectors.
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� A compact formula of the Abaffian in terms of the
parameter matrices is the following

HiC1 D H1 � H1A>Vi (W>i H1A>Vi )�1W>i H1:

(11)

Letting V = Vm, W = Wm, one can show that the
parameter matrices H1, V , W are admissible (i. e.
are such that condition (9) is satisfied) if and only
if the matrix Q = V|AH>1 W is strongly nonsingular
(i. e. is LU factorizable). Notice that this condition
can always be satisfied by suitable exchanges of the
columns of V orW, equivalent to a row or a column
pivoting on the matrix Q. If Q is strongly nonsingu-
lar and we take, as is done in all algorithms insofar
considered, zi = wi, then condition (5) is also satis-
fied.

It can be shown that the scaled ABS class corresponds to
applying (implicitly) the unscaled ABS algorithm to the
scaled (or preconditioned) system V|Ax = V|b, where
V is an arbitrary nonsingular matrix of orderm. There-
fore we see that the scaled ABS class is also complete
with respect to all possible left preconditioning matri-
ces, which in the ABS context are defined implicitly and
dynamically (only the ith column of V is needed at the
ith iteration, and it can also be a function of the previ-
ous column choices).

Subclasses of the ABS Class

In [1], nine subclasses are considered of the scaled ABS
class. Here we quote three important subclasses.
� The conjugate direction subclass. This class is well

defined under the condition (sufficient but not
necessary) that A is symmetric and positive defi-
nite. It contains the implicit Choleski algorithm, the
Hestenes–Stiefel and the Lanczos algorithms. This
class generates all possible algorithms whose search
directions are A-conjugate. The vector xi + 1 mini-
mizes the energy or A-weighted Euclidean norm of
the error over x1 + Span(p1, . . . , pi). If x1 = 0, then
the solution is approached monotonically from be-
low in the energy norm.

� The orthogonally scaled subclass. This class is well
defined if A has full column rank and remains well
defined even if m is greater than n. It contains
the ABS formulation of the QR algorithm (the so-
called implicit QR algorithm), of the GMRES and of

the conjugate residual algorithms. The scaling vec-
tors are orthogonal and the search vectors are AA|-
conjugate. The vector xi + 1 minimizes the Euclidean
norm of the residual over x1 + Span(p1, . . . , pi). In
general, the methods in this class can be applied to
overdetermined systems to obtain the solution in
the least squares sense.

� The optimally scaled subclass. This class is obtained
by the choice vi = A� |pi. The inverse of A| disap-
pears in the actual formulas, if we make the change
of variables zi = A|ui, ui being now the parame-
ter that defines the search vector. For ui = ei the
Huang method is obtained and for ui = ri a method
equivalent to Craig’s conjugate gradient type algo-
rithm. From the general implicit factorization rela-
tion one obtains P|P = D or V|AA|V = D, a re-
lation which was shown in [5] to characterize the
optimal choice of the parameters in the general
Petrov–Galerkin process in terms of minimizing
the effect of a single error in xi on the final com-
puted solution. Such a property is therefore satis-
fied by the Huang (and the Craig) algorithm, but
not, for instance, by the implicit LU or the implicit
QR algorithms. A. Galantai [8] has shown that the
condition characterizing the optimal choice of the
scaling parameters in terms of minimizing the fi-
nal residual Euclidean norm is V|V = D, a con-
dition satisfied by the implicit QR algorithm, the
GMRES method, the implicit LU algorithm and
again by the Huang algorithm, which therefore sat-
isfies both conditions). The methods in the opti-
mally stable subclass have the property that xi + 1

minimizes the Euclidean norm of the error over x1 +
Span(p1, . . . , pi).

The Implicit LU Algorithm
and the Huang Algorithm

Specific algorithms of the scaled ABS class are obtained
by choosing the available parameters. The implicit LU
algorithm is given by the choices H1 = I, zi = wi = vi =
ei. We quote the following properties of the implicit LU
algorithm.
a) The algorithm is well defined if and only if A is reg-

ular (i. e. all principal submatrices are nonsingular).
Otherwise column pivoting has to be performed (or,
ifm = n, equations pivoting).
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b) The Abaffian Hi + 1 has the following structure, with
Ki 2 Rn� i, i:

HiC1 D

0
BBB@

0 0
:::

:::

0 0
Ki In�i

1
CCCA : (12)

c) Only the first i components of pi can be nonzero and
the ith component is one. Hence thematrix Pi is unit
upper triangular, so that the implicit factorization A
= LP�1 is of the LU type, with units on the diagonal,
justifying the name.

d) Only Ki has to be updated. The algorithm re-
quires nm2 � 2m3/3 multiplications plus lower or-
der terms, hence, for m = n, n3/3 multiplications
plus lower order terms. This is the same overhead
required by the classical LU factorization or Gaus-
sian elimination (which are two essentially equiva-
lent processes).

e) The main storage requirement is the storage of Ki,
whose maximum value is n2/4. This is two times
less than the storage needed by Gaussian elimina-
tion and four times less than the storage needed by
the LU factorization algorithm (assuming that A is
not overwritten). Hence the implicit LU algorithm
is computationally better than the classical Gaussian
elimination or LU algorithm, having the same over-
head but less memory cost.

The implicit LU algorithm, implemented in the case m
= n with row pivoting, has been shown in experiments
of M. Bertocchi and Spedicato [3] to be numerically sta-
ble and in experiments of E. Bodon [4] on the vector
processor Alliant FX 80 with 8 processors to be about
twice faster than the LAPACK implementation of the
classical LU algorithm.

The Huang algorithm is obtained by the parame-
ter choices H1 = I, zi = wi = ai, vi = ei. A mathemati-
cally equivalent, but numerically more stable, formula-
tion of this algorithm is the so-called modified Huang
algorithm where the search vectors and the Abaffians
are given by formulas pi = Hi(Hiai) and Hi+1 = Hi �

pip>i /p
>
i pi. Some properties of this algorithm follow.

� The search vectors are orthogonal and are the same
vectors obtained by applying the classical Gram–
Schmidt orthogonalization procedure to the rows
of A. The modified Huang algorithm is related,

but is not numerically identical, with the Daniel–
Gragg–Kaufmann–Stewart reorthogonalized Gram–
Schmidt algorithm [6].

� If x1 is the zero vector, then the vector xi+1 is the so-
lution with least Euclidean norm of the first i equa-
tions and the solution x+ of least Euclidean norm of
the whole system is approached monotonically and
from below by the sequence xi. L. Zhang [17] has
shown that the Huang algorithm can be applied, via
the Goldfarb–Idnani active set strategy [9], to sys-
tems of linear inequalities. The process in a finite
number of steps either finds the solution with least
Euclidean norm or determines that the system has
no solution.

� While the error growth in the Huang algorithm is
governed by the square of the number �i = k ai k
/ k Hiai k, which is certainly large for some i if A
is ill conditioned, the error growth depends only on
�i if pi or Hi are defined as in the modified Huang
algorithm and, at first order, there is no error growth
for the modified Huang algorithm.

� Numerical experiments, see [15], have shown that
the modified Huang algorithm is very stable, giv-
ing usually better accuracy in the computed solution
than both the implicit LU algorithm and the classical
LU factorization method.

The implicit LX algorithm is defined by the choices H1

= I, vi = ei, zi = wi = eki , where ki is an integer, 1 � ki �
n, such that

e>ki Hi ai ¤ 0: (13)

Notice that by a general property of the ABS class for
A with full rank there is at least one index ki such that
(13) is satisfied. For stability reasons it may be recom-
mended to select ki such that �i = |e>kiHiai| is maxi-
mized.

The following properties are valid for the implicit
LX algorithm. Let N be the set of integers from 1 to n,
N = (1, . . . , n). Let Bi be the set of indexes k1, . . . , ki
chosen for the parameters of the implicit LX algorithm
up to the step i. Let Ni be the set N \ Bi. Then:
� The index ki is selected in the set Ni�1.
� The rows of Hi + 1 of index k 2 Bi are null rows.
� The vector pi has n � i zero components; its kith

component is equal to one.
� If x1 = 0, then xi + 1 is a basic type solution of the

first i equations, whose nonzero components may lie
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only in the positions corresponding to the indices
k 2 Bi.

� The columns of Hi + 1 of index k 2 Ni are the unit
vectors ek, while the columns of Hi + 1 of index k 2
Bi have zero components in the jth position, with j
2 Bi, implying that only i(n � i) elements of such
columns have to be computed.

� At the ith step i(n � i) multiplications are needed
to compute Hiai and i(n � i) to update the nontriv-
ial part ofHi. Hence the total number of multiplica-
tions is the same as for the implicit LU algorithm
(i. e. n3/3), but no pivoting is necessary, reflecting
the fact that no condition is required on the matrix
A.

� The storage requirement is the same as for the im-
plicit LU algorithm, i. e. at most n2/4. Hence the im-
plicit LX algorithm shares the same storage advan-
tage of the implicit LU algorithm over the classical
LU algorithm, with the additional advantage of not
requiring pivoting.

� Numerical experiments by K. Mirnia [10] have
shown that the implicit LXmethod gives usually bet-
ter accuracy, in terms of error in the computed solu-
tion, than the implicit LU algorithm and often even
than the modified Huang algorithm. In terms of size
of the final residual, its accuracy is comparable to
that of the LU algorithm as implemented (with row
pivoting) in the MATLAB or LAPACK libraries, but
it is better again in terms of error in the solution.

Other ABS Linear Solvers

ABS reformulations have been obtained for most al-
gorithms proposed in the literature. The availability of
several formulations of the linear algebra of the ABS
process allows alternative formulations of each method,
with possibly different values of overhead, storage and
different properties of numerical stability, vectoriza-
tion and parallelization. The reprojection technique, al-
ready seen in the case of the modified Huang algorithm
and based upon the identities Hiq = Hi(Hiq), H>i =
H>i (H

>
i q), valid for any vector q if H1 = I, remarkably

improves the stability of the algorithm. The ABS ver-
sions of the Hestenes–Stiefel and the Craig algorithms
for instance are very stable under the above reprojec-
tion. The implicit QR algorithm, defined by the choices
H1 = I, vi = Api, zi = wi = ei can be implemented in

a very stable way using the reprojection in both the def-
inition of the search vector and the scaling vector. It
should also be noticed that the classical iterative refine-
ment procedure, which amounts to a Newton iteration
on the system Ax � b = 0 using the approximate fac-
tors of A, can be reformulated in the ABS context using
the previously defined search vectors pi. Experiments of
Mirnia [11] have shown that ABS refinement works ex-
cellently.

For problems with special structure ABS methods
can often be implemented taking into account the ef-
fect of the structure on the Abaffian matrix, which of-
ten tends to reflect the structure of the matrix A. For
instance, if A has a banded structure, the same is true
for the Abaffian matrix generated by the implicit LU,
the implicit QR and the Huang algorithm, albeit the
band size is increased. If A is SPD and has a ND struc-
ture, the same is true for the Abaffian matrix. In this
case the implementation of the implicit LU algorithm
has much less storage cost, for large n, than the cost
required by an implementation of the Choleski algo-
rithm. For matrices having the Kuhn–Tucker structure
(KT structure) large classes of ABS methods have been
devised, see � ABS algorithms for optimization. For
matrices with general sparsity patterns little is presently
known about minimizing the fill-in in the Abaffian ma-
trix. Careful use of BLAS4 routines can however sub-
stantially reduce the number of operations and make
the ABS implementation competitive with a sparse im-
plementation of say the LU factorization (e. g. by the
code MA28) for values of n not too big.

It is possible to implement the ABS process also in
block form, where several equations, instead of just one,
are dealt with at each step. The block formulation does
not deteriorate the numerical accuracy and can lead to
reduction of overhead on special problems or to faster
implementations on vector or parallel computers.

Finally infinite iterative methods can be obtained by
the finite ABS methods via two approaches. The first
one consists in restarting the iteration after k <m steps,
so that the storage will be of order 2kn if the represen-
tation of the Abaffian in terms of 2i vectors is used. The
second approach consists in using only a limited num-
ber of terms in the Gram–Schmidt type processes that
are alternative formulations of the ABS procedure. For
both cases convergence at a linear rate has been estab-
lished using the technique developed in [7]. The infinite
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iteration methods obtained by these approaches define
a very large class of methods, that contains not only
all Krylov space type methods of the literature, but also
non-Krylov type methods as the Gauss–Seidel, the De
La Garza and the Kackmartz methods, with their gener-
alizations.

ABSMethods for Linear Least Squares

There are several ways of using ABS methods for solv-
ing in the least squares sense an overdetermined lin-
ear system without forming the normal equations of
Gauss, which are usually avoided on the account of
their higher conditioning. One possibility is to compute
explicitly the factors associated with the implicit factor-
ization and then use them in the standard way. From
results of [14] the obtained methods work well, giving
usually better results than the methods using the QR
factorization computed in the standard way. A second
possibility is to use the representation of the Moore–
Penrose pseudo-inverse that is provided explicitly by the
ABS technique described in [13]. Again this approach
has given very good numerical results. A third possibil-
ity is based upon the equivalence of the normal system
A|Ax = A|bwith the extended system in the variables x
2 Rn, y 2 Rm, given by the two subsystems Ax = y, A|y
= A|b. The first of the subsystems is overdetermined
but must be solvable. Hence y must lie in the range of
A|, which means that y must be the solution of least
Euclidean norm of the second underdetermined sub-
system. Such a solution is computed by the Huang al-
gorithm. Then the ABS algorithm, applied to the first
subsystem, in step B) recognizes and eliminates the m
� k dependent equations, where k is the rank of A. If
k < n there are infinite solutions and the one of least
Euclidean norm is obtained by using again the Huang
algorithm on the first subsystem.

Finally a large class of ABS methods can be applied
directly to an overdetermined system stopping after n
iterations in a least squares solution. The class is ob-
tained by definingV =AU, whereU is an arbitrary non-
singular matrix in Rn. Indeed at the point xn+1 the satis-
fied Petrov–Galerkin condition is just equivalent to the
normal equations of Gauss. If U = P then the orthogo-
nally scaled class is obtained, implying, as already stated
in section 2, that the methods of this class can be applied
to solve linear least squares (but a suitable modification

has to be made for the GMRES method). A version of
the implicit QR algorithm, with reprojection on both
the search vector and the scaling vector, tested in [12],
has outperformed other ABS algorithms for linear least
squares methods as well as methods in the LINPACK
and NAG library based upon the classical QR factoriza-
tion via the Householder matrices.

See also

� ABS Algorithms for Optimization
� Cholesky Factorization
� Gauss–Newton Method: Least Squares, Relation to

Newton’s Method
� Generalized Total Least Squares
� Interval Linear Systems
� Large Scale Trust Region Problems
� Large Scale Unconstrained Optimization
� Least Squares Orthogonal Polynomials
� Least Squares Problems
� Linear Programming
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
� Nonlinear Least Squares: Trust Region Methods
� Orthogonal Triangularization
� Overdetermined Systems of Linear Equations
� QR Factorization
� Solving Large Scale and Sparse Semidefinite

Programs
� Symmetric Systems of Linear Equations

References

1. Abaffy J, Broyden CG, Spedicato E (1984) A class of direct
methods for linear systems. NumerischeMath, 45:361–376

2. Abaffy J, Spedicato E (1989) ABS projection algorithms:
Mathematical techniques for linear and nonlinear equa-
tions. Horwood, Westergate

3. Bertocchi M, Spedicato E (1989) Performance of the im-
plicit Gauss–Choleski algorithmof the ABS class on the IBM
3090 VF. In: Proc. 10th Symp. Algorithms, Strbske Pleso,
pp 30–40

4. Bodon E (1993) Numerical experiments on the ABS algo-
rithms for linear systems of equations. Report DMSIA Univ
Bergamo 93(17)

5. Broyden CG (1985) On the numerical stability of Huang’s
and related methods. JOTA 47:401–412

6. Daniel J, Gragg WB, Kaufman L, Stewart GW (1976)
Reorthogonalized and stable algorithms for updating



ABS Algorithms for Optimization A 7

the Gram–Schmidt QR factorization. Math Comput 30:
772–795

7. Dennis J, Turner K (1987) Generalized conjugate directions.
Linear Alg & Its Appl 88/89:187–209

8. Galantai A (1991) Analysis of error propagation in the ABS
class. Ann Inst Statist Math 43:597–603

9. Goldfarb D, Idnani A (1983) A numerically stable dual
method for solving strictly convex quadratic program-
ming. Math Program 27:1–33

10. Mirnia K (1996) Numerical experiments with iterative re-
finement of solutions of linear equations by ABS methods.
Report DMSIA Univ Bergamo 32/96

11. Nicolai S, Spedicato E (1997) A bibliography of the ABS
methods. OMS 8:171–183

12. Spedicato E, Bodon E (1989) Solving linear least squares by
orthogonal factorization and pseudoinverse computation
via the modified Huang algorithm in the ABS class. Com-
puting 42:195–205

13. Spedicato E, Bodon E (1992) Numerical behaviour of the
implicit QR algorithm in the ABS class for linear least
squares. Ricerca Oper 22:43–55

14. Spedicato E, Bodon E (1993) Solutionof linear least squares
via the ABS algorithm. Math Program 58:111–136

15. Spedicato E, Vespucci MT (1993) Variations on the Gram-
Schmidt and the Huang algorithms for linear systems:
A numerical study. Appl Math 2:81–100

16. Wedderburn JHM (1934) Lectures onmatrices. Colloq Publ
Amer Math Soc

17. Zhang L (1995) An algorithm for the least Euclidean norm
solution of a linear system of inequalities via the Huang
ABS algorithm and the Goldfarb–Idnani strategy. Report
DMSIA Univ Bergamo 95/2

ABS Algorithms for Optimization
EMILIO SPEDICATO1, ZUNQUAN XIA2,
LIWEI ZHANG2

1 Department Math., University Bergamo,
Bergamo, Italy

2 Department Applied Math.,
Dalian University Technol., Dalian, China

MSC2000: 65K05, 65K10

Article Outline

Keywords
A Class of ABS Projection Methods
for Unconstrained Optimization

Applications to Quasi-Newton Methods
ABS Methods for Kuhn–Tucker Equations

Reformulation of the Simplex Method
via the Implicit LX Algorithm

ABS Unification of Feasible Direction Methods
for Minimization with Linear Constraints

See also
References

Keywords

Linear equations; Optimization; ABS methods;
Quasi-Newton methods; Linear programming;
Feasible direction methods; KT equations; Interior
point methods

The scaled ABS (Abaffy–Broyden–Spedicato) class of
algorithms, see [1] and � ABS algorithms for linear
equations and linear least squares, is a very general pro-
cess for solving linear equations, realizing the so-called
Petrov–Galerkin approach. In addition to solving gen-
eral determined or underdetermined linear systems Ax
= b, x 2 Rn, b 2 Rm, m � n, rank(A) � m, A = [a1,
. . .am]|, ABSmethods can also solve linear least squares
problems and nonlinear algebraic equations. In this ar-
ticle we will consider applications of ABS methods to
optimization problems. We will consider only the so-
called basic ABS class, defined by the following proce-
dure for solving Ax = b:
A) Let x1 2 Rn be arbitrary, H1 2 Rn, n be nonsingular

arbitrary, set i = 1.
B) Compute si = Hi ai. IF si 6D 0, go to C).

IF si = 0 and � = a>i xi � bi = 0, THEN set xi + 1 = xi,
Hi + 1 = Hi and go to F), ELSE stop, the system has
no solution.

C) Compute the search vector pi by pi = H>i zi, where
zi 2Rn is arbitrary save for the condition a>i H>i zi
6D 0.

D) Update the estimate of the solution by xi+1 = xi �
˛ipi, where the stepsize ˛i is given by ˛i = (a>i pi �
bi)/a>i pi.

E) Update the matrix Hi by Hi+1 = Hi � Hiaiw>i Hi/
w>i Hiai, where wi 2Rn is arbitrary save for the con-
dition w>i Hiai 6D 0.

F) IF i =m, THEN stop; xm + 1 solves the system, ELSE
increment i by one and go to B).

Among the properties of the ABS class the following
is fundamental in the applications to optimization. Let
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m < n and, for simplicity, assume that rank(A) = m.
Then the linear variety containing all solutions of the
underdetermined system Ax = b is represented by the
vectors x of the form

x D xmC1 C H>mC1q; (1)

where q 2Rn is arbitrary. In the following the matrices
generated by the ABS process will be called Abaffians.
It is recalled that the matrix Hi+1 can be represented in
terms of either 2i vectors or of n � i vectors, which is
also true for the representation of the search vector pi.
The first representation is computationally convenient
for systems where the number of equations is small (less
than n/2), while the second one is suitable for problems
where m is close to n. In the applications to optimiza-
tion, the first case corresponds to problems with few
constraints (many degrees of freedom), the second case
to problems withmany constraints (few degrees of free-
dom).

Among the algorithms of the basic ABS class, the
following are particularly important.
a) The implicit LU algorithm is given by the choices H1

= I, zi = wi = ei, where ei is the ith unit vector in
Rn. This algorithm is well defined if and only if A
is regular (otherwise pivoting of the columns has to
be performed, or of the equations, if m = n). Due
to the special structure of the Abaffian induced by
the parameter choices (the first i rows of Hi+1 are
identically zero, while the last n� i columns are unit
vectors) the maximum storage is n2/4, hence 4 times
less than for the classical LU factorization or twice
less than for Gaussian elimination; the number of
multiplications is nm2 � 2m3/3, hence, for m = n,
n3/3, i. e. the same as for Gaussian elimination or the
LU factorization algorithm.

b) The Huang algorithm is obtained by the parameter
choices H1 = I, zi = wi = ai. A mathematically equiv-
alent, but numerically more stable, formulation of
this algorithm is the so-called modified Huang al-
gorithm where the search vectors and the Abaffi-
ans are given by formulas pi = Hi(Hiai) and Hi+1 =
Hi � pip>i /p

>
i pi. The search vectors are orthogonal

and are equal to the vectors obtained by applying
the classical Gram–Schmidt orthogonalization pro-
cedure to the rows of A. If x1 is the zero vector,
then the vector xi+1 is the solution of least Euclidean

norm of the first i equations and the solution x+

of least Euclidean norm of the whole system is ap-
proached monotonically and from below by the se-
quence xi.

c) The implicit LX algorithm, where ‘L’ refers to the
lower triangular left factor while ‘X’ refers to the
right factor, which is a matrix obtainable after row
permutation of an upper triangular matrix, consid-
ered by Z. Xia, is defined by the choices H1 = I, zi =
wi = eki where ki is an integer, 1� ki � n, such that

e>ki Hi ai ¤ 0: (2)

If A has full rank, from a property of the basic ABS
class the vector Hiai is nonzero, hence there is at
least one index ki such that (2) is satisfied. The im-
plicit LX algorithm has the same overhead as the
implicit LU algorithm, hence the same as Gaussian
elimination, and the same storage requirement, i. e.
less than Gaussian elimination or the LU factoriza-
tion algorithm. It has the additional advantage of not
requiring any condition on the matrix A, hence piv-
oting is not necessary. The structure of the Abaffian
matrix is somewhat more complicated than for the
implicit LU algorithm, the zero rows of Hi+1 being
now in the positions k1, . . . ,ki and the columns that
are unit vectors being in the positions that do not
correspond to the already chosen indices ki.

The vector pi has n � i zero components and its kith
component is equal to one. It follows that if x1 = 0,
then xi+1 is a basic type solution of the first i equations,
whose nonzero components correspond to the chosen
indices ki.

In this paper we will present the following appli-
cations of ABS methods to optimization problems. In
Section 2 we describe a class of ABS related methods
for the unconstrained optimization problem. In Sec-
tion 3 we show how ABS methods provide the general
solution of the quasi-Newton equation, also with spar-
sity and symmetry and we discuss how SPD solutions
can be obtained. In Section 4 we present several special
ABS methods for solving the Kuhn–Tucker equations.
In Section 5 we consider the application of the implicit
LX algorithm to the linear programming (LP) problem.
In Section 6 we present ABS approaches to the general
linearly constrained optimization problem, which unify
linear and nonlinear problems.
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A Class of ABS Projection Methods
for UnconstrainedOptimization

ABS methods can be applied directly to solve uncon-
strained optimization problems via the iteration xi+1 =
xi � ˛i H>i zi, where Hi is reset after n or less steps
and zi is chosen so that the descent condition holds,
i. e. g>i H

>
i zi > 0, with gi the gradient of the function

at xi. If the function to be minimized is quadratic,
one can identify the matrix A in the Abaffian update
formula with the Hessian of the quadratic function.
Defining a perturbed point x0 by x0 = xi � ˇ vi one
has on quadratic functions g0 = g � ˇ Avi, hence the
update of the Abaffian takes the form Hi+ 1 = Hi �

Hiyiw>i Hi/w>i Hiyi, where yi = g0 � gi. The above de-
fined class has termination on quadratic functions and
local superlinear (n-step Q-quadratic) rate of conver-
gence on general functions. It is a special case of a class
of projection methods developed in [7]. Almost no nu-
merical results are available about the performance of
the methods in this class.

Applications to Quasi-NewtonMethods

ABS methods have been used to provide the general
solution of the quasi-Newton equation, also with the
additional conditions of symmetry, sparsity and posi-
tive definiteness. While the general solution of only the
quasi-Newton equation was already known from [2],
the explicit formulas obtained for the sparse symmetric
case are new, and so is the way of constructing sparse
SPD updates.

Let us consider the quasi-Newton equation defining
the new approximation to a Jacobian or a Hessian, in
the transpose form

d>B0 D y>; (3)

where d = x0 � x, y = g0 � g. We observe that (3) can
be seen as a set of n linear underdetermined systems,
each one having just one equation and differing only
in the right-hand side. Hence the general solution can
be obtained by one step of the ABS method. It can be
written in the following way

B0 D B �
s(B>d � y)>

d>s
C

�
I �

sd>

d>s

�
Q ; (4)

where Q 2Rn, n is arbitrary and s 2Rn is arbitrary sub-
ject to s|d 6D 0. Formula (4), derived in [9], is equivalent
to the formula in [2].

Now the conditions that some elements of B0 should
be zero, or have constant value or that B0 should be
symmetric can be written as the additional linear con-
straints, where b0i is the ith column of B0

(b0i)
>ek D �i j ; (5)

where �ij = 0 implies sparsity, �ij = const implies that
some elements do not change their value and �ij = �ji
implies symmetry. The ABS algorithm can deal with
these extra conditions, see [11], giving the solution in
explicit form, columnwise in presence of symmetry. By
adding the additional condition that the diagonal ele-
ments be sufficiently large, it is possible to obtain for-
mulas where B0 is quasi positive definite or quasi di-
agonally dominant, in the sense that the principal sub-
matrix of order n � 1 is positive definite or diagonally
dominant. It is not possible in general to force B0 to
be SPD, since SPD solutions may not exist, which is
reflected in the fact that no additional conditions can
be put on the last diagonal element, since the last col-
umn is fully determined by the n � 1 symmetry con-
ditions and the quasi-Newton equation. This result can
however be exploited to provide SPD approximations
by imbedding the original minimization problem of n
variables in a problem of n + 1 variables, whose solu-
tion with respect to the first n variables is the original
solution (just set, for instance, f (x0) = f (x) + x2nC1). This
imbedding modifies the quasi-Newton equation so that
SPD solutions exist.

ABSMethods for Kuhn–Tucker Equations

The Kuhn–Tucker equations (KT equations), which
should more appropriately be named Kantorovich–
Karush–Kuhn–Tucker equations (KKKT equations),
are a special linear system, obtained by writing the
optimality conditions of the problem of minimizing
a quadratic function with Hessian G subject to the lin-
ear equality constraint Cx = b. They are the system Ax
= b, where A is a symmetric indefinite matrix of the fol-
lowing form, with G 2Rn, n, C 2Rm, n

A D
�
G C>

C 0

�
: (6)
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If G is nonsingular, then A is nonsingular if and
only if CG�1C| is nonsingular. Usually G is nonsingu-
lar, symmetric and positive definite, but this assump-
tion, required by several classical solvers, is not neces-
sary for the ABS solvers.

ABS classes for solving the KT problem can be de-
rived in several ways. Observe that system (6) is equiv-
alent to the two subsystems

GpC C>z D g; (7)
Cp D c; (8)

where x = (p|, z|)| and b = (g|, C|)|. The general so-
lution of subsystem (8) has the form, see (1)

p D pmC1 C H>mC1q; (9)

with q arbitrary. The parameter choices made to con-
struct pm+1 and Hm+1 are arbitrary and define therefore
a class of algorithms.

Since the KT equations have a unique solution,
there must be a choice of q in (9) which makes p be the
unique n-dimensional subvector defined by the first n
components of the solution x. Notice that since Hm+1

is singular, q is not uniquely defined (but would be
uniquely defined if one takes the representation of the
Abaffian in terms of n �m vectors).

By multiplying equation (7) on the left byHm+1 and
using the ABS property Hm+1 C| = 0, we obtain the
equation

HmC1Gp D HmC1g; (10)

which does not contain z. Now there are two possibili-
ties to determine p:
A1) Consider the system formed by equations (8) and

(10). Such a system is solvable but overdeter-
mined. Since rank(Hm+1) = n � m, m equations
are recognized as dependent and are eliminated in
step B) of any ABS algorithm applied to this sys-
tem.

A2) In equation (10) substitute p with the expression
of the general solution (9) obtaining

HmC1GH>mC1q D HmC1g�HmC1GpmC1: (11)

The above system can be solved by any ABS
method for a particular solution q,m equations be-
ing again removed at step B) of the ABS algorithm
as linearly dependent.

Once p is determined, there are two approaches to de-
termine z, namely:
B1) Solve by any ABS method the overdetermined

compatible system

C>z D g � Gp (12)

by removing at step B) of the ABS algorithm the n
�m dependent equations.

B2) Let P = (p1, . . .pm) be the matrix whose columns
are the search vectors generated on the system Cp
= c. Now CP = L, with L nonsingular lower diago-
nal. Multiplying equation (12) on the left by P| we
obtain a triangular system, defining z uniquely

L>z D P>g � P>Gp: (13)

Extensive numerical testing has evaluated the accuracy
of the above considered ABS algorithms for KT equa-
tions for certain choices of the ABS parameters (cor-
responding to the implicit LU algorithm with row piv-
oting and the modified Huang algorithm). The meth-
ods have been tested against classical methods, in par-
ticular the method of Aasen and methods using the QR
factorization. The experiments have shown that some
ABS methods are the most accurate, in both residual
and solution error; moreover some ABS algorithms are
cheaper in storage and in overhead, up to one order,
especially for the case when m is close to n.

In many interior point methods the main computa-
tional cost is to compute the solution for a sequence of
KT problems where only G, which is diagonal, changes.
In such a case the ABS methods, which initially work
on the matrix C, which is unchanged, are advantaged,
particularly when m is large, where the dominant cu-
bic term decreases with m and disappears for m = n,
so that the overhead is dominated by second order
terms. Again numerical experiments show that some
ABS methods are more accurate than the classical ones.
For details see [8].

Reformulation of the SimplexMethod
via the Implicit LX Algorithm

The implicit LX algorithm has a natural application to
a reformulation of the simplex method for the LP prob-
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lem in standard form, i. e. the problem

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b

x � 0 :

The applicability of the implicit LXmethod is a con-
sequence of the fact that the iterate xi+1 generated by
the method, started from the zero vector, is a basic type
vector, with a unit component in the position ki, non
identically zero components corresponding to indices j
2 Bi, where Bi is the set of indices of the unit vectors
chosen as the zi, wi parameters, i. e. the set Bi = (k1,
. . . , ki), while the components of xi+1 of indices in the
set Ni = N/Bi are identically zero, where N = (1, . . .n).
Therefore, if the nonzero components are nonnegative,
the point defines a vertex of the polytope containing
the feasible points defined by the constraints of the LP
problem.

In the simplex method one moves from a vertex to
another one, according to some rules and usually re-
ducing at each step the value of the function c|x. The
direction along which one moves from a vertex to an-
other one is an edge direction of the polytope and is de-
termined by solving a linear system, whose coefficient
matrix AB, the basic matrix, is defined by m linearly
independent columns of the matrix A, called the basic
columns. Usually such a system is solved by the LU fac-
torization method or occasionally by the QR method,
see [5]. The new vertex is associated to a new basic ma-
trix AB

0, which is obtained by substituting one of the
columns in AB by a column of the matrix AN , which
comprises the columns of A that do not belong to AB.
The most efficient algorithm for solving the modified
system, after the column interchange, is the Forrest–
Goldfarb method [6], requiringm2 multiplications. No-
tice that the classical simplex method requires m2 stor-
age for the matrix AB plusmn storage for the matrix A,
which must be kept in general to provide the columns
for the exchange.

The application of the implicit LX method to the
simplex method, developed in [4,10,13,17] exploits the
fact that in the implicit LX algorithm the interchange
of a jth column in AB with a kth column in AN cor-
responds to the interchange of a previously chosen pa-
rameter vector zj = wj = ej with a new parameter zk =wk

= ek. This operation is a special case of the perturbation
of the Abaffian after a change in the parameters and can
be done using a general formula of [15], without explicit
use of the kth column in AN . Moreover since all quanti-
ties which are needed for the construction of the search
direction (the edge direction) and for the interchange
criteria can as well be implemented without explicit use
of the columns of A, it follows that the ABS approach
needs only the storage of the matrixHm+1, which, in the
case of the implicit LX algorithm, has a cost of at most
n2/4. Therefore for values of m close to n the storage
required by the ABS formulation is about 8 times less
than for the classical simplex method.

Here we give the basic formulas of the simplex
method in the classical and in the ABS formulation.
The column in AN substituting an old column in AB

is often taken as the column with minimal relative cost.
In terms of the ABS formulation this is equivalent to
minimize with respect to i 2 Nm the scalar �i = c|H|ei.
Let N� be the index chosen in this way. The column
in AB to be exchanged is usually chosen with the cri-
terion of the maximum displacement along an edge
which keeps the basic variables nonnegative. Define !i

= x|ei/e>i H
|eN� , where x is the current basic feasible

solution. Then the above criterion is equivalent to min-
imize !i with respect the set of indices i 2 Bm such that

e>i H
>eN� > 0: (14)

Notice that H|eN� 6D 0 and that an index i such that
(14) is satisfied always exists, unless x is a solution of
the LP problem.

The update of the Abaffian after the interchange of
the unit vectors, which corresponds to the update of the
LU factors after the interchange of the basic with the
nonbasic column, is given by the following formula

H0 D H � (HeB� � eB�)
e>N�H

e>N�HeB�
: (15)

The search direction d, which in the classical formula-
tion is obtained by solving the system ABd =� AeN� , is
given by d =H>mC1eN� , hence at no cost. Finally, the rel-
ative cost vector r, classically given by r = c � A|A�1B cB,
where cB consists of the components of c with indices
corresponding to those of the basic columns, is simply
given by r = Hm + 1c.
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Let us now consider the computational cost of up-
date (15). Since H eB� has at most n �m nonzero com-
ponents, whileH|eN� has at mostm, no more thanm(n
� m) multiplications are required. The update is most
expensive form = n/2 and gets cheaper the smaller m is
or the closer it is to n. In the dual steepest edge Forrest–
Goldfarb method [6] the overhead for replacing a col-
umn is m2, hence formula (15) is faster for m > n/2
and is recommended on overhead considerations for
m sufficiently large. However we notice that ABS up-
dates having aO(m2) cost can also be obtained by using
the representation of the Abaffian in terms of 2m vec-
tors. No computational experience has been obtained
till now on the new ABS formulation of the simplex
method.

Finally, a generalization of the simplex method,
based upon the use of the Huang algorithm started with
a suitable singular matrix, has been developed in [16].
In this formulation the solution is approached by points
lying on a face of the polytope. Whenever the point hits
a vertex the remaining iterates move among vertices
and the method is reduced to the simplex method.

ABS Unification of Feasible DirectionMethods
for Minimization with Linear Constraints

ABS algorithms can be used to provide a unification
of feasible point methods for nonlinear minimization
with linear constraints, including as a special case the
LP problem. Let us first consider the problem with only
linear equality constraints:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
x2Rn

f (x)

s.t. Ax D b
A 2 Rm;n ; m � n;
rank(A) D m:

Let x1 be a feasible starting point; then for an itera-
tion procedure of the form xi+1 = xi � ˛idi, the search
direction will generate feasible points if and only if

Adi D 0: (16)

Solving the underdetermined system (16) for di by the
ABS algorithm, the solution can be written in the fol-

lowing form, taking, without loss of generality, the zero
vector as a special solution

di D H>mC1q; (17)

where the matrix Hm+1 depends on the arbitrary choice
of the parameters H1, wi and vi used in solving (16) and
q 2Rn is arbitrary. Hence the general feasible direction
iteration has the form

xiC1 D xi � ˛iH>mC1q: (18)

The search direction is a descent direction if and only
if d|rf (x) = q|Hm+1 r f (x) > 0. Such a condition can
always be satisfied by choice of q unless Hm+1 r f (x) =
0, which implies, from the null space structure ofHm+1,
that r f (x) = A| � for some �, hence that xi + 1 is a KT
point and � is the vector of the Lagrange multipliers.
When xi+1 is not a KT point, it is immediate to see that
the search direction is a descent directions if we select
q as q = WHm+1 r f (x), where W is a symmetric and
positive definite matrix.

Particular well-known algorithms from the litera-
ture are obtained by the following choices of q, with
W = I:
� The Wolfe reduced gradient method. Here, Hm+1 is

constructed by the implicit LU (or the implicit LX)
algorithm.

� The Rosen gradient projection method. Here,Hm+1 is
built using the Huang algorithm.

� TheGoldfarb–Idnanimethod. Here,Hm+1 is built via
the modification of the Huang algorithm where H1

is a symmetric positive definite matrix approximat-
ing the inverse Hessian of f (x).

If there are inequalities two approaches are possible:
A) The active set approach. In this approach the set of

linear equality constraints is modified at every iter-
ation by adding and/or dropping some of the linear
inequality constraints. Adding or deleting a single
constraint can be done, for every ABS algorithm, in
order two operations, see [15]. In the ABS reformu-
lation of the Goldfarb–Idnani method, the initial
matrix is related to a quasi-Newton approximation
of the Hessian and an efficient update of the Abaf-
fian after a change in the initial matrix is discussed
in [14].
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B) The standard form approach. In this approach, by
introducing slack variables, the problem with both
types of linear constraints is written in the equiva-
lent form
8̂
<̂
ˆ̂:

min f (x)
s.t. Ax D b

x � 0:

The following general iteration, started with x1 a feasi-
ble point, generates a sequence of feasible points for the
problem in standard form

xiC1 D xi � ˛iˇiHmC1r f (x); (19)

where the parameter ˛i can be chosen by a line search
along the vector Hm+1 r f (x), while the relaxation pa-
rameter ˇi > 0 is selected to avoid that the new point
has some negative components.

If f (x) is nonlinear, then Hm+1 can be determined
once and for all at the first step, since r f (x) generally
changes from iteration to iteration, therefore modifying
the search direction. If, however, f (x) = c|x is linear (we
have then the LP problem) to modify the search direc-
tion we need to change Hm+1. As observed before, the
simplex method is obtained by constructing Hm+1 with
the implicit LX algorithm, every step of the method cor-
responding to a change of the parameters eki . It can be
shown, see [13], that the method of Karmarkar (equiv-
alent to an earlier method of Evtushenko [3]), corre-
sponds to using the generalized Huang algorithm, with
initial matrix H1 = Diag(xi) changing from iteration to
iteration. Another method, faster than Karmarkar’s and
having superlinear against linear rate of convergence
and O(

p
n) against O(n) complexity, again first pro-

posed by Y. Evtushenko, is obtained by the generalized
Huang algorithm with initial matrix H1 = Diag(x2i ).

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� Gauss–Newton Method: Least Squares, Relation to
Newton’s Method

� Generalized Total Least Squares
� Least Squares Orthogonal Polynomials

� Least Squares Problems
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
� Nonlinear Least Squares: Trust Region Methods
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Introduction

The adaptive convexification algorithm is a method
to solve semi-infinite optimization problems via a se-
quence of feasible iterates. Its main idea [6] is to
adaptively construct convex relaxations of the lower
level problem, replace the relaxed lower level problems
equivalently by their Karush–Kuhn–Tucker conditions,
and solve the resulting mathematical programs with
complementarity constraints. The convex relaxations
are constructed with ideas from the ˛BB method of
global optimization.

Feasibility in Semi-Infinite Optimization

In a (standard) semi-infinite optimization problem
a finite-dimensional decision variable is subject to in-

finitely many inequality constraints. For adaptive con-
vexification one assumes the form

SIP : min
x2X

f (x) subject to g(x; y) � 0;

for all y 2 [0; 1]

with objective function f 2 C2(Rn ;R), constraint
function g 2 C2(Rn �R;R), a box constraint set
X D [x`; xu] � Rn with x` < xu 2 Rn , and the set of
infinitely many indices Y D [0; 1]. Adaptive convexi-
fication easily generalizes to problems with additional
inequality and equality constraints, a finite number of
semi-infinite constraints as well as higher-dimensional
box index sets [6]. Reviews on semi-infinite program-
ming are given in [8,13], and [9,14,15] overview the ex-
isting numerical methods.

Classical numerical methods for SIP suffer from the
drawback that their approximations of the feasible set
X \M with

M D f x 2 Rn j g(x; y) � 0 for all y 2 [0; 1] g

may contain infeasible points. In fact, discretization
and exchange methods approximateM by finitely many
inequalities corresponding to finitely many indices in
Y D [0; 1], yielding an outer approximation of M,
and reduction based methods solve the Karush–Kuhn–
Tucker system of SIP by a Newton-SQP approach. As
a consequence, the iterates of these methods are not
necessarily feasible for SIP, but only their limit might
be. On the other hand, a first method producing feasible
iterates for SIPwas presented in the articles [3,4], where
a branch-and-bound framework for the global solution
of SIP generates convergent sequences of lower and up-
per bounds for the globally optimal value.

In fact, checking feasibility of a given point x̄ 2 Rn

is the crucial problem in semi-infinite optimization.
Clearly we have x̄ 2 M if and only if '(x̄) � 0 holds
with the function

' : Rn ! R; x 7! max
y2[0;1]

g(x; y) :

The latter function is the optimal value function of the
so-called lower level problem of SIP,

Q(x) : max
y2R

g(x; y) subject to 0 � y � 1 :

The difficulty lies in the fact that '(x̄) is the globally
optimal value of Q(x̄) which might be hard to deter-
mine numerically. In fact, standard NLP solvers can
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only be expected to produce a local maximizer yloc of
Q(x̄) which is not necessarily a global maximizer yglob.
Even if g(x̄; yloc) � 0 is satisfied, x̄ might be infeasible
since g(x̄; yloc) � 0 < '(x̄) D g(x̄; yglob) may hold.

Convex Lower Level Problems

Assume for a moment that Q(x) is a convex optimiza-
tion problem for all x 2 X, that is, g(x; �) is concave on
Y D [0; 1] for these x. An approach developed for so-
called generalized semi-infinite programs from [18,19]
then takes advantage of the fact that the solution set
of a differentiable convex lower level problem satisfy-
ing a constraint qualification is characterized by its first
order optimality condition. In fact, SIP and the Stackel-
berg game

SG : min
x;y

f (x) subject to g(x; y) � 0;

and y solves Q(x)

are equivalent problems, and the restriction
‘y solves Q(x)’ in SG can be equivalently replaced
by its Karush–Kuhn–Tucker condition. For this refor-
mulation we use that the Lagrange function of Q(x),

L(x; y; �`; �u) D g(x; y)C �` yC �u(1 � y);

satisfies

ryL(x; y; �`; �u) D ry g(x; y)C �` � �u

and obtain that the Stackelberg game is equivalent to
the following mathematical program with complemen-
tarity constraints:

MPCC : min
x;y;�`;�u

f (x) subject to g(x; y) � 0

ry g(x; y)C �` � �u D 0
�` y D 0

�u(1 � y) D 0

�`; �u � 0

y; 1 � y � 0 :

Overviews of solution methods for MPCC are given
in [10,11,17]. One approach to solveMPCC is the refor-
mulation of the complementarity constraints by a so-
called NCP function, that is, a function � : R2 ! R
with

�(a; b) D 0

if and only if a � 0 ; b � 0; a b D 0 :

For numerical purposes one can regularize these non-
differentiable NCP functions. Although MPCC does
not necessarily have to be solved via the NCP function
formulation, in the following we will use NCP func-
tions to keep the notation concise. In fact, MPCC can
be equivalently rewritten as the nonsmooth problem

P : min
x;y;�`;�u

f (x) subject to g(x; y) � 0

ry g(x; y)C �` � �u D 0
�(�`; y) D 0

�(�u; 1 � y) D 0 :

The ˛BBMethod

In ˛BB, a convex underestimator of a nonconvex func-
tion is constructed by decomposing it into a sum of
nonconvex terms of special type (e. g., linear, bilinear,
trilinear, fractional, fractional trilinear, convex, uni-
variate concave) and nonconvex terms of arbitrary type.
The first type is then replaced by its convex envelope
or very tight convex underestimators which are already
known. A complete list of the tight convex underesti-
mators of the above special type nonconvex terms is
provided in [5].

For the ease of presentation, here we will treat
all terms as arbitrarily nonconvex. For these terms,
˛BB constructs convex underestimators by adding
a quadratic relaxation function  . With the obvi-
ous modification we use this approach to construct
a concave overestimator for a nonconcave function
g : [y`; yu]! R being C2 on an open neighborhood of
[y`; yu]. With

 (y;˛; y`; yu) D
˛

2
(y � y`)(yu � y) (1)

we put

g̃(y;˛; y`; yu) D g(y)C  (y;˛; y`; yu) :

In the sequel we will suppress the dependence of g̃ on
y`; yu . For ˛ � 0 the function g̃ clearly is an overesti-
mator of g on [y`; yu], and it coincides with g at the
endpoints y`, yu of the domain. Moreover, g̃ is twice
continuously differentiable with second derivative

r2
y g̃(y;˛) D r

2g(y) � ˛
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on [y`; yu]. Consequently g̃ is concave on [y`; yu] for

˛ � max
y2[y`;yu]

r2g(y) (2)

(cf. also [1,2]). The computation of ˛ thus involves
a global optimization problem itself. Note, however,
that one may use any upper bound for the right-hand
side in (2). Such upper bounds can be provided by in-
terval methods (see, e. g., [5,7,12]). An ˛ satisfying (2)
is called convexification parameter.

Combining these facts shows that for

˛ � max

 
0; max

y2[y`;yu]
r2g(y)

!

the function g̃(y;˛) is a concave overestimator of g on
[y`; yu].

Formulation

For N 2N let 0 D �0 < �1 < : : : < �N�1 < �N D 1
define a subdivision of Y D [0; 1], that is, with
K D f1; : : : ;Ng and

Yk D [�k�1; �k ]; k 2 K ;

we have

Y D
[
k2K

Yk :

A trivial but very useful observation is that the single
semi-infinite constraint

g(x; y) � 0 for all y 2 Y

is equivalent to the finitely many semi-infinite con-
straints

g(x; y) � 0 for all y 2 Yk ; k 2 K :

Given a subdivision, one can construct concave over-
estimators for each of these finitely many semi-
infinite constraints, solve the corresponding optimiza-
tion problem, and adaptively refine the subdivision.

The following lemma formulates the obvious fact
that replacing g by overestimators on each subdivision
node Yk results in an approximation of M by feasible
points.

Lemma 1 For each k 2 K let gk : X � Yk ! R, and let
x̄ 2 X be given such that for all k 2 K and all y 2 Yk we
have g(x̄; y) � gk (x̄; y). Then the constraints

gk(x̄; y) � 0 for all y 2 Yk ; k 2 K ;

entail x̄ 2 M.

˛BB for the Lower Level

For the construction of these overestimators one uses
ideas of the ˛BB method. In fact, for each k 2 K we put

gk : X�Yk ! R; (x; y) 7! g(x; y)C (y;˛k ; �k�1; �k)

(3)

with the quadratic relaxation function  from (1) and

˛k > max

 
0; max

(x;y)2X�Yk
r2

y g(x; y)

!
: (4)

Note that the latter condition on ˛k is uniform in x. We
emphasize that with the single bound

¯̨ > max
�
0; max

(x;y)2X�Y
r2

y g(x; y)
�

(5)

the choices ˛k :D ¯̨ satisfy (4) for all k 2 K. Moreover,
the ˛k can always be chosen such that ˛k � ¯̨ , k 2 K.

The following properties of gk are easily verified.

Lemma 2 ([6]) For each k 2 K let gk be given by (3).
Then the following holds:
(i) For all (x; y) 2 X � Yk we have g(x; y) � gk(x; y).
(ii) For all x 2 X, the function gk(x; �) is concave on Yk.

Now consider the following approximation of the fea-
sible set M, where E D f�kj k 2 Kg denotes the set of
subdivision points, and ˛ the vector of convexification
parameters:

M˛BB(E; ˛) D f x 2 Rn j gk(x; y) � 0 ;

for all y 2 Yk ; k 2 K g :

By Lemma 1 and Lemma 2(i) we have
M˛BB(E; ˛) � M. This means that any solution con-
cept for

SIP˛BB(E; ˛) : min
x2X

f (x) subject to

x 2 M˛BB(E; ˛) ;
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be it global solutions, local solutions or stationary
points, will at least lead to feasible points of SIP (pro-
vided that SIP˛BB(E; ˛) is consistent).

The problem SIP˛BB(E; ˛) has finitely many lower
level problems Qk(x), k 2 K; with

Qk(x) : max
y2R

gk(x; y) subject to �k�1 � y � �k :

Since the inequality (4) is strict, the convex problem
Qk(x) has a unique solution yk(x) for each k 2 K and
x 2 X. Recall that y 2 Yk is called active for the con-
straint maxy2Yk gk(x; y) � 0 at x̄ if gk(x̄; y) D 0 holds.
By the uniqueness of the global solution of Qk(x̄) there
exists at most one active index for each k 2 K, namely
yk(x̄). Thus, one can consider the finite active index sets

K0(x̄) Df k 2 Kj gk(x̄; yk(x̄)) D 0 g;

Y˛BB0 (x̄) Df yk(x̄)j k 2 K0(x̄) g :

The MPCC Reformulation

Following the ideas to treat convex lower level prob-
lems, yk solves Qk(x) if and only if (x; yk ; � k

`
; � k

u ) solves
the system

ry gk(x; y)C �` � �u D 0

�(�`; y � �k�1) D 0

�(�u ; �k � y) D 0

with some � k
`
, � k

u , and � denoting some NCP function.
With

w :D (x; yk ; � k
` ; �

k
u ; k 2 K)

F(w) :D f (x)

Gk(w; E; ˛) :D g(x; yk)C
˛k

2
(yk � �k�1)(�k � yk)

Hk(w; E; ˛) :D
0
B@
ry g(x; yk)C ˛k

�
�k�1C�k

2 � yk
�
C � k

`
� � k

u

�(� k
`
; yk � �k�1)

�(� k
u ; �

k � yk)

1
CA

one can thus replace SIP˛BB(E; ˛) equivalently by the
nonsmooth problem

P(E; ˛) : min
w

F(w) subject to

Gk (w; E; ˛) � 0;

Hk(w; E; ˛) D 0; k 2 K :

The latter problem can be solved to local optimality by
MPCC algorithms [10,11,17]. For a local minimizer w̄
of P(E, ˛) the subvector x̄ of w̄ is a local minimizer and,
hence, a stationary point of SIP˛BB(E; ˛).

Method

The main idea of the adaptive convexification al-
gorithm is to compute a stationary point x̄ of
SIP˛BB(E; ˛) by the approach from the previous sec-
tion, and terminate if x̄ is also stationary for SIP within
given tolerances. If x̄ is not stationary it refines the sub-
division E in the spirit of exchange methods [8,15] by
adding the active indices Y˛BB0 (x̄) to E, and constructs
a refined problem SIP˛BB(E [ Y˛BB0 (x̄); ˜̨ ) by the fol-
lowing procedure. Note that, in view of Carathéodory’s
theorem, the number of elements of Y˛BB0 (x̄) may be
bounded by nC 1.

Refinement Step

For any �̃ 2 Y˛BB0 (x̄), let k 2 K be the index with
�̃ 2 [�k�1; �k ]. Put Yk;1 D [�k�1; �̃], Yk;2 D [�̃; �k], let
˛k;1 and ˛k;2 be the corresponding convexification pa-
rameters, put

gk;1(x; y) D g(x; y)C
˛k;1

2
(y � �k�1)(�̃� y);

gk;2(x; y) D g(x; y)C
˛k;2

2
(y � �̃)(�k � y);

and define M˛BB(E [ f�̃g; ˜̨) by replacing the con-
straint

gk(x; y) � 0; for all y 2 Yk

in M˛BB(E; ˛) by the two new constraints

gk;i(x; y) � 0; for all y 2 Yk;i ; i D 1; 2 ;

and by replacing the entry ˛k of ˛ by the two new en-
tries ˛k,i, i D 1; 2.

The Algorithm

The point x̄ is stationary for SIP˛BB(E; ˛) (in the sense
of Fritz John) if x̄ 2 M˛BB(E; ˛) and if there exist
yk 2 Y˛BB0 (x̄), 1 � k � nC 1, and (�; �) 2 SnC1 (the
(nC 1)�dimensional standard simplex) with

�r f (x̄)C
nC1X
kD1

�k rx g(x̄; yk) D 0

�k � gk(x̄; yk) D 0; 1 � k � nC 1 :
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For the adaptive convexification algorithm the notions
of active index, stationarity, and set unification are re-
laxed by certain tolerances.

Definition 1 For "act, "stat, "[ > 0 we say that
(i) yk is "act-active for gk at x̄ if gk(x̄; yk) 2 [�"act; 0],
(ii) x̄ is "stat-stationary for SIP with "act-active indices

if x̄ 2 M and if there exist yk 2 Y , 1 � k � nC 1,
and (�; �) 2 SnC1 such that
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ�r f (x̄)C

nC1X
kD1

�k rx g(x̄; yk)

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ � "stat

�k � g(x̄; yk) 2 [��k � "act; 0]; 1 � k � nC 1 ;

hold, and
(iii) the "[-union of E and �̃ is E [ f�̃g if

minf�̃ � �k�1; �k � �̃g > "[ � (�k � �k�1)

holds for the k 2 K with �̃ 2 [�k�1; �k], and E oth-
erwise (i. e., �̃ is not unified with E if its distance
from E is too small).

In [6] it is shown that Algorithm 1 is well-defined, con-
vergent and finitely terminating. Furthermore, the fol-
lowing feasibility result holds.

Theorem 2 ([6]) Let (x�)� be a sequence of points gen-
erated by Algorithm 1. Then all x� ; � 2 N, are feasible
for SIP, the sequence (x�)� has an accumulation point,
each such accumulation point x� is feasible for SIP, and
f (x�) provides an upper bound for the optimal value of
SIP.

Numerical examples for the performance of the method
from Chebyshev approximation and design centering
are given in [6].

A Consistent Initial Approximation

Even if the feasible set M of SIP is consistent, there is
no guarantee that its approximations M˛BB(E; ˛) are
also consistent. For Step 1 of Algorithm 1 [6] suggests
the following phase I approach: use Algorithm 1 to con-
struct adaptive convexifications of

SIPph:I : min
(x;z)2X�R

z subject to g(x; y) � z

for all y 2 [0; 1]

Algorithm 1
(Adaptive convexification algorithm)

Step 1: Determine a uniform convexification param-
eter N̨ with (5), choose N 2 N , �k 2 Y and ˛k �
N̨ , k 2 K = f1; : : : ;Ng, such that SIP˛BB(E; ˛) is
consistent, as well as tolerances "act; "stat; "[ >
0 with "[ � 2"act/ N̨ .

Step 2: By solving P(E; ˛), compute a stationary
point x of SIP˛BB(E; ˛) with "act�active indices
yk , 1 � k � n + 1, and multipliers (�; �).

Step 3: Terminate if x is "stat�stationary for SIPwith
(2"act)-active indices yk ; 1 � k � n + 1, from
Step 2 and multipliers (�; �) from Step 2.
Otherwise construct a new set QE of subdivision
points as the "[-union of E and fykj
1 � k � n + 1g, and perform a refinement step
for the elements in QE n E to construct a new fea-
sible set M˛BB( QE; Q̨ ).

Step 4: Put E = QE, ˛ = Q̨ , and go to Step 2.

Adaptive Convexification in Semi-Infinite Optimization, Al-
gorithm 1

until a feasible point (x̄; z̄) with z̄ � 0 of SIPph:I
˛BB (E; ˛)

is found with some subdivision E and convexification
parameters ˛. The point x̄ is then obviously also feasi-
ble for SIP˛BB(E; ˛) and can be used as an initial point
to solve the latter problem. Due to the possible noncon-
vexity of the upper level problem of SIP, this phase I ap-
proach is not necessarily successful, but possible reme-
dies for this situation are given in [6].

To initialize Algorithm 1 for phase I, select some
point x̄ in the box X and put E1 D f0; 1g, that is,
Y1 D Y D [0; 1]. Compute ˛1 according to (4) and
solve the convex optimization problem Q1(x̄) with
standard software. With its optimal value z̄, the point
(x̄; z̄) is feasible for SIPph:I

˛BB (E
1; ˛1).

A Certificate for Global Optimality

After termination of Algorithm 1 one can exploit that
the set E � [0; 1] contains indices that should also yield
a good outer approximation ofM. The optimal value of
the problem

Pouter : min
x2X

f (x) subject to g(x; �) � 0; � 2 E ;



Adaptive Global Search A 19

yields a rigorous lower bound for the optimal value of
SIP. If Pouter can actually be solved to global optimal-
ity (e. g., if a standard NLP solver is used, due to con-
vexity with respect to x), then a comparison of this
lower bound for the optimal value of SIPwith the upper
bound from Algorithm 1 can yield a certificate of global
optimality for SIP up to some tolerance.

Conclusions

The adaptive convexification algorithm provides an
easily implementable way to solve semi-infinite opti-
mization problems with feasible iterates. To explain its
basic ideas, in [6] the algorithm is presented in its sim-
plest form. It can be improved in a number of ways,
for example in the magnitude of the convexification pa-
rameters and in their adaptive refinement, or by using
other convexification techniques. Although the numer-
ical results from [6] are very promising, further work is
needed on error estimates on the numerical solution of
the auxiliary problem P(E,˛), which is assumed to be
solved to exact local optimality by the present adaptive
convexification algorithm.
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This article contains a survey of some well known
facts about the complexity of global optimization, and
also describes some results concerning the average-case
complexity.

Consider the following optimization problem.
Given a class F of objective functions f defined on
a compact subset of d-dimensional Euclidean space, the
goal is to approximate the global minimum of f based
on evaluation of the function at sequentially selected
points. The focus will be on the error after n observa-
tions

	n D 	n( f ) D fn � f �;

where f n is the smallest of the first n observed function
values (other approximations besides f n are often con-
sidered).

Complexity of optimization is usually studied in the
worst- or average-case setting. In order for a worst-case
analysis to be useful the class of objective functions F
must be quite restricted. Consider the case where F is
a subset of the continuous functions on a compact set.
It is convenient to consider the class F = Cr([0, 1]d) of
real-valued functions on [0, 1]d with continuous deriva-
tives up to order r � 0. Suppose that r > 0 and f r is
bounded. In this case 
(��d/r) function evaluations are
needed to ensure that the error is at most � for any f 2
F; see [8].

An adaptive algorithm is one for which the (n + 1)st
observation point is determined as a function of the
previous observations, while a nonadaptive algorithm
chooses each point independently of the function val-
ues. In the worst-case setting, adaptation does not help
much under quite general assumptions. If F is convex
and symmetric (in the sense that�F = F), then themax-
imum error under an adaptive algorithm with n ob-
servations is not smaller than the maximum error of
a nonadaptive method with n + 1 observations; see [4].

Virtually all global optimization methods in prac-
tical use are adaptive. For a survey of such methods
see [6,9]. The fact that the worst-case performance can
not be significantly improved with adaptation leads to
consideration of alternative settings that may be more

appropriate. One such setting is the average-case set-
ting, in which a probability measure P on F is chosen.
The object of study is then the sequence of random
variables 	n(f ), and the questions include under what
conditions (for what algorithms) the error converges to
zero and for convergent algorithms the speed of con-
vergence. While the average-case error is often defined
as the mathematical expectation of the error, it is useful
to take a broader view, and consider for example con-
vergence in probability of an	n for some normalizing
sequence {an}.

With the average-case setting one can consider less
restricted classes F than in the worst-case setting. As F
gets larger, the worst-case deviates more andmore from
the average case, but may occur on only a small portion
of the set F. Even for continuous functions the worst-
case is arbitrarily bad.

Most of what is known about the average-case com-
plexity of optimization is in the one-dimensional set-
ting under theWiener probability measure on C([0, 1]).
Under the Wiener measure, the increments f (t)�f (s)
have a normal distribution with mean zero and vari-
ance t�s, and are independent for disjoint intervals. Al-
most every f is nowhere differentiable, and the set of
local minima is dense in the unit interval. One can thus
think of the Wiener measure as corresponding to as-
suming ‘only’ continuity; i. e., a worst-case probabilistic
assumption.

K. Ritter proved [5] that the best nonadaptive algo-
rithms have error of order n�1/2 after n function eval-
uations; the optimal order is achieved by observing at
equally spaced points. Since the choice of each new ob-
servation point does not depend on any of the previ-
ous observations, the computation can be carried out
in parallel. Thus under the Wiener measure, the opti-
mal nonadaptive order of convergence can be accom-
plished with an algorithm that has computational cost
that grows linearly with the number of observations and
uses constant storage. This gives the base on which to
compare adaptive algorithms.

Recent studies (as of 2000) have formally estab-
lished the improved power of adaptive methods in the
average-case setting by analyzing the convergence rates
of certain adaptive algorithms. A randomized algorithm
is described in [1] with the property that for any 0 < ı <
1, a version can be constructed so that under theWiener
measure, the error converges to zero at rate n�1+ı . This
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algorithm maintains a memory of two past observation
values, and the computational cost grows linearly with
the number of iterations. Therefore, the convergence
rate of this adaptive algorithm improves from the non-
adaptive n�1/2 rate to n�1+ı with only a constant in-
crease in storage.

Algorithms based on a random model for the ob-
jective function are well-suited to average-case analysis.
H. Kushner proposed [3] a global optimization method
based on modeling the objective function as a Wiener
process. Let {zn} be a sequence of positive numbers, and
let the (n + 1)st point be chosen to maximize the prob-
ability that the new function value is less than the pre-
viously observed minimum minus zn. This class of al-
gorithms, often called P-algorithms, was given a formal
justification by A. Žilinskas [7].

By allowing the {zn} to depend on the past observa-
tions instead of being a fixed deterministic sequence, it
is possible to establish a much better convergence rate
than that of the randomized algorithm described above.
In [2] an algorithm was constructed with the property
that the error converges to zero for any continuous
function and furthermore, the error is of order e�ncn ,
where {cn} (a parameter of the algorithm) is a determin-
istic sequence that can be chosen to approach zero at an
arbitrarily slow rate. Notice that the convergence rate
is now almost exponential in the number of observa-
tions n. The computational cost of the algorithm grows
quadratically, and the storage increases linearly, since
all past observations must be stored.
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The adaptive simulated annealing (ASA) algorithm [3]
has been shown to be faster and more efficient than
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simulated annealing and genetic algorithms [4]. In
this article we first outline some of the aspects of the
method and specific computational details, and then re-
view the application of the ASA method to biomolec-
ular structure determination [15], specifically for Met-
Enkephalin and a model of the poly(L-Alanine) system.

The ASAMethod

For a system described by a cost function E({pi}), where
all pi (i = 1, . . . , D) are parameters (variables) having
ranges [Ai, Bi], the ASA procedure to find the global
optimum of ‘E’ contains the following elements.

Monte-Carlo Configurations

As the kth point is saved in aD-dimensional configura-
tion space, the new point pikC1 is generated by:

pikC1 D pik C yi (Bi � Ai ); (1)

where the random variables yi in [�1, 1] (non-uniform)
are generated from a random number ui uniformly dis-
tributed in [0, 1], and the temperature Ti associated
with parameter pi, as follows:

yi D sgn(ui � 0:5)Ti

"�
1C

1
Ti

�j2u i�1j
� 1

#
: (2)

Note that if pikC1 is outside the range of [Ai, Bi] it will
be disregarded, with the process being repeated until it
falls within the range. The choice of yi is made so that
the probability density distribution of the D parameters
will satisfy the distribution of each parameter:

gi (yi ; Ti ) D
1

2(jyi j C Ti )(1C 1
Ti
)
; (3)

which is chosen to ensure that any point in configura-
tion space can be sampled infinitely often in annealing
time with a cooling schedule outlined below. Thus, at
any annealing time k0, the probability of not generating
a global optimum, given infinite time, is zero:

1Y
kDk0

(1 � gk) D 0; (4)

where gk is the distribution function at time step k. Note
that all atoms move at each Monte-Carlo step in ASA.
A Boltzmann acceptance criterion is then applied to the
difference in the cost function.

Annealing Schedule

The annealing schedule for each parameter tempera-
ture from a starting temperature T0i, and similarly for
the cost temperature, is given by:

Ti (ki ) D T0i exp
�
�ci k

1
D
i

�
; (5)

where ci and ki are the annealing scale and ASA step of
parameter pi. The index for re-annealing the cost func-
tion is determined by the number of accepted points
instead of the number of generated points as is being
used for the parameters. This choice was made since
the Boltzmann acceptance criterion uses an exponen-
tial distribution which is not as ‘fat-tailed’ as the ASA
distribution used for the parameters.

Re-Annealing

The temperatures may be periodically re-annealed or
re-scaled according to the sensitivity of the cost func-
tion. At any given annealing time, the temperature
range is ‘stretched out’ over the relatively insensitive pa-
rameters, thus guiding the search ‘fairly’ among the pa-
rameters. The sensitivity of the energy to each parame-
ter is calculated by:

Si D
@E
@pi

; (6)

while the re-annealing temperature is determined by:

Ti (k0) D Ti (k)
Si
Smax

: (7)

In this way, less sensitive parameters anneal faster. This
is done approximately every 100 accepted events.

For comparison, within conventional simulated an-
nealing [6] the cooling schedule is given by:

STk D T0e�(1�c)k (0 < c < 1); (8)

where trial and error are applied to determine the an-
nealing rate c�1 as well as the starting temperature
T0. A Monte-Carlo simulation is carried out at each
temperature step k with temperature Tk. This cooling
schedule is equivalent to Tk + 1 = Tk c.

The ASA algorithm is mostly suited to problems for
which less is known about the system, and has proven
to be more robust than other simulated annealing tech-
niques for complex problems with multiple local min-
ima, e. g., as compared to Cauchy annealing where Ti
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= T0/k, and Boltzmann annealing where Ti = T0/ln
k. The annealing schedule in (8), faster than ASA for
a large dimension of D, does not pass the infinitely of-
ten annealing-time test in (4), and is therefore referred
to as simulated quench in the terminology of ASA.

Application to Protein Folding

Computational Details

A protein can be defined as a biopolymer of hundreds
of amino acids bonded by peptide bonds, while the test
models in this article contain less amino acids, namely
oligopeptides. The Met-Enkephalin model was con-
structed as (H-Tyr-Gly-Gly-Phe-Met-OH). For 14(L-
Alanine), the neutral —NH2 and —COOH end groups
were substituted at the termini. The conformation of
a protein is described by the dihedral angles of the back-
bone (� i,  i), side-chains (�

j
i), and peptide bond (!i,

often very close to 180°). Therefore, the conformation
determination of the most stable protein is to find the
set of {�,  , �, !} which give the global minimal po-
tential energy E(�,  , �, !). Within the ASA nomen-
clature, the ‘cost function’ is the potential energy, while
a ‘parameter’ is a dihedral angle variable.

