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Data envelopment analysis (DEA) is a novel technique
based on linear programming for evaluating the rela-
tive performance of similar units, referred to as deci-
sion making units (DMUs). The system under evalu-
ation consists of n DMUs: each DMU consumes vary-
ing amount of m1 different inputs (resources) to pro-
duce m2 different outputs (products). Specifically, the
jth DMU is characterized by the input vector xj > 0 and
the output vector yj > 0. The aim of DEA is to discern,
for each DMU, whether or not is operating in an effi-
cient way, given its inputs and outputs, relative to all
remaining DMUs under consideration. The measure of
efficiency is the ratio of a weighted sum of the outputs
to a weighted sum of the inputs. For each DMU, the
weights are different and obtained by solving a linear
programming problem with the objective of showing
the DMU in the best possible light.

The ability to deal directly with incommensurable
inputs and outputs, the possibility of each DMU of
adopting a different set of weights and the focus on in-
dividual observation in contrast to averages are among
the most appealing features of model based on DEA.

A process is defined output-efficient if there is no
other process that, using the same or smaller amount
of inputs, produces higher level of outputs. A process
is defined input-efficient if there is no other process
that produces the same or higher level of outputs, using
smaller amount of inputs. For each orientation there
are four possible models:
1) the ‘constant returns’ model;
2) the ‘variable returns’ model;
3) the ‘increasing returns’ model;
4) the ‘decreasing returns’ model.
Each model is defined by a specific set of economic as-
sumptions regarding the relation between inputs and
outputs [10,11]. Associated with each of the four DEA
models, independent of the orientation, there is a pro-
duction possibility set, that is, the set of all possible in-
puts and outputs for the entire system. This set consists
of the nDMUs and of ‘virtual’ DMUs obtained as linear
combination of the original data. The efficient frontier
is a subset of the boundary points of this production set.
The objective of DEA is to determine if the DMU un-
der evaluation lies on the efficient frontier and to assign
a score based on the distance from this frontier [6].

The production set for the ‘constant returns’ model
is
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while for the ‘variable returns’ model we have
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The production sets for the ‘increasing’ (resp. ‘de-
creasing’) returns models are similar to the set T2 above
with the equality constraint
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jD1 �j = 1 replaced by the
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Pn

jD1 �j � 1).
The ‘constant returns, input oriented’ envelopment

LP is given next:
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For the ‘constant returns, output oriented’ case we
have, instead, the following LP problem [4]:
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In both cases the additional constraint
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defines the LP for the variable, increasing and decreas-
ing returns DEA models, respectively.

The corresponding dual problem for the input-
oriented case is
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where ˇ = 0, ˇ unrestricted, ˇ � 0 and ˇ � 0 for
the constant, variable, increasing and decreasing return
DEA models.

For the output-oriented case the dual is:
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with ˇ = 0, ˇ unrestricted ˇ � 0 and ˇ � 0 for the con-
stant, variable, increasing and decreasing returns DEA
models.

For the ‘input-oriented, constant returns’ case, the
reference DMU j� is
� inefficient if

– the optimal value of problem (1) is different from
1, or

– the optimal value of Problem (1) is equal to 1 but
there exists an optimal solution with at least one
slack variable strictly positive;

� efficient in the remaining cases.
Moreover the efficient DMU j� can be
� extreme-efficient if Problem (1) has the unique solu-

tion ��j� = 1, ��j = 0, j = 1, . . . , n, j 6D j�;
� nonextreme efficient when Problem (1) has alternate

optimal solutions.
The efficiency for the other models is defined in a simi-
lar manner.

The conditions � � 0 and  � 0 can be introduced
without loss of generality in (1) and (2) since only non-
negative values for these variables are possible given our
assumption on the data. Since �j � = 1, �j = 0 for j 6D j�,
�� = 1, and �j � = 1, �j = 0 for j 6D j�,  � = 1 are always
feasible for (1) and (2), respectively, the optimal objec-
tive function value lies in the interval (0, 1] for the input
orientation case and [1,1) for the output orientation
case.

The linear programs (1) and (3) above can be in-
terpreted in the following way. In the input-oriented
case, we compare the reference DMU j� with a ‘virtual’
DMU obtained as linear combination of the original
DMUs. Each input and output of this virtual DMU is
a linear combination of the corresponding component
of the inputs and outputs of all the DMUs. The optimal
value is, in this case, always less than or equal to 1. If
the optimal value is strictly less than 1, then it is possi-
ble to construct a virtual DMU that produces at least the
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same amount of outputs as the reference DMUusing an
amount of inputs that is strictly smaller than amount
used by the j�th DMU. When this happens we declare
the DMU j� inefficient. Instead, when the optimal value
is equal to 1 there are three possible cases:
� there exists an optimal solution with at least one

slack variable strictly positive;
� the optimal solution is unique;
� there exists multiple optimal solutions.
In the first case we declare the reference DMU ineffi-
cient. In the last two cases the j�th DMU is efficient
(extreme-efficient, respectively nonextreme efficient).

For Problem (3), the optimal solution � and ��

represent the weights that are the most favorable for
the reference DMU, i. e., the weights that produce the
highest efficiency score under the hypothesis that, us-
ing the same weights for the other DMUs, the efficiency
remains always below 1.

Similar interpretations can be given for the output-
oriented case for Problems (2) and (4).

In Fig. 1 it is represented the production possibility
set and the efficient frontier for the five DMUs ‘A’ to ‘E’.
These DMUs are characterized by two different inputs
and a single output value set to some fixed value.

All the DMUs are efficient but the DMU ‘E’. The
DMU ‘B’ is efficient but nonextreme. The virtual DMU
‘K’, obtained as convex combination of the DMUs ‘C’
and ‘D’, is more efficient than the DMU ‘E’. The optimal
value �� for the linear programming problem (1) for
the DMU ‘E’ is exactly the ratio of the lengths of the
segments OE and OK.

Data Envelopment Analysis, Figure 1
Two-input, single output DMUs

Data Envelopment Analysis, Figure 2
Two-output, single input DMUs

Figure 2 shows the case of DMUs characterized by
two distinct outputs and a single input set to a fixed
value. All the DMUs are efficient except the DMU ‘F’
that is dominated by the virtual DMU ‘K’. The optimal
value  � for the linear programming problem (2) for
the DMU ‘F’ is the ratio of the lengths of the segments
OE and OK.

The original ‘constant returns’ model was proposed
in [4]. In [2] the variable returns model was proposed
with the objective of discriminating between technical
efficiency and scale efficiency. The bibliography pub-
lished in [7] (part of [3]) contains more than 500 refer-
ences to published article in the period 1978–1992 and
many more articles appeared since.

In all the DEA models discussed above, all efficient
DMUs receive an equal score of 1. An important mod-
ification proposed in [1] allows to rank efficient units.
The main idea is to exclude the column being scored
from the DEA envelopment LP technology matrix. The
efficiency score is now a value between (0, +1] in both
orientations. In [5] are discussed in detail the issues (in-
feasibility, relationship between modified and standard
formulation, degeneracy, interpretation of the optimal
solutions) related to these DEA models.
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In [8] and [9] the properties of ‘unit invariance’ (in-
dependence of the units in which inputs and outputs
are measured) and ‘translation invariance’ (indepen-
dence of an affine translation of the inputs and the out-
puts) of an efficiency DEA measure are discussed. The
translation invariance property is particularly impor-
tant when data contain zero or negative values. Stan-
dard DEAmodels are not unit invariant and translation
invariant. In [8] it is proposed a weighted additive DEA
model that satisfies these properties:
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where wCi and w�r are the sample standard deviation of
the inputs and outputs variables respectively.

Models based on data envelopment analysis have
been widely used in order to evaluate efficiency in both
public and private sectors. [3, Part II] contains 15 ap-
plication of DEA showing the ‘range, power, elegance
and insight obtainable via DEA analysis’. Banks, hos-
pitals, and universities are among the most challenging
sectors where models based on DEA have been able to
assess efficiency and determine strength and weakness
of the various units.

See also

� Optimization and Decision Support Systems
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Introduction

Data mining has proven valuable in almost every as-
pect of life involving large data sets. Data mining is
made possible by the generation of masses of data from
computer information systems. In engineering, satel-
lites stream masses of data down to storage systems,
yielding amountain of data that needs some sort of data
mining to enable humans to gain knowledge. Data min-
ing has been applied in engineering applications such
as quality [4], manufacturing and service [13], labor
scheduling [17], and many other places. Medicine has
been an extensive user of data mining, both in the tech-
nical area [21] and in health policy [6]. Pardalos [16]
provide recent research in this area. Governmental op-
erations have received support from data mining, pri-
marily in the form of fraud detection [9].

In business, data mining has been instrumental
in customer relationship management [5,8], financial
analysis [3,12], credit card management [1], health
service debt management [22], banking [19], insur-
ance [18], and many other areas of business involv-
ing services. Kusiak [13] reviewed data mining appli-
cations to include service applications of operations.
Recent reports of data mining applications in web
service and technology include Tseng and Lin [20]
and Hou and Yang [11]. In addition to Tseng and
Lin, Lee et al. [14] discuss issues involving mobile
technology and data mining. Data mining support
is required to make sense of the masses of business
data generated by computer technology. Understand-
ing this information-generation system and tools avail-
able leading to analysis is fundamental for business in
the 21st century. The major applications have been in
customer segmentation (by banks and retail establish-
ments wishing to focus on profitable customers) and in
fraud and rare event detection (especially by insurance
and government, as well as by banks for credit scor-
ing). Data mining has been used by casinos in customer
management, and by organizations evaluating person-
nel.

We will discuss data mining functions, data min-
ing process, data systems often used in conjunction
with data mining, and provide a quick review of soft-
ware tools. Four prototypical applications are given to
demonstrate data mining use in business. Ethical issues
will also be discussed.

Definitions

There are a few basic functions that have been applied
in business. Bose andMahapatra [2] provided an exten-
sive list of applications by area, technique, and problem
type.
� Classification uses a training data set to identify

classes or clusters, which then are used to catego-
rize data. Typical applications include categorizing
risk and return characteristics of investments, and
credit risk of loan applicants. The Adams [1] case,
for example, involved classification of loan appli-
cations into groups of expected repayment and ex-
pected problems.

� Prediction identifies key attributes from data to de-
velop a formula for prediction of future cases, as
in regression models. The Sung et al. [19] case pre-
dicted bankruptcy while the Drew et al. [5]) case and
the customer retention part of the Smith et al. [18]
case predicted churn.

� Association identifies rules that determine the
relationships among entities, such as in market
basket analysis, or the association of symptoms
with diseases. IF–THEN rules were shown in the
Sung et al. [19] case.

� Detection determines anomalies and irregularities,
valuable in fraud detection. This was used in claims
analysis by Smith et al. [18].
To provide analysis, data mining relies on some fun-

damental analytic approaches. Regression and neural
network approaches are alternative ways to identify the
best fit in a given set of data. Regression tends to have
advantages with linear data, while neural network mod-
els do very well with irregular data. Software usually
allows the user to apply variants of each, and lets the
analyst select the model that fits best. Cluster analysis,
discriminant analysis, and case-based reasoning seek to
assign new cases to the closest cluster of past observa-
tions. Rule induction is the basis of decision tree meth-
ods of data mining. Genetic algorithms apply to special
forms of data, and are often used to boost or improve
the operation of other techniques.

In order to conduct data mining analyzes, a data
mining process is useful. The Cross-Industry Standard
Process for Data Mining (CRISP-DM) is widely used
by industry members [15]. This model consists of six
phases intended as a cyclical process:
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� Business understanding: Business understanding
includes determining business objectives, assessing
the current situation, establishing data mining goals,
and developing a project plan.

� Data understanding: Once business objectives and
the project plan are established, data understanding
considers data requirements. This step can include
initial data collection, data description, data explo-
ration, and the verification of data quality. Data ex-
ploration such as viewing summary statistics (which
includes the visual display of categorical variables)
can occur at the end of this phase. Models such
as cluster analysis can also be applied during this
phase, with the intent of identifying patterns in the
data.

� Data preparation:Once the data resources available
are identified, they need to be selected, cleaned, built
into the form desired, and formatted. Data clean-
ing and data transformation in preparation for data
modeling needs to occur in this phase. Data explo-
ration at a greater depth can be applied during this
phase, and additional models utilized, again provid-
ing the opportunity to see patterns based on busi-
ness understanding.

� Modeling: Data mining software tools such as vi-
sualization (plotting data and establishing relation-
ships) and cluster analysis (to identify which vari-
ables go well together) are useful for initial analy-
sis. Tools such as generalized rule induction can de-
velop initial association rules. Once greater data un-
derstanding is gained (often through pattern recog-
nition triggered by viewing model output), more de-
tailed models appropriate to the data type can be ap-
plied. The division of data into training and test sets
is also needed for modeling (sometimes even more
sets are needed for model refinement).

� Evaluation: Model results should be evaluated in
the context of the business objectives established
in the first phase (business understanding). This
will lead to the identification of other needs (often
through pattern recognition), frequently reverting
to prior phases of CRISP-DM. Gaining business un-
derstanding is an iterative procedure in data mining,
where the results of various visualization, statistical,
and artificial intelligence tools show the user new re-
lationships that provide a deeper understanding of
organizational operations.

� Deployment: Data mining can be used both to
verify previously held hypotheses, and for knowl-
edge discovery (identification of unexpected and
useful relationships). Through the knowledge dis-
covered in the earlier phases of the CRISP-DM
process, sound models can be obtained that may
then be applied to business operations for many
purposes, including prediction or identification of
key situations. These models need to be monitored
for changes in operating conditions, because what
might be true today may not be true a year from
now. If significant changes do occur, the model
should be redone. It is also wise to record the results
of data mining projects so documented evidence is
available for future studies.
This six-phase process is not a rigid, by-the-num-

bers procedure. There is usually a great deal of back-
tracking. Additionally, experienced analysts may not
need to apply each phase for every study. But CRISP-
DM provides a useful framework for data mining.

There are many database systems that provide con-
tent needed for data mining. Database software is avail-
able to support individuals, allowing them to record
information that they consider personally important.
They can extract information provided by repetitive
organizational reports, such as sales by region within
their area of responsibility, and regularly add external
data such as industry-wide sales, as well as keep records
of detailed information such as sales representative ex-
pense account expenditure.
� Data warehousing is an orderly and accessible

repository of known facts and related data that is
used as a basis for making better management de-
cisions. Data warehouses provide ready access to
information about a company’s business, products,
and customers. This data can be from both internal
and external sources. Data warehouses are used to
store massive quantities of data in amanner that can
be easily updated and allow quick retrieval of spe-
cific types of data. Data warehouses often integrate
information from a variety of sources. Data needs to
be identified and obtained, cleaned, catalogued, and
stored in a fashion that expedites organizational de-
cision making. Three general data warehouse pro-
cesses exist. (1) Warehouse generation is the pro-
cess of designing the warehouse and loading data.
(2) Data management is the process of storing the
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data. (3) Information analysis is the process of using
the data to support organizational decision making.

� Data marts are sometimes used to extract specific
items of information for data mining analysis. Ter-
minology in this field is dynamic, and definitions
have evolved as new products have entered the mar-
ket. Originally, many data marts were marketed as
preliminary data warehouses. Currently, many data
marts are used in conjunction with data warehouses
rather than as competitive products. But also many
data marts are being used independently in order to
take advantage of lower-priced software and hard-
ware. Data marts are usually used as repositories of
data gathered to serve a particular set of users, pro-
viding data extracted from data warehouses and/or
other sources. Designing a data mart tends to begin
with the analysis of user needs. The information that
pertains to the issue at hand is relevant. This may
involve a specific time-frame and specific products,
people, and locations. Data marts are available for
data miners to transform information to create new
variables (such as ratios, or coded data suitable for
a specific application). In addition, only that infor-
mation expected to be pertinent to the specific data
mining analysis is extracted. This vastly reduces the
computer time required to process the data, as data
marts are expected to contain small subsets of the
data warehouse’s contents. Data marts are also ex-
pected to have ample space available to generate ad-
ditional data by transformation.

� Online analytical processing (OLAP) is a multi-
dimensional spreadsheet approach to shared data
storage designed to allow users to extract data and
generate reports on the dimensions important to
them. Data is segregated into different dimensions
and organized in a hierarchical manner. Many vari-
ants and extensions are generated by the OLAP ven-
dor industry. A typical procedure is for OLAP prod-
ucts to take data from relational databases and store
them in multidimensional form, often called a hy-
percube, to reflect the OLAP ability to access data on
these multiple dimensions. Data can be analyzed lo-
cally within this structure. One function of OLAP is
standard report generation, including financial per-
formance analysis on selected dimensions (such as
by department, geographical region, product, sales-
person, time, or other dimensions desired by the

analyst). Planning and forecasting are supported
through spreadsheet analytic tools. Budgeting cal-
culations can also be included through spreadsheet
tools. Usually, pattern analysis tools are available.
There are many statistical and analytic software

tools marketed to provide data mining. Many good
data mining software products are being used, in-
cluding the well-established (and expensive) Enterprise
Miner by SAS and Intelligent Miner by IBM, CLEMEN-
TINE by SPSS (a little more accessible by students),
PolyAnalyst by Megaputer, and many others in a grow-
ing and dynamic industry. For instance, SQL Server
2005 has recently been vastly improved by Microsoft,
making a more usable system focused on the database
perspective.

These products use one or more of a number of an-
alytic approaches, often as complementary tools that
might involve initial cluster analysis to identify rela-
tionships and visual analysis to try to understand why
data clustered as it did, followed by various prediction
models. The major categories of methods applied are
regression, decision trees, neural networks, cluster de-
tection, and market basket analysis. TheWeb site www.
KDnuggets.com gives information on many products,
classified by function. In the category of overall data
mining suites, they list 56 products in addition to 16
free or shareware products. Specialized software prod-
ucts were those using multiple approaches (15 commer-
cial plus 3 free), decision tree (15 plus 10 free), rule-
based (7 plus 4 free), neural network (12 plus 3 free),
Bayesian (13 plus 11 free), support vector machines (3
plus 8 free), cluster analysis (8 plus 10 free), text min-
ing (50 plus 4 free), and other software for functions
such as statistical analysis, visualization, and Web us-
age analysis.

Example Applications

There are many applications of data mining. Here we
present four short examples in the business world.

Customer Relationship Management (CRM)

The idea of customer relationship management is to
target customers for special treatment based on their
anticipated future value to the firm. This requires esti-
mation of where in the customer life-cycle each subject
is, as well as lifetime customer value, based on expected

http://www.KDnuggets.com
http://www.KDnuggets.com
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tenure with the company, monthly transactions by that
customer, and the cost of providing service. Lifetime
value of a customer is the discounted expected stream
of cash flow generated by the customer.

Many companies applying CRM score each individ-
ual customer by their estimated lifetime value (LTV),
stored in the firm’s customer database [5]. This concept
has been widely used in catalog marketing, newspaper
publishing, retailing, insurance, and credit cards. LTV
has been the basis for many marketing programs offer-
ing special treatment such as favorable pricing, better
customer service, and equipment upgrades.

While CRM is very promising, it has often been
found to be less effective than hoped [10]. CRM systems
can cost up to $70 million to develop, with additional
expenses incurred during implementation. Many of the
problems in CRM expectations have been blamed on
over-zealous sales pitches. CRM offers a lot of opportu-
nities to operate more efficiently. However, they are not
silver bullets, and benefits are not unlimited. As with
any system, prior evaluation of benefits is very difficult,
and investments in CRM systems need to be based on
sound analysis and judgment.

Credit Scoring

Data mining can involve model building (extension of
conventional statistical model building to very large
data sets) and pattern recognition. Pattern recognition
aims to identify groups of interesting observations. In-
teresting is defined as discovery of knowledge that is
important and unexpected. Often experts are used to
assist in pattern recognition. Adams et al. [1] compared
data mining used formodel building and pattern recog-
nition on the behavior of customers over a one-year
period. The data set involved bank accounts at a large
British credit card company observed monthly. These
accounts were revolving loans with credit limits. Bor-
rowers were required to repay at least some minimum
amount each month. Account holders who paid in full
were charged no interest, and thus not attractive to the
lender.

We have seen that clustering and pattern search are
typically the first activities in data analysis. Then ap-
propriate models are built. Credit scoring is a means to
use the results of data mining modeling for two pur-
poses. Application scoring was applied in the Adams

et al. example to new cases, continuing an activity that
had been done manually for half a century in this orga-
nization. Behavioral scoring monitors revolving credit
accounts with the intent of gaining early warnings of
accounts facing difficulties.

Bankruptcy Prediction

Corporate bankruptcy prediction is very important to
management, stockholders, employees, customers, and
other stakeholders. A number of data mining tech-
niques have been applied to this problem, including
multivariate discriminant analysis, logistical regression,
probit, genetic algorithms, neural networks, and deci-
sion trees.

Sung et al. [19] applied decision analysis and deci-
sion tree models to a bankruptcy prediction case. De-
cision tree models provide a series of IF–THEN rules
to predict bankruptcy. Pruning (raising the proportion
of accurate fit required to keep a specific IF–THEN re-
lationship) significantly increased overall prediction ac-
curacy in the crisis period, indicating that data collected
in the crisis period was more influenced by noise than
data from the period with normal conditions. Example
rules obtained were as shown in Table 1, giving an idea
of how decision tree rules work.

For instance, in normal conditions, if the variable
Productivity of capital (E6) was greater than 19.65, the
model would predict firm survival with 86 percent con-
fidence. Conversely, if Productivity of capital (E6) was
less than or equal to 19.65, and if the Ratio of cash flow
to total assets (C9) was less than or equal to 5.64, the
model would predict bankruptcy with 84 percent confi-
dence. These IF–THEN rules are stated in ways that are
easy for management to see and use. Here the rules are
quite simple, a desirable feature. With large data sets, it
is common to generate hundreds of clauses in decision
tree rules, making it difficult to implement (although
gaining greater accuracy). The number of rules can be
controlled through pruning rates within the software.

Fraud Detection

Data mining has successfully supported many as-
pects of the insurance business, to include fraud de-
tection, underwriting, insolvency prediction, and cus-
tomer segmentation. An insurance firm had a large data
warehouse system recording details on every transac-
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Data Mining, Table 1
Bankruptcy Prediction Rules

Condition Rule Prediction Confidence level

Normal E6>19.65 Nonbankrupt 0.86
Normal C9>5.64 Nonbankrupt 0.95
Normal C9�5.64 & E6�19.65 Bankrupt 0.84

Crisis E6>20.61 Nonbankrupt 0.91
Crisis C8>2.64 Nonbankrupt 0.85
Crisis C3>87.23 Nonbankrupt 0.86
Crisis C8�2.64, E6�20.61, & C3�87.23 Bankrupt 0.82

Where C3= Ratio of fixed assets to equity & long-term liabilities. C8 = Ratio of
cash flow to liabilities. C9= Ratio of cash flow to total assets. E6= Productivity
of capital. Based on Sung et al. [19]

tion and claim [18]. An aim of the analysis was to accu-
rately predict average claim costs and frequency, and to
examine the impact of pricing on profitability.

In evaluating claims, data analysis for hidden trends
and patterns is needed. In this case, recent growth in the
number of policy holders led to lower profitability for
the company. Understanding the relationships between
cause and effect is fundamental to understanding what
business decisions would be appropriate.

Policy rates are based on statistical analysis assum-
ing various distributions for claims and claim size. In
this case, clustering was used to better model the per-
formance of specific groups of insured.

Profitability in insurance is often expressed by the
cost ratio, or sum of claim costs divided by sum of pre-
miums. Claim frequency ratio is the number of claims
divided by the number of policy units of risk (possible
claims). Profitability would be improved by lowering

Data Mining, Table 2
General Ability of Data Mining Techniques to Deal with Data Features

Data characteristic Rule induction Neural networks Case-based reasoning Genetic algorithms
Handle noisy data Good Very good Good Very good
Handle missing data Good Good Very good Good
Process large data sets Very good Poor Good Good

Process different data types Good Transform to numerical Very good Transforma-tion needed
Predictive accuracy High Very high High High
Explanation capability Very good Poor Very good Good
Ease of integration Good Good Good Very good
Ease of operation Easy Difficult Easy Difficult

Extracted from Bose and Mahapatra [2]

the frequency of claims, or the costs of claims relative
to premiums.

Data was extracted from the data warehouse for
policies for which premiums were paid in the first quar-
ter over a three-year period. This meant that policies
were followed over the period, augmented by new poli-
cies, and diminished by terminations. Data on each
policy holder was available as well as claim behavior
over the preceding year. The key variables of cost ra-
tio and claim frequency ratio were calculated for each
observation. Sample sizes for each quarter were well
above 100,000.

Descriptive statistics found exceptional growth in
policies over the past two years for young people (un-
der 22), and with cars insured for over $40,000. Clus-
tering analysis led to the conclusion that the claim cost
of each individual policy holder would be pointless, as
the vast majority of claims could not be predicted. Af-
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ter experimentation, the study was based on 50 clus-
ters. A basic k-means algorithm was used. This iden-
tified several clusters as having abnormal cost ratios or
frequency sizes. By testing over a two-year gap, stability
for each group was determined. Table 2 compares data
mining techniques.

Ethical Issues in Data Mining

Data mining is a potentially useful tool, capable of do-
ing a lot of good, not only for business but also for
the medical field and for government. It does, however,
bring with it some dangers. So, how can we best protect
ourselves, especially in the area of business data min-
ing?

A number of options exist. Strict control of data
usage through governmental regulation was proposed
by Garfinkel [7]. A number of large database projects
that made a great deal of practical sense have ultimately
been stopped. Those involving government agencies
were successfully stopped due to public exposure, the
negative outcry leading to cancellation of the National
Data Center and the Social Security Administration
projects. A system with closely held information by
credit bureaus in the 1960s was only stopped after gov-
ernmental intervention, which included the passage of
new laws. Times have changed, with business adopting
a more responsive attitude toward consumers. Innova-
tive data mining efforts by Lotus/Equifax and by Lexis-
Nexis were quickly stopped by public pressure alone.

Public pressure seems to be quite effective in pro-
viding some control over potential data mining abuses.
If that fails, litigation is available (although slow in ef-
fect). It is necessary for us to realize what businesses
can do with data. There will never be a perfect system
to protect us, and we need to be vigilant. However, too
much control can also be dangerous, inhibiting the abil-
ity of business to provide better products and services
through data mining. Garfinkel prefers more govern-
mental intervention, while we would prefer less gov-
ernmental intervention and more reliance on publicity
and, if necessary, the legal system.

Control would be best accomplished if it were nat-
urally encouraged by systemic relationships. The first
systemic means of control is publicity. Should those
adopting questionable practices persist, litigation is
a slow, costly, but ultimately effective means of sys-

tem correction. However, before taking drastic action,
a good rule is that if the system works, it is best not to fix
it. The best measure that electronic retailers can take is
to not do anything that will cause customers to suspect
that their rights are being violated.

Conclusions

Data mining has evolved into a useful analytic tool in
all aspects of human study, to include medicine, engi-
neering, and science. It is a necessary means to cope
with the masses of data that are produced in contem-
porary society. Within business, data mining has been
especially useful in applications such as fraud detection,
loan analysis, and customer segmentation. Such appli-
cations heavily impact the service industry. Data min-
ing provides a way to quickly gain new understanding
based upon large-scale data analysis.

This paper reviewed some of the applications that
have been applied in services. It also briefly reviewed
the data mining process, some of the analytic tools
available, and some of the major software vendors of
general data mining products. Specific tools for partic-
ular applications are appearing with astonishing rapid-
ity.
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As optimization techniques become widely used in en-
gineering, economics, and other sciences, an increasing
number of nonconvex optimization problems are en-
countered that can be described in terms of dc functions
(differences of convex functions). These problems are
called dc optimization problems, and the theory dealing
with these problems is referred to as dc programming,
or dc optimization ([3,4,5,6,13]; see also [1,8]).

Historically, the first dc optimization problem that
was seriously studied is the concave minimization
problem [11]. Subsequently, reverse convex program-
ming and some other special dc optimization problems
such as quadratic and, more generally, polynomial pro-
gramming problems appeared before a unified theory
was developed and the term dc optimization was intro-
duced [12]. In fact, most global optimization problems
of interest that have been studied so far can be identi-
fied as dc optimization problems, despite the diversity
of the approaches used.

DC Structure in Optimization

Let ˝ be a convex set in Rn . A function f : ˝ ! R is
said to be dc on˝ if it can be expressed as the difference
of two convex functions on ˝ : f (x) D p(x) � q(x);
where p(x); q(x) : ˝ ! R are convex. Denote the set
of dc functions on˝ by DC(˝).

Proposition 1 DC(˝) is a vector lattice with respect to
the two operations of pointwise maximum and pointwise
minimum.

In other words, if fi(x) 2 DC(˝); i D 1; : : : ;m;
then:
1.
Pm

iD1 ˛i f i(x) 2 DC(˝), for any real numbers ˛i ;
2. g(x) D maxf f1(x); : : : ; fm(x)g 2 DC(˝);
3. h(x) D minf f1(x); : : : ; fm(x)g 2 DC(˝).
From this property it follows in particular that if
f 2 DC(˝), then j f j 2 DC(˝), and if g; h 2 DC(˝),
then gh 2 DC(˝). But for the purpose of optimization
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the most important consequence is that

gi (x) � 0; 8i D 1; : : : ;m

, g(x) :D maxfg1(x); : : : ; gm(x)g � 0 ;

gi (x) � 0 for at least one i D 1; : : : ;m

, g(x) :D minfg1(x); : : : ; gm(x)g � 0 :

Therefore, any finite system of dc inequalities, whether
conjunctive or disjunctive, can be rewritten as a single
dc inequality.

By easy manipulations it is then possible to reduce
any dc optimization problem to the following canonical
form:

minimize f (x)
subject to g(x) � 0 � h(x) ;

(CDC)

where all functions f , g, h are convex.
Thus dc functions allow a very compact description

of a wide class of nonconvex optimization problems.

Recognizing dc Functions

To exploit the dc structure in optimization problems,
it is essential to be able to recognize dc functions that
are still in hidden form (i. e., not yet presented as dif-
ferences of convex functions). The next proposition ad-
dresses this question.

Proposition 2 Every function f 2 C2 is dc on any com-
pact convex set˝ .

It follows that any polynomial function is dc, and hence,
by the Weierstrass theorem, DC(˝) is dense in the Ba-
nach space C(˝) of continuous functions on ˝ with
the supnorm topology. In other words, any continuous
function can be approximated as closely as desired by
a dc function.

More surprisingly, any closed set S in Rn can be
shown to be a dc set, i. e., a set that is the solution set
of a dc inequality. Namely, given any closed set S � Rn

and any strictly convex function h : Rn ! R, there ex-
ists a continuous convex function gS : Rn ! R such
that S D fx 2 Rn : gS (x) � h(x) � 0g [10].

In many situations we not only need to recognize
a dc function but also to know how to represent it ef-
fectively as a difference of two convex functions. While
several classes of functions have been recognized as dc
functions [2], there are still few results about effective

dc representations of these functions. For composite
functions a useful result about dc representation is the
following [13].

Proposition 3 Let h(x) D u(x) � v(x), where u; v :
˝ ! RC are convex functions on a compact con-
vex set ˝ � Rm such that 0 � h(x) � a8x 2 ˝ . If
q : [0; a] ! R is a convex nondecreasing function such
that q0�(a) <1 (q0�(a) being the left derivative of q(t)
at a), then q(h(x)) is a dc function on˝ :

q(h(x)) D g(x) � K[aC v(x) � u(x)] ;

where g(x) D q(h(x))C K[aC v(x) � v(x)] is a con-
vex function and K is any constant satisfying K � q0�(a).

For example, by writing x˛ D eh(x) with h(x) DP
iD1; :::; n ˛i log xi and applying the above proposition,

it is easy to see that x˛ D x˛11 � � � x˛nn ; with ˛ 2 Rn
C; is

dc on any box ˝ D [r; s] � Rn
CC. Hence, any syno-

mial function f (x) D
P
˛ c˛x˛ , with c˛ 2 R; ˛ 2 Rn

C;

is also dc on˝ .

Global Optimality Criterion

A key question in the theoretical as well as computa-
tional study of a global optimization problem is how to
test a given feasible solution for global optimality.

Consider a pair of problems in some sense mutually
obverse:

inff f (x) : x 2 ˝ ; h(x) � ˛g ; (P˛)

supfh(x) : x 2 ˝ ; f (x) � �g ; (Q� )

where ˛; � 2 R; ˝ is a closed set in Rn , and
f ; g : Rn ! R are two arbitrary functions.

We say that problem (P˛) is regular if

inf P˛ D inff f (x) : x 2 ˝; h(x) > ˛g : (1)

Analogously, problem (Q� ) is regular if supQ� D
supfh(x) : x 2 ˝; f (x) < �g.

Proposition 4 Let x̄ be a feasible solution of problem
(P˛). If x̄ is optimal to problem (P˛) and if problem (Q� )
is regular for � D f (x̄), then

supfh(x) : x 2 ˝; f (x) � �g D ˛ : (2)

Conversely, if (2) holds and if problem (P˛) is regular,
then x̄ is optimal to (P˛).
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Turning now to the canonical dc optimization problem
(CDC), let us set ˝ D fx : g(x) � 0g and without los-
ing generality assume that the reverse convex constraint
h(x) � 0 is essential, i. e.,

inff f (x) : x 2 ˝g < inff f (x) : x 2 ˝; h(x) � 0g: (3)

Since CDC is a problem (P˛) with ˛ D 0, if x̄ is a fea-
sible solution to CDC, then condition (3) ensures the
regularity of the associated problem (Q� ) for � D f (x̄).
Define

C D fx : h(x) � 0g; D(�) D fx 2 ˝ : f (x) � �g ;

(4)

and for any set E denote its polar by E�. As specialized
for CDC, Proposition 4 yields:

Proposition 5 In order that a feasible solution x̄ of
CDC may be a global minimizer, it is necessary that the
following equivalent conditions hold for � D f (x̄) :

D(�) � C ; (5)

0 D maxfh(x) : x 2 D(�)g ; (6)

C� � [D(�)]� : (7)

If the problem is regular, then any one of the above con-
ditions is also sufficient.

An important special dc program is the following prob-
lem:

minimize g(x)� h(x) subject to x 2 Rn ; (DC)

where g; h : Rn ! R̄ are convex functions (R̄ denotes
the set of extended real numbers). Writing this problem
as minfg(x) � t : x 2 D; h(x) � tg with D D domg \
domh and using (7), one can derive the following:

Proposition 6 Let g; h : Rn ! R̄ be two convex func-
tions such that h(x) is proper and lsc. Let x̄ be a point
where g(x̄) and h(x̄) are finite. In order for x̄ to be
a global minimizer of g(x) � h(x) over Rn , it is neces-
sary and sufficient that

@"h(x̄) � @"g(x̄) 8" > 0 ; (8)

where @" f (a) D fp 2 Rn : hp; x � ai � " � f (x) �
f (a) 8x 2 Rng is the "-subdifferential of f (x) at
point a.

Solution Methods

Numerous solution methods have been proposed for
different classes of dc optimization. Each of them pro-
ceeds either by outer approximation (OA) of the feasi-
ble set or by branch and bound (BB) or is of a hybrid
type, combining OA with BB. Following are some typi-
cal dc algorithms.

An OAMethod for (CDC)

Without losing generality, assume (3), i. e.,

9w s.t. g(w) � 0 ;
f (w) < minf f (x) : x 2 ˝; h(x) � 0g : (9)

where, as was defined above, ˝ D fx : g(x) � 0g. In
most cases checking the regularity of a problem is not
easy while regularity is needed for the sufficiency of
the optimality criteria in Proposition 5. Therefore the
method to be presented below only makes use of the
necessity part of this proposition and is independent of
any regularity assumption.

In practice, what we usually need is not an exact
solution but just an approximate solution of the prob-
lem. Given tolerances " > 0; � > 0;we are interested in
"-approximate solutions, i. e., solutions x 2 ˝ satisfy-
ing h(x) � �". An "-approximate solution x� is then
said to be �-optimal if f (x�) � � � minf f (x) : x 2
˝; h(x) � 0g.

With x̄ now being a given "-approximate solution
and � D f (x̄) � �, consider the subproblem

maxfh(x) : x 2 ˝; f (x) � �g : (Q� )

For simplicity assume that the set D(�) D fx 2 ˝;

f (x) � �g is bounded. Then (Q� ) is a convex maxi-
mization problem over a compact convex set and can
be solved by an OA algorithm (see [13] or [3]) generat-
ing a sequence fxk; ykg such that

xk 2 ˝; f (xk) � �; h(xk) � max(Q� ) � h(yk) (10)

and, furthermore, kxk � ykk ! 0 as k! C1: These
relations imply that we must either have h(yk) < 0
for some k (which implies that max (Q� ) < 0), or
else h(xk) � �" for some k: In the former case,
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this means there is no x 2 ˝ with h(x) � 0 and
f (x) � f (x̄) � �; i. e., x̄ is �-optimal to CDC, and we
are done. In the latter case, xk is an "-approximate solu-
tion with f (xk) � f (x̄) � �: Using then a local search
(or any inexpensive way available) one can improve
xk to x0 2 ˝ \ fx : h(x) D �"g, and, after resetting
�  f (x0) � � in (Q� ), one can repeat the procedure
with the new (Q� ). And so on.

As is easily seen, the method consists essentially of
a number of consecutive cycles in each of which, say
the lth cycle, a convex maximization subproblem (Q� )
is solved with � D f (xl ) � � for some "-approximate
solution xl. This sequence of cycles can be organized
into a unified procedure. For this, it suffices to start
each new cycle from the result of the previous cycle:
after resetting �  � 0 :D f (x0) � � in (Q� ), we have
D(� 0) � D(�), with a point x0 … D(� 0), so the algo-
rithm can be continued by using a hyperplane separat-
ing x0 from D(� 0) to form with the current polytope
outer approximating D(�) a smaller polytope outer
approximating D(� 0). Since each cycle decreases the
objective function value by at least a quantity � > 0,
and the objective function is bounded from below, the
whole procedure must terminate after finitely many cy-
cles, yielding an "-approximate solution that is �-opti-
mal to (CDC).

It is also possible to use a BB algorithm for solving
the subproblem (Q� ) in each cycle. The method then
proceeds exactly as in the BB method for GDC to be
presented next.

A BBMethod for General DC Optimization

A general dc optimization problem can be formulated
as

minf f (x) : gi (x) � 0;

i D 1; : : : ;m; x 2 ˝g ; (GDC)

where ˝ is a compact convex subset of Rn , and
f ; g1; : : : ; gm are dc functions on˝ . Although in prin-
ciple GDC can be reduced to the canonical form and
solved as a CDC problem, this may not be an efficient
method as it does not take account of specific features
of GDC. For instance, if the feasible set of GDC is highly
nonconvex, computing a single feasible solution may be
as hard as solving the problem itself. Under these con-
ditions, a direct application of the OA or the BB strate-

gies to GDC is fraught with pitfalls. Without adequate
precautions, such approaches may lead to grossly incor-
rect results or to an unstable solution that may change
drastically upon a small change of the data or the toler-
ances [15,16].

A safer approach is to reduce GDC to a sequence
of problems with a convex feasible set in the follow-
ing way. By simple manipulations it is always pos-
sible to arrange that the objective function f (x) is
convex. Let g(x) D miniD1; ::: ;m gi(x), and for every
� 2 R [ fC1g consider the subproblem

maxfg(x) : x 2 ˝; f (x) � �g : (R� )

Assuming the set D(�) :D fx 2 ˝; f (x) � �g to be
bounded, we have in (R� ) a dc optimization over
a compact convex set. Using a BB procedure to solve
(R� ) we generate a nested sequence of partition sets
Mk (boxes, e. g., using a rectangular subdivision),
together with a sequence ˛(Mk ) 2 R [ f�1g, and
xk 2 Rn ; k D 1; 2; : : : ; such that

diam Mk ! 0 as k! C1 ; (11)

˛(Mk)& maxfg(x) : x 2 Mk \ D(�)g(k! C1) ;

(12)

˛(Mk ) � max(R� ); xk 2 Mk \ D(�) ; (13)

where max(P) denotes, as usual, the optimal value of
problem P. Condition (11) means that the subdivision
rule used must be exhaustive, while (12) indicates that
˛(Mk) is an upper bound over the feasible solutions in
Mk, and (13) follows from the fact that Mk is the parti-
tion set with the largest upper bound among all parti-
tion sets currently of interest.

As before, we say that x is an "-approximate solu-
tion of GDC if x 2 ˝; g(x) � �" and x� is �-optimal if
f (x�) � � � minf f (x) : g(x) � 0; x 2 ˝g. From (11)–
(13) it follows that ˛(Mk ) � g(xk)! 0 as k! C1,
and hence, for any given " > 0, either ˛(Mk ) < 0 for
some k or g(xk) � �" for some k. In the former
case, max(R� ) < 0, hence max (GDC) > � ; in the lat-
ter case, xk is an "-approximate solution of GDC with
f (xk) � � . So, given any "-approximate solution x̄ with
� D f (x̄) � �, a finite number of iterations of this BB
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procedure will help to determine whether there is no
feasible solution x to GDC with f (x) � f (x̄) � �; i. e.,
x̄ is �-optimal to GDC, or else there exists an "-approx-
imate solution x0 to GDC with f (x0) � f (x̄) � �. In the
latter case, we can reset f (x0) � � � and repeat the
procedure with the new � , and so on. In this way the
whole solution process consists of a number of cycles,
each involving a finite BB procedure and giving a de-
crease in the incumbent value of f (x) by at least � > 0.
By starting each cycle right from the result of the previ-
ous one, the sequence of cycles forms a unified proce-
dure. Since � is a positive constant, the number of cycles
is finite and the procedure terminates with an "-approx-
imate solution that is �-optimal to GDC.

The efficiency of such a BB procedure depends on
two basic operations: branching and bounding. Usu-
ally, branching is performed by means of an exhaus-
tive subdivision rule, so as to satisfy condition (11). For
rectangular partition, this condition can be achieved
by the standard bisection rule: bisect the current box
M into two equal subboxes by means of a hyper-
plane perpendicular to a longest edge of M at its mid-
point. However, it has been observed that the con-
vergence guaranteed by an exhaustive subdivision rule
is rather slow, especially in high dimensions. To im-
prove the situation, the idea is to use, instead of the
standard bisection, an adaptive subdivision rule de-
fined as follows. Let the upper bound ˛(Mk) in (12)
be obtained as ˛(Mk ) D maxf� (x) : x 2 Mk \ D(�)g,
where � (x) is some concave overestimator of g(x)
over Mk that is tight at some point yk 2 Mk , i. e.,
satisfies � (yk) D g(yk). If xk 2 argmaxf� (x)jx 2
Mk \ D(�)g, then the subdivision rule is to bi-
sect Mk by means of the hyperplane xs D xk

s C yks /2,
where s 2 argmaxiD1; ::: ;njy

k
i � xk

i j. As has been proved
in [13], such an adaptive bisection rule ensures the
existence of an infinite subsequence fk�g such that
yk� � xk� ! 0 as � ! C1. The common limit x�

of xk� and yk� then yields an optimal solution of
the problem (R� ). Computational experience has ef-
fectively confirmed that convergence achieved with an
adaptive subdivision rule is usually much faster than
with the standard bisection. For such an adaptive sub-
division to be possible, the constraint set D(�) of (12)
must be convex, so that for each partition set Mk two
points xk 2 Mk \ D(�) and yk 2 Mk can be defined
such that ˛(Mk ) � g(yk) D o(kxk � ykk).

DCA–A Local Optimization Approach to (DC)

By rewriting DC as a canonical dc optimization prob-
lem

minft � h(x) : x 2 Rn ; t 2 R; g(x) � t � 0g ;

we see that DC can be solved by the same method as
CDC. Since, however, for some large-scale problems we
are not so much interested in a global optimal solution
as in a sufficiently good feasible solution, a local opti-
mization approach to DC has been developed [9] that
seems to perform quite satisfactorily in a number of ap-
plications. This method, referred to as DCA, is based on
the well-known Toland equality:

inf
x 2domg

fg(x)�h(x)g D inf
y 2domh�

fg�(y)� g�(y)g; (14)

where g; h : Rn ! R are lower semicontinuous proper
convex functions, and the star denotes the conjugate,
e. g., g�(y) D supfhx; yi � g(x) : x 2 domgg. Taking
account of this equality, DCA starts with x0 2 domg
and for k D 1; 2; : : : ; computes yk 2 @h(xk); xkC1 2

@g�(yk). As has been proved in [9], the thus generated
sequence xk ; yk satisfies the following conditions:
1. The sequences g(xk) � h(xk) and h�(xk) � g(�(xk)

are decreasing.
2. Every accumulation point x� (resp. y�) of the se-

quence fxkg (resp. fykg) is a critical point of the
function g(x) � h(x) (resp. h�(y) � g�(y)).

Though global optimality cannot be guaranteed by this
method, it has been observed that in many cases of in-
terest it yields a local minimizer that is also global.

Applications and Extensions

The above described dc methods are of a general-
purpose type. For many special dc problems more
efficient algorithms are needed to take full advantage
of additional structures. Along this line, dc methods
have been adapted to solve problems with separated
nonconvexity, bilinear programming, multilevel pro-
gramming, multiobjective programming, optimization
problems over efficient sets, polynomial and synomial
programming, fractional programming, continuous lo-
cation problems, clustering and datamining problems,
etc. [4]. In particular, quite efficient methods have been
developed for a class of dc optimization problems im-
portant for applications called multiplicative program-
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ming [4,5]. Also, techniques for bounding, branching,
and decomposition have been refined that have very
much widened the range of applicability of dc meth-
ods. Most recently, monotonic optimization, also called
DM optimization, has emerged as a new promising
field of research dealing with a class of optimization
problems important for applications whose structure,
though different from the dc structure, shares many
common features with the latter. To be specific, let C
be a family of real valued functions on Rn such that
(i) g1; g2 2 C; ˛1; ˛2 2 RC) ˛1g1 C ˛2g2 2 C; (ii)
g1; g2 2 C ) g(x) :D maxfg1(x); g2(x)g 2 C. Then
the family D(C) D C � C is a vector lattice with re-
spect to the two operations of pointwise maximum
and pointwise minimum. When C is the set of convex
functions, D(C) is nothing but the vector lattice of dc
functions. When C is the set of increasing functions
on Rn , i. e., the set of functions f : Rn ! R such that
x0 � x ) f (x0) � f (x), the vector lattice D(C) con-
sists of DM functions, i. e., functions representable as
the difference of two increasing functions. For the the-
ory, methods, and algorihms of DM optimization, we
refer the reader to [7,14,18].

References

1. Floudas CA (2000) Deterministic Global Optimization.
Kluwer, Dordrecht

2. Hartman P (1959) On Functions Representable as a Differ-
ence of Convex Functions. Pacific J Math 9:707–713

3. Horst R, Tuy H (1996) Global Optimization (Deterministic
Approaches), 3rd edn. Springer, Berlin

4. Horst R, Pardalos PM (eds) (1995) Handbook of Global Op-
timization. Kluwer, Dordrecht

5. Konno H, Thach PT, Tuy H (1997) Optimization on Low
Rank Nonconvex Structures. Kluwer, Dordrecht

6. Pardalos PM, Rosen JB (1987) Constrained Global Opti-
mization: Algorithms and Applications. Lecture Notes in
Computer Sciences 268. Springer, Berlin

7. Rubinov A (1999) Abstract Convexity and Global Optimiza-
tion. Kluwer, Dordrecht

8. Sherali HD, Adams WP (1999) A Reformulation-Lineariza-
tion Technique for Solving Discrete and Continuous Non-
convex Problems. Kluwer, Dordrecht

9. Tao PD, An LTH (1997) Convex analysis approach to D.C.
Programmng: Theory, algorithms and applications. Acta
Mathematica Vietnamica 22:289–356

10. Thach PT (1993) D.c. sets, dc functions and nonlinear equa-
tions. Math Programm 58:415–428

11. Tuy H (1964) Concave programming under linear con-
straints. Soviet Math 5:1437–1440

12. Tuy H (1985) A general deterministic approach to global
optimization via dc programming. In: Hiriart-Urruty JB (ed)
Fermat Days 1985: Mathematics for Optimization. North-
Holland, Amsterdam, pp 137–162

13. Tuy H (1998) Convex Analysis and Global Optimization.
Kluwer, Dordrecht

14. Tuy H (2000) Monotonic Optimization: Problems and Solu-
tion Approaches. SIAM J Optim 11(2):464–494

15. Tuy H (2005) Robust Solution of Nonconvex Global Opti-
mization Problems. J Global Optim 32:307–323

16. Tuy H (2005) Polynomial Optimization: A Robust Ap-
proach. Pacific J Optim 1:357–373

17. Tuy H, Al-Khayyal FA, Thach PT (2005) Monotonic Opti-
mization: Branch and Cuts Methods. In: Audet C, Hansen P,
Savard G (eds) Essays and Surveys on Global Optimization.
GERAD. Springer, Berlin, pp 39–78

18. Tuy H, Minoux M, NTH Phuong (2006) Discrete Monotonic
Optimizationwith Application toADiscrete LocationProb-
lem. SIAM J Optim 1778–97

Decision Support Systems
withMultiple Criteria
CONSTANTIN ZOPOUNIDIS, MICHAEL DOUMPOS

Department Production Engineering and Management
Financial Engineering Lab. Techn., University Crete,
Chania, Greece

MSC2000: 90C29

Article Outline

Keywords
Multicriteria Decision Aid
Multicriteria Decision Support Systems

Multicriteria Group Decision Support Systems
Intelligent Multicriteria Decision Support Systems

Conclusions
See also
References

Keywords

Decision support system; Multicriteria analysis;
Multicriteria group decision support system;
Intelligent multicriteria decision support systems

In practical real-world situations the available time for
making decisions is often limited, while the cost of in-
vestigation is increasing with time. Therefore, it would
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be enviable to exploit the increasing processing power
provided by the modern computer technology, to save
significant amounts of time and cost in decision mak-
ing problems. Computationally intensive, but routine
tasks, such as data management and calculations can be
performed with remarkable speed by a common per-
sonal computer, compared to the time that a human
would need to perform the same tasks. On the other
hand, computers are unable to perform cognitive tasks,
while their inference and reasoning capabilities are still
very limited compared to the capabilities of the human
brain. Thus, in decision making problems, computers
can support decision makers by managing the data of
the problem and performing computationally intensive
calculations, based on a selected decision model, which
could help in the analysis, while the decision makers
themselves have to examine the obtained results of the
models and conclude to the most appropriate decision.

This merging of human judgment and intuition to-
gether with computer systems constitutes the underly-
ing philosophy, methodological framework and basic
goal of decision support systems [17]. The term ‘deci-
sion support system’ (DSS) is already consolidated and
it is used to describe any computer system that provides
information on a specific decision problem using ana-
lytical decision models and access to databases, in or-
der to support a decision maker in making decisions ef-
fectively in complex and ill-structured problems where
no straightforward, algorithmic procedure can be em-
ployed [28].

The development of DSSs kept pace with the ad-
vances in computer and information technologies, and
since the 1970s numerous DSSs have been designed by
academic researchers and practitioners for the exami-
nation and analysis of several decision problems includ-
ing finance and accounting, production management,
marketing, transportation, human resources manage-
ment, agriculture, education, etc. [17,19].

Except for the specific decision problems that DSSs
address, these systems are also characterized by the
type of decision models and techniques that they in-
corporate (i. e. statistical analysis tools, mathematical
programming and optimization techniques, multicrite-
ria decision aid methods, etc.). Some of these method-
ologies (optimization, statistical analysis, etc.) which
have already been implemented in several DSSs, are
based on the classical monocriterion approach. How-

ever, real world decision problems can be hardly con-
sidered through the examination of a single criterion,
attribute or point of view that will lead to the ‘opti-
mum’ decision. In fact such a monocriterion approach
is merely an oversimplification of the actual nature of
the problem at hand, that can lead into unrealistic deci-
sions.

On the other hand, a more realistic and flexible ap-
proach would be the simultaneous consideration of all
pertinent factors that may affect a decision. However,
through this appealing approach a very essential issue
emerges: how can several and often conflicting factors
can be aggregated to make rational decisions? This is-
sue constitutes the focal point of interest for all the
multicriteria decision aid methods. The incorporation
of multicriteria decision aid methods in DSSs provides
the decision makers with a highly efficient tool to study
complex real world decision problems where multiple
criteria of conflicting nature are involved. Therefore,
the subsequent sections of this paper will concentrate
on this specific category of DSSs (multicriteria DSSs,
MCDSSs).

The article is organized as follows. In section 2 some
basic concepts, notions and principles of multicriteria
decision aid are discussed. Section 3 presents the main
features and characteristics ofMCDSSs, along with a re-
view of the research that has been conducted in this
field, while some extensions of the classical MCDSSs
framework in group decision making and intelligent
decision support are also discussed. Finally, section 4
concludes the paper and outlines some possible future
research directions in the design, development and im-
plementation of MCDSSs.

Multicriteria Decision Aid

Multicriteria decision aid (MCDA, the European
School) or multicriteria decision making (MCDM, the
American School) [49,64] constitutes an advanced field
of operations research which is devoted to the develop-
ment and implementation of decision support method-
ologies to confront complex decision problems involv-
ing multiple criteria, goals or objectives of conflict-
ing nature. The foundations of MCDA can be traced
back in the works of J. von Neumann and O. Mor-
genstern [43], and P.C. Fishburn [20] on utility theory,
A. Charnes and W.W. Cooper [10] on goal program-
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ming, and B. Roy [47] on the concept of outranking
relations and the foundations of the ELECTRE meth-
ods. These pioneering works have affected the subse-
quent research in the field of MCDA that can be distin-
guished in two major groups: discrete and continuous
MCDA. The former is involved with decision problems
where there is a finite set of alternatives which should
be considered in order to select the most appropriate
one, to rank them from the best to the worst, or to clas-
sify them in predefined homogeneous classes. On the
contrary in continuous MCDA problems the alterna-
tives are not defined a priori, but instead one seeks to
construct an alternative that meets his/her goals or ob-
jectives (for instance the construction of a portfolio of
stocks).

There are different ways to address these two classes
of problems in MCDA. Usually, a continuous MCDA
problem is addressed through multi-objective or goal
programming approaches. In the former case, the ob-
jectives of the decision maker are expressed as a set of
linear or non linear functions which have to be ‘opti-
mized’, whereas in the latter case the decision maker
expresses his/her goals in the form of a reference or
ideal point which should be achieved as close as pos-
sible. These two approaches extend the classical single-
objective optimization framework, through the simul-
taneous consideration of more than one objectives or
goals. Of course in this new context it seems illusory
to speak of optimality, but instead the aim is initially
to determine the set of efficient solutions (solutions
which are not dominated by any other solution) and
then to identify interactively a specific solution which
is consistent with the preference structure of the deci-
sion maker. The books [54,57] and [63] provide an ex-
cellent and extensive discussion of both multi-objective
and goal programming.

On the other hand, discrete MCDA problems are
usually addressed through the multi-attribute utility
theory (MAUT) [26], the outranking relations approach
[48] or the preference disaggregation approach ([23,44]).
These three approaches are mainly focused on the de-
termination and modeling of the decision makers’ pref-
erences, in order to develop a global preference model
which can be used in decision making. Their differences
concern mainly the form of the global preferencemodel
that is developed, as well as the procedure that is used
to estimate the parameters of the model. The developed

preference model in both MAUT and preference dis-
aggregation is a utility or value function either additive
or multiplicative, whereas the outranking relations ap-
proach is based on pairwise comparisons of the form
‘alternative a is at least as good as alternative b’. Con-
cerning the procedure that is used to estimate the pa-
rameters of the global preferencemodel, both inMAUT
and outranking relations there is a direct interrogation
of the decision maker.More precisely, inMAUT the de-
cision maker is asked to determine the trade-offs among
the several attributes or criteria, while in outranking re-
lations the decision maker has to determine several pa-
rameters, such as the weights of the evaluation crite-
ria, indifference, strict preference and veto thresholds
for each criterion. On the contrary, in preference dis-
aggregation, an ordinal regression procedure is used to
estimate the global preference model. Based on a refer-
ence set of alternatives, which may consist either of past
decisions or by a small subset of the alternatives un-
der consideration, the decision maker is asked to pro-
vide a ranking or a classification of the alternatives ac-
cording to his/her decision policy (global preferences).
Then, using an ordinal regression procedure the global
preference model is estimated so that the original rank-
ing or classification (and consequently the global pref-
erence system of the decisionmaker) can be reproduced
as consistently as possible.

Multicriteria Decision Support Systems

From the above brief discussion of the basic concepts
and approaches of MCDA, it is clear that in any case
the decision maker and his/her preferences constitute
the focal point of the methodological framework of
MCDA. This special characteristic of MCDA implies
that a comprehensive model of a decision situation can-
not be developed, but instead the model should be de-
veloped to meet the requirements of the decision maker
[46]. The development of such a model can be only
achieved through an iterative and interactive process,
until the decision maker’s preferences are consistently
represented in the model. Both interactivity and itera-
tive operation are two of the key characteristics of DSSs.
Consequently, a DSS incorporating MCDA methods
could provide essential support in structuring the de-
cision problem, analyzing the preferences of the deci-
sion maker, and supporting the model building process.
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The support provided by multicriteria DSSs (MCDSSs)
is essential for the decision maker as well as for the de-
cision analyst.
� The decision maker through the use of MCDSSs

becomes familiar with sophisticated operations re-
search techniques, he is supported in structuring the
decision problem considering all possible points of
view, attributes or criteria, and furthermore, he is
able to analyze the conflicts between these points of
view and consider the existing trade-offs. All these
capabilities provided by MCDSSs serve the learning
process of decision makers in resolving complex de-
cision problems in a realistic context, and constitute
a solid scientific basis for arguing upon the decisions
taken.

� On the other hand, from the decision analyst point
of view, MCDSSs provide a supportive tool which
is necessary throughout the decision making pro-
cess, enabling the decision analyst who usually acts
as an intermediate between the system and the de-
cision maker, to highlight the essential features of
the problem to the decision maker, to introduce the
preferences of the decision maker in the system, and
to develop the corresponding model. Furthermore,
through sensitivity and robustness analyses the de-
cision analyst is able to examine several scenarios,
concerning both the significance of the evaluation
criteria as well as the changes in the decision envi-
ronment.
The supportive operation ofMCDSSs inmaking de-

cisions in ill-structured complex decision problems was
the basic motivation for computer scientists, manage-
ment scientists and operations researchers in the devel-
opment of such systems. Actually, MCDSSs are one of
the major areas of DSSs research since the 1970s [19]
and significant progress has been made both on the the-
oretical and the practical/implementation viewpoints.

The first MCDSSs to be developed in the 1970s
where mainly oriented towards the study of multi-
objective mathematical programming problems
([16,61]). These early pioneer systems, mainly due to
the limited capabilities of computer technology dur-
ing that period, were primarily developed for academic
purposes, they were implemented in mainframe com-
puters, with no documentation available, while they
had no visual representation capabilities [31]. Today,
after more than twenty years of research and advances

in MCDA, DSSs, and computer science, most MCDSSs
provide many advanced capabilities to decision makers
including among others [46]:
1) Enhanced data management capabilities including

interactive addition, deletion or modification of cri-
teria.

2) Assessment and management of weights.
3) User-friendly interfaces based on visual representa-

tions of both alternatives and criteria to assist the
interaction between the system and the decision
maker.

4) Sensitivity analysis (what-if analysis) to determine
how the changes in the weights of the evaluation cri-
teria can affect the actual decision.
These capabilities are in accordance with the gen-

eral characteristics of DSSs, that is interactivity, flexibil-
ity and adaptability to the changes of the decision envi-
ronment, user oriented design and development, and
combination of data base management with decision
models. Although the aforementioned capabilities are
common to most of the existing MCDSSs, one could
provide a distinction of the MCDSSs according to the
MCDA approaches that they employ:
� MCDSSs based on the multi-objective program-

ming approach:
– the TOMMIX system [2],
– the TRIMAP system [11],
– the VIG system ([29,32]),
– the VIDMA system [30],
– the DIDAS system [36],
– the AIM system [37],
– the ADBASE system [58], and
– the STRANGE system [59].

� MCDSSs based on the MAUT approach:
– the MACBETH system [5],
– the VISA system [6], and
– the EXPERT CHOICE system [21].

� MCDSSs based on the outranking relations ap-
proach:
– the PROMCALC and GAIA systems [7],
– the ELECCALC system [27],
– the PRIAM system [34], and
– the ELECTRE TRI system [62].

� MCDSSs based on the preference disaggregation ap-
proach:
– the PEFCALC system [22],
– the MINORA system [51],
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– the MIIDAS system [52], and
– the PREFDIS system [66].
Most of the existing MCDSSs are designed for the

study of general multicriteria decision problems. Al-
though they provide advanced capabilities for model-
ing the decision makers’ preferences in order to make
a specific decision regarding the choice of an alternative
and the ranking or the classification of the alternatives,
MCDSSs do not consider the specific characteristics, as
well as the nature of the decision that should be taken
according to the specific decision problem that is con-
sidered.

To address the unique nature of some significant
decision problems, where except for the application
of MCDA methodology, some other type of analyses
are necessary to consider the environment in which
the decision is taken, several authors proposed do-
main specific MCDSSs. Some decision problems for
which specific MCDSSs have been developed include
the assessment of corporate performance and viability
(the BANKADVISER system [39], the FINCLAS sys-
tem [65], the FINEVA system [68], and the system
proposed in [53]), bank evaluation (the BANKS sys-
tem [40]), bank asset liability management [33], finan-
cial planning [18], portfolio selection [67], new prod-
uct design (the MARKEX system [42]), urban planning
(the system proposed in [1]), strategic planning [9], and
computer system design [15].

Multicriteria Group Decision Support Systems

A common characteristic of all the aforementioned
MCDSSs is that they refer to decisions that are taken
by individual decision makers. However, in many cases
the actual decision is not the responsibility of an in-
dividual, but instead there is a team of negotiating or
cooperative participants who must conclude to a con-
sensus decision. In this case, although the decision pro-
cess and consequently the required decision support,
remains the same, as far as each individual decision
maker is concerned, the process that will lead the co-
operative team or the negotiating parties to a consensus
decision is completely different from the individual de-
cision making process. Therefore, the type of support
needed also differs.

Group DSSs (GDSSs) aim at supporting such deci-
sion processes, and since the tools provided by MCDA

can be extended to generalized group decision process,
several attempts have been made to design and develop
such multicriteria systems. Some examples of multicri-
teria GDSSs include the Co-oP system [8], the JUDGES
system [12], the WINGDSS system [13], the MEDIA-
TOR system [24], and the SCDAS system [35].

Intelligent Multicriteria Decision Support Systems

Except for the extension of the MCDSSs frame-
work in supporting group decision making, recently
researchers have also investigated the extension of
MCDSSs through the exploitation of the advances in
the field of artificial intelligence. Scientific fields such
as those of neural networks, expert systems, fuzzy sets,
genetic algorithms, etc., provide promising features and
new capabilities regarding the representation of expert
knowledge, the development of intelligent and more
friendly user interfaces, the reasoning and explanation
abilities, as well as the handling of incomplete, uncer-
tain and imprecise information.

These appealing new capabilities provided by ar-
tificial intelligence techniques can be incorporated in
the existing MCDSSs framework to provide expert ad-
vice on the problem under consideration, assistance to
the use of the several modules of the system, expla-
nations concerning the results MCDA, models, sup-
port on structuring the decision making process, as well
as recommendations and further guidance for the fu-
ture actions that the decision maker should take in or-
der to implement successfully his/her decisions. The
terms ‘intelligent multicriteria decision support systems’
or ‘knowledge-based multicriteria decision support sys-
tems’ have been used by several authors to describe
MCDSSs which take advantage of artificial intelligence
techniques in combination with MCDA methods.

Some representative examples of intelligent
MCDSSs are, the system proposed in [3] for multi-
objective linear programming, the MARKEX system
for new product design [42], the CREDEX system [45]
and the CGX system [55] for credit granting problems,
the MIIDAS system for estimating additive utility func-
tions based on the preference disaggregation approach
[52], the INVEX system for investment analysis [60]
based on the PROMETHEE method, as well as the
FINEVA system [68] for the assessment of corporate
performance and viability. All these systems incor-
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porate in their structure one or more expert system
components either to derive estimations regarding the
problem under consideration (FINEVA, MARKEX,
CREDEX, CGX, INVEX systems) or to support the use
of the MCDA models which are incorporated in the
system and generally support and improve the commu-
nication between the user and the system (MIIDAS and
MARKEX systems). Furthermore, the INVEX system
incorporates fuzzy sets to provide an initial distinction
between good and bad investment projects, so that the
number of alternatives to be considered latter on in the
multicriteria analysis module is reduced.

The ongoing research on the integration of artifi-
cial intelligence with MCDA regarding the theoretical
foundations of this integration and the related imple-
mentation issues ([4,25]), the construction of fuzzy out-
ranking relations ([14,41,50]), and the applications of
neural networks in preference modeling and utility as-
sessment ([38,56]) constitutes a significant basis for the
design and development of intelligent MCDSSs imple-
menting the theoretical findings of this research.

Conclusions

This article investigated the potentials provided by
MCDSSs in the decision making process. MCDSSs dur-
ing the last two decades have consolidated their posi-
tion within the operations research, information sys-
tems and management science communities as an ef-
ficient tool for supporting the whole decision making
process beginning from problem structuring until the
implementation of the final decision, in complex ill-
structured problems.

The review which was presented in this paper re-
veals that recent advances in MCDSSs include systems
for general use to solve both discrete and continuous
MCDA problems, systems designed to study some spe-
cific real world decisions, as well as systems designed to
support negotiation and group decision making.

As the computer science and technology progresses
rapidly, new areas of applications of MCDSSs can be
explored including their operation over the Internet to
provide computer support to co-operative work of dis-
persed and asynchronous decision units. The incorpo-
ration of artificial intelligence techniques in the existing
framework of MCDSSs also constitutes another signif-
icant area of future research. Although, as its has been

illustrated in this paper, researchers have already tried
to integrate these two approach in an integrated intelli-
gent system, there is a lot of work to be done in order
to take the most out of the capabilities of neural net-
works, fuzzy sets and expert systems to provide user-
friendly support in decision problems where multiple
criteria are involved.
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Abstract

Stochastic multistage mean-variance optimization
problems represent one of the most frequently used
modeling tools for planning problems, especially finan-
cial. Decomposition algorithms represent a powerful
tool for the solution of problems belonging to this class.
The first aim of this article is to introduce multi-stage
mean-variance models, explain their applications and
structure. The second aim is the discussion of efficient
solution methods of such problems using decomposi-
tion algorithms.

Background

Stochastic programming (SP) is becoming an increas-
ingly popular tool for modeling decisions under uncer-
tainty because of the flexible way uncertain events can
be modeled, and real-world constraints can be imposed
with relative ease. SP also injects robustness to the opti-
mization process. Consider the following standard “de-
terministic” quadratic program:

min
x

1
2
x0Hx C c0x

s:t Ax D b

xl � x � xu :

(1)

It is not always possible to know the exact values of the
problem data of (1) given by H, A, c, and b. Instead, we
may have some estimations in the form of data gath-
ered either empirically or known to be approximated
well by a probability distribution. The SP framework al-
lows us to solve problemswhere the data of the problem
are represented as functions of the randomness, yield-
ing results that are more robust to deviations.

The power and flexibility of SP does, however, come
at a cost. Realistic models include many possible events
distributed across several periods, and the end result
is a large-scale optimization problem with hundreds
of thousands of variables and constraints. Models of
this scale cannot be handled by general-purpose opti-
mization algorithms, so special-purpose algorithms at-

tempt to take advantage of the specific structure of SP
models. We examine two decomposition algorithms
that had encouraging results reported in linear SP; the
first is based on the regularized version of Benders de-
composition developed by [21], and the second on an
augmented-lagrangian-based scheme developed by [4].

Others [9,24,27] formulated multistage SP as
a problem in optimal control, where the current stage
variables depend on the parent node variables, and used
techniques from optimal control theory to solve the re-
sulting problem. Another related method is the approx-
imation algorithm by [11] where a sequence of scenario
trees is generated whose solution produces lower and
upper bounds on the solution of the true problem. De-
composition algorithms are not, however, the only ap-
proach to tackle the state explosion fromwhich SPs suf-
fer; approximation algorithms and stochastic methods
are just two examples of other methods where research
is very active [5]. In this study, we are concerned only
with decomposition methods.

Problem Statement

We consider a quadratic multistage SP. In the lin-
ear case, SP was first proposed independently by [10]
and [1]; for a more recent description see [7] and [13].
For two stages, the problem is:

min
x

1
2
x0Hx C c0x CQ(x) (2a)

s:t Ax D b (2b)

xl � x � xu : (2c)

We use 0 to denote the transpose of a vector or a ma-
trix. c and xu;l are known vectors in <n1 . Let A and H
be known matrices in<m1�n1 and<n1�n1 . These quan-
tities represent the state of the world that is known. We
assume that H is positive semidefinite. The first two
terms in the objective function (2a) model the goals
of the decision maker that do not depend on uncer-
tain events. Q(x) represents the expected value of the
second-stage objective function:

Q(x) D E�[Q(x; �(!))] ;

where
Q(x; �(!)) D min

y

1
2
˛y0(!)H(!)y(!)

� (1 � ˛)c0(!)y(!) (3)
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s:t W(!)y(!) D h(!) � T(!)x (4)

y(!)l � y(!) � y(!)u : (5)

Let ˝ be the set of all random events, and ! 2 ˝ be
the particular realization of an event so that when ! is
known the random events are aggregated in the vector
�(!) D [y(!);H(!);W(!); h(!); T(!); yu;l(!)], and
let� be the support of �. The uncertainty of the second
stage is represented by the random data H(!);W(!),
and T(!), which are matrices in <n2�n2 ;<m2�n2 ,
and <m2�n1 respectively. The vectors c(!); h(!), and
yl ;u(!) are random vectors in <n2 ;<m2 , and <n2 re-
spectively. We assume that the number of possible re-
alizations of ! is finite. Under this assumption, �(!)
is taken to mean that for different !’s the data of the
problem change. The dependence of y on uncertainty
is depicted as y(!) 2 <n2 . The vector y(!) is still the
decision variable but this notation is used to stress the
point that for different realizations of ! we must have
a different y. In the objective function (3), the quadratic
term represents the risk of the decision measured by
variance, while the linear term represents the expected
outcome. The scalar ˛ 2 [0; 1] is used in (3) to describe
the trade-off between risk expectation.

Deriving the multi-stage problem from the two-
stage formulation is just a matter of applying the ideas
described above recursively to attain the required num-
ber of stages. For the multistage problem with Ts pe-
riods, the first-stage decision remains the same but for
t D 2 : : : Ts we have

Qt(xt�1) D E�t
h
Qt

�
xt�1; �t(!)

�i
; (6)

where

Qt(xt�1; �t(!)) D min
y
˛
1
2
y0t(!)Ht(!)yt(!)

� (1 � ˛)c0t yt(!)CQtC1(yt(!))

s:t Wt(!)yt(!) D ht(!)�Tt�1(!)xt�1
yt(!)l � yt(!) � yt(!)u :

(7)

For the last time period t D Ts , the recourse function
QTsC1 is zero.

Our principal concern involves decomposition al-
gorithms for (7). For more insight into the properties
of stochastic quadratic problems the reader is referred

to [14], and [15]. Before we delve into decomposition
algorithms, we introduce some terminology that will be
used in the next section.

The dynamic programming model (7) is usually re-
ferred to as non-anticipative. This property means that
decisions are based on the past and not the future.
There are two ways this concept can be represented,
namely compact and split-view formulations [20].

The compact variable formulation can be mapped
directly onto a tree structure known as the scenario tree;
see Fig. 1a. The root of the tree represents the state of
the world that is deterministic. As we move down the
scenario tree, different events represent different real-
izations of !, each level of the tree represents a different
time period, and the path from the root to a leaf node
is known as a scenario. We use � D (t; k) to denote the
kth node in period t; a(�) the ancestor node, and d(�)
the descendant nodes. Benders decomposition, to be in-
troduced in the next section, assumes such a structure
and the result is a decomposition of the large scale prob-
lem into several subproblems, each representing a node
in the tree.

In a split-variable formulation for each scenario,
from the set of possible scenarios, new decision vari-
ables are introduced so that the large-scale problem is
decomposed into n subproblems, where n is the num-
ber of scenarios. Conceptually, using this approach, the
non-anticipative constraints are completely relaxed; see

Decomposition Algorithms for the Solution of Multistage
Mean-Variance Optimization Problems, Figure 1
Different views on non-anticipativity
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Fig. 1b. To enforce these constraints, new constraints
are introduced that “rebuild” the links between sub-
problems, usually through some penalty function (see
Fig. 1c).

Methods

The importance of decomposition algorithms in SP was
recognized early on, as results in the theory of stochas-
tic programs are closely linked with their solution al-
gorithms. The two algorithms described in this section
represent two very promising approaches in decompo-
sition of SPs.

Nested Benders Decomposition (NBD)

Benders decomposition was first proposed in [2], and it
has been applied to SP by [26]; it is usually referred to
as the L-shaped method due to the structure of the con-
straint matrix. The extension to the non-linear convex
case has been done in [12], and the extension to the gen-
eral convex SP appears in [8]. The algorithm has also
been widely studied for multistage problems in a paral-
lel environment[6]. More recent studies appear in [18].
In [15] the quadratic case is also studied.

It can easily be seen that (2a) is equivalent to:

min
x;

1
2
x0Hx C c0x C e0�

s:t Ax D b

� � p!Q(x; �(!))

xl � x � xu

(8)

where e is a vector of ones. The dimension of the latter
vector is equal to the number of nodes in the next pe-
riod. The expression p!Q(x; �(!)) represents the value
of the next stage decision if event ! occurs (with proba-
bility p!). The dimensions of the rest of the data are the
same as in (2a). Even though it is possible to aggregate
the � vector to a single variable, computational stud-
ies [5,6] have shown that the reduction of variables did
not enhance performance, possibly due to loss of infor-
mation.

To represent the recourse function in (8), we con-
struct an approximation using outer linearizations.
This is achieved by computing cuts (cutting planes).
There are two types of cuts: optimality and feasibility.
Instead of solving the large-scale problem (8) we solve

the relaxed version

min
x

1
2
x0Hx C c0x C e0�

s:t Ax D b
Dx � d (9a)

� � Gx C g (9b)

xl � x � xu

where (9a) and (9b) represent feasibility and optimal-
ity cuts, respectively. The aim of these constraints is to
approximate the feasible region of (8). Feasibility cuts
are constructed as follows: Assuming that t D T and
for a fixed !̂ the �th problem in (7) takes the follow-
ing form:

Q(x) D min
y

˛

2
y0Hy � (1 � ˛)c0y

s:t Wy D h � Txa(�)
yl � y � yu

(10)

Assume that this problem is infeasible due to the vec-
tor xa(�) generated in a subproblem of a previous stage.
Consider the following problem:

P(y; xa(�)) D min
y

e0yC C e0y�

s:t Wy C yC � y� D h � Txa(�) (11)

yl � y � yu (12)

yC;� � 0

Then since the original problem was infeasible due to
xa(�) we must have that P(�; xa(�)) > 0. Let � be the
Lagrange multiplier of the constraint in (11), then by
duality we must also have that �0(h � Txa(�)) � 0. Set
D D �0T and d D �0h to obtain (9a), a supporting hy-
perplane to Q(x). To apply this result when t ¤ T just
note that the same procedure is recursively applied by
taking under consideration the additional constraints
from cuts of other subproblems.

For optimality cuts, one proceeds as follows: again
we start with the problem in (10) and let xk be the so-
lution vector of a subproblem in the previous stage. By
the gradient inequality wemust have that (! is dropped
since it is clear from context):

Q(x) � Q(xk)CrQ(xk)(x � xk)

Q(xk) D
˛

2
y0Hy � (1 � ˛)c0y C �0(Wy � hC Txk)

rQ(xk) D �0T
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Thus

Q(x) � �0Tx C
a
2
y0Hy � (1� ˛)c0yC �0(Wy � h)

Set

� D Q(x)

G D �0T

g D
˛

2
y0Hy � (1 � ˛)c0y C �(Wy � h)

to obtain (9b). Since we require a lower support for
the expected value, we then multiply G and g by the
probability of ! taking the particular realization of !̂
for two-stage problems and the conditional probability
for multistage problems. The application of optimality
cuts when t ¤ T is again developed recursively just by
taking into account the additional variables and con-
straints.

The algorithm proceeds by solving the relaxed prob-
lem (7) to obtain a solution vector, known as the pro-
posal vector. The latter is then used to solve the sub-
problems in (10). If a subproblem is feasible then an
optimality cut is appended to the constraint set of the
ancestor problem (also called themaster problem). Oth-
erwise, only a feasibility cut is appended.

In the linear case, there are some well known
drawbacks to the algorithmic framework developed
above [5,21]. We expect issues similar to the following
to manifest themselves in the quadratic case:
� The algorithm tends to be inefficient in early itera-

tions due to the poor description of the original ob-
jective function provided by the cuts. Moreover, if
a good warm-start is used, the algorithm may de-
viate significantly from this point, so any efficiency
achieved by a good starting point is lost.

� The number of cuts for master problems may in-
crease substantially, adding considerable computa-
tional burden to their solution.

For these reasons a regularized version of the algorithm
was proposed in [21]; see also [22,23] for the multi-
stage version. Ruszczynski’s results, as well as a study
performed in [28], indicate that the regularized version
outperforms the original algorithm.

The basic idea is to add a quadratic term
� k x � x̂ k22 in the objective function, where x̂ is cho-
sen as the “best” current point, in a way to be made pre-
cise, and � is a penalty parameter. For a high value of �

the algorithm is penalized from deviating from the cur-
rent point. In [21], the convergence of the algorithm for
� D 1

2 was established for the convex case. The regular-
izing term stabilizes the behavior of the algorithm be-
tween iterations, enables valid deletion schemes of the
cuts, and avoids degenerate iterations that would oth-
erwise be possible.

The original problem is now decomposed into three
types of subproblems. The first type is for the root node.
The following problem is solved at each iteration:

min
x;

1
2
˛x0Hx � (1 � ˛)c0x C e0� C

�

2
k x � x̂ k22

s:t Ax D b

Gx � � C g

Dx � d

xl � x � xu :

The second type is for non-terminal nodes. The follow-
ing subproblem needs to be considered:

min
y� ;�

a
2
y0�H� y� � (1 � ˛)c0� y�

C e0�� C
��

2
k y� � ŷ� k22

s:t Wy� D h� � Ta(�)xa(�)
G� y� � �� C g�
D� y� � d�
yl� � y� � yu� :

(13)

The third type is for terminal nodes. This type of sub-
problem is identical to (13) without, of course, the cuts
in the constraint set and the regularizing term in the
objective function.

The way cuts are recursively defined and the way
subproblems are nested in each other has led this to be
referred to as nested Benders decomposition (NBD). The
algorithm can now be stated as follows:

Step 1: Set the iteration counter i D 0 and t D k D 0,
and let x̂ be a feasible point.

Step 2: Construct and solve �(t; k) to find the solution
vector xi

� .

Step 2.1: If the problem is infeasible and t D 0
then STOP: the problem is infeasible.

Step 2.2: If the problem is infeasible and t > 0,
generate an optimality cut (9a) and append it to
the constraint set of a(�).
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Step 2.3: If the problem was optimal and t > 0,
generate an optimality cut (9b) and append it
to the constraint set of a(�).

Step 3: Compute

F̂(xi
�) D

1
2
x0Hx C c0x C

X
jDd(�)

� j

F(x̂ i
�) D

1
2
x0Hx C c0x C

X
jDd(�)

Qj(x) :

If F̂ D F and t D k D 0 then STOP: x̂ is optimal;
Else go to step 4

Step 4: Update the regularizing term:

4.1 If a subproblem returned a feasibility cut then
x̂ iC1
� D x̂ i

� .
4.2 If F(xi

�) > F(x̂ i
�) or F(xi

�) > �F(x̂ i
�)C(1��)F̂,

then set x̂ iC1
� D x̂ i

� , and increase �.
4.3 If F(xi

�) < F(x̂ i
�) or F(xi

�) < �F(x̂ i
�)C(1��)F̂,

then set x̂ iC1
� D xi

� and decrease �.
4.4 If F(xi

�) D F̂, then set x̂ iC1
� D xi

� , and de-
crease �.

Step 5: Set i D i C 1, find the next subproblem to
solve (see below), and go to step 2.

Augmented Lagrangian Decomposition (ALD)

An alternative algorithm to Benders decomposition de-
scribed in the previous section is based on the aug-
mented lagrangian and the method of multipliers [3].
The fundamental difference between NBD and ALD is
the way the two algorithms attack non-anticipativity
constraints. NBD handles these constraints by having
a master problem generating proposals to the subprob-
lems further down the event tree; proposal vectors are
affected by “future” nodes by feasibility and optimal-
ity cuts. In ALD a different approach is taken: non-
anticipativity constraints are relaxed by expressing the
large-scale problem in terms of smaller subproblems
that are discouraged from violating the original con-
straints. The algorithm we use was developed in [4], so
here we only sketch the main idea. ALD was developed
and applied to the stochastic quadratic programming
setting in [25] with encouraging results. Similar algo-
rithms to ALD have been developed for linear stochas-
tic programs [16,17].

The expectation in (6) for a given time period can
also be written as

min
y

mX
iD1

pi
�˛
2
y0iHi yi � (1 � ˛)c0i yi

�

s:tWj yi D hj � Tjxa(i) j D 1 : : : r

yli � yi � yui :

(14)

The problem in (14) is to be interpreted as follows: at
the current time period there arem scenarios, each hav-
ing different realizations for H, W, c, etc. There are r
linking constraints (14) that are linked by the vector
xa(i). In [4] the problem is decomposed by introducing
a new variable z as follows

min
y;z

mX
iD1

pi
�˛
2
y0iHi yi � (1 � ˛)c0i yi

�

s:t Wji yi D zi j j D 1 : : : r; i 2 I( j)

zi j D hj � Tjxa(i) j D 1 : : : r; i 2 I( j)

yli � yi � yui ;

(15)

where I(j) contains the indices of the subproblems that
the jth constraint “crosses”, i. e., I( j) D fijwji ¤ 0g.
“Crosses” means that a constraint contains data from
more than one subproblem. It is obvious that (14)
and (15) are exactly the same problem, but the struc-
ture of (15) facilitates a decomposition algorithm via
the relaxation of the constraints of (15). In [4] the
method of multipliers is used for the general problem
minf f (x)jAx D bg. Let Lc(x; �) denote the associated
augmented lagrangian defined by Lc (x; �) D f (x) C
�0(Ax � b) C c

2 k Ax � b k22, where � is the vector of
multipliers. The general algorithmic framework of the
method of multipliers can be described as follows:

Step 1: Initialization: Set the iteration counter k D 0,
and set c(0) > 0. Set x(0), and �(0) as the starting
point for the decision variables, and lagrange mul-
tipliers, respectively.

Step 2: Compute the next point x(k C 1) D argmin
Lc (x; �(k)):

Step3 Update the Lagrange multiplier vector �(k C
1) D �(k)C c(k)

�
Ax(k C 1) � b

�
:

Step 4: Update the penalty parameter c(k), and set
k D k C 1. If some convergence criterion is not sat-
isfied go to step 2.
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Applying this general algorithmic framework
to (15), the problem is decomposed intom subproblems
and the non-anticipativity constraints are enforced
through the penalty term in the augmented lagrangian.

The computation for the solution of (15) involves
keeping z fixed in order to compute the next incumbent
for y, and then keeping y fixed in order to compute the
next incumbent for z. Thus, at the kth iteration the fol-
lowing subproblems are solved:

yi (k C 1) D argmin
�

(
pi
�˛
2
� 0iHi�i � (1 � ˛)c0i�i

�

C
X
f jji2I( j)g

�
�0ji(k)Wji�i

C
c(k)
2

(Wji�i � z ji )2
�)

8i D 1; : : : ; n

z ji (k C 1) D argmin
� j i

(
�
X
i2I( j)

�0ji(k)� ji C
c(k)
2

�
X
i2I( j)

(Wji�i � � ji)2)

)
8 j D 1; : : : ; r

s:t � ji D hj � Tjxa(i) i 2 I( j)

followed by an update of the lagrange-multiplier vector
� ji(kC 1) D � ji (k)C c(k)(Wji yi (kC 1)� z ji (kC 1)).
From a computational point of view the above iterative
framework is inefficient because of the alternate min-
imizations required, making this algorithm unsuitable
for a parallel environment. In our implementation we
used the more efficient iteration proposed in [4]:

yi (k C 1) D argmin
�

(
pi
�˛
2
� 0iHi�i � (1 � ˛)c0i�i

�

C
X
f jji2I( j)g

�
�0j(k)Wji�i

C
c(k)
2
�
Wji (�i � yi (k))C wj

�2�
)

(16)

where wj D
1
m j
(Wjyi � hj C Tjxa(i)), � j(k C 1) D

� j(k)C c(k)
m j

(Wjyi � hj C Tjxa(i)), and mj denotes the
cardinality of I( j). The derivation of this iteration is dis-
cussed in Bertsekas and Tsitsiklis ([4], p. 249). The ex-
pression in (16) forms the main iteration of the ALD

algorithm. In order to have a complete description of
the algorithm we need to specify how one can perform
the updates of the penalty parameter c(k) and how we
tested for convergence.

The obvious convergence criteria for ALD are a test
for feasibility and small changes in the objective func-
tion. However, it is possible, due to a poor selection of
updates for c(k), to reach a suboptimal solution. For
this reason, it is vital to check the KKT conditions of
the problem in addition to any other stopping criteria.
If the KKT conditions are not satisfied while the change
in the objective function is small (10�6 in our imple-
mentation), the update strategy for the penalty param-
eter appears to have been inappropriate. We performed
various experiments with different update strategies for
this penalty parameter and found that the strategy that
works best on most problems is to start with a small
value (0.001) and increase it at every iteration by an-
other small factor (1.05); beingmore aggressive with the
update of this parameter caused the algorithm to termi-
nate prematurely. Note that an arbitrary starting point
can be used to start the algorithm. If a feasible solution
or the solution from a previous run is available it may
be beneficial to start with a higher penalty term.

Numerical Experiments

The two algorithms were implemented and tested on
a multistage financial planning problem. The detailed
results can be found in [19]. Figure 2 summarizes the
numerical performance (in terms of CPU time) as the
number of scenario increases. ALD, and NBD stand for
Augmented Lagrangian Decomposition, and Nested
Benders Decomposition respectively. ONBD refers to
Ordinary Nested Benders Decomposition, i. e. NBD
without the regularizing term. From Fig. 2 it is clear
that the regularized version of Benders decomposition
is the most efficient of the algorithms we considered in
this article. This result is in line with similar studies
performed in the linear setting. One possible explana-
tion is that the NBD algorithm takes advantage of the
constraint structure of multistage stochastic program-
ming problems more effectively. Note that the ALD al-
gorithm can be applied to separable convex problems
with more general constraint structure while NBD will
need to be modified in order to be applicable to other
types of separable problems. SP problems are one of the
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Decomposition Algorithms for the Solution of Multistage Mean-Variance Optimization Problems, Figure 2
Solution times vs. number of scenarios

most frequently occurring class of large scale problems,
so it is important to know whether cutting plane type
algorithms or Lagrangian based algorithms take advan-
tage of this structure more effectively. Based on the re-
sults of our experiments it seems that the NBD algo-
rithm appears to be substantially better. Furthermore,
we found that the penalty parameter often caused no-
table changes to the convergence times of both NBD
and ALD. Finding an update scheme that works for all
problems is a difficult task. In ALD the penalty parame-
ter has two goals, one is forcing feasibility and the other
of keeping iterations close to each other, thus a ‘subop-
timal’ penalty update scheme may be more damaging
than in NBD, this may give some insight to the differ-
ence in performance of the two algorithms. More de-
tailed numerical experiments can be found in [19].
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In many nonconvex optimization problems the set of
variables is partitioned into two groups such that the
problem becomes much easier to solve when the vari-
ables in one group are held temporarily fixed. To ex-
ploit this structure, a method which has proved to be
efficient is to decompose the problem into a sequence
of easier subproblems involving only variables of the
other group. The basic tool for this decomposition is
the branch and bound (BB) concept.

BB Procedure for Decomposition

Consider the nonconvex global optimization problem

min fF(x; y) : G(x; y) �K 0; x 2 X; y 2 Yg ; (P)

where X is a compact convex subset ofRn ;Y is a closed
convex subset of Rp , F : X � Y ! R;G : X � Y !
Rm ;K is a closed convex cone inRm and�K is the par-
tial ordering in Rm induced by the cone K, i. e., such
that y �K y0 , y0 � y 2 K.

Problems of this form abound in applications such
as pooling and blending in oil refining, optimal design
of water distribution, structural design, signal process-
ing, robust stability analysis and design of chips.

Suppose that by fixing x 2 X problem (P) becomes
an easier problem in y 2 Y . Then, to take advantage of
this property on can solve (P) by a BB algorithm with
branching performed in the x-space.

Specifically, at iteration k of of the BB procedure
a collection Sk of partition sets in the x-space is con-
sidered, where for each partition set M 2 Sk a number
(lower bound) ˇ(M) 2 R[ fC1g has been computed
such that

ˇ(M) � inffF(x; y) : G(x; y) �K 0; x 2 M\X; y 2 Yg:

(1)

http://www.speps.info/
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A partition set Mk 2 argminfˇ(M) : M 2 Skg is then
further subdivided according to an exhaustive subdi-
vision rule (e. g., the standard bisection rule, if rectan-
gular subdivision is used), while the best feasible solu-
tion available (x̄ k ; ȳk) is recorded. By removing every
M such that ˇ(M) � F(x̄ k; ȳk) the new collection SkC1

is formed. If SkC1 D ;, the procedure terminates, con-
cluding that the problem is infeasible if no feasible so-
lution is available, or else that the current best feasible
solution is actually an optimal one. Otherwise, the next
iteration is started.

A key operation in this procedure is bounding:
M 7! ˇ(M). It is assumed that this operation satisfies
the following natural conditions:

(a) M0 � M) ˇ(M0) � ˇ(M) ;

(b) ˇ(M) < C1) M \ X ¤ ; :
(2)

When the BB procedure is infinite it generates
a filter (an infinite nested sequence of partition sets)
Mk� ; � D 1; 2; : : : ; such that

ˇ(Mk� ) � min (P) 8�;

Mk� \ X ¤ ; 8�;

C1\
�D1

Mk� D fx
�g :

(3)

The algorithm is said to be convergent if x� 2 X and

min (P) D minfF(x�; y) : G(x�; y) �K 0; y 2 Yg; (4)

so any optimal solution y� of this problem yields an op-
timal solution (x�, y�) of (P).

The basic issue of this decomposition scheme is un-
der which conditions the BB procedure described above
is guaranteed to converge in sense (4).

First observe that, since Mk�C1 � Mk� and hence,
ˇ(Mk�C1 ) � ˇ(Mk� ); we have from (3)

ˇ(Mk� )% ˇ� � min (P) : (5)

Theorem 1 If ˇ(Mk ) D C1 for some k then (P) is
infeasible and the algorithm terminates. If ˇ(Mk) <

C1 8k, then there is an infinite subsequence Mk� ; � D

1; 2; : : : ; satisfying (3) and such that x� 2 X. If in ad-

dition

lim
�!C1

ˇ(Mk� )

D minfF(x�; y) : G(x�; y) �K 0; y 2 Yg; (6)

then the BB decomposition algorithm is convergent.

Condition (6) simply says that the lower bound must
be eventually exact as k! C1. Also note that for en-
suring that x� 2 X the condition x 2 M \ X in (1) is
essential and cannot be omitted.

Convergence Achieved with Lagrangian Bounds

In many important cases Lagrangian bounds can be
used throughout the decomposition algorithm, so that
for every partition setM:

ˇ(M) D sup
	2K�

inffF(x; y)C h�;G(x; y)i :

x 2 M \ X; y 2 Yg ; (7)

where K� D f� 2 Rm : h�; ui � 0 8u 2 Kg is the dual
cone of K.

For every t � 0 define

v(t) D sup
	2K�

inf
y2Y

kx�x�k�t;x2X

fF(x; y)Ch�;G(x; y)ig; (8)

where, as throughout in what follows, x� denotes the
limit point of an exhaustive filter of partition sets gen-
erated by the BB algorithm, i. e., an infinite nested se-
quence fMk� g such that \C1�D1Mk� D fx�g.

Theorem 2 Assume Lagrangian bounds are used
throughout the BB decomposition algorithm, and:
(A1) v(t)! v(0) as t& 0.
(A2) sup	2K� infy2Y fF(x�; y) C h�;G(x�; y)ig D

miny2Y sup	2K�fF(x�; y)C h�;G(x�; y)ig.
Then the BB decomposition algorithm is convergent.

Condition A1 expresses the continuity of v(t) at t D 0.
Condition A2 requires that the duality gap be zero for
the subproblem miny2YfF(x�; y) : G(x�; y) �K 0g.

Theorem 3 Assume that F(x; y);Gi(x; y); i D 1; : : : ;
m; are lower semi-continuous and:
(i) There exists a compact set Y0 � Y such that

(8x 2 X)(8� 2 K�)

Y0\argminy2YfF(x; y)Ch�;G(x; y)ig ¤ ; ;
(9)
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(ii) sup	2K� infy2Y fF(x�; y) C h�;G(x�; y)ig D

miny2Y sup	2K�fF(x�; y)C h�;G(x�; y)ig.
Then the BB decomposition algorithm using La-
grangian bounds is convergent. Furthermore, the func-
tion x 7! �(x) :D minfF(x; y) : G(x; y) �K 0; y 2 Yg
is lower semicontinuous at x� and satisfies

lim
x2X
x!x�

�(x) D min(P) : (10)

Remark 1 Condition (i) cannot be replaced by the fol-
lowing weaker one

(*) There exists a compact set Y0 � Y such that for
each� 2 Rm

C and for each x 2 X either the set of optimal
solutions of the problem

minfF(x; y)C
mX
iD1

�iGi(x; y) : y 2 Yg (11)

is empty or it has a nonempty intersection with Y0.

Partly Convex Optimization Problems

An important class of problems (P) is constituted by
partly convex problems, i. e., problems (P) with the fol-
lowing assumption:

(PCA) For every fixed x 2 X the function y 7!
F(x; y) is convex, while the mapping y 7! G(x; y)
is K-convex. The latter means that G(x; ˛y1 C (1 �
˛(y2 �K ˛G(x; y1)C(1�˛)G(x; y2) whenever y1; y2 2
Rp; 0 � ˛ � 1.

Owing to (PCA), for every � 2 K� and fixed x 2 X
the function h�;G(x; y)i is convex and the problem
minfF(x; y)C h�;G(x; y)i : y 2 Yg is a convex opti-
mization problem. Specific decomposition methods for
this class of problems were developed earlier in [3,4],
and more recently in [1]. Within the present frame-
work, the convergence conditions can be specialized as
follows.

A function f : Y ! R is said to be coercive on Y if
limy2Y; y!C1 f (y) D C1: Clearly this is equivalent
to saying that for any � 2 R the set fy 2 Y : f (y) � �g
is bounded.

Theorem 4 Assume (PCA) with F(x; y);Gi(x; y); i D
1; : : : ;m, is lower semi-continuous on X � Y and con-
tinuous in x for fixed y 2 Y. Assume further that:

(S) For some �� 2 K� the function y 7! F(x�; y)C
h��;G(x�; y)i is coercive on Y.

Then the BB decomposition algorithm using La-
grangian bounds is convergent and the function
�(x) :D minfF(x; y) : G(x; y) �K 0; y 2 Yg is lower
semicontinuous at x� and satisfies

lim
x2X
x!x�

�(x) D min(P) :

Remark 2 Condition A2, sometimes referred to as
dual properness at x�, means that the subproblem
minfF(x�; y) : G(x�; y) �K 0; y 2 Yg has zero dual-
ity gap. When Y is bounded, condition (S) obviously
holds, so by Theorem 4, both conditions A1 and A2
follow from (PCA) and the lower semicontinuity of
F(x; y);Gi (x; y); i D 1; : : : ;m. On the other hand,
when Y is unbounded, dual properness (i. e., condi-
tion A2), even coupled with continuity of the functions
involved, is not sufficient to guarantee condition A1.
These results suggest that several methods developed in
the literature for problems of the form (P) should be
revised for validity.

Partly Linear Optimization

A subclass of the class of partly convex optimization
problems is formed by partly linear optimization prob-
lems which have the general formulation

minfhc(x); yi C hc0; xi

: A(x)yC B(x) � b; r � x � s; y � 0g ; (GPL)

where x 2 Rn ; y 2 Rp; c : Rn ! Rp; c0 2 Rn ; A :D
Rn ! Rm�p ; B 2 Rm�n ; b 2 Rm ; r; s 2 Rn

C.
A special case of interest is the “pooling and blend-

ing problem” from the petrochemical industry which
can be stated as

minfcT y : A(x)y � b; y � 0; x 2 Xg ;

where X is a box in Rn and A(x) is an m � p matrix
whose elements aij(x) are continuous functions of x.
Condition (S) in Theorem 4 now reads

For some �� 2 Rm
C

we have cT y C ��;A(x�)y � bi ! C1
as y! C1 ;

which clearly holds if and only if hA(x�); ��i C c > 0 :
For example this condition is fulfilled by the partly lin-
ear problems considered in [1], and also by the bilinear
matrix inequalities problem studied in [5].
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Extensions

The above decomposition method can be extended to
a number of important nonconvex global optimization
problems.

Partly Monotonic Optimization

A function f (x) : Rn ! R is said to be increasing (de-
creasing, respectively) if f (x) � f (x0) ( f (x) � f (x0),
respectively) whenever x � x0 [7].

Theorem 5 In problem (P) assume that X D [a; b] �
Rm
C; > F(x; y);G(x; y) are continuous, and

(PMA) F(x; y);Gi(x; y); i D 1; : : : ;m;
are increasing in x 2 [a; b] for every fixed y 2 Y :

Assume further that the set fy 2 Y : G(b; y) �K 0g is
contained in some box Y0. Then, with lower bounds de-
fined as

M D [r; s] � [a; b] 7! ˇ(M)

D minfF(r; y) : G(s; y) �K 0; y 2 Yg ; (12)

the BB decomposition algorithm is convergent.

If F(x; y);Gi (x; y); i D 1; : : : ;m; are monotonic in
y 2 Y0 (or more generally, dm functions in y 2 Y0 [7])
then the subproblems in (12) are standard monotonic
(or dm) optimization problems and can be solved by
currently available algorithms [7,10].

Remark 3 Theorem 5 still holds if F(x; y);Gi(x; y);
i D 1 : : : ;m are decreasing in x 2 [a; b] for fixed
y 2 Y and we define

ˇ(M) D minfF(s; y) : G(r; y) �K 0g :

Monotonic/Convex Optimization

Theorem 6 In problem (P) assume X � [a; b],
F(x; y);Gi (x; y); i D 1; : : : ;m; are continuous in
(x,y), increasing in x 2 [a; b] for fixed y 2 Y, and
convex (affine, respectively) in y for fixed x 2 [a; b].
Assume, in addition, that

(ST) For some �� 2 K�

the function F(a; y)C h��;G(a; y)i is coercive on Y :

Then for every M D [r; s] � [a; b]; the Lagrangian
bound problem

sup
	2K�

inf
x2M\X
y2Y

F(x; y)C h�;G(x; y)i (13)

is a convex (linear, respectively) program and the associ-
ated BB decomposition algorithm is convergent.
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A frequently applied approach in the history of opti-
mization is that of decomposition, by which a large
problem is decomposed into smaller problems. The
principle of decomposition goes back to the seminal pa-
per by G.B. Dantzig and P. Wolfe [2].

The basic model is a linear programming problem
with two sets of constraints to be stated as follows:8̂

ˆ̂̂<
ˆ̂̂̂
:

max cx
s.t. A1x � b1

A2x � b2
x � 0:

(1)

where c 2 Rn, A1 2 Rm × n, b1 2 Rm, A2 2 Rq × n and
b2 2 Rq are given constants and x 2 Rn is a vector of
variables.

The fundamental idea is to solve (1) by interaction
between two optimization problems, one of which is
subject to the first set of constraints and the other sub-
ject to the second set of constraints. Denote the second
set by

X D fx � 0 : A2x � b2g :

For simplicity we assume that X is bounded and
nonempty. Hence X is a polytope. Let xi denote an ex-
treme point of X for i 2 P where P is the index set of
all extreme points. According to the Minkowski repre-
sentation theorem (see [1]), the polytope X can alterna-
tively be represented as the convex hull of the extreme
points, i. e.

X D

(
x D

X
i2P

�i x i :
P

i2P �i D 1;
�i � 0 for i 2 P

)
:

If X is unbounded extreme rays are introduced in the
representation of X leading to a straightforward exten-
sion of the subsequent considerations.

Hence (1) is equivalent to
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

max
X
i2P

cx i�i

s.t.
X
i2P

A1xi�i � b1
X
i2P

�i D 1

�i � 0:

(2)

Problem (2) operates with fewer rows than the original
formulation (1). The variable x has been substituted by
the variables �i. However, since the number of extreme
points is usually very large in comparison with the di-
mension n of the problem, the number of �-variables
may also be very large, and it requires a big effort
to enumerate and calculate all extreme points. Fortu-
nately, this is unnecessary. In fact, by the Caratheodory
theorem, at most n + 1 extreme points need to be con-
sidered, see for example [1]. The trouble is to find the
correct ones.

Problem (2) is called the full master problem since all
extreme points are introduced in the formulation. As
already indicated we shall consider formulations deal-
ing with only a subset of extreme points. For this pur-
pose let P denote a subset of the index set P leading to
a tightening of (2), called the restricted master problem.

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

max
X

i2P

cx i�i

s.t.
X

i2P

A1xi�i � b1
X

i2P

�i D 1

�i � 0 for i 2 P:

(3)

Assume here for simplicity that (3) is feasible. If not,
additional techniques exist and may be applied to make
the problem feasible. So an optimal basic solution exists
together with optimal dual variables to be denoted by
y 2 Rm and v 2 R according to the m + 1 rows of (3).
By linear programming duality there exists a dual linear
programming problem of the full master problem (2)
with the variables (y, v) and with constraints

yA1xi C v � cx i for all i 2 P: (4)

Also by linear programming we know that an optimal
solution has been found for the full master problem (2)
if and only if the dual solution (y, v) satisfies (4). This
may of course be checked through examination of all
extreme points xi. Fortunately, this is not necessary and
here comes the major idea behind the decomposition
principle. Instead we consider the following linear pro-
gramming problem, the so-called subproblem.

8̂
<̂
ˆ̂:

u D max (c � yA1)x
s.t. A2x � b2

x � 0:

(5)
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Decomposition Principle of Linear Programming, Table 1

Step 1 Calculate an optimal dual solution (y, v) of the
restricted master problem (3).

Step 2 Determine an extreme point by solving the
subproblem (5). If (6) is violated expand the index
set P by including the extreme point and go to
Step 1.

Step 3 An optimal solution has been obtained by the
solution of the last master problem as
x D

P
i2P x

i	i

By assumption an optimal solution exists among the
extreme points of X. Let i� 2 P denote the index of
an optimal extreme point. Observe that the objective
function calculates the maximal value u of cxi � yA1xi

among all extreme points xi in X. Hence by (4) it re-
mains to check if

u � v: (6)

If so, then all constraints of (4) are satisfied and we may
stop. Otherwise introduce the elements (cxi� , A1xi

�) as
a new column in the restricted masterproblem (3) and
continue by solving it.

The above discussion can be summarized into the
algorithm in Table 1.

The number of extreme points in X is finite. Hence
only a finite number of mutually different columns may
be introduced in the restricted master problem. This
implies that the algorithm must terminate in a finite
number of steps.

The decomposition principle is suited to solve large
scale problems. Moreover it has a nice economic in-
terpretation. Consider a central level and a sublevel of
a decentralized organization. The central level operates
on the first set of constraints A1x � b1 and the sublevel
on the second set of constraints A2x � b2. The right
hand sides b1, b2 may be interpreted as resources for
the central level and sublevel, respectively. During the
course of the algorithm information is communicated
from one level to the other. The central level solves
the restricted master problem and as a result marginal
prices y on central resources are communicated to the
sublevel. The sublevel solves the subproblem in which
the objective function incorporates the costs for utiliza-
tion of the central resources. The sublevel then suggests
activities xi to be incorporated at central level. During

the iterations no direct information about the coeffi-
cients in the constraints is communicated between the
central level and the sublevel. Instead price information
is communicated from the central level to the sublevel
and the algorithm is the fundamental method among
the so-called price-directive procedures.

In most applications the last set of constraints, A2x
� b2 have a so-called block-angular structure, in which
the variables are grouped into independent blocks. This
implies that the subproblem separates into multiple
independent problems. In an economic context the
block-angular structure reflects a division of the sub-
level into multiple independent sublevels, each of which
communicates directly with the central level.

A counterpart of the present Dantzig–Wolfe de-
composition procedure exists in the form of Benders
decomposition. In linear programming they are dual in
the sense that application of Benders decomposition on
the dual program of the original problem (1) is equiv-
alent to the direct application of the present procedure
on (1).

See also
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A large number of combinatorial optimization prob-
lems can be viewed as potentially ‘easy’ problems to
solve that are complicated by a set of side constraints. If
the complicating constraints were removed, the result-
ing problem would have constraints possessing a high
degree of structure, for whichmany efficient algorithms
exist. One of the most attractive methods to exploit
this property is the Lagrangian relaxation technique,
in which the complicating constraints are dualized and
then removed from the constraint set. This class of
methods, originally proposed by various authors for
a variety of problems, and later generalized in [3], has
proven highly successful in solving otherwise difficult
combinatorial problems. For an excellent introduction
to the approach and its applications, see [1,2].

Consider the following problem (P):

max f>x (1)

such that

Ax � b (2)

Cx � d (3)

x 2 X; (4)

where x is an n-vector, b is an m-vector and d is a k-
vector, and f , A and C have conformable dimensions.
Some or all of the x variables can be integers (i. e. X �
Zn). It is assumed that there is a finite and nonempty
set of solutions to the constraints in the problem (2)–

(4). Let (LP) represent problem (P) with any integrality
constraints in X removed.

The following notation is used in the sequel. For any
problem (�), OS(�) is its optimal set, and V(�) represents
its optimal value. For any set S, Co(S) represents the
convex hull of the set.

The Lagrangian relaxation (LRu) of (P) relative to
the constraint set (2) and a conformable nonnegative
vector u is defined as
8̂
<̂
ˆ̂:

max
x

f>x C u(b � Ax)

s.t. Cx � d
x 2 X:

The problem

(LR) D min
u�0

(LRu)

is called the Lagrangian dual relative to (2). The con-
straints (2) are referred to as the ‘dualized constraints’,
and u is the corresponding multiplier or dual vector.
The constraints should be chosen so that the remaining
set Cx � d possesses desirable structure. For example,
(3) might only specify up per bounds on the variable,
or might be a single ‘knapsack’ constraint of the formPn

iD1 xi � 1.
The first point to note about (LRu) is that it always

provides an upper bound for (P), i. e.

V (LRu) � V (P):

This can easily be seen from the fact that u � 0 and Ax
� b for any solution x which is optimal for (P). In prac-
tice, it is desirable to have V(LRu) as close to V(P) as
possible. Moreover, there is already an LP relaxation of
(P), obtained by dropping the integrality requirement
on x. How does V(LRu) relate to V(LP)? To answer this
question, consider the following relaxation of (P), de-
noted by (P�):
8̂
<̂
ˆ̂:

max f>x
s.t. Ax � b

x 2 Co fCx � d : x 2 Xg :

It can be shown ([3]) that

V (P) � V(P�) D V (LR) � V (LP):



634 D Decomposition Techniques for MILP: Lagrangian Relaxation

The equality for the optimal values of problems (P�)
and (LR) follows from the fact that they are duals of
each other. Moreover, it can be shown that if the mul-
tipliers for the constraints obtained from solving the
LP relaxation were used, the resulting Lagrangian re-
laxation provides a bound at least as tight as the bound
from (LP). Also, if u is an optimal solution for (LR),
with Ax � b and u(Ax � b) D 0, then x is optimal
for (P).

When are the inequalities above strict? This can be
shown through the following integrality property, again
due to [3]: The optimal value of (LRu) is not changed by
dropping the integrality condition on the x variables.

If the integrality property (also referred to as the
complementary slackness property) holds, then

V (P) D V(P�) D V (LR) D V(LP):

In this case, therefore, Lagrangian relaxation can do
no better than the standard LP relaxation for (P). For
a large number of practical problems, however, this
property does not hold. This fact allows (LRu) to be
used in place of (LP) to provide lower bounds in
a branch and bound algorithm.

Lagrangian decomposition

A drawback of the Lagrangian relaxation (LR) de-
scribed above is that only one of the possibly many spe-
cial structured constraint sets embedded in the problem
can be exploited. This results in the loss of structure of
all the dualized constraints. One way to avoid this is to
use Lagrangian decomposition ([4,5,6,7]).

Introducing a new set of ‘copy’ constraints y = x,
problem (P) is equivalent to

max
x;y

f>x

such that

Ay � b (5)

Cx � d (6)

y D x (7)

x 2 X; y 2 Y ; (8)

where X � Y . Dualizing the ‘copy’ constraints (7) re-
sults in

max f>x C v(y � x)

such that

Ay � b (9)

Cx � d (10)

x 2 X; y 2 Y ; (11)

which can be decomposed to the following problem
(LDv):
8̂
<̂
ˆ̂:

max
x

F1(x)

s.t. Cx � d
x 2 X

C

8̂
<̂
ˆ̂:

max
y

F2(y)

s.t. Ay � b
y 2 Y

;

where F1 (x) = (f � v)| x and F2 (y) = v| y. The La-
grangian decomposition dual (LD) can then be defined
to be

min
v�0

V(LDv )

If u is an optimal solution to (LR), then, with v D u �A,
it can be shown that

V (LDv ) D V (LRu) � u(b � Ay)

and therefore

V (LD) � V(LR):

It is possible to define an integrality property ([5]) such
that if either the x- or the y-problem has the property,
then V(LD) will be equal to the stronger of the bounds
obtained from the two Lagrangian relaxations corre-
sponding to each set of constraints.

Lagrangian decomposition (LD) has several advan-
tages over (LR). Every constraint in the original prob-
lem appears in one of the subproblems. It thus avoids
having to choose between the various sets of structured
constraints. Secondly, as shown above, the bounds from
(LD) can be tighter than those from (LR). Furthermore,
the bound can be tightened by adding surrogate con-
straints (for example, a surrogate constraint from Ax �
b can be added to the x-problem in (LD). Thirdly, anal-
ogous to (LR), it can be shown that (LD) is really the
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dual of a primal problem involving the optimization of
the original objective function over the intersection of
the convex hulls of the two constraint sets. Finally, em-
pirical results suggest that when using heuristics based
on Lagrangian decomposition, any intermediate solu-
tions found in the solution of (LD) lead to better solu-
tions for problem (P) as compared to solutions found
by Lagrangian relaxation.

Aggregation Schemes

The main drawback of the Lagrangian decomposition
method is that a large number of multipliers (v) are in-
troduced, one for each of the copy variables. The calcu-
lation of v can be time consuming at each step. More-
over, the convergence of the scheme can be slowed sig-
nificantly by the larger number of directions (for the
multipliers) to search. In order to avoid this, an alter-
nate approach that has been suggested [8] is to aggre-
gate some or all of the variables using a simplified linear
function, and then to dualize the resulting copy con-
straints. The purpose of the aggregation is to substan-
tially reduce the number of dual variables, while still
maintaining the constraint structure as in the standard
decomposition.

Let A � [A1 | A2], and x �
�x1
x2
�
, with x1 2 Rn1 and

x2 2 Rn�n1 . Introduce the copy variables y �
�y1
y2
�
D x

and the constraints

x1 D y1 and A2x2 D g(y2);

where g(�) is the aggregation function (for example,
g(y2) = A2 y2, or g(y2) = y2). Then, the problem (P) can
be written as

max f>x

such that

A1y1 C g(y2) � b (12)

Cx � d (13)

x1 D y1 (14)

A2x2 D g(y2) (15)

x 2 X; y 2 Y ; (16)

where X � Y . Dualizing the constraints (14) and (15)
leads to
8̂
ˆ̂̂<
ˆ̂̂̂
:

max f>x C w1(y1 � x1)C w2(g(y2) � A2x2)
s.t. A1y1 C g(y2) � b

Cx � d
x 2 X; y 2 Y ;

which can be decomposed to the problem (LDAw),
given by
8̂
<̂
ˆ̂:

max
x

F1(x)

Cx � d
x 2 X

C

8̂
<̂
ˆ̂:

max
y

F2(y)

A1y1 C g(y2) � b
y 2 Y ;

where F1 (x) = f | x � w1 x1 � w2 A2 x2 and F2 (y) = w1

y1 + w2 g(y2). The corresponding dual problem (LDA)
is then defined by

min
w�0

LDAw

It can then be proved that for any optimal solution of
(LR) defined by u 2 OS(LR), with w1 D uA1 and w2 D

u,

V (LDAw ) � V(LRu)

and therefore

V (LDA) � V(LR):

This inequality is strict only if the second subprob-
lem in (LDAw) (i. e. the problem of maximizing F2(y))
does not satisfy the integrality (complementary slack-
ness) property. Moreover, this inequality holds only for
the Lagrangian relaxation with those constraints that
have been aggregated. Any other Lagrangian relaxation
defined for problem (P) by dualizing other sets of con-
straints will not necessarily satisfy this inequality.

Similarly, defining v � (w1;w2)>, it can also be eas-
ily shown that

V (LDv ) � V (LDAw)

and therefore

V (LD) � V (LDA):

In general, therefore, the bound obtained by aggregat-
ing some or all of the variables is stronger than the
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bound obtained from Lagrangian relaxation but weaker
than the bounds from standard Lagrangian decompo-
sition. However, while the standard (LD) introduces n
multipliers, (LDA) has n1 + m, which can be consid-
erably less depending on the number of dualized con-
straints. Moreover, any inherent problem structure is
still maintained in (LDA). The aggregate formulation
can thus be viewed as a reasonable compromise be-
tween tightness of the bounds and speed of solution.
As in the case of standard decomposition, (LDA) can
be defined by aggregating different subsets of variables.
Unfortunately, it is not always apparent a priori which
is the best choice for obtaining the tightest bound, and
various alternatives may have to be tried in practice.

One possible method of exploiting the potential in-
equalities in these various bounds is as follows:
1) solve (LR) to obtain u;
2) if the integrality property does not hold, set w1 D

uA1 and w2 D u, and solve (LDAu); this problem is
guaranteed to give a tighter bound than (LR);

3) set v �
�w1

w2

�
, and solve (LDv ). Note that if the aggre-

gate function g(y2) is of the form A2y, this step will
not yield any improvement.

Practical Issues

Because (LR), (LD) and (LDA) can all provide tighter
bounds than (LP), any one of the relaxations can be
used in place of (LP) to provide upper bounds in a clas-
sical branch and bound algorithm to solve (P). Conse-
quently, the choice of the relaxation scheme used, as
well as the quality of the bounds obtained, is of consid-
erable importance. These are discussed in some detail
below.

Choosing Among Alternate Relaxations

Often, there are several choices for the constraints to be
dualized. For example, consider the generalized assign-
ment problem

min
mX
iD1

nX
jD1

ci jxi j

such that
mX
iD1

xi j D 1; j D 1; : : : ; n; (17)

nX
jD1

ai jxi j � bi ; i D 1; : : : ;m; xi j D 0 or 1 8i; j:

(18)

By dualizing the first set of constraints (17), this prob-
lem reduces to m knapsack problems. Conversely, du-
alizing (18) results in a generalized upper bound (GUB)
problem in 0–1 variables. Which of the two relaxations
should be used? There are two conflicting factors in-
volved here, namely the tightness of the bounds and the
ease of solution of the problem. It would be wise to se-
lect a relaxation that yields a problem that is fairly easy
to solve, but not so easy that the bounds are very loose.
In general, it is difficult to know this a priori. In some
instances, however, the test of the integrality property
can be useful. For example, in the generalized assign-
ment problem, the integrality property holds for the
second relaxation but not the first, suggesting that the
second relaxation will yield a tighter bound.

For the case of the Lagrangian decomposition, this
issue is not important since all constraints are main-
tained in one of the subproblems. However, if aggre-
gation is being used, then again, it is in general hard to
know a priori which variables to aggregate and which
ones to copy. Often, the best solution is to try various
alternatives and use the computational results to guide
the choice.

Choice of Multipliers

It is clear that for (LR), the best choice for u is an opti-
mal solution to the problem

min
u�0

V(LRu)

since this will yield the tightest bound V(LR). Simi-
larly, the best dual vectors v and w for (LD) and (LDA)
are those from the optimal solutions to the respective
dual problems. Unfortunately, these optimal values for
the dual variables cannot be determined a priori, and
therefore, an interactive procedure is the only viable
approach to improv ing the value of u, v or w. Below,
a couple of techniques for updating u for (LR) are dis-
cussed, but the methods are just as relevant for updating
v and w for (LD) and (LDA).

In general, the function V(LRu) is piecewise lin-
ear, convex and differentiable at all points except where
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the Lagrangian problem hasmultiple optimal solutions.
This observation has led to the development of subgra-
dient techniques for the determining the u that min-
imizes V(LRu). This method is similar to traditional
gradient methods, except that at the nondifferentiable
points, it chooses randomly from the set of optimal La-
grange solutions. Given an initial value u0 (typically u0

= 0), a sequence {uk} is generated by the formula

ukC1 D maxfuk C tk(Axk � b); 0g;

where xk is an optimal solution to (LRuk ) and tk is
a scalar stepsize, generally designed to be a decreasing
sequence converging to zero. It is not possible to prove
optimality in this method, so usually it is terminated
upon reaching a specified number of iterations. Because
of its simplicity, the subgradient technique is generally
the method of first choice when solving (LR).

An alternate way to update u is to use dual descent
algorithms, also referred to as multiplier adjustment
methods. In these methods, the sequence uk is gener-
ated by

ukC1 D uk C tkdk ;

where dk is an descent direction, determined from the
directional derivative of V(LRuk ) using a finite set of
directions. Typically, the direction of steepest descent
is chosen, and the stepsize tk is the one that mini-
mizes V(LRukCtdk ). Unlike subgradient optimization,
this procedure guarantees monotonic bound improve-
ment. Moreover, it may only adjust a few multipliers
at each iteration, resulting in improved computational
performance. However, for general problems, the set of
directions to choose from can be very large, resulting in
very poor descent. It is therefore essential to tailor these
methods to particular problems to exploit their struc-
ture in determining the set of directions.

Applications

Lagrangian relaxation and decomposition have been
successfully applied to solve a large number of practical
combinatorial problems. These include the generalized
assignment problem, capacitated facility location prob-
lem, the traveling salesman problem and instances of
the general mixed integer programming problem. For
each of these problems, the constraints contain well-
understood structures such as knapsack, spanning tree

and generalized upper bound constraints, thus facili-
tating the dualization of the other complicating con-
straints. For a number of problems, these techniques
represent the best available solution method. Computa-
tional results for these and other problems indicate that
the bounds provided by (LR) and (LD) can be extremely
sharp. These results have led to (LD) and (LDA) being
considered among the best available solution methods
for solving these problems.
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Introduction

The assumption of a fixed template for de novo peptide
and protein design is highly questionable [41], as pro-
tein is commonly known to exhibit backbone flexibility,
as illustrated by the superposition of NMR structures in
Fig. 1. De novo design templates were observed to allow

De Novo Protein Design Using Flexible Templates, Figure 1
Template flexibility as illustrated by the superposition of the
20NMRstructuresof apo intestinal fatty acidbindingprotein
(Protein Data Bank code 1AEL)

residues that would not have been permissible had the
backbone been fixed [34]. TheMayo group claimed that
their ORBIT protein design programwas robust against
15% change in the backbone. Nevertheless, they found
in a later case study on T4 lysozyme that core repacking
to stabilize the fold was difficult to achieve without con-
sidering a flexible template [37]. The secondary struc-
tures of ˛-helices and ˇ-sheets actually display twisting
and bending in the fold, and Emberly et al. [6,7] applied
principal component analysis of database protein struc-
tures to quantify the degree and modes of their flexibil-
ities.

In this chapter we classify the various methods of
incorporating backbone flexibility into the design tem-
plate into three main types according to their treatment
of the backbone and side-chain conformations. The
first type involves considering a set of multiple discrete
templates and performing de novo design with discrete
rotamers on each of the templates under the fixed-back-
bone assumption. The second type considers a contin-
uum template by means of algebraic parameterization
of the backbone and variation of the parameters to al-
low for backbone movement during sequence selection.
However, it still employs rotamer libraries to simplify
the side-chain conformations. Through novel sequence
selection formulations [14] and pairwise contact poten-
tials which are discretized over distance bins [35,44,45],
the third type considers a continuum design template in
which the C˛–C˛ distances and dihedral angles assume
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continuous values between upper and lower bounds ob-
served from the template structures [9], and confirms
sequence specificity to the target fold based on these
bounded continuous distances and angles via NMR
structure refinement methods [16,17] rather than the
discrete rotamer approach. For each category we will
quote some examples of successes of de novo peptide
and protein design.

Flexible Template via Multiple Discrete
Templates and Discrete Rotamers

By incorporating protein backbone flexibility via dis-
crete templates and discrete rotamers, de novo protein
design frameworks either separate sequence selection
and backbone movement explicitly or iterate between
sequence space and structure space [3]. Notice that in
both cases, the sequence search methods outlined in the
previous section are all applicable, as fixed backbones
and discrete rotamers are still assumed.

ApproachesWhich Separate Sequence Selection
and BackboneMovement

These approaches consider an ensemble of fixed back-
bones, searches for sequences for each of them assum-
ing a fixed template, and finally identify the best so-
lutions from all the results. Successes using different
kinds of search algorithms include the ones described
next.

Successes Using Dead-End Elimination By vary-
ing the supersecondary structure parameters, Ross
et al. [46] and Su and Mayo [48] generated several sets
of perturbed backbones from the native structure and
redesigned the core of the ˇ1 domain of the streptococ-
cal protein using the DEE algorithm under the fixed-
template assumption for each backbone. Confirmed by
NMR experiments, six of the seven sequences tested
folded into nativelike structure.

Successes Using the Self-Consistent Mean Field
Method Kono and Saven [29] applied their self-con-
sistent mean field based protein combinatorial library
design strategy to a set of similar backbone structures
to obtain new sequences that are robust to distance
changes in the template for the immunoglobulin light
chain-binding domain of protein L.

Successes of Monte Carlo Methods/Genetic Algo-
rithms The Pande group generated families of 100
fixed templates within 1Å root-mean-square devia-
tion (rmsd) from the initial backbone using a Monte
Carlo method. With these fixed-template ensembles,
they performed de novo design, which was based
on genetic algorithms, on their Genome@home dis-
tributed grid system for 253 naturally occurring pro-
teins. They obtained sequences that exhibited higher di-
versity than the corresponding natural sequence align-
ments, as well as good agreement on the sequence en-
tropies of the designed sequences from the same tem-
plate family [32,33].

In order to incorporate protein flexibility, Kraemer-
Pecore et al. [30] executed a Monte Carlo simulation
to generate 30 fixed backbones that were within 0:3Å
rmsd of the initial template. A genetic-algorithm-based
sequence prediction algorithm [43] which combines fil-
tering and sampling rotamers and energy minimization
was then employed for sequence search on each tem-
plate under the fixed backbone assumption. The work
led to the identification of a sequence that folded into
the WW domain.

In designing protein conformational switches, Am-
broggio and Kuhlman [1,2] also used the Monte Carlo
based RosettaDesign to search for sequences for multi-
ple fixed-template structures.

ApproachesWhich Iterate Between Sequence Space
and Structure Space

There are two good examples which belong to this
class. The first example is a genetic algorithm/Monte
Carlo based framework used by Desjarlais and Han-
del [5], in which a starting population of backbones
is generated by small angle perturbations to the tem-
plate, rotamers are randomly selected on each back-
bone, and a genetic algorithm is subsequently used
which exchanges not only rotamers but also backbone
torsional information in recombination. The frame-
work is ended with a Monte Carlo stage which re-
fines the backbone structures. Using this novel ap-
proach, Desjarlais and Handel [5] designed three
new core variants of the protein 434 cro. They also
compared results on 434 cro and T4 lysozyme with
those obtained earlier using fixed-template models and
found that they were similar, given that the fixed-
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template models scan over a much larger rotamer
space.

The second one was proposed by Kuhlman et al.
[31] and Saunders and Baker [31,47]. Their method
starts with a set of initial backbones, searches by
a Monte Carlo method for the sequence with the low-
est energy for each of them, performs atomic-resolution
structure prediction for the sequences to allow shifts in
the structure space, and continues until the number of
iterations hits a predetermined number. They success-
fully designed a new sequence for Top 7, a 93-residue
˛/ˇ protein with a novel fold [31]. They also claimed
that the newmethod better captures sequence variation
than approaches that separate sequence selection and
backbone movement explicitly.

Flexible Template via Continuum Template
and Discrete Rotamers

This method of constituting a continuum template via
backbone parameterization and performing sequence
search from rotamer libraries was proposed by Har-
bury et al. [18,19,40]. On the basis of the algebraic pa-
rameterization equations developed for coiled-coils by
Crick [4], they allowed backbone movement by treat-
ing the parameters as variables during sequence search
for energy minimization, which was in turn done by
the local optimization methods of steepest descent min-
imization and adopted-basis Newton–Raphson mini-
mization.

Successes

Harbury et al. [18,19,40] adopted this approach to de-
sign a family of ˛-helical bundle proteins with right-
handed superhelical twist. The crystal structure of the
designed sequences with the optimal specificity was ex-
perimentally validated to match the design template.

Flexible Template via Continuum Template
and NMR Structure Refinement

Considering discrete rotamers is certainly not the best
approach to adopt in de novo design, as about 15% of
side-chain conformations are not represented by com-
mon rotamer libraries [8]. A recent two-stage de novo
design approach proposed by the Floudas group [10,11,
26,27] considers a continuum design template without

using discrete rotamers for the possible side-chain con-
formations. The first stage selects a rank-ordered list
of low-energy sequences using novel quadratic assign-
ment-like models [13,14] driven by pairwise residue
contact potentials, which were developed by the group
by solving a linear programming parameter estima-
tion problem, requiring that the native conformations
for a large training set of 1250 proteins be ranked en-
ergetically more favorably than their high-resolution
decoys [35,44,45]. The forcefields developed were
found to produce very good Z scores in recognizing the
native folds for a large test set of proteins [35,44,45].
Rather than being continuous, the dependence of con-
tact potential on distance is discretized into bins. This
designed feature serves to make the energy objective
function insensitive to a limited degree of backbone
movement. For example, in the high resolution C˛-C˛

forcefield [44], if the pair of amino acids selected at two
positions i and k, which are 3:5Å apart in the template,
are Arg and Glu, respectively, their energy contribu-
tion to the objective function is Minus 7.77 kcal/mol.
Despite small distance variations, this energy value is
constant for all Arg–Glu interactions as long as the C˛

positions of the two residues are 3–4Å (bin 1) apart.
To perform sequence selection based on a flexible tem-
plate of multiple structures, Fung et al. [14] also devel-
oped two novel formulations: a weighted model which
considers the distance between any two positions as the
weighted average of their distances in all structures, and
a binary distance bin model that decides which bin the
distance falls into during energy optimization. The lat-
ter approach is in a sense similar to the backbone pa-
rameterization approach of Harbury et al. [18,19,40] in
which there are distance variables associated with the
backbone.

The second stage of the approach confirms fold
specificity of the sequences generated in the first stage
based on a full-atomistic forcefield. The group used to
perform the task via ASTRO-FOLD [20,21,22,23,24,25,
28,36], a protein structure prediction method via global
optimization. Conformational ensembles are generated
for each sequence under two sets of conditions. In the
first circumstance, the structure is constrained to vary,
with some imposed fluctuations, around the template
structure. In the second condition, a free folding cal-
culation is performed for which only a limited number
of restraints (e. g., disulfide bridges), but not the un-
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derlying template structure, are enforced. The relative
fold specificity of the sequence, f spec, can be found by
summing the statistical weights for those conformers
from the free folding simulation that resemble the tem-
plate structure (denoted as set temp), and dividing this
sum by the summation of statistical weights for all con-
formers from the free folding simulation (denoted as set
total):

fspec D

P
i2temp exp[�ˇEi ]P
i2total exp[�ˇEi]

where exp[�ˇEi ] is the statistical weight for con-
former i.

Note that in this nonrotamer approach, in both the
template-constrained and the free folding calculations,
all continuous C˛–C˛ and angle values between upper
and lower bounds input by the user are considered in
sampling the conformers. True backbone flexibility [9]
is thus conserved.

Lately the Floudas group developed an approximate
fold validation method which is computationally less
expensive than ASTRO-FOLD. Through the CYANA
2.1 software for NMR structure refinement [16,17], an
ensemble of several hundred conformers is generated
for both a new sequence from the first stage and the na-
tive sequence. The energies of the conformers are then
minimized using TINKER [42], and the fold specificity
of the new sequence is calculated using the formula

fspec D

P
i 2 conformers for new sequence exp[�ˇEi]P
i 2 conformers for native sequence exp[�ˇEi]

based on the assumption that the fold specificity to the
flexible template is unity for the native sequence.

Like the fold-validation method via ASTRO-FOLD,
all continuous distance and dihedral angle values be-
tween their upper and lower bounds, which are input
into CYANA on the basis of observations about the
template structures, are considered in generating the
conformers. This distinguishes the method from the
common rotamer approach in which only discrete side-
chain conformations are allowed.

Successes

The novel two-stage de novo strategy was applied to
(1) the design of new sequences for compstatin, a syn-
thetic 13-residue cyclic peptide that binds to comple-
ment protein 3 (C3) and inhibits the activation of the

complement system (part of innate immunity) [10,26,
27,38,39], (2) the design of a potential peptide-drug
candidate derived from the C-terminal sequence of the
C3a fragment of C3 [15], and (3) the full sequence of
human ˇ-defensin-2, a 41-residue cationic peptide in
the immune system [12]. In the case of the compstatin
redesign, sequences with 16-fold and 45-fold improve-
ment in specificity over the native sequence were con-
firmed in experiments [26,27]. For the design of the
peptide drug from C3a, the best sequence identified
corresponds to 15-fold improvement [15].
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Introduction

Computational protein design efforts were first initi-
ated with the premise that the three-dimensional coor-
dinates of the design template or backbone were fixed.
This simplification was first proposed in [39], and was
appealing because it greatly reduced the combinato-
rial complexity of the search. Together with consider-
ation of only a limited set of most frequently observed
side-chain conformations called rotamers [29,40], the
assumption enhanced the efficiency of the initial de
novo design efforts, most of which focused on pro-
tein cores [5,16,32,41,42], in exploring search spaces.
The reason why protein cores were selected instead
of the boundary or surface regions was based on the
thesis that protein folding is primarily driven by hy-
drophobic collapse, and thus a good core tends to pro-
vide a well-folded and stable structure for the de novo

designed protein [10]. The scope of the de novo de-
sign encompassed intermediate and surface residues in
subsequent years, and obviously the problem became
more challenging. In this chapter, we outline the dif-
ferent deterministic and stochastic methods that search
for sequences specific to the fixed rigid design tem-
plate. It should be noted that they all discretize the side-
chain conformational space into rotamers for tractabil-
ity of the search problem. After the introduction of each
method we also review examples of successes.

Sequence SearchMethods

De novo design algorithms can be classified into two
main categories, namely, deterministic and stochas-
tic [8]. The two main methods that fall into the deter-
ministic category are dead-end elimination (DEE) and
self-consistent mean field (SCMF), whereas the twoma-
jor stochastic type frameworks are Monte Carlo and ge-
netic algorithms. Some methods search for low-energy
sequences, whereas others assign probability to each of
the 20 amino acids for each design position in a se-
quence in order to maximize the conformational en-
tropy.

Deterministic Methods

The Dead-End Elimination Criteria DEE, which is
arguably the most popular rotamer search algorithm,
operates on the basis of the systematic elimination of
rotamers that cannot be parts of the sequence with the
lowest energy. The energy function in DEE is written
in the form of the sum of an individual term (rotamer–
template) and a pairwise term (rotamer–rotamer):

E D
NX
iD1

E(ia) C
N�1X
iD1

NX
j>i

E(ia; jb ) ; (1)

where E(ia) is the rotamer–template energy for rotamer
ia of amino acid i, E(ia; jb) is the rotamer–rotamer en-
ergy of rotamer ia and rotatmer jb of amino acids i and
j, respectively, and N is the total number of positions.
The original DEE pruning criterion is based on the con-
cept that if the pairwise energy between rotamer ia and
rotamer jb is higher than that between rotamer ic and
rotamer jb for all rotamer jb in a certain rotamer set {B},
then rotamer ia cannot be in the global energy mini-
mum conformation and thus can be eliminated. It was
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proposed in [9] and can be expressed in the following
mathematical form:

E(ia) C
NX
j¤i

E(ia; jb) > E(ic) C
NX
j¤i

E(ic ; jb) 8fBg:

(2)

Rotamer ia can be pruned if the above holds true.
Bounds implied by (1) can be utilized to generate
the following computationally more tractable inequal-
ity [9]:

E(ia) C
NX
j¤i

min
b

E(ia; jb)

> E(ic) C
NX
j¤i

max
b

E(ic ; jb) : (3)

The above equations for eliminating rotamers at
a single position (or singles) can be extended to elimi-
nating rotamer pairs at two distinct positions (doubles),
rotamer triplets at three distinct positions (triples), or
above [9,37]. In the case of doubles, the equation be-
comes

"(ia; jb ) C
NX

k¤i; j

min
c
"(ia; jb ; kc )

> "(ia0; jb0) C
NX

k¤i; j

max
c
"(ia0; jb0 ; kc) ; (4)

where " is the total energy of rotamer pairs:

"(ia; jb ) D E(ia) C E( jb) C E(ia; jb) ; (5)

"(ia; jb ; kc) D E(ia; kc) C E( jb ; kc ) : (6)

It determines a rotamer pair ia and jb which al-
ways contributes higher energies than rotamer pair ia0
and jb0 for all possible rotamer combinations. Gold-
stein [14] improved the original DEE criterion by stat-
ing that rotamer ia can be pruned if the energy contri-
bution is always reduced by an alternative rotamer ic:

E(ia) � E(ic) C
NX
j¤i

min
b

[E(ia; jb )�E(ic; jb)] > 0 :

(7)

This can be generalized to the use of a weighted av-
erage of C rotamers ic to eliminate ia [14]:

E(ia) �
X

cD1;:::;C

wcE(ic) C
NX
j¤i

min
b
[E(ia; jb)

�
X

cD1;:::;C

wcE(ic ; jb)] > 0 :
(8)

Lasters et al. [25] proposed that the most suitable
weights wc can be determined by solving a linear pro-
gramming problem.

In addition to these criteria proposed by Gold-
stein [14], Pierce et al. [38] introduced the split DEE,
which splits the conformational space into partitions
and thus eliminated the dead-ending rotamers more ef-
ficiently:

E(ia) � E(ic)

C

NX
j; j¤k¤i

fmin
a0

[E(ia; ja0) � E(ic ; ja0)]g

C [E(ia; kb0 ) � E(ic ; kb0 )] > 0 : (9)

In general, n splitting positions can be assigned for
more efficient but computationally expensive rotamer
elimination:

E(ia) � E(ic)

C

NX
j; j¤k1;:::;kn¤i

fmin
a0

[E(ia; ja0) � E(ic ; ja0)]g

C
X

kDk1;:::;kn

[E(ia; kb0 ) � E(ic; kb0 )] > 0 : (10)

Looger and Hellinga [27] also introduced the gen-
eralized DEE by ranking the energy of rotamer clus-
ters instead of that of individual rotamers and increased
the ability of the algorithm to deal with higher lev-
els of combinatorial complexity. Further revisions and
improvements on DEE were performed by Wernisch
et al. [47] and Gordon et al. [15].

Being deterministic in nature, the different forms of
DEE reviewed above all yield the same globally optimal
solution upon convergence.

Successes Using Dead-End Elimination: Based on
operating the DEE algorithm on a fixed template, the
Mayo group devised their optimization of rotamers
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by an iterative technique (ORBIT) program and ap-
plied it to numerous de novo protein designs. Exam-
ples are the full-sequence design of the ˇˇ˛ fold of
a zinc finger domain [6], improvement of calmodulin
binding affinity [45], full core design of the variable do-
mains of the light and heavy chains of catalytic anti-
body 48G7 FAB, full core/boundary design, full surface
design, and full-sequence design of the ˇ1 domain of
protein G [15], as well as the redesign of the core of
T4 lysozyme [32]. They also adjusted secondary struc-
ture parameters to build the “idealized backbone” and
used it as a fixed template to design an ˛/ˇ-barrel pro-
tein [33]. The Hellinga group applied DEE with a fixed
backbone structure to introduce iron and oxygen bind-
ing sites into thioredoxin [2,3], design receptor and sen-
sor proteins with novel ligand-binding functions [28],
and confer novel enzymatic properties onto ribose-
binding protein [11].

The Self-Consistent Mean-Field Method The SCMF
optimization method is an iterative procedure that pre-
dicts the values of the elements of a conformational
matrix P(i, a) for the probability of a design position i
adopting the conformation of rotamer a. Note that
P(i, a) sums to unity over all rotamers a for each po-
sition i. Koehl and Delarue [19] were among those who
introduced such a method for protein design. They
started the iteration with an initial guess for the con-
formational matrix, which assigns equal probability to
all rotamers:

P(i; a) D
1
A

a D 1; 2; : : : ;A : (11)

Most importantly, they applied the mean-field po-
tential, E(i, a), which depends on the conformational
matrix P(i, a):

E(i; a) D U(xia) C U(xia; x0)

C

NX
jD1; j¤i

BX
bD1

P( j; b)U(xia ; x jb ) ; (12)

where x0 corresponds to the coordinates of atoms in the
fixed template, and xia and x jb correspond to the coor-
dinates of the atoms of position i assuming the confor-
mation of rotamer a and those of position j assuming
the conformation of rotamer b, respectively. The clas-
sical Lennard-Jones (12-6) potential can be used to de-

scribe potential energyU [19]. The conformational ma-
trix can be subsequently updated using the mean-field
potential and the Boltzmann law:

P1(i; a) D
e
�E(i;a)

RT

PA
aD1 e

�E(i;a)
RT

: (13)

The update on P(i, a), namely, P1(i; a), can then be
used to repeat the calculation of the mean-field poten-
tial and another update until convergence is attained.
Koehl and Delarue [19] set the convergence criterion
to be 10�4 to define self-consistency. They also pro-
posed the introduction of memory of the previous step
to minimize oscillations during convergence:

P(i; a) D �P1(i; a) C (1 � �)P(i; a) ; (14)

with the optimal step size � to be 0.9 [19].
The Saven group [12,24,44,48] extended the SCMF

theory and formulated de novo design as an opti-
mization problem maximizing the sequence entropy
subject to composition constraints and mean-field en-
ergy constraints. In addition to the site probabilities,
their method also predicts the number of sequences for
a combinatorial library of arbitrary size for the fixed
template as a function of energy.

It should be highlighted that though deterministic
in nature, the SCMF method does not guarantee con-
vergence to the global optimal solution [26].

Successes Using the Self-Consistent Mean-Field
Method Koehl and Delarue [20] applied the SCMF
approach to design protein loops. In their optimization
procedure, they first selected the loop fragment from
a database with the highest site probabilities. Then they
placed side chains on the fixed loop backbone from
a rotamer library. Kono and Doi [23] also used an en-
ergy minimization with an automata network, which
bears some resemblance to the SCMFmethod, to design
the cores of the globular proteins of cytochrome b562,
triosephosphate isomerase, and barnase. The SCMF
method is related to the design of combinatorial li-
braries of new sequences with good folding properties,
which was reviewed in several papers [17,34,35,43].

Stochastic Methods

The fact that de novo design is nondeterministic
polynomial-time hard [13,36] means that in the worst
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case the time required to solve the problem scales non-
polynomially with the number of design positions. As
the problem complexity exceeds a certain level, deter-
ministic methods may reach their limits and in such in-
stances we may have to resort to stochastic methods,
which perform searches for only locally optimal solu-
tions. Monte Carlo methods and genetic algorithms are
the two most commonly used types of stochastic meth-
ods for de novo protein design.

Monte Carlo Methods Different variants of the
Monte Carlo methods have been applied for sequence
design. In the classic Monte Carlo method, mutation
is performed at a certain position in the sequence and
energies of the sequence in the fixed template are cal-
culated before and after the mutation. This usually
involves the use of discrete rotamer libraries to sim-
plify the consideration of possible side-chain confor-
mations. The new sequence after mutation is accepted
if the energy becomes lower. If the energy is higher, the
Metropolis acceptance criterion [30] is used

paccept D min(1; exp(�ˇ�E)) ˇ D
1
kT

; (15)

and the sequence is updated if paccept is larger than
a random number uniformly distributed between 0
and 1.

In the configurational bias Monte Carlo method,
at each step a local energy is used which does not in-
clude those positions where amutation has not been at-
tempted [49]. Cootes et al. [4] reported that the method
was more efficient at finding good solutions than the
conventional Monte Carlo method, especially for com-
plex systems. Zoz and Savan [49] also devised themean-
field biased Monte Carlo method which biases the se-
quence search with predetermined site probabilities,
which are in turn calculated using SCMF theory. They
claimed their new method converges to low-energy se-
quences faster than classic Monte Carlo and configura-
tional bias Monte Carlo methods.

Successes of Monte Carlo Methods Imposing se-
quence specificity by keeping the amino acid composi-
tion fixed, which reduced significantly the complexity,
Koehl and Levitt [21,22] designed new sequences for
the fixed backbones of the ˇ1 domain of protein G, �

repressor, and sperm whale myoglobin using the con-
ventional Monte Carlo method. The Baker group also
utilized the classic Monte Carlo algorithm in their com-
putational protein design program RosettaDesign. Ex-
amples of applications of the program include the re-
design of nine globular proteins: the src SH3 domain,
� repressor, U1A, protein L, tenascin, procarboxypepti-
dase, acylphosphatase, S6, and FKBP12 using fixed tem-
plates [7].

Genetic Algorithms Originating in genetics and evo-
lution, genetic algorithms generate a multitude of ran-
dom amino acid sequences and exchange them for
a fixed template. Sequences with low energies form hy-
brids with other sequences, while those with high en-
ergies are eliminated in an iterative process which only
terminates when a converged solution is attained [46].

Successes of Genetic Algorithms With fixed back-
bones, Belda et al. [1] applied genetic algorithms to
the design of ligands for prolyl oligopeptidase, p53,
and DNA gyrase. In addition, with a cubic lattice and
empiricial contact potentials Hohm et al. [18] and
Miyazawa and Jernigan [31] also employed evolution-
ary methods to design short peptides that resemble the
antibody epitopes of thrombin and blood coagulation
factor VIII with high stability.
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Introduction

Consider the following unconstrained minimization
problem:

minimize f (x) subject tox 2 IRn ; (1)

where the objective function f is assumed to be Lips-
chitz continuous.

Nonsmooth unconstrained optimization problems
appear in many applications and in particular in data
mining. Over more than four decades different meth-
ods have been developed to solve problem (1).Wemen-
tion among them the bundle method and its different
variations (see, for example, [11,12,13,14,17,20]), algo-
rithms based on smoothing techniques [18], and the
gradient sampling algorithm [8].

In most of these algorithms at each iteration the
computation of at least one subgradient or approxi-
mating gradient is required. However, there are many
practical problems where the computation of even one
subgradient is a difficult task. In such situations deriva-
tive-free methods seem to be a better choice since they
do not use the explicit computation of subgradients.

Among derivative-free methods, the generalized
pattern search methods are well suited for nonsmooth
optimization [1,19]. However their convergence are
proved under quite restrictive differentiability assump-
tions. It was shown in [19] that when the objective func-
tion f is continuously differentiable in IRn , then the
lower limit of the norm of the gradient of the sequence
of points generated by the generalized pattern search
algorithm goes to zero. The paper [1] provides conver-
gence analysis under less restrictive differentiability as-
sumptions. It was shown that if f is strictly differen-
tiable near the limit of any refining subsequence, then
the gradient at that point is zero. However, in many
practically important problems this condition is not
satisfied, because in such problems the objective func-
tions are not differentiable at local minimizers.

In the paper [15] a derivative-free algorithm for
a linearly constrained finite minimax problem was
proposed. The original problem was converted into
a smooth one using a smoothing technique. This algo-
rithm is globally convergent toward stationary points of
the finite minimax problem.

In this paper we describe a derivative-free method
based on the notion of a discrete gradient for solving
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unconstrained nonsmooth optimization problems. Its
convergence is proved for a broad class of nonsmooth
functions.

Definitions

We use the following notation: IRn is an n-dimensional
space, where the scalar product will be denoted by
hx; yi:

hx; yi D
nX

iD1

xi yi

and k � k will denote the associated norm. The gradient
of a function f : IRn ! IR1 will be denoted by r f and
the closed ı-ball at x 2 IRn by Sı(x) (by Sı if x D 0):
Sı(x) D fy 2 IRn : kx � yk � ıg; ı > 0.

The Clarke Subdifferential

Let f be a function defined on IRn . Function f is called
locally Lipschitz continuous if for any bounded subset
X � IRn there exists an L > 0 such that

j f (x)� f (y)j � Lkx � yk8x; y 2 X:

We recall that a locally Lipschitz function f is differ-
entiable almost everywhere and that we can define for
it a Clarke subdifferential [9] by

@ f (x) D co
n
v 2 IRn : 9(xk 2 D( f );

xk ! x; k ! C1) : v D lim
k!C1

r f (xk)
o
;

where D( f ) denotes the set where f is differentiable and
co denotes the convex hull of a set. It is shown in [9]
that the mapping @ f (x) is upper semicontinuous and
bounded on bounded sets.

The generalized directional derivative of f at x in the
direction g is defined as

f 0(x; g) D lim sup
y!x;˛#0

˛�1[ f (yC ˛g) � f (y)] :

If function f is locally Lipschitz continuous, then the
generalized directional derivative exists and

f 0(x; g) D max fhv; gi : v 2 @ f (x)g :

f is called a Clarke regular function on IRn if it is dif-
ferentiable with respect to any direction g 2 IRn and

f 0(x; g) D f 0(x; g) for all x; g 2 IRn , where f 0(x; g) is
a derivative of function f at point x with respect to di-
rection g:

f 0(x; g) D lim
˛#0

˛�1[ f (x C ˛g) � f (x)]:

It is clear that the directional derivative f 0(x; g) of the
Clarke regular function f is upper semicontinuous with
respect to x for all g 2 IRn .

Let f be a locally Lipschitz continuous function de-
fined on IRn . For point x to be a minimum point of
function f on IRn , it is necessary that 0 2 @ f (x):

Semismooth Functions

The function f : IRn ! IR1 is called semismooth at
x 2 IRn , if it is locally Lipschitz continuous at x and for
every g 2 IRn , the limit

lim
g0!g;˛#0;v2@ f (xC˛g0)

hv; gi

exists. It should be noted that the class of semismooth
functions is fairly wide and it contains convex, concave,
max- and min-type functions [16]. The semismooth
function f is directionally differentiable and

f 0(x; g) D lim
g0!g;˛#0;v2@ f (xC˛g0)

hv; gi:

Quasidifferentiable Functions

A function f is called quasidifferentiable at a point x if it
is locally Lipschitz continuous and directionally differ-
entiable at this point and there exist convex, compact
sets @ f (x) and @ f (x) such that

f 0(x; g) D max
u2@ f (x)

hu; gi C min
v2@ f (x)

hv; gi:

The set @ f (x) is called a subdifferential, the set @ f (x)
is called a superdifferential, and the pair of sets
[@ f (x); @ f (x)] is called a quasidifferential of function
f at a point x [10].

Methods

Approximation of Subgradients

We consider a locally Lipschitz continuous function f
defined on IRn and assume that this function is quasid-
ifferentiable. We also assume that both sets @ f (x) and
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@ f (x) at any x 2 IRn are polytopes, that is, at a point
x 2 IRn there exist sets

A D fa1; : : : ; amg; ai 2 IRn ; i D 1; : : : ;m;m � 1

and

B D fb1; : : : ; bpg; b j 2 IRn ; j D 1; : : : ; p; p � 1

such that

@ f (x) D co A; @ f (x) D co B:

This assumption is true, for example, for functions rep-
resented as a maximum, minimum, or max-min of a fi-
nite number of smooth functions.

We take a direction g 2 IRn such that

g D (g1; : : : ; gn); jgi j D 1; i D 1; : : : ; n

and consider the sequence of n vectors e j D e j(˛); j D
1; : : : ; n with ˛ 2 (0; 1]:

e1 D (˛g1; 0; : : : ; 0);
e2 D (˛g1; ˛2g2; 0; : : : ; 0);
: : : D : : : : : : : : :

en D (˛g1; ˛2g2; : : : ; ˛n gn):

We introduce the following sets:

R0 D A; R0 D B;

Rj D
n
v 2 Rj�1 : v j g j D maxfwjg j : w 2 Rj�1g

o
;

Rj D
˚
v 2 Rj�1 : v j g j D minfwjg j : w 2 Rj�1g

�
:

j D 1; : : : ; n :

It is clear that

Rj ¤ ;;8 j 2 f0; : : : ; ng; Rj � Rj�1;8 j 2 f1; : : : ; ng

and

Rj ¤ ;;8 j 2 f0; : : : ; ng; R j � Rj�1;8 j 2 f1; : : : ; ng:

Moreover,

vr D wr 8v;w 2 Rj; r D 1; : : : ; j (2)

and

vr D wr 8v;w 2 Rj; r D 1; : : : ; j: (3)

Consider the following two sets:

R(x; e j(˛)) D
�
v 2 A : hv; e ji D max

u2A
hu; e ji

	
;

R(x; e j(˛)) D
�
w 2 B : hw; e ji D min

u2B
hu; e ji

	
:

Proposition 1 Assume that function f is quasidiffer-
entiable and its subdifferential and superdifferential are
polytopes at a point x. Then there exists ˛0 > 0 such that

R(x; e j(˛)) � Rj; R(x; e
j(˛)) � Rj; j D 1; : : : ; n

for all ˛ 2 (0; ˛0).

Corollary 1 Assume that function f is quasidifferen-
tiable and its subdifferential and superdifferential are
polytopes at a point x. Then there exists ˛0 > 0 such that

f 0(x; e j(˛)) D f 0(x; e j�1(˛))C vj˛ j g j C wj˛
j g j;

8v 2 Rj; w 2 Rj; j D 1; : : : ; n

for all ˛ 2 (0; ˛0]

Proposition 2 Assume that function f is quasidiffer-
entiable and its subdifferential and superdifferential are
polytopes at a point x. Then the sets Rn and Rn are sin-
gletons.

Remark 1 In the next subsection we propose an al-
gorithm to approximate subgradients. This algorithm
finds a subgradient that can be represented as a sum of
elements of the sets Rn and Rn .

Computation of Subgradients

Let g 2 IRn ; jgi j D 1; i D 1; : : : ; n be a given vector and
� > 0; ˛ > 0 be given numbers. We define the follow-
ing points:

x0 D x; x j D x0 C �e j(˛); j D 1; : : : ; n:

It is clear that

x j D x j�1C(0; : : : ; 0; �˛ j g j; 0; : : : ; 0); j D 1; : : : ; n:

Let v D v(˛; �) 2 IRn be a vector with the following co-
ordinates:

v j D (�˛ j g j)�1
�
f (x j) � f (x j�1)

�
; j D 1; : : : ; n: (4)
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For any fixed g 2 IRn ; jgi j D 1; i D 1; : : : ; n and ˛ > 0
we introduce the following set:

V(g; ˛) D
�
w 2 IRn : 9(�k !C0; k !C1);

w D lim
k!C1

v(˛; �k)
	
:

Proposition 3 Assume that f is a quasidifferentiable
function and its subdifferential and superdifferential are
polytopes at x. Then there exists ˛0 > 0 such that

V(g; ˛) � @ f (x)

for all ˛ 2 (0; ˛0].

Remark 2 It follows from Proposition 3 that in or-
der to approximate subgradients of quasidifferentiable
functions one can choose a vector g 2 IRn such that
jgi j D 1; i D 1; : : : ; n, sufficiently small ˛ > 0; � > 0,
and apply (4) to compute a vector v(˛; �). This vector
is an approximation to a certain subgradient.

Computation of Subdifferentials
and Discrete Gradients

In the previous subsection we demonstrated an algo-
rithm for the computation of subgradients. In this sub-
section we consider an algorithm for the computation
of subdifferentials. This algorithm is based on the no-
tion of a discrete gradient. We start with the definition
of the discrete gradient, which was introduced in [2]
(for more details, see also [3,4]).

Let f be a locally Lipschitz continuous function de-
fined on IRn . Let

S1 D fg 2 IRn : kgk D 1g;G D fe 2 IRn :

e D (e1; : : : ; en); je jj D 1; j D 1; : : : ; ng;

P D fz(�) : z(�) 2 IR1; z(�) > 0;
� > 0; ��1z(�)! 0; �! 0g:

Here S1 is the unit sphere, G is the set of vertices of the
unit hypercube in IRn , and P is the set of univariate pos-
itive infinitesimal functions.

We take any g 2 S1 and define jgi j D maxfjgk j;
k D 1; : : : ; ng. We also take any e D (e1; : : : ; en) 2
G, a positive number ˛ 2 (0; 1], and define the
sequence of n vectors e j(˛); j D 1; : : : ; n as in

Sect. “Approximation of Subgradients.” Then for given
x 2 IRn and z 2 P we define a sequence of nC 1 points
as follows:

x0 D
x1 D
x2 D
: : : D

xn D

x C �g;
x0 C z(�)e1(˛);
x0 C z(�)e2(˛);
: : : : : :

x0 C z(�)en(˛):

Definition 1 The discrete gradient of function f
at point x 2 IRn is the vector � i (x; g; e; z; �; ˛) D
(� i

1 ; : : : ; �
i
n ) 2 IRn ; g 2 S1 with the following coor-

dinates:

� i
j D [z(�)˛ j e j)]�1

�
f (x j) � f (x j�1)

�
;

j D 1; : : : ; n; j ¤ i ;

� i
i D (�gi)�1

2
4 f (x C �g) � f (x)� �

nX
jD1; j¤i

� i
j g j

3
5 :

It follows from the definition that

f (x C �g) � f (x) D �h� i(x; g; e; z; �; ˛); gi (5)

for all g 2 S1; e 2 G; z 2 P; � > 0; ˛ > 0.

Remark 3 One can see that the discrete gradient is de-
fined with respect to a given direction g 2 S1, and in or-
der to compute the discrete gradient� i (x; g; e; z; �; ˛),
first we define a sequence of points x0; : : : ; xn and com-
pute the values of function f at these points; that is, we
compute nC 2 values of this function including point
x. n � 1 coordinates of the discrete gradient are de-
fined similarly to those of the vector v(˛; �) from the
Sect. “Approximation of Subgradients,” and the ith co-
ordinate is defined so as to satisfy equality (5), which
can be considered as as version of the mean value theo-
rem.

Proposition 4 Let f be a locally Lipschitz continuous
function defined on IRn and L > 0 its Lipschitz constant.
Then for any x 2 IRn ; g 2 S1; e 2 G; � > 0; z 2 P;
˛ > 0

k� ik � C(n)L;C(n) D (n2 C 2n3/2 � 2n1/2)1/2:
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For a given ˛ > 0 we define the following set:

B(x; ˛) Dfv 2 IRn : 9(g 2 S1; e 2 G; zk 2 P;

zk ! C0; �k ! C0; k! C1);
v D lim

k!C1
� i (x; g; e; zk ; �k ; ˛)g: (6)

Proposition 5 Assume that f is a semismooth, qua-
sidifferentiable function and its subdifferential and su-
perdifferential are polytopes at a point x. Then there ex-
ists ˛0 > 0 such that

co B(x; ˛) � @ f (x)

for all ˛ 2 (0; ˛0].

Remark 4 Proposition 5 implies that discrete gradi-
ents can be applied to approximate subdifferentials of
a broad class of semismooth, quasidifferentiable func-
tions.

Remark 5 One can see that the discrete gradient con-
tains three parameters: � > 0, z 2 P, and ˛ > 0. z 2 P
is used to exploit the semismoothness of function f , and
it can be chosen sufficiently small. If f is a semismooth
quasidifferentiable function and its subdifferential and
superdifferential are polytopes at any x 2 IRn , then for
any ı > 0 there exists ˛0 > 0 such that ˛ 2 (0; ˛0] for
all y 2 Sı(x). The most important parameter is � > 0.
In the sequel we assume that z 2 P and ˛ > 0 are suffi-
ciently small.

Consider the following set:

D0(x; �) Dcl co fv 2 IRn : 9(g 2 S1; e 2 G; z 2 P) :

v D � i (x; g; e; �; z; ˛)g:

Proposition 4 implies that the set D0(x; �) is compact
and it is also convex for any x 2 IRn .

Corollary 2 Let f be a quasidifferentiable semismooth
function. Assume that in the equality

f (x C �g) � f (x) D � f 0(x; g)C o(�; g); g 2 S1

��1o(�; g)! 0 as �!C0 uniformly with respect to
g 2 S1. Then for any " > 0 there exists �0 > 0 such that

D0(x; �) � @ f (x)C S"

for all � 2 (0; �0).

Corollary 2 shows that the set D0(x; �) is an approxi-
mation to the subdifferential @ f (x) for sufficiently small

� > 0. However, it is true at a given point. To get con-
vergence results for a minimization algorithm based on
discrete gradients, we need some relationship between
the set D0(x; �) and @ f (x) in some neighborhood of
a given point x. We will consider functions satisfying
the following assumption.

Assumption 1 Let x 2 IRn be a given point. For any
" > 0 there exist ı > 0 and �0 > 0 such that

D0(y; �) � @ f (x C S̄")C S" (7)

for all y 2 Sı(x) and � 2 (0; �0). Here

@ f (x C S̄") D
[

y2S̄"(x)

@ f (y); S̄"(x)

D fy 2 IRn : kx � yk � "g:

A Necessary Condition for a Minimum

Consider problem (1), where f : IRn ! IR1 is an arbi-
trary function.

Proposition 6 Let x� 2 IRn be a local minimizer of
function f . Then there exists �0 > 0 such that

0 2 D0(x; �)

for all � 2 (0; �0).

Proposition 7 Let 0 62 D0(x; �) for a given � > 0 and
v0 2 IRn be a solution to the following problem:

minimizekvk2subject to v 2 D0(x; �):

Then the direction g0 D �kv0k�1v0 is a descent direc-
tion.

Proposition 7 shows how the set D0(x; �) can be used
to compute descent directions. However, in many cases
the computation of the set D0(x; �) is not possible. In
the next section we propose an algorithm for the com-
putation of descent directions using a few discrete gra-
dients from D0(x; �).

Computation of Descent Directions

In this subsection we describe an algorithm for the
computation of descent directions of the objective func-
tion f of Problem (1).
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Let z 2 P; � > 0; ˛ 2 (0; 1], the number c 2 (0; 1),
and a tolerance ı > 0 be given.

Algorithm 1 An algorithm for the computation of the
descent direction.

Step 1. Choose any g1 2 S1; e 2 G; compute i D
argmax fjg jj; j D 1; : : : ; ng and a discrete gradient
v1 D � i (x; g1; e; z; �; ˛). Set D1(x) D fv1g and k D 1.

Step 2. Compute the vector kwkk2 D minfkwk2 :
w 2 Dk(x)g. If

kwkk � ı; (8)

then stop. Otherwise go to Step 3.
Step 3. Compute the search direction by gkC1 D

�kwkk�1wk .
Step 4. If

f (x C �gkC1) � f (x) � �c�kwkk; (9)

then stop. Otherwise go to Step 5.
Step 5. Compute i D argmax fjgkC1

j j : j D 1; : : : ; ng
and a discrete gradient

vkC1 D � i(x; gkC1; e; z; �; ˛);

construct the set DkC1(x) D co fDk(x)
S
fvkC1gg, set

k D k C 1, and go to Step 2.

In what follows we provide some explanations of Al-
gorithm 1. In Step 1 we compute the discrete gradient
with respect to an initial direction g1 2 IRn . The dis-
tance between the convex hull Dk(x) of all computed
discrete gradients and the origin is computed in Step 2.
This problem is solved using the algorithm from [21].
If this distance is less than the tolerance ı > 0, then
we accept point x as an approximate stationary point
(Step 2); otherwise we compute another search direc-
tion in Step 3. In Step 4 we check whether this direction
is a descent direction. If it is, we stop and the descent
direction has been computed; otherwise we compute
another discrete gradient with respect to this direction
in Step 5 and update the set Dk(x). At each iteration k
we improve the approximation of the subdifferential of
function f .

The next proposition shows that Algorithm 1 is ter-
minating.

Proposition 8 Let f be a locally Lipschitz function de-
fined on IRn. Then, for ı 2 (0; C̄), either condition (8) or

condition (9) satisfies after m computations of the dis-
crete gradients, where

m � 2(log2(ı/C̄)/ log2 rC1); r D 1�[(1�c)(2C̄)�1ı]2;

C̄ D C(n)L, and C(n) is a constant from Proposition 4.

Remark 6 Proposition 4 and equality (5) are true for
any � > 0 and for any locally Lipschitz continuous
functions. This means that Algorithm 1 can compute
descent directions for any � > 0 and for any locally Lip-
schitz continuous functions in a finite number of itera-
tions. Sufficiently small values of � give an approxima-
tion to the subdifferential, and in this case Algorithm 1
computes local descent directions. However, larger val-
ues of � do not give an approximation to the subdif-
ferential and in this case descent directions computed
by Algorithm 1 can be considered global descent direc-
tions.

The Discrete Gradient Method

In this section we describe the discrete gradient
method. Let sequences ık > 0; zk 2 P; �k > 0; ık !
C0; zk ! C0; �k ! C0; k ! C1, sufficiently small
number ˛ > 0, and numbers c1 2 (0; 1); c2 2 (0; c1] be
given.

Algorithm 2 Discrete gradient method
Step 1. Choose any starting point x0 2 IRn and set

k D 0.
Step 2. Set s D 0 and xk

s D xk .
Step 3. Apply Algorithm 1 for the computation of

the descent direction at x D xk
s ; ı D ık ; z D zk ; � D

�k ; c D c1. This algorithm terminates after a finite
number of iterations l > 0. As a result we get the set
Dl (xk

s ) and an element vks such that

kvks k
2 D minfkvk2 : v 2 Dl (xk

s )g:

Furthermore, either kvks k � ık or for the search direc-
tion gks D �kvks k�1vks

f (xk
s C �k gks ) � f (xk

s ) � �c1�kkvks k: (10)

Step 4. If

kvks k � ık; (11)

then set xkC1 D xk
s ; k D k C 1 and go to Step 2. Other-

wise go to Step 5.
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Step 5. Construct the following iteration xk
sC1 D

xk
s C �s gks , where �s is defined as follows:

�s D argmax f� � 0 : f (xk
s C � g

k
s ) � f (xk

s )

� �c2�kvks k
o
:

Step 6. Set s D s C 1 and go to Step 3.

For the point x0 2 IRn we consider the set M(x0) D˚
x 2 IRn : f (x) � f (x0)

�
:

Proposition 9 Assume that function f is semismooth
quasidifferentiable, its subdifferential and superdifferen-
tial are polytopes at any x 2 IRn, Assumption 1 is sat-
isfied, and the set M(x0) is bounded for starting points
x0 2 IRn. Then every accumulation point of fxkg belongs
to the set X0 D fx 2 IRn : 0 2 @ f (x)g.

Remark 7 Since Algorithm 1 can compute descent di-
rections for any values of � > 0, we take �0 2 (0; 1),
some ˇ 2 (0; 1), and update �k ; k � 1 as follows:

�k D ˇ
k�0; k � 1:

Thus in the discrete gradient method we use approx-
imations to subgradients only at the final stage of the
method, which guarantees convergence. In most itera-
tions we do not use explicit approximations of subgra-
dients. Therefore it is a derivative-free method.

Remark 8 It follows from (10) and c2 � c1 that always
�s � �k and therefore �k > 0 is a lower bound for �s .
This leads to the following rule for the computation of
�s . We define a sequence:

�m D m�k ; m � 1;

and �s is defined as the largest �m satisfying the inequal-
ity in Step 5.

Applications

There are many problems from applications where the
objective and/or constraint functions are not regular.
We will consider one of them, the cluster analysis prob-
lem, which is an important application area in data
mining.

Clustering is also known as the unsupervised classi-
fication of patterns; it deals with problems of organiz-
ing a collection of patterns into clusters based on simi-
larity. Clustering has many applications in information
retrieval, medicine, etc.

In cluster analysis we assume that we have been
given a finite set C of points in the n-dimensional space
IRn , that is,

C D fc1; : : : ; cmg; where ci 2 IRn ; i D 1; : : : ;m:

We consider here partition clustering, that is, the distri-
bution of the points of set C into a given number q of
disjoint subsets Ci ; i D 1; : : : ; q with respect to prede-
fined criteria such that:

(1) Ci ¤ ;; i D 1; : : : ; q;
(2) Ci TC j D ;; i; j D 1; : : : ; q; i ¤ j;

(3) C D
qS

iD1
Ci .

The sets Ci ; i D 1; : : : ; q are called clusters. The
strict application of these rules is called hard clustering,
unlike fuzzy clustering, where the clusters are allowed
to overlap. We assume that no constraints are imposed
on the clusters Ci ; i D 1; : : : ; q, that is, we consider the
hard unconstrained clustering problem.

We also assume that each cluster Ci ; i D 1; : : : ; q
can be identified by its center (or centroid). There are
different formulations of clustering as an optimization
problem. In [5,6,7] the cluster analysis problem is re-
duced to the following nonsmooth optimization prob-
lem:

minimize f (x1; : : : ; xq)

subject to (x1; : : : ; xq) 2 IRn�q;
(12)

where

f (x1; : : : ; xq) D
1
m

mX
iD1

min
sD1;:::;q

kxs � cik2: (13)

Here k � k is the Euclidean norm and xs 2 IRn stands for
the sth cluster center. If q > 1, then the objective func-
tion (13) in problem (12) is nonconvex and nonsmooth.
Moreover, function f is a nonregular function, and the
computation of even one subgradient of this function is
quite a difficult task. This function can be represented
as the difference of two convex functions as follows:

f (x) D f1(x) � f2(x);

where

f1(x) D
1
m

mX
iD1

qX
sD1

kxs � cik2;
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f2(x) D
1
m

mX
iD1

max
sD1;:::;q

qX
kD1;k¤s

kxk � cik2:

It is clear that function f is quasidifferentiable and its
subdifferential and are polytopes at any point.

Thus, the discrete gradient method can be applied
to solve clustering problem.

Conclusions

We have discussed a derivative-free discrete gradient
method for solving unconstrained nonsmooth opti-
mization problems. This algorithm can be applied to
a broad class of optimization problems including prob-
lems with nonregular objective functions. It is globally
convergent toward stationary points of semismooth,
quasidifferentiable functions whose subdifferential and
superdifferential are polytopes.
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Introduction

The optimal design of stochastic systems like queueing
or inventory systems is a specific stochastic optimiza-
tion problem.

Let Yx(t) be an ergodic Markov process with dis-
crete time t = 1, 2, . . . and values in Rm, depending on
a control parameter x 2 Rd. Let H(x, �) be some cost
function. The problem is to find the control x which
minimizes the expectedcosts of the system either under
the transient or under the stationary regime:
1) Under the transient regime, the process is started at

time 0 in a specific starting state y0 and observed un-
til time T. The optimality problem reads

8̂
<̂
ˆ̂:
min F(x) D

TX
tD1

E[H(x;Yx (t)]

s.t. x 2 S � Rd :

(1)

2) Under the stationary regime it is assumed that
Yx(1) is distributed according to the stationary dis-
tribution of the process, which is — by ergodicity —
the asymptotic distribution of Yx(t) as t tends to in-
finity. The optimality problem reads

(
min F(x) D E[H(x;Yx(1)]
s.t. x 2 S � Rd :

(2)

As an example, consider the problem of optimally
determining the decision limits (x1, x2) in an inventory
policy (if the inventory at hand has fallen below x1 order
the amount needed to bring the inventory up to x2). As-
suming that the sales are of random size, the inventory
system can be modeled as a Markov process depending
on control parameters (x1 and x2).

The solution method for such an optimization
problem is a version of the stochastic quasigradient
method (cf. also � Stochastic quasigradient methods).
The solution is stepwise improved by moving it into the
direction of an estimate of the negative gradientof the
objective function.

The basic problem is therefore to find good esti-
mates for the gradientrx F(x). This problem is a gener-
alization of the problem of finding derivatives of prob-
ability measures (cf. � Derivatives of probability mea-
sures). The general notions of distributional derivatives
(direct differentiability) and process derivatives (inverse
differentiability) are applicable here.

Process Derivatives

Suppose that the process Yx(�) has a representation of
the form

Yx (tC 1) D Kt(x;Yx (t); �t);

where � t is a sequence of random variables, the distri-
bution of which does not depend on x. If the derivatives
rx Kt(x, y, �), ry Kt(x, y, �) and ry H(y) exist, we get
by elementary calculus

rxH(Yx (t)) D ryH(Yx (t))

�

2
4

t�1X
iD0

0
@

t�1Y
jDiC1

ryK j(x;Yx ( j); � j)

1
A

rxKi(x; zx (i); �i)

#
; (3)

where the order of multiplication in the product is here
and in the following from left to right by descending in-
dex. Formula (3) may be computed recursively, as fol-
lows.

Define the [m × d] (random) matrices Nt by

Nt D

t�1X
iD1

0
@

t�1Y
jDiC1

ryK j(x;Yx ( j); � j)

1
A

� rxKi(x;Yx (i); �i ):

This sequence follows the forward recursion

N0 D 0;
NtC1 D rxKt(x;Yx (t); �t)CryKt(x;Yx (t); �t) � Nt :

After having found Nt by this recursion, one may cal-
culate

rxH(Yx (t)) D ryH(Yx (t)) � Nt :

This pointwise calculation carries over to the expec-
tation under the standard assumptions of dominated
convergence, yielding

rxE[H(Yx (t))] D E[ryH(Yx (t)) � Nt]:

Now, the estimate for the problem in transient
regime is

brx F(x) D
TX

tD1

H(Yx (t)) � Nt ;
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whereas for the stationary regime one uses

brx F(x) D
1

T � �

TX
tD�C1

H(Yx (t)) � Nt;

where T is large and � stands for the warmup-phase
of the process, which is skipped for the estimation. Of
course, the latter estimate is biased, it bias decreases
with increasing T and � .

Distributional Derivatives

Suppose that the Markov transition has transition den-
sity px(y1 | y0), i. e.

P(Yx (t C 1) 2 AjYx (t) D y0) D
Z

A

px (y1jy0) dy1

and starts in state y0. The expectation of H(Yx(t) is

E[H(Yx(t))]

D

Z
� � �

Z
H(yt)

tY
iD1

px (yi jyi�1) dyt � � � dy1:

Introduce the score function

sx (y0; : : : ; yt) D
tX

iD1

rx px (yi jyi�1)
px (yi jyi�1)

:

By the product rule we get the formula

rxE[H(Yx (t))]

D

Z
� � �

Z
H(yt)sx (y0; : : : ; yt)

�

tY
iD1

px (yi jyi�1) � � �dyt � � � dy1:

An estimate for rx E[H(Yx(t))] is

H(Yx (t)) �Wx(t);

where Wx(t) = sx(Yx(0), . . . , Yx(t)) is called the score
function martingale. As before, the estimate for the
problem in transient regime is

brx F(x) D
TX

tD1

H(Yx (t)) �Wx (t);

whereas the estimate for the stationary regime is

brx F(x) D
1

T � �

TX
tD�

H(Yx (t)) �Wx (t):

It is asymptotically unbiased for T, � !1 (see [2]).
There is also the a way of attacking directly the

derivative of the stationary distribution: Let Px repre-
sent the transition matrix (transition operator) of the
Markov process. The stationary distribution x satisfies

x D x � Px

and therefore

rxx D [rxx ] � Px C x � [rx Px ];

i. e.

rxx D x [rxPx ]Sx ; (4)

with

Sx D
1X
kD0

(Pk
x � 1 � x ):

Here 1�x is the transition with rows being identical to
x. The operator Sx solves the Poisson equation

Sx (I � Px ) D I;

where I is the identity operator. There is a method, to
use equation(4)) as the basis for estimating rx E[Yx(�)],
see [1, Chapt. 3].

Regenerative Processes

Recall that a set A is a regenerative set of the ergodic
Markov transition P if
i) u! P(u, B) is independent of u 2 A, for all B; and
ii) (A) > 0, where  is the unique stationary proba-

bility measure pertaining to P.
Suppose thatA is a regenerative set for all transitions Px.
The sequence of regenerative stopping times of Yx(t)is

T(A)
1 D min ft : Yx (t) 2 Ag ;

T(A)
iC1 D min

n
t > T(A)

i : Yx (t) 2 A
o
:
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These stopping times cut the process into independent
pieces. For a process Yx started in A, the following fun-
damental equation relates the finite time behavior to the
stationary, i. e. long run behavior:

E[H(Yx (1))] D
E
hPT (A)

tD1 H(Yx (t))
i

E(T(A))
: (5)

The score method for derivative estimation gives

rxE

2
4

T (A)X
tD1

H(Yx(t))

3
5 D E

2
4

T (A)X
tD1

H(Yx (t))Wx(t)

3
5

and

rxE[T(A)] D E

2
4

T (A)X
tD1

Wx (t)

3
5

and — by the quotient rule —

rxE[H(Yx(1))]

D
E(T(A)) � rxE

hPT (A)

tD1 H(Yx (t))
i

[E(T(A))]2

�
E
hPT (A)

tD1 H(Yx (t))
i
� rxE(T(A))

[E(T(A))]2

(see [2]). For the estimation of rx E[H(Yx(1))], all ex-
pectations of the right-hand side have to be replaced by
estimates.

See also

� Derivatives of Probability and Integral Functions:
General Theory and Examples

� Derivatives of Probability Measures
� Discrete Stochastic Optimization
� Optimization in Operation of Electric and Energy

Power Systems
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Probability functions are commonly used for the anal-
ysis of models with uncertainties or variabilities in pa-
rameters. For instance, in risk and reliability analysis,
performance functions, characterizing the operation of
systems, are formulated as probabilities of successful
or unsuccessful accomplishment of their missions (core
damage probability of a nuclear power plant, probabil-
ity of successful landing of an aircraft, probability of
profitable transactions in a stock market, or percentiles
of the risks in public risk assessments). Sensitivity anal-
ysis of such performance functions involves evaluating
of their derivatives with respect to the parameters. Also,
the derivatives of the probability function can be used
to solve stochastic optimization problems [1].

A probability function can be formally presented as
an expectation of a discontinuous indicator function of
a set, or as an integral over a domain— depending upon
parameters. Nevertheless, differentiability conditions of
the probability function do not follow from similar con-
ditions of the expectations of continuous (smooth or
convex) functions.
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The derivative of the probability function has many
equivalent representations. It can be represented as an
integral over the surface, an integral over the volume, or
a sum of integrals over the volume and over the surface.
Also, it can be calculated using weak derivatives of the
probability measures or conditional expectations.

The first general result on the differentiability of
the probability function was obtained by E. Raik [8].
He represented the gradient of the probability function
with one constraint in the form of the surface integral.
S. Uryasev [10] extended Raik’s formula for probability
functions with many constraints. A.I. Kibzun and G.L.
Tretyakov [3] extended it to the piecewise smooth con-
straint and probability density function. Special cases of
probability function with normal and gamma distribu-
tions were investigated by A. Prékopa [6]. G.Ch. Pflug
[5] represented the gradient of probability function in
the form of an expectation using weak probability mea-
sures.

Uryasev [9] expressed the gradient of the probabil-
ity function as a volume integral. Also, using a change
of variables, K. Marti [4] derived the probability func-
tion gradient in the form of the volume integral.

A general analytical formula for the derivative of
probability functions with many constraints was ob-
tained by Uryasev [10]; it calculates the gradient as an
integral over the surface, an integral over the volume,
or the sum of integrals over the surface and the volume.
Special cases of this formula correspond to the Raik for-
mula [8], the Uryasev formula[9], and the change-of-
variables approach [4].

The gradient of the quantile function was obtained
in [2].

Notations and Definitions

Let an integral over the volume

F(x) D
Z
f (x;y)�0

p(x; y) dy (1)

be defined on the Euclidean space Rn, where f : Rn × Rm

! Rk and p: Rn × Rm ! R are some functions. The
inequality f (x, y) � 0 in the integral is a system of in-
equalities

fi(x; y) � 0; i D 1; : : : ; k:

Both the kernel function p(x, y) and the function f (x, y)
defining the integration set depend upon the parame-

ter x. For example, let

F(x) D Pf f (x; �(!)) � 0g (2)

be a probability function, where � (!) is a random vec-
tor in Rm. The random vector � (!) is assumed to have
a probability density p(x, y) that depends on a parame-
ter x 2 Rn. The probability function can be represented
as an expectation of an indicator function, which equals
one on the integration set, and equals zero outside of it.
For example, let

F(x) D E
�
If f (x;�)�0gg(x; �)

�

D

Z
f (x;y)�0

g(x; y)�(x; y) dy

D

Z
f (x;y)�0

p(x; y) dy; (3)

where I{�} is an indicator function, andthe random vec-
tor � in Rm has a probability density �(x, y) that de-
pends on a parameter x 2 R.

Integral Over the Surface Formula

The following formula calculates the gradient of an in-
tegral (1) over the set given by nonlinear inequalities as
sum of integral over the volume plus integral over the
surface of the integration set. We call this the integral
over the surface formula because if the density p(x, y)
does not depend upon x the gradient of the integral (1)
equals an integral over the surface. This formula for the
case of one inequality was obtained by Raik [8] and gen-
eralized for the case with many inequalities by Uryasev
[10].

Let us denote by �(x) the integration set

�(x) D fy 2 Rm : f (x; y) � 0g
:D fy 2 Rm : fl (x; y) � 0; 1 � l � kg

and by @�(x) the surface of this set�(x). Also, let us de-
note by @i�(x) a part of the surface which corresponds
to the function f i(x, y), i. e.,

@i�(x) D �(x) \ fy 2 Rm : fi(x; y) D 0g :

If the constraint functions are differentiable and the
following integral exists, then gradient of integral (1)
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equals

rx F(x) D
Z

(x)
rx p(x; y) dy

�

kX
iD1

Z
@i
(x)

p(x; y)

ry fi(x; y)


rx fi(x; y) dS: (4)

A potential disadvantage of this formula is that in mul-
tidimensional case it is difficult to calculate the integral
over the nonlinear surface. Most well known numeri-
cal techniques, such asMonte-Carlo algorithms, are ap-
plicable to volume integrals. Nevertheless, this formula
can be quite useful in various special cases, such as the
linear case.

Example 1 (Linear case: Integral over the surface for-
mula [10].)