Conformational analyses using conventional simu-
lated annealing were carried out previously [9,11]. The
modifications in these works include moving a number
of dihedral angles in a Monte-Carlo step; adjusting the
maximum deviation of the variables as the temperature
decreases to insure that the acceptance ratio is more
than 25%; and treating the variables differently accord-
ing to their importance in the folding process, e. g., by
increasing sampling for the backbone dihedral angles as
compared to those of the side-chains. It is interesting to
point out that within ASA these modifications are im-
plicitly included.

Each ASA run in our work was started from a ran-
dom initial configuration {�,  , �}. The dihedral angle
! was fixed to 180° in all of the ASA runs. The initial
temperature was determined by the average energy of 5
or 10 random samplings, and a full search range of the
dihedral angles (�  , ) was set. The typical maximum
number of calls to the energy function was 30000. An
ASA run was terminated if it repeated the best energy
value for 3 or 5 re-annealing cycles (each cycle gener-
ates 100 configurations). Further refinement of the final
ASA optimized configuration was carried out by using

the local minimizer SUMSL [1], or the conjugate gradi-
ent method. The combination of the ASA application
and a local minimizer improved the efficiency of the
search.

The ASA calculation is governed by various control
parameters [3], for which the most important setting
is the annealing rate for the temperatures of ‘cost’ and
‘parameters’, determined by the so-called ‘temperature-
ratio-scale’ (the ratio of the final to the initial tem-
perature after certain annealing steps) and the ‘cost-
parameter-scale’. The control parameters were varied
to improve the search efficiency. Adequate control pa-
rameters used for obtaining the results reported in
this study were: ‘temperature-ratio-scale’ = 10�4; ‘cost-
parameter-scale’ = 0.5. These parameter settings corre-
spond to an annealing rate for energy of ccost = 3.6, and
for all dihedral angles of cparameter = 7.2. Note that the
annealing rate for all dihedral angles was chosen to be
the same.

Met-Enkephalin

Met-Enkephalin has a complicated energy surface
[11,16]. The lowest energy for Met-Enkephalin was
found to be �12.9 kcal/mol with the force field being
ECEPP/2 (Empirical Conformation Energy Program
for Peptides) [8].With all! fixed, the lowest energy was
found to be �10.7 kcal/mol by MCM [14]. Using dif-
ferent initial conformations and control parameter set-
tings of the cooling schedule as described above, 55 in-
dependent ASA runs were carried out. Table 1 summa-
rizes the energy distribution of these calculations. Most
of the ASA calculations result in energies in the range
of �8 to �3 kcal/mol, with 7 of the results determining
conformations having energies that are only 3 kcal/mol
above the known lowest energy, thus exhibiting the ef-
fectiveness of the approach. Moreover, as the range of
search was somewhat narrowed, almost all of the ASA
runs reach the global energy minimum.

Adaptive Simulated Annealing and its Application to Protein
Folding, Table 1
The energy (in kcal/mol) distribution of ASA runs for Met-
Enkephalin using a full search range

Energy <� 8 (�8,�5) (�5,�3) >� 3
No. of runs 7 19 19 10



24 A Adaptive Simulated Annealing and its Application to Protein Folding

Adaptive Simulated Annealing and its Application to Protein
Folding, Table 2
Energy and dihedral angles of the lowest energy conforma-
tions of Met-Enkephalin calculated by ASA. RMSD1 is the
root-mean-squaredeviation (inÅ) for backboneatoms,while
RMSD2 is for all atoms

A0 A 1 2 3 4
E �12:9 �10:7 �10:6 �10:4 �10:1 �8:5
�1 �86 �87 �87 �87 �87 �87
 1 156 154 153 153 156 153
�2 �155 �162 �161 �162 �166 �166
 2 84 71 72 75 87 72
�3 84 64 64 63 68 63
 3 �74 �93 �94 �95 �91 �97
�4 �137 �82 �83 �81 �103 �74
 4 19 �29 �26 �30 �13 �30
�5 �164 �81 �79 �76 �76 �82
 5 160 144 133 132 137 143
�11 �173 �180 180 179 �166 �180
�21 79 �111 �110 71 88 73
�31 �166 145 145 �35 �148 �179
�14 59 180 72 �179 71 179
�24 �86 �100 84 �100 �93 �100
�15 53 �65 �171 �173 �65 �65
�25 175 �179 176 176 �178 �179
�35 �180 �179 180 179 �178 �179
�45 �58 �180 �60 60 �178 �179
RMSD1 0 0:04 0:07 0:51 0:26
RMSD2 0 2:52 1:92 2:08 1:29

For the full range search, we identified three
conformations with energies of �10.6, �10.4, and
�10.1 kcal/mol, that exhibit the configuration of the
known lowest geometry of �10.7 kcal/mol. Table 2 lists
the conformations of these lowest energy configura-
tions, as well as an additional low energy structure.
Conformations A0 and A are the lowest-energy confor-
mations with ! nonfixed and fixed, respectively, taken
from [11,14]. The first two conformations, #1 and #2,
have almost the same backbone configuration as that of
A (�10.7 kcal/mol), with a backbone root-mean-square
deviation (RMSD) of only 0.04 and 0.07Å, respectively.
The all-atom RMSD of the listed conformations with
energies ranging from�8.5 to�10.6 kcal/mol are about
2Å. For conformations #1 and #2, the noted differ-
ences are in the side-chains, corresponding to a 0.1 and
0.3 kcal/mol difference in energy, respectively.

Adaptive Simulated Annealing and its Application to Protein
Folding, Table 3
The conformation of amodel 14(L-Alanine) peptide as calcu-
lated by ASA

2 3 4 5 6
� �99:4 �68:2 �68:0 �69:3 �66:9
 158:1 �34:3 �38:8 �38:5 �38:6

7 8 9 10 11
� �68:3 �66:7 �68:8 �67:1 �69:4
 �39:2 �38:0 �38:7 �37:7 �39:6

12 13 14 15
� �65:0 �67:2 �87:7 �75:9
 �40:0 �44:6 65:8 �40:1

Poly(L-Alanine)

The ASA algorithm was applied to a model of (L-
Alanine) that is known to assume a dominant right-
handed ˛-helical structure [13]. For a search range
of dihedral angles that include both the right-handed
(RH) ˛-helix and the ˇ-sheet region in the Ramachan-
dran’s diagram,  : (�115°, � 180°) and �: (� 115°, 0°),
it was significant to find RH ˛-helices with � 	 � 68°
and  	 � 38° in all backbones except those near the
end-groups, as shown in Table 3. The energy of such
a geometry is typically�10.2 kcal/mol after a local min-
imization. The energy surfaces of the RH ˛-helical re-
gions were found to be less complex than those of Met-
Enkephalin. These results are consistent with a previous
study [16].

Conclusion

The adaptive simulated annealing as a global optimiza-
tion method intrinsically includes some of the modi-
fications of conventional simulated annealing used for
biomolecular structure determination. As applied to
Met-Enkephalin, the performance of ASA is compara-
ble to the simulated annealing study reported in [12],
while better than the one reported in [11], although
some differences other than the algorithms are noted.
Utilizing a partial search range improves the efficiency
significantly, showing that ASA may be useful for re-
finement of a molecular structure predicted or mea-
sured by other methods. A dominant right-handed
˛-helical conformation was found for the 14 residue
(L-Alanine) model, with deviations observed only near
the end groups.
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Recent Studies and Future Directions

Recent studies have shown improved efficiency in the
conformational search of Met-Enkephalin, e. g., the
so-called conformation space annealing (CSA), which
combines the ideas of genetic algorithms, simulated an-
nealing, a build up procedure, and local minimization
[7]. The use of the multicanonical ensemble algorithm
(ME) (one of the generalized-ensemble algorithms [2]),
allows free random walks in energy space, escaping
from any energy barrier. Both the ME and CSA al-
gorithms outperform genetic algorithms (GA), simu-
lated annealing (SA), GA with minimization (GAM)
and Monte-Carlo with minimization (MCM). Our own
work (unpublished) and the work in ref. [5] both show
that simple GA alone underperforms simulated an-
nealing for the Met-Enkephalin conformational search
problem. Table 4 compares these algorithms for effi-
ciency (the number of evaluations of energy and energy
gradient, or the number of local minimizations) and ef-
fectiveness (the number of runs reaching the ground
state conformation (hits) versus the number of total
independent runs). Caution should be exercised since
some differences exist between these studies, such as the
version of the ECEPP potential used, the treatment of
the peptide dihedral angle !, etc. Ground state confor-

Adaptive Simulated Annealing and its Application to Protein
Folding, Table 4
Comparison of the conformation search efficiency and effec-
tiveness of Met-Enkephalin using different algorithms. NE ,
Nr E , and Nminz are the number of the evaluations of energy,
energy gradient, and number of local minimizations of each
run, in the unit of 103

hits/total NE NrE Nminz
ME [2] 10/10 < 1900 0 0

MCM [11] 24/24 
 
 15
GAM [10] 5/5 
 
 50
ME [2] 18/20 950 0 0
CSA [7] 99/100 300 250 5
ME [2] 21/50 400 0 0
CSA [7] 50/100 170 130 2:6
SA [2] 8/20 1000 0 0
GA [5] < 1/27 100 0 0:001


: The total number of E,rE evaluations are not given,
but can be estimated based on roughly 100 evalua-
tions for each minimization.

mations are those having energy within approximately
1eV from the known global minimum energy. Note that
the generalized-ensemble method can be carried out
with both Monte-Carlo and molecular dynamics.

In comparison to the studies summarized in Ta-
ble 4, ASA seems to be using too small a number
of function evaluations. Optimizing control parame-
ters such as the annealing schedule and increasing the
number of energy evaluations may improve the effec-
tiveness. Search efficiency could also be improved by
adopting parallellization to achieve scalable simulation
for various algorithms. Extensive research on the pro-
tein conformational search using various hybrids of ge-
netic algorithms and parallelization is in progress (as of
1999).
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The airline industry was one of the first to apply oper-
ations research methodology and techniques on a large
scale. As early as the late 1950s, operations researchers
were beginning to study how the developing fields of
mathematical programming could be used to address
a number of very difficult problems faced by the air-
line industry. Since that time many airline related prob-
lems have been the topics of active research [26]. Most
optimization-related research in the airline industry
can be placed in one of the following areas:
� network design and schedule construction;
� fleet assignment;
� aircraft routing;
� crew scheduling;
� revenue management;
� irregular operations;
� air traffic control and ground delay programs.

In the following, each of these problem areas will
be defined along with a brief discussion of some of
the operations research techniques that have been ap-
plied to solve them. The majority of applications uti-
lize network-based models. Solution of these models
range from traditional mathematical programming ap-
proaches to a variety of novel heuristic approaches.
A very brief selection of references is also provided.

Construction of flight schedules is the starting point
for all other airline optimization problems and is a crit-
ical operational planning task faced by an airline. The
flight schedule defines a set of flight segments that an
airline will service along with corresponding origin and
destination points and departure and arrival times for
each flight segment. An airline’s decision to offer cer-
tain flights will depend in large part on market de-
mand forecasts, available aircraft operating characteris-
tics, available manpower, and the behavior of compet-
ing airlines [11,12].

Of course, prior to the construction of flight sched-
ules, an airline must decide which markets it will serve.
Before the 1978 ‘Airline Deregulation Act’, airlines
had to fly routes as assigned by the Civil Aeronautics
Board regardless of the demand for service. During this
period, most airlines emphasized long point-to-point
routes. Since deregulation, airlines have gained the free-
dom to choose which markets to serve and how often
to serve them. This change led to a fundamental shift
in most airlines routing strategies from point-to-point
flight networks to hub-and-spoke oriented flight net-

works. This, in turn, led to new research activities for
finding optimal hub [3,18] and maintenance base [13]
locations.

Following network design and schedule construc-
tion, an aircraft type must be assigned to each flight
segment in the schedule. This is called the fleet assign-
ment problem. Airlines generally operate a number of
different fleet types, each having different characteris-
tics and costs such as seating capacity, landing weights,
and crew and fuel costs. The majority of fleet assign-
ment methods represent the flight schedule via some
variant of a time-space network with flight arcs between
stations and inventory arcs at each station. Amulticom-
modity network flow problem can then be formulated
with arcs and nodes duplicated as appropriate for all
fleets that can take a particular flight. Side constraints
must be implemented to ensure each flight segment is
assigned to only one fleet. In domestic fleet assignment
problems, a common simplifying assumption is that ev-
ery flight is flown every day of the week. Under this
assumption, the network model need only account for
one day’s flights and a looping arc connects the end of
the day with the beginning. The resulting models are
mixed integer programs [1,16,27,30].

Aircraft routing is a fleet by fleet process of assign-
ing individual aircraft to fly each flight segment as-
signed to a particular fleet. A primary consideration
at this stage is maintenance requirements mandated by
the Federal Aviation Administration. There are differ-
ent types of maintenance activities that must be per-
formed after a given number of flight hours. The ma-
jority of these maintenance activities can be performed
overnight; however, not all stations are equipped with
proper maintenance facilities for all fleets. During the
aircraft routing process, individual aircraft from each
fleet must be assigned to fly all flight segments assigned
to that fleet in a manner that provides maintenance op-
portunities for all aircraft at appropriate stations within
the required time intervals. This problem has been for-
mulated and solved in a number of ways including as
a general integer programming problem solved by La-
grangian relaxation [9] and as a set partitioning prob-
lem solved with a branch and bound algorithm [10].

As described above, the problems of fleet assign-
ment and aircraft routing have been historically solved
in a sequential manner. Recently, work has been done
to solve these problems simultaneously using a string-
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based model and a branch and price solution ap-
proach [5].

Crew scheduling, like aircraft routing, is done fol-
lowing fleet assignment. The first of two sequentially
solved crew scheduling problems is the crew pairing
problem. A crew pairing is a sequence of flight legs
beginning and ending at a crew base that satisfies all
governmental and contractual restrictions (some times
called legalities). These crew pairings generally cover
a period of 2–5 days. The problem is to find a mini-
mum cost set of such crew pairings such that all flight
segments are covered. This problem has generally been
modeled as a set partitioning problem in which pair-
ings are enumerated or generated dynamically [15,17].
Other attempts to solve this problem have employed
a decomposition approach based on graph partitioning
[4] and a linear programming relaxation of a set cover-
ing problem [21]. Often a practice called deadheading
is used to reposition flight crews in which a crew will fly
a flight segment as passengers. Therefore, in solving the
crew-pairing problem, all flight segments must be cov-
ered, but they may be covered by more than one crew.

The second problem to be solved relating to crew
scheduling is the monthly crew rostering problem. This
is the problem of assigning individual crew members to
crew pairings to create their monthly schedules. These
schedules must incorporate time off, training periods,
and other contractual obligations. Generally, a prefer-
ential bidding system is used to make the assignments
in which each personalized schedule takes into account
an employee’s pre-assigned activities and weighted bids
representing their preferences. While the crew pairing
problem has been widely studied, a limited number of
publications have dealt with the monthly crew rostering
problem. Approaches include an integer programming
scheme [14] and a network model [24].

Revenue management is the problem of determin-
ing fare classes for each flight in the flight schedule as
well as the allocation of available seats to each fare class.
Not only are seats on an airplane partitioned physically
into sections such as first class and coach, but also seats
in the same section are generally priced at many differ-
ent levels. The goal is to maximize the expected revenue
from a particular flight segment by finding the proper
balance between gaining additional revenue by selling
more inexpensive seats and losing revenue by turn-
ing away higher fare customers. A standard assump-

tion is that fare classes are filled sequential from the
lowest to the highest. This is often the case where dis-
counted fares are offered in advance, while last minute
tickets are sold at a premium. Recent research includes
a probabilistic decision model [6], a dynamic program-
ming formulation [31] and some calculus-based book-
ing policies [8].

When faced with a lack of resources, airlines of-
ten are not able to fly their published flight schedule.
This is frequently the result of aircraft mechanical dif-
ficulties, inclement weather, or crew shortages. As situ-
ations like these arise, decisions must be made to deal
with the shortage of resources in a manner that returns
the airline to the originally planned flight schedule in
a timely fashion while attempting to reduce operational
cost and keep passengers satisfied. This general situa-
tion is called the airline irregular operations problem
and it involves aircraft, crew, gates, and passenger re-
covery.

The aircraft schedule recovery problem deals with
re-routing aircraft during irregular operations. This
problem has received significant attention among ir-
regular operations topics; papers dealing with crew
scheduling during irregular operations have only re-
cently started to appear [28,35]. Most approaches for
dealing with aircraft schedule recovery have been based
on network models. Some early models were pure net-
works [19]. Recently, more comprehensive models have
been developed that better represent the problem, but
are more difficult to solve as side constraints have been
added to the otherwise network structure of these prob-
lems [2,33,36]. In practice, many airlines use heuristic
methods to solve these problems as their real-time na-
ture does not allow for lengthy optimization run times.

Closely related to the irregular operations prob-
lem is the ground delay problem in air traffic control.
Ground delay is a program implemented by the Fed-
eral Aviation Administration in cases of station conges-
tion. During ground delay, aircraft departing for a con-
gested station are held on the ground before departure.
The rational for this behavior is that ground delays are
less expensive and safer than airborne delays. Several
optimization models have been formulated to decrease
the total minutes of delay experienced throughout the
system during a ground delay program. These prob-
lems have generally been modeled as integer programs
([22,23]), but the problem has also been solved using
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stochastic linear programming [25] and by heuristic
methods [34].

Optimization based methods have also been ap-
plied to a myriad of other airline related topics such as
gate assignment [7], fuel management [29], short term
fleet assignment swapping [32], demandmodeling [20],
and others. Airline industry is an exciting arena for
the interplay between optimization theory and practice.
Many more optimization applications in the airline in-
dustry will evolve in the future.

See also

� Integer Programming
� Vehicle Scheduling
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Introduction

Interval optimization methods (� interval analysis: un-
constrained and constrained optimization) have the
guarantee not to loose global optimizer points. To
achieve this, a deterministic branch-and-bound frame-
work is applied. Still, heuristic algorithmic improve-
ments may increase the convergence speed while keep-
ing the guaranteed reliability.

The indicator parameter called RejectIndex

p f �(X) D
f � � F(X)

F(X) � F(X)

was suggested by L.G. Casado as a measure of the close-
ness of the interval X to a global minimizer point [1].
It was first applied to improve the work load balance of
global optimization algorithms.

A subinterval X of the search space with the mini-
mal value of the inclusion function F(X) is usually con-
sidered as the best candidate to contain a global min-
imum. However, the larger the interval X, the larger
the overestimation of the range f (X) on X compared
to F(X). Therefore a box could be considered as a good
candidate to contain a global minimum just because it
is larger than the others. To compare subintervals of
different sizes we normalize the distance between the
global minimum value f * and F(X).

The idea behind pf * is that in general we expect
the overestimation to be symmetric, i. e., the overes-
timation above f (X) is closely equal to the overesti-
mation below f (X) for small subintervals containing
a global minimizer point. Hence, for such intervals X
the relative place of the global optimum value inside
the F(X) interval should be high, while for intervals far
from global minimizer points pf * must be small. Obvi-
ously, there are exceptions, and there exists no theoreti-
cal proof that pf * would be a reliable indicator of nearby
global minimizer points.

The value of the global minimum is not available in
most cases. A generalized expression for a wider class
of indicators is

p( f̂ ; X) D
f̂ � F(X)

F(X) � F(X)
;

where the f̂ value is a kind of approximation of the
global minimum. We assume that f̂ 2 F(X), i. e., this
estimation is realistic in the sense that f̂ is within the
known bounds of the objective function on the search
region. According to the numerical experience col-
lected, we need a good approximation of the f * value
to improve the efficiency of the algorithm.

Subinterval Selection

I. Among the possible applications of these indica-
tors the most promising and straightforward is in
the subinterval selection. The theoretical and computa-
tional properties of the interval branch-and-bound op-
timization has been investigated extensively [6,7,8,9].
The most important statements proved are the follow-
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ing for algorithms with balanced subdivision direction
selection:
1. Assume that the inclusion function of the objective

function is isotone, it has the zero convergence prop-
erty, and the p(f k,Y) parameters are calculated with
the f k parameters converging to f̂ > f �, for which
there exists a point x̂ 2 X with f (x̂) D f̂ . Then the
branch-and-bound algorithm that selects that inter-
val Y from the working list which has the max-
imal p(f i,Z) value can converge to a point x̂ 2 X
for which f (x̂) > f �, i. e., to a point which is not
a global minimizer point of the given problem.

2. Assume that the inclusion function of the objective
function has the zero convergence property and f k
converges to f̂ < f �. Then the optimization branch-
and-bound algorithm will produce an everywhere
dense sequence of subintervals converging to each
point of the search region X regardless of the objec-
tive function value.

3. Assume that the inclusion function of the objective
function is isotone and has the zero convergence
property. Consider the interval branch-and-bound
optimization algorithm that uses the cutoff test, the
monotonicity test, the � interval Newton step, and
the concavity test as accelerating devices, and that
selects as the next leading interval that interval Y
from the working list which has the maximal p(f i,Z)
value. A necessary and sufficient condition for the
convergence of this algorithm to a set of global min-
imizer points is that the sequence {f i} converges to
the global minimum value f *, and there exist at most
a finite number of f i values below f *.

4. If our algorithm applies the interval selection rule
of maximizing the p( f �; X) D p f �(X) values for the
members of the list L (i. e., if we can use the known
exact global minimum value), then the algorithm
converges exclusively to global minimizer points.

5. If our algorithm applies the interval selection rule of
maximizing the p( f̃ ; X) values for the members of
the list L, where f̃ is the best available upper bound
for the global minimum, and its convergence to f *

can be ensured, then the algorithm converges exclu-
sively to global minimizer points.

6. Assume that for an optimization problem
minx2X f (x) the inclusion function F(X) of f (x)
is isotone and ˛-convergent with given positive
constants ˛ and C. Assume further that the pf * pa-

rameter is less than 1 for all the subintervals of X.
Then an arbitrary large number N(> 0) of consecu-
tive leading intervals of the basic B&B algorithm that
selects the subinterval with the smallest lower bound
as the next leading interval may have the following
properties:
i. None of these processed intervals contains a sta-

tionary point.
ii. During this phase of the search the pf * values are

maximal for these intervals.
7. Assume that the inclusion function of the objective

function is isotone and it has the zero convergence
property. Consider the interval branch-and-bound
optimization algorithm that uses the cutoff test, the
monotonicity test, the interval Newton step, and the
concavity test as accelerating devices and that selects
as the next leading interval that interval Y from the
working list which has the maximal pf (f k ,Z) value.
i. The algorithm converges exclusively to global

minimizer points if

f
k
� fk < ı( f k � f

k
)C f

k

holds for each iteration number k, where
0 < ı < 1.

ii. The above condition is sharp in the sense that
ı D 1 allows convergence to not optimal points.

Here f
k
D minfF(Y l ); l D 1; : : : ; jLk jg � fk < f̃k D

f k ; where |L| stands for the cardinality of the elements
of the list L.

II. These theoretical results are in part promising
(e. g., 7), in part disappointing (5 and 6). The conclu-
sions of the detailed numerical comparisons were that
if the global minimum value is known, then the use of
the pf * parameter in the described way can accelerate
the interval optimization method by orders of magni-
tude, and this improvement is especially strong for hard
problems.

In case the global minimum value is not available,
then its estimation, f k , which fulfills the conditions of 7,
can be utilized with similar efficacy, and again the best
results were achieved on difficult problems.

Multisection

I. The multisection technique is a way to accelerate
branch-and-bound methods by subdividing the actual
interval into several subintervals in a single algorithm
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step. In the extreme case half of the function evalua-
tions can be saved [5,10]. On the basis of the RejectIn-
dex value of a given interval it is decided whether simple
bisection or two higher-degree multisections are to be
applied [2,11]. Two threshold values, 0 < P1 < P2 < 1,
are used for selecting the proper multisection type.

This algorithm improvement can also be cheated
in the sense that there exist global optimization prob-
lems for which the new method will follow for an ar-
bitrary long number of iterations an embedded interval
sequence that contains no global minimizer point, or
that intervals in which there is a global minimizer have
misleading indicator values.

According to the numerical tests, the new multisec-
tion strategies result in a substantial decrease both in
the number of function evaluations and in the memory
complexity.

II. The multisection strategy can also be applied
to constrained global optimization problems [11]. The
feasibility degree index for constraint g j(x) � 0 can be
formulated as

puG j (X) D min

(
�G j(X)
w(Gj(X))

; 1

)
:

Notice that if puG j (X) < 0, then the box is certainly in-
feasible, and if puG j (X) D 1 then X certainly satisfies
the constraint. Otherwise, the box is undetermined for
that constraint. For boxes that are not certainly infea-
sible, i. e., for which puG j (X) � 0 for all j D 1; : : : ; r
holds, the total infeasibility index is given by

pu(X) D
rY

jD1

puG j (X) :

Wemust only define the index for such boxes since cer-
tainly infeasible boxes are immediately removed by the
algorithm from further consideration. With this defini-
tion,
� pu(X) D 1, X is certainly feasible and
� pu(X) 2 [0; 1), X is undetermined.

Using the pu(X) index, we now propose the fol-
lowing modification of the RejectIndex for constrained
problems:

pup( f̂ ; X) D pu(X) � p( f̂ ; X) ;

where f̂ is a parameter of this indicator, which is usu-
ally an approximation of f *. This new index works like
p( f̂ ; X) if X is certainly feasible, but if the box is unde-
termined, then it takes the feasibility degree of the box
into account: the less feasible the box is, the lower the
value of pu(X) is.

A careful theoretical analysis proved that the new
interval selection and multisection rules enable the
branch-and-bound interval optimization algorithm to
converge to a set of global optimizer points assuming
we have a proper sequence of {f k} parameter values.
The convergence properties obtained were very simi-
lar to those proven for the unconstrained case, and they
give a firm basis for computational implementation.

A comprehensive numerical study on standard
global optimization test problems and on facility loca-
tion problems indicated [11] that the constrained ver-
sion interval selection rules and, to a lesser extent, also
the new adaptive multisection rules have several advan-
tageous features that can contribute to the efficiency of
the interval optimization techniques.

Heuristic Rejection

RejectIndex can also be used to improve the efficiency
of interval global optimization algorithms on very hard
to solve problems by applying a rejection strategy to
get rid of subintervals not containing global minimizer
points. This heuristic rejection technique selects those
subintervals on the basis of a typical pattern of changes
in the pf * values [3,4].

The RejectIndex is not always reliable: assume that
the inclusion function F(X) of f (x) is isotone and ˛-
convergent. Assume further that the RejectIndex pa-
rameter pf * is less than 1 for all the subintervals of X.
Then an arbitrary large number N(> 0) of consecutive
leading intervals may have the following properties:
i. Neither of these processed intervals contains a sta-

tionary point, and
ii. During this phase of the search the pf * values are

maximal for these intervals as compared with the
subintervals of the current working list.
Also, when a global optimization problem has

a unique global minimizer point x*, there always exists
an isotone and ˛-convergent inclusion function F(X)
of f (x) such that the new algorithm does not converge
to x*.
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In spite of the possibility of losing the global mini-
mum, obviously there exist such implementations that
allow a safe way to use heuristic rejection. For example,
the selected subintervals can be saved on a hard disk for
further possible processing if necessary.

Although the above theoretical results were not
encouraging, the computational tests on very hard
global optimization problems were convincing: when
the whole list of subintervals produced by the B&B al-
gorithm is too large for the given computer memory,
then the use of the suggested heuristic rejection tech-
nique decreases the number of working list elements
without missing the global minimum. The new rejec-
tion test may also make it possible to solve hard-to-
solve problems that are otherwise unsolvable with the
usual techniques.
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Abstract

The genome of an organism not only serves as its
blueprint that holds the key for diagnosing and cur-
ing diseases, but also plays a pivotal role in obtaining
a holistic view of its ancestry. Recent years have wit-
nessed a large number of innovations in this field, as
exemplified by the Human Genome Project. This chap-
ter provides an overview of popular algorithms used in
genome analysis and in particular explores two impor-
tant and deeply interconnected problems: phylogenetic
analysis and multiple sequence alignment. We also de-
scribe our novel graph-theoretical approach that en-
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compasses a wide variety of genome sequence analysis
problems within a single model.

Introduction

Genomics encompasses the study of the genome in hu-
man and other organisms. The rate of innovation in this
field has been breathtaking over the last decade, espe-
cially with the completion of Human Genome Project.
The purpose of this chapter is to review some well-
known algorithms that facilitate genome analysis. The
material is presented in a way that is interesting to
both the specialists working in this area and others.
Thus, this review includes a brief sketch of the al-
gorithms to facilitate a deeper understanding of the
concepts involved. The list of problems related to ge-
nomics is very extensive; hence, the scope of this chap-
ter is restricted to the following two related important
problems: (1) phylogenetic analysis and (2) multiple
sequence alignment. Readers interested in algorithms
used in other fields of computational biology are rec-
ommended to refer to reviews by Abbas and Holmes [1]
and Blazewicz et al. [7].

Genome refers to the complete DNA sequence con-
tained in the cell. The DNA sequence consists of the
four nucleotides adenine (A), thymine (T), cytosine
(C), and guanine (G). Associated with each DNA strand
(sequence) is a complementary DNA strand of the same
length. The strands are complementary in that each nu-
cleotide in one strand uniquely defines an associated
nucleotide in the other: A and T are always paired, and
C and G are always paired. Each pairing is referred to as
a base pair; and bound complementary strands make up
a DNAmolecule. Typically, the number of base pairs in
a DNAmolecule is between thousands and billions, de-
pending on the complexity of a given organism. For ex-
ample, a bacterium contains about 600,000 base pairs,
while human and mouse have some three billion base
pairs. Among humans, 99.9% of base pairs are the same
between any two unrelated persons. But that leaves mil-
lions of single-letter differences, which provide genetic
variation between people.

Understanding the DNA sequence is extremely im-
portant. It is considered as the blueprint for an organ-
ism’s structure and function. The sequence order un-
derlies all of life’s diversity, even dictating whether an
organism is human or another species such as yeast or

a fruit fly. It helps in understanding the evolution of
mankind, identifying genetic diseases, and creating new
approaches for treating and controlling those diseases.
In order to achieve these goals, research in genome
analysis has progressed rapidly over the last decade.

The rest of this chapter is organized as follows.
Section “Phylogenetic Analysis” discusses techniques
used to infer the evolutionary history of species and
Sect. “Multiple Sequence Alignment” presents the mul-
tiple sequence alignment problem and recent advances.
In Sect. “Novel Graph-Theoretical Genomic Models”,
we describe our research effort for advancing genomic
analysis through the design of a novel graph-theoretical
approach for representing a wide variety of genomic se-
quence analysis problems within a single model. We
summarize our theoretical findings, and present com-
putational models based on two integer programming
formulations. Finally, Sect. “Summary” summarizes the
interdependence and the pivotal role played by the
abovementioned two problems in computational biol-
ogy.

Phylogenetic Analysis

Phylogenetic analysis is a major aspect of genome re-
search. It refers to the study of evolutionary relation-
ships of a group of organisms. These hierarchical rela-
tionships among organisms arising through evolution
are usually represented by a phylogenetic tree (Fig. 1).
The idea of using trees to represent evolution dates back
to Darwin. Both rooted and unrooted tree representa-
tions have been used in practice [17]. The branches of
a tree represent the time of divergence and the root rep-
resents the ancestral sequence (Fig. 2).

The study of phylogenies and processes of evolution
by the analysis of DNA or amino acid sequence data is

Algorithms for Genomic Analysis, Figure 1
An example of an evolutionary tree
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Algorithms for Genomic Analysis, Figure 2
Tree terminology

called molecular phylogenetics. In this study, we will fo-
cus on methods that use DNA sequence data. There are
two processes involved in inferring both rooted and un-
rooted trees. The first is estimating the branching struc-
ture or topology of the tree. The second is estimating
the branch lengths for a given tree. Currently, there are
wide varieties of methods available to conduct this anal-
ysis [16,19,55,79]. These available approaches can be
classified into three broad groups: (1) distance meth-
ods; (2) parsimony methods; and (3) maximum likeli-
hood methods. Below, we will discuss each of them in
detail.

Methods Based on Pairwise Distance

In distance methods, an evolutionary distance dij is
computed between each pair i, j of sequences, and
a phylogenetic tree is constructed from these pair-
wise distances. There are many different ways of defin-
ing pairwise evolutionary distance used for this pur-
pose. Most of the approaches estimate the number of
nucleotide substitutions per site, but other measures
have also been used [70,71]. The most popular one is
the Jukes–Cantor distance [37], which defines dij as
� 3

4 log(1 �
4 f
3 ), where f is the fraction of sites where

nucleotides differ in the pairwise alignment [37].
There are a large number of distance methods for

constructing evolutionary trees [78]. In this article, we
discuss methods based on cluster analysis and neighbor
joining.

Cluster Analysis: Unweighted Pair Group Method
Using Arithmetic Averages The conceptually sim-
plest and most known distance method is the un-
weighted pair group method using arithmetic aver-
ages (UPGMA) developed by Sokal and Michener [66].
Given a matrix of pairwise distances between each pair
of sequences, it starts with assigning each sequence to
its own cluster. The distances between the clusters are
defined as di j D 1

jCi jC jj

P
p2 Ci ;q2 C j

d(p; q), where Ci

and Cj denote sequences in clusters i and j, respectively.
At each stage in the process, the least distant pair of
clusters are merged to create a new cluster. This pro-
cess continues until only one cluster is left. Given n se-
quences, the general schema of UPGMA is shown in
Algorithm 1.

Algorithm 1 (UPGMA)
1. Input: Distance matrix dij, 1 � i; j � n
2. For i D 1 to n do
3. Define singleton cluster Ci comprising of se-

quence i
4. Place cluster Ci as a tree leaf at height zero
5. End for
6. Repeat
7. Determine two clusters i, j such that dij is mini-

mal.
8. Merge these two clusters to form a new cluster k

having a distance from other clusters defined as
the weighted average of the comprising two
clusters. If Ck is the union of two clusters Ci

and Cj, and if Cl is any other cluster, then dkl =
di l jCi jCd j l jC jj

jCi jCjC j j
.

9. Define a node k at height di j
2 with daughter nodes

i and j.
10. Until just a single cluster remains

The time and space complexity of UPGMA is O(n2),
since there are n � 1 iterations of complexity O(n).
A number of approaches have been developed which
are motivated by UPGMA. Li [52] developed a sim-
ilar approach which also makes corrections for un-
equal rates of evolution among lineages. Klotz and
Blanken [43] presented a method where a present-day
sequence serves as an ancestor in order to determine the
tree regardless of the rates of evolution of the sequences
involved.
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Neighbor Joining Neighbor joining is another very
popular algorithm based on pairwise distances [63].
This approach yields an unrooted tree and overcomes
the assumption of the UPGMA method that the same
rate of evolution applies to each branch.

Given a matrix of pairwise distances between each
pair of sequences dij, it first defines the modified dis-
tance matrix d̄i j . This matrix is calculated by subtract-
ing average distances to all other sequences from the dij,
thus compensating for long edges. In each stage, the two
nearest nodes (minimal d̄i j) of the tree are chosen and
defined as neighbors in the tree. This is done recursively
until all of the nodes are paired together.

Given n sequences, the general schema of neighbor
joining is shown in Algorithm 2.

Algorithm 2 (Neighbor joining)
1. Input: Distance matrix di j; 1 � i; j � n
2. For i D 1 to n
3. Assign sequence i to the set of leaf nodes of the

tree (T)
4. End for
5. Set list of active nodes (L) = T
6. Repeat
7. Calculate the modified distance matrix

d̄i j D di j � (ri C r j), where ri D 1
jLj�2

P
k2L dik

8. Find the pair i; j in L having the minimal value
of d̄i j

9. Define a new node u and set duk D 1
2 (dik C djk

� di j), for all k in L
10. Add u to T joining nodes i, jwith edges of length

given by: diu D 1
2 (di j C ri � r j); dju D di j � diu

11. Remove i and j from L and add u
12. Until only two nodes remain in L
13. Connect remaining two nodes i and j by a branch

of length dij

Neighbor joining has a execution time of O(n2), like
UPGMA. It has given extremely good results in prac-
tice and is computationally efficient [63,72]. Many
practitioners have developed algorithms based on this
approach. Gascuel [24] improved the neighbor-joining
approach by using a simple first-order model of the
variances and covariances of evolutionary distance es-
timates. Bruno et al. [10] developed a weighted neigh-
bor joining using a likelihood-based approach. Goef-
fon et al. [25] investigated a local search algorithm un-

der the maximum parsimony criterion by introducing
a new subtree swapping neighborhood with an effective
array-based tree representation.

ParsimonyMethods

In science, notion of parsimony refers to the prefer-
ence of simpler hypotheses over complicated ones. In
the parsimony approach for tree building, the goal is
to identify the phylogeny that requires the fewest nec-
essary changes to explain the differences among the ob-
served sequences. Of the existing numerical approaches
for reconstructing ancestral relationships directly from
sequence data, this approach is the most popular one.
Unlike distance-based methods which build trees, it
evaluates all possible trees and gives each a score based
on the number of evolutionary changes that are needed
to explain the observed sequences. The most parsimo-
nious tree is the one that requires the fewest evolution-
ary changes for all sequences to derive from a common
ancestor [69]. As an example, consider the trees in Fig. 3
and Fig. 4. The tree in Fig. 3 requires only one evolu-
tionary change (marked by the star) compared with the
tree in Fig. 4, which requires two changes. Thus, Fig. 3
shows the more parsimonious tree.

There are two distinct components in parsimony
methods: given a labeled tree, determine the score; de-
termine global minimum score by evaluating all possi-
ble trees, as discussed below.

Score Computation Given a set of nucleotide se-
quences, parsimony methods treat each site (position)
independently. The algorithm evaluates the score at
each position and then sums them up over all the po-
sitions. As an example, suppose we have the following
three aligned nucleotide sequences:

CCC

GGC

CGC

Then, for a given tree topology, we would calcu-
late the minimal number of changes required at each of
the three sites and then sum them up. Here, we inves-
tigate a traditional parsimony algorithm developed by
Fitch [21], where the number of substitutions required
is taken as a score. For a particular topology, this ap-
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Algorithms for Genomic Analysis, Figure 3
Parsimony tree 1

Algorithms for Genomic Analysis, Figure 4
Parsimony tree 2

proach starts by placing nucleotides at the leaves and
traverses toward the root of the tree. At each node, the
nucleotides common to all of the descendant nodes are
placed. If this set is empty then the union set is placed
at this node. This continues until the root of the tree is
reached. The number of union sets { equals} the num-
ber of substitutions required.

The general scheme for every position is shown in
Algorithm 3.

Algorithm 3 (Parsimony: score computation)
1. Each leaf l is labeled with set Rl having observed

nucleotide at that position.
2. Score S D 0
3. For all internal nodes kwith children i and j having

labels Ri and Rj do
4. Rk D Ri

T
Rj

Algorithms for Genomic Analysis, Figure 5
The sets Rk for the first site of given three sequences

5. if Rk D ; then
6. Rk D Ri

S
Rj

7. S D S C 1
8. end if
9. End for
10. Minimal scoreD S

Figure 5 shows the set Rk obtained by Algorithm 3.
The computation is done for the first site of the three se-
quences shown above. The minimal score given by the
algorithm is 1.

A wide variety of approaches have been developed
by modifying Fitch’s algorithm [68]. Sankoff and Ced-
ergren [64] presented a generalized parsimony method
which does not just count the number of substitutions,
but also assigns a weighted cost for each substitution.

Ronquist [62] improved the computational time by
including strategies for rapid evaluation of tree lengths
and increasing the exhaustiveness of branch swapping
while searching topologies.

Search of Possible Tree Topologies The number of
possible tree topologies dramatically increases with the
number of sequences. Consequently, in practice usu-
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ally only a subset of them are examined using efficient
search strategies. The most commonly used strategy is
branch and bound methods to select branching pat-
terns [60]. For large-scale problems, heuristic meth-
ods are typically used [69]. These exact and heuris-
tic tree search strategies are implemented in various
programs like PHYLIP (phylogeny inference package)
and MEGA (molecular evolutionary genetic analysis)
[20,47].

Maximum LikelihoodMethods

The method of maximum likelihood is one of the most
popular statistical tools used in practice. In molecular
phylogenetics, maximum likelihood methods find the
tree that has the highest probability of generating ob-
served sequences, given an explicit model of evolution.
The method was first introduced by Felenstein [18].We
discuss herein both the evolution models and the calcu-
lation of tree likelihood.

Model of Evolution A model of evolution refers to
various events like mutation, which changes one se-
quence to another over a period of time. It is required to
determine the probability of a sequence S2 arising from
an ancestral sequence S1 over a period of time t. Var-
ious sophisticated models of evolution have been sug-
gested, but simple models like the Jukes–Cantor model
are preferred in maximum likelihood methods.

The Jukes–Cantor [37] model assumes that all nu-
cleotides (A, C, T, G) undergo mutation with equal
probability, and change to all of the other three possible
nucleotides with the same probability. If the mutation
rate is 3˛ per unit time per site, the mutation matrix Pij

(probability that nucleotide i changes to nucleotide j in
unit time) takes the form

0
BBBBB@

1 � 3˛ ˛ ˛ ˛

˛ 1 � 3˛ ˛ ˛

˛ ˛ 1 � 3˛ ˛

˛ ˛ ˛ 1 � 3˛

1
CCCCCA
:

The above matrix is integrated to evaluate muta-
tion rates over time t and is then used to calculate
P(nt2jnt1; t), defined as the probability of nucleotide
nt1 being substituted by nucleotide nt2 over time t.

Algorithms for Genomic Analysis, Figure 6
A simple tree

Various other evolution models like the Kimura
model have also beenmentioned in the literature [9,42].

Likelihood of a Tree The likelihood of a tree is calcu-
lated as the probability of observing a set of sequences
given the tree.

L(tree) D probability[sequences|tree]

We begin with the simple case of two sequences
S1 and S2 of length n having a common ancestor a as
shown in Fig. 6. It is assumed that all different sites (po-
sitions) evolve independently, and thus the total likeli-
hood is calculated as the product of the likelihood of all
sites [15]. Here, the likelihood of each site is obtained
using substitution probabilities based on an evolution
model.

Given qa is the equilibrium distribution of nu-
cleotide a, the likelihood for the simple tree in Fig. 6
is calculated as L(tree) D P(S1; S2) D

Qn
iD1 P(S

1
i ; S

2
i ),

where P(S1i ; S
2
i ) D

P
a qaP(S

1
i ja)P(S

2
i ja). To general-

ize this approach form sequences, it is assumed that di-
verged sequences evolve independently after diverging.
Hence, the likelihood for every node in a tree depends
only on its immediate ancestral node and a recursive
procedure is used to evaluate the likelihood of the tree.
The conditional likelihood Lk, a is defined as the like-
lihood of the subtree rooted at node k, given that the
nucleotide at node k is a. The general schema for ev-
ery site is shown in Algorithm 4. The likelihood is then
maximized over all possible tree topologies and branch
lengths.
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Algorithm 4 (Likelihood: computation at given site)
1. For all leaf l do
2. if leaf has nucleotide a at that site then
3. Ll ;a D 1
4. else
5. Ll ;a D 0
6. end if
7. End for
8. For all internal nodes k with children i and j
9. define the conditional likelihood

Lk;a D
P

b;c[P(bja)Li;b][P(cja)Lj;c]
10. End for
11. Likelihood at given site =

P
a qa Lroot;a

Recent Improvements The maximum likelihood ap-
proach has received great attention owing to the ex-
istence of powerful statistical tools. It has been made
more sophisticated using advance tree search algo-
rithms, sequence evolution models, and statistical ap-
proaches. Yang [80] extended it to the case where
the rate of nucleotide substitutions differ over sites.
Huelsenbeck and Crandall [34] incorporated the im-
provements in substitution models. Piontkivska [59]
evaluated the use of various substitution models in the
maximum likelihood approach and inferred that simple
models are comparable in terms of both efficiency and
reliability with complex models.

The enormously large number of possible tree
topologies, especially while working with a large num-
ber of sequences, makes this approach computationally
intensive [72]. It has been proved that reconstructing
the maximum likelihood tree is nondeterministic poly-
nomial time hard (NP) hard even for certain ap-
proximations [14]. In order to reduce computational
time, Guindon and Gascuel [31] developed a sim-
ple hill-climbing algorithm based on the maximum-
likelihood principle that adjusts tree topology and

Algorithms for Genomic Analysis, Figure 7
Two possible alignments for given three sequences

branch lengths simultaneously. Recently, parallel com-
putation has been used to address huge computa-
tional requirement. Stamatakis et al. [67] have used
OpenMP–parallelization for symmetric multiprocess-
ing machines and Keane et al. [39] developed a dis-
tributed platform for phylogeny reconstruction by
maximum likelihood.

Multiple Sequence Alignment

Multiple sequence alignment is arguably among the
most studied and difficult problems in computational
biology. It is a vital tool because it compactly repre-
sents conserved or variable features among the family
members. Alignment also allows character-based anal-
ysis compared to distance-based analysis and thus helps
to elucidate evolutionary relationships better. Conse-
quently, it plays a pivotal role in a wide range of se-
quence analysis problems like identifying conserved
motifs among given sequences, predicting secondary
and tertiary structures of protein sequences, andmolec-
ular phylogenetic analysis. It is also used for sequence
comparison to find the similarity of a new sequence
with pre-existing ones. This helps in gathering infor-
mation about the function and structure of newly found
sequences from existing ones in databases like GenBank
in the USA and EMBL in Europe.

The multiple sequence alignment problem can be
stated formally as follows. Let

P
be the alphabet and

let
P̂
D
PS

f�g, where “–” is a symbol to repre-
sent “gaps” in sequences. For DNA sequences, alphabetP̂
D fA,T,C,G,�g.
An alignment for N sequences S1; : : : ; SN is given

by a set Ŝ D fS1; : : : ; SNg over the alphabet
P̂

which
satisfy the following two properties: (1) the strings in Ŝ
are of the same length; (2) Si can be obtained from Ŝi by
removing the gaps. Thus, an alignment in which each
string Ŝi has length K can be interpreted as an align-
ment matrix of N rows and K columns, where row i
corresponds to sequence Si. Alphabets that are placed
into the same column of the alignment matrix are said
to be aligned with each other.

Figure 7 shows two possible alignments for given
three sequences: S1 D CCC; S2 D CGGC; and S3 D
CGC.

For two sequences, the optimal multiple sequence
alignment is easily obtained using dynamic program-
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ming (Needleman–Wunsch algorithm). Unfortunately,
the problem becomes much harder for more than two
sequences, and the optimal solution can be found only
for a limited number of sequences of moderate length
(approximately 100) [8]. Researchers have tried to solve
it by generalizing the dynamic programming approach
to a multidimensional space. However, this approach
has huge time and memory requirements and thus can-
not be used in practice even for small problems of
five sequences of length 100 each. This algorithm has
been improved by identifying the portion of hyperspace
which does not contribute to the solution and excluding
it from the computation [11]. But even this approach
of Carrillo and Lipman implemented in the multiple
sequence alignment program can only align up to ten
sequences [53]. Although, Gupta et al. [32] improved
the space and time usage of this approach, it cannot
align large data sets. To reduce the huge time and mem-
ory expenses, a wide variety of heuristic approaches for
multiple sequence alignment have been developed [56].

There are two components for finding the multiple
sequence alignment: (1) searching over all the possible
multiple alignments; (2) scoring each of them to find
the best one.

The problem becomes more complex for remotely
related homologous sequences, i. e., sequences which
are not derived from a common ancestor [28]. Numer-
ous approaches have been proposed, but the quest for
an approach which is accurate and fast is continuing. It
must be remembered that even the choice of sequences
and calculating the score of alignment is a nontrivial
task and is an active research field in itself.

Scoring Alignment

There is no unanimous way of characterizing an align-
ment as the correct one and the strategy depends on
the biological context. Different alignments are possi-
ble and we never know for sure which alignment is
correct. Thus, one scores every alignment according to
an appropriate objective function and alignments with
higher scores are deemed to be better. A typical align-
ment scoring scheme consists of the following steps.

Independent Columns The score of alignment is cal-
culated in terms of columns of alignments. The indi-
vidual columns are assumed to be independent and

thus the total score of an alignment is a simple sum-
mation over column scores. Thus, the score for an
alignment score(A) D

P
j score(Aj), where Aj is col-

umn j of the multiple alignment A. Now, the score
for every column j is calculated as the “sum-of-pairs”
function using the scoring matrices described below.
The sum-of-pairs score for column Aj is obtained as
score(Aj) D

P
k<l score(A

k
j ;A

l
j); where A

k
j and Al

j are
nucleotides in column j of the alignment correspond-
ing to sequences k and l, respectively. If the gap costs are
linear, score(nucleotide, –) and score(–, nucleotide) will
be the insertion cost. But, this approach would not dif-
ferentiate between opening a gap and extending it. So,
affine gap penalties are often used where gap opening
and extension penalty are treated as two different pa-
rameters. The correct value of both of these parameters
is a major concern since their values can be set only em-
pirically [75]. Also most schemes used in practice score
columns as the weighted sum of pairwise substitutions
instead of just addition as described before. The weights
are decided in accordance with the amount of indepen-
dent information each sequence possesses [4].

Both the assumption of treating every column in-
dependently and using the sum-of-pairs score for the
column have limitations. The problem increases as the
number of sequences increases.

Scoring Matrices Any alignment can be obtained by
performing three evolution operations: insertion, dele-
tion, and substitution. It is assumed that all the different
operations occur independently and thus the complete
score is evaluated as the sum of scores from every op-
eration. Insertion and deletion scores are calculated as
either linear or affine gap penalty. Substitutions scores
are stored as a substitution score matrix, which con-
tains the score for every pair of nucleotides. Thus, these
scores S(A,B) can be treated as the score of aligning nu-
cleotide A with nucleotide B.

These substitution score matrices can be obtained
in various ways. One could adopt an ad hoc approach
of setting up a score matrix which produces good align-
ments for a given set of sequences. The second ap-
proach would be more fundamental and look into the
physical and chemical properties of nucleotides. If two
nucleotides have similar properties, they would bemore
likely to be substituted by one another. The third and
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the most prominent one is a statistical approach where
the maximum likelihood principle is used in conjunc-
tion with probabilistic models of evolution [3].

Alignment Approaches

The number of different approaches for the multiple se-
quence alignment problem has steadily increased over
the last decade and thus being exhaustive will not be
possible. In this chapter, we will emphasize the most
widely used class of algorithms and the new emerging
and most promising approaches:
1. Progressive alignment algorithms: The most widely

used type of algorithm based on using pairwise
alignment information of input sequences. It as-
sumes that input sequences are phylogenetically re-
lated, and uses these relationships to guide the align-
ment [13].

2. Graph-based algorithms: A new trend where graph-
based models are used to approach this problem.

3. Iterative alignment algorithms: Typically an align-
ment is produced and is then refined through a se-
ries of iterations until no more improvement can be
made.

Progressive Algorithms

Progressive alignment constitutes one of the simplest
and most effective ways for multiple alignment. This
strategy was introduced by various researchers, like
Waterman and Perlwitz [77]. Among all the progres-
sive algorithms, ClustalW is the most famous one. It
is a noniterative, deterministic algorithm that attempts
to optimize the weighted sums-of-pairs with affine gap
penalties [73].

The typical progressive algorithm scheme is as fol-
lows:
� Compute the distance between all pairs of given se-

quences by aligning them. The distances represent
the divergence of each pair of sequences. These dis-
tances could be calculated by fast approximation
methods or by slower but more precise methods like
complete dynamic programming. Since for given N
sequences N(N�1)

2 pairwise scores have to be calcu-
lated and the scores are used just for construction
of a guide tree and not the alignment itself, it is de-
sirable to use approximation methods like k tuple
matches.

� Find a guide tree from the distance matrix. This is
typically achieved using the clustering algorithms
discussed in the construction of an evolutionary
tree. Once again, since the aim is to get the align-
ment and not the tree itself, approximation methods
are used to construct the evolution trees.

� Align sequences progressively according to the
branching order in the guide tree. The basic idea is
to start from the leaves of the guide tree and move
toward its root and to use a series of pairwise align-
ments to align larger and larger groups of sequences.
Some algorithms have only a single growing align-
ment to which every remaining sequence is aligned,
whereas other approaches align a subgroup of se-
quences and then merge the alignments.

There are three main shortcomings of the progressive
algorithms.
1. There does not exist an undisputable “best” way of

ordering the given sequences.
2. Once a sequence has been aligned, that alignment

will not be modified even if it conflicts with se-
quences added later in the process. Hence, the or-
der in which sequences are added becomes crucial,
and since there is no undisputed best way to order
the sequences, this approach returns suboptimal so-
lutions.

3. For a given set of n sequences,
�n
2

�
pairwise align-

ments are generated; but while computing the fi-
nal multiple alignment, most of these algorithms
use fewer than n pairwise alignments. Thus, the re-
sulting multiple alignment agrees with only a small
amount of information available in the data.

Therefore, there is a growing need for an algorithm
to align extremely divergent sequences whose pairwise
alignments are likely to be incorrect. In order to address
all these issues, some techniques have been developed;
while they are innovative, it is understandable that they
have their own assumptions and drawbacks.

Graph-Based Algorithms

Over the last few years, the field of genomics has un-
dergone evolutionary changes with a rapid increase in
new solution strategies. The use of graph-based mod-
els is easily seen as one of the most emerging and far-
reaching trends. Just and Vedova [38] used a rela-
tion between the facility location problem and sequence
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alignment to prove the NP-hardness of multiple se-
quence alignment. In this section, we review the most
prominent integer programming approaches for find-
ing multiple sequence alignment.

Maximum-Weight Trace Kececioglu et al. [40] used
a solution of the maximum trace problem to construct
alignment. The algorithm starts by calculating all pair-
wise alignments and using them to find a trace. To
achieve this, given n sequences, an input alignment
graph G = (V , E) is constructed. It is an n-partite graph
whose vertex set V represents the characters of the
given sequences and whos edge set E represents the
pairs of characters matched in the pairwise alignments.
The subset of matching in E realized by an alignment is
called a trace.

Alignment graphG D (V ; E) is extended to amixed
graph G0 D (V ; E;A) by adding arc set A which con-
nects the characters of every sequence to the next char-
acter in the same sequence. The objective of the algo-
rithm is to find the maximum weight trace by finding
cycles termed as “critical mixed cycles” in graphG0 such
that they satisfy sequence alignment properties [61].

The integer programming model for this problem is
formulated as

Maximize
X
e2E

wexe (1)

subject to
X

e2P\E

xe D jE \ Pj � 18 critical mixed

cycles P in G0 ; xe 2 f0; 1g for all e 2 E :
(2)

An implementation of a branch-and-cut algorithm
is used to solve the above problem. Various valid in-
equalities for the polytope are added as cuts, some of
which are facet-defining. The algorithm is capable of
giving an exact solution under the sum-of-pairs objec-
tive function with linear gap costs. Kececioglu et al. [40]
have made a significant contribution by introducing
a polyhedral approach capable of obtaining exact so-
lutions for a subclass of multiple sequence alignment.
However, this method has its own drawbacks like not
being able to capture the order of insertions and dele-
tions between two matchings and affine gap costs. Re-
cently, Althaus et al. [2] proposed a general model using
this approach in which arbitrary gap costs are allowed.

Minimum-Spanning Tree and Traveling Salesman
Problem Shyu et al. [65] explored the use of min-
imum spanning trees to determine the order of se-
quences. The idea of the approach is to preserve the
most informative distances among the set of given se-
quences. The criterion used is meaningful and capable
of working better than the traditional criteria like those
in sum-of-pairs. The algorithm itself is very efficient for
practical usage, and can be easily implemented. How-
ever, it fails to address the issue of using all the informa-
tion in pairwise alignments, since it only uses the score
and not the pairwise alignments themselves. Moreover,
this approach has all the drawbacks of the progressive
strategy.

A similar approach was also developed by Korosten-
sky and Gonnet [44] using the traveling salesman prob-
lem. In this technique, a circular sum measure is used
instead of a sum-of-pairs score. The cities in the travel-
ing salesman problem correspond to the sequences and
the scores of pairwise alignment are taken as the dis-
tances. The problem is to find the longest tour where
each sequence is visited exactly once [45].

Eulerian Path Approach Zhang and Waterman [81]
proposed a new approach motivated by the Eulerian
method for fragment assembly in DNA sequencing. In
their work, a consensus sequence is found and later
pairwise alignments are obtained between each input
sequence and consensus sequence. Finally, multiple se-
quence alignment is obtained according to these pair-
wise alignments. The most significant advantage of this
method is the linear time and memory cost for finding
the consensus sequence. And, if the consensus sequence
is the one closest to all given sequences, good quality
alignment can be obtained in a reasonable amount of
time. Once again, this approach suffers from the promi-
nent drawback of the progressive strategy and issues in
graph formation while finding the consensus sequence.

Iterative Algorithms

The main shortcoming of the progressive strategy is the
failure to remove errors in the alignment, which are in-
troduced early. The iterative algorithms are developed
precisely to overcome this flaw. They are based on the
idea of reconsidering and realigning previously aligned
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sequences with the goal of improving the overall align-
ment score. Eachmodification step is an iteration to im-
prove the quality of the alignment.

These available approaches can be classified into
two broad categories: probabilistic iterative algorithms,
and deterministic iterative algorithms. We will briefly
discuss them below.

Probabilistic Algorithms We will discuss both the
traditional probabilistic optimization approaches like
the genetic algorithm and relatively recent approaches
based on a Bayesian idea.
� Simulated annealing and genetic algorithm. Simu-

lated annealing and the genetic algorithm are very
popular stochastic methods for solving complex op-
timization problems. While they are often viewed
as separate and competing paradigms, both of them
are iterative algorithms which search for new solu-
tions “near” to already known good solutions. The
fundamental difference between simulated anneal-
ing and the genetic algorithm is that simulated an-
nealing performs a local move only on one solution
to create a new solution, whereas the genetic algo-
rithm also creates solutions by combining informa-
tion from two different solutions. The performance
of simulated annealing and the genetic algorithm
varies with the problem and representation used.
The algorithms starts with an initial alignment and
the alignment score is taken to be the objective
function [57]. Various operations like mutation, in-
sertion, and substitution constitute the local move
which is used to a get new solution from existing
ones. Flexibility in the scoring systems and the abil-
ity to correct for errors introduced during the early
phase makes these approaches desirable [41].

� Hidden Markov model and Gibbs sampler. The hid-
den Markov model and the Gibbs sampler are rel-
atively recent approaches which view multiple se-
quence alignment in a statistical context. Both of
them use the central Bayesian idea of simultane-
ouslymaximizing the data and themodel. The Gibbs
sampler find motifs using local alignment tech-
niques [49]. It is essentially similar to the hidden
Markov model with no insert and delete states.
The hidden Markov model is a statistical model
based on the Markov process, which has gained im-
portance in various fields related to pattern recogni-

tion. It determines the hidden parameters of the sys-
tem on the basis of the observable parameters of the
model. For multiple sequence alignment, the hid-
den Markov model consists of three types of states:
match states, insert states, and delete states [46].
Each state has its own emission probability of nu-
cleotides and transition probability to other states.
The standard expectation-maximization algorithm
or gradient descent algorithms are used to train the
model and evaluate the parameters.
Although the hidden Markov model has been suc-
cessfully used in other areas, it faces a lot of chal-
lenges. There need to be some minimum number of
sequences (approximately 50) required to train the
model and the hidden Markov model can be easily
trapped in local optima like other hill-climbing ap-
proaches [35].

Deterministic Algorithms A deterministic iterative
algorithm starts with an initial alignment and then at-
tempts to improve it. This helps in overcoming the
drawback of a progressive alignment strategy where
partial alignments are “frozen” [6]. A typical scheme is
as follows:
� Given N sequences S1; S2; : : : ; SN , find alignment A.
� Remove sequence S1 from alignmentA and realign it

to the profile of other aligned sequences S2; : : : ; SN
to get new alignment A0.

� Calculate the score of the new alignment A0 and if it
is better replace A by A0.

� Remove sequence S2 from A0 and realign it. Con-
tinue this procedure for S3; : : : ; SN .

� Repeat the realignment steps until the alignment
score converges or the number of iterations reaches
the user-specified limit.
Many iteration strategies which enable very accu-

rate alignments have been developed [76]. The aim is
to reduce the greedy nature of the algorithm and avoid
getting trapped in a local optimum. One approach is to
remove and realign every sequence to the rest in each it-
eration. Then, the alignment with the best score is taken
to be the input for the next iteration. The other famous
approach is to randomly split a set of sequences into
two sets, which are then realigned.

Some researchers have incorporated the iterative
strategy in the progressive alignment procedure it-
self. For instance, a double iteration loop has been
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used to make the alignment, guide tree, and sequence
weights mutually consistent [27]. Recently, Chakra-
barti et al. [12] developed an approach which provides
a fast and accurate method for refining existing block-
based alignments.

Novel Graph-Theoretical Genomic Models

In this section, we present our research effort for a novel
graph-theoretical approach for representing a wide va-
riety of genomic sequence analysis problems within
a single model [50]. The model allows incorporation
of the operations “insertion,” “deletion,” and “substi-
tution,” and various parameters such as relative dis-
tances and weights. Conceptually, we refer the prob-
lem as the minimum weight common mutated sequence
(MWCMS) problem. The MWCMS model has many
applications, including the multiple sequence align-
ment problem, phylogenetic analysis, the DNA se-
quencing problem, and the sequence comparison prob-
lem, which encompass a core set of very difficult prob-
lems in computational biology. Thus, the model pre-
sented in this section lays out a mathematical model-
ing framework that allows one to investigate theoretical
and computational issues, and to forge new advances
for these distinct, but related problems.

DNA sequencing refers to determining the exact
order of nucleotide sequences in a segment of DNA.
This was the greatest technical challenge in the Human
Genome Project. Achieving this goal has helped reveal
the estimated 30,000 human genes that are the basic
physical and functional units of heredity. The resulting
DNA sequence maps are being used by scientists to ex-
plore human biology and other complex phenomena.

The structure of a DNA strand (sequence) is deter-
mined by experimentation. Typically, short sequences
are determined to be in the strand, and the short
sequences identified are then “connected” to form
a long sequence. Recent advances attempting to iden-
tify DNA strand structure involve sequencing by hy-
bridization [5,36]. Sequencing by hybridization is the
process where every possible sequence of length n (4n

possibilities) is compared with a full DNA strand. Prac-
tical values for n are 8–12. Each short string either binds
or does not bind to the full strand. Biologists can thus
determine exactly which short strings are contained in
the DNA strand and which are not.

However, the experiment does not identify the ex-
act location of each short string in the full strand.
Hence, an important issue involves how these short
strings are connected together to form the complete
strand. This problem can be viewed as a shortest com-
mon superstring problem and has been studied exten-
sively [22,23,54]. Unfortunately, errors may arise dur-
ing sequencing experiments. Three types of errors are
deletions (a letter appears in an input string that should
not be in the final sequence), insertions (a letter is miss-
ing from an input string), and substitutions (a letter in
an input string should be substituted with another let-
ter). The MWCMS problem can be used to model and
solve this shortest common superstring problemwhile ad-
dressing the issue of possible errors.

Sequence comparison is one of the most crucial
problems faced by researchers in the area of bioinfor-
matics. The sequence patterns are conserved during
evolution. Given a new sequence, it will be of inter-
est to understand how much similarity it has with pre-
existing sequences. Significant similarity between two
sequences implies similarities in their structures and/or
functions. There are lots of DNA databases containing
DNA sequences and their functions. The major ones
are GenBank in the USA and the EMBL data library
in Europe. If one finds a new sequence similar to ex-
isting ones in these databases, one can transfer infor-
mation about the function and structure [78]. Hence,
an algorithm for sequence comparison which is efficient
for a large number of sequences will play a pivotal role
in rapid sequence analysis. The MWCMS problem can
be used to address this issue.

Definitions

Our motivation for first defining the problem arose
from the desire to help quantify the concept of the
“best” representative sequence in the evolutionary dis-
tance problem. The evolutionary distance problem in-
volves finding the DNA sequence of the most likely an-
cestor associated with a given set of DNA sequences
from distinct but similar organisms. In other words,
find the DNA strand that best represents a possible
ancestor, if each of the organisms evolved from the
same ancestor. Changes that contribute to differences
between the given sequences and the ancestor are re-
ferred to as insertions, deletions, and substitutions.
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These operations account for both evolutionary mu-
tations and experimental errors in sequencing. Math-
ematically, given two sequences S and B, let ord(S,B) be
an ordered collection of insertions, deletions, and sub-
stitutions to convert sequence S to sequence B. (For any
two sequences S and B, there are an infinite number of
collections ord(S,B).) Let w(ord(S; B)) be the weight of
the conversion from S to B, where the weight is the sum
of an expression involving values �; ı, and  2 <C

which represent the weights associated with a single
insertion, deletion, and substitution, respectively. Let
ord�(S; B) be such that w(ord�(S; B)) � w(ord(S; B))
for all ord(S,B). Define d(S; B) D w(ord�(S; B)). For-
mally, the MWCMS problem can be stated as fol-
lows: Given positive weights �; ı, and  correspond-
ing to a single insertion, deletion, and substitution re-
spectively, a positive threshold �, and finite sequences
S1; : : : ; Sm from a finite alphabet, does there exist a se-
quence B such that

Pm
iD1 d(Si ; B) � �?

We have defined the MWCMS problem—which in-
corporates the notions of insertion, deletion, and sub-
stitution—to help quantify the concept of the “best”
representative sequence in the evolutionary distance
problem. We now define precisely the operations of in-
sertion, deletion, and substitution. Let S D fs1; : : : ; sng
be a finite sequence of letters from a finite alphabet:

1. An insertion of an element x in position i of the se-
quence S is characterized by the addition of x be-
tween elements si and siC1. An insertion carries an
associated penalty cost of �.

2. A deletion of an element in position i of S amounts
to deleting si from the sequence S. The penalty for
deletion is represented by ı.

3. A substitution of an element in position i of S
amounts to replacing si with another letter from the
alphabet. The penalty for substitution is represented
by  .

We remark that a penalty cost for an operation could,
more generally, depend on the position where the op-
eration is performed and/or the element to be in-
serted/deleted/substituted.

Let S1 D fs11; : : : ; s1mg and S2 D fs21; : : : ; s2ng be
two finite sequences of letters from a finite alphabet

P
.

We say that the relative distance between elements s1i
and s2 j is k if ji � jj D k. We define a k-restrictive bi-
partite graph as a graphGk D (V1;V2; Ek) such that the

nodes in V1 and V2 correspond, respectively, to each of
the elements from the first and the second sequences.
We assume the nodes in Vi are ordered in the same
order as they appear in the sequence Si. There is an
edge between nodes u 2 V1 and v 2 V2 if u and v are
identical (i. e., the same letter of the alphabet

P
) and

if the relative distance between these two elements is
less than or equal to k. The problem of identifying the
“greatest similarity” between these two sequences can
then be approached as the problem of finding a maxi-
mum cardinality matching between the associated node
sets, subject to restrictions on which matchings are al-
lowed. In particular, one must take into consideration
the ordering of nodes so as to preserve the relative oc-
currence of the elements in the matching. In addition,
matchings that have edge crossings must be prevented.
When k D maxfjS1j; jS2jg � 1, we denote the graph by
G D (V1;V2; E), and the problem is equivalent to the
well-studied longest common subsequence problem for
two sequences, which is polynomial time solvable [23].