Let A(!), be a random l × n matrix with the joint den-
sity p(A). Suppose that x 2 Rn and xj 6D 0, j = 1, . . . , n.
Let us define

F(x) D PfA(!)x � b; A(!) � 0g;

b D (b1; : : : ; bl ) 2 Rl ; x 2 Rn ; (5)

i. e. F(x) is the probability that the linear constraints
A(!)x� b, A(!)� 0 are satisfied. The constraint, A(!)
� 0, means that all elements aij(!) of the matrix A(!)
are nonnegative. Let us denote by Ai and Ai the ith row
and column of the matrix A

A D

0
B@
A1
:::

Al

1
CA D �A1; : : : ;An� ;

then

f (x;A) D

0
B@
f1(x;A)
:::

fk(x;A)

1
CA D

0
BBBBBBBBB@

A1x � b1
:::

Al x � bl
�A1

:::

�An

1
CCCCCCCCCA

;

k D l C l � n:

The function F(x) equals

F(x) D
Z
f (x;A)�0

p(A) dA: (6)

We use formula (4) to calculate the gradient rxF(x) as
an integral over the surface. The function p(A) does not
depend upon x and rxp(A) = 0. Formula (4) implies
that rxF(x) equals

�

kX
iD1

Z
@i
(x)

p(A)
krA fi(x;A)k

rx fi(x;A) dS:

Since rxf i(x, A) = 0 for i = l + 1, . . . , k, then rxF(x)
equals

�

lX
iD1

Z
@i
(x)

p(A)
krA fi(x;A)k

rx fi(x;A) dS

D �

lX
iD1

Z
@i
(x)

p(A)
kxk

A>i dS

D �kxk�1
lX

iD1

Z
Ax�b;
A�0

Ai xDbi

p(A)A>i dS:

Integral Over the Volume Formula

This section presents gradient of the function (1) in the
form of volume integral. Let us introduce the following
shorthand notations

f1l (x; y) D

0
B@
f1(x; y)
:::

fl (x; y)

1
CA ; f (x; y) D f1k(x; y);

ry f (x; y) D

0
BB@

@ f1(x;y)
@y1

� � �
@ fk (x;y)
@y1

:::
@ f1(x;y)
@ym

� � �
@ fk (x;y)
@ym

1
CCA :

Divergence for the n × m matrix H consisting of the
elements hji is denoted by

divy H D

0
BB@

Pm
iD1

@h1i
@yi

:::Pm
iD1

@hni
@yi

1
CCA :

Following [10], the derivative of the function (1) is rep-
resented as an integral over the volume

rx F(x) D
Z

(x)
rx p(x; y) dy

C

Z

(x)

divy
�
p(x; y)H(x; y)

�
dy; (7)
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where a matrix function H: Rn × Rm ! Rn×m satisfies
the equation

H(x; y)ry f (x; y)Crx f (x; y) D 0: (8)

The last system of equations may have many so-
lutions, therefore formula (7) provides a number of
equivalent expressions for the gradient. The following
section gives analytical solutions of this system of equa-
tions. In some cases, this system does not have any solu-
tion, and formula (7) is not valid. The following section
deals with such cases and provides a general formula
where system of equations can be solved only for some
of the functions defining the integration set.

Example 2 (Linear case: Integral over the volume for-
mula [10].)

With formula (7), the gradient of the probability func-
tion (5) with linear constrains considered in Example 1
can be represented as the integral over the volume. It
can be shown that equation (8) does not have a solu-
tion in this case. Nevertheless, we can slightly modify
the constraints, such that integration set is not changed
and equation (8) has a solution. In the vector function
f (x, A) we multiply column Ai on xi if xi is positive or
multiply it on �xi if xi is negative. Therefore, we have
the following constraint function

f (x;A) D

0
BBBBBBBBB@

A1x � b1
:::

Al x � bl
�(C)x1A1

:::

�(C)xnAn

1
CCCCCCCCCA

; (9)

where �(+) means that we take an appropriate sign. It
can be directly checked that, the matrix H�l (x, A)

H�(x;A) D
�
h1(x;A1); : : : ; hl (x;Al )

�
;

hi(x;Ai) D �

0
B@
ai1x�11 0

: : :

0 ainx�1n

1
CA

is a solution of system (8). As it will be shown in the
next section, this analytical solution follows from the
fact that change of the variables Yi = xiAi, i = 1, . . . ,

n, eliminates variables xi, i = 1, . . . , n, from the con-
straints (9).

Since rxp(A) = 0 and divA(p(A)H�(x, A)) equals

�

0
BBB@

x�11

�
l p(A)C

Pl
iD1 ai1

@
@ai1

p(A)
�

:::

x�1n

�
l p(A)C

Pl
iD1 ain

@
@ain

p(A)
�

1
CCCA ;

formula (7) implies that @F(x)/ @xj} equals

�x�1j

Z
Ax�b
A�0

 
l p(A)C

lX
iD1

ai j
@

@ai j
p(A)

!
dA:

General Formula

Further, we give a general formula [9,10] for the dif-
ferentiation of integral (1). A gradient of the integral is
represented as a sum of integrals taken over a volume
and over a surface. This formula is useful when system
of equations (8) does not have a solution. We split the
set of constraints K := = {1, . . . , k} into two subsets K1

and K2.Without loss of generality we suppose that

K1 D f1; : : : ; lg; K2 D fl C 1; : : : ; kg:

The derivative of integral (1) can be represented as the
sum of the volume and surface integrals

rx F(x) D
Z

(x)
rx p(x; y) dy

C

Z

(x)

divy
�
p(x; y)Hl (x; y)

�
dy

�

kX
iDlC1

Z
@i
(x)

p(x; y)

ry fi(x; y)




�
�
rx fi(Cx; y)C Hl (x; y)ry fi(x; y)

�
dS; (10)

where the matrix Hl: Rn × Rm ! Rn×m satisfies the
equation

Hl (x; y)ry f1l (x; y)Crx f1l (x; y) D 0: (11)

The last equation can have a lot of solutions and we can
choose an arbitrary one, differentiable with respect to
the variable y.

The general formula contains as a special cases the
integral over the surface formula (4) and integral over
the volume formula (7). When the set K1 is empty, the
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matrix Hl is absent and the general formula is reduced
to the integral over the surface. Also, when the set K2 is
empty we have integral over the volume formula (7).
Except these extreme cases, the general formula pro-
vides number of intermediate expressions for the gradi-
ent in the form of the sum of an integral over the surface
and an integral over the volume. Thus, we have a num-
ber of equivalent representations of the gradient corre-
sponding to the various sets K1 and K2 and solutions of
equation (11).

Equation (11) (and equation (8) which is a partial
case of equation (11)) can be solved explicitly. Usually,
this equation has many solutions. The matrix

� rx f1l (x; y) �
�
r>y f1l (x; y)ry f1l (x; y)

��1

r>y f1l (x; y) (12)

is a solution of equation (11). Also, in many cases there
is another way to solve equation (11) using change of
variables. Suppose that there is a change of variables

y D �(x; z)

which eliminates vector x from the function f (x, y)
defining integration set, i. e., function f (x, �(x, z)) does
not depend upon the variable x. Denote by ��1(x, y) the
inverse function, defined by the equation

��1 (x; �(x; z)) D z:

Let us show that the following matrix

H(x; y) D rx�(x; z)jzD��1(x;y) (13)

is a solution of (11). Indeed, the gradient of the function
�(x, y(x, z)) with respect to x equals zero, therefore

0 D rx f1l (x; �(x; z))

D rx�(x; z)ry f1l (x; y)jyD�(x;z)
Crx f1l (x; y)jyD�(x;z);

and functionrx �(x, z)|z = ��1(x, y) is a solution of (11).
Formula (7) with matrix (13) gives the derivative

formulas which can be obtained with change of vari-
ables in the integration set [4].

Example 3 While investigating the operational strate-
gies for inspected components (see [7]) the following

integral was considered

F(x) D
Z

b(y)�x;
yi�;

iD1;:::;m

p(y) dy; (14)

where x 2 R1, y 2 Rm, p: Rm! R1, � > 0, b(y) =
Pm

iD1
y˛i . In this case

f (x; y) D

0
BBB@

b(y)� x
� � y1
:::

� � ym

1
CCCA ;

and

F(x) D
Z
f (x;y)�0

p(y) dy D
Z

(x)

p(y) dy:

Let us consider that l = 1, i. e. K1 = {1} and K2 = {2, . . . ,
m + 1}. The gradient rxF(x) equals

Z

(x)

�
rx p(y)C divy

�
p(y)H1(x; y)

��
dy

�

mC1X
iD2

Z
@i
(x)

p(y)

ry fi(x; y)




�
�
rx fi(x; y)C H1(x; y)ry fi(x; y)

�
dS; (15)

Where the matrix H1(x, y) satisfies (11). In view of

ry f1(x; y) D ˛

0
B@
y˛�11
:::

y˛�1m

1
CA ; rx f1(x; y) D �1:

a solution H�1 (x, y) of (11) equals

H�1 (x; y) D h(y) :D
�
h1(y1); : : : ; hm(ym)

�

D
1
˛m

�
y1�˛1 ; : : : ; y1�˛m

�
: (16)

Let us denote

(�i jy) D (y1; : : : ; yi�1; �; yiC1; : : : ; ym);

y�i D (y1; : : : ; yi�1; yiC1; : : : ; ym);

b(�i jy) D �˛ C
mX
jD1
j¤i

y˛j :

We denote by y�i � � the set of inequalities

y j � �; j D 1; : : : ; i � 1; i C 1; : : : ;m:
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The sets @i�(x), i = 2, . . . ,m + 1, have a simple structure

@i�(x) D �(x)
\
fy 2 Rm : yi D �g

D
˚
y�i 2 Rm�1 : b(�i jy) � x; y�i � 0

�
:

For i = 2, . . . ,m + 1, we have
�
ry fi(y)

�
j D 0; j D 1; : : : ;m; j ¤ i � 1; (17)

�
ry fi(y)

�
i�1 D �1;



ry fi(y)


 D 1: (18)

The function p(y) and the functions f i(y), i = 2, . . . ,m +
1, do not depend on x, consequently

rx p(y) D 0; (19)

rx fi(y) D 0; i D 2; : : : ;mC 1: (20)

Equations (15)–(20) imply

rx F(x) D
Z

(x)

divy
�
p(y)h(y)

�
dy

�

mC1X
iD2

Z
@i
(x)

p(y)

ry fi(y)


 h(y)ry fi(y) dS

D

Z

(x)

divy
�
p(y)h(y)

�
dy

C

mC1X
iD2

hi�1(�)
Z
@i
(x)

p(y) dS

D

Z
b(y)�x;
yi�;

iD1;:::;m

divy
�
p(y)h(y)

�
dy

C

mX
iD1

�1�˛

˛m

Z
b(i jy)�x;
y�i�

p(�i jy) dy�i :

Since

divy
�
p(y)h(y)

�

D h(y)ry p(y)C p(y) divy h(y)

D
1
˛m

mX
iD1

@p(y)
@yi

y1�˛i C p(y)
1 � ˛
˛m

mX
iD1

y�˛i ;

we, finally, obtain that the gradient rx F(x) equals

Z
b(y)�x;
yi�;

iD1;:::;m

mX
iD1

y�˛i
˛m

�
yi
@p(y)
@yi

C (1 � ˛)p(y)
�
dy

C
�1�˛

˛m

mX
iD1

Z
b(i jy)�x;
y�i�

p(�i jy) dy�i :

The formula for rx F(x) is valid for an arbitrary suffi-
ciently smooth function p(y).

See also

� Derivatives of Markov Processes and Their
Simulation

� Derivatives of Probability Measures
� Discrete Stochastic Optimization
� Optimization in Operation of Electric and Energy

Power Systems
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For stochastic optimization problems of the form
8<
:
min F(x) D

Z
H(x; v) d�x (v)

s.t. x 2 S � Rd
(1)

where H(x, v) is a cost function, �x a family of prob-
ability measures indexed by x and F(x) the objective
value function (OVF), the necessary condition rxF(x)
= 0 must be expressed in terms of the derivatives of
H(x, �) and �x w.r.t. x. In particular, concepts of dif-
ferentiability of probability measures are needed.

Direct Differentiability

Suppose that the family (�x) is dominated, i. e. there is
a Borel measure � such that the densities

gx (v) D
d�x

d�
(v)

exist for all x. Then the differentiability of the measures
may be defined by the differentiability of the densities.

Definition 1 The family of densities (gx(v)) is called
strongly L1(�)-differentiable if there is a vector of inte-
grable functions rxgx = (g0x;1, . . . , g0x;d )

| such that
Z ˇ̌

gxCh(v) � gx (v) � h> � rx gx (v)
ˇ̌
d�(v)

b D o(khk) as khk # 0: (2)

The family of densities (gx(v)) is called weakly L1(�)-
differentiable if there is a vector of L1(�) functions rxgx
= (g0x;1, . . . , g0x;d )

| such that for every bounded measur-
able function HZ

[gxCh(v) � gx (v) � h> � rx gx (v)]H(v) d�(v)

D o(khk) as khk # 0 : (3)

Weak differentiability implies strong differentiability
but not vice versa.

There is also a notion of differentiability for families
(�x), which do not possess densities (see [3]).

If the densities (gx) are differentiable and H(x,
v) is boundedly differentiable in x and bounded and
continuous in v, then the gradient of F(x) =

R
H(x,

v)gx(v)d�(v) isZ
rxH(x; v)gx (v) d�(v)

C

Z
H(x; v)rx gx (v) d�(v):

Inverse Differentiability

The family (�x) is called process differentiable if there
exists a family of random variables Vx(!) — the process
representation—defined on some probability space (˝ ,
A, P), such that:
a) Vx(�) has distribution �x for all x; and
b) x 7�! Vx(!) is differentiable a.s.

As an example, let �x be exponential distributions
with densities gx(v) = x exp(�x � u). Then Vx(!) = (1/x)
U for U �Uniform [0, 1] is a process representation in
the sense of a) and differentiable in the sense of b) with
derivative rxVx(!) = �(1/x2)U.

Process differentiability does not imply and is not
implied by weak differentiability. If Gx(u) =

R u
�1

gx(v)dv is the distribution function, then process differ-
entiability is equivalent to the differentiability of x 7�!
G�1x (u), whereas the weak differentiability is connected
to the differentiablity of x 7�! Gx(u).

If Vx(�) is a process representation of (�x), then the
objective function

F(x) D
Z

H(x; v) d�x (v) D E[H(x;Vx)]

has derivative

rx F(x) D E[Hx(x;Vx )C Hv (x;Vx) � rxVx ]:

where Hx(x, v) = rxH(x, v) and Hv(x, v) = rvH(x, v).
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Simulation of Derivatives

If the objective function F in (1) is easily calculated,
then the stochastic optimization problem reduces to
a standard nonlinear deterministic optimization prob-
lem. This is however the exception. In the majority of
applications, the objective function value has to be ap-
proximated either by a numeric integration technique
or a Monte-Carlo (MC) estimate. In the same manner,
the gradientrxF(x) may be approximated either by nu-
merical integration or by Monte-Carlo simulation. We
discuss here the construction of MC estimates for the
gradient rxF(x). For simplicity, we treat only the uni-
variate case x 2 R1.

We begin with recalling the Monte-Carlo (MC)
method for estimating F(x). If (V(i)

x ) is a sequence of
independent identically distributed random variables
with distribution function Gx, then the MC estimate

bFn(x) D
1
n

nX
iD1

H(x;V (i)
x )

is an unbiased estimate of F(x).

Process Derivatives

If the family (�x) has differentiable process representa-
tion (Vx), then

1rx Fn(x) D
1
n

nX
iD1

h
Hx (x;V (i)

x )

CHv (x;V (i)
x ) � rxV (i)

x

i
(4)

is a MC estimate of rxF(x). The method of using the
process derivative (4) is also called perturbation analysis
([1,2]).

Distributional Derivatives

If the densities gx are differentiable, there are two possi-
bilities to construct estimates. First, one may define the
score function sx(v) = [rxgx(v)]

ı
gx(v) and construct the

score function estimate [4]

1rx Fn(x) D
1
n

nX
iD1

h
Hx (x;V (i)

x )

CH(x;V (i)
x )sx (V (i)

x )
i
;

which is unbiased.

Alternatively, onemay write the functionrxgx(v) in
the form

rx gx (v) D cx [ ġx (v) � g̈x (v)]; (5)

where ġx and g̈x are probability densities w.r.t. �, and
cx is a nonnegative constant. One possibility is to set ġx
resp. g̈x as the appropriately scaled positive, resp. neg-
ative, part of rxgx, but other representations are possi-
ble as well. Let now V̇ (i)

x , resp. V̈ (i)
x , be random variables

with distributions ġx d�, resp. g̈x d�. The difference esti-
mate is

1rx Fn(x) D
1
n
�

nX
iD1

n
Hx(x;V (i)

x )

Ccx [H(x; V̇ (i)
x ) � H(x; V̈ (i)

x ]
o
;

which is unbiased (see [3]).

Example 2 Assume again that (�x) are exponential dis-
tributions with expectation x. The probability �x has
density

gx (y) D x � exp(�xy):

Let Vx be distributed according to �x. For simplicity,
assume that the cost function H does not depend ex-
plicitly on x. We need estimates for rxE(H(Vx)). The
three methods are:
1) Score derivative: The score function is

rx gx (v)
gx(v)

D
1
x
� v

and the score function estimate is

brx F(1) D H
�
Vx)(

1
x
� Vx

�
:

2) Difference derivative: There are several representa-
tions in the sense of (5). One could use the decom-
position ofrxgx(�) into its positive and negative part
(Jordan–Hahn decomposition) and get the estimate

brx F(2a) D
1
x
(H(V̇x) � H(V̈x ));

where V̇x has density

xe(1� xv)e�xv � 1v� 1
x
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and V̈x has density

xe(xv � 1)e�xv � 1v> 1
x

and both are independent.
Another possibility is to set

V̇x D �
1
x
logU1;

V̈x D �
1
x
(logU1 C logU2);

where U1, U2 are independent Uniform [0, 1] vari-
ates. The final difference estimate is

brx F(2b) D
1
x
(H(V̇x) � H(V̈x)):

3) Process derivative: A process representation of (�x)
is

Vx D �
1
x
log(1 � U); U � Uniform[0; 1]:

A process derivative ofH(Vx) is

brx F(3)
x :D Hx(Vx )(�

1
x
Vx ):

Notice that in methods 1) and 2) the function H
need not to be differentiable and may be an indica-
tor function – as is required in some applications. In
method 3), the function H must be differentiable.

Whenever a MC estimate 2rx F(x) has been defined, it
can be used in a stochastic quasigradient method (SQG;
cf. also � Stochastic quasigradient methods) for opti-
mization

XsC1 D prS[Xs � �s1rx Fn(Xs)]

where prS is the projection on the set S and (�s) are
the stepsizes. The important feature of such algorithms
is the fact that they work with stochastic estimates. In
particular, the sample size n per step can be set to 1
and still convergence holds under regularity assump-
tions. To put it differently, the SQG allows to approach
quickly a neighborhood of the solution even with much
noise corrupted estimates.

See also

� Derivatives of Markov Processes and Their
Simulation

� Derivatives of Probability and Integral Functions:
General Theory and Examples

� Discrete Stochastic Optimization
� Optimization in Operation of Electric and Energy

Power Systems
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Keywords

Optimization; Computational fluid dynamics

Synonyms

Design Optimization in CFD

Focus

The article focuses on design optimization using com-
putational fluid dynamics (CFD). Design implies the
creation of an engineering prototype (e. g., a pump)
or engineering process (e. g., particle separator). Opti-
mization indicates the selection of a ‘best’ design. Com-
putational fluid dynamics (CFD) represents a family of
models of fluid motion implemented on a digital com-
puter. In recent years, efforts have focused on merging
elements of these three disciplines to improve design
effectiveness and efficiency.

Framework

Consider the design of a prototype or process with n
design variables {xi: i = 1, . . . , n} denoted by x. It is
assumed that n is finite, although infinite-dimensional
design spaces also exist (e. g., the shape of a civilian
transport aircraft). The domain of x constitutes the de-
sign space. A scalar objective function f (x) is assumed
to be defined for some (or possibly all) points in the
design space. This is the simplest design optimization
problem. Oftentimes, however, the optimization can-
not be easily cast into this form, and other methods
(e. g., Pareto optimality) are employed. The purpose of
the design optimization is to find the design point x�

which minimizes f . Note that there is no loss of gen-
erality in assuming the objective is to minimize f , since
the maximization of an objective functionef (x) is equiv-
alent to the minimization of f D �ef .

The design optimization is typically an iterative pro-
cess involving two principal elements. The first element
is the simulation which evaluates the objective function
by (in the case of computational fluid dynamics) a fluid
flow code (flow solver). The second element is the search
which determines the direction for traversing the de-
sign space. The search engine is the optimizer of which
they are several different types as described later. The
design optimization process is an iterative procedure
involving repetitive simulation and search steps until

Search

Gradient Optimizer

Stochastic Optimizer

�

�
Simulate

Generate grid
Solve flowfield

Compute objective function

Design Optimization in Computational Fluid Dynamics, Fig-
ure 1
Elements of design optimization

a predefined convergence criteria is met. This is illus-
trated in Fig. 1.

Levels of Simulation

There are five levels of complexity for CFD simulation
Fig. 2. Empirical methods represent correlations of ex-
perimental data and possibly simple one-dimensional
analytical models. An example is the NIDA code [15]
employed for analysis of two-dimensional and axi-
symmetric inlets. The code is restricted to a limited
family of geometries and flow conditions (e. g., no
sideslip). Codes based on the linear potential equations
(e. g., PANAIR [6]; see also [17]) and nonlinear poten-
tial equations (e. g., [8]; see also [7]) incorporate in-
creased geometric flexibility while implementing a sim-
plified model of the flow physics (i. e., it is assumed
that the shock waves are weak and there is no signifi-
cant flow separation). Codes employing the Euler equa-
tions (e. g., [22]) allow for strong shocks and vortic-
ity although neglect viscous effects. Reynolds-averaged
Navier–Stokes codes (RANS codes) (e. g., GASP [31])
employ a model for the effects of turbulence. The range
of execution time between the lowest and highest levels
is roughly three orders of magnitude, e. g., on a conven-
tional workstation the NIDA code requires only a few
seconds execution time while a 2-dimensional RANS
simulation would typically require a few hours.
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Design Optimization in Computational Fluid Dynamics, Fig-
ure 2
Levels of CFD simulation

The Stages of Design

There are typically three stages of design: conceptual,
preliminary and detailed. As the names suggest, the de-
sign specification becomes more precise at successive
design stages. Thus, for example, a conceptual design
of a civilian transport aircraft may consider a (discrete)
design space with the possibility of two, three or four
engines, while the preliminary design space assumes
a fixed number of engines and considers the details
of the engine (e. g., nacelle shapes). It is important to
note that the CFD algorithms employed in each of these
three stages are likely to be different. Typically, the con-
ceptual design stage employs empirical formulae, while
the preliminary design stage may also include simpli-
fied CFD codes (e. g., linearized and nonlinear poten-
tial methods, and Euler codes), and the detailed design
stage may utilize full Reynolds-averaged Navier–Stokes
methods. Additionally, experiment is oftentimes essen-
tial to verify key features of the design.

Emergence of Automated Design Optimization
Using CFD

Although the first numerical simulation of viscous fluid
flow was published in 1933 by A. Thom [51], CFD as
a discipline emerged with the development of digital
mainframe computers in the 1960s. With the princi-
pal exception of the work on inverse design methods
for airfoils (see, for example, the review [30] and [48]),
CFD has mainly been employed in design analysis as
a cost-effective replacement for some types of experi-
ments. However, CFD can now be employed as part of

an automated design optimization process. This oppor-
tunity has arisen for five reasons. First, the continued
rapid improvements in computer performance (e. g.,
doubling of microprocessor performance every 18 to
24 months [3]) enable routine numerical simulations
of increasing sophistication and complexity. Second,
improve- ments in the accuracy, efficiency and robust-
ness of CFD algorithms (see, for example, [18]) like-
wise contribute to the capability for simulation of more
complex flows. Third, the development of more accu-
rate turbulence models provides increased confidence
in the quality of the flow simulations [16]. Fourth, the
development of efficient and robust optimizers enable
automated search of design spaces [33]. Finally, the de-
velopment of sophisticated shell languages (e. g., Perl
[43]) provide effective control of pathological events
which may occur in an automated design cycle using
CFD (e. g., square root of a negative number, failure to
converge within a predetermined number of iterations,
etc.).

ProblemDefinition

The general scalar nonlinear optimization problem
(also known as the nonlinear programming problem) is
[11,33,52]

minimize f (x); (1)

where f (x) is the scalar objective function and x is the
vector of design variables. Typically there are limits on
the allowable values of x:

a � x � b; (2)

and m additional linear and/or nonlinear constraints
(
ci(x) D 0; i D 1; : : : ;m0;
ci(x) � 0; i D m0 C 1; : : : ;m:

(3)

If f and ci are linear functions, then the optimization
problem is denoted the linear programming problem,
while if f is quadratic and the ci are linear, then the op-
timization problem is denoted the quadratic program-
ming problem.

An example of a nonlinear optimization problem
using CFD is the design of the shape of an inlet for
a supersonic missile. The geometry model of an axisym-
metric inlet [53] is shown in Fig. 3.
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Design Optimization in Computational Fluid Dynamics, Figure 3
Geometry of high speed inlet

The eight design variables are listed below.

Item Definition

1 initial cone angle
2 final cone angle
xd x-coordinate of throat
rd r-coordinate of throat
xe x-coordinate of end of ‘constant’ cross section
3 internal cowl lip angle
Hej height at end of ‘constant’ cross section
Hfk height at beginning of ‘constant’ cross section

There are no general methods for guaranteeing that
the global minimum of an arbitrary objective function
f (x) can be found in a finite number of steps [4,11].
Typically, methods focus on determining a local min-
imum with additional (often heuristic) techniques to
avoid convergence to a local minimum which is not the
global minimum.

A point x� is a (strong) local minimum [11] if there
is a region surrounding x� wherein the objective func-
tion is defined and f (x) > f(x�) for x 6D x�. Provided f (x)
is twice continuously differentiable (this is not always
true; see, for example, [53]), necessary and sufficient
conditions for the existence of a solution to (1) subject
to (3) may be obtained [11]. In the one-dimensional
case with no constraints the sufficient conditions for
a minimum at x� are

g D 0 and H > 0 at x D x�;

where g = df /dx andH = d2f / dx2. For the multidimen-
sional case with no constraints

jgi j D 0 and H is positive definite at x D x�; (4)

where gi = @f / @xi, jgi j is the norm of the vector gi, and
H = Hij is the Hessian matrix

H D

0
BB@

@2 f
@x21

� � �
@2 f

@x1@xn
:::

:::
@2 f

@x1@xn
� � �

@2 f
@xn@xn

1
CCA :

The matrixH is positive definite if all of the eigenvalues
of H are positive.

Algorithms for Optimization

The efficacy of an optimization algorithm depends
strongly on the nature of the design space. In engineer-
ing problems, the design space can manifest patholog-
ical characteristics. The objective function f may pos
sess multiple local optima [36] arising from physical
and/or numerical reasons. Examples of the latter in-
clude noise introduced in the objective function by grid
refinement between successive flow simulations, and
incomplete convergence of the flow simulator. Also, the
objective function f and/or its gradient gi may exhibit
near discontinuities for physical reasons. For example,
a small change in the the design state x of a mixed com-
pression supersonic inlet operating at critical condi-
tions can cause the terminal shock to be expelled, lead-
ing to a rapid decrease in total pressure recovery [44].
Moreover, the objective function f may not be evaluable
at certain points. This may be due to constraints in the
flow simulator such as a limited range of applicability
for empirical data tables.

A brief description of some different classes of gen-
eral optimizers is presented. These methods are de-
scribed for the unconstrained optimization problem for
reasons of brevity. See [33] for an overview of opti-
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mization algorithms and software packages, and [11]
for a comprehensive discussion of the constrained op-
timization problem. Detailed mathematical exposition
of optimization problems is presented in [19].

Gradient Optimizers

If the objective function f can be approximated in the
vicinity of a pointex by a quadratic form, then

f 	ef Cegi (xi �exi )C
1
2
(xi �exi)eHi j(x j �ex j); (5)

whereef ,eg and eHi j imply evaluation atex and the Ein-
stein summation convention is implied. In the relatively
simple method of steepest descent [40], the quadratic
term in (5) is ignored, and a line minimization is per-
formed along the direction of � gi, i. e., a sequence of
values of the design variable x =(�), � = 1, . . . , are formed
according to

x(�) DexC ıx(�)

where

ıx(�)i D ��
(�)egi jegi j�1

and �(�), � = 1, . . . , are an increasing sequence of dis-
placements. The estimated decrease in the objective
function f is��(�) jegi j. The objective function f is eval-
uated at each iteration � and the search is terminated
when f begins to increase. At this location, the gradi-
ent gi is computed and the procedure is repeated. This
method, albeit straightforward to implement, is ineffi-
cient for design spaces which are characterized by long,
narrow ‘valleys’ [40].

The conjugate gradient methods [40] are more ef-
ficient than the method of steepest descent, since they
perform a sequence of line minimizations along specific
directions in the design space which are mutually or-
thogonal in the context of the objective function. Con-
sider a line minimization of f along a direction u = {ui: i
= 1, . . . , n}. At any point on the line, the gradient of f in
the direction of u is uieg i by definition. At the minimum
pointex in the line search,

uiegi D 0

by definition. Consider a second line minimization of f
along a direction v. From (5) and noting thatHij is sym-
metric, the change in gi along the direction v is eHi jv j .

Thus, the condition that the second line minimization
also remain a minimization along the first direction u is

uieHi jv j D 0

When this condition is satisfied, u and v are denoted
conjugate pairs. Conjugate gradient methods (CGM)
generate a sequence of directions u, v, . . .which are mu-
tually conjugate. If f is exactly quadratic, then CGM
yield an n-step sequence to the minimum.

Sequential quadratic programming methods employ
the Hessian H which may be computed directly when
economical or may be approximated from the sequence
of gradients gi generated during the line search (the
quasi-Hessian [33]). Given the gradient and Hessian,
the location x�i of the minimum value of f may be found
from (5) as

eHi j(x�j �ex j) D �eg i :
For the general case where f is not precisely quadratic,
a line minimization is typically performed in the direc-
tion (x�i �exi ), and the process is repeated.

Variational sensitivity employs the concept of direct
differentiation of the optimization function f and gov-
erning fluid dynamic equations (in continuous or dis-
crete form) to obtain the gradient gi, and optimization
using a gradient-based method. It is related to the the-
ory of the control of systems governed by partial dif-
ferential equations [29,39]. For example, the boundary
shape (e. g., airfoil surface) is viewed as the (theoreti-
cally infinite-dimensional) design space which controls
the objective function f . Several different formulations
have been developed depending on the stage at which
the numerical discretization is performed, and the use
of direct or adjoint (costate) equations. Detailed de-
scriptions are provided in [23] and [24]. Additional ref-
erences include [2,5,20,21,37,38,50].

The following summary follows the presentation in
[24] which employs the adjoint formulation. The ob-
jective function f is considered to be a function of the
flowfield variables w and the physical shape S. The dif-
ferential change in the objective function is therefore

ı f D
@ f
@w
ıw C

@ f
@S
ıS: (6)

The discretized governing equations of the fluidmotion
are represented by the vector of equations

R(w; S) D 0
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and therefore

ıR D
@R
@w
ıw C

@R
@S
ıS D 0; (7)

where ıR is a vector. Assume a vector Lagrange multi-
plier  and combining (6) and (7)

ı f D
�
@ f
@w
�  >

@R
@w

	
ıw C

�
@ f
@S
�  >

@R
@S

	
ıS;

where | indicates vector transpose. If is chosen to sat-
isfy the adjoint (costate) equation

 >
@R
@w
D
@ f
@w
; (8)

then

ı f D GıS;

where

G D
@ f
@S
�  >

@R
@S
:

This yields a straightforward method for optimization
using, for example, the method of steepest descent. The
increment in the shape is

ıS D ��G;

where � is a positive scalar. The variational sensitivity
approach is particularly advantageous when the dimen-
sion n of the design space (which defines S) is large,
since the gradient of S is obtained from a single flow-
field solution (7) plus a single adjoint solution (8) which
is comparable to the flowfield solution in cost. Con-
straints can be implemented by projecting the gradient
onto an allowable subspace in which the constraints are
satisfied.

Response surface methods employ an approximate
representation of the objective function using smooth
functions which are typically quadratic polynomials
[25]. For example, the objective function may be ap-
proximated by

f 	bf D ˛ C
X

1�i�n

ˇi xi C
X

1�i� j�n

�i j xi x j

where ˛, ˇi and � ij are coefficients which are deter-
mined by fitting bf to a discrete set of data using the
method of least squares. The minimum ofbf can then be
found by any of the gradient optimizers, with optional
recalibration of the coefficients of bf as needed. There
are many different implementations of the response
surface method (see, for example, [12,34] and [46]).

Stochastic Optimizers

Often the objective function is not well behaved in
a portion or all of the design space as discussed above.
In such situations, gradient methods can stop with-
out achieving the global optimum (e. g., at an infeasible
point, or a local minimum). Stochastic optimizers seek
to avoid these problems by incorporating a measure of
randomness in the optimization process, albeit often-
times at a cost of a significant increase in the number of
evaluations of the objective function f .

Simulated annealing [26,27,32] mimics the process
of crystalization of liquids or annealing of metals by
minimizing a function E which is analogous to the en-
ergy of a thermodynamic system. Consider a current
point (state) in the design spaceex and its associated ‘en-
ergy’eE. A candidate for the next state x� is selected by
randomly perturbing typically one of the components
ex j , 1 � j � n, of,ex and its energy E� is evaluated (typi-
cally, each component of x is perturbed in sequence). If
E� <eE thenex D x�, i. e., the next state is x�. If E� >eE
then the probability of selecting x� as the next design
state is

p D exp
�
�
E� �eE
kT

�
;

where k is the ‘Boltzman constant’ (by analogy to sta-
tistical mechanics) and T is the ‘temperature’ which is
successively reduced during the optimization according
to an assumed schedule [27]. (Of course, only the value
of the product kT is important.) The stochastic nature
can be implemented by simply calling a random num-
ber generator to obtain a value r between zero and one.
Then the state x� is selected if r < p. Therefore, during
the sequence of design states, the algorithm permits the
selection of a design state with E > eE, but the proba-
bility of selecting such a state decreases with increasing
E �eE. This feature tends to enable (but does not guar-
antee) the optimizer to ‘jump out’ of a local minimum.

Genetic algorithms (GAs) mimic the process of bio-
logical evolution by means of random changes (muta-
tions) in a set of designs denoted the population [14].
At each step, the ‘least fit’ member(s) of the population
(i. e., those designs with the highest value of f ) are typi-
cally removed, and newmembers are generated by a re-
combination of some (or all) of the remaining mem-
bers. There are numerous GA variants. In the approach
of [41], an initial population P of designs is generated
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Design Optimization in Computational Fluid Dynamics, Figure 4
P2 and P8 inlets

by randomly selecting points xi, i = 1, . . . , p, satisfying
(2). The two best designs (i. e., with the lowest values
of f ) are joined by a straight line in the design space.
A random point x0 is chosen on the line connecting the
two best designs. A mutation is performed by randomly
selecting a point xp+1 within a specified distance of x0.
This new point is added to the population. Amember of
the population is then removed according to a heuristic
criterion, e. g., among the k members with the highest
f , remove the member closest to xp+1, thus maintaining
a constant number of designs in the population. The
removal of the closest member tends to prevent clus-
tering of the population (i. e., maintains diversity). The
process is repeated until convergence.

Examples

Examples of the above algorithms for optimization us-
ing CFD are presented. All of the examples are single
discipline involving CFD only. It is emphasized that

multidisciplinary optimization (MDO) involving com-
putational fluid dynamics, structural dynamics, electro-
magnetics, materials and other disciplines is a very ac-
tive and growing field, and many of the optimization
algorithms described herein are appropriate to MDO
also. A recent review is presented in [49].

Sequential Quadratic Programming

V. Shukla et al. applied a sequential quadratic program-
ming algorithm CFSQP [28] to the optimal design of
two hypersonic inlets (denoted P2 and P8) at Mach 7.4.
The geometric model is shown in Fig. 4. The optimiza-
tion criteria was the minimization of the strength of
the shock wave which reflected from the centerbody
(lower) surface. This is the same criteria as originally
posed in the design of the P2 and P8 inlets [13]. The
NPARC flow solver [47] was employed for the P2 op-
timization, and the GASP flow solver [31] for the P8
optimization.
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Design Optimization in Computational Fluid Dynamics, Fig-
ure 5
Static pressure contours for optimal P8 inlet (the original
centerbody contour is shown by the dotted line)

The optimization criteria was met for both inlets. In
Fig. 5, the static pressure contours for the optimized P8
inlet are shown. The strength of the reflected shock is
negligible.

Variational Sensitivity

A. Jameson et al. [24] applied the methodology of varia-
tional sensitivity (control theory) to the optimization of
a three-dimensional wing section for a subsonic wide-
body commercial transport. The design objective was
to minimize the drag at a given lift coefficient CL =
0.55 at Mach 0.83 while maintaining a fixed planform.
A two stage procedure was implemented. The first stage
employed the Euler equations, while the second stage
used the full Reynolds-averaged Navier–Stokes equa-
tions. In the second stage, the pressure distribution ob-
tained from the Euler optimization is used as the target
pressure distribution.

The initial starboard wing shape is shown in Fig. 6
as a sequence of sections in the spanwise direction.
The initial pressure distribution on the upper surface,
shown as the pressure coefficient cp plotted with nega-
tive values upward, is presented in Fig. 7. A moderately
strong shock wave is evident, as indicated by the sharp
drop in �cp at roughly the mid-chord line. After sixty
design cycles of the first stage, the drag coefficient was
reduced by 15 counts from 0.0196 to 0.0181, and the
shock wave eliminated as indicated in the cp distribu-
tion in Fig. 8. A subsequent second stage optimization

Design Optimization in Computational Fluid Dynamics, Fig-
ure 6
Initial shape of wing

Design Optimization in Computational Fluid Dynamics, Fig-
ure 7
Initial surface pressure distribution

using the Reynolds–averaged Navier–Stokes equations
yielded only slight modifications.

Response Surface

R. Narducci et al. [35] applied a response surface
method to the optimal design of a two-dimensional
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Design Optimization in Computational Fluid Dynamics, Fig-
ure 8
Optimized surface pressure distribution

transonic airfoil. The design objective was to maximize
the lift coefficient CL at Mach 0.75 and zero degrees an-
gle of attack, while satisfying the constraints that the
drag coefficient CD � 0.01 and the thickness ratio 0.075
� t � 0.15 where t is the ratio of the maximum airfoil
thickness to the airfoil chord. The airfoil surface was
represented by a weighted sum of six different shapes
which included four known airfoils (a different set of
basis functions were employed in [9] for airfoil opti-
mization using a conjugate gradient method). The ob-
jective function f was represented by a quadratic poly-
nomial. An inviscid flow solver was employed.

A successful optimization was achieved in five re-
sponse surface cycles. The history of the convergence
of CL and CD is shown in Fig. 9. A total of twenty three
flow solutions were required for each response surface.

Simulated Annealing

S. Aly et al. [1] applied a modified simulated anneal-
ing algorithm to the optimal design of an axisymmetric
forebody in supersonic flow. The design objective was
to minimize the pressure drag on the forebody of a ve-
hicle at Mach 2.4 and zero angle of attack, subject to
constraints on the allowable range of the body radius as

Design Optimization in Computational Fluid Dynamics, Fig-
ure 9
Convergence history for transonic airfoil

a function of axial position. Two different variants of SA
were employed, and compared to a gradient optimizer
NPSOL [10] which is based on a sequential quadratic
programming algorithm. All optimizers employed the
same initial design which satisfied the constraints but
was otherwise a clearly nonoptimal shape. Optimiza-
tions were performed for two different initial shapes.
The flow solver was a hybrid finite volume implicit Eu-
ler marching method [45].

The first method, denoted simulated annealing with
iterative improvement (SAWI), employed SA for the
initial phase of the optimization, and then switched to
a random search iterative improvement method when
close to the optimum. This method achieved from
8% to 31% reduction in the pressure drag, compared
to optimal solution obtained NPSOL alone, while re-
quiring fewer number of flowfield simulations (which
constitute the principal computational cost). The sec-
ond method employed SA for the initial phase of
the optimization, followed by NPSOL. This approach
achieved from 31% to 39% reduction in the pressure
drag, compared to the optimal solution obtained by
NPSOL alone, while requiring comparable (or less)
cputime. The forebody shapes obtained using SA, SA
with NPSOL and NPSOL alone are shown in Fig. 10.
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Design Optimization in Computational Fluid Dynamics, Fig-
ure 10
Forebody shapes obtained using SA, SA with NPSOL and
NPSOL. Copyright 1996 AIAA - Reprinted with permission

Genetic Algorithms

G. Zha et al. applied a modified genetic algorithm
(GADO [42]) to the optimal design of an axisymmet-
ric supersonic mixed compression inlet at Mach 4 and
60 kft altitude cruise conditions (see above). The ge-
ometric model included eight degrees of freedom (see
above), and the optimization criteria was maximization
of the inlet total pressure recovery coefficient. The con-
straints included the requirement for the inlet to start
at Mach 2.6, plus additional constraints on the inlet ge-
ometry including a minimum cowl thickness and lead-
ing edge angle. The constraints were incorporated into
the GA using a penalty function. The flow solver was
the empirical inlet analysis code NIDA [15]. This code
is very efficient, requiring only a few seconds cputime
on a workstation, but is limited to 2-dimensional or
axisymmetric geometries. Moreover, the design space
generated by NIDA (i. e., the total pressure recovery co-
efficient as a function of the eight degrees of freedom) is
nonsmooth with numerous local minima and gaps at-
tributable to the use of empirical data Fig. 11.

The GA achieved a 32% improvement in total pres-
sure recovery coefficient compared to a trial-and-error
method [53]. A total of 50 hours on a DEC-2100 work-
station was employed. A series of designs generated
during the optimization were selected for evaluation
by a full Reynolds-averaged Navier–Stokes code (GASP
[31]). A close correlation was observed between the pre-
dictions of NIDA and GASP Fig. 12.

Design Optimization in Computational Fluid Dynamics, Fig-
ure 11
Total pressure recovery coefficient versus axial location of
throat

Design Optimization in Computational Fluid Dynamics, Fig-
ure 12
Total pressure recovery coefficient from NIDA and GASP for
several different inlet designs

Conclusion

Computational fluid dynamics has emerged as a vital
tool in design optimization. The five levels of CFD anal-
ysis are utilized in various optimization methodolo-
gies. Complex design optimizations have become com-
monplace. A significant effort is focused on multidis-
ciplinary optimization involving fluid dynamics, solid
mechanics, materials and other disciplines.
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Introduction/Background

Model predictive control (MPC) is very popular for its
capacity to deal with multivariable, constraints-model-
based control problems for a variety of complex lin-
ear or non-linear processes [13]. MPC is based on
the receding-time-horizon philosophy where an open-
loop, constrained optimal control problem is solved on-
line at each sampling time to obtain the optimal control
actions. The optimal control problem is solved repet-
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itively at each time when a new measurement or es-
timate of the state is available, thus establishing an
implicit feedback control method [14,15]. The main
reasons for the popularity of MPC are its optimal per-
formance, its capability to handle constraints and its in-
herent robustness due to feedback control properties.

Despite the widely acknowledged capabilities of
MPC, there are two main shortcomings that have been
a major concern for the industrial and academic com-
munities. The first shortcoming is that MPC imple-
mentation is limited to slowly varying processes due
to the demanding online computational effort for solv-
ing the online optimal control problem. The second
is that, despite its inherent robustness due to the im-
plicit feedback, MPC cannot guarantee the satisfac-
tion of constraints and optimal performance in the
presence of uncertainties and input disturbances, since
usually it relies on nominal models (uncertainty-free
models) for the prediction of future states and control
actions [14,20,22].

The first shortcoming of MPC can be overcome
by employing the so-called parametric MPC (pMPC)
or multiparametric MPC (mp-MPC) [4,16,20]. Para-
metric MPC controllers are based on the well-known
parametric optimization techniques [9,18] for solving
the open-loop optimal control problem offline and ob-
tain the complete map of the optimal control actions
as functions of the states. Thus, a feedback control law
is obtained offline and the online computational effort
is reduced to simple function evaluations of the feed-
back control. The inevitable presence of uncertainties
and disturbances have been ignored by the pMPC com-
munity, and only recently has the research started fo-
cusing on control problems with uncertainty [2,20]. In
traditional MPC the issue of robustness under uncer-
tainty has been dealt with using various methods such
as robust model predictive control [3,8], model predic-
tive tubes [6,12] and min-max MPC [21,22]. However,
this is still an unexplored area for pMPC, apart from the
recent work presented in [2,20].

In this manuscript we discuss the challenges of
robust parametric model predictive control (RpMPC)
and we present a method for RpMPC for linear,
discrete-time dynamic systems with exogenous distur-
bances (input uncertainty) and a method for RpMPC
for systems with model uncertainty. In both cases the
uncertainty is described by the realistic scenario where

no uncertainty model (stochastic or deterministic) is
known but it is assumed that the uncertainty variables
satisfy a set of inequalities.

Definitions

Consider the following linear, discrete-time system:

xtC1 D Axt C But CW�t

yt D Bxt C Dut C F�t ;
(1)

where x 2 X � Rn , u 2 U � Rm , y 2 Y � Rq

and � 2 
 � Rw are the state, input, output and dis-
turbance (or uncertain) input vectors respectively and
A, B, C, D, W and F are matrices of appropriate di-
mensions. The disturbance input � is assumed to be
bounded in the set 
 D f� 2 Rw j� Li � �i � �

U
i ; i D

1; : : : ;wg. This type of uncertainty is used to character-
ize a broad variety of input disturbances and modeling
uncertainties including non-linearities or hidden dy-
namics [7,11]. This type of uncertainty in general may
result in infeasibilities and performance degradation.

Definition 1 The robust controller is defined as the
controller that provides a single control sequence that
steers the plant into the feasible operating region for
a specific range of variations in the uncertain variables.

The general robust parametric MPC (RpMPC) problem
is defined as [20]

�(xtjt) D min
uN2VN

(
xTtCNjtPxtCNjt C

N�1X
kD0

h
yTtCkjtQytCkjt C uT

tCkRutCk

i)
(2)

s.t. xtCkC1jt D AxtCkjtCButCkCW�tCk ; k � 0

(3)

ytCkjt D CxtCkjtCDutCkCF�tCk ; k � 0 (4)

g(xtCkjt; utCk) D C1xtCkjtCC2utCkCC3 � 0;

k D 0; 1; : : : ;N � 1 (5)

h(xtCNjt) D D1xtCNjt C D2 � 0 (6)

utCk D KxtCkjt ; k � N (7)

xtjt D x� (8)
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where g : X �U! Rng and h : X ! Rnh are the
path and terminal constraints respectively, x� is the
initial state, uN D fut; : : : ; utCN�1g 2 U � � � � �
U D UN are the predicted future inputs and �N D

f�t; : : : ; �N�1g 2 

N are the current and future values

of the disturbance.

Formulation

The design of a robust control scheme is obtained by
solving a receding horizon constrained optimal con-
trol problem where the objective is the deviations ex-
pected over the entire uncertainty set, or the nominal
value of the output and input deviations. In order to
ensure feasibility of (2)–(8) for every possible uncer-
tainty scenario �tCk 2 
, k D 0; : : : ;N � 1, the set of
constraints of (2)–(8) is usually augmented with an ex-
tra set of feasibility constraints. The type of these con-
straints, as will be described later, will determine if the
RpMPC is an open-loop or closed-loop controller.

Open-Loop Robust Parametric Model Predictive
Controller

To define the set of extra feasibility constraints the fu-
ture state prediction

xtCkjt D Akx�C
k�1X
jD0

(AjButCk�1� jCAjW�tCk�1� j)

(9)

is substituted into the inequality constraints (5)–(6),
which then become

ḡ j(x�; uN ; �N ) � 0 ; j D 1; : : : ; J ,
nX

iD1

�1i; jx�i C
N�1X
kD0

qX
iD1

�2i;k; jutCk;i

C

N�1X
kD0

wX
iD1

�3i;k; j� C t C k; i C �4 j � 0 (10)

where �1, �2, �3 are coefficients that are explicit func-
tions of the elements of matrices A, B, C, D, W, F, C1,
C2, C3, D1, D2, Q, R, P. The set of feasibility constraints
is defined as

 (x�; uN) � 0, 8�N 2 
N �8 j D 1; : : : ; J�
ḡ j(x�; uN ; �N ) � 0; uN 2 UN ; x� 2 X :

��
(11)

The constraints  � 0 ensure that, given a particular
state realization x�, the single control action uN satis-
fies all the constraints for all possible bounded distur-
bance scenarios over the time horizon. However, this
feasibility constraint represents an infinite set of con-
straints since the inequalities are defined for every pos-
sible value of �N 2 
N . In order to overcome this prob-
lem one has to notice that (11) is equivalent to

max
N

max
j

˚
ḡ(x�; uN ; �N )j

j D 1; : : : ; J; uN 2 UN ; x� 2 X; �N 2 
N� � 0
(12)

Adding (12) into (2)–(8) and minimizing the expec-
tation of the objective function (2) over all uncertain re-
alizations �tCk one obtains the following robust model
predictive control problem:

�(xtjt) D min
uN2VN

EN2�N

(
xTtCNjtPxtCNjt C

N�1X
kD0

h
yTtCkjtQytCkjt C uT

tCkRutCk

i)
(13)

s.t. (3)–(8) and (11) (14)

Problem (13)–(14) is a bilevel program that has as
constraint a maximization problem, which, as will be
shown later, can be solved parametrically and then re-
placed by a set of linear inequalities of uN ; x�. The so-
lution to this problem corresponds to a robust control
law as it is defined in Definition 1. Problem (13)–(14)
is an open-loop robust control formulation in that it
obtains the optimal control actions uN for the worst-
case realization of the uncertainty only, as expressed by
inequality (12), and does not take into account the in-
formation of the past uncertainty values in the future
measurements, thus losing the benefit of the prediction
property. This implies that the future control actions
can be readjusted to compensate for any variation in the
past uncertainty realizations, thereby obtaining more
“realistic” and less conservative values for the optimal
control actions. This problem can be overcome if we
consider the following closed-loop formulation of the
problem (2)–(8).



680 D Design of Robust Model-Based Controllers via Parametric Programming

Closed-Loop Robust Parametric
Model-Based Control

To acquire a closed-loop formulation of the general
RpMPC problem, a dynamic programming approach
is used to formulate the worst-case closed-loop MPC
problem, which requires the solution of a number of
embedded optimization problems that in the case of
a quadratic objective are non-linear and non-differen-
tiable. Feasibility analysis is used to directly address
the problem and a set of constraints is again incorpo-
rated in the optimization problem to preserve feasibility
and performance for all uncertainty realizations. Future
measurements of the state contain information about
the past uncertainty values. This implies that the future
control actions can be readjusted to compensate for the
past disturbance realizations by deriving a closed-loop
MPC problem as shown next. The main idea is to intro-
duce constraints into the control optimization problem
(2)–(8) that preserve feasibility and performance for all
disturbance realizations. These constraints are given as

 tC` (x�; [utCk]kD0;:::;`),

8�tC` 2 
f9utC`C1 2 Uf8�tC`C1

2 
f9utC`C2 2 U : : : f8�tCN�2

2 
f9utCN�1 2 Uf8�tCN�1 2 


f8 j D 1; : : : ; J
�
ḡ j(x�; [utCk]kD0;:::;N�1;

[�tCk]kD0;:::;N�1) � 0
�
ggg : : : ggg ;

utCk 2 U ; k D 0; : : : ; ` ; x� 2 X ; �tCk 2 
 ;

k D 0; : : : ; ` � 1 ; ` D 0; : : : ;N � 1 : (15)

The constraints of (15) are incorporated into (2)–
(8) and give rise to a semi-infinite dimensional program
that can be posed as a min–max bilevel optimization
problem:

�(x�) D min
uN2VN

(
xTtCNjtPxtCNjt C

N�1X
kD0

h
yTtCkjtQytCkjt C uT

tCkRutCk

i)
(16)

s.t. max
tCN�1; j

ḡ j(x�; uN ; �N ) � 0

:::

(17)

max
tC1

min
utC2

: : : max
tCN�2

min
utCN�1

max
tCN�1

max
j

ḡ j(x�; uN ; �N ) � 0
(18)

max
t

min
utC1

max
tC1

min
utC2

: : : max
tCN�2

min
utCN�1

max
tCN�1

max
j

ḡ j(x�; uN ; �N ) � 0 (19)

uN 2 UN ; x� 2 X ; �N 2 
N : (20)

The difference between the above formulation and for-
mulation (13)–(14) is that at every time instant tC k
the future control actions futCkC1; : : : ; utCN�1g are
readily adjusted to offset the effect of the past uncer-
tainty f�t; : : : ; �tCkg to satisfy the constraints. In con-
trast, in formulation (13)–(14) the control sequence has
to ensure constraint satisfaction for all possible distur-
bance scenarios. The main issue for solving the above
optimization problem is how to solve parametrically
each of (17)–(19) and replace them with a set of in-
equalities of uN ; x� suitable to formulate a multipara-
metric programming problem. This is shown in the fol-
lowing section.

Methods/Applications

Parametric Solution of the Inner Maximization
Problem of the Open-Loop Robust pMPC Problem

An algorithm for solving parametrically the maximiza-
tion problem of (12), which forms the inner maximiza-
tion problem of the open-loop RpMPC (13)–(14), com-
prises the following steps:
Step 1. SolveGj(x�; uN) D maxN f ḡ j(x�; uN ; �N )j�N;L

� �N � �N;Ug; j D 1; : : : ; J as a parametric program
with respect to �N and by recasting the control ele-
ments and future states as parameters. The paramet-
ric solution can be obtained by following the method
in [19], where the critical disturbance points for each
maximization are identified as follows:
1. If @ ḡ j

@tCk;i
D �3i;k > 0 ) � crtCk;i D �UtCk;i , j D

1; : : : ; J, then k D 0; : : : ;N � 1, i D 1; : : : ;w;
2. If @ ḡ j

@tCk;i
D �3i;k < 0 ) � crtCk;i D � LtCk;i , j D

1; : : : ; J, then k D 0; : : : ;N � 1, i D 1; : : : ;w.
Substituting � crtCk;i in the constraints ḡ � 0 we obtain
Gj(x�; uN) D ḡ j(x�; uN ; �N;cr), where �N;cr is the se-
quence of the critical values of the uncertainty vector
� crt over the horizon N.
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Step 2. Compare the parametric profiles Gj(x�; uN )
over the joint space of uN and x� and retain the up-
per bounds. A multiparametric linear program is for-
mulated:

 (x�; uN) D max
j

G j

,  (x�; uN ) D min
"
f"j" � Gj; j D 1; : : : ; Jg ;

uN 2 UN ; x� 2 X ; (21)

which is equivalent to the comparison procedure of [1].
Step 3. Problem (21) is a multiparametric linear pro-
gramming problem; hence the solution consists of a set
of piece-wise linear expressions for  i in terms of
the parameters uN and x� and a set of regions �i ,
i D 1; : : : ; N̂reg where these expressions are valid. This
statement was proven in [20], sect. 2.2, theorem 2.1,
and in [10]. Note that no region �s exists such that
 s �  i , 8fx�; uNg 2 �s and 8i ¤ s since  is con-
vex. Thus, inequality (11) can be replaced by the in-
equalities  i (x�; uN ) � 0. In this way problem (13)–
(14) can be recast as a single-level stochastic program:

�(x�) D min
uN2UN

f˚(x�; uN ; �N;n)j

ḡ j(x�; uN ; �N;n) � 0; j D 1; : : : ; J;

 (x�; uN) � 0; i D 1; : : : ; N̂regg ; (22)

where ˚ is the quadratic objective (13) after substitut-
ing (9). The superscript n in �N;n denotes the nominal
value of �N , which is usually zero. An approximate so-
lution to the above stochastic problem can be obtained
by discretizing the uncertainty space into a finite set
of scenarios �N;i , i D 1; : : : ; ns with associated objec-
tive weights ([20]), thus leading to a multiperiod op-
timization problem where each period corresponds to
a particular uncertainty scenario. By treating the con-
trol variables uN as the optimization variables and the
current state x� as parameters, (22) is recast as multi-
parametric quadratic program.

Theorem 1 The solution of (22) is a piece-wise lin-
ear control law ut(x�) DAc x� C bc and CRcx� C crc ,
c D 1; : : : ;Nc is the polyhedral critical region where this
control law is valid and guarantees that (5) and (6) are
feasible for all �tCk 2 
, k D 0; : : : ;N � 1.

The proof of the theorem is straightforward from (21)
and [20] and is omitted for brevity’s sake. It shows that
the solution to (22), and hence (13)–(14), can be ob-
tained as an explicit multiparametric solution [9].

Solution of the Closed-Loop RpMPC Problem

In order to solve the problem (16)–(20), the inner max–
min–max problem in (17)–(19) have to be solved para-
metrically and replaced by simpler linear inequalities,
so the resulting problem is a simple multiparametric
quadratic program. For simplicity, we only present an
algorithm for solving the most difficult problem (19).
The same thought process can be performed for the re-
maining constraints. The algorithm consists of the fol-
lowing steps:
Step 1. Solve

GtCN�1
j (x�; uN ; [�tCk]kD0;:::;N�2)

D max
tCN�1

f ḡ j(x�; uN ; �N ); �N;L � �N � �N;Ug ;

j D 1; : : : ; J ; (23)

as a multiparametric optimization problem by recast-
ing x� and uN as parameters and by following again the
method of [19] or [20], sect. 2.2.
Step 2. Compare the parametric profiles
GtCN�1

j (x�; uN ; [�tCk]kD0;:::;N�2) over the joint space
of uN , [�tCk]kD0;:::;N�2 and x� to retain the upper
bounds. For this comparison a multiparametric pro-
gram is formulated and then solved by following the
comparison procedure in [1]:

 tCN�1 (x�; uN ; [�tCk]kD0;:::;N�2) D max
j

GtCN�1
j

,  tCN�1 (x�; uN ; [�tCk]kD0;:::;N�2)

D min
"
f" j s.t. GtCN�1

j � "; j D 1; : : : ; Jg : (24)

The solution of the above optimization consists of a set
of linear expressions for tCN�1

i in terms of the param-
eters x�, uN , [�tCk]kD0;:::;N�2 and a set of polyhedral
regions � tCN�1

i , i D 1; : : : ; N̂tCN�1
reg , where these ex-

pressions are valid.
Step 3. Set ` D N � 1.
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Step 4. Solve the following multiparametric optimiza-
tion problem over u`

 utC` (x�; u`; �`)

D min
utC`2U

f 
tC`
i (x�; [utCk]kD0;:::;`; [�tCk]kD0;:::;`�1);

if � tC`i � 0; i D 1; : : : ; N̂tC`reg g : (25)

The above problem can be solved parametrically by
following the procedure in [20], appendix A, or [17],
chap. 3, sect. 3.2. The solution to (25) is a convex piece-
wise affine function of  utC` in terms of the parame-
ters x�, uN , [�tCk]kD0;:::;N�2 that is defined over a set of
polyhedral regions � utC`

i , i D 1; : : : ; N̂utC`
reg .

Step 5. Set ` D ` � 1 and solve the followingmaximiza-
tion problem over �`�1:

 tC` (x�; [utCk]kD0;:::;`; [�tCk]kD0;:::;`�1)

D max
tC`
f 

tC`
i (x�; [utCk]kD0;:::;`; [�tCk]kD0;:::;`�1);

if � utC`C1
i � 0; i D 1; : : : ; N̂utC`C1

reg g : (26)

Since the function on the left-hand side of the above
equality is a convex piecewise affine function, its maxi-
mization with respect to [�tCk]kD0;:::;`�1 reduces to the
method of [19] followed by a comparison procedure as
described in step 2.
Step 6. If ` > 0, then go to step 4, else terminate
the procedure and store the affine functions  ti ,
i D 1; : : : ; N̂treg.

Step 7. The expressions  ti (ut; x�) are the max–min–
max constraint (19). Similarly, the remaining max–
min–max constraints are replaced by the set of inequal-
ities

 
tC1
i (x�; [uT

t ; u
T
tC1]

T ; �t) � 0 ;
: : : ;

 
tCN�2
i (x�; [uT

t ; u
T
tC1; : : : ; u

T
tCN�2]

T ;

[�Tt ; �
T
tC1; : : : ; �

T
tCN�3]

T ) � 0 ;

 
tCN�1
i (x�; [uT

t ; u
T
tC1; : : : ; u

T
tCN�1]

T ;

[�Tt ; �
T
tC1; : : : ; �

T
tCN�2]

T ) � 0 :

Substituting the inequalities in step 7 into the max–
min–max constraints of (16)–(20) we obtain the follow-

ing stochastic multparametric program:

�(x�) D min
uN2UN

EN2�N
˚
˚(x�; uN ; �N;n)

�

s.t. ḡ j(x�; uN ; �N;n) � 0

 
t
i (x�; ut) � 0; i D 1; : : : ; N̂0reg

 
tC1
i (x�; [uT

t ; u
T
tC1]

T ; � nt ); i D 1; : : : ; N̂1reg
:::

 
tCN�2
i (x�; [utCk]kD0;:::;N�2; [� ntCk]kD0;:::;N�3);

i D 1; : : : ; N̂tCN�2
reg

 
tCN�1
i (x�; [utCk]kD0;:::;N�1; [� ntCk]kD0;:::;N�2);

i D 1; : : : ; N̂tCN�1
reg

xtjt D x�; j D 1; : : : ; J ;
(27)

where ˚ is again the quadratic objective function in
(16). By discretizing the expectation of the value func-
tion to a set of discrete uncertainty scenarios and by
treating the current state x� as parameter and the con-
trol actions as optimization variables and the problem
is recast as a parametric quadratic program. The so-
lution is a complete map of the control variables in
terms of the current state. The results for the closed-
loop RpMPC controller are summarized in the follow-
ing theorem.

Theorem 2 The solution of (27) is obtained as a linear
piecewise control law ut(x�) DAc x� C bc and a set of
polyhedral regions CRc D fx� 2 XjCRcx� C crc � 0g
in the state space for which system (1) satisfies con-
straints (5)–(6) for all �N 2 
N.

Cases

A special case of the RpMPC problem (2)–(8) arises
when the system matrices in the first equation in (1)
are uncertain in that their entries are unknown but
bounded within specific bounds. For simplicity we will
consider the simpler case where W; F D 0 and the en-
tries aij and bij of matrices A and B are not known but
satisfy

ai j D āi j C ıai j; bi` D b̄i` C ıbi`
ıai j 2Ai j D fıai j 2 Rj � "jāi jj � ıai j � "jāi jjg ;

(28)
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ıbi` 2 Bi` D fıbi` 2 Rj � "jb̄i`j � ıbi` � "jb̄i`jg ;

(29)

where āi j , b̄i` are the nominal values of the entries of
A, B respectively and ıai j, ıbi` denote the uncertainty
in the matrix entries, which is assumed to be bounded
as in (28)–(29). The general RpMPC formulation (2)–
(8) must be redefined to include the introduced model
uncertainty by adding the extra constraints

ai j D āi j C ıai j; bi` D b̄i` C ıbi`
8ıai j 2Ai j;8ıbi` 2 Bi` ;

(30)

The new formulation of the RpMPC (2)–(8) and (30)
gives rise to a semi-infinite dimensional problem with
a rather high computational complexity.

Definition 2 A feasible solution uN for problem (2)–
(8) and (30), for a given initial state x�, is called a robust
or reliable solution.

Obviously, a robust solution for a given x� is a control
sequence uN (future prediction vector) for which con-
straints (5)–(6) are satisfied for all admissible values of
the uncertainty. Since it is difficult to solve this MPC
formulation by the known parametric optimization
methods, the problemmust be reformulated in a multi-
parametric quadratic programming (mpQP) form. Our
objective in this section is to obtain such a form by con-
sidering the worst-case values of the uncertainty, i. e.
those values of the uncertain parameters for which the
linear inequalities of (5)–(6) are critically satisfied. Usu-
ally, the objective function (2) is formulated to penal-
ize the nominal system behavior; thus one must sub-
stitute xtCkjt D Ākx� C

Pk�1
jD0 Āj B̄utCk�1� j in (2). In

this way the objective function is a quadratic func-
tion of uN and x�. Finally, the uncertain evolution of
the system xtCkjt D Akx� C

Pk�1
jD0 A

jButCk�1� j is re-
placed in the constraints (5)–(6) to formulate a set of
linear inequalities. Thus the following formulation of
the RpMPC is obtained:

�(x�) D min
uN2UN

�
1
2
(uN)THuN

Cx�TFuN C
1
2
(x�)TYx�

	
; (31)

s.t. CT
1i A

kx� C
k�1X
jD0

CT
1iA

jButCk�1� j

C CT
2iutCk C C3i � 0 ;

k D 1; : : : ;N � 1 ; i D 1; : : : ; ng ; (32)

DT
1`A

Nx� C
N�1X
jD0

DT
1`A

jButCk�1� j C D2` � 0 ;

` D 1; : : : ; nh ; (33)

8ıai j 2Ai j ; 8ıbi` 2 Bi` ;

i; j D 1; : : : ; n ; ` D 1; : : : ;m : (34)

It is evident that the new formulation of the RpMPC
problem (31)–(34) is also a semi-infinite dimensional
problem. This formulation can be further simplified if
one considers that for any uncertain matrices A and B,
the entries of the matrices Ak and AkB for all k � 0 are
given respectively by [17]

aki` D āki`C ıa
k
i`;��jıa

k
i`;minj � ıa

k
i` � �jıa

k
i`;maxj ;

(35)

abki` D ābki` C ıab
k
i`;

� �jıabki`;minj � ıab
k
i` � �jıab

k
i`;maxj : (36)

The analysis on (35)–(36) follows from [17], chap. 3,
and is omitted for brevity’s sake.

Robust Counterpart (RC) Problem

Using the basic properties of matrix multiplication and
(35)–(36), problem (31)–(34) reformulates into

�(x�) D min
uN2UN

�
1
2
(uN)THuN

Cx�T FuN C
1
2
(x�)TYx�

	
; (37)

k�1X
jD1

nX
qD1

mX
`D1

C1i qab
j
q`utCk�1� j;`

C
X
`

C2i`utCk;`C

nX
qD1

nX
`D1

C1i qakq`x
�
` CC3i � 0 ;

(38)
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k D 1; : : : ;N � 1; i D 1; : : : ; ng

N�1X
jD1

nX
qD1

mX
`D1

D1i qab
j
q`utCk�1� j;`

C

nX
qD1

nX
`D1

D1i qakq`x
�
` C D2i � 0 (39)

i D 1; : : : ; nh8ıai j 2Ai j;

8ıbi` 2 Bi`; i; j D 1; : : : ; n; ` D 1; : : : ;m : (40)

This is a robust multiparametric QP problem (ro-
bust mp-QP) where the coefficients of the linear in-
equalities in the constraints are uncertain, the vector
uN is the optimization variable and the initial states x�

are the parameters. A similar robust LP problem was
studied in [5] where the coefficients of the linear con-
straints are uncertain, similar to (35)–(36); however, no
multiparametric programming problems were consid-
ered.

In a similar fashion to the analysis in [5] we con-
struct the robust counterpart of the robust mp-QP
problem (37)–(40):

�(x�) D min
uN2UN

�
1
2
(uN)THuN

Cx�T FuN C
1
2
(x�)TYx�

	
; (41)

s.t.
k�1X
jD1

nX
qD1

mX
`D1

C1i q āb
j
q`utCk�1� j;`

C

k�1X
jD1

nX
qD1

mX
`D1

�maxfjC1i qjjıabkq`;minj;

jC1i qjjıakq`;maxjgjutCk�1� j;`j C
X
`

C2i`utCk;`

C

nX
qD1

nX
`D1

C1i q ākq`x
�
` C

nX
qD1

nX
`D1

�maxfjC1i qjjıakq`;minj;

jC1i qjjıakq`;maxjgjx
�
` j C C3i � 0

k D 1; : : : ;N � 1 ; i D 1; : : : ; ng ;

(42)

N�1X
jD1

nX
qD1

mX
`D1

D1i q āb
j
q`utCk�1� j;`

C

N�1X
jD1

nX
qD1

mX
`D1

maxfjD1i qjjıabkq`;minj;

jD1i qjjıabkq`;maxjgjutCk�1� j;`j

C

nX
qD1

nX
`D1

D1i q ākq`x
�
` C

nX
qD1

nX
`D1

maxfjD1i qjjıakq`;minj;

jD1i qjjıakq`;maxjgjx
�
` j C D2i � 0

i D 1; : : : ; nh ;

(43)

uN 2 UN ; x� 2 X : (44)

In this way the initial semi-infinite dimensional
problem (37)–(40) becomes the above multiparametric
non-linear program (mp-NLP). However, the paramet-
ric solution of this mp-NLP problem is still very diffi-
cult.

Interval Robust Counterpart Problem

The interval robust counterpart (IRC) problem can
then be formulated as follows:

�(x�) D min
uN2UN

�
1
2
(uN)THuN

Cx�TFuN C
1
2
(x�)TYx�

	
; (45)

s.t.
k�1X
jD1

nX
qD1

mX
`D1

C1i q āb
j
q`utCk�1� j;`

C

k�1X
jD1

nX
qD1

mX
`D1

�maxfjC1i qjjıabkq`;minj;

jC1i qjjıakq`;maxjgztCk�1� j;` C
X
`

C2i`utCk;`

C

nX
qD1

nX
`D1

C1i q ākq`x
�
`

C

nX
qD1

nX
`D1

�maxfjC1i qjjıakq`;minj;

jC1i qjjıakq`;maxjgw` C C3i � 0

k D 1; : : : ;N � 1 ; i D 1; : : : ; ng ;

(46)
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Design of Robust Model-Based Controllers via Parametric Programming, Figure 1
Critical regions for the nominal parametric MPC and state trajectory

N�1X
jD1

nX
qD1

mX
`D1

D1i q āb
j
q`utCk�1� j;`

C

N�1X
jD1

nX
qD1

mX
`D1

maxfjD1i qjjıabkq`;minj;

jD1i qjjıabkq`;maxjgztCk�1� j;`

C

nX
qD1

nX
`D1

D1i q ākq`x
�
` C

nX
qD1

nX
`D1

maxfjD1i qjjıakq`;minj;

jD1i qjjıakq`;maxjgw` C D2i � 0

i D 1; : : : ; nh ;

(47)

� ztCk�1� j;` � utCk�1� j;` � ztCk�1� j;` ; (48)

� w` � x�` � w` ; (49)

uN 2 UN ; x� 2 X ; (50)

where the non-linear inequalities (42)–(43) have been
replaced by four new linear inequalities. Two new vari-
ables have been introduced to replace the absolute val-
ues of the utCk�1� j;` and x�

`
, thus leading to the relaxed

IRC problem.
The IRC is a mpQP problem with a quadratic index

and linear inequalities, where the optimization vari-

ables now are the vectors utCk�1� j, ztCk�1� j and w
and the parameters are the states x�. The IRC prob-
lem can be solved with the known parametric opti-
mization methods [4,9,16] since the objective func-
tion is strictly convex by assumption. The optimal
control inputs uN , optimization variables z and w
and hence the optimal control ut can then be ob-
tained as explicit functions uN(x�), z(x�) and w(x�)
of the initial state x�. Furthermore, the control in-
put ut is obtained as the explicit, optimal control

Design of Robust Model-Based Controllers via Parametric
Programming, Figure 2
Magnification of Fig. 1 around the state trajectory at the sec-
ond time instant
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Design of Robust Model-Based Controllers via Parametric Programming, Figure 3
Critical regions for the nominal parametric MPC and state trajectory

law [9] ut(x�) DAc x� C bc which is valid in the
polyhedral region CRc D fx� 2 XjCRcx� C cr � 0g,
c D 1; : : : ;Nc , where Nc is the number of critical re-
gions obtained from the parametric programming al-
gorithm.

The general RpMPC problem obtained from the
case where the dynamic system (1) pertains to model
uncertainties have now been transformed into the IRC
problem and can be solved as a mp-QP problem. It is
obvious that a feasible solution for the IRC problem is
also a feasible solution for the RC and hence the initial
RpMPC problem (2)–(8) and (30). Hence:

Lemma 1 If uN is a feasible solution for the IRC prob-
lem, then it is also a feasible solution for the RC problem,
and hence it is a robust solution for the initial RpMPC
problem (2)–(8), (30).

Example 2 Consider a two-dimensional, discrete-time
linear system (1) whereW D F D 0 and

A D
�
0:7326C ıa �0:0861
0:1722 0:0064

�
;

B D
�

0:0609C ıb
0:0064

�
;

(51)

where the entries a11 and b1 of the A and Bmatrices are
uncertain, where ıa and ıb are bounded as in (28)–(29)
with � D 10% and the nominal values are ā11 D 0:7326

and b̄1 D 0:0609. The state and control constraints are
�3 � [0 1:4142]Tx � 3 ; �2 � u � 2, and the termi-
nal constraint is

2
664

0:070251 1
�0:070251 �1
0:21863 1
�0:21863 �1

3
775 x �

2
664

0:02743
0:02743
0:022154
0:022154

3
775 : (52)

Moreover,

Q D
�

0 0
0 2

�
R D 0:01; P D

�
1:8588 1:2899
1:2899 6:7864

�
:

(53)

Initially, the MPC problem (2)–(8) is formulated and
solved only for the nominal values ofA and B, thus solv-
ing amultiparametric quadratic programming problem
as described in [4,16]. Then the IRC problem is formu-
lated as in (45)–(50) by using POP software [9]. The re-
sulting regions for both cases are shown in Figs. 1 and 3
respectively. A simulation of the state trajectories of the
nominal and the uncertain system are shown in Figs. 1
and 3 respectively. In these simulations the uncertain
parameters ıa and ıb were simulated as a sequence of
random numbers that take their values on the upper or
lower bounds of ıa, ıb i. e. a time-varying uncertainty.
It is clear from Fig. 1 (and Fig. 2, which displays the
magnified area around the state trajectory at the second



Determining the Optimal Number of Clusters D 687

time instant) that the nominal solution to problem (2)–
(8) cannot guarantee robustness in the presence of the
uncertainty and the nominal system trajectory results
in constraint violation. On the other hand, the con-
troller obtained with the method discussed here man-
ages to retain the trajectory in the set of feasible initial
states (obtained by the critical regions of the paramet-
ric solution) and drives the trajectory close to the origin.
One should notice that the space of feasible initial states
(Fig. 3) given by the critical regions of the parametric
solution is smaller than the one given in the nominal
system’s case (Fig. 1).

Conclusions

In this chapter two robust parametric MPC prob-
lems were analyzed. In the first problem two meth-
ods for robust parametric MPC are discussed, an
open-loop and a closed-loop method, for treating ro-
bustness issues arising from the presence of input dis-
turbances/uncertainties. In the second problem, a ro-
bust parametric MPC procedure was discussed for the
control of dynamic systems with uncertainty in the
system matrices by employing robust parametric opti-
mization methods.
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Introduction

Clustering is probably the most important unsuper-
vised learning problem and involves finding coherent
structures within a collection of unlabeled data. As such
it gives rise to data groupings so that the patterns are
similar within each group and remote between differ-
ent groups. Besides having been extensively applied in
areas such as image processing and pattern recognition,
clustering also sees rich applications in biology, mar-
ket research, social network analysis, and geology. For
instance, in marketing and finance, cluster analysis is
used to segment and determine target markets, position
new products, and identify clients in a banking data-
base having a heavy real estate asset base. In libraries,
clustering is used to aid in book ordering and in insur-
ance, clustering helps to identify groups of motor in-
surance policy holders with high average claim costs.
Given its broad utility, it is unsurprising that a substan-
tial number of clustering methods and approaches have
been proposed.

On the other hand, fewer solutions to systemati-
cally evaluate the quality or validity of clusters have
been presented [1]. Indeed, the prediction of the opti-
mal number of groupings for any clustering algorithm
remains a fundamental problem in unsupervised classi-
fication. To address this issue, numerous cluster indices
have been proposed to assess the quality and the results
of cluster analysis. These criteria may then be used to
compare the adequacy of clustering algorithms and dif-
ferent dissimilarity measures, or to choose the optimal

number of clusters. Some of these measures are intro-
duced in the following section.

Methods

Dunn’s Validity Index

This technique [2,5] is based on the idea of identifying
the cluster sets that are compact and well separated. For
any partition of clusters, where ci represent the ith clus-
ter of such a partition, Dunn’s validation index, D, can
be calculated as

D D min
1�i�n

�
min
1� j�n
i¤ j

�
d(c1; c j)
max1�k�n

d0(ck)
		

:

Here, d(ci,cj) is the distance between clusters ci, and
cj (intercluster distance), d0(ck) is the intracluster dis-
tance of cluster ck, and n is the number of clusters. The
goal of this measure is to maximize the intercluster dis-
tances and minimize the intracluster distances. There-
fore, the number of cluster that maximizes D is taken as
the optimal number of clusters to be used.

Davies–Bouldin Validity Index

This index [4] is a function of the ratio of the sum of
within-cluster scatter to between-cluster separation:

DB D
1
n

nX
iD1

max
i¤ j

�
Sn(Qi)C Sn(Qj)

S(Qi ;Qj)

	
:

In this expression, DB is the Davies–Bouldin index, n
is the number of clusters, Sn is the average distance of
all objects from the cluster to their cluster center, and
S(QiQj) is the distance between cluster centers. Hence,
the ratio is small if the clusters are compact and far
from each other. Consequently, the Davies–Bouldin in-
dex will have a small value for a good clustering.

The silhouette validation technique [22] calculates
the silhouette width for each sample, the average sil-
houette width for each cluster, and the overall average
silhouette width for a total data set. With use of this ap-
proach each cluster can be represented by a so-called
silhouette, which is based on the comparison of its
tightness and separation. The average silhouette width
can be applied for the evaluation of clustering validity
and can also be used to decide how good are the number
of selected clusters. To construct the silhouettes S(i) the
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following formula is used:

S(i) D
(b(i)� a(i))

max fa(i); b(i)g
:

Here, a(i) is the average dissimilarity of the ith object
to all other objects in the same cluster and b(i) is the
minimum average dissimilarity of the ith object to all
objects in the other clusters.

It follows from the formula that s(i) lies between
�1 and 1. If the silhouette value is close to 1, it means
that sample is “well clustered” and has been assigned
to a very appropriate cluster. If the silhouette value is
close to 0, it means that that sample could be assigned
to another “closest” cluster as well, and the sample lies
equally far away from both clusters. If the silhouette
value is close to �1, it means that sample is “misclas-
sified” and is merely somewhere in-between the clus-
ters. The overall average silhouette width for the entire
plot is simply the average of the S(i) for all objects in
the whole dataset and the largest overall average silhou-
ette indicates the best clustering (number of clusters).
Therefore, the number of clusters with the maximum
overall average silhouette width is taken as the optimal
number of the clusters.

Measure of Krzanowski and Lai

This index is based on the decrease of the within-cluster
sum of squares (WSS) [15] and is given by

KL(k) D
ˇ̌
ˇ̌ DIFF(k)
DIFF(k C 1)

ˇ̌
ˇ̌ ; where

DIFF(k) D (k � 1)
2
p WSS(k � 1) � k

2
pWSS(k) :

Assuming that g is the ideal cluster number for a given
dataset, and k is a particular number of clusters, then
WSS(k) is assumed to decrease rapidly for k � g and
decreases only slightly for k > g. Thus, it is expected
that KL(k) will be maximized for the optimal number
of clusters.

Measure of Calinski and Harabasz

This method [3] assesses the quality of k clusters via the
index

CH(k) D
BSS(k � 1)/(k � 1)
WSS(k)/(n � k)

:

Here,WSS(k) and BSS(k) are theWSS and the between-
cluster sums of squares, for a dataset of nmembers. The
measure seeks to choose clusters that are well isolated
from one another and coherent, but at the same time
keep the number of clusters as small as possible, thus
maximizing the criterion at the optimal cluster number.
Incidentally, a separate study comparing 28 validation
criteria [18] found this measure to perform the best.

In addition, some other measures to determine the
optimal number of clusters are (i) the C index [10],
(ii) the Goodman–Kruskal index [8]), (iii) the isolation
index [19], (iv) the Jaccard index [11], and (v) the Rand
index [20].

Applications

As can be seen, while it is relatively easy to propose
indices of cluster validity, it is difficult to incorporate
these measures into clustering algorithms and to ap-
point suitable thresholds on which to define key deci-
sion values [9,12]. Most clustering algorithms do not
contain built-in screening functions to determine the
optimal number of clusters. This implies that for a given
clustering algorithm, the most typical means of deter-
mining the optimal cluster number is to repeat the clus-
tering numerous times, each with a different number of
groupings, and hope to catch a maximum or minimum
turning point for the cluster validity index in play.

Nonetheless, there have been attempts to incorpo-
rate measures of cluster validity into clustering algo-
rithms. One such method [21] introduces a validity in-
dex:

Validity D
Intra � Cluster
Inter � Cluster

:

Since it is desirable for the intracluster distance and the
intercluster distance to be minimized and maximized,
respectively, the above validity measure should be as
small as possible. Using the K-means algorithm, Ray
and Turi [21] proposed running the process for two
up to a predetermined maximum number of clusters.
At each stage, the cluster with the maximum variance
is split into two and clustering is repeated with these
updated centers, until the desired turning point for the
validity measure is observed. Another approach [16]
is based on simulated annealing, which was originally
formulated to simulate a collection of atoms in equi-
librium at a given temperature [14,17]. It assumes two
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given parameters D, which is the cutoff cluster diame-
ter, and P, a P-value statistic, as well as p(d), the distri-
bution function of the Euclidean distances between the
members in a dataset. Then, the upper boundary for the
fraction of incorrect vector pairs is given by

f (D;K D 1) D
Z 1
D

p(x)dx :

On the other hand, it is possible to define a lower
boundary for f(D,K) with a preassigned P-value cutoff.
The clustering algorithm then sequentially increases the
cluster number until the two indicators converge.

A Novel Clustering Approach
with Optimal Cluster Determination

See also the article on “Gene Clustering: A Novel
Optimization-Based Approach”.

Recently, we proposed a novel clustering ap-
proach [23,24] that expeditiously contains a method
to predict the optimal cluster number. The clustering
seeks to minimize the Euclidean distances between the
data and the assigned cluster centers as

MIN
wi j;z jk

nX
iD1

cX
jD1

sX
kD1

wi j
�
aik � z jk

�2
:

To make the nonlinear problem tractable, we apply
a variant of the generalized benders decomposition al-
gorithm [6,7], the global optimum search. The global
optimum search decomposes the problem into a primal
problem and themaster problem. The former solves the
continuous variables while fixing the integer variables
and provides an upper-bound solution, while the latter
finds the integer variables and the associated Lagrange
multipliers while fixing the continuous variables and
provides a lower-bound solution. The two sequences
are iteratively updated until they converge at an opti-
mal solution in a finite number of steps.

In determining the optimal cluster number, we note
that the optimal number of clusters occurs when the
intercluster distance is maximized and the intracluster
distance is minimized. We adapt the novel work of Jung
et al. [13] in defining a clustering balance, which has
been shown to have a minimum value when intraclus-
ter similarity is maximized and intercluster similarity is
minimized. This provides a measure of how optimal is

a certain number of clusters used for a particular clus-
tering algorithm. Given n data points, each having k
feature points, j clusters, and a binary decision variable
for cluster membership wij, we introduce the following:

Global center, zok D
1
n

nP
iD1

aik ; 8k ;

Intracluster error sum;

� D
nP

iD1

cP
jD1

sP
kD1

wi j


aik � z jk



2
2 ;

Intercluster error sum; � D
cP

jD1

sP
kD1



z jk � zok


2
2 :

Jung et al. [13] next proposed a clustering balance pa-
rameter, which is the ˛-weighted sum of the two error
sums:

Clustering balance, " D ˛�C (1 � ˛)� :

We note here that the right ˛ ratio is 0.5. There are two
ways to come to this conclusion. We note that the fac-
tor ˛ should balance the contributive weights of the two
error sums to the clustering balance. At extreme clus-
ter numbers, that is, the largest and smallest numbers
possible, the sum of the intracluster and intercluster er-
ror sums at both cluster numbers should be balanced.
In the minimal case, all the data points can be placed
into a single cluster, in which case the intercluster error
sum is zero and the intracluster error sum can be cal-
culated with ease. In the maximal case, each data point
forms its own cluster, in which case the intracluster er-
ror sum is zero and the intercluster error sum can be
easily found. Obviously the intracluster error sum in
the minimal case and the intercluster error sum in the
maximal case are equal, suggesting that the most appro-
priate weighting factor to use is in fact 0.5. The second
approach uses a clustering gain parameter proposed by
Jung et al. [13]. This gain parameter is the difference be-
tween the decreased intercluster error sum � j compared
with the value at the initial stage and the increased in-
tracluster error sum � j compared with the value at the
initial stage, and is given by

� jk D

nX
iD1

wi j


aik � zok



2
2 �



z jk � zok


2
2 ;

8j,8k ;

�jk D
nX

iD1

wi j


aik � z jk



2
2; 8j,8k ;
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Gain; � jk D

nX
iD1

wi j


aik � zok



2
2 �



z jk � zok


2
2

�

nX
iD1

wi j


ai j � z jk



2
2; 8j,8k :

With the identities
nP

iD1
wi jaik D njz jk ; 8 j; 8k ;

nP
iD1

wi j D nj ; 8 j ;

where nj denotes the number of data points in cluster j,
the gain can be simplified to

�jk D
�
nj � 1

� 

zok � z jk


2
2 ;8j;8k ;

� D
cP

jD1

sP
kD1

�
nj � 1

� 

zok � z jk


2
2 :

Jung et al. [13] showed the clustering gain to have
a maximum value at the optimal number of clusters,
and demonstrated that the sum total of the clustering
gain and balance parameters is a constant. As can be
seen from the following derivation, this is only possible
if the ˛ ratio is 0.5:

Sum of clustering balance and clustering gain;˝

D "C�

D�C � C�

D

2
4

nX
iD1

cX
jD1

sX
kD1

wi j


aik � z jk



2
2

3
5

C

2
4

cX
jD1



z jk � zok


2
2

3
5C : : :

2
664

nP
iD1

cP
jD1

sP
kD1

wi j


aik � zok



2
2 �

cP
jD1



z jk � zok


2
2

�
nP

iD1

cP
jD1

sP
kD1

wi j


aik � z jk



2
2

3
775

D

nX
iD1

cX
jD1

sX
kD1

wi j


aik � zok



2
2

D

nX
iD1

sX
kD1



aik � zok


2
2 ;

which is a constant for any given dataset.

Extension for Biological Coherence Refinement

Today, the advent of DNA microarray technology has
made possible the large-scale monitoring of genomic
behavior. In working with gene expression data, it is
often useful to utilize external validation in evaluating
clusters of gene expression data. Besides assessing the
biological meaning of a cluster through the functional
annotations of its constituent genes using gene ontol-
ogy resources, other indications of strong biological co-
herence [25] are (i) the proportion of genes that reside
in clusters with good P-value scores, (ii) cluster corre-
lation, since closely related genes are expected to ex-
hibit very similar patterns of expression, and (iii) clus-
ter specificity, which is the proportion of genes within
a cluster that annotates for the same function. A novel
extension of the previously described work [25] allows
not just for the determination of the optimal cluster
number within the framework of a robust yet intuitive
clustering method, but also for an iterative refinement
of biological validation for the clusters. The algorithm
is as follows.

Gene Preclustering We precluster the original data
by proximity studies to reduce the computational
demands by (i) identifying genes with very similar
responses and (ii) removing outliers deemed to be in-
significant to the clustering process. To provide just ad-
equate discriminatory characteristics, preclustering can
be done by reducing the expression vectors into a set
of representative variables {C; o;�}, or by pregroup-
ing genes that are close to one another by correlation
or some other distance function.

Iterative Clustering We let the initial clusters be de-
fined by the genes preclustered previously, and find the
distance between each of the remaining genes and these
initial clusters and as a good initialization point place
these genes into the nearest cluster. For each gene, we
allow its suitability in a limited number of clusters on
the basis of the proximity study. In the primal problem
of the global optimum search algorithm, we solve for
zjk. These, together with the Lagrange multipliers, are
used in the master problem to solve for wij. The primal
problem gives an upper-bound solution and the master
problem gives a lower bound. The optimal solution is
obtained when both bounds converge. Then, the worst-
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Determining the Optimal Number of Clusters, Figure 1
Iterative clustering procedure. GOS global optimum search
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placed gene is removed and used as a seed for a new
cluster. This gene has already been subjected to a mem-
bership search, so there is no reason for it to belong to
any of the older clusters. The primal and master prob-
lems are iterated and the number of clusters builds up
gradually until the optimal number is attained.

Iterative Extension Indication of strong biological
coherence is characterized by good P values based on
gene ontology resources and the proportion of genes
that reside in such clusters. As an extension, we would
like to mine for the maximal amount of relevant in-
formation from the gene expression data and sieve out
the least relevant data. This is important because infor-
mation such as biological function annotation drawn
from the cluster content is often used in the further
study of coregulated gene members, common reading
frames, and gene regulatory networks. From the clus-
tered genes, we impose a coherence floor, based on
some or all of the possible performance factors such
as functional annotation, cluster specificity, and corre-
lation, to demarcate genes that have already been well
clustered. We then iterate to offer the poorly placed
genes an opportunity to either find relevant member-
ship in one of the strongly coherent clusters, or regroup
amongst themselves to form quality clusters. Through
this process, a saturation point will be reached eventu-
ally whereby the optimal number of clusters becomes
constant as the proportion of genes distributed within
clusters of high biological coherence levels off. Figure 1
shows a schematic of the entire clustering algorithm.
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A classification problem is concerned with categorizing
a data point (entity) into one of G (G � 2) mutually
exclusive groups based upon m (positive integer) spe-
cific measurable features of the entity. A classification
rule is typically constructed from a sample of entities,
where the group classifications are known or labeled
(training or supervised learning). Then it can be used
to classify new unlabeled entities. Many classification
methods are based on distance measures. A common
approach is to find a hyperplane to classify two groups
(G D G1

S
G2). The hyperplane can be represented in

a form of A! D � , where A denotes an n � m input
data matrix, n is the total number of input data points,
and m is the total number of data features/attributes.
The classification rule is then made by the weight vec-
tor ! to map data points onto a hyperplane, and the
scalar � , which are best selected by solving a mathe-
matical programming model. The goal is to have en-
tities of Group 1 (G1) lie on one side of the hyperplane
and entities of Group 2 (G2) lie on the other side. Sup-
port Vector Machines (SVM) is the most studied hy-

perplane construction method. The SVM concept is to
construct a hyperplane that minimizes the upper bound
on the out-of-sample error. The critical step of SVM is
to transform (or map) data points on to a high dimen-
sional space, known as kernel transformation, and clas-
sify data points by a separating plane [9]. Subsequently,
the hybrid linear programming discriminant model is
proposed by [12,13,20]. The hybrid model does not de-
pend on data transformation, where the objective is
to find a plane that minimizes violations and maxi-
mizes satisfactions of the classified groups. Glover [19]
proposed a mixed integer programming (MIP) formu-
lation for the hybrid model by adding binary vari-
ables for misclassified entities. Other MIP formulations
that are subsequently developed include [1,15,16]. Re-
cently, a new technique that use multiple hyperplanes
for classification has been proposed by [17]. This tech-
nique constructs a piecewise-linear model that gives
convex separating planes. Subsequently, Better, Glover
and Samorani [6] proposed multi-hyperplane formula-
tions that generate multiple linear hyperplanes simulta-
neously with the consequence of forming a binary deci-
sion tree.

In classification, the selection of data’s features/
attributes is also very critical. Many mathematical pro-
gramming methods have been proposed for selecting
well represented features/attributes. Bennett and Man-
gasarian [5,23] gives a feature selection formulation
such that the model not only separates entities into two
groups, but also tries to suppress nonsignificant fea-
tures. In a more recent study, Chaovalitwongse et al.
(2006) proposed Support Feature Machine (SFM) for-
mulations can be used to find a set of features that gives
the highest classification performance [10].

Baysian decision method has also been widely stud-
ied in classification. However, there are only few stud-
ies incorporating the Baysian model with mathematical
programming approaches. Among those studies, As-
parouhov and Danchev [4] formulates a MIP model
with binary variables, which are conformed with the
Bayesian decision theory. In the case of multi-group
classification, Anderson [2] developed a mathematical
formulation that incorporates the population densities
and prior probabilities of training data. This model
yields classification rules for multi-groups with a reject
option, (a set having entities that does not belong to any
group) [22].
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Deterministic OptimizationModels

Support Vector Machines

Support Vector Machines (SVM) is aimed at finding
a hyperplane that separates the labeled input data into
two groups, G1 and G2. Then the optimal plane can
be used for classifying new data point. The hyperplane
can be mathematically expressed by A! D � , where
! 2 <m is anm-dimensional vector of real numbers,m
is total number of attributes/features used to represent
a data entity, and � 2 <n is a scalar vector. All elements
fromG1 andG2 will be separated by this hyperplane un-
der the assumption that the sets G1 and G2 are separa-
ble. Define margin as the minimum distance from the
plane to elements in a group, G1 or G2. The objective
function of SVM is to find a separating hyperplane with
the largest margin. The data set G1 can be represented
by the matrix Ai 2 <

k�m ; i 2 G1 and the set G2 can
be represented by the matrix Aj 2 <

(n�k)�m ; j 2 G2,
where k are number of data points (entities) of group
G1. Two open half spaces defined by the hyperplane are
fAi! < �g and fAj! > �g. One contains elements
of G1 and the other contains elements of G2. There-
fore, a linear programming (LP) problem can be formu-
lated to determine the optimal values of vectors ! and
� . To construct valid inequalities for linear program-
ming, we rescale the variables (!; �), by dividing them
by the positive value min

i2G1; j2G2
fAi!��;�Aj!C�g. Let

e denote a vector of ones, and the resulting inequalities
become

Ai! � e� C e; Aj! � e� � e : (1)

The performance of the SVM relies heavily on the
kernel transformation, the data mapping to a high di-
mension. SVM can also incorporates nonlinear map-
ping �(�). If the new dimension is sufficiently high
enough, the data from two classes can always be sep-
arated by a hyperplane [9,11]. Examples of SVM kernel
functions include linear, polynomial, radial basis func-
tion (RBF) and sigmoid. Recently, Shimodaira et al. [24]
has proposed the Dynamic Time-Alignment Kernel for
time series data.

Robust LP for SVM

It is important to note that the above LPmodel assumes
that Ai and Aj are perfectly separable, which is usually

not a case in practice. In other words, it is possible that
the inequalities in Eq. (1) provide no solution as the
data are not perfectly separable. Bennett andMangasar-
ian [5] proposed an improved formulation that mini-
mizes an average misclassifications given by

min
!;�;y;z

eT y
m
C

eTz
k

s:t: Ai! � e� � e � y;

� Aj! C e� � e � z;

y � 0; z � 0 :

It is easy to see that the variables y and z are, in fact,
the vectors representing the violations of inequalities in
Eq. (2) and minimizing the objective function would
lead to the minimum average violation.

Feature Selection with SVM

We note that an extension of the robust LP formulation
can be used for feature selection [5,23]. A new term is
added in the objective function in the robust LP model
to suppress the components of !. This would try to
eliminate all unnecessary features. Let v denote the ab-
solute value of the weight vector !, log is the base of the
natural logarithm, and � 2 (0; 1). The mathematical
program with a concave objective function and linear
constraints for feature selection is given by

min
!;�;y;z;v

(1 � �)( e
T y
m C

eT z
k )C �eT (e � log�˛v )

s:t: Ai! � e� � e � y;
�Aj! C e� � e � z;
y � 0; z � 0;
�v � ! � v :

Note that when � D 0, the model gives a plane that
separates Ai and Aj without considering feature sup-
pression. On the other hand, when � > 0, the ob-
jective not only tries to separate Ai and Aj, but also
tries to eliminate as many of ! components as possi-
ble. Specifically, for each vi (i D 1; : : : ; n), we min-
imize an exponential smoothing of the step function
(1� log�˛v i ). This step function enables the deletion of
irrelevant components of !. There also exists a finitely-
terminating algorithm that solves this problem using
successive linear programming [8].
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Hybrid LP Discriminant Model

A hybrid LP discriminant model is proposed
in [12,13,20]. This model is guaranteed to give the
optimal solution regardless of the nature of the data.
Therefore, the solution is invariant to transformations.
This model is improved to overcome many shortcom-
ings of contemporary linear discriminant formulations,
which are reviewed and discussed in [21]. Recall that
m is the number of attributes, all data points in G1 are
represented by an k � m matrix Ai ; i 2 G1, and all
data points in G1 are represented by an (n � k) � m
matrix Aj; j 2 G2. For the simplicity of mathematical
representation, the membership inG1 or G2 can be rep-
resented by i 2 G1 or i 2 G2, respectively. This model
will give a hyperplane of the form AT! D � , where
the model seeks for the optimal weight vector !, and
a scalar � , where data points of Group 1 lie on one side
of the hyperplane and data points of Group 2 lie on the
other side (i. e., Ai! < �; i 2 G1 and Ai! > �; i 2 G2).
Let yi and zi represent external and internal deviation
variables referring to the point violations and satisfac-
tions of the classification rule. More specifically, they
are the magnitudes of the data points lying outside or
inside their targeted half spaces. The objective is to
minimize violations and maximize the satisfactions of
the classified groups. Thus, in the objective function,
variable hi’s discourage external deviations and vari-
able ki’s encourage internal deviations. Then hi � ki
for i D 0 and i 2 G, must be satisfied. The hybrid
model is given by

min h0y0 C
X
i2G

hi yi � k0z0 �
X
i2G

kizi

s.t. Ai! � y0 � yi C z0 C zi D �; i 2 G1

Ai! C y0 C yi � z0 � zi D �; i 2 G2

z0 C
X
i

zi D 1; i 2 G

y0; z0 � 0
yi ; zi � 0; i 2 G

!; � unrestricted:

(2)

We note that Eq. (2) is a normalization constraint
that is necessary for avoiding a trivial solution where all
! j D 0 and � D 0. Glover [18] identifies more nor-
malization methods to conquer the problem with null
weighting.

MIP Discriminant Model

There are several related mixed integer formulations in
the literature [1,15,16]. In general, due to the computa-
tional requirements, these standard MIP formulations
can only be applied to classification problems with a rel-
atively small number of observations. Glover [19] pro-
posed a compact mathematical program for discrimi-
nant model, which is a variant of the above-mentioned
hybrid LPmodel. This objective of this model is to min-
imize the number of misclassified entities. TheMIP dis-
criminant model is given by

min
X
i2G

zi

s:t: Aix �Mzi C ˇi D b; i 2 G1

Aix CMzi � ˇi D b; i 2 G2

ˇi � 0; i 2 G
zi 2 f0; 1g; i 2 G

x; b unrestricted;

where ˇi are slack variables, and M is a large constant
chosen so that when zi D 1, Aix � bCMzi will be re-
dundant for i 2 G1 and Aix � b � Mzi will be redun-
dant for i 2 G2. This model can incorporate a normal-
ization constraint, (�n2

P
i2G1

Ai C n1
P

i2G2
Ai)x D

1, where n1 and n2 are the number of entities in G1 and
G2, respectively.

Multi-hyperplane Classification

Multi-hyperplane formulations, given by Better et
al. [6], generate multiple linear hyperplanes simultane-
ously with the consequence of forming a decision tree.
The hyperplanes are generated from an extension of the
Discriminant Model proposed by Glover [18]. Instead
of using kernel transformation that projects data into
a high dimensional space to improve the performance
of SVM, the multi-hyperplane approach approximates
a nonlinear separation by constructing multiple hyper-
planes. Let d D 0 when we are at a root node of a bi-
nary tree, where none of the classifications have been
done. Let d D D when the tree has two leaf nodes cor-
responding to the final separation step. In order to ex-
plain the model, we define the following terms.
� Successive Perfect Separation (SPS) is a procedure

that forces all elements of Group 1 (G1) and Group 2
(G2) to lie on one side of the hyperplane at each node
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for any depth d 2 f0; : : : ;D�1g. SPS is a special use
of a variant based on a proposal of Glover [18].

� SPS decision tree is a tree that results from the two-
group classification iteratively applying the SPS pro-
cedure. The root node (d D 0) contains all the enti-
ties in the data set, and at d D D the two leaf nodes
correspond to the final separation step.

For a given maximum depth D, an initial multi-
hyperplane model considers each possible SPS tree type
of depth d, for d D 0; : : : ;D� 1. A root node is viewed
as a “problem” node where all data points from both
groups need to be separated. A leaf node, on the other
hand, is considered to be a “decision” node where data
points are classified into two groups. Define slicing vari-
ables sli for i 2 f1; : : : ;D � 1g. There are total of
D � 1 slicing variables needed for a tree having max-
imum depth D. Specifically, at depth d D 1, sl1 D 0 if
the “left” node constitutes a leaf node while the “right”
node constitutes a root (or problem) node.Without loss
of generality, we herein consider D D 3 for the initial
multi-hyperplane model. The mathematical model for
multi-hyperplane SVM can be formally defined as fol-
lows.

Let M and " denote large and small positive con-
stants, respectively, and G denote a set of the union of
entities in G1 and G2. Suppose there are n entities in the
training data set. Define a binary variable z�i D 0 if ob-
ject i is correctly classified by the “tree”, otherwise z�i D
1. Define a binary variable and z�hi D 0 if object i is cor-
rectly classified by “hyperplane h”, otherwise z�hi D 1.
The multi-hyperplane SVM model also includes tradi-
tional hyperplane constraints for each depth d of the
tree and the normalization constraint, which is similar
to the mixed integer programmingmodel in [18]. Then,
" is added to prevent data points from lying on the hy-
perplane. Tree-type constraints are included to identify
the optimal tree structure for the data set, which will
be in part of the optimal classification rule. Binary vari-
ables yi are used for tree types (0,1) and (1,0) to acti-
vate or deactivate either-or constraints. The SPS deci-
sion tree formulation for the depth D D 3 is given by

min
nX

iD1

z�i

s:t:Aixd � Mzdi C ˇi D bd � "

i 2 G1; d D 1; 2; 3 (3)

Aixd CMzdi � ˇi D bd C "

i 2 G2; d D 1; 2; 3 (4)

M(sl1 C sl2)C z�i
� z1i C z2i C z3i � 2 i 2 G1 (5)

M(sl1 C sl2)CMz�i
� z1i C z2i C z3i i 2 G2 (6)

M(2 � sl1 � sl2)CMz�i
� z1i C z2i C z3i i 2 G1 (7)

M(2 � sl1 � sl2)C z�i
� z1i C z2i C z3i � 2 i 2 G2 (8)

M(1C sl1 � sl2)C z�i � z1i � Myi
i 2 G1 (9)

M(1C sl1 � sl2)CMz�i
� z2i C z3i � M[1 � yi] i 2 G1 (10)

M(1C sl1 � sl2)C z�i � z1i
i 2 G2 (11)

M(1C sl1 � sl2)C z�i
� z2i C z3i � 1 i 2 G2 (12)

M(1C sl1 � sl2)C z�i � z1i
i 2 G1 (13)

M(1C sl1 � sl2)C z�i � z2i C z3i � 1

i 2 G1 (14)

M(1C sl1 � sl2)C z�i � z1i � Myi
i 2 G2 (15)

M(1C sl1 � sl2)CMz�i
� z2i C z3i � M[1 � yi] i 2 G2 (16)
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nX
jD1

3X
dD1

x jd D 1 (17)

z�i 2 f0; 1g; zd i 2 f0; 1g; yi 2 f0; 1g;

i 2 G; d D 1; 2; 3

slk 2 f0; 1g k D 1; 2; x; b unrestricted,

where the constraints in Eqs. (3)-(4) are the hyper-
plane constraints, Eqs. (5)-(6) are the constraints for
tree type (0,0), Eqs. (7)-(8) are the constraints for tree
type (1,1), Eqs. (9)-(12) are the constraints for tree type
(0,1), Eqs. (13)-(16) are the constraints for tree type
(1,0), and Eq. (17) is the normalization constraint. This
small model with D D 3 performs well for small depths
and has computational limitations. The reader should
refer to [6] for a greater detail of an improved and gen-
eralized structure model for all types of SPS trees.

Support Feature Machines

Support Feature Machines (SFM) proposed in [10] is
a mathematical programming technique used to iden-
tify a set of features that gives the highest performance
in classification using the nearest neighbor rule. SFM
can be formally defined as follows. Assume there are n
data points, each withm features, we define the decision
variables x j 2 f0; 1g ( j D 1; : : : ;m) indicating if fea-
ture j is selected by SFM and yi 2 f0; 1g (i D 1; : : : ; n)
indicating if sample i can be correctly classified by SFM.
There are two versions of SFM, voting and averaging.
Each version uses different weight matrices, which are
provided by user’s classification rule.

The objective function of voting SFM is to maximize
the total correct classification as in Eq. (18). There are
two sets of constraints used to ensure that the training
samples are classified based on the voting nearest neigh-
bor rule as in Eqs. (19)-(20). There is a set of logical
constraints in Eq. (21) used to ensure that at least one
feature is used in the voting nearest neighbor rule. The
mixed-integer program for voting SFM is given by:

max
nX

iD1

yi (18)

s.t.
mX
jD1

ai jx j �

mX
jD1

x j

2
� Myi

for i D 1; : : : ; n (19)

mX
jD1

x j

2
�

mX
jD1

ai jx j C � � M(1 � yi )

for i D 1; : : : ; n (20)

mX
jD1

x j � 1 (21)

x 2 f0; 1gm; y 2 f0; 1gn ;

where ai j D 1 if the nearest neighbor rule correctly
classified sample i at electrode j, 0 otherwise, n is total
number of training samples, m is total number of fea-
tures,M =m/2, and � is a small positive number used to
break a tie during the voting (0 < � < 1/2).

The objective function of averaging SFM is to maxi-
mize the total correct classification as in Eq. (22). There
are two sets of constraints used to ensure that the train-
ing samples are classified based on the distance aver-
aging nearest neighbor rule as in Eqs. (23)-(24). There
is a set of logical constraints in Eq. (25) used to ensure
that at least one feature is used in the distance averag-
ing nearest neighbor rule. The mixed-integer program
for averaging SFM is given by:

max
nX

iD1

yi (22)

s.t.
mX
jD1

d̄i j x j �

mX
jD1

di jx j � M1i yi

for i D 1; : : : ; n (23)

mX
jD1

di jx j �

mX
jD1

d̄i j x j � M2i (1 � yi )

for i D 1; : : : ; n (24)

mX
jD1

x j � 1 (25)

x 2 f0; 1gm; y 2 f0; 1gn ;

where di j is the average statistical distance between
sample i and all other samples from the same class at
feature j (intra-class distance), d̄i j is the average statis-
tical distance between sample i and all other samples
from different class at feature j (inter-class distance),
M1i D

Pm
jD1 di j , and M2i D

Pm
jD1 di j .
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Probabilistic OptimizationModels

The deterministic classification models in the previous
section make a strong assumption that the data are sep-
arable. In the case that the data may not be well sepa-
rated, using the deterministic models may lead to a high
misclassification rate. The classification models that in-
corporate probabilities may be a better option for such
noisy data. When the population densities and prior
probabilities are known, there are probabilistic models
that consider constrained rules with a reject option [2]
as well as a Baysian-based model [4].

Bayesian-Based Mathematical Program

The Baysian-based mathematical program that are con-
formedwith the Bayesian decision theoretic approach is
proposed by Asparouhov and Danchev [4]. The model
can be formally defined as follows. Denote c 2 < as
a cut-off value, x 2 Bm as a vector of m binary val-
ues, and ! 2 <m is a decision variable having m-
dimensional vector of real numbers. A preprocessing
needs to be performed so that if xT! � c, the entity
x belong to class 1; otherwise it belongs to class 2. Sup-
pose we have a set of n data points, n1 data points are
in G1 and n2 data points are in G2, (n D n1 C n2).
Let s be a non empty multinomial cell. Denote nis as
the number of design set observation from the class i,
where i D 1; 2, falling in this cell s. There are 2m num-
ber of multinomial cells. Each cell is unique and all ob-
servations that belongs to it have exactly the same val-
ues of them binary variables. DenoteM as a sufficiently
large positive real number, and � as a small positive
number. In addition to having a geometric interpreta-
tion, this formulation is inspired from Bayesian deci-
sion theoretic approach and having prior probabilities,
ni /n > 8i, incorporated. Experimental studies in [4]
suggest this Baysian-based model can give better per-
formance than other contemporary linear discriminant
models. The Baysian-based classification formulation is
given by

min
!;zs;c

X
s

(jn1s � n2s j zs Cmin(n1s ; n2s))

s:t: xTs ! � Mzs � c if n1s � n2s
xTs ! CMzs � c C " if n1s < n2s
n1s C n2s ¤ 0

zs 2 f0; 1g; ! 2 <m ; c 2 < :

Probabilistic Models for Classification

An optimization model proposed by Anderson [2]
incorporates population densities, prior probabili-
ties from all groups, and misclassification proba-
bilities. This method is aimed to find a partition
fR0; R1; : : : ; RGg of Rem where m is the number of fea-
tures. This method naturally forms a multi-group clas-
sification. The objective is to maximize the probability
of correct allocation subject to constraints on the mis-
classification probabilities. The mathematical model
can be formally defined as follows. Let f h, h D 1; : : : ;G,
denote the group conditional density functions. Let g

denote the prior probability that a randomly selected
entity is from group g, g D 1; : : : ;G, and ˛hg , h ¤ g,
are constants between 0 and 1. The probabilistic classi-
fication model is then given by

min
GX

gD1

g

Z

Rg

fg(w)dw

s:t:
Z

Rg

fh(w)dw � ˛hg

for h; g D 1; : : : ;G; h ¤ g :

The optimal rule that can be used as a classification
method is given by

Rg D

�
x 2 <k : Lg(x) D max

h 2 0;1;:::;G
Lh(x)

	
; (26)

where g D 0; : : : ;G, L0(x) D 0, and Lh(x) D
h fh(x) �

PG
iD1;i¤h �i h fi(x), for h D 1; : : : ;G. In

general, there exist nonnegative constants �i h ; i; h 2
1; : : : ;G; i ¤ h, such that this optimal rule holds. The
procedure for deriving a discriminant rule is composed
of two stages. The first stage is to compute f̂h, which are
estimated density functions f h, and ̂h , which are esti-
mated prior probabilities h, for h D 1; : : : ;G. There
are many methods proposed for density estimation.
The second stage is to estimate the optimal �0jh s, given
the estimates f̂ 0hs and ̂

0
hs. For estimating the �0jh s, there

is a MIP approach proposed in [14], and a LP approach
proposed in [22].

The MIP approach uses binary variables to record
whether each entity was allocated to each region. This
approach measures the probabilities of correct classi-
fication and misclassification for any candidate set of
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�0i h s, which are calculated as the proportion of train-
ing samples that fall into each of the regions. The ob-
jective is to maximize a linear combination of vari-
ables representing correct allocation. The proportions
of training samples misclassified were incorporated in
constraints on misclassification probabilities. On the
other hand, the LP approach does not have binary vari-
ables to incorporate proportions of misclassified train-
ing data points, and to provide a mechanism for mod-
eling a priori bounds on misclassification probabilities.
Instead, the LP approach provides a mechanism for es-
timating �0i hs that balances the minimization of mis-
classifications and the maximization of correct classifi-
cations. This can be demonstrated as follows. Redefine
the function Lh ; h D 1; : : : ;G, as

Lh(x) D h ph(x) �
GX

iD1;i¤h

�i h pi (x) ; (27)

where pi (x) D fi(x)/
PG

tD1 ft(x). This is analogous to
the definition of original pi in Eq. (26) since Rg can be
expressed as Rg D fx 2 <k : Lg(x) � Lh(x); h D
0; : : : ;Gg, if and only if,

��
1/
PG

tD1

�
ft(x)

�
Lg(x) ���

1/
PG

tD1

�
ft(x)

�
Lh(x):Note that this new definition

of Lh is just an assumption. In addition, we also as-
sume that we have a training sample of n data points
whose group classifications are known. There are ng
data points in group g and

PG
gD1 ng D n. For no-

tational convenience, let � D 1; : : : ;G and Ng D

1; : : : ; ng . Each data point x has k attributes, denoted
as xg j 2 <k for g D 1; : : : ;G and j D 1; : : : ; ng .

MIP Formulation for Anderson’s Model

In order to find the optimal estimation of the second
stage for solving Anderson’s formula in Eq. (27), after
the estimates f̂ 0hs and ̂

0
hs are given, the optimal �0jh s

is the final goal. For estimating the �0jh s, Gallagher et
al. [14] proposed a MIP formulation. Same notation
used in Anderson’s formula in last section is applied
here. The model ensures that the proportion of train-
ing data points and total data points ng of group g in
region Rh is less than or equal to a pre-specified per-
centage, ˛hg > (0 < ˛hg < 1), for h; g 2 � and h ¤ g.
The original formulation of the approach is a nonlinear

MIP model given by

min
Lhg j;yg j;	ih ;ug j

X
g2�

X
j2Ng

ug g j

s:t:

Lhg j D h p̂h(xg j) �
X

i2�nfhg

�i h p̂i (xg j) (28)

for h; g 2 �; j 2 Ng

yg j D max
˚
0; Lhg j : h D 1; : : : ;G

�
(29)

for g 2 �; j 2 Ng

yg j � Lgg j � M
�
1 � ugg j

�
(30)

for g 2 �; j 2 Ng

yg j � Lhg j � "(1� uhg j) (31)

for h; g 2 �; h ¤ g; j 2 Ng

X
j2Ng

uhg j � b˛hgngc (32)

for h; g 2 �; h ¤ g

�1 < Lhg j <1 for h; g 2 �; j 2 Ng

yg j � 0 for g 2 �; j 2 Ng

�i h � 0 for i 2 Ng ; h 2 �

ug j 2 f0; 1g for g 2 �; j 2 Ng

The above nonlinear mixed integer programming
model can be transformed to an equivalent linear mixed
integer model. The transformation is made by replacing
the constraint in Eq. (29) with the following constraints:

yg j � Lhg j h; g 2 �; j 2 Ng

ỹhg j � Lhg j � M(1 � vgh j) h; g 2 �; j 2 Ng

ỹhg j � h p̂h(xg j)vhg j h; g 2 �; j 2 NgX
h2G

vhg j � 1 g 2 �; j 2 Ng

X
h2G

ỹhg j D yg j g 2 �; j 2 Ng ;
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where ỹhg j � 0 and vgh j 2 f0; 1g, for h; g 2 �; j 2 Ng .
The constraints in Eq. (28) define the decision variable
Lhg j as a function value of Lh at xg j . The variable yg j
in Eq. (29) gives a result that xg j lies in region Rh, if
and only if, yg j D Lhg j . The binary variable uhg j is
used to indicate whether or not xg j lies in region Rh.
The constraints in Eq. (30) together with the objective
function ensure that ugg j D 1, if and only if, the jth
entity from group g is correctly allocated to group g.
The constraints in Eqs. (31)-(32) ensure that at most
b˛hgngc data points of group g are allocated to group
h, h ¤ g. Note that the condition of indicator vari-
ables, uhg j D 0, h ¤ g, implies that xg j … Rh by
Eq. (31), but the converse need not hold. As a result,
the number of misclassifications may be overcounted.
To force the converse hold, (that is uhg j D 1, if and
only if, xg j 2 Rh ;8h; g 2 �), one can include the
following constraints: yg j � Lhg j � M

�
1 � uhg j

�
for

h; g 2 �; j 2 Ng . However, the addition of such con-
straints substantially increases the solution times and
the actual amount of overcounting is minimal. M and
" are large and small positive constants, respectively.
Since this MIP formulation is very difficult to solve,
especially it involves 2GN binary variables. There is
a preprocessing strategy suggested in [14] by aggregat-
ing variables and constraints. Special branching strate-
gies for solving the MIP model is also suggested in [14].
Those strategies include branching on the smallest in-
dexed fractional-valued binary variable, branching on
the most infeasible fractional-valued binary variable,
pseudo reduced-cost branching schemes, and strong
branching [3,7].

LP Formulation for Anderson’s Model

In order to estimate the �0jh s for solving Anderson’s
formula in the second stage in Eq. (27), Lee et al. [22]
proposed the Linear Programming (LP) model that
minimizes a penalty function in order to allocate each
training entity to its correct group or to the reserved-
judgment region. Note that same notation used in the
MIP approach and Anderson’s formula is consistent
here. The method is given by

min
Lhg j;!g j;yg j;	ih

X
g2�

X
j2Ng

�
c1!g j C c2yg j

�

s:t:

Lhg j D h p̂h(xg j) �
X

i2�nfhg

�i h p̂i (xg j) (33)

for h; g 2 �; j 2 Ng

Lgg j � Lhg j C !g j � 0 (34)

for h; g 2 �; h ¤ g; j 2 Ng

Lgg j C !g j � 0 (35)

for g 2 �; j 2 Ng

� Lhg j C yg j � 0 (36)

for h; g 2 �; j 2 Ng

�1 < Lhg j <1 for h; g 2 �; j 2 Ng

!g j � 0 for g 2 �; j 2 Ng

yg j � 0 for g 2 �; j 2 Ng

�i h � 0 for i 2 Ng ; h 2 � :

The constraints in Eq. (33) define the decision vari-
able Lhg j as a function value of Lh for xg j . If the op-
timal solution yields !g j D 0, for some (g, j) pair,
the constraints in Eqs. (34)-(35) imply that Lgg j D

maxf0; Lhg j : h 2 �g. Thus, when !g j D 0, it means
that the jth entity from group g is correctly classified. If
yg j D 0 is the case for some (g; j) pair, then the con-
straints in Eq. (36) implies that Lgg j D maxf0; Lhg j :
h 2 �g D 0. Hence, the jth entity from group g is
placed in the reserved-judgment region. If both !g j and
yg j are positive, the jth entity from group g is misclas-
sified. The optimization solver is attempting either to
correctly classify training data points (!g j D 0), or to
place them in the reserved-judgment region (yg j D 0).
The optimizer’s emphasis can be realized by varying the
weights c1 and c2. It is possible for both !g j and yg j to
be zero. One should decide how to interpret in such sit-
uation. Recall the optimal rule in Eq. (26), which con-
strains that if x belongs to the reserved judgment region
(h D 0) then it gives the function value L0(x) D 0.



702 D Differential Equations and Global Optimization

References

1. Abad PL, Banks WJ (1993) New LP based heuristics for the
classification problem. Eur J Oper Res 67:88–100

2. Anderson JA (1969) Constrained discrimination between k
populations. J Royal Stat Soc Series B 31:123–139

3. Applegate D, Bixby RE, Chvatal V, Cook W (1994) The trav-
eling salesman problem. Technical Report, Dept Comput
Appl Math, Rice University, Houston, TX

4. Asparouhov O, Danchev S (1997) Discrimination and clas-
sification in the presence of binary variables. Biocybern
Biomed Eng 17(1–2):25–39

5. Bennett KP, MangasarianOL (1992) Robust linear program-
ming discrimination of two linearly inseparable sets. Op-
timMeth Soft 1:23–34

6. Better M, Glover F, Samorani M (2006) Multi-Hyperplane
Formulations for Classification and Discrimination Analy-
sis. submitted for the Student Paper Award of the Decision
Analysis Society, working paper, University of Colorado,
Boulder, Colorado

7. Bixby RE, Cook W, Cox A, Lee EK (1995) Computational
experience with parallel mixed integer programming in
a distributed environment. Research Monograph CRPC-
TR95554, Center for Research on Parallel Computation,
Rice University, Houston, TX

8. Bradley PS, Mangasarian OL, Street WN (1998) Feature se-
lection via mathematical programming. INFORMS J Com-
put 10:209–217

9. Burges C (1998) Tutorial on Support Vector Machines for
Pattern Recognition. Data Min Know Discov 2:121–167

10. Chaovalitwongse WA, Fan YJ, Sachdeo RC (2006) Novel
Optimization Models for Multidimensional Time Series
Classification: Application to the Identification of Abnor-
mal Brain Activity. Submitted to Oper Res

11. Duda RO, Hart PE, Stork DG Pattern Classification, 2nd edn.
Wiley-Interscience, New York

12. Freed E, Glover F (1981) Simple but powerful goal pro-
gramming models for discriminant problems. Eur J Oper
Res 7(1):44–60

13. Freed E, Glover F (1986) Resolving certain difficulties and
improving the classification power of the LP discriminant
analysis procedure. Decis Sci 17:589–595

14. Gallagher RJ, Lee EK, Patterson DA (1997) Constrained dis-
criminant analysis via 0/1mixed integer programming. An-
nals Oper Res 74:65–88

15. Glen JJ (1999) Integer programming methods for normal-
ization and variable selection in mathematical program-
ming discriminant analysis models. J Oper Res Soc 50:
1043–1053

16. Glen JJ (2003) An iterative mixed integer programming
method for classification accuracy maximizing discrimi-
nant analysis. Comput Oper Res 30:181–198

17. Glen JJ (2005) Mathematical programmming models for
piecewise-linear discriminant analysis. J Oper Res Soc
56:331–341

18. Glover F (1990) Improved Linear Programming Models for
Discriminant Analysis. Decis Sci 21(4):771–785

19. Glover F (1993) Improved Linear and Integer Programming
Models for Discriminant Analysis. Creative and Innovative
Approaches to the Science of Management. RGK Founda-
tion Press, Austin, pp 187–215

20. Glover F, Keene S, Duea B (1988) A new class of models for
the discriminant problem. Decis Sci 19:269–280

21. Joachimsthaler EA, Stam A (1990) Mathematical Program-
ming Approaches for the Classification Problem in Two-
Group Discriminant Analysis. Multi Behav Res 25(4):427–
454

22. Lee EK, Gallagher RJ, Patterson DA (2003) A Linear
Programming Approach to Discriminant Analysis with
a Reserved-Judgment Region. INFORMS J Comput 15(1):
23–41

23. Mangasarian OL (1997) Mathematical Programming in
Data Mining. Data Min Know Discov 1:183–201

24. Shimodaira H, Noma KI, Nakai M, Sagayama S (2001) Dy-
namic Time-Alignment Kernel in Support Vector Machine.
Adv Neural Inf Process Sys 14(2):921–928

Differential Equations
and Global Optimization
MAURIZIO BRUGLIERI1, PIERLUIGI MAPONI1,
MARIA CRISTINA RECCHIONI2, FRANCESCO ZIRILLI3

1 Dip. Mat. e Fisica, University Camerino,
Camerino, Italy

2 Ist. Mat. e Stat., University Ancona, Ancona, Italy
3 Dip. Mat. G. Castelnuovo,
University Roma La Sapienza, Roma, Italy

MSC2000: 60G35, 65K05

Article Outline

Keywords
Mathematical Background
Global Unconstrained Optimization
Global Constrained Optimization
Miscellaneous Results

Clique Problem
Quasivariational Inequalities

See also
References

Keywords

Global optimization; Stochastic differential equation



Differential Equations and Global Optimization D 703

Let N be the set of natural numbers. Let N 2 N and RN

be the N-dimensional real Euclidean space, let CN be
the N-dimensional complex Euclidean space, R, C are
used in place of R1, C1 respectively. Let R+ = {x 2 R: x
� 0}. Let x 2 R; then |x| denotes the absolute value of x.
Let x, y 2 RN ; then (x, y) denotes the scalar product in
RN and k x k denotes the euclidean norm in RN . Let SN

= {x 2 RN+1: k x k = 1}.
LetD� RN be a connected domain, let F:D!R be

a given function. The following problem is considered:

min
x2D

F(x): (1)

When D = RN problem (1) is called the global un-
constrained optimization problem. When D � RN it is
called the global constrained optimization problem.

Without loss of generality one considers only the
minimization problem, that is, problem (1), since the
maximization problem can be easily reduced to a mini-
mization problem.

To solve problem (1) means to find a point x� 2 D
such that F(x�)� F(x), 8x 2 D.

A large number of problems with great theoretical
and practical interest can be formulated as global opti-
mization problems, that is, as problem (1).

In this article the global optimization problems are
studied only from the point of view of numerical opti-
mization and in particular of numerical methods based
on differential equations. Many other fruitful points of
view are possible to study that include the set of global
minimizers of F on D or in general the set of critical
points of F onD depending on the hypotheses made on
F and D.

A method to solve problem (1) in the sense of nu-
merical optimization is usually an iterative scheme that
from a given initial guess x0 2D is able to compute a se-
quence {xn 2 D: n 2 N} such that xn ! x� when n!
1.

Problem (1) can be easily solved in some special
cases, that is, when the function F and the domain D
have special forms, for example one can recall the fol-
lowing two important cases:
� linear programming problem: F linear function, D

convex polyhedron, i. e., D � RN is defined implic-
itly by means of equalities and inequalities between
linear functions;

� convex programming problem: F convex function, D
� RN convex region.

One notes that the linear programming problem can
be considered as a special case of the convex program-
ming problem. For both cases effective methods to solve
problem (1) are known, e. g., for the linear program-
ming problem the simplex method, see [7], and for
the convex programming problem the Newton method
coupled with some strategy to treat the constraints that
define D, for example active set strategy, see [9].

In general, problem (1) is a difficult one since the
property of being a global minimizer is not a local prop-
erty. That is, a global minimizer x� cannot be recog-
nized from local properties of the function F at x�, such
as the value of F and its derivatives at x�. Numerical al-
gorithms to recognize global properties are unusual and
in general computationally expensive.

For example, let D = R,m, ˛ 2 R, ı > 0, one consid-
ers the following two functions:

F1(x) D �
1

1C x2
;

F2(x) D �
1

1C x2

C m

(
e

1
(x�˛)2�ı2 e

1
ı2 ; x 2 (˛ � ı; ˛ C ı);

0; x … (˛ � ı; ˛ C ı):

Function F1 has in x = 0 the unique local minimizer
which is also the global minimizer, i. e. x� = 0. Let m
< �1, 0 < ı < |˛|; then function F2 has several critical
points including two local minimizers, one is x = 0 and
the other is x = x2 2 (˛ � ı, ˛ + ı). Moreover the global
minimizer of F2 is x = x� = x2. One notes that F1, F2 are
smooth functions and that they coincide, for every x 2
R \ (˛ � ı, ˛ + ı) where ı > 0 is arbitrary.

Let D = RN , let F: D ! R be a continuously dif-
ferentiable function, let rF be the gradient of F, let
x 2 D be such that (rF)(x) 6D 0 then the vector �
(rF)(x) gives the direction of steepest descent for the
function F at the point x. One can consider the follow-
ing system of differential equations:

dx
dt

(t) D �(rF)(x(t)); t > 0; (2)

x(0) D x0: (3)

Under some hypotheses on F, the solution of prob-
lem (2), (3) is a trajectory in RN starting from x0 and
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ending in the critical point x�loc(x
0) of F whose attrac-

tion region contains x0. Using a numerical integration
scheme for (2), (3) one can obtain a numerical opti-
mization method, for example choosing the Euler inte-
gration scheme with variable stepsize from (2), (3) one
obtains the so-called steepest descent algorithm. Let �k 2
RN be the approximation of x(tk), k 2 N, where t0 = 0,
0 < tk < tk+1 < +1, k = 1, 2, . . . , and tk ! +1 when k
!1, obtained with a numerical optimization method
coming from (2), (3). Suppose {�k k2N} is a sufficiently
good approximation of the solution x(t), t > 0 of (2), (3)
one has limk!1�

k = limt! +1 x(t) = x�loc(x
0), thus the

numerical optimization methods obtained from (2), (3)
compute critical points that depend on the initial guess
x0. So that these critical points usually are not global
minimizers of F.

One can consider numerical optimization methods
due to other differential equations instead of (2), that
is differential equations taking in account higher or-
der derivatives of F or of x(t). However the minimizers
computed with these numerical optimization methods
depend only on local properties of the function F, thus
in general they will not be global minimizers of F. So
that methods based on ordinary differential equations
are inadequate to deal with problem (1).

In this article it is described how to use stochas-
tic differential equations to avoid this difficulty. In fact
one wants to destabilize the trajectories generated by
problem (2), (3) using a stochastic perturbation in or-
der to be able to reach global minimizers. This must
be an appropriate perturbation, that is the correspond-
ing perturbed trajectories must be able to leave the at-
traction region of a local minimizer of F to go in an
attraction region of another minimizer of F obtaining
as t ! +1 the solution of problem (1). This is done
by adding a stochastic term, i. e., a Brownian motion
on the right-hand side of equation (2). Moreover this
stochastic term takes into account the domain D, when
D � RN . This is done introducing the solution of the
Skorokhod reflection problem.

In the second section one gives some mathematical
background about stochastic differential equations that
is necessary to state the results of the third and fourth
sections. In the third section, the unconstrained version
of problem (1) is treated, i. e.,D = RN . In the fourth sec-
tion, the constrained version of problem (1) is treated,
i. e., D� RN . In both these sections one gives methods,

convergence analysis and discussion when possible of
a relevant software library. In the last section one gives
some information about new application areas of global
optimization such as graph theory and game theory.

Mathematical Background

Let ˝ � R, ˙ be a �-field of subsets of ˝ and P be
a probability measure on ˙ . The triple (˝;˙; P) is
called a probability measure space, see [5] for a detailed
introduction to probability theory. Let ˝ 0 � R, � be
a topology of subsets of˝ 0. Then X :˝!˝ 0 is a ran-
dom variable if {X 2 A} 2˙ for every A 2 � .

The distribution function GX : R! [0, 1] of X is de-
fined by GX(x) D PfX � xg, x 2 R and one denotes
with gX its density. The expected value or the mean
value of X is defined as follows:

m(X) D
Z

R
xGX( dx) D

Z
R
xgX(x) dx (4)

and the variance of X is given by:

v(X) D m((X � m(X))2): (5)

For example, a random variable X has discrete distri-
bution, or is concentrated on x1, . . . , xn, when gX(x) =Pn

iD1 piı(x � xi), where pi > 0, xi 2 ˝ 0, i = 1, . . . , n,Pn
iD1 pi = 1 and ı is the Dirac delta. Given m 2 R, v >

0 a random variable has normal distribution when

gX(x) D
1

p
2v

e�
(x�m)2

2v ;

one notes that m(X) =m and v(X) = v.
A stochastic process is a family of random variables

depending on a parameter t, that is, {X(t):˝!˝ 0, t �
0}. A Brownian motion is a stochastic process {w(t): t �
0} having the following properties:
� Pfw(0) D 0g D 1;
� for every choice of ti, i = 1, . . . , k, 0� ti < ti+1 < +1,

i = 1, . . . , k� 1, the increments w(ti+1) � w(ti), i = 1,
. . . , k� 1, are independent and normally distributed
random variables with mean value equal to zero and
variance equal to ti+1 � ti.
An N-dimensional Brownian motion is a N-dimen-

sional process

fw(t) D (w1(t); : : : ;wN(t)) : t � 0g

where its components {wi(t):˝!˝ 0, t � 0}, i = 1, . . . ,
N, are independent Brownian motions. The Brownian
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motion is a good mathematical model to describe phe-
nomena that are the superposition of a large number
of chaotic elementary independent events. The most
famous example of Brownian motion is the motion
of pollen grains immersed in a fluid, the grains have
a chaotic perpetual motion due to the collisions with
the molecules of the fluid, see [15, p. 39].

Let ˘ = ˝ 0 × � � � × ˝ 0 � RN , where × denotes the
Cartesian product of sets. Let � 0 be a topology of sub-
sets of ˘ . Let s, t, be such that 0 � s � t, let x 2 ˘ ,
A2� 0, then the transition distribution function of aN-
dimensional stochastic process {X(t) : t � 0} is defined
as follows:

T(s; x; t;A) D PfX(t) 2 A and X(s) D xg: (6)

When T can be written as:

T(s; x; t;A) D
Z
A
p(s; x; t; y) dy (7)

for every 0 � s � t, x 2 ˘ , A 2 � 0 then the function p
is called the transition probability density of the process
{X(t): t � 0}.

Finally, if there exists a density distribution function
 that depends only on x 2˘ such that:

(x) D lim
t!C1

p(s;u; t; x); (8)

then  is called the steady-state distribution density of
the process {X(t): t � 0}.

One considers the following stochastic differential
equation:

dZ(t) D ˛(Z(t); t) dt C ˇ(Z(t); t) dw(t);

t > 0;
(9)

Z(0) D x0; (10)

where w is the N-dimensional Brownian motion, ˛ is
the drift coefficient and ˇ is the diffusion coefficient,
see [8, p. 98] or [8, p. 196] for a detailed discussion.
One notes that dw cannot be considered as a differen-
tial in the elementary sense and must be understood as
a stochastic differential, see [8, p. 59]. Under regularity
assumptions on ˛ and ˇ there exists a unique solution
{Z(t): t > 0} of (9), (10), see [8, p. 98].

When ˛ is minus the gradient of a potential
function equation (9) is called the Smoluchowski-
Kramers equation. The Smoluchowski-Kramers equa-
tion is a singular limit of the Langevin equation.

The Langevin equation expresses Newton principle for
a particle subject to a random force field, see [15, p. 40].

Let divy be the divergence operator with respect to
the variables y,�y be the Laplace operator with respect
to the variables y and Lˇ , ˛(�) = divy(�˛)� (1/2)�y(�ˇ2).
Under regularity assumptions on ˛ and ˇ, the transi-
tion probability density p(s, x, t, y), 0 � s < t, x, y 2
RN , associated to the solution {Z(t): t � 0} of problem
(9), (10) exists and satisfies the Fokker–Planck equa-
tion, (see 8, p. 149]) that is, given x 2 RN , s � 0 one
has:

@p
@t
C Lˇ;˛(p) D 0; y 2 RN ; t > s; (11)

lim
t!s;t>s

p(s; x; t; y) D ı(x� y); y 2 RN : (12)

For the treatment of the constrained global opti-
mization, that is, problem (1) with D� RN , a stochastic
process depending on the domain D must be consid-
ered. Let �(x) � SN�1 be the set-valued function that
gives the outward unit normals of the boundary @D of
D at the point x 2 @D. One notes that when x is a regu-
lar point of @D, �(x) is a singleton. Let �: [0, T]! RN ,
with possibly [0, T] = R+, let |�|(t) be the total variation
of � in the interval [0, t], where t < T. The Skorokhod
problem is defined as follows: let �,  , �: [0, T]! RN ,
then the triple (�,  , �) satisfies the Skorokhod prob-
lem, on [0, T] with respect to D, if |�|(T) < +1, �(0) =
 (0) and for t 2 [0, T] the following relations hold:

	(t) D  (t)C 
(t); (13)

	(t) 2 D; (14)

j
j (t) D
Z t

0
�fr2R : 	(r)2@Dg(s) d j
j (s); (15)


(t) D �
Z t

0
�(s) d j
j (s); (16)

where �S is the characteristic function of the set S and
�(s) 2 �(�(s)), when s 2 [0, T] and 	(s) 2 @D and �(s)
= O elsewhere. Viewing  (t), t 2 [0, T], as the trajec-
tory of a point A 2 RN , one has that at time zero A is
inside D, since  (0) 2 D. Moreover the trajectory of A
is reflected from the boundary of D and the reflected
trajectory can be viewed as �(t), t 2 [0, T]. That is, �
is equal to  until A 2 D, when A goes out of D it is
brought back on @D in the normal direction to @D. One



706 D Differential Equations and Global Optimization

notes that the function 
 gives the reflection rule with
respect to the boundary of D of the function  . In [16]
it is proved that under suitable assumptions on D and
F there exists a unique solution of the Skorokhod prob-
lem.

One considers the following stochastic differential
equation with reflection term, that is:

dZ(t) D ˛(Z(t); t) dt

C ˇ(Z(t); t) dw(t)C d
(t); t > 0 ; (17)

Z(0) D x0; (18)

where

(Z;Z � 
;
) (19)

is the solution of the Skorokhod problem. One notes
that relations (14), (19) imply that the solution of (17),
(18) verifies Z(t) 2 D, t > 0. In [16] it is proved that
under some hypotheses there exists a unique solution
{Z(t): t � 0} of (17), (18), (19) for every x0 2 D.

Global UnconstrainedOptimization

Given problem (1) with D = RN one considers the fol-
lowing stochastic differential equation:

dZ(t) D �(rF)(Z(t)) dt C �(t)dw(t);

t > 0; (20)

Z(0) D x0; (21)

where {w(t): t � 0} is theN-dimensional Brownian mo-
tion and �(t) is a suitable decreasing function that guar-
antees the convergence of the stochastic process {Z(t) : t
� 0} to a random variable with density concentrated on
the global minimizers of F. Under some assumptions
on F, the transition probability density p(0, x0, t, x), x0,
x 2 RN , t > 0, of the process {Z(t) : t � 0} exists and ver-
ifies equations (11), (12); moreover, when � � �, � > 0,
for the steady-state distribution density �(x), x 2 RN ,
the following equation holds:

L�;�rF (�) D 0; x 2 RN ; (22)

one has:

�(x) D C�e�
2F(x)
�2 ; x 2 RN ; � > 0; (23)

where:

C� D
�Z

RN
e�

2F(y)
�2 dy

��1
; � > 0: (24)

One assumes C � < +1 for � > 0. Moreover, one has:

p(0; x0; t; x) D �(x)

C e�
2F(x0)
�2

1X
nD1

n
� (x)

n
� (x

0)e	
n
� t ; (25)

where n
� is the eigenfunction of L�,�rF correspond-

ing to the eigenvalue �n
� , n = 1, 2, . . . , and 0 = �0� >

�1�> � � � . One notes that the eigenfunctions n
� , n = 1,

2 . . . , are appropriately normalized and � is the eigen-
function of L�,�rF corresponding to the eigenvalue �0�
= 0. Consider N = 1, the function F smooth and with
three extrema in x�, x0, x+ 2 R such that x� < x0 < x+.
Moreover, F increases in (x�, x0) and in (x+, +1) and
decreases in (�1, x�) and in (x0, x+). Let:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

c� D
d2F
dx2

(x�);

c0 D
d2F
dx2

(x0);

cC D
d2F
dx2

(xC):

(26)

One assumes c˙, c0 to be nonzero. In [1] it is shown
that when F(x�) < F(x+), one has �(x)! ı(x� x�) as
�! 0 while when F(x�) = F(x+) one has �(x)! �ı(x
� x�) + (1� �)ı(x� x+), where � D [1C

q
c�
cC ]
�1 as �

! 0, and the limits are taken in distribution sense. That
is in [1] it is shown that the steady-state distribution
density tends to Dirac deltas concentrated on the global
minimizers of F when �! 0.

In [12] it is shown that:

�1� 	 �

p
cCc0

2
e�

2
�2
ıF as � ! 0; (27)

where ı F = max{F(x0) � F(x�), F(x0) � F(x+)}. For-
mula (25) shows that p converges to � when t! +1,
but the rate of convergence becomes slow when � is
small. Replacing � with �(t) a slowly decreasing func-
tion such that �(t)! 0 when t! +1, using elemen-
tary adiabatic perturbation theory one can expect that
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the condition:
Z C1
0

e�
2

�2(t) ıF dt D C1 (28)

guarantees that {Z(t) : t > 0} is a solution of (20), (21)
when t! +1 converges to a random variable concen-
trated on the global minimizers of F.

In [6] the following result is proved:

Theorem 1 (convergence theorem) Let F : RN ! R be
a twice continuously differentiable function satisfying the
following properties:

min
x2RN

F(x) D 0; (29)

lim
kxk!C1

F(x) D lim
kxk!C1

k(rF)(x)k D C1; (30)

lim
kxk!C1

k(rF)(x)k2 � (	F)(x) > �1; (31)

let �(t) D
p
(c)/(log t) for t ! +1, where c > cF > 0

and cF is a constant depending on the function F. Then
the transition probability density p of the process {Z(t) :
t � 0}, solution of (20), (21), converges weakly to a sta-
tionary distribution  , that is:

p(0; x; t; �)!  when t! C1: (32)

Moreover the distribution  is the weak limit of� , given
by (23), as �! 0.

One notes that (20), (21) is obtained perturbing the tra-
jectories given by the steepest descent equation for F
with the Brownian motion and � is a factor that con-
trols the amplitude of this perturbation. The fact that
�(t)! 0 when t ! +1 makes possible the stabiliza-
tion of the perturbed trajectories at the minimizers of
F. With the assumptions of the convergence theorem
it is possible to conclude that  is concentrated on the
global minimizers of F, so that the random variable Z(t)
= (Z1(t), . . . , ZN(t)) ‘converges’ to x�, solution of prob-
lem (1), as t ! +1. That is, when x� is the unique
global minimizer of F, then PfZi (t) D x�i g ! 1 when
t! +1 for i = 1, . . . , N.

The stochastic differential equation (20) can be in-
tegrated numerically to obtain an algorithm for the so-
lution of problem (1). Let t0 = 0, tk =

Pk�1
lD0 hl, where hl

> 0, l = 0, 1, . . . , are such that tk ! +1 when k!1
then using the Euler method one has:

�0 D x0; (33)

�kC1 D �k � hk(rF)(�k)

C �(tk)(w(tk C hk) � w(tk)); (34)

where k = 0, 1, . . . and �k 2 RN is the approximation of
Z(tk), k = 1, 2, . . . , see [2,3].

In (34) due to the presence of the stochastic term,
one can substitute the gradient of F with a kind of
‘stochastic gradient’ of F in order to save computational
work, see [2,3] for details.

One notes that the sequence {�k: k 2 N} depends
on the particular realization of the Brownian motion
{w(tk) : k = 0, 1, . . . }. That is, solving several times prob-
lem (20), (21), by means of (33), (34), the solutions ob-
tained are not necessarily the same. However, the con-
vergence theorem states that ‘all’ the solutions {�k : k 2
N} obtained by (33), (34) tend to x� as k! +1.

So that in the numerical algorithm derived from
(20), (21) using (33), (34) one can approximate by
means of nT independent realizations (i. e., trajectories)
of the stochastic process {Z(t) : t � 0}, solution of (20),
(21). A possible strategy for a numerical algorithm is the
following: after an ‘observation period’ the various tra-
jectories are compared, one of them is discarded and is
not considered any more, another one is branched. The
new set of trajectories are computed throughout the
next observation period. The following stopping con-
ditions are used:
� uniform stop: the final values of the function F at the

end of the various trajectories are numerically equal;
� maximum trial duration: amaximum number of ob-

servation periods has been reached.
One notes that the algorithms based on the dis-

cretization of the stochastic differential equations have
sound mathematical basis, that is for a wide class of
functions F some convergence results such as the con-
vergence theorem given above are available. These al-
gorithms usually have a slow convergence rate, this can
be seen from the kind of function � which is required
in the convergence theorem. This implies that the algo-
rithms based on stochastic differential equations have
an high computational cost, so that their use is usu-
ally restricted to low-dimensional problems. However
these algorithms can be parallelized with a significant
computational advantage, for example in the algorithm
described above each trajectory can be computed inde-
pendently from the others until the end of an obser-
vation period. One notes that the algorithms derived
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from (20), (21) are in some sense similar to the simu-
lated annealing algorithm (cf. also� Simulated anneal-
ing methods in protein folding) introduced in combi-
natorial optimization in [11].

Global ConstrainedOptimization

Given problem (1) with D � RN the following stochas-
tic differential equation with reflection term is consid-
ered:

dZ(t) D �(rF)(Z(t)) dt

C �(t) dw(t)C d
(t);

t > 0; (35)

Z(0) D x0; (36)

where x0 2D, {w(t) : t � 0} is the N-dimensional Brow-
nian motion, �(t) is a suitable decreasing function that
guarantees the convergence of the stochastic process
{Z(t) : t > 0} to a random variable with density con-
centrated on the global minimizers of F onDwhen t!
+1 and �(t) is a suitable function to assure Z(t)2D, t >
0, that is, (Z, Z � �, �) is the solution of the Skorokhod
problem in R+ respect to D.

Let int(D) be the set of the interior points of D. One
assumes that D is the closure of int(D). Let p(0, x0, t, x),
x0, x2 int(D), t > 0, be the transition probability density
of the process {Z(t): t > 0}, solution of (35), (36), when
� � �, � > 0. Then p satisfies the Fokker–Planck equa-
tion:

@p
@t
C L�;�rF (p) D 0; x 2 int(D); (37)

lim
t!0C

p(0; x0; t; x) D ı(x� x0); x 2 int(D); (38)

�
�2

2
rxpC prF;n(x)

�
D 0;

x 2 @D; t > 0; (39)

where L�,�rF is defined in (11) (12) and n(x) 2 �(x) is
the outward unit normal to @D in x 2 @D. One notes
that boundary condition (39) assures that PfZ(t) 2
Dg D 1 for every t > 0. This boundary condition follows
from the requirement that (Z, Z � �, �) is the solution
of the Skorokhod problem.

One assumes the following properties of F and D:
� F : D! R is twice continuously differentiable;

� D � RN is a bounded convex domain such that ex-
ists p satisfying (37), (38), (39) and exists the steady-
state distribution density  of the process solution
of (35), (36);

� let � be the steady-state distribution density of the
process solution of (35), (36) when � � �, � > 0, that
is:

�(x) D C�e�
2F(x)
�2 ; x 2 D; (40)

C� D
�Z

D
e�

2F(y)
�2 dy

��1
(41)

and  is the weak limit of � as �! 0.
In analogy with the unconstrained case one can con-
jecture that when D � RN and F : D rarr; R satisfy the
properties listed above and when �(t) D

p
(c)/(log t)

for t! +1, where c > cF > 0 and cF is a constant de-
pending on F, then the transition probability density
p(0, x0, t, y), x0, x 2 D, t > 0 of the process {Z(t): t �
0}, solution of (35), (36) converges to a steady-state dis-
tribution density  when t ! +1 and  is the distri-
bution density obtained as weak limit of � when �!
0. That is, the process {Z(t): t � 0} converges in law to
a random variable concentrated at the points x� 2 D
that solve problem (1).

A numerical algorithm to solve problem (1), with
D � RN , can be obtained using a numerical method to
integrate problem (35), (36). This is done integrating
numerically problem (20), (21) and ‘adding’ the con-
straints given by D. In the numerical algorithm the tra-
jectories can be computed using formulas (33), (34)
when the trajectories are in D, when a trajectory vio-
lates the constraints, it is brought back on @D putting
to zero its normal component with respect to the vi-
olated constraints. Finally the stopping conditions are
the same ones considered in the previous section.

Analogously to the unconstrained problem, the al-
gorithms based on the stochastic differential equations
for the constrained case have slow convergence rate.
However these algorithms have a high rate of paral-
lelism.

Miscellaneous Results

In this section are shown two mathematical problems
that are somewhat unusual as optimization problems.
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Clique Problem

Let I = {1, . . . , N} � N be a finite set, let I 
 I be the
set of unordered pairs of elements of I. Let E � I 
 I.
Then a graph G is a pair G = (I, E), where I is the set of
the nodes of G and E is the set of the edges of G, i. e. {i,
j} 2 E implies that G has an edge joining nodes i, j 2 I.
A graphG = (I, E) is said to be complete or to be a clique
when E = I 
 I. A graph G0 = (I0, E0) is a subgraph of G
= (I, E) when I0 � I and E0 � E \ (I0 
 I0).

The maximum clique problem can be defined as fol-
lows: Given G = (I, E), find the largest subgraph G0 of G
which is complete. Let k(G) be the number of nodes of
the graph G0.

Several algorithms exist to obtain a numerical so-
lution of the maximum clique problem see, for exam-
ple, [14] where the branch and bound algorithm is de-
scribed.

One considers here the maximum clique problem
as a continuous optimization problem. The adjacency
matrix A of the graph G = (I, E) is a square matrix of
order equal to the number of nodes of G and its generic
entry Ai, j, at row i and at column j, is defined equal to 1
if {i, j} 2 E and is equal to 0 otherwise. Then in [13] it is
shown that:

1 �
1

k(G)
D max

x2S
xtAx; (42)

where

S D

(
x D (x1; : : : ; xN)t 2 RN :

NX
iD1

xi D 1; xi � 0; i D 1; : : : ;N

)
:

One notes that many maximizers of (42) can exist, how-
ever there exists always a maximizer x� = (x�1 , . . . , x�N )

t

of problem (42) such that for i = 1, . . . , N one has x�i =
1/k(G) if i 2 G0 and x�i = 0 if i 62 G0. That is the maxi-
mum clique problem is reduced to a continuous global
optimization problem that can be treated with the al-
gorithms described above. Several other problems in
graph theory can be reformulated as continuous opti-
mization problems.

Quasivariational Inequalities

Let X � RN be a nonempty set, let ˝(x) � X, x 2 X,
be a set-valued function and let F : RN ! RN . The qua-

sivariational inequality problem, is defined as follows:
Find a vector x� 2˝(x�) such that:

�
F(x�); y � x�

�
� 0; 8y 2 ˝(x�); (43)

see [4] for a detailed introduction to quasivariational
inequalities. This problem can be reduced to the search
of a fixed-point of a function defined implicitly by
a variational inequality.

The quasivariational inequalities have many appli-
cations such as for example the study of the generalized
Nash equilibrium points of an N-player noncoopera-
tive game. See [10] for a detailed discussion onN-player
noncooperative games.

See also

� ˛BB Algorithm
� Continuous Global Optimization: Applications
� Continuous Global Optimization: Models,

Algorithms and Software
� DIRECT Global Optimization Algorithm
� Global Optimization Based on Statistical Models
� Global Optimization in Binary Star Astronomy
� Global Optimization Methods for Systems of

Nonlinear Equations
� Global Optimization Using Space Filling
� Topology of Global Optimization
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Directional Derivatives

Let f be a function defined on some open set X � Rn

and taking its values in R D R [ f�1;C1g. The set
dom f = {x 2 X : |f (x)| < +1} is called the effective set
(or domain) of the function f . Take x 2 dom f , g 2 Rn.
Put

f "D (x; g) :D lim sup
˛#0

1
˛

�
f (x C ˛g) � f (x)

�
; (1)

f #D (x; g) :D lim inf
˛#0

1
˛

�
f (x C ˛g) � f (x)

�
: (2)

Here ˛ # 0 means that ˛! +0.
The quantity f "D (x; g) (respectively, f #D (x; g)) is

called the Dini upper (respectively, lower) derivative of
the function f at the point x in the direction g.

The limit

f 0(x; g) D f 0D(x; g) :D lim
˛#0

1
˛

�
f (x C ˛g) � f (x)

�
; (3)

is called the Dini derivative of f at the point x in the
direction g. If the limit in (3) exists, then f "D (x; g) D
f #D (x; g) D f 0(x; g).

The quantity

f "H(x; g) :D lim sup
[˛;g0]![C0;g]

1
˛

�
f (x C ˛g0) � f (x)

�
(4)

(respectively,

f #H(x; g) :D lim inf
[˛;g0]![C0;g]

1
˛

�
f (x C ˛g0) � f (x)

�
);

(5)

is called the Hadamard upper (respectively, lower)
derivative of the function f at the point x in the direc-
tion g.

The limit

f 0H(x; g) :D lim
[˛;g0]![C0;g]

1
˛

�
f (x C ˛g0) � f (x)

�
(6)

is called the Hadamard derivative of f at x in the direc-
tion g.

If the limit in (6) exists, then f "H(x; g) D f #H(x; g).
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Note that the limits in (1), (2), (4) and (5) always
exist but are not necessarily finite.

Remark 1 In the one-dimensional case (Rn = R) the
Hadamard directional derivatives coincide with the
corresponding Dini directional derivatives:

f "H(x; g) D f "D (x; g);

f #H(x; g) D f #D (x; g);

f 0H(x; g) D f 0D(x; g):

If the limit in (3) exists and is finite, then the function
f is called differentiable (or Dini differentiable) at x in
the direction g. The function f is called Dini direction-
ally differentiable (Dini d.d.) at the point x if it is Dini
differentiable at x for every g 2 Rn. Analogously, if the
limit in (6) exists and is finite, the function f is called
Hadamard differentiable at x in the direction g. The
function f is called Hadamard directionally differen-
tiable (Hadamard d.d.) at the point x if it is Hadamard
differentiable at x for every g 2 Rn.

If the limit in (6) exists and is finite, then the limit
in (3) also exists and f 0H(x, g) = f 0(x, g). The converse is
not necessarily true.

All these derivatives are positively homogeneous (of
degree one) functions of direction:

f �Q (x; �g) D � f
�
Q (x; g); 8� � 0: (7)

(Here 
 is either ", or #, and Q is either D, or H.)
A function f defined on an open set X is called Dini

uniformly directionally differentiable at a point x 2 X if
it is directionally differentiable at x and for every " > 0
there exists a real number ˛0 > 0 such that

1
˛

�
f (x C ˛g) � f (x) � ˛ f 0(x; g)

�
< ";

8˛ 2 (0; ˛0); 8g 2 S;

where S = {g 2 Rn: kgk = 1} is the unit sphere.

Proposition 2 (see [2, Thm. I.3.2]) A function f is
Hadamard d.d. at a point x 2 X if and only if it is Dini
uniformly differentiably at x and its directional deriva-
tive f 0(x, g) is continuous as a function of direction.

Remark 3 If f is locally Lipschitz andDini directionally
differentiable at x2X, then it is Hadamard d.d. at x, too.

For Dini and Hadamard derivatives (see (3) and (6))
there exists a calculus:

Proposition 4 Let functions f 1 and f 2 be Dini
(Hadamard) directionally differentiable at a point x 2
X. Then their sum, difference, product and quotient (if
f 2(x) 6D 0) are also Dini (Hadamard) d.d. at this point
and the following formulas hold:

( f1 ˙ f2)0Q (x; g) D f 01Q(x; g)˙ f 02Q (x; g); (8)

( f1 f2)0Q (x; g) D f1(x) f 02Q(x; g)C f2(x) f 01Q(x; g); (9)

�
f1
f2

�0
Q
(x; g) D �

1
( f2(x))2

�
f1(x) f 02Q(x; g)

� f2(x) f 01Q(x; g)
�
: (10)

Here Q is either D, or H.

These formulas follow from the classical theorems of
differential calculus.

Proposition 5 Let

'(x) D max
i21:N

fi(x); (11)

where the functions f i are defined and continuous on an
open set X � Rn and Dini (Hadamard) d.d. at a point
x 2 X in a direction g. Then the function ' is also Dini
(Hadamard) d.d. at x and

' 0Q (x; g) D max
i2R(x)

f 0i (x; g); (12)

where R(x) = {i 2 1 : N : f i(x) = '(x)} (see [2, Cor. I.3.2]).

If ' is defined by

'(x) D max
y2Y

fi(x; y);

where Y is some set, then under some additional con-
ditions a formula, analogous to (12), also holds (see [2,
Chap. I, Sec. 3]).

A theorem on the differentiability of a composition
can also be stated.

Unfortunately, formulas similar to (8)–(10) and
(12) are not valid for Dini (Hadamard) upper and lower
derivatives.

The Dini and Hadamard upper and lower direc-
tional derivatives are widely used in nonsmooth anal-
ysis and nondifferentiable optimization. For example,
the followingmean value theorem holds.
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Proposition 6 (see [2, Thm. I.3.1]) Let f be defined
and continuous on the interval {y: y = x + ˛g, ˛ 2 [0,
˛0], ˛0 > 0}. Put

m D inf
˛2[0;˛0]

f #D (x C ˛g; g);

M D sup
˛2[0;˛0]

f "D (x C ˛g; g):

Then [1]

m˛0 � f (x C ˛0g) � f (x) � M˛0:

The following first order approximations may be con-
structed via the Dini and Hadamard derivatives.

Proposition 7 Let f be defined on an open set X � Rn,
and Dini d.d. at a point x 2 X. Then

f (x C	) D f (x)C f 0D(x; 	)C oD(x; 	): (13)

If f is Hadamard d.d. at x, then

f (x C	) D f (x)C f 0H(x; 	)C oH(x; 	): (14)

Let f be defined on an open set X � Rn and finite at x 2
X. Then

f (x C	) D f (x)C f "D (x; 	)C oD(x; 	); (15)

f (x C	) D f (x)C f #D (x; 	)C oD(x; 	); (16)

f (x C	) D f (x)C f "H(x; 	)C oH(x; 	); (17)

f (x C	) D f (x)C f #H(x; 	)C oH(x; 	); (18)

where

oD(x; ˛	)
˛

˛#0
! 0; 8	 2 Rn ; (19)

oH(x; ˛	)
k	k

k�k!0
! 0; (20)

lim sup
˛#0

oD(x; ˛	)
˛

D 0; 8	 2 Rn ; (21)

lim inf
˛#0

oD(x; ˛	)
˛

D 0; 8	 2 Rn ; (22)

lim sup
[˛;�0]![C0;�]

oH(x; ˛	0)
˛

� 0; 8	 2 Rn ; (23)

lim inf
[˛;�0]![C0;�]

oH(x; ˛	
0)

˛
� 0; 8	 2 Rn : (24)

First Order Necessary and Sufficient Conditions
for an UnconstrainedOptimum

Let a function f be defined on an open set X �Rn,˝ be
a subset of X. A point x� 2˝ is called a local minimum
point (local minimizer) of the function f on the set˝ if
there exists ı > 0 such that

f (x) � f (x�); 8x 2 ˝ \ Bı (x�);

where Bı(x�) = {x 2Rn: k x� x� k � ı}. If ı = +1, then
the point x� is called a global minimum point (global
minimizer) of f on ˝ . A point x� 2 ˝ is called a strict
local minimum point (strict local minimizer) of f on ˝
if there exists ı > 0 such that

f (x) > f (x�); 8x 2 ˝ \ Bı (x�); x ¤ x�:

Analogously one can define local, global and strict local
maximum points (maximizers) of f on˝ .

It may happen that the set of local (global, strict lo-
cal) minimizers (maximizers) is empty.

If˝ = X then the problem of finding a minimum or
a maximum of f on X is called an unconstrained opti-
mization problem.

Proposition 8 Let a function f be Dini (Hadamard)
directionally differentiable on X. For a point x� 2 dom f
to be a local or global minimizer of f on X it is necessary
that

f 0D(x
�; g) � 0; 8g 2 Rn ; (25)

�
f 0H(x

�; g) � 0 8g 2 Rn � : (26)

If f is Hadamard d.d. at x� and

f 0H(x
�; g) > 0; 8g 2 Rn ; g ¤ 0n ; (27)

then x� is a strict local minimizer of f .

Here 0n = (0, . . . , 0) is the zero element of Rn.

Proposition 9 Let f be Dini (Hadamard) d.d. on X. For
a point x� � 2 dom f to be a local or global maximizer of
f on X it is necessary that

f 0D(x
��; g) � 0; 8g 2 Rn ; (28)

( f 0H(x
��; g) � 0; 8g 2 Rn ): (29)
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If f is Hadamard d.d. at x� � and

f 0H(x
��; g) < 0; 8g 2 Rn ; g ¤ 0n; (30)

then x�� is a strict local maximizer of f .

Note that (26) implies (25), and (29) implies (28). In
the smooth case f 0H(x, g) = (f 0(x), g) (f 0(x) being the
gradient of f at x) and the conditions (27) and (30) are
impossible. It means that the sufficient conditions (27)
and (30) are essentially nonsmooth.

Proposition 10 Let f be defined on an open set on X
� Rn. For a point x� 2 dom f (i. e., |f (x)| < +1) to be
a local or global minimizer of f on X it is necessary that

f #D (x
�; g) � 0; 8g 2 Rn ; (31)

f #H (x
�; g) � 0; 8g 2 Rn : (32)

If

f #H (x
�; g) > 0; 8g 2 Rn ; g ¤ 0n ; (33)

then x� is a strict local minimizer of f .

Note that (32) implies (31) but (31) does not necessarily
imply (32).

Proposition Let f be defined on an open set on X �
Rn. For a point x� � 2 dom f to be a local or global max-
imizer of f on X it is necessary that

f "D (x
��; g) � 0; 8g 2 Rn (34)

and

f "H (x
��; g) � 0; 8g 2 Rn : (35)

If

f "H (x
��; g) < 0; 8g 2 Rn ; g ¤ 0n ; (36)

then x�� is a strict local maximizer of f .

The condition (35) implies (34) but (34) does not nec-
essarily imply (35).

Remark 12 Observe that the conditions for a mini-
mum are different from the conditions for a maximum.

A point x� satisfying the conditions (25) or (31) is called
a Dini inf-stationary point of f , while a point x� satis-
fying (26) or (32) is called an Hadamard inf-stationary

point. A point x�� satisfying the conditions (28) or (34)
is called a Dini sup-stationary point of f , while a point
x�� satisfying (28) or (35) is called an Hadamard sup-
stationary point.

Remark 13 Note that the function f is not assumed to
be continuous or even finite-valued.

Let x0 2 dom f and assume that the condition (31) does
not hold, i. e. x0 is not a Dini inf-stationary point. If g0
2 Rn, kg0k = 1,

f #D (x0; g0) D inf
kgkD1

f #D (x0; g);

then g0 is called a Dini steepest descent direction of f at
x0 (kgk is the Euclidean norm).

If (32) does not hold and if g0 2 Rn, kg0k = 1,

f #H(x0; g0) D inf
kgkD1

f #H(x0; g);

then g0 is called anHadamard steepest descent direction
of f at x0.

Analogously if x0 is not a Dini sup-stationary point
and if g0 2 Rn, kg0k = 1,

f "D (x0; g
0) D sup

kgkD1
f "D (x0; g);

then g0 is called a Dini steepest ascent direction of f at
x0.

If x0 is not an Hadamard sup-stationary point of f
(i. e. (35) does not hold) and if g0 2 Rn, k g0 k = 1,

f "H(x0; g
0) D sup

kgkD1
f "H(x0; g);

then g0 is called an Hadamard steepest ascent direction
of f at x0.

Of course it is possible that there exist many steepest
descent or/and steepest ascent directions of f at x0.

It may also happen that some direction is a direc-
tion of steepest ascent and, at the same time, a direc-
tion of steepest ascent as well (which is impossible in
the smooth case).

Example 14 Let X = R,

f (x) D

(
jxj C 1

2 x sin
1
x ; x ¤ 0;

0; x D 0:
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Dini and Hadamard Derivatives in Optimization, Figure 1

Take x0 = 0. It is clear that (see Fig. 1):

f "D (x0; g) D jgj C
1
2
jgj D

3
2
jgj ;

f #D (x0; g) D jgj �
1
2
jgj D

1
2
jgj :

As X = R, the Hadamard derivatives coincide with the
Dini ones (see Remark 1).

f #D (x0; g) > 0; 8g ¤ 0;

we may conclude (see (32)) that x0 is a strict local min-
imizer (in fact it is a global minimizer but our theory
does not allow us to claim this).

Note that f "D and f #D are positively homogeneous
(see (7)), therefore it is sufficient to consider (in R) only
two directions: g1 = 1 and g2 = �1.

Example 15 Let X = R, x0 = 0,

f (x) D

(
x sin 1

x ; x > 0;
0; x � 0:

It is clear that (see Fig. 2) that

f "D (x0; g) D

(
jgj ; g > 0;
0; g � 0;

f #D (x0; g) D

(
� jgj ; g > 0;
0; g � 0:

Neither the condition (25) nor the condition (31)
holds, therefore we conclude that x0 is neither a local

Dini and Hadamard Derivatives in Optimization, Figure 2

minimizer nor a local maximizer. Since

max
kgkD1

f "D (x0; g)

D maxf f "D (x0;C1); f
"
D (x0;�1)g

D maxf1; 0g D f "D (x0;C1) D C1;

then g1 = +1 is a steepest ascent direction.
Since

min
kgkD1

f #D (x0; g)

D minf f #D (x0;C1); f
#
D (x0;�1)g

D minf�1; 0g D f #D (x0;C1) D �1;

then g1 = +1 is a steepest descent direction as well.

Conditions for a Constrained Optimum

Let a function f be defined on an open set X �Rn,˝ be
a subset of X. Let x 2˝ , |f (x)| < +1, g 2 Rn. The limit

f "D (x; g;˝) D lim sup
˛#0

xC˛g2˝

f (x C ˛g) � f (x)
˛

(37)

is called the Dini conditional upper derivative of the
function f at the point x in the direction g with re-
spect to ˝ . If no sequence {˛k} exists such that ˛k #
0, x + ˛kg 2 ˝ for all k, then, by definition, we set
f "D (x; g;˝) D �1.
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The limit

f #D (x; g;˝) D lim inf
˛#0

xC˛g2˝

f (x C ˛g) � f (x)
˛

(38)

is called the Dini conditional lower derivative of the
function f at the point x in the direction g with re-
spect to ˝ . If no sequence {˛k} exists such that ˛k #
0, x + ˛kg 2 ˝ for all k, then, by definition, we set
f #D (x; g;˝) D C1.

The limit

f "H(x; g;˝) D lim sup
[˛;g0]![C0;g]
xC˛g02˝

f (x C ˛g0) � f (x)
˛

(39)

is called the Hadamard conditional upper derivative of
the function f at the point x in the direction g with re-
spect to˝ . If no sequences {˛k}, {gk} exist such that [˛k,
gk]! [+0, g], x + ˛k gk 2˝ for all k, then, by definition,
we set f "H(x; g;˝) D �1.

The limit

f #H(x; g;˝) D lim inf
[˛;g0]![C0;g]
xC˛g02˝

f (x C ˛g0) � f (x)
˛

(40)

is called the Hadamard conditional lower derivative of f
at x in the direction g with respect to˝ . If no sequences
{˛k}, {gk} exist such that [˛k, gk]! [+0, g], x + ˛kgk 2
˝ for all k, then, by definition, we set f #H(x; g;˝) D
C1.

Proposition 16 (see [1]) For a point x� 2 ˝ and such
that |f (x�)| <1 to be a local or global minimizer of f on
˝ it is necessary that

f #D (x
�; g;˝) � 0; 8g 2 Rn ; (41)

f #H (x
�; g;˝) � 0; 8g 2 Rn : (42)

Furthermore, if

f #H (x
�; g;˝) > 0; 8g 2 Rn ; g ¤ 0n ; (43)

then x� is a strict local minimizer of f on˝ .

A point x� 2 ˝ satisfying (41) ((42)) is called a Dini
(Hadamard) inf-stationary point of f on˝ .

Proposition 17 For a point x�� 2 ˝ and such that
|f (x��)| < 1 to be a local or global minimizer of f on
˝ it is necessary that

f "D (x
��; g;˝) � 0; 8g 2 Rn ; (44)

f "H (x
��; g;˝) � 0; 8g 2 Rn : (45)

If

f "H (x
��; g;˝) < 0; 8g 2 Rn ; g ¤ 0; (46)

then x�� is a strict local maximizer of f on˝ .

A point x�� 2 ˝ satisfying (44) ((45)) is called a Dini
(Hadamard) sup-stationary point of f on˝ .

The condition (41) is equivalent to

f #D (x
�; g;˝) � 0; 8g 2 K(x�;˝); (47)

where

K(x�;˝) D

8<
:g 2 Rn : 9˛k :

˛k # 0;
x� C ˛k g 2 ˝;

8k

9=
; :

(48)

Analogously, the condition (44) is equivalent to

f "D (x
��; g;˝) � 0; 8g 2 K(x��;˝): (49)

The condition (42) is equivalent to

f #H(x
�; g;˝) � 0; 8g 2 � (x�;˝); (50)

where

� (x�;˝)

D

8<
:g 2 Rn : 9f[˛k ; gk]g :

[˛k ; gk]! [C0; g];
x� C ˛k gk 2 ˝;

8k

9=
; :

(51)

Analogously, the condition (45) is equivalent to

f "H(x
��; g;˝) � 0; 8g 2 � (x��;˝): (52)

Note that the cones K(x�, ˝) and K(x� �, ˝) are
not necessarily closed, while the cones � (x�, ˝) and
� (x��,˝) are the Bouligand cones to˝ at x� and x� �,
respectively, and therefore always closed.

Now it is possible to define conditional steepest as-
cent and descent directions.

Remark 18 It is also possible (see [3, p. 156]) to define
the Dini and Hadamard conditional directional deriva-
tives as follows:

f 0D(x; g;˝) D lim
˛#0

xC˛g2˝

f (x C ˛g) � f (x)
˛

; (53)
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f 0H(x; g;˝) D lim
[˛;g0]![C0;g]
xC˛g02˝

f (x C ˛g0) � f (x)
˛

: (54)

A function f is called Dini (Hadamard) conditionally
differentiable at x in a direction g if the limit in (53)
((54)) exists and is finite.

Remark 19 The conditional directional derivatives de-
fined by (37)–(40) essentially depend on the set˝ .

In some cases it is possible to ‘separate’ the function f
and the set ˝ in the necessary conditions (47), (49),
(50) and (52). For example, if f is Lipschitz and direc-
tionally differentiable at x, then

f "D (x; g;˝) D f #D (x; g;˝)

D f "H(x; g;˝) D f #H(x; g;˝)

D f 0(x; g) 8g 2 K(x;˝):

In this case the derivatives at the left-hand sides of
(47), (49) and (50), (52) should be replaced by f 0(x�, g)
or f 0(x� �, g) respectively.

Note that if g 2 � (x, g) but g 62 K(x,g) then
f "D (x; g;˝) and f #D (x; g;˝) are not finite, by definition,
while

f "D (x; g;˝) D f #D (x; g;˝) D f 0(x; g):

Remark 20 The necessary optimality conditions for
unconstrained and constrained optimization problems
described above can be used to construct numeri-
cal methods for finding corresponding (inf- or sup-
stationary) points.

For special classes of functions (e. g., convex, con-
cave, max-type, minmax-type, quasidifferentiable func-
tions), the derivative (3) has a more ‘constructive’ form
and therefore the conditions (25)–(36) and (41)–(46)
take also more ‘constructive’ forms (see, e. g., [2]).

Remark 22 The limits in (4), (5), (6), (39) and (40) are
taken if

[˛; g0]! [C0; g]: (55)

Sometimes, in the literature instead of this relation
one can see two relations

˛ ! C0; g0 ! g: (56)

It was demonstrated in [4] that the limits resulting
from (55) and (56) do not necessarily coincide. This
warning should be taken into account.
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Technological developments in the field of optical com-
munication networks using wavelength-division multi-
plexing have triggered intensive research in an opti-
mization problem concerning the assignment of col-
ors to paths in a directed tree. Here, the term directed
tree refers to the graph obtained from an undirected
tree by replacing each undirected edge by two directed
edges with opposite directions. This path coloring prob-
lem was first studied by M. Mihail, C. Kaklamanis and
S. Rao [19]. An instance of it is given by a directed tree
T D (V ; E) and a set P D fp1; : : : ; ptg of directed
simple (i. e., not visiting any vertex twice) paths in T,
where each path is specified by an ordered pair of ver-
tices (start vertex and end vertex). The task is to assign
colors to the given paths such that paths receive differ-
ent colors if they share a directed edge. The goal is to
minimize the number of different colors used. For given
T D (V ; E) and P, let L(e) denote the load on directed
edge e 2 E, i. e., the number of paths containing e. Ob-
viously, the maximum load L D maxe2E L(e) is a lower
bound on the number of colors in an optimal coloring.
Consider Fig. 1 for an example of a tree with six vertices
and paths from a to e, from f to e, from f to c, from d to
b, and from a to b. A possible valid coloring is to assign
these paths the colors 1, 2, 1, 2, and 3, respectively. The
maximum load of the paths is 2, because 2 paths use the
edge (d; c). It is not possible to color these paths with
2 colors, because the conflict graph of the paths (a graph
with a vertex for each path and an edge between ver-
tices if the corresponding paths share an edge) is a cycle
of length 5. Hence, the coloring with three colors is an
optimal coloring.

Directed Tree Networks, Figure 1
Example path coloring instance

The path coloring problem models the assignment
of wavelengths to directed connection requests in all-
optical networks with tree topology. In such networks
data is transmitted in optical form via laser beams [13].
Two adjacent nodes of the network are connected by
a pair of optical fiber links, one for each direction.
When wavelength-division multiplexing is used, multi-
ple signals can be transmitted over the same link if they
use different wavelengths, and the nodes are capable of
switching an incoming signal onto any outgoing link
depending on the wavelength of the signal. However,
the wavelength of a signal cannot be changed, and ev-
ery connection uses the same wavelength on the whole
transmitter-receiver path. If two signals using the same
wavelength are transmitted over the same directed link,
the data is lost due to interference. The number of avail-
able wavelengths is called optical bandwidth, and it is
a scarce resource. Therefore, one is interested in min-
imizing the number of wavelengths necessary to route
a given set of requests. This optimization problem cor-
responds to the path coloring problem defined above:
paths correspond to connection requests, and colors
correspond to wavelengths.

Complexity Results

Whereas the path coloring problem can be solved in lin-
ear time in chain networks as it is equivalent to interval
graph coloring, it is NP-hard in directed tree networks.
More precisely, it is NP-complete to decide whether
a set of paths in a directed tree of arbitrary degree can
be colored using at most 3 colors [8,9], and it is NP-
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complete to decide whether a set of paths in a directed
binary tree can be colored using at most k colors if k is
part of the input [7,9,17]. The respective reductions will
be outlined in the following. It should be remarked that
the special case in which both the maximum degree of
the tree as well as the maximum load of the paths are
bounded by a constant can be solved optimally in poly-
nomial time [7,9].

Reduction from Edge Coloring

It is an NP-complete problem to decide whether the
edges of a given 3-regular undirected graph G can be
colored with three colors such that edges receive differ-
ent colors if they are incident to the same vertex [14].
Let G be a 3-regular undirected graph with n vertices
and m edges. A directed tree T with n0 D 10n C 1
vertices and a set P of t D 4m paths in T can be con-
structed in polynomial time such that the paths in T can
be colored using three colors if and only if the edges of
G can be colored with three colors. T consists of a root
r, one child cv of the root for every vertex v of G, three
children c1v , c2v and c3v of every cv , and two children ci;1v
and ci;2v of every civ . For each edge e D fv;wg of G,
four paths in T are created: one from ci;1v to c j;2w and
one from c j;1w to ci;2v , called real paths, and two copies
of the path from ci;1v to ci;2v , called blockers. Here i and
j are chosen such that the subtree rooted at civ resp. c

j
w

is not used by any paths other than the paths created
for this particular edge e. Figure 2 shows an example of
a 3-regular graph G, the constructed tree T (two of the
four subtrees are represented by dotted triangles), and
the paths created for the edge between the black vertices
of G.

If the paths in T are to be colored with three colors,
the blockers ensure that the two real paths correspond-

Directed Tree Networks, Figure 2
Reduction from edge coloring

ing to e receive the same color and, therefore, this color
cannot be used by any other real path corresponding to
an edge incident to v or w. If there exists a 3-coloring
of the paths in T, a 3-coloring of the edges of G can be
obtained by assigning each edge the color of its corre-
sponding real paths. On the other hand, if there exists
a 3-coloring of the edges of G, a 3-coloring of the paths
in T can be obtained by assigning the real paths corre-
sponding to edge e the same color as e and coloring the
blockers with the remaining two colors. Hence, a solu-
tion to the path coloring problem in T would also solve
the edge coloring problem in G.

Since it has just been proved NP-complete to decide
whether paths in a directed tree can be colored with
three colors, it follows that there cannot be an approx-
imation algorithm for path coloring with absolute ap-
proximation ratio < 4/3 unless P D NP.

Reduction from Arc Coloring

The NP-complete arc coloring problem [12] is to de-
cide for a given set of n arcs A1; : : : ;An on a cir-
cle and a given integer k whether the arcs can be
colored with k colors such that arcs receive differ-
ent colors if they intersect. Without loss of general-
ity, assume that each arc is specified by a pair (ai ; bi)
with ai ¤ bi and 1 � ai ; bi � 2n. The span
of arc Ai is sp(Ai ) D fai C 1; ai C 2; : : : ; big if
ai < bi and sp(Ai ) D fai C 1; : : : ; 2n; 1; 2; : : : ; big
if ai > bi . Two arcs Ai and Aj intersect iff sp(Ai) \
sp(Aj) ¤ ;. Note that one can view the arc coloring
problem as a path coloring problem on a cycle.

If a number is contained in the span of more than
k arcs, then the arcs can surely not be colored with k
colors and the answer to this instance of arc coloring
is no. Otherwise, one can assume that every number i,
1 � i � 2n is contained in the span of exactly k arcs;
if this were not the case, one could simply add arcs of
the form (i; i C 1) until the condition holds, without
changing the answer of the coloring problem.

Now consider a chain of n vertices v1, v2; : : : ; vn .
Imagine the chain drawn from left to right, with v1 the
start vertex at its left end. The directed edges from left
to right followed by the directed edges from right to
left make up a cycle of length 2n. The given circular
arcs can be translated into directed paths on this cycle
such that two paths share a directed edge iff the corre-
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Directed Tree Networks, Figure 3
Reduction from arc coloring

sponding arcs intersect, but these paths do not yet con-
stitute a valid path coloring problem because some of
the paths are not simple: an arc (1; 2n) would corre-
spond to a path running from v1 to vn and back to v1,
for example. Nevertheless, it is possible to obtain a valid
instance of the path coloring problem by splitting paths
that are not simple into two or three simple paths and
by using blockers to make sure that the paths derived
from one non-simple path must receive the same color
in any valid k-coloring.

For this purpose, extend the chain by adding k ver-
tices on both ends, resulting in a chain of length nC2k.
Connect each of the newly added vertices to a distinct
subtree consisting of a new vertex with two leaf chil-
dren. The resulting network is a binary tree T. If a path
arrives at vertex vn coming from the left (i. e., from
vn�1) and “turns around” to revisit vn�1, divide the path
into two: one coming from the left, passing through vn
and ending at the left leaf of one of the subtrees added
on the right side of the chain; the other one starting at
the right leaf of that subtree, passing through vn and
continuing left. In addition, add k � 1 blockers in that
subtree, i. e., paths from the right leaf to the left leaf. Ob-
serve that there are no more than k paths containing vn
as an inner vertex, and a different subtree can be chosen
for each of these paths. A symmetric splitting procedure
is applied to the paths that contain v1 as an inner vertex,
i. e., the paths that arrive at v1 coming from the right
(i. e., from v2) and “turn around” to revisit v2. This way,
all non-simple paths are split into two or three simple
paths, and a number of blockers are added.

The resulting set of paths in T can be colored with k
colors if and only if the original arc coloring instance is
a yes-instance. The blockers ensure that all paths corre-
sponding to the same arc receive the same color in any
k-coloring. Hence, a k-coloring of the paths can be used
to obtain a k-coloring of the arcs by assigning each arc
the color of its corresponding paths. Also, a k-coloring

of the arcs can be turned into a k-coloring of the paths
by assigning all paths corresponding to an arc the same
color as the arc and by coloring the blockers with the
remaining k � 1 colors. This shows that the decision
version of the path coloring problem is NP-complete
already for binary trees.

Approximation Algorithms

Since the path coloring problem in directed tree net-
works is NP-hard, one is interested in polynomial-time
approximation algorithms with provable performance
guarantee. All such approximation algorithms that have
been developed so far belong to the class of greedy algo-
rithms. A greedy algorithm picks a start vertex s in the
tree T and assigns colors to the paths touching (starting
at, ending at, or passing through) s first. Then it visits
the remaining vertices of the tree in some order that en-
sures that the current vertex is adjacent to a previously
visited vertex; for example, a depth-first search can be
used to obtain such an order. When the algorithm pro-
cesses vertex v, it assigns colors to all paths touching v
without changing the color of paths that have been col-
ored at a previous vertex. Each such step is referred to
as coloring extension. Furthermore, the only informa-
tion about the paths touching the current vertex that
the algorithm considers is which edges incident to the
current vertex they use. To emphasize this latter prop-
erty, greedy algorithms are sometimes referred to as lo-
cal greedy algorithms.

Whereas all greedy algorithms follow this general
strategy, individual variants differ with respect to the
solution to the coloring extension substep. The best
known algorithm was presented by T. Erlebach, K.
Jansen, C. Kaklamanis, and P. Persiano in [11,16] (see
also [10]). It colors a set of paths with maximum load
L in a directed tree network of arbitrary degree with
at most d5L/3e colors. In the next section this will be
shown to be best possible in the class of greedy algo-
rithms.

For the sake of clarity, assume that the load on all
edges is exactly L and that L is divisible by 3. The al-
gorithm maintains two invariants: (a) the number of
colors used is at most 5L/3, and (b) for each pair of
directed edges with opposite directions the number of
colors used to color paths going through either of these
edges is at most 4L/3. First, the algorithm picks a leaf s
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of T as the start vertex and colors all paths starting or
ending at s using at most L colors. Therefore, the invari-
ants are satisfied initially. It remains to show that they
still hold after a coloring extension step if they were sat-
isfied at the beginning of this step.

Reduction to Constrained Bipartite Edge Coloring

The coloring extension problem at a current vertex v is
reduced to a constrained edge coloring problem in a bi-
partite graph Gv with left vertex set V1 and right ver-
tex set V2. This reduction was introduced by M. Mihail,
C. Kaklamanis and S. Rao in [19]. Let n0, n1; : : : ; nk be
the neighbors of v in T, and let n0 be the unique neigh-
bor that was processed before v. For every neighbor ni

of v the graph Gv contains four vertices: vertices wi and
zi in V1, and vertices xi and yi in V2. Vertex wi is said
to be opposite xi , and zi is opposite yi . A pair of oppo-
site vertices is called a line of Gv . A line sees a color if it
appears on an edge incident to a vertex of that line. For
every path touching v there is one edge in Gv : an edge
(wi ; x j) for each path coming from ni , passing through
v and going to nj ; an edge (wi ; yi ) for each path com-
ing from ni and ending at v; and an edge (zi ; xi) for
each path starting at v and going to ni .

It is easy to see that coloring the paths touching v
is equivalent to coloring the edges of Gv . Note that the
vertices wi and xi have degree L in Gv , while the other
vertices may have smaller degree. If this is the case, the
algorithm adds dummy edges (shown dashed in Fig. 4)
in order to make the graph L-regular.