Construction of a Conflict Graph
from Paths of Multiple Sequences

Let Si ; i D 1; : : : ;m, be a collection of finite sequences,
each of length n, over a common alphabet

P
. Let

Gk D (V1; : : :Vm ; E1; E2; : : : ; Em�1) be the k-restrictive
multilayer graph in which each element in Si forms
a distinct node in Vi. Assume the nodes in Vi are or-
dered in the same order as they appear in the sequence
Si. Ei denotes the set of edges between nodes in Vi

and ViC1. There is an edge between nodes u 2 Vi and
v 2 ViC1 if and only if u and v are the same letter in
the alphabet

P
, and the relative distance between them

is less than or equal to k. The multiple sequence com-
parison problem involves finding the longest common
subsequence within the sequences Si ; i D 1; : : : ;m. We
call a path P D p1; p2; : : : ; pm a complete path in Gk if
pi 2 Vi and pi piC1 2 Ei . Two complete paths are said
to be parallel if their node sets are disjoint and the
edges do not cross. Hence, a set of parallel complete
paths in Gk corresponds to a feasible solution to longest
common subsequence problem on the collection of se-
quences Si ; i D 1; : : : ;m. We say that two complete
paths P1 and P2 cross if they are not parallel. We remark
that the longest common subsequence problem with
the number of sequences bounded,is polynomial time
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solvable using dynamic programming [23]. In general,
the problem remains NP-complete.

We can incorporate insertions by generating new
paths which include inserted nodes on various layers.
The weight for such a new path will be affected by the
total number of insertions in the path. In particular, if
L is a common subsequence for Si and jSi j D n for all
i D 1; : : : ;m, then the total number of unmatched el-
ements remaining will be m(n � jLj). These elements
can be deleted completely, or for a given unmatched
element, one can increase the size of L by 1 by appro-
priately inserting this element into various sequences.
By doing so, one decreases the number of unmatched
elements. Let l be the number of insertions needed to
generate a new complete path. Then the number of un-
matched elements will decrease by m � l . If we assume
that at the end of the sequencing process all unmatched
elements will be deleted, then the penalty for generating
this new complete path will be given by l� � (m � l)ı.

We next define the concept of a conflict graph rela-
tive to the complete paths in Gk.

Definition 1 Let P D fP1; : : : ; Psg be a finite col-
lection of complete paths in Gk. The conflict graph
CP D (VP ; EP) associated with P is constructed as fol-
lows:
� VP D fP1; : : : ; Psg;
� there is an edge between two nodes Pi and Pj in VP

if and only if Pi and Pj cross each other.

This definition applies to any multilayer graph in gen-
eral. Note that any stable set of nodes in CP corre-
sponds to a set of parallel complete paths for Gk, and
thereby to a feasible solution to the longest common
subsequence problem on the collection of sequences
Si ; i D 1; : : : ;m.

We remark that when m D 2, the resulting conflict
graph is weakly triangulated, and thus is perfect. For
m > 2, the conflict graph can contain an antihole of
size 6. However, these complete paths can be viewed as
continuous functions on the interval from 0 to 1; thus,
by construction, CP is perfect [26].

Complexity Theory

Recall that the notation ord(S,B), w(ord(S; B)),
ord�(S; B), and the formal definition of the MWCMS
problem were given in Sect. “Definitions”. As an opti-
mization problem, the MWCMS problem can be stated

as follows. Given a set of input sequences, the MWCMS
problem seeks to mutate every input sequence to the
same a priori unknown sequence using the operations
of insertion, deletion, and substitution; weights are
assigned for each operation, and the total weight as-
sociated with all mutations is to be minimized. Leven-
shtein [51] first considered a special case of this prob-
lem by changing a single input sequence to another
sequence using insertions, deletions, and substitutions.
Our study involves changing multiple input sequences
to arrive at an a priori unknown common sequence.

Given positive weights �; ı, and  corresponding,
respectively, to insertions, deletions, and substitutions
and any two sequences S and B, clearly any ord�(S; B)
will never contain more than jBj insertions or substitu-
tions. Proving that the MWCMS is in NP is not obvi-
ous. While one can transform the MWCMS to special
applications (as described at beginning of Sect. “Novel
Graph-Theoretical Genomic Models”) to conclude that
it is in NP, here we prove it directly for the general case.
One needs to be able to evaluate d(S,B) in polynomial
time for any two sequences S and B. We next construct
a graph that can be used to establish the existence of
a polynomial-time algorithm for obtaining d(S,B). The
constructs and arguments used here typify those used to
establish many of the results presented in this chapter.
It is noteworthy that the notions of both conflict graph
and perfect graph come into play.

Let
P

be a finite alphabet, and define
P

-cross to
be a directed bipartite graph consisting of j

P
j vertices

in each bipartition such that each vertex in the bipar-
tition represents a distinct element in

P
. There is an

arc between two vertices if the vertices correspond to
the same element in

P
, and the geometric layout is

rigidly constructed so that every arc crosses every other
arc. This graph will be used as a “supernode” for inser-
tion and substitution operations in our model. Figure 8
shows an example for

P
-cross when

P
D fA,C,G,Tg.

We now construct a three-layer supergraph, GL,
using the sequences S and B along with the

P
-

cross graphs. Layers 1 and 2 consist of exactly
jBj(jSj C 1)C jSj

P
-crosses. The first jBj

P
-crosses

represent potential insertions before the first letter in S.
The next

P
-cross represents either the first letter of S

or a substitution of this letter. The next jBj
P

-crosses
represent potential insertions between the first and sec-
ond letters of S. And this is followed by a

P
-cross rep-
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Algorithms for Genomic Analysis, Figure 8
An example of

P
-cross when

P
D fA, C, G, Tg

resenting either the second letter of S or a substitution
of this letter. This continues for each letter in S with the
final jBj

P
-crosses representing up to jBj insertions af-

ter the last letter in S. Each
P

-cross is called either an
insertion supernode or a substitution supernode, accord-
ing to what it represents. The weight of all of the arcs
in an insertion supernode is �. An arc in a substitution
supernode has weight �ı if the arc represents the origi-
nal letter in the sequences, or � ı if the arc represents
a substitution of the original letter. Layer 3 consists of
the vertices represented by B. A vertex in layer 2 is con-
nected to a vertex in layer 3 if they have the same let-
ter. The weight of every arc between layers 2 and 3 is
M � �(�C ı C  ). A sample of a three-layer super-
graph is given in Fig. 9. The bold arcs are used to de-
note the original letters in S (the weight of these arcs is
�ı). For simplicity, we omit the first two insertion su-
pernodes before the first letter G. The first supernode
thus represents the letter G from the original sequence,
which allows for substitution. The second and third su-
pernodes correspond to insertion supernodes, and the
fourth supernode corresponds to the letter C and allows
substitution as well. There are two more insertion su-
pernodes which are omitted from the graph.

The main step in proving d(S,B) to be polynomial
time solvable for any sequences S and B involves the
use of the conflict graph as defined in Definition 1. We
state some preliminary theoretical results below. De-
tailed proofs can be found in Lee et al. [50].

Algorithms for Genomic Analysis, Figure 9
An example of the three-layer supergraph for converting the
sequence S D GC to B D TC. Bold arcs are used to denote the
original letters in S (the weight of these arcs is�ı). For sim-
plicity, we omit the first two insertion supernodes before the
first letter G. The first supernode thus represents the letter
G from the original sequence, which allows for substitution.
The second and third supernodes correspond to insertions,
and the fourth supernode corresponds to the letter C and al-
lows substitution as well. There are two more insertion su-
pernodes which are omitted from the graph

Lemma 1 The following statements are equivalent:
1. There exists a conversion from S to B using no more

than a total of jBj insertions or substitutions.
2. There exist a set of noncrossing complete paths in the

associated three-layer supergraph GL of size jBj.
3. There exists a node packing of size jBj in the associ-

ated conflict graph C.
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Lemma 2 Calculating d(S, B) for any sequences S and
B can be accomplished in polynomial time.

The three-layer supergraph can be generalized to amul-
tilayer supergraph whenmultiple sequences are consid-
ered. Clearly, suchmultilayer supergraphs aremuch too
large for practical purposes, yet polynomiality is pre-
served in the construction, and it is therefore sufficient.
We can now arrive at the result that the MWCMS is in
NP.

Theorem 1 The MWCMS is in NP.

To prove that the MWCMS is polynomial time solv-
able when the number of input sequences is bounded
by a positive constant, the following lemma is crucial,
though trivial.

Lemma 3 Given �; ı;  2 <C, an optimal solution B
to any MWCMS problem has the following properties. B
has no substitutions from letters other than the original
letters in Si, and B will never have an element which is
inserted in every sequence (in the same location). There-
fore, there are at most

Pm
iD1 jSi j insertions in any se-

quence.

In addition, we also require the construction of a (di-
rected) 2m-layer supergraph, Gm

L , similar to the three-
layer supergraph, GL.

Given sequences S1; : : : ; Sm , generate a 2m-layer
(directed) graph Gm

L D (V ; E) as follows. Layers 2i � 1
and 2i consist of (

Pm
jD1 jSjj)(jSi j C 1)C jSi j copies

of
P

-crosses for i D 1; : : : ;m, constructed in exactly
the same manner as layers 1 and 2 of the three-
layer supergraph using the input sequence Si. The
first

Pm
jD1 jSjj

P
-crosses represent the possibility thatPm

jD1 jSjj different letters can be inserted before the
first element in Si. The next

P
-cross corresponds to

either the first letter in Si or a substitution of this let-
ter. This is repeated jSi j times (for each letter in Si),
and the final

Pm
jD1 jSjj

P
-crosses represent insertions

after the final letter in Si. Thus, the first
Pm

jD1 jSjj
P

-
crosses represent the insertion supernodes, followed by
one

P
-cross representing a letter in Si or a substitu-

tion supernode, and so forth. An arc exists from a ver-
tex in layer 2i to a vertex in layer 2i C 1 if the vertices
correspond to the same letter. Observe that Gm

L is an
acyclic directed graph which is polynomial in the size
of the input sequences. Assign every arc between lay-
ers 2i and 2i C 1 a weight of 0. There are three differ-

ent weights for arcs between layers 2i � 1 and 2i each
corresponding to an insertion, deletion, or substitution.
The assignment of weights on such arcs is analogous to
the assignment in GL: a weight of � is assigned to ev-
ery arc contained in an insertion supernode; and an arc
in a substitution supernode is assigned a weight of �ı
if it corresponds to the original letter, or  � ı, other-
wise.

Figure 10 shows a sample graph for two sequences:
S1 D GC and S2 D TG. Observe that at most two inser-
tions are needed in an optimal solution; thus, we can re-
duce the number of

P
-crosses as insertion supernodes

from
P2

iD1 jSi j D 4 to 2. For simplicity, in the graph
shown in Fig. 10, we have not included the two inser-
tion supernodes before the first letter nor those after
the last letter of each sequence. Thus, in the figure, the
first

P
-cross represents the substitution supernode as-

sociated with the first letter in S1. The second and thirdP
-crosses represent two insertion supernodes. And the

last
P

-cross represents the substitution supernode as-
sociated with the second letter in S1. For simplicity, we
include only arcs connecting vertices associated to the
element G between layers 2 and 3. The arcs for other
vertices follow similarly.

A conflict graph C associated with Gm
L can be gen-

erated by finding all complete paths (paths from layer 1
to layer 2m) in Gm

L . These complete paths correspond
to the set of vertices in C, as in Definition 1. If we as-
sign a weight to each vertex equal to the weight of the
associated complete path, then the following result can
be established.

Theorem 2 Every node packing in C represents a can-
didate solution to the MWCMS if and only if at mostPm

iD1 jSi j letters can be inserted between any two origi-
nal letters. Furthermore, the weight of the node packing
is equal to the weight of the MWCMS �

Pm
iD1 jSi jı.

The supergraphGm
L and its associated conflict graph are

fundamental to our proof of the following theorem on
the polynomial-time solvability of a restricted version
of the MWCMS problem.

Theorem 3 The MWCMS problem restricted to in-
stances for which the number of sequences is bounded by
a positive constant is polynomial time solvable.
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Algorithms for Genomic Analysis, Figure 10
A sample graph Gm

L of MWCMS with S1 D GC to S2 D TG; where
P
D fA,C,G,Tg

Special Cases of MWCMS

The MWCMS encompasses a very broad class of prob-
lems. In computational biology as discussed in this
chapter, first and foremost, it represents a model
for phylogenetic analysis. The MWCMS as defined
is the “most likely ancestor problem,” and the con-
cept of the three-layer supergraph as described in
Sect. “Complexity Theory” describes the evolutionary
distance problem. An optimal solution to a multiple se-
quence alignment instance can be found using the solu-
tion of the MWCMS problem obtained on the 2m-layer
supergraph, Gm

L . The alignment is the character ma-
trix obtained by placing together the given sequences

incorporating the insertions into the solution of the
MWCMS problem. Furthermore, DNA sequencing can
be viewed as the shortest common superstring problem,
while sequence comparison of a given sequence B to
a collection of N sequences S1; : : : ; SN is the MWCMS
problem itself.

Broader than the computational biology applica-
tions, special cases of the MWCMS include shortest
common supersequences, longest common subse-
quences, and shortest common superstring; these prob-
lems are of interest in their own right as combinatorial
optimization problems and for their role in complexity
theory.



50 A Algorithms for Genomic Analysis

Computational Models:
Integer Programming Formulation

The construction of the multilayer supergraphs de-
scribed in our theoretical study lays the foundation
and provides direction for computational models and
solution strategies that we will explore in future re-
search. Although the theoretical results obtained are
polynomial-time in nature, they present computational
challenges. In many cases, calculating the worst-case
scenario is not trivial. Furthermore, the polynomial-
time result of a node-packing problem for a perfect
graph by Grötschel et.al. [29,30] is existential in nature,
and relies on the polynomial-time nature of the ellip-
soid algorithm. The process itself involves solving an
integer program relaxation multiple times. In our case,
the variables of the integer program generated are the
complete paths in the multilayer supergraph, Gm

L . For-
mally, the integer program corresponding to our con-
flict graph can be stated as follows.

Let xp be the binary variable denoting the use or
nonuse of the complete path p with weight wp. Then
the corresponding node-packing problem is

Minimize
X

wpxp

subject to xp C xq � 1 if complete paths p

and q cross

xp 2 f0; 1g for all complete
paths p in Gm

L :

(MIP1)

We call the inequality xp C xq � 1 an adjacency
constraint. A natural approach to improve the solution
time for (MIP1) is to decrease the size of the graph
Gm

L and thus the number of variables. Reductions in
the size of Gm

L can be accomplished for shortest com-
mon superstrings, longest common subsequences, and
shortest common supersequences. Among these three
problems, the graph Gm

L is smallest for longest com-
mon subsequences. In longest common subsequences,
all insertion and substitution supernodes can be elimi-
nated.

Our theoretical results thus far rely on the cre-
ation of all complete paths. Clearly, the typical num-
ber of complete paths will be on the order of nm, where
n D max jSi j. In this case, an instance with three se-

quences and 300 letters in each sequence generates
more than onemillion variables; hence, an exact formu-
lation with all complete paths is impractical in general.
A simultaneous column and row generation approach
within a parallel implementation may lead to computa-
tional advances related to this formulation.

An alternative formulation can be obtained by ex-
amining Gm

L from a network perspective using arcs (in-
stead of complete paths) in Gm

L as variables. Namely, let
xi, j denote the use or nonuse of arc (i, j) in the final se-
quence, with ci, j the cost of the arc in Gm

L . The network
formulation can be stated as

Minimize
X

(i; j)2E

ci; jxi; j

subject to
X

i :(i; j)2E

xi; j D
X

k:( j;k)2E

x j;k

for all j 2 V in layers 2; : : : ; 2m � 1

xi; j C xk;l � 1
for all crossing arcs (i; j) and (k; l) 2 E

xi; j 2 f0; 1g

for all (i; j) 2 E :
(MIP2)

The first set of constraints ensures flow in equals
flow out in all vertices contained in sequences
2; : : : ;m � 1 (complete paths). The second set of con-
straints ensures that no two arcs cross. This model
grows linearly in the number of sequences. This alter-
native integer programming formulation is still large,
but is manageable for even fairly large instances.

Utilizing a collection of DNA sequences (each with
40,000 base pairs in length) from a bacterium, and a col-
lection of short sequences associated with genes found
in breast cancer patients, computational tests of our
graph-theoretical models are under way. We are seek-
ing to develop computational strategies to provide rea-
sonable running times for evolutionary distance prob-
lem instances derived from these data. In an initial test,
when three sequences each with 100 letters are used, the
initial linear program requires more than 10,000 s to
provide a solution when tight constraints are employed
(in this case, each adjacency constraint is replaced by
a maximal clique constraint). Our ongoing computa-
tional effort will focus on developing and investigating
solution techniques for practical problem instances, in-
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cluding those based on the abovementioned two integer
programming formulations, as well as development of
fast heuristic procedures.

In [50], we outline a simple yet practical heuristic
based on (MIP2) that we developed for solving the mul-
tiple sequence alignment problem; and we report on
preliminary tests of the algorithm using different sets of
sequence data. Motivation for the heuristic is derived
from the desire to reduce computational time through
various strategies for reducing the number of variables
in (MIP2).

Summary

Multiple sequence alignment and phylogenetic analysis
are deeply interconnected problems in computational
biology. A good multiple alignment is crucial for reli-
able reconstruction of the phylogenetic tree [58]. On
the other hand, most of the multiple alignment meth-
ods require a phylogenetic tree as the guide tree for pro-
gressive iteration.

Thus, the evolutionary tree construction might
be biased by the guide tree used for obtaining the
alignment. In order to avoid this pitfall, various al-
gorithms have been developed which simultaneously
find alignment and phylogenetic relationship among
given sequences. Sankoff and Cedergren [64] devel-
oped a parsimony-based algorithm using a character-
substitution model of gaps. The algorithm is guar-
anteed to find the evolutionary tree and alignment
which minimizes tree-based parsimony cost. Hein [33]
also developed a parsimony-type algorithm but used
an affine gap cost, which is more realistic than the
character-substitution gap model. This algorithm is
also faster than Sankoff and Cedergreen’s approach but
makes simplifying assumptions in choosing ancestral
sequences.

Like parsimony methods for finding a phylogenetic
tree, both of the abovementioned approaches require
a search over all possible trees to find the global op-
timum. This makes these algorithms computationally
very intensive. Hence, there has been a strong focus on
developing an efficient algorithm that considers both
alignment and the tree. Vingron and Haeseler [74] have
developed an approach based on three-way alignment
of prealigned groups of sequences. It also allows change
in the alignment made early in the course of computa-

tion. Many programs, like MEGA, are trying to develop
an efficient integrated computing environment that al-
lows both sequence alignment and evolutionary analy-
sis [48].

We addressed this issue of simultaneously finding
alignment and phylogenetic relationships by presenting
a novel graph-theoretical approach. Indeed, our model
can be easily tailored to find theoretically provable opti-
mum solutions to a wide range of crucial sequence anal-
ysis problems. These sequence analysis problems were
proven to beNP-hard, and thus understandably present
computational challenges. In order to strike a balance
between the time and the quality of the solution, a va-
riety of parameters are provided. Ongoing research ef-
forts are exploring the development of efficient com-
putational models and solution strategies in a massive
parallel environment.

Acknowledgement

This research was partially supported by grants from
the National Science Foundation.

References

1. Abbas A, Holmes S (2004) Bioinformatics andmanagement
science: Some common tools and techniques. Oper Res
52(2):165–190

2. Althaus E, Caprara A, Lenhof H, Reinert K (2006) A branch-
and-cut algorithm for multiple sequence alignment. Math
Program 105(2-3):387–425

3. Altschul S (1991) Amino acid substitutionmatrices from an
information theoretic perspective. J Mol Biol 219(3):555–
565

4. Altschul SF, Carroll RJ, Lipman DJ (1989) Weights for data
related by a tree. J Mol Biol 207(4):647–653

5. Bains W, Smith G (1988) A novel nethod for DNA sequence
determination. J Theor Biol 135:303–307

6. Barton GJ, Sternberg MJE (1987) A strategy for the rapid
multiple alignment of protein sequences: confidence lev-
els from tertiary structure comparisons. JMol Biol 198:327–
337

7. Blazewicz J, Formanowicz P, Kasprzak M (2005) Selected
combinatorial problems of computational biology. Eur J
Oper Res 161:585–597

8. Bonizzoni P, Vedova G (2001) The complexity of multiple
sequence alignment with SP-score that is a metric. Theor
Comput Sci 259:63–79

9. Bos D, Posada D (2005) Using models of nucleotide evo-
lution to build phylogenetic trees. Dev Comp Immunol
29(3):211–227



52 A Algorithms for Genomic Analysis

10. BrunoWJ, Socci ND, Halpern AL (2000) Weighted neighbor
joining: A likelihood-based approach to distance-based
phylogeny reconstruction. Mol Biol Evol 17:189–197

11. Carrillo H, Lipman D (1988) The multiple sequence align-
ment problem in biology. SIAM J Appl Math 48(5):1073–
1082

12. Chakrabarti S, Lanczycki CJ, Panchenko AR, Przytycka TM,
Thiessen PA, Bryant SH (2006) Refining multiple sequence
alignments with conserved core regions. Nucleic Acids Res
34(9):2598–2606

13. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Hig-
gins DG, Thompson JD (2003) Multiple sequence align-
ment with the clustal series of programs. Nucleic Acids Res
31(13):3497–3500

14. Chor B, Tuller T (2005) Maximum likelihoodof evolutionary
trees: hardness and approximation. Bioinf 21(Suppl. 1):I97–
I106

15. Clote P, Backofen R (2000) Computational Molecular Biol-
ogy: An Introduction. Wiley, NY, USA

16. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics
and the reconstruction of the tree of life. Nature reviews.
Genet 6(5):361–375

17. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological
Sequence Analysis. Cambridge University Press, UK

18. Felsenstein J (1981) Evolutionary trees from DNA se-
quences: amaximum likelihood approach. JMol Evol 17(6):
368–376

19. Felsenstein J (1988) Phylogenies from molecular se-
quences: Inference and reliability. Annu Rev Genet 22:521–
565

20. Felsenstein J (1989) PHYLIP – phylogeny inference pack-
age (version 3.2). Cladistics 5:164–166

21. Fitch WM (1971) Toward defining the course of evolution:
Minimum change for a specific tree topology. Syst Zool
20(4):406–416

22. Gallant J, Maider D, Storer J (1980) On finding minimal
length superstrings. J Comput Syst Sci 20:50–58

23. Garey M, Johnson D (1979) Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman,
San Francisco, USA

24. Gascuel O (1997) BIONJ: An improved version of the NJ al-
gorithm based on a simple model of sequence data. Mol
Biol Evol 14(7):685–695

25. Goeffon A, Richer J, Hao J (2005) Local search for the
maximum parsimony problem. Lect Notes Comput Sci
3612:678–683

26. Golumbic MC, Rotem D, Urrutia J (1983) Comparability
graphs and intersection graphs. Discret Math 43:37–46

27. Gotoh O (1996) Significant improvement in accuracy of
multiple protein sequence alignments by iterative refine-
ment as assessed by reference to structural alignments.
J Mol Biol 264(4):823–838

28. Gotoh O (1999) Multiple sequence alignment: algorithms
and applications. Adv Biophys 36:159–206

29. Grötschel M, Lovász L, Schrijver A (1984) Polynomial algo-
rithms for perfect graphs. Annals Discret Math 21:325–356

30. Grötschel M, Lovász L, Schrijver A (1988) Geometric al-
gorithms and combinatorial optimization. Springer, New
York

31. Guindon S, Gascuel O (2003) A simple, fast, and accurate
algorithm to estimate large phylogenies bymaximum like-
lihood. Syst Biol 52(5):696–704

32. Gupta S, Kececioglu J, Schaeffer A (1995) Improving the
practical space and time efficiency of the shortest-paths
approach to sum-of-pairs multiple sequence alignment.
J Comput Biol 2:459–472

33. Hein J (1989) A new method that simultaneously aligns
and reconstructs ancestral sequences for any number of
homologous sequences, when the phylogeny is given. Mol
Biol Evol 6(6):649–668

34. Huelsenbeck J, Crandall K (1997) Phylogeny estimation
and hypothesis testing using maximum likelihood. Annu
Rev Ecol Syst 28:437–66

35. Hughey R, Krogh A (1996) Hidden markov models for
sequence analysis: extension and analysis of the basic
method. Comput Appl Biosci 12(2):95–107

36. Idury RM, Waterman MS (1995) A new algorithm for DNA
sequence assembly. J Comput Biol 2(2):291–306

37. Jukes TH, Cantor CR (1969) Evolution of protein molecules.
In: Munro HN (ed) Mammalian Protein Metabolism. Aca-
demic Press, New York, pp 21–123

38. Just W, Vedova G (2004) Multiple sequence alignment as
a facility-location problem. INFORMS J Comput 16(4):430–
440

39. Keane T, Naughton T, Travers S, McInerney J, McCormackG
(2005) DPRml: distributed phylogeny reconstruction by
maximum likelihood. Bioinf 21(7):969–974

40. Kececioglu J, Lenhof H, Mehlhorn K, Mutzel P, Reinert
K, Vingron M (2000) A polyhedral approach to sequence
alignment problems. Discret Appl Math 104:143–186

41. Kim J, Pramanik S, Chung MJ (1994) Multiple sequence
alignment using simulated annealing. Bioinf 10(4):419–
426

42. Kimura M (1980) A simple method for estimating evolu-
tionary of base substitution through comparative studies
of nucleotide sequences. J Mol Evol 16:111–120

43. Klotz L, Blanken R (1981) A practical method for calculat-
ing evolutionary trees from sequence data. J Theor Biol
91(2):261–272

44. Korostensky C, Gonnet GH (1999) Near optimal multiple
sequence alignments using a traveling salesman problem
approach. In: Proceedings of the String Processing and In-
formation Retrieval Symposium. IEEE, Cancun, pp 105–114

45. Korostensky C, Gonnet GH (2000) Using traveling sales-
man problem algorithms for evolutionary tree construc-
tion. Bioinf 16(7):619–627

46. Krogh A, Brown M, Mian IS, Sjolander K, Haussler D (1994)
Hiddenmarkovmodels in computational biology: Applica-
tions to protein modeling. J Mol Biol 235:1501–1531



Algorithms for Genomic Analysis A 53

47. Kumar S, Tamura K, Nei M (1994) MEGA: Molecular evo-
lutionary genetics analysis software for microcomputers.
Comput Appl Biosci 10:189–191

48. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated soft-
ware for molecular evolutionary genetics analysis and se-
quence alignment. Brief Bioinform 5(2):150–163

49. Lawrence C, Altschul S, Boguski M, Liu J, Neuwald A,
Wootton J (1993) Detecting subtle sequence signals:
a gibbs sampling strategy for multiple alignment. Science
262:208–214

50. Lee EK, Easton T, Gupta K (2006) Novel evolutionary mod-
els and applications to sequence alignment problems. An-
nals Oper Res 148(1):167–187

51. Levenshtein VL (1966) Binary codes capable of correcting
deletions, insertions, and reversals. Cybern Control Theor
10(9):707–710

52. Li W (1981) Simple method for constructing phyloge-
netic trees from distance matrices. Proc Natl Acad Sci USA
78(2):1085–1089

53. Lipman D, Altschul S, Kececioglu J (1989) A tool for
multiple sequence alignment. Proc Natl Acad Sci USA
86(12):4412–4415

54. Maier D, Storer JA (1977) A note on the complexity of the
superstring problem. Technical Report 233, Princeton Uni-
versity, USA

55. Nei M (1996) Phylogenetic analysis inmolecular evolution-
ary genetics. Annu Rev Genet 30:371–403

56. Notredame C (2002) Recent progress in multiple sequence
alignment: a survey. Pharmacogenomics 3(1):131–144

57. Notredame C, Higgins D (1996) SAGA: sequence alignment
by genetic algorithm. Nucleic Acids Res 24(8):1515–1524

58. Phillips A, Janies D, Wheeler W (2000) Multiple sequence
alignment in phylogenetic analysis. Mol Phylogenet Evol
16(3):317–330

59. Piontkivska H (2004) Efficiencies of maximum likelihood
methods of phylogenetic inferences when different sub-
stitution models are used. Mol Phylogenet Evol 31(3):865–
873

60. Purdom P, Bradford PG, Tamura K, Kumar S (2000) Sin-
gle column discrepancy and dynamic max-mini optimiza-
tions for quickly finding the most parsimonious evolution-
ary trees. Bioinformamtics 16:140–151

61. Reinert K, Lenhof H, Mutzel P, Mehlhorn K, Kececioglu J
(1997) A branch-and-cut algorithm for multiple sequence
alignment. In: Proceedings of the First Annual Interna-
tional Conference on Computational Molecular Biology
(RECOMB-97). ACM Press, Santa Fe, pp 241–249

62. Ronquist F (1998) Fast fitch-parsimony algorithms for large
data sets. Cladistics 14:387–400

63. Saitou N, Nei M (1987) The neighbor-joining method:
a new method for reconstructing phylogenetic trees. Mol
Biol Evol 4:406–425

64. Sankoff D, Cedergren RJ (1983) Simultaneous comparison
of three or more sequences related by a tree. In: Sankoff
D, Kruskal JB (eds) Time Warps, String Edits, and Macro-

molecules: The Theory and Practice of Sequence Compari-
son. Addison-Wesley, MA, USA, pp 253–264

65. Shyu SJ, Tsai YT, Lee R (2004) The minimal spanning tree
preservation approaches forDNAmultiple sequence align-
ment and evolutionary tree construction. J Comb Optim
8(4):453–468

66. Sokal R, Michener C (1958) A statistical method for evalu-
ating systematic relationships. University of Kansas, Scien-
tific Bull 38:1409–1438

67. Stamatakis A, Ott M, Ludwig T (2005) RAxML-OMP: An ef-
ficient program for phylogenetic inference on SMPs. Lect
Notes Comput Sci 3606:288–302

68. Swofford DL, Maddison WP (1987) Reconstructing ances-
tral character states under wagner parsimony. Math Biosci
87:199–229

69. Swofford DL, Olsen GJ (1990) Phylogeny reconstruction.
In: Hillis DM, Moritz G (eds) Molecular Systs. Sinauer Asso-
ciates, MA, USA, pp 411–501

70. Tajima F, Nei M (1984) Estimation of evolutionary distance
between nucleotide sequences. Mol Biol Evol 1(3):269–85

71. Tajima F, Takezaki N (1994) Estimation of evolutionary dis-
tance for reconstructingmolecular phylogenetic trees. Mol
Biol Evol 11:278–286

72. Takahashi K, Nei M (2000) Efficiencies of fast algorithms
of phylogenetic inference under the criteria of maximum
parsimony, minimum evolution, and maximum likelihood
when a large number of sequences are used. Mol Biol Evol
17:1251–1258

73. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W:
improving the sensitivity of progressivemultiple sequence
alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res
22(22):4673–4680

74. VingronM,Haeseler A (1997) Towards integration ofmulti-
ple alignment and phylogenetic tree construction. J Com-
put Biol 4(1):23–34

75. Vingron M, Waterman M (1994) Sequence alignment and
penalty choice. review of concepts, case studies and impli-
cations. J Mol Biol 235(1):1–12

76. Wallace IM, O’Sullivan O, Higgins DG (2005) Evaluation
of iterative alignment algorithms for multiple alignment.
Bioinformatics 21(8):1408–14

77. Waterman M, Perlwitz M (1984) Line geometries for se-
quence comparisons. Bull Math Biol 46(4):567–577

78. Waterman MS (1995) Introduction to Computational Biol-
ogy: Maps, Sequences and Genomes. Chapman and Hall

79. Whelan S, Lio P, Goldman N (2001) Molecular phyloge-
netics: state-of-the-art methods for looking into the past.
Trends Genet 17(5):262–272

80. Yang Z (1993) Maximum-likelihood estimation of phy-
logeny fromDNA sequences when substitution rates differ
over sites. Mol Biol Evol 10(6):1396–401

81. Zhang Y,WatermanM (2003) An eulerian path approach to
global multiple alignment for DNA sequences. J Comput
Biol 10(6):803–819



54 A Alignment Problem

Alignment Problem
CLAUDE G. DIDERICH1, MARC GENGLER2

1 Computer Sci. Department,
Swiss Federal Institute Technology-Lausanne,
Lausanne, Switzerland

2 Ecole Sup. d’Ingénieurs de Luminy,
University Méditerrannée, Marseille, France

MSC2000: 05-02, 05-04, 15A04, 15A06, 68U99

Article Outline

Keywords
Alignment Problem

Communication-Free Alignment Problem
Constant-Degree Parallelism Alignment Problem

Solving the Alignment Problem
Communication-Free Alignment Approaches
Alignment Approaches Based
on Generating HPF like Data Distributions

Approaches Using a Graph Based Framework
Approaches Using a Linear Algebra Framework
Other Approaches

Conclusion
See also
References

Keywords

Alignment problem; Automatic parallelization;
Computation and data mapping; Nested loops;
Scheduling functions

Since the mid-1990s the need for techniques to paral-
lelize numerical applications has increased. When par-
allelizing nested loops for distributed memory parallel
computers, two major problems have to be solved: the
scheduling of the loop iterations and the mapping of
the computations and data elements onto the proces-
sors. The scheduling functions must satisfy all the data
dependences existing in the sequential loop nests. The
mapping functions should maximize the degree of par-
allelism obtained. Furthermore they should minimize
the amount of communication overhead due to non lo-
cal data references.

This survey presents the alignment problem, that is,
the problem of mapping computation and data onto

the processors. The alignment problem has been stud-
ied extensively since the beginning of the nineties, that
is, since the beginning of the introduction of massively
parallel distributed memory computers. For different
sub-problems of the alignment problem, the most in-
teresting results are surveyed.

Alignment Problem

The alignment problem is the problem of finding an
alignment of loop iterations with the array elements ac-
cessed. This means computing mapping functions of
the loop iterations, called computations, and mapping
functions of the array elements, called data, to a mul-
tidimensional grid of virtual processors. The name of
the problem comes from the idea of aligning the pro-
cessors computing with the ones owning the data. The
alignment problem is tightly related to the mapping of
the computation and data objects onto a grid of virtual
processors.

As input, programs containing nested loops are
considered. Each loop nest may contain one or more
instructions. For the sake of simplicity, only assignment
instructions are considered. The data access functions
are described by the functions Fl: Ij ! DK , where Ij
represents the iteration space surrounding instruction
Sj and DK the domain of the array K.

To solve the alignment problem, computation and
data mapping functions Cj andDK have to be computed
such as to minimize the overall execution time of the
resulting parallel program.

Cj : I j ! P;

DK : DK ! P;

where P represents a multidimensional grid of virtual
processors.

To minimize the overall execution time a solution
to the alignment problem has to address the following
needs:
i) maximize the degree of parallelism, that is, use as

many dimensions of the virtual grid of processors
as possible,

ii) minimize the need for non local data accesses, that
is, distribute the array elements such that a minimal
amount of communication overhead is required to
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access data elements stored on different processors
than the ones accessing them,

iii) guarantee the existence of scheduling functions
compatible with the computation mapping func-
tions.

Clearly the needs i)–iii) depend on each other. In this
survey we only focus on the first two needs.

Need i) can be expressed by maximizing the dimen-
sion of the virtual processor grid P onto which the com-
putations and data elements are mapped.

The need for a given data access Fl to be local is ex-
pressed by the equation (1) being satisfied:

Cj(E{) D DK(Fl (E{)): (1)

Equation (1) is called alignment constraint or locality
constraint. Depending on how the needs i) and ii) are
satisfied, various subproblems of the alignment prob-
lem can be defined.

Communication-Free Alignment Problem

The communication-free alignment problem (CFAP) is
the problem of finding computation and data mapping
functions for each instruction and for each data array
such that no communication is needed and the degree
of parallelism obtained is maximal. The CFAP can be
formulated as an optimization problem:

(
maxC j;DK dimension of P
s.t. 8 j; l ;K : Cj(E{) D DK(Fl (E{)):

Constant-Degree Parallelism Alignment Problem

Let F be the set of data access functions from a set of
loop nests forming an alignment problem and d a pos-
itive constant. Let c(F0, F) be a cost function on a sub-
set F0 � F of data access functions. The constant de-
gree parallelism alignment problem (CDPAP), denoted
by (F, d), is the problem of finding a subset F0 � F of
data access functions such that:
1) There exists a solution to the CFAP consisting of all

data accesses in the set F0 admitting a degree of par-
allelism of at least d.

2) The cost function c(F0, F) on the subset F0 is mini-
mized.

As for the CFAP, the CDPAP can be formulated as
follows as an optimization problem:
(
maxC j;DK

P
j;l ;K [[Cj(E{) D DK(Fl (E{))]]

s.t. dimension of P � d:

Example 1 The data accesses in this example are en-
coded by the three functions F1(i, j) = (i j + 1), F2(i, j) =
(i�1 j + 1) and F3(i, j) = (i + 1 j + 1). A possible solution
requiring no communication and admitting one degree
of parallelism is given by C(i, j) = j and Da(i, j) = j�1, P
being a one-dimensional processor set.

DO i = 2, n � 1
DO j = 2, n � 1

a(i; j + 1) = a(i � 1; j + 1) + a(i + 1; j + 1)
END DO

END DO

Solving the Alignment Problem

Communication-Free Alignment Approaches

C.-H. Huang and P. Sadayappan [17], in 1991, were the
first to formulate the alignment problem in a linear al-
gebra framework. They focus on a communication-free
solution. The data array elements as well as the loop
iterations are partitioned in disjoint sets represented
by hyperplanes. Each set is mapped onto a different
processor. The partitions are sought such that they re-
sult in the elimination of communication. A charac-
terization of a necessary and sufficient condition for
communication-free hyperplane partitioning is pro-
vided. Various results are given characterizing the sit-
uation where the iteration and data space can be parti-
tioned along hyperplanes so that no communication is
necessary. More precisely, two data elements accessed
during a single iteration in a single instruction must be
located on a single processor and two iterations in the
same instruction accessing a single data element must
be executed on the same processor.

In [30], a matrix notation is presented to de-
scribe array accesses in fully parallel loop nests.
A sufficient condition on the matrices for computing
a communication-free mapping of the arrays onto the
processors is given. The owner computes rule is as-
sumed for the computation mapping. The presented
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existence condition for communication-free partitions
is based on the connectivity of the data access graph
whichmodels the data access patterns. To compute data
mapping functions, a set of systems of linear equations
is constructed, one system of linear equations per pair
of read and write data accesses. If there exists a solu-
tion to the set of systems of linear equations, then there
exists a communication-free partitioning of the array
elements into parallel hyperplanes.

In [2] a linear algebra approach is proposed, based
on [17]. The communication-free alignment problem
is solved by computing a basis of the null space of the
application representing the alignment constraints. The
problem of data replication is addressed.

In [6], T.-S. Chen and J.-P. Sheu consider perfect
loop nests. They compute iteration and data space par-
titioning functions requiring no communication. Their
work focuses only on uniformly generated data ref-
erences. Sufficient conditions are given for the exis-
tence of a communication-free partition. The method
for partitioning the data onto the processors is based on
the computation of independent blocks called iteration
and data partitions respectively. If no communication-
free partitioning exists, data replication is considered.

In [24], an algorithm is presented that extracts all
the degrees of communication-free parallelism that can
be obtained via loop fission, fusion, interchange, re-
versal, skewing, scaling, re-indexing and statement re-
ordering. The algorithm first assigns the iterations of
the instructions in the program to processors via affine
processor mapping functions. Then it generates the
correct code by assuring that the semantics of the se-
quential program are satisfied.

Alignment Approaches Based on Generating HPF
like Data Distributions

J. Li and M. Chen [22,23] are interested in the indices
of the arrays that have to be aligned with one another
to minimize remote data references. The techniques
were initially developed for compiling the functional
language ‘Crystal’, but can be applied in the process
of compiling imperative languages like ‘Fortran’. The
parallelism is assumed to be specified explicitly and the
single assignment form is used. The goal of their ap-
proach is to find alignment functions such that the di-
mensions of each array are projected onto the same

space of a virtual processor grid. They consider four ba-
sic alignments:
i) permutations of the indices,
ii) embeddings,
iii) translations by a constant, and
iv) reflections.
To find a set of data accesses for which valid align-
ment functions exist, a component affinity graph is con-
structed. It represents the affinities between cross ref-
erence patterns. The nodes of the graph represent the
components of the index domains to be aligned. An
edge represents an affinity between the two correspond-
ing domain components. The alignment problem then
consists in partitioning the set of nodes of the compo-
nent affinity graph into disjoint subsets with the restric-
tion that no two nodes belonging to the same array are
allowed in the same subset. A fast and quite efficient
heuristic algorithm is presented.

M. Gupta, in his thesis in 1992 [16], presents a data
distribution algorithm that operates in four passes. The
first pass serves to compute an alignment of the array
dimensions. The algorithm developed is based on the
notion of component affinity graph introduced by Li
and Chen [22]. In the second phase the arrays are parti-
tioned using either block or cyclic data distributions. In
the third pass, the block sizes of the arrays distributed
are computed whereas the last pass computes the num-
ber of processors on which each array dimension is dis-
tributed.

K. Kunchithapadam and B.P. Miller [20], in oppo-
sition to other approaches, assume that a user-defined
data distribution is given. The data accesses of a pro-
gram are modeled by a colored proximity graph. Each
vertex of the graph represents a part of an array and
the color of a vertex represents the current processor
to which this array part is assigned. Edges of the graph
represent assignments of values arising from part of
one or more arrays to part of another array assum-
ing the owner computes rule for the computation map-
ping. Edges between vertices of different colors are as-
signed a weight representing the associated communi-
cation costs. The problem of improving a given set of
data mapping functions is to find a sequence of color
exchanges, that is, data redistributions, that minimize
the weight of the graph, that is, the communication
costs. A possible algorithm for solving this problem is
presented.
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B. Sinharoy and B.K. Szymanski [32] study the
problem of finding computation and data alignment
functions for regular iterative algorithms. A loop nest
can be represented by a regular iterative algorithm if
and only if all the data access functions are constant off-
set functions and the loop nest’s instructions are in sin-
gle assignment form. The communication cost function
used is based on the distance of the processors exchang-
ing data on the virtual processor grid. The authors show
that finding computation and data mapping functions
is equivalent to minimizing a sum of absolute values
composed of sums. An exact enumeration algorithm is
presented and a polynomial time algorithm for finding
an approximate solution is described.

Approaches Using a Graph Based Framework

K. Knobe, J.D. Lukas and G.L. Steele Jr. [19] study
the problem of aligning the array elements accessed
amongst each other. They target their approach to-
wards SIMD machines. Two different kinds of prefer-
ences are distinguished:
i) identity preferences representing alignment prefer-

ences due to different data accesses to the same ar-
ray, and

ii) conformance preferences relating two different ar-
rays.

To compute what preferences can be satisfied without
loosing parallelism, a cyclic preference graph is con-
structed. Each data access is represented by a vertex and
two vertices are related by an undirected weighted edge
if there exists a preference between the two data ac-
cesses. The weight of each edge is defined by the loop
depth at which the data accesses occur. Conflicts be-
tween preferences are represented by cycles in the cyclic
preference graph. A heuristic, using a greedy approach,
is presented to remove annoying cycles or to reduce the
parallelism.

In [5] an intermediate representation of a program
called the alignment-distribution graph is described.
The alignment-distribution graph is a directed graph in
which nodes represent communication and edges rep-
resent the data flow. It exposes the communication re-
quirements of the program. The framework restricts
the alignments computed to alignments in which each
axis of an array maps to a different axis of an HPF
like template and data elements are evenly spaced along

the template axis. The alignments computed have three
components:
i) the axis,
ii) the stride, and
iii) the offset.
The papers present two separate algorithms called the
compact dynamic programming algorithm and the
constraint graph method for minimizing a communi-
cation cost function.

A. Darte and Y. Robert [8] study the problem of
mapping perfectly nested affine loops onto distributed
memory parallel computers. The problem is formulated
by introducing the communication graph that captures
all the required information to align data and compu-
tations. Each instruction and each array is represented
by a vertex, the directed edges representing read and
write data accesses. The problem of message vectoriza-
tion and the use of global communication operations,
like broadcasting, is addressed.

In [11] an algorithm is presented for computing
HPF like data distribution functions. A distribution
graph is constructed representing the relation between
the data access functions and the array accessed. Based
on the distribution graph a decision tree, modeling all
possible combinations of data distribution functions, is
traversed using a branch and bound algorithm. The cost
functionminimized by the algorithm is based on a com-
munication analysis tool. The computation mapping is
done in accordance with the owner computes rule.

M. Wolfe and M. Ikey [33] propose in 1994 an
adaption of the techniques introduced by Li and Chen
[22,23] for the language ‘Crystal’ to the imperative lan-
guage ‘Tiny’. The alignment phase is decomposed into
four operations:
i) finding reference patterns,
ii) adding implicit dimensions to the arrays when re-

quired,
iii) building a component affinity graph, and
iv) partitioning the component affinity graph.
As the partitioning problem is NP-hard, a heuristic is
used. The authors furthermore describe an algorithm
to generate SPMD code based on the alignments com-
puted.

J. Garcia, E. Ayguagé and J. Labarta [15] proposed
for an algorithm to compute data distribution functions
that can be expressed using HPF distribute statements.
This algorithm is based on the construction and traver-
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sal of a single data structure, called the computation-
parallelism graph. The computation-parallelism graph
represents all possible data distributions along the di-
mensions of the arrays. Parallelism constraints are
modeled as hyper-edges. Weights are associated to the
edges to represent the associated communication costs.
Negative costs are associated with the hyperedges to
represent the associated parallelism. It is shown that
distributing the data according to one dimension is
equivalent to finding a path through the computation-
parallelism graph fulfilling some additional constraints.
The problem is formulated as a 0–1 integer program-
ming problem. In contrast to other graph based ap-
proaches, the computation-parallelism graph models
both the possible data distribution, that is, the locality
constraints within a single data structure, and the pos-
sible parallelism.

W. Kelly and W. Pugh [18] describe a technique
to minimize communication while preserving paral-
lelism. The approach is not sensitive to the original pro-
gram structure. For each array, the possible data map-
ping functions form a finite set of candidate space map-
pings. These sets consist of each dimension of the orig-
inal iteration space being distributed. Next, for each
candidate space, that is, for each possible data distri-
bution function, all possible permutations of the sur-
rounding loops are considered and the obtained par-
allelism measured. In a third step a weighted graph is
constructed tomodel the parallelism as well as the com-
munication cost associated with various data decom-
positions. One node in this weighted graph represents
one candidate space mapping for each statement. The
weight associated with a node is its degree of paral-
lelism obtained. The edges represent the communica-
tion required and their weight models the communi-
cation costs. The alignment problem, as formulated in
[18], is the problem of selecting one node per statement
such that the sum of the weights of the selected nodes
and edges is minimized. An algorithm to find such a set
using various pruning strategies to reduce the size of the
search space is presented.

Approaches Using a Linear Algebra Framework

Sheu and T.-H. Toi [31] introduced a method for the
parallel execution of nested loops with constant loop-
carried data dependences by reducing the communi-

cation overhead. First the nested loops are partitioned
into large blocks which result in little inter-block com-
munication. For a given linear transformation found by
the hyperplane method [21], the iterations are parti-
tioned into blocks such that the communication among
the blocks is reduced while the execution order defined
by the time transformation is not disturbed. The par-
titioning is based on projection techniques. In a sec-
ond step these blocks aremapped ontomessage-passing
multiprocessor systems according to specific properties
of the target machine.

M. O’Boyle and G.A. Hedayat [26,27] express the
alignment problem in a linear algebra framework. In
this framework, aligned data can be viewed as forming
a subspace in the iteration space. The problem solved
is the computation of a transformation of the data ac-
cess functions relative to one another such as to maxi-
mize the number of iteration points in the loop iteration
space for which no communication is needed.

P. Feautrier [14] addresses the problem of find-
ing an alignment function that maps the computations
on a one-dimensional grid of virtual processors. The
data mapping functions are defined by the owner com-
putes rule which is imposed. The alignment constraints
between computation and data accesses are derived
from the data-flow graph of the program, procedure or
loop nest considered. The data-flow graph is a directed
graph. Vertices correspond to statements and the arcs
to producers and consumers of data. For each state-
ment, the alignment function is assumed to be an affine
function of the iteration vectors with unknown param-
eters. The locality of data accesses is imposed by asking
that the producer and the consumer of a data element
be the same processor. Feautrier defines distance vec-
tors between all pairs of producers and consumers. To
any arc of the data-flow graph corresponds a distance
vector that expresses the difference of the indices of the
processor that computes the data and the one that uses
it. Thus, a computation is local if and only if the cor-
responding distance vector is zero. The edges are hence
transformed into affine equations and the problem con-
sists in determining nontrivial parameters for the com-
putation mappings that zero out as many distance vec-
tors as possible. A heuristic is used to sort the equa-
tions in decreasing order of the communication traffic
induced. The system of equations, which usually does
not have a non trivial solution, is solved by successive
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Gauss–Jordan eliminations as long as a feasible solution
remains nontrivial. A solution is nontrivial if it has one
degree of parallelism.

J.M. Anderson and M.S. Lam [1] describe neces-
sary conditions for the data elements accessed by each
processor to be local. They present a greedy algorithm
to compute the computation and data mapping func-
tions that can be satisfied. They incrementally add con-
straints as long as their conditions are satisfied, starting
with the most frequently used array access functions.
They only consider the linear part of the data access
functions, taking care of the constant offsets in a sec-
ond step. Their heuristic technique is close to the one
defined in [9].

A. Platonoff [28,29] develops extensions to Feau-
trier’s [14] automatic data distribution algorithm.
Amethod is presented to extract global broadcast oper-
ations as well as translation operations to optimize the
data mapping functions. In the data-flow graph, pat-
terns representing broadcast and other global commu-
nication patterns are searched for. The data distribu-
tion is then chosen such as to maximize the number of
global communication operations possible.

M. Dion and Robert [12,13] consider a problem
in which all data access functions are of full rank and
no smaller than d, the required degree of parallelism.
This ensures that the parallelism obtained is indeed as
large as wanted. By considering only the linear parts
they compute the largest set of alignment constraints
that can be satisfied while yielding the given degree of
parallelism d. The constant offsets are considered sub-
sequently, using techniques developed by Darte and
Robert [8]. They consider a set of candidate solutions
and search for an optimal one that verifies the largest
number of constraints while effectively yielding the de-
gree of parallelism desired. In their approach, Dion
and Robert consider three basic cases depending on the
structure of the data access function. Then, they build
a directed graph defined as follows. Vertices correspond
either to statements or arrays. There is an arc from ver-
tex p to vertex q if and only if a mapping of rank d can
be computed for q from a given mapping of rank d for
p according to the basic cases enumerated previously.
In this graph they search for a tree containing a maxi-
mal number of arcs. Obviously, choosing a mapping of
rank d for the root of the computed tree implicitly de-
termines mappings of rank d for all other vertices.

C. Mongenet [25] is interested in minimizing com-
munication costs in the presence of systems of affine
recurrence equations, that is, single assignment loop
nests. The data dependences are subdivided into two
classes:
i) auto dependences, and
ii) cross dependences.
Auto-dependences are data dependences between two
data accesses to the same array. The domains of these
arrays are projected onto hyperplanes such as to min-
imize the number of remote data accesses. Cross-
dependences are dependences between data accesses to
different arrays. Unimodular transformations are ap-
plied to the projected domains to align the different
data array and so minimize the resulting communi-
cations. A heuristic based on these two steps is intro-
duced.

C.G. Diderich [9] and Diderich andM. Gengler [10]
present and extend the algorithm for solving this prob-
lem introduced in [2]. In a second step they introduce
the constant degree parallelism alignment problem. It
is the problem of finding computation and data map-
ping functions that minimize the number of remote
data accesses for a given degree of parallelism. An ex-
act implicit enumeration algorithm is presented. It pro-
ceeds by enumerating all interesting subsets of align-
ment constraints to be satisfied. To allow large align-
ment problems to be solved an efficient heuristic is pre-
sented and applied to various benchmarks.

Other Approaches

B.M. Chapman, T. Fahringer and H.P. Zima [4] for
a software tool to provide automatic support for the
mapping of the data onto the processors of the tar-
get machine. The computation is mapped by using the
owner computes rule. The tool is integrated within
the Vienna Fortran Compilation System, a compiler
for Vienna Fortran, an HPF like Fortran dialect. The
tool makes use of performance analysis methods and
uses, via heuristics, empirical performance data. Once
the performance data has been obtained for a given
program, an inter-procedural alignment and pattern
matching phase determines a suitable alignment of the
arrays within each procedure. The alignments are then
propagated through the call graph of the program.
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Eventually more versions of a procedure are generated,
corresponding to differently distributed actual argu-
ments. Finally code is generated using the selected data
distributions.

In [7], P. Crooks and R.H. Perrott present an algo-
rithm for determining data mapping functions by gen-
erating HPF like directives. Their approach is based
on identifying reference patterns. To each read/write
pair is associated an ideal data distribution that mini-
mized inter-processor communication. Once the pref-
erences for the individual accesses are determined,
a performance estimator is used to select the combi-
nation of preferences that gives the best performance
estimate.

R. Bixby, K. Kennedy and U. Kremer [3] present an
automatic data layout algorithm based on 0–1 integer
programming techniques. The data mapping functions,
following the HPF alignment structure, are optimized
for a target distributed memory machine, a specific
problem size and the number of available processors.
The distribution analysis uses the alignment search
space, that is, the space of all possible HPF like align-
ments, to build candidate data layout search spaces of
reasonable data mapping functions for each loop nest.
In a second step the inter-phase or inter-loop nests data
layout problem is addressed. By using an integer pro-
gramming formulation, a data mapping function is se-
lected for each loop nest such that a single global cost
function, modeling the communication costs, is mini-
mized.

Conclusion

This article presents major advancements made in solv-
ing the alignment problem. Different subproblems are
defined and described. One major open problem is
how to incorporate scheduling information into the al-
gorithms computing efficient alignment functions. See
[9] for a first approach towards computing scheduling
functions compatible with computation and data map-
ping functions. The question of which cost function to
use when computing alignment functions has to be ad-
dressed with more details.

See also

� Integer Programming
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Deterministic global optimization techniques for non-
convex NLPs have been the subject of growing inter-
est because they can potentially provide a very com-
plete characterization of the problem being considered.
In addition to guaranteeing identification of the global
solution within arbitrary accuracy, they enable the lo-
cation of all local and global solutions of the problem.
As a result, they can be used to determine the feasibility
of a given problem with certainty [1,2,3,4], or to find all
solutions of a nonlinear system of equations [13]. They
are especially valuable in the study of systems in which
the global optimum solution is the only physically
meaningful solution, as is the case of the phase equilib-
rium of non ideal mixtures [16,17,18,19,20]. Tradition-
ally, a major theoretical limitation of these approaches
has been their inability to tackle problems with ar-
bitrary nonconvexities. However, the recent develop-
ment of rigorous convex relaxation techniques for gen-
eral twice continuously differentiable functions [2,3,4]
has greatly expanded the class of problems that can
be addressed through deterministic global optimiza-
tion. These approaches have been incorporated within
a branch and bound framework to create the ˛BB global
optimization algorithm for twice continuously differen-
tiable problems [3,6,12]. The theoretical basis of the al-
gorithm as well as the efficient search strategies it uses
are discussed in this article.

General Framework

The ˛BB algorithm guarantees finite �-convergence to
the global solution of nonlinear programming prob-
lems (NLPs) belonging to the general class

8̂
ˆ̂̂<
ˆ̂̂̂
:

minx f (x)
s.t. g(x) � 0

h(x) D 0
x 2 [xL; xU ];

(1)

where f (x), g(x) and h(x) are continuous twice-
differentiable functions.

The solution scheme is based on the generation of
a nonincreasing sequence of upper bounds and a non-
decreasing sequence of lower bounds on the global so-
lution. The monotonicity of these sequences is ensured
through successive partitioning of the search space
which enables the construction of increasingly tight re-
laxations of the problem. The validity of the bounds ob-
tained is of crucial importance in a rigorous global op-
timization approach. The upper bounding step does not
present any theoretical difficulties and consists of a lo-
cal optimization of the nonconvex problem. The lower
bounding step is a more challenging operation in which
the nonconvex problem must be convexified and un-
derestimated in the current subdomain. The strategy
adopted dictates the applicability of the algorithm and
plays a pivotal role in its performance as it determines
the tightness of the lower bounds obtained. The pro-
cedure followed in the ˛BB algorithm is discussed in
the next section. Finally, the branching step involves the
partition of the solution domain with the smallest lower
bound on the global optimum solution into a covering
set of subdomains. Although this is a simple task, the
choice of partition has implications for the rate of con-
vergence of the algorithm and efficient branching rules
must be used.

Convexification and Underestimation Strategy

A convex relaxation of problem (1) is obtained by con-
structing convex underestimators for the nonconvex
objective function and inequality constraints and by
relaxing the nonlinear equality constraints, replacing
them with less stringent linear equality constraints or
a set of two convex inequalities. The general convexi-
fication/relaxation procedure used is first discussed for
the objective function and nonconvex inequalities.

Function Decomposition

A convex underestimator for a twice continuously dif-
ferentiable function is constructed by following a two-
stage procedure. In the first stage, the function is de-
composed into a summation of terms of special struc-
ture, such as linear, convex, bilinear, trilinear, frac-
tional, fractional trilinear, concave in one variable and
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general nonconvex terms. Then, based on the fact that
the summation of convex functions results in a con-
vex function, a tailored convex underestimator is used
for each different term type. Thus, a twice-differentiable
function F(x) defined over the domain [xL, xU] is writ-
ten as

F(x) D c>xC FC(x)C
btX
iD1

bi xBi ;1xBi ;2

C

t tX
iD1

ti xTi;1xTi ;2xTi ;3 C

f tX
iD1

fi
xFi ;1
xFi ;2

C

f t tX
iD1

f ti
xFTi ;1xFTi ;2

xFTi ;3
C

uc tX
iD1

FUCi (xUCi )

C

nc tX
iD1

FNCi (x);

(2)

where c is a scalar vector; FC(x) is a convex function; bt
is the number of bilinear terms, bi is the coefficient of
the ith bilinear term and xBi ;1 and xBi ;2 are the two vari-
ables participating in the bilinear term; tt is the number
of trilinear terms, ti is the coefficient of the ith trilin-
ear term and xTi ;1 xTi ;2 and xTi ;3 are the three variables
participating in the trilinear term; ft is the number of
fractional terms, f i is the coefficient of the ith fractional
term and xFi ;1 and xFi ;2 are the two variables participat-
ing in the fractional term; ftt is the number of fractional
trilinear terms, fti is the coefficient of the ith fractional
trilinear term and xFTi ;1, xFTi ;2 and xFTi ;3 are the three
variables participating in the fractional trilinear term;
uct is the number of univariate concave terms, FUCi is
the ith univariate concave term and xUCi is the variable
participating in the univariate concave term; nct is the
number of general nonconvex terms and FNCi (x) is the
ith general nonconvex term.

The decomposition phase serves two purposes: it
can lead to the construction of a tight underestima-
tor by taking advantage of the special structure of the
function and it may reduce the complexity of the un-
derestimation strategy by permitting the treatment of
terms which involve a smaller number of variables than
the overall nonconvex function. As will become appar-
ent, this is especially important for general nonconvex
terms.

Linear and Convex Terms

Any term that has been identified as linear or convex
does not need to be modified during the convexifica-
tion/underestimation procedure.

Bilinear Terms

The bilinear terms can be replaced by their convex en-
velope [5,15]. A new variable wB substitutes a bilinear
term x1 x2 and is bounded by a set of four inequality
constraints which depend on the variable bounds.

8̂
ˆ̂̂<
ˆ̂̂̂
:

wB � xL1 x2 C xL2 x1 � xL1 xL2 ;
wB � xU1 x2 C xU2 x1 � xU1 xU2 ;
wB � xU1 x2 C xL2 x1 � xU1 xL2 ;
wB � xL1 x2 C xU2 x1 � xL1 xU2 :

(3)

Trilinear, Fractional and Fractional Trilinear Terms

For trilinear, fractional and fractional trilinear terms,
the convex underestimators proposed in [13] can be
used. They are constructed in a fashion similar to the
bilinear term underestimators: a new variable replaces
the term and a set of inequality constraints provides
bounds on this variable. For a trilinear term x1x2x3, for
instance, the substitution variable wT is subject to

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

wT � x1xL2 xL3 C xL1 x2xL3
CxL1 xL2 x3 � 2xL1 xL2 xL3 ;

wT � x1xU2 x
U
3 C xU1 x2xL3

CxU1 xL2 x3 � xU1 xL2 xL3 � xU1 xU2 xU3 ;
wT � x1xL2 xL3 C xL1 x2x

U
3

CxL1 xU2 x3 � xL1 xU2 xU3 � xL1 xL2 xL3 ;
wT � x1xU2 xL3 C xU1 x2x

U
3

CxL1 xU2 x3 � xL1 xU2 xL3 � xU1 xU2 xU3 ;
wT � x1xL2 x

U
3 C xL1 x2xL3

CxU1 xL2 x3 � xU1 xL2 xU3 � xL1 xL2 xL3 ;
wT � x1xL2 x

U
3 C xL1 x2x

U
3

CxU1 xU2 x3 � xL1 xL2 xU3 � xU1 xU2 xU3 ;
wT � x1xU2 xL3 C xU1 x2xL3

CxL1 xL2 x3 � xU1 xU2 xL3 � xL1 xL2 xL3 ;
wT � x1xU2 x

U
3 C xU1 x2x

U
3

CxU1 xU2 x3 � 2xU1 xU2 xU3 :

(4)
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For a fractional term x1/x2 with xL2 > 0, the new variable
wF is bounded by

wF �

8<
:

xL1
x2
C x1

xU2
�

xL1
xU2

if xL1 � 0;
x1
xU2
�

xL1 x2
xL2 x

U
2
C

xL1
xL2

if xL1 < 0;

wF �

8<
:

xU1
x2
C x1

xL2
�

xU1
xL2

if xU1 � 0;
x1
xL2
�

xU1 x2
xL2 x

U
2
C

xU1
xU2

if xU1 < 0:

(5)

Finally, for a fractional trilinear term x1x2/x3 with xL1 , xL2
� 0 and xL3 > 0, the substitution variable wFT is subject
to

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

wFT �
x1xL2
xU3
C

xL1 x2
xU3

C
xL1 x

L
2

x3
�

2xL1 x
L
2

xU3
;

wFT �
x1xL2
xU3
C

xL1 x2
xL3

C
xL1 x

U
2

x3
�

xL1 x
U
2

xL3
�

xL1 x
L
2

xU3
;

wFT �
x1xU2
xL3
C

xU1 x2
xU3

C
xU1 xL2
x3
�

xU1 xL2
xU3
�

xU1 xU2
xL3

;

wFT �
x1xU2
xU3
C

xU1 x2
xL3

C
xL1 x

U
2

x3
�

xL1 x
U
2

xU3
�

xU1 xU2
xL3

;

wFT �
x1xL2
xU3
C

xL1 x2
xL3

C
xU1 xL2
x3
�

xU1 xL2
xL3
�

xL1 x
L
2

xU3
;

wFT �
x1xU2
xU3
C

xU1 x2
xL3

C
xL1 x2
x3
�

xL1 x
U
2

xU3
�

xU1 xU2
xL3

;

wFT �
x1xL2
xU3
C

xL1 x2
xL3

C
xU1 xL2
x3
�

xU1 xL2
xL3
�

xL1 x
L
2

xU3
;

wFT �
x1xU2
xL3
C

xU1 x2
xL3

C
xU1 xU2
x3
�

2xU1 xU2
xL3

:

(6)

Univariate Concave Terms

For univariate concave terms, the convexifica-
tion/underestimation procedure does not require the
introduction of new variables or constraints: a simple
linearization of the term suffices. Thus, a univariate
concave term FUC(x) is replaced by the linear term

FUC(xL)C
FUC(xU ) � FUC(xL)

xU � xL
(x � xL): (7)

General Nonconvex Terms

For a general nonconvex term FNC(x), a convex un-
derestimator F̆NC(x) over [xL, xU ] is constructed by
subtracting a positive separable quadratic term from
FNC(x) [12]:

F̆NC(x) D FNC(x) �
nX

jD1

˛ j(x j � xLj )(x
U
j � x j); (8)

where n is the number of variables and the ˛ parameters
are positive scalars.

Themagnitude of the ˛ parameters determines both
the quality of the convex underestimator, that is, its
tightness, and its convexity. It was shown in [12] that
the maximum separation distance, dmax, between the
nonconvex term FNC(x) and its convex underestimator
F̆NC(x) is given by

dmax D max
x

�
FNC(x) � F̆NC(x)

�

D
1
4

nX
jD1

˛ j(xUj � xLj )
2 : (9)

Thus, small ˛ values are needed to construct a tight un-
derestimator. The dependence of the maximum sepa-
ration distance on the square of the variable ranges is
especially important for the convergence proof of the
algorithm [12]. Provided that the ˛ values do not in-
crease from a parent node to a child node, relation (9)
guarantees that the convex relaxations become increas-
ingly tight as the branch and bound iterations progress
and smaller subdomains are generated. In the limit, the
convex underestimators match the original functions.
As a result, the monotonicity of the lower bound se-
quence can be ensured.

To meet the convexity requirement of F̆NC(x), the
positive quadratic term needs to be sufficiently large to
overcome the nonconvexity of FNC(x). This is achieved
by manipulating the value of the ˛ parameters. Based
on the properties of convex functions, a necessary and
sufficient condition for the convexity of F̆NC(x) is the
positive semidefiniteness of the matrix HFNC (x) + 2
diag(˛j) for all x 2 [xL, xU], where HFNC (x) is the Hes-
sian matrix of the nonconvex term FNC(x). The diago-
nal matrix� = diag(˛j) results in a shift in the diagonal
elements of the matrixHFNC (x) and is therefore referred
to as the diagonal shift matrix. The rigorous derivation
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of a matrix � that satisfies the convexity condition is
a difficult matter in the general case, primarily because
of the nonlinear dependence of the Hessian matrix on
the x variables. This problem can be alleviated by using
interval arithmetic to generate an interval Hessian ma-
trix [HFNC ] such that HFNC (x) 2 [HFNC ] for all x 2]xL,
xU] [1,3,4]. This process allows the formulation of a suf-
ficient convexity condition for the underestimator: if all
real symmetric matrices in [HFNC ] + 2 diag(˛j) are pos-
itive semidefinite, then F̆NC(x) is convex over [xL, xU].

Based on the interval Hessian matrix, a number of
methods may be used to automatically and rigorously
compute a diagonal shift matrix � that guarantees the
convexity of F̆NC(x). The first class of techniques gener-
ates a uniform diagonal shift matrix by equating all the
diagonal elements of� with a single ˛ value. In the sec-
ond class of techniques, different ˛ values are used and
a nonuniform diagonal shift matrix is obtained [1,3].