As the paths that contain the edges (n0; v) or (v; n0)
have been colored at a previous vertex, the edges inci-
dent to w0 and x0 are already colored with at most 4L/3
colors by invariant (b). These edges are called color-

Directed Tree Networks, Figure 4
Construction of the bipartite graph

forced edges. A color that appears on exactly one color-
forced edge is a single color. A color that appears on two
color-forced edges is a double color. Since there are at
most 4L/3 colors on 2L color-forced edges, there must
be at least 2L/3 double colors. Furthermore, one can as-
sume that there are exactly 2L/3 double colors and 2L/3
single colors, because if there are too many double col-
ors then it is possible to split an appropriate number of
double colors into two single colors for the duration of
the current coloring extension step. In order to main-
tain invariant (a), the algorithm must color the uncol-
ored edges of Gv using at most L/3 new colors (colors
not used on the color-forced edges). Invariant (b) is sat-
isfied by ensuring that no line ofGv sees more than 4L/3
colors.

Partition Into Matchings

Gv is an L-regular bipartite graph and its edges can
thus be partitioned into L perfect matchings efficiently.
Each matching is classified according to the colors on
its two color-forced edges: SS-matchings contain two
single colors, ST-matchings contain one single color
and one double color, PP-matchings contain the same
(preserved) double color on both color-forced edges,
and TT-matchings contain two different double col-
ors. Next, the Lmatchings are grouped into chains and
cycles: a chain of length ` � 2 is a sequence of `
matchings M1; : : : ;M` such that M1 and M` are ST-
matchings, M2; : : : ;M`�1 are TT-matchings, and two
consecutive matchings share a double color; a cycle of
length ` � 2 is a sequence of ` TT-matchings such that
consecutive matchings as well as the first and the last
matching share a double color. Obviously, the set of L
matchings is in this way entirely partitioned into SS-
matchings, chains, cycles, and PP-matchings. In addi-
tion, if a chain or cycle contains parallel color-forced
edges, then the algorithm exchanges these edges in the
respective matchings, thus dividing the original chain
or cycle into a shorter sequence of the same type and an
extra cycle.

Now the algorithm chooses triplets, i. e., groups of
three matchings, and colors the uncolored edges of each
triplet using at most one new color and at most four
active colors. The active colors are selected among the
colors on color-forced edges of that triplet, and a color
is active in at most one triplet. The algorithm ensures
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that a line that sees the new color does not see one of
the active colors of that triplet. This implies that no line
ofGv sees more than 4L/3 colors altogether, as required
to maintain invariant (b).

Coloring of Triplets

The rules for choosing triplets ensure that each triplet
contains two color-forced edges with single colors and
four color-forced edges with double colors. Further-
more, most triplets are chosen such that one double
color appears twice, and this double color as well as
the two single colors can be reused without considering
conflicts outside the triplet. V. Kumar and E.J. Schwabe
proved in [18] that such triplets can be colored as re-
quired using three active colors and one new color. This
coloring procedure can be sketched as follows. Partition
the edges of the triplet into a matching on all vertices
except w0 and x0 and a gadget, i. e., a subgraph in which
w0 and x0 have degree 3 while all other vertices have de-
gree 2. A gadget consists of a number of cycles of even
length not containing w0 or x0 and either three disjoint
paths from w0 to x0 or one path fromw0 to x0, one path
from w0 to w0, and one path from x0 to x0. A careful
case analysis shows that the triplet can be colored by
reusing the single colors and the double color to color
the gadget and using a new color for the matching. If
a partitioning into gadget and matching does not exist,
the triplet contains a PP-matching and can be colored
using the double color of the PP-matching for the un-
colored edges of the PP-matching and a single color and
a new color for the uncolored edges of the cycle cover
consisting of the other two matchings.

In the following, the terms even sequence and odd
sequence refer to sequences of TT-matchings of even
resp. odd length such that consecutive matchings share
a double color. Note that an even sequence can be
grouped into triplets by combining two consecutive
matchings of the sequence with an SS-matching as long
as SS-matchings are available and combining each re-
maining TT-matching with a chain of length 2. There
are always enough SS-matchings or chains of length 2
because the ratio between color-forced edges with dou-
ble colors and color-forced edges with single colors is
2 : 1 in Gv initially and remains the same after extract-
ing triplets. Similarly, an odd sequence can be grouped
into triplets if there is at least one chain of length 2,

which can be used to form a triplet with the first match-
ing of the sequence, leaving an even sequence behind.

Selection of Triplets

Now the rules for selecting triplets are as follows. From
chains of odd length, combine the first two matchings
and the last matching to form a triplet. The remainder
of the chain (if non-empty) is an even sequence and can
be handled as described above. Cycles of even length are
even sequences and can be handled the same way. As
long as there is a chain of length 2 left, chains of even
length � 4 and odd cycles can be handled, too. Pairs of
PP-matchings can be combined with an SS-matching,
single PP-matchings can be combined with chains of
length 2. If there are two chains of even length � 4,
combine the first two matchings of one chain with the
last matching of the other and the last two matchings
of the first chain with the first matching of the other,
leaving two even sequences behind. So far, all triplets
contained a double color twice and could be colored
as outlined above. What remains is a number of cy-
cles of odd length, at most one chain of even length,
at most one PP-matching, and some SS-matchings. To
deal with these, it is necessary to form some triplets
that contain four distinct double colors. However, it
is possible to ensure that the set of color-forced edges
of Gv (inside and outside the triplet) colored with one
of these double colors does not contain parallel edges;
T. Erlebach, K. Jansen, C. Kaklamanis and P. Persiano
showed in [11] that such a triplet can be colored as re-
quired using its single colors, two of its double colors,
and one new color.

In the end, the entire graph Gv has been partitioned
into triplets, and each triplet has been colored using at
most one new color and such that a line that sees a new
color in a triplet does not see one of the active colors
of that triplet. Hence, invariants (a) and (b) hold at the
end of the coloring extension step, and once the color-
ing extension step has been performed for all vertices
of T all paths have received one of d5L/3e colors. Since
the number OPT of colors necessary in an optimal col-
oring is at least L, this implies that the algorithm uses
at most d5OPT/3e colors to color the paths. From the
lower bound in the next section it will be clear that the
algorithm (and any other greedy algorithm) is not bet-
ter than 5OPT/3 in the worst case.
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Note that greedy algorithms are well-suited for
practical distributed implementation in optical net-
works: one node of the network initiates the wavelength
assignment by assigning wavelengths to all connections
going through that node; then it transfers control to
its neighbors who can extend the assignment inde-
pendently and in parallel, transferring control to their
neighbors in turn once they are done.

It should be mentioned that simpler variants of
greedy algorithms are known that are restricted to bi-
nary trees and color a given set of paths with load L us-
ing d5L/3e colors. These algorithms do not make use
of the reduction to constrained bipartite edge color-
ing [6,15].

Lower Bounds

Two kinds of lower bounds have been investigated for
path coloring in directed tree networks. First, one wants
to determine the best worst-case performance guarantee
achievable by any greedy algorithm. Second, it is inter-
esting to know how many colors are required even in
an optimal coloring for a given set of paths with load L
in the worst case.

Lower Bound for Greedy Algorithms

For a given local greedy algorithm A and positive in-
teger L, an adversary can construct an instance of path
coloring in a directed binary tree network such that A
uses at least b5L/3c colors while an optimal solution
uses only L colors [15]. The construction proceeds in-
ductively. As A considers only the edges incident to
a vertex v when it colors the paths touching v, the ad-
versary can determine how these paths should continue
and introduce new paths not touching v depending on
the coloring A produces at vertex v.

Assume that there are ˛i L/2 paths going through
each of the directed edges between vertex v and its par-
ent, and that these paths have been colored with ˛i L
different colors. Initially, this assumption can be sat-
isfied for ˛0 D 1 by introducing L paths in either di-
rection on the link between the start vertex picked by
algorithm A and one of its neighbors and letting ap-
propriately chosen L/2 of these paths start resp. end at
that neighbor. Denote the set of paths coming down
from the parent by Pd and let them continue to (pass
through) the left child v1 of v. Denote the set of paths
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going up to the parent by Pu and let them pass through
the right child v2 of v. Introduce a set P` of (1 � ˛i /2)L
paths coming from v2 and going left to v1, and a set Pr
of L paths coming from v1 and going right to v2.

Algorithm A must use (1 � ˛i /2)L new colors to
color the paths in P`. No matter which colors it chooses
for the paths in Pr , it will use at least (1C ˛i /4)L differ-
ent colors on the connection between v and v1 or on
the connection between v and v2. The best it can do
with respect to minimizing the number of colors ap-
pearing between v and v1 and between v and v2 is to
color (1 � ˛i /2)L paths of Pr with colors used for P`,
˛i L/4 paths of Pr with colors used for Pd , and ˛i L/4
paths of Pr with colors used for Pu . In that case, it uses
(1 C ˛i /4)L colors on each of the downward connec-
tions of v. Any other assignment uses more colors on
one of the downward connections.

If the algorithm uses at least (1 C ˛i /4)L different
colors for paths on, say, the connection between v and
v1, let (1C˛i /4)L/2 of the downward paths and equally
many of the upward paths extend to the left child of
v1, such that all of these paths use different colors, and
let the remaining paths terminate or begin at v1. Now
the inductive assumption holds for the left child of v1
with ˛iC1 D 1 C ˛i /4. Hence, the number of colors
on a pair of directed edges can be increased as long as
˛i < 4/3. When ˛i D 4/3, 4L/3 colors are used for the
paths touching v and its parent, and algorithm A must
use L/3 new colors to color the paths in P`, using 5L/3
colors altogether.
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The previous calculations have assumed that all oc-
curring terms like (1C˛i /4)L/2 are integers. If one takes
the possibility of non-integral values into account and
carries out the respective calculations for all cases, one
can show that, for every L, every greedy algorithm can
be forced to use b5L/3c colors on a set of paths with
maximum load L [15].

Furthermore, it is not difficult to show that the paths
resulting from this worst-case construction for greedy
algorithms can be colored optimally using only L col-
ors. Hence, this yields also a lower bound of b5OPT/3c
colors for any greedy algorithm.

Lower Bounds for Optimal Colorings

The instance of path coloring depicted in Fig. 1 con-
sists of 5 paths in a binary tree with maximum load
L D 2 such that even an optimal coloring requires 3 col-
ors. Consider the instances of path coloring obtained
from this instance by replacing each path by ` identical
copies. Such an instance consists of 5` paths with max-
imum load L D 2`, and an optimal coloring requires at
least d5`/2e D d5L/4e colors because no more than two
of the given paths can be assigned the same color. Fur-
thermore, d5`/2e colors are also sufficient to color these
instances: for example, if ` is even, use colors 1; : : : ; `
for paths from a to e, colors `C1; : : : ; 2` for paths from
f to e, colors 1; : : : ; `/2 and 2` C 1; : : : ; 5`/2 for paths
from f to c, colors `/2C 1; : : : ; 3`/2 for paths from d to
b, and colors 3`/2 C 1; : : : ; 5`/2 for paths from a to b.
Hence, for every even L there is a set of paths in a binary
tree with load L such that an optimal coloring requires
d5L/4e colors [4,18].

While the path coloring instance with L D 2 and
OPT D 3 could be specified easily, K. Jansen used
amore involved construction to obtain an instance with
L D 3 and OPT D 5 [15]. It makes use of three com-
ponents as building blocks. Each component consists of
a vertex v with its parent and two children and a spec-
ification of the usage of edges incident to v by paths
touching v.

The root component ensures that at least 3 colors
are used either on the left downward connection (ex-
tending below v1) or on the right downward connection
(extending below v2). Each child of the root compo-
nent is connected to a type A component, i. e., the child
is identified with the parent vertex of a type A com-

Directed Tree Networks, Figure 6
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Type A component

ponent and the corresponding paths are identified as
well.

Type A components have the property that, if the
paths touching v and its parent are colored with 3 col-
ors, at least 4 colors must be used either for the paths
touching v and v1 or for those touching v and v2. (If the
paths touching v and its parent are colored with 4 col-
ors, the remaining paths of the type A component re-
quire even 5 colors.) Hence, there is at least one child in
one of the two type A components below the root com-
ponent such that the paths touching this child and its
parent are colored with four colors.
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Directed Tree Networks, Figure 8
Type B component

The final component used is of type B. It has the
property that, if the paths touching v and its parent are
colored with 4 colors, at least 4 colors must be used ei-
ther for the paths touching v and v1 or for those touch-
ing v and v2. For certain arrangements of colors on the
paths touching v and its parent, 5 colors are necessary.
It is possible to arrange a number of type B components
in a binary tree such that for any combination of four
colors on paths entering the tree of type B components
at its root, 5 colors are necessary to complete the color-
ing. Hence, if one attaches a copy of this tree of type B
components to each of the children of a type A compo-
nent, it is ensured that at least one of the trees will be en-
tered by paths with four colors and consequently 5 col-
ors are necessary to color all paths. Since the load on
every directed edge is at most 3, this gives a worst-case
example for path coloring in binary trees with L D 3
and OPT D 5.

Randomized Algorithms

In [1,2], V. Auletta, I. Caragiannis, C. Kaklamanis and
G. Persiano presented a class of randomized algorithms
for path coloring in directed tree networks. They gave
a randomized algorithm that, with high probability,
uses at most 7/5L C o(L) colors for coloring any set
of paths of maximum load L on binary trees of height
o(L1/3). The analysis of the algorithm uses tail inequali-
ties for hypergeometrical probability distributions such
as Azuma’s inequality. Moreover, they proved that no

randomized greedy algorithm can achieve, with high
probability, a performance ratio better than 3/2 for trees
of height˝(L) and better than 1:293� o(1) for trees of
constant height.

These results have been improved in [5] by I. Cara-
giannis, A. Ferreira, C. Kaklamanis, S. Pérennes, and
H. Rivano, who gave a randomized approximation al-
gorithm for bounded-degree trees that has approxima-
tion ratio 1:61 C o(1). The algorithm first computes
in polynomial time an optimal solution for the frac-
tional path coloring problem and then applies random-
ized rounding to obtain an integral solution.

Related Topics

A number of further results related to the path color-
ing problem in directed tree networks or in networks
with different topology are known. The number of col-
ors required for sets of paths that have a special form
have been investigated, e. g., one-to-all instances, all-
to-all instances, permutations, and k-relations. A sur-
vey of many of these results can be found in [4]. The
undirected version of the path coloring problem has
been studied by P. Raghavan and E. Upfal in [20];
here, the network is represented by an undirected graph
and paths must receive different colors if they share
an undirected edge. Approximation results for directed
and undirected path coloring problems in ring net-
works, mesh networks, and arbitrary networks (all of
these areNP-hard nomatter whether the paths are fixed
or can be chosen by the algorithm [7]) have been de-
rived.

An on-line variant of path coloring was studied by
Y. Bartal and S. Leonardo in [3]. Here, the algorithm is
given connection requests one by one and must deter-
mine a path connecting the corresponding vertices and
a color for this path without any knowledge of future
requests. The worst-case ratio between the number of
colors used by the on-line algorithm and that used by
an optimal off-line algorithm with complete advance
knowledge is the competitive ratio. In [3] on-line al-
gorithms with competitive ratio O(log n) are presented
for trees, trees of rings, and meshes with n vertices.
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For a black-box global optimization algorithm to be
truly global, some effort must be allocated to global
search, that is, search done primarily to ensure that po-
tentially good parts of the space are not overlooked. On
the other hand, to be efficient, some effort must also
be placed on local search near the current best solu-
tion. Most algorithms either move progressively from
global to local search (e. g., simulated annealing) or
combine a fundamentally global method with a fun-
damentally local method (e. g., multistart, tunneling).
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DIRECT introduces a new approach: in each iteration
several search points are computed using all possible
weights on local versus global search (how this is done
will be made clear shortly). This approach eliminates
the need for ‘tuning parameters’ that set the balance be-
tween local and global search, resulting in an algorithm
that is robust and easy-to-use.

DIRECT is especially valuable for engineering op-
timization problems. In these problems, the objec-
tive and constraint functions are often computed us-
ing time-consuming computer simulations, so there is
a need to be efficient in the use of function evaluations.
The problems may contain both continuous and inte-
ger variables, and the functions may be nonlinear, non-
smooth, and multimodal. While many algorithms ad-
dress these problem features individually, DIRECT is
one of the few that addresses them collectively. How-
ever, the versatility of DIRECT comes at a cost: the al-
gorithm suffers from a curse of dimensionality that lim-
its it to low-dimensional problems (say, no more than
20 variables).

The general problem solved by DIRECT can be
written as follows:
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min f (x1; : : : ; xn)
s.t. g1(x1; : : : ; xn) � 0;

:::

gm(x1; : : : ; xn) � 0;
`i � xi � ui ;

xi 2 I integer:

To prove convergence, we must assume that the ob-
jective and constraint functions are continuous in the
neighborhood of the optimum, but the functions can
otherwise be nonlinear, nondifferentiable, nonconvex,
and multimodal. While DIRECT does not explicitly
handle equality constraints, problems with equalities
can often be rewritten as problems with inequality con-
straints (either by replacing the equality with an in-
equality that becomes binding in the solution, or by us-
ing the equalities to eliminate variables). The set I in the
above problem is the set of variables that are restricted
to integer values. DIRECT works best when the inte-
ger variables describe an ordered quantity, such as the
number of teeth on a gear. It is less effective when the
integer variables are categorical.

Direct Global Optimization Algorithm, Figure 1

In what follows, we begin by describing how DI-
RECT works when there are no inequality and integer
constraints. This basic version corresponds, withminor
differences, to the originally published algorithm [2].
After describing the basic version, we then introduce
extensions to handle inequality and integer constraints
(this article is the first publication to document these
extensions). We conclude with a step-by-step descrip-
tion of the algorithm.

The bounds on the variables limit the search to an
n-dimensional hyper-rectangle. DIRECT proceeds by
partitioning this rectangle into smaller rectangles, each
of which has a ‘sampled point’ at its center, that is,
a point where the functions have been evaluated. An ex-
ample of such a partition for n = 2 is shown in Fig. 1.

We have drawn the rectangle as a square because
later, whenever wemeasure distances or lengths, we will
weight each dimension so that the original range (ui �
`i) has a weighted distance of one. Drawing the hyper-
rectangle as a hyper-cube allows us to visualize relative
lengths as they will be used in the algorithm.

Figure 2 shows the first three iterations of DIRECT
on a hypothetical two-variable problem. At the start of
each iteration, the space is partitioned into rectangles.
DIRECT then selects one ormore of these rectangles for
further search using a technique described later. Finally,
each selected rectangle is trisected along one of its long
sides, after which the center points of the outer thirds
are sampled. In this way, we sample two new points in
the rectangle andmaintain the property that every sam-
pled point is at the center of a rectangle (this property
would not be preserved if the rectangle were bisected).

At the beginning of iteration 1, there is only one
rectangle (the entire space). The process of selecting
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rectangles is therefore trivial, and this rectangle is tri-
sected as shown. At the start of iteration 2, the selec-
tion process is no longer trivial because there are three
rectangles. In the example, we select just one rectangle,
which is then trisected and sampled. At the start of it-
eration 3, there are 5 rectangles; in this example, two of
them are selected and trisected.

The key step in the algorithm is the selection of rect-
angles, since this determines how search effort is allo-
cated across the space. The trisection process and other
details are less important, and we will defer discussion
of them until later.

To motivate how DIRECT selects of rectangles, let
us begin by considering the extremes of pure global
search and pure local search. A pure global search strat-
egy would select one of the biggest rectangles in each
iteration. If this were done, all the rectangles would be-
come small at about the same rate. In fact, if we al-
ways trisected one of the biggest rectangles, then af-
ter 3kn function evaluations every rectangle would be
a cube with side length 3�k, and the sampled points
would form a uniform grid. By looking everywhere, this
pure global strategy avoids overlooking good parts of
the space.

A pure local strategy, on the other hand, would sam-
ple the rectangle whose center point has the best objec-
tive function value. This strategy is likely to find good

Direct Global Optimization Algorithm, Figure 3

solutions quickly, but it could overlook the rectangle
that contains the global optimum (this would happen if
the rectangle containing the global optimum had a poor
objective function value at the center).

To select just one ‘best’ rectangle, we would have
to introduce a tuning parameter that controlled the lo-
cal/global balance. Unfortunately, the algorithm would
then be extremely sensitive to this parameter, since the
proper setting would depend on the (unknown) diffi-
culty of the problem at hand.

DIRECT avoids tuning parameters by rejecting the
idea of selecting just one rectangle. Instead, several rect-
angles are selected using all possible relative weightings
of local versus global search. The idea of using all possi-
ble weightings may seem impractical, but with the help
of a simple diagram this idea can actually be made quite
intuitive. For this diagram, we will need a way to mea-
sure of the size of a rectangle. We will measure size us-
ing the distance between the center point and the ver-
tices, as shown in Fig. 3.

With this measure of rectangle size, we can now
turn our attention to Fig. 4 which shows how rectan-
gles are selected. In the figure, each rectangle in the
partition is represented by a dot. The horizontal coor-
dinate of a dot is the size of the rectangle, measured
by the center-vertex distance. The vertical coordinate
is the function value at the midpoint of the rectangle.
The dot labeled A represents the rectangle with the low-
est function value, and so this would be the rectangle
selected by a pure local strategy. Similarly, the dot la-
beled B represents one of the biggest rectangles, and so
it would be selected by a pure global strategy. DIRECT
selects not only these two extremes but also all the rect-
angles on the lower-right convex hull of the cloud of
dots (the dots connected by the line). These rectan-
gles represent ‘efficient trade-offs’ between local versus
global search, in the sense that each of them is best for
some relative weighting of midpoint function value and
center-vertex distance. (We will explain the other lines
in Fig. 4. shortly.)
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One might think that the idea illustrated in Fig. 4
would extend naturally to the constrained case; that is,
we would simply select any rectangle that was best for
some weighting of objective value, center-vertex dis-
tance, and constraint values. Unfortunately, this does
not work because it leads to excessive sampling in the
infeasible region. However, as we explain next, there
is an alternative way of thinking about the lower-right
convex hull that does extend to the constrained case.

For the sake of the exposition, let us suppose for the
moment that we know the optimal function value f �.
For the function to reach f � within rectangle r, it would
have to undergo a rate of change of at least (f r � f �)/dr ,
where f r is the function value at the midpoint of rectan-
gle r and dr is the center-vertex distance. This follows
because the function value at the center is f r and the
maximum distance over which the function can fall to
f � is the center-vertex distance dr. Intuitively, it seems
‘more reasonable’ to assume that the function will un-
dergo a gradual change than to assume it will make
a steep descent to f �. Therefore, if only we knew the
value f �, a reasonable criterion for selecting a rectangle
would be to choose the one that minimizes (f r � f �)/dr .

Figure 4 shows a graphical way to find the rectangle
that minimizes (f r � f �)/dr . Along the vertical axis we
show the current best function value, fmin, as well as the
supposed global minimum f �. Now suppose we anchor
a line at the point (0, f �) and slowly swing it upwards.
When we first encounter a dot, the slope of the line will
be precisely the ratio (f r � f �)/dr , where r is the index

Direct Global Optimization Algorithm, Figure 5

of the rectangle corresponding to the encountered dot.
Moreover, since this is the first dot touched by the line,
rectangle r must be the rectangle that minimizes (f r �
f �)/dr .

Of course, in general we will not know the value of
f �. But we do know that, whatever f � is, it satisfies f �

� fmin. So imagine that we repeat the line-sweep exer-
cise in Fig. 4 for all values of f � ranging from fmin to
�1. How many rectangles could be selected? Well,
with a little thought, it should be clear that the set of
dots that can be selected via these line sweeps is pre-
cisely the lower-right convex hull of the dots.

This alternative approach to deriving the lower-
right convex hull suggests a small but important mod-
ification to the selection rule. In particular, to prevent
DIRECT from wasting function evaluations in pursuit
of very small improvements, we will insist that the value
of f � satisfy f � � fmin � �. That is, we are only inter-
ested in selecting rectangles where it is reasonable that
we can find a ‘significantly better’ solution. A natural
value of � would be the desired accuracy of the solution.
In our implementation, we have set � =max(10�4|fmin|,
10�8).

As shown in Fig. 5, the implication of this modifica-
tion is that some of the smaller rectangles on the lower-
right convex hull may be skipped. In fact, the smallest
rectangle that will be selected is the one chosen when
f � = fmin��.

The version of DIRECT described so far corre-
sponds closely to the originally published version [2].
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The only difference is that, in the original version, a se-
lected rectangle was trisected not just on a single long
side, but rather on all long sides. This approach elim-
inated the need to arbitrarily select a single long side
when there weremore than one and, as a result, it added
an element of robustness to the algorithm. Experience
has since shown, however, that the robustness benefit is
small and that trisecting on a single long side (as here)
accelerates convergence in higher dimensions.

Let us now consider how the rectangle selection
procedure can be extended to handle inequality con-
straints. The key to handling constraints in DIRECT is
to work with an auxiliary function that combines in-
formation on the objective and constraint functions in
a special manner. To express this auxiliary function, we
will need some additional notation. Let grj denote the
value of constraint j at the midpoint of rectangle r. In
addition, let c1, . . . , cm be positive weighting coefficients
for the inequality constraints (we will discuss how these
coefficients are computed later). Finally, for the sake of
the exposition, let us again suppose that we know the
optimal function value f �. The auxiliary function, eval-
uated at the center of rectangle r, is then as follows:

max( fr � f �; 0)C
mX
jD1

c j max(gr j ; 0)

The first term of the auxiliary function exacts a penalty
for any deviation of the function value f r above the
global minimum value f �. Note that, in a constrained
problem, it is possible for f r to be less than f � by violat-
ing the constraints; due to the maximum operator, the
auxiliary function gives no credit for values of f r below
f �. The second term in the auxiliary function is a sum of
weighted constraint violations. Clearly, the lowest pos-
sible value of the auxiliary function is zero and occurs
only at the global minimum. At any other point, the
auxiliary function is positive either due to suboptimal-
ity or infeasibility.

This auxiliary function is not a penalty function in
the standard sense. A standard penalty function would
be a weighted sum of the objective function and con-
straint violations; it would not include the value f �

since this value is generally unknown. Moreover, in the
standard approach, it is critical that the penalty coeffi-
cients be sufficiently large to prevent the penalty func-
tion from being minimized in the infeasible region.

This is not true for our auxiliary function: as long as f �

is the optimal function value, the auxiliary function is
minimized at the global optimum for any positive con-
straint coefficients.

For the global minimum to occur in rectangle r,
the auxiliary function must fall to zero starting from its
(positive) value at the center point. Moreover, the max-
imum distance over which this change can occur is the
center-vertex distance dr . Thus, to reach the global min-
imum in rectangle r, the auxiliary function must un-
dergo a minimum rate of change, denoted hr(f �), given
by

hr( f �) D
max( fr � f �; 0)C

Pm
jD1 c j max(gr j; 0)

dr
:

Since it is more reasonable to expect gradual changes
than abrupt ones, a reasonable way to select a rectan-
gle would be to select rectangle that minimizes the rate
of change hr(f �). Of course, this is impractical because
we generally will not know the value f �. Nevertheless, it
is possible to select the set of rectangles that minimize
hr(f �) for some f � � fmin � �. This is how we select rect-
angles with constraints—assuming a feasible point has
been found so that fmin is well-defined (we will show
how this is implemented shortly). If no feasible point
has been found, we simply select the rectangle that min-
imizes

Pm
jD1 c j max(gr j; 0)

dr
:

That is, we select the rectangle where the weighted con-
straint violations can be brought to zero with the least
rate of change.

To implement this selection rule, it is again help-
ful to draw a diagram. This new selection diagram is
based on plotting the rate-of-change function hr(f �) as
a function of f �. Figure 6 illustrates this function. For
values of f � � f r , the first term in the numerator of
hr(f �) is zero, and so hr(f �) is constant. As f � falls be-
low f r , however, the hr(f �) increases, because we now
exact a penalty for f r being above the supposed global
minimum f �. The slope of hr(f �) function to the left of
f r is � 1/dr .

Figure 7 superimposes, in one diagram, the rate-of-
change functions for a hypothetical set of seven rectan-
gles. For a particular value of f �, we can visually find the
rectangle that minimizes hr(f �) by starting at the point
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(f �, 0) along the horizontal axis and moving vertically
until we first encounter a curve. What we want, how-
ever, is the set of all rectangles that can be selected in
this way using any f � � fmin � �. This set can be found
as follows (see Fig. 7). We start with f � = fmin � � and
move upwards until we first encounter a curve for some
rectangle. We note this rectangle and follow its curve to
the left until it intersects the curve for another rectan-
gle (these intersections are circled in Figure 7). When
this happens, we note this other rectangle and follow its
curve to the left. We continue in this way until we find
a curve that is never intersected by another one. This
procedure will identify all the hr(f �) functions that par-
ticipate in the lower envelope of the curves to the left of
fmin� �. The set of rectangles found in this way is the
set selected by DIRECT.

Along the horizontal axis in Fig. 7, we identify
ranges of f � values for which different rectangles have
the lowest value of hr(f �). As we scan from fmin � � to

the left, the rectangles that participate in the lower en-
velope are 1, 2, 5, 2, and 7. This example illustrates that
it is possible to encounter a curve more than once (here
rectangle 2), and caremust be taken not to double count
such rectangles. It is also possible for some curves to co-
incide along the lower envelope, and so be ‘tied’ for the
least rate of change (this does not happen in Fig. 7). In
such cases, we select all the tied rectangles.

Tracing the lower envelope in Fig. 7 is not compu-
tationally intense. To see this, note that each selected
rectangle corresponds to a curve on the lower enve-
lope, and for each such curve the work we must do is
to find the intersection with the next curve along the
lower envelope. Finding this next intersection requires
computing the intersection of the current curve with all
the other curves. It follows that the work required for
each selected rectangle (and hence for every two sam-
pled points) is only on the order of the total number of
rectangles in the partition.

The tracing of the lower envelope can also be accel-
erated by some pre-processing. In particular, it is possi-
ble to quickly identify rectangles whose curves lie com-
pletely above other curves. For example, in Fig. 7, curve
3 lies above curve 1, and curve 4 lies above curve 2.
These curves cannot possibly participate in the lower
envelope, and so they can be deleted from considera-
tion before the lower envelope is traced.

It remains to explain how the constraint coefficients
c1, . . . , cm are computed, as well as a few other details
about trisection and the handling of integer variables.
We will cover these details in turn, and then bring ev-
erything together into a step-by-step description of the
algorithm.

To understand how we compute the constraint co-
efficient cj, suppose for the moment that we knew the
average rate of change of the objective function, de-
noted a0, and the average rate of change of constraint j,
denoted aj. Furthermore, suppose that at the center of
a rectangle we have gj > 0. At the average rate of change
of constraint j, we would have to move a distance equal
to gj/aj to get rid of the constraint violation. If during
this motion the objective function got worse at its av-
erage rate of change, it would get worse by a0 times the
distance, or a0(gj/aj) = (a0/aj) gj. Thus we see that the
ratio a0/aj provides a way of converting units of con-
straint violation into potential increases in the objective
function. For this reason, we will set cj = a0/aj.
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The average rates of change are estimated in a very
straightforward manner. We maintain a variable s0 for
the sum of observed rates of change of the objective
function. Similarly we maintain variables s1, . . . , sm for
the sum of observed rates of change for each of the
m constraints. All of these variables are initialized to
zero at the start of the algorithm and updated each time
a rectangle is trisected. Let xmid denote the midpoint of
the parent rectangle and let xleft and xright denote the
midpoints of the left and right child rectangles after tri-
section. The variables are updated as follows:

s0 D s0 C
rightX

childDleft

ˇ̌
f (xchild) � f (xmid)

ˇ̌


xchild � xmid





s j D s j C
rightX

childDleft

ˇ̌
g j(xchild) � g j(xmid)

ˇ̌


xchild � xmid



 :

Now the average rates of change are a0 = s0/N and aj =
sj/N, whereN is the number of rates of change accumu-
lated into the sums. It follows that

a0
aj
D

s0
N
s j
N

D
s0
s j
:

Wemay therefore compute cj using

c j D
s0

max(s j; 10�30)
;

where we use the maximum operator in the denomina-
tor to prevent division by zero.

So far we have said that we will always trisect a rect-
angle along one of its long sides. However, as shown
in Fig. 2, several sides may be tied for longest, and so
we need some way to break these ties. Our tie breaking
mechanism is as follows.Wemaintain counters ti (i = 1,
. . . , n) for how many times we have split along dimen-
sion i over the course of the entire search. These coun-
ters are initialized to zero at the beginning of the algo-
rithm, and counter ti is incremented each time a rectan-
gle is trisected along dimension i. If we select a rectangle
that has several sides tied for being longest, we break
the tie in favor of the side with the lowest ti value. If
several long sides are also tied for the lowest ti value, we
break the tie arbitrarily in favor of the lowest-indexed
dimension. This tie breaking strategy has the effect of
equalizing the number of times we split on the different
dimensions.

Let us now turn to the calculation of the center-
vertex distance. Recall that we measure distance using
a weighted metric that assigns a length of one to the
initial range of each variable (ui � `i). Each time a rect-
angle is split, the length of that side is then reduced by
a factor of 1/3. Now consider a rectangle that has been
trisected T times. Let j = mod(T, n), so that we may
write T = kn + j where k = (T � j)/n. After the first kn
trisections, all of the n sides will have been trisected k
times and will therefore have length 3� k. The remain-
ing j trisections will make j of the sides have length
3� (k+ 1), leaving n � j sides with length 3� k. Simple al-
gebra then shows that the distance d from the center to
the vertices is given by

d D
3�k

2

�
j
9
C n � j

�0:5

:

(This is not obvious, but can be easily verified.)
The handling of integer variables is amazingly sim-

ple, involving only minor changes to the trisection rou-
tine and to the way the midpoint of a rectangle is de-
fined. For example, consider an integer variable with
range [1, 8]. We could not define the midpoint to be
4.5 because this is not an integer. Instead, we will use
the following procedure. Suppose the range of a rectan-
gle along an integer dimension is [a, b], with both a and
b being integers. We will define the ‘midpoint’ as b(a
+ b)/2c, that is, it is the floor of algebraic average (the
floor of z, denoted bzc, is the greatest integer less than
or equal to z).

To trisect along the integer dimension, we first com-
pute� = b(b � a + 1)/3c. If� � 1, then after trisection
the left child will have the range [a, a + � � 1], the
center child will have the range [a + �, b � �], and
the right child will have range [b � � + 1, b]. If � =
0, then the integer side must have a range of two (i. e.,
b = a + 1). In this case, the center child will have the
range [a, a] the right child will have the range [b, b],
and there will be no left child. This procedure main-
tains the property that the midpoint of the parent rect-
angle always becomes the midpoint of the center child.
As an example, Fig. 8 shows how a rectangle would be
trisected when there are two integer dimensions. In the
figure, the circles represent possible integer combina-
tions, and the filled circles represent the midpoints.

Integer variables introduce three other complica-
tions. The first, which may be seen in Fig. 8, is that the
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sampled point may not be in the true geometric cen-
ter of the rectangle. As a result, the center-vertex dis-
tance will not be unique but will vary from vertex to
vertex. We ignore this detail and simply use the for-
mula given above for the continuous case, which only
depends upon the number of times a rectangle has been
trisected.

The second complication concerns how we define
a ‘long’ side. In the continuous case, the length of a side
is directly related to the number of times it has been
trisected along that dimension. Specifically, if a rect-
angle has been split k times along some side, then the
side length will be 3� k (recall that we measure dis-
tance relative to the original range of each variable). In
the continuous case, therefore, the set of long sides is
the same as the set of sides that have been split upon
the least. When there are integers, however, the side
lengths will no longer be multiples of 1/3. To keep
things simple, however, we ignore this and continue to
define a ‘long’ side as one that has been split upon the
least. However, if an integer side has been split so many
times that its side length is zero (i. e., the range contains
a single integer), then this side will not be considered
long.

The third and final complication is that, if all the
variables are integer, then it is possible for a rectangle
to be reduced to a single point. If this happens, the rect-
angle would be fathomed; hence, it should be ignored
in the rectangle selection process in all subsequent iter-
ations.

DIRECT stops when it reaches a user-defined limit
on function evaluations. It would be preferable, of
course, to stop when we have achieved some desired
accuracy in the solution. However, for black-box prob-
lems where we only assume continuity, better stopping
rules are hard to develop.

As for convergence, it is easy to show that, as f �

moves to �1, DIRECT will select one of the largest
rectangles. Because we always select one of the largest
rectangles, and because we always subdivide on a long
side, every rectangle will eventually become very small
and the sampled points will be dense in the space. Since
we also assume the functions are continuous in the
neighborhood of the optimum, this insures that we will
get within any positive tolerance of the optimum after
a sufficiently large number of iterations.

Although we have now described all the elements
of DIRECT, our discussion has covered several pages,
and so it will be helpful to bring everything together in
a step-by-step description of the algorithm.
1) Initialization.

Sample the center point of the entire space. If the
center is feasible, set xmin equal to the center point
and fmin equal to the objective function value at this
point. Set sj = 0 for j = 0, . . . , m; ti = 0 for i = 1, . . . ,
n; and neval = 1 (function evaluation counter). Set
maxeval equal to the limit on the number of func-
tion evaluations (stopping criterion).

2) Select rectangles.
Compute the cj values using the current values of s0
and sj, j = 1, . . . , m. If a feasible point has not been
found, select the rectangle that minimizes the rate
of change required to bring the weighted constraint
violations to zero. On the other hand, if a feasible
point has been found, identify the set of rectangles
that participate in the lower envelope of the hr(f �)
functions for some f � � fmin � �. A good value for
� is � = max(10�4 |fmin|, 10�8). Let S be the set of
selected rectangles.

3) Choose any rectangle r 2 S.
4) Trisect and sample rectangle r.

Choose a splitting dimension by identifying the set
of long sides of rectangle r and then choosing the
long side with the smallest ti value. If more than one
side is tied for the lowest ti value, choose the one
with the lowest-dimensional index. Let i be the re-
sulting splitting dimension. Note that a ‘long side’
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is defined as a side that has been split upon the least
and, if integer, has a positive range. Trisect rectangle
r along dimension i and increment ti by one. Sam-
ple the midpoint of the left third, increment neval by
one, and update xmin and fmin. If neval = maxeval,
go to Step 7. Otherwise, sample the midpoint of the
right third, increment neval by one, and update xmin

and fmin (note that there might not be a right child
when trisecting on an integer variable). Update the
sj j = 0, . . . , m. If all n variables are integer, check
whether a child rectangle has been reduced to a sin-
gle point and, if so, delete it from further considera-
tion. Go to Step 5.

5) Update S.
Set S = S � {r}. If S is not empty, go to Step 3. Oth-
erwise go to Step 6.

6) Iterate.
Report the results of this iteration, and then go to
Step 2.

7) Terminate.
The search is complete. Report xmin and fmin and
stop.
The results of DIRECT are slightly sensitive to the

order in which the selected rectangles are trisected and
sampled because this order affects the ti values and,
hence, the choice of splitting dimensions for other se-
lected rectangles. In our current implementation, we se-
lect the rectangles in Step 3 in the same order that they
are found as we scan the lower envelope in Fig. 7 from
f � = fmin � � towards f � = �1.

On the first iteration, all the sj will be zero in Step 2
and, hence, all the cj will be zero when computed using
cj = s0/max(sj, 10�30). Thus, in the beginning the con-
stants cj will not be very meaningful. This is not impor-
tant, however, because on the first iteration there is only
one rectangle eligible for selection (the entire space),
and so the selection process is trivial. As the iterations
proceed, the sj will be based onmore observations, lead-
ing to more meaningful cj constants and better rectan-
gle selections.

When there are no inequality constraints, the above
step-by-step procedure reduces to the basic version of
DIRECT described earlier. To see this, note that, when
there are no constraints, every point is feasible and so
f r � fmin � f � for all rectangles r. This fact, combined
with the lack of any constraint violations, means that
the hr(f �) function given earlier reduces to (f r� f �)/dr ,

Direct Global Optimization Algorithm, Figure 9

which is precisely the rate-of-change function we min-
imized in the unconstrained version. Thus, in the un-
constrained case, tracing the lower envelope in Fig. 7
identifies the same rectangles as tracing the lower-right
convex hull in Fig. 5.

We will illustrate DIRECT on the following two-
dimensional test function:
8̂
<̂
ˆ̂:

min f (x1; x2)
s.t. g(x1; x2) � 0

�1 � x1; x2 � C1;

where

f (x1; x2)

D

�
4 � 2:1x21 C

x41
3

�
x21 C x1x2 C

�
�4C 4x22

�
x22 ;

g(x1; x2) D � sin(4x1)C 2 sin2(2x2):

We call this problem the Gomez #3 problem since it was
listed as the third test problem in an article by S. Gomez
and A. Levy [1]. The global minimum of the Gomez #3
problem occurs at the point (0.109, � 0.623) where the
function value is � 0.9711. The problem is difficult be-
cause the feasible region consists of many disconnected,
approximately circular parts, giving rise to many local
optima (see Fig. 9).

For this test function, DIRECT gets within 1% of
the optimum after 89 function evaluations and within
0.01% after 513 function evaluations. The first 89 sam-
pled points are shown in Fig. 10. For comparison, the
tunneling algorithm of Gomez and Levy [1] converged
using an average of 1053 objective function evaluations
and 1873 constraint evaluations (averaged over 20 ran-
dom starting points). One reason DIRECT converges
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quickly is that it searches both globally and locally dur-
ing each iteration; as a result, as soon as the global part
of the algorithm finds the basin of convergence of the
optimum, the local part of the algorithm automatically
exploits it.

In this example, DIRECT quickly gets close to the
optimum but takes longer to achieve a high degree
of accuracy. This suggests that the best performance
would be obtained by combining DIRECT with a good
local optimizer. The simplest way to do this is to run
DIRECT for a predetermined number of function eval-
uations and then use the resulting solution as a start-
ing point for a local optimization. While straightfor-
ward, this approach is highly sensitive to the number
of function evaluations used in the global phase with
DIRECT. If one uses too few function evaluations, DI-
RECT might not discover the basin of convergence of
the global minimum.

To ensure that the global optimum is eventually
found, we must somehow return to the global phase af-
ter we have performed a local search. One way of do-
ing this is as follows. We start the local optimizer the
very first time a feasible point is found (or perhaps af-
ter a minimum initial phase of 50–100 evaluations). Af-
ter the local finishes, we return to DIRECT. However,
DIRECT does not proceed the same as it would have
without the local optimizer. Instead, the search will be
more global, because the local optimizer will have re-
duced the value of fmin (which affects rectangle selec-
tion). DIRECT will now be looking for a point that
improves upon the local solution—in effect, it will be
looking for the basin of convergence of a better mini-
mum. If DIRECT finds such an improving point, then

we run a local search from this point and again return to
DIRECT. This process continues until we reach a pre-
determined limit on the total number of function evalu-
ations (for both DIRECT and the local optimizer). Used
in this way, DIRECT becomes an intelligent routine for
selecting starting points for the local optimizer.

While DIRECT works well on the Gomez #3 prob-
lem and on test functions reported in [2], the algo-
rithm is not without its disadvantages. For example, DI-
RECT’s use of a space-partitioning approach requires
the user to have relatively tight lower and upper bounds
on all the variables. DIRECT will perform miserably
if one specifies wide bounds such as [�1030, +1030].
The space-partitioning approach also limits the algo-
rithm to low-dimensional problems (say, less than 20).
While integer variables are handled, they must be or-
dered, such as the number of gear teeth, since only then
can we expect the function value at a rectangle’s mid-
point to be indicative of what the function is like in the
rest of the rectangle. Another limitation is that equality
constraints are not handled. Finally, the stopping crite-
rion—a limit on function evaluations—is weak.

The advantages of DIRECT, however, are consider-
able. The algorithm can handle nonsmooth, nonlinear,
multimodal, and even discontinuous functions (as long
as the discontinuity is not close to the global optimum).
The algorithm works well in the presence of noise, since
a small amount of noise usually has little impact on
the set of selected rectangles until late in the search.
Computational overhead is low, and the algorithm can
exploit parallel processing because it generates several
new points per iteration. Based on the comparisons in
[2], the algorithm also appears to be efficient in terms
of the number of function evaluations required to get
close to the global minimum. But the most important
advantage of DIRECT stems from its unique approach
to balancing local and global search—the simple idea
of not sampling just one point per iteration, but rather
sampling several points using all possible weightings of
local versus global search. This approach leads to an al-
gorithm with no tuning parameters, making the algo-
rithm easy-to-use and robust.
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Direct search optimization procedures are attractive be-
cause of the ease with which they can be used. Op-
timization procedures where auxiliary functions such

as gradients are not calculated are desirable for prob-
lems where discontinuous functions are encountered,
or where numerous constraints make the calculation
and use of gradients very difficult in searching for the
global optimum. The reliability of getting to the vicin-
ity of the global optimum is an additional feature that
makes the use of direct search optimization an attrac-
tive means of optimization.

The need for an efficient and easy to use optimiza-
tion procedure was illustrated in [1], in attempting to
obtain the best weighting factors in a Liapunov func-
tion used for time suboptimal control of a linear gas ab-
sorber. Although at that time the best optimization pro-
cedure for that problem was the hill-climbing proce-
dure due to H.H. Rosenbrock [35], the method encoun-
tered difficulties in establishing the global optimum. In
the 1970s a large number of direct search optimiza-
tion procedures were introduced. One such method is
due to R. Luus and T.H.I. Jaakola [29], which has been
called in the literature by numerous authors as the LJ
optimization procedure. The method is based on using
a number of randomly chosen test points over some re-
gion and contracting the region after every iteration,
always starting the iteration with the best point found
from the previous iteration as the center of the region.
The ease of programming and the ease with which in-
equality constraints can be handled make this direct
search procedure attractive.

Optimization Problem

We consider the problem of minimizing the perfor-
mance index or cost function

I D f (x1; : : : ; xn) (1)

subject to p inequality constraints

g j(x1; : : : ; xn) � 0; j D 1; : : : ; p; (2)

through the appropriate choice of x1, . . . , xn. The di-
rect search optimization procedure suggested in [29]
involves only three steps:
� Choose a number of points in the n-dimensional

space through the equation

x D x� CDr; (3)

whereD is a diagonal matrix with diagonal elements
chosen at random between �1 and +1, and r is the
region size vector.
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� Check the feasibility of each point with respect to
(2), and for each feasible point evaluate the perfor-
mance index I in (1).

� At the end of each iteration, x� is replaced by the
best feasible value of x obtained in Step 2, and the
region size vector r is reduced in size by

r( jC1) D �r( j); (4)

where � is a contraction factor such as 0.95. This
procedure is continued for a number of iterations
and the results are examined.

If adequate convergence is not obtained, then the pro-
cedure can be repeated by carrying out another pass,
using the information obtained from the previous pass.
This optimization procedure enabled several difficult
optimization problems to be solved in the original pa-
per [29], and provided a means to solve a wide vari-
ety of problems in optimal control, such as time sub-
optimal control [9,8,7] and gave good approximation
to optimal control by providing a means of obtaining
the elements for the feedback gain matrix. The LJ op-
timization procedure was found very useful for stabi-
lizing systems through shifting of poles [30] and test-
ing stabilizability of linear systems [13]. Research was
done to improve the likelihood of getting the global op-
timum for nonunimodal systems [37], but even with-
out any modification, the reliability of the LJ proce-
dure was found to be very good [38], even for the dif-
ficult bifunctional catalyst blend problem [26]. There-
fore, the LJ optimization procedure could be used ef-
fectively for optimization of complex systems such as
heat exchanger networks [17], a transformer design
problem [36], design of structural columns in such
a way that the amount of material would be min-
imized [3], and problems dealing with metallurgical
processes [34]. The simplicity of the method was illus-
trated by the computer program given in its entirety in
reference [17].

When the variables are restricted to be integers, spe-
cial procedures may be necessary [12], since we can-
not simply search on integer values to get the global
optimum. Thus the scope of problems where LJ op-
timization procedure has been successfully applied is
quite wide. In parameter estimation, N. Kalogerakis
and Luus [6] found that by LJ optimization reliable
estimates could be obtained for parameters in very

few iterations, so that these estimates could then be
used as starting values for quadratically convergent
Gauss–Newton method, without having to worry about
nonconvergence. In model reduction the LJ method
has been found useful to match the reduced system’s
Nyquist plot to that of the original system [15], or used
directly in time domain [40]. LJ optimization procedure
has also been used successfully in model reduction in
sampled-data systems [39] and is illustrated with sev-
eral examples in [23].

Handling Equality Constraints

Suppose that in addition to the inequality constraints in
(2), we also have m equality constraints

hi(x1; : : : ; xn) D 0; i D 1; : : : ;m; (5)

where these equality constraints are ‘difficult’ in the
sense that they can not be used to solve for some partic-
ular variable.

Although a two-pass method to deal with equal-
ity constraints [10] was effective to solve optimization
problems involving recycle streams [11], the general ap-
proach for handling equality constraints with LJ opti-
mization procedure was not solved satisfactorily, un-
til it was shown [4] that penalty functions can be used
very effectively in direct search optimization. The work
was extended in [33], and now it appears that the use
of a quadratic penalty function incorporating a shift-
ing term is the best way of dealing with difficult equal-
ity constraints [19]. We consider the augmented perfor-
mance index

J D I C �
mX
iD1

(hi � si )2; (6)

where a shifting term si is introduced for each equal-
ity constraint. To solve the optimization problem, LJ
optimization procedure is used in a multipass fash-
ion, where at the beginning of each pass consisting of
a number of iterations, the region sizes are restored to
a fraction of the sizes used at the beginning of the pre-
vious pass. The shifting terms si are updated after every
pass simply by adjusting the values at the beginning of
pass (q+1) based on the deviation of the left-hand side
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in (5) from zero; i. e.,

s(qC1)
i D s(q)i � hi ; i D 1; : : : ;m; (7)

where q is the pass number. Upon optimization the
product � 2 � si gives the Lagrange multiplier asso-
ciated with the ith equality constraint, yielding useful
sensitivity information. Full details are given in [19].
This approach to dealing with equality constraints was
used in [31] in using iterative dynamic programming
(IDP) to solve an optimal control problem where the
final state was specified, and in [28] where the volume
of the fed-batch reactor was specified at the final time.

Another approach to deal with equality constraints
is to solve the algebraic equations at each iteration by
grouping the equations [21]. For several optimization
problems this approach yielded very rapid convergence
to the global optimum [22].

Use of LJ Optimization Procedure
for High-Dimensional Problems

In [2] it was found that LJ optimization can be used
quite effectively to solve optimal control problems,
where the system is divided into a number of time
stages. This approach was used in [27] to solve a very
difficult optimal control problem involving the deter-
mination of the optimum drug delivery schedule to
minimize the tumor size at the end of 12 weeks. The
problem was broken into 84 time stages, each con-
sisting of a single day. In spite of the state constraints
and discontinuous functions, this 84-dimensional opti-
mization problem was solved successfully on a personal
computer in reasonable computation time. Especially
now that the personal computers are much faster, such
a problem is considerably easier to solve. To solve high-
dimensional problems a multipass method was used for
LJ optimization where after a pass, the region would be
restored to a value smaller than used at the beginning
of the previous pass and the procedure was repeated.
In the case of the cancer chemotherapy problem, the
problem required a number of runs for successful so-
lution [27].

Determination of Region Size

One of the problems that was outstanding for the LJ op-
timization procedure was how to choose the region size

vector r effectively at the beginning of the iterations,
especially when a multipass procedure was used. This
problem was recently solved in [20], by suggesting that
the initial region size be determined by the extent of the
variation of the variable during the previous pass. With
the use of reliable values for the region size at the be-
ginning of each pass in a multipass run, the computa-
tional effort is decreased quite substantially. For exam-
ple, when we consider the nonseparable optimization
problem introduced in [32], where we have a system de-
scribed by three difference equations:

x1(k C 1) D
x1(k)

1C 0:01u1(k)(3C u2(k))
;

x2(k C 1) D
x2(k)C u1(k)x1(k C 1)
1C u1(k)(1C u2(k))

;

x3(k C 1) D
x3(k)

1C 0:01u2(k)(1C u3(k)
;

with the initial condition

x(0) D [2 5 7]>:

The control variables are constrained by

0 � u1(k) � 4;

0 � u2(k) � 4;

0 � u3(k) � 0:5:

The performance index to be minimized is

I D x21(P)C x22(P)C x23(P)

C

" PX
kD1

x21(k � 1)C x22(k � 1)C 2u2
3(k � 1)

!

�

 PX
kD1

x23(k � 1)C 2u2
1(k � 1)C 2u2

2(k � 1)

!# 1
2

where P is the number of stages. When P is taken as
100, then we have a 300 variable optimization problem,
because at each stage there are three control variables
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to be determined. Without the use of a reliable way
of determining the region sizes over which to take the
control variables, the problem is very difficult, but with
the method suggested in [20] the problem was solved
quite readily by the LJ optimization procedure by us-
ing 100 random points per iteration and 60 passes, each
consisting of 201 iterations, to yield I = 258.3393. Al-
though the computational requirements appear enor-
mous, the actual computation time was less than 20
minutes on a Pentium-120 personal computer [20],
which corresponds to less than one minute on the
Pentium4/2.4 GHz personal computer. This value of
the performance index is very close to the value I =
258.3392 obtained by use of iterative dynamic program-
ming [18]. To solve this problem, IDP is much more ef-
ficient in spite of the nonseparability of the problem,
because in IDP the problem is solved as a 3 variable
problem over 100 stages, rather than a 300 variable op-
timization problem. Therefore, the LJ procedure is use-
ful in checking the optimal control policy obtained by
some other method. Here, the control policies obtained
by IDP and LJ optimization procedure are almost iden-
tical, where a sudden change at around stage 70 occurs
in the control variables u1 and u2. Therefore, LJ opti-
mization procedure is ideally suited for checking results
obtained by other methods, especially when the optimal
control policy differs from what is expected, as is the
case with this particular example.

Recently it was shown that the convergence of the LJ
optimization procedure in the vicinity of the optimum
can be improved substantially by incorporating a sim-
ple line search to choose the best center point for a sub-
sequent pass [24]. For a typical model reduction prob-
lem, to reach the global optimum the computation time
was reduced by a factor of four when the line search was
incorporated. Due to its simplicity, the LJ optimization
procedure can be programmed very easily. Computa-
tional experience with numerous optimization prob-
lems has shown that the method has high reliability of
obtaining the global optimum, so the LJ optimization
procedure provides a very good means of obtaining the
optimum for very complex problems.

See also

� Interval Analysis: Unconstrained and Constrained
Optimization
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Continuous optimization refers to optimization involv-
ing objective functions whose domain of definition is
a continuum, as opposed to a set of discrete points in
combinatorial (or discrete) optimization. Discontinu-
ous optimization is the special case of continuous opti-
mization in which the objective function, although de-
fined over a continuum (let us suppose over Rn), is not
necessarily a continuous function.

We define the discontinuous optimization problem
as:

8̂
ˆ̂<
ˆ̂̂:

inf ef (x)
s.t. fi(x) D 0; i 2 E;

fi(x) � 0; i 2 I;

(1)

where the index sets E and I are finite and disjoint and
ef and f i, i 2 E [ I are a collection of (possibly dis-
continuous) piecewise differentiable functions that map
Rn to R. A piecewise differentiable function f : Rn ! R
is a function whose derivative is defined everywhere
except over a subset of a finite number of sets, called
ridges, of the form {x 2 Rn: r(x) = 0}, where r is a differ-
entiable function, and these ridges partition the domain
into subdomains over each of which f is differentiable.
By abuse of language, we shall call r(x) a ridge of f .
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Without loss of generality, we can restrict our at-
tention to the unconstrained optimization problem: infx
f (x), where f is a (possibly discontinuous) piecewise
differentiable function. Indeed, in order to solve prob-
lem (1), one can consider the unconstrained l1 exact
penalty function

f� (x) :D �ef (x)C
X
i2E

j fi(x)j

�
X
i2I

min[0; fi(x)]

for a succession of decreasing positive values of the
penalty parameter � (f � is clearly a piecewise differ-
entiable function). Notice however that using the l1
penalty function (and dealing with the decrease of
a penalty parameter) is only one approach to han-
dling the constrained problem and may not be the best
way.

Given a (possibly discontinuous) piecewise differ-
entiable function f defined over Rn and the finite set
fri(x)gi2R of its ridges, we define a cell of f to be
a nonempty set C � Rn such that for all x, y 2 C we
have sign(ri(x)) = sign(ri(y)) 6D 0, for all i2R, where the
function sign is either 1, �1 or 0, according to whether
its argument is positive, negative or zero. Thus, f is dif-
ferentiable over a cell.

Considering the optimization of functions which
are nonsmooth and even discontinuous is motivated
by applications in VLSI and floor-planning problems,
plant layout, batch production, switching regression,
discharge allocation for hydro-electric generating sta-
tions, fixed-charge problems, for example (see [4, In-
trod.] for references). Note that most of these prob-
lems can alternatively be modeled within the con-
text of mixed integer programming, a field straddling
combinatorial optimization and continuous optimiza-
tion.

The inescapable nonconvexity nature of discontin-
uous functions gives rise to the existence of several local
optima in discontinuous optimization problems. We
do not address here the difficult issue of global opti-
mization. We are concerned with finding a local in-
fimum of the above optimization problem. An algo-
rithm looking for local optima can however be used
as an adjunct to some heuristic or global optimization
method for discontinuous optimization problems but

the inherent combinatorial nature of such an approach
is often ultimately dominant. More importantly, it pro-
vides a framework allowing the optimizer to deal di-
rectly with the nonsmoothnesses and discontinuities
involved, and thereby, improve solutions found by
heuristic methods, when this is possible.

Leaving aside the heuristic methods (which many
people facing practical discontinuous optimization
problems rely upon in order to solve mixed integer pro-
gramming formulation of discontinuous optimization
problems), previous work on discontinuous optimiza-
tion includes smoothing algorithms. The smoothing al-
gorithms express discontinuities by means of a step
function, and then they approximate the step func-
tion by a function which is not only continuous but
moreover smooth, so that the resulting problem can be
solved by a gradient technique (cf. also � Conjugate–
gradient methods). Both I.I. Imo and D.J. Leech [7] and
I. Zang [9] developed methods in which the objective
function is replaced only in the neighborhood of the
discontinuities. Two drawbacks of these methods are
the potential numerical instability when we want this
neighborhood to be small, and the cost of evaluating
the smoothed functions. In many instances the discon-
tinuities of the first derivative are exactly the regions of
interest and smoothing has the effect of making such
regions less discernible.

Another approach, which deals explicitly with the
discontinuities within the framework of continuous op-
timization, is the following active set method (intro-
duced in [4]). Recall the following definitions relevant
to active set methods: the null space of M, denoted by
N(M), is defined by

N (M) �
n
x 2 Rn : Mx D E0

o
:

We say that a ridge r is active at bx if r(bx) D 0. Let
A(bx) � R be the (finite) index set of the ridges that
are active at the current pointbx, and let A(bx) be thema-
trix of activities, having as columns the gradients of the
ridges that are active atbx. In the case of linear ridges,
ri(x) := a|

i x � bi, a direction d 2 N (A>(bx)) is said to
preserve each activity i 2A(bx) since for each i 2A(bx)
we have ri(bx C ˛d) D ri (bx) D 0.

IfA(bx) ¤ ;, then r f (bx) is not necessarily defined.
This is because we cannot talk about the gradient of the
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function atbx since there is no vector g 2 Rn such that
g|d is the first order change of f in direction d, for any d
2 Rn. Thus, we cannot use, as in the smooth situation,
the negative gradient direction as a descent direction.
We term any (n × 1)-vector gx̂ such that

f 0(bx; d) D g>x̂ d;

for all d 2N (A>);

a restricted gradient of f atbx, because it is the gradient
of the restriction of f to the spaceN (A>(bx)).

Let us first consider the continuous piecewise linear
case. We assume that the ridges of f are given, and also
we assume that the restriction of f to any cell is known.
Hence, we are assuming that more information on the
structure of the objective function is available than, for
example, in a bundle method [8], which assumes that
only one element of the subdifferential is known at any
point.

It is shown in [4] that, under some nondegener-
acy assumptions (e. g. the gradients of the ridges which
are active at x are linearly independent), any continu-
ous piecewise linear function f can be decomposed in
a neighborhood ofbx into a smooth function and a sum
of continuous functions having a single ridge as fol-
lows:

f (x) D f (bx)C g>x̂ (x �bx)

C
X

i2A(x̂)

� ix̂ min(0; a>i (x �bx)) ;

for some scalars f� ix̂gi2A(x̂), and some vector gx̂ 2 Rn .
We term gx̂ the restricted gradient of f atbx. Note that if
m ridges of f are active atbx, it means that there are 2m

cells in any small neighborhood ofbx. The vector gx̂ and
the m scalars f� ix̂gi2A(bx), together with the m gradients
of the activities, faigi2A(bx), thus completely character-
ize the behavior of f over the 2m cells in the neighbor-
hood ofbx!

With such a decomposition at any point of Rn, an
algorithm for finding a local minimum of a continuous
piecewise linear function f is readily obtained, as long
as we assume no degeneracy at any iterate and at any
breakpoint encountered in the line search (we shall dis-
cuss later the degenerate situation):

1 Choose any x1 2 Rn and set k 1.
BEGIN REPEAT
2 Identify the activities, A(xk), and com-

pute dk � �P(gxk ), the projection of
the restricted gradient onto the space or-
thogonal to the gradients of the activi-
ties.
IF dk = �!0 (xk is a dead point; compute a
single-dropping descent direction or es-
tablish optimality), THEN

3 Compute fuigi2A(xk ), the coefficients of
faigi2A(xk ) in the linear combination of
gxk in terms of the columns ofA(xk).

4 IF ui < 0 or ui > �� ix k , for some
i 2 A(xk) (violated optimality condi-
tion), THEN

5 (Drop activity i)
Redefine dk = P�i (ai), if the vio-
lated inequality found corresponds to
ui � 0; otherwise dk = �P�i (ai) if it is
ui � ��

i
x k , where P�i is the orthogonal

projector onto the space orthogonal to
the gradients of all the activities but ac-
tivity i.
ELSE stop: xk is a local minimum of f .
ENDIF ENDIF

6 (Line search)
Determine the step size ˛k by solving
min˛>0 f (xk + ˛dk ). This line search
can be done from xk , moving from one
break-point of f to the next, in the di-
rection dk , until either we establish un-
boundedness of the objective function
or the value of f starts increasing.

7 Update xk+1 = xk + ˛kdk ; k k + 1.
END REPEAT

Continuous piecewise linear minimization algorithm

Remark that in step 6, the directional derivative of
the objective function in the direction dk can easily be
updated from one breakpoint to the other in terms of
the scalar � ix , where i is the index of the ridge crossed at
breakpoint x.

Let us now consider the case where f is still piece-
wise linear but with possibly discontinuities across
some ridges. We term such ridges: faults, and F(bx) de-
notes the faults that are active atbx.
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Note first that a (local) minimum does not always
exist in the discontinuous case. Consider for exam-
ple the following univariate function, having x = 0 as
a fault:

f (x) D

(
x C 1 if x � 0;
�x otherwise:

Hence, we rather look for a local infimum. In order to
find such a local infimum of a function f having some
faults, we shall simply generalize the algorithm for the
continuous problem by implicitly considering any dis-
continuity or jump across a fault i in f as the limit-
ing case of a continuous situation. Since we are looking
for a local infimum, without loss of generality we shall
henceforth only consider functions f such that

f (x) D lim inf
x!x

f (x);

in other words, we consider the lower semicontinuous
envelope of f .

The algorithm for the discontinuous case is essen-
tially the same as in the continuous case except that we
consider dropping an active fault from a dead point, x,
only if we do so along a direction d such that

lim
ı!0C

f (x C ıd) D f (x)

(i. e. as ı > 0 is small, the value of f does not jump
up from x to x + ıd). Thus, virtually only step 4 must
be adapted from the continuous problem algorithm in
order to solve the discontinuous case. To make more
carefully the intuitive concept of directions jumping up
or down, we define the set of soaring directions from
a pointbx to be:

S(bx) :D
8<
:d 2 Rn :

9� > 0; ı > 0 :
8 0 < ı < ı :

f (bx C ıd) � f (bx) > �

9=
; :

If we define, for a nondegenerate pointbx,

SC(bx) :D

8̂
<
:̂
i 2A(bx) :

if diC 2N (A>�i)
and a>i d

iC > 0
then diC 2 S(bx)

9>=
>;
;

S�(bx) :D
8<
:i 2A(bx) :

if di� 2N (A>�i )
and a>i d

i� < 0
then di� 2 S(bx)

9=
; ;

then the set of soaring single-dropping directions from
bx are simply the directions dropping an activity i 2
SC(bx) positively and the directions dropping an i 2
S�(bx) negatively (we say that activity i is dropped posi-
tively (negatively) if all current activities, except for the
ith, are preserved and if, moreover, a>i d is positive
(negative)). A fault can now be definedmore rigorously:
a positive (negative) fault of f at a pointbx is a ridge i 2R

such that for any neighborhood, B(bx), ofbx, there exists
a nondegenerate point x0 2 B(bx) with i 2 S+(x0) (with
i 2 S�(x0)). The set of all positive (negative) faults atbx
is denoted by FC(bx) F�(bx)). The set of faults of f at
a pointbx is denoted by

F(bx) :D FC(bx) [ F�(bx):

We modify the continuous problem algorithm in such
a way that, at a nondegenerate dead point, xk, we do not
need to verify the optimality conditions corresponding
to soaring single-dropping directions (ui � 0, i2 S+ (xk)
and ui � � � i, i 2 S� (xk)), so that we never consider
such single-dropping directions in order to establish
whether xk is optimal. This is reasonable since we are
looking for a local minimum. The line-search step (step
6) is modified similarly: when we encounter a break-
point x on a fault along a direction d 2 S(x) (jump up),
we stop; while if d is such that�d 2 S(x), (jump down),
we carry on to the next breakpoint, and update properly
the directional derivative along d.

Note that one has to be careful at a ‘contact’ point xc
2 R (defined below). At xc, contrary to at other points
of a fault, we can drop activity i both positively and neg-
atively.

The function f : R2! R, given by

f (x) D

8̂
<̂
ˆ̂:

2x2 if x1 > 0 or

(x1 D 0 and x2 � 0);

�x2 otherwise;

(2)

illustrates well the situation. Figure 1 shows the graph
of f in a neighborhood of xc := (0, 0)| (the dotted lines
are simply lines that could be seen if the hatched surface
were transparent). The point xc is a contact point with
respect to the fault x1 = 0.



Discontinuous Optimization D 743

Formally, we define xc 2 Rn to be a contact point of
f with respect to i 2 A(xc), when i 2 F(xc) such that
either
1) i 2 F+ (xc) \ F� (xc), or
2) there exist �+, �� 2 3|R| such that �Ci = 1, ��i = � 1

and

lim
x!xc ;
�(x)D�C

f (x) D lim
x!xc ;
�(x)D��

f (x)

(continuity when crossing ridge i, which is a fault, at
xc), where �(x) is the vector whose kth component
is sign(rk(x)).

Note that the fault x1 = 0 and the point xc = (0, 0)| sat-
isfy both conditions 1) and 2) in the above definition of
a contact point for the function f defined by (2). They
however satisfy only condition 1) for the function f : R2

! R, defined by

f (x) D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

1 if x1 � 0 and x2 � 0;
2 if x1 � 0 and x2 � 0

and x ¤ (0; 0)>;
3 if x1 > 0 and x2 < 0;
4 otherwise;

with faults x1 = 0 and x2 = 0. For the function f : R2!

R given by

f (x) D

(
�x2 if x1 > 0 and x2 < 0;
0 otherwise;

with fault x1 = 0, we satisfy only condition 2) (F� (xc)
is empty).

An algorithm similar to the one introduced in the
continuous case, but which does not consider soaring
single-dropping directions, will encounter no difficulty
with the discontinuity in f at any noncontact point (e. g.
for (2), at any point other than xc). Let us assume, with-
out loss of generality, that at the kth iterate, xk, F(xk)
= F�(xk). The only step of the continuous algorithm
which need to be modified is (assuming moreover that
all points encountered in the algorithm are noncontact
points):

4 IF ui<0 for some i 2A(xk), or ui > ��
i
x k for

some i 2 A(xk)nF(xk) (violated optimality
condition), THEN

The paper [4] describes techniques (including per-
turbation) to cope with problems that occur in certain
cases where the hypothesis of nondegeneracy is not sat-
isfied at points encountered in the course of the algo-
rithm. One cannot however extend this algorithm to
deal with dead-point iterates (i. e. not encountered as
breakpoint along the line search) without considering
carefully the combinatorial nature of the problem of
degeneracy. Nevertheless, no difficulties were encoun-
tered in the computational experiments reported in [4],
although serious problems can still arise at certain sin-
gular points (contact points and dead-point iterates, at
which the objective function is not decomposable). In-
deed, in the discontinuous case, there is no straightfor-
ward extension of this approach to the cases where the
algorithm encounters a contact point. In the continu-
ous case, the behavior of f over two juxtaposed cells are
linked. At contact points however, there is coincidence
of the values of restrictions of f to subdomains not oth-
erwise linked to each other.

Let us now discuss the extension to the nonlin-
ear case. An advantage of the active set approach for
the continuous piecewise linear optimization problem,
over, for example, the simplex-format algorithm of R.
Fourer [6], is that it generalizes it not only to the dis-
continuous situation but also to the nonseparable and
certain (decomposable) nonconvex cases. Above all, the
active set approach is readily extendable to the nonlin-
ear case, by adapting conventional techniques for non-
linear programming, as was done above with the pro-
jected gradient method for the (possibly discontinuous)
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piecewise linear case. The definition of decomposition
must first be generalized so that it expresses the first
order behavior of a piecewise differentiable function in
the neighborhood of a point. The piecewise linear algo-
rithm described above used descent directions attempt-
ing to decrease the smooth part of the function while
maintaining the value of its nonsmooth part (when pre-
serving the current activities). A first order algorithm
for the nonlinear case could obtain these two objec-
tives up to first order changes, as in the approach of
A.R. Conn and T. Pietrzykowski to nonlinear optimiza-
tion, via an l1 exact penalty function [5]. In order to de-
velop a second order algorithm, assuming now that f is
(possibly discontinuous) piecewise twice-differentiable
(i. e. twice differentiable everywhere except over a fi-
nite number of ridges), one must first extend the defi-
nition of first order decomposition to that of second or-
der decomposition. One could then consider extending
the strategies used by T.F. Coleman and Conn [2] on
the exact penalty function approach to nonlinear pro-
gramming (although the l1 exact penalty function in-
volves only first order types of nondifferentiabilities –
ridges). The main idea is to attempt to find a direction
which minimizes the change in f (up to second order
terms) subject to preserving the activities (up to sec-
ond order terms). Specifically, second order conditions
must be derived (which are the first order conditions
plus a condition on the ‘definiteness’ of the reduced
Hessian of the twice-differentiable part of f (in the sec-
ond order decomposition of f )). An analog of the New-
ton step (or of a modification of the Newton method;
cf. also � Gauss-Newton method: Least squares, rela-
tion to Newton’s method) using a nonorthogonal pro-
jection [3] is then taken (or a single-dropping direction
is used). An algorithm following these lines would be
expected to possess global convergence properties (re-
gardless of starting point) and a fast (2-step superlinear)
asymptotic convergence rate as in [1].

See also

� Nondifferentiable Optimization
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Introduction

Many problems in stochastic optimization, as for in-
stance optimal stochastic structural design problems,
stochastic control problems, problems of scenario anal-
ysis, etc., can be described [3,5] by mean value mini-
mization problems of the type

(
min F(x)
s.t. x 2 D;

(1)

where the objective function F = Fu is the mean value
function, defined by

F(x) D Eu(A(!)x � b(!)); x 2 R: (2)

Here, (A(!), b(!)) is a random m × (n + 1) matrix, E
denotes the expectation operator, D is a convex subset
of Rn and u : R m! R designates a convex loss function
measuring the loss arising from the deviation z = A(!)x
� b(!) between the output A(!) x of the stochastic lin-
ear system x! A(!) x and the random target b(!).

Solving (1), (2), the loss function u should be ex-
actly known. However, in practice mostly there is some
uncertainty about the appropriate selection of u, for
instance due to difficulties in assigning appropriate
penalty costs to the deviation z = A(!)x � b(!) be-
tween the output A(!)x and the target b(!). We sup-
pose that u 2 U, where U is a given set of convex loss
functions containing the true, but unknown loss func-
tion u0. A possible way out in this situation of uncer-
tainty about u is either to construct (feasible) descent
directions h of F at a (iteration) point x being valid for
a large class U of loss functions, or to provide the deci-
sion maker with a certain set E = ED, U (�D) of efficient
points or solutions, being substitutes for an optimal so-
lution x� of (1), (2); hence, this set ED, U or at least its
closed hull ED;U should contain an optimal solution x�

= x�u of (1), (2) for each u 2 U. An important class U =
C J
m of loss functions u is the set of partially monotonous

increasing convex loss functions on Rm defined asfol-
lows:

Definition 1 Let J be a given subset of {1, . . . , m}. For
J = ; we put C;m = Cm, where Cm is the set of all convex
functions u on Rm. If J 6D ;, then CJ

m denotes the set of
all convex functions u : Rm ! R having the following
property:

zI � wI; zII � wII H) u(z) � u(w): (3)

Here, zI 2 R|J|, zII 2 Rm�|J| is the partition of any z 2
Rm into the subvectors zI = (zi)i 2 J , zII = (zi)i 62 J . More-
over, zI � wI means that zj � wj for all j 2 J.

Remark 2 In many cases one has loss functions u 2
C J
m with one of the following additional strict partial

monotonicity property:
8̂
<̂
ˆ̂:

zI � wI;

zII D wII;

zi < wi for some i 2 J

H) u(z) < u(w); (4)

zI < wI; zII D wII H) u(z) < u(w); (5)

where zI < wI means that zj < wj for all j 2 J.

For a given set U of convex loss functions u containing
the true, but unknown loss function u0, a first definition
of efficient solutions can be given as follows:

Definition 3 A point x 2 D is called a nondominated,
admissible or Pareto optimal solution of (1), (2) if there
is no vectorex 2 D,ex ¤ x, such that

Fu(x̃) � Fu(x) for all u 2 U; (6)

Fũ(x̃) < Fu(x) for some ũ 2 U; (7)

where Fu(x) := Eu(A(!)x � b(!)). Let E0D;u denote the
set of all nondominated solutions of (1), (2).

Discretely Distributed Stochastic Programs

In the following we consider the construction of de-
scent directions and efficient solutions for (1), (2) in the
case that (A(!), b(!)) has a discrete distribution

P(A(�);b(�)) D
rX

iD1

˛i�(Ai ;b i ); (8)
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where r > 1 is an integer, ˛i > 0, i = 1, . . . , r,
Pr

iD1˛i = 1,
and �(Ai ;b i ) denotes the one-point measure in the given
m × (n + 1) matrix (Ai, bi), i = 1, . . . , r.

Example: Scenario Analysis

Given a certain planning problem, in scenario analysis
[1,2,6,7,8] the future evolution or development of the
system to be considered is anticipated or explored by
means of a (usually small) number r (e. g., r = 3, 4, 5,
6) of so-called scenarios s1, . . . , sr . Scenarios si, i = 1,
. . . , r, are plausible alternative models of the future de-
velopment given by ‘extreme points’ of a certain set of
basic or key variables. An individual scenario or a cer-
tain mixture of the scenarios s1, . . . , sr is assumed then
to be revealed in the considered future time period. We
assume now that the planningproblem can be described
mathematically by the optimization problem

(
min c0x
s.t. Tx D (�) h; x 2 D:

(9)

Here, D is a given convex subset of Rn, and the data (c,
T, h) are given by (c, T, h) = (ci, Ti, hi) for scenario si,
i = 1, . . . , r, where ci is an n-vector, Ti an m × n matrix
and hi an m-vector. Having written here the scenarios
s1, . . . , sr by means of (9) and the data (ci, Ti, hi), i = 1,
. . . , r, and facing therefore the subproblems

(
min ci0x
s.t. Ti x D (�) hi ; x 2 D;

(10)

for i = 1, . . . , r, the decision maker has then to select an
appropriate decision x 2 D. Since one is unable in gen-
eral to predict with certainty which scenario si will oc-
cur, scenario analysts are looking for decisions x0 which
are ‘robust’ with respect to the different scenarios or
‘scenario-independent’, cf. [6,7,8]. Obviously, this ro-
bustness concept is closely related to the idea of detect-
ing ‘similarities’ within the family of optimal solutions
x�(si), i = 1, . . . , r, of the individual subproblems (10)(i),
i = 1, . . . , r. Let ˛1, . . . , ˛r with ˛i > 0, i= 1, . . . , r,

Pr
iD1˛i

= 1, be (subjective) probabilities for the occurrence of
s1, . . . , sr, or weights reflecting the relative importance
of s1, . . . , sr . Considering loss functions u 2 C J

m for eval-
uating the violations zi = Ti x � hi of the constraint
Tix = hi, Tix � hi, resp., in (10)(i), a class of robust or

scenario-independent decisions are obviously the effi-
cient solutions of

min
x2D

rX
iD1

˛i
�
ci
0

x C u(Ti x � hi)
�
; (11)

which is a discretely distributed stochastic optimization
problem of the type (1), (2).

A System of Linear Relations for the Construction
of Descent Directions

Fundamental for the computation of the set ED, U of ef-
ficient solutions of (1), (2) is the following construction
method for descent directions of the objective function
F of (1), (2), cf. [3,4]. We suppose that the true, but un-
known loss function u in (1) is, see Definition 1, an el-
ement of CJ

m for some known index set J � {1, . . . , m}.
We recall that for any vector z 2 Rm the subvectors zI ,
zII are defined by zI = (zi)i 2 J , zII = (zi)i 62 J ;see (3). Of
course, if J = ;, then z = zII and zI does not exist. For
anym × (n + 1)matrix (A, b), let (AI , bI), (AII , bII), resp.,
denote the submatrices of (A, b) having the rows (Ai, bi)
with i 2 J, i 2 {1, . . . , m}\ J, respectively.

Given an n-vector x (e. g., the tth iteration point of
an algorithm for solving (1), (2)), we consider, in exten-
sion of [3, system (3.1)–(3.4b)], the following system of
linear relationsfor the unknowns (y, ˘ ), where y 2 Rn

and˘ = ( ij) is an auxiliary r × r matrix:
rX

jD1

i j D 1; i j � 0; i; j D 1; : : : ; r; (12)

˛ j D

rX
iD1

˛ii j; j D 1; : : : ; r; (13)

Aj
I y � b j

I �

rX
iD1

˛ii j

˛ j
(Ai

Ix � biI);

j D 1; : : : ; r; (14)

Aj
II y � b j

II D

rX
iD1

˛ii j

˛ j
(Ai

II x � biII);

j D 1; : : : ; r: (15)

The transition probability measure

K j D

rX
iD1

ˇi j�z i ; ˇi j D
˛ii j

˛ j
; zi D Aix�bi ; (16)

is not a one-point measure for at least one j, 1 � j � r.
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There exists at least one j, 1� j� r, such that for all
i = 1, . . . , r

K j is not a one-point measure and i j > 0: (17)

At least one inequality in (14) holds with < : (18)

The constraint x 2 D in (1) can be handled by
adding the condition

y 2 D: (19)

Remark 4
a) By �z we denote the one-point measure in a point

z 2 Rm.
b) According to (12), ˘ is a stochastic matrix. System

(12)–(15) has always the trivial solution (y,˘ ) = (x,
Id), where Id is the r × r identity matrix.

c) If (y,˘ ) solves (12)–(15), then

AI y � BIx; AII y D BIIx; (20)

where AI D EAI(!), AII D EAII(!).
d) If PAII(�)y�bII(�) denotes the probability distribu-

tion of the random (m � |J|)-vector AII(!)x�
bII(!), then (12), (13) and (15) mean that the dis-
tributions PAII(�)y� bII(�) and PAII(�)x� bII(�) corre-
sponding to y, x, resp., are related by

PAII (�)x�bII (�) D KPAII (�)y�bII (�)

D

Z
K(w; �)PAII (�)y�bII (�) (dw); (21)

where K(w, �) is theMarkov kernel defined by

K(wj; �) :D K j D

rX
iD1

˛ii j

˛ j
�z i ; (22)

with wj = Ajy � bj, zi = Aix � bi, i, j = 1, . . . , r. SinceR
zK(w, dz) = w, the Markov kernel K is also calleda

dilatation.
e) If n-vectors x, y are related by (21), (22), then for

every convex subset B� Rm � |J| we have that

PAII (�)x�bII (�)(B) D 1 H) PAII (�)x�bII (�)(B) D 1;

hence, the distribution of AII(�) y� bII(�) is concen-
trated to the convex hull of the support of PAII(�)x�
bII(�).

f) If J = ;, then (14) vanishes and (15) reads

Aj y � b j D

rX
iD1

˛ii j

˛ j
(Aix � bi);

j D 1; : : : ; r: (23)

In the special case

(Aj
I ; b

j
I) D (AI; bI) for all j D 1; : : : ; r; (24)

i. e., if (AI(!), bI(!)) is constant with probability
one, then (14) is reduced, cf. (20), to

AI y � AIx: (25)

The meaning of (12)–(15) and the additional condi-
tions (16)–(18) for the basic mean value minimization
problem (1), (2) with objective function F is summa-
rized in the next result.

Theorem 5 Let J be any fixed subset of {1, . . . , m}.
a) If (y, II) is a solution of (12)–(15), then F(y) � F(x)

for every u 2 CJ
m. For J = ; also the converse holds: If

there is a vector y such that F(y)� F(x) for all u 2 Cm

(C;m), then there exists an r × r matrix II such that (y,
II) satisfies (12), (13) and (23).

b) If (y, II) is a solution of (12)–(15) and (16), then
F(y)< F(x) for every u 2 CJ

m which is strictly convex
on conv{zi : 1 � i � r}.

c) If (y, II) is a solution of (12)–(15) and (17), then F(y)
< F(x) for every u 2 CJ

m which is not affine-linear on
conv{zi : 1 � i � r}.

d) If (y, II) fulfills (12)–(15) and (18), then F(y) < F(x)
for every u 2 CJ

m satisfying (4).

Proof If x and (y, II) are related by (12)–(15), then F(y)
�
Pr

jD1˛ju(
Pr

iD1ˇijzi) for every u 2 CJ
m .

If x, (y, II) are related by (12)–(15) and (18), then
F(y) <

Pr
jD1˛ju(

Pr
iD1ˇijzi) for every u 2 CJ

m fulfilling
(4). The rest can then be shown as in [3, Thm. 2.2].

A simple, but important consequence of the above the-
orem is stated next:

Corollary 6 For given x 2 Rn or x 2 D let (y, II) be
any solution of (12)–(15) such that y 6D x, y 2 D

�
{ x},

respectively.
a) Then h = y � x is a descent direction, a feasible de-

scent direction, resp., of F at x for every u 2 CJ
m such

that F is not constant on the line segment xy joining
x and y.



748 D Discretely Distributed Stochastic Programs: Descent Directions and Efficient Points

b) If (y, II) fulfills also (16), (17), (18), resp., then h = y
� x is a (feasible) descent direction of F at x for every
u 2 CJ

m which is strictly convex on conv {zi:1� i� r},
is not affine-linear on conv { zi : 1� i� r}, fulfills (4),
respectively.

Efficient Solutions of (1), (2)

In the following we suppose that the unknown loss
function u is an element of CJ

m , where J is a given sub-
set of {1, . . . , m}. For a given point x 2 D, the descent
direction-finding procedure described in the previous
section only can fail completely if for each solution (y,
II) of (12)–(15) with x 2 D we have that

Aj y D Ajx for each j D 1; : : : ; r: (26)

Indeed, in this case we either have y = x, or, for arbi-
trary loss functions u, the objective function F of (1),
(2) is constant on the whole line through the points x, y.
This observation suggests the following basic efficiency
concept.

Definition 7 A point x 2 D is called a (CJ
m)-efficient

point or a (CJ
m)-efficient solution of (1), (2) if and only if

for each solution (y, II) of (12)–(15) with y 2 D we have
that Ajy = Ajx for each j = 1, . . . , r, i. e., A(!)x = A(!)y
with probability 1. Let ED, J denote the set of all efficient
points of (1), (2).

For deriving parametric representations of ED, J , we
need the following definitions and lemmas.

For a given n-vector x and zi = Aix� bi, i = 1, . . . , r,
let S = Sx � { 1, . . . , r} with |S| = s be an index set such
that {zi : 1 � i � r } = {zi: i 2 S}, where zi 6D zj for i, j 2
S, i 6D j. Defining for i 2 S, j = 1, . . . , r, the quantities

ęi :D
X
ztDz i

˛t ;

�i j :D
1
ęi
X
ztDz i

˛tt j ; f̌i j :D ęi�i j
˛ j

; (27)

we find that relations (12)–(15) can also be represented
by

rX
jD1

�i j D 1; �i j � 0; j D 1; : : : ; r; i 2 S; (28)

˛ j D
X
i2S

ęi�i j; j D 1; : : : ; r; (29)

Aj
I y � b j

I �
X
i2S

ěi jziI ; j D 1; : : : ; r; (30)

Aj
II y � b j

II D
X
i2S

ěi jziII ; j D 1; : : : ; r: (31)

For the next lemma we still need the s × r matrix T0

= (�0i j) defined by

�0i j D

(
0 if zi ¤ z j;
˛ j

ęi
if z j D zi ;

for i 2 S; j D 1; : : : ; r: (32)

Lemma 8 Let (y, II) be a solution of (12)–(15), and let
T = T(II) = (� ij) be the s × r matrix having the elements
� ij given by (27). If (26) holds, then T(II) = T0 and (14)
holds with ‘ = ’.

Lemma 8 implies the following important property of
efficient solutions:

Corollary 9 Let x 2 D be an efficient solution of (1),
(2). If (y, II) is any solution of (21)–(22) with y 2 D, then
T(II) = T0 and (14) holds with ‘ = ’.

For J = ; we obtain the set ED := ED, ; of all Cm-efficient
solutions of (1), (2). This set is studied in [3]. An im-
portant relationship between ED and ED, J for any J �
{1, . . . ,m} is given next:

Lemma 10 ED, J � ED for every J � {1, . . . , m}.

Comparison of Definitions 7 and 3

Comparing the efficient solutions according to Defini-
tion 7 and the nondominated solutions according to
Definition 3, first for J = ;, i. e., U = Cm, we find the-
following correspondence:

Theorem 11 ED, ; = E(0)D;Cm
.

The next corollary follows immediately from the above
theorem and Lemma 10.

Corollary 12 ED, J � ED, ; = E(0)D;Cm
for J � { 1, . . . , m}.

Considering now U = CJ
m we have this inclusion:

Theorem 13 ED, J � ED, CJ
m
(0) for J � {1, . . . , m}.

The following inclusion follows from Corollary 12 and
Theorem 13.

Corollary 14 E(0)
D;C J

m
� ED, J � E(0)D;Cm

for J � {1, . . . , m}.

A converse statement to Theorem 13 can be obtained
for (24):
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Theorem 15 If (AI(!); bI(!)) D (AI; bI) with proba-
bility 1, then ED, J = E(0)

D;C J
m
for each J � {1, . . . , m}.

Further Characterization of ED, J

TheCJ
m-efficiency of a point x 2D can also be described

in the following way.

Theorem 16 A point x 2 D is (CJ
m)-efficient if and only

if for every solution (y, II) of (12)-(15) we have that Ajy
= Ajx for all j = 1, . . . , r, or h = y � x is not a feasible
direction for D at x.

Necessary Optimality Conditions
Without Using (Sub)Gradients

If x 2 D is efficient, then, cf. Theorem 16, the descent
direction-finding method described in in the previous
Section fails at x. Since especially in any optimal solu-
tion x� of (1), (2) no feasible descent direction may ex-
ist, efficient points are candidates for optimal solutions:

Theorem 17 Suppose that for every x 2 D and every
solution (y, II) of (12)-(15) with y 2D the objective func-
tion F of (1), (2) with a loss function u 2 CJ

m is constant
on the line segment xy if and only if Ajy = Ajx for every j
= 1, . . . , r. If x� is an optimal solution of (1), (2), then x�

2 ED, J .

Remark 18 The assumption in Theorem 17 concerning
F is fulfilled, e. g., if u 2 CJ

m is strictly convex on the
convex hull conv {(Ajy� bj)(Ajx� bj): x, y 2 D, 1 � j
� r} generated by the line segments (Ajy� bj)(Ajx � bj)
joining (Ajy � bj) and (Ajx � bj).

If the assumption in Theorem 17 concerning F does not
hold, then it may happen that F is constant on a certain
line segment xy though Ajy 6D Ajx for at least one index
j, 1� j� r. Hence, Theorem 17 can not be applied then
directly. However, in this case the following modifica-
tion of Theorem 17 holds true.

Theorem 19 Let u be an arbitrary loss function from
CJ
m for some J � {1, . . . , m}. If D is a compact convex

subset of Rn, then there exists at least one optimal solu-
tion x� of (1), (2) lying in the closure ED;J of the set ED, J
of efficient solutions of (1), (2).

Parametric Representation of ED, J

Suppose that u 2 CJ
m for some index set J � { 1, . . . ,m}.

For solving the descent direction-generating relations

(12)–(15) and (16)–(18), resp., we may use, see Theo-
rem 5 and Corollary 6, the quadratic program, cf. [3,4],

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min �0(AI y � AIx)C
rX

jD1

˛ j
X
i2S

ě2
i j

s.t.
rX

jD1

�i j D 1; �i j � 0;

j D 1; : : : ; r; i 2 S;
˛ j D

X
i2S

ęi�i j; j D 1; : : : ; r;

Aj
I y � b j

I �
X
i2S

ěi jziI ; j D 1; : : : ; r;

Aj
II y � b j

II D
X
i2S

ěi jziII ; j D 1; : : : ; r;

y 2 D;

(33)

where � = (�l) is a |J|-vector having fixed positive com-
ponents �l, l 2 J. Efficient solutions of (1), (2) can be
characterized as follows:

Lemma 20 A vector x 2 D is an efficient solution of (1),
(2) if and only if (33) has an optimal solution (y�, T�)
such that Ajy� = Ajx for all j = 1, . . . , r.

Remark 21 According to Lemma 8 we have then also
that T� = T0 and (14) holds with ‘ = ’.