In the first class of methods, the convexity condition
is equivalent to the positive semidefiniteness of all real
symmetric matrices in [HFNC ] + 2 diag(˛) and is satis-
fied by any ˛ parameter such that

˛ � max
�
0;�

1
2
�min

�
[HFNC ]

�	
; (10)

where �min ([HFNC ]) is the minimum eigenvalue of
[HFNC ] [3,12].

Consider a square symmetric interval Hessian ma-
trix family [H] whose element (ij) is the interval
[hi j; hi j] and whose radius matrix �H is defined as

(	H)i j D
(hi j�hi j)

2 . A lower bound on the minimum
eigenvalue of [H] can be obtained using one of the fol-
lowing methods [1,3,4]:
� Method I.1 — the Gershgorin theorem approach;
� Method I.2a — the E-matrix approach with E = 0;
� Method I.2b — the E-matrix approach with E =

diag(�H);
� Method I.3 —Mori–Kokame’s approach;
� Method I.4 — the lower bounding Hessian ap-

proach;
� Method I.5 — an approach based on the Kharitonov

theorem;
� Method I.6 — the Hertz approach.
Method I.1 is an extension of the Gershgorin theorem
for real matrices to interval matrices. The minimum

eigenvalue of [H] is such that

�min([H]) � min
i

2
4hi i �

X
j¤i

max
�

hi j



 ;



hi j





�35 :

Methods I.2a and I.2b are a generalization of the re-
sults presented in [8,23]. It requires the computation of
the modified midpoint matrix eHM such that (eHM)i j D
(hi jChi j)

2 for i 6D j and (eHM)i i D 0, as well as the com-
putation of the modified radius matrix e	H such that
(e	H)i j D

(hi j�hi j)
2 for i 6D j and (e	H)i i D hi j . Given an

arbitrary real symmetric matrix E, the minimum eigen-
value of the interval Hessian matrix [H] is such that

�min ([H]) � �min
�eHM C E

�
� �

�
e	H C kEk

�
;

where �(M) denotes the spectral radius of the real ma-
trixM. In practice, two E-matrices have been used: E =
0 (Method I.2a) and E =�H (Method I.2b).

Method I.3 is based on a result presented in [21],
which uses the lower vertex matrix H, such that (H)ij =
hij, and the upper vertex matrix H, such (H)i j D hi j .
The minimum eigenvalue of [H] is such that

�min ([H]) � �min(H) � �(H � H):

Method I.4 uses a lower bounding Hessian of the
interval Hessian matrix. Such a matrix is defined in
[24] as a real symmetric matrix whose minimum eigen-
value is smaller than the minimum eigenvalue of any
real symmetric matrix in the interval Hessian family. It
therefore suffices to compute the minimum eigenvalue
of this real matrix to obtain the desired lower bound.
A lower bounding Hessian L = (lij) can be constructed
from the following rule:

li j D

8<
:
hi i C

P
k¤i

h ik�hik
2 ; i D j;

hi jChi j
2 ; i ¤ j:

Method I.5 is based on the Kharitonov theorem [11]
which, by extension, gives a lower bound on the min-
imum eigenvalue of an interval Hessian matrix family
[2]. First, the corresponding characteristic polynomial
family must be derived

[K] D [c0; c0]C [c1; c1]�C [c2; c2]�2

C [c3; c3]�3 C [c4; c4]�4 C [c5; c5]�5 C � � � ;
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where the coefficients of � depend on the elements of
the interval Hessian matrix [H]. A lower bound on the
roots of this polynomial can then obtained by calcu-
lating the minimum roots of only four real polyno-
mials. The appropriate bounding polynomials are the
Kharitonov polynomials
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

K1 D c0 C c1�C c2�2 C c3�3

Cc4�4 C c5�5 C � � � ;
K2 D c0 C c1�C c2�2 C c3�3

Cc4�4 C c5�5 C � � � ;
K3 D c0 C c1�C c2�2 C c3�3

Cc4�4 C c5�5 C � � � ;
K4 D c0 C c1�C c2�2 C c3�3

Cc4�4 C c5�5 C � � � :

Method I.6 allows the computation of the exact
minimum eigenvalue of the family of symmetric ma-
trices represented by the interval Hessian matrix. It re-
quires the construction of 2n� 1 vertex matrices Hk of
the interval matrix [H] as defined by

(Hk)i j D

8̂
<̂
ˆ̂:

hi i if i D j;
hi j if uiu j � 0; i ¤ j;
hi j if uiu j < 0; i ¤ j;

where all possible combinations of the signs of the ar-
bitrary scalars ui and uj are enumerated. It was shown
in [4,10] that the lowest minimum eigenvalue from this
set of real matrices is the minimum eigenvalue of the
interval matrix.

Three rigorous techniques for the generation of
a non uniform shift matrix� can be used [1,3]:
� Method II.1a — the scaled Gershgorin theorem ap-

proach with scaling vector d = 1;
� Method II.1b — the scaled Gershgorin theorem ap-

proach with scaling vector d = xU � xL;
� Method II.2 — the H-matrix approach;
� Method II.3 — an approach based on the minimiza-

tion of the maximum separation distance.
The main advantage of these techniques is that resort-
ing to a different value of the ˛ parameter for each vari-
able may lead to tighter underestimators by taking into
account the individual contribution of each variable to
the overall nonconvexity of the term being considered.
In the case of a uniform diagonal shift, the worst con-
tribution is uniformly assigned to all variables.

Methods II.1a and II.1b bear resemblance with the
Gershgorin theorem used forMethod I.1. In the present
case, however, each row is considered independently
and the ith element of the diagonal shift matrix, ˛i, is
the maximum of zero and

�
1
2

0
@hi i �

X
j¤i

max
n

hi j



 ;



hi j





o dj

di

1
A ;

where d is an arbitrary positive vector. In practice, d =
1 (Method II.1a) and d = xU � xL (Method II.1b) have
been used. The latter choice of scaling often helps to
reduce the maximum separation distance between the
nonconvex term and its underestimator by assigning
smaller ˛ values to variables with a larger range.

Method II.2 is an iterative method based on the
properties of H-matrices: a square interval matrix that
has the H-matrix property is regular and does not have
0 as an eigenvalue [22]. In order to determine whether
a square interval matrix [H] is an H-matrix, its com-
parison matrix hHimust first be defined. For i 6D j, the
off-diagonal element (hHi)ij of the comparison matrix
is given by �maxf



hi j


 ;



hi j




g. A diagonal element
(hHi)ii of the comparison matrix is given by
8<
:
0; 0 2 [hi i ; hi i ];

min
n
khi ik ;




hi i





o
; 0 … [hi i ; hi i ]:

A real matrix such as hHi is an M-matrix if all its off-
diagonal elements are nonpositive – this is always true
for hHi – and if there exists a real positive vector u such
that hHiu > 0. The interval matrix [H] is anH-matrix if
its comparison matrix hHi is anM-matrix. Method II.2
follows an iterative procedure to construct a nonuni-
form diagonal shift matrix � such that [H] + 2 � is an
H-matrix whose modified midpoint matrix is positive
definite. If these conditions are met, the diagonal ele-
ments of the shift matrix are guaranteed to lead to the
construction of a convex underestimator for the non-
convex term. The initial guess chosen for � is the uni-
form diagonal shift matrix given by Method I.2.

Method II.3 aims to generate a non uniform diago-
nal shift matrix which minimizes the maximum separa-
tion distance between the nonconvex term and its un-
derestimator. For this purpose, the following semidefi-
nite programming problem is solved using an interior
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point method [25]:
8̂
<̂
ˆ̂:

min˛i (xU � xL)>	(xU � xL)
s.t. LC 2 diag(˛i ) � 0

˛i � 0; 8i;

where L is the lower bounding Hessian matrix defined
in Method I.4. Because this approach is based on the
lower bounding Hessian matrix rather than the exact x-
dependent Hessian matrix, the solution found does not
correspond to the smallest achievable maximum sepa-
ration distance, but can be expected to be smaller than
when Method I.4 is used.

A comparative study [1,3] of all the methods avail-
able for the generation of a diagonal shift matrix found
that Methods II.1a, II.1b and II.3 usually give the tight-
est underestimators. However, Method II.3 is compu-
tationally intensive and therefore results in poorer con-
vergence rates than Methods II.1a and II.1b. Since the
least computationally expensive techniques for the gen-
eration of the diagonal shift matrix, Methods I.1, II.1a
and II.1b, are of order O(n2), the decomposition of the
nonconvex terms into a summation of terms involving
a smaller number of variables may have a significant
impact on the performance of the algorithm.

Overall Convexification/Relaxation Strategy

Based on the rigorous convexification/underestimation
schemes for bilinear, trilinear, fractional, fractional
trilinear, univariate concave and general nonconvex
terms, the overall convex underestimator F̆(x;w) for
a twice continuously differentiable function F(x) de-
composed according to (2) is

F̆(x;w) D c>xC FC (x)C
btX
iD1

biwBi

C

t tX
iD1

tiwTi C

f tX
iD1

fiwFi C

f t tX
iD1

f tiwFTi

C

uc tX
iD1

�
FUCi (x

L
UCi

)

C
FUCi (xUUCi

) � FUCi (xLUCi
)

xUUCi
� xLUCi

(xUCi � xLUCi
)

!

C

nc tX
iD1

0
@FNCi (x) �

nX
jD1

˛i j(x j � xLj )(x
U
j � x j)

1
A ;

(11)

where the notation is as defined for (2). The introduc-
tion of the new variables wBi , wTi , wFi and wFTi is ac-
companied by the addition of convex inequalities of the
type given in (3), (4), (5) and (6). For the trilinear, frac-
tional and fractional trilinear terms, the specific form of
these equations depends on the sign of the term coeffi-
cients and variable bounds.

The form given by (11) can be used to construct
convex underestimators for the objective function and
inequality constraints.

Equality Constraints

For nonlinear equality constraints, two different con-
vexification/relaxation schemes are used, depending on
the mathematical structure of the function. If the equal-
ity h(x = 0 involves only linear, bilinear, trilinear, frac-
tional and fractional trilinear terms, it is first decom-
posed into the equivalent equality constraint

c>xC
btX
iD1

bi xBi ;1xBi ;2 C

t tX
iD1

ti xTi ;1xTi ;2xTi ;3

C

f tX
iD1

fi
xFi ;1
xFi ;2

C

f t tX
iD1

f ti
xFTi ;1xFTi ;2

xFTi ;3
D 0; (12)

where the notation is as previously defined. (12) is then
replaced by

c>xC
btX
iD1

biwBi C

t tX
iD1

tiwTi

C

f tX
iD1

fiwFi C

f t tX
iD1

f tiwFTi D 0; (13)

with the addition of convex inequalities of the type
given by (3), (4), (5) and (6). If the nonlinear equal-
ity contains at least one convex, univariate concave or
general nonconvex term, the convexification/relaxation
strategy must first transform the equality constraint
h(x) into a set of two equivalent inequality constraints

(
h(x) � 0

� h(x) � 0;
(14)

which can then be convexified and underestimated in-
dependently using (11).

The transformation of a nonconvex twice-differen-
tiable problem into a convex lower bounding problem
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described in this section allows the generation of valid
and increasingly tight lower bounds on the global opti-
mum solution.

Branching Variable Selection

Once upper and lower bounds have been obtained for
all the existing nodes of the branch and bound tree,
the region with the smallest lower bound is selected
for branching. The partitioning of the solution space
can have a significant effect on the quality of the lower
bounds obtained because of the strong dependence of
the convex underestimators described by (3)–(8) on
the variable bounds. It is therefore important to iden-
tify the variables which most contribute to the separa-
tion between the original problem and the convex lower
bounding problem at the current node. Several branch-
ing variable selection criteria have been designed for
this purpose [1].

Least Reduced Axis Rule

The first strategy leads to the selection of the variable
that has least been branched on to arrive at the current
node. It is characterized by the largest ratio

xUi � xLi
xUi;0 � xLi;0

;

where xLi;0 and xUi;0 are the lower and upper bounds on
variable xi at the first node of the branch and bound tree
and xLi and xUi are the current lower and upper bounds
on variable xi.

The main disadvantage of this simple rule is that it
does not account for the specificities of the participa-
tion of each variable in the problem and therefore can-
not accurately identify the critical variables that deter-
mine the quality of the underestimators.

TermMeasure

A more sophisticated rule is based on the computation
of a term measure �t

j for term tj defined as

�t
j D t j(x�) � t̆ j(x�;w�); (15)

where tj(x) is a bilinear, trilinear, fractional, frac-
tional trilinear, univariate concave or general noncon-
vex term, t̆ j(x;w) is the corresponding convex underes-
timator, x� is the solution vector corresponding to the

minimum of the convex lower bounding problem, and
w� is the solution vector for the new variables at the
minimum of the convex lower bounding problem. One
of the variables participating in the termwith the largest
measure �t

j is selected for branching.

Variable Measure

A third strategy is based on a variable measure �v
i

which is computed from the term measures �t
j . For

variable xi, this measure is

�v
i D

X
j2Ti

�t
j; (16)

where Ti is the set of terms in which xi participates. The
variable with the largest measure �v

i is branched on.

Variable Bound Updates

The effect of the variable bounds on the convexifica-
tion/relaxation procedure motivates the tightening of
the variable bounds. However, the trade-off between
tight underestimators generated at a large computa-
tional cost and looser underestimators obtained more
rapidly must be taken into account when designing
a variable bound update strategy. For this reason, one
of several approaches can be adopted, depending on the
degree of nonconvexity of the problem [1,3]:
� variable bound updates

– at the beginning of the algorithmic procedure
only; or

– at each iteration;
� bound updates

– for all variables in the problem; or
– bound updates for those variables that most af-

fect the quality of the lower bounds as measured
by the variable measure �v

i .
Two different techniques can be used to tighten the

variable bounds. The first is based on the generation
and solution of a series of convex optimization prob-
lems while the second is an iterative procedure relying
on the interval evaluation of the functions in the non-
convex NLP.

Optimization-Based Approach

In the optimization approach, a new lower or upper
bound for variable xi is obtained by solving the convex
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problem
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

minx;w or maxx;w xi

s.t. f̆ (x;w) � f �

ğ(x;w) � 0

h̆CN (x;w) � 0

h̆�N (x;w) � 0

h̆L(x;w) D 0

n(x;w) � 0

x 2 [xL; xU ];

w 2 [wL;wU ];

(17)

where p̆(x;w) denotes the convex underestimator of
function p(x) as defined in (11), f � denotes the cur-
rent best upper bound on the global optimum solution,
hL(x) denotes the set of equality constraints which in-
volve only linear, bilinear, trilinear, fractional and frac-
tional trilinear terms, hCN (x) denotes the set of equality
constraints that involve other term types and h�N(x) de-
notes the negative of that set, n(x, w) denotes the set
of additional constraints that arise from the underes-
timation of bilinear, trilinear, fractional and fractional
trilinear terms, and w is the corresponding set of new
variables.

Interval-Based Approach

In the interval-based approach, an iterative procedure is
followed for each variable whose bounds are to be up-
dated. The original functions in the problem are used
without any transformations. An inequality constraint
g(x) � 0 is infeasible in the domain [xL, xU] if its range
[gL, gU], computed so that g(x)2 [gL, gU]8 x2 [xL, xU[,
is such that gL > 0. Similarly, an equality constraint h(x)
= 0 is infeasible in this domain if its range [hL, hU], com-
puted so that h(x) 2 [hL, hU],8 x 2 [xL, xU], is such that
0 62 [hL, hU]. The variable bounds are updated based on
the feasibility of the constraints in the original problem
and the additional constraint that the objective function
should be less than or equal to the current best upper
bound f �. The feasible region is therefore defined as

F D
�
x :

g(x) � 0; h(x) D 0;
f (x) � f �; x 2 [xL; xU ]

	
:

The lower (upper) bound on variable xi 2 [xLi , x
U
i ] is

updated as follows:

PROCEDURE interval-based bound update()
Set initial bounds L = xLi and U = xUi ;
Set iteration counter k = 0;
Set maximum number of iterations K;
DO k < K

Compute midpoint M = (U + L)/2;
Set left region fx 2 F : xi 2 [L;M]g;
Set right region fx 2 F : xi 2 [L;M]g;
Test interval feasibility of left (right region);
IF feasible,

Set U = M (L = M);
ELSE,

Test interval feasibility of right (left)
region;
IF feasible,

Set L = M (U = M);
ELSE,

Set L = U (U = L);
Set U = xUi (U = xLi )

IF k = 0 and L = xUi (U = xLi );
RETURN(infeasible node);

Set k = k + 1;
OD;
RETURN(xLi = L (xUi = U));

END interval-based bound update;

Interval-based bound update procedure

In general, the interval-based bound update
strategy is less computationally expensive than the
optimization-based approach. However, at the begin-
ning of the branch and bound search, when the bound
updates are most critical and the variable ranges are
widest, the overestimations inherent in interval com-
putations often lead to looser updated bounds in the
interval-based approach than in the optimization-based
technique.

Algorithmic Procedure

Based on the developments presented in previous sec-
tions, the procedure for the ˛BB algorithm can be sum-
marized by the following pseudocode:
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PROCEDURE ˛BB algorithm()
Decompose functions in problem;
Set tolerance �;
Set f � = f 0 = �1 and f̄ � = f̄ 0 = +1;
Initialize list of lower bounds f f 0g;
DO f̄ � � f � > �

Select node k with smallest lower bound, f k ,
from list of lower bounds;
Set f � = f k ;
(Optional) Update variable bounds for cur-
rent node using optimization or interval
approach;
Select branching variable;
Partition to create new nodes;
DO for each new node i

Generate convex lower bounding NLP
Introduce new variables, constraints;
Linearize univariate concave terms;
Compute interval Hessian matrices;
Compute ˛ values;

Find solution f i of convex lower bound-
ing NLP;
IF infeasible or f i > f̄ � + �

Fathom node;
ELSE

Add f i to list of lower bounds;
Find a solution f̄ i of nonconvex NLP;
IF f̄ i < f̄ �

Set f̄ � = f̄ i ;
OD;

OD;
RETURN( f̄ � and variables values at correspond-
ing node);

END ˛BB algorithm;

A pseudocode for the˛BB algorithm

Computational Experience

Significant computational experience with the ˛BB al-
gorithm has been acquired through the solution of
a wide variety of problems involving different types
of nonconvexities and up to 16000 variables [1,2,
3,4,6,9,12]. These include problems such as pool-
ing/blending, design of reactor networks, design of
batch plants under uncertainty [9], stability studies be-
longing to the class of generalized geometric program-

˛BB Algorithm, Figure 1
Simplified alkylation process flowsheet

ming problems, characterization of phase-equilibrium
using activity coefficient models, identification of stable
molecular conformations and the determination of all
solutions of systems of nonlinear equations.

In order to illustrate the performance of the algo-
rithm and the importance of variable bound updates,
a medium-size example is presented. The objective is to
maximize the profit for the simplified alkylation process
presented in [7] and shown in Fig. 1.

An olefin feed (100% butene), a pure isobutane re-
cycle and a 100% isobutane make up stream are intro-
duced in a reactor together with an acid catalyst. The
reactor product stream is then passed through a frac-
tionator where the isobutane and the alkylate prod-
uct are separated. The spent acid is also removed from
the reactor. The formulation used here includes 7 vari-
ables and 16 constraints, 12 of which are nonlinear. The
variables are defined as follows: x1 is the olefin feed
rate in barrels per day; x2 is the acid addition rate in
thousands of pounds per day; x3 is the alkylate yield
in barrels per day; x4 is the acid strength (weight per-
cent); x5 is the motor octane number; x6 is the exter-
nal isobutane-to-olefin ratio; x7 is the F-4 performance
number. The profit maximization problem is then ex-
pressed as:

Profit D �min(1:715x1 C 0:035x1x6
C 4:0565x3 C 10:0x2 � 0:063x3x5)
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subject to:

0:0059553571x26x1 C 0:88392857x3
� 0:1175625x6x1 � x1 � 0;

1:1088x1 C 0:1303533x1x6
� 0:0066033x1x26 � x3 � 0;

6:66173269x26 C 172:39878x5
� 56:596669x4 � 191:20592x6 � 10000;
1:08702x6 C 0:32175x4 � 0:03762x26
� x5 � �56:85075;

0:006198x7x4x3 C 2462:3121x2
� 25:125634x2x4 � x3x4 � 0;

161:18996x3x4 C 5000:0x2x4
� 489510:0x2 � x3x4x7 � 0;
0:33x7 � x5 C 44:333333 � 0;

0:022556x5 � 0:007595x7 � 1;

0:00061x3 � 0:0005x1 � 1;

0:819672x1 � x3 C 0:819672 � 0;

24500:0x2 � 250:0x2x4 � x3x4 � 0;

1020:4082x4x2 C 1:2244898x3x4
� 100000x2 � 0;

6:25x1x6 C 6:25x1 � 7:625x3 � 100000;

1:22x3 � x6x1 � x1 C 1 � 0;

1500 � x1 � 2000;
1 � x2 � 120;

3000 � x3 � 3500;
85 � x4 � 93;
90 � x5 � 95;
3 � x6 � 12;

145 � x7 � 162:

The maximum profit is $1772.77 per day, and the op-
timal variable values are x�1 = 1698.18, x�2 = 53.66, x�3
= 3031.30, x�4 = 90.11, x�5 = 95.00, x�6 = 10.50, x�7 =
153.53. In this example, variable bound tightening is
performed using the optimization-based approach. An
update of all the variable bounds therefore involves the
solution of 14 convex NLPs. The computational cost is
significant and may not always be justified by the cor-
responding decrease in number of iterations. Two ex-
treme tightening strategies were used to illustrate this
trade-off: an update of all variable bounds at the on-

set of the algorithm only (‘Single Up’), or an update
of all bounds at each iteration of the ˛BB algorithm
(‘One Up/Iter’). An intermediate strategy might involve
bound updates for those variables that affect the under-
estimators most significantly or bound updates at only
a few levels of the branch and bound tree. The results
of runs performed on an HP9000/730 are summarized
in the table below. tU denotes the percentage of CPU
time devoted to the construction of the convex under-
estimating problem.

Although the approach relying most heavily on
variable bound updates results in tighter underestima-
tors, and hence a smaller number of iterations, the time
requirements for each iteration are significantly larger
than when no bounds updates are performed. Thus, the
overall CPU requirements often increase when all vari-
able bounds are updated at each iteration.

Meth
Single up One Up/Iter

Iter. CPU tU Iter. CPU tU
sec. (%) sec. (%)

I.1 74 37:5 0:5 31 41:6 0:0
I.2a 61 30:6 1:6 25 37:2 0:2
I.2b 61 29:2 1:0 25 35:4 0:1
I.3 69 32:8 1:9 25 31:5 0:2
I.4 61 31:6 1:4 25 33:1 0:2
I.5 61 32:8 12:3 25 36:7 1:7
I.6 59 32:9 1:4 25 32:8 0:5
II.1a 56 24:9 0:3 30 36:5 0:3
II.1b 38 13:6 1:7 17 19:9 0:5
II.2 62 32:7 0:6 25 34:5 0:3
II.3 54 21:8 16:7 23 30:4 5:0

Alkylation process design results

In order to determine the best technique for the
construction of convex underestimators, the percent-
age of computational effort dedicated to this purpose,
tU , is tracked. As can be seen in the above table, the
generation of the convex lower bounding does not con-
sume a large share of the computational cost, regard-
less of the method. It is, however, significantly larger
for Methods I.5 and II.3 as they require the solution of
a polynomial and a semidefinite programming problem
respectively. tU decreases when bound updates are per-
formed at each iteration as a large amount of time is
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spent solving the bound updates problems. In this ex-
ample, the scaled Gershgorin approach with di = (xUi �
xLi ) (Method II.1b) gives the best results both in terms
of number of iterations and CPU time.

Conclusions

The ˛BB algorithm is guaranteed to identify the global
optimum solution of problems belonging to the broad
class of twice continuously differentiable NLPs. It is
a branch and bound approach based on a rigorous con-
vex relaxation strategy, which involves the decomposi-
tion of the functions into a sum of terms with special
mathematical structure and the construction of differ-
ent convex underestimators for each class of term. In
particular, the treatment of general nonconvex terms
requires the analysis of their Hessian matrix through
interval arithmetic. Efficient branching and variable
bound update strategies can be used to enhance the per-
formance of the algorithm.
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Alternative set theory has been created and, together
with his colleagues at Charles University, developed
by P. Vopěnka since the 1970s. In agreement with
Husserl’s phenomenology, he based his theory on the
natural world and the human view thereof.

The most important for any set theory is the way
it treats infinity. A different approach to infinity forms
the key difference between AST and classical set the-
ories based on the Cantor set theory (CST). Cantor’s
approach led to the creation of a rigid, abstract world
with an enormous scale of infinite cardinalities while
Vopěnka’s infinity, based on the notion of horizon, is
more natural and acceptable.

Another source of inspiration were nonstandard
models of Peano arithmetics with infinitely large (non-
standard) numbers. The way to build them in AST is
easy and natural.

The basic references are [9,10,11].

Classes, Sets and Semisets

AST, as well as CST, builds on notions of ‘set’, ‘class’,
‘element of a set’ and, in addition, introduces the notion
of ‘semiset’. A class is the most general notion used for
any collection of distinct objects. Sets are such classes
that are so clearly defined and clean-cut that their ele-
ments could be, if necessary, included in a list. Semisets
are classes which are not sets, because their borders are
vague, however, they are parts of sets. For example, all
living people in the world form a class—some are be-
ing born, some are dying, we do not know where all
of them are. The citizens of Prague, registered at the
given moment in the register, form a set. However, all
the beautiful women in Prague or brave men in Prague
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form a semiset, since it is not clear who belongs to this
collection and who not.

In the real world, we may find many other semisets.
Almost each property defines a semiset of objects, e. g.,
people who are big, happy or sick. Many properties are
naturally connected with a vagueness. Also, what we
see and perceive can be vague and limited by a hori-
zon. Objects described in this way may form a semiset,
e. g. flowers I can see in the blooming meadow, all my
friends, sounds I can hear.

Infinity

This interpretation differs from the normal one and
corresponds more to the etymological origin of the
word infinity. We will call finite those classes any part
of which is surveyable and forms a set. Any finite class
is a set.

Fin(X) , (8Y)(Y � X H) Set(Y)):

On the other side, infinite classes include ungrasped
parts, semisets. This phenomenon may occur also when
watching large sets in the case when it is not possible to
capture them clearly as a whole.

There are two different forms of infinity tradition-
ally called denumerability and continuum.

A countable (denumerable) class, in a way, repre-
sents a road towards the horizon. Its beginning is clear
and definite but it comes less and less clear and its end
loses in a vagueness. A countable class is defined as an
infinite class with a linear ordering such that each ini-
tial part (segment) is finite. For instance, a railway track
with cross-ties leading straight to the horizon, days of
our life we are to live or ever smaller and smaller reflec-
tions in two mirrors facing each other. The most im-
portant example is a class of natural numbers that will
be discussed later.

The phenomenon of denumerability corresponds
to a road towards the horizon. Though we get to the
last point we can see, we can still go a bit further, the
road will not disappear immediately. People have al-
ways tried to look a bit behind the horizon, to gain un-
derstanding and to overcome it in their thinking. This
experience is expressed here by the important axiom of
prolongation (see Axiom A6).

The other type of infinity, continuum, is based on
the following experience. If we watch an object, how-

ever, are not able to distinguish individual elements
which form it since they lie beyond the horizon of
our perception. For example, the class of all geometric
points in the plane, class of all atoms forming a table or
grains of sand which together form a heap.

In fact the classical infinite mathematics, when ap-
plied to the real world, then solely to the above two
types of infinity.

The intention of AST is to built on the natural world
and human intuition. There is no reason for other types
of infinity which are enforced in CST by its assumption
that natural numbers form a set and that a power set is
a set. That is why there are only two infinite cardinali-
ties in AST: denumerability and continuum (see Axiom
A8).

All examples from mathematical and real worlds
are intentionally set out here together. They serve the
purpose of inspiration to see where the idea of infin-
ity comes from, they should be kept in mind when one
deals with infinity.

The mathematical world is an ideal one, it is a per-
fect world of objective truths abstracted from all that
is external. There is only little space for subjectivity of
perception in it. That is why not all semisets from the
real world may be interpreted directly.

The axiomatic system bellow describes that part of
the AST which can be expressed in a strictly formal way.
This basis provides space for extending AST by semisets
which are parts of big, however, classically finite sets
and thus make a lot of applications possible.

Axiomatic System of AST

[3] The language of AST uses symbols 2 and =, sym-
bols X, Y , Z, . . . for class variables and symbols x, y, z,
. . . for set variables. Sets are created by iteration from
the empty set by Axiom A3. Classes are defined by for-
mulas by Axiom A2. Every set is a class. Formally, a set
is a class that is a member of another class:

Set(X), (9Y)(X 2 Y):

AST is a theory with the following axioms:
� A1 (extensionality). (X = Y), (8Z)(Z 2 X), (Z
2 Y);

� A2 (existence of classes). If  is a formula, then

(9Y)(8x)(x 2 Y ,  (x; X1; : : : ; Xn));
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� A3 (existence of sets).

Set(;)^ (8x; y)Set(x [ fyg):

A set-formula is a formula in which only set vari-
ables and constants occur.
� A4 (induction). If  is a set-formula, then ( (;) ^

(8x, y)( (x))  (x [ {y}))) (8x)  (x).
� A5 (regularity). If  is a set-formula, then (9x) (x)
) (9x)( (x) ^ (8y 2 x): (y)).

As usual, the class of natural numbers N is defined in
the von Neumann way

N D
�
x :

(8y 2 x)(y � x)
^(8y; z 2 x)(y 2 z _ y D z _ z 2 y)

	

The class of finite natural numbers (FN) consists of
the numbers represented by a finite set. They are acces-
sible, easy to overlook and lie before the horizon:

FN D fx 2 N : Fin(x)g

FN forms a countable class in the sense described
above. The class FN correspond to classical natural
numbers and the class N to their nonstandard model.
Both N and FN satisfy the axioms of Peano arithmetic.

Two classes X, Y are equivalent if there is a one-one
mapping of X onto Y , i. e. X 	 Y .
� A6 (prolongation). Every countable function can

be prolonged to a function which is a set, i. e.
(8F)((Fnc(F) ^ (F 	 FN)) ) (9f )(Fnc(f ) ^ F �
f )).

An easy corollary is that a countable class is a semiset.
Also FN is a semiset and it can be prolonged to a set
which is an element of N and which is greater than all
finite natural numbers and so it represents an infinitely
large natural number. Consequently, the class N is not
countable.

The universal class V includes all sets created by it-
eration from the empty set.
� A7 (choice). The universal class V can be well or-

dered.
� A8 (two cardinalities). Every two infinite classes that

are not countable are equivalent.
Thus, any infinite class is either equivalent to FN or N.

Using ultrapowers, the relative consistency of AST
can be proved.

Rational and Real Numbers

Rational numbers Q are constructed in the usual way
fromN as the quotient field of the classN [ {�n; n2N}
BecauseN includes infinitely large numbers,Q includes
infinitely small numbers.

Finite rational numbers FQ are similarly con-
structed from finite natural numbers FN. They include
quantities that are before the horizon with respect to
distance and depth. Surely FQ� Q.

We define that x, y 2 Q are infinitely near by

xḊy, (8n 2 FN)

8̂
<̂
ˆ̂:

jx � yj < 1
n

_(x > n ^ y > n)
_(x < �n ^ y < �n):

This relation is an equivalence. The corresponding par-
tition classes are called monads. For x 2 Q

Mon(x) D fy : yḊxg :

Rational numbers x that are elements of Mon(0), i. e.
(xė0), are infinitely small. All monads are of the same
nature except for the two limit ones. These consists of
infinitely large positive and negative numbers. The class
of bounded rational numbers is

BQ D fx 2 Q : (9n)((n 2 FN) ^ (jxj < n))g

Now, it is easy and natural to construct real numbers:

R D fMon(x) : x 2 BQg :

Real numbers built in this way display the same charac-
teristics as real numbers in CST.

This motivation for expressing real numbers as
monads of rational numbers corresponds rather to et-
ymology than to the traditional interpretation. Ratio-
nal numbers are constructed by reason, perfectly exact;
their existence is purely abstract. On the other hand,
real numbers are more similar to those that are used
in the real world. If we say: one eighth of a cake, we
surely do not expect it to be the ideal eighth, it is rather
a portion which differs from the ideal one by a differ-
ence which is beyond the horizon of our perception.
A similar situation occurs in the case of a pint of milk
or twenty miles.
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Infinitesimal Calculus

[12] Infinitesimal calculus in AST is based on the same
point of view and intuition as that of its founders, I.
Newton and G.W. Leibniz. It is so because infinitely
small or infinitesimal quantities are naturally available
in AST. For example, the limit of a function and the
continuity in a 2 Q are defined, respectively, by:

lim
x!a

f (x) D b

, (8x)((xḊa ^ x ¤ a)) f (x)Ḋb));

(8x)(xḊa) f (x)Ḋ f (a)):

This topic is discussed in detail in [9]. As a method,
these definitions were successfully used for teaching
students.

Topology

Classes described by arbitrary formulas can be com-
plex and difficult to capture. The easiest are sets, also
classes described by using set-formulas, so-called set-
definable classes (Sd-classes) can be described well.
Semisets which are defined by a positive property (big,
blue or happy and also distinguishable or to be a fi-
nite natural number) can be described as a count-
able union of Sd-classes, the so-called �-classes. On the
other hand, classes whose definition is based on nega-
tion (not big, not happy, indistinguishable), are the so-
called -classes—countable intersections of Sd-classes.
A class which is at the same time  and � is an Sd-class.
Using combinations of  and � , a set hierarchy can be
described.

One of the most important tasks of mathematics is
to handle the notion of the continuum. AST is based
on the assumption that this phenomenon is caused by
that of the indiscernibility of elements of the observed
class. That is why, for the study of topology, the basic
notion is a certain relation of indiscernibility (�). Two
elements are indiscernible if, when observed, available
criteria that might distinguish them fail. It is a negative
feature, therefore it must be a -class. The relation of
indiscernibility is naturally reflexive and symmetric. In
pure mathematics, it is in addition transitive (because
FN is closed under addition), thus it is an equivalence.
This relation must also be compact, i. e. for each infinite
set u � dom(�) there are x, y 2 u such that x 6D y ^ x

� y. The corresponding topological space is a compact
metric space.

The relation of infinite nearness in rational numbers
represents a special case of equivalence of indiscernibil-
ity.

Monads and figures correspond to phenomena of
points and shapes, respectively:

Mon(x) D fy : y � xg ;

Fig(X) D fy : (9x 2 X)(y � x)g :

Basic Definitions

Two classes X, Y are separable, Sep(X, Y) ,
(9Z)(Sd(Z) ^ Fig(X)� Z ^ Fig(Y) \ Z = ;).

A closure X of a class X is defined as X D

fx : : Sep(fxg; X)g.
A class X is closed if X D X.
A set u is connected if (8w)(; 6D = u) Fig(w) \

(u�w) 6D ;).
It is quite easy to prove basic topological theorems.

Also proofs of some classical theorems are much sim-
pler here. For instance the Sierpinski theorem: If v is
a connected set then Fig(v) cannot be expressed as
a countable union of disjoint closed sets.

The fundamental indiscernibility $c is defined as
follows. If c is a set then x $c y if for any set-formula
 with the constants from c and for any x, it is (x),
 (y).

This relation has a special position. For any relation
of indiscernibility� there is a set c such that${c} is finer
than� i. e.${c{ ��.

Motion

Unlike classical mathematics, the motion is captured in
AST by any relation of indiscernibility �.

Everybody knows the way films work. Pictures com-
ing one after another are almost indiscernible from
each other, however, when shown in a rapid sequence,
the pictures start to move. The continuous motion may
be viewed like this, as a sequence of indiscernible stages
in certain time intervals.

A function d is amotion of a point in the time ı 2 N
if dom(f ) = ı ^ (8˛ < ı)(d(˛)� d(˛+1)).

If ı 2 FN then the point does not move, it can move
only in an infinitely big time interval.
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A sequence {d(˛): ˛ 2 dom(d)} is a sequence of
states. The number ı = dom(d) is the number of mo-
ments and rng(d) is the trace of a moving point.

A trace is a connected set and for each nonempty
connected set u there is a motion of a point such that u
is the trace of d.

A motion of a set is defined similarly, only
the last condition is different: (8˛ < ı)(Fig(d(˛))
= Fig(d(˛+1))).

The following theorem is proved in [10,11]: Each
motion of a set may be divided into motions of points.
This does not involve only the mechanical motion, but
any motion describing a continuous change. Thus, for
example, even the growth of a tree from a planted seed
may be divided into movements of individual points
while all of their initial stages are already contained in
the seed. In addition, it is possible to describe condi-
tions under which such a change is still continuous.

Utility Theory

[7] The utility theory is one of nice examples of ap-
plying AST. Its aim is to find a valuation of elements
of a class S. There is a preference relation  on linear
combinations of elements of S with finite rational coef-
ficients, i. e. on the class

8<
:

nX
iD1

˛i ui :
(n 2 FN)

^(8i)((i � n)(ui 2 S) ^ (˛i 2 FQ))
^
Pn

iD1 ˛i D 1

9=
; :

An interpretation of a combination is a game in which
every ui can be won with the probability ˛i. The prefer-
ence relation  declares which of the two games is pre-
ferred.

The valuation is a function F from the class S to Q
for which

nX
iD1

˛i ui 

mX
jD1

ˇ ju j ,

nX
iD1

˛i F(ui) >
mX
jD1

ˇ jF(uj):

It is not necessary to require the so-called Archi-
medes property on the relation of preference thanks
to the possibility of using infinitely small and infinitely
large rational numbers. It is possible to capture finer
and more complex relations than in classic mathemat-
ics, e. g. the fact that the value of one element is incom-

parably higher than that of another element or it is pos-
sible to compare infinitely small differences of values.

For each class S with a preference relation a valu-
ation may be found. Such a valuation is not uniquely
defined, it is possible to construct it so that rng(F)�N.

Conclusion

The aim of this short survey is to demonstrate the basic
ideas of AST. Yet, there are other areas of mathemat-
ics which were studied in it, for instance measurabil-
ity [8], ultrafilters [6], endomorphic universes [5] and
automorphisms of natural numbers [2], representabil-
ity [1] metamathematics [3] and models of AST [4].
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To ensure a certain level of reliability for the solution of
an extremum problem under uncertainty it has become
a spread approach to introduce probabilistic (chance)
cost and/or constraints into the model. The stability
analysis of chance constraint problems is rather com-
plicated due to complicated properties of the probabil-
ity function vt(x), defined as

vt(x) D P fs : f (x; s) � tg : (1)

Here f (x, s) is a real valued function, defined onRr ×Rr,
t is a fixed level of reliability, s is a random vector and P
denotes probability. The function vt(x) is never convex,
only in some cases (e. g., f (x, s) linear in s and distribu-
tion of the random parameter s normal), it is quasicon-
vex. Note that for a fixed x function vt(x), as a function
of t, is the distribution function of the random variable
f (x, s).

The ‘inverse’, the quantile function w˛(x), to the
probability function vt(x) is defined in such a way that
the probability level ˛, 0 < ˛ < 1, is fixed earlier, and the
purpose is to minimize the reliability level t:

w˛(x) D min
t
ft : P fs : f (x; s) � tg � ˛g : (2)

Varied examples of extremum problems with proba-
bility and quantile functions are presented in [7] and

in [8]. Some of these models have such a complicated
structure, see [8, Chap. 1.8], about correction of a satel-
lite orbit, that we are forced to look for a solution x from
a certain class of strategies, that means, the solution x
itself depends on the random parameter s, x = x(s).

This class of probability functions was introduced to
stochastic programming by E. Raik, and lower semicon-
tinuity and continuity properties of vt(x) and w˛(x) in
Lebesgue Lp-spaces, 1 � p < 1, were studied in [12].
Simultaneously, in [4] problems with various classes
of solutions x(s) (measurable, continuous, linear, etc)
were considered. Since the paper [4] solutions x(s) are
called decision rules, and we will follow also this termi-
nology.

Differently from [4], here we will consider approx-
imation of a decision rule x(s) by sequences of vectors
{xn}, xn = (x1n, . . . , xnn), n = 1, 2, . . . , with increasing
dimension in order to maximize the value of the prob-
ability functional v(x) under certain set C of decision
rules. It will be assumed that the set C will be bounded
in the space L1(S,˙ , �) = L1(�) of integrable functions
x(s), x 2 L1(�):

max
x2C

vt(x) D max
x2C

P fs : f (x(s); s) � tg : (3)

Here S is the support of random variable s with distri-
bution (probability measure) �(�) and ˙ denotes the
sigma-algebra of Borel measurable sets from Rr .

Due to technical reasons we are forced to assume
that the random parameter s has bounded support S �
Rr , diam S <1, and its distribution � is atomless,

� fs : js � s0j D constg D 0; 8s0 2 Rr : (4)

Since the problem (3) is formulated in the function
space L1(�) of �-integrable functions, the first step in
its solution is the approximation step where we will re-
place the initial problem (3) by a sequence of finite-
dimensional optimization problems with increasing di-
mension. Second step, solution methods were consid-
ered in a series of papers of the author (see, e. g., [9]),
where the gradient projection method was suggested
together with simultaneous Parzen–Rosenblatt kernel-
type smooth approximation of the discontinuous inte-
grand from (1).

There are several ways to divide the support S of the
probability measure � into smaller parts in discretiza-
tion, e. g., taking disjoint subsets Sj, j = 1, . . . , k, of S
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from the initial sigma-algebra ˙ as in [11], or using in
the partition of S only convex sets from˙ , as in [5].

We will divide the support S into smaller parts by
using only sets Ain, i = 1, . . . , n, n 2 N = {1, 2, . . . }, with
�-measure zero of their boundary, i. e., � (intAin) = �
(Ain) = � (clAin), where int A and cl A denote topo-
logical interior and closure of a set A, respectively. Such
division is equivalent toweak convergence of a sequence
of discrete measures {(mn, sn)} to the initial probability
measure � , see, e. g. [14]:

nX
iD1

h(sin)min !

Z
S
h(s) �(ds); n 2 N; (5)

for any continuous on S function h(s), h 2 C(S).
The usage of the weak convergence of discrete mea-

sures in stochastic programming has its disadvantages
and advantages. An example in [13] shows that, in gen-
eral, the stability of a probability function with respect
to weak convergence cannot be expected without addi-
tional smoothness assumptions on the measure � . This
is one of the reasons, why we should use only continu-
ousmeasures with the property (4). An advantage of the
usage of the weak convergence is that it allows us to ap-
ply in the approximation process instead of conditional
means [11] the more simple, grid point approximation
scheme.

Since the functional vt(x) is not convex, we are not
able to exploit in the stability analysis of discrete ap-
proximation of the problem (3) the more convenient,
weak topology, but only the strong (norm) topology. As
the first step we will approximate vt(x) so, that the dis-
crete analogue of continuous convergence of a sequence
of approximate functionals will be guaranteed.

Schemes of stability analysis (e. g., finite-dimen-
sional approximations) of extremum problems in Ba-
nach spaces require from the sequence of solutions of
‘approximate’ problems certain kind of compactness.
Assuming that the constraint set C is compact in L1(�),
we, as the second step, will approximate the set C by
a sequence of finite-dimensional sets {Cn} with increas-
ing dimension so, that the sequence of solutions of ap-
proximate problems is compact in a certain (discrete
convergence) sense in L1(�). Then the approximation
scheme for the discrete approximation of (3) will follow
formed schemes of approximation of extremum prob-
lems in Banach spaces, see e. g. [2,3,15].

Redefine the functional vt(x) by using the Heaviside
zero-one function �:

vt(x) D
Z
S
�(t � f (x(s); s)) �(ds); (6)

where

�(t � f (x(s); s)) D

(
1 if f (x(s); s) � t;
0 if f (x(s); s) > t:

Since the integrand �(�) itself, as a zero-one func-
tion, is discontinuous, we will assume that the function
f (x, s) is continuous both in (x, s) and satisfies following
growth and ‘platform’ conditions:

j f (x; s)j � a(s)C ˛ jxj ;

a 2 L1(�); ˛ > 0;
(7)

� fs : f (x; s) D constg D 0;

8(x; s) 2 Rr � S:
(8)

The continuity assumption is technical in order to sim-
plify the description of the approximation scheme be-
low. The growth condition (7) is essential: without it
the superposition operator f (x) = f (x(s), s) will not map
an element from L1 to L1 (is even not defined). Condi-
tion (8) means that the function f (x, s) should not have
horizontal platforms with positive measure.

Constraint set C is assumed to be a set of integrable
functions x(s), x 2 L1(�), with properties

Z
S
jx(s)j �(ds) � M <1; 8x 2 C (9)

for someM > 0 (C is bounded in L1(�));
Z
D
jx(s)j � K�(D); 8x 2 C; D 2 ˙ (10)

for some K > 0;

(x(s) � x(t); s � t) � 0 for a.a. s; t 2 S (11)

(functions x 2 C are monotone almost everywhere and
a.a. denotes abbreviation of ‘almost all’).

Conditions (9), (10) guarantee that the set C is
weakly compact (i. e., compact in the (L1, L1)-topol-
ogy, see, e. g., [6, Chap. 9.1.2]). Condition (11) guar-
antees now, following [1, Lemma 3], that the set C is
strongly compact in L1(�). Then, following [11], we
can conclude that assumptions (7)–(11) together with
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atomless assumption (4) for the measure � guarantee
the existence of a solution of problem (3) in the Banach
space L1(�) of �-integrable functions (the cost func-
tional vt(x) is continuous in x and the constraint set C
is compact in L1(�)).

Since approximate problems will be defined in Rrn,
we should define a system of connection operators P =
{pn} between spaces L1(�) and Rrn, n 2N. In Lp-spaces,
1 � p � 1, systems of connection operators should
be defined in a piecewise integral form (as conditional
means):

(pnx)in D �(Ain)�1
Z
Ain

x(s) �(ds); (12)

where i = 1, . . . , n, and sets Ain, i = 1, . . . , n, n 2 N,
that define connection operators (12), satisfy following
conditions A1)–A7):
A1) �(Ain)> 0;
A2) Ain \ Ajn = ;, i 6D j;
A3) [n

iD1 Ain = S;
A4)

Pn
iD1 |min � �(Ain)|! 0, n 2 N;

A5) maxi diamAin! 0, n 2 N;
A6) sin 2 Ain;
A7) �(intAin) = �(Ain) = �(clAin).

Remark 1 Weak convergence (5) is equivalent to the
partition {An} of S, An = {A1n, . . . , Ann}, with properties
A1)–A7), see [14].

Remark 2 Collection of sets {Ain} with the property
A7) constitutes an algebra ˙0 � ˙ , and if S = [0, 1]
and if � is Lebesgue measure on [0, 1], then integrabil-
ity relative to � |˙0 means Riemann integrability.

Define now the discrete convergence for the space L1(�)
of �-integrable functions.

Definition 3 A sequence of vectors {xn}, xn 2 Rrn, P-
converges (or converges discretely) to an integrable func-
tion x(s), if

nX
iD1

jxin � (pnx)injmin ! 0; n 2 N: (13)

Remark 4 Note that in the space L1(�) of �-integrable
functions we are also able to use the projection meth-
ods approach, defining convergence of {xn} to x(s) as
follows:
Z
S

ˇ̌
ˇ̌
ˇx(s) �

nX
iD1

xin�Ain (s)

ˇ̌
ˇ̌
ˇ �(ds)! 0; n 2 N:

Remark 5 Projection methods approach does not work
in the space L1(�) of essentially bounded measurable
functions with vraisup-norm topology (L1(�) is a non-
separable Banach space and the space C(S) of continu-
ous functions is not dense there).

We need the space L1(�), which is the topological dual
to the space L1(�) of �-integrable functions, in order
to define also the discrete analogue of the weak conver-
gence in L1(�).

Definition 6 A Sequence of vectors {xn}, xn 2 Rrn, n 2
N, wP-converges (or converges weakly discretely) to an
integrable function x(s), x 2 L1(�), if

nX
iD1

(zin ; xin)min !

Z
S
(z(s); x(s)) �(ds);

n 2 N;

(14)

for any sequence {zn} of vectors, zn 2 Rrn, n 2 N, and
function z(s), z 2 L1(�), such that

max
1�i�n

jzin � (pnz)inj ! 0; n 2 N: (15)

In order to formulate the discretized problem and to
simplify the presentation, we will assume that in parti-
tion {An} of S, where An = { A1n, . . . , Ann}, with proper-
ties A1)–A7), in property A4) we will identify min and
�(Ain), i. e. min = �(Ain) (e. g. squares with decreasing
diagonal in R2).

Discretize now the probability functional vt(x):

vtn(xn) D
nX

iD1

�(t � f (xin; sin))min; (16)

and formulate the discretized problem:

max
xn2Cn

vtn(xn)

D max
xn2Cn

nX
iD1

�(t � f (xin; sin))min;
(17)

where constraint set Cn will satisfy discrete analogues of
conditions (9)–(11), covered to the set C:

nX
iD1

jxinjmin � M 8xn 2 Cn ; (18)

X
i2In

jxinjmin � K
X
i2In

min;

8xn 2 Cn ; 8In � f1; : : : ; ng; (19)
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rX
kD1

(xk
ikn � xk

jk n)(ik � jk) � 0; 8ik; jk : ik < jk ;

(20)

and such that 0� ik, jk � n, 8n 2 N.

Definition 7 A sequence of sets {Cn}, Cn � Rrn, n 2N,
converges to the set C � L1(�) in the discrete Mosco
sense if
1) for any subsequence {xn}, n 2 N0 � N, such that xn
2 Cn, from convergence wP-lim xn = x, n 2 N, it
follows that x 2 C;

2) for any x 2 C there exists a sequence {xn}, xn 2 Cn,
which P-converges to x, P-lim xn = x, n 2 N.

Remark 8 If in the above definition also ‘for any’ part
1) is defined forP-convergence of vectors, then it is said
that sequence of sets {Cn} converges to the set C in the
discrete Painlevé–Kuratowski sense.

Denote optimal values and optimal solutions of prob-
lems (3) and (17) by v�, x� and v�n , x�n , respectively.

Let function f (x, s) be continuous in both variables
(x, s) and satisfy growth and platform conditions (7)
and (8). Then from convergence P-lim xn = x, n 2 N,
for any monotone a.e. function x(s), it follows conver-
gence vn(xn)! v(x), n 2 N.

Verification of this statement is quite lengthy and
technically complicated: we should first approximate
discontinuous function �(t � f (x, s)) by continuous
function �c(t � f (x, s)) in the following way:

�c(t � f (x; s))

D

8̂
<̂
ˆ̂:

1 if f (x; s) � t;
1 � ı�1[ f (x; s)� t] if t < f (x; s) � t C ı;
0 if f (x; s) > t C ı

for some (small) ı, and then a discontinuous solution
x(s), x 2 L1(�), by continuous function xc(s) (in L1-
norm topology).

Let constraint sets C and Cn satisfy conditions (9)–
(11) and (18)–(20), respectively. Let discrete measures
{(mn, sn)} converge weakly to the measure � . Then the
sequence of sets {Cn} converges to the set C in the dis-
crete Painlevé–Kuratowski sense.

Verification of this statement relies on the two fol-
lowing convergences:

1) sequence of sets, determined by inequalities (18),
(19) converges, assuming weak convergence of dis-
crete measures (5), in discrete Mosco sense to the
weakly compact in L1(�) set, determined by in-
equalities (9), (10);

2) adding to both, approximate and initial sets of ad-
missible solutions monotonicity conditions (20) and
(11), respectively, we can guarantee the discrete
convergence of sequence {Cn} to C in Painlevé–
Kuratowski sense.

Now we can formulate the discrete approximation con-
ditions for a stochastic programming problem with
probability cost function in the class of integrable de-
cision rules.

Let function f (x, s) be continuous in both variables
(x, s) and satisfy growth and platform conditions (7)
and (8), constraint set C satisfy conditions (9)–(11) and
let discrete measures {(mn, sn)} converge weakly to the
atomless measure � . Then v�n ! v�, n 2 N, and se-
quence of solutions {x�n } of approximate problems (17)
has a subsequence, which converges discretely to a so-
lution of the initial problem (3).

Remark 9 The usage of the space L1(�) of integrable
functions is essential. In reflexive Lp-spaces, 1 < p <1,
serious difficulties arise with application of the strong
(norm) compactness criterion for a maximizing se-
quence.

As a rule, problems with probability cost function are
maximized, whereas stochastic programs with quantile
cost are minimized, see, e. g., [8,10].

Consider at last discrete approximation of the quan-
tile minimization problem (2):

min
x2C

w˛(x)

D min
x2C

min
t
fP( f (x(s); s) � t) � ˛g; (21)

It was verified in [10] that under certain (quasi)-
convexity-concavity assumptions the quantile mini-
mization problem (21) is equivalent to the following
Nash game:

max
x2C

vt(x) D J�1 ; (22)

min
t
(vt(x) � ˛)2 D J�2 : (23)
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Discretizing vt(x) as in (16) and w˛(x) as

w˛n(xn) D min
t

( nX
iD1

�(t � f (xin; sin))min � ˛

)
;

we can, analogously to the probability functional ap-
proximation, approximate the quantile minimization
problem (21) too. In other words, to replace the Nash
game (22), (23) with the following finite-dimensional
game:

max
xn2Cn

vtn(xn) D J�1n ; (24)

min
t
(vtn(xn) � ˛)2 D J�2n : (25)

Verification of convergences J�1n ! J�1 and J�2n !
J�2 , n 2 N, is a little bit more labor-consuming com-
pared with approximate maximization of probability
functional vt(x), since we should guarantee also con-
vergence of the sequence of optimal quantiles {t�n} of
minimization problems (25).
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Approximation of multivariate probability integrals is
a hard problem in general. However, if the domain

of the probability integral is multidimensional interval,
then the problem reduces to the approximation ofmul-
tivariate probability distribution function values.

Lower andUpper Bounds

Let �| = (�1, . . . , �n) be a random vector with given
multivariate probability distribution. Introducing the
events

A1 D f�1 < x1g; : : : ;An D f�n < xng;

where x1, . . . , xn are arbitrary real values the multivari-
ate probability distribution function of the random vec-
tor � can be expressed in the following way:

F(x1; : : : ; xn)

D P(�1 < x1; : : : ; �n < xn)
D P(A1 \ � � � \ An)

D 1 � P(A1 [ � � � [ An)

D 1 � S1 C S2 � � � � C (�1)nS
n
;

where

Ai D f�i � xig; i D 1; : : : ; n;

and

Sk D
X

1�i1<���<ik�n

P(Ai1 \ � � � \ Aik ); k D 1; : : : ; n :

First one shows that S1, S2 and so the individual prob-
abilities P(Ai), i = 1, . . . , n, P(Ai \ Aj), i = 1, . . . , n �1,
j = i + 1, . . . , n, involved in them can be expressed by Fi

(xi), i = 1, . . . , n, and Fij(xi, xj), i = 1, . . . , n� 1, j = i + 1,
. . . , n, the one- and two-dimensional marginal probabil-
ity distribution functions of the random vector �. One
has

S1 D
nX

iD1

P(Ai ) D
nX

iD1

P(�i � xi)

D n �
nX

iD1

P(�i < xi) D n �
nX

iD1

Fi(xi)
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and

S2 D
X

1�i< j�n

P(Ai \ Aj)

D
X

1�i< j�n

P(�i � xi ; � j � x j)

D
X

1�i< j�n

f1 � P(�i < xi)

�P(� j < x j)C P(�i < xi ; � j < x j)
�

D
n(n � 1)

2
� (n � 1)

nX
iD1

Fi(xi)

C
X

1�i< j�n

Fi j(xi ; x j):

So if one can calculate the one- and two-dimensional
marginal probability distribution functions of the ran-
dom vector � then one can bound the multivariate
probability distribution function by the very simple
bounds given by C.E. Bonferroni [1]:

1 � S1 � F(x1; : : : ; xn) � 1 � S1 C S2;

or by the sharp bounds, called Boole–Bonferroni bounds
discovered independently by many authors (see [11] for
a summary):

1 � S1 C
2
n
S2

� F(x1; : : : ; xn)

� 1 �
2

k� C 1
S1 C

2
k�(k� C 1)

S2;

where

k� D 1C

$
2S2
S1

%
:

When applying the above bounds usually the upper
bound proves to be sharper. However one can improve
the lower bound by the application of the bound discov-
ered independently by D. Hunter [5] and K.J. Worsley
[18]. This bound is an upper bound for P(A1[� � �[An)
by the use of S1 and the individual probabilities P(Ai \

Aj), 1� i < j� n. It is constructed in the following way.
Construct a nonoriented complete graph with n nodes
and assign to node i the event Ai (or the probability
P(Ai )) and to arc (i, j) the weight P(Ai \ Aj). Let T� be

a maximum weight spanning tree in this nonoriented
complete graph then one has

P(A1 [ � � � [ An) � S1 �
X

(i; j)2T�
P(Ai \ Aj);

which is called the Hunter–Worsley upper bound. This
results the following lower bound on the multivariate
probability distribution function:

1 � S1 C
X

(i; j)2T�
P(Ai \ Aj) � F(x1; : : : ; xn):

The individual probabilities P(Ai \ Aj), 1 � i < j � n,
can be stored when one calculates the value of S2 and
the maximum weight spanning tree can be found by
several fast algorithms, for example by Kruskal’s algo-
rithm, see [9]. Now one has three lower and two up-
per bounds on the multivariate probability distribution
function and all of them are computable if the one-
and two-dimensional marginal probability distribution
functions are known. Let us denote these bounds in the
following way:

L1 D 1 � S1;

L2 D 1 � S1 C
2
n
S2;

L3 D 1 � S1 C
X

(i; j)2T�
P(Ai \ Aj);

U1 D 1 � S1 C S2;

U2 D 1 �
2

k� C 1
S1 C

2
k�(k� C 1)

S2:

As one has L1 � L2 � L3 and U2 � U1, the best lower
bound is L3 and the best upper bound is U2.

Monte-Carlo Simulation Algorithm

One can take the differences between the multivariate
probability distribution function and its lower and up-
per bounds introduced before:

F(x1; : : : ; xn) � L1 D S2 � S3 C � � � C (�1)nSn ;

F(x1; : : : ; xn) � L2

D

�
1 �

2
n

�
S2 � S3 C � � � C (�1)nSn ;
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F(x1; : : : ; xn) � L3

D �
X

(i; j)2T�
P(Ai \ Aj)C S2 � S3C � � � C (�1)nSn ;

F(x1; : : : ; xn) � U1 D S3 C � � � C (�1)nSn ;

F(x1; : : : ; xn) � U2

D

�
2

k� C 1
� 1

�
S1 C

�
1 �

2
k�(k� C 1)

�
S2

� S3 C � � � C (�1)nSn :

A Monte-Carlo simulation procedure of the multivari-
ate probability distribution function value based on the
estimation of the differences above will be given. First
however the so called crude Monte-Carlo simulation
procedure will be described. Let the random vectors (� s1,
. . . , � sn), s = 1, . . . , S, be distributed according to the mul-
tivariate probability distribution function to be approx-
imated. One must check the inequalities � s1 < x1, . . . , � sn
< xn for all sample elements, s = 1, . . . , S. For this pur-
pose let be defined the random values

� s0 D

(
1 if � s1 < x1; : : : ; � sn < xn;
0 otherwise;

s D 1; : : : ; S:

These random values are identically distributed and
stochastically independent. All of them take on the
value 1 with probability equal to the approximated mul-
tivariate probability distribution function value. The
sum of them has binomial probability distribution with
parameters S and F(x1, . . . , xn). So the random variable

�0 D
1
S
(�10 C � � � C �

S
0 )

has expected value P D F(x1; : : : ; xn) and variance
P(1�P)

S . This is why �0 can be regarded as an estimate,
the so called crude Monte-Carlo estimate of F(x1, . . . ,
xn). If one introduces �s as the number of those � s1 < x1,
. . . , � sn < xn inequalities which are not fulfilled, i. e. the
number of those � s1 � x1, . . . , � sn � xn inequalities which
are fulfilled, or the number of those As

1; : : : ;As
n events

which occur, s = 1, . . . , S, the � s0 random values can be
expressed as

� s0 D

(
1 if � s D 0;
0 otherwise

s D 1; : : : ; S;

and on the other hand for the binomial moments of �s

one has

E

" 
� s

k

!#
D Sk ; k D 0; : : : ; n; s D 1; : : : ; S:

The simplest proof of these equalities was given by L.
Takács [17] and it was reproduced by A. Prékopa in
[11]. If the random numbers �s, s = 1, . . . , S, are also
introduced as the number of those Ai \ Aj D f�

s
i �

xi ; � sj � x jg, (i, j) 2 T�, events which occur then for the
expected value of �s one has

E(�s) D
X

(i; j)2T�
P(Ai \ Aj); s D 1; : : : ; S:

Using these equalities one easily can see that the fol-
lowing random values have expected values equal to the
differences between the multivariate probability distri-
bution function and its bounds:

� sL1 D

 
� s

2

!
�

 
� s

3

!
C � � � C (�1)n

 
� s

n

!
;

� sL2 D

�
1 �

2
n

� 
� s

2

!
�

 
� s

3

!
C � � �

C (�1)n
 
� s

n

!
;

� sL3 D ��
s C

 
� s

2

!
�

 
� s

3

!
C � � �

C (�1)n
 
� s

n

!
;

� sU1
D �

 
� s

3

!
C � � � C (�1)n

 
� s

n

!
;

� sU2
D

�
2

k� C 1
� 1

� 
� s

1

!

C

�
1 �

2
k�(k� C 1)

� 
� s

2

!

�

 
� s

3

!
C � � � C (�1)n

 
� s

n

!
:

By the binomial theorem one has
 
� s

0

!
�

 
� s

1

!
C � � � C (�1)n

 
� s

n

!
D 0
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and the above random values can be expressed as

� sL1 D

(
� s � 1 if � s � 2;
0 otherwise;

� sL2 D

(
1
n (�

s � 1)(n � � s) if � s � 2;
0 otherwise;

� sL3 D

(
� s � 1 � �s if � s � 2;
0 otherwise;

� sU1
D

(
1
2 (�

s � 1)(2 � � s) if � s � 3;
0 otherwise;

� sU2
D

(
(k��� s )(� s�k��1)

k�(k�C1) if � s � 1;
0 otherwise:

Taking the new random values �L1 , �L2 , �L3 , �U1 , �U2

and the estimate �0 introduced before:

�0 D
1
S
(�10 C � � � C �

S
0 );

�L1 D L1 C
1
S
(�1L1 C � � � C �

S
L1);

�L2 D L2 C
1
S
(�1L2 C � � � C �

S
L2);

�L3 D L3 C
1
S
(�1L3 C � � � C �

S
L3);

�U1 D U1 C
1
S
(�1U1
C � � � C �SU1

);

�U2 D U2 C
1
S
(�1U2
C � � � C �SU2

);

one gets altogether six estimates of the multivariate
probability distribution function. These estimates obvi-
ously are not stochastically independent so one can mix
them to get a new estimate with minimal possible vari-
ance. This technique is called regression method and it
means forming the estimate

� D w0�0 C wL1�L1 C wL2�L2

C wL3�L3 C wU1�U1 C wU2�U2

with w0 + wL1 + wL2 + wL3 + wU1 + wU2 = 1, where w0,
wL1 , wL2 , wL3 , wU1 , wU2 are chosen so that the variance
of � be minimized. Let0
BBBBBBB@

c00 c0L1 c0L2 c0L3 c0U1 c0U2

cL10 cL1L1 cL1L2 cL1L3 cL1U1 cL1U2

cL20 cL2L1 cL2L2 cL2L3 cL2U1 cL2U2

cL30 cL3L1 cL3L2 cL3L3 cL3U1 cL3U2

cU10 cU1L1 cU1L2 cU1L3 cU1U1 cU1U2

cU20 cU2L1 cU2L2 cU2L3 cU2U1 cU2U2

1
CCCCCCCA

be the covariance matrix C of the six estimates, where
C is a symmetrical matrix. Then the variance of � is w|

Cw, where w = (w0, wL1 , wL2 , wL3 , wU1 , wU2 )|. The La-
grangian problem:

(
min w>Cw
s.t. w0 C wL1 C wL2 C wL3 C wU1 C wU2 D 1

can easily be solved. In fact, the gradient of w| Cw
equals 2 w| C, hence one has to solve the system of lin-
ear equations

c00w0 C c0L1wL1 C c0L2wL2 C c0L3wL3

C c0U1wU1 C c0U2wU2 � � D 0;

cL10w0 C cL1L1wL1 C cL1L2wL2 C cL1L3wL3

C cL1U1wU1 C cL1U2wU2 � � D 0;

cL20w0 C cL2L1wL1 C cL2L2wL2 C cL2L3wL3

C cL2U1wU1 C cL2U2wU2 � � D 0;

cL30w0 C cL3L1wL1 C cL3L2wL2 C cL3L3wL3

C cL3U1wU1 C cL3U2wU2 � � D 0;

cU10w0 C cU1L1wL1 C cU1L2wL2 C cU1L3wL3

C cU1U1wU1 C cU1U2wU2 � � D 0;

cU20w0 C cU2L1wL1 C cU2L2wL2 C cU2L3wL3

C cU2U1wU1 C cU2U2wU2 � � D 0;

w0 C wL1 C wL2 C wL3 C wU1 C wU2 � � D 1:

for the unknowns w0, wL1 , wL2 , wL3 , wU1 , wU2 , �. As
the covariance matrix C is not known in advance, so
one must estimate its elements from the random sam-
ple during the Monte-Carlo simulation procedure. This
means that one must sum up not only the individ-
ual random values � s0, � sL1 , �

s
L2 , �

s
L3 , �

s
U1
, � sU2

but their
crossproducts, too. The crossproducts are many times
trivial, so their calculation is not necessary. For exam-
ple � s0 equals � s0� s0, further when � s0 equals nonzero (�s

= 0) then all other random values � sL1 , �
s
L2 , �

s
L3 , �

s
U1
, � sU2

are equal zero, so the corresponding crossproducts are
all zero. One should also notice that the random val-
ues � sL1 , �

s
L2 , �

s
L3 are always nonnegative while the ran-

dom values � sU1
, � sU2

are always nonpositive. So the cor-
responding crossproducts cannot be positive even they
are many times negative yielding real variance reduc-
tion in the final estimate.
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One- and Two-Dimensional Marginal Distribution
Functions

For the applicability of the Monte-Carlo simulation al-
gorithm of the previous section one has to show that the
one- and two-dimensional marginal distribution func-
tion values can be evaluated efficiently. As in the cases
of the multivariate normal distribution, (one parame-
ter) gamma and Dirichlet distributions the marginal
distributions are also normal, gamma and Dirichlet and
the one-dimensional Dirichlet distribution is the beta
distribution, the one-dimensional marginal probability
distribution functions can be evaluated by known al-
gorithms. For example in the IMSL subroutine library
[6] the subroutines MDNOR, MDGAM and MDBETA
provide these calculations. In the case of the normal
distribution the two-dimensional marginal probability
distribution function also can be evaluated by a stan-
dard IMSL subroutine called MDBNOR. Some details
of the calculations provided by these subroutines can
be found in [8].

In the case of the multivariate gamma distribution,
introduced by Prékopa and T. Szántai in [12], only the
evaluation of the joint probability distribution function
of the random variables

�1 D �1 C �2;

�2 D �1 C �3

is necessary. Here the random variables �1, �2 and �3
are independent and gamma distributed with parame-
ters #1, #2 and #3. Taking the joint characteristic func-
tion of �1 and �2 and applying the inversion formula
one easily gets the joint probability density function of
them. This is in the form of series expansion involv-
ing Laguerre polynomials. Using some integral formu-
lae of these orthogonal polynomials one can integrate
the joint probability density function to get the final for-
mula for the evaluation of the joint probability distribu-
tion function in the following form

F(z1; z2) D F#1C#2(z1)F#1C#3(z2)

C

1X
kD1

C(#1; #2; #3; k)

� f#1C#2C1(z1)L
#1C#2
k�1 (z1)

� f#1C#3C1(z2)L#1C#3k�1 (z2);

where

C(#1; #2; #3; k) D
(k � 1)!

k
� (#1 C k)
� (#1)

�
� (#1 C #2 C 1)
� (#1 C #2 C k)

� (#1 C #3 C 1)
� (#1 C #3 C k)

and f # (z) and F#(z) are the one-dimensional gamma
probability density, respectively distribution, functions.
For the calculation of the Laguerre polynomial the fol-
lowing recursion formula can be used

(k C 1)L#kC1(z)

D (2k C # C 1 � z)L#k (z) � (k C #)L#k�1(z);

k D 0; 1; : : : ;

where L#0 (z) = 1 and L#1 (z) = # + 1� z. The conver-
gence of the series for calculation of F(z1, z2) has been
established by Szántai in [14].

In the case of Dirichlet distribution the two-
dimensional marginal probability density function of
the components � i, � j is given by

f (z1; z2) D
� (a)� (b)� (c)
� (aC bC c)

�za�11 zb�12 (1�z1�z2)c�1;

if z1 C z2 � 1; z1 � 0; z2 � 0;

where a = # i, b = # j and c =
PnC1

kD1#k� # i� # j. One
obtains by direct calculation for the two-dimensional
probability distribution function

F(z1; z2) D
� (aC b C c)
� (a)� (b)� (c)

�

Z z1

0

Z z2

0
ta�11 tb�12 (1 � t1 � t2)c�1 dt2 dt1

D
za1
a
zb2
b
C

1X
mD1

(1 � c) � � � (m � c)

�

"
za1
a

zbCm
2

(bC m)m!

C

mX
kD0

zaCk
1

(aC k)k!
zbCm�k
2

(bC m � k)(m � k)!

#
:

The above formula is valid only if z1 + z2 � 1, z1 � 0, z2
� 0; otherwise the statement a) of the following more
general theorem can be applied.

Theorem 1 Let z�1 � � � � � z�n be the ordered sequence
of z1, . . . , zn, the arguments of the n-dimensional Dirich-
let distribution function.
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a) If z�1+ z�2 > 1 then one has

F(z1; : : : ; zn) D 1 � nC
nX

iD1

Fi (zi):

b) If z�1+ z�2+ z�3 > 1 then one has

F(z1; : : : ; zn)

D
n � 1
2
�(n�2)

nX
iD1

Fi (zi)C
X

1�i< j�n

Fi j(zi ; z j):

Here Fi(zi) and Fij(zi, zj) are the one- and two-
dimensional marginal probability distribution functions.

This theorem was formulated and proved by Szántai in
[13]. It also can be found in [11].

Examples

For illustrating the lower and upper bounds on themul-
tivariate normal probability distribution function value
and the efficiency of the variance reduction technique
described before one can regard the following exam-
ples.

Example 2

n D 10;
x1 D 1:7; x2 D 0:8; x3 D 5:1;

x4 D 3:2; x5 D 2:4; x6 D 1:8;

x7 D 2:7; x8 D 1:5; x9 D 1:2;

x10 D 2:6;

ri j D 0:0; i D 2; : : : ; 10; j D 1; : : : ; i � 1;

except r21 = � 0.6, r43 = 0.9, r65 = 0.4, r87 = 0.2, r10, 9 =
� 0.8.

Number of trials: 10000.

Lower bound by S1, S2 0:524736
Lower bound by Hunter 0:563719
Upper bound by S1, S2 0:588646
Estimated value 0:582743
Standard deviation 0:000608
Time in seconds (PC-586) 0:77
Efficiency 65:73

Example 3

n D 15;

x1 D 2:9; x2 D 2:9; x3 D 2:9;
x4 D 2:9; x5 D 2:9; x6 D 2:9;

x7 D 2:9; x8 D 2:9; x9 D 2:9;

x10 D 2:9; x11 D 2:9; x12 D 2:7

x13 D 1:6; x14 D 1:2; x15 D 2:1;

ri j D 0:2; i D 2; : : : ; 10; j D 1; : : : ; i � 1;

ri j D 0:0; i D 11; : : : ; 15; j D 1; : : : ; i � 1

except r13, 12 = 0.3, r15, 14 = � 0.95.
Number of trials = 10000.

Lower bound by S1, S2 0:790073
Lower bound by Hunter 0:798730
Upper bound by S1, S2 0:801745
Estimated value 0:801304
Standard deviation 0:000193
Time in seconds (PC-586) 1:38
Efficiency 417:84

Both of the above examples are taken from [2, Exam.
4; 6] and they are according to standard multivariate
normal probability distributions, i. e. all components
of the normally distributed random vector have ex-
pected value zero and variance one. The efficiency of
the Monte-Carlo simulation algorithm was calculated
according to the crude Monte-Carlo algorithm in the
usual way, i. e. it equals to the fraction (t0�2

0)/(t1�2
1)

where t0, t1 are the calculation times and �2
0, �2

1 are the
variances of the crude and the compared simulation al-
gorithms.

Remarks

Inmany applications one may need finding the gradient
of multivariate distribution functions, too. As one has
the general formula

@F(z1; : : : ; zn)
@zi

D F(z1; : : : ; zi�1; ziC1; : : : ; zn jzi) � fi(zi);

where F(z1, . . . , zi�1, zi+ 1, . . . , zn | zi) is the conditional
probability distribution function of the random vari-
ables �1, . . . , � i� 1, � i+ 1, . . . , �n, given that � i = zi, and
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f i(z) is the probability density function of the random
variable � i, finding the gradient of a multivariate prob-
ability distribution function can be reduced to finding
conditional distribution functions. In the cases of mul-
tivariate normal and Dirichlet distributions the condi-
tional distributions are also multivariate normal and
Dirichlet, and in the case of multivariate gamma dis-
tribution they are different and more complicated as it
was obtained by Prékopa and Szántai [12].

In the case of multivariate normal probability dis-
tribution I. Deák [2] proposed another simulation tech-
nique which proved to be as efficient as the method de-
scribed here. The main advantage of Deák’s method is
that it easily can be generalized for calculation the prob-
ability content of more general sets in the multidimen-
sional space, like convex polyhedrons, hyperellipsoids,
circular cones, etc. Its main drawback is that it works
only for the multivariate normal probability distribu-
tion. The methods of Szántai and Deák have been com-
bined by H. Gassmann to compute the probability of an
n-dimensional rectangle in the case of multivariate nor-
mal distribution (see [3]). Also in the case of multivari-
ate normal probability distribution A. Genz proposed
the transformation of the original integration region
to the unit hypercube [0, 1]n and then the application
of a crude Monte-Carlo method or some lattice rules
for the numerical integration of the resulting multidi-
mensional integral. A comparison of methods for the
computation of multivariate normal probabilities can
be found in [4]. When the three-dimensional marginal
probability distribution function values are also calcu-
lated by numerical integration there exist some new,
sharper bounds. See [16] for these bounds and their ef-
fect on the efficiency of the Monte-Carlo simulation al-
gorithm.

Approximation of multivariate probability integrals
has a central role in probabilistic constrained stochas-
tic programming when the probabilistic constraints
are joint. The computer code PCSP (probabilistic con-
strained stochastic programming) originally was devel-
oped for handling the multivariate normal probability
distributions in this framework (see [15]). A new ver-
sion of the code now can handle multivariate gamma
and Dirichlet distributions as well. The calculation pro-
cedures of this paper also has been applied by J. Mayer
in his code solving this type of stochastic programming
problems by reduced gradient algorithm (see [10]).

These codes have been integrated by P. Kall and Mayer
into a more advanced computer system for modeling in
stochastic linear programming (see [7]).

See also

� Approximation of Extremum Problems with
Probability Functionals

� Discretely Distributed Stochastic Programs: Descent
Directions and Efficient Points

� Extremum Problems with Probability Functions:
Kernel Type Solution Methods

� General Moment Optimization Problems
� Logconcave Measures, Logconvexity
� Logconcavity of Discrete Distributions
� L-shaped Method for Two-stage Stochastic

Programs with Recourse
�Multistage Stochastic Programming: Barycentric

Approximation
� Preprocessing in Stochastic Programming
� Probabilistic Constrained Linear Programming:

Duality Theory
� Probabilistic Constrained Problems: Convexity

Theory
� Simple Recourse Problem: Dual Method
� Simple Recourse Problem: Primal Method
� Stabilization of Cutting Plane Algorithms for

Stochastic Linear Programming Problems
� Static Stochastic Programming Models
� Static Stochastic Programming Models: Conditional

Expectations
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Stochastic Linear Programming: Decomposition

and Cutting Planes
� Stochastic Linear Programs with Recourse and

Arbitrary Multivariate Distributions
� Stochastic Network Problems: Massively Parallel

Solution
� Stochastic Programming: Minimax Approach
� Stochastic Programming Models: Random Objective
� Stochastic Programming: Nonanticipativity and

Lagrange Multipliers
� Stochastic Programming with Simple Integer

Recourse
� Stochastic Programs with Recourse: Upper Bounds
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� Stochastic Quasigradient Methods in Minimax
Problems

� Stochastic Vehicle Routing Problems
� Two-stage Stochastic Programming: Quasigradient

Method
� Two-stage Stochastic Programs with Recourse
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Introduction

We consider a general conic optimization problem un-
der parameter uncertainty is as follows:

max c0x

s.t.
nP

jD1
Ã j x j � B̃ 2 K

x 2 X ;

(1)

where the cone K is a regular cone, i. e., a closed,
convex and pointed cone. The space of the data
(Ã1; : : : ; Ãn ; B̃) depends on the cone, K. The most
common cone is the cone of non-negative orthant, <m

C

in which the conic constraint in Problem (1) becomes
a set of m linear constraints. Two important cones,
which have many applications, include the second-
order cone,

LmC1 D f(y0; y) : kyk2 � y0; y 2 <mg
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and the cone of symmetric positive semidefinite ma-
trix,

Sm D fY : Y is a symmetric postive

semidefinite matrixg :

The interested reader may refer to the references of
Ben-Tal and Nemirovski [3] and Pardalos and Wolko-
wicz [13].

In the uncertain conic optimization problem (1),
the data (Ã1; : : : ; Ãn ; B̃) are uncertain. It is therefore
conceivable that as the data take values different than
the nominal ones, the conic constraint may be violated,
and the optimal solution found using the nominal data
may no longer be feasible at the conic constraint. To
control the feasibility level of the conic constraint, one
may consider a conic chance constrained model as fol-
lows:

max c0x

s.t. P(
nP
jD1

Ã j x j � B̃ 2 K) � 1 � �

x 2 X ;

(2)

in which the level of constraint violation is con-
trolled probabilistically. Unfortunately, the chance con-
strained conic optimization problem (2) destroys the
convexity of the problem and hence its computational
tractability.

Formulation

In modern robust optimization, we represent data un-
certainty using uncertainty sets instead of probability
distributions. We allow the data (Ã1; : : : ; Ãn ; B̃) to
vary within an uncertainty set U without having to vio-
late the conic constraint. We call the following problem
the robust counterpart of Problem (1)

max c0x

s.t.
nP

jD1
A j x j � B 2 K

8(A1; : : : ; An ; B) 2 U

x 2 X :

(3)

The robust counterpart is introduced by Ben-Tal and
Nemirovski [1] and independently by El-Ghoui et al.
[9]. An immediate consequence of the robust counter-

part is the preservation of the convexity. Unfortunately,
due to the possibly infinite number of scenarios corre-
sponding to the extreme points of the uncertainty set
U, optimizing the robust counterpart for general conic
optimization problems is intractable.

It is noteworthy that in robust optimization, the el-
lipsoidal uncertainty set is a popular choice because of
the motivation from the laws of large numbers and nor-
mal distributions. Under the assumption of normality,
we could design an ellipsoidal set that is large enough
so that the robust model will remain feasible with high
probability. However, it turns out this approach can
grossly over estimate the size of ellipsoid necessary to
ensure the same level of robustness. To illustrate this is-
sue, consider a linear constraint ã0x � b such that ã is
a multivariate normal with mean ā and covariance

P
.

It is natural to design an ellipsoidal uncertainty set of
the formU D fa : (a� ā)˙�1(a� ā) � ˛2g so that the
problem remains feasible if ã 2 U, which has a proba-
bility of �2n(˛2). However, when solving the equivalent
robust counterpart, ā0x � ˛

p
x0˙x � b, the robust

solution has a feasibility probability of at least ˚(˛),
where ˚(˛) is the standard normal function. Clearly,
the value �2n(˛2) would be a gross over estimate of the
robustness of the uncertain linear constraint compared
to the value ˚(˛). The reason for this disparity is the
fact that the uncertainty set chosen does not take into
account the structure of cone.

We focus on the robust optimization framework
proposed by Bertsimas and Sim [5], which offers a sim-
ple and tractable approximation of uncertain conic
optimization problems. Moreover, under reasonable
probabilistic assumptions on data variation, the frame-
work approximates the conic chance constraint prob-
lem (2) by relating its feasibility probability with the
size of the uncertainty set and the structure of the cone.
Note that more refined approximations of chance con-
strained problem are available for the case of linear
cones, K D <m

C. Interested readers can refer to Ben-
Tal and Nemirovski [2], Bertsimas and Sim [4], Chen,
Sim and Sun [8], Chen and Sim [6], Chen et al.[7], Lin
et al. [10] and Janak et al. [11].

Affine Data Dependency

We first assume that uncertain data (Ã1; : : : ; Ãn ; B̃)
are affinely dependent on some primitive uncertainty
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vector, z̃ 2 <N , as follows

Ãi D Ai (z̃) , A0
i C

NP
jD1

A j
i z̃ j i D 1; : : : ; n

B̃ D B(z̃) , B0 C
NP
jD1

B j z̃ j :

Note that we can always define a bijection map-
ping from a vector space of z̃ to the data space of
(Ã1; : : : ; Ãn ; B̃). Therefore, under the affine data de-
pendency, it is always possible to map all the data un-
certainties affecting the conic constraint to the primi-
tive uncertainty vector, z̃. It is more convenient to de-
fine the following linear function mapping with respect
to (z0; z),

Y((z0; z)) D
NX
jD0

Y j z j ;

in which the variables x are affinely mapped to the vari-
ables (Y0; : : : ; YN) as follows

Y j D

nX
iD1

A j
i xi � B j 8 j D 0; : : : ; N :

For instance, under such transformation, Problem (2)
is equivalent to

max c0x
s.t. Y j D

Pn
iD1 A

j
i xi � B j 8 j D 0; : : : ; N

P(Y((1; z̃)) 2 K) � 1 � �
x 2 X ;

(4)

and Problem (3) is the same as

max c0x
s.t. Y j D

Pn
iD1 A

j
i xi � B j 8 j D 0; : : : ;N

Y((1; z̃)) 2 K 8z 2 V

x 2 X ;

(5)

in which the uncertainty set U is mapped accordingly
to the uncertainty set V.

Example: Quadratic Chance Constraint Consider
the following quadratic chance constraint,

P(kA(z̃)xk22 C b(z̃)0x C c(z̃) � 0) � 1 � � ;

where x 2 <n is the decision variable and (A(z̃); b(z̃);
c(z̃)) 2 <m�n � <n � < are the input data, which are
affinely dependent on its primitive uncertainties as fol-
lows:

A(z̃) , A0 C
PN

jD1 A
j z̃ j

b(z̃) , b0 C
PN

jD1 b
j z̃ j

c(z̃) , c0 C
PN

jD1 c j z̃ j :

Note that a quadratic constraint

kA(z̃)xk22 C b(z̃)0x C c(z̃) � 0

is second-order cone representable as follows
2
64

1�b(z̃)0x�c(z̃)
2

A(z̃)x
1Cb(z̃)0xCc(z̃)

2

3
75 2 LmC2 :

Therefore, under the affine relation,

y0 D

2
64

A0x
1Cb00xCc0

2
1�b00x�c0

2

3
75 ;

and

y j D

2
64

A jx
b j 0xCc j

2
�b j 0x�c j

2

3
75 8 j D 1; : : : ; N

we transform the quadratic chance constraint problem
into the following conic chance constraint

P

0
@y0 C

nX
jD1

y j z̃ j 2 LmC2

1
A :

Hence, we treat the quadratic constraint as a special
case of second-order cone constraint.

Tractable Approximations
of a Conic Chance Constrained Problem

We focus on deriving a tractable approximation on the
following conic chance constraint:

P(Y((1; z̃)) 2 K) � 1 � � : (6)

For notational convenience, we define

X , (Y0; : : : ; YN) :
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For a given a reference vector (or matrix), V 2 int(K),
where int(K) denotes the interior of the cone K, we can
define the function

f (X; (z0; z)) , maxf� : Y((z0; z))� �V 2 Kg ;

which has the following properties:

Proposition 1 For any V 2 int(K), the function
f (X; (z0; z)) satisfies the properties:
(a) f (X; (z0; z)) is bounded and concave in X

and (z0; z).
(b) f (X; k(z0; z)) D k f (X; (z0; z)); 8k � 0.
(c) f (X; (z0; z)) � s if and only if Y((z0; z)) � s

V 2 K.
(d) f (X; (z0; z)) > s if and only if Y((z0; z)) � s

V 2 int(K).

Hence, the conic chance constraint of (6) is equivalent
to the following chance constraint

P( f (X; (1; z̃)) � 0) � 1 � � : (7)

In order to build a tractable framework that approxi-
mates the conic chance constraint problem, we first an-
alyze the robust counterpart approach to uncertainty.
Given an ellipsoidal uncertainty set

E(�) D fz : kzk2 � �g ;

the robust counterpart

f (X; (1; z)) � 0 8z 2 E(�) ; (8)

despite its convexity, is generally intractable. Instead we
consider the following robust counterpart:

f (X; (1; 0))C
NX
jD1

f f (X; (0; e j))v j

C f (X; (0; �e j))wjg � 0;

8(v; w) 2 V(�)

(9)

where e j 2 <N is a unit vector with one at the jth entry
and the uncertainty set

V(�) D
˚
(v; w) 2 <N

C �<
N
C j kv C wk2 � �

�
: (10)

Proposition 2 The robust counterpart (9) is tractable
relaxation of the robust counterpart, (8).

Theorem 1
(a) The constraint (9) is equivalent to

f (X; (1; 0)) � �ksk2 ; (11)

where

s j D maxf� f (X; (0; e j)); � f (X; (0; �e j))g;

8 j D 1; : : : ; N :

(b) Eq. (11) can be written as:

f (X; (1; 0)) � �y
f (X; (0; e j))C t j � 0; 8 j 2 N
f (X; (0; �e j))C t j � 0; 8 j 2 N
ktk2 � y
for some y 2 <; t 2 <N :

(12)

From Proposition 1 and noting that

Y((1; 0)) D Y0

and

Y((0; ˙e j)) D ˙Y j ;

we can also represent the formulation (12) explicitly in
conic constraints as follows:

Y0 � �yV 2 K

Y j C t jV 2 K; 8 j 2 N
�Y j C t jV 2 K; 8 j 2 N
ktk2 � y
for some y 2 <; t 2 <N ;

(13)

for a given reference vector, V in the interior of the
cone, K. The formulation (12) becomes a cartesian
product of 2N C 1 cones of the nominal problem plus
an additional second-order cone, which is a computa-
tionally tractable cone. Hence, in theory the formula-
tion (12) is not much harder to solve compared with its
nominal problem.

One natural question is whether the simple approx-
imation is overly conservative with respect to Prob-
lem (8). While there is lack of theoretical evidence on
the closeness of the approximation, the framework does
lead to an approximation of the conic chance constraint
problem. An important component of the analysis is
the relation among different norms, which we will sub-
sequently present.
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Recall that a norm satisfies kAk � 0; kkAk D jkj �
kAk; kACBk � kAkCkBk, and kAk D 0, implies that
A D 0. For a given regular cone, K, and its interior, V,
we define the following cone induced norm

kYkK;V , minfy; yV�Y 2 K; YC yV 2 Kg : (14)

Proposition 3

maxf� f (X; (z0; z)); � f (X; �(z0; z))g
D kY((z0; z))kK;V :

We consider the common cones and the respective
norms.
(a) Second-order cone:

Let e1 2 int(LnC1) be the reference vector, we have
for any vector (y0; y) 2 <nC1

k(y0; y)kLnC1; enC1

D minf� : kyk2 � � � y0; kyk2 � � C y0g

D kyk2 C jy0j

(b) Cone of symmetric positive definite matrix:
Let the identity matrix I be the reference matrix,
then for any m � m symmetric matrix, Y ,

kYkSm
C
; I D minfy; yI � Y 2 SmC; Y � yI 2 SmCg
D kYk2 :

Proposition 4 Suppose X is feasible in Problem (12)
then

P( f (X; (1; z̃)) < 0)

� P

0
@








NX
jD1

Y j z̃ j








K;V

> �

sX
j2N

kY jk
2
K;V

1
A :

To obtain explicit bounds, we focus on primitive un-
certainties, z̃ that are normally and independently dis-
tributed with mean zero and variance one. For a sum of
random scalers, we have

P

0
@
ˇ̌
ˇ̌
ˇ̌

NX
jD1

y j z̃ j

ˇ̌
ˇ̌
ˇ̌ > �

vuut
NX
jD1

y2j

1
A � 1 � 2˚(�) :

To derive a similar large deviation result for the sum of
random vectors used in Proposition 4, we consider the

following generalization:

P

0
@








NX
jD1

Y j z̃ j








K;V

> �

vuut
NX
jD1

kY jk
2
K;V

1
A � �(�) ;

where �(�) is a non-trivial probability bound that de-
pends on the choice of cone, K, and possibly the di-
mension and the reference vector, V.

An important component of the analysis is the re-
lation among different norms. We denote by h ; i
the inner product on a vector space, <m , or the space
of m by m symmetric matrices. The inner product in-
duces a norm kXk ,

p
hX; Xi. For a vector space,

the natural inner product is the Euclidian inner prod-
uct, hx; yi D x 0y, and the induced norm is the Eu-
clidian norm kxk2. For the space of symmetric matri-
ces, the natural inner product is the trace product or
hX; Yi D trace(XY) and the corresponding induced
norm is the Frobenius norm, kYkF .

We analyze the relation of the inner product normp
hX; Xi with the norm kXkK;V for the conic opti-

mization problems we consider. Since kXkK;V and the
inner product norm kXk are valid norms in a finite di-
mensional space, there exist finite ˛1; ˛2 > 0 such that

1
˛1
kXkK;V � kXk � ˛2kXkK;V ;

for all X in the relevant space. Hence, we define the pa-
rameter

˛K;V D

�
max
kXkD1

kXkK;V
�

„ ƒ‚ …
D˛1

�
max

kXkK; VD1
kXk

�

„ ƒ‚ …
D˛2

(15)

whichmeasures the disparity between the norm k�kK;V
and the inner product norm k � k.

Parameter ˛K;V of Common Cones
(a) Second-order cone:

Let enC1 be the reference vector, then

k(y; ynC1)kLnC1; v D kyk2 C jynC1j :

Therefore,

1
p
2
k(y; ynC1)kLnC1; enC1

� k(y; ynC1)k2

� k(y; ynC1)kLnC1; enC1
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ble 1
Probability bounds of P(f (X; (1; z̃)) < 0) for z̃ �N(0; I).

Type Probability bound of infeasibility

LmC1
q

e
2˝ exp(�˝

2

4 )

Sm
C

q
e
m˝ exp(�˝

2

2m )

and hence,

˛LnC1; v D
p
2 :

(b) Cone of symmetric positive definite matrix:
Let I be the reference matrix, then for any m � m
symmetric matrix Y

kYkSm
C
; I D kYk2 :

Let � j; j D 1; : : : ;m be the eigenvalues of the ma-

trix Y . Since kYkF D
p
trace(Y2) D

qP
j �

2
j and

kYk2 D max j j� jj, we have

kYk2 � kAkF �
p
mkYk2 :

Hence,

˛Sm
C
; I D

p
m :

Theorem 2 Given an inner product norm k � k and un-
der the assumption that z̃ j are normally and indepen-
dently distributed with mean zero and variance one, i. e.,
z̃ � N(0; I), then

P

0
@








NX
jD1

Y j z̃ j








K;V

> �

sX
j2N

kY jk
2
K;V ;

1
A

�

p
e�

˛K;V
exp

 
�

�2

2˛2K;V

!
; (16)

for all � > ˛K;V .

In order to have the smallest budget of uncertainty, �, it
is reasonable to select V that minimizes ˛K;V , i. e.,

˛K D min
V2int(K)

˛K;V :

For general conic optimization, we have shown that
the probability bound depends on the the choice of

V 2 int(K). A cone, K � <n is homogenous if for any
pair of points A; B 2 int(K) there exists an invertible
linear map M : <n ! <n such that M(A) D B and
M(K) D K. It turns out that for homogenous cones,
of which semidefinite and second-order cones are spe-
cial cases, the probability bound does not depend on
V 2 int(K).

Theorem3 Suppose the coneK is homogenous. For any
V 2 int(K), the probability bound of conic infeasibility
satisfies

P(Y((1; z)) … K) �
p
e�
˛K

exp
�
�
�2

2˛2K

�
:

For the second-order cone, ˛LnC1 D
p
2 and for the sym-

metric positive semidefinite cone, ˛Sm
C

D
p
m:

While different V lead to the same probability bounds,
some choices of V may lead to better objectives. The
following theorem suggests an iterative improvement
strategy.

Theorem 4 For any V 2 int(K), if X; t and y > 0 are
feasible in (13), then they are also feasible in the same
problem in which V is replaced by

W D Y0/(�y) :

While we focus on the primitive uncertainty vector z̃
being normally distributed, using the large deviation
bounds of Nemirovski [12], we can also apply the same
framework to other distributions. The interested reader
may refer to Bertsimas and Sim [5].
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Biographical Sketch

Archimedes (287–212 B.C.) was a famous Greek math-
ematician, engineer and philosopher. Born in the city
of Syracuse on the Island of Sicily to an astronomer
and mathematician named Phidias, Archimedes spent
the first years of his life in his home city and went to
Alexandria in Egypt to study mathematics. He soon
became friends with Konon of Samos and Eratos-
thenes. After spending a considerable amount of time

in Alexandria, he returned to Syracuse, where he re-
mained for the rest of his life conducting mathemati-
cal research. He had a good relationships with king Hi-
eron of Syracuse and his son Gelon. We know that he
assisted king Hieron numerous times either with his
inventions during the Second Punic War or by solv-
ing problems like the well-known case (the one that
Archimedes jumped out of his bathtub crying out eu-
reka) with the crown of king Hieron during peacetime.

In this article we will concentrate on the work of
Archimedes, which is closely related to what we call
today industrial engineering (including the mathemat-
ical theory of optimization, operations research, the-
ory of algorithms, etc.). In particular, we will present
Archimedes’ definition of convex sets, his method of
exhaustion for computing finite integrals, his contribu-
tion to recursive algorithms, and his approach to solv-
ing real-life operations research problems during the
Second Punic War.

Archimedes’ Work

One very important concept for optimization is the
definition of convex sets. The first such definition was
given by Euclid in his books Elements, but Archimedes
elaborated this definition and gave us his definition,
which was used until the first decades of the 20th cen-
tury. In his workOn the sphere and the cylinder he gives
the following definition of the convex arc:

Definition 1 I call convex in one and the same direc-
tions the surfaces for which the straight line joining two
arbitrary points lies on the same side of the surface.

On his workOn the equilibrium of planes he gives a defi-
nition of the convex set using the center-of-gravity con-
cept:

Definition 2 In any figure whose perimeter is convex
the center of gravity must be within the figure.

It is worth mentioning that Archimedes’ definitions of
convex arcs and convex sets were those used until 1913,
when E. Steinitz introduced the modern definitions of
convexity.

Archimedes had invented a geometrical method
called the method of exhaustion (or method of in-
finitesimals) in order to be able to compute areas un-
der convex curves. This was one of the first geometrical
methods devised to compute what we call today definite
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Archimedes and the Foundations of Industrial Engineering,
Figure 1
Illustration of Archimedes’ exhaustion method

integrals. In modern notation Archimedes was able to
compute

Z b

a
[ f (x)� g(x)]dx; (1)

where f (x) is a line segment and g(x) a convex function
(usually parabola). An illustration of this method can
be found in Fig. 1.

Suppose that we want to compute the area over
a curve and below the line segment AB. Archimedes
considered the triangle bABC, whereC is the point below
the midpointM of the line segment AB(MC is the mid-
dle vertical of AB). If we iteratively repeat this process,
we can see that the next two parabolic triangles have an
area that is 1

4 of the initial triangle. Therefore, the area
of the curve was the infinite sum of 1C 1

4 C
1
8 C : : :,

where 1 corresponds to the area of the initial triangle
bABC. In this way Archimedes was able to geometrically
approximate the area of a convex parabolic curve.

According to [7] Archimedes was the first (in
around 220 B.C.) to use a double recursive algorithm
to solve the problem of the sand reckoner (Psammitis).
In this book he tries to come up with of a number that
is much larger than the number of grains of sand in the
world and therefore prove that the number of grains of
sand in the world is not infinite. For this he fixes a num-

ber ˛ and defines the number pk(x) as follows (using
a double recursion scheme):

p0(x) D 1;

pkC1(0) D pk (˛);

pnC1(x C 1) D apkC1(x) :

(2)

Therefore, pk (x) D ˛xk . Then he considers p˛(˛)
for ˛ D 108, which was the largest number known at
that time, and he comes up with the number 101017,
which was the largest number used in mathematics un-
til 1933.

Apart from Archimedes’ exceptional skills in the-
oretical research, he also became famous for his abil-
ity to deal with everyday life problems. Although op-
erations research was developed during World War II,
when mathematicians were looking for ways to make
better decisions in utilizing certain materials subject to
some constraint, some consider Archimedes the father
of operations research as he helped his home city de-
fend itself against the Romans during the Second Punic
War.

Before King Hieron died, he asked Archimedes to
organize the complete defense of Syracuse against Ro-
man general Marcelus. Archimedes is said to have in-
vented many mechanical war machines like the claw of
Archimedes, a new version of catapult, an array of mir-
rors that was able to burn enemy ships, etc.

Archimedes was also responsible for organizing the
defense of Syracuse and the redecoration of Fort Eu-
ryalus [6]. Due to Archimedes’ clever defense plans,
Syracuse managed to survive the Roman siege for
2 years.

Conclusion

Archimedes was a perfect example of a scientist who
managed to combine theoretical research with practical
problem solving. He managed to distinguish between
the two by referring to his mechanical inventions as
parergon. This shows that Archimedes was capable of
performing both basic and applied research, but he re-
garded basic research as more important. In this sense
he can be considered the father of the modern indus-
trial engineer who utilizes theoretical methods to solve
problems that arise in everyday life.
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Introduction

Asset Liability Management (ALM) is an important di-
mension of risk management, where the exposure to

various risks is minimized while maintaining the ap-
propriate combination of asset and liability, in order to
satisfy the goals of the firm or the financial institution
(Kosmidou and Zopounidis [18]).

Up to the 1960’s, liability management was aimless.
In their majority, the banking institutions considered
liabilities as exogenous factors contributing to the limi-
tation of asset management. Indeed, for a long period
the greater part of capital resources originated from
savings deposits and deposits with agreed maturity.

Nevertheless, the financial system has radically
changed. Competition among the banks for obtaining
capital has become intense. Liability management is the
main component of each bank strategy in order to en-
sure the cheapest possible financing. At the same time,
the importance of decisions regarding the amount of
capital adequacy is enforced. Indeed, the adequacy of
the bank as far as equity, contributes to the elimina-
tion of bankruptcy risk, a situation in which the bank
cannot satisfy its debts towards clients who make de-
posits or others who take out loans. Moreover, the cap-
ital adequacy of banks is influenced by the changes
of stock prices in relation to the amount of the cap-
ital stock portfolio. Finally, the existence of a mini-
mum amount of equity is an obligation of commercial
banks to the Central Bank for supervisory reasons. It is
worth mentioning that based on the last published data
(31/12/2001) the Bank of Greece assigns the coefficient
for the Tier 1 capital at 8%, while the corresponding Eu-
ropean average is equal to 6%. This results in the con-
figuration of the capital adequacy of the Greek banking
system at higher levels than the European average rate.
The high capital adequacy index denotes large margins
of profitability amelioration, which reduces the risk of
a systematic crisis.

Asset management in a contemporary bank cannot
be distinct from liability management. The simultane-
ous management of assets and liabilities, in order to
maximize the profits and minimize the risk, demands
the analysis of a series of issues.

Firstly, there is the substantive issue of strategic
planning and expansion. That is, the evaluation of the
total size of deposits that the bank wishes to attract and
the total number of loans that it wishes to provide.

Secondly, there is the issue of determination of the
“best temporal structure” of the asset liability manage-
ment, in order to maximize the profits and to ensure

http://plato.stanford.edu/archives/sum2005/entries/recursive-functions
http://plato.stanford.edu/archives/sum2005/entries/recursive-functions
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the robustness of the bank. Deposits cannot all be liqui-
dated in the same way. From the point of view of assets,
the loans and various placements to securities consti-
tute commitments of the bank’s funds with a different
duration time. The coordination of the temporal struc-
ture of the asset liability management is of major im-
portance in order to avoid the problems of temporary
liquidity reduction, which might be very injurious.

Thirdly, there is the issue of risk management of
assets and liabilities. The main focus is placed on the
assets, where the evaluation of the quality of the loans
portfolio (credit risk) and the securities portfolio (mar-
ket risk) is more easily measurable.

Fourthly, there is the issue of configuration of an
integrated invoice, which refers to the entire range of
bank operations. It refers mainly to the determination
of interest rates for the total of loans and deposits as well
as for the various commissions which the bank charges
for specific mediating operations. It is obvious that in
a bankmarket which operates in a competitive environ-
ment, there is no issue of pricing. This is true even in the
case where all interest rates and commissions are set by
monetary authorities, as was the situation in Greece be-
fore the liberalization of the banking system.

In reality, bank markets have the basic character-
istics of monopolistic competition. Thus, the issue of
planning a system of discrete pricing and product di-
versification is of major importance. The problem of
discrete pricing, as far as the assets are concerned, is
connected to the issue of risk management. It is a com-
mon fact that the banks determine the borrowing inter-
est rate on the basis of the interest rates which increase
in proportion to the risk as they assess it in each case.
The product diversification policy includes all the loan
and deposit products and is based on thorough research
which ensures the best possible knowledge of market
conditions.

Lastly, the management of operating cost and tech-
nology constitutes an important issue. The collabo-
ration of a well-selected and fully skilled personnel,
as well as contemporary computerization systems and
other technological applications, constitutes an impor-
tant element in creating a low-cost bank. This results in
the acquisition of a significant competitive advantage
against other banks, which could finally be expressed
through amore aggressive policy of attracting loans and
deposits with low loan interest rates and high deposit

interest rates. The result of this policy is the increase of
the market stake. However, the ability of a bank to ab-
sorb the input of the best strategic technological inno-
vations depends on the human resources management.

The present research focuses on the study of bank
asset liability management. Many are the reasons that
lead us to study bank asset liability management, as an
application of ALM. Firstly, bank asset/liability man-
agement has always been of concern to bank man-
agers, but in the last years and especially today its im-
portance has grown more and more. The development
of information technology has led to such an increas-
ing public awareness that the bank’s performance, its
politics and its management are closely monitored by
the press and the bank’s competitors, shareholders and
customers and thereby highly affect the bank’s public
standing.

The increasing competition in the national and in-
ternational banking markets, the changeover towards
the monetary union and the new technological innova-
tions herald major changes in the banking environment
and challenge all banks to make timely preparations in
order to enter into the new competitive monetary and
financial environment.

All the above drove banks to seek out greater effi-
ciency in the management of their assets and liabilities.
Thus, the central problem of ALM revolves around the
bank’s balance sheet and the main question that arises
is: What should be the composition of a bank’s assets
and liabilities on average given the corresponding re-
turns and costs, in order to achieve certain goals, such
as maximization of the bank’s gross revenues?

It is well known that finding an appropriate balance
between profitability, risk and liquidity considerations
is one of the main problems in ALM. The optimal bal-
ance between these factors cannot be found without
considering important interactions that exist between
the structure of a bank’s liabilities and capital and the
composition of its assets.

Bank asset/liability management is defined as the si-
multaneous planning of all asset and liability positions
on the bank’s balance sheet under consideration of the
different banking and bank management objectives and
legal, managerial and market constraints. Banks are
looking to maximize profit and minimize risk.

Taking into consideration all the above, the purpose
of this paper is to develop a goal programming system
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into a stochastic environment, focusing, mainly, on the
change of the interest rate risk. This system provides
the possibility to the administrative board and theman-
agers of the bank to proceed to various scenarios related
to their future economic process, aiming mainly to the
management of the risks, emerged from the changes of
the market parameters.

The rest of the paper is organized as follows. The
next section includes a brief overview of bank ALM
techniques. Section “Model” outlines the methodology
used and describes the development of the ALM deci-
sion support system. Finally, the conclusions of the pa-
per as well as future research perspectives are discussed
in the last section.

Background

Looking to the past, we find the first mathematical
models in the field of bank management. Asset and
liability management models can be deterministic or
stochastic (Kosmidou and Zopounidis [17]).

Deterministic models use linear programming, as-
sume particular realizations for random events, and
are computationally tractable for large problems. The
deterministic linear programming model of Chambers
and Charnes [6] is the pioneer in ALM. Chambers and
Charnes were concerned with formulating, exploring
and interpreting the use and construction which may
be derived from a mathematical programming model
which expresses more realistically than past efforts the
actual conditions of current operations. Their model
corresponds to the problem of determining an optimal
portfolio for an individual bank over several time pe-
riods in accordance with requirements laid down by
bank examiners which are interpreted as defining limits
within which the level of risk associated with the return
on the portfolio is an acceptable one.

Cohen and Hammer [9], Robertson [31], Lifson
and Blackman [23], Fielitz and Loeffler [14] have real-
ized successful applications of Chambers and Charnes’
model. Even though these models have differed in their
treatment of disaggregation, uncertainty and dynamic
considerations, they all have in common the fact that
they are specified to optimize a single objective profit
function subject to the relevant linear constraints.

Eatman and Sealey [12] developed a multiobjective
linear programming model for commercial bank bal-

ance sheet management considering profitability and
solvency objectives subject to policy and managerial
constraints.

Giokas and Vassiloglou [15] developed a goal-pro-
gramming model for bank asset and liability manage-
ment. They supported the idea that apart from at-
tempting to maximize revenues, management tries to
minimize risks involved in the allocation of the bank’s
capital, as well as to fulfill other goals of the bank, such
as retaining its market share, increasing the size of its
deposits and loans, etc. Conventional linear program-
ming is unable to deal with this kind of problem, as it
can only handle a single goal in the objective function.
Goal programming is the most widely used approach
that solves large-scale multi-criteria decision making
problems.

Apart from the deterministic models, several
stochastic models have been proposed since the
1970s. These models, including the use of chance-
constrained programming [7,8,29], dynamic program-
ming [13,25,26,32], sequential decision theory [3,35]
and stochastic linear programming under uncer-
tainty [2,10,11,16], presented computational difficul-
ties. The stochastic models, in their majority, originate
from the portfolio selection theory of Markowitz [24]
and they are known as static mean-variance methods.
Pyle [30] and Brodt [4] adaptedMarkowitz’s theory and
presented an efficient dynamic balance sheet manage-
ment plan that considers only the risk of the portfolio
and not other possible uncertainties or maximizes prof-
its for a given amount of risk over a multi-period plan-
ning horizon respectively.

Wolf [35] proposed the sequential decision theo-
retic approach that employs sequential decision anal-
ysis to find an optimal solution through the use of im-
plicit enumeration.

An alternative approach in considering stochastic
models, is the stochastic linear programming with sim-
ple recourse. Kusy and Ziemba [19] employed a multi-
period stochastic linear program with simple recourse
to model the management of assets and liabilities in
banking while maintaining computational feasibility.
Their results indicate that the proposed ALM model
is theoretically and operationally superior to a corre-
sponding deterministic linear programming model and
that the computational effort required for its imple-
mentation is comparable to that of the deterministic
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model. Another application of the multistage stochas-
tic programming is the Russell-Yasuda Kasai model [5],
which aims at maximizing the long term wealth of the
firm while producing high income returns.

Mulvey and Vladimirou [27] used dynamic general-
ized network programs for financial planning problems
under uncertainty and they developed a model in the
framework of multi-scenario generalized network that
captures essential features of various discrete time fi-
nancial decision problems.

Finally, Mulvey and Ziemba [28] present a more de-
tailed overview of various asset and liability modeling
techniques, including models for individuals and finan-
cial institutions such as banks and insurance compa-
nies.

Moreover, over the years, many models have been
developed in the area of financial analysis and fi-
nancial planning techniques. Kvanli [20], Lee and
Lerro [22], Lee and Chesser [21], Baston [1], Sharma et
al. [34], among others have applied goal programming
to investment planning. Giokas and Vassiloglou [15],
Seshadri et al. [33] presented bank models using goal
programming. These studies focus on the areas of bank-
ing and financial institutions and they use data from the
bank financial statements.

Model

Kosmidou and Zopounidis [18] developed an asset lia-
bility management (ALM) methodology into a stochas-
tic environment of interest rates in order to select the
best direction strategies to the banking financial plan-
ning. The ALMmodel was developed through goal pro-
gramming in terms of a one-year time horizon. The
model used balance sheet and income statement infor-
mation for the previous year of the year t to produce
a future course of ALM strategy for the year t C 1. As
far as model variables are concerned, we used variables
familiar to management and facilitated the specification
of the constraints and goals. For example, goals con-
cerning measurements such as liquidity, return and risk
have to be expressed in terms of utilized variables.

More precisely, the asset liability management
model that was developed can be expressed as follows:

min z D
X
P

pk (d�k C dCk ) (1)

subject to constraints:

K˚X0 � X0 � A˚X0 (2)

K˚Y 0 � Y 0 � A˚Y 0 (3)

nX
iD1

Xi D

mX
jD1

Yj 8i D 1; : : : ; n; 8 j D 1; : : : ;m

(4)

X
j2˘Y00

Yj � a
X
i2EX00

Xi D 0 (5)

X
j2˘1

Yj �
X
i2E

wiXi � dCs C d�s D k1 (6)

X
i2Ex

Xi � k2
X
j2˘k

Yj C d�l � dCl D 0 (7)

nX
iD1

RX
i Xi �

mX
jD1

RY
j Yj � dCr C d�r D k3 (8)

X
i2Ep

Xi C d�p � dCp D lp ; 8p (9)

X
j2˘p

Yj C d�p � dCp D lp ; 8p (10)

Xi � 0;Yj � 0; dCk � 0; d�k � 0 ;

for all i D 1; : : : ; n; j D 1; : : : ;m; k 2 P (11)

where

Xi: the element i of asset, 8i D 1; : : : ; n, n is the num-
ber of asset variables

Yj: the element j of liability, 8 j D 1; : : : ;m, m is the
number of liability variables

K˚X0 (K˚Y 0 ): is the low bound of specific asset ac-
counts X0 (liability Y0)

A˚X0 (A˚Y 0 ): is the upper bound of specific asset ac-
counts X0 (liability Y0)

EX00 : specific categories of asset accounts
˘Y 00 : specific categories of liability accounts
˛: the desirable value of specific asset and liability data
˘1: the liability set, which includes the equity
E: the set of assets
wi: the degree of riskness of the asset data
k1: the solvency ratio, as it is defined from the Euro-

pean Central Bank.
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k2: the liquidity ratio, as it is defined from the bank pol-
icy

E�: the set of asset data, which includes the loans
˘� : the set of liability data, which includes the deposits
RX
i : the expected return of the asset i , 8i D 1; : : : ; n

RY
j : the expected return of the liability j,
8 j D 1; : : : ;m

k3: the expected value for the goal of asset and liability
return

P: the goal imposed from the bank
Lp: the desirable value goal for the goal constraint p de-

fined by the bank
dCk : the over-achievement of the goal k, 8k 2 P
d�k : the under-achievement of the goal k, 8k 2 P
pk : the priority degree (weight) of the goal k

Certain constraints are imposed by the banking reg-
ulation on particular categories of accounts. Specific
categories of asset accounts (X0) and liability accounts
(Y 0) are detected and the minimum and maximum al-
lowed limit for these categories are defined based on the
strategy and policy that the bank intends to follow (con-
straints 2–3).

The structural constraints (4–5) include those that
contribute to the structure of the balance sheet and es-
pecially to the performance of the equation Assets = Li-
abilities + Net Capital.

The bank management should determine specific
goals, such as the desirable structure of each financial
institution’s assets and liabilities for the units of surplus
and deficit, balancing the low cost and the high return.
The structure of assets and liabilities is significant, since
it affects swiftly the income and profits of the bank.

Referring to the goals of the model, the solvency
goal (6) is used as a risk measure and is defined as the
ratio of the bank’s equity capital to its total weighted
assets. The weighting of the assets reflects their respec-
tive risk, greater weights corresponding to a higher de-
gree of risk. This hierarchy takes place according to the
determination of several degrees of significance for the
variables of assets and liabilities. That is, the variables
with the largest degrees of significance correspond to
categories of the balance sheet accounts with the high-
est risk stages.

Moreover, a basic policy of the commercial banks
is the management of their liquidity and specifically
the measurement of their needs that is relative to the

progress of deposits and loans. The liquidity goal (7) is
defined as the ratio of liquid assets to current liabilities
and indicates the liquidity risk, that indicates the pos-
sibility of the bank to respond to its current liabilities
with a security margin, which allows the probable re-
duction of the value of some current data.

Furthermore, the bank aims at the maximization of
its efficiency that is the accomplishment of the largest
possible profit from the best placement of its funds. Its
aim is themaximization of its profitability and therefore
precise and consistent decisions should be taken into
account during the bank management. These decisions
will guarantee the combined effect of all the variables
that are included on the calculation of the profits. This
decision taking gives emphasis to several selected vari-
ables that are related to the bank management, such as
to the management of the difference between the asset
return and the liability cost, the expenses, the liquidity
management and the capital management. The goal (8)
determines the total expected return based on the ex-
pected returns for all the assets RX and liabilities RY .

Beside the goals of solvency, liquidity and return of
assets and liabilities, the bank could determine other
goals that concern specific categories of assets and li-
abilities, in proportion to the demands and preferences
of the bank managers. These goals are the deposit goal,
the loan goal and the goal of asset and liability return.

The drawing of capital, especially from the deposits
constitutes a major part of commercial bank manage-
ment. All sorts of deposits constitute the major source
of capital for the commercial banks, in order to proceed
to the financing of the economy, through the financing
of firms. Thus, it is given special significance to the de-
posits goal.

The goal of asset and liability return defines the goal
for the overall expected return of the selected asset-
liability strategy over the year of the analysis.

Finally, there are goals reflecting that variables such
as cash, cheques receivables, deposits to the Bank of
Greece and fixed assets, should remain at the levels
of previous years. More analytically, it is known that
the fixed assets are the permanent assets, which have
a natural existence, such as buildings, machines, lo-
cations and equipment, etc. Intangible assets are the
fixed assets, which have no natural existence but consti-
tute rights and benefits. They have significant economic
value, which sometimes is larger than the value of the
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tangible fixed assets. These data have stable character
and are used productively by the bank for the regular
operation and performance of its objectives. Since the
fixed assets, tangible or intangible, are presented at the
balance sheet at their book value that is the initial value
of cost minus the depreciation till today, it is assumed
that their value does not change during the develop-
ment of the present methodology.

At this point, Kosmidou and Zopounidis [18] took
into account that the banks should manage the interest
rate risk, the operating risk, the credit risk, the market
risk, the foreign exchange risk, the liquidity risk and the
country risk.

More specifically, the interest rate risk indicates the
effect of the changes to the net profit margin between
the deposit and borrowing values, which are evolved as
a consequence of the deviations to the dominant inter-
est rates of assets and liabilities. When the interest rates
diminish, the banks accomplish high profits since they
can refresh their liabilities to lower borrowing values.
The reverse stands to high borrowing values. It is ob-
vious, that the changes of the inflation have a relevant
impact on the above sorts of risk.

Considering the interest rate risk as the basic uncer-
tainty parameter to the determination of a bank asset
liability management strategy, the crucial question that
arises concerns the determination of the way through
which this factor of uncertainty affects the profitabil-
ity of the pre-specified strategy. The estimation of the
expected return of the pre-specified strategy and of its
variance can render a satisfactory response to the above
question.

The use of Monte Carlo techniques constitutes
a particular widespread approach for the estimation
of the above information (expected return – variance
of bank asset liability management strategies). Monte
Carlo simulation consists in the development of var-
ious random scenarios for the uncertain variable (in-
terest rates) and the estimation of the essential statis-
tical measures (expected return and variance), which
describe the effect of the interest rate risk to the se-
lected strategy. The general procedure of implementa-
tion of Monte Carlo simulation based on the above is
presented in Fig. 1.

During the first stage of the procedure the various
categories of the interest rate risks are identified. The
risk and the return of the various data of bank asset and

Asset Liability Management Decision Support System, Fig-
ure 1
General Monte Carlo simulation procedure for the evalua-
tion of the asset liability management strategies

liability are determined from the different forms of in-
terest rates. For example, the investments of a bank to
government or corporate bonds are determined from
the interest rates that prevail in the bond market, which
are affected so by the general economic environment
as by the rules of demand and supply. Similarly, the
deposits and loans of the bank are determined from
the corresponding interest rates of deposits and loans,
which are assigned by the bank according to the con-
ditions that prevail to the bank market. At this stage,
the categories of the interest rates, which constitute cru-
cial uncertain variables for the analysis, are detected.
The determined interest rates categories depend on the
type of the bank. For example, for a decisive commer-
cial bank, the deposit and loan interest rates have a role,
whereas for an investment bank more emphasis is given
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to the interest rates and the returns of various invest-
ment products (repos, bonds, interest-bearing notes,
etc.).

After the determination of the various categories of
interest rates, which determine the total interest rate
risk, at the second stage of the analysis the statistical
distribution that follows each of the pre-specified cat-
egories should be determined.

Having determined the statistical distribution that
describes the uncertain variables of the analysis (in-
terest rates), a series of random independent scenar-
ios is developed, through a random number genera-
tor. Generally, the largest the number of scenarios that
are developed, the more reliable conclusions can be de-
rived. However, the computational effort increases sig-
nificantly, since for each scenario the optimal asset lia-
bility strategy should be determined and moreover its
evaluation for each other scenario should take place.
Thus, the determination of the number volume N of
simulations (scenarios), which will take place should be
determined, taking into account both the reliability of
the results and the available computational resources.

For each scenario si (i = 1, 2, . . . , N) over the inter-
est rates the optimal asset liability management strat-
egy � i is determined through the solution of the goal
programming problem. It is obvious that this strategy
is not expected to be optimal for each of the other sce-
narios sj ( j ¤ i). Therefore the results obtained from
the implementation of the strategy Yi under the restN–
1 possible scenarios sj should be evaluated. The evalua-
tion of the results can be implemented from various di-
rections. The most usual is the one that uses the return.
Representing as ri j the outcome (return) of the strategy
� i under the scenario sj, the expected return r̄i of the
strategy can be easily determined based on all the other
N–1 scenarios sj ( j ¤ i), as follows:

r̄i D
1

N � 1

NX
jD1; j¤i

ri j (12)

At the same time, the variance �2
i of the expected return

can be determined as a risk measure of the strategy Y i,
as follows:

�2
i D

1
N � 1

NX
jD1; j¤i

�
ri j � r̄i

�2 (13)

These two statistical measures (average and variance)
contribute to the extraction of useful conclusions con-
cerning the expected efficiency of the asset liability
management strategy, as well as the risks that it car-
ries. Moreover, these two basic statistical measures can
be used for the expansion of the analysis of the deter-
mination of other useful statistical information, such as
the determination of the confidence interval for the ex-
pected return, the quantiles, etc.

Conclusions

The banking business has recently become more so-
phisticated due to technological expansion, economic
development, creation of financial institutions and in-
creased competition. Moreover, the mergers and acqui-
sitions that have taken place the last years create large
groups of banking institutions. The success of a bank
depends mainly on the quality of its asset and liabil-
ity management, since the latter deals with the efficient
management of sources and uses of bank funds concen-
trating on profitability, liquidity, capital adequacy and
risk factors.

It is obvious that in the last two decades modern
finance has developed into a complex mathematically
challenging field. Various and complicated risks exist in
financial markets. For banks, interest rate risk is at the
core of their business and managing it successfully is
crucial to whether or not they remain profitable. There-
fore, it has been essential the creation of the department
of financial risk management within the banks. Asset
liability management is associated with the changes of
the interest rate risk. Although several models exist re-
garding asset liability management, most of them are
focused on the general aspects and methodologies of
this field and do not refer extensively to the hedging
of bank interest rate risk through asset liability man-
agement. Thus, the main purpose of the present paper
was to describe the development of a bank ALM deci-
sion support system, which gives the possibility to the
decision maker to proceed to various scenarios of the
economic process of the bank in order to monitor its
financial situation and to determine the optimal strate-
gic implementation of the composition of assets and
liabilities. Moreover, we believe that the development
of a bank asset liability management model that takes
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into account the exogenous factors and the economic
parameters of the market as well as the uncertainty of
variations of the financial risks become essential.

Finally, despite the approaches described in this pa-
per, little academic work has been done so far to de-
velop a model for the management of assets and li-
abilities in the European banking industry. Based on
the above we conclude that the quality of asset liabil-
ity management in the European banking system has
become significant as a resource of competitive advan-
tage. Therefore, the development of new technological
approaches in bank asset liability management in Eu-
rope is worth further research.
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Matching problems comprise an important set of prob-
lems that link the areas of graph theory and combinato-
rial optimization. The maximum cardinality matching
problem (see below) is one of the first integer program-
ming problems that was solved in polynomial time.
Matchings are of great importance in graph theory
(see [9]) as well as in combinatorial optimization (see
e. g. [15]).

The matching problem and its variations arise in
cases when we want to find an ‘optimal’ pairing of the
members of two (not necessarily disjoint) sets. In par-
ticular, if we are given two sets of ‘objects’ and a ‘weight’
for each pair of objects, we want to match the objects
into pairs in such a way that the total weight is maxi-
mal. In graph theory, the problem is defined on a graph

G = (V , E) where V is the node set of the graph, corre-
sponding to the union of the two sets of objects, and E is
the edge set of the graph corresponding to the possible
pairs. A pair is possible if there exists an edge between
the corresponding nodes. A matching M is a subset of
the edges E with the property that each node in V is in-
cident to at most one edge in M. If each node in V is
met by exactly one edge inM, thenM is called a perfect
matching. There exist several versions of the matching
problem, depending on whether the graph G is bipar-
tite or not (i. e., the two sets of objects are disjoint or
not), and on whether we want to find themaximum size
(cardinality) or the maximum weight of the matching.
The book [1] gives several applications of the matching
problem.

Maximum Cardinality Bipartite Matching
Problem

The graph G is bipartite if the node set V can be par-
titioned into two disjoint sets V1 and V2 such that
no edge in E connects nodes from the same set. Find-
ing a maximum cardinality matching on a bipartite
graph can be solved by several efficient algorithms with
a worst-case bound of O(

p
nm), where n is the num-

ber of nodes and m the number of edges of the graph.
See [1] for details.

Weighted Bipartite Matching Problem

This problem is known as the assignment or the mar-
riage problem. In the traditional definition it is required
that the sets V1 and V2 are of equal size, but even if not,
one can add ‘dummy’ nodes to the smaller set to sat-
isfy this condition. This problem can be formulated as
a zero-one linear programming problem as follows:
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X

(u;v)2E

f (u; v)xuv

s.t.
X

(u;v)2E

xuv D 1 for all u 2 V1;

X
(u;v)2E

xuv D 1 for all v 2 V2;

xuv 2 f0; 1g for all u 2 V1; v 2 V2:

The assignment problem has the property that if solved
as a linear programming problem in nonnegative xuv it
yields an integer solution, i. e., the zero-one integrality
condition in the formulation is not necessary. This is
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so because the constraint matrix of the equations is to-
tally unimodular, i. e., the determinant of every square
submatrix of it is 0 or ˙1. This means that if the right-
hand sides of the equations are integer numbers, as is
the case in the assignment problem, then the solution
will be integer.

Linear programming algorithms are not as efficient
as specialized algorithms for solving the assignment
problem. The assignment problem is a special case of
the minimum cost flow problem, and adaptations of al-
gorithms for that problem that take into account the
special structure of the assignment problem yield the
most efficient algorithms. Probably the best known al-
gorithm is the so called Hungarian algorithm, see [8],
which is a primal-dual algorithm for the minimum cost
flow problem. See [1] for details and other algorithms.

Variations of the bipartite matching include among
others the order preserving assignment problem and
the stable marriage problem. In the order preserving
assignment problem the assignment must be such that
a prespecified order among the objects of one of the
node partitions is preserved. Although the linear pro-
gramming formulation of this problem is more compli-
cated than that of the assignment problem, the prob-
lem itself is easier to solve than the assignment problem
and can be solved in O(m) time where m is the num-
ber of edges in the graph; see [2,12]. In the stable mar-
riage problem each object of one partition has a ranking
(or preference) for each of the objects of the other par-
tition, and the assignment must be such that there is
no nonmatched pair of objects that its members prefer
each other to the ones they are matched against. This
problem can be solved in O(n2) time using a greedy al-
gorithm (n is the number of nodes in one partition).
See [1].

WeightedMatching Problem

The weighted matching problem can be formulated as
a 0–1 programming problem as follows:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max
X

(u;v)2E

f (u; v)xuv

s.t.
X

(u;v)2E

xuv � 1 for all u 2 V ;

xuv 2 f0; 1g for all (u; v) 2 E:

Unlike the case of the assignment problem, relaxing the
integrality constraints yields, in general, a fractional so-
lution.

Maximum Cardinality Matching Problem

J. Edmonds showed in [5] that one more set of in-
equalities—the odd-set constraints—is needed in order
to get a linear programming formulation of the match-
ing problem. The odd-set or blossom inequalities are

X
(u;v)2E(U)

xuv �
�
jUj
2


; 8odd U � V ; jUj � 3;

where E(U) is the set of all edges in E with both end
nodes in U. An odd set is a set of odd cardinality. See
also [11].

Solving the matching problem on nonbipartite
graphs is considerably more difficult than on bipar-
tite ones. This is so because the path augmenting al-
gorithms used in the case of bipartite matchings, may
fail when a structure called blossom is encountered. Ed-
monds provided anO(n4) algorithm that would find an
integer solution to the linear programming relaxation
of the formulation (including the odd-set constraints)
for any objective function, proving this way the com-
pleteness of the formulation. Several implementations
that improved the performance of the algorithm have
been proposed (see [1,10], among others) as well as data
structures for the efficient implementation of such algo-
rithms (see [3]). M. Grötschel and O. Holland [6] gave
a cutting plane algorithm for the weighted matching
problem, where they used an efficient separation algo-
rithm to identify violated blossom inequalities, based on
the algorithm of M.W. Padberg and M.R. Rao [14] for
the b-matching problem.

The b-matching problem is an important general-
ization of the matching problem. In the b-matching
problem each node v 2 V is met by no more than
bv edges; thus, in this context, the previous defini-
tion of matching corresponds to an 1-matching. A per-
fect b-matching is one in which each node v 2 V is
met by exactly bv edges. If it is permitted to chose an
edge more than one times then the problem becomes
a general integer program instead of a 0–1 program.
The b-matching problem can be reduced to 1-match-
ing problem on an appropriately constructed graph.
Although this procedure is not polynomial in gen-
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eral—and thus, Edmonds’ algorithm can not be read-
ily applied—the b-matching problem is polynomially
solvable; see [14] and [7]. A linear inequality descrip-
tion for the integer b-matching problem is given in [15].
See also [11]. The perfect 0–1 2-matching problem is
a relaxation of the traveling salesman problem (TSP).
Solving the 0–1 2-matching problem yields a heuris-
tic solution to the TSP which is an NP-hard problem;
see [13].

See also

� Assignment Methods in Clustering
� Bi-Objective Assignment Problem
� Communication Network Assignment Problem
� Frequency Assignment Problem
�Maximum Partition Matching
� Quadratic Assignment Problem
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The use of assignment methods in the formulation of
various optimization problems encountered in cluster-
ing and classification, can be introduced through the
well-known quadratic assignment (QA) model (see [5]
for a comprehensive discussion of most of the topics
presented in this entry). In its most basic form the QA
optimization task can be stated using two n × n matri-
ces, say P = { pij}, and Q = { qij}, and the identification
of a one-to-one function (or a permutation), �(�), on
the first n integers, to optimize (either by minimizing
or maximizing) the cross-product index

� (�) D
X
i; j

p�(i)�( j)qi j: (1)

Typically, the main diagonal entries in P andQ are con-
sidered irrelevant and can be set equal to zero. For ar-
bitrary matrices P andQ, the cross product index in (1)
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may be rewritten as

X
i; j

�
p�(i)�( j) C p�( j)�(i)

2

��
qi j C q ji

2

�

C
X
i; j

�
p�(i)�( j) � p�( j)�(i)

2

��qi j � q ji

2

�
;

indicating that the optimization of (1) jointly involves
the symmetric ([P + P0]/2 versus [Q + Q0]/2) and skew-
symmetric ([P � P0]/2 versus [Q � Q0]/2) components
of both P and Q. Because of this separation of P and
Q into symmetric and skew-symmetric components, it
is possible in the context of the clustering/classification
tasks to be discussed below, to assume that both P and
Q are symmetric or that both are skew-symmetric.

In applications to clustering, the matrix P usu-
ally contains numerical proximity information between
distinct pairs of the n objects from some given set S =
{ O1, . . . , On} that is of substantive interest. If P is sym-
metric, pij ( = pji) denotes the degree to which objects
Oi and Oj are similar (and keyed as what is referred to
as a dissimilarity [or as a similarity] measure if smaller
[or larger] values reflect greater object similarity). If P
is skew-symmetric, pij ( = � pji) is an index of domi-
nance (or flow) between objectsOi and Oj, with the sign
reflecting the directionality of dominance and the abso-
lute value indicating the degree. The (target) matrix Q,
as developed in detail in the next section, will typically
be fixed, with the specific pattern of entries character-
izing the type of structure to be identified for the set S,
e. g., a single object cluster, a partition, or a partition hi-
erarchy. An optimal permutation, say, ��(�), based on
the cross-product index in (1) for a specific target ma-
trixQ will identify the (salient) combinatorial structure
sought.

TheQA optimization task as formulated through (1)
has an enormous literature that will not be reviewed
here (for an up-to-date and comprehensive source on
QA, see [11]). For current purposes, one might con-
sider the optimization of (1) through a simple object
interchange heuristic that would begin with some per-
mutation (possibly chosen at random), and then im-
plement local interchanges until no improvement in
the index can be made. By repeatedly initializing such
a process randomly, a distribution over a set of local
optima can be achieved. At least within the context
of clustering/classification, such a distribution may be

highly relevant diagnostically for explaining whatever
structure is inherent in the data matrix P, and possibly
of even greater interest than the identification of just
a single optimal permutation. In a related framework,
there are considerable applications for the QAmodel in
a confirmatory context where the distribution of � (�)
is constructed over all n! possible permutations consid-
ered equally-likely, and the index value associated with
some identified permutation is compared to this distri-
bution. Most nonparametric statistical methods popular
in the literature can be rephrased through the device of
defining the matrices P andQ appropriately (see [5] for
a comprehensive development of these special cases as
well as approximation methods based on closed-form
expressions for the first three moments of � (�)). A few
of these applications will be briefly noted below.

Weighting Schemes
for the Fixed (Target) Matrix Q

Single Cluster Statistics

To identify a single salient cluster of fixed size K (that
can be varied by the user), consider Q to have the par-
titioned form

Q D
�
Q11 Q12

Q21 Q22

�
;

where within each submatrix of the size indicated, the
(off-diagonal) entries are constant:

Q11 D

0
B@

0 � � � q11
:::

: : :
:::

q11 � � � 0

1
CA

K�K

Q12 D

0
BB@

:::

� � � q12 � � �
:::

1
CCA

K�(n�K)

Q21 D

0
BB@

:::

� � � q21 � � �
:::

1
CCA

(n�K)�K

Q22 D

0
B@
0 � � � 0
:::

: : :
:::

0 � � � 0

1
CA

(n�K)�(n�K)

Depending on how the values for q11, q12, and q21 are
defined, different indices can be generated that measure
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the salience of the subset constructed by any permuta-
tion �(�), i. e., for the identified cluster S� � {O�(1), . . . ,
O�(K)}.

For symmetric P:
A) letting

q11 D
1

K(K � 1)
; q12 D q21 D 0;

the index � (�) is the average proximity within the
subset S� and defines a measure of cluster ‘compact-
ness’;

B) letting

q11 D 0; q12 D q21 D
1

2K(n � K)
;

� (�) is the average proximity between the subset S�
and its complement, and defines a measure of clus-
ter ‘isolation’ for either S� or S � S�; alternatively, it
can be considered ameasure of ‘separation’ between
S� or S � S�;

C) by contrasting A) and B) as

q11 D
1

K(K � 1)
;

q12 D q21 D �
1

2K(n � k)
;

� (�) characterizes the salience of the subset S� by
a trade-off between compactness and isolation. The
optimization of � (�) based on these latter weights
identifies a cluster that would be both relatively
compact and isolated, whereas the emphasis in A)
and B) are on clusters that may be either compact
or isolated but not necessarily both.
For skew-symmetric P:

D) letting

q11 D 0; q12 D
1

2K(n � K)
; q21 D �q12;

the index � (�) is the average dominance (or flow)
from the subset S� to its complement, minus the av-
erage dominance (or flow) from the complement to
the subset. Thus, its optimization (e. g., maximiza-
tion) identifies a subset of Swhose members tend to
dominate those in its complement (or where aggre-
gate outflow exceeds aggregate inflow).

In a confirmatory comparison context, the single-clus-
ter statistic � (�) can be used to generate a number of

nonparametric test statistics for comparing the differ-
ence between two independent groups. For example,
suppose observations are available on n objects, x1, . . . ,
xn, where the first K belong to group I and the last n�K
to group II. If the (now asymmetric) proximity matrix is
defined as P = { pij}, where pij = 1 if xj < xi and = 0 if xj �
xi then the weighting scheme in B) gives (a simple linear
transform of) the well-known Mann–Whitney statis-
tic for comparing two-independent groups, i. e., if two
observations are drawn at random from groups I and
II, then � (�o), for �o the identity permutation, is the
probability that the group I observation is the larger.
The distribution of � (�) over all n! permutations gen-
erates the null distribution against which the observed
index � (�o) can be compared. Because of the struc-
ture of Q, this null distribution is based on all n!/(K!(n
� K)!) distinct subsets considered equally-likely to be
formed from the collection of size n. (See [3, Chap. 7],
for a more complete discussion of the two-independent
sample problem in this type of nonparametric frame-
work.)