We suppose now that the feasible domain D of (1), (2)
is given by

D D fx 2 Rn : gk(x) � 0; k D 1; : : : ; �g : (34)

Here, g1, . . . , g� are differentiable, convex functions.
Moreover, we suppose that (33) has a feasible solution
(y, T) such that for each nonaffine linear function gk

gk(y) < 0: (35)

No constraint qualifications are needed in the impor-
tant special case D = {x 2 Rn : Gx � g}, where (G, g) is
a given� × (n + 1) matrix.

By means of the Kuhn-Tucker conditions of (33),
the following parametric representation of ED, J can be
derived [3,4]:

Theorem 22 Let D be given by (34), and assume that
the constraint qualification (35) holds for every x 2 D.
An n-vector x is an efficient solution of (1), (2) if and
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only if x satisfies the linear relations

� j � �i �

�b� j

˛ j
�
b� i

˛i

�0
zi D 2

�
1
˛i
�

1
˛ j

�
;

if zi D z j; (36)

� j � �i �

�b� j

˛ j
�
b� i

˛i

�0
zi �

2
˛i
;

if zi ¤ z j; (37)

where �1, . . . , �r are arbitrary real parameters, and the
parameter m-vectors �1, . . . , � r and further parameter
vectors � 2 R� , y 2 Rn are selected such that

rX
jD1

Aj0b� j C

�X
kD1

�kr gk(y) D 0; (38)

� jI � 0; j D 1; : : : ; r; (39)

gk(x) � 0; k D 1; : : : ; �; (40)

gk(y) � 0; �k gk (y) D 0; �k � 0;
k D 1; : : : ; �;

(41)

Aj y D Ajx; j D 1; : : : ; r; (42)

and the vectorsb� j are defined byb� j D
�
˛ j�C� j l
� jII

�
, j = 1,

. . . , r.
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A stochastic combinatorial optimization problem is of
the form

8<
:
min F(x) D

Z
H(x; v) d�x (v)

s.t. x 2 S
(1)

where S = {x1, . . . , xN} is a finite discrete feasible set. If
the value of the objective function F is easily obtainable,
the problem is just a deterministic combinatorial op-
timization problem. In most applications however, the
value of the objective function F has to be approximated
by numerical integration or Monte-Carlo simulation.

Some problems of type (1) exhibit a special struc-
ture, which can be exploited for solution methods, like
the stochastic linear optimization problems, where S
are the integer points of a convex polyhedron and H
is piecewise linear (see � Stochastic integer program-
ming: Continuity, stability, rates of convergence). In
this contribution, we discuss problems with an arbi-
trary and unstructured feasible set S.

An example is the stochastic single machine tar-
diness problem (SSMTP): The optimal sequence of m
jobs, which are processed on a single machine has to be
found. Each job has a random processing time, which
is distributed according to the distribution function Gi,
i = 1, . . . , m (independent of all others), and a fixed due
date di. The feasible set S is the set of all m! permuta-
tions  of {1, . . . ,m}. If  is the solution found, we pro-
cess job (1) as the first, (2) as the second and so on.

Let ci(u) be the costs for job i being late u time units
(ci(u) = 0 for u � 0). The SSMTP is

8̂
<
:̂
min

mX
iD1

E[ci (V�(1) C � � � C V�(i) � d�(i))]

s.t.  2 S
(2)

where Vi are random variables distributed indepen-
dently according to Gi. The analytic calculation of the
objective function (OF) in (2) involves multiple inte-
grals (the convolution of up to m distribution func-
tions). A simple way of approximating the OF is by
Monte-Carlo simulation. Let V(1)

i , . . . , V(n)
i be indepen-

dent random (pseudorandom) variables, each with dis-
tribution Gi. The true expectation F() = E[ci(V�(1) +
� � � + V�(i) � d(i))] is approximated by the estimate

bFn()

D
1
n

nX
jD1

mX
iD1

[ci(V
( j)
�(1) C � � � C V ( j)

�(i) � d�(i))]:

In principle, all exact (branch and bound) and
heuristic (evolutionary algorithms, tabu search, ant
systems, random search, simulated annealing, genetic
algorithms) methods for combinatorial optimization
may be applied to stochastic combinatorial optimiza-
tion— just that the exact values F(x) have to be replaced
by stochastic estimatesbFn(x), which are based on sam-
ple size n.

The main difficulty in stochastic combinatorial op-
timization is the fact that even if F(x1) � F(x2) � ı,
it may happen with positive probability that bFn(x1) >
bFn(x2), that is wemay wrongly conclude that x2 is better
than x1. The probability of this error decreases to zero
with sample size n increasing to infinity. A compromise
between the quality of the solution and the costs of very
large samples has to be found in stochastic optimiza-
tion.

If the random distribution �x in (1) does not de-
pend on x, common random numbersmay be taken. To
be more precise, let V(1), . . . , V(n) be a sample from �

and let

bFn(xi) D
1
n

nX
jD1

H(xi ;V ( j)):

The estimatesbF are now correlated, and the probability
that bFn(x1) > bFn(x2) although bFn(x1) � bFn(x2) � ı
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is typically much smaller for such a choice than with
samples taken independently for each xj (see [6]).

If the estimates bF are difficult to get (e. g. they need
real observation or expensive simulation) allocation
rules decide, which estimate or which set of estimates
has to be taken next. These rules try to exclude quickly
subsets of the feasible set, which – with high statistical
evidence – do not contain optimal solutions. The effort
is then concentrated on the (shrinking) set of not yet
excluded points.Allocation rules may be based on sub-
set selection (see [3]) or ordinal optimization (see [5]).
There is also a connection to experimental design, in
particular to sequential experimental design: In experi-
mental design one has to choose the next point(s) for
sampling, which – based on the information gathered
so far – will give the best additional information which
we need to solve the underlying estimation or optimiza-
tion problem (for experimental design literature see [1]
and the references therein).

For large sets S, which have graph-neighborhood
or partition structures, ‘stochastic’ variants of neighbor
search or branch and bound methods may be used. In
particular, stochastic simulated annealing and stochas-
tic branch and bound have been studied in literature.

Stochastic Simulated Annealing

This is a variant of ordinary simulated annealing (cf.
� Simulated annealing): The Metropolis rule for the
acceptance probability is calculated on the basis of the
current stochastic estimates of the objective function,
i. e. the new state xj is preferred to the current state xi
with probability

min

 
exp

 
�
bFn(x j) �bFn(xi)

kBT

!
; 1

!

where kB is the Boltzmann constant and T is the tem-
perature. The estimatesbF are improved in each step by
taking additional observations, i. e. increasing the sam-
ple size n. For an analysis of this algorithm see [4].

Stochastic Branch and Bound

For the implementation of a stochastic branch and
bound method (cf. also � Integer programming:
Branch and bound methods), an estimate of a lower
bound function is needed. Recall that a function F, de-
fined on the subsets of S, is called a lower bound function

if

inf fF(x) : x 2 Tg � F(T)

for all T � S.
In stochastic branch and bound an estimatebF of F

can be found for instance by sampling bFn(xi) for each
xi in T with E(bFn(xi)) D F(xi) and setting

bF(T) D inf
nbFn(xi) : xi 2 T

o
:

The bound-step of the branch and bound method is re-
placed by a statistical test, whether the lower bound es-
timate of a branch is significantly larger than the esti-
mate of an intermediate solution. After each step, all es-
timates are improved by taking additional observations.
For details see [2] and [7].

In all these algorithms, common random numbers
may decrease the variance.

See also
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Abstract

In this chapter, we present classification models based
on mathematical programming approaches. We first
provide an overview of various mathematical pro-
gramming approaches, including linear programming,
mixed integer programming, nonlinear programming,
and support vector machines. Next, we present our
effort of novel optimization-based classification mod-
els that are general purpose and suitable for develop-

ing predictive rules for large heterogeneous biological
and medical data sets. Our predictive model simultane-
ously incorporates (1) the ability to classify any num-
ber of distinct groups; (2) the ability to incorporate
heterogeneous types of attributes as input; (3) a high-
dimensional data transformation that eliminates noise
and errors in biological data; (4) the ability to in-
corporate constraints to limit the rate of misclassifi-
cation, and a reserved-judgment region that provides
a safeguard against overtraining (which tends to lead
to high misclassification rates from the resulting pre-
dictive rule); and (5) successive multistage classification
capability to handle data points placed in the reserved-
judgment region. To illustrate the power and flexibil-
ity of the classification model and solution engine, and
its multigroup prediction capability, application of the
predictive model to a broad class of biological andmed-
ical problems is described. Applications include the dif-
ferential diagnosis of the type of erythemato-squamous
diseases; predicting presence/absence of heart disease;
genomic analysis and prediction of aberrant CpG is-
land methylation in human cancer; discriminant anal-
ysis of motility and morphology data in human lung
carcinoma; prediction of ultrasonic cell disruption for
drug delivery; identification of tumor shape and volume
in treatment of sarcoma; multistage discriminant anal-
ysis of biomarkers for prediction of early atheroscle-
rois; fingerprinting of native and angiogenic microvas-
cular networks for early diagnosis of diabetes, aging,
macular degeneracy, and tumor metastasis; prediction
of protein localization sites; and pattern recognition of
satellite images in classification of soil types. In all these
applications, the predictive model yields correct classi-
fication rates ranging from 80 to 100%. This provides
motivation for pursuing its use as a medical diagnostic,
monitoring and decision-making tool.

Introduction

Classification is a fundamental machine learning task
whereby rules are developed for the allocation of in-
dependent observations to groups. Classic examples of
applications include medical diagnosis – the allocation
of patients to disease classes on the basis of symptoms
and laboratory tests – and credit screening – the accep-
tance or rejection of credit applications on the basis of
applicant data. Data are collected concerning observa-
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tions with known group membership. These training
data are used to develop rules for the classification of
future observations with unknown group membership.

In this introduction, we briefly describe some ter-
minologies related to classification, and provide a brief
description of the organization of this chapter.

Pattern Recognition, Discriminant Analysis,
and Statistical Pattern Classification

Cognitive science is the science of learning, knowing,
and reasoning. Pattern recognition is a broad field
within cognitive science, which is concerned with the
process of recognizing, identifying, and categorizing in-
put information. These areas intersect with computer
science, particularly in the closely related areas of arti-
ficial intelligence, machine learning, and statistical pat-
tern recognition. Artificial intelligence is associated with
constructing machines and systems that reflect human
abilities in cognition. Machine learning refers to how
these machines and systems replicate the learning pro-
cess, which is often achieved by seeking and discovering
patterns in data, or statistical pattern recognition.

Discriminant analysis is the process of discriminat-
ing between categories or populations. Associated with
discriminant analysis as a statistical tool are the tasks of
determining the features that best discriminate between
populations, and the process of classifying new objects
on the basis of these features. The former is often called
feature selection and the latter is referred to as statisti-
cal pattern classification. This work will be largely con-
cerned with the development of a viable statistical pat-
tern classifier.

As with many computationally intensive tasks, re-
cent advances in computing power have led to a sharp
increase in the interest and application of discrim-
inant analysis techniques. The reader is referred to
Duda et al. [25] for an introduction to various tech-
niques for pattern classification, and to Zopounidis and
Doumpos [121] for examples of applications of pattern
classification.

Supervised Learning, Training,
and Cross-Validation

An entity or observation is essentially a data point as
commonly understood in statistics. In the framework
of statistical pattern classification, an entity is a set

of quantitative measurements (or qualitative measure-
ments expressed quantitatively) of attributes for a par-
ticular object. As an example, in medical diagnosis an
entity could be the various blood chemistry levels of
a patient. With each entity is associated one or more
groups (or populations, classes, categories) to which it
belongs. Continuing with the medical diagnosis exam-
ple, the groups could be the various classes of heart dis-
ease. Statistical classification seeks to determine rules
for associating entities with the groups to which they
belong. Ideally, these associations align with the asso-
ciations that human reasoning would produce on the
basis of information gathered on objects and their ap-
parent categories.

Supervised learning is the process of developing
classification rules based on entities for which the clas-
sification is already known. Note that the process im-
plies that the populations are already well defined.
Unsupervised learning is the process of discovering pat-
terns from unlabeled entities and thereby discover-
ing and describing the underlying populations. Mod-
els derived using supervised learning can be used for
both functions of discriminant analysis – feature selec-
tion and classification. The model that we consider is
a method for supervised learning, so we assume that
populations are previously defined.

The set of entities with known classification that is
used to develop classification rules is the training set.
The training set may be partitioned so that some enti-
ties are withheld during the model-development pro-
cess, also known as the training of the model. The with-
held entities form a test set that is used to determine
the validity of the model, a process known as cross-
validation. Entities from the test set are subjected to the
rules of classification tomeasure the performance of the
rules on entities with unknown group membership.

Validation of classification models is often per-
formed using m-fold cross-validation where the data
with known classification are partitioned into m folds
(subsets) of approximately equal size. The classification
model is trained m times, with the mth fold withheld
during each run for testing. The performance of the
model is evaluated by the classification accuracy on the
m test folds, and can be represented using a classifica-
tion matrix or confusion matrix.

The classification matrix is a square matrix with the
number of rows and columns equal to the number of
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groups. The ijth entry of the classification matrix con-
tains the number or proportion of test entities from
group i that were classified by the model as belonging
to group j. Therefore, the number or proportion of cor-
rectly classified entities is contained in the diagonal el-
ements of the classification matrix, and the number or
proportion of misclassified entities is in the off-diagonal
entries.

Bayesian Inference and Classification

The popularity of Bayesian inference has risen drasti-
cally over the past several decades, perhaps in part due
to its suitability for statistical learning. The reader is
referred to O’Hagan [92] for a thorough treatment of
Bayesian inference. Bayesian inference is usually con-
trasted against classical inference, though in practice
they often imply the same methodology.

The Bayesian method relies on a subjective view of
probability, as opposed to the frequentist view upon
which classical inference is based [92]. A subjective
probability describes a degree of belief in a proposition
held by the investigator based on some information.
A frequency probability describes the likelihood of an
event given an infinite number of trials.

In Bayesian statistics, inferences are based on the
posterior distribution. The posterior distribution is the
product of the prior probability and the likelihood func-
tion. The prior probability distribution represents the
initial degree of belief in a proposition, often before
empirical data are considered. The likelihood function
describes the likelihood that the behavior is exhibited,
given that the proposition is true. The posterior distri-
bution describes the likelihood that the proposition is
true, given the observed behavior.

Suppose we have a proposition or random variable
� about which we would like to make inferences, and
data x. Application of Bayes’s theorem gives

dF(� jx) D
dF(�)dF(xj�)

dF(x)
:

Here, F denotes the (cumulative) distribution function.
For ease of conceptualization, assume that F is differ-
entiable, then dF D f , and the above equality can be
rewritten as

f (� jx) D
f (�) f (xj�)

f (x)
:

For classification, a prior probability function (g)
describes the likelihood that an entity is allocated
to group g regardless of its exhibited feature val-
ues x. A group density function f (xjg) describes
the likelihood that an entity exhibits certain measur-
able attribute values, given that it belongs to pop-
ulation g. The posterior distribution for a group
P(gjx) is given by the product of the prior prob-
ability and group density function, normalized over
the groups to obtain a unit probability over all
groups. The observation x is allocated to group h
if h D argmaxg2G P(gjx) D argmaxg2G

�(g) f (xjg)P
j2G �( j) f (xj j)

,
where G denotes the set of groups.

Discriminant Functions

Most classification methods can be described in terms
of discriminant functions. A discriminant function
takes as input an observation and returns information
about the classification of the observation. For data
from a set of groups G, an observation x is assigned to
group h if h D argmaxg2G lg(x); where the functions
lg are the discriminant functions. Classification meth-
ods restrict the form of the discriminant functions, and
training data are used to determine the values of the pa-
rameters that define the functions.

The optimal classifier in the Bayesian frame-
work can be described in terms of discriminant
functions. Let g D (g) be the prior probability
that an observation is allocated to group g and let
fg(x) D f (xjg) be the likelihood that data x are
drawn from population g. If we wish to minimize
the probability of misclassification given x, then
the optimal allocation for an entity is to the group
h D argmaxg2G P(gjx) D argmaxg2G

�g f g(x)P
j2G � j f j(x)

.
Under the Bayesian framework,

P(gjx) D
g f (xjg)

f (x)
D

g f (xjg)P
j2G
 j f (xj j)

:

The discriminant functions can be lg(x) D P(gjx)
for g 2 G. The same classification rule is given
by lg(x) D g f (xjg) and lg(x) D log f (xjg)C logg .
The problem then becomes finding the form of the
prior functions and likelihood functions that match the
data.
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If the data are multivariate normal with equal co-
variance matrices ( f (xjg) � N(�g ; ˙)), then a linear
discriminant function (LDF) is optimal:

lg(x) D log f (xjg)C logg

D �1/2(x � �g)T˙�1(x � �g) � 1/2 log j˙g j

� d/2 log 2 C logg

D wT
g x C wg0 ;

where d is the number of attributes, wg D ˙
�1�g ,

and wg0 D �1/2�T
g˙
�1�g C logg C xT˙�1x �

d/2 log 2 . Note that the last two terms of wg0 are
constant for all g and need not be calculated. When
there are two groups (G D f1; 2g) and the priors are
equal (1 D 2), the discriminant rule is equivalent to
Fisher’s linear discriminant rule [30]. Fisher’s rule can
also be derived, as it was by Fisher, by choosing w so
that (wT�1 � wT�2)2/(wT˙w) is maximized.

These LDFs and quadratic discriminant functions
(QDFs) are often applied to data sets that are not multi-
variate normal or continuous (see pp. 234–235 in [98])
by using approximations for the means and covari-
ances. Regardless, these models are parametric in that
they incorporate assumptions about the distribution of
the data. Fisher’s LDF is nonparametric because no as-
sumptions are made about the underlying distribution
of the data. Thus, for a special case, a parametric and
a nonparametric model coincide to produce the same
discriminant rule. The LDF derived above is also called
the homoscedastic model, and the QDF is called the
heteroscedastic model. The exact form of discriminant
functions in the Bayesian framework can be derived for
other distributions [25].

Some classification methods are essentially meth-
ods for finding coefficients for LDFs. In other words,
they seek coefficients wg and constants wg0 such that
lg(x) D wgx C wg0, g 2 G is an optimal set of discrim-
inant functions. The criteria for optimality are differ-
ent for different methods. LDFs project the data onto
a linear subspace and then discriminate between enti-
ties in that subspace. For example, Fisher’s LDF projects
two-group data on an optimal line, and discriminates
on that line. A good linear subspace may not exist
for data with overlapping distributions between groups
and therefore the data will not be classified accurately
using these methods. The hyperplanes defined by the

discriminant functions form boundaries between the
group regions. A large portion of the literature concern-
ing the use of mathematical programming models for
classification describes methods for finding coefficients
of LDFs [121].

Other classification methods seek to determine
parameters to establish QDFs. The general form of
a QDF is lg(x) D xTWgx C wT

g x C wg0. The bound-
aries defining the group regions can assume any hyper-
quadric form, as can the Bayes decision rules for arbi-
trary multivariate normal distributions [25].

In this paper, we survey the development and
advances of classification models via the mathemat-
ical programming techniques, and summarize our
experience in classification models applied to pre-
diction in biological and medical applications. The
rest of this chapter is organized as follows. Sec-
tion “Mathematical Programming Approaches” first
provides a detailed overview of the development and
advances of mathematical programming based classi-
fication models, including linear programming (LP),
mixed integer programming (MIP), nonlinear pro-
gramming, and support vector machine (SVM) ap-
proaches. In Sect. “Mixed Integer Programming Based
Multigroup Classification Models and Applications to
Medicine and Biology”, we describe our effort in devel-
oping optimization-based multigroup multistage dis-
criminant analysis predictive models for classification.
The use of the predictive models for various biological
and medical problems is presented. Section “Progress
and Challenges” provides several tables to summa-
rize the progress of mathematical programming based
classification models and their characteristics. This is
followed by a brief description of other classification
methods in Sect. “Other Methods”, and by a summary
and concluding remarks in Sect. “Summary and Con-
clusion”.

Mathematical Programming Approaches

Mathematical programmingmethods for statistical pat-
tern classification emerged in the 1960s, gained pop-
ularity in the 1980s, and have grown drastically since.
Most of the mathematical programming approaches are
nonparametric, which has been cited as an advantage
when analyzing contaminated data sets over methods
that require assumptions about the distribution of the
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data [107]. Most of the literature about mathemati-
cal programming methods is concerned with either us-
ing mathematical programming to determine the coef-
ficients of LDFs or support vector machines (SVMs).

The following notation will be used. The subscripts
i, j, and k are used for the observation, attribute, and
group, respectively. Let xij be the value of attribute j of
observation i. Let m be the number of attributes, K be
the number of groups, Gk represent the set of data from
group k, M be a big positive number, and � be a small
positive number. The abbreviation “urs” is used in ref-
erence to a variable to denote “unrestricted in sign.”

Linear Programming Classification Models

The use of linear programs to determine the coefficients
of LDFs has been widely studied [31,46,50,74]. The
methods determine the coefficients for different objec-
tives, including minimizing the sum of the distances to
the separating hyperplane, minimizing the maximum
distance of an observation to the hyperplane, and min-
imizing other measures of badness of fit or maximizing
measures of goodness of fit.

Two-Group Classification One of the earliest LP
classification models was proposed by Mangasar-
ian [74] to construct a hyperplane to separate two
groups of data. Separation by a nonlinear surface us-
ing LP was also proposed when the surface parameters
appear linearly. Two sets of points may be inseparable
by one hyperplane or surface through a single-step LP
approach, but they can be strictly separated by more
planes or surfaces via a multistep LP approach [75].
In [75] real problems with up to 117 data points, ten at-
tributes, and three groups were solved. The three-group
separation was achieved by separating group 1 from
groups 2 and 3, and then group 2 from group 3.

Studies of LP models for the discriminant problem
in the early 1980s were carried out by Hand [47], Freed
and Glover [31,32], and Bajgier and Hill [5]. Three LP
models for the two-group classification problem, in-
cluding minimizing the sum of deviations (MSD), min-
imizing the maximum deviation (MMD), andminimiz-
ing the sum of interior distances (MSID) were pro-
posed. Freed and Glover [33] provided computational
studies of these models where the test conditions in-
volved normal and nonnormal populations.

MSD:

Minimize
X
i

di

subject to w0 C
X
j

xi jw j � di � 0 8i 2 G1 ;

w0 C
X
j

xi jw j C di � 0 8i 2 G2 ;

wj urs 8 j ;
di � 0 8i :

MMD:

Minimize d

subject to w0 C
X
j

xi jw j � d � 0 8i 2 G1 ;

w0 C
X
j

xi jw j C d � 0 8i 2 G2 ;

wj urs 8 j ;

d � 0 :

MSID:

Minimize pd �
X
i

ei

subject to w0 C
X
j

xi jw j � d C ei � 0 8i 2 G1 ;

w0 C
X
j

xi jw j C d � ei � 0 8i 2 G2 ;

wj urs 8 j ;

d � 0 ;
ei � 0 8i ;

where p is a weight constant.
The objective function of the MSD model is the

L1-norm distance, while the objective function ofMMD
is the L1-norm distance. They are special cases of
Lp-norm classification [50,108].

In somemodels the constant term of the hyperplane
is a fixed number instead of a decision variable. The
model minimize the sum of deviations with constant
cutoff score MSD0 shown below is an example where
the cutoff score b replaces w0 in the formulation. The
same replacement could be used in other formulations.
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MSD0:

Minimize
X
i

di

subject to
X
j

xi jw j � di � b 8i 2 G1 ;

X
j

xi jw j C di � b 8i 2 G2 ;

wj urs 8 j ;

di � 0 8i :

A gap can be introduced between the two regions
determined by the separating hyperplane to prevent de-
generate solutions. Take MSD as an example; the sepa-
ration constraints become

w0 C
X
j

xi jw j � di � �� 8i 2 G1 ;

w0 C
X
j

xi jw j C di � � 8i 2 G2 :

The small number � can be normalized to 1.
Besides introducing a gap, another normalization

approach is to include constraints such as
Pm

jD0 wj D 1
or
Pm

jD1 wj D 1 in the LP models to avoid unbounded
or trivial solutions.

Specifically, Glover et al. [45] gave the hybridmodel,
as follows.

Hybrid model:

Minimize pd C
X
i

pi di � qe �
X
i

qi ei

subject to w0 C
X
j

xi jw j � d � di C e C ei D 0

8i 2 G1 ;

w0 C
X
j

xi jw j C d C di � e � ei D 0

8i 2 G2 ;

wj urs 8 j ;

d; e � 0 ;
di ; ei � 0 8i ;

where p; pi ; q; qi are the costs for different deviations.
Including different combinations of deviation terms in
the objective function then leads to variant models.

Joachimsthaler and Stam [50] reviewed and sum-
marized LP formulations applied to two-group classi-

fication problems in discriminant analysis, including
MSD, MMD, MSID, and MIP models, and the hy-
brid model. They summarized the performance of the
LP methods together with the traditional classification
methods such as Fisher’s LDF [30], Smith’s QDF [106],
and a logistic discriminant method. In their review,
MSD sometimes but not uniformly improves classifica-
tion accuracy, compared with traditional methods. On
the other hand, MMD is found to be inferior to MSD.
Erenguc and Koehler [27] presented a unified survey
of LP models and their experimental results, in which
the LP models include several versions of MSD, MMD,
MSID, and hybrid models. Rubin [99] provided experi-
mental results comparing these LPmodels with Fisher’s
LDF and Smith’s QDF. He concluded that QDF per-
forms best when the data follow normal distributions
and that QDF could be the benchmark when seeking
situations for advantageous LP methods. In summary,
the above mentioned review papers [27,50,99] describe
previous work on LP classification models and their
comparison with traditional methods. However, it is
difficult to make definitive statements about the condi-
tions under which one LP model is superior to others,
as stated in [107].

Stam and Ungar [110] introduced the software
package RAGNU, a utility program in conjunction with
the LINDO optimization software, for solving two-
group classification problems using LP-based methods.
LP formulations such as MSD, MMD, MSID, hybrid
models, and their variants are contained in the package.

There are some difficulties in LP-based formu-
lations, in that some models could result in un-
bounded, trivial, or unacceptable solutions [34,87], but
possible remedies are proposed. Koehler [51,52,53]
and Xiao [114,115] characterized the conditions of
unacceptable solutions in two-group LP discrimi-
nant models, including MSD, MMD, MISD, the hy-
brid model, and their variants. Glover [44] proposed
the normalization constraint

Pm
jD1(�jG2j

P
i2G1

xi j C
jG1j

P
i2G2

xi j)wj D 1, which is more effective and re-
liable. Rubin [100] examined the separation failure for
two-group models and suggested applying the mod-
els twice, reversing the group designations the second
time. Xiao and Feng [116] proposed a regularization
method to avoid multiple solutions in LP discriminant
analysis by adding the term �

Pm
jD1 w

2
j in the objective

functions.
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Bennett and Mangasarian [9] proposed the follow-
ing model which minimizes the average of the devia-
tions, which is called robust LP (RLP):

Minimize
1
jG1j

X
i2G1

di C
1
jG2j

X
i2G2

di

subject to w0 C
X
j

xi jw j � di � �1 8i 2 G1 ;

w0 C
X
j

xi jw j C di � 1 8i 2 G2 ;

wj urs 8 j ;

di � 0 8i :

It is shown that this model gives the null solution
w1 D � � � D wm D 0 if and only if 1

jG1j

P
i2G1

xi j D
1
jG2j

P
i2G2

xi j for all j, in which case the solution
w1 D � � � D wm D 0 is guaranteed to be not unique.
Data of different diseases have been tested by the pro-
posed classification methods, as in most of Mangasar-
ian’s papers.

Mangasarian et al. [86] described two applications
of LP models in the field of breast cancer research, one
in diagnosis and the other in prognosis. The first appli-
cation is to discriminate benign from malignant breast
lumps, while the second one is to predict when breast
cancer is likely to recur. Both of them work successfully
in clinical practice. The RLP model [9] together with
the multisurface method tree algorithm [8] is used in
the diagnostic system.

Duarte Silva and Stam [104] included the second-
order (i. e., quadratic and cross-product) terms of the
attribute values in the LP-based models such as MSD
and hybrid models and compared them with linear
models, Fisher’s LDF, and Smith’s QDF. The results
of the simulation experiments show that the methods
which include second-order terms perform much bet-
ter than first-order methods, given that the data sub-
stantially violate the multivariate normality assump-
tion. Wanarat and Pavur [113] investigated the effect
of the inclusion of the second-order terms in the MSD,
MIP, and hybrid models when the sample size is small
to moderate. However, the simulation study shows that
second-order terms may not always improve the per-
formance of a first-order LP model even with data con-
figurations that are more appropriately classified by
Smith’s QDF. Another result of the simulation study is

that inclusion of the cross-product terms may hurt the
model’s accuracy, while omission of these terms causes
the model to be not invariant with respect to a nonsin-
gular transformation of the data.

Pavur [94] studied the effect of the position of the
contaminated normal data in the two-group classifi-
cation problem. The methods for comparison in that
study included MSD, minimizing the number of mis-
classifications (MM; (described in the “Mixed Integer
Programming Classification Models” section), Fisher’s
LDF, Smith’s QDF, and nearest -neighbor models. The
nontraditional methods such as LP models have po-
tential for outperforming the standard parametric pro-
cedures when nonnormality is present, but this study
shows that no one model is consistently superior in all
cases.

Asparoukhov and Stam [3] proposed LP and MIP
models to solve the two-group classification problem
where the attributes are binary. In this case the training
data can be partitioned into multinomial cells, allow-
ing for a substantial reduction in the number of vari-
ables and constraints. The proposed models not only
have the usual geometric interpretation, but also pos-
sess a strong probabilistic foundation. Let s be the index
of the cells, n1s ; n2s be the number of data points in cell
s from groups 1 and 2, respectively, and (bs1; : : : ; bsm)
be the binary digits representing cell s. The model
shown below is the LP model of minimizing the sum
of deviations for two-group classification with binary
attributes.
Cell conventional MSD:

Minimize
X

s: n1sCn2s>0

(n1sd1s C n2sd2s)

subject to w0 C
X
j

bs jw j � d1s � 0 8s : n1s > 0 ;

w0 C
X
j

bs jw j C d2s > 0 8s : n2s > 0 ;

wj urs 8 j ;
d1s ; d2s � 0 8s :

Binary attributes are usually found in medical di-
agnoses data. In this study three real data sets of dis-
ease discrimination were tested: developing postoper-
ative pulmonary embolism or not, having dissecting
aneurysm or other diseases, and suffering from post-
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traumatic epilepsy or not. In these data sets the MIP
model for binary attributes (BMIP), which will be de-
scribed later, performs better than other LP models or
traditional methods.

Multigroup Classification Freed and Glover [32] ex-
tended the LP classification models from two-group
to multigroup problems. One formulation which uses
a single discriminant function is given below:

Minimize
K�1X
kD1

ck˛k

subject to
X
j

xi jw j � Uk 8i 2 Gk 8k ;

X
j

xi jw j � Lk 8i 2 Gk 8k ;

Uk C � � LkC1 C ˛k

8k D 1; : : : ;K � 1 ; wj urs 8 j ;

Uk ; Lk urs 8k ;

˛k urs 8k D 1; : : : ;K � 1 ;

where the number � could be normalized to be 1,
and ck is the misclassification cost. However, single-
function classification is not as flexible and general
as multiple-function classification. Another extension
from the two-group case to the multigroup case in [32]
is to solve two-group LP models for all pairs of groups
and determine classification rules based on these solu-
tions. However, in some cases the group assignment is
not clear and the resulting classification scheme may be
suboptimal [107].

For the multigroup discrimination problem, Ben-
nett and Mangasarian [10] defined the piecewise-linear
separability of data fromK groups as the following: The
data from K groups are piecewise-linear-separable if
and only if there exist (wk

0 ;wk
1 ; : : : ;wk

m) 2 RmC1; k D
1; : : : ;K, such thatwh

0C
P

j xi jw
h
j � wk

0C
P

j xi jw
k
jC

1; 8i 2 Gh 8h; k ¤ h. The following LP will generate
a piecewise-linear separation for the K groups if one ex-
ists, otherwise it will generate an error-minimizing sep-
aration:

Minimize
X
h

X
k¤h

1
jGh j

X
i2Gh

dhk
i

subject to dhk
i � �(w

h
0 C

X
j

xi jwh
j )

C (wk
0 C

X
j

xi jwk
j )C 1

8i 2 Gh 8h; k ¤ h ;

wk
j urs 8 j; k ;

dhk
i � 0 8i 2 Gh 8h; k ¤ h :

The method was tested in three data sets. It per-
forms pretty well in two of the data sets which are to-
tally (or almost totally) piecewise-linear separable. The
classification result is not good in the third data set,
which is inherently more difficult. However, combin-
ing the multisurface method tree algorithm [8] results
in an improvement in performance.

Gochet et al. [46] introduced an LP model for the
general multigroup classification problem. The method
separates the data with several hyperplanes by sequen-
tially solving LPs. The vectors wk, k D 1; : : : ;K, are
estimated for the classification decision rule. The rule
is to classify an observation i into group s, where
s D argmaxkfwk

0 C
P

j xi jw
k
j g.

Suppose observation i is from group h. Denote the
goodness of fit for observation i with respect to group k
as

Gi
hk(w

h ;wk)

D
h�
wh
0 C

X
j

xi jwh
j
�
�
�
wk
0 C

X
j

xi jwk
j
�iC

;

where [a]C D maxf0; ag :

Likewise, denote the badness of fit for observation iwith
respect to group k as

Bi
hk(w

h ;wk)

D
h�
wh
0 C

X
j

xi jwh
h
�
�
�
wk
0 C

X
j

xi jwk
j
�i�

;

where [a]� D �minf0; ag :

The total goodness of fit and total badness of fit are then
defined as

G(w) D G(w1; : : : ;wK) D
X
h

X
k¤h

X
i2Gh

Gi
hk(w

h;wk) ;

B(w) D B(w1; : : : ;wK) D
X
h

X
k¤h

X
i2Gh

Bi
hk (w

h;wk) :
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The LP is to minimize the total badness of fit, subject to
a normalization equation, in which q > 0:

Minimize B(w) ;

subject to G(w) � B(w) D q ;

w urs .

Expanding G(w) and B(w) and substituting
Gi

hk(w
h;wk) and Bi

hk(w
h;wk) by � i

hk and ˇ i
hk respec-

tively, the LP becomes

Minimize
X
h

X
k¤h

X
i2Gh

ˇ i
hk

subject to
�
wh
0 C

X
j

xi jwh
j

�
�
�
wk
0 C

X
j

xi jwk
j

�

D � i
hk � ˇ

i
hk 8i 2 Gh 8h; k ¤ h ;

X
h

X
k¤h

X
i2Gh

(� i
hk � ˇ

i
hk) D q ;

wk
j urs 8 j; k ;

� i
hk; ˇ

i
hk � 0 8i 2 Gh 8h; k ¤ h :

The classification results for two real data sets show
that this model can compete with Fisher’s LDF and the
nonparametric k-nearest-neighbor method.

The LP-based models for classification problems
highlighted above are all nonparametric models. In
Sect. “Mixed Integer Programming Based Multigroup
Classification Models and Applications to Medicine
and Biology”, we describe LP-based and MIP-based
classification models that utilize a parametric multi-
group discriminant analysis approach [39,40,60,63].
These latter models have been employed successfully
in various multigroup disease diagnosis and biolog-
ical/medical prediction problems [16,28,29,56,57,59,
60,64,65].

Mixed Integer Programming Classification Models

While LP offers a polynomial-time computational
guarantee, MIP allows more flexibility in (among other
things) modeling misclassified observations and/or
misclassification costs.

Two-Group Classification In the two-group classi-
fication problem, binary variables can be used in the
formulation to track and minimize the exact number
of misclassifications. Such an objective function is also
considered as the L0-norm criterion [107].

MM:

Minimize
X
i

zi

subject to w0 C
X
j

xi jw j � Mzi 8i 2 G1 ;

w0 C
X
j

xi jw j � �Mzi 8i 2 G2 ;

wj urs 8 j ;

zi 2 f0; 1g 8i :

The vector w is required to be a nonzero vector to
prevent the trivial solution.

In theMIP formulation the objective function could
include the deviation terms, such as those in the hy-
brid models, as well as the number of misclassifi-
cations [5]; or it could represent expected cost of
misclassification [1,6,101,105]. In particular, there are
some variant versions of the basic model.

Stam and Joachimsthaler [109] studied the classifi-
cation performance of MM and compared it with that
of MSD, Fisher’s LDF, and Smith’s QDF. In some cases
the MM model performs better, but in some cases it
does not. MIP formulations are in the review stud-
ies of Joachimsthaler and Stam [50] and Erenguc and
Koehler [27], and are contained in the software devel-
oped by Stam and Ungar [110]. Computational experi-
ments show that the MIP model performs better when
the group overlap is higher [50,109], although it is still
not easy to reach general conclusions [107].

Since the MIP model is NP-hard, exact algo-
rithms and heuristics are proposed to solve it effi-
ciently. Koehler and Erenguc [54] developed a proce-
dure to solve MM in which the condition of nonzero
w is replaced by the requirement of at least one vio-
lation of the constraints w0 C

P
j xi jw j � 0 for i 2 G1

or w0 C
P

j xi jw j � 0 for i 2 G2. Banks and Abad [6]
solved the MIP of minimizing the expected cost of
misclassification by an LP-based algorithm. Abad and
Banks [1] developed three heuristic procedures for the
problem of minimizing the expected cost of misclas-
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sification. They also included the interaction terms
of the attributes in the data and applied the heuris-
tics [7]. Duarte Silva and Stam [105] introduced the di-
vide and conquer algorithm for the classification prob-
lem of minimizing the misclassification cost by solv-
ing MIP and LP subproblems. Rubin [101] solved the
same problem by using a decomposition approach, and
tested this procedure on some data sets, including two
breast cancer data sets. Yanev and Balev [119] proposed
exact and heuristic algorithms for solving MM, which
are based on some specific properties of the vertices of
a polyhedral set neatly connected with the model.

For the two-group classification problem where the
attributes are binary, Asparoukhov and Stam [3] pro-
posed LP and MIPmodels which partition the data into
multinomial cells and result in fewer variables and con-
straints. Let s be the index of the cells, n1s ; n2s be the
number of data points in cell s from groups 1 and 2, re-
spectively, and (bs1; : : : ; bsm) be the binary digits rep-
resenting cell s. Below is the BMIP, which performs best
in the three real data sets in [3]:
BMIP

Minimize
X

s: n1sCn2s>0

fjn1s � n2s jzs Cmin(n1s ; n2s)g

subject to w0 C
X
j

bs jw j � Mzs 8s : n1s � n2s ;

n1s > 0 ;

w0 C
X
j

bs jw j > �Mzs 8s : n1s < n2s ;

wj urs 8 j ;

zs 2 f0; 1g 8s : n1s C n2s > 0 :

Pavur et al. [96] included different secondary goals
in model MM and compared their misclassification
rates. A new secondary goal was proposed, which maxi-
mizes the difference between the means of the discrimi-
nant scores of the two groups. In this model the term –ı
is added to theminimization objective function as a sec-
ondary goal with a constant multiplier, while the con-
straint

P
j x̄

(2)
j w j �

P
j x̄

(1)
j w j � ı is included, where

x̄(k)j D 1/jGk j
P

i2Gk
xi j 8 j, for k D 1; 2. The results

of simulation study show that an MIP model with the
proposed secondary goal has better performance than
the other models studied.

Glen [42] proposed integer programming (IP) tech-
niques for normalization in the two-group discrimi-
nant analysis models. One technique is to add the con-
straint

Pm
jD1 jwjj D 1. In the proposed model, wj for

j D 1; : : : ;m is represented by wj D wCj � w�j , where
wCj ;w

�
j � 0, and binary variables ı j and � j are defined

such that ı j D 1, wCj � � and � j D 1, w�j � �.
The IP normalization technique is applied to MSD and
MMD, and the MSD version is presented below.

MSD – with IP normalization:

Minimize
X
i

di

subject to w0 C

mX
jD1

xi j(wCj � w�j ) � di � 0

8i 2 G1 ;

w0 C

mX
jD1

xi j(wCj � w�j )C di � 0

8i 2 G2 ;

mX
jD1

(wCj C w�j ) D 1 ;

wCj � �ı j � 0 8 j D 1; : : : ;m ;

wCj � ı j � 0 8 j D 1; : : : ;m ;

w�j � �� j � 0 8 j D 1; : : : ;m ;

w�j � � j � 0 8 j D 1; : : : ;m ;

ı j C � j � 1 8 j D 1; : : : ;m ;

w0 urs ,

wCj ;w
�
j � 0 8 j D 1; : : : ;m ;

di � 0 8i ;

ı j; � j 2 f0; 1g 8 j D 1; : : : ;m :

The variable coefficients of the discriminant func-
tion generated by the models are invariant under ori-
gin shifts. The proposed models were validated using
two data sets from [45,87]. The models were also ex-
tended for attribute selection by adding the constraintPm

jD1(ı j C � j) D p, which allows only a constant num-
ber, p, of attributes to be used for classification.
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Glen [43] developed MIP models which determine
the thresholds for forming dichotomous variables as
well as the discriminant function coefficients, wj. For
each continuous attribute to be formed as a dichoto-
mous attribute, the model finds the threshold among
possible thresholds while determining the separating
hyperplane and optimizing the objective function such
as minimizing the sum of deviations or minimizing the
number of misclassifications. Computational results of
a real data set and some simulated data sets show that
the MSD model with dichotomous categorical variable
formation can improve classification performance. The
reason for the potential of this technique is that the LDF
generated is a nonlinear function of the original vari-
ables.

Multigroup Classification Gehrlein [41] proposed
MIP formulations of minimizing the total number
of misclassifications in the multigroup classification
problem. He gave both a single-function classification
scheme and a multiple-function classification scheme,
as follows.

General single-function classification (GSFC) –
minimizing the number of misclassifications:

Minimize
X
i

zi

subject to w0 C
X
j

xi jw j �Mzi � Uk 8i 2 Gk ;

w0 C
X
j

xi jw j CMzi � Lk 8i 2 Gk ;

Uk � Lk � ı
0 8k ;

Lg � Uk CMygk � ı
Lk � Ug CMykg � ı
ygk C ykg D 1

9>=
>;
8g; k; g ¤ k ;

wj urs 8 j ;

Uk ; Lk urs 8k ;

zi 2 f0; 1g 8i ;

ygk 2 f0; 1g 8g; k; g ¤ k ;

where Uk ; Lk denote the upper and lower endpoints of
the interval assigned to group k, and ygk D 1 if the in-
terval associated with group g precedes that with group

k and ygk D 0 otherwise. The constant ı0 is the mini-
mum width of an interval of a group and the constant ı
is the minimum gap between adjacent intervals.

General multiple-function classification (GMFC) –
minimizing the number of misclassifications:

Minimize
X
i

zi

subject to wh
0 C

X
j

xi jwh
j � wk

0

�
X
j

xi jwk
j CMzi � �

8i 2 Gh; 8h; k ¤ h ;

wk
j urs 8 j; k ;

zi 2 f0; 1g 8i :

Both models work successfully on the iris data set
provided by Fisher [30].

Pavur [93] solved the multigroup classification
problem by sequentially solving the GSFC in one di-
mension each time. LDFs were generated by succes-
sively solving the GSFC with the added constraints that
all linear discriminants are uncorrelated to each other
for the total data set. This procedure could be repeated
for the number of dimensions that is believed to be
enough. According to the simulation results, this proce-
dure substantially improves the GSFCmodel and some-
times outperforms GMFC, Fisher’s LDF, or Smith’s
QDF.

To solve the three-group classification problem
more efficiently, Loucopoulos and Pavur [71] made
a slight modification to the GSFC and proposed the
model MIP3G, which also minimizes the number of
misclassifications. Compared with GSFC, MIP3G is
also a single-function classification model, but it re-
duces the possible group orderings from six to three
in the formulation and thus becomes more efficient.
Loucopoulos and Pavur [72] reported the results of
a simulation experiment on the performance of GMFC,
MIG3G, Fisher’s LDF, and Smith’s QDF for a three-
group classification problem with small training sam-
ples. Second-order terms were also considered in the
experiment. Simulation results show that GMFC and
MIP3G can outperform the parametric procedures
in some nonnormal data sets and that the inclusion
of second-order terms can improve the performance
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of MIP3G in some data sets. Pavur and Loucopou-
los [95] investigated the effect of the gap size in the
MIP3G model for the three-group classification prob-
lem. A simulation study illustrates that for fairly separa-
ble data, or data with small sample sizes, a non-zero-gap
model can improve the performance. A possible reason
for this result is that the zero-gap model may be over-
fitting the data.

Gallagher et al. [39,40,63] and Lee [59,60] proposed
MIP models, both heuristic and exact, as a computa-
tional approach to solving the constrained discriminant
method described by Anderson [2]. These models are
described in detail in Sect. “Mixed Integer Program-
ming Based Multigroup Classification Models and Ap-
plications to Medicine and Biology”.

Nonlinear Programming Classification Models

Nonlinear programming approaches are natural exten-
sions for some of the LP-based models. Thus far, non-
linear programming approaches have been developed
for two-group classification.

Stam and Joachimsthaler [108] proposed a class
of nonlinear programming methods to solve the two-
group classification problem under the Lp-norm objec-
tive criterion. This is an extension of MSD and MMD,
for which the objectives are the L1-norm and L1-norm,
respectively.

Minimize the general Lp-norm distance:

Minimize (
X
i

d p
i )

1/p

subject to
X
j

xi jw j � di � b 8i 2 G1 ;

X
j

xi jw j C di � b 8i 2 G2 ;

wj urs 8 j ;

di � 0 8i :

The simulation results show that, in addition to
the L1-norm and the L1-norm, it is worth the ef-
fort to compute other Lp-norm objectives. Restrict-
ing the analysis to 1 � p � 3, plus p D1, is recom-
mended. This method was reviewed by Joachimsthaler
and Stam [50] and Erenguc and Koehler [27].

Mangasarian et al. [85] proposed a nonconvex
model for the two-group classification problem:

Minimize d1 C d2

subject to
X
j

xi jw j � d1 � 0 8i 2 G1 ;

X
j

xi jw j C d2 � 0 8i 2 G2 ;

max
jD1; ::: ;m

jwjj D 1 ;

wj urs 8 j ;

d1; d2 urs ,

This model can be solved in polynomial-time by
solving 2m linear programs, which generate a sequence
of parallel planes, resulting in a piecewise-linear non-
convex discriminant function. The model works suc-
cessfully in clinical practice for the diagnosis of breast
cancer.

Further, Mangasarian [76] also formulated the
problem of minimizing the number of misclassifica-
tions as a linear program with equilibrium constraints
(LPEC) instead of the MIP model MM described previ-
ously:

Minimize
X

i2G1[G2

zi

subject to w0 C
X
j

xi jw j � di � �1 8i 2 G1 ;

zi (w0 C
X
j

xi jw j � di C 1) D 0

8i 2 G1 ;

w0 C
X
j

xi jw j C di � 1 8i 2 G2 ;

zi (w0 C
X
j

xi jw j C di � 1) D 0

8i 2 G2 ;

di (1 � zi ) D 0 8i 2 G1 [ G2 ;

0 � zi � 1 8i 2 G1 [ G2 ;

di � 0 8i 2 G1 [ G2 ;

wj urs 8 j :

The general LPEC can be converted to an exact
penalty problem with a quadratic objective and linear
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constraints. A stepless Frank–Wolfe-type algorithm is
proposed for the penalty problem, terminating at a sta-
tionary point or a global solution. This method is called
the parametric misclassification minimization (PMM)
procedure, and numerical testing is included in [77].

To illustrate the next model, we first define the step
function s : R! f0; 1g as

s(u) D

(
1 if u > 0 ;

0 if u � 0 :

The problem of minimizing the number of misclas-
sifications is equivalent to

Minimize
X

i2G1[G2

s(di )

subject to w0 C
X
j

xi jw j � di � �1 8i 2 G1 ;

w0 C
X
j

xi jw j C di � 1 8i 2 G2 ;

di � 0 8i 2 G1 [ G2 ;

wj urs 8 j :

Mangasarian [77] proposed a simple concave ap-
proximation of the step function for nonnegative
variables: t(u; ˛) D 1 � e�˛u , where ˛ > 0; u � 0. Let
˛ > 0 and approximate s(di) by t(di ; ˛). The problem
then reduces to minimizing a smooth concave function
bounded below on a nonempty polyhedron, which has
a minimum at a vertex of the feasible region. A finite
successive linearization algorithm (SLA) was proposed,
terminating at a stationary point or a global solution.
Numerical tests of SLA were done and compared with
the PMM procedure described above. The results show
that the much simpler SLA obtains a separation that is
almost as good as PMM in considerably less computing
time.

Chen and Mangasarian [21] proposed an algorithm
on a defined hybrid misclassification minimization
problem, which is more computationally tractable than
theNP-hard misclassification minimization problem.
The basic idea of the hybrid approach is to obtain iter-
atively w0 and (w1; : : : ;wm) of the separating hyper-
plane:

1. For a fixed w0, solve RLP [9] to determine
(w1; : : : ;wm).

2. For this (w1; : : : ;wm), solve the one-dimensional
misclassification minimization problem to deter-
mine w0.

Comparison of the hybrid method is made with the
RLP method and the PMM procedure. The hybrid
method performs better in the testing sets of the ten-
fold cross-validation and is much faster than PMM.

Mangasarian [78] proposed the model of minimiz-
ing the sum of arbitrary-norm distances of misclassified
points to the separating hyperplane. For a general norm
jj � jj on Rm, the dual norm jj � jj0 on Rm is defined as
jjxjj0 D maxjjyjjD1 xT y. Define [a]C D maxf0; ag and
let w D (w1; : : : ;wm). The formulation can then be
written as

Minimize
X
i2G1

h
w0 C

X
j

xi jw j

iC

C
X
i2G2

h
� w0 �

X
j

xi jw j

iC

subject to jjwjj0 D 1 ;

w0;w urs :

The problem is to minimize a convex function on
a unit sphere. A decision problem related to this min-
imization problem is shown to be NP-complete, ex-
cept for p D 1. For a general p-norm, the minimization
problem can be transformed via an exact penalty for-
mulation to minimizing the sum of a convex function
and a bilinear function on a convex set.

Support Vector Machine

A support vector machine (SVM) is a type of math-
ematical programming approach [112]. It has been
widely studied, and has become popular in many appli-
cation fields in recent years. The introductory descrip-
tion of SVMs given here is summarized from the tu-
torial by Burges [20]. In order to maintain consistency
with SVM studies in published literature, the notation
used below is slightly different from the notation used
to describe the mathematical programming methods in
earlier sections.

In the two-group separable case, the objective func-
tion is to maximize the margin of a separating hyper-
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plane, 2/jjwjj, which is equivalent to minimizing jjwjj2:

Minimize wTw ;

subject to xTi w C b � C1 for yi D C1 ;

xTi w C b � �1 for yi D �1 ;

w; b urs ,

where xi 2 Rm represents the values of attributes of ob-
servation i and yi 2 f�1; 1g represents the group of ob-
servation i.

This problem can be solved by solving its Wolfe
dual problem:

Maximize
X
i

˛i �
1
2

X
i; j

˛i˛ j yi y jxTi x j ;

subject to
X
i

˛i yi D 0 ;

˛i � 0 8i :

Here, ˛i is the Lagrange multiplier for the training
point i, and the points with ˛i > 0 are called the sup-
port vectors (analogous to the support of a hyperplane,
and thus the introduction of the name “support vec-
tor”). The primal solutionw is given byw D

P
i ˛i yi xi .

b can be computed by solving yi (wTxi C b) � 1 D 0
for any i with ˛i > 0.

For the nonseparable case, slack variables � i are in-
troduced to handle the errors. Let C be the penalty for
the errors. The problem becomes

Minimize
1
2
wTw C C(

X
i

�i )k ;

subject to xTi w C b � C1 � �i for yi D C1 ;

xTi w C b � �1C �i for yi D �1 ;

w; b urs ,

�i � 0 8i :

When k is chosen to be 1, neither the � i nor their
Lagrange multipliers appear in theWolfe dual problem:

Maximize
X
i

˛i �
1
2

X
i; j

˛i˛ j yi y jxTi x j ;

subject to
X
i

˛i yi D 0 ;

0 � ˛i � C 8i :

The data points can be separated nonlinearly by
mapping the data into some higher-dimensional space

and applying linear SVM to the mapped data. In-
stead of knowing explicitly the mapping ˚ , SVM needs
only the dot products of two transformed data points
˚(xi ) � ˚(x j). The kernel function K is introduced
such that K(xi ; x j) D ˚(xi) � ˚(x j). Replacing xTi x j by
K(xi ; x j) in the above problem, the separation becomes
nonlinear, while the problem to be solved remains
a quadratic program. In testing a new data point x af-
ter training, the sign of the function f (x) is computed
to determine the group of x:

f (x) D
NsX
iD1

˛i yi˚(si )�˚(x)Cb D
NsX
iD1

˛i yiK(si ; x)Cb;

where the si are the support vectors and Ns is the num-
ber of support vectors. Again the explicit form of ˚(x)
is avoided.

Mangasarian provided a general mathematical pro-
gramming framework for SVM, called generalized
SVM or GSVM [79,83]. Special cases can be derived
from GSVM, including the standard SVM.

Many SVM-type methods have been developed
by Mangasarian and others to solve huge classifica-
tion problems more efficiently. These methods in-
clude successive overrelaxation for SVM [82], proximal
SVM [36,38], smooth SVM [68], reduced SVM [67], La-
grangian SVM [84], incremental SVMs [37], and other
methods [13,81]. Mangasarian [80] summarized some
of the developments. Examples of applications of SVM
include breast cancer studies [69,70] and genome re-
search [73].

Hsu and Lin [49] compared different methods for
multigroup classification using SVMs. Three methods
studied were based on several binary classifiers: one
against one, one against all, and directed acyclic graph
(DAG) SVM. The other two methods studied are meth-
ods with decomposition implementation. The experi-
mental results show that the one-against-one and DAG
methods are more suitable for practical use than the
other methods. Lee et al. [66] proposed a generic ap-
proach to multigroup problems with some theoretical
properties, and the proposed method was well applied
to microarray data for cancer classification and satellite
radiance profiles for cloud classification.

Gallagher et al. [39,40,63] offered the first discrete
SVM for multigroup classification with reserved judge-
ment. The approach has been successfully applied to
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a diverse variety of biological and medical applica-
tions (see Sect. “Mixed Integer Programming Based
Multigroup Classification Models and Applications to
Medicine and Biology”).

Mixed Integer Programming BasedMultigroup
Classification Models and Applications
to Medicine and Biology

Commonly used methods for classification, such as
LDFs, decision trees, mathematical programming ap-
proaches, SVMs, and artificial neural networks, can
be viewed as attempts at approximating a Bayes op-
timal rule for classification; that is, a rule that maxi-
mizes (minimizes) the total probability of correct clas-
sification (misclassification). Even if a Bayes optimal
rule is known, intergroup misclassification rates may be
higher than desired. For example, in a population that
is mostly healthy, a Bayes optimal rule for medical di-
agnosis might misdiagnose sick patients as healthy in
order to maximize total probability of correct diagno-
sis. As a remedy, a constrained discriminant rule that
limits the misclassification rate is appealing.

Assuming that the group density functions and
prior probabilities are known, Anderson [2] showed
that an optimal rule for the problem of maximizing
the probability of correct classification subject to con-
straints on the misclassification probabilities must be
of a specific form when discriminating among mul-
tiple groups with a simplified model. The formulae
in Anderson’s result depend on a set of parameters
satisfying a complex relationship between the density
functions, the prior probabilities, and the bounds on
the misclassification probabilities. Establishing a viable
mathematical model to describe Anderson’s result, and
finding values for these parameters that yield an opti-
mal rule are challenging tasks. The first computational
models utilizing Anderson’s formulae were proposed
in [39,40].

Discrete Support Vector Machine Predictive Models

As part of the work carried out at Georgia Institute
of Technology’s Center for Operations Research in
Medicine, we have developed a general-purpose dis-
criminant analysis modeling framework and computa-
tional engine that are applicable to a wide variety of
applications, including biological, biomedical, and lo-

gistics problems. Utilizing the technology of large-scale
discrete optimization and SVMs, we have developed
novel classification models that simultaneously include
the following features: (1) the ability to classify any
number of distinct groups; (2) the ability to incorporate
heterogeneous types of attributes as input; (3) a high-
dimensional data transformation that eliminates noise
and errors in biological data; (4) constraints to limit
the rate of misclassification, and a reserved-judgment
region that provides a safeguard against overtraining
(which tends to lead to high misclassification rates from
the resulting predictive rule); and (5) successive mul-
tistage classification capability to handle data points
placed in the reserved-judgment region. Studies involv-
ing tumor volume identification, ultrasonic cell disrup-
tion in drug delivery, lung tumor cell motility analysis,
CpG island aberrant methylation in human cancer, pre-
dicting early atherosclerosis using biomarkers, and fin-
gerprinting native and angiogenic microvascular net-
works using functional perfusion data indicate that our
approach is adaptable and can produce effective and re-
liable predictive rules for various biomedical and biobe-
havior phenomena [16,28,29,56,57,59,60,64,65].

Based on the description in [39,40,59,60,63], we
summarize below some of the classification models we
have developed.

Modeling of Reserved-Judgment Region for General
Groups When the population densities and prior
probabilities are known, the constrained rules with a re-
ject option (reserved judgment), based on Anderson’s
results, call for finding a partition fR0; : : : ; RGg of
Rk that maximizes the probability of correct allocation
subject to constraints on the misclassification probabil-
ities; i. e.,

Maximize
GX

gD1

g

Z
Rg

fg(w) dw (1)

subject to
Z
Rg

fh(w)dw � ˛hg ; h; g D 1; : : : ;G;

h ¤ g ; (2)

where fh; h 2 f1; : : : ;Gg; are the group conditional
density functions, g denotes the prior probability
that a randomly selected entity is from group g; g 2
f1; : : : ;Gg, and ˛hg ; h ¤ g, are constants between 0
and 1. Under quite general assumptions, it was shown
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that there exist unique (up to a set of measure zero)
nonnegative constants �i h ; i; h 2 f1; : : : ;Gg; i ¤ h;
such that the optimal rule is given by

Rg D fx 2 Rk : Lg(x) D max
h2f0;1; ::: ;Gg

Lh(x)g ;

g D 0; : : : ;G ;
(3)

where

L0(x) D 0 ; (4)

Lh(x) D h fh(x)�
GX

iD1;i¤h

�i h fi(x); h D 1; : : : ;G :

(5)

For G D 2 the optimal solution can be modeled rather
straightforwardly. However, finding optimal �ih’s for
the general case, G � 3, is a difficult problem, with the
difficulty increasing as G increases. Our model offers an
avenue for modeling and finding the optimal solution
in the general case. It is the first such model to be com-
putationally viable [39,40].

Before proceeding, we note that Rg can be written as
Rg D fx 2 Rk : Lg(x) � Lh(x) for all h D 0; : : : ;Gg.
So, since Lg(x) � Lh(x) if, and only if, (1/

PG
tD1 ft(x))

Lg(x) � (1/
PG

tD1 ft(x))Lh(x), the functions Lh ; h D
1; : : : ;G; can be redefined as

Lh(x) D h ph(x)�
GX

iD1;i¤h

�i h pi (x); h D 1; : : : ;G ;

(6)

where pi (x) D fi(x)/
PG

tD1 ft(x). We assume that Lh is
defined as in (6) in our model.

Mixed Integer Programming Formulations As-
sume that we are given a training sample of N entities
whose group classifications are known; say, ng entities
are in group g, where

PG
gD1 ng D N . Let the k-dimen-

sional vectors xgj, g D 1; : : : ;G; j D 1; : : : ; ng ; con-
tain the measurements on k available characteristics of
the entities. Our procedure for deriving a discriminant
rule proceeds in two stages. The first stage is to use the
training sample to compute estimates, f̂h , either para-
metrically or nonparametrically, of the density func-
tions f h [89] and estimates, ̂h , of the prior probabili-
ties h ; h D 1; : : : ;G. The second stage is to determine

the optimal �ih’s given these estimates. This stage re-
quires being able to estimate the probabilities of correct
classification and misclassification for any candidate set
of �ih’s. One could, in theory, substitute the estimated
densities and prior probabilities into (5), and directly
use the resulting regions Rg in the integral expressions
given in (1) and (2). This would involve, even in sim-
ple cases such as normally distributed groups, the nu-
merical evaluation of k-dimensional integrals at each
step of a search for the optimal �ih’s. Therefore, we
have designed an alternative approach. After substitut-
ing the f̂h ’s and ̂h ’s into (5), we simply calculate the
proportion of training sample points which fall in each
of the regions R1; : : : ; RG : The MIP models discussed
below attempt to maximize the proportion of training
sample points correctly classified while satisfying con-
straints on the proportions of training sample points
misclassified. This approach has two advantages. First,
it avoids having to evaluate the potentially difficult inte-
grals in (1) and (2). Second, it is nonparametric in con-
trolling the training sample misclassification probabil-
ities. That is, even if the densities are poorly estimated
(by assuming, for example, normal densities for non-
normal data), the constraints are still satisfied for the
training sample. Better estimates of the densities may
allow a higher correct classification rate to be achieved,
but the constraints will be satisfied even if poor esti-
mates are used. Unlike most SVM models that mini-
mize the sum of errors, our objective is driven by the
number of correct classifications, and will not be biased
by the distance of the entities from the supporting hy-
perplane.

A word of caution is in order. In traditional un-
constrained discriminant analysis, the true probabil-
ity of correct classification of a given discriminant rule
tends to be smaller than the rate of correct classifi-
cation for the training sample from which it was de-
rived. One would expect to observe such an effect for
the method described herein as well. In addition, one
would expect to observe an analogous effect with re-
gard to constraints on misclassification probabilities –
the true probabilities are likely to be greater than any
limits imposed on the proportions of training sample
misclassifications. Hence, the ˛hg parameters should be
carefully chosen for the application in hand.

Our first model is a nonlinear 0/1 MIP model with
the nonlinearity appearing in the constraints. Model 1
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maximizes the number of correct classifications of the
given N training entities. Similarly, the constraints on
the misclassification probabilities are modeled by en-
suring that the number of group g training entities in
region Rh is less than or equal to a prespecified per-
centage, ˛hg(0 < ˛hg < 1), of the total number, ng , of
group g entities, h; g 2 f1; : : : ;Gg; h ¤ g.

For notational convenience, let G D f1; : : : ;Gg
and Ng D f1; : : : ; ngg, for g 2 G. Also, analogous to
the definition of pi, define p̂i by p̂i D f̂ i(x)/

PG
tD1 f̂ t(x).

In our model, we use binary indicator variables to de-
note the group classification of entities. Mathemati-
cally, let uhgj be a binary variable indicating whether or
not xgj lies in region Rh; i. e., whether or not the jth en-
tity from group g is allocated to group h. Then model 1
can be written as follows.

Discriminant analysis MIP (DAMIP):

Maximize
X
g2G

X
j2Ng

ug g j

subject to Lhg j D ̂h p̂h(xg j) �
X
i2Gnh

�i h p̂i (xg j) ;

h; g 2 G; j 2 Ng ;

(7)

yg j D maxf0; Lhg j : h D 1; : : : ;Gg; g 2 G; j 2 Ng ;

(8)

yg j � Lgg j � M(1 � ugg j); g 2 G; j 2 Ng ; (9)

yg j � Lhg j � "(1�uhg j); h; g 2 G; j 2 Ng ; h ¤ g ;
(10)

X
j2Ng

uhg j � b˛hgngc; h; g 2 G; h ¤ g ; (11)

�1 < Lhg j <1; yg j � 0; �i h � 0; uhg j 2 f0; 1g :

Constraint (7) defines the variable Lhgj as the value
of the function Lh evaluated at xgj. Therefore, the con-
tinuous variable ygj, defined in constraint (8), repre-
sents maxfLh(xg j) : h D 0; : : : ;Gg; and consequently,
xgj lies in region Rh if, and only if, yg j D Lhg j . The bi-
nary variable uhgj is used to indicate whether or not xgj

lies in region Rh; i. e., whether or not the jth entity from
group g is allocated to group h. In particular, constraint

(9), together with the objective, forces uggj to be 1 if, and
only if, the jth entity from group g is correctly allocated
to group g; and constraints (10) and (11) ensure that
at most b˛hgngc (i. e., the greatest integer less than or
equal to ˛hgng) group g entities are allocated to group
h; h ¤ g. One caveat regarding the indicator variables
uhgj is that although the condition uhg j D 0; h ¤ g, im-
plies (by constraint (10)) that xg j … Rh , the converse
need not hold. As a consequence, the number of mis-
classifications may be overcounted. However, in our
preliminary numerical study we found that the actual
amount of overcounting is minimal. One could force
the converse (thus, uhg j D 1 if and only if xg j 2 Rh) by
adding constraints yg j � Lhg j � M(1 � uhg j), for ex-
ample. Finally, we note that the parameters M and �
are extraneous to the discriminant analysis problem it-
self, but are needed in the model to control the indica-
tor variables uhgj. The intention is for M and � to be,
respectively, large and small positive constants.

Model Variations We explore different variations in
the model to grasp the quality of the solution and the
associated computational effort.

A first variation involves transforming model 1 to
an equivalent linear mixed integer model. In particular,
model 2 replaces the N constraints defined in (8) with
the following system of 3GN C 2N constraints:

yg j � Lhg j ; h; g 2 G; j 2 Ng ; (12)

ỹhg j � Lhg j � M(1� vhg j); h; g 2 G; j 2 Ng ; (13)

ỹhg j � ̂h p̂h(xg j)vhg j; h; g 2 G; j 2 Ng ; (14)

X
h2G

vhg j � 1; g 2 G; j 2 Ng ; (15)

X
h2G

ỹhg j D yg j ; g 2 G; j 2 Ng ; (16)

where ỹhg j � 0 and vhg j 2 f0; 1g; h; g 2 G; j 2 Ng .
These constraints, together with the nonnegativity of ygj
force yg j D maxf0; Lhg j : h D 1; : : : ;Gg.

The second variation involves transforming
model 1 to a heuristic linear MIP model. This is
done by replacing the nonlinear constraint (8) with
yg j � Lhg j ; h; g 2 G; j 2 Ng , and including penalty
terms in the objective function. In particular, model 3
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has the objective

Maximize
X
g2G

X
j2Ng

ˇugg j �
X
g2G

X
j2Ng

� yg j ;

where ˇ and � are positive constants. This model
is heuristic in that there is nothing to force
yg j D maxf0; Lhg j : h D 1; : : : ;Gg. However, since
in addition to trying to force as many uggj’s to 1 as pos-
sible, the objective in model 3 also tries to make the ygj’s
as small as possible, and the optimizer tends to drive ygj
towards maxf0; Lhg j : h D 1; : : : ;Gg. We remark that
ˇ and � could be stratified by group (i. e., introduce
possibly distinct ˇg ; �g ; g 2 G) to model the relative
importance of certain groups to be correctly classified.

A reasonable modification to models 1, 2, and
3 involves relaxing the constraints specified by (11).
Rather than placing restrictions on the number of
type g training entities classified into group h, for
all h; g 2 G; h ¤ g, one could simply place an upper
bound on the total number of misclassified training en-
tities. In this case, the G(G � 1) constraints specified by
(11) would be replaced by the single constraint

X
g2G

X
h2Gnfgg

X
j2Ng

uhg j � b˛Nc ; (17)

where ˛ is a constant between 0 and 1. We will refer
to models 1, 2, and 3 modified in this way as models
1T, 2T, and 3T, respectively. Of course, other modifi-
cations are also possible. For instance, one could place
restrictions on the total number of type g points mis-
classified for each g 2 G. Thus, in place of the con-
straints specified in (17), one would include the con-
straints

P
h2Gnfgg

P
j2Ng

uhg j � b˛gNc; g 2 G, where
0 < ˛g < 1.

We also explore a heuristic linear model of model 1.
In particular, consider the linear program (DALP):

Maximize
X
g2G

X
j2Ng

(c1wg j C c2yg j) (18)

subject to Lhg j D h p̂h(xg j) �
X
i2Gnh

�i h p̂i (xg j) ;

h; g 2 G; j 2 Ng ;

(19)

Lgg j�Lhg jCwg j � 0; h; g 2 G; h ¤ g; j 2 Ng ; (20)

Lgg j C wg j � 0; g 2 G; j 2 Ng ; (21)

� Lhg j C yg j � 0; h; g 2 G; j 2 Ng ; (22)

�1 < Lhg j <1;wg j; yg j ; �i h � 0 :

Constraint (19) defines the variable Lhgj as the
value of the function Lh evaluated at xgj. As the op-
timization solver searches through the set of feasi-
ble solutions, the �ih variables will vary, causing the
Lhgj variables to assume different values. Constraints
(20), (21), and (22) link the objective-function vari-
ables with the Lhgj variables in such a way that cor-
rect classification of training entities and allocation of
training entities into the reserved-judgment region are
captured by the objective-function variables. In par-
ticular, if the optimization solver drives wgj to zero
for some g,j pair, then constraints (20) and (21) im-
ply that Lgg j D maxf0; Lhg j : h 2 Gg. Hence, the jth
entity from group g is correctly classified. If, on
the other hand, the optimal solution yields yg j D 0
for some g,j pair, then constraint (22) implies that
maxf0; Lhg j : h 2 Gg D 0. Thus, the jth entity from
group g is placed in the reserved-judgment region. (Of
course, it is possible for both wgj and ygj to be zero. One
should decide prior to solving the linear program how
to interpret the classification in such cases.) If both wgj

and ygj are positive, the jth entity from group g is mis-
classified.

The optimal solution yields a set of �ih’s that best al-
locates the training entities (i. e., “best” in terms of min-
imizing the penalty objective function). The optimal
�ih’s can then be used to define the functions Lh, h 2 G,
which in turn can be used to classify a new entity with
feature vector x 2 Rk by simply computing the index
at which maxfLh(x) : h 2 f0; 1; : : : ;Ggg is achieved.

Note that model DALP places no a priori bound on
the number of misclassified training entities. However,
since the objective is to minimize a weighted combi-
nation of the variables wgj and ygj, the optimizer will
attempt to drive these variables to zero. Thus, the op-
timizer is, in essence, attempting either to correctly
classify training entities (wg j D 0), or to place them
in the reserved-judgment region (yg j D 0). By vary-
ing the weights c1 and c2, one has a means of control-
ling the optimizer’s emphasis for correctly classifying
training entities versus placing them in the reserved-
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Disease Diagnosis: Optimization-Based Methods, Table 1
Model size

Model Type Constraints Total variables 0/1 Variables

1 Nonlinear MIP 2GNC NC G(G� 1) 2GNC NC G(G� 1) GN
2 Linear MIP 5GNC 2NC G(G� 1) 4GNC NC G(G� 1) 2GN
3 Linear MIP 3GNC G(G� 1) 2GNC NC G(G� 1) GN
1T Nonlinear MIP 2GNC NC 1 2GNC NC G(G� 1) GN
2T Linear MIP 5GNC 2NC 1 4GNC NC G(G� 1) 2GN
3T Linear MIP 3GNC 1 2GNC NC G(G� 1) GN
DALP Linear program 3GN NGC NC G(G� 1) 0

judgment region. If c2/c1 < 1, the optimizer will tend
to place a greater emphasis on driving the wgj variables
to zero than driving the ygj variables to zero (conversely,
if c2/c1 > 1). Hence, when c2/c1 < 1, one should expect
to get relatively more entities correctly classified, fewer
placed in the reserved-judgment region, and more mis-
classified, than when c2/c1 > 1. An extreme case is
when c2 D 0. In this case, there is no emphasis on driv-
ing ygj to zero (the reserved-judgment region is thus ig-
nored), and the full emphasis of the optimizer is to drive
wgj to zero.

Table 1 summarizes the number of constraints, the
total number of variables, and the number of 0/1 vari-
ables in each of the discrete SVM models, and in the
heuristic LP model (DALP). Clearly, even for moder-
ately sized discriminant analysis problems, the MIP in-
stances are relatively large. Also, note that model 2 is
larger than model 3, in terms of both the number of
constraints and the number of variables. However, it is
important to keep in mind that the difficulty of solving
an MIP problem cannot, in general, be predicted solely
by its size; problem structure has a direct and substan-
tial bearing on the effort required to find optimal so-
lutions. The LP relaxation of these MIP models poses
computational challenges as commercial LP solvers re-
turn (optimal) LP solutions that are infeasible, owing to
the equality constraints, and the use of bigM and small
� in the formulation.

It is interesting to note that the set of feasible solu-
tions for model 2 is “tighter” than that for model 3. In
particular, if Fi denotes the set of feasible solutions of
model i, then

F1 D f(L; �; u; y) : there exists ỹ; v

such that (L; �; u; y; ỹ; v) 2 F2g ¨ F3 : (23)

The novelties of the classification models devel-
oped herein include the following: (1) they are suitable
for discriminant analysis given any number of groups,
(2) they accept heterogeneous types of attributes as in-
put, (3) they use a parametric approach to reduce high-
dimensional attribute spaces, and (4) they allow con-
straints on the number of misclassifications, and utilize
a reserved judgment to facilitate the reduction of mis-
classifications. The lattermost point opens the possibil-
ity of performing multistage analysis.

Clearly, the advantage of an LP model over an MIP
model is that the associated problem instances are com-
putationally much easier to solve. However, the most
important criterion in judging a method for obtaining
discriminant rules is how the rules perform in correctly
classifying new unseen entities. Once the rule has been
developed, applying it to a new entity to determine its
group is trivial. Extensive computational experiments
have been performed to gauge the qualities of solutions
of different models [17,19,40,59,60,63].

Validation of Model and Computational Effort We
performed tenfold cross-validation, and designed sim-
ulation and comparison studies on our models. The
results reported in [40,63] demonstrate that our ap-
proach works well when applied to both simulated
data and data sets from the machine learning data-
base repository [91]. In particular, our methods com-
pare favorably and at times superior to other math-
ematical programming methods, including the GSFC
model by Gehrlein [41], and the LP model by Gochet
et al. [46], as well as Fisher’s LDF, artificial neural net-
works, quadratic discriminant analysis, tree classifica-
tion, and other SVMs, on real biological and medical
data.
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Classification Results for Real-World Biological
and Medical Applications

The main objective in discriminant analysis is to de-
rive rules that can be used to classify entities into
groups. Computationally, the challenge lies in the ef-
fort expended to develop such a rule. Once the rule
has been developed, applying it to a new entity to de-
termine its group is trivial. Feasible solutions obtained
from our classification models correspond to predictive
rules. Empirical results [40,63] indicate that the result-
ing classification model instances are computationally
very challenging, and even intractable by competitive
commercial MIP solvers. However, the resulting pre-
dictive rules prove to be very promising, offering cor-
rect classification rates on new unknown data ranging
from 80 to 100% for various types of biological/medical
problems. Our results indicate that the general-purpose
classification framework that we have designed has the
potential to be a very powerful predictive method for
clinical settings.

The choice of MIP as the underlying modeling
and optimization technology for our SVM classification
model is guided by the desire to simultaneously incor-
porate a variety of important and desirable properties of
predictive models within a general framework. MIP it-
self allows for incorporation of continuous and discrete
variables, and linear and nonlinear constraints, provid-
ing a flexible and powerful modeling environment.

Our mathematical modeling and computational
algorithm design shows great promise as the result-
ing predictive rules are able to produce higher rates of
correct classification for new biological data (with un-
known group status) compared with existing classifica-
tion methods. This is partly due to the transformation
of raw data via the set of constraints in (7). While most
mathematical programming approaches directly deter-
mine the hyperplanes of separation using raw data, our
approach transforms the raw data via a probabilistic
model, before the determination of the supporting hy-
perplanes. Further, the separation is driven by maxi-
mizing the sum of binary variables (representing cor-
rect classification or not of entities), instead of max-
imizing the margins between groups, or minimizing
a sum of errors (representing distances of entities from
hyperplanes), as in other SVMs. The combination of
these two strategies offers better classification capabil-

ity. Noise in the transformed data is not as profound as
in raw data. And the magnitudes of the errors do not
skew the determination of the separating hyperplanes,
as all entities have equal importance when correct clas-
sification is being counted.

To highlight the broad applicability of our ap-
proach, below we briefly summarize the application
of our predictive models and solution algorithms to
ten different biological problems. Each of the projects
was carried out in close partnership with experimen-
tal biologists and/or clinicians. Applications to finance
and other industry applications are described else-
where [17,40,63].

Determining the Type of Erythemato-Squamous
Disease The differential diagnosis of erythemato-
squamous diseases is an important problem in der-
matology [60]. They all share the clinical features of
erythema and scaling, with very little differences. The
six groups are psoriasis, seboreic dermatitis, lichen
planus, pityriasis rosea, cronic dermatitis, and pityria-
sis rubra pilaris. Usually a biopsy is necessary for the
diagnosis but unfortunately these diseases share many
histopathological features as well. Another difficulty for
the differential diagnosis is that a disease may show the
features of another disease at the beginning stage and
may have the characteristic features at the following
stages [91].

The six groups consisted of 366 subjects (112, 61, 72,
49, 52, and 20 respectively) with 34 clinical attributes.
Patients were first evaluated clinically with 12 features.
Afterwards, skin samples were taken for the evalua-
tion of 22 histopathological features. The values of the
histopathological features were determined by an anal-
ysis of the samples under a microscope. The 34 at-
tributes include (1) clinical attributes (erythema, scal-
ing, definite borders, itching, koebner phenomenon,
polygonal papules, follicular papules, oral mucosal in-
volvement, knee and elbow involvement, scalp involve-
ment, family history, age) and (2) histopathological
attributes (melanin incontinence, eosinophils in the in-
filtrate, polymorphonuclear leukocyte infiltrate, fibrosis
of the papillary dermis, exocytosis, acanthosis, hyperk-
eratosis, parakeratosis, clubbing of the rete ridges, elon-
gation of the rete ridges, thinning of the suprapapillary
epidermis, spongiform pustule, Munro microabscess,
focal hypergranulosis, disappearance of the granular
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layer, vacuolization and damage of basal layer, spongio-
sis, sawtooth appearance of retes, follicular horn plug,
perifollicular parakeratosis, inflammatory monoluclear
infiltrate, band-like infiltrate).

Ourmultigroup classification model selected 27 dis-
criminatory attributes, and successfully classified the
patients into six groups, each with an unbiased correct
classification of greater than 93% (with 100% correct
rate for groups 1, 3, 5, and 6) with an average overall
accuracy of 98%. Using 250 subjects to develop the rule,
and testing the remaining 116 patients, we obtained
a prediction accuracy of 91%.

Predicting Presence/Absence of Heart Disease The
four databases concerning heart disease diagnosis were
collected by Dr. Andras Janosi of the Hungarian Insti-
tute of Cardiology, Budapest; Dr. William Steinbrunn
of University Hospital, Zurich; Dr. Matthias Pfisterer
of University Hospital, Basel; and Dr. Robert Detrano
of V.A. Medical Center, Long Beach, and Cleveland
Clinic Foundation [60]. Each database contains the
same 76 attributes. The “goal” field refers to the pres-
ence of heart disease in the patient. The classification
attempts to distinguish presence (values 1, 2, 3, 4, in-
volving a total of 509 subjects) from absence (value
0, involving 411 subjects) [91]. The attributes include
demographics, physiocardiovascular conditions, tradi-
tional risk factors, family history, personal lifestyle, and
cardiovascular exercise measurements. This data set has
posed some challenges to past analysis via various clas-
sification approaches, resulting in less than 80% correct
classification. Applying our classification model with-
out reserved judgment, we obtained 79 and 85% correct
classification for each group respectively. To determine
the usefulness of multistage analysis, we applied two-
stage classification. In the first stage, 14 attributes were
selected as discriminatory. One hundred and thirty-five
group absence subjects were placed into the reserved-
judgment region, with 85% of the remaining being clas-
sified as group absence correctly; while 286 group pres-
ence subjects were placed into the reserved-judgment
region, and 91% of the remaining were classified cor-
rectly into the group presence. In the second stage, 11
attributes were selected with 100 and 229 classified into
group absence and presence respectively. Combining
the two stages, we obtained a correct classification of 82
and 85%, respectively, for diagnosis of absence or pres-

Disease Diagnosis: Optimization-Based Methods, Figure 1
A tree diagram for two-stage classification and prediction of
heart disease

ence of heart disease. Figure 1 illustrates the two-stage
classification.

Predicting Aberrant CpG Island Methylation in Hu-
man Cancer More details of this work can be found
in [28,29]. Epigenetic silencing associated with aberrant
methylation of promoter-region CpG islands is one
mechanism leading to loss of tumor suppressor func-
tion in human cancer. Profiling of CpG island methy-
lation indicates that some genes are more frequently
methylated than others, and that each tumor type is as-
sociated with a unique set of methylated genes. How-
ever, little is known about why certain genes succumb
to this aberrant event. To address this question, we
used restriction landmark genome scanning (RLGS) to
analyze the susceptibility of 1749 unselected CpG is-
lands to de novo methylation driven by overexpression
of DNMT1. We found that whereas the overall inci-
dence of CpG island methylation was increased in cells
overexpressing DNMT1, not all loci were equally af-
fected. The majority of CpG islands (69.9%) were re-
sistant to de novo methylation, regardless of DNMT1
overexpression. In contrast, we identified a subset of
methylation-prone CpG islands (3.8%) that were con-
sistently hypermethylated in multiple DNMT1 overex-
pressing clones. Methylation-prone and methylation-
resistant CpG islands were not significantly different
with respect to size, C+G content, CpG frequency,
chromosomal location, or gene association or pro-
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moter association. To discriminate methylation-prone
from methylation-resistant CpG islands, we developed
a novel DNA pattern recognition model and algo-
rithm [61], and coupled our predictive model described
herein with the patterns found. We were able to de-
rive a classification function based on the frequency
of seven novel sequence patterns that was capable of
discriminating methylation-prone from methylation-
resistant CpG islands with 90% correctness upon cross-
validation, and 85% accuracy when tested against blind
CpG islands unknown to us regarding the methylation
status. The data indicate that CpG islands differ in their
intrinsic susceptibility to de novo methylation, and sug-
gest that the propensity for a CpG island to become
aberrantly methylated can be predicted on the basis of
its sequence context.

The significance of this research is twofold. First,
the identification of sequence patterns/attributes that
distinguish methylation-prone CpG islands will lead to
a better understanding of the basic mechanisms under-
lying aberrant CpG island methylation. Because genes
that are silenced by methylation are otherwise struc-
turally sound, the potential for reactivating these genes
by blocking or reversing the methylation process repre-
sents an exciting new molecular target for chemothera-
peutic intervention. A better understanding of the fac-
tors that contribute to aberrant methylation, includ-
ing the identification of sequence elements that may
act to target aberrant methylation, will be an impor-
tant step in achieving this long-term goal. Secondly,
the classification of the more than 29,000 known (but
as yet unclassified) CpG islands in human chromo-
somes will provide an important resource for the iden-
tification of novel gene targets for further study as po-
tential molecular markers that could impact on both
cancer prevention and treatment. Extensive RLGS fin-
gerprint information (and thus potential training sets
of methylated CpG islands) already exists for a num-
ber of human tumor types, including breast, brain,
lung, leukemias, hepatocellular carcinomas, and primi-
tive neuroectodermal tumor [23,24,35,102]. Thus, the
methods and tools developed are directly applicable
to CpG island methylation data derived from human
tumors. Moreover, new microarray-based techniques
capable of “profiling” more than 7000 CpG islands
have been developed and applied to human breast can-
cers [15,117,118]. We are uniquely poised to take ad-

vantage of the tumor CpG islandmethylation profile in-
formation that will likely be generated using these tech-
niques over the next several years. Thus, our general-
predictive modeling framework has the potential to
lead to improved diagnosis and prognosis and treat-
ment planning for cancer patients.

Discriminant Analysis of Cell Motility and Morphol-
ogy Data in Human Lung Carcinoma Refer to [16]
for more details of this work. This study focuses on
the differential effects of extracellular matrix proteins
on the motility and morphology of human lung epider-
moid carcinoma cells. The behavior of carcinoma cells
is contrasted with that of normal L-132 cells, result-
ing in a method for the prediction of metastatic poten-
tial. Data collected from time-lapsed videomicroscopy
were used to simultaneously produce quantitative mea-
sures of motility and morphology. The data were subse-
quently analyzed using our discriminant analysis model
and algorithm to discover relationships between motil-
ity, morphology, and substratum. Our discriminant
analysis tools enabled the consideration of many more
cell attributes than is customary in cell motility stud-
ies. The observations correlate with behaviors seen in
vivo and suggest specific roles for the extracellular ma-
trix proteins and their integrin receptors in metasta-
sis. Cell translocation in vitro has been associated with
malignancy, as has an elongated phenotype [120] and
a rounded phenotype [97]. Our study suggests that ex-
tracellular matrix proteins contribute in different ways
to the malignancy of cancer cells, and that multiple ma-
lignant phenotypes exist.

Ultrasound-Assisted Cell Disruption for Drug Deliv-
ery Reference [57] discusses this in detail. Although
biological effects of ultrasound must be avoided for safe
diagnostic applications, ultrasound’s ability to disrupt
cell membranes has attracted interest as a method to fa-
cilitate drug and gene delivery. This preliminary study
seeks to develop rules for predicting the degree of cell
membrane disruption based on specified ultrasound
parameters and measured acoustic signals. Too much
ultrasound destroys cells, while cell membranes will not
open up for absorption ofmacromolecules when too lit-
tle ultrasound is applied. The key is to increase cell per-
meability to allow absorption of macromolecules, and
to apply ultrasound transiently to disrupt viable cells so
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as to enable exogenous material to enter without cell
damage. Thus our task is to uncover a “predictive rule”
of ultrasound-mediated disruption of red blood cells
using acoustic spectrums andmeasurements of cell per-
meability recorded in experiments.

Our predictive model and solver for generating pre-
diction rules were applied to data obtained from a se-
quence of experiments on bovine red blood cells. For
each experiment, the attributes consisted of four ultra-
sound parameters, acoustic measurements at 400 fre-
quencies, and a measure of cell membrane disruption.
To avoid overtraining, various feature combinations of
the 404 predictor variables were selected when develop-
ing the classification rule. The results indicate that the
variable combination consisting of ultrasound expo-
sure time and acoustic signals measured at the driving
frequency and its higher harmonics yields the best rule,
and our method compares favorably with classification
tree and other ad hoc approaches, with a correct clas-
sification rate of 80% upon cross-validation and 85%
when classifying new unknown entities. Our methods
used for deriving the prediction rules are broadly ap-
plicable, and could be used to develop prediction rules
in other scenarios involving different cell types or tis-
sues. These rules and the methods used to derive them
could be used for real-time feedback about ultrasound’s
biological effects. For example, it could assist clinicians
during a drug delivery process, or could be imported
into an implantable device inside the body for auto-
matic drug delivery and monitoring.

Identification of Tumor Shape and Volume in Treat-
ment of Sarcoma Reference [56] includes the de-
tailed analysis. This project involves the determina-
tion of tumor shape for adjuvant brachytherapy treat-
ment of sarcoma, based on catheter images taken after
surgery. In this application, the entities are overlapping
consecutive triplets of catheter markings, each of which
is used for determining the shape of the tumor contour.
The triplets are to be classified into one of two groups:
group 1 (triplets for which the middle catheter mark-
ing should be bypassed) and group 2 (triplets for which
the middle marking should not be bypassed). To de-
velop and validate a classification rule, we used clini-
cal data collected from 15 soft-tissue sarcoma patients.
Cumulatively, this comprised 620 triplets of catheter
markings. By careful (and tedious) clinical analysis of

the geometry of these triplets, 65 were determined to
belong to group 1, the “bypass” group, and 555 were
determined to belong to group 2, the “do-not-bypass”
group.

A set of measurements associated with each triplet
was then determined. The choice of what attributes
to measure to best distinguish triplets as belonging to
group 1 or group 2 is nontrivial. The attributes involved
the distance between each pair of markings, angles,
and the curvature formed by the three triplet mark-
ings. On the basis of the attributes selected, our pre-
dictive model was used to develop a classification rule.
The resulting rule provides 98% correct classification
on cross-validation, and was capable of correctly deter-
mining/predicting 95% of the shape of the tumor with
new patients’ data. We remark that the current clinical
procedure requires manual outline based onmarkers in
films of the tumor volume. This study was the first to
use automatic construction of tumor shape for sarcoma
adjuvant brachytherapy [56,62].

Discriminant Analysis of Biomarkers for Prediction
of Early Atherosclerosis More detail on this work
can be found in [65]. Oxidative stress is an important
etiologic factor in the pathogenesis of vascular disease.
Oxidative stress results from an imbalance between in-
jurious oxidant and protective antioxidant events, of
which the former predominate [88,103]. This results
in the modification of proteins and DNA, alteration in
gene expression, promotion of inflammation, and de-
terioration in endothelial function in the vessel wall,
all processes that ultimately trigger or exacerbate the
atherosclerotic process [22,111]. It was hypothesized
that novel biomarkers of oxidative stress would pre-
dict early atherosclerosis in a relatively healthy non-
smoking population free from cardiovascular disease.
One hundred and twenty-seven healthy nonsmokers,
without known clinical atherosclerosis had carotid in-
tima media thickness (IMT) measured using ultra-
sound. Plasma oxidative stress was estimated by meas-
uring plasma lipid hydroperoxides using the determi-
nation of reactive oxygen metabolites (d-ROMs) test.
Clinical measurements include traditional risk factors,
including age, sex, low-density lipoprotein (LDL), high-
density lipoprotein (HDL), triglycerides, cholesterol,
body-mass index (BMI), hypertension, diabetes melli-
tus, smoking history, family history of coronary artery
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disease, Framingham risk score, and high-sensitivity
C-reactive protein.