Although single-cluster statistics that depend on the
comparison of mean proximities may be the most ob-
vious to consider, a number of possible alternatives can
be constructed by varying the definition for the weight
matrices in Q. For example, for symmetric P, if Q11 is
(re)defined to have the form
0
BBBBB@

0 1 0 � � � 0 0 0
1 0 1 � � � 0 0 0
:::

:::
:::

: : :
:::

:::
:::

0 0 0 � � � 1 0 1
0 0 0 � � � 0 1 0

1
CCCCCA
;

with entries of all ones immediately above and below
the main diagonal, and q12 = q21 = 0, the salience of S�
is now based on (twice) the sum of adjacent proximities
along a path of length K considered in the object order
O�(1) $ � � � $ O�(K). Or, if Q11 is (re)defined to have
the form
0
BBB@

0 1 1 � � � 1 1
1 0 0 � � � 0 0
:::

:::
:::

: : :
:::

:::

1 0 0 � � � 0 0

1
CCCA ;

and q12 = q21 = 0, the salience of S� is now based on
(twice) the sum of proximities between O�(1) and the
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remaining objects O�(2), . . . , O�(K) (this is called a ‘star’
cluster of size K with object O�(1) as its center; see [10,
Sect. 4.5.2] for a further discussion of clustering based
on stars).

Partition Statistics

To identify a salient partition of S into M subsets, S1,
. . . , SM , of fixed sizes n1, . . . , nM , respectively, consider
Q to have the partitioned form

Q D

0
B@
Q11 Q12 � � � Q1M
:::

:::
: : :

:::

QM1 QM2 � � � QMM

1
CA ;

where the (off-diagonal) entries in each submatrixQmm0

of size nm × nm0 , are all equal to a constant qmm0 , 1�m,
m0 � M. Again, depending on how these latter values
are defined, a variety of different indices can be gener-
ated that now measure the salience of the partition gen-
erated by a permutation �(�). For a symmetric P, three
of the most popular alternatives are noted below that
differ only in how the weights qmm, 1�m�M, are de-
fined, and which all assume qmm0 = 0 form 6Dm0:
a) qmm = 1: each subset in a partition contributes in di-

rect proportion to the number of object pairs it con-
tains;

b) qmm = 1/(nm(nm � 1)): each subset contributes
equally irrespective of the number of objects (or ob-
ject pairs) it contains;

c) qmm0 = 1/nm: each subset contributes in direct pro-
portion to the number of objects it contains.

In a confirmatory comparison context, the partition
statistic � (�) with weighting option c) can be used
to construct a test-statistic equivalent to the common
F-ratio in a one-way analysis of variance for assess-
ing whether mean differences exist over K independent
groups. Explicitly, suppose observations are available
on n objects, x1, . . . , xn, with the first n1 belonging to
group 1, the second n2 belonging to group 2, and so on.
If proximity is defined as P = {pij}, where pij = (xi � xj)2,
then the weights in c) produce � (�o), for �o the iden-
tity permutation, equal to twice the within group sum
of squares. The distribution of � (�) over all n! permu-
tations generates a distribution over all n!/(n1! . . .nM !)
equally-likely ways the n observations can be grouped
into subsets of sizes n1, . . . , nM , and against which the

observed index � (�o) can be compared. (See [9] for
a more thorough discussion of thus evaluating a priori
classifications.)

For a skew-symmetric P, the partitioning of Swould
now be into M ordered subsets, S1 � . . . � SM of fixed
sizes n1, . . . , nM , with the most natural weights being
qmm = 0 for 1�m�M, qmm0 = + 1 ifm <m0, and =� 1 if
m >m0. Maximizing � (�) is this case would be a search
for an ordered partition in which objects in Sm tend to
dominate those in Sm0 ifm <m0, i. e., there are generally
positive dominance values from a lower-placed subset
to one that is higher.

There are several special cases of interest for the par-
tition statistic:
i) for symmetric P and if for convenience it is assumed

n is even and nm = 2 for 1�m�M (so, n = 2M), the
weights in a) make � (�) the index for amatching of
the objects in S induced by �(�);

ii) if the proximity matrix P is itself constructed from
a partition of S, then the index � (�) can be inter-
preted as a measure of association for a contingency
table defined by the n objects cross-classified using
�(�) and the two partitions underlying P and Q.

Depending on the choice of weights for Q, and how
proximity is defined in P based on its underlying parti-
tion, a number of well-known indices of association can
be obtained: Pearson’s chi-square statistic, Goodman–
Kruskal’s �b, and Rand’s index. For a more complete
discussion of these special cases, including the neces-
sary definitions for P, consult [5].

Partition Hierarchy Statistics

One straightforward strategy for extending QA to iden-
tify salient partition hierarchies having a specific form,
begins with a given collection of T partitions of S, P1,
. . . , PT , that are hierarchically related. Here, P1 con-
tains all n objects in n separate classes, PT contains all
n objects in one class, and Pt + 1 is formed from Pt for
t � 1 by uniting one or more of the classes in the latter.
If Q = {qij} is defined by qij = min{t� 1: Oi, Oj 2 com-
mon object class in Pt}, then these latter entries satisfy
the defining property of being an ultrametric, i. e., qij �
max{qik, qkj} for allOi,Oj,Ok 2 S (see [2,10, Chap. 7] for
an extensive discussion of ultrametrics). For symmetric
P, the optimization of � (�) in (1) would be the search
for a salient partition hierarchy having the generic form
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defined by P1, . . . , PT , and which optimizes the cross-
product between the proximity information in P and
the levels at which the object pairs are first placed into
common classes in the hierarchy. It might be noted that
both single clusters and partitions could be considered
special cases of a partition hierarchy when T = 3 and
the only nontrivial partition is P2, i. e., to obtain a sin-
gle cluster, P2 can be defined by one subset of size K
and n � K subsets each of size one; to obtain a single
partition, P2 merely has to be that partition with the
desired number of classes and class sizes.

Alternative Assignment Indices

There are a variety of alternatives for replacing the
cross-product in the QA index in (1) by a different func-
tion between the entries in P andQ. Depending on how
the proximity information in P and the target given by
Q are specified, one might adopt, for example, the sum
of absolute differences,

P
i, j |p�(i)�(j) � qij|, or the sum of

dichotomous indicators for equality,
P

i, j g(p�(i)�(j), qij),
where g(x, y) = 1 if x = y and 0 otherwise, or even use
‘bottleneck’ measures such as mini, j p�(i)�(j)qij or maxi, j
p�(i)�(j)qij. Somewhat more well-developed in the lit-
erature than these possibilities (e. g., see [5, Chap. 5])
are generalizations of (1) that would maintain the ba-
sic cross-product structure but which would rely on
higher-order functions of the entries in P and Q before
the cross-products were taken. Again, variations would
be possible, but two of the more obvious forms of ex-
tension are given below that depend solely on the order
of the entries within P and within Q:
� Three-argument functions: Given P and Q, and let-

ting sign(x) = +1 if x > 0, = 0 if x = 0, and = � 1 if
x < 0, define

A(�) D
X
i¤ j
i¤k

sign(p�(i)�( j)�p�(i)�(k)) sign(qi j�qik):

The indexA(�) can be interpreted as the difference
between two counts, say A+(�) and A�(�), where
A+(�) (respectively, A�(�)) is the number of con-
sistencies (inconsistencies) in the ordering of pairs
of off-diagonal entries in {p�(i)�(j)} and their coun-
terparts in {qij}, where the former pairs share a com-
mon (row) object O�(i).

� Four-argument functions: Define

B(�) D
X
i¤ j
k¤l

sign(p�(i)�( j)�p�(k)�(l )) sign(qi j�qkl ):

Again, the index B(�) can be viewed as the differ-
ence between B+(�) and B�(�), where B+(�) (re-
spectively, B�(�)) is the number of consistencies
(inconsistencies) in the ordering of pairs of off-
diagonal entries in {p�(i)�(j)} and their counterparts
in {qij}. In contrast to A(�), however, no com-
mon object need be present in the pairs of off-
diagonal entries. The distinction betweenA(�) and
B(�) in measuring the correspondence between P
and Q rests on whether the proximity entries in P
are strictly comparable only within rows (i. e., to
what are called row conditional proximity data, e. g.,
see [1, p. 192]) or whether such comparisons make
sense when performed across rows.

To illustrate the interpretation ofA(�) and B(�) in the
single cluster statistic context, supposeQ has the weight
structure in A) that generated through (1) the mea-
sure of cluster compactness as the average within group
proximity in S� = {O�(1), . . . , O�(K)}. In using this spe-
cific target Q forA(�), the index is, in words, twice the
difference between the number of instances in which
a proximity for two objects both within S� is greater
than the proximity from one of these two objects to an-
other in S � S�, and the number of instances in which
it is less. Depending on whether proximity is keyed as
a similarity or a dissimilarity, a compact subset would
be one for whichA(�) is maximized or minimized, re-
spectively. If instead, the weight structure for Q given
in B) that defined the measure of cluster isolation, the
indexA(�) would now be twice the difference between
the number of instances in which a proximity between
two objects that span S� and S � S� is greater than the
proximity between two objects within S� or within S �
S� (where the latter have one member in common with
the two that span S� and S� S�), and the number of in-
stances in which it is less. Now, an isolated subset would
be identified by maximizing or minimizing A(�) de-
pending on the keying of proximity as a dissimilarity or
similarity, respectively. For B(�), and the weight struc-
ture in A), the index is, in words, twice the difference
between the number of instances in which a proximity
for two objects both within S� is greater than the prox-
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imity between any two objects that span S� and S � S�
and the number of instances in which it is less. The in-
dexB(�) for the weight matrix in B) would be twice the
difference between the number of instances in which
a proximity between two objects that span S� and S �
S� is greater than the proximity between any two ob-
jects within S� or within S � S�.

In the partition context, a similar interpretation
to the use of the single subset compactness measure
would be present forA(�) and B(�) and for all of the
three weighting options mentioned, but now all aggre-
gated over the M subsets of the partition. In the parti-
tion hierarchy framework, the correspondence between
{p�(i)�(j)} and Q is measured by the degree of consis-
tency in the ordering of the object pairs by proxim-
ity and the ordering of the object pairs by the levels in
which the objects are first placed into a common class.

In addition to replacing the QA index in (1) by the
higher order functions adopted inA(�) andB(�) to ef-
fect a reliance only on the order properties of the entries
within P andQ, there are several other uses in a cluster-
ing/classification context for the definition of three- or
four-argument functions. One alternative will be men-
tioned here that deals with what can be called the gen-
eralized single cluster statistic. Explicitly, suppose three-
and four-argument function of the entries in P are de-
noted by u(�, �, �) and r(�, �, �, �), respectively, and those
in Q by v(�, �, �) and s(�, �, �, �), and consider the general
cross-product forms of

C(�) D
X
i; j;k

u(�(i); �( j); �(k))v(i; j; k);

D(�) D
X
i; j;k;l

r(�(i); �( j); �(k); �(l))s(i; j; k; l):

It will be assumed here that both v(�, �, �) and s(�, �, �, �)
are merely indicator functions for a subset of size K, so
v(i, j, k) = 1 if 1 � i, j, k � K, and = 0 otherwise; s(i, j,
k, l) = 1 if 1 � i, j, k, l � K, and = 0 otherwise. Thus,
the optimization of C(�) or D(�) can be viewed as the
search for a subset of size K with extreme values for the
indices

P
1� i, j, k� K u(�(i), �(j), �(k)) or

P
1� i, j, k, l� K

r(�(i), �(j), �(k), �(l)), and depending on how the func-
tions u(�, �, �) and r(�, �, �, �) are defined, a subset that is
very salient with respect to the property that character-
izes the latter.

A number of properties that may be desirable to
optimize in a subset of size K have been considered

(see [4] for a more complete discussion), of which the
two listed below are directly relevant to the cluster-
ing/classification context:
i) a proximity matrix (with a dissimilarity keying) rep-

resents a perfect partition hierarchy if it satisfies
the property of being an ultrametric: for all 1 � i,
j, k � n, pij � max{pik , pkj}, or equivalently, the
two largest values among pij, pik, and pkj are equal.
Thus, if u(�(i), �(j), �(k)) equals the absolute differ-
ence between the two largest values among p�(i)�(j),
p�(i)�(k), and p�(j)�(k) , the minimization of C(�) seeks
a subset of size K that is as close to being an ultra-
metric as possible (as measured by C(�));

ii) a proximity matrix (again, with a dissimilarity key-
ing) represents a perfect additive treewhere proxim-
ities can be reconstructed by minimum path lengths
in a tree if they satisfy the four-point property: for
all 1� i, j, k, l� n, pij + pkl �max{pik + pjl, pil + pjk},
or equivalently, the largest two sums among pij + pkl,
pik + pjl, and pil + pjk are equal. Thus, if r(�(i), �(j),
�(k), �(l)) equals the absolute difference between the
two largest values among p�(i)�(j) + p�(k)�(l) , p�(i)�(k)
+ p�(j)�(l) , and p�(i)�(l) + p�(j)�(k), the minimization of
D(�) seeks a subset of size K that is as close to satis-
fying the four-point condition as possible (as mea-
sured byD(�)).

Modifications of the Target Matrix Q

The optimization of an assignment index such as (1) as-
sumes that the target matrix Q is fixed and given a pri-
ori. Based on this invariance, maximizing (1), for exam-
ple, could be equivalently stated as the minimization of

X
i; j

(p�(i)�( j) � qi j)2: (2)

There has been a substantial recent literature (e. g.,
[6,7,8]) where not only is an optimal permutation, say
��(�), sought that would minimize (2), but in which
a specific target matrix Q is also constructed based on
a collection of (linear inequality) constraints that would
characterize some type of classificatory structure fitted
to {p�(i)�(j)}. The constraints imposed onQ are possibly
based on the (sought for) permutation ��(�).

In minimizing (2) but allowing the target matrix Q
to itself be estimated, a typical iterative process would
proceed as follows: on the basis of an initial target ma-
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trix Q(0), find a permutation, say �(1)(�), to maximize
the cross-product in (1). Using �(1)(�), fit a target matrix
Q(1) to { p�(1)(i)�(1)( j)} minimizing (2). Continue the pro-
cess for �(t) and Q(t) for t > 1 until convergence. A vari-
ety of constraints for Q have been considered. Among
these, there are
i) a sum of matrices each having what are called anti-

Robinson forms (i. e., a matrix is anti-Robinson if
within each row and column, the entries never de-
crease moving in any direction away from the main
diagonal [6]);

ii) a sum of ultrametric matrices (characterized by the
ultrametric condition given earlier [7]);

iii) a sum of additive tree matrices (again, as character-
ized by the four-point condition given earlier [7]);

iv) unidimensional scales (i. e., a matrix is a linear uni-
dimensional scale if its entries can be given by { |xj
� xi| + c}, where the estimated coordinates are x1 �
� � � � xn and c is an estimated constant [8]); and

v) circular unidimensional scales (i. e., a matrix is so
characterized if it can be represented as {min{|xj �
xi|, x0 � |xj � xi|} + c}, where x1 � � � � � xn, x0 is
the circumference of the circular structure, and c is
an estimated constant [8]).

See also

� Assignment and Matching
� Bi-Objective Assignment Problem
� Communication Network Assignment Problem
� Frequency Assignment Problem
�Maximum Partition Matching
� Quadratic Assignment Problem
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Introduction

The Multidimensional Assignment Problem (MAP) is
a higher dimensional version of the two-dimensional,
or Linear Assignment Problem (LAP) [24]. If a classical
textbook formulation of the Linear Assignment Prob-
lem is to find an optimal assignment of “N jobs to M
workers”, then, for example, the 3-dimensional Assign-
ment Problem can be interpreted as finding an optimal
assignment of “N jobs to M workers in K time slots”,
etc. In general, the objective of the MAP is to find tu-
ples of elements from given sets, such that the total cost
of the tuples is minimized. The MAP was first intro-
duced by Pierskalla [26], and since then has found nu-
merous applications in the areas of data association [4],
image recognition [31], multisensor multitarget track-
ing [18,27], tracking of elementary particles [28], etc.
For a discussion of the MAP and its applications see,
for example, [7] and references therein.

Without loss of generality, a d-dimensional axial
MAP can be written in a form where each dimension
has the same number n of elements, i. e.,

min
x2f0;1gnd

� X
ik2f1;:::;ng
k2f1;:::;dg

ci1���id xi1���id

ˇ̌
ˇ̌ X

ik2f1;:::;ng
k2f1;:::;dgn j

xi1���id D 1;

i j D 1; : : : ; n; j D 1; : : : ; d
	
:

(1)

An instance of the MAP with different numbers of
elements in each dimension, n1 � n2 � � � � � nd , is re-
ducible to form (1) by introduction of dummy vari-
ables.

Problem (1) admits the following geometric inter-
pretation: given a d-dimensional cubic matrix, find
such a permutation of its rows and columns that the
sum of the diagonal elements is minimized (which ex-
plains the term “axial”). This rendition leads to an alter-
native formulation of the MAP (1) in terms of permu-
tations 1; : : : ; d�1 of numbers 1 to n, i. e., one-to-one
mappings i : f1; : : : ; ng 7! f1; : : : ; ng,

min
�1;:::;�d�12˘ n

nX
iD1

ci;�1(i);:::;�d�1(i) ;

where ˘ n is the set of all permutations of the set
f1; : : : ; ng. A feasible solution to the MAP (1) can be

conveniently described by specifying its cost,

z D ci (1)1 ���i
(1)
d
C ci (2)1 ���i

(2)
d
C � � � C ci (n)1 ���i

(n)
d
; (2)

where
�
i(1)j ; i

(2)
j ; : : : ; i

(n)
j
�
is a permutation of the set

f1; 2; : : : ; ng for every j D 1; : : : ; d. In contrast to the
LAP that represents a d D 2 special case of the MAP (1)
and is polynomially solvable [7], the MAP with d � 3 is
generally NP-hard, a fact that follows from reduction of
the 3-dimensional matching problem (3DM) [8].

Despite its inherent difficulty, several exact and
heuristic algorithms [1,6,11,25] have been proposed to
this problem. Most of these algorithms rely, at least
partly, on repeated local searches in neighborhoods of
feasible solutions, which brings about the question of
how the number of local minima in aMAP impact these
solution algorithms. Intuitively, if the number of lo-
cal minima is small then one may expect better perfor-
mance from meta-heuristic algorithms that rely on lo-
cal neighborhood searches. A solution landscape is con-
sidered to be rugged if the number of local minima is
exponential with respect to the dimensions of the prob-
lem [21]. Evidence in [5] showed that ruggedness of the
solution landscape has a direct impact on the effective-
ness of the simulated annealing heuristic in solving at
least one other hard problem, the quadratic assignment
problem. Thus, one of the issues that we address be-
low is estimation of the expected number E[M] of local
minima in randomMAPs with respect to different local
neighborhoods.

Another problem that we discuss is the behavior of
the expected optimal value Z�d;n of random large-scale
MAPs, whose assignment costs are assumed to be inde-
pendent identically distributed (iid) random variables
from a given continuous distribution.

During the last two decades, expected optimal val-
ues of random assignment problems have been stud-
ied intensively in the context of random LAP. Per-
haps, the most widely known result in this area
is the conjecture by Mézard and Parisi [17] that
the expected optimal value E[Ln] :D Z�2; n of a LAP
of size n with iid uniform or exponential with
mean 1 cost coefficients satisfies limn!1 E[Ln] D �2

6 .
In fact, this conjecture was preceded by an upper
bound on the expected optimal value of the LAP
with uniform (0,1) costs: lim supn!1 Ln � 3 due to
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Walkup [32], which was soon improved by Karp [12]:
lim supn!1 Ln � 2. A lower bound on the limit-
ing value of Ln was first provided by Lazarus [14]:
lim infn!1 Ln � 1C e�1 	 1:37, and then has been
improved to 1.44 by Goemans and Kodialam [9] and
1.51 by Olin [20]. Experimental evidence in sup-
port of the Mézard-Parisi conjecture was provided by
Pardalos and Ramakrishnan [22]. Recently, Aldous [2]
has shown that indeed limn!1 E[Ln] D �2

6 , thereby
proving the conjecture. Another conjecture due to
Parisi [23] stating that the expected optimal value of
a random LAP of finite size n with exponentially dis-
tributed iid costs is equal to E[Ln] D Z�2;n D

Pn
iD1 i�2

has been proven independently in [16] and [19].
Our work contributes to the existing literature on

random assignment problems by establishing the limit-
ing value and asymptotic behavior of the expected op-
timal cost Z�d;n of random MAP with iid cost coeffi-
cients for a broad class of continuous distributions. The
presented approach is constructive in the sense that it
allows for deriving converging asymptotical lower and
upper bounds for Z�d;n , as well as for estimating the rate
of convergence for Z�d;n in special cases.

Expected Optimal Value of RandomMAP

Our approach to determining the asymptotic behavior
of the expected optimal cost Z�d;n of an MAP (1) with
random cost coefficients involves analysis of the so-
called index tree, a graph structure that represents the
set of feasible solutions of the MAP. First introduced by
Pierskalla [26], the index tree graph G D (V ; E) of the
MAP (1) has a set of vertices V which is partitioned into
n levels1 and a distinct root node. A node at level j of the
graph represents an assignment (i1; : : : ; id ) with i1 D j
and cost c ji2���id , whereby each level contains � D nd�1

nodes. The set E of arcs in the index tree graph is con-
structed in such a way that any feasible solution of the
MAP (1) can be represented as a path connecting the
root node to a leaf node at level n (such a path is called
a feasible path); evidently, the index tree contains n!d�1

feasible paths, by the number of feasible solutions of the
MAP (1).

The index tree representation of MAP aids in con-
struction of lower and upper bounds for the expected

1In the general case of MAP with ni elements in dimension
i D 1; : : : ; d , the index graph would contain n1 levels.

optimal cost of MAP (1) with random iid costs via the
following lemmata [10].

Lemma 1. Given the index tree graph G D (V ; E) of
d � 3, n � 3 MAP whose assignment costs are iid ran-
dom variables from an absolutely continuous distribu-
tion, construct set A � V by randomly selecting ˛ dif-
ferent nodes from each level of the index tree. Then,A is
expected to contain a feasible solution of the MAP if

˛ D

�
nd�1

n!
d�1
n

�
: (3)

Lemma 2. For a d � 3, n � 3 MAP whose cost coeffi-
cients are iid random variables from an absolutely con-
tinuous distribution F with existing first moment, define

Z�d;n :D nEF
�
X(1j�)

�
and Z

�

d;n :D nEF
�
X(˛j�)

�
;

(4)

where X(ij�) is the ith order statistic of � D nd�1 iid ran-
dom variables with distribution F, and parameter ˛ is
determined as in (3). Then, Z�d;n and Z�d;n constitute
lower and upper bounds for the expected optimal cost
Z�d;n of the MAP, respectively: Z�d;n � Z�d;n � Z

�

d;n .

Proofs of the lemmas are based on the probabilistic
method [3] and can be found in [10]. In particular, the
proof of Lemma 2 considers a set Amin that is con-
structed by selecting from each level of the index tree
˛ nodes with the smallest costs among the � nodes at
that level. The continuity of distribution F ensures that
assignment costs in the MAP (1) are all different almost
surely, hence locations of the nodes that comprise the
setAmin are random with respect to the array of nodes
in each level of G(V ; E). In the remainder of the paper,
we always refer to ˛ and � as defined above.

By definition, the parameter � D nd�1 approaches
infinity whenever n or d does; this allows us to denote

the corresponding cases by �
n
�!1 and �

d
�!1, re-

spectively. If certain statement holds for both cases of

n!1 and d !1, we indicate this by �
n;d
�!1. The

behavior of quantity ˛ (3) when n or d increases is more
contrasting. In the case n!1 it approaches a finite
limiting value,

˛ ! ˛� :D ded�1e; �
n
�!1; (5)
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while in the case of fixed n and unbounded d it increases
exponentially:

˛ � ��n ; �
d
�!1; where �n D 1�

ln n!
n ln n

; (6)

and it is important to observe that 0 < �n < 1
2 for

n � 3 [13].
The presented lemmata addresses MAPs with

d � 3; n � 3. The case d D 2 represents, as noted ear-
lier, the Linear Assignment Problem, whose asymptotic
behavior is distinctly different from that of MAPs with
d � 3. It can be shown that in the case of d D 2 Lem-
mas 1 and 2 produce only trivial bounds that are rather
inefficient in determining the asymptotic behavior of
the expected optimal value of the LAP within the pre-
sented approach. In the case n D 2 the costs of feasible
solutions to the MAP (1) have the form

z D ci (1)1 ���i
(1)
d
C ci (2)1 ���i

(2)
d
;

where i(1)j ; i
(2)
j 2 f1; 2g; i

(1)
j ¤ i(2)j ;

and consequently are iid random variables with dis-
tribution F2, which is the convolution of F with itself:
F2 D F 
 F [11]. This fact allows for computing the ex-
pected optimal value of n D 2MAP exactly, without re-
sorting to bounds (4):

Z�d;2 D EF�F
�
X(1j2!d�1)

�
: (7)

In the general case d � 3; n � 3 the main chal-
lenge is constituted by computation of the upper bound
Z
�

d;n D nEF
�
X(˛j�)

�
, where X(˛j�) is the ˛-th order

statistic among � independent F-distributed random
variables. The subsequent analysis relies on represen-
tation of Z

�

d;n in the form

Z
�

d;n D
n� (� C 1)

� (˛)� (� � ˛ C 1)

�

Z 1

0
F�1(u)u˛�1(1 � u)��˛ du ; (8)

where F�1 denotes the inverse of the c.d.f. F of the the
distribution of assignment costs in MAP (1). While it
is practically impossible to evaluate the integral in (8)
exactly in the general case, its asymptotic behavior for
large n and d can be determined for a wide range of dis-
tributions F. For instance, in the case when distribution

F has a finite left endpoint of its support set, the asymp-
totic behavior of the integral in (8) is obtained bymeans
of the following

Lemma 3. Let function h(u) have the following asymp-
totic expansion at 0C,

h(u) �
1X
sD0

asu(sC	�
)/
; u! 0C ; (9)

where �;� > 0. Then for any positive integer m one has

Z 1

0
h(u)u˛�1(1 � u)��˛ du

D

m�1X
sD0

as�s(�)C O
�
�m(�)

�
; �

n;d
�!1; (10)

where �s(�) D B
� sC	


C˛�1; ��˛C1

�
, s D 0; 1; : : : ,

provided that the integral is absolutely convergent for
� D ˛ D 1.

Above, B(x; y) is the Beta function. Using similar re-
sults for the cases when the support set of distribution
F is unbounded from below, we obtain that the limiting
behavior of the expected optimal value Z�d;n of random
MAP is determined by the location of the left endpoint
of the support of F [13].

Theorem 1. Expected Optimal Value of Random
MAP Consider a d � 3; n � 2MAP (1) with cost coef-
ficients that are iid random variables from an absolutely
continuous distribution F with existing first moment. If
the distribution F satisfies either of the following condi-
tions,
1. F�1(u) D F�1(0C)C O(uˇ ); u! 0C; ˇ > 0
2. F�1(u) � ��u�ˇ1

�
ln 1

u

�ˇ2
; u ! 0C, 0 � ˇ1 <

1; ˇ2 � 0; ˇ1 C ˇ2 > 0; � > 0
where F�1(0C) D limu!0C F�1(u), the expected opti-
mal value of the MAP satisfies

lim Z�d;n D lim nF�1(0C) ;

where both limits are taken at either n!1 or d !1.

The obtained results can be readily employed to con-
struct upper and lower asymptotical bounds for the ex-
pected optimal value of MAP when one of the param-
eters n or d is large but finite. The following statement
follows directly from Lemma 3 and Theorem 1.
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Corollary 1. Consider a d � 3; n � 3 MAP (1) with
cost coefficients that are iid random variables from an
absolutely continuous distribution with existing first mo-
ment. Let a 2 R be the left endpoint of the support set of
this distribution, a D F�1(0C), and assume that the in-
verse F�1(u) of the c.d.f. F(u) of the distribution is such
that

F�1(u) � a C
1X
sD1

asus/
; u! 0C; � > 0 : (11)

Then, for any integer m � 1, lower and upper bounds
Z�d;n ; Z

�

d;n (4) on the expected optimal cost Z�d;n of the
MAP can be asymptotically evaluated as

Z�d;n DanC
m�1X
sD1

as
n� (� C 1)�

� s


C 1

�

�
�
� C s



C 1

�

C O
 
n
� (� C 1)�

�m


C 1

�

�
�
� C m



C 1

�
!
; �

n;d
�!1 ;

(12a)

Z
�

d;n DanC
m�1X
sD1

as
n� (� C 1)�

� s


C ˛

�

� (˛)�
�
� C s



C 1

�

C O
 
n
� (� C 1)�

�m


C ˛

�

� (˛)�
�
� C m



C 1

�
!
; �

n;d
�!1 :

(12b)

It can be shown that the lower and upper bounds de-
fined by (12a, 12b) are convergent, i. e., jZ�d;n�Z

�
d;n j !

0; �
n;d
�!1; whereas the corresponding asymptotical

bounds for the case of distributions with support un-
bounded from below may be divergent in the sense that

jZ
�

d;n � Z�d;n j¹ 0 when �
n;d
�!1.

The asymptotical representations (12a, 12b) for the
bounds Z�d;n and Z

�

d;n are simplified when the inverse
F�1 of the c.d.f. of the distribution has a regular power
series expansion in the vicinity of zero. Assume, for ex-
ample, that function F�1 can be written as

F�1(u) D a1uC O(u2); u! 0+ : (13)

It is then easy to see that for n� 1 and d fixed the
expected optimal value of the MAP is asymptotically

bounded as

a1
nd�2

C O
�

1
nd�1

�
� Z�d;n

�
a1ded�1e
nd�2

C O
�

1
nd�1

�
; n!1 ; (14)

which immediately yields the rate of convergence to
zero for Z�d;n as n approaches infinity:

Corollary 2. Consider a d � 3; n � 3 MAP (1) with
cost coefficients that are iid random variables from an
absolutely continuous distribution with existing first mo-
ment. Let the inverse F�1 of the c.d.f. of the distribu-
tion satisfy (13). Then, for a fixed d and n!1 the ex-
pected optimal value Z�d;n of the MAP converges to zero
as O

�
n�(d�2)

�
.

For example, the expected optimal value of 3-dimen-
sional (d D 3) MAP with uniform U(0; 1) or exponen-
tial distributions converges to zero as O(n�1) when
n!1.

We illustrate the tightness of the developed bounds
(12a, 12b) by comparing them to the computed ex-
pected optimal values of MAPs with coefficients ci1���id
drawn from the uniform U(0; 1) distribution and ex-
ponential distribution with mean 1. It is elementary
that the inverse functions F�1(�) of the c.d.f.’s for both
these distributions are representable in form (13) with
a1 D 1.

The numerical experiments involved solving mul-
tiple instances of randomly generated MAPs with the
number of dimensions d ranging from 3 to 10, and
the number n of elements in each dimension running
from 3 to 20. The number of instances generated for
estimation of the expected optimal value of the MAP
with a given distribution of cost coefficients varied from
1000 (for smaller values of d and n) to 50 (for problems
with largest n and d).

To solve the problems to optimality, we used
a branch-and-bound algorithm that navigated through
the index tree representation of the MAP. Figures 1
and 2 display the obtained expected optimal values
of MAP with uniform and exponential iid cost coeffi-
cients when d is fixed at d D 3 or 5 and n D 3; : : : ; 20,
and when n D 3 or 5 and d runs from 3 to 10. This
“asymmetry” in reporting of the results is explained by
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Asymptotic Properties of RandomMultidimensional Assignment Problem, Figure 1
Expected optimal value Z�

d;n, lower and upper bounds Z�

d;n; Z
�

d;n of an MAP with fixed d D 3 (left) and d D 5 (right) for uni-
form U(0; 1) and exponential (1) distributions

Asymptotic Properties of RandomMultidimensional Assignment Problem, Figure 2
Expectedoptimal valueZ�

d;n , lower andupperboundsZ�

d;n; Z
�

d;n of anMAPwith fixedn D 3 (left) andn D 5 (right) for uniform
U(0; 1) and exponential(1) distributions

the fact that the implemented branch-and-bound algo-
rithm based on index tree is more efficient in solving
“shallow” MAPs, i. e., instances that have larger n and
smaller d. The solution times varied from several sec-
onds to 20 hours on a 2GHz PC.

The conducted numerical experiments suggest that
the constructed lower and upper bounds for the ex-
pected optimal cost of random MAPs are quite tight,
with the upper bound Z

�

d;n being tighter for the case of
fixed n and large d (see Figs. 1, 2).

Expected Number of Local Minima
in RandomMAP

Local Minima and p-exchange Neighborhoods
in MAP

As it has been mentioned in the Introduction, we
consider local minima of a MAP with respect to
a local neighborhood, in the sense of [15]. For
any p D 2; : : : ; n, we define the p-exchange lo-
cal neighborhood Np(i) of the ith feasible solu-
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tion fi(1)1 � � � i
(1)
d ; : : : ; i

(n)
1 � � � i

(n)
d g of the MAP (1) as

the set of solutions obtained from i by permut-
ing p or less elements in one of the dimensions
1; : : : ; d. More formally, Np(i) is the set of n-tuples
f j(1)1 � � � j

(1)
d ; : : : ; j

(n)
1 � � � j

(n)
d g such that f j(1)k ; : : : ; j

(n)
k g is

a permutation of f1; : : : ; ng for all 1 � k � d, and, fur-
thermore, there exists only one k0 2 f1; : : : ; dg such
that

2 �
nX

rD1

ı̄i (r)k0
j(r)k0
� p; while

nX
rD1

ı̄i (r)k j(r)k
D 0

for all k 2 f1; : : : ; dgnk0 ;
(15)

where ı̄i j is the negation of the Kroneker delta, ı̄i j D
1 � ıi j. As an example, consider the following feasible
solution to a d D 3, n D 3 MAP: f111; 222; 333g. Then,
one of its 2-exchange neighbors is f111; 322; 233g, an-
other one is {131, 222, 313}; a 3-exchange neighbor
is given by {311, 122, 233}, etc. Evidently, one has
Np �NpC1 for p D 2; : : : ; n � 1.

Proposition 1. For any p D 2; : : : ; n, the size jNpj of
the p-exchange local neighborhood of a feasible solution
of a MAP (1) is equal to

jNpj D d
pX

kD2

D(k)

 
n
k

!
;

where D(k) D
kX

jD0

(�1)k� j

 
k
j

!
j! : (16)

The quantity D(k) in (16) is known as the number of
derangements of a k-element set [29], i. e., the num-
ber of permutations f1; 2; : : : ; kg 7! fi(1); i(2); : : : ; i(k)g
such that i(1) ¤ 1; : : : ; i(k) ¤ k, and can be easily calcu-
lated by means of the recurrent relation (see [29])

D(k) D kD(k � 1)C (�1)k; D(1) D 0 ;

so that, for example, D(2) D 1, D(3) D 2, D(4) D 9,
and so on. Then, according to Proposition 1, the size of
a 2-exchange neighborhood is jN2j D d

�n
2

�
, the size of

a 3-exchange neighborhood is jN3j D d
��n

2

�
C 2

�n
3

��
,

etc.
Note also that size of the p-exchange neighborhood

is linear in the number of dimensions d. Depending on

p, jNpj is either polynomial or exponential in the num-
ber of elements n per dimension, as follows from the
representation

D(n) D n!
�
1 � 1

1! C
1
2! �

1
3! C � � � C

(�1)n
n!

�
	

n!
e
;

n � 1 :

The definition of a local minimum with respect
to the p-exchange neighborhood is then straight-
forward. The kth feasible solution with cost zk is
a p-exchange local minimum iff zk � z j for all
j 2Np(k). Continuing the example above, the solution
f111; 222; 333g is a 2-exchange local minimum iff its
cost z1 D c111 C c222 C c333 is less than or equal to costs
of all of its 2-exchange neighbors.

The number Mp of local minima of the MAP is ob-
tained by counting the feasible solutions that are local
minima with respect to neighborhoods Np . In a ran-
dom MAP, where the assignment costs are random
variables, Mp becomes a random quantity itself. In this
paper we are interested in determining the expected
number E[Mp] of local minima in random MAPs that
have iid assignment costs with continuous distribution.

Expected Number of Local Minima in MAP
with n = 2

As it was noted above, in the special case of random
MAP with n D 2, d � 3, the costs of feasible solutions
are iid random variables with distribution F 
 F, where
F is the distribution of the assignment costs. This spe-
cial structure of the feasible set allows for a closed-form
expression for the expected number of local minima
E[M] (note that in a n D 2MAP the largest local neigh-
borhood isN2, thus M D M2), as established in [11].

Theorem 2. In a n D 2, d � 3 MAP with cost coeffi-
cients that are iid continuous random variables, the ex-
pected number of local minima is given by

E[M] D
2d�1

d C 1
: (17)

Equality (17) implies that in a n D 2; d � 3 MAP the
number of local minima E[M] is exponential in d, when
the cost coefficients are independently drawn from any
continuous distribution.
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Expected Number of Local Minima
in a RandomMAP with Normally Distributed Costs

Our ability to derive a closed-form expression (17) for
the expected number of local minima E[M] in the pre-
vious section has relied on the independence of feasible
solution costs (2) in a n D 2 MAP. As it is easy to ver-
ify directly, in the case n � 3 the costs of feasible solu-
tions are generally not independent. This complicates
analysis significantly if an arbitrary continuous distri-
bution for assignment costs ci1���id in (1) is assumed.
However, as we show below, one can derive upper and
lower bounds for E[M] in the case when the costs coeffi-
cients of (1) are independent normally distributed ran-
dom variables. First, we develop bounds for the num-
ber of local minima E[M2] defined with respect to 2-ex-
change neighborhoodsN2 that are most widely used in
practice.

2-exchange Local Neighborhoods Noting that in the
general case the number N of the feasible solutions to
MAP (1) is equal to N D (n!)d�1, the expected number
of local minima E[M2] with respect to local 2-exchange
neighborhoods can be written in the form

E[M2] D
NX

kD1

P
h \
j2N2(k)

zk � z j � 0
i
; (18)

whereN2(k) is the 2-exchange neighborhood of the kth
feasible solution, and zi is the cost of the ith feasible so-
lution, i D 1; : : : ;N: If we allow the nd cost coefficients
ci1���id of the MAP to be independent standard normal
N(�; �2) random variables, then the probability term
in (18) can be expressed as

P
h \
j2N2(k)

zk � z j � 0
i
D F˙ (0) ; (19)

where F˙ is the c.d.f. of the jN2j-dimensional random
vector

Z D (Z121; : : : ; Z12d ; Z131; : : : ; Z13d ; � � �

� � � ; Zrs1; : : : ; Zrsd ; � � � ; Zn�1;n;1; : : : ; Zn�1;n;d
�
;

r < s : (20)

Vector Z has a normal distribution N(0; ˙) with
the covariance matrix ˙ defined as

Cov(Zrsq ; Zi jk) D8̂
<̂
ˆ̂:

4�2; if i D r; j D s; q D k;
2�2; if i D r; j D s; q ¤ k;
�2; if (i D r; j ¤ s) or (i ¤ r; j D s) ;
0; if i ¤ r; j ¤ s:

(21)

While the value of F˙ (0) in (19) is difficult to com-
pute exactly for large d and n, lower and upper bounds
can be constructed using Slepian’s inequality [30]. To
this end, we introduce covariance matrices ˙ D (� i j)
and ˙ D (�̄i j) as

� i j D

8̂
<̂
ˆ̂:

4�2; if i D j;
2�2; if i ¤ j and

(i � 1) div d D ( j � 1) div d
0; otherwise

;

(22a)

�̄i j D

�
4�2; if i D j;
2�2; otherwise

; (22b)

so that � i j � �i j � � i j holds for all 1 � i; j � jN2j,
with �i j being the components of the covariance ma-
trix˙ (21). Then, Slepian’s inequality claims that

F˙ (0) � F˙ (0) � F˙ (0) ; (23)

where F˙ (0) and F˙ (0) are c.d.f.’s of random vari-
ables X˙ � N(0; ˙) and X˙ � N(0; ˙) respectively.
The structure of matrices ˙ and ˙ allows the corre-
sponding values F˙ (0) and F˙ (0) to be computed in
a closed form, which leads to the following bounds for
the expected number of local minima in random MAP
with iid normal coefficients:

Theorem 3. In a n � 3; d � 3 MAP with iid normal
cost coefficients, the expected number of 2-exchange local
minima is bounded as

(n!)d�1

(d C 1)n(n�1)/2
� E[M2] �

2(n!)d�1

n(n � 1)d C 2
: (24)

Note that both the lower and upper bounds in (24) co-
incide with the exact expression (17) for E[M2] in the
case n D 2. Also, from (24) it follows that for fixed
n � 3, the expected number of local minima is expo-
nential in the number of dimensions d for a fixed n.
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Higher-Order Neighborhoods (p � 3) The outlined
approach is applicable to general p-exchange neighbor-
hoods. For convenience, here we consider the neigh-
borhoods N �p as defined in Sect. “Local Minima
and p-exchange Neighborhoods in MAP”, i. e., the
neighborhoods obtained from a given feasible solu-
tion by permuting exactly p elements in one of the
d dimensions, so that for any feasible solution i D
fi(1)1 � � � i

(1)
d ; : : : ; i

(n)
1 � � � i

(n)
d g and its p-exchange neigh-

bor j D f j(1)1 � � � j
(1)
d ; : : : ; j

(n)
1 � � � j

(n)
d g 2 N �p (i) one has

(compare to (15))

nX
rD1

ı̄i (r)k0
j(r)k0
D p; k0 2 f1; : : : ; dg; and

nX
rD1

ı̄i (r)k j(r)k
D 0 for all k 2 f1; : : : ; dgnk0 :

(25)

Then, upper and lower bounds for the expected
number of local minima E[M�p ] defined with respect
to p-exchange neighborhoods N �p can be derived in
a similar fashion. Namely, the sought probability

P
h \
i2N�p (k)

zk � zi � 0
i
D F˙p (0)

can be bounded as F˙ p (0) � F˙p (0) � F˙ p
(0), where

the matrices ˙ p; ˙ p 2 RjN
�

p j�jN �p j are such that

�
˙ p
�
i j D

�
2p�2; if i D j;
(2p � 2)�2; if i ¤ j;

(26a)

�
˙ p
�
i j D

8̂
ˆ̂̂<
ˆ̂̂̂
:

2p�2; if i D j ;
p�2; if i ¤ j and (i � 1) div

�
dD(p)

�

D ( j � 1) div
�
dD(p)

�
;

0; otherwise :

(26b)

The corresponding bounds for the expected num-
ber of local minima E[M�p ] are established by the fol-
lowing theorem [11].

Theorem 4. In a n � 3; d � 3 MAP with iid normal
cost coefficients, the expected number of local minima
M�p with respect to p-exchange local neighborhoodsN �p

is bounded as

n!d�1
�
dD(p)C 1

�(np) � E[M�p ] � n!d�1

Z C1
�1

h
˚
�p

p � 1z
�id(np)D(p)

d˚(z) ;

(27)

where ˚(z) is the c.d.f. of the standard normal N(0; 1)
distribution. For 3-exchange neighborhoodsN �3 , an im-
proved upper bound holds:

E[M�3 ] �
3n!d�1

n(n � 1)(n � 2)d C 3
: (28)

It is interesting to note that for a fixed p the ratio of
number of local minima to the number of feasible solu-
tions becomes infinitely small as the dimensions of the
problem increase (see (17), (24), and (27)).

Conclusions

We have discussed asymptotical analysis of the ex-
pected optimal value and the expected number of lo-
cal minima of the Multidimensional Assignment Prob-
lem whose assignment costs are iid random variables
drawn from a continuous distribution. It has been
demonstrated that for a broad class of distributions,
the asymptotical behavior of the expected optimal cost
of a random MAP in the case when one of the prob-
lem’s dimension parameters approaches infinity is de-
termined by the location of the left endpoint of the sup-
port set of the distribution. The presented analysis is
constructive in the sense that it allows for derivation of
lower and upper asymptotical bounds for the expected
optimal value of the problem for a prescribed probabil-
ity distribution.

In addition, we have derived a closed-form ex-
pression for the expected number of local minima in
a n D 2 randomMAP with arbitrary distribution of as-
signment costs. In the case n � 3, bounds for the ex-
pected number of local minima have been derived in
the assumption that assignment costs are iid normal
random variables. It has been demonstrated that the ex-
pected number of local minima is exponential in the
number of dimensions d of the problem.
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Many iterative algorithms, deterministic or stochastic,
admit distributed implementations, whereby the work
load for performing computational steps, identified as
bottlenecks, is distributed among a variety of computa-
tional nodes. Extensive literature regarding distributed
implementations of optimization algorithms in partic-
ular is available, [19]. In recent years, there has been an
extremely fruitful interface between mathematical pro-
gramming algorithms and computer science. This has
resulted in major advances in the development of algo-
rithms and implementation of sophisticated optimiza-
tion algorithms on high performance parallel and dis-
tributed computers, [11,12]. Two major issues are im-
portant in designing an efficient distributed implemen-
tation, namely, task allocation, and communication pro-
tocol. Task allocation relates to the breakdown of the
total work load and this can either be static or dynamic
depending. Communication patterns and frequency are
important since they can induce substantial overhead in
cases where workload irregularities occur. Various im-
portant implementational details have been presented,
among others, in [10]. The straightforward translation
of serial to a distributed algorithm would assume some
sort of global synchronization mechanism that would
guarantee that information among processing nodes is
being exchanged once a computational step has been
performed. Processors must then synchronize so as to
exchange information and proceed all with the same
type of information to their next computational step.
Asynchronous algorithms relax the assumption of a pre-
determined synchronization protocol, and allow each
processing element to compute and communicate fol-
lowing local rates. The primary motivation for devel-
oping algorithms was to address situations in which:
� processors do not need to communicate to each

other processor at each time instance;
� processors may keep performing computations

without having to wait until they receive the mes-
sages that have been transmitted to them;

� processors are allowed to remain idle some of the
time;

� some processors may be performing computations
faster than others.

Such algorithms can alleviate communication over-
loads and they are not excessively slowed down by ei-
ther communication delays nor by differences in the
time it takes processors to perform one computation,
[18]. Another major motivation is clearly to develop
robust algorithms for distributed computation on het-
erogeneous networks of computers. The ideas of asyn-
chronous, also known as chaotic, iterative schemes, can
be traced by to [9], in which special schemes for solv-
ing linear systems of equations were developed. For
discussing the basic principles and conditions of asyn-
chronous iterations, the formalism of [8] will be fol-
lowed. This work presented the first comprehensive
treatment of the recent developments in the theory
and practice of asynchronous iterations for a variety of
problems, including deterministic and stochastic opti-
mization. In essence, most iterative algorithms can be
viewed as the search for a fixed point that corresponds
to the solution of the original problem. The basic as-
sumptions of the model of asynchronous (chaotic) iter-
ations for determining fixed point of (non)linear map-
pings are as follows:
1) Let X be a vector space and x = (x1, . . . , xn) 2 X are

n-tuples describing any vector from this set. It is also
assumed that X = X1 × � � � × Xn, with xi 2 Xi, i = 1,
. . . , n.

2) Let f : X! X be a function defined by f (x) = (f 1(x),
. . . , f n(x)), 8x 2 X.

3) A point X? 2 X is a fixed point of f (x) if x? = f (x?)
or, equivalently, x?i = f i(x?), i = 1, . . . , n.

For the solution of the aforementioned problem, one
can define an iterative method as:

xi :D fi(x); i D 1; : : : ; n;

with xi(t) being the values of the ith component at time
(iteration) t. In order to comprehend the concept of
asynchronous iterations, we assume that there exists
a set of times T = { 0, 1, . . . } at which one or more (pos-
sibly none) components xi of x are updated by some
processor of a distributed computing system. We de-
fined by Ti the set of times at which xi is updated. Given
that no synchronization protocol dictating the informa-
tion exchange exists, it is quite conceivable that not all
processors have access to the same and most recent val-
ues of of the corresponding components of x. It will be
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therefore assumed that:

xi(t C 1) D

8̂
<̂
ˆ̂:

fi(x1� i1(t); : : : ; xn(� in(t));
8t 2 Ti ; 0 � � ij (t) � t;

xi(t); 8t … Ti :

In the aforementioned definition of the iterative pro-
cess, the difference t � � ij(t) between the current time t
and the time � ij(t) corresponding to the jth component
available at the processor updating xi(t) can be viewed
as some form of communication delay. In studying the
convergence behavior of algorithms of this type, two
cases have to be considered. The operation can either
be totally asynchronous or partially asynchronous. The
concept of totally asynchronous algorithms was first in-
troduced in [9], and subsequently analyzed in, among
other, [1,5,15]. [5] proposed a general framework that
ensembles a variety of instances. The cornerstone of his
approach is based on the asynchronous convergence the-
orem, [8]. It defined a general pattern for proving con-
vergence of the asynchronous counterparts of certain
sequential algorithms. The asynchronous convergence
theorem can be applied to variety of problems includ-
ing:
� problems involving maximum norm contraction

mappings;
� problems involving monotone mappings;
� the shortest path problem;
� linear and nonlinear network flow problems.
Qualitatively speaking, the fundamental difference be-
tween a synchronous and an asynchronous iterative
mapping, is similar to the differences between a Jacobi
and a Gauss–Seidel iteration. Consider the implemen-
tation of both these approaches in the minimization of
function F(x). The specifics of the minimization algo-
rithm are irrelevant:
� Jacobi:

xi(t C 1) D argmin
xi

F(x1(t); : : : ; xn(t));

� Gauss–Seidel:

xi(tC 1) D argmin
xi

F(x1(t C 1); : : : ; xi(t); : : : ; xn(t)):

The Gauss–Seidel approach corresponds to the instan-
taneous communication, in a sequential manner, of the

information as it being generated. The Jacobi itera-
tion, forces processors to perform iterations utilizing
‘outdated’ information. The asynchronous iteration is
reminiscent to a Jacobi one. A thorough analysis and
comparison of these two extremes is presented in [16].
A major class of iterative schemes that can be shown
to be convergent when implemented asynchronously,
are defined by mappings which can be shown to be
contraction mappings with respect to a suitably defined
weighted maximum norm:

kxk!1 D max
i

jxi j
!i
;

x 2 Rn ; ! 2 Rn
C:

Let us consider the minimization of an unconstrained
quadratic function F:
(
min F(x) D 1

2 x
>Ax � b>x

s.t. x 2 Rn ;

where A is an n × n positive definite symmetric matrix,
and b 2 Rn. A gradient iteration of the form

x :D (I � �A)x C �b

will be convergent provided that the maximum row
sum of I � � A is less than 1, i. e.:
ˇ̌
1 � �˛i j

ˇ̌
C
X
j: j¤i

�
ˇ̌
ai j
ˇ̌
< 1; i D 1; : : : ; n;

implying the diagonal dominance condition:

ai j >
X
j: j¤i

ˇ̌
ai j
ˇ̌
; 8i:

If we consider the general nonlinear unconstrained op-
timization problem:
(
min g(x)
s.t. x 2 Rn ;

where g: Rn! R is a twice-differentiable convex func-
tion, with Hessian matrix r2g(x) which is positive def-
inite. If one considers a Newton mapping given by:

f (x) D x � [r2g(x)]�1r g(x)

The norm k x k = maxi |xi| makes f a contraction map-
ping in the neighborhood of x? (the optimal point). Ex-
tensions of the ordinary gradient method

f (x) D x � ˛r g(x)
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are also discussed in [5]. The shortest path problem
is defined in terms of a directed graph consisting of
n nodes. We denote by A(i) the set of all nodes j for
which there is an outgoing arc (i, j) from node i. The
problem is to find a path of minimum length starting
at node i and ending at node j. [4] considered the ap-
plication of the asynchronous convergence theorem to
fixed point iterations involving monotone mappings by
considering the Bellman–Ford algorithm, [3], applied
to the shortest path problem. This takes the form:

xi(t C 1) D min
j2A(i)

(ai j C x j(� ij (t));

i D 2; : : : ; n; t 2 Ti ;

x1(tC 1) D 0:

A(i) is the set of all nodes j for which there exists an arc
(i, j). Linear network flow problems are discussed in [8]
and asynchronous distributed versions of the auction
algorithm are discussed. In the general linear network
flow problem we are given a set of N nodes and a set of
arcs A, each arc (i, j) has associated with it an integer
aij, referred to as the cot coefficient. The problem is to
optimally assign flows, f ij to each one of the arcs, and
the problem is represented mathematically as follows:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X

(i; j)2A

ai j fi j

s.t.
X

j:(i; j)2A

fi j �
X
j:( j;i)

f ji D si ; 8i 2 N;

bi j � fi j � ci j; 8(i; j) 2 A;

where aij, bij, cij and si are integers. Extensions of
the sequential auction algorithms are discussed in [6],
in which asynchronism manifests itself in the sense
that certain processors may be calculating actions bids
which other update object prices. [7] extended the anal-
ysis to cover certain classes of nonlinear network flow
problems in which the costs aij are functions of the flows
f ij:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X

(i; j)2A

ai j( fi j)

s.t.
X

j:(i; j)2A

fi j �
X
j:( j;i)

f ji D si ; 8i 2 N;

bi j � fi j � ci j; 8(i; j) 2 A:

Imposing additional reasonable assumptions to the
general framework of totally asynchronous iterative al-
gorithms can substantially increase the applicability of

the concept. A natural extension is therefore the par-
tially asynchronous iterative methods, whereby two ma-
jor assumptions are be satisfied:
a) each processor performs an update at least once

during any time interval of length B;
b) the information used by any processor is outdated

by at most B time units.
In other words, the partial asynchronism assump-

tion extends the original model of computation by stat-
ing that:

There exists a positive integer B such that:

� For every i and for every t � 0, at least one
of the elements of the set {t, . . . , t + B � 1}
belongs to Ti.

� There holds:

t � B � � ij (t) � t;

for all i and j, and all t � 0 belonging to Ti.
� There holds � ii (t) = t for all i and t 2 Ti.

[17] developed a very elegant framework with impor-
tant implications on the asynchronous minimization
of continuous functions. It was established that, while
minimize function F(x), the asynchronous implemen-
tation of a gradient-based algorithm:

x :D x � �rF(X)

is convergent if and only if the stepsize � is small com-
pared to the inverse of the asynchronism measure B.
Specifically, let F: Rn! R be a cost function to be min-
imized subject to no constraints. It will be further as-
sumed that:
1) F(x) > 0, 8x 2 Rn;
2) F(x) is Lipschitz continuous:

krF(x) � rF(y)k � K1 kx � yk ;

8x; y;2 Rn :

The asynchronous gradient algorithm of the syn-
chronous iteration:

x :D x � �rF(x)

is denoted by:

xi (tC 1) :D xi(t) � � si (t); i D 1; : : : ; n;
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where � is a positive stepsize, and si(t) is the update di-
rection. It will be assumed that

si (t) D 0; 8t … Ti :

It is important to realize that processor i at time time t
has knowledge of a vector xi(t) that is a, possibly, out-
dated version of x(t). In other words: xi(t) = ((x1(� i1 (t)),
. . . , xn(� in(t))). It is further assumed that when xi is be-
ing updated, the update direction si is a descent direc-
tion: For every i and t:

si (t)ri F(xi(t)) � 0

there exists positive constants K2, K3 such that

K1
ˇ̌
ri F(xi(t))

ˇ̌
� jsi (t)j � K3

ˇ̌
ri F(xi(t))

ˇ̌
;

8t 2 Ti ; 8i:

If all of the above is satisfied, then for the asynchronous
gradient iteration it can be shown that: There exists
some �0, depending on n, B, K1, K3, such that if 0 <
� < �0, then limt!1 � F(x(t)) = 0.

It can actually be further shown that the choice

� D
1

K3K1(1C BC nB)

can guarantee convergence of the asynchronous algo-
rithm. This results clearly states that one can always, in
principle, identify an adequate stepsize for any finite de-
lay.

Furthermore, [14] elaborated on the use of gradient
projection algorithm, within the asynchronous iterative
framework, for addressing certain classes of constraint
nonlinear optimization problems. The constrained op-
timization problems considered, is that of minimizing
a convex function F: Rn ! R, defined over the space
X =

Qn
iD1 Xi of lower-dimensional sets Xi � Rni , andPm

iD1 ni = n. The ith component of the solution vector
is now updated by

xi(t C 1) D [xi(t)� �ri F(xi(t))]C

where [�]+ denotes the projection on the set Xi. Once
again: xi(t + 1) = xi(t), t 62 Ti. Once again, a gradient
based algorithm is defined, for which

si (t) D

8̂
ˆ̂<
ˆ̂̂:

1
�

�
[xi(t)� �ri F(xi (t))]C � xi(t)

�
;

t 2 Ti ;

0 t … Ti :

It can actually be shown that for, provided that the par-
tial asynchronism assumption holds, one can always
define, in principle, a suitable stepsize �0 such that for
any 0 < � < 0 the limit point, x�, of the sequence gener-
ated by the partially asynchronous gradient projection
iteration minimizes the Lipschitz continuous, convex
function F over the set X. Recently, [2], analyzed asyn-
chronous algorithms for minimizing a function when
the communication delays among processors are as-
sumed to be stochastic with Markovian character. The
approach is also based on a gradient projection algo-
rithm and was used to address a an optimal routing
problem.

A major consideration in asynchronous distributed
computing is the fact that since no globally control-
ling mechanism exists makes the use of any termination
criterion which is based on local information obsolete.
Clearly, when executing asynchronously a distributed
iteration of the form xi � f i(x) local error estimates can,
and will be, misleading in terms of the global state of
the system. Recently [13] made several suggestions as
to how the standard model can be supplemented with
an additional interprocessor communication protocol
so as to address the issue of finite termination of asyn-
chronous iterative algorithms.
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The auction algorithm is an intuitive method for solv-
ing the classical assignment problem. It outperforms
substantially its main competitors for important types
of problems, both in theory and in practice, and is also
naturally well suited for parallel computation. In this
article, we will sketch the basic principles of the algo-
rithm, we will explain its computational properties, and
we will discuss its extensions to more general network
flow problems. For a detailed presentation, see the sur-
vey paper [3] and the textbooks [2,4]. For an extensive
computational study, see [8]. The algorithm was first
proposed in the 1979 report [1].

In the classical assignment problem there are n per-
sons and n objects that we have to match on a one-to-
one basis. There is a benefit aij for matching person i
with object j and we want to assign persons to objects
so as to maximize the total benefit. Mathematically, we
want to find a one-to-one assignment [a set of person-
object pairs (1, j1), . . . , (n, jn), such that the objects j1,
. . . , jn are all distinct] that maximizes the total benefitPn

iD1ai j i .
The assignment problem is important in many

practical contexts. The most obvious ones are resource
allocation problems, such as assigning personnel to
jobs, machines to tasks, and the like. There are also situ-
ations where the assignment problem appears as a sub-
problem in various methods for solving more complex
problems.

The assignment problem is also of great theoreti-
cal importance because, despite its simplicity, it em-
bodies a fundamental linear programming structure.
The most important type of linear programming prob-
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lems, the linear network flow problem, can be reduced
to the assignment problem by means of a simple refor-
mulation. Thus, any method for solving the assignment
problem can be generalized to solve the linear network
flow problem, and in fact this approach is particularly
helpful in understanding the extension of auction algo-
rithms to network flow problems that are more general
than assignment.

The classical methods for assignment are based on
iterative improvement of some cost function; for exam-
ple a primal cost (as in primal simplex methods), or
a dual cost (as in Hungarian-like methods, dual simplex
methods, and relaxation methods). The auction algo-
rithm departs significantly from the cost improvement
idea; at any one iteration, it may deteriorate both the
primal and the dual cost, although in the end it finds an
optimal assignment. It is based on a notion of approxi-
mate optimality, called �-complementary slackness, and
while it implicitly tries to solve a dual problem, it actu-
ally attains a dual solution that is not quite optimal.

The Auction Process

To develop an intuitive understanding of the auction
algorithm, it is helpful to introduce an economic equi-
librium problem that turns out to be equivalent to the
assignment problem. Let us consider the possibility of
matching the n objects with the n persons through
a market mechanism, viewing each person as an eco-
nomic agent acting in his own best interest. Suppose
that object j has a price pj and that the person who re-
ceives the object must pay the price pj. Then, the (net)
value of object j for person i is aij � pj and each person
i would logically want to be assigned to an object ji with
maximal value, that is, with

ai j i � p ji D max
jD1;:::;n

fai j � p jg: (1)

We will say that a person i is ‘happy’ if this condition
holds and we will say that an assignment and a set of
prices are at equilibrium when all persons are happy.

Equilibrium assignments and prices are naturally of
great interest to economists, but there is also a funda-
mental relation with the assignment problem; it turns
out that an equilibrium assignment offers maximum to-
tal benefit (and thus solves the assignment problem),
while the corresponding set of prices solves an associ-

ated dual optimization problem. This is a consequence
of the celebrated duality theorem of linear program-
ming.

Let us consider now a natural process for finding
an equilibrium assignment. I will call this process the
naive auction algorithm, because it has a serious flaw,
as will be seen shortly. Nonetheless, this flaw will help
motivate a more sophisticated and correct algorithm.

The naive auction algorithm proceeds in ‘rounds’
(or ‘iterations’) starting with any assignment and any
set of prices. There is an assignment and a set of prices
at the beginning of each round, and if all persons are
happy with these, the process terminates. Otherwise
some person who is not happy is selected. This person,
call him i, finds an object ji which offers maximal value,
that is,

ji 2 arg max
jD1;:::;n

fai j � p jg; (2)

and then:
a) Exchanges objects with the person assigned to ji at

the beginning of the round;
b) Sets the price of the best object ji to the level at which

he is indifferent between ji and the second best ob-
ject, that is, he sets pji to

p ji C �i ; (3)

where

�i D vi � wi ; (4)

vi is the best object value,

vi D max
j
fai j � p jg; (5)

and wi is the second best object value

wi D max
j¤ j i
fai j � p jg; (6)

that is, the best value over objects other than ji.
(Note that � i is the largest increment by which the
best object price pji can be increased, with ji still be-
ing the best object for person i.)

This process is repeated in a sequence of rounds until
all persons are happy.

We may view this process as an auction, where at
each round the bidder i raises the price of his or her pre-
ferred object by the bidding increment � i. Note that � i
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cannot be negative since vi � wi (compare (5) and (6)),
so the object prices tend to increase. Just as in a real auc-
tion, bidding increments and price increases spur com-
petition by making the bidder’s own preferred object
less attractive to other potential bidders.

Does this auction process work? Unfortunately, not
always. The difficulty is that the bidding increment � i
is zero when more than one object offers maximum
value for the bidder i (cf. (4) and (6)). As a result, a sit-
uation may be created where several persons contest
a smaller number of equally desirable objects without
raising their prices, thereby creating a never ending cy-
cle.

To break such cycles, we introduce a perturbation
mechanism, motivated by real auctions where each bid
for an object must raise its price by a minimum positive
increment, and bidders must on occasion take risks to
win their preferred objects. In particular, let us fix a pos-
itive scalar � and say that a person i is ‘almost happy’
with an assignment and a set of prices if the value of its
assigned object ji is within � of being maximal, that is,

ai j i � p ji � max
jD1;:::;n

fai j � p jg � �: (7)

We will say that an assignment and a set of prices
are almost at equilibrium when all persons are almost
happy. The condition (7), introduced first in 1979 in
conjunction with the auction algorithm, is known as �-
complementary slackness and plays a central role in sev-
eral optimization contexts. For � = 0 it reduces to ordi-
nary complementary slackness (compare (1)).

We now reformulate the previous auction process
so that the bidding increment is always at least equal
to �. The resulting method, the auction algorithm, is
the same as the naive auction algorithm, except that the
bidding increment � i is

�i D vi � wi C �; (8)

(rather than � i = vi � wi as in (4)). With this choice,
the bidder of a round is almost happy at the end of the
round (rather than happy). The particular increment
� i = vi � wi + � used in the auction algorithm is the
maximum amount with this property. Smaller incre-
ments � i would also work as long as � i � �, but using
the largest possible increment accelerates the algorithm.
This is consistent with experience from real auctions,

which tend to terminate faster when the bidding is ag-
gressive.

We can now show that this reformulated auction
process terminates in a finite number of rounds, nec-
essarily with an assignment and a set of prices that are
almost at equilibrium. To see this, note that once an ob-
ject receives a bid for the first time, then the person as-
signed to the object at every subsequent round is almost
happy; the reason is that a person is almost happy just
after acquiring an object through a bid, and continues
to be almost happy as long as he holds the object (since
the other object prices cannot decrease in the course of
the algorithm). Therefore, the persons that are not al-
most happy must be assigned to objects that have never
received a bid. In particular, once each object receives
at least one bid, the algorithm must terminate. Next
note that if an object receives a bid in m rounds, its
price must exceed its initial price by at least m�. Thus,
for sufficiently large m, the object will become ‘expen-
sive’ enough to be judged ‘inferior’ to some object that
has not received a bid so far. It follows that only for
a limited number of rounds can an object receive a bid
while some other object still has not yet received any
bid. Therefore, there are two possibilities: either
a) the auction terminates in a finite number of rounds,

with all persons almost happy, before every object
receives a bid; or

b) the auction continues until, after a finite number
of rounds, all objects receive at least one bid, at
which time the auction terminates. (This argument
assumes that any person can bid for any object, but
it can be generalized for the case where the set of
feasible person-object pairs is limited, as long as at
least one feasible assignment exists.)

Optimality Properties at Termination

When the auction algorithm terminates, we have an as-
signment that is almost at equilibrium, but does this as-
signment maximize the total benefit? The answer here
depends strongly on the size of �. In a real auction,
a prudent bidder would not place an excessively high
bid for fear that he might win the object at an unneces-
sarily high price. Consistent with this intuition, we can
show that if � is small, then the final assignment will be
‘almost optimal’. In particular, we can show that the to-
tal benefit of the final assignment is within n� of being
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optimal. To see this, note that an assignment and a set
of prices that are almost at equilibrium may be viewed
as being at equilibrium for a slightly different problem
where all benefits aij are the same as before, except for
the n benefits of the assigned pairs which are modified
by an amount no more than �.

Suppose now that the benefits aij are all integer,
which is the typical practical case (if aij are rational
numbers, they can be scaled up to integer by multiplica-
tion with a suitable common number). Then, the total
benefit of any assignment is integer, so if n� < 1, a com-
plete assignment that is within n� of being optimal must
be optimal. It follows, that if

� <
1
n
;

and the benefits aij are all integer, then the assignment
obtained upon termination of the auction algorithm is
optimal. Let us also note that the final set of prices is
within n� of being an optimal solution of the dual prob-
lem

min
p j

jD1;:::;n

8<
:

nX
jD1

p j C

nX
iD1

max
j
fai j � p jg

9=
; : (9)

This leads to the interpretation of the auction algorithm
as a dual algorithm (in fact an approximate coordinate
ascent algorithm; see the cited literature).

Computational Aspects: �-Scaling

The auction algorithm exhibits interesting computa-
tional behavior, and it is essential to understand this
behavior to implement the algorithm efficiently. First
note that the amount of work to solve the problem can
depend strongly on the value of � and on the maximum
absolute object value

C D max
i; j

ˇ̌
ai j
ˇ̌
:

Basically, for many types of problems, the number of
bidding rounds up to termination tends to be propor-
tional to C/�. Note also that there is a dependence on
the initial prices; if these prices are ‘near optimal,’ we
expect that the number of rounds to solve the problem
will be relatively small.

The preceding observations suggest the idea of �-
scaling, which consists of applying the algorithm sev-

eral times, starting with a large value of � and succes-
sively reducing � up to an ultimate value that is less than
some critical value (for example, 1/n, when the benefits
aij are integer). Each application of the algorithm pro-
vides good initial prices for the next application. This
is a very common idea in nonlinear programming, en-
countered for example, in barrier and penalty function
methods. An alternative form of scaling, called cost scal-
ing, is based on successively representing the benefits
aij with an increasing number of bits, while keeping � at
a constant value.

In practice, it is a good idea to at least consider scal-
ing. For sparse assignment problems, that is, problems
where the set of feasible assignment pairs is severely
restricted, scaling seems almost universally helpful.
In theory, scaling leads to auction algorithms with
a particularly favorable polynomial complexity (with-
out scaling, the algorithm is pseudopolynomial; see the
cited literature).

Parallel and Asynchronous Implementation

Both the bidding and the assignment phases of the auc-
tion algorithm are highly parallelizable. In particular,
the bidding and the assignment can be carried out for
all persons and objects simultaneously. Such an imple-
mentation can be termed synchronous. There are also
totally asynchronous implementations of the auction al-
gorithm, which are interesting because they are quite
flexible and also tend to result in faster solution in some
types of parallel machines. To understand these imple-
mentations, it is useful to think of a person as an au-
tonomous decision maker who at unpredictable times
obtains information about the prices of the objects.
Each person who is not almost happy makes a bid at
arbitrary times on the basis of its current object price
information (that may be outdated because of commu-
nication delays).

See [7] for a careful formulation of the totally asyn-
chronous model, and a proof of its validity, including
extensive computational results on a shared memory
machine, confirming the advantage of asynchronous
over synchronous implementations.

Variations and Extensions

The auction algorithm can be extended to solve a num-
ber of variations of the assignment problem, such as the
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asymmetric assignment problem where the number of
objects is larger than the number of persons and there is
a requirement that all persons be assigned to some ob-
ject. Naturally, the notion of an assignment must now
be modified appropriately. To solve this problem, the
auction algorithm need only be modified in the choice
of initial conditions. It is sufficient to require that all
initial prices be zero. A similar algorithm can be used
for the case where there is no requirement that all per-
sons be assigned. Other variations handle efficiently the
cases where there are several groups of ‘identical’ per-
sons or objects ([5]).

There have been extensions of the auction algo-
rithm for other types of linear network optimization
problems. The general approach for constructing auc-
tion algorithms for such problems is to convert them
to assignment problems, and then to suitably apply the
auction algorithm and streamline the computations.
In particular, the classical shortest path problem can
be solved correctly by the naive auction algorithm de-
scribed earlier, once the method is streamlined. Sim-
ilarly, auction algorithms can be constructed for the
max-flow problems, and are very efficient. These algo-
rithms bear a close relation to preflow-push algorithms
for the max-flow problem, which were developed inde-
pendently of auction ideas.

The auction algorithm has been extended to solve
linear transportation problems ([5]). The basic idea is
to convert the transportation problem into an assign-
ment problem by creating multiple copies of persons
(or objects) for each source (or sink respectively), and
then to modify the auction algorithm to take advantage
of the presence of the multiple copies.

There are extensions of the auction algorithm for
linear minimum cost flow (transshipment) problems,
such as the so called �-relaxation method, and the auc-
tion/sequential shortest path algorithm algorithm (see
the cited literature for a detailed description). These
methods have interesting theoretical properties and like
the auction algorithm, are well suited for parallelization
(see the survey [6], and the textbook [7]).

Let us finally note that there have been propos-
als of auction algorithms for convex separable network
optimization problems with and without gains (but
with a single commodity and without side constraints);
see [9].
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The Hessian of a scalar function f (x) can be computed
automatically in at least two ways. The first is a natural
extension of the forward method for calculating gradi-
ents. The others extend the reverse method.

The ForwardMode

The concept of forward automatic differentiation was
described by L.B. Rall [14]. When calculating the gradi-
ent vector of a function of n variables, a doublet data
structure is introduced, consisting of n + 1 floating
point numbers. To calculate the Hessian matrix, this
data structure is extended to a triplet.

A triplet is a data structure that, in the simplest
form, contains 1 + n + n(n+1)/2 floating point num-
bers. If X is a variable that occurs in the evaluation of
f (x), then the triplet of X consists of
�
X;
@X
@xi

;
@2X
@xi@x j

�

for i = 1, . . . ,n and j � i.

The doublet consists of the first n + 1 elements of
the triplet.

At the start of the function evaluation the triplets of
the variables xk must be set and these are simply (xk, ek,
0) where ek is the unit vector with 1 in the kth place,
and 0 is the null matrix. If the function evaluation is ex-
panded as a Wengert list [17] consisting of three types
of operations,
� addition and subtraction,
� multiplication and division,
� nonlinear scalar functions,
then the arithmetic required to correctly update the
triplets is easily deduced.
� If Xk = Xl + Xm, l, m < k, then to obtain the triplet

of Xk, the elements of the triplets of Xl and Xm are
simply added together element by element.

� If Xk = Xl Xm, l, m < k, then the background arith-
metic is more complex as

@Xk

@xi
D Xl

@Xm

@xi
C Xm

@Xl

@xi

and

@2Xk

@xi@x j
D
@Xl

@x j

@Xm

@xi
C Xl

@2Xm

@xi@x j

C
@Xm

@x j

@Xl

@xi
C Xm

@2Xl

@xi@x j
:

As all these terms are stored in the triplets of Xl and
Xm, given the triplets of Xl and Xm the triplet of Xk

can be computed by a standard routine.
� If Xk = � (Xm),m < k, then

@Xk

@xi
D �0(Xm)

@Xm

@xi

and

@2Xk

@xi@x j
D �00(Xm)

@Xm

@xi
@Xm

@x j
C �0(Xm)

@2Xm

@xi@x j
:

To perform this operation the values of �0 (Xm) and
�00 (Xm) must be calculated with �(Xm); all the other
data is contained in the triplet of Xm.
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Illustrative Example 1: ForwardMode

Consider the simple function

f (x) D (x1x2 C sin x1 C 4)
�
3x22 C 6

�

In this case n = 2 and each triplet contains 6 float-
ing point numbers, the value of X, its gradient, and
the upper half of its Hessian. To evaluate the function,
gradient, and Hessian, first expand the function in the
Wengert list as shown in column 1 and then evaluate
the triplets one by one. The evaluation is performed at
the point (0, 1) below.

Xk triplet(Xk)
X1 = x1 0, 1, 0, 0, 0, 0
X2 = x2 1, 0, 1, 0, 0, 0
X3 = X1X2 0, 1, 0, 0, 1, 0
X4 = sin X1 0, 1 , 0, 0, 0, 0
X5 = X3 + X4 0, 2, 0, 0, 1, 0
X6 = X5 + 4 4, 2, 0, 0, 1, 0
X7 = X2

2 1, 0, 2,0,0, 2
X8 = 3X7 3, 0, 6, 0, 0, 6
X9 = X8 + 6 9, 0, 6, 0, 0, 6
X10 = X6X9 36, 18, 24, 0, 21, 24

The last row contains the values of the function, gradi-
ent and Hessian. The values for this simple problem can
be easily verified by direct differentiation.

In practice forward automatic differentiation may
be implemented in many ways, one possibility in many
modern computer languages is to introduce the new
data type triplet and over-write the meaning of the stan-
dard operators and functions so they perform the arith-
metic described above. The code for the function eval-
uation can then be written normally without recourse
to the Wengert list. Details of an implementation in
Ada are given in [13]. A single run through a function
evaluation code then computes the function, gradient
and Hessian. If S is the store required to compute f (x)
then this method requires (1 + n + n(n + 1)/2)S store.
If M is the number of operations required to compute
f (x) then (1 + 3n + 7n2)M is a pessimistic bound on
the operations required to compute the function, gra-
dient and Hessian. Additional overheads are incurred
to access the data type and the over-written operator

subroutines. The efficiency is often improved by treat-
ing the triplet as a vector array and using sparse stor-
age techniques. The number of zeros in the triplets of
the above simple example illustrates the strength of the
sparse form to calculate full Hessians. Maany reports
the following results for the CPU time to differenti-
ate the 50-dimensional Helmholz function (for details
see [10]).

Doublets triplets
full sparse full sparse

f 1.36 0:44 60:29 0:44
f ;r f 9:24 3:42 68:68 3:52
f ;r f ;r2 f N/A N/A 476:36 20:69

The CPU time for calculating f alone within the
full triplet package rises dramatically as although the
derivative calculations are switched off the full pack-
age still allocates the space for the full triplet. Using the
sparse package is also especially helpful if n is large and
f (x) is a partially separable function, i. e.

f (x) D
X
k

fk(x)

where f k(x) only depends on a small number Vk of the
n variables, as then, throughout the calculation of f k(x),
the sparse triplet will only contain at most 1 + Vk +
Vk(Vk + 1)/2 nonzeros, and Vk will replace n in all the
operation bounds, to give

P
k(1 + 3Vk + 7V2

k)Mk oper-
ations.

One of the main purposes for calculating the Hes-
sian matrix is to use it in optimization calculations. The
truncated Newton method can be written so that it ei-
ther requires the user to provide f , r f , and r2 f at
each outer iteration or f , r f at each outer iteration
and (r2 f ) p at each inner iteration. The first method
is ideally suited to be combined with sparse triplet dif-
ferentiation. The algorithm is described in [9] and re-
sults given on functions of up to n = 3000 in [8]. The
calculation of (r2 f ) p can also be undertaken simply
by a modification of the triplet method.

In [7] the conclusion was drawn that

the sparse doublet and sparse triplet codes in Ada
enable normal code to be written for the func-
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tion f and accurate values of r f and r2 f to
be obtained reliably by the computer. The ma-
jor hope for automatic differentiation is therefore
achieved.

Implementations are also available in Pascal.SC, C++,
and Fortran90. The NOCOptima Library [1] code,OP-
FAD, implements the sparse doublet and triplet meth-
ods described above in Fortran90.

TheMixedMethod

The advent of reverse automatic differentiation, A.
Griewank [10], raised the hope that quicker ways could
be found. The bound on the operations needed to com-
pute the Hessian by the full forward triplet method con-
tains the term 1/2n2M; by using a mixed method this is
not required. The simplest mixed method is to use re-
verse automatic differentiation to compute the gradient
which, [10], only requires 5M operations to compute
the function and gradient for any value of n. This can
be repeated at appropriate steps h along each axis, i. e.
at x + hei, i = 1, . . . , n, and simple differences applied to
the gradient vectors to calculate the Hessian in less than
5(n + 1)(M + 1) operations.

Illustrative Example 2: Reverse Differentiation

To obtain the gradient by reverse differentiation we
must introduce the adjoint variables X�k and reverse
back through the list. These rules are discussed in the
previous article, but for convenience are repeated. If in
the calculation of f (x),

Xk D �(Xi ; Xj); i; j < k;

then in the reverse pass

X�i D X�i C
@�

@Xi
X�k

and

X�j D X�j C
@�

@Xj
X�k :

For the same example the steps needed to calculate the
gradient by reverse differentiation are

X�k X�k
X�10 = 1 1
X�9 = X�10X6 4
X�6 = X�10X9 9
X�8 = X�9 4
X�7 = 3X�8 12
X�2 = 2X2X�7 24
X�5 = X�6 9
X�4 = X�5 9
X�3 = X�5 9
X�1 = X�4 cos X1 9
X�2 = X�2 + X1X�3 24
X�1 = X�1 + X2X�3 18

giving the gradient as (18, 24) in agreement with the
forward calculation. To perform this calculation the
values of X6 and X9 were required which had been cal-
culated during the function value calculation. The re-
verse gradient calculation must, therefore, follow a for-
ward function evaluation calculation and the required
data must be stored.

The bound 5M on the number of operations re-
quired to calculate the gradient is often very pessimistic,
especially when the function evaluation uses matrix op-
erations, [15], standard subroutines, [5], or when effi-
cient sparse storage is used, [6]. The store required by
this simple approach is simply that needed to calculate
the gradient by reverse differentiation. The original re-
verse method required O(M) store, but Griewank [11]
describes how the store required can be reduced to O(S
logM) at the cost of increasing the operation bound to
O(M logM).

The accuracy obtained by calculating the Hessian by
simple differences will depend on h but will often be
sufficient as accurate Hessians are rarely required in op-
timization. Many software packages for calculating the
gradient by reverse differentiation now exist, including
the Optima Library Code OPRAD [1].

In 1998 the most widely used code to calculate gra-
dients automatically is probably the ADIFOR code, [3],
many examples of its use are given in that reference;
unfortunately this implements a ‘statement level hybrid
mode’. In this, each assignment statement

Yi D � (Yj; j < i; j 2 J)
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is treated in turn and the gradient, @�
@Yj

, j 2 J, computed
efficiently by RAD but then to obtain the Doublet

@Yi

@xm
D
X
j

@�

@Yj

@Yj

@xm

many multiplications and additions may be required
leading to a high operation count.

ReverseMethod

A fully automatic approach could start by obtaining the
Wengert list for the function and gradient as calculated
by reverse automatic differentiation. This list will con-
tain at most 5M steps. Then a forward sparse Doublet
pass through this list could be performed that would
need less than (1 + 3n) 5M operations. The Doublet
formed for the same example is illustrated below. In
the Wengert list all identical Doublets are merged and
composite steps involving more than one operation are
split, it will be observed that the last two rows of the
Doublet contain the gradient and Hessian, as desired,
and that the number of operations, 22, is much less than
the bound 5M = 50. The storage requirement for this
approach, when n is large, is considerably greater than
that needed by the difference method. An alternative
would be to perform a reverse pass through the gra-
dient list. A full discussion is given in [4], who shows
the two are identical in arithmetic, storage and oper-
ation count. His experience with his Ada implementa-
tion showed that the performance was verymachine de-
pendent. If the sparse Doublet approach is used with
this reverse method on the partially separable func-
tion described above then the bound on the opera-
tions needed to obtain the Hessian reduces to

P
k5(Vk

+ 1)(Mk + 1), a considerable saving. An early imple-
mentation, PADRE2, is described in [12]. A more re-
cent code, ADOL-F, is described in [16]. Christianson’s
method is implemented in OPRAD, mentioned above.
It should perhaps bementioned that all the abovemeth-
ods can be hand-coded to solve any important problem
without incurring the overheads still associated with
most automatic packages, many of the helping hands
described in [5] are still not implemented in an auto-
matic package.

Further methods for speeding up the calculation of
the Hessian are described in � Automatic Differentia-
tion: Calculation of Newton Steps.

Illustrative Example 3:
Reverse Gradient, ForwardHessian

The variables in the Wengert list of the function and
gradient calculation will be denoted by Y .

Yk Doublet Yk
Y1 = x1 0, 1, 0
Y2 = x2 1, 0, 1
Y3 = Y1Y2 0, 1, 0
Y4 = sin Y1 0, 1, 0
Y5 = Y3 + Y4 0, 2, 0
Y6 = Y5 + 4 4, 2, 0
Y7 = Y2

2 1, 0, 2
Y8 = 3Y7 3, 0, 6
Y9 = Y8 + 6 9, 0, 6
Y10 = Y6Y9 36, 18, 24
Y11 = 1 1, 0, 0
Y12 = Y11Y6 4, 2, 0
Y13 = Y11Y9 9, 0, 6
Y14 = 3Y12 12, 6, 0
Y15 = Y2Y14 12, 6, 12
Y16 = 2Y15 24, 12, 24
Y17 = cos Y1 1, 0, 0
Y18 = Y17Y13 9, 0, 6
Y19 = Y1Y13 0, 9, 0
Y20 = Y2Y13 9, 0, 15
Y21 = Y18 + Y20 18, 0, 21
Y22 = Y16 + Y19 24, 21, 24

See also

� Automatic Differentiation: Calculation of Newton
Steps

� Automatic Differentiation: Geometry of Satellites
and Tracking Stations

� Automatic Differentiation: Introduction, History
and Rounding Error Estimation

� Automatic Differentiation: Parallel Computation
� Automatic Differentiation: Point and Interval
� Automatic Differentiation: Point and Interval

Taylor Operators
� Automatic Differentiation: Root Problem and

Branch Problem
� Nonlocal Sensitivity Analysis with Automatic

Differentiation
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Many algorithms for solving optimization problems re-
quire the minimization of a merit function, which may
be the original objective function, or the solution to
sets of simultaneous nonlinear equations whichmay in-
volve the constraints in the problem. To obtain second
order convergence near the solution algorithms to solve
both rely on the calculation of Newton steps.

When solving a set of nonlinear equations

s j(x) D 0; j D 1; : : : ; n;

the Newton step d at x(0), x 2 Rn, is obtained by solving
the linear set of equations

X
i

@s j
@xi

di D �s j; j D 1; : : : ; n;
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where both the derivatives @sj/ @xi and the vector func-
tion sj are evaluated at a point, which we will denote by
x(0).

For convenience we introduce the Jacobian matrix J
and write the equation as

Jd D �s

Whenminimizing a function f (x) the Newton equation
becomes
X
i

@2 f
@xi@x j

d j D �
@ f
@x j

where all the derivatives are calculated at a point, again
denoted by x(0).

In terms of the Hessian, H, and the gradient, g, this
can be written

Hd D �g

Automatic differentiation can be used to calculate
the gradient, Hessian and Jacobian, but it can also be
used to calculate the Newton step directly without cal-
culating the matrices. In this article we will first discuss
the calculation of the Jacobian, then extend briefly the
calculation of the gradient and Hessian, which was the
subject of � Automatic differentiation: Calculation of
the Hessian, and finally discuss the direct calculation of
the Newton step.

Jacobian Calculations

If the functions sj were each evaluated as separate enti-
ties, requiringMj operations, then the derivatives could
be evaluated by reverse automatic differentiation in 5
Mj operations. For many sets of functions it would,
however, be very inefficient to evaluate the set s in this
way, as considerable savings could be made by calculat-
ing threads of operations common to more than one sj
only once. In such situations the number of operations
M required to evaluate the set smay be much less thanP

jMj. Under these circumstances the decision on how
the Jacobian should be evaluated becomes much more
complicated.

Before the advent of automatic differentiation the
Jacobian was frequently approximated by one-sided
differences

@s j
@xi
D

s j
�
x(0) C hei

�
� s j

�
x(0)

�

h

If the vector function s requiresMWengert operations,
then the Jacobian would need (n + 1) M operations by
this approach. The accuracy of the result depends on
a suitable choice of h. If simple forward automatic dif-
ferentiation using doublets (see � Automatic differen-
tiation: Calculation of the Hessian) is used, an accu-
rate Jacobian is obtained at a cost of 3nM operations.
If a Newton step is to be calculated then the Jacobian
must be square and so the simple reverse mode, which
involves a backward pass through the Wengert list for
each subfunction, would be bounded by 5 n M opera-
tions.

Most large Jacobians are sparse and M.J.D. Powell,
A.R. Curtis, and J.R. Reid [5], introduced the idea of
combining columns i that had no common nonzeros.
Then, provided the sparsity pattern of J is known, the
values in those columns can be reconstructed by a re-
duced number of differences. If the number of such
PCR groups required to cover all the columns is c then
the operations count is reduced to (c + 1)M. For exam-
ple, the columns of the following 5 × 5 sparse Jacobian
could be divided into 3 groups
2
666664

� N 0 0 F
� N 0 F 0
0 N � F 0
0 0 � 0 F
� N 0 0 F

3
777775

indicated by�, N, andF.
This same grouping could be used with forward au-

tomatic differentiation to produce an accurate Jacobian
in at most 3cM operations. If the sparse Doublet is used,
the full benefit of sparsity within the calculation of the
sj is obtained, as well as the benefit due to sparsity in
the Jacobian, without the need to determine the column
groupings. Results showing the advantage of calculating
large (n = 5000) Jacobians this way are given in [15] and
summarised in [7].

It is possible for the calculation of some sj to be in-
dependent of other s that do contain a common thread.
It would obviously be efficient to calculate these sj by re-
verse differentiation, requiring 5Mj operations. Reverse
differentiation will also be appropriate if the common
thread has less outputs than inputs. Then sparse reverse
doublets, [2], should be used. These are implemented in
OPRAD, see � Automatic differentiation: Calculation
of the Hessian.
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T.F. Coleman et al. [3,4] demonstrated that calcu-
lating some columns using groups in the forward mode
and some rows using groups in the reverse mode is
considerably more efficient than using either alone. All
nonzeros of the Jacobian must be included in a row
and/or column computed. Similar results follow if some
columns are computed using sparse doublets and some
rows using the sparse reverse method. If C is the maxi-
mum number of nonzeros in a row within the columns
computed forward and R the maximum number of
nonzeros in a column within the rows computed in re-
verse then a crude bound on the number of operations
is (3C + 5R)M. This bound does not allow for the addi-
tional sparsity in the early calculations nor for the fact
that for some reverse calculations Mj should replaceM.
The selection of rows and columns taking account of
such considerations is still unresolved.

But the advantages to be obtained can be appre-
ciated by considering the arrow-head Jacobian, where
only the diagonal elements and the last row and col-
umn contain nonzeros. If the gradient of sn is computed
using sparse reverse doublets this will require at most
5Mn operations and if the other gradients are com-
puted using sparse forward doublets, no doublet will
contain more than 2 nonzeros, so the operations will be
bounded by 6M. The total operations required in this
case is independent of n.

The ExtendedMatrix

If the calculation of the functions sj proceeds by a se-
quence of steps

Xk D xk; k D 1; : : : ; n;
Xk D �k(Xl ; l 2 L; l < k);

k D nC 1; : : : ;M C n;

with

s j D XMC j; j D 1; : : : ; n;

then
@Xk

@xm
D 0; m ¤ k; k D 1; : : : ; n;

@Xk

@xk
D 1;

and
@Xk

@xm
D
X
l

@�k

@Xl

@Xl

@xm
:

If we now denote @Xk/ @xm by Yk and @�k/ @Xl by Lkl,
then this becomes

Yk D
X
l

Lk l Yl

i. e. the kth row of the matrix-vector product

(I � L)Y ;

where the elements in the first n rows of L are all zeros,
and then

@s j
@xm
D YMC j:

Obtaining the Jacobian by the forward method may be
considered as equivalent to solving

(I � L)Y D em:

Turning now to the reverse method if

Xk D �k(Xl );

then the adjoint variable X�l contains a term

X�l D X�l C
@�k

@Xl
X�k

which is the lth row of the matrix-vector product

(I � L>)X�:

To obtain the gradient of sm is therefore equivalent to
solving

(I � L>)X� D eMCm;

then

@sm
@xi
D X�i :

So both the calculation of the Jacobian by the forward
and backward method are equivalent to solving a very
sparse set of equations. If the Wengert list is used, each
row of L contains at most two nonzeros. It has therefore
been suggested that methods for solving linear equa-
tions with sparse matrices could be used to calculate
J, A. Griewank and S. Reese [14] suggested using the
Markowitz rule, while U. Geitner, J. Utke and Griewank
[11] applied themethod of Newsam and Ramsdell.
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Hessian Calculations

The calculation of the Hessian, as discussed in � Au-
tomatic differentiation: Calculation of the Hessian, can
also be formulated as a sparse matrix calculation. Using
the notation of � Automatic differentiation: Calcula-
tion of the Hessian if the calculation of f (x) consists of

Xk D �k(Xm;m < k;m 2 Mk);

then the reverse gradient calculation consists of

X�m D X�m C X�k
@�k

@Xm
; m 2 Mk :

If now we denote

Yk D
@Xk

@xi
; k D 1; : : : ;M;

and

Yk D
@X�2M�kC1

@xi
; k D M C 1; : : : ; 2M;

then we obtain

Yk D
@�k

@Xm
Ym ; k D 1; : : : ;M;

and

Y2MC1�m D Y2MC1�m C Y2MC1�k
@�k

@Xm

C X�k
@2�k

@Xm@Xj
Yj :

The second derivatives are 1, if � is a multiplication, 0
if � is an addition, and if � is unary only nonzero if j
= m. If we denote these second order terms by B, the
calculation ofH ei is equivalent to solving
�
I � L 0
B I � LS

�
Y D

�
ei
0

�
:

Here the superscript S indicates that L has been trans-
posed through both diagonals. The ith column of the
Hessian is then the last n values of Y . For the illustra-
tive example

f (x) D (x1x2 C sin x1 C 4)(3x22 C 6)

used in � Automatic differentiation: Calculation of the
Hessian, the off-diagonal nonzeros in the matrix which

we will denote by K, are

K3;1 D K20;18 D X2;

K3;2 D K19;18 D X1;

K4;1 D K20;17 D cos X1;

K5;3 D K18;16 D 1;

K5;4 D K17;16 D 1;
K6;5 D K16;15 D 1;

K7;2 D K19;14 D 2X2;

K8;7 D K14;13 D 3;

K9;8 D K13;12 D 1;

K10;6 D K15;11 D X9;

K10;9 D K12;11 D X6;

K12;6 D K14;9 D X�10;

K19;1 D K20;2 D X�3 ;

K19;2 D 2X�7 ;

K20;1 D �X�4 sin X1;

L contains 11 nonzeros and B contains 6. The matrix
is very sparse and the same sparse matrix techniques
could be used to solve this system of equations.

The Newton Step

As the notation is easier we will consider the Jacobian
case.

We have shown that if we solve (I � L) Y = em, then
columnm of the Jacobian J is in the last n terms of Y . If
we wish to evaluate J p we simply have to solve

(I � L)Y D p0

where p0 has its first n terms equal to p and the remain-
ing terms zero. Then the solution is again in the last n
terms of Y . To calculate the Newton step we know J d
as it must be equal to � s, but we do not know d. We
must therefore add the equations

YMCi D �si

to the equations, and delete the equations Yi = pi. For
convenience we will partition L, putting the first n
columns into A, retaining L for the remainder. So we
have to solve
�
�A I � L
0 E

��
d
Y

�
D

�
0
�s

�
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for d. The matrix E is rectangular and is full of zeros
except for the diagonals which are 1. Solving for d gives

E(I � L)�1Ad D �s;

so

J D E(I � L)�1A;

which is also the Schur complement of the sparse set of
equations.

One popular way of solving a sparse set of equations
is to form the Schur complement and solve the result-
ing equations, in this instance this becomes ‘form J and
solve J d = � s’, which would be the normal indirect
method. This also justifies the attention given in this ar-
ticle to the efficient calculation of J.

Griewank [12] observed that it may be possible to
calculate the Newton step more cheaply than forming
J and then solving the Newton equations. Utke [16]
demonstrated that a number of ways of solving the
sparse set of equations were indeed quicker. His imple-
mentation was compatible with ADOL-C and included
many rules for eliminating variables. This approach was
motivated by noting that if the Jacobian J = D + a b|,
where D is diagonal and a and b vectors, then J is full
and so solving J x = � s is an O(n3) operation. How-
ever introducing one extra variable z = b| x enables the
extended matrix to be solved very cheaply

b>x � z D 0;

Dx C az D �s

gives

x D �D�1(az C s);

z D �b>D�1(azC s);

so

z D �(1C b>D�1a)�1b>D�1s;

and then xmay be determined by substitution, which is
an O(n) operation. The challenge to find an automatic
process that finds such short cuts is still open.

L.C.W. Dixon [6] noted that the extended matrix
is an echelon form. An echelon matrix of degree k has
ones on the k super-diagonal and zeros above it. If the
lower part is sparse and contains NNZ nonzeros then

the Schur complement can be computed in kNNZ op-
erations and the Newton step obtained by solving the
resulting equations in O(k3) steps. The straight forward
sparse system is an echelon form with k = n, so he sug-
gested that by re-arranging rows and columns it might
be possible to reduce k. This would reduce the oper-
ations needed for both parts of the calculation. Many
sorting algorithms have been proposed for reducing the
echelon index of sparse matrices. J.S. Duff et al. [9] dis-
cuss the performance of methods known as P4 and P5.
R. Fletcher [10] introduced SPK1. Dixon and Z. Maany
[8] introduced another which when applied to the ex-
tended matrix of the extended Rosenbrock function re-
duces the echelon index from n to n/2 and gives a di-
agonal Schur complement. It follows that this method,
too, has considerable potential.

All these approaches still require further research.

Truncated Methods

Experience using the truncated Newton code has led
many researchers to doubt the wisdom of calculating
accurate Newton steps. Approximate solutions are of-
ten preferred in which the conjugate gradientmethod is
applied toH d =� g; this can be implemented by calcu-
lating H p at each inner iteration. H p can be calculated
very cheaply by a single forward doublet pass with ini-
tial values set at p through list for g obtained by reverse
differentiation. The operations required to compute H
p are therefore bounded by 15M.

If an iterative method is used to solve J d = � s, the
products J p and J| v can both be obtained cheaply, the
first by forward, the second by reverse automatic differ-
entiation.
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Satellites are used in a variety of systems for com-
munication and data collection. Familiar examples of
these systems include satellite networks for broadcast-
ing video programming, meteorological and geophysi-
cal data observation systems, the global positioning sys-
tem (GPS) for navigation, and military surveillance sys-
tems. Strictly speaking, these are systems in which satel-
lites are just one component, and in which there are
other primary subsystems that have no direct involve-
ment with satellites. Nevertheless, they will be referred
to as satellite systems for ease of reference.

Simple geometric models are often incorporated in
simulations of satellite system performance. Important
operational aspects of these systems, such as the times
when satellites can communicate with each other or
with installations on the ground (e. g. tracking stations),
depend on dynamics of satellite and station motion.
The geometric models represent these motions, as well
as constraints on communication or data collection.
For example, the region of space from which an an-
tenna on the ground can receive a signal might be mod-
eled as a cone, with its vertex centered on the antenna
and axis extending vertically upward. The antenna can
receive a signal from a satellite only when the satellite
is within the cone. Taking into account the motions of
the satellite and the earth, the geometric model predicts
when the satellite and tracking station can communi-
cate.

Elementary optimization problems often arise in
these geometric models. It may be of interest to de-
termine the closest approach of two satellites, or when
a satellite reaches a maximum elevation as observed
from a tracking station, or the extremes of angular ve-
locity and acceleration for a rotating antenna tracking
a satellite. Optimization problems like these are for-
mulated in terms of geometric variables, primarily dis-
tances and angles, as well as their derivatives with re-
spect to time. The derivatives appear both in the opti-
mization algorithms, as well as in functions to be op-
timized. One of the previously mentioned examples il-
lustrates this. When a satellite is being tracked from the
ground, the antenna often rotates about one or more
axes so as to remain pointed at the satellite. The angular
velocity and acceleration necessary for this motion are
the first and second derivatives of variables expressed
as angles in the geometric configuration of the antenna
and satellite. Determining the extreme values of these

derivatives is one of the optimization problems men-
tioned earlier.

Automatic differentiation is a feature that can be in-
cluded in a computer programming language to sim-
plify programs that compute derivatives. In the situa-
tion described above, satellite system simulations are
developed as computer programs that include com-
puted values for the distance and angle variables of
interest. With automatic differentiation, the values of
derivatives are an automatic by-product of the compu-
tation of variable values. As a result, the computer pro-
grammer does not have to develop and implement the
computer instructions that go into calculating deriva-
tive values. As a specific example of this idea, consider
again the rotating antenna tracking a satellite. Imag-
ine that the programmer has worked out the proper
equations to describe the angular position of the an-
tenna at any time. The simulation also needs to com-
pute values for the angular velocity and acceleration,
the first and second derivatives of angular position.
However, the programmer does not need to work out
the proper equations for these derivatives. As soon as
the equations for angular position are included in the
computer program, the programming language pro-
vides for the calculation of angular velocity and accel-
eration automatically. That is the effect of automatic
differentiation. Because the derivatives of geometric
variables such as distances and angles can be quite in-
volved, automatic differentiation results in computer
programs that are much easier to develop, debug, and
maintain.

The preceding comments have provided a brief
overview of geometric models for satellite systems, as
well as associated optimization problems and the use of
automatic differentiation. The discussion will now turn
to a more detailed examination of these topics.

Geometric Models

The geometric models for satellite systems are formu-
lated in the context of three-dimensional real space.
A conventional rectangular coordinate system is de-
fined by mutually perpendicular x, y, and z axes. The
earth is modeled as a sphere or ellipsoid centered at the
origin (0, 0, 0), with the north pole on the positive z
axis, and the equator in the xy plane. The coordinate
axes are considered to retain a constant orientation rel-



144 A Automatic Differentiation: Geometry of Satellites and Tracking Stations

ative to the fixed stars, so that the earth rotates about
the z axis.

In this setting, tracking station and satellite loca-
tions are represented by points moving in space. Each
such moving point is specified by a vector valued func-
tion r(t) = (x(t), y(t), z(t)) where t represents time. Ge-
ometric variables such as angles and distances can be
determined using standard vector operations:

c(x; y; z) D (cx; cy; cz);

(x; y; z)˙ (u; v;w) D (x ˙ u; y˙ v; z ˙ w);

(x; y; z) � (u; v;w) D xuC yv C zw;
(x; y; z) � (u; v;w)

D (yw � zv; zu � xw; xv � yu);

k(x; y; z)k D
q
x2 C y2 C z2

D
p
(x; y; z) � (x; y; z):

The distance between two points r and s is then given
by k r � s k. The angle � defined by rays from point r
through points p and q is determined by

cos � D
(p� r) � (q� r)
kp � rk � kq � rk

:

A more complete discussion of vector operations, their
properties, and geometric interpretation can be found
in any calculus textbook; [9] is one example.

There are a variety of models for the motions of
points representing satellites and tracking stations. The
familiar conceptions of a uniformly rotating earth cir-
cled by satellites that travel in stable closed orbits is
only approximately correct. For qualitative simulations
of the performance of satellite systems, particularly at
preliminary stages of system design, these models may
be adequate. More involved models can take into ac-
count such effects as the asphericity of the gravitational
field of the earth, periodic wobbling of the earth’s axis of
rotation, or atmospheric drag, to name a few. Modeling
the motions of the earth and satellites with high fidelity
is a difficult endeavor, and one that has been studied
extensively. Good general references for this subject are
[1,2,3,10].

For illustrative purposes, a few of the details will
be presented for the simplest models, circular orbits
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around a spherical earth, uniformly spinning on a fixed
axis. The radius of the earth will be denoted Re.

As a starting point, the rotation of the earth can
be specified by a single function of time, ˝(t), repre-
senting the angular displacement of the prime merid-
ian from a fixed direction, typically the direction speci-
fied by the positive x axis (see Fig. 1.). At any time, the
positive x axis emerges from the surface of the earth at
some point on the equator. Suppose that at a particular
time t, the point where the positive x axis emerges hap-
pens to be on the prime meridian, located at latitude
0 and longitude 0. Then ˝(t) = 0 for that t. As time
progresses, the prime meridian rotates away from the x
axis, counter-clockwise as viewed by an observer above
the north pole. The function ˝ measures the angle of
rotation, starting at 0 each time the prime meridian is
aligned with the x axis, and increasing toward a maxi-
mum of 360° (2  in radian measure) with each rota-
tion of the earth. With a uniformly spinning earth, ˝
increases linearly with t during each rotation.

Once ˝ is specified, any terrestrial location given
by a latitude �, longitude �, and altitude a can be trans-
formed into absolute coordinates in space, according to
the equations

� D �C˝(t); (1)

r D Re C a; (2)

x D r cos � cos�; (3)
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y D r sin � cos �; (4)

z D r sin �: (5)

Holding latitude, longitude, and altitude constant, these
equations express the position in space of a fixed loca-
tion on the earth for any time, thereby modeling the
point’s motion. It is also possible to develop models for
tracking stations that are moving on the surface of the
earth, say on an aircraft or on a ship in the ocean. For
example, if it is assumed that the moving craft is trav-
eling at constant speed on a great circle arc or along
a line of constant latitude, it is not difficult to express
latitude and longitude as functions of time. In this case,
the equations above reflect a dependence on t in � and
�, as well as in˝ . A more complicated example would
be to model the motion of a missile or rocket launched
from the ground. This can be accomplished in a similar
way: specify the trajectory in earth relative terms, that
is, using latitude, longitude, and altitude, and then com-
pute the absolute spatial coordinates (x, y, z). In each
case, the rotation of the earth is accounted for solely by
the effect of˝(t).

For a satellite in circular orbit, the position at any
time is specified by an equation of the following form:

r(t) D r[cos(!t)uC sin(!t)v]:

In this equation, ! t is understood as an angle in radian
measure for the sin and cos operations; r, !, u, and v
are constants. The first, r is the length of the orbit cir-
cle’s radius. It is equal to the sum of the earth’s radius
Re and the satellite’s altitude. The constant ! is the an-
gular speed of the satellite. The satellite completes an
orbit every 2/! units of time, thus giving the orbital
period. Both u and v are unit vectors: u is parallel to the
initial position of the satellite; v is parallel to the initial
velocity. See Fig. 2.

Mathematically, the equation above describes some
sort of orbit no matter how the constants are selected.
But not all of these are accurate descriptions of a free
falling satellite in circular orbit. For one thing, u and v
must be perpendicular to produce a circular orbit. In
addition, there is a physical relationship linking r and
!. Assuming that the circular orbit follows Newton’s
laws of motion and gravitation, r and ! satisfy

! D Kr�
3
2 (6)
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where K is a physical constant that depends on both
Newton’s universal gravitational constant and the mass
of the earth. Its numerical value also depends on the
units of measurement used for time and distance. For
units of hours and kilometers, the value of K is 2.27285 �
106. As this relationship shows, for a given altitude (and
hence a given value of r), there is a unique angular speed
at which a satellite will maintain a circular orbit. Equiv-
alently, the altitude of a circular orbit determines the
constant speed of the satellite, as well as the period of
the satellite.

Generally, constants are chosen for a circular orbit
based on some geometric description. Here is a typical
approach. Assume that the initial position of the satel-
lite is directly above the equator, with latitude 0, a given
longitude, and a given altitude. In other words, assume
that the initial position is in the plane of the equator,
and so has a z coordinate of 0. (This is the situation de-
picted in Fig. 2.) Moreover, the initial heading of the
satellite can be specified in terms of the angle it makes
with the xy plane (which is the plane of the equator).
Call that angle ı. From these assumptions we can de-
termine values for the constants r, !, u, and v in the
equation for r(t). Now the altitude for the orbit is con-
stant, so the initial altitude determines r, as well as ! via
equation (6). The initial latitude, longitude, and altitude
also provide enough information to determine absolute
coordinates (x, y, z) for the initial satellite position us-
ing equations (1)–(5). Accordingly, the unit vector u is
given by

u D
(x; y; z)
k(x; y; z)k

:

As already observed, the z coordinate of u will be 0. Fi-
nally, the unit vector v is determined from the initial
position and heading. It is known that vmake an angle
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of ı with the xy plane, and hence makes an angle of /2
� ı with the z axis. This observation can be expressed
as the equation

v � (0; 0; 1) D sin ı:

It is also known that vmust be perpendicular to u, so

v � u D 0:

Finally, since v is a unit vector,

v � v D 1:

If u = (u1, u2, 0), then these three equations lead to v
= (˙ u2 cos ı, � u1 cos ı, sin ı). The ambiguous sign
can be resolved by assuming that the direction of orbit
is either in agreement with or contrary to the direction
of the earth’s rotation. Assuming that the orbit is in the
same direction as the earth’s rotation, v = (� u2 cos ı, u1
cos ı, sin ı). The alternative possibility, that the satellite
orbit opposes the rotation of the earth, is generally not
practically feasible, so is rarely encountered.

The preceding paragraphs are intended to provide
some insight about the mathematics used to describe
the movement of satellites and terrestrial observers. Al-
though the models presented here are the simplest ones
available, they appear in the same general framework as
much more sophisticated models. In particular, in any
of these models, it is necessary to be able to compute
instantaneous positions for satellites and terrestrial ob-
servers at any time during a simulation. Moreover, the
use of vector algebra and geometry to set up the simple
models is representative of the methods used in more
complicated cases.

Sample Optimization Problems

Computer simulations of satellite system performance
provide one tool for comparing alternative designs and
making cost/benefit trade-offs in the design process.
Optimization problems contribute both directly and in-
directly. In many cases, system performance is charac-
terized in terms of extreme values of variables: what is
the maximum number of users that can be accommo-
dated by a communications system? At a given latitude,
what is the longest period of time during which at most
three satellites can be detected from some point on the
ground? In these examples, the optimization problems
are directly connected with the goals of the simulation.

Optimization problems also arise indirectly as part
of the logistics of the simulation software. This is par-
ticularly the case when a simulation involves events that
trigger some kind of system response. Examples of such
events include the passage of a satellite into or out of
sunlight, reaching a critical level of some resource such
as power or data storage, or the initiation or termina-
tion of radio contact with a tracking station. The de-
tection of these events typically involves either root lo-
cation or optimization. These processes are closely re-
lated: the root of an equation can usually be charac-
terized as an extreme value of a variable within a suit-
able domain; conversely, optimization algorithms often
generate candidate solutions by solving equations.

In many of these event identification problems, the
independent variable is time. The objective functions
ultimately depend on the geometric models for satel-
lite and tracking station motion, and so can be formu-
lated in terms of explicit functions of time. In contrast,
some of the optimization problems that concern di-
rect estimation of system performance seek to optimize
that performance by varying design parameters. A typ-
ical approach to this kind of problem is to treat perfor-
mance measures as functions of the parameters, where
the values of the functions are determined through sim-
ulation. Both kinds of optimization are illustrated in the
following examples.

Minimum Range

As a very simple example of an optimization problem,
it is sometimes of interest to determine the closest ap-
proach of two orbiting bodies. Assume that a model has
been developed, with r(t) and s(t) representing the po-
sitions at time t for the two bodies. The distance be-
tween them is then expressed as k r(t) � s(t) k. This is
the objective function to be minimized. Observe that it
is simply expressed as a composition of vector opera-
tions and the motion models for the two bodies.

A variation of this problem occurs when several
satellites are required to stay in radio communication.
In that case, an antenna on one satellite (at position A,
say) may need to detect signals from two others (at po-
sitions B and C). In this setting, the measure of †BAC
is of interest. If the angle is wide, the antenna requires
a correspondingly wide field of view. As the satellites
proceed in their orbits, what is the maximum value of
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the angle? Equivalently, what is the minimum value of
the cosine of the angle? As before, the objective function
in this minimization problem is easily expressed by ap-
plying vector operations to the position models for the
satellites. If a(t), b(t), and c(t) are the position functions
for the three satellites, then

cos†BAC D
(b � a) � (c � a)
kb� ak � kc� ak

:

This is a good example of combining vector operations
with the models for satellite motion to derive the ob-
jective function in an optimization problem. The next
example is similar in style, but mathematically more in-
volved.

Direction Angles and Their Derivatives

A common aspect of satellite system simulation is the
representation of sensors of various kinds. The images
that satellites beam to earth of weather systems and
geophysical features are captured by sensors. Sensors
are also used to locate prominent astronomical features
such as the sun, the earth, and in some cases bright
stars, in order to evaluate and control the satellite’s at-
titude. Even the antenna used for communication is
a kind of sensor. It is frequently convenient to define
a coordinate system that is attached to a sensor, that is,
define three mutually perpendicular axes which inter-
sect at the sensor location, and which can be used as an
alternate means to assign coordinates to points in space.
Such a coordinate system is then used to describe the
vectors from the sensor to other objects, and to model
sensor sensitivity to signals arriving from various direc-
tions. With several different coordinate systems in use,
it is necessary to transform information described rela-
tive to one system into a form that makes sense in the
context of another system. This process also often in-
volves what are called direction angles.

As a concrete example, consider an antenna at
a fixed location on the earth, tracking a satellite in orbit.
The coordinate system attached to the tracking antenna
is the natural map coordinate system at that point on
the earth: the local x and y axes point east and north, re-
spectively, and the z axis points straight up (Fig. 3). The
direction from the station to the satellite is expressed
in terms of two angles: the elevation ı of the satellite
above the local xy plane, and the compass angle ˛ mea-
sured clockwise from north. (See Fig. 4.) To illustrate,
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here is the meaning of an elevation of 30 degrees and
a compass angle of 270 degrees. Begin by looking due
north. Turn clockwise through 270 degrees, maintain-
ing a line of sight that is parallel to the local xy plane. At
that point you are looking due west. Now raise the line
of sight until it makes a 30 degree angle with the local
xy plane. This direction of view, with elevation 30 and
compass angle 270 degrees, might thus be described as
30 degrees above a ray 270 degrees clockwise from due
north. The elevation and compass angle are examples
of direction angles. Looked at another way, if a spher-
ical coordinate system is imposed on the local rectan-

Automatic Differentiation: Geometry of Satellites and Track-
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gular system at the antenna, then every point in space
is described by a distance and two angles. The angles
are direction angles. Direction angles can be defined in
a similar way for any local coordinate system attached
to a sensor.

How are direction angles computed? In general
terms, the basic idea is to define the local coordinate
system in terms of moving vectors, and then to use vec-
tor operations to define the instantaneous value of di-
rection angles. Here is a formulation for the earth based
antenna. First, the local z axis points straight up. That
means the vector from the center of the earth to the lo-
cation of the antenna on the surface is parallel to the
z axis. Given the latitude, longitude, and altitude of the
antenna, its absolute position r(t) = (x, y, z) is computed
using equations (1)–(5), as discussed earlier. The paral-
lel unit vector is then given by r/ k r k. To distinguish
this from the global z axis, we denote it as the vector up.
The vector pointing due east must be perpendicular to
the up direction. It also must be parallel to the equato-
rial plane, and hence perpendicular to the global z axis.
Using properties of vector cross products, a unit vector
pointing east can therefore be expressed as

east D
(0; 0; 1) � up
k(0; 0; 1) � upk

:

Finally, the third perpendicular vector is given by the
cross product of the other two: north = up × east. Note
that these vectors are defined as functions of time. At
each value of t the earth motion model gives an instan-
taneous value for r(t), and that, in turn, determines the
vectors up, east, and north.

Next, suppose that a satellite is included in the
model, with instantaneous position s(t). The view vec-
tor from the antenna to the satellite is given by v(t) =
[s(t) � r(t)]/ k s(t) � r(t) k. The goal is to calculate the
direction angles ˛ and ı for v. Since ı measures the an-
gle between v and the plane of east and north, the com-
plimentary angle can be measured between v and up.
This leads to the equation

sin ı D up � v:

The angle ˛ is found from

vn D v � north

ve D v � east

according to the equations

cos ˛ D
vnp

v2n C v2e

sin ˛ D
vep

v2n C v2e
:

These follow from the fact that the projection of v into
the local xy plane is given by ve east + vn north.

In this example, direction angles play a role in sev-
eral optimization problems. First, it may be of interest
to predict the maximum value of ı as a satellite passes
over the tracking station. This maximum value of ele-
vation is an indication of how close the satellite comes
to passing directly overhead, and may be used to deter-
mine whether communication will be possible between
satellite and tracking station.

Additional optimization problems concern the
derivatives of ˛ and ı. In many designs, an antenna can
turn about horizontal and vertical axes to point the cen-
ter of the field of view in a particular direction. In order
to stay pointed at a passing satellite, the antenna must
be rotated on its axes so as to match the motion of the
satellite, and ˛ and ı specify exactly how far the antenna
must be rotated about each axis at each time. However,
there are mechanical limits on how fast the antenna can
turn and accelerate. For this reason, during the time
that the satellite is in view, the maximum values of the
first and second derivatives of ˛ and ı are of interest.
If the first derivatives exceed the antenna’s maximum
turning speed, or if the second derivatives exceed the
antenna’s maximum acceleration, the antenna will not
be able to remain pointed at the satellite.

Design Parameter Optimization

The preceding examples all involve simple kinds of op-
timization problems with objective functions depend-
ing only on time. There are also many situations in
which system performance variables are optimized over
some domain of design parameters. As one example of
this, consider a system with a single satellite traveling in
a circular orbit. Assume that the initial point of the or-
bit falls on the equator, with angle ı between the initial
heading and the xy plane, as in Fig. 2. In this example,
the object is to choose an optimal value of ı. The opti-
mization problem includes several tracking stations on
the ground that are capable of communicating with the
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satellite. As it orbits, there may be times when the satel-
lite cannot communicate with any of the tracking sta-
tions. At other times, one or more stations may be ac-
cessible. Over the simulation period, the total amount
of time during which at least one tracking station is ac-
cessible will depend on the value of ı. It is this total
amount of access time (denoted A) that is to be max-
imized.

In this problem, the objective function A is not
given as a mathematical expression involving the vari-
able ı. An appropriate simulation can be created to
computeA for any particular ı of interest. This can then
be used in conjunction with an optimization algorithm,
with the simulation executed each time it is necessary
to calculate A(ı).

The preceding example is a simple one, and the ex-
ecution time required to compute A(ı) is small. For
more complicated situations, each execution of the sim-
ulation can require a significant amount of time. In
these cases, it may be more practical to use some sort
of interpolation scheme. The idea would be to run the
simulation for some values of the parameter(s), and to
interpolate between these values as needed during the
optimization process.

In some situations, there is a resource allocation
problem that can add yet another level of complexity to
optimizing system performance. For example, if there
are several satellites that must compete for connection
time with the various tracking stations, just determin-
ing how to assign the tracking stations to the satellites
is not a simple matter. In this situation, there may be
one kind of optimization problem performed during
the simulation to make the resource allocations, and
then a secondary optimization that considers the effect
of changing system design parameters. An example of
this kind of problem is described in detail in [6].

The preceding examples have been provided to il-
lustrate the kinds of optimization problems that arise
in simulations of satellite systems. Although there has
been very little discussion of methods to solve these op-
timization problems, it should be clear that standard
methods apply, especially in the cases for which the in-
dependent variable is time. In that context, the ability
to compute derivatives relative to time for the objec-
tive function is of interest. In addition, it sometimes
occurs that the objective function is, itself, defined as
a derivative of some geometric variable, providing an-

other motivation for computing derivatives. The next
topic of discussion concerns the use of automatic dif-
ferentiation for computing the desired derivatives.

Automatic Differentiation

Automatic differentiation refers to a family of tech-
niques for automatically computing derivatives as
a byproduct of function evaluation. A survey of differ-
ent approaches and applications can be found in [5] and
in-depth treatment appears in [4]. For the present dis-
cussion, attention will be restricted to what is called the
forward mode of automatic differentiation, and in par-
ticular, the approach described in [8]. In this approach,
to provide automatic calculation of the first m deriva-
tives of real valued expressions of a single variable x,
an algebraic system is defined consisting of real m+ 1
tuples, to which are extended the familiar binary op-
erations and elementary functions generally defined on
real variables. For concreteness,mwill be assumed to be
3 below, but the discussion can be generalized to other
values in an obvious way.

With m = 3, the objects manipulated by the auto-
matic differentiation system are 4-tuples. The idea is
that each 4-tuple represents the value of a function and
its first 3 derivatives, and that the operations on tuples
preserve this interpretation. Thus, if a = (a0, a1, a2, a3)
consists of the value of f (t), f 0(t), f 00(t), and f 00 0(t) at
some t, and if b = (b0, b1, b2, b3) is similarly defined
for function g, then the product ab that is defined for
the automatic differentiation system will consist of the
value at t of fg and its first 3 derivatives. Similarly, the
extension of the squareroot function to 4-tuples is so
contrived that

p
a will consist of the value of

p
f (t) and

its first 3 derivatives.
In the preceding remarks, the functions f and g are

assumed to be real valued, but similar ideas work for
vector valued functions. The principle difference is this:
when f (t) is a vector, then so are its derivatives, and the
ai referred to above are then vectors rather than scalars.
In addition, for vector valued functions, there are dif-
ferent operations than for scalar valued functions. For
example, vector functions may be combined with a dot
product, as opposed to the conventional product of real
scalars, and while the squareroot operation is not de-
fined for vector valued functions, the norm operation k
f (t) k is.



150 A Automatic Differentiation: Geometry of Satellites and Tracking Stations

In an automatic differentiation system built along
these lines, there must be some functions that are evalu-
ated directly to produce 4-tuples. For example, the con-
stant function with value c can be evaluated directly to
produce the tuple (c, 0, 0, 0), and the identity function
I(t) = t can be evaluated directly to produce (t, 1, 0,
0). For geometric satellite system simulations, it is also
convenient to provide direct evaluation of tuples for the
motion models. For example, let r(t) be the position
vector for a tracking station, as developed in equations
(1)–(5). It is a simple matter to work out appropriate
formulas for the first three derivatives of r(t), each of
which is also a vector. This is included in the automatic
differentiation system so that when a particular value of
t is given, the motion model computes the 4-tuple (r(t),
r0(t), r00(t), r000(t). A similar arrangement is made for
every moving object represented in the simulation, in-
cluding satellites, tracking stations, ships, aircraft, and
so on.

Here is a simple example of how automatic differen-
tiation is used. In the earlier discussion of optimization
problems, there appeared the following equation:

cos†BAC D
(b� a) � (c� a)
kb � ak � kc� ak

:

Using automatic differentiation, a, b, and c would be
4-tuples, each consisting of four vectors. These are pro-
duced by the motion models for three satellites, as the
values of position and its first three derivatives at a spe-
cific time. The operations used in the equation, vector
difference, dot product, and norm, as well as scalar mul-
tiplication and division, are all special modified opera-
tions that work directly on 4-tuples. The end result is
also a 4-tuple, consisting of the cosine of angle BAC,
as well as the first three derivatives of that function, all
at the specified value of t. As a result, the programmer
can obtain computed values for the derivatives of the
function without explicitly coding equations for these
derivatives. More generally, after defining appropriate
4-tuples for all of the motion models, the programmer
automatically obtains derivatives for any function that
is defined by operating on the motion models, just by
defining the operations. No explicit representation of
the derivatives of the operations is needed. Some details
of how the system works follow.

Scalar Functions and Operations

Consider first operations which apply to scalars. There
are two basic types: binary operations (+, �, ×, �) and
elementary functions (squareroot, exponential and log-
arithm, trigonometric functions, etc.). These operations
must be defined for the 4-tuples of the automatic dif-
ferentiation system in such a way that derivatives are
correctly propagated.

The definition for multiplication will illustrate the
general approach for binary operations. Suppose that
(a, b, c, d) and (u, v, w, x) are two 4-tuples of scalars.
They represent values of functions and their deriva-
tives, say, (a, b, c, d) = (f (t), f0(t), f 00(t), f000(t)) and (u,
v, w, x) = (g(t), g0(t), g000(t), g000(t)). The product is sup-
posed to give ((fg) (t), (fg)0(t), (fg)00(t), (fg)00(t)). Each of
these derivatives can be computed using the derivatives
of f and g.

( f g)(t) D f (t)g(t);

( f g)0(t) D f 0(t)g(t)C f (t)g0(t);
( f g)00(t) D f 00(t)g(t)C 2 f 0(t)g0(t)C f (t)g00(t);

( f g)000(t)) D f 000(t)g(t)C 3 f 00(t)g0(t)

C 3 f 0(t)g00(t)C f (t)g000(t)):

On the right side of each equation, now substitute the
entries of (a, b, c, d) and (u, v, w, x).

( f g)(t) D au;

( f g)0(t) D av C bu;

( f g)00(t) D aw C 2bv C cu;

( f g)000(t)) D ax C 3bw C 3cv C du:

This shows that 4-tuples must be multiplied according
to the rule

(a; b; c; d)(u; v;w; x)

D (au; avC bu; aw C 2bv C cu;

ax C 3bw C 3cv C du):

For addition, subtraction, and division a similar ap-
proach can be used. All that is required is that succes-
sive derivatives of the combination of f and g be ex-
pressed in terms of the derivatives of f and g separately.
Replacing these derivatives with the appropriate com-
ponents of (a, b, c, d) and (u, v, w, x) produces the de-
sired formula for operating on 4-tuples.
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To define the operation on a 4-tuple of an elemen-
tary function, a similar approach will work. Consider
defining how a function h should apply to a 4-tuple (a,
b, c, d) = (f (t), f0(t), f 00(t), f00(t). This time, the desired
end result should contain derivatives for the compos-
ite function h ı f , and so should have the form ((h ı f )
(t), (h ı f )0(t), (h ı f )00(t), (h ı f )000(t)) The derivative
of h ı f is given by h0(f (t)) f 0(t), which becomes h0(a)
b after substitution. Similar computations produce ex-
pressions for the second and third derivatives:

(h ı f )00(t)

D h00( f (t)) f 0(t)2 C h0( f (t)) f 00(t)

D h00(a)b2 C h0(a)c

and

(h ı f )000(t)

D h000( f (t)) f 0(t)3 C 3h00( f (t)) f 0(t) f 00(t)

C h0( f (t)) f 000(t)

D h000(a)b3 C 3h00(a)bcC h0(a)d:

These results lead to

h(a; b; c; d)

D (h(a); h0(a)b; h00(a)b2 C h0(a)c;

h000(a)b3 C 3h00(a)bc C h0(a)d):

As an example of how this is applied, let h(t) = et . Then
h(a) = h0(a) = h00(a) = h000(a) = ea so

e(a;b;c;d)

D (ea; eab; eab2 C eac; eab3 C 3eabc C ead)

D ea(1; b; b2 C c; b3 C 3bc C d):

Other functions are a little more complicated, but the
overall approach is generally correct.

The preceding discussion indicates how operations
on 4-tuples would be built into an automatic differenti-
ation system. However, the user of such a system would
simply apply the operations. So, if an appropriate defi-
nition has been provided for ˝(t) as discussed earlier,
along with the derivatives, the programwould compute
a 4-tuple for ˝ and its derivatives at a particular time.
Say that is represented in the program by the variable
W. If the program later includes the call sin(W), the re-
sult would be a 4-tuple with values for sin(˝(t)), and
the first three derivatives.

Vector Functions and Operations

The approach for vector functions is basically the same
as for scalar functions. The only modification that is
needed is to recognize that the components of 4-tu-
ples are now vectors. Because the rules for computing
derivatives of vector operations are so similar to those
for scalar operations, there is little difference in the ap-
pearance of the definitions. For example, here is the def-
inition for the dot product of two 4-tuples, whose com-
ponents are vectors:

(a; b; c; d) � (u; v;w; x)

D (a � u; a � v C b � u; a � w C 2b � v C c � u;

a � x C 3b � w C 3c � v C d � u):

The formulation for vector cross product is virtually
identical, as is the product of a scalar 4-tuple with a vec-
tor 4-tuple. For the vector norm, simply define

k(a; b; c; d)k D
p
(a; b; c; d) � (a; b; c; d):

Since both dot product of vector 4-tuples and square-
root of scalar 4-tuples have already been defined in
the automatic differentiation system, this equation will
propagate derivatives correctly.

With a full complement of scalar and vector oper-
ations provided by the automatic differentiation sys-
tem, all of the geometric variables discussed in previ-
ous examples can be included in a computer program,
with derivatives generated automatically. As a partic-
ular case, reconsider the discussion earlier of comput-
ing elevation ı and compass angle ˛ for a satellite as
viewed from a tracking station. Assuming that r and
s have been defined as 4-tuples for the vector posi-
tions of that station and satellite, the following fragment
of pseudocode would carry out the computations de-
scribed earlier:

up = r/norm(r)
east = cross(pole, up)
east = east/norm(east)
north = cross(up, east)
v = (s�r)/norm(s�r)
vn = dot(v, north)
ve = dot(v, east)
vu = dot(v, up)

delta = asin(vu)
alpha = atan2(ve, vn)
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Executed in an automatic differentiation system,
this code produces not just the instantaneous values of
the angles ˛ and ı, but their first three derivatives, as
well. The programmer does not need to derive and code
explicit equations for these derivatives, a huge savings
in this problem. And all of the derivative information is
useful. Recall that the first and second derivatives are of
interest for their physical interpretations as angular ve-
locities and accelerations. The third derivatives are used
in finding the maximum values of the second deriva-
tives (accelerations).

Implementation Methods

One of the simplest ways to implement automatic dif-
ferentiation is to use a language like C++ that sup-
ports the definition of abstract data types and operator
overloading. Then the automatic differentiation system
would be implemented as a series of data types and op-
erations, and included as part of the code for a simula-
tion. A discussion of one such implementation can be
found in [7].

Another approach is to develop a preprocessor that
automatically augments code with the steps needed to
compute derivatives. With such a system, the program-
mer develops code in a conventional language such as
FORTRAN, with some additional features that con-
trol the application of automatic differentiation. Next,
this code is operated on by the preprocessor, produc-
ing a modified program. That is then compiled and ex-
ecuted in the usual way. Examples of this approach can
be found in [5].

Summary

Geometric models are very useful in representing the
motions of satellites and terrestrial objects in simula-
tions of satellite systems. These models are defined in
terms of vector operations, which permit the conve-
nient formulation of equations for geometric constructs
such as distances and angles arising in the satellite sys-
tem configuration. Equations which specify instanta-
neous positions in space of moving objects are a funda-
mental component of the geometric modeling frame-
work.

Optimization problems occur in this framework in
two guises. First, there are problems in which the ob-
jective functions are directly defined as features of the

geometric setting. An example of this would be to find
the minimum distance between two satellites. Second,
measures of system performance are derived via sim-
ulation as a function of design parameters, and these
measures are optimized by varying the parameters. An
example of this kind of problem would be to seek a par-
ticular orbit geometry in order to maximize the total
amount of time a satellite has available to communicate
with a network of tracking stations.

Automatic differentiation is a feature of an envi-
ronment for implementing simulations as computer
programs. In an automatic differentiation system, the
equations which define values of variables automati-
cally produce the values of the derivatives, as well. In
the geometric models of satellite systems, derivatives of
some variables are of intrinsic interest as velocities and
accelerations. Derivatives are also useful in solving op-
timization problems.

Automatic differentiation can be provided by re-
placing single operands with tuples, representing the
operands and their derivatives. For some tuples, the
derivatives must be explicitly provided. This is the case
for the motion models. For tuples representing combi-
nations of the motion models, the derivatives are gen-
erated automatically. These combinations can be de-
fined using any of the supported operations provided
by the automatic differentiation system, typically in-
cluding the operations of scalar and vector arithmetic,
as well as scalar functions such as exponential, loga-
rithmic, and trigonometric functions. Languages which
support abstract data types and operator overloading
are a convenient setting for implementing an automatic
differentiation system.
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Introduction

Most numerical algorithms for analyzing or optimizing
the performance of a nonlinear system require the par-
tial derivatives of functions that describe a mathemat-
ical model of the system. The automatic differentiation
(abbreviated as AD in the following), or its synonym,
computational differentiation, is an efficient method for
computing the numerical values of the derivatives. AD
combines advantages of numerical computation and
those of symbolic computation [2,4].

Given a vector-valued function f: Rn! Rm:

y D f(x) �

0
B@

f1(x1; : : : ; xn)
:::

fm(x1; : : : ; xn)

1
CA (1)

of n variables represented by a big program with hun-
dreds or thousands of program statements, one often
had encountered (before the advent of AD) some diffi-
culties in computing the partial derivatives @f i/@xj with
conventional methods (as will be shown below). Now,
one can successfully differentiate them with AD, deriv-
ing from the program for f another program that ef-
ficiently computes the numerical values of the partial
derivatives.

AD is entirely different from the well-known nu-
merical approximation with quotients of finite differ-
ences, or numerical differentiation. The quotients of fi-
nite differences, such as (f (x + h)� f (x))/h and (f (x
+ h) � f (x � h))/2h, approximate the derivative f 0(x),
where truncation errors are of O(h) and O(h2), respec-
tively, but there is an insurmountable difficulty to com-
pute better and better approximation. For, although an
appropriately small value of h is chosen, it may fail to
compute the values of the function when x˙ h is out of
the domain of f , and, furthermore, the effect of round-
ing errors in computing the values of the functions is of
problem.
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AD is also different from symbolic differentiation
with a symbolic manipulator. The symbolic differen-
tiation derives the expressions of the partial deriva-
tives rather than the values. The mathematical model
of a large scale system may be described in thousands of
program statements so that it becomes very difficult to
handle whole of them with an existing symbolic manip-
ulator. (There are a few manipulators combined with
AD, which can handle such large scale programs. They
should be AD regarded as a symbolic manipulator.)

Example 1 Program 1 computes an output value y1 as
a composite function f 1 for given input values x1 = 2, x2
= 3, x3 = 4:

y1 D f1(x1; x2; x3) D
x1(x2 � x3)

exp(x1(x2 � x3))C 1
: (2)

IF (x2.le.x3)
THEN y1 = x1(x2� x3)
ELSE y1 = x1(x2 + x3)

ENDIF
y1 = y1/(exp(y1) + 1).

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 1
Example

The execution of this program is traced by a se-
quence of assignment statements (Program 2).

y1 x1(x2 � x3),
y1 y1/(exp(y1) + 1).

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 2
Program 1 expanded to straight line program for the speci-
fied input values

A set of unary or binary arithmetic operators (+, �,

, /) and elementary transcendental functions (exp, log,
sin, cos, . . . ) that may be used in the programs will be
called basic operations. (Some special operations such
as those generating ‘constant’ and ‘input’ are also to be
counted among basic operations.) Program 2 can be ex-
panded into a sequence of assignment statements each
of whose right side has only one basic operation (Pro-
gram 3), where z1, . . . , zs are temporary variables (s = 2
for this example).

1 z1  x2 � x3,
2 z1  x1 
 z1,
3 z2  exp(z1),
4 z2  z2 + 1,
5 z1  z1/z2.

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 3
Expanded history of execution with each line having only
one basic operation

Moreover, it is useful to rewrite Program 3 into a se-
quence of single assignment statements, in which each
variable appears at most once in the left sides (Pro-
gram 4), hence, ‘ ’ can be replaced by ‘ = ’.

1 v1  x2 � x3,
2 v2  x1 
 v1,
3 v3  exp(v2),
4 v4  v3 + 1;,
5 v5  v2/v4,

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 4
Computational process

The sequence is called a computational process,
where the additional variables v1, . . . , v5 are called in-
termediate variables that keep the intermediate results.
A graph called a computational graph, G = (V , A), may
be used to represent the process (see Fig. 1).

Algorithms

There are two modes for AD algorithm, forward mode
and reverse mode. The forward mode is to compute
@yi/@xj (i = 1, . . . , m) for a fixed j, whereas the reverse
mode is to compute @yi/@xj (j = 1, . . . , n) for a fixed i.

The forward mode corresponds to tracing an ex-
panded program such as Program 3 in the natural or-
der. Assume that execution of the kth assignment in the
program is represented as

zc   k (za; zb) : (3)

When the values of both @za/@xj and @zb/@xj are known,
@zc/@xj can be computed by applying the chain rule of
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Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Figure 1
Computational graph

differentiation to (3):

@zc
@x j
 

@ k

@za
@za
@x j
C
@ k

@zb
@zb
@x j

: (4)

@ k/@za and @ k/@zb are called elementary partial
derivatives, and are computed by Table 1 for various
 k.

Introducing new variables z1; : : : ; zs , x1; : : : ; xn
corresponding to @z1/@xj, . . . , @zs/@xj, @x1/@xj, . . . ,
@xn/@xj, respectively, and initializing xk  0 (1 � k
� n, k 6D j) and x j  1, we may express (4) as

zc  
@ k

@za
za C

@ k

@zb
zb : (5)

Thus, we can write down the whole program for the for-
ward mode as shown in Program 5.