For this prediction, the patients were first clus-
tered into two groups: (group 1, IMT � 0:68; group 2,
IMT <0.68). On the basis of this separator, 30 patients
belonged to group 1, and 97 belonged to group 2.
Through each iteration, the classification method trains
and learns from the input training set and returns
the most discriminatory patterns among the 14 clini-
cal measurements; ultimately resulting in the develop-
ment of a prediction rule based on observed values of
these discriminatory patterns among the patient data.
Using all 127 patients as a training set, the predictive
model identified age, sex, BMI, HDL cholesterol, fam-
ily history of coronary artery disease under 60, high-
sensitivity C-reactive protein, and d-ROM as discrim-
inatory attributes that together provide unbiased cor-
rect classification of 90 and 93%, respectively, for group
1 (IMT � 0:68) and group 2 (IMT<0.68) patients. To
further test the power of the classification method for
correctly predicting the IMT status of new/unseen pa-
tients, we randomly selected a smaller patient training
set of size 90. The predictive rule from this training set
yielded 80 and 89% correct rates for predicting the re-
maining 37 patients as group 1 and group 2 patients,
respectively. The importance of d-ROM as a discrimi-
natory predictor for IMT status was confirmed during
the machine learning process. This biomarker was se-
lected in every iteration as the “machine” learned and
was trained to develop a predictive rule to correctly
classify patients in the training set. We also performed
predictive analysis using Framingham risk score and
d-ROM; in this case the unbiased correct classifica-
tion rates (for the 127 individuals) for groups 1 and 2
were 77 and 84%, respectively. This is the first study
to illustrate that this measure of oxidative stress can
be effectively used along with traditional risk factors to
generate a predictive rule that can potentially serve as
an inexpensive clinical diagnostic tool for prediction of
early atherosclerosis.

Fingerprinting Native and Angiogenic Microvascu-
lar Networks Through Pattern Recognition and Dis-
criminant Analysis of Functional Perfusion Data
The analysis and findings are described in [64]. The
cardiovascular system provides oxygen and nutrients
to the entire body. Pathological conditions that impair

normal microvascular perfusion can result in tissue is-
chemia, with potentially serious clinical effects. Con-
versely, development of new vascular structures fuels
the progression of cancer, macular degeneration, and
atherosclerosis. Fluorescence microangiography offers
superb imaging of the functional perfusion of new
and existent microvasculature, but quantitative anal-
ysis of the complex capillary patterns is challenging.
We developed an automated pattern-recognition al-
gorithm to systematically analyze the microvascular
networks, and then applied our classification model
described herein to generate a predictive rule. The
pattern-recognition algorithm identifies the complex
vascular branching patterns, and the predictive rule
demonstrates, respectively, 100 and 91% correct clas-
sification for perturbed (diseased) and normal tissue
perfusion. We confirmed that transplantation of nor-
mal bone marrow to mice in which genetic deficiency
resulted in impaired angiogenesis eliminated predicted
differences and restored normal-tissue perfusion pat-
terns (with 100% correctness). The pattern-recogni-
tion and classification method offers an elegant solution
for the automated fingerprinting of microvascular net-
works that could contribute to better understanding of
angiogenic mechanisms and be utilized to diagnose and
monitor microvascular deficiencies. Such information
would be valuable for early detection and monitoring of
functional abnormalities before they produce obvious
and lasting effects, which may include improper perfu-
sion of tissue, or support of tumor development.

The algorithm can be used to discriminate between
the angiogenic response in a native healthy specimen
compared with groups with impairment due to age or
chemical or other genetic deficiency. Similarly, it can
be applied to analyze angiogenic responses as a result
of various treatments. This will serve two important
goals. First, the identification of discriminatory pat-
terns/attributes that distinguish angiogenesis status will
lead to a better understanding of the basic mechanisms
underlying this process. Because therapeutic control of
angiogenesis could influence physiological and patho-
logical processes such as wound and tissue repairing,
cancer progression and metastasis, or macular degener-
ation, the ability to understand it under different con-
ditions will offer new insight into developing novel
therapeutic interventions, monitoring and treatment,
especially in aging, and heart disease. Thus, our study
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and the results form the foundation of a valuable di-
agnostic tool for changes in the functionality of the
microvasculature and for discovery of drugs that al-
ter the angiogenic response. The methods can be ap-
plied to tumor diagnosis, monitoring, and prognosis.
In particular, it will be possible to derive microangio-
graphic fingerprints to acquire specific microvascular
patterns associated with early stages of tumor develop-
ment. Such “angioprinting” could become an extremely
helpful early diagnostic modality, especially for easily
accessible tumors such as skin cancer.

Prediction of Protein Localization Sites The pro-
tein localization database consists of eight groups with
a total of 336 instances (143, 77, 52, 35, 20, 5, 2,
and 2, respectively) with seven attributes [91]. The
eight groups are eight localization sites of protein, in-
cluding cytoplasm (cp), inner membrane without sig-
nal sequence (im), perisplasm (pp), inner membrane,
uncleavable signal sequence (imU), outer membrane
(om), outer membrane lipoprotein (omL), inner mem-
brane lipoprotein (imL), inner membrane, and cleav-
able signal sequence (imS). However, the last four
groups were taken out of our classification experiment
since the population sizes are too small to ensure signif-
icance.

The seven attributes include McGeoch’s method
for signal sequence recognition (mcg), von Heijne’s
method for signal sequence recognition (gvh), von Hei-
jne’s signal peptidase II consensus sequence score (lip),
presence of charge on N-terminus of predicted lipopro-
teins (chg), score of discriminant analysis of the amino
acid content of outer membrane and periplasmic pro-
teins (aac), score of the ALOM membrane spanning
region prediction program (alm1), and score of the
ALOM program after excluding putative cleavable sig-
nal regions from the sequence (alm2).

In the classification we use four groups, 307 in-
stances, with seven attributes. Our classification model
selected the discriminatory patterns mcg, gvh, alm1,
and alm2 to form the predictive rule with unbiased cor-
rect classification rates of 89%, compared with 81% by
other classification models [48].

Pattern Recognition in Satellite Images for Deter-
mining Types of Soil The satellite database consists
of the multispectral values of pixels in 3 � 3 neighbor-

hoods in a satellite image, and the classification associ-
ated with the central pixel in each neighborhood. The
aim is to predict this classification, given the multispec-
tral values. In the sample database, the class of a pixel
is coded as a number. There are six groups with 4435
samples in the training data set and 2000 samples in the
testing data set; and each sample entity has 36 attributes
describing the spectral bands of the image [91].

The original Landsat Multi-Spectral Scanner (MSS)
image data for this database were generated from data
purchased from NASA by the Australian Centre for
Remote Sensing. The Landsat satellite data are one of
the many sources of information available for a scene.
The interpretation of a scene by integrating spatial data
of diverse types and resolutions including multispec-
tral and radar data, maps indicating topography, land
use, etc. is expected to assume significant importance
with the onset of an era characterized by integrative ap-
proaches to remote sensing (for example, NASA’s Earth
Observing System commencing this decade).

One frame of Landsat MSS imagery consists of four
digital images of the same scene in different spectral
bands. Two of these are in the visible region (corre-
sponding approximately to green and red regions of the
visible spectrum) and two are in the (near) infrared.
Each pixel is an 8-bit binary word, with 0 correspond-
ing to black and 255 to white. The spatial resolution
of a pixel is about 80 m × 80 m. Each image contains
2340 � 3380 such pixels.

The database is a (tiny) subarea of a scene, consist-
ing of 82 � 100 pixels. Each line of data corresponds to
a 3 � 3 square neighborhood of pixels completely con-
tained within the 82 � 100 subarea. Each line contains
the pixel values in the four spectral bands (converted to
ASCII) of each of the nine pixels in the 3 � 3 neighbor-
hood and a number indicating the classification label of
the central pixel. The number is a code for the following
six groups: red soil, cotton crop, gray soil, damp gray
soil, soil with vegetation stubble, and very damp gray
soil. Running our classification model, we selected 17
discriminatory attributes to form the classification rule,
producing an unbiased prediction with 85% accuracy.

Further Advances

Brooks and Lee [17,18] devised other variations of
the basic DAMIP model. They also showed that
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DAMIP is strongly universally consistent (in some
sense) with very good rates of convergence from Vap-
nik and Chervonenkis theory. A polynomial-time al-
gorithm for discriminating between two populations
with the DAMIP model was developed, and DAMIP
was shown to be NP-complete for a general number
of groups. The proof demonstratingNP-completeness
employs results used in generating edges of the conflict
graph [4,11,12,55]. Exploiting the necessary and suffi-
cient conditions that identify edges in the conflict graph
is the central contribution to the improvement in solu-
tion performance over industry-standard software. The
conflict graph is the basis for various valid inequalities,
a branching scheme, and for conditions under which
integer variables are fixed for all solutions. Additional
solution methods are identified which include a heuris-
tic for finding solutions at nodes in the branch-and-
bound tree, upper bounds for model parameters, and
necessary conditions for edges in the conflict hyper-
graph [26,58]. Further, we have concluded that DAMIP
is a computationally feasible, consistent, stable, robust,
and accurate classifier.

Progress and Challenges

We summarize in Table 2 the mathematical program-
ming techniques used in classification problems as re-
viewed in this chapter.

As noted by current research efforts, multigroup
classification remainsNP-complete and much work is
needed to design effective models as well as to derive
novel and efficient computational algorithms to solve
these multigroup instances.

Other Methods

While most classification methods can be described
in terms of discriminant functions, some methods
are not trained in the paradigm of determining co-
efficients or parameters for functions of a predefined
form. These methods include classification and regres-
sion trees, nearest-neighbor methods, and neural net-
works.

Classification and regression trees [14] are nonpara-
metric approaches to prediction. Classification trees
seek to develop classification rules based on successive
binary partitions of observations based on attribute val-
ues. Regression trees also employ rules consisting of bi-

nary partitions, but are used to predict continuous re-
sponses.

The rules generated by classification trees are easily
viewable by plotting them in a treelike structure, from
which the name arises. A test entity may be classified
using rules in a tree plot by first comparing the entity’s
data with the root node of the tree. If the root node con-
dition is satisfied by the data for a particular entity, the
left branch is followed to another node; otherwise, the
right branch is followed to another node. The data from
the observation are compared with conditions at subse-
quent nodes until a leaf node is reached.

Nearest-neighbor methods begin by establishing
a set of labeled prototype observations. The nearest-
neighbor classification rule assigns test entities to
groups according to the groupmembership of the near-
est prototype. Different measures of distance may be
used. The k-nearest-neighbor rule assigns entities to
groups according to the group membership of the k
nearest prototypes.

Neural networks are classification models that can
also be interpreted in terms of discriminant functions,
though they are used in a way that does not require
finding an analytic form for the functions [25]. Neural
networks are trained by considering one observation at
a time, modifying the classification procedure slightly
with each iteration.

Summary and Conclusion

In this chapter, we presented an overview of mathemat-
ical programming based classification models, and an-
alyzed their development and advances in recent years.
Many mathematical programming methods are geared
toward two-group analysis only, and their performance
is often compared with Fisher’s LDF or Smith’s QDF.
It has been noted that these methods can be used for
multiple group analysis by finding G(G � 1)/2 discrim-
inants for each pair of groups (“one against one”) or by
finding G discriminants for each group versus the re-
maining data (“one against all”), but these approaches
can lead to ambiguous classification rules [25].

Mathematical programmingmethods developed for
multiple group analysis have been described [10,32,
39,40,41,46,59,60,63,93]. Multiple group formulations
for SVMs have been proposed and tested [17,36,40,49,
59,60,66], but are still considered computationally in-
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Disease Diagnosis: Optimization-Based Methods, Table 2
Progress in mathematical programming-based classificationmodels

Mathematical programming methods References
Linear programming
Two-group classification

Separate data by hyperplanes [74,75]
Minimizing the sum of deviations,
minimizing the maximum
deviation, and minimizing the
sum of interior distances

[5,31,32,33,47,99]

Hybrid model [45,99]
Review [27,50,107]
Software [110]
Issues about normalization [34,44,51,52,53,87,

100,114,115,116]
Robust linear programming [9,86]
Inclusion of second-order terms [104,113]
Effect of the position of outliers [94]
Binary attributes [3]

Multigroup classification
Single function classification [32]
Multiple function classification [10,46]
Classificationwith
reserved-judgment region using
linear programming

[39,40,60,63]

Mixed integer programming
Two-group classification

Minimizing the number of
misclassifications

[1,5,6,7,54,101,105,
109,119]

Review [27,50,107]
Software [110]
Secondary goals [96]

Mathematical programming methods References

Binary attributes [3]
Normalization and attribute
selection

[42]

Dichotomous categorical variable
formation

[43]

Multigroup classification
Multigroup classification [41,93]
Three-group classification [71,72,95]
Classificationwith
reserved-judgment region using
mixed integer programming

[17,39,40,59,60]

Nonlinear programming
Two-group classification

Lp-norm criterion [108]
Review [27,50,107]

Piecewise-linear nonconvex
discriminant function

[85]

Minimizing the number of
misclassifications

[21,76,77]

Minimizing the sum of
arbitrary-norm distances

[78]

Support vector machine
Introduction and tutorial [20,112]
Generalized support vector
machine

[79,83]

Methods for huge-size problems [13,36,37,38,67,68,
80,81,82,84]

Multigroup support vector machine [17,38,39,40,49,59,
60,63,66]

tensive [49]. The “one-against-one” and “one-against-
all” methods with SVMs have been successfully ap-
plied [49,90].

We also discussed a class of multigroup general-
purpose predictive models that we have developed
based on the technology of large-scale optimization and
SVMs [17,19,39,40,59,60,63]. Our models seek to max-
imize the correct classification rate while constraining
the number of misclassifications in each group. The
models incorporate the following features: (1) the abil-
ity to classify any number of distinct groups; (2) al-
low incorporation of heterogeneous types of attributes
as input; (3) a high-dimensional data transformation
that eliminates noise and errors in biological data;

(4) constrain the misclassification in each group and
a reserved-judgment region that provides a safeguard
against overtraining (which tends to lead to high mis-
classification rates from the resulting predictive rule);
and (5) successive multistage classification capability
to handle data points placed in the reserved-judgment
region. The performance and predictive power of the
classification models is validated through a broad class
of biological and medical applications.

Classification models are critical to medical ad-
vances as they can be used in genomic, cell, molec-
ular, and system-level analyses to assist in early pre-
diction, diagnosis and detection of disease, as well as
for intervention and monitoring. As shown in the CpG



780 D Disease Diagnosis: Optimization-Based Methods

island study for human cancer, such prediction and di-
agnosis opens up novel therapeutic sites for early inter-
vention. The ultrasound application illustrates its ap-
plication to a novel drug delivery mechanism, assisting
clinicians during a drug delivery process, or in devising
devices that can be implanted into the body for auto-
mated drug delivery and monitoring. The lung cancer
cell motility study offers an understanding of how can-
cer cells behave in different protein media, thus assist-
ing in the identification of potential gene therapy and
target treatment. Prediction of the shape of a cancer
tumor bed provides a personalized treatment design,
replacing manual estimates by sophisticated computer
predictive models. Prediction of early atherosclerosis
through inexpensive biomarker measurements and tra-
ditional risk factors can serve as a potential clinical di-
agnostic tool for routine physical and health mainte-
nance, alerting physicians and patients to the need for
early intervention to prevent serious vascular disease.
Fingerprinting of microvascular networks opens up the
possibility for early diagnosis of perturbed systems in
the body that may trigger disease (e. g., genetic defi-
ciency, diabetes, aging, obesity, macular degeneracy, tu-
mor formation), identification of target sites for treat-
ment, and monitoring prognosis and success of treat-
ment. Determining the type of erythemato-squamous
disease and the presence/absence of heart disease helps
clinicians to correctly diagnose and effectively treat pa-
tients. Thus, classification models serve as a basis for
predictive medicine where the desire is to diagnose
early and provide personalized target intervention. This
has the potential to reduce healthcare costs, improve
success of treatment, and improve quality of life of pa-
tients.
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Disjunctive programming (DP) problems can be stated
in the form

(DP) Minimize f f (x) : x 2 X; x 2 [h2HShg ;

where f : Rn! R is a lower semicontinuous function, X
is a closed convex subset of the nonnegative orthant of
Rn, andH is an index set for the collection of nonempty
polyhedra

Sh D
n
x : Ahx � bh ; x � 0

o
; h 2 H: (1)

The name for this class of problems arises from the
feature that the constraints in (1) include the disjunc-
tion that at least one of the (linear) sets of constraints
defining Sh, for h 2 H, must be satisfied. Problems
including other logical conditions such as conjunc-
tions, negations, and implications can be cast in the
framework of this problem. Problem (DP) subsumes
the classes of 0–1 mixed integer problems, the general-
ized lattice point problem, the cardinality constrained

linear program, the extreme point optimization prob-
lem, the linear complementarity problem, among nu-
merous others, and finds application in several re-
lated problems such as orthogonal production schedul-
ing, scheduling on identical machines, multistage as-
signment, location-allocation problems, load balancing
problems, the segregated storage problem, the fixed-
charge problem, project/portfolio selection problems,
goal programming problems, and many other game
theory and decision theory problems (see [35] for a de-
tailed discussion of such problems and applications).

The theory and algorithms for disjunctive program-
ming problems are mainly supported by the fundamen-
tal disjunctive cut principle. The forward part of this re-
sult due to E. Balas [4,5] states that for any nonnegative
surrogate multiplier vectors �h, h 2 H, the inequality

sup
h2H
f�hAhgx � inf

h2H
f�hbhg (2)

is valid for (or is implied by) the disjunction x 2
[h 2 HSh, where the sup{�} and inf{�} are taken compo-
nentwise in (2). More importantly, the converse part of
this result due to R.G. Jeroslow [16] states that for any
given valid inequality x � 0 for the disjunction x 2
[h 2 HSh, there exist nonnegative surrogate multipliers
�h, h 2 H, such that the disjunctive cut (2) implies this
given valid inequality, or uniformly dominates it, over
the nonnegative orthant. This disjunctive cut principle
also arises from the setting of convexity cuts and poly-
hedral annexation methods as propounded by F. Glover
[11,12], and it subsumes as well as can improve upon
many types of classical cutting planes such as Gomory’s
mixed integer cuts, intersection cuts, and reverse outer
polar cuts for 0–1 programs (see [4,5,11,12,35]). H.P.
Williams [39] provides some additional insights into
disjunctive formulations.

The generation of particular types of ‘deep cuts’ to
delete a given solution (say, the origin, without loss of
generality) based on the criteria of maximizing the Eu-
clidean distance or the rectilinear distance between the
origin and the nonnegative region feasible to the cut-
ting plane, or maximizing the surplus in the cut with
respect to the origin subject to suitable normalization
constraints has also been explored in [34,37]. The in-
tent behind such cutting plane methods is to generate
nondominated valid inequalities that are supports (and
hopefully, facets) of the closure convex hull of solutions
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feasible to the disjunction. H.D. Sherali and C.M. Shetty
[35,37] discuss how different alternate formulations of
the disjunctive statement can influence the strength of
the cut derived therefrom, and demonstrate how a se-
quence of augmented formulations can be used to se-
quentially tighten a given valid inequality. This process
turns out to be precisely the Glover polyhedral annexa-
tion scheme in [12]. In contrast with this sequence de-
pendent ‘lifting’ procedure, Sherali and Shetty [37] pro-
pose a ‘simultaneous lifting’ variant of this approach.
Other types of disjunctive cutting planes for special
problems include the cuts of [4,5,10,11,12,20], and [32]
for linear knapsack, multiple choice and combinatorial
disjunctions, [29] for linear complementarity problems,
and the facet cuts of [25] based on the convex hull of
certain types of disjunctions.

Balas [3] also provides an algebraic characterization
for the closure convex hull of a union of polyhedra. This
characterization is particularly useful in the study of the
important class of facial disjunctive programs, that sub-
sumes mixed integer 0–1 problems and linear comple-
mentarity problems, for example. A facial disjunctive
program (FDP) can be stated as follows.

(FDP) Minimize fcx : x 2 X \ Yg ;

where X is a nonempty polytope in Rn, and where Y
is a conjunction of somebh disjunctions given in the so-
called conjunctive normal form (conjunction of disjunc-
tions)

Y D \h2H

h
[i2Qh

n
x : ahi x � bhi

oi
: (3)

Here, H D f1; : : : ;bhg and for each h 2H we have spec-
ified a disjunction that requires at least one of the in-
equalities ahi x � bhi , for i 2 Qh, to be satisfied. The ter-
minology ‘facial’ conveys the feature that X \ {x: ahi x
� bhi } defines a face of X for each i 2 Qh, h 2 H. For
example, in the context of 0–1 mixed integer problems,
the set X represents the linear programming relaxation
of the problem, and for each binary variable xh, h 2 H,
the corresponding disjunction in (3) states that xh � 0
or xh � 1 should hold true (where 0 � xh � 1 is in-
cluded within X). Balas [3] shows that for facial disjunc-
tive programs, the convex hull of feasible solutions can
be constructed inductively by starting with K0 = X and

then determining

Kh D conv
h
[i2Qh

�
Kh�1 \

n
x : ahi x � bhi

o�i

for h D 1; : : : ;bh ; (4)

where Kbh produces conv(X \ Y). Based on this, a hier-
archy of relaxations K0; : : : ;Kbh is generated for (FDP)
that spans the spectrum from the linear programming
to the convex hull representation [6]. Each member in
this hierarchy can also be viewed as being obtained by
representing the feasible region of the original problem
as the intersection of the union of certain polyhedra,
and then taking a hull-relaxation of this representation.
Here, for a set D = \jDj, where each Dj is the union of
certain polyhedra, the hull-relaxation ofD [3] is defined
as h � rel(D) = \j conv(Dj)� conv(D).

In the context of 0–1 mixed integer problems
(MIP), Sherali and W.P. Adams [27,28] develop
a reformulation-linearization technique (RLT) for gen-
erating a hierarchy of such relaxations, introducing the
notion of multiplying constraints using factors com-
posed of xh and (1 � xh), h 2 H, to reformulate the
problem, followed by a variable substitution to linearize
the resulting problem. Approaches based on such con-
straint product and linearization strategies were used
by these authors earlier in the context of several special
applications [1,2,26]. Later, L. Lovász and A. Schrijver
[17] independently used more general constraint fac-
tors to generate a similar hierarchy for 0–1 problems.
The foregoing RLT construct can be specialized to de-
rive Kh defined by (4) for 0–1 MIPs, where in this case,

Kh � conv
�
(Kh�1 \ fx : xh � 0g)

[ (Kh�1 \ fx : xh � 1g)
�

can be obtained by multiplying the (implicitly defined)
constraints ofKh�1 by xh and (1� xh) and then lineariz-
ing the resulting problem. This RLT approach is used
in [8] in the ‘lift-and-project’ hierarchy of relaxations.
However, the RLT process of [27,28] generates tighter
relaxations at each level which can be viewed as hull
relaxations produced by the intersection of the convex
hull of the union of certain specially constructed poly-
hedra. No direct realization of (4) can produce these re-
laxations. For a survey on RLT approaches and for fur-
ther enhancements, see [29,30].
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In the context of general facial disjunctive pro-
grams, Jeroslow [15] presented a cutting plane algo-
rithm that generates suitable facetial inequalities at
each stage of the procedure such that an overall fi-
nite convergence is guaranteed via (4). This is accom-
plished by showing that in the worst case, the hierarchy
K0; : : : ;Kbh would be generated. The lift-and-project al-
gorithm of [8] employs this cutting plane procedure
based on the foregoing hierarchy of relaxations. Balas
[7] also addresses an enhanced procedure that consid-
ers two variables at a time to define the disjunctions.
The RLT process is used to construct partial convex
hulls, and the resulting relaxations are embedded in
a branch and cut algorithm.

Furthermore, for general facial disjunctive pro-
grams, Sherali and Shetty [36] present another finitely
convergent cutting plane algorithm. At each step, this
procedure searches for extreme faces of X relative to
the cuts generated thus far (these are faces that do not
contain any feasible points lying in a lower-dimensional
face of X, see [18]), and based on the dimension of this
extreme face and its feasibility to Y , either a disjunctive
face cut or a disjunctive intersection cut is generated.
This procedure was specialized for bilinear program-
ming problems in [33] to derive a first nonenumerative
finitely convergent algorithm for this class of problems.

Other disjunctive cutting plane algorithms include
the Sherali–Sen procedures [31] for solving the general
class of extreme point mathematical programs, the Bap-
tiste–LePape procedures [9], and the Pinto–Grossmann
procedures [21] for solving certain scheduling prob-
lems having disjunctive logic constraints. S. Sen and
Sherali [24] also discuss issues related to designing con-
vergent cutting plane algorithms, and present examples
to show nonconvergence of certain iterative disjunc-
tive cutting plane methods. Sensitivity and stability is-
sues related to feasible and optimal sets of disjunctive
programs have been addressed in [14]; [13] deals with
the problem of solving algebraic systems of disjunctive
equations. For other applications of disjunctive meth-
ods to process systems engineering, and to logic pro-
gramming, see [19,23,38].

See also

�MINLP: Branch and Bound Global Optimization
Algorithm

�MINLP: Branch and Bound Methods
�MINLP: Global Optimization with ˛BB
�MINLP: Logic-Based Methods
� Reformulation-linearization Methods for Global

Optimization
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Abstract

Protein force fields play an important role in protein
structure prediction. Knowledge based force fields use
the database information to derive the interaction en-
ergy between different residues or atoms of a protein.
These simplified force fields require less computational
effort and are relatively easy to use. A C ˛–C ˛ distance
dependent high resolution force field has been devel-
oped using a set of high quality (low rmsd) decoys.
A linear programming based formulation was used in
which non-native “decoy” conformers are forced to
take a higher energy compared to the corresponding
native structure. This force field was tested on an inde-
pendent test set and was found to excel on all the met-
rics that are widely used to measure the effectiveness of
a force field.
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Introduction

Predicting the structure of a protein from its amino acid
sequence is one of the biggest and yet most fundamen-
tal problems in computational structural biology. An-
finsen’s hypothesis [1] is one of the main approaches
used to solve this problem, which says that for a given
physiological set of conditions the native structure of
a protein corresponds to the global Gibbs free energy
minimum. Thus, one needs a force field to calculate the
energy of different conformers and pick the one with
the lowest energy.

Physics-based force fields consider various types of
interactions (for example, van der Waals interactions,
hydrogen bonding, electrostatic interactions etc.) oc-
curring at the atomic level of a protein to calculate the
energy of a conformer. CHARMM [19], AMBER [5],
ECEPP [20], ECEPP/3 [21] and GROMOS [24] are
a few examples of the physics-based force fields. On the
other hand, knowledge-based force fields use informa-
tion from databases. Researchers have used the Boltz-
mann distribution [4,7,26,], optimization based tech-
niques [17,27] and many other approaches [6,12,13,
14,15,16,18,23,25] to calculate these parameters. A re-
cent review on such potentials can be found in Floudas
et al. [8].

This work presents a novel C ˛–C ˛ distance depen-
dent high resolution force field that has been generated
using linear optimization based framework [22]. The
emphasis is on the high resolution, which would enable
us to differentiate between native and non-native struc-
tures that are very similar to each other (rmsd < 2Å).
The force field is called high resolution because it has
been trained on a large set of high resolution decoys
(small rmsd with respect to the native) and it intends
to effectively distinguish high resolution decoys struc-
tures from the native structure.

The basic framework used in this work is similar
to the one developed by Loose et al. [17]. However, it
has been improved and applied to a diverse and en-
hanced (both in terms of quantity and quantity) set of
high resolution decoys. The new proposed model has

resulted in remarkable improvements over the LKF po-
tential. These high resolution decoys were generated
using torsion angle dynamics in combination with re-
stricted variations of the hydrophobic core within the
native structure. This decoy set highly improves the
quality of training and testing. The force field developed
in this paper was tested by comparing the energy of the
native fold to the energies of decoy structures for pro-
teins separate from those used to train the model. Other
leading force fields were also tested on this high quality
decoy set and the results were compared with the re-
sults of our high resolution potential. The comparison
is presented in the Results section.

Theory andModeling

In this model, amino acids are represented by the loca-
tion of its C ˛ atom on the amino acid backbone. The
conformation of a protein is represented by a coordi-
nate vector, X, which includes the location of the C ˛ of
each amino acid. The native conformation is denoted as
Xn, while the set i D 1; : : : ;N is used to denote the de-
coy conformations Xi. Non-native decoys are generated
for each of p D 1; : : : ; P proteins and the energy of the
native fold for each protein is forced to be lower than
those of the decoy conformations (Anfinsen’s hypothe-
sis). This constraint is shown in the following equation:

E(Xp; i ) � E(Xp; n) > "

p D 1; : : : ; P i D 1; : : : ;N
(1)

Equation (1) requires the native conformer to be always
lower in energy than its decoy. A small positive parame-
ter " is used to avoid the trivial solution in which all en-
ergies are set to zero. An additional constraint (Eq. 2)
is used to produce a nontrivial solution by constrain-
ing the sum of the differences in energies between de-
coy and native folds to be greater than a positive con-
stant [28]. For the model presented in this paper, the
values of " and � were set to 0.01 and 1000, respec-
tively.

X
p

X
i

[E(Xp; i) � E(Xp; n)] > � (2)

The energy of each conformation is taken as the arith-
metic sum of pairwise interactions corresponding to
each amino acid combination at a particular “contact”
distance. A contact exists when the C ˛ carbons of two
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Distance Dependent Protein Force Field via Linear Optimiza-
tion, Table 1
Distance dependent bin definition [17]

Bin ID C˛ Distance [Å]
1 3–4
2 4–5
3 5–5.5
4 5.5–6
5 6–6.5
6 6.5–7
7 7–8
8 8–9

amino acids are within 9Å of each other. The energy of
each interaction is a function of the C ˛–C ˛ distances
and the identity of the interacting amino acids. To for-
mulate the model, the energy of an interaction between
a pair of amino acids, IC, within a distance bin, ID, was
defined as � IC,ID. The eight distance bins defined for the
formulation are shown in Table 1. The energy for any
fold X, of decoy i, for a protein p, is given by Eq. (3).

E(Xp; i) D
X
IC

X
ID

Np; i; IC; ID�IC; ID (3)

In this equation, Np, i, IC, ID is the number of interac-
tions between an amino acid pair IC, at a C ˛–C ˛ dis-
tance ID. The set IC ranges from 1 to 210 to account for
the 210 unique combinations of the 20 naturally occur-
ring amino acids. These bin definitions yield a total of
1680 interaction parameters to be determined by this
model. To determine these parameters, a linear pro-
gramming formulation is used in which the energy of
a native protein is compared with a large number of its
decoys. The violations, in which a non-native fold has
a lower energy than the natural conformation, are min-
imized by optimizing with respect to these interaction
parameters.

Equation (1) can be rewritten in terms of Np, i, IC, ID

as Eq. (4), where the slack parameters, Sp, are positive
variables (Eq. 5) that represent the difference between
the energies of the decoys and the native conformation
of a given protein.
X
IC

X
ID

[Np; i; IC; ID � Np; n; IC; ID]�IC; ID C Sp � "

p D 1; : : : ; P i D 1; : : : ;N (4)

Sp � 0 p D 1; : : : ; P (5)

min
(IC; ID)

X
p

Sp (6)

The objective function for this formulation is to min-
imize the sum of the slack variables, Sp, written in the
form of Eq. (6). The relative magnitude of � IC,ID is
meaningless because if all � IC,ID parameters are multi-
plied by a common factor then Eqs. (4) and (5) are still
valid. In this formulation, � IC,ID values were bound be-
tween �25 and 25.

Physical Constraints

The above mentioned equations constitute the basic
constraints needed to solve this model. However, this
set does not guarantee a physically realistic solution.
It is possible to come up with a set of parameters that
can satisfy Eqs. (2,3,4,5,6) but would not reflect the
actual interaction occurring between amino acids in
a real system. To prohibit these unrealistic cases, an-
other set of constraints based on the physical properties
of the amino acids was imposed. Statistical results pre-
sented in Bahar and Jernigan [2] were also incorporated
through the introduction of hydrophilic and hydropho-
bic constraints. The details of these physical constraints
are given elsewhere [22].

Database Selection and Decoy Generation

The protein database selection is critical to force field
training. This set should adequately represent the PDB
set [3]. At the same time, it should not be too large, as
the training becomes difficult with an increase in the
size of the training set. Zhang and Skolinck [29] devel-
oped a set of 1,489 nonhomologous single domain pro-
teins. High resolution decoys were generated for these
proteins and used for training and testing purposes.
High quality decoy generation was based on the hy-
pothesis that high-quality decoy structures should pre-
serve information about the distances within the hy-
drophobic core of the native structure of each pro-
tein. For each of the proteins in the database, a num-
ber of distance constraints are introduced based on
the hydrophobic-hydrophobic distances within the na-
tive structure. Using a set of proximity parameters,
a large number of decoy structures are generated using
DYANA [9]. The rmsd distribution of decoy structures
can be found elsewhere [22].



790 D Distance Dependent Protein Force Field via Linear Optimization

Training and Test Set

Of the 1400 proteins used for decoy generation, 1250
were randomly selected for training and the rest were
used for testing purposes. For every protein in the
set, 500–1600 decoys were generated depending on
the fraction of secondary structure present in the na-
tive structure of the protein. These decoys were sorted
based on their C ˛ rmsd to the native structure and
then 500 decoys were randomly selected to represent
the whole rmsd range. This creates a training set of
500 � 1250 D 625; 000 decoys. However, because of
computer memory limitations, it is not possible to in-
clude all of these decoys at the same time for training.
An iterative scheme, “Rank and Drop”, was employed
to overcome the memory problem while effectively us-
ing all the high quality structures. In this scheme, a sub-
set of decoys is used to generate a force field. This force
field is then used to rank all the decoys and a set of most
challenging decoys (based on their energy value) is se-
lected for the next round of force field generation. This
process of force field generation and decoy ranking is
repeated until there is no improvement in the ranking
of the decoys [22]. This force field model was solved
using the GAMS modeling language coupled with the
CPLEX linear programming package [11].

It is equally important to test a force field on a diffi-
cult and rigorous testing set to confirm its effectiveness.
The test set was comprised of 150 randomly selected
proteins (41–200 amino acids in length). For each of the
150 test proteins, 500 high resolution decoys were gen-
erated using the same technique that was used to gen-
erate training decoys. The minimum C ˛ based rmsds
for these non-native structures were in the range of 0–
2Å. This HR force field was also tested on another set
of medium resolution decoys [17]. This set has 200 de-
coys for 151 proteins. The minimum RMSD of the de-
coys of this set ranged from 3–16Å. This set, along with
the high resolution decoy set, spans the practical range
of possible protein structures that one might encounter
during protein structure prediction.

Results and Discussion

A linear optimization problem was solved using infor-
mation from 625,000 decoy structures and the values
of all the energy parameters were obtained. The ability
to distinguish between the native structure and native-

Distance Dependent Protein Force Field via Linear Optimiza-
tion, Table 2
Testing force fields on 150proteins of the high resolution de-
coy set. TE13 force field was only tested on 148 cases

FF-Name Average Rank No of Firsts Average rmsd
HR 1.87 113 (75.33%) 0.451
LKF 39.45 17 (11.33%) 1.721
TE13 19.94 92 (62.16%) 0.813
HL 44.93 70 (46.67%) 1.092

like conformers is the most significant test for any force
field. The HR force field was tested on 500 decoys of the
150 test proteins. In this testing, the relative position, or
rank, of the native conformation among its decoys was
calculated. An ideal force field should be able to assign
rank 1 to the native structures of all the test proteins.
Other force fields like LKF [17], TE13 [27], and HL [10]
were also tested on this set of high resolution decoys.
All these force fields are fundamentally different from
each other in their methods of energy estimation. Com-
paring the results obtained with these force fields aims
to assess the fundamental utility of the HR force field.
The comparison of the energy rankings obtained using
different force fields is presented in Table 2. From this
table it is evident that the HR force field is the most ef-
fective in identifying the native structures by rank. The
HR force field correctly identified the native folds of 113
proteins out of a set of 150 proteins, which compares fa-
vorably to a maximum of 92 (out of 148) by the TE13
force field.

Another analysis was carried out to evaluate the dis-
crimination ability of these potentials. In this evalua-
tion, all the decoys of the test set were ranked using
these potentials. For each test protein, the C ˛ rmsd of
the rank 1 conformer was calculated with respect to the
native structure of that protein. The C ˛ rmsd would be
zero for the cases in which a force field selects the na-
tive structure as rank 1. However, it will not be zero for
all other cases in which a non-native conformer is as-
signed the top rank. The average of these rmsds repre-
sents the spatial separation of the decoys with respect to
the native structure. The average rmsd value obtained
for each of the force fields is shown in Table 2. It can be
seen that the average C ˛ rmsd value is least for the HR
force field. The average C ˛ rmsd value for the HR force
field is 0.451Å, which is much less compared to 1.721Å
by the LKF, and 0.813Å by TE13 force field. This means
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that the structures predicted by the HR force fields have
the least spatial deviation from their corresponding na-
tive structures.

The HR force field was also tested on the test set
published by Loose et al. [17] and was found to do bet-
ter than other force fields. The comparison results for
this test can be found elsewhere [22]. The effectiveness
of the HR force field is further reinforced by its suc-
cess on the medium resolution decoy test set. On the
test set of 110 medium resolution decoys, it was capable
of correctly identifying 78.2% of the native structures,
significantly more than other force fields.

Conclusions

TheHR force field was developed using an optimization
based linear programming formulation, in which the
model is trained using a diverse set of high quality de-
coys. Physically observed interactions between certain
amino acids were written in the form of mathematical
constraints and included in the formulation.

The decoys were generated based on the premise
that high quality decoy structures should preserve in-
formation about the distance within the hydrophobic
core of the native structure of each protein. The set
of interaction energy parameters obtained after solving
the model were found to be of very good discrimina-
tory capacity. This force field performed well on a set
of independent, non-homologous high resolution de-
coys. This force field can become a powerful tool for
fold recognition and de novo protein design.
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Introduction

Exact algorithms allow one to find optimal solutions to
NP-hard combinatorial optimization (CO) problems.
Many research papers report on solving large instances
of someNP-hard problems (see, e. g., [25,27]). The run-
ning time of exact algorithms is often very high for large
instances (many hours or even days), and very large
instances remain beyond the capabilities of exact algo-
rithms. Even for instances of moderate size, if we wish
to remain within seconds or minutes rather than hours
or days of running time, only heuristics can be used.
Certainly, with heuristics, we are not guaranteed to find
optimum, but good heuristics normally produce near-
optimal solutions. This is enough in most applications
since very often the data and/or mathematical model
are not exact anyway.

Research on CO heuristics has produced a large va-
riety of heuristics especially for well-known CO prob-
lems. Thus, we need to choose the best ones among
them. In most of the literature, heuristics are com-
pared in computational experiments. While experi-
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mental analysis is of definite importance, it cannot
cover all possible families of instances of the CO prob-
lem at hand and, in particular, it practically never cov-
ers the hardest instances.

Approximation Analysis [3] is a frequently used tool
for theoretical evaluation of CO heuristics. Let H be
a heuristic for a combinatorial minimization problem
P and let In be the set of instances of P of size n. In
approximation analysis, we use the performance ratio
rH(n) D maxf f (I)/ f �(I) : I 2 Ing; where f (I)( f �(I))
is the value of the heuristic (optimal) solution of I.
Unfortunately, for many CO problems, estimates for
rH (n) are not constants and provide only a vague pic-
ture of the quality of heuristics. Moreover, even con-
stant performance ratio does not guarantee that the
heuristic often outputs good-quality solutions, see, e. g.,
the discussion of the DMST heuristic below.

Domination Analysis (DA) (for surveys, see [22,24])
provides an alternative and a complement to approxi-
mation analysis. In DA, we are interested in the domi-
nation number or domination ratio of heuristics. Dom-
ination number (ratio) of a heuristic H for a combina-
torial optimization problem P is the maximum number
(fraction) of all solutions that are not better than the
solution found by H for any instance of P of size n.
In many cases, DA is very useful. For example, we
will see later that the greedy algorithm has domina-
tion number 1 for many CO problems. In other words,
the greedy algorithm, in the worst case, produces the
unique worst possible solution. This is in line with lat-
est computational experiments with the greedy algo-
rithm, see, e. g., [25], where the authors came to the
conclusion that the greedy algorithm ‘might be said to
self-destruct’ and that it should not be used even as
‘a general-purpose starting tour generator’.

The Asymmetric Traveling Salesman Problem
(ATSP) is the problem of computing aminimumweight
tour (Hamilton cycle) passing through every vertex in
a weighted complete digraph K�n on n vertices. The
Symmetric TSP (STSP) is the same problem, but on
a complete undirected graph. When a certain fact holds
for both ATSP and STSP, we will simply speak of TSP.
Sometimes, the maximizing version of TSP is of inter-
est, we denote it byMax TSP.

APX is the class of CO problems that admit poly-
nomial time approximation algorithms with a constant
performance ratio [3]. It is well known that while Max

TSP belongs to APX, TSP does not. This is at odds
with the simple fact that a ‘good’ approximation algo-
rithm for Max TSP can be easily transformed into an
algorithm for TSP. Thus, it seems that both Max TSP
and TSP should be in the same class of CO problems.
The above asymmetry was already viewed as a draw-
back of performance ratio already in the 1970’s, see,
e. g. [11,28,33]. Notice that from the DA point view
Max TSP and TSP are equivalent problems.

Zemel [33] was the first to characterize measures of
quality of approximate solutions (of binary integer pro-
gramming problems) that satisfy a few basic and nat-
ural properties: the measure becomes smaller for bet-
ter solutions, it equals 0 for optimal solutions and it is
the same for corresponding solutions of equivalent in-
stances. While the performance ratio and even the rel-
ative error (see [3]) do not satisfy the last property, the
parameter 1-r, where r is the domination ratio, does sat-
isfy all of the properties.

Local Search (LS) is one of the most successful ap-
proaches in constructing heuristics for CO problems.
Recently, several researchers investigated LS with Very
Large Scale Neighborhoods (see, e. g., [1,12,24]). The
hypothesis behind this approach is that the larger the
neighborhood the better quality solution are expected
to be found [1]. However, some computational ex-
periments do not support this hypothesis; sometimes
an LS with small neighborhoods proves to be supe-
rior to that with large neighborhoods. This means that
some other parameters are responsible for the relative
power of neighborhoods. Theoretical and experimen-
tal results on TSP indicate that one such parameter
may well be the domination number of the correspond-
ing LS.

In our view, it is advantageous to have bounds for
both performance ratio and domination number (or,
domination ratio) of a heuristic whenever it is possible.
Roughly speaking this will enable us to see a 2D rather
than 1D picture. For example, consider the double min-
imum spanning tree heuristic (DMST) for the Met-
ric STSP (i. e., STSP with triangle inequality). DMST
starts from constructing a minimum weight spanning
tree T in the complete graph of the STSP, doubles ev-
ery edge in T, finds a closed Euler trail E in the ‘dou-
ble’ T, and cancels any repetition of vertices in E to
obtain a TSP tour H. It is well-known and easy to
prove that the weight of H is at most twice the weight



794 D Domination Analysis in Combinatorial Optimization

of the optimal tour. Thus, the performance ratio for
DMST is bounded by 2. However, Punnen, Margot
and Kabadi [29] proved that the domination number
of DMST is 1. Interestingly, in practice DMST often
performs much worse than the well-known 2-Opt LS
heuristic. For 2-Opt LS we cannot give any constant ap-
proximation guarantee, but the heuristic is of very large
domination number [29].

The above example indicates that it makes sense to
use DA to rank heuristics for the CO problem under
consideration. If the domination number of a heuristic
H is larger than the domination of a heuristicH 0 (for
all or ‘almost all’ sizes n), we may say thatH is better
thanH 0 in the worst case (from the DA point of view).
Berend, Skiena and Twitto [10] used DA to rank some
well-known heuristics for the Vertex Cover problem
(and, thus, the Independent Set and Clique problems).
The three problems and the heuristics will be defined in
the corresponding subsection of the Cases section. Ben-
Arieh et al. [7] studied three heuristics for the General-
ized TSP: the vertices of the complete digraph are par-
titioned into subsets and the goal is to find a minimum
weight cycle containing exactly one vertex from each
subset. In the computational experiment in [7] one of
the heuristics was clearly inferior to the other two. The
best two behaved very similarly. Nevertheless, the au-
thors of [7] managed to ‘separate’ the two heuristics by
showing that one of the heuristics was of much larger
domination number.

One might wonder whether a heuristic A, which
is significantly better that another heuristic B from the
DA point of view, is better that B in computational ex-
periments. In particular, whether the ATSP greedy al-
gorithm, which is of domination number 1, is worse, in
computational experiments, than any ATSP heuristic of
domination number at least (n� 2)! ? Generally speak-
ing the answer to this natural question is negative. This
is because computational experiments and DA indicate
different aspects of quality of heuristics. Nevertheless,
it seems that many heuristics of very small domination
number such as the ATSP greedy algorithm perform
poorly also in computational experiments and, thus,
cannot be recommended to be widely used in compu-
tational practice.

The rest of the entry is organized as follows.We give
additional terminology and notation in the section Def-
initions. In the section Methods, we describe two pow-

erful methods in DA. In the section Cases, we consider
DA results for some well-known CO problems.

Definitions

Let P be a CO problem and let H be a heuristic for
P. The domination number domn(H ; I) of H for an
instance I of P is the number of solutions of I that
are not better than the solution s produced by H in-
cluding s itself. For example, consider an instance T
of the STSP on 5 vertices. Suppose that the weights
of tours in T are 2,5,5,6,6,9,9,11,11,12,12,15 (every in-
stance of STSP on 5 vertices has 12 tours) and sup-
pose that the greedy algorithm computes the tour T of
weight 6. Then domn(greedy;T ) D 9. In general, if
domn(H ; I) equals the number of solutions in I, then
H finds an optimal solution for I. If domn(H ; I) D 1,
then the solution found byH for I is the unique worst
possible one.

The domination number domn(H ; n) of H is the
minimum of domn(H ; I) over all instances I of size n.
Since the ATSP on n vertices has (n�1)! tours, an algo-
rithm for the ATSP with domination number (n � 1)!
is exact. The domination number of an exact algorithm
for the STSP is (n � 1)!/2: If an ATSP heuristicA has
domination number equal 1, then there is an assign-
ment of weights to the arcs of each complete digraph
K�n , n � 2, such thatA finds the unique worst possible
tour in K�n :

While studying TSP we normally consider only fea-
sible solutions (tours), for several other problems some
authors take into consideration also infeasible solu-
tions [10]. One example is the Maximum Independent
Set problem, where given a graph G, the aim is to find
an independent set in G of maximum cardinality. Ev-
ery non-empty set of vertices is considered to be a solu-
tion by Berend, Skiena and Twitto [10]. To avoid deal-
ing with infeasible solutions (and, thus, reserving the
term ‘solution’ only for feasible solutions) we also use
the notion of the blackball number introduced in [10].
The blackball number bbn(H ; I) ofH for a an instance
I of P is the number of solutions of I that are better
than the solution produced byH . The blackball num-
ber bbn(H ; n) ofH is the maximum of domn(H ; I)
over all instances I of size n.

When the number of solutions depends not only on
the size of the instance of the CO problem at hand (for
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example, the number of independent sets of vertices in
a graph G on n vertices depends on the structure of G),
the domination ratio of an algorithm A is of interest:
the domination ratio of A, domr(A; n), is the mini-
mum of domn(A; I)/sol(I); where sol(I) is the num-
ber of solutions of I, taken over all instances I of size n.
Clearly, domination ratio belongs to the interval (0; 1]
and exact algorithms are of domination ratio 1.

Methods

Currently, there are two powerful methods in DA. One
is used to prove that the heuristic under consideration is
of domination number 1. For this method to be useful,
the heuristic has to be a greedy-type algorithm for a CO
problem on independence systems. We describe the
method and its applications in the subsection Greedy-
Type Algorithms. The other method is used prove that
the heuristic under consideration is of very large dom-
ination number. For many problems this follows from
the fact that the heuristic always finds a solution that is
not worse than the average solution. This method is de-
scribed in the subsection Better-Than-Average Heuris-
tics.

Greedy-Type Algorithms

The main practical message of this subsection is that
one should be careful while using the classical greedy
algorithm and its variations in combinatorial optimiza-
tion (CO): there are many instances of CO problems for
which such algorithms will produce the unique worst
possible solution. Moreover, this is true for several well-
known optimization problems and the corresponding
instances are not exotic, in a sense. This means that not
always the paradigm of greedy optimization provides
any meaningful optimization at all.

An independence system is a pair consisting of a fi-
nite set E and a family F of subsets (called independent
sets) of E such that (I1) and (I2) are satisfied.

(I1) the empty set is in F ;
(I2) If X 2 F and Y is a subset of X, then Y 2 F .

All maximal sets of F are called bases. An indepen-
dence system is uniform if all its bases are of the same
cardinality.

Many combinatorial optimization problems can be
formulated as follows. We are given an independence

system (E,F), a set W � ZC and a weight function
w that assigns a weight w(e) 2 W to every element of
E (ZC is the set of non-negative integers). The weight
w(S) of S 2 F is defined as the sum of the weights of
the elements of S. It is required to find a base B 2 F of
minimumweight. We will consider only such problems
and call them the (E,F,W)-optimization problems.

If S 2 F , then let I(S) D fx : S [ fxg 2 Fg � S.
This means that I(S) consists of those elements from E-
S, which can be added to S, in order to have an indepen-
dent set of size jSj C 1. Note that by (I2) I(S) ¤ ; for
every independent set S which is not a base.

The greedy algorithm tries to construct a minimum
weight base as follows: it starts from an empty set X,
and at every step it takes the current set X and adds
to it a minimum weight element e 2 I(X), the al-
gorithm stops when a base is built. We assume that
the greedy algorithm may choose any element among
equally weighted elements in I(X). Thus, when we say
that the greedy algorithm may construct a base B, we
mean that B is built provided the appropriate choices
between elements of the same weight are made.

An ordered partitioning of an ordered set Z D
fz1; z2; : : : ; zkg is a collection of subsets A1;A2; : : : ;Aq

of Z such that if zr 2 Ai and zs 2 Aj where 1 � i <
j � q then r < s. Some of the sets Ai may be empty and
[

q
iD1Ai D Z.
The following theorem by Bang-Jensen, Gutin and

Yeo [6] characterizes all uniform independence systems
(E,F) for which there is an assignment of weights to
the elements of E such that the greedy algorithm solv-
ing the (E;F ; f1; 2; : : : ; rg)-optimization problem may
construct the unique worst possible solution.

Theorem 1 Let (E,F) be a uniform independence sys-
tem and let r � 2 be a natural number. There exists
a weight assignment w : E ! f1; 2; : : : ; rg such that the
greedy algorithm may produce the unique worst possible
base if and only ifF contains some base B with the prop-
erty that for some ordering x1; : : : ; xk of the elements
of B and some ordered partitioning A1;A2; : : : ;Ar of
x1; : : : ; xk the following holds for every base B0 ¤ B
of F :

r�1X
jD0

jI(A0; j) \ B0j <
rX

jD1

j � jAjj ; (1)

where A0; j D A0 [ � � � [ Aj and A0 D ;.
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The special case r D 2 has an ‘easier’ characterization
also proved in [6].

Theorem 2 Let (E,F) be a uniform independence sys-
tem. For every choice of distinct natural numbers a,b
there exists a weight function w : E ! fa; bg such that
the greedy algorithm may produce the unique worst base
if and only if F contains a base B D fx1; x2; : : : ; xkg
such that for some 1 � i < k the following holds:

(a) If B0 is a base such that fx1; : : : ; xig � B0 then B0 D
B.

(b) If B0 is a base such that fxiC1; : : : ; xkg � B0 then
B0 D B.

Using Theorem 1, the authors of [6] proved the follow-
ing two corollaries.

Corollary 3 Consider STSP as an (E,H ,W)-optimiza-
tion problem. Let n � 3:

(a) If n � 4 and jWj � b n�12 c, then the greedy algo-
rithm never produces the unique worst possible base
(i. e., tour).

(b) If n � 3, r � n � 1 and W D f1; 2; : : : ; rg, then
there exists a weight function w : E ! f1; 2; : : : ; rg
such that the greedy algorithm may produce the
unique worst possible base (i. e., tour).

Corollary 4 Consider ATSP as an (E,H ,W)-optimiza-
tion problems. Let n � 3:

(a) If jWj � b n�12 c, then the greedy algorithm never
produces the unique worst possible base (i. e., tour).

(b) For every r � d nC1
2 e there exists a weight function

w : E(K�n ) ! f1; 2; : : : ; rg such that the greedy al-
gorithm may produce the unique worst possible base
(i. e., tour).

LetF be the sets of those subsets X of E(K2n) which in-
duce a bipartite graph with at most n vertices in each
partite set. Then (E(K2n);F) is a uniform indepen-
dence system and the bases of (E(K2n);F) correspond
to copies of the complete balanced bipartite graph Kn;n

in K2n . The (E(K2n);F ;ZC)-optimization problem is
called the Minimum Bisection Problem. Theorem 2 im-
plies the following:

Corollary 5 [6] Let n � 4. The greedy algorithm for the
(E(K2n);F ;W)-optimization problem may produce the
unique worst solution even if jWj D 2.

For W D ZC, the following sufficient condition can
often be used:

Theorem 6 [21] Let (E,F) be an independence system
which has a base B0 D fx1; x2; : : : ; xkg such that the
following holds for every base B 2 F , B 6D B0,

k�1X
jD0

jI(x1; x2; : : : ; x j) \ Bj < k(k C 1)/2 :

Then the greedy algorithm for the (E;F ;ZC)-
optimization problem may produce the unique worst so-
lution.

Gutin, Yeo and Zverovich [23] considered the well-
known nearest neighbor (NN) TSP heuristic: the tour
starts at any vertex x of the complete directed or undi-
rected graph; we repeat the following loop until all ver-
tices have been included in the tour: add to the tour
a vertex (among vertices not yet in the tour) closest to
the vertex last added to the tour. It was proved in [23]
that the domination number of NN is 1 for any n � 3:

Bendall and Margot [8] studied greedy-type algo-
rithms for many CO problems. Greedy-type algorithms
were introduced in [18]. They include NN and were de-
fined as follows. A greedy-type algorithm H is similar
to the greedy algorithm: start with the partial solution
X D ;; and then repeatedly add to X an element of
minimum weight in IH (X) (ties are broken arbitrarily)
until X is a base of F , where IH (X) is a subset of I (X)
that does not depend on the cost function c, but only
on the independence system (E,F) and the set X. More-
over, IH (X) is non-empty if I(X) ¤ ;, a condition that
guarantees that H always outputs a base. Bendall and
Margot [8] obtained complicated sufficient conditions
for an independent system (E,F) that ensure that every
greedy-type algorithm is of domination number 1 for
the (E;F ;ZC)-optimization problem.

The conditions imply that every greedy-type algo-
rithm is of domination number 1 for the following clas-
sical CO problems [8]: (1) The Minimum Bisection
Problem; (2) The k-Clique Problem: find a set of k ver-
tices in a complete graph so that the sum of the weights
of the edges between them is minimum; (3) ATSP; (4)
STSP; (5) The MinMax Matching Subgraph Problem:
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find a maximal (with respect to inclusion) matching so
that the sum of the weights of the edges in the matching
isminimum; (6) TheAssignment Problem: find a perfect
matching in a weighted complete bipartite graph so that
the sum of the weights of the edges in the matching is
minimum.

Better-Than-Average Heuristics

The idea of this method is to show that a heuristic is
of very large domination number if it always produces
a solution that is not worse than the average solution.
The first such result was proved by Rublineckii [31] for
the STSP.

Theorem 7 Every STSP heuristic that always produces
a tour not worse than the average tour (of the instance)
is of domination number at least (n � 2)! when n is odd
and (n � 2)!/2 when n is even.

The following similar theorem was proved by Sar-
vanov [32] for n odd and Gutin and Yeo [20] for n even.

Theorem 8 Every ATSP heuristic that always produces
a tour not worse than the average tour (of the instance)
is of domination number at least (n�2)! for each n ¤ 6:

The two theorems has been used to prove that a wide
variety of TSP heuristics have domination number at
least ˝((n � 2)!). We discuss two families of such
heuristics.

Consider an instance of the ATSP (STSP). Order the
vertices x1; x2; : : : ; xn of K�n (Kn) using some rule. The
generic vertex insertion algorithm proceeds as follows.
Start with the cycle C2 D x1x2x1. Construct the cy-
cle Cj from Cj�1 ( j D 3; 4; 5; : : : ; n), by inserting the
vertex xj into Cj-1 at the optimum place. This means
that for each arc e D xy which lies on the cycle Cj-1

we compute w(xx j) C w(x j y) � w(xy), and insert xj
into the arc e D xy, which obtains the minimum such
value. Here w(uv) denotes the weight of an arc uv. E.M.
Lifshitz (see [31]) was the first to prove that the generic
vertex insertion algorithm always produces a tour not
worse than the average tour. Thus, we have the follow-
ing:

Corollary 9 The generic vertex insertion algorithm has
domination number at least (n � 2)! (n ¤ 6).

In TSP local search (LS) heuristics, a neighborhood
N(T) is assigned to every tour T; N(T) is a set of tours

in some sense close to T. The best improvement LS pro-
ceeds as follows. We start from a tour T0. In the i’th it-
eration (i � 1), we search in the neighborhood N(Ti�1)
for the best tour Ti. If the weights of Ti-1 and Ti do not
coincide, we carry out the next iteration. Otherwise, we
output Ti.

The k-Opt, k � 2, neighborhood of a tour T con-
sists of all tours that can be obtained by replacing a col-
lection of k edges (arcs) by a collection of k edges (arcs).
It is easy to see that one iteration of the best improve-
ment k-Opt LS can be completed in time O(nk ): Rubli-
neckii [31] showed that every local optimum for the
best improvement 2-Opt or 3-Opt LS for STSP is of
weight at least the average weight of a tour and, thus, by
Theorem 7 is of domination number at least (n � 2)!/2
when n is even and (n � 2)! when n is odd. Observe
that this result is of restricted interest since to reach
a k-Opt local optimum one may need exponential time
(cf. Section 3 in [26]). However, Punnen, Margot and
Kabadi [29] managed to prove that, in polynomial time,
the best improvement 2-Opt and 3-Opt LS’s for STSP
produce a tour of weight at least the average weight of
a tour. Thus, we have the following:

Corollary 10 For the STSP the best improvement 2-
Opt LS produces a tour, which is not worse than at least
˝((n�2)!) other tours, in at most O(n3 logn) iterations.

Corollary 10 is also valid for the best improvement
3-Opt LS and some other LS heuristics for TSP,
see [24,29]. In the next section, we will give further ex-
amples of better-than-average heuristics for problems
other than TSP.

Cases

Traveling Salesman Problem

In the previous sections, we discussed several TSP
heuristics. However, there are many more TSP heuris-
tics and, in this subsection, we consider some of them.
In the next subsection, some general upper bounds are
given on the domination number of TSP heuristics.

Gutin, Yeo and Zverovich [23] considered the re-
peated nearest neighbor (RNN) heuristic, which is the
following variation of the NN heuristic: construct n
tours by starting NN from each vertex of the complete
(di)graph and choose the best tour among the n tours.
The authors of [23] proved that for the ATSP, RNN al-
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ways produces a tour, which is not worse than at least
n/2�1 other tours, but for some instance it finds a tour,
which is not worse than at most n-2 other tours, n � 4.
We also show that, for some instance of the STSP on
n � 4 vertices, RNN produces a tour not worse than at
most 2n�3 tours.

Another ATSP heuristic, max-regret-fc (fc ab-
breviates First Coordinate), was first introduced by
Ghosh et al. [13]. Extensive computational experiments
in [13] demonstrated a clear superiority of max-regret-
fc over the greedy algorithm and several other con-
struction heuristics from [14]. Therefore, the result
of Theorem 11 obtained by Gutin, Goldengorin and
Huang [15] was somewhat unexpected.

Let K�n be a complete digraph with vertices V D
f1; 2; : : : ; ng. The weight of an arc (i,j) is denoted by
wij. Let Q be a collection of disjoint paths in K�n . An arc
a=(i,j) is a feasible addition to Q if Q+a is either a col-
lection of disjoint paths or a tour in K�n : Consider the
following two ATSP heuristics: max-regret-fc and max-
regret.

The heuristic max-regret-fc proceeds as follows. Set
W D T D ;:While V ¤ W do the following: For each
i 2 V nW , compute two lightest arcs (i,j) and (i,k) that
are feasible additions to T, and compute the difference
�i D jwi j � wikj. For i 2 V n W with maximum �i

choose the lightest arc (i,j), which is a feasible addition
to T and add (i,j) toM and i toW.

The heuristic max-regret proceeds as follows. Set
WC D W� D T D ;: While V ¤ WC do the fol-
lowing: For each i 2 V n WC, compute two lightest
arcs (i,j) and (i,k) that are feasible additions to T, and
compute the difference �Ci D jwi j � wikj; for each
i 2 V n W�, compute two lightest arcs (j,i) and (k,i)
that are feasible additions to T, and compute the differ-
ence ��i D jwji � wki j. Compute i0 2 V n WC with
maximum �Ci 0 and i00 2 V nW� with maximum ��i 00 .
If �Ci 0 � ��i 00 choose the lightest arc (i0; j0), which is
a feasible addition to T and add (i0; j0) to M, i0 to W+

and j0 toW�:Otherwise, choose the lightest arc ( j00; i00),
which is a feasible addition to T and add ( j00; i00) to M,
i00 toW� and j00 toWC:

Notice that in max-regret-fc, if jV nWj D 1 we set
�i D 0. A similar remark applies to max-regret.

Theorem 11 The domination number of both max-
regret-fc and max-regret equals 1 for each n � 2:

Upper Bounds for Domination Numbers
of ATSP Heuristics

It is realistic to assume that any ATSP algorithm spends
at least one unit of time on every arc of K�n that it con-
siders. We use this assumption in this subsection.

Theorem 12 [17] LetA be an ATSP heuristic of run-
ning time t(n). Then the domination number ofA does
not exceedmax1�n0�n(t(n)/n0)n

0 .

Corollary 13 [17] LetA be an ATSP heuristic of com-
plexity t(n). Then the domination number of A does
not exceed maxfet(n)/e; (t(n)/n)ng, where e is the basis
of natural logarithms.

The next assertion follows directly from the proof of
Corollary 13.

Corollary 14 [17] LetA be an ATSP heuristic of com-
plexity t(n). For t(n) � en, the domination number of
A does not exceed (t(n)/n)n :

We finish this subsection with a result from [17] that
improves (and somewhat clarifies) Theorem 20 in [29].

Theorem 15 Unless P = NP, there is no polynomial
time ATSP algorithm of domination number at least
(n � 1)! � bn � n˛c! for any constant ˛ < 1.

Multidimensional Assignment Problem (MAP)

In case of s dimensions, MAP is abbreviated by s-AP
and defined as follows. Let X1 D X2 D � � � D Xs D

f1; 2; : : : ; ng. We will consider only vectors that belong
to the Cartesian product X D X1 � X2 � � � � � Xs . Each
vector e is assigned a weight w(e). For a vector e, ej de-
notes its jth coordinate, i. e., e j 2 Xj: A partial assign-
ment is a collection e1; e2; : : : ; et of t � n vectors such
that eij ¤ ekj for each i ¤ k and j 2 f1; 2; : : : ; sg: An
assignment is a partial assignment with n vectors. The
weight of a partial assignment A D fe1; e2; : : : ; etg is
w(A) D

Pt
iD1 w(ei): The objective is to find an assign-

ment of minimum weight. Notice that s-AP has (n!)s�1

solutions (assignments).
s-AP can be considered as the (X;F ;ZC)-opti-

mization problem. (F consists of partial assignments
including the empty one.) This allows us to define the
greedy algorithm for s-AP and to conclude from Theo-
rem 6 that the greedy algorithm is of domination num-
ber 1 (for every fixed s � 3).
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In the subsection Traveling Salesman Problem, we
considered the max-regret-fc and max-regret heuristics.
In fact, max-regret was first introduced for 3-AP by
Balas and Saltzman [4]. (See [15] for detailed descrip-
tion of the s-AP max-regret-fc and max-regret heuris-
tics for each s � 2.) In computational experiments,
Balas and Saltzman [4] compared the greedy algorithm
with max-regret and concluded that max-regret is su-
perior to the greedy algorithm with respect to the qual-
ity of solutions. However, after conducting wider com-
putational experiments, Robertson [30] came to a dif-
ferent conclusion: the greedy algorithm and max-regret
are of similar quality for 3-AP. Gutin, Goldengorin and
Huang [15] share the conclusion of Robertson: both
max-regret and max-regret-fc are of domination num-
ber 1 (similarly to the greedy algorithm) for s-AP for
each s � 3. Moreover, there exists a family of s-AP
instances for which all three heuristics will find the
unique worst assignment [15] (for each s � 3).

Similarly to TSP, we may obtain MAP heuristics
of factorial domination number if we consider better-
than-average heuristics. This follows from the next the-
orem:

Theorem 16 [15] Let H be a heuristic that for each
instance of s-AP constructs an assignment of weight at
most the average weight of an assignment. Then the
domination number ofH is at least ((n � 1)!)s�1:

Balas and Saltzman [4] introduced a 3-Opt heuristic
for 3-AP which is similar to the 3-Opt TSP heuristic.
The 3-Opt neighborhood of an assignment A D fe1;
e2; : : : ; eng is the set of all assignments that can be
obtained from A by replacing a triple of vectors with
another triple of vectors. The 3-Opt is a local search
heuristic that uses the 3-Opt neighborhood. It is proved
in [15] that an assignment, that is the best in its 3-Opt
neighborhood, is at least as good as the average assign-
ment. This implies that 3-Opt is of domination number
at least ((n�1)!)2:We cannot guarantee that 3-Opt local
search will stop after polynomial number of iterations.
Moreover, 3-Opt is only for 3-AP. Thus, the following
heuristic introduced and studied in [15] is of interest.

Recursive Opt Matching (ROM) proceeds as fol-
lows. Compute a new weight w̄(i; j) D w(Xi j)/ns�2,
where Xij is the set of all vectors with last two coordi-
nates equal i and j, respectively. Solving the 2-AP with
the new weights to optimality, find an optimal assign-

ment f(i; s(i)) : i D 1; 2; : : : ; ng, where  s is a per-
mutation on Xs. While s ¤ 1, introduce (s-1)-AP
with weights given as follows: w0( f i) D w( f i ; s(i))
for each vector f i 2 X0, where X0n D X1 � X2 �

� � � � Xs�1, with last coordinate equal i and apply
ROM recursively. As a result we have obtained per-
mutations s ; s�1; : : : ; 2. The output is the assign-
ment f(i; 2(i); : : : ; s(s�1(: : : (2(i))) : : : )) : i D 1;
2; : : : ; ng.

Clearly, ROM is of running time O(n3) for every
fixed s � 3: Using Theorem 16, it is proved in [15] that
ROM is of domination number at least ((n � 1)!)s�1:

Minimum Partition
andMultiprocessor Scheduling Problems

In this subsection, N always denotes the set
f1; 2; : : : ; ng and each i 2 N is assigned a positive inte-
gral weight �(i).A D (A1;A2; : : : ;Ap) is a p-partition
of N if each Ai � N , Ai \ Aj D ; for each i ¤ j and
the union of all sets in A equals N. For a subset A of
N, �(A) D

P
i2A �(i). The Minimum Multiprocessor

Scheduling Problem (MMS) [3] can be stated as follows.
We are given a triple (N; �; p), where p is an integer,
p � 2: We are required to find a p-partition C of
N that minimizes �(A) D max1�i�p �(Ai ) over all
p-partitionsA D (A1;A2; : : : ;Ap) of N.

Clearly, if p � n, then MMS becomes trivial. Thus,
in what follows, p < n: The size s of MMS is 
(n CPn

iD1 log �(i)): Consider the following heuristicH for
MMS. If s � pn , then we simply solve the problem op-
timally. This takes O(s2) time, as there are at most O(s)
solutions, and each one can be evaluated and compared
to the current best in O(s) time. If s < pn , then we
sort the elements of the sequence �(1); �(2); : : : ; �(n).
For simplicity of notation, assume that �(1) � �(2) �
� � � � �(n). Compute r D dlog n/ log pe and solve
MMS for (f1; 2; : : : ; rg; �; p) to optimality. Suppose we
have obtained a p-partitionA of f1; 2; : : : ; rg. Now for
i from r+1 to n add i to the set Aj of the current p-
partition A with smallest �(Aj): The following result
was proved by Gutin, Jensen and Yeo [16].

Theorem 17 The heuristicH runs in time O(s2 log s)
and lims!1 domr(H ; s) D 1:

The Minimum Partition Problem (MP) is MMS with
p=2. Alon, Gutin and Krivelevich [2] proved Theo-
rem 17 for MP with s replaced by n.
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Max Cut Problem

The Max Cut (MC) is the following problem: given
a weighted graph G=(V,E), find a bipartition (a cut)
(X,Y) of V such that the sum of weights of the edges
with one end vertex in X and the other in Y , called the
weight of the cut (X,Y), is maximum. For this problem,
there are some better-than-average heuristics. The sim-
plest is probably the following greedy-like heuristic C;
order the vertices arbitrarily and put each vertex in its
turn either in X or in Y in order to maximize in each
step the total weight of crossing edges.

Using an advanced probabilistic approach Alon,
Gutin and Krivelevich [2] proved that the heuristic C
is of domination ratio larger than 0.025. For the un-
weighted MC (all weights are equal), a better quality
algorithm can be designed as described in [2]. Its dom-
ination ratio is at least 1/3 � o(1):

Constraint Satisfaction Problems

Let r be a fixed positive integer, and let F D f f1;
f2; : : : ; fmg be a collection of Boolean functions, each
involving at most r of the n variables, and each hav-
ing a positive weight w( fi). The Max-r-Constraint Sat-
isfaction Problem (orMax-r-CSP, for short), is the prob-
lem of finding a truth assignment to the variables so as
to maximize the total weight of the functions satisfied.
Note that this includes, as a special case, the Max Cut
problem. Another interesting special case is the Max-r-
SAT problem, in which each of the Boolean functions
f i is a clause of at most r literals.

Alon, Gutin and Krivelevich [2] proved the follow-
ing:

Theorem 18 For each fixed integer r � 1 there ex-
ists a linear time algorithm for the Max-r-CSP problem,
whose domination ratio exceeds 1

24/3�26r .

Vertex Cover, Independent Set
and Clique Problems

A clique in a graph G is a set of vertices in G such
that every pair of vertices in the set are connected by
an edge. The Maximum Clique Problem (MCl) is the
problem of finding a clique of maximum cardinality in
a graph. A vertex cover in a graph G is a set S of ver-
tices in G such that every edge is incident to a vertex
in S. TheMinimumVertex Cover Problem (MVC) is the

problem of finding aminimum cardinality vertex cover.
An independent set in a graph is a set S of vertices such
that no edge joins two vertices in S. The Maximum In-
dependent Set Problem (MIS) is the problem of finding
a minimum cardinality independent set in a graph. It is
easy to see that the number of cliques and independent
sets in a graph depends on its structure, and not only
on the number of vertices. The same holds for vertex
covers.

Notice that if C is a vertex cover of a graph G, then
V (G)nC is an independent set inG; ifQ is a clique inG,
then Q is an independent set in the complement of G.
These well-known facts imply that if there is a heuristic
for one of the problem of domination ratio at least r(n),
all other problems admit a heuristic of domination ratio
at least r(n).

MCl, MIS and MVC are somewhat different from
the previous problems we have considered. Firstly, the
number of feasible solutions, for an input of size n, de-
pends on the actual input, and not just its size. The sec-
ond difference is that the three problems do not admit
polynomial-time heuristics of domination ratio at least
1/p(n) for any polynomial p(n) in n unless P=NP. This
was proved by Gutin, Vainshtein and Yeo [19].

Because of the first difference, it is better to compare
heuristics for the problems using the blackball number
rather than domination number. Since a heuristic for
MVC can be easy transformed into a heuristic for the
other two problems, we restrict ourselves only to MVC
heuristics.

The incremental deletion heuristic starts with an ar-
bitrary permutation  of vertices of G and an initial so-
lution S=V(G). We consider each vertex of G in turn
(according to ), deleting it from S if the resulting sub-
set remains a (feasible) solution. A seemingly better
heuristic for MVC is obtained by ordering the vertices
by degree (lower degrees first), and then applying the
incremental deletion heuristic. We call it the increasing-
degree deletion heuristic. The well-known maximal
matching heuristic constructs a maximal matching M
and outputs both end-vertices of all edges inM as a so-
lution. Berend, Skiena and Twitto [10] proved that the
incremental deletion heuristic (increasing-degree dele-
tion heuristic, maximal matching heuristic) is of black-
ball number 2n�1 � n (of blackball number larger than
2 � �)n for each � > 0, of blackball number approxi-
mately 1:839n). Clearly, the maximal matching heuris-
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tic is the best among the three heuristics from the DA
point of view.

Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) can be for-
mulated as follows. We are given two n � n matrices
A D [ai j] and B D [bi j] of integers. Our aim is to
find a permutation  of f1; 2; : : : ; ng that minimizes the
sum

nX
iD1

nX
jD1

ai jb�(i)�( j) :

Gutin and Yeo [23] described a better-than-average
heuristic for QAP and proved that the heuristic is of
domination number at least n!/ˇn for each ˇ > 1.
Moreover, the domination number of the heuristic is
at least (n � 2)! for every prime power n. These results
were obtained using a group-theoretical approach.

See also

� Traveling Salesman Problem
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Abstract

Duality gaps in optimization problems arise because of
the nonconvexities involved in the objective function or
constraints. The Lagrangian dual of a nonconvex opti-
mization problem can also be viewed as a two-person
zero-sum game. From this viewpoint, the occurrence of
duality gaps originates from the order in which the two
players select their strategies. Therefore, duality theory
can be analyzed as a zero-sum game where the order of
play generates an asymmetry. One can conjecture that

this asymmetry can be eliminated by allowing one of
the players to select strategies from a larger space than
that of the finite-dimensional Euclidean space. Once
the asymmetry is removed, then there is zero duality
gap. The aim of this article is to review two methods by
which this process can be carried out. The first is based
on randomization of the primal problem. The second
extends the space from which the dual variables can be
selected. Duality gaps are important in mathematical
programming and some of the results reviewed here are
more than 50 years old, but only recently methods have
been discovered to take advantage of them. The theory
is elegant and helps appreciate the game-theoretic ori-
gins of the dual problem and the role of Lagrange mul-
tipliers.

Background

We discuss how duality gaps arise, and how they can
be eliminated in nonconvex optimization problems.
A standard optimization problem is stated as follows:

min f (x) ;

g(x) � 0 ;

x 2 X ;

(1)

where f : Rn ! R and g : Rn ! Rm are assumed to be
smooth and nonconvex. The feasible region of (1) is de-
noted byF , and it is assumed to be nonempty and com-
pact. X is some compact convex set.

In order to understand the origins of duality in
mathematical programming, consider devising a strat-
egy to determine whether a point, say y, is the glob-
ally optimal solution of (1). Such a strategy can be con-
cocted as follows: if f (y) is the global solution of (1) then
the following system of inequalities

f (x) < f (y) ;
g(x) � 0 ;

x 2 X

(2)

will not have a solution. We can reformulate (2) in
a slightly more convenient framework. Indeed, suppose
that there exist m positive scalars �i, i D 1; : : : ;m,
such that

L(x; �) D f (x)C
mX
iD1

�i gi (x) < f (y) (3)
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has no solution. Then (2) does not have a solution ei-
ther. The left-hand side of (3) is called the Lagrangian
function associated with (1). It is clear from the discus-
sion above that the Lagrangian can be used to answer
questions about the optimal solutions of (1). The use-
fulness of the dual function emanates from the follow-
ing duality observation: Let f � be the optimal objective
function value of (1), and let L : Rm ! R be defined as
follows:

L(�) D inf
x2X

L(x; �) :

Then it is easy to prove that:

sup
	�0

L(�) � f � : (4)

This result is known as the weak duality theorem, and
it is valid with a quite general set of assumptions. The
strong duality theorem asserts that if f and g are convex,
f � > �1, and the interior ofF is not empty, then

sup
	�0

L(�) D f � :

Proofs of the weak and strong duality theorems can be
found in [1,10].

Game Theory Interpretation

There is an interesting relationship between (1) and the
following optimization problem:

sup
	�0

inf
x2X

f (x)C
mX
iD1

�i gi (x) : (5)

We refer to (1) as the primal problem, while (5) is re-
ferred to as the Lagrangian dual. The �’s that appear
in (5) are called the Lagrange multipliers (or dual vari-
ables).

It is interesting to note that (1) can equivalently be
restated as follows:

inf
x2X

sup
	�0

f (x)C
mX
iD1

�i gi (x) : (6)

The relationship between (6) (or (1)) and (5) can be an-
alyzed as a two-person zero-sum game. In this game
player A chooses the x variables, and player B chooses

the � variables. If player A chooses x0, and player B
chooses �0, then player A pays L(x0,�0) to player B. Nat-
urally, player A wishes to minimize this quantity, while
player B attempts to maximize it.

In game theory equilibria play an important role.
An equilibrium, in the present context means a point
from which no player will gain by a unilateral change
of strategy. For the game outlined above an equilibrium
point (x�; ��) must satisfy

L(x; ��) � L(x�; ��)

� L(x�; �) 8x 2 X; 8� 2 Rm
C : (7)

A point satisfying the preceding equation is also known
as a saddle point of L. To see that (7) is an equilibrium
point we argue as follows: Given that player A wishes to
minimize the amount paid to player B, then it is obvious
that if player B chooses �� and player A selects anything
other than x�, player A will be worse off. Similarly, if
player A chooses x�, then if player B chooses anything
other than ��, then player B will be worse off.

By the strong duality theorem, we know that the
game has an equilibrium point under convexity as-
sumptions. For the general case, insight can be obtained
by interpreting (5) and (6) as two different games.
A saddle point will exist if the optimal values of the two
games are equal.

Our next task is to interpret (5) and (6) as games. In-
deed consider the following situation: Player A chooses
a strategy first, and then player B chooses a strat-
egy. Thus, player B already knows the strategy that
player A has chosen. As a result player B will have an
advantage. Player A will argue as follows: “If I choose
x, then player B will choose sup	�0 L(x; �), therefore
I had better choose the strategy that will minimize my
losses.” In other words player A will choose the optimal
strategy given by solving (6).

Now consider the same game, but with the order of
play reversed, i. e., player B chooses first, and player A
second. Then applying the rules of rational behavior
(as above), we see that player B will select the � that
solves (5).

Consequently, duality gaps originate from the order
in which the two players select their strategies. In the
next section we see how this asymmetry can be elimi-
nated by allowing one of the players to select strategies
from a larger space than that of the finite-dimensional
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Euclidean space. Once the asymmetry is eliminated,
then there is zero duality gap.

Methods

As argued above, the player that chooses first is dis-
advantaged, since the other player can adjust. In this
section we discuss two methods in which this asymme-
try in the order of play can be eliminated. Both meth-
ods were proposed early in the history of mathemat-
ical programming. The first method proceeds by ran-
domization (increasing the powers of player A). It is
difficult to say who suggested this strategy first. Since
the origins of the idea emanate from mixed strategies
in game theory, one could argue that the idea was first
suggested by Borel in the 1920s [14]. A modern proof
can be found in [2]. The second method allows player
B to select the dual variables from a larger space. This
idea seems to have been suggested by Everett [3], and
then by Gould [6]. A review can be found in [11]. Algo-
rithms that attempt to reduce the duality gap appeared
in [4,5,7,8,9,12].

Randomization

Assume that player A chooses first, then the game can
be described by

P� D inf
x2X

sup
	�0

L(x; �) ;

and in general by

P� � D� D sup
	�0

inf
x2X

L(x; �) :

Player A has a handicap since player B will choose
a strategy knowing what player A will do. In order to
avoid having a duality gap, we consider giving more
flexibility to player A. We thus allow player A to choose
strategies fromM(X), whereM(X) denotes the space
of probability measures on B (the �-field generated
by X). Player A will therefore choose a strategy by solv-
ing

P� D inf

2M(X)

Z
X
f (x)d�(x)

Z
X
g(x)d�(x) � 0

Z
X
d�(x) D 1 :

(8)

Equivalently:

P� D inf

2M(X)

sup
	�0

Z
X
f (x)d�(x)

C

mX
iD1

�i

Z
X
g(x)d�(x)C �0

�Z
X
d�(x) � 1

�
:

The dual of (8) is given by

D� D sup
	�0

inf

2M(X)

Z
X
f (x)d�(x)

C

mX
iD1

�i

Z
X
g(x)d�(x)C �0

�Z
X
d�(x) � 1

�
:

Then it can be shown that P� D D�. The proof is be-
yond the scope of this article; it can be found in [2].

Functional LagrangeMultipliers

We now consider the case where player B chooses first.
From the previous section, it follows that player B will
choose a strategy according to:

D� D sup
	�0

inf
x2X

L(x; �) : (9)

We have already pointed out that the following holds:

D� � inf
x2X

sup
	�0

L(x; �) :

In order for the preceding equation to hold as an equal-
ity, without any convexity assumptions, we consider in-
creasing the space of available strategies of B. This was
suggested in [3,6]. The exposition here is based on [11].
LetH denote all the feasible right-hand sides for (1):

H D fb 2 Rm j 9x 2 X : g(x) � bg :

LetD denote the following set of functions:

D D fz : Rm ! R j z(d1) � z(d2); if d1 � d2;

8d1; d2 2H g :

The following dual can be defined using the concepts
above:

D� D sup
z

z(0)

z(g(x)) � f (x) 8x 2 X z 2 D :
(10)

The dual in (10) is different from the type of duals that
we have been discussing in this article. If, however, we
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assume that c CD � D, then it was shown in [11] that
(10) is equivalent to the following:

D� D sup
z2D

inf
x2X

f (x)C z(g(x))

dual problem. A proof that the duality gap between (10)
and (1) is zero can be found in [11].

Conclusions

We have discussed Lagrangian duality, and the exis-
tence of duality gaps from a game-theoretic viewpoint.
We have discussed two ways in which duality gaps can
be eliminated. The first is randomization and the sec-
ond is the use of functional Lagrange multipliers. Un-
fortunately none of the two methods are immediately
applicable to real-world problems. However, for certain
classes of problems the functional Lagrange multiplier
approach can be useful. It was shown in [13] that if the
original problem involves the optimization of polyno-
mial functions, and if the Lagrange multipliers are al-
lowed to be themselves polynomials then there will be
no duality gap. Unlike the general case discussed in this
article, polynomial Lagrange multipliers can be manip-
ulated numerically. This approach can potentially help
develop efficient algorithms for a large class of prob-
lems.
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Consider the following optimal control problem with
first order ordinary or partial differential equations:

(P) min J(x; u) D
Z
˝

r(t; x(t); u(t)) dt

subject to functions (x, u) 2W1;n
p (˝) × L�p (˝), fulfill-

ing
� the state equations

xi
t˛ (t) D gi˛(t; x(t); u(t)) a.e. on˝;

(˛ D 1; : : : ;m; i D 1; : : : ; n);

� the control restrictions

u(t) 2 U � R� a.e. on˝ ;

� the state constraints

x(t) 2 G(t) � Rn on˝;

� and the boundary conditions

x(s) D '(s) on @˝:

The data of problem (P) satisfies the following hypoth-
esis:
H1) For m = 1 we have 1 � p �1, for m � 2 we have

m < p <1.
H2) The sets˝ and

X :D f(t; �) 2 Rm �Rn : t 2 ˝; � 2 G(t)g

are strongly Lipschitz domains in the sense of C.B.
Morrey and S. Hildebrandt [6]; the set U is closed.

H3) The functions r, r� , g i˛ , (g i˛)� , ' are continuous
with respect to all arguments.

H4) The set of all admissible pairs (x, u), denoted by Z,
is nonempty.

The characterization of optimal solutions of special
variational problems by dual or complementary prob-
lems has been well known in physics for a long time,
e. g.,
� in elasticity theory, the principle of the minimum of

potential energy (Dirichlet’s principle) and the prin-
ciple of tension (Castigliano’s principle) are dual or
complementary to each other.

� in the theory of electrostatic fields, the principle of
the minimum of potential energy and the Thomson
(Lord Kelvin) principle are dual problems.

A first systematic approach to duality for special
problems in calculus of variations was given by K.
Friedrichs ([4], 1928). In the 1950s and 1960s, this con-
cept was extended by W. Fenchel [3], J.-J. Moreau, R.T.
Rockafellar [19,20] and I. Ekeland and R. Temam [2] to
larger classes of variational and control problems. Bas-
ing on Legendre transformation (or Fenchel conjuga-
tion), it was proved to be a suitable tool to handle con-
vex problems.

Nonconvex problems (P) require an extended con-
cept of duality. The construction of R. Klötzler, given
in 1977 [7], can be regarded as a further development
of Hamilton–Jacobi field theory.

Construction of a Dual Problem

In a very general setting, a problem (D) of maximiza-
tion of an (extended real-valued) functional L over an
arbitrary set S 6D ; is said to be a dual problem to (P) if
the weak duality relation

sup (D) � inf (P)

is satisfied.
The different notions of duality given in the intro-

duction can be embedded into the following construc-
tion scheme:

1 The set of admissible pairs (x; u) = z 2 Z is
represented by the intersection of two suitable
nonempty sets Z0 and Z1.

2 For an (extended real-valued) functional
˚ : Z0�

S0 ! R the equivalence relation

inf
z2Z

J(z) = inf
z2Z0

sup
S2S0

˚(z; S),

holds.
3 Assuming L0(S) := inf

z2Z0
˚(z; S), each problem

(D)
�
max L(S)
s.t. S 2 S1 � S0

is a (weak) dual problem to (P) if L(S) � L0(S)
for all S 2 S1.
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The proof of the weak duality relation results from the
well-known inequality

inf
z2Z0

sup
S2S0

˚(z; S) � sup
S2S0

inf
z2Z0

˚(z; S):

Fenchel–Rockafellar Duality

In accordance with [2], we transform (P) into a general
variational problem:

(V)

8<
:
min

Z
˝

l(t; x(t); xt˛(t)) dt

s.t. x 2 X

where l : Rn �Rn �Rnm ! R is given by

l(t; �;w) :D

8̂
ˆ̂̂<
ˆ̂̂̂
:

inffr(t; �; v) :
v 2 U with
w D g(t; �; v)g; (t; �) 2 X;
1 else:

andX = {x 2W1;n
p (˝) : x(s) = '(s) on @˝}.

Then (P) is called convex if (V) is convex in the sense
of [2, p. 113]. In this case both problems are equivalent
[15]. The Fenchel-dual problem is obtained by the fol-
lowing settings in the above construction scheme:
1) Z0 D fz D (x; u) 2 W1;n

p (˝) � L1;�p (˝) :

u(t) 2 U a.e. on˝;

x(t) 2 G(t) on˝;

x(s) D '(s) on @˝g;

Z1 D fz D (x; u) 2 W1;n
p (˝) � L1;�p (˝) :

xi
t˛ (t) D gi˛(t; x(t); u(t)) a.e. on˝;

˛ D 1; : : : ;m; i D 1; : : : ; ng:

2) S0 = Ln(1Cm)
q (˝) (p�1 + q�1 = 1), ˚ is the classical

Lagrange functional,

˚(z; S) D J(z)C
X
i;˛

˝
xi
t˛ � g(�; x; u); y˛i

˛
;

where h�, �i is the bilinear canonical pairing over Lp
(˝)× L�p (˝), [15]. By use of theHamiltonian of (P),

H : R1 �Rn �Rnm ! R;

H (t; �; �) D sup fH(t; �; v; �) : v 2 Ug

with

H(t; �; v; �) D �r(t; �; v)C
X
i;˛

�˛i g
i
˛(t; �; v)

it can be formulated as follows [15]:

(DR)q

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max"
�

Z
˝

 
sup
�2G(t)

[H (t; �;�y(t))

� y0(t)>�]
�

dt

� sup
�2X

�Z
˝

�
y0(t)>�(t)

C
X
i;˛

y˛i (t)�
i
t˛ (t)

1
A dt

3
5
3
5

s.t. (y0; y) 2 Ln(1Cm)
q (˝):

Duality in the Sense of Klötzler

The duality in the sense of Klötzler is realized by the fol-
lowing settings in the general construction scheme [14]:
1) Z0 and Z1 are chosen as before.
2) S0 D W1;n

q (X), and ˚ is an extended Lagrange
functional,

˚(z; S) D J(z)

C
X
i;˛

xi
t˛ � gi˛(�; x; u); S

i
�˛
(�; x);

where h�, �i is again the bilinear canonical pairing
over Lp (˝) × L�p(˝).
By use of Gauss’ theorem, the dual problem reads as

follows [8]:

(DK)q

8<
:
max

Z
@˝

S(s; �(s))n(s) do(s)

s.t. S 2 S1;

where

S1 :D

8<
:S 2 S0 :

Pm
˛D 1 S

˛
t˛ (t; �)

CH (t; �; S(t; �)) � 0
a.e. on X

9=
; ;

n(�) is the exterior unit normal vector to @˝ .
In this way we can characterize minimizers of (P)

in terms of solutions of the Hamilton–Jacobi inequality
or of the Hamilton–Jacobi equation. Since classical so-
lutions of the latter equation may fail to exist, on the
one hand techniques were developed to construct gen-
eralized solutions of this equation (viscosity solutions
[11], generalized solutions involving the Clarke gener-
alized gradient [1] or lower Dini derivatives [24]). On
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the other hand, optimization techniques for paramet-
ric problems in finite-dimensional spaces are used to
minimize the defect in the Hamilton–Jacobi inequal-
ity and to get sufficient conditions for (local) optimality
[16,17,27,28,29].

Bidual Problems, Generalized Flows, Relaxed
Controls

Duality allows to associate the bidual problem with
a flow problem or a relaxed control problem. (DK)q, in-
terpreted as an infinite linear programming problem,
[13], has a dual problem again, which can be identified
as a generalized flow problem in the sense of L.C. Young
[26]: Assuming compactness of the control set U, one
obtains the bidual problem (DK)�q = (F):

(F)

8<
:
min

Z
D
r(t; �; v) d�(t; �; v)

s.t. � 2 ND;

with

ND :D
�
� 2 RD :

Z
@˝

X
˛

 ˛(s; �(s))n˛(s) do(s)

D

Z
D

0
@ ˛t˛ (t; �)C

X
i;˛

 ˛�i (t; �)g
i
˛(t; �; v)

1
A

d�(t; �; v); 8 2 C1;m(X)
	
;

where RD is the set of all nonnegative Radon measures
on D :D X � U . ND contains special measures

d�(t; �; v) D dıx(t) d�t(v) dt;

with � = {�t :t 2 ˝} 2MU , MU is a regular family of
probability measures, concentrated onU, [5], and ı� are
Dirac measures concentrated on the point � 2 G(t).

Thus the relaxed control problem

(P)

8<
:
min

Z
˝

Z
U
r(t; x(t); v) d�t(v) dt

s.t. (x; �) 2 W1;n
p (˝) �MU ;

satisfying x(t) 2 G(t) and fulfilling the following varia-
tional equation for all  2 C1;m(X),

Z
@˝

X
˛

 ˛(s; �(s))n˛(s) do(s)

D

Z
˝

"X
˛

 ˛t˛ (t; x(t))

C
X
i;˛

 ˛�i (t; x(t))
Z
U
gi˛(t; x(t); v) d�t(v)

3
5 dt

has the embedding (F), and

sup (DK)1 D inf (F) � inf (P)

holds, [13].

Strong Duality Results

The property of strong duality between (P) and (D) is
defined by the equation

sup (D) D inf (P);

and this common value is called settle-value of ˚ .

Case A

Control problems with single integrals and ordinary
differential equations, ˝ = [0, T].

For convex problems (P),

sup (DR)q D min (P)

holds, [2]. Moreover, in (DR)q the optimal solution (y�0 ,
y�) exists and fulfills

y� 2 W1;n
p (˝)

and

d
dt

y�(t) D y�0 (t) a.e. on (0; T);

[15]. Both dual problems, (DR)q and (DK)q, coincide, if
in (DK)q a linear setting

S(t; �) D a(t)C �>y(t)

is chosen, [14].
For nonconvex control problems with compact U is

was shown by different techniques, that (P) as well as
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(P) possess a same dual problem, [12,22,23], and strong
duality

sup (DK)1 D min (P)

holds. The variational equation appearing in (P) is in
this case equivalent to the generalized state equations

d
dt

xi (t) D
Z
U
gi (t; x(t); v) d�t(v) a.e. on (0; T)

with the boundary conditions

x(s) D '(s) for s D 0; s D T:

The question of existence of a solution of the dual prob-
lem (DK)1 was discussed in [21].

Case B

Control problems with multiple integrals and first or-
der partial differential equations.

As before, for convex problems

sup (DR)q D min (P)

holds. The equivalence of (DR)q and (DK)q is lost in
general. Results concerning strong duality between (D)
and (P) in the nonconvex case are largely missing.

Sufficient Optimality Conditions

First- and second order sufficient optimality conditions
for global minimizers can be derived by means of du-
ality. In the general concept, (x�, u�) 2 Z is a global
minimizer of (P) if

J(x�; u�) D inf
z2Z0

sup
S2S0

˚(z; S)

D max
S2S0

inf
z2Z0

˚(z; S)

and it exists an S� 2 S1 with

L0(S�) D max
S2S1

L(S) D max
S2S0

L0(S):

Following the concept of Klötzler, these equations are
satisfied if and only if for S� 2 W1;n

1 (X) the following
conditions are fulfilled:
a) the Hamilton–Jacobi inequality

�(t; �) :D
X
˛

S�˛t˛ (t; �)

CH (t; �; S�� (t; �)) � 0 on X;

b) the Hamilton–Jacobi equation
X
˛

S�˛t˛ (t; x
�(t))

CH (t; x�(t); S�� (t; x
�(t))) D 0 on˝;

c) themaximum condition

H (t; x�(t); S�� (t; x
�(t)))

DH (t; x�(t); u�(t); S�� (t; x
�(t))) a.e. on˝:

From conditions a) and b) follows that x�(t) must
be a global minimizer of the parametric optimization
problem

(P)t

8<
:
max �(t; �)

s.t. � 2 G(t)

with parameter t 2 ˝ . For this last problem (P)t first-
and second order sufficient optimality conditions can
be derived with the quadratic setting

S�˛ (t; �) D a˛(t)C y˛>(t)(� � x(t))

C
1
2
(� � x�(t))Q˛(t)(� � x�(t))

in the dual problem (DK)1, where y˛ 2W1;n
1 (˝) and

Q˛ 2W1;nn
1 (˝) symmetric.

The ideas, mentioned above, can be used for identi-
fying strong local minimizers of (P) too. In this case X is
to be replaced by

X" D X

\
˚
(t; �) 2 RnC1 : k� � x(t)k < "; t 2 ˝

�
;

[16,17,27,28,29]. The second order condition for (P)t
yields a definiteness condition for a Riccati-type expres-
sion which generalizes the known theory of conjugated
points in the calculus of variations in one independent
variable.

Duality andMaximum Principle

Case A

Control problems with single integrals, ˝ = [0, T]. For
convex problems (P) it can be shown that the Pontrya-
gin maximum principle is not only a necessary but also
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a sufficient optimality condition. In this case the canon-
ical variables in the Maximum principle solve at the
same time the dual problem (DK)1, [15].

Case B

Control problems with multiple integrals, ˝ � Rm,
m � 2. For convex problems (P) or relaxed problems
(P) a maximum principle was proved in the beginning
of the 1990s, [10,18,25]. It turns out, that the canon-
ical variables in this principle are not necessarily func-
tions but contents ormeasures from L�1 (˝) orC� (˝).
A corresponding duality theory with dual variables in
these measure spaces was developed by Klötzler [9] and
strong duality was shown. As before, in the convex case
the canonical variables of the maximum principle solve
the dual problem.
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Synonyms

SDP duality

Basic Properties

Consider the primal semidefinite program

SDP �� :D

8̂
<̂
ˆ̂:

min C � X
s.t. AX D b

X � 0;

whereC �X = traceCX denotes the inner product of the
symmetric matrices C, X; X � Y denotes that the sym-
metric matrix X � Y is positive semidefinite; and A: Sn

! Rm is a linear operator on the space of symmetric
matrices, with adjoint A�. Equivalently, the linear con-
straint can be written using symmetric matrices Ai, i =
1, . . . ,m, as

Ai � X D bi for all i D 1; : : : ;m;

while the adjoint operation on y 2 Rm is

A�y :D
mX
iD1

yiAi :

The Lagrangian function is

L(X; y) :D C � X C y>(b �AX):

The primal problem is equivalent to

�� D min
X�0

max
y
L(X; y) D C � X C y>(b �AX):

The equivalence can be seen by using the hidden con-
straint in the outer minimization problem b�A X = 0,
i. e. if this constraint does not hold then the inner max-
imum value is +1.

By interchanging the maximum and minimum and
rewriting the order of terms in the Lagrangian, we get
the dual problem and weak duality:

�� � �� :D max
y

min
X�0

b>yC (C �A�y) � X:

Using the hidden constraint in the outer maximization
problem C �A�y � 0, this becomes equivalent to

(D) �� D

(
max b>y
s.t. A�y � C:

The dual pair SDP and (D) look very much like
a dual pair of linear programs (denoted LP) where the



812 D Duality for Semidefinite Programming

adjoint operator replaces the transpose and positive
semidefiniteness of matrix variables replaces nonnega-
tivity of vector variables. In fact, duality theory for SDP
has a lot of similarities with that of LP: weak duality ��

� �� follows from the interchange of maximum and
minimum; from this we get that unboundedness of SDP
(respectively, (D)) implies infeasibility of (D) (respec-
tively, (D)).

Weak duality illustrates one of the powerful uses of
the dual program, i. e. it provides lower bounds on the
optimal value of the primal program.

Other formulations of SDP provide similar duals. In
fact, SDP is a special case of cone programming. Let
K, L be two convex cones, i. e. K (and L) satisfy: the
Minkowski sum K + K � K and ˛ K � K for all ˛ 2
R. Define the primal cone program as

(PC) �� D

8̂
<̂
ˆ̂:

min hC; Xi
s.t. AX �K b

X �L 0;

where X �L Y denotes X � Y 2 L (and similarly for K),
and h�, �i denotes the appropriate inner product. Then
the above min-max argument yields the dual cone pro-
gram

(DC) �� D

8̂
<̂
ˆ̂:

max hb; yi
s.t. A�y �LC C

y �KC 0;

where �+ denotes taking the polar cone.
It is an interesting exercise to see that this elegant

dual formulation works for linear programs that have
mixtures of inequality and equality constraints with
mixtures of free and nonnegative variables.

Strong Duality

However, unlike linear programming, strong duality for
SDP needs a constraint qualification, e. g. strict primal
feasibility (called Slater’s condition),

there exists a bX  0 withAbX D b:

This constraint qualification implies strong duality
holds, i. e. that �� = �� and �� is attained. Conversely,

A�y �LC C

also implies that �� = �� but with �� attained. If
Slater’s condition does not hold, then a duality gap�� >
�� can exist, and/or the dual (or primal) optimal value
may not be attained, see e. g. [10].

Example 1 If the dual is

(D) �� D

8̂
ˆ̂̂<
ˆ̂̂̂
:

sup x2

s.t.

0
BB@
x2 0 0
0 x1 x2
0 x2 0

1
CCA �

0
BB@
1 0 0
0 0 0
0 0 0

1
CCA ;

then the primal is

(P) �� D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

inf U11

s.t. U22 D 0

U11 C 2U23 D 1

U � 0

and we have the duality gap

�� D 0 < �� D 1:

If strong duality holds, we get the following primal-dual
characterization of optimality for the dual pair X, y,
with X � 0:
� A X = b (primal feasibility);
� A�y � C (dual feasibility);
� X (A�y � C) = 0 (complementary slackness).
These optimality conditions provide the basis for:
i) the primal simplex method (maintain primal feasi-

bility and complementary slackness while striving
for dual feasibility);

ii) the dual simplex method (maintain dual feasibil-
ity and complementary slackness while striving for
primal feasibility); and

iii) the interior point methods (maintain primal and
dual feasibility while striving for complementary
slackness).

Unlike the LP case, there are currently no efficient al-
gorithms for primal or dual simplex methods for SDP;
however, interior point methods have proven to be very
successful. Thus we see the importance of duality for
both theoretical and algorithmic purposes.
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Strict Complementarity

Another example of the difference between LP and SDP
arises in the complementary slackness conditions. If an
optimal pair X, y exist, then in the LP case there also ex-
ists an optimal pair that satisfies strict complementarity,
i. e.

X C (C �A�y)  0;

where in the LP case this is a sum of nonnegative diago-
nal matrices, see [4,5]. However, in the SDP case, there
may not exist such a strict complementary optimal pair,
though the existence is generic, see [8].

Closing the Duality Gap

Both the strict complementarity and strict feasiblity,
or Slater’s constraint qualification, are generic, see [8].
But there are classes of problems where strong duality
fails, e. g. relaxations that arise from hard combinatorial
problems, e. g. [13].

One can regularize semidefinite programs and guar-
antee that Slater’s constraint qualification holds, e. g.
[2,3,12]. This involves finding the minimal face of the
semidefinite cone that contains the feasible set, i. e.
the so-called minimal cone. A numerical procedure for
regularization is presented in [3]. However, this pro-
cess is not computationally tractable. An equivalent ap-
proach is the extended Lagrange–Slater dual program
of M. Ramana [9,10]. This provides a means of writ-
ing down a regularized program that is of polynomial
size. Thus strong duality can be attained theoretically
using the above techniques and exploiting the struc-
ture of specific problems. However, lack of regular-
ity (Slater’s condition) is an indication of an ill-posed
problem. Thus, the question of whether regularization
can be done computationally for general problems is
still an open question, see e. g. [7].

Extensions

The SDPs considered above have all contained lin-
ear objectives and constraints. There is no reason to
restrict SDPs to this special case. Duality for general
cone programs with possible nonlinear objectives and
constraints is considered in [2,3,11]. Applications for
quadratic objectives SDP appear in, e. g., [1,6].

See also

� Interior Point Methods for Semidefinite
Programming

� Semidefinite Programming and Determinant
Maximization

� Semidefinite Programming: Optimality Conditions
and Stability

� Semidefinite Programming and Structural
Optimization

� Semi-infinite Programming, Semidefinite
Programming and Perfect Duality

� Solving Large Scale and Sparse Semidefinite
Programs
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It is known that in convex optimization, the Lagrangian
associated with a constrained problem is usually a sad-
dle function, which leads to the classical saddle La-
grange duality (i. e. the monoduality) theory. In non-
convex optimization, a so-called superLagrangian was
introduced in [1], which leads to a nice biduality theory
in convex Hamiltonian systems and in the so-called d.c.
programming.

SuperLagrangianDuality

Definition 1 Let L(x, y�) be an arbitrary given real-
valued function on X × Y�.

A function L:X ×Y�!R is said to be a supercritical
function (or a @+-function) on X × Y� if it is concave in
each of its arguments.

A function L: X × Y�! R is said to be a subcritical
function (or a @�-function) on X × Y� if � L is a super-
critical function on X × Y�.

A point (x; y�) is said to be a supercritical point (or
a @+-critical point) of L on X × Y� if

L(x; y�) � L(x; y�) � L(x; y�) (1)

holds for all (x, y�) 2 X × Y�.

A point (x; y�) is said to be a subcritical point (or
a @�-critical point) of L on X × Y� if

L(x; y�) � L(x; y�) � L(x; y�) (2)

holds for all (x, y�) 2 X×Y�.

Clearly, a point (x; y�) is a subcritical point of L on X

× Y� if and only if it is a supercritical point of �L on
X × Y�. A supercritical function L(x, y�) is called the
superLagrangian if it is a Lagrange form associated with
a constrained optimization problem. L(x, y�) is called
the subLagrangian if � L(x, y�) is a superLagrangian.

For example, the quadratic function

L(x; y) D axy �
1
2
bx2 �

1
2
cy2; b; c > 0;

is concave for each x and y, and hence is a supercritical
point function on R × R. But L(x, y) is not concave on
the vector (x, y) since the Hessian matrix of L

D2L(x; y) D
�
�b a
a �c

�

is not necessarily to be negative-definite for any a 2 R
and b, c > 0. L is a subcritical function if b, c < 0. But L
may not be convex on (x, y) for the same reason.

Since L is a subLagrangian if and only if �L is a su-
perLagrangian, here we only consider the duality theory
for the superLagrangian.

Theorem 2 (Supercritical point) Let L(x, y�) be an ar-
bitrary given function, partially Gâteaux differentiable
on an open subset Xa × Y�a � X × Y�. If (x; y�) 2
Xa � Y�a is either a supercritical or subcritical point of
L, then (x; y�) is a critical point of L on Xa × Y�a .

Any critical point of a Gâteaux differentiable superLa-
grangian is a supercritical point. However, if (x; y�) is
a supercritical point of L, it does not follows that L is
a superLagrangian. In the d.c. programming or varia-
tional analysis of convex Hamiltonian systems, the fol-
lowing statements are of important theoretical value.
S1) Under certain necessary and sufficient conditions

we have

inf
x2Xa

sup
y�2Y�a

L(x; y�) D inf
y�2Y�a

sup
x2Xa

L(x; y�): (3)

A statement of this type is called a superminimax
theorem and the pair (x; y�) is called a supermini-
max point of L on Xa × Y�a .
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S2) Under certain conditions, a pair (x; y�) 2 Xa�Y�a
exists such that

L(x; y�) � L(x; y�) � L(x; y�) (4)

holds for all (x, y�) 2 Xa ×Y�a . A statement of this
type is called a supercritical point theorem.

By the fact that the maxima of L(x, y�) can be taken in
either order on Xa × Y�a , the equality

sup
x2Xa

sup
y�2Y�a

L(x; y�) D sup
y�2Y�a

sup
x2Xa

L(x; y�) (5)

always holds. A pair (x; y�) which maximizes L on Xa

× Y�a is called a supermaximum point of L on Xa × Y�a .
For a given superLagrangian L: Xa × Y�a ! R, we let

Xk � Xa and Y�s � Y�a be such that

sup
y�2Y�a

L(x; y�) < C1; 8x 2 Xk ;

sup
x2Xa

L(x; y�) < C1; 8y� 2 Y�s :

Theorem 3 (superLagrangian duality) Let the La-
grangian L: X × Y�! R be an arbitrary given function.
If there exists either a supermaximum point (x; y�) 2
Xa � Y�a such that

L(x; y�) D max
x2Xa

max
y�2Y�a

L(x; y�)

D max
y�2Y�a

max
x2Xa

L(x; y�); (6)

or a superminimax point (x; y�) 2 Xa � Y�a such that

L(x; y�) D min
x2Xa

max
y�2Y�a

L(x; y�)

D min
y�2Y�a

max
x2Xa

L(x; y�); (7)

then (x; y�) is a supercritical point of L on Xa × Y�a .
Conversely, if L is partially Gâteaux differentiable on

an open subset Xa × Y�a � X × Y�, and (x; y�) is a su-
percritical point of L on 2Xa × Y�a , then either the super-
maximum theorem in the form

L(x; y�) D max
x2Xk

max
p2Y�a

L(x; y�)

D max
y�2Y�s

max
x2Xa

L(x; y�); (8)

holds, or the superminimax theorem in the form

L(x; y�) D min
x2Xk

max
y�2Y�a

L(x; y�)

D min
y�2Y�s

max
x2Xa

L(x; y�) (9)

holds.

This superLagrangian duality theorem shows a very im-
portant fact in Hamiltonian systems, i. e. the critical
points of the Lagrangian L either maximize or mini-
maximize L on Xk × Y�s in either order.

Nonconvex Primal and Dual Problems

Let L: Xa × Y�a ! R be an arbitrary given supercritical
function. For any fixed x 2 Xa, let

P(x) D sup
y�2Y�a

L(x; y�): (10)

Clearly, the function P(x) need not be either convex or
concave. LetXk�Xa be the primal feasible set such that
P:Xk! R is finite and Gâteaux differentiable. Then for
a nonconvex function P, two primal problems can be
proposed as:

(Pinf) : P(x)! min; 8u 2 Xk ; (11)

(Psup) : P(x)! max; 8u 2 Xk : (12)

The problems (Pinf) and (Psup) are realisable if the pri-
mal feasible set Xk is not empty.

Dually, for any fixed y� 2 Y�a , let

Pd (y�) D sup
x2Xa

L(x; y�) (13)

with the dual feasible set Y�s � Y�a such that Pd: Y�s ! R
is finite and Gâteaux differentiable. The two nonconvex
dual problems are:

(Pd
inf) : Pd (y�) ! min; 8y� 2 Y�s ; (14)

(Pd
sup) : Pd (y�) ! max; 8y� 2 Y�s : (15)

These two dual problems are realisable if the dual feasi-
ble set Y�s is not empty.

Theorem 4 (Biduality theorem) Let L: Xa × Y�a ! R
be a given arbitrary function such that P and Pd are well-
defined by (10) and (13) on the open subsets Xk and Y�s ,
respectively.
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1) If (x; y�) is a supercritical point of L onXk × Y�s , then
DP(x) D 0, DPd (y�) D 0, and

P(x) D L(x; y�) D Pd (y�): (16)

2) If (x; y�) is a supercritical point of L onXk × Y�s , then
x is a minimizer of P on Xk if and only if y� is a min-
imizer of Pd on Y�s , i. e. the double-min duality

P(x) D inf
x2Xk

P(x), inf
y�2Y�s

Pd (y�) D Pd (y�) (17)

holds.
3) If (x; y�) is a supercritical point of L onXk × Y�s , then

x is a maximizer of P onXk if and only if y� is a max-
imizer of Pd on Y�s , i. e. the double-max duality

P(x) D sup
x2Xk

P(x), sup
y�2Y�s

Pd (y�) D Pd (y�) (18)

holds.

D.C. Programming and Hamiltonian

In d.c. programming, the primal function P: Xk ! R
can be written as

P(x) DW(�x) � F(x);

where �: X! Y is a linear operator, W: Ya ! R and
F: Xa! R are two convex, Gâteaux differentiable real-
valued functions, satisfying the Legendre duality rela-
tions

x� D DF(x), x D DF�(x�)

, hx; x�i D F(x)C F�(x�)

on Xa × X�a , and

y� D DW(y), y D DW�(y�)

, hy; y�i DW(y)CW�(y�)

on Ya × Y�a , where F�: X�a ! R and W�: Y�a ! R are
the Legendre conjugates of F andW, respectively.

In dynamical systems, if � = d/dt is a differential
operator, its adjoint associated with the standard bilin-
ear forms inL2 is�� =� d/dt. IfW denotes the kinetic
energy, F stands for potential energy, then the primal
function P(x) = W(�x)� F(x) is the total action of the
system. The primal feasible set Xk � X, defined by

Xk D fx 2 Xa : �x 2 Yag ;

is called the kinetically admissible space. Clearly, P: Xk

! R is nonconvex.
The Lagrangian form associated with the nonconvex

primal problems is defined by

L(x; y�) D h�x; y�i �W�(y�) � F(x); (19)

which isG âteaux differentiable onXa × Y�a . The critical
condition DL(x; y�) D 0 leads to the Lagrange equa-
tions:

�x D DW�(y�); ��y� D DF(x):

Clearly, L: Xa × Y�a ! R is a supercritical function, and

P(x) D sup
y�2Y�a

L(x; y�); 8x 2 Xk :

Dually, for any given dual feasible y� 2 Y�s ,

Pd (y�) D sup
x2Xa

L(x; y�) D F�(��y�) �W�(y�);

where the dual feasible set Y�s � Y�a is defined by

Y�s D
˚
y� 2 Y�a : ��y� 2 X�a

�
:

The criticality conditions DL(x; y�) D 0, DP(x) D 0
and DPd (y�) D 0 are equivalent to each other.

The Hamiltonian H: Xa × Y�a ! R associated with
the Lagrangian L is defined by

H(x; y�) D h�x; y�i � L(x; y�)

DW�(y�)C F(x) : (20)

For d.c. programming, H(x, y�) is a convex function
on Xa × Y�a . The critical point (x; y

�) of L satisfies the
Hamiltonian canonical form

�x D Dy�H(x; y�); ��y� D DxH(x; y�):

Particularly, if W(� x) = 1/2 h�x, C� xi is
a quadratic function, C: Ya ! Y�a is a symmetric op-
erator such that the composite operator A = �� C � =
A� is selfadjoint, then the total action can be written as

P(x) D
1
2
hx;Axi � F(x):

Let Pc(x) = � Pd(C � x); then the function Pc: Xa! R

Pc (x) D
1
2
hx;Axi � F�(Ax)

is the so-called Clarke dual action (see [1]).
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Theorem 5 (Clarke duality theorem) Let A: Xk � Xa

! X�a be a closed selfadjoint operator, and Ker A = {x
2 X: A x = 0 2 X�} the null space of A. If x 2 Xk is
a critical point of P, then any vector x 2 KerA C x is
a critical point of Pc.

Conversely, if there exists a xo 2 Xk such that A xo
2 X�a , then for a given critical point x of Pc, any vector
x 2 KerAC x is a critical point of P.

Example 6 Let us consider a very simple one-
dimensional optimization problem with constraint

8<
:
F(x) D

1
2
kx2 � f x ! max

s.t. a � x � b;
(21)

where k > 0 and f 2 R are given constants. We assume
that �1 < a < 0 < b <1. Since F(x) is strictly convex
on the closed set [a, b], the maximum is attained only
on the boundary, i. e.

sup
x2[a;b]

F(x) D maxfF(a); F(b)g <1:

The classical Lagrange multiplier method cannot be
used for this nonconvex problem. To set this problem
within our framework, we need only set X = R, Xa = [a,
b] and let� = 1, so that

y D �x D x 2 Y D R:

Thus, the range of the mapping �: Xa! Y = R is Ya =
[a, b]. Let

W(y) D

(
0 if y 2 Ya;

C1 if y … Ya:

It is not difficult to check that W: Y! R [ {+1 } is
convex. On Ya,W is finite and differentiable. Thus, the
primal feasible space can be defined by

Xk D fx 2 Xa : �x D x 2 Yag D [a; b]:

Clearly, on Xk P(x) = W(� x) � F(x) = F(x). The
constrained maximization problem (21) is then equiva-
lent to the standard nonconvex minimization problem
(Pinf): P(x)!min, 8x 2 Xk.

Since F(x) is strictly convex and differentiable onXa

= [a, b], and

x� D DF(x) D kx � f 2 X�a

is invertible, where

X�a D [ak � f ; bk � f ] � X� D R;

the Legendre conjugate Pc: X�a ! R can easily be ob-
tained as

F�(x�) D max
x2Xa
fxx� � F(x)g D

1
2k

(x� C f )2:

By the Fenchel transformation, the conjugate of the
nonsmooth functionW can be obtained as

W�(y�) D sup
y2Y
fyy� �W(y)g D max

y2Ya
yy�

D

8̂
<̂
ˆ̂:

by� if y� > 0;
0 if y� D 0;
ay� if y� < 0:

It is convex and differentiable on Y�a = Y� = R.
On Xa × Y�a = [a, b] × R, the Lagrange form for this

nonconvex programming is well-defined by

L(x; y�) D y��x �W�(y�) � F(x)

D

8̂
<̂
ˆ̂:

xy� � by� � 1
2 kx

2 C f x if y� � 0;

xy� � ay� � 1
2 kx

2 C f x if y� < 0:

Since bothW� and F are convex, L(x, y�) is a supercrit-
ical point function. If x 2 Xk = [a, b], then

P(x) D sup
y�2Y�a

L(x; y�):

On the other hand, for any y� in the dual feasible
space

Y�s D
˚
y� 2 Y�a D R : ��y� D y� 2 X�a

�

D [ak � f ; bk � f ];

the dual function is obtained by

Pd (y�) D sup
x2Xa

L(x; y�)

D sup
x2R
f(�x)y� � F(x)g �W�(y�)

D F�(��y�) �W�(y�);

where

F�(��y�) D sup
x2Xa

f(�x)y� � F(x)g

D sup
x2R
fx(yC f ) �

1
2
kx2g

D
1
2k

(y� C f )2:
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Duality Theory: Biduality in Nonconvex Optimization, Fig-
ure 1
Biduality in constrained nonconvex optimization

Thus, the dual action Pd is well defined on Y�s by

Pd (y�) D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

1
2k (y

� C f )2 � by� if y� > 0;

1
2k f

2 if y� D 0;

1
2k (y

� C f )2 � ay� if y� < 0:

(22)

This is a double-well function on R (see Fig. 1.). The
dual problem

(Pd
inf) : Pd (y�)! min; 8y� 2 Y�s ;

is a convex optimization problem on either

Y�s
C
D
˚
y� 2 Y�s : y� > 0

�

or

Y�s
�
D
˚
y� 2 Y�s : y� < 0

�
:

In n-dimensional problems, this dual problem is much
easier than the primal problem. The criticality condi-
tion leads to

y� D

8̂
<̂
ˆ̂:

bk � f if y� > 0;
0 if y� D 0
ak � f if y� < 0:

It is easy to check that the following duality theorems
hold:

min
x2Xk

P(x) D min
y�2Y�s

Pd (y�);

max
x2Xk

P(x) D max
y�2Y�s

Pd (y�):

The graphs of P(x) and Pd(y�) are shown in Fig. 1.
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The concept of duality is one of the most successful
ideas inmodern mathematics and science. Inner beauty
in natural phenomena is bound up with duality, which
has always been a rich source of inspiration in human
knowledge through the centuries. Duality inmathemat-
ics, roughly speaking, is a fundamental concept that un-
derlies many aspects of extremum principles in natu-
ral systems. Eigenvectors, geodesics, minimal surfaces,
KKT conditions, harmonic maps, Hamiltonian canoni-
cal equations and equilibrium states of many field equa-
tions are all critical points of certain functions on some
appropriate constraint sets or manifolds. Considerable
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attention has been attracted on this fascinating research
subject during the last years. A comprehensive study
on duality theory in general nonconvex and nonsmooth
systems is given in [1]. In global optimization problems,
duality falls principally into three categories:
1) the classical saddle Lagrange duality (i. e. monodu-

ality) in convex optimization;
2) the nice biduality in convex Hamilton systems or the

d.c. programming (difference of convex functions);
and

3) the interesting triduality in general nonconvex sys-
tems.

Saddle LagrangeDuality

Let (X, X�) and (Y, Y�) be two pairs real vector spaces,
finite- or infinite-dimensional, and let h 
, 
 i: X × X�

! R and h 
; 
 i: Y� Y�! R be certain bilinear forms
which put the paired spaces (X, X�) and (Y, Y�) in
duality, respectively. In classical convex optimization,
a real-valued function L:X × Y�!R is said to be a sad-
dle function if it is convex in one variable and concave
in the other one.

A pair (x; y�) is called a right saddle point of L on
a subspace Xa × Ya� � X × Y� if

L(x; y�) � L(x; y�) � L(x; y�)

holds for any (x, y�) 2 Xa × Y�a .
A pair (x; y�) is called a left saddle point of L on

a subspace Xa × Y�a � X × Y� if it is a right saddle point
of �L on the subspace Xa × Y�a .

A pair (x; y�) 2 Xa � Y�a is called a critical point of
L if L is partially Gâteaux differentiable at (x; y�) and

DxL(x; y�) D 0; Dy�L(x; y�) D 0;

whereDxL:Xa!X� andDy�L:Y�a!Y denote, respec-
tively, the partial Gâteaux derivatives of L with respect
to x and y�.

Any critical point of a Gâteaux differentiable saddle
function is a saddle point. However, if (x; y�) is a saddle
point of L it does not follow that L is a saddle function.
In convex optimization problems, the following state-
ments are of important theoretical value.
S1) Under certain necessary and sufficient conditions,

suppose that

inf
x2Xa

sup
y�2Y�a

L(x; y�) D sup
y�2Y�a

inf
x2Xa

L(x; y�): (1)

A statement of this type is called a saddle-minimax
theorem and the pair (x; y�) is called a saddle-
minimax point of L on Xa × Y�a .

S2) Under certain conditions, suppose that a pair
(x; y�) 2 Xa � Y�a exists such that

L(x; y�) � L(x; y�) � L(x; y�) (2)

holds for any (x, y�) 2Xa × Y�a . A statement of this
type is called a right saddle-point theorem.

Let Xk be a subset of Xa such that Xk contains all point
u 2Xa for which the supremum supy� L(x, y�) is finite,
i. e.

sup
y�2Y�a

L(x; y�) < C1; 8x 2 Xk :

Dually, let Y�s be a subset of Y�a such that Y�s contains
all points y� 2 Y�a for which the infimum infx L(x, y�) is
finite, i. e.

inf
x2Xa

L(x; y�) > �1; 8y� 2 Y�s :

The sets Xk and Y�s may be either empty orXk =Xa and
Y�s = Y�a . The connection between the minimax theo-
rem and the saddle-point theorem is given by the fol-
lowing results.

Theorem 1 (Saddle-minimax theorem) Let L: Xa ×
Y�a ! R be a given arbitrary function. If there exists
a saddle-minimax point (x; y�) 2 Xa � Y�a such that

L(x; y�) D min
x2Xa

max
y�2Y�a

L(x; y�)

D max
y�2Y�a

min
x2Xa

L(x; y�);
(3)

then (x; y�) is a saddle point of L on Xa × Y�a .
Conversely, if L(x, y�) possesses a saddle point (x; y�)

on Xa × Y�a , then the saddle-minimax theorem in the
form

L(x; y�) D min
x2Xk

max
y�2Y�a

L(x; y�)

D max
y�2Y�s

min
x2Xa

L(x; y�)
(4)

holds.

Let L: Xa × Y�a ! R be a given arbitrary right saddle
function. For any fixed x 2 Xa, let

P(x) D sup
y�2Y�a

L(x; y�): (5)
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Let Xk � Xa be the domain of P such that P: Xk! R is
finite and Gâteaux differentiable. Then the inf-problem

(Pinf) : P(x)! min; 8u 2 Xk ; (6)

is called the primal problem.
Dually, for any fixed y� 2 Y�a , let

Pd (y�) D sup
x2Xa

L(x; y�) (7)

with domain Y�s � Y�a , on which, Pd:Y�s ! R is finite
and Gâteaux differentiable. Thus, the sup-problem

(Pd
sup) : Pd (y�)! max; 8y� 2 Y�s ; (8)

is referred as the dual problem. The problems (Pinf) and
(Pd

sup) are realisable if Xk and Y�s are not empty, i. e.,
there exists a pair (x; y�) 2 Xk � Y�s such that

P(x) D min
x2Xk

P(x) D inf
x2Xk

P(x);

Pd (y�) D max
y�2Y�s

Pd (y�) D sup
y�2Y�s

Pd (y�):

Theorem 2 (Saddle duality theorem) Let L: Xa ×
Y�a !R be a given arbitrary function such that P and
Pd are well-defined by (5) and (7) on the open subsets Xk

andY�s , respectively. If (x; y
�) is a saddle point of L onXk

× Y�s , P is Gâteaux differentiable at x, and Pd is Gâteaux
differentiable at y�, then DP(x) D 0, DPd (y�) D 0,
and

P(x) D L(x; y�) D Pd (y�): (9)

Theorem 3 (Weak duality theorem) The inequality

P(x) � Pd (y�) (10)

holds for all (x, y�) 2 Xk × Y�s .

Theorem 4 (Strong duality theorem) (x; y�) is
a saddle-point of L on Xk × Y�s � Xa × Y�a if and only
if the equality

P(x) D inf
x2Xk

P(x) D sup
y�2Y�s

Pd (y�) D Pd (y�) (11)

holds.

Fenchel–Rockafellar Duality

Very often, the primal function P: Xk! R can be writ-
ten as

P(x) DW(�x) � F(x);

where �: X! Y is a linear operator, W: Ya ! R and
F: Xa! R are Gâteaux differentiable real-valued func-
tions. The feasible set Xk � X is then defined by

Xk D fx 2 Xa : �x 2 Yag :

Clearly, P: Xk! R is convex if W is convex on Ya and
F is concave on Xa.

The conjugate function W�: Y�a ! R ofW(y) is de-
fined by the Fenchel transformation, i. e.

W�(y�) D sup
y2Ya

fhy; y�i �W(y)g; (12)

which is always l.s.c. and convex on Y�. The following
Fenchel–Young inequality

W(y) � hy; y�i �W�(y�) (13)

holds on Ya × Y�a . If W is strictly convex, and Gâteaux
differentiable on Ya � Y, then the following Legendre
duality relations

y� D DW(y), y D DW�(y�)

, hy; y�i DW(y)CW�(y�)

hold on Ya × Y�a . In this case, we have W(y) =W��(y),
the biconjugate of W, and the Fenchel transformation
(12) is equivalent to the classical Legendre transforma-
tion

W�(y�) D hy(y�); y�i �W(y(y�)):

The Lagrangian form associated with (Pinf) is de-
fined by

L(x; y�) D h�x; y�i �W�(y�) � F(x); (14)

which is Gâteaux differentiable on Xa × Y�a . The critical
condition DL(x; y�) D 0 leads to the Lagrange equa-
tions:

�x D DW�(y�); ��y� D DF(x); (15)

where ��: Y�a ! X�a is the adjoint operator of �.
Clearly, L: Xa × Y�a ! R is a right saddle function if
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F(x) is concave on Xa. For convex function W(y), we
have

P(x) D sup
y�2Y�a

L(x; y�); 8x 2 Xk:

The Fenchel conjugate function of a concave function
F: Xa! R is defined by

F�(x�) D inf
x2Xa
fhx; x�i � F(x)g: (16)

Thus, for any given dual admissible y� 2 Y�s with

Y�s D
˚
y� 2 Y�a : ��y� 2 X�a

�
;

the Fenchel–Rockafellar dual function Pd: Y�k ! R can
be obtained as

Pd (y�) D inf
x2Xa

L(x; y�) D F�(��y�) �W�(y�):

If P is Gâteaux differentiable onXk, the critical con-
dition DP(x) D 0 leads to the Euler–Lagrange equation
of the primal problem (Pinf):

��DW(�x) � DF(x) D 0: (17)

Similarly, the critical condition DPd (y�) D 0 gives the
dual Euler–Lagrange equation of (Pd

sup):

�DF�(��y�) � DW�(y�) D 0: (18)

Clearly, the critical point theorem (9) holds if the La-
grange equation (15), Euler–Lagrange equation (17)
and its dual equation (18) are equivalent to each oth-
ers.

For any given F and W, the weak duality theorem
(10) always holds on Xk × F�s . The difference inf P
� sup Pd is the so-called duality gap. For convex pri-
mal problem, the duality gap is zero and the strong
Lagrange duality theorem (11) holds, which is also re-
ferred as the Fenchel–Rockafellar duality theory.

Linear Programming and Central Path

Let us now demonstrate how the above scheme fits in
with finite-dimensional linear programming. Let X =
X� =Rn, Y =F� =Rm, with the standard inner products
hx, x�i = x| x� in Rn, and hy;y�i = y|y� in Rm. For fixed
x� D c 2 Rn and y D b 2 Rm , the primal problem is
a constrained linear optimization problem:

8<
:
min
x2Rn

hc; xi

s.t. �x D b; x � 0;
(19)

where � 2 Rm × n is a matrix, and its adjoint is simply
�� =�| 2Rn×m. To reformulate this linear constrained
optimization problem in themodel form (Pinf), we need
to set Xa = {x 2 Rnx� 0}, which is a convex cone in Rn,
Ya = {y 2 Rm:y = b}, a hyperplane in Rm, and let

F(x) D �hc; xi ; 8x 2 Xa;

W(y) D 0; 8y 2 Ya :

Thus on the primal feasible set

Xk D fx 2 Rn : �x D b; x � 0g

we have P(x) = W(�x)� F(x) = hc, xi. The conjugate
functions in this elementary case may be calculated at
once as

W�(y�) D sup
y2Ya

hy; y�i D hb; y�i ;

8y� 2 Y�a D Rm ;

F�(x�) D inf
x2Xa
hx; x� C ci D 0; 8x� 2 X�a ;

where X�a = {x� 2 Rn: x� + c � 0} is a polar cone of Xa.
Thus, on the dual feasible space

Y�s D fy� 2 Rm : ��y� C c � 0g ;

the problem dual to the linear programming (19) reads

max
p2Rm

Pd (y�) D �hb; y�i ; 8y� 2 Y�s : (20)

The Lagrangian L:Xa ×Y�a !R associated with this
constrained linear programming is

L(x; y�) D h�x; y�i � hb; y�i C hc; xi
D hx; ��y C ci � hb; y�i :

But for inequality constraints in Xa, the Lagrange mul-
tiplier x� =�� y� 2 Rn has to satisfy the following KKT
optimality conditions

�x D b; s D c C��y�;

x � 0; s � 0; s>x;D 0;
(21)

where the vector s 2 Rn is called the dual slacks.
The problem of finding (x; y�; s) satisfying (21) is also
known as the mixed linear complementarity problem.

By using the vector of dual slacks s 2 Rn, the dual
problem can be rewritten as

8<
:
max
p2Rm

hb; pi

s.t. ��y� C c � s D 0; s � 0:
(22)
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We can see that the primal variable x is the Lagrange
multiplier for the constraint ��y� + c � 0 in the dual
problem. However, the dual variables y� and s are re-
spectively Lagrange multipliers for the constraints �x
= b and x � 0 in the primal problem. These choices are
not accidents.

Theorem 5 The vector x 2 Rn is a solution of (19) if
and only if there exists a Lagrange multipliers (y�; s) 2
Rm � Rn for which the KKT optimality conditions (21)
hold for (x; y�; s). Dually, the vector (y�; s) 2 Rm �Rn

is a solution of (22) if and only if there exists a Lagrange
multiplier x 2 Rn such that the KKT conditions (21)
hold for (x; y�; s).

The vector (x; y�; s) is called a primal-dual solution of
(19). The so-called primal-dual methods in mathemat-
ical programming are those methods to find primal-
dual solutions (x; y�; s) by applying variants of New-
ton’s method to the three equations in (21) and modi-
fying the search directions and steplengths so that the
inequalities in (21) are satisfied at every iteration. If the
inequalities are strictly satisfied, the methods are called
primal-dual interior-point methods. In these methods,
the so called central path Cpath plays a vital role in the
theory of primal-dual algorithms. It is a parametrical
curve of strictly feasible points defined by

Cpath D
˚
(x� ; y�� ; s� )

> 2 R2nCm : � > 0
�
; (23)

where each point (x� , y�� , s� ) solves the following sys-
tem:

�x D b; ��y� C c D s;

x > 0; s > 0; ui si D �; i D 1; : : : ; n:
(24)

This problem has a unique solution (x� , y�� , s� ) for each
� > 0 if and only if the strictly feasible set

Fo D

�
(x; p; s) :

�x D b; ��y� C c D s;
x > 0; s > 0

	

is nonempty. A comprehensive study of the primal-dual
interior-point methods in mathematical programming
has been given in [3] and [2].
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Consider the following general nonconvex extremum
problem (P):

P(x) D ˚(x; �(x))! extremum; 8x 2 X; (1)

where X is a locally convex topological vector space
(l.c.s.), P : X ! R :D R [ f�1g [ fC1g is a non-
convex and nonsmooth extended function, whose ef-
fective domain

Xk D dom P D fx 2 X : jP(x)j < C1g

is a nonempty convex subset ofX; the operator� :X!
Y is a continuous, generally nonlinear, mapping from
X to another l.c.s. Y, and ˚ : X � Y ! R is an associ-
ated extended function. Since the cost function P(x) is
usually nonconvex, the problem (P) may possess many
locally extremum (either minimum or maximum) so-
lutions. The goal of global optimization is to find all the
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local extrema of P(x) over the feasible set Xk. Generally
speaking, traditional direct approaches and algorithms
for solving nonconvex, nonsmooth global optimization
problems are usually very difficult. The classical sad-
dle Lagrange duality methods as well as the well-known
Fenchel-Rockafellar duality theory can be used mainly
for solving convex problems. For nonconvex problems,
there exists a so-called duality gap between the primal
and the classical dual problems.

The canonical dual transformation method andas-
sociated triduality theory were proposed originally in
finite deformation theory [1]. The key idea of this
method is to choose a suitable nonlinear operator �:
X ! Y such that ˚(x, y) is either convex or concave
in each of its variables. This method can be used to
solve many nonconvex, nonsmooth global optimiza-
tion problems.

Canonical Dual Transformation

Let (X, X�) be a pair of real linear spaces, placed in du-
ality by a bilinear form h�, �i : X × X�! R. For a given
extended real-valued function P : X ! R, the subdif-
ferential of P at x 2 X is a convex subset @�P(x) � X�
such that for each x� 2 @�P(x), we have
˝
x�; x � x

˛
� P(x) � P(x); 8x 2 X:

Dually, the superdifferential of P at x 2 X is a convex
subset @CP(x) � X� such that for each x� 2 @CP(x) ,
we have
˝
x�; x � x

˛
� P(x) � P(x); 8x 2 X:

Clearly, we always have @+P = � @� (�P). In convex
analysis, it is convention that @� is simply written as @.
In nonconvex analysis, @stands for either @� or @+, i. e.

@ D f@�; @Cg:

If P is smooth, Gâteaux-differentiable at x 2 Xa � X ,
then

@P(x) D @�P(x) D @CP(x) D fDP(x)g;

where DP : Xa! X� denotes the Gâteaux derivative of
P at x.

Definition 1 The set of functions P : X ! R which
are either convex or concave is denoted by � (X). In

particular, let �̌ (X) denote the subset of functions P 2
� (X) which are convex and b� (X) the subset of P 2
� (X) which are concave.

The canonical function space � G(Xa) is a subset of
functions P 2 � (Xa) which are Gâteaux differentiable
on Xa � X and the duality mapping DP : Xa ! X�a �

X� is invertible.
The extended canonical function space � 0(X) is

a subset of functions P 2 � (X)which are either convex,
lower semicontinuous or concave, upper semicontinu-
ous, and if P takes the values ˙1, then P is identically
equal to˙1.

By the Legendre–Fenchel transformation, the supcon-
jugate function of an extended function P : X ! R is
defined by

P](x�) D sup
x2X
fhx; x�i � P(x)g:

By the theory of convex analysis, P] : X� ! ER :D
R[fC1g is always convex and lower semicontinuous,
i. e. P] 2 �̌0(X�). Dually, the subconjugate function of
P, defined by

P[(x�) D inf
x2X
fhx; x�i � P(x)g;

is always concave and upper semicontinuous, i. e. P[ 2
b� 0(X�), and P[ D �P]. Both the super- and subcon-
jugates are called Fenchel conjugate functions and we
write P� D fP[; P]g. Thus the extended Fenchel trans-
formation can be written as

P�(x�) D ext fhx; x�i � P(x) : 8x 2 Xg ; (2)

where ext stands for extremum. Clearly, if P 2 � 0(X),
we have the Fenchel equivalent relations, namely,

x� 2 @P(x), x 2 @P�(x�)
, P(x)C P�(x�) D hx; x�i : (3)

The pair (x, x�) is called the Fenchel duality pair on X ×
X� if and only if equation (3) holds on X × X�.

The conjugate pair (x, x�) is said to be a Legendre
duality pair on Xa × X�a � X × X� if and only if the
equivalent relations

x� D DP(x), x D DP�(x�)

, P(x)C P�(x�) D hx; x�i (4)

hold on Xa × X�a .
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Let (Y, Y�) be an another pair of locally convex
topological real linear spaces paired in separating dual-
ity by the second bilinear form h�; �i : Y × Y�! R. The
so-called geometrical operator � :X! Y is a continu-
ous, Gâteaux differentiable operator such that for any
given x 2 Xa � X, there exists a y 2 Ya � Y satisfying
the geometrical equation

y D �(x):

The directional derivative of y at x in the direction x 2
X is then defined by

ıy(x; x) :D lim
!0C

y(x C �x) � y(x)
�

D �t(x)x;

where �t(x) D D�(x) denotes the Gâteaux deriva-
tive of the operator � at x. For a given y� 2 Y�, G�y (x)
= h�(x);y�i is a real-valued function of x on X. Its
Gâteaux derivative at x 2 Xa in the direction x 2 X

is

ıGy�(x; x) D h�t(x)x; y�i D
˝
x; ��t (x)y

�
˛
;

where ��t (x) : Y� ! X� is the adjoint operator of �t

associated with the two bilinear forms.
Let ˚ : X � Y ! R be an extended function such

that P(x) = ˚(x, �(x)). If ˚ : X � Y ! R is an ex-
tended canonical function, i. e.˚ 2 � 0(X) × � 0(Y), the
duality relations between the paired spaces (X,X�) and
(Y, Y�) can be written as

x� 2 @x˚(x; y); y� 2 @y˚(x; y): (5)

On the product spaceXa ×Ya �X × Y, if the canon-
ical function ˚(x, y) is finite and Gâteaux differentiable
such that the feasible space Xk can be written as

Xk D fx 2 Xa : �(x) 2 Yag ; (6)

then on Xk, the critical condition ıP(x ; x) D

hx;DP(x)i D 0, 8x 2 Xk , leads to the Euler equation

Dx˚(x; �(x))C��t (x)Dy˚(x; �(x)) D 0; (7)

where Dx˚ and Dy˚ denote the partial Gâteaux
derivatives of ˚ with respect to x and y, respectively.
Since ˚ 2 � G(Xa) × � G(Ya) is a canonical function,
the Gâteaux derivative D˚ : Xa × Ya ! X�a × Y�a �

X� × Y� is a monotone mapping, i. e. there exists a pair
(x�; y�) 2 X� � Y� such that

�x� D Dx˚(x; �(x)); y� D Dy˚(x; �(x)):

Thus, in terms of canonical dual variables x� and y�,
the Euler equation (7) can be written in the so-called
balance (or equilibrium ) equilibrium

x� D ��t (x)y
�; (8)

which linearly depends on the dual variable y�.

Definition 2 Suppose that for a given problem (P), the
geometrical operator � : X! Y can be chosen in such
a way that P(x) = ˚(x, �(x)), ˚ 2 � G(Xa) × � G(Ya)
and Xk = {x 2 Xa :�(x) 2 Ya}. Then
1) the transformation {P; Xk}! {˚ ; Xa × Ya} is called

the canonical transformation, and ˚ : Xa × Ya! R
iscalled the canonical function associated with�;

2) the problem (P) is called geometrically nonlinear
(respectively, geometrically linear) if �: X ! Y is
nonlinear (respectively, linear); it is called physically
nonlinear (respectively, physically linear) if the du-
ality mappingD˚ :Xa × Ya!X�a × Y�a is nonlinear
(respectively, linear); it is called fully nonlinear if it
is both geometrically and physically nonlinear.

The canonical transformation plays a fundamental role
in duality theory of global optimization. By this def-
inition, the governing equation (7) for fully nonlin-
ear problems canbe written in the tricanonical forms,
namely,
1) geometrical equation: y =�(x);
2) physical relations: (� x�, y�) 2 @˚(x, y);
3) balance equation: x� =��t (x) y�.

Since � : X! Y is Gâteaux differentiable, for any
given x 2 X we have the operator decomposition

�(x) D �t(x)x C�c(x); (9)

where �c = � � �t is the complementary operator of
�t . By this operator decomposition, the relation be-
tween the two bilinear forms reads

h�(x); y�i D
˝
x; ��t (x)y

�
˛
� G(x; y�);

where G(x, y�) = h� �c(x); y�i is the so-called comple-
mentary gap function, introduced in [2]. This gap plays
an important role in the canonical dual transformation
methods. A framework for the fully nonlinear system is

x 2 X  hx; x�i ! X� 3 x�

�tC�cD� # " ��t D(���c )�

y 2 Y  hy; y�i ! Y� 3 y�
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Extensive illustrations of the canonical transformation
and the tricanonical forms in mathematical physics and
variational analysis can be found in [1].

Very often, the extended canonical function ˚ can
be written in the form

˚(x; y) DW(y) � F(x);

where F 2 � (X) andW 2 � (Y) are extended canonical
functions. The duality relations (5) in this special case
take the forms

x� 2 @F(x); y� 2 @W(y):

If F 2 � G(Xa) and W 2 � G(Ya) are Gâteaux differen-
tiable, the Euler equation (7) reads

��t (x)DW(�(x)) � DF(x) D 0:

If � : X! Y is linear, and W Y! R is quadratic
such that DW = Cy, where C : Y! Y� is a linear opera-
tor, then the governing equations for linear system can
be written as

��C�x D Ax D x�:

For conservative systems, the operator A = �� C� is
usually symmetric. In static systems, C is usually posi-
tive definite and the associated total potential P is con-
vex. However, in dynamical systems, C is indefinite and
P is called the total action, which is usually a d.c. func-
tion in convex Hamilton systems.

Triality Theory

We assume that for any given nonconvex extended
function P : X ! R, there exists a general nonlinear
operator� :X! Y and a canonical functionW 2 � (Y)
suchthat the canonical transformation can be written as

P(x) D W(�(x)) � hx; ci ; (10)

where c 2X� is a given source variable. Since F(x) = x, c
is a linear function, the HamiltonianH(x, y�) =W�(y�)
+ x, c is a canonical function on Z = X × Y� and the
extended Lagrangian reads

L(x; y�) D h�(x); y�i �W�(y�) � hx; ci : (11)

For a fixed y� 2 Y�, the convexity of L(�; y�) : X ! R
depends on�(x) and y� 2 Y�.

Let Za = Xa × Y�a � Z be the effectivedomain of L,
and let Lc � Za be a critical point set of L, i. e.

Lc D
˚
(x; y) 2 Xa � Y�a : DL(x; y�) D 0

�
:

For any given critical point (x; y�) 2 Lc , we let Xr ×
Y�r be its neighborhood such that on Xr × Y�r , the pair
(x; y�) is the only critical point of L. The following re-
sultis of fundamental importance in global optimiza-
tion.

Theorem 3 (Triality theorem) Suppose that W 2

�̌ (Ya) is convex, (x; y�) 2 Lc is a critical point of L
and Xr × Y�r is a neighborhood of (x; y�).

If
˝
�(x); y�

˛
is convex on Xr, then

L(x; y�) D min
x2Xr

max
y�2Y�r

L(x; y�)

D max
y�2Y�r

min
x2Xr

L(x; y�): (12)

However, if
˝
�(x); y�

˛
is concave on Xr, then either

L(x; y�) D min
x2Xr

max
y�2Y�r

L(x; y�)

D min
y�2Y�r

max
x2Xr

L(x; y�) ; (13)

or

L(x; y�) D max
x2Xr

max
y�2Y�r

L(x; y�)

D max
y�2Y�r

max
x2Xr

L(x; y�): (14)

Since W 2 � (Ya) is a canonical function, we always
have

P(x) D ext fL(x; y�) : y� 2 Y�g ; 8x 2 Xk : (15)

On the other hand, for a given Gâteaux differentiable
geometrical mapping� :Xa! Ya, the criticality condi-
tion DxL(x; y�) D 0 leads to the equilibrium equation

��t (x)y
� D c: (16)

If there exists a subspace Y�s � Y�a such that for any y�

2 Y�s and a given source variable c 2 X�, the equation
(16) can be solved for x D x(y�), then by the operator
decomposition (9), the dual function Pd : Y�s ! R can
be written explicitly in the form

Pd (y�) D sta fL(x; y�) : x 2 Xg
D �Gd (y�) �W�(y�); 8y� 2 Y�s ;
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where Gd : Y�! R is the so-called pure complementary
gap function, defined by

Gd (y�) D G(x(y�); y�) D �h�c (x(y�)); y�i :

For any given critical point (x; y�) 2 Lc , we have
Gd (y�) D hx; ci �

˝
�(x(y�)); y�

˛
. Thus, the Legendre

duality relations among the canonical functions W and
W� lead to

P(x) � Pd (y�) D 0; 8(x; y�) 2 Lc : (17)

This identity shows that there is no duality gap between
the nonconvex function P and its canonical dual func-
tion Pd. Actually the duality gap, which exists in clas-
sical duality theories, is now recovered by the comple-
mentary gap function G(x; y�).

Theorem 4 (Triduality theorem) Suppose that W 2

�̌ (Ya) is a critical point of L and Xr × Y�r is a neighbor-
hood of (x; y�). If

˝
�(x); y�

˛
is convex on Xr, then

P(x) D min
x2Xr

P(x), Pd (y�) D max
y�2Y�r

Pd (y�):

However, if
˝
�(x); y�

˛
is concave on Xr, then

P(x) D min
x2Xr

P(x), Pd (y�) D min
y�2Y�r

Pd (y�);

P(x) D max
x2Xr

P(x), Pd (y�) D max
y�2Y�r

Pd (y�):

Example 5 We now illustrate the application of the
interesting triduality theory for solving the following
nonconvex optimization problem in X = Rn,

P(x) D
a
2
(
1
2
kAxk2 � �)2 � x>c ! sta; 8x;

where a, � > 0 are given parameters, c 2 Rn is a given
vector, and A : Rn ! Rm is a matrix. The Euler equa-
tion associated with this nonconvex stationary problem
is a nonlinear algebraic equation in Rn

a(
1
2
kAxk2 � �)Cx D c;

whereC =A|A = C| 2Rnn. We are interested in finding
all the critical points of P. To set this nonconvex prob-
lem in our framework, we let X = Rn = X�, and � : Rn

! Y = R a quadratic operator

y D �(x) D
1
2
kAxk2 � � D

1
2
x>Cx � �:

Since F(x) = hx, ci = x| c is a linear function on Rn,
the admissible space Xa = X = Rn. By the fact that x� =
DF(x) = c, the range for the canonical mapping DF : X
! X� = R is a hyperplane in Rn, i. e.

X�a D fx� 2 Rn : x� D cg :

The feasible set for the primal problem is Xk = {x 2 Xa

:�(x) 2 Ya} = Rn.
By the fact that x| Cx � 0, 8x 2 Xa = X = Rn,

the range for the geometrical mapping �: Xa ! R is
a closed convex set in R

Ya D fy 2 R : y � ��g � Y D R:

On the admissible subset Ya � Y = R, the canonical
functionW(y) = (1/2)ay2 is quadratic. The range for the
constitutive mapping DW: Ya! Y� = R is also a closed
convex set in R,

Y�a D fy� 2 R : y� � �a�g :

On Y�a , the Legendre conjugate ofW isalso strictly con-
vex

W�(y�) D
1
2
a�1y�2; (18)

and the Legendre duality relations hold on Ya × Y�a .
On Xa × Y�a = Rn × R, the extended Lagrangian in

this case reads

L(x; y�) D
1
2
y�x>Cx � �y� �

1
2
a�1y�2 � x>c:

It is easy to check that the dual function associated with
L is

Pd (y�) D
1
2
(y�)�1c>Cc � �y� �

1
2a

y�2:

The dual Euler–Lagrange equation is an algebraic equa-
tion in R:

(�C a�1y�)y�2 D
1
2
�2; (19)

where �2 = c|Cc is a constant. Since C 2 Rnn is positive
definite, this equation holds only on Y�a .

In algebraic geometry, the dual Euler–Lagrange
equation (19) is the so-called singular algebraic curve in
(y�, �)-space (see Fig. 1). For a given parameter � and c
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Duality Theory: Triduality in Global Optimization, Figure 1
Singular algebraic curve

2 Rn, this dual equation has at most three real roots y�k
2 Y�a , k = 1, 2, 3, which leads to the primal solution

xk D y�k C
Cc; k D 1; 2; 3;

where C+ stands for the generalized inverse of C. We
know that each (xk, y�k ) is a critical point of L and

P(xk) D L(xk ; y�k ) D Pd (y�k ); k D 1; 2; 3:

In the case of n = 1, the cost function

P(x) D
1
2
a
�
1
2
x2 � �

�2

� cx

is a double-well function (see Fig. 2, solid line), which
appears in many physical systems. The graph of the
canonical dual function

Pd (y�) D
1
2
c2

y�
� �y� �

y�2

2a

has two branches (Fig. 2, dashed line). It is easy to prove
(see [1]) that if � > �c = 1.5 (�/a)2/3, the dual Eu-
ler–Lagrange equation (19) has three roots y�1 > 0 > y�2
> y�3 , corresponding to three critical points of Pd (see
Fig. 2). Then, y�1 is a global maximizer of Pd, x1 = �/y�1
is a global minimizer of P, Pd takes local minimum and
local maximum values at y�2 and y�3 , respectively, x2 =
�/y�2 is a local maximizer of P, while x3 = �/y�3 is a local
minimizer.

The Lagrangian associated with this double-well en-
ergy is

L(x; y�) D
1
2
x2y� � (

1
2a

y�2 C �y�) � y�x:

It is a saddle function for y� > 0. If y� < 0, it is a super-
critical point function (see Fig. 3).

Duality Theory: Triduality in Global Optimization, Figure 2
Graphs of P(u) and itsdual Pd(y�)

Duality Theory: Triduality in Global Optimization, Figure 3
Lagrangian for the double-well energy
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Introduction

We consider the application of Dykstra’s algorithm for
solving the following optimization problem

min
x2˝
kx0 � xk ; (1)

where x0 is a given point, ˝ is a closed and convex
set, and kzk2 D hz; zi defines a real inner product in
the space. The solution x* is called the projection of x0

onto ˝ and is denoted by P˝(x0). Dykstra’s algorithm
for solving (1) has been extensively studied since it fits
in many different applications (see [5,21,22,23,27,28,
29,32,24,42,42,45]).

For simplicity, we consider the case

˝ D \
p
iD1˝i ; (2)

where ˝i are closed and convex sets in Rn , for i D
1; 2; : : : ; p, and ˝ ¤ ;. Moreover, we assume that
for any z 2 Rn the calculation of P˝ (z) is not trivial;
whereas, for each ˝i , P˝i (z) is easy to obtain as in the
case of a box, an affine subspace, or a sphere. For the
not feasible case (i. e., when ˝ D ;) the behavior of
Dykstra’s algorithm is treated in [2,6,37].

Dykstra’s alternating projection algorithm is a cyclic
scheme for finding asymptotically the projection of
a given point onto the intersection of a finite number
of closed convex sets. Roughly speaking, it iterates by
projecting in a clever way onto each of the convex sets
individually. The algorithm was originally proposed by
Dykstra [20] for closed and convex cones in the Eu-
clidean spaceRn , and later extended by Boyle and Dyk-
stra [7] for closed and convex sets in a Hilbert space.
It was rediscovered by Han [30] using duality theory,
and the linear rate of convergence was established by
Deutsch and Hundal [18] for the polyhedral case (see
also [19,43,44]).

Dykstra’s algorithm belongs to the general family of
alternating projection methods, that dates back to von
Neumann [46] who treated the problem of finding the
projection of a given point in a Hilbert space onto the
intersection of two closed subspaces. Later, Cheney and
Goldstein [15] extended the analysis of von Neumann’s
alternating projection scheme to the case of two closed
and convex sets. In particular, they established con-
vergence under mild assumptions. However, the limit
point need not be the closest in the intersection. There-
fore, the alternating projection method, proposed by
von Neumann, is not useful for problem (1). Fortu-
nately, Dykstra [20] found the clever modification of
von Neumann’s scheme for which convergence to the
solution point is guaranteed. For a complete discussion
on alternating projection methods see Deutsch [17].

Dykstra’s algorithm has been extended in several
different ways. Gaffke and Mathar [24] proposed, via
duality, a family of simultaneous Dykstra’s algorithm
in Hilbert space. Later Iusem and De Pierro [37] es-
tablished the convergence of the simultaneous ver-
sion considering also the inconsistent case in the Eu-
clidean space Rn . Bauschke and Borwein [2] further
analyzed Dykstra’s algorithm for two sets, that appears
frequently in applications and in particular generalized
the results in [37]. In [36] it was established that for
linear inequality constraints the method of Dykstra re-
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duces to the method proposed by Hildreth [33] in his
pioneer work on dual alternating projections. See also
[40] for further analysis and extensions.

Dykstra’s algorithm has also been generalized by
Deutsch and Hundal [35] to an infinite family of sets,
and also to allow a random ordering, instead of cyclic,
of the projections onto the closed convex sets. More re-
cently, it has also been generalized by Bregman et al. [9]
to avoid the projection onto each one of the convex sets
in every cycle. Instead, projections onto either a suit-
able half space of the intersection of two half spaces
are used. Further results concerning the connection be-
tween Bregman distances and Dykstra’s algorithm can
be found in [3,4,8,14]. For the advantages of project-
ing cyclically onto suitable half spaces, see the previous
work by Iusem and Svaiter [38,39].

A computational experiment comparing Dykstra’s
algorithm and the Halpern-Lions-Wittmann-Bauschke
algorithm [1] on linear best approximation test prob-
lems can be found in [12].

Formulations

Dykstra’s Algorithm

Dykstra’s algorithm solves (1), (2) by generating two
sequences: the iterates fxk

i g and the increments fyki g.
These sequences are defined by the following recursive
formulae:

xk
0 D xk�1

p ;

xk
i D P˝i (x

k
i�1 � yk�1i ); i D 1; 2; : : : ; p ;

yki D xk
i � (xk

i�1 � yk�1i ); i D 1; 2; : : : ; p ;

(3)

for k D 1; 2; : : : with initial values x0p D x0 and y0i D 0
for i D 1; 2; : : : ; p.

Remarks
1. For the sake of simplicity, the projecting control in-

dex i(k) used in (3) is the most common one: i(k) D
kmod p C 1, for all k � 0. However, more ad-
vanced control indices can also be used, as long as
they satisfy some minimal theoretical requirements
(see e. g., [35]).

2. The increment yk�1i associated with˝i in the previ-
ous cycle is always subtracted before projecting onto
˝i . Only one increment (the last one) for each ˝i

needs to be stored.

3. If ˝i is a closed affine subspace, then the operator
P˝i is linear and it is not required, in the kth cycle, to
subtract the increment yk�1i before projecting onto
˝i . Thus, for affine subspaces, Dykstra’s procedure
reduces to the alternating projection method of von
Neumann [46].

4. For k D 1; 2; : : : and i D 1; 2; : : : ; p, it is clear from
(3) that the following relations hold

xk�1
p � xk

1 D yk�11 � yk1 ; (4)

xk
i�1 � xk

i D yk�1i � yki ; (5)

where x0p D x0 and y0i D 0, for all i D 1; 2; : : : ; p.
For the sake of completeness we now present the key
theorem associated with Dykstra’s algorithm.

Theorem 1 Boyle and Dykstra, 1986 [7] Let
˝1; : : : ;˝p be closed and convex sets of Rn such that
˝ D \

p
iD1˝i ¤ ;. For any i D 1; 2; : : : ; p and any

x0 2 Rn , the sequence fxk
i g generated by (3) converges

to x� D P˝ (x0) (i. e., kxk
i � x�k ! 0 as k!1).

We now discuss the delicate issue of stopping Dykstra’s
algorithm within a certain previously established toler-
ance that indicates the distance of the current iterate to
the unique solution.

Difficulties with some Commonly Used Stopping
Criteria

In some applications it is possible to obtain a some-
how natural stopping rule, associated with the prob-
lem at hand. For example, when solving a linear system,
Ax D b, by alternating projection methods [10,25],
the residual vector (r(x) D b � Ax) is usually avail-
able and yields some interesting and robust stopping
rules. Another example appears in image reconstruc-
tion for which a good and feasible image tells the user
that it is time to stop the process [13,16]. Similar cir-
cumstances are present in some other specific applica-
tions (e. g. saddle point problems [31], and molecular
biology [28,29]).

However, in general, this is not the case, and we
are left with the information produced only by the in-
ternal computations, i. e., the sequence of iterates and
perhaps the sequence of increments, and some inner
products. For this general case, a popular stopping rule
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Dykstra’s Algorithm and Robust Stopping Criteria, Figure 1
Feasible set˝ D˝1 \˝2 in R2

is to monitor the subsequence of projections onto one
particular convex set, ˝i , and stop the process when
the distance, in norm, of two consecutive projections is
less than or equal to a previously established tolerance
[26,27,32,41].

Another commonly used criterion, that is claimed
to improve the previous one (e. g. [7,22,28,45]) is to
somehow compute an average of all the projections at
each cycle of projections, and then stop the process
when the distance, in norm, of two consecutive of those
average projections is less than or equal to a previously
established tolerance.

Finally, we would like to mention that another crite-
rion, that is also designed to improve any of the two cri-
teria above, is to check any of the previously described
rules during N consecutive cycles, where N is a fixed
positive integer.

None of these stopping rules is a trustable choice.
In [6], Birgin and Raydan presented the example below
to establish that they can fail even for a two dimensional
problem. (see Figs. 1 and 2).

Consider the closed and convex set ˝ D ˝1 \˝2,
where˝1 D fx 2 R2 j x1Cx2 � 10g is a half space and
˝2 D fx 2 R2 j 3 � x1 � 10; 0 � x2 � 4g is a box.
This closed and convex set in R2 is shown in Fig. 1.

Let x0 D (�49; 50)T and let us use Dykstra’s al-
gorithm to find the closest point to x0 in ˝ . In Fig. 2

Dykstra’s Algorithm and Robust Stopping Criteria, Figure 2
First two cycles of Dykstra’s algorithm to find the projection
of x0 D (�49; 50)T onto˝ D˝1 \˝2

we can see the first two cycles of this convergent pro-
cess. Since y01 D y02 D 0 (null initial increments)
then for the first cycle we project x0 onto ˝1 to ob-
tain p2 D x11 D (�44:5; 54:5)T and then we project
p2 onto ˝2 to obtain p3 D x12 D (3; 4)T . For the sec-
ond cycle, the increments are not null (y11 D (4:5; 4:5)T

and y12 D (47:5;�50:5)T), and we start from p3. First
we project p4 D p3 � y11 onto ˝1 to obtain p5 D x21 .
Then we project p6 D p5 � y12 onto ˝2 to obtain p3
again. Hence x22 D x12 . The increment associated with
˝2 is large enough to take the iterate back to the quad-
rant where the projection onto the box is again p3. As
discussed in [6], this phenomenon will occur until cy-
cle 32, i. e., p3 D x12 D x22 D � � � D x322 .

Moreover, by choosing x0 far enough, this mislead-
ing event can be repeated for as many cycles as any pre-
viously established positive integer N. Eventually the
size of the increments will be reduced and convergence
to x* will be observed.
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Robust Stopping Criteria

After a close inspection of the proof of the Boyle and
Dykstra’s theorem, Birgin and Raydan [6] proposed
some robust stopping criteria for Dykstra’s algorithm.
For that they first established the following result.

Theorem 2 Let x0 be any element of Rn. Consider
the sequences fxk

i g and fy
k
i g generated by (3) and de-

fine ck as

ck D
kX

mD1

pX
iD1

kym�1i � ymi k
2

C 2
k�1X
mD1

pX
iD1

hymi ; x
mC1
i � xmi i : (6)

Then, in the kth cycle of Dykstra’s algorithm,

kx0 � x�k2 � ck : (7)

Moreover, at the limit when k goes to infinity, equality is
attained in (7).

Based on the previous theorem, let us now write ck as
follows:

ck D ckL C ckS ;

where

ckL D
kX

mD1

cmI ; (8)

cmI D
pX

iD1

kym�1i � ymi k
2 (9)

and

ckS D 2
k�1X
mD1

pX
iD1

hymi ; x
mC1
i � xmi i :

Both ckL and ckS are monotonically nondecreasing by
definition. Moreover in [6], the following theorem is
also established.

Theorem 3 Consider the sequences fxk
i g and fy

k
i g gen-

erated by (3), and ck, ckL and ckI as defined in (6), (8)
and (9), respectively. For any k 2 N , if xk ¤ x� then
ckC1
I > 0 and, hence, ckL < ckC1

L and ck < ckC1.

The results established in Theorems 2 and 3 are com-
bined in [6] to propose robust stopping criteria. No-
tice that fckLg and {c

k} are monotonically increasing and

convergent, and also that fckI g converges to zero. There-
fore we can stop the process when

ckI D
pX

iD1

kyk�1i � yki k
2 � "

or, similarly, when

ck � ck�1 D ckI C 2
pX

iD1

hyk�1i ; xk
i � xk�1

i i � " ; (10)

where " > 0 is a sufficiently small tolerance. As ck may
grow fast, computing ck � ck�1 may give inaccurate re-
sults due to loss of accuracy in floating point represen-
tation and, hence, cancellation. So, for the criterion in
(10), it is recommendable to test convergence with the
second expression.

The computation of ckI involves the squared-norm
kyk�1i �yki k

2, for i D 1; 2; : : : ; p. By (5), yki D yk�1i Cv,
where v D xk

i � xk
i�1 is a temporary n-dimensional ar-

ray needed in the computation of Dykstra’s algorithm.
So, the computational cost involved in the calculation
of ckI is just the cost of the extra inner product hv; vi at
each iteration.

The computation of ck involves the calculation of
ckI plus an extra term. The computational of this extra
term is also small and involves an inner product and the
difference of two vectors per iteration. But, in contrast
with the computation of ckI which does not require ad-
ditional savings, the computation of the extra term re-
quires to save p extra n-dimensional arrays (the same
amount of memory required in Dykstra’s algorithm to
save the increments). So, the computation of ck requires
some additional calculations and memory savings, and
hence it is more expensive. However, it also has the ad-
vantage of revealing the optimal distance: kx0 � x�k2,
that could be of interest in some applications.

We close this section with some comments con-
cerning the behavior of the stopping criteria when the
problem is not feasible. In this case (˝ D ;), there
is no solution and we know from Theorem 3 that the
sequences fckLg and fc

kg are monotonically increas-
ing. Moreover, under some mild assumptions on the
sets ˝i , the sequences fxk

i g converge for 1 � i �
p, and there exists a real constant ı > 0 such thatPp

iD1 kx
k
i�1 � xk

i k
2 � ı for all k. A discussion on this

topic is presented in [2, Section 6], including a notion



832 D Dykstra’s Algorithm and Robust Stopping Criteria

of distance between all the sets ˝i (see also [37]). Now
using (5), we obtain

pX
iD1

kxk
i�1 � xk

i k
2 D

pX
iD1

kyk�1i � yki k
2 D ckI :

Therefore, the sequence fckI g remains bounded away
from zero, whereas fckLg and {ck} tend to infinity. Con-
sequently, none of the proposed stopping criteria will
be satisfied for any k, as expected.
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Dynamic programming deals with optimal decision
making problems in the presence of uncertainty that
addresses systems in which events occur sequential. In
general the state transitions are described by stationary
dynamic systems of the form:

xkC1 D f (xk; uk; !k ); k D 0; : : : ;

where for each time instance (stage) k, the state of the
system is an element of the space S, the control ac-
tion u that is to be implemented so as to achieve op-
timality belong to a space C, and finally the uncertainty
is modeled through a set of random disturbances !
that belong to a countable set D. Furthermore, it is as-
sumed that the control uk is constrained to take values
in a given nonempty set U(xk) 2 C, which depends of
the current state xk. The random disturbances !k, k =
0, . . . , have identical statistics and the probability distri-
butions P(�jxk; uk) are defined onD. These may depend
explicitly on xk and uk but not on prior disturbances.
Given an initial state x0, we seek a policy  such that 
= {�0, �1, . . . } for which:

�k : S ! C !; �k(xk) 2 U(xk); 8xk 2 S;

that minimizes a cost function defined as:

J� (x0) D lim
N!1

E

( N�1X
kD1

˛k g(xk ; �k(xk); !k )

)
:

The function g() is the cost per stage such that: g: S ×
C × D! R and is assumed to be given. Finally, the pa-
rameter ˛ is termed discount factor and it holds that: 0
< ˛ � 1. We denote by ˘ the set of all admissible poli-
cies  = {�0, �1, . . . }, that is the set of all sequences of
such functions for which:

�k : S ! C; �k(xk) 2 U(xk); 8xk 2 S:

The optimal cost function J� is then defined as:

J� D min
�2˘

J� (x); x 2 S:

An admissible policy of the form  = {�, �, . . . } is
termed stationary and its corresponding cost is J
.

When studying problems of this kind the assump-
tion is made that either the discount factor is ˛ < 1
(discounted problems, [3]) or that naturally there ex-
ists a special cost-free absorbing state (stochastic short-
est path problems, [3]). In either of these two cases the
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total expected cost is finite, and the minimization, the
way it was previously stated, is well defined. In situa-
tions where either the discount factor is 1, or a terminal
state does not exist it is more meaningful to optimize an
average expected cost as:

J� (x0) D lim
N!1

1
N
E

( N�1X
kD0

g(xk; uk ; !k)

)
:

The problems are known as average cost per stage prob-
lems and although they bare various similarities with
both discounted and stochastic shortest path problems,
they have some distinct characteristics. One of the ear-
liest studies was that of D. Blackwell, [7], which made
the connection between the optimal average return and
the optimal return for values of ˛! 1. Precisely these
characteristics make the analysis of average cost per
stage problems the target of intense research, [1]. Con-
nections are made, for developing the associated the-
ory, with both the associated discounted problem, but
also recently with an associated stochastic shortest path
problem, [4].

Since the theory for analyzing average cost dynamic
programming problems has been largely based on the
associated theory for discounted and stochastic shortest
path problems, most of the results and computational
methods bare major similarities. As a prelude to what
follows, it should be pointed out that for the average
cost per stage problems:
1) the optimal average cost per stage is independent of

the initial state for most problems;
2) Bellman’s equationwill take a slightly modified form

that would include differential cost for each state;
3) there exist computational analogues of all methods

developed for either discounted or stochastic short-
est path problems.

The cost function of average cost per stage problems are
closely related the associated ˛-discounted problem for
a given stationary policy as follows:
� For any stationary policy� and for any ˛ 2 (0, 1) we

have:

J˛;
 D (1 � ˛)�1 J
 C h
 C O(j1 � ˛j);

where

J
 D

 
lim
n!1

1
N

N�1X
kD1

Pk



!
g


is the average cost corresponding to policy �, for

a process with a transition probability matrix P
 and
costs g
. The matrix O is such that: lim˛! 1 O(|1�
˛|) = 0, and the vector h
 satisfies: J
 + h
 = g
 +
P
h
.

In the above, the matrix P
 is the transition probability
matrix for a given stationary policy �, given by:

P
 D

0
@
p11(�(1)) � � � p1n(�(1))
� � � � � � � � �

pn1(�(1)) � � � pnn(�(n))

1
A

and g
 the associated cost vector:

g
 D

0
@
g(1; �(1))
� � �

g(n; �(n))

1
A :

The vector h
 is termed differential cost vector, and it
represents the difference in N-stage expected optimal
cost due to starting at stage i rather than starting at
stage j. The key optimality results irrespective of ini-
tial states is based on ideas first formulated in [6]. An
important element of this analysis is that of a unichain
policy. Given a stationary-state Markov chain, [10], the
subset of states that communicate, i. e., there exist tran-
sitions k1 and k2 for which state transitions probabilities
pk1i j and pk2ji are positive, is termed a recurrent class of
states. States that do not belong to a recurrent class are
termed transient. A stationary policy whose associated
Markov chain has a single recurrent class and a possi-
bly empty set of transient states is called unichain. In
view of the above, the form of the Bellman’s equation
for characterizing an optimal policy, [9], for the aver-
age cost per stage problem takes the following from:
� Assume that any of the following conditions hold:

1) Every policy that is optimal within the class of
stationary policies is unichain.

2) For every two states i and j, there exists a station-
ary policy (i, j), such that for some k:

P(xk D jjx0 D i; ) > 0:

3) There exist a state t, a constant L > 0, and ˛ 2
(0; 1) such that:

jJ˛(i) � J˛(t)j � L;

i D 1; : : : ; n;

˛ 2 (˛; 1);

where J˛ is the ˛-discounted optimal cost vector.
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Then:

1) The optimal average cost per stage cost has the
same value, �, for all intimal states, and it satis-
fies:

� D lim
˛!1

(1 � ˛)J˛(i);

i D 1; : : : ; n:

2) For any state t, the vector of differential cost, h is
given by:

h(i) D lim
˛!1

(J˛(i) � J˛(t));

i D 1; : : : ; n;

together with �, satisfies Bellman’s equation:

�C h(i)

D lim
u2U(i)

2
4g(i; u)C

nX
jD1

pi j(u)h( j)

3
5 ;

i D 1; : : : ; n;

and � is the optimal average cost per stage for all
states i, i. e.,

� D J�(x) D min
�

J� (i);

i D 1; : : : ; n:

The above result is also discussed in [2] where the
minimization of an expected cost without discounting
is considered. All classical methods for computing op-
timal policies and costs in dynamic programming have
their counterparts for addressing average cost per stage
problems. Certain alterations are nevertheless neces-
sary. Let us consider first the value iterationmethod ex-
haustively analyzed in [11,12]. This is a method based
on the premise that the limit of steps of the basic dy-
namic programming algorithm:

lim
k!1

1
k
Tk J D J�:

Two issues arise with average cost per stage problems.
First, some elements of the sequence TkJ may diverge
to +1 or �1making the numerical calculation trou-
blesome. Furthermore, since we found that the quantity
described as the differential cost is important it would

be appropriate to develop methods that allow the paral-
lel computation of h as well. [14] developed the funda-
mentals based on which a relative value iteration of the
form:

hkC1(i) D (Thk)(i) � (Thk)(t);
i D 1; : : : ; n;

for some fixed state t, converges to vector h such that
(Th)(t) is equal to the optimal average cost per stage for
all initial states, and h is the associated differential cost
vector. [3] discusses various technical details required
for proving convergence. Tight bounds that could im-
prove the computational behavior of the value iteration
method were proposed by [8] which modified the ap-
proach set forth in [14] to prove that upper and lower
bounds on the maximal gain could be readily obtained.
These are given according to:

ck � ckC1 � � � ckC1 � ck;

where � is the optimal average cost per stage for all ini-
tial states and

ck D min
i
[(Thk)(i) � hk(i)];

ck D max
i
[(Thk)(i) � hk(i)]:

Recently, [4], by exploiting the connection between the
average cost and the stochastic shortest path problem
developed a new value iteration method by making use
of weighter sup-norm contraction arising in the stochas-
tic shortest path problem. One of the key advantages
of this approach is that it admits a Gauss–Seidel im-
plementation, thus it is amenable to a distributed im-
plementation. Policy iteration methods can also be de-
veloped. The policy iteration algorithms generate se-
quences of stationary policies, each with improved cost
over the preceding one. These methods are comprised
of two basic steps, a policy evaluation and a policy im-
provement step. During the first step, for a given sta-
tionary policy, �k, we obtain the corresponding aver-
age and differential costs via the solution of the follow-
ing system of equations which solution provides the kth
iterate of �, and h:

�k C hk(i) D g(i; �k (i))C
nX

jD1

pi j(�k(i))hk( j);

j D 1; : : : ; n:
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The policy improvement step, consists of finding a pol-
icy �k + 1, where for all state i, is such that:

g(i; �kC1(i))C
nX
jD1

pi j(�kC1(i))hk( j)

D min
u2U(i)

2
4g(i; u)C

nX
jD1

pi j(u)hk( j)

3
5 :

In [7], the scope of policy iteration is expanded so as
to address problems in which the optimal average cost
per stage is not the same for every initial state. It can
also be shown, [3], that the optimal vector (��, h�) is
equivalent to the optimal solution of the following lin-
ear program:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max �

s.t. �C h(i) � g(i; u)C
nX

jD1

pi j(u)h( j)

u 2 U(i)
i D 1; : : : ; n:

In [9] the dual problem of the above-mentioned formu-
lation is considered, whose optimal value is the optimal
value of the primal problem. The form of the dual is:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
nX

iD1

X
u2U(i)

q(i; u)g(i; u)

s.t.
X

u2U(i)

q( j; u) D
nX

iD1

X
u2U(i)

q(i; u)pi j(u)

j D 1; : : : ; n
nX

iD1

X
u2U(i)

q(i; u) D 1

q(i; u) � 0; i D 1; : : : ; n
u 2 U(i):

Simulation-based methods are presented in [3,5] that
use the basic concepts of Monte-Carlo simulation as
well as ideas of reinforcement learning, [13].
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Many of the data analysis tasks that arise in the field of
classification and clustering can be given some type of
combinatorial characterization that involves the iden-
tification of object groupings, partitions, or sequences.
These combinatorial structures are generally defined by
certain properties of optimality for some loss (or merit)
criterion based on data given in the form of an n × n
symmetric proximity matrix P between distinct pairs of
objects from a set S = {O1, . . . , On}. The focus of this
entry will be solely in this context and the use of a gen-
eral optimization strategy referred to as theGeneral Dy-
namic Programming Paradigm (GDPP), which allows
the construction of recursive procedures to solve a range
of combinatorial optimization tasks encountered in the
field of classification and clustering. The GDPP will be
presented in a general form below with later sections
indicating how it can be operationalized for a number

of specific problem types. For a more extensive presen-
tation of the topics introduced in this entry and for gen-
eralizations to proximity matrices that may not be sym-
metric or that are defined between objects from (two)
distinct sets, the monograph [12] should be consulted.
This latter source also provides numerical illustrations
for the topics introduced here plus instructions on how
to obtain a collection of programs (available on the
World Wide Web) to carry out the various optimiza-
tion tasks presented in this entry and [12]. For a recent
and comprehensive review of cluster analysis and the
use of mathematical programming techniques in gen-
eral, see [7].

The GDPP

To present the GDPP, a collection of K sets of entities is
first defined, ˝1, . . . , ˝K , where it is possible by some
operation to transform entities in˝k�1 to certain enti-
ties in˝k for 2 � k � K. Each such transformation can
be assigned a merit (or cost) value based only on the
entity in ˝k�1 and the transformed entity in ˝k. An
entity in˝k is denoted by Ak, and F(Ak) is the optimal
value that can be assigned toAk based on the sum of the
merit (or cost) increments necessary to transform an
entity in˝1, step-by-step, to Ak 2 ˝k. If Ak�1 2 ˝k� 1

can be transformed into Ak 2 ˝k, the merit (or cost)
of that single transition will be denoted byM(Ak�1, Ak)
(or C(Ak�1, Ak)), and where the latter does not depend
on how Ak�1 may have been arrived at starting from an
entity in˝1. Given these conditions, and assuming the
values F(A1) for A1 2 ˝1 are available to initialize the
recursive system, F(Ak) may be constructed for k = 2,
. . . , K (when merit is to be maximized) as

F(Ak) D max[F(Ak�1)CM(Ak�1;Ak)];

where Ak 2 ˝k, Ak�1 2 ˝k� 1, and the maximum is
taken over all Ak�1 that can be transformed into Ak. Or,
if cost is to be minimized,

F(Ak) D min[F(Ak�1)C C(Ak�1;Ak)]:

In addition, both max/min and min/max forms could
be considered as:

F(Ak) D max[min(F(Ak�1);M(Ak�1;Ak))];

F(Ak) D min[max(F(Ak�1);C(Ak�1;Ak))]:
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The leading maximization or minimization is over all
Ak�1 2˝k�1 that can be transformed into Ak. In all in-
stances, an optimal solution is identified by some value
for F(AK) for a specific AK 2 ˝K , and the actual opti-
mal solution obtained by working backwards through
the recursion to see how F(AK) was constructed.

Partitioning

The most direct characterization of the partitioning
task can be stated as follows: given S = {O1, . . . , On}
and P = {pij}, find a collection of M mutually exclusive
and exhaustive subsets (or clusters) of S, say, S1, . . . ,
SM , such that for some measure of heterogeneity H(�)
that attaches a value to each possible subset of S, ei-
ther the sum

PM
mD1 H(Sm), or alternatively, max[H(S1),

. . . ,H(SM)], is minimized. This stipulation assumes that
heterogeneity has a cost interpretation and that smaller
values of the heterogeneity indices represent the‘better’
subsets (or clusters). IfH(Sm) for some Sm � S depends
only on those proximities from P that are within Sm
and/or between Sm and S � Sm, an application of the
GDPP is possible. Define K to beM, and let each of the
sets˝1, . . . ,˝M contain all of the 2n� 1 nonempty sub-
sets of the n object subscripts; F(Ak) is the optimal value
for a partitioning into k classes of the object subscripts
present in Ak. A transformation of an entity Ak�1 2

˝k�1 to Ak 2 ˝k is possible if Ak�1 � Ak, with cost
C(Ak�1, Ak)�H(Ak � Ak�1). Thus, beginning with the
heterogeneity indicesH(A1) for every subset A1 � S, the
recursion can be carried out, with the optimal solution
represented by F(AM) when AM = S.

The first discussion of this general type of recur-
sive solution for the partitioning task was in [14] but
limited to one specific measure of subset heterogeneity
defined by the sum of proximities within a subset di-
vided by twice the number of objects in the subset. If
the original proximities in P happened to be squared
Euclidean distances between numerically given vectors
(or profiles) for the n objects over some set of vari-
ables, then this subset heterogeneity measure is equiv-
alent to the sum of squared Euclidean distances be-
tween each profile and the mean profile for the subset
(this quantity is usually called the sum of squared er-
ror or the k-means criterion, e. g., see [16], p. 52) A ma-
jor advantage of the GDPP formulation is that a vari-
ety of heterogeneity measures can be considered under

a common rubric, with the sole requirement that the
measure chosen be dependent only on the proximities
within a subset and/or between the subset and its com-
plement. For example, in [12] some twelve different al-
ternatives are illustrated using a program implemen-
tation that can effectively deal with object set sizes in
their lower 20’s with the type of computational equip-
ment and storage capacity now commonly available. As
noted in a later section, it is also possible to extend the
GDPP heuristically to allow for much larger object set
sizes, although an absolute guarantee of globally opti-
mality for the identified structures is sacrificed.

Admissibility Restrictions on Partitions

A specific restriction discussed at some length in the
literature (see [8, Chapt. 5], [16, pp. 61–64], [6]) that
would permit the construction of optimal partitions
(subject to the restriction) for very large object sets is
when there is an a priori assumed object ordering along
a continuum that can be taken without loss of general-
ity asO1 � � � � �On, and the only admissible clusters are
those for which the objects in the cluster form a consec-
utive sequence or segment. Thus, an optimal partition
will consist of M clusters, each of which defines a con-
secutive segment along the given object ordering. To
tailor the GDPP to a consecutive-ordering admissibility
criterion, each of the sets˝1, . . . ,˝M is now defined by
the n subsets of S that contain the objects {O1, . . . , Oi}
for 1� i� n; F(Ak) is the optimal value for a partition-
ing of Ak into k classes; a transformation of an entity
Ak�1 2 ˝k�1 to Ak 2 ˝k is possible if Ak�1 � Ak; and
the cost of the transition is H(Ak�Ak�1), where Ak�

Ak�1 must contain a consecutive sequence of objects.
Again, F(AM) for AM = S identifies an optimal solution.

The selection of some prespecified ordering that
constrains admissible clusters in a partition obviously
does not lead necessarily to the same unconstrained op-
timal partitions, even though the identical subset het-
erogeneity measure and optimization criterion are be-
ing used. There are, however, several special instances
where the original proximity matrix P is appropri-
ately defined and/or patterned so that the imposition of
a particular order constraint does invariably lead to par-
titions that would also be optimal even when no such
order constraint was imposed. One such result dates
back toW.D. Fisher [6] who showed that when proxim-
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ities are squared differences between the values on some
(unidimensional) variable, and the order constraint is
derived from the ordering of the objects on this vari-
able, then the selection of the sum of squared error as
the subset heterogeneity measure, and minimizing this
sum as an optimization criterion, leads to partitions
that are not only optimal under the order constraint
but also optimal when unconstrained, i. e., an uncon-
strained optimal partition will include only those sub-
sets defined by objects consecutive in the given order.
(The subset heterogeneity measure in this unidimen-
sional case reduces to the sum of squared deviations of
the univariate values for the objects from their mean
value within the subset.) A more general result appears
in [3] where the special case is discussed when a prox-
imity matrix P can be row- and column-reordered to
display an anti-Robinson form (a matrix pattern first
introduced in [15]). As stated more formally below,
a matrix has an anti-Robinson form if the entries within
each row and column of P never decrease whenmoving
away from a main diagonal entry in any direction. For
certain subset heterogeneity measures and optimiza-
tion criteria, imposing the order constraint that displays
the anti-Robinson pattern in the row- and column-
reordered proximity matrix leads to partitions that are
also optimal when unconstrained.

The choice of an ordering that can be imposed
to constrain the search domain for optimal partitions
could be directly tied to a task, discussed later, of find-
ing an (optimal) sequencing of the objects along a con-
tinuum. Somewhat more generally, one possible data
analysis strategy for seeking partitions as close to opti-
mal as possible, would be to construct an object order-
ing through an initial optimization process, and pos-
sibly one based on another analysis method that could
then constrain the domain of search for an optimal par-
tition. Obviously, if one were successful in generating
an appropriate object ordering, partitions that would
be optimal when constrained would also be optimal
without the constraint. The obvious key here is to have
some mechanism for identifying an appropriate order
to give this possible equivalence (between an optimal
constrained partition and one that is optimal without
constraint) a chance to succeed. As one example of
how such a process might be developed for constructing
partitions based on an empirically generated ordering
for the objects, a three-stage process is proposed in [1]

and [2]. First, the objects to be partitioned are embed-
ded in a Euclidean representation with a specific multi-
dimensional scaling strategy. Second, by heuristic meth-
ods, a path among the n objects in the Euclidean repre-
sentation is identified (hopefully, with close to minimal
length) and used to define a prior