The reverse mode corresponds to tracing a com-
putational process such as Program 4 backwards. The
kth computational step, i. e., execution of the kth assign-
ment in the program, can be written in general as

vk D  k (uk1; uk2)juk1Dv˛k ;uk2Dvˇk
; (6)

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Table 1
Elementary partial derivatives

zc D  (za; zb)
# 

#za

# 

#zb
zc D za ˙ zb 1 ˙1
zc D za � zb zb za
zc D za/zb 1/zb �za/z2b (D �zc/zb)
zc D
p
za 1

2 /
p
za(D 1

2 /zc) –
zc D log(za) 1/za –
zc D exp(za) exp(za)(D zc) –
zc D cos(za) � sin(za) –
zc D sin(za) cos(za) –
:::

:::
:::

Initialization
x j  1,
x  0 (1 � k � n; k ¤ j),
Forward algorithm:

1 z1  x2 � x3,
10 z1  1 
 x2 � 1 
 x3,
20 z1  z1 
 x1 + x1 
 z1,
2 z1  x1 
 z1,
3 z2  exp(z1),
30 z2  z2 
 z1,
4 z2  z2 + 1,
40 z2  1 
 z2,
5 z1  z1/z2,
50 z1  (1/z2) 
 z1 � (z1/z2) 
 z2

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 5
Forwardmode program for differentation

where uk, 1 and uk, 2 are formal parameters, v˛k and vˇk
are real parameters representing some of x1, . . . , xn, v1,
. . . , vk� 1. If  k is unary, uk, 2 and vˇk are omitted. Let
r be the total number of computational steps. In Pro-
gram 4, we have r = 5 and, for k = 2, e. g.,  2 = ‘
’, v˛2
= x1 and vˇ2 = v1.

The total differentiation of (6) yields the relations
among dx1, . . . , dxn, dv1, . . . , dvr such as follows:

dvk D
@ k

@uk;1
dv˛k C

@ k

@uk;2
dvˇk (k D 1; : : : ; r) : (7)

The computation of the partial derivatives of the ith
component of the final result yi = f i(x1, . . . , xn) in (1)
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with respect to x1, . . . , xn is that of the coefficients of the
relation among dx1, . . . , dxn and dyi.

Here, new variables x1; : : : ; xn , v1; : : : ; vr are intro-
duced for the computation of those coefficients. With-
out loss of generality, we may assume that the value of
yi is computed at vr . After Program 4 is executed in the
natural order with all the information on intermediate
results preserved, these new variables are initialized as
x j  0 (j = 1, . . . , n), vk  0 (k = 1, . . . , r� 1) and
vr  1, then the relation

dy D
nX
jD1

x jdx j C

rX
kD1

vkdvk (8)

holds. Secondly, dvr , dvr � 1, . . . , dvk can be eliminated
from (8) in this order by modifying

v˛k  v˛k C vk
@ k

@v˛k
; (9)

vˇk  vˇk C vk
@ k

@vˇk
: (10)

Finally, if we change k in the reverse order, i. e., k= r,
r� 1, . . . , 1, we can successfully eliminate all the dvk
(k= 1, . . . , r) to have

dy D
nX
jD1

x jdx j : (11)

The final coefficient x j indicates the value of @f i/@xj (j=
1, . . . , n). Program 6 in whichmodifications (9) and (10)
are embedded is the reverse mode program, which is
sometimes called the adjoint program of Program 4.

It is easy to extend the algorithms for computing
a linear combination of the column vectors of the Jaco-
bian matrix J with the forward mode, and a linear com-
bination of the row vectors of J with the reverse mode.

Complexity

It is proved that, for a constant C ( = 4 � 6, varying
under different computational models), the total oper-
ation count for @yi/@xj’s with a fixed j in the forward
mode algorithm, as well as that for @yi/@ xj’s with a fixed
i in the reverse mode algorithm, is at most C � r, i. e.,
in O(r). Roughly speaking, r is proportional to the ex-
ecution time T of the given program, so that the time
complexity is in O(T). Furthermore, we have to repeat
such computation n times to get all the required partial

Forward sweep:
(insert Program 4 here)

Initialization: (n = 3; r = 5)
x j  0 ( j = 1; : : : ; n),
vk  0 (k = 1; : : : ; r � 1),
vr  1,

Reverse elimination:
500 v2  v2 + (1/v4) 
 v5,

v4  v4 + (�v5/v4) 
 v5,
400 v3  v3 + 1 
 v4,
300 v2  v2 + v3 
 v3,
200 x1  x1 + v1 
 v2,

v1  v1 + x1 
 v2,
100 x2  x2 + 1 
 v1,

x3  x3 + (�1) 
 v1.

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 6
Reverse mode program

derivatives by the forward mode, and m times by the
reverse mode. What should be noted here is that the
computational time of the forward or reverse mode al-
gorithm for one set of derivatives does not depend on
m or n but only on r.

Denoting the spatial complexity of the original pro-
gram by S, that of the forward mode algorithm is in
O(S). However, the spatial complexity of the reverse
mode is in O(T), since the reverse mode requires a his-
tory of the forward sweep recorded in storage whose
size is in O(T).

A rough sketch of the proof is as follows. Without
loss of generality, assume that the given program is ex-
panded into a sequence of single assignment statements
with a binary or unary basic operation as shown in Pro-
gram 3 and 4. The operation count for computing the
elementary partial derivatives (Table 1) is bounded by
a constant. The additional operation count for modi-
fying vk ’s and x j ’s in (5), (9) and (10) is also bounded
since there are at most two additions and two multipli-
cations. There are r operations in the original program,
so that the total operation count in the forward mode
algorithm as well as that in the reverse mode algorithm
is in O(r).

Note that the computational complexities of the for-
ward mode and the reverse mode may not be optimal,
but at least one can compute them in time proportional
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to that for the computation of the given original pro-
gram.

One can extend the AD algorithms to compute
higher derivatives. In particular, it is well known how
to compute a truncated Taylor series to get arbitrarily
higher-order derivatives of a function with one variable
[14]. One may regard a special function such as a Bessel
function or a block of several arithmetic operations,
such as the inner product of vectors, as a basic opera-
tion if the corresponding elementary partial derivatives
are given with computational definitions. An analogy is
pointed out in [7] between the algorithms for the partial
derivatives and those of the computation of the shortest
paths in an acyclic graph.

It has also been pointed out that there may be pit-
falls in the derived program with AD. For example,
a tricky program

IF (x.ne.1.0)
THEN y = x
x
ELSE y = 1.0 + (x � 1.0) 
 b
ENDIF

can compute the value of a function f (x) = x2 correctly
for all x. However, the derived program fails to compute
f 0(1.0), because the differentiation of the second assign-
ment with respect to x is not 2.0 but b. Thus condi-
tional branches (or equations equivalent to conditional
branches) should be carefully dealt with.

History

A brief history of AD is as follows. There were not a few
researchers in the world who had more or less indepen-
dently proposed essentially the same algorithms.

The first publication on the forward mode algo-
rithm was presumably the paper by R.E. Wengert in
1964 [16]. After 15 years, books were published by L.B.
Rall [14] and by H. Kagiwada et al. [9] which have been
influential on the numerical-computational circle. The
practical and famous software system for the forward
mode automatic differentiation was Pascal-SC, and its
descendants Pascal-XSC and C-XSC are popular now.

The paper [13] might be the first to propose system-
atically the reverse mode algorithm. But there are many
ways through which to approach the reverse mode al-
gorithm. In fact, it is related to Lagrange multipliers,
error analysis, generation of adjoint systems, reduction
of computational complexity of computing the gradi-

ent, neural networks, etc. Of course, the principles of
the derived algorithms are the same. Some remarkable
works on the reverse mode algorithm had been done by
S. Linnainmaa [11] and W. Miller and C. Wrathall [12]
from the viewpoint of the error analysis, by W. Baur
and V. Strassen [1] from that of complexity, and by P.J.
Werbos [17] from that of the optimization of neural
networks. A practical program had been developed by
B. Speelpenning in 1980 [15] and it was rewritten into
Fortran by K.E. Hillstrom in 1985 (now registered in
Netlib [5,6]).

Two proceedings of the international workshops
held in 1991 and 1996 collect all the theories, tech-
niques, practical programs, current works, and future
problems as well as history on automatic differentia-
tion [2,4]. It should be noted that, in 1992, A. Griewank
proposed a drastic improvement of the reverse mode
algorithm using the so-called checkpointing technique.
He succeeded in reducing the order of the size of stor-
age required for the reverse mode algorithm [3]. Sev-
eral software tools for automatic differentiation have
been developed and popular in the world, e. g., ADIC,
ADIFOR, ADMIT-1, ADOL-C, ADOL-F, FADBAD,
GRESS, Odyssée, PADRE2, TAMC, etc. (See [2,4].)

Estimates of Rounding Errors

In order to solve practical real-world problems, the ap-
proximation with floating-point numbers is inevitable
so that it is important to analyze and estimate the ac-
cumulated rounding errors in a big numerical com-
putation. Moreover, in terms of estimates of the accu-
mulated rounding errors, one can define a normalized
(or weighted) norm for a numerically computed vector,
that is useful for checking whether the computed vec-
tor can be regarded as zero or not from the viewpoint
of numerical computation [8].

For the previous example, let us denote as ık the
rounding error generated at the execution of the basic
operation to compute the value of vk. Then, the round-
ing errors in the example is explicitly written:

1 ev1 =ex2 �ex3 + ı1;
2 ev2 =ex1 
ev1 + ı2;
3 ev3 = exp(ev2) + ı3;
4 ev4 =ev3 + 1 + ı4;
5 ev5 =ev2/ev4 + ı5:
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Here,evk is the value with accumulated rounding er-
rors.

Defining a functionef as

ef (x1; x2; x3; ı1; ı2; ı3; ı4; ı5)
D

x1(x2 � x3 C ı1)C ı2
exp(x1(x2 � x3 C ı1)C ı2)C ı3 C 1C ı4

Cı5;

one has

ev5 Def (x1; x2; x3; ı1; : : : ; ı5);
v5 Def (x1; x2; x3; 0; : : : ; 0) :

Here,ev5 � v5 is the accumulated rounding error in the
function value. For v5 = v2/v4 = '5(v2, v4), one has

ev5 � v5 D '5(ev2;ev4) � '5(v2; v4)C ı5
D
@'5

@v2
(�2; �4) � (ev2 � v2)

C
@'5

@v4
(�2; �4) � (ev4 � v4)C ı5 ;

where �2 D � 0ev2C(1�� 0)v2 and �4 D � 00ev4C(1�� 00)v4
for 0 < � 0; � 00 < 1. Expandingev2� v2 andev4 � v4 simi-
larly and expanding the other intermediate variables se-
quentially, the approximation:

ev5 � v5 '
5X

kD1

@ef
@ık

ık (12)

is derived [10]. Note that @ef
@ık

are computed as vk in Pro-
gram 6, which are the final results of (9) and (10).

The locally generated rounding error ık for the
floating-point number system is bounded by

jıkj � c � jvk j � "M ; (13)

where "M indicates so-called ‘machine epsilon’ and c =
1 may be adopted for arithmetic operations according
to IEEE754 standard. Then �[f ]A, called absolute esti-
mation, is defined by

	[ f ]A �
rX

kD1

ˇ̌
ˇ̌
ˇ
@ef
@ık

ˇ̌
ˇ̌
ˇ � jvk j � "M ; (14)

which is an upper bound on the accumulated round-

ing error. Regarding the locally generated errors ık’s
as pseudo-probabilistic variables uniformly distributed
over [� |vk| "M , |vk|"M]’s, �[f ]P, called probabilistic es-
timate, is defined by

	[ f ]P � "M

vuut1
3

rX
kD1

 
@ef
@ık
� vk

!2

: (15)

There are several reports in which these estimates give
quite good approximations to the actual accumulated
rounding errors [8].

Moreover, one could answer the problem how to
choose a norm for measuring the size of numerically
computed vector. By means of the estimates of the
rounding errors, a weighted norm of a vector f = [f 1,
. . . , f m] whose components are numerically computed
is defined by

jjfjjN �





�

f1
	[ f1]A

; : : : ;
fm

	[ fm]A

�




p
; (16)

(p = 1,2 or1). This weighted norm is called normalized
norm, because it is normalized with respect to accumu-
lated rounding errors. With this normalized norm, one
can determine whether a computed vector approaches
to zero or not in reference to the rounding errors ac-
cumulated in the components. Note that, since all the
components of the vector are divided by the estimates
of accumulated rounding errors, they have no physical
dimension. The normalized norm may be used effec-
tively as stopping criteria for iterative methods like the
Newton–Raphson method.
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Research in the field of automatic differentiation (AD)
has blossomed since A. Griewank’s paper [15] in 1989
and the Breckenridge conference [17] in 1991. During
that same period, the power and availability of parallel
machines have increased dramatically. A natural con-
sequence of these developments has been research on
the interplay between AD and parallel computations.
This relationship can take one of two forms. One can
examine how AD can be applied to existing parallel
programs. Alternatively, one can consider how AD in-
troduces new potential for parallelism into existing se-
quential programs.

Background

Automatic differentiation relies upon the fact that all
programming languages are based on a finite number
of elementary functions. By providing rules for the dif-
ferentiation of these elementary functions, and by com-
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bining these elementary derivatives according to the
chain rule of differential calculus, an AD system can dif-
ferentiate arbitrarily complex functions. The chain rule
is associative—partial derivatives can be combined in
any order. The forward mode of AD combines the par-
tial derivatives in the order of evaluation of the elemen-
tary functions to which they correspond. The reverse
mode combines them in the reverse order. For systems
with a large ratio of dependent to independent vari-
ables, the reverse mode offers lower operation counts,
at the cost of increased storage costs [15].

The forward and the reverse mode are the extreme
ends of a wide algorithmic spectrum of accumulating
derivatives. Recently, hybrid approaches have been de-
veloped which combine the forward and the reverse
mode [5,10], or apply them in a hierarchical fashion
[8,25]. In addition, efficient checkpointing schemes have
been developed which address the potential storage ex-
plosion of the reverse mode by judicious recomputa-
tion of intermediate states [16,19]. Viewing the prob-
lem of automatic differentiation as an edge elimination
problem on the program graph corresponding to a par-
ticular code, one can in fact show that the problem of
computing derivatives with minimum cost is NP-hard
[21]. The development of more efficient heuristics is an
area of active research (see, for example, several of the
papers in [3]).

Implementation Approaches

Automatic differentiation is a particular instantiation of
a rule-based semantic transformation process. That is,
whenever a floating-point variable changes, an associ-
ated derivative object must be updated according to the
chain rule of differential calculus. For example, in the
forwardmode of AD, a derivative object carries the par-
tial derivative(s) of an associated variable with respect
to the independent variable(s). In the reverse mode of
AD, a derivative object carries the partial derivative(s)
of the dependent variable(s) with respect to an associ-
ated variable. Thus, any AD tool must provide an in-
stantiation of a ‘derivative object’, maintain the associ-
ation between an original variable and its derivative ob-
ject, and update derivative objects in a timely fashion.

Typically AD is implemented in one of two ways:
operator overloading or source transformation. In lan-
guages that allow operator overloading, such as C++

and Fortran90, each elementary function can be rede-
fined so that in addition to the normal function, deriva-
tives are computed as well, and either saved for later use
or propagated by the chain rule. A simple class defini-
tion using the forward mode might be implemented as
follows:

class adouble{
private:

double value, grad[GRAD_LENGTH];
public:

/* constructors omitted */
friend adouble operator*(const
adouble &, const adouble &);

/* similar decs for other ops */
}
adouble operator*(const adouble &g1,

const adouble &g2){
int i;
double newgrad[GRAD_LENGTH];
for (i=0; i<GRAD_LENGTH;i++){

newgrad[i] =
(g1.value)*(g2.grad[i])+
(g2.value)*(g1.grad[i]);

}
return adouble(g1.value*g2.value,

newgrad);
}

An example of how this class could be used is given
below.

In languages that do not support operator overload-
ing, it can be faked bymanually or automatically replac-
ing operators such as + and 
 with calls to subroutines.

main(){
double temp[GRAD_LENGTH];
adouble y;

/* initialize x1 to (3.0,[1.0 0.0]),
x2 to (4.0,[0.0 1.0])*/

temp[0] = 1.0; temp[1] = 0.0;
adouble *x1 = new adouble(3.0,temp);
temp[0] = 0.0; temp[1] = 1.0;
adouble *x2 = new adouble(4.0,temp);

y = (*x1)*(x2);

/* output (y,[dy/dx1 dy/dx2]) */
cout << y;
/* prints (12.0,[4.0 3.0]) */

}
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As an alternative to operator overloading, a prepro-
cessor can be used to transform source code for com-
puting the function into source code for computing
the function and its derivatives. This approach relies
heavily on compiler technology and typically involves
a combination of in-lining and subroutine calls to im-
plement the propagation of derivatives. An example of
ADIFOR-generated code (edited for clarity) invoking
the SparsLinC library for transparent exploitation of
sparsity [6] follows.

c derivation code for f=x*y/z

c preaccumulate partial derivates
temp1 = x*y/z
temp2 = 1.0/z
temp3 = temp2*y
temp4 = temp2*x
temp5 = -temp1/z

c propagate derivatives
c (g_x, ... , g_f may by sparse)

call sspg3q(g_f,temp3,g_x,temp4,
+ g_y,temp5,g_z)

f=temp1

The advantage of this approach is that it allows the
exploitation of computational context in deciding how
to propagate derivatives. For example, a recently de-
veloped Hessianmodule [1], adaptively determines the
best strategy for each assignment statement in the code
based on a machine-specific performance model for the
implementation kernels employed.

A comparison of these two implementation ap-
proaches is provided in [9]. This paper also introduces
an implementation design that separates the core issues
of automatic differentiation from language-specific is-
sues through the use of an interface layer called AIF
(AD intermediate form), thus arriving at a system de-
sign that allows reuse of differentiation components
across front-ends for different languages. Long-term,
such a system design also allows the exploitation of the
best features of both source transformation and opera-
tor overloading.

Current AD tools based on operator overloading in-
clude ADOL-C [18] and ADOL-F [29], both of which
offer the option of using either the forward or the
reverse mode, and to compute derivatives of arbi-
trary order Source transformation tools that use mostly

the forward mode to provide first- and second order
derivatives include ADIC [9] and ADIFOR [6]. The
Odyssee [28] and TAMC [14] tools use the reverse
mode in a source transformation context to provide
first order derivatives. A more comprehensive survey of
AD tools can be found at the website [31].

AD of Parallel Programs

In 1994, R.L. Hinkins reported on the application of
AD to magnetic field calculations implemented in the
data parallel languages MPFortran (MasPar Fortran)
and CMFortran [22]. In 1997, P. Hovland addressed
the larger issue of AD of parallel programs in gen-
eral, paying close attention to message-passing paral-
lel programs [23], but also considering other paral-
lel programming paradigms, and A. Carle developed
ADIFOR-MP, a prototype tool supporting a subset of
MPI [30] and PVM [13] constructs. The focus on par-
allel programs employing a message-passing paradigm
can be attributed to the popularity of this parallel
programming paradigm and its relevance to all par-
allel programs targeting nonuniform memory access
(NUMA) machines.

Correct AD of message-passing parallel programs
requires that we maintain an association between
a variable and its derivative object. In particular, when
a variable is sent from one processor to another via
a message, we must also send the associated derivative
object. There are twoways of accomplishing this goal—
we can pack the variable and derivative object together
in one message or send two separate messages. Pack-
ing a variable and its associated derivative object into
a single message may incur a copying overhead. On the
other hand, sending separate messages requires a mech-
anism for associating the messages with one another
at the receiving end and will increase delivery time on
high-latency systems. In general, it is preferable to pack
the variable and derivative object together in one mes-
sage [24], minimizing copying cost through judiciously
chosen derivative data structures. Other issues in en-
suring correct AD of parallel programs include proper
handling of nondeterminism, reduction operations at
points of nondifferentiability, and seed matrix initial-
ization [23].

In many instances, only a subset of the program
input- and output variables is considered as indepen-
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dent or dependent variables with respect to differenti-
ation. An optimization technique that tries to exploit
this fact is activity analysis, which seeks to reduce time
and storage costs by identifying variables that do not lie
on the computational path from independent to depen-
dent variables. Such variables are termed passive and
do not require an associated derivative object. Activity
analysis depends on sophisticated compiler technology,
namely interprocedural dataflow analysis. In message-
passing parallel programs, sends and receives greatly
complicate such an analysis. As the analysis needs to
guarantee correctness, this fact leads to much more
conservative assumptions, and as a result much opti-
mization potential may be lost. Among the available op-
tions to circumvent this situation are user annotations,
runtime analysis, or the use of a higher-level language
such as HPF [26]. These issues are investigated in more
detail in [23].

Another issue arising in the parallel setting is the
computation of partial derivatives of new elementary
functions, such as parallel reduction operations. For
most of the common reduction operations, such as
sum, maximum, and minimum, computing the par-
tial derivatives is trivial. For the product reduction,
the situation is more complex. The partial deriva-
tive of y =

Qn
iD1xi with respect to xi is @y/ @xi =

(
Qi�1

jD1xj)(
Qn

kDiC1xk). These partial derivatives can be
computed using a parallel prefix and reverse paral-
lel prefix operation. However, propagating the partial
derivatives requires an additional sum reduction. We
could instead combine the partial derivative computa-
tion and propagation into a single reduction. This in-
creases the computational cost, but reduces the com-
munication cost. In [24], Hovland and C. Bischof dis-
cuss the conditions under which each approach should
be preferred and give experimental results to support
the theory.

AD-Enabled Parallelism

As early as 1991, Bischof considered the problem of
parallelizing the computation of derivatives computed
via AD [4] to distribute the additional work introduced
by AD. Applying AD to a program introduces two ba-
sic types of parallelism: data parallelism and time paral-
lelism.

Data Parallelism

The potential for data parallelism arises whenever there
are multiple independent variables (for the forward
mode) or multiple dependent variables (for the reverse
mode). Different processes can be employed to propa-
gate partial derivatives with respect to a subset of the
independent variables in parallel.

Such an implementation is feasible if one can em-
ploy light-weight threads for the parallel derivative
computation. A limiting factor is the fact that the
derivative computations are interspersed with the func-
tion computation. Thus, an alternative approach is
to replicate the sequential computation on each pro-
cessor, thereby virtually eliminating communication
costs. This approach has proven effective for compu-
tations involving a large number of independent vari-
ables [7,32].

Time Parallelism

Time parallelism arises as a consequence of the asso-
ciativity of the chain rule. By breaking the computa-
tion into several phases, we can compute and propa-
gate partial derivatives over each phase simultaneously,
then combine the results according to the chain rule.
This approach is illustrated in Fig. 1. Before each phase,
a derivative computation for that phase is forked off,
using as input the results of the previous phase. At the
conclusion of the derivative computations, the partial
derivatives are combined according to the chain rule.

This illustration assumes the forward mode. If we
were using the reverse mode, the derivative computa-
tion for phase A would be forked off after phase A had
completed. The effectiveness of this approach has been
demonstrated for both the forward mode [10] and the
reverse mode [2]. The associativity of the chain rule
makes it possible to apply this time-parallel approach
to arbitrary computational structures, not just the lin-
ear schedule illustrated here.

Parallel AD Tools

Research in AD and parallelism is relatively new.
Nonetheless, there are several such tools, at varying
stages of development.

Hinkins developed special purpose libraries for
the AD of programs written in MPFortran or CM-
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Automatic Differentiation: Parallel Computation, Figure 1

Fortran [22]. Use of these libraries required that each
arithmetic operation bemanually replaced by a subrou-
tine call. As part of his thesis [23], Hovland developed
prototype tools for AD of FortranM [12], Fortran with
a subset of MPI [20] message passing, and C with MPI.
Carle is developing (1999) a prototype version of ADI-
FOR [11] supporting MPI and PVM. Roh is developing
an extension to ADIC that seeks to automatically ex-
ploit the parallelism introduced by AD through the use
of threads [27].

Summary

Since 1989, a great deal of progress has been made in
the fields of automatic differentiation and parallel com-

putation. Parallel computation and AD interact in two
ways. AD can be applied to a parallel program. Alterna-
tively, AD can be used as a source of new parallelism in
a computation. Effective strategies exist for exploiting
each of the two types of parallelism introduced: time
parallelism and data parallelism.

In either case, ensuring that the resulting derivative
computation is both correct and efficient requires AD
tools that are more sophisticated than in the serial set-
ting. Most of the existing tools are early in their devel-
opment cycle, but can be expected to mature swiftly as
they adopt advanced computational infrastructure de-
veloped in other fields of computer science, e. g., par-
allelizing compilers or parallel runtime systems. Thus,
we expect the beginning of 2000 to also provide robust
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and effective tools for the differentiation of parallel pro-
grams and the introduction of parallelism through dif-
ferentiation.
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Automatic differentiation (abbreviated AD) is a com-
putational method for evaluating derivatives or Taylor
coefficients of algorithmically defined functions. Sim-
ply speaking, an algorithmic definition of a function is
a step-by-step specification of its evaluation by arith-
metic operations and library functions. Application of
the rules of differentiation to the algorithmic definition
of a differentiable function yields values of its deriva-
tives. Examples of algorithmic definitions of functions
are code lists, computer subroutines, and even entire
computer programs.

Automatic differentiation differs from numerical
differentiation based on difference quotients of func-
tion values in that automatic differentiation is exact in
principle, but of course is subject to roundoff error in
practice. In addition to roundoff error, difference quo-
tients entail truncation error. Attempts to reduce this
truncation error by decreasing stepsize results in can-
cellation of significant digits and a catastrophic increase
in roundoff error in general. Automatic differentiation
also differs significantly from the symbolic differentia-
tion taught in school, the goal of which is the transfor-
mation of formulas for functions into formulas for their
derivatives. Although automatic differentiation uses the
same rules of differentiation as symbolic differentiation,
these rules are applied to the algorithmic definition of
the function, not to a formula for it, and the results
are values of derivatives, not formulas. Furthermore,
formulas may not be available for functions of inter-
est defined only algorithmically by computer subrou-
tines or programs to which automatic differentiation
can be applied. In summary, automatic differentiation
is more accurate than numerical differentiation and re-
quires fewer resources and is more generally applicable
than symbolic differentiation.

The simplest type of algorithmic definition of
a function is a code list, which is similar to the segment
of computer code for the evaluation of an expression

http://www.mcs.anl.gov/autodiff/adtools/
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(i. e., a formula). For illustration, consider the function
defined by the formula

f (x; y) D (xyC sin x C 4)(3y2 C 6):

An equivalent algorithmic definition of this function by
a code list is

t1 D x; t6 D t5 C 4;
t2 D y; t7 D t22;
t3 D t1t2; t8 D 3t7;
t4 D sin t1; t9 D t8 C 6;
t5 D t3 C t4; t10 D t6t9:

Given the values of x and y, evaluation of the subse-
quent entries in the code list gives t10 = f (x, y). In-
deed, the first step in evaluation or symbolic differen-
tiation of a function defined by a formula is to form
a corresponding code list, perhaps subconsciously. The
conversion of well-formed expressions into code lists is
a fundamental process in computer science, sometimes
called ‘formula translation’. Although both automatic
differentiation and symbolic differentiation are applica-
ble in this case, automatic differentiation requires only
the code list and produces only values of derivatives for
given values of the input variables. To compute the gra-
dient r f , the rules of differentiation applied to the code
list above gives

r t1 D rx;

r t2 D r y;
r t3 D t1r t2 C t2r t1;

r t4 D (cos t1)r t1;

r t5 D r t3 Cr t4;

r t6 D r t5;

r t7 D 2t2r t2;

r t8 D 3r t7;
r t9 D r t8;

r t10 D t6r t9 C t9r t6:

It is evident from the chain rule that

r t10 D r f (x; y) D fx(x; y)rx C f y(x; y)r y:

Thus, once the code list for f (x, y) is given and the ‘seed’
values of x, r x and y, r y are known, the values of the
function and its gradient can be computed without for-
mulas for either. In case x, y are independent variables,

then r x = [1, 0], ry = [0, 1] and

r f (x; y) D [ fx(x; y); f y(x; y)]
D [t9(t2 C cos t1); 6t2t6 C t1t9]:

This example illustrates the forward mode of auto-
matic differentiation. This process is not restricted to
first derivatives as long as the entries ti of the code list
have the desired number of derivatives.

Although the forwardmode illustrated above is easy
to understand and implement, it is usually more effi-
cient to compute gradients in what is called the reverse
mode. To explain this process, consider a general code
list t = (t1, . . . , tn) which begins with m input variables
t1, . . . , tm, and ends with p output variables tn�p+1, . . . ,
tn. For i > m, the entry ti = tj ı tk, where j, k < i and ı
denotes an arithmetic operation, or ti = �(tj) with j < i,
where � is a function belonging to a library of standard
functions. For convenience, arithmetic operations be-
tween constants and entries will be considered library
functions in addition to the usual sine, cosine, and so
on.

If Ki denotes the set of indices k < i such that the
entry ti of the code list depends explicitly on tk, then
the forward mode of automatic differentiation consists
of application of the chain rule in the form

r ti D
X
k2Ki

@ti
@tk
r tk

for i =m + 1, . . . , n, to obtain the gradients of the inter-
mediate variables and output. This process works be-
cause rt1, . . . , rti�1 are known or have been computed
before they are needed for the evaluation of rti. If the
seed gradients have dimension at most d, then the for-
ward mode of automatic differentiation requires com-
putational effort proportional to nd, that is, d times the
effort required for evaluation of the output tn. If d > m,
then it is more efficient to consider the input variables
to be independent and then compose rf by the stan-
dard formula given below. This limits the computa-
tional effort for the forward mode to an amount essen-
tially proportional to nm.

The reverse mode is another way to apply the chain
rule. Instead of propagating the seed gradients rt1, . . . ,
rtm throughout the computation, differentiation is ap-
plied to the code list in reverse order. In the case of
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a single output variable tn, first tn is differentiated with
respect to itself, then with respect to tn�1, . . . , t1. The re-
sulting adjoints @tn/ @tm, . . . , @tn/ @t1 and the seed gra-
dients then give

r tn D
mX
iD1

@tn
@ti
r ti :

Formally, the adjoints are given by

@tn
@tn
D 1;

@tn
@tk
D
X
i2Ik

@tk
@ti

@ti
@tk

;

k = n� 1, . . . , 1, where Ik is the set of indices i> k such
that ti depends explicitly on tk. It follows that the com-
putational effort to obtain adjoints in the reverse mode
is proportional to n, the length of the code list, and is es-
sentially independent of the number of input variables
and the dimensionalities of the seed gradients. This can
result in significant savings in computational time. In
the general case of several output variables, the same
technique is applied to each to obtain their gradients.

The reverse mode applied to the example code list
gives

@t10
@t10
D 1;

@t10
@t9
D t6;

@t10
@t8
D
@t10
@t9

@t9
@t8
D t6 � 1;

@t10
@t7
D
@t10
@t8

@t8
@t7
D t6 � 3;

@t10
@t6
D t9;

@t10
@t5
D
@t10
@t6

@t6
@t5
D t9 � 1;

@t10
@t4
D
@t10
@t5

@t5
@t4
D t9 � 1;

@t10
@t3
D
@t10
@t5

@t5
@t3
D t9 � 1;

@t10
@t2
D
@t10
@t7

@t7
@t2
C
@t10
@t3

@t3
@t2

D (3t6) � (2t2)C t9 � t1;
@t10
@t1
D
@t10
@t4

@t4
@t1
C
@t10
@t3

@t3
@t1
D t9 � cos t1 C t9 � t2:

Although this computation appears to be complicated,
a comparison of operation counts in the case x, y are
independent variables shows that even for this low-
dimensional example, the reverse mode requires 13 op-
erations to evaluate rf in addition to the operations re-
quired to evaluate f itself, while the forward mode re-
quires 22 = 2 + 10 m. In reverse mode, the entire code
list has to be evaluated and its values stored before the
reverse sweep begins. In forward mode, since the com-
putation of ti and each component ofrti can be carried
out independently, a parallel computer with a sufficient
number of processors could compute tn, rtn in a single
pass through the code list, that is, with effort propor-
tional to n. A more detailed comparison of forward and
reverse modes for calculating gradients can be found in
the tutorial article [1, pp. 1–18] and the book [3].

Implementation of automatic differentiation can be
by interpretation, operator overloading, or code trans-
formation. Early software for automatic differentiation
simply interpreted a code list by calling the appropri-
ate subroutines for each arithmetic operation or library
function. Although inefficient, this approach is still use-
ful in interactive applications in which functions en-
tered from the keyboard are parsed to form code lists,
which are then interpreted to evaluate the functions and
their derivatives.

Operator overloading is a familiar concept in math-
ematics, as the symbol ‘+’ is used to denote addition of
such disparate objects as integers, real or complex num-
bers, vectors, matrices, functions, etc. It follows that
a code list as defined above can be evaluated in any
mathematical system in which the required arithmetic
operations and library function are available, including
differentiation arithmetics [14, pp. 73–90]. These arith-
metics can be used to compute derivatives or Taylor co-
efficients of any order of sufficiently smooth functions.
In optimization, gradient and Hessian arithmetics are
most frequently used. In gradient arithmetic, the basic
data type is the ordered pair (f , rf ) of a number and
a vector representing values of a function and its gra-
dient vector. Arithmetic operations in this system are
defined by

( f ;r f )˙ (g;r g) D ( f ˙ g;r f ˙r g);

( f ;r f )(g;r g) D ( f g; fr g C gr f );
( f ;r f )
(g;r g)

D

�
f
g
;
gr f � fr g

g2

�
;
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division by 0 excluded. If � is a differentiable library
function, then its extension to gradient arithmetic is de-
fined by

�( f ;r f ) D (�( f ); �0( f )r f );

which is just the chain rule. Hessian arithmetic extends
the same idea to triples (f , rf , H f ), where H f is a ma-
trix representing the value of the Hessian of f , H f = [
@2f / @xi @xj].

Programming differentiation arithmetic is conve-
nient in modern computer languages which support
operator overloading [9, pp. 291–309]. In this setting,
the program is written with expressions or routines for
functions in the regular form, and the compiler pro-
duces executable code for evaluation of these functions
and the desired derivatives. For straightforward imple-
mentations such as the one cited above, the differenti-
ation mode will be forward, which has implications for
efficiency.

Code transformation essentially consists of analyz-
ing the code for functions to generate code for deriva-
tives. This results in a new computer program which
then can be compiled and run as usual. To illustrate this
idea, note that in the simple example given above, the
expressions

fx(x; y) D t9(t2 C cos t1);
f y(x; y) D 6t2t6 C t1t9;

were obtained for the partial derivatives of the function
in either forward or reverse mode. This differs from
symbolic differentiation in that values of intermediate
entries in the code list for f (x, y) are involved rather
than the variables x, y. The corresponding lists for these
expressions

tx1 D cos t1;

tx2 D t2 C tx1;
tx3 D t9tx2;

t y1 D t2t6;

t y2 D 6t y1;

t y3 D t1t9;

t y4 D t y2 C t y3;

can then be appended to the code list for the function
to obtain a routine with output values t10 = f (x, y), tx3 =
f x(x, y), and ty4 = f y(x, y). Further, automatic differen-
tiation can be applied to this list to obtain routines for
higher derivatives of f [13]. As a practical matter, dupli-
cate assignments can be removed from such lists before
compilation.

Up to this point, the discussion has been of point
AD, values have been assumed to be real or complex
numbers with all operations and library functions eval-
uated exactly. In reality, the situation is quite differ-
ent. Expressions, meaning their equivalent code lists,
are evaluated in an approximate computer arithmetic
known as floating-point arithmetic. This often yields
very accurate results, but examples of simple expres-
sions are known for which double and even higher pre-
cision calculation gives an answer in which even the
sign is wrong for certain input values. Furthermore,
such failures can occur without any outward indication
of trouble. In addition, values of input variables may
not be known exactly, thus increasing the uncertainty
in the accuracy of outputs. The use of interval arith-
metic (abbreviated IA) provides a computational way to
attack these problems [11].

The basic quantities in interval arithmetic are finite
closed real intervals X = [x1, x2], which represent all real
numbers x such that x1 � x� x2. Arithmetic operations
ı on intervals are defined by

X ı Y D fx ı y : x 2 X; y 2 Yg ;

again an interval, division by an interval containing
zero excluded. Library functions � are similarly ex-
tended to interval functions ˚ such that �(x) 2 ˚(X)
for all x 2 X with ˚(X) expected to be an accurate in-
clusion of the range �(X) of � on X. Thus, if f (x) is
a function defined by a code list, then assignment of the
interval value X to the input variable and evaluation of
the entries in interval arithmetic yields the output F(X)
such that f (x) 2 F(X) for all x 2 X. The interval func-
tion F obtained in this way is called the united extension
of f [11].

In the floating-point version of interval arithmetic,
all endpoints are floating-point numbers and hence ex-
actly representable in the computer. Results of arith-
metic operations and calls of library functions are
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rounded outwardly (upper endpoints up, lower end-
points down) to the closest or very close floating-point
numbers to maintain the guarantee of inclusion. Thus,
one is still certain that for the interval extension F
of f actually computed, f (x) 2 F(X) for all x 2 X. Thus,
for example, an output interval F(X) which is very wide
for a point input interval X = [x, x] would serve as
a warning that the algorithm is inappropriate or ill-
conditioned, in contrast to the lack of such information
in ordinary floating-point arithmetic.

Automatic differentiation carried out in interval
arithmetic is called interval automatic differentiation.
Interval computation has numerous implications for
optimization, with or without automatic differentia-
tion [6]. Maxima and minima of functions can ‘slip
through’ approximate sampling of values at points of
the floating-point grid, but have to be contained in
the computable interval inclusion F(X) of f (x) over the
same interval region X, for example.

Although interval arithmetic properly applied can
solve many optimization and other computational
problems, a word of warning is in order. The properties
of interval arithmetic differ significantly from those of
real arithmetic, and simple ‘plugging in’ of intervals for
numbers will not always yield useful results. In partic-
ular, interval arithmetic lacks additive and multiplica-
tive inverses, and multiplication is only subdistributive
across addition, X(Y+ Z) � XY+ XZ [11]. A real algo-
rithmwhich uses one ormore of these properties of real
arithmetic is usually inappropriate for interval compu-
tation, and should be replaced by one that is suitable if
possible.

To this point, automatic differentiation has been ap-
plied only to code lists, which programmers customar-
ily refer to as ‘straight-line code’. Automatic differenti-
ation also applies to subroutines and programs, which
ordinarily contain loops and branches in addition to
expressions. These latter present certain difficulties in
many cases. A loop which is traversed a fixed num-
ber of times can be ‘unrolled,’ and thus is equivalent to
straight-line code. However, in case the stopping crite-
rion is based on result values, the derivatives may not
have achieved the same accuracy as the function val-
ues. For example, if the inverse function of a known
function is being computed by iterative solution of the
equation f (x) = y for x = f�1(y), then automatic dif-
ferentiation should be applied to f and the derivative

of the inverse function obtained from the standard for-
mula (f�1)0(y) = (f 0(x))�1. Branches essentially produce
piecewise defined functions, and automatic differentia-
tion then provides the derivative of the function defined
by whatever branch is taken. This can create difficul-
ties as described by H. Fischer [4, pp. 43–50], especially
since a smooth function can be approximated well in
value by highly oscillatory or other nonsmooth func-
tions such as result from table lookups and piecewise
rational approximations. For example, one would not
expect to obtain an accurate approximation to the co-
sine function by applying automatic differentiation to
the library subroutine for the sine. As with any powerful
tool, automatic differentiation should not be expected
to provide good results if applied indiscriminately, es-
pecially to ‘legacy’ code. As with interval arithmetic, au-
tomatic differentiation will yield the best results if ap-
plied to programs written with it in mind.

Current state of the art software for point automatic
differentiation of programs are ADOL-C, for programs
written in C/C++ [5], and ADIFOR for programs in
Fortran 77 [1, pp. 385–392].

Numerous applications of automatic differentiation
to optimization and other problems can be found in the
conference proceedings [1,4], which also contain exten-
sive bibliographies. An important result with implica-
tions for optimization is that automatic differentiation
can be used to obtain Newton steps without forming
Jacobians and solving linear systems, see [1, pp. 253–
264].

From a historical standpoint, the principles of au-
tomatic differentiation go back to the early days of cal-
culus, but implementation is a product of the computer
age, hence the designation ‘automatic’. The terminol-
ogy ‘algorithmic differentiation’, to which the acronym
automatic differentiation also applies, is perhaps bet-
ter. Since differentiation is widely understood, auto-
matic differentiation literature contains many anticipa-
tions and rediscoveries. The 1962 Stanford Ph.D. thesis
of R.E. Moore deals with both interval arithmetic and
automatic differentiation of code lists to obtain Tay-
lor coefficients of series solution of systems of ordi-
nary differential equations. In 1964, R.E. Wengert [15]
published on automatic differentiation of code lists and
noted that derivatives could be recovered from Taylor
coefficients. Early results in automatic differentiation
were applied to code lists in forwardmode, as described



170 A Automatic Differentiation: Point and Interval

in [13]. G. Kedem [8] showed that automatic differen-
tiation applies to subroutines and programs, again in
forward mode. The reverse mode was anticipated by
S. Linnainmaa in 1976 [10], and in the Ph.D. thesis of
B. Speelpenning (Illinois, 1980), and published in more
complete form byM. Iri in 1984 [7]. automatic differen-
tiation via operator overloading and the concept of dif-
ferentiation arithmetics, which are commutative rings
with identity, were introduced by L.B. Rall [9, pp. 291–
309], [14, pp. 73–90], [4, pp. 17–24]. For additional in-
formation about the early history of automatic differ-
entiation, see [13] and the article by Iri [4, pp. 3–16] for
later developments.

Analysis of algorithms for automatic differentiation
has been carried out on the basis of graph theory by Iri
[7], A. Griewank [12, pp. 128–161], [3], and equivalent
matrix formulation by Rall [2, pp. 233–240].
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Frequently of use in optimization problems, automatic
differentiation may be used to generate Taylor coeffi-
cients. Specialized software tools generate Taylor series
approximations, one term at a time, more efficiently
than the general AD software used to compute (par-
tial) derivatives. Through the use of operator overload-
ing, these tools provide a relatively easy-to-use interface
that minimizes the complications of working with both
point and interval operations.

Introduction

First, we briefly survey the tools of automatic differenti-
ation and operator overloading used to compute point-
and interval-valued Taylor coefficients. We assume that

f is an analytic function f : R! R. Automatic differ-
entiation (AD or computational differentiation) is the
process of computing the derivatives of a function f at
a point t = t0 by applying rules of calculus for differ-
entiation [9,10,17,18]. One way to implement AD uses
overloaded operators.

Operator Overloading

An overloaded (or generic) operator invokes a proce-
dure corresponding to the types of its operands. Most
programming languages implement this technique for
arithmetic operations. The sums of two floating point
numbers, two integers, or one floating point number
and one integer are computed using three different
procedures for addition. Fortran 77 or C denies the
programmer the ability to replace or modify the vari-
ous routines used implicitly for integer, floating point,
or mixed-operand arithmetic, but Fortran 95, C++,
and Ada support operator overloading for user-defined
types. Once we have defined an overloaded operator
for each rule of differentiation, AD software performs
those operations on program code for f , as shown be-
low. The operators either propagate derivative values
or construct a code list for their computation. We give
prototypical examples of operators overloaded to prop-
agate Taylor coefficients below.

Automatic Differentiation

The AD process requires that we have f in the form of
an algorithm (e. g. computer program) so that we can
easily separate and order its operations. For example,
given f (t) = et/(2 + t), we can express f as an algorithm
in Fortran 95 or in C++ (using an assumed ADmodule
or class):

In this section, we use AD to compute first deriva-
tives. In the next section, we extend to point- and
interval-valued Taylor series. To understand the AD
process, we parse the program above into a sequence
of unary and binary operations, called a code list, com-
putational graph, or ‘tape’ [9]:

x0 D t0; x2 D 2C x0;

x1 D exp(x0); x3 D
x1
x2
:
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program Example1
use AD_Module
type(AD_Independent) :: t

AD_Independent(0)
type(AD_Dependent) :: f
f = exp(t)/(2 + t)

end program Example1
#include ‘AD_class.h’
void main (void) {

AD_Independent t(0);
AD_Dependent f ;
f = exp(t)/(2 + t);

}

Automatic Differentiation: Point and Interval Taylor Opera-
tors, Figure 1
Fortran and C++ calls to AD operators

Differentiation is a simple mechanical process for
propagating derivative values. Let t = t0 represent the
value of the independent variable with respect to which
we differentiate. We know how to take the derivative of
a variable, a constant, and unary and binary operations
(i. e. +, �, 
, /, sin, cos, exp, etc.). Then AD software
annotates the code list:

x0 D t0;

rx0 D 1;

x1 D exp(x0);

rx1 D exp(x0)
rx0;

x2 D 2C x0;
rx2 D 0Crx0;

x3 D
x1
x2
;

rx3 D
(rx1 � rx2
x3)

x2
:

AD propagates values of derivatives, not expres-
sions as symbolic differentiation does. AD values are
exact (up to round-off), not approximations of un-
known quality as finite differences. For more informa-
tion regarding AD and its applications, see [2,8,9,10,
17,18], or the bibliography [21].

AD software can use overloaded operators in two
different ways. Operators can propagate both the value
xi and its derivative rxi, as suggested by the annotated
code list above. This approach is easy to understand and
to program. We give prototypical Taylor operators of
this flavor below.

The second approach has the operators construct
and store the code list. Various optimizations and par-
allel scheduling [1,4,12] may be applied to the code list.
Then the code list is interpreted to propagate deriva-
tive values. This is the approach of AD tools such
as ADOL-C [11], ADOL-F [20], AD01 [16], or IN-
TOPT_90 [13]. The second approach is much more
flexible, allowing the code list to be traversed in either
the forward or reverse modes of AD (see [9]) or with
various arithmetics (e. g. point- or interval-valued se-
ries).

AD may be applied to functions of more than one
variable, in which partial derivatives with respect to
each are computed in turn, and to vector functions,
in which the component functions are differentiated
in succession. In addition, we can compute higher or-
der derivative values. One application of AD involving
higher order derivatives of f is the computation of Tay-
lor (series) coefficients to which we turn in the next sec-
tion.

Source code transformation is a third approach to
AD software used byATOMFT [5] for Taylor series and
by ADIFOR [3], PADRE2 [14], or Odyssée [19] for par-
tial derivatives. Such tools accept the algorithm for f as
data, rather than for execution, and produce code for
computing the desired derivatives. The resulting code
often executes more rapidly than code using overloaded
operators.

Taylor Coefficients

We define the Taylor coefficients of the analytic func-
tion f at the point t = t0:

( f jt0)i :D
1
i!
di f (t0)
dti

;

for i = 0, 1, . . . , and let F := ((f |t0)i) denote the vec-
tor of Taylor coefficients. Then Taylor’s theorem says
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that there exists some point � (usually not practically
obtainable) between t and t0 such that

f (t) D
pX

iD0

( f jt0)i(t � t0)i

C
1

(pC 1)!
dpC1 f (�)
dtpC1 (t � t0)pC1:

(1)

Computation of Taylor coefficients requires differ-
entiation of f . We generate Taylor coefficients automat-
ically using recursion formulas for unary and binary
operations. For example, the recurrences we need for
our example f (t) = et/(2 + t) are

x(t) D exp u(t)) x0 D xu0;

(x)0 D exp(u)0;

(x)i D
i�1X
jD0

(x) j
(u)i� j

(i � j)

i
;

x(t) D u(t)C v(t);
(x)i D (u)i C (v)i ;

x(t) D
u(t)
v(t)
) xv D u;

(x)i D

�
(u)i �

Pi�1
jD0(x) j
(v)i� j

�

(v)0
:

The recursion relations are described in more de-
tail in [17]. Except for + and �, each recurrence follows
from Leibniz’ rule for the Taylor coefficients of a prod-
uct. The relations can be viewed as a lower triangular
system. The recurrence represents a solution by for-
ward substitution, but there are sometimes accuracy or
stability advantages in an iterative solution to the lower
triangular system. The recurrences for each operation
can be evaluated in floating-point, complex, interval, or
other appropriate arithmetic.

To compute the formal series for f (t) = et/(2 + t)
expanded at t = 0,

8̂
ˆ̂̂<
ˆ̂̂̂
:

X0 :D (t0; 1; 0; : : :)(0; 1; 0; : : :);
X1 :D exp X0 D

�
1; 1; 1

2! ;
1
3! ; : : :

�
;

X2 :D 2C X0 D (2; 1; 0; : : :);
X3 :D X2

X3
D
� 1
2 ;

1
4 ;

1
8 ;

1
48 ; : : :

�
:

(2)

class Taylor { // Or make a template:
private:

cont int Max_Length = 20;
Value_type coef[Max_Length];

public:
Taylor ( Value_type t_0 ) {

// Constructor for Independents
coef[0] = t_0; coef[1] = 1;
for(int i = 2; i ¡ Max_Length; i++)

{ coef[i] = 0; }
}
Taylor ( void ) {

// Constructor for Dependents
for (int i = 0; i ¡ Max_Length; i++)

{ coef[i] = 0; }
}
Taylor ( Taylor &U) {

// Copy Constructor
for (int i=0; i ¡ Max_Length; i++)

{ coef[i] = Value_type(U.coef)[i]; }
}
friend Taylor operator +

(int u, Taylor V) {
V.coef[0] += u; return V;

}
friend Taylor operator /

(Taylor U, Taylor V) {
Taylor X;
for (int i = 0; i ¡ Max_Length; i++) {

Value_type sum = U.coef[i];
for (int j = 0; j ¡ i; j++)
{ sum� =X.coef[j] * V.coef[i�j]; }

X.coef[i] = sum / V.coef[0];
}
return X;

}
friend Taylor exp (Taylor U)

{ /* Similar to divide */ }
Value_type getCoef (int i)

{ return coef[i]; }
}; // end class Taylor

Point and Interval Taylor Operators

As foreshadowed by this example, we define an abstract
data type for Taylor series and use operator overloading
to define actions on objects of that type using previously
defined floating-point and interval operations.
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Design of Operators

In this section, we give prototypical operators for the di-
rect propagation of Taylor coefficients such as might be
called from code similar to that shown in Fig. 1. Direct
propagation of values works by translating each opera-
tion into a call to the appropriate AD routine at compile
time. Thus, simply compiling the source code for f and
linking it with the overloaded operator routines creates
a program that computes the Taylor coefficients of f at
t = t0. For illustration, we provide only a stripped-down
prototype with operators required for the example f (t)
= et/(2 + t). We suppress issues of references and the
like that are essential to the design of a useful class.
See [6] for a description of a set of interval Taylor oper-
ators in Ada.

If instead, operators for AD_type record a code list,
then an interpreter reads each node from the code list
and calls the appropriate operator from class Taylor:

Taylor Operand[MemSize];
for (int i = 0; ¡ CodeSize; i++) {
Node = getNextOperation ();
switch (Node.OpCode) {
case PLUS : Operand[Node.Result]
= Operand[Node.Left]
+ Operand[Node.Right];

break;
. . .
case EXP : Operand[Node.Result]
= exp ( Operand[Node.Left] );
break;

. . .
}

}

Use of Interval Operators

We have mentioned the possibility of working with in-
terval values but not the significance of doing so. From
equation (1) for an interval t, and for all t 2 t,

f (t) 2
pX

iD0

( f jt0)i(t � t0)i

C
1

(pC 1)!
dpC1 f (t)
dtpC1 (t � t0)pC1: (3)

Automatic Differentiation: Point and Interval Taylor Opera-
tors, Figure 2
Taylor series enclosures of f

In a computer implementation, the summation is
done in interval arithmetic to ensure enclosure. The
series Taylor coefficients (f |t0)i are narrow intervals
whose width comes only from outward rounding. The
remainder term is the Taylor coefficient (f |t)i, where
the recurrence relations are evaluated in interval arith-
metic. The series (3) can be used to bound the range of
f , for validated quadrature [7], or for rigorous solution
of ODEs [15]. For the example f (t) = et/(2 + t), we re-
peat the sequence of computations of Equation (2) for
the interval t0 = [0, 0] and for t = [�1, 1]:

�
( f j[0])i

�
D

�
1
2
;
1
4
;
1
8
;
1
48
; : : :

�
;

�
( f j[�1; 1])i

�

D ([0:12; 2:72]; [�2:59; 2:68]; [�2:64; 4:04]; : : :):

Assembling these according to (3) yields enclosures for
all t 2 [�1, 1]:

f (t) 2 ( f j[�1; 1])0 D [0:12; 2:72]

2 ( f j[0])0C ( f j[�1; 1])1(t � 0)

D
1
2
C [�2:59; 2:68]t

2 ( f j[0])0C ( f j[0])1(t � 0)

C ( f j[�1; 1])2(t � 0)2

D
1
2
C

1
4
tC [�2:64; 4:04]t2

:::
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To demonstrate the true power of this approximation
technique, we plot the corresponding 5, 10, and 20 term
enclosures in Fig. 2.

One-at-a-Time Coefficient Generation

The Taylor operators described the preceding section
accept vectors of p Taylor coefficients for operands u
and v and return Taylor coefficients for result x with
complexity O(p2). However, for applications such as
ODEs or order-adaptive quadrature, the entire operand
series is not known, and we need to compute terms one
at a time [6]. For example, for the DE

u0 D f (t; u) D
exp(u)
(2C t)

; u(0) D 1;

initial condition u(0) = 1 implies

(uj0)0 D 1;

and DE u0 = exp(u)/(2 + t) implies

(uj0)1 D
exp(1)
(2C 0)

D
e
2
;

u00 D u0 exp(u)
2Ct �

exp(u)
(2Ct)2 implies

(uj0)2 D
e
2
exp(1)
(2C 0)

�
e
4
D

e(e � 1)
4

;

etc.
Successive terms can be computed by interpreting

the code list for f (t, u) repeatedly for series of increasing
length for u. Each iteration of the automatic generation
process yields an additional Taylor coefficient. Unfortu-
nately, a simple implementation of Taylor operators has
complexity O(p3) because already known coefficients of
u0 are recomputed. However, since the order of oper-
ations is the same in each iteration, we can increase
the efficiency of the computations by storing interme-
diate results [6]. Each overloaded operator routine calls
a memory allocation procedure that refers it to the next
space in an array. If that space is empty, we store Tay-
lor coefficient values for that variable. Otherwise, the
space must contain the previously computed Taylor co-
efficients of that variable, which we can then use to
more quickly compute the next coefficient in the set.
With clever book-keeping, we compute p floating-point
or interval-valued Taylor coefficients one at a time in
O(p2) time.

Trade-Offs

Wemay strive for three goals when writing software for
point and interval Taylor operations: storage space effi-
ciency, time efficiency, and ease of use. These three fac-
tors are often at odds with each other.

Carefully implemented operator overloading pro-
vides an easy to use interface and provides reasonable
time and space efficiency. We may achieve greater time
and space efficiency by using source code transforma-
tion.

In conclusion, automatic differentiation through
Taylor operators shows merit as a technique for com-
puting guaranteed interval enclosures about a func-
tion f . Further efforts to refine this technique may pro-
vide us with a tool that handles multivariate functions,
and runs significantly faster thanks to parallelization
and improved optimization techniques.
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Automatic differentiation is a method in which a pro-
gram for evaluating a function f is transformed into an-
other program that evaluates both the function f and
some of its derivatives. The key idea is the repeated
use of the chain-rule for composing the derivatives of
f from derivatives of parts of f . For more about auto-
matic differentiation (AD), consult [2,3,5].

Proper combinations of differentiable functions
produce differentiable functions. Some combinations
of nondifferentiable functions also produce differen-
tiable functions. Therefore the mere fact that a program
defines a differentiable function is no guarantee that
ADwill work. Here we investigate two cases, where AD,
applied to a program for a differentiable function, fails.

The root problem arises when a square-root is com-
bined with other functions so that the resulting func-
tion is differentiable but the chain-rule is not applicable
for certain arguments.

The branch problem arises when a program for eval-
uating a differentiable function f employs statements of
the form B(x) then S1 else S2, where x is from the do-
main of f , B is a Boolean function, and S1 and S2 repre-
sent subprograms. This reflects a piece-wise definition
of the function f , and the derivative of one or the other
piece may be quite different from the derivative of the
function f .

Root Problem

An example that is typical of the root problem is shown
in Table 1. The program P defines the function

f : R2 ! R

with

f (x) D
q
x41 C x42 :

This function is differentiable at any x 2 R2, in partic-
ular f 0(0) = [0, 0]. Standard AD (in the forward mode)
transforms P into a program P0 by inserting assignment
statements for derivatives in proper places (see Table 2).

The program P0 is supposed to compute f (x) and
f 0(x). But for x = 0 it does not compute the correct value

Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 1
Program P for evaluating f at x

input: x = (x1; x2) 2 R2

y1  x1
y2  x2
y3  y41
y4  y42
y5  y3 + y4
y6  

py5
f (x)  y6
output: f (x)

Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 2
Program P0 for evaluating f and f 0 at x

input: x = (x1; x2) 2 R2

y1  x1 y01  [1,0]
y2  x2 y02  [0,1]
y3  y41 y03  4y31 � y01
y4  y42 y04  4y32 � y02
y5  y3 + y4 y05  y03 + y04
y6  

py5 y06  1
2py5
� y05

f (x)  y6 f 0(x)  y06
output: f (x) output: f 0(x)

Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 3
Program Q for evaluating f at x

input: x 2 D � Rn

y1  A(x)
y2  

py1
y3  B(x; y2)
f (x)  y3
output: f (x)

f 0(0) = [0, 0], but rather it fails because of division by
zero.

One can easily see that this failure is not limited to
the forward mode, because the reverse mode encoun-
ters the same division-by-zero problem. Symbolic ma-
nipulation packages such asMAPLE also fail to produce
f 0(0).
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A more general setting for the root problem is
shown in Table 3. Here, it is assumed that:
1) DA is a nonempty open subset of Rn;
2) the function A: DA � Rn! R is differentiable;
3) DB is a nonempty open subset of Rn+1;
4) the function B: DB � Rn+1! R is differentiable;
5) D := {x 2 DA: A(x)� 0, (x, A(x)) 2 DB};
6) D is nonempty.
The program Q defines the function

f : D � Rn ! R

with

f (x) D B(x;
p
A(x)):

Standard AD (in the forward mode) transforms Q into
a program Q0. The steps of Q0 in evaluating f 0(x) can be
seen in the formula

f 0(x) D B1(x; y2)C B2(x; y2) �
�

1
2py1

� y01

�
;

where [B1(x, y2), B2(x, y2)] is an appropriate partition
of B0(x, y2). For x 2 D with A(x) > 0, the program Q0

will produce f 0(x). And for x 2 D with A(x) = 0, the
program Q0 fails because of division by zero. The case
in which x� 2 D with A(x�) = 0 is ambiguous. It says
nothing about the existence of f 0(x�). In this case, we
distinguish the following four situations:
A) f 0(x�) does not exist, for instance n = 2, A(x) = x21 +

x22 and B(x, y) = y, x� = 0.
B) A alone guarantees existence of f 0(x�), for instance

n = 2, A(x) = x41 + x42, x� = 0.
C) B alone guarantees existence of f 0(x�), for instance

B(x, y) = y2.
D) A and B together guarantee existence of f 0(x�), for

instance n = 2, A(x) = x21 + x22 and B(x, y) = x1 � x2 �
y, x� = 0.

What can be done to resolve the root problem?
The use of AD tools for higher derivatives may be

helpful. Consider the simple case n = 1, A 2 C1, DB =
Rn+1, B(x, y) = y. So we have

D :D fx : x 2 DA; A(x) � 0g

and f : D� R! R with f (x) D
p
A(x).

Assume that for x 2 R it can be decided whether or
not x 2 D, for instance by testing x in a program for
evaluating A.

For x� 2 D, we require the value of the derivative
f 0(x�). Below, we list the relevant implications:
� A(x�) > 0) f 0(x�) D 1

2
p

A(x�)
� A0(x�).

� A(x�) = 0) no answer possible.
� A(x�) = 0, A0(x�) 6D 0) f 0(x�) does not exist.
� A(x�) = 0, A0(x�) = 0) no answer possible.
� A(x�) = 0, A0(x�) = 0, A00(x�) 6D 0) f 0(x�) does not

exist.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0) no answer pos-

sible.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A000(x�) 6D 0)

f 0(x�) does not exist.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A000(x�) = 0) no

answer possible.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A000(x�) = 0,

A(4)(x�) > 0) f 0(x�) = 0.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A00(x�) = 0,

A(4)(x�)< 0) f 0(x�) does not exist.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A000(x�) = 0,

A(4)(x�) = 0) no answer possible.
Let n 2 {1, 2, 3 . . . } and A(k)(x�) = 0 for k = 0, . . . , 2n.
� A(2n+1)(x�) 6D 0) f 0(x�) does not exist.
� A(2n+1)(x�) = 0, A(2n+2)> 0) f 0(x�) = 0.
� A(2n+ 1)(x�) = 0, A(2n+ 2)< 0) f 0(x�) does not exist.
� A(2n+ 1)(x�) = 0, A(2n+ 2) = 0) no answer possible.

For a nonstandard treatment of these implications
see [6]. Of course in the general situation given in Ta-
ble 3, the classification of cases is more problematic.

Branch Problem

A typical example for the branch problem is Gauss-
elimination for solving a system of linear equations
with parameters. For illustrative purposes, it suffices to
consider two equations with a two-dimensional param-
eter x (see Table 4). Here, it is assumed that:
a) D is a nonempty open subset of R2;
b) the functionM: D� R2! R2, 2 is differentiable;
c) the function R: D� R2! R2 is differentiable;
d) x 2 D) the matrixM(x) is regular.
The program GAUSS defines the function

F : D � R2 ! R2

with

M(x) � F(x) D R(x):
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Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 4
Program GAUSS for evaluating f at x

input: x 2 D
M11  M11(x)
M12  M12(x)
M21  M21(x)
M22  M22(x)
R1  R1(x)
R2  R2(x)
IF M11 ¤ 0 THEN

S1: E  M21 / M11
M22  M22 � E 
M12
R2  R2 � E 
 R1
F2  R2 / M22
F1  (R1 �M12 
 F2) / M11
ELSE

S2: F2  R1 /M12
F1  (R2 �M22 
 F2) /M21
output: F(x) = (F1,F2)

Since the matrixM(x) is regular for x 2 D, the program
GAUSS and the function f are well-defined. Further-
more, the function f is differentiable.

Standard AD (in the forward mode) transforms
GAUSS into a new program by inserting assignment
statements for derivatives in proper places. The result-
ing program GAUSS’ is also well-defined, and for x 2D
it is supposed to produce F(x) and F0(x).

Now choose

D D
˚
x 2 R2 : 0 < x1 < 2; 0 < x2 < 2

�

and

M(x) D
M11(x) M12(x)
M21(x) M22(x)

D
x1 � x2 1
10 x1 C x2

;

R(x) D
R1(x)
R2(x)

D
100(x1 C 2x2)
100(x1 � 2x2)

:

It is easy to see that D is a nonempty open subset of
R2, that the functions M and R are differentiable, and
thatM(x) is regular for x 2 D.

GAUSS’ produces

F 0(1; 1) D
�40 �90
100 200

;

but the correct value is

F 0(1; 1) D
�54 �76
170 130

:

One can easily check that the wrong result is not limited
to the forward mode, because the reverse mode yields
exactly the same wrong result.

To better understand the situation we define

D1 :D fx : x 2 D;M11(x) ¤ 0g ;

D2 :D fx : x 2 D;M11(x) D 0g :

The program GAUSS can be considered as a piece-
wise definition of the function F,

F(x) D

(
F(x) according to S1; for x 2 D1;

F(x) according to S2; for x 2 D2:

Normally, one is not too concerned about the domain
of a function. But indeed in this case, we must be con-
cerned.

Let F|D1 denote the restriction of F toD1 and let F|D2

denote the restriction of F to D2. Then, of course

F(x) D

(
(FjD1)(x) for x 2 D1;

(FjD2)(x) for x 2 D2:

The domain D1 of the function F|D1 is an open set, x 2
D1 is an interior point of D1, and hence

F 0(x) D (FjD1)
0(x) for x 2 D1;

and this is the value GAUSS’ produces.
The domain D2 of the function F|D2 is too thin, it

has no interior points, and hence F|D2 is not differen-
tiable. In other words, the function F|D2 does not pro-
vide enough information to obtain F0(x) for x 2 D2.
Thus GAUSS’ cannot produce F0(x) for x 2 D2. What
GAUSS’ actually presents for F0(x) is the value for the
derivative of another function, which is of no interest
here. For more see [1].

In [4] it is claimed that the use of a certain branch-
ing function method makes the branch problem vanish.
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This is true in certain cases, in our example the branch-
ing function method fails because it encounters divi-
sion by zero. At least this suggests that something went
wrong. For a partial solution to the branch problem,
see [1] and for a nonstandard treatment of the branch
problem, see [6].

A simple example of the branch problem is shown
in the informal program

IF x ¤ 1 THEN f (x) x � x
ELSE f (x) 1:

This program defines the function

f : R! R with f (x) D x2:

Of course, f is differentiable, in particular we have f 0(1)
= 2.

Standard AD software produces the wrong result
f 0(1) = 0. It is not surprising that symbolic manipula-
tion packages produce the same wrong result. Here it
is obvious that the else-branch does not carry enough
information for computing the correct f 0(1).

Sometimes branching is done to save work. Con-
sider the function

f : D � Rn ! R

with

f (x) D s(x)C c(x) � E(x);

where D is an open set. The real-valued functions s, c, E
may be given explicitly or by subroutines. Assume that
f (x) has to be evaluated many times for varying x-s, that
c(x) = 0 for many interesting values of x, and that E(x)
is computationally costly. Then it is effective to set up
a program for computing f (x) as shown in Table 5.

Assume that the functions s, c, E are differentiable.
Then f is differentiable too. For given x 2 D we ask for
f 0(x).

Standard AD (in the forward mode) transforms SW
into a new program by inserting assignment statements
concerning derivatives. The resulting program SW 0 is
well-defined, and for given x 2 D it is supposed to pro-
duce f (x) and f 0(x).

Define the sets

D1 :D fx : x 2 D; c(x) ¤ 0g ;

D2 :D fx : x 2 D; c(x) D 0g :

Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 5
Program SW for computing f (x)

input: x 2 D
c(x)  � � �

IF c(x) ¤ 0 THEN
S1: s(x)  � � �

E(x)  � � �

r(x)  s(x) + c(x) � E(x)
f (x)  r(x)
ELSE

S2: s(x)  � � �

f (x)  s(x)
output: f (x)

SW 0 works correctly to produce

f 0(x) D r0(x) for x 2 D1:

Looking at SW, it is tempting to assume:

f 0(x) D s0(x) for x 2 D2

and SW 0 actually follows this assumption. But it is clear
that

f 0(x) D s0(x)C E(x) � c0(x)C c(x) � E0(x)
for x 2 D;

and in particular

f 0(x) D s0(x)C E(x) � c0(x)

for x 2 D2:

If x 2 D2, and if either E(x) = 0 or c0(x) = 0, then SW 0

produces the correct F0(x), otherwise SW 0 fails.

See also

� Automatic Differentiation: Calculation of the
Hessian

� Automatic Differentiation: Calculation of Newton
Steps

� Automatic Differentiation: Geometry of Satellites
and Tracking Stations

� Automatic Differentiation: Introduction, History
and Rounding Error Estimation

� Automatic Differentiation: Parallel Computation
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� Automatic Differentiation: Point and Interval
� Automatic Differentiation: Point and Interval

Taylor Operators
� Nonlocal Sensitivity Analysis with Automatic

Differentiation
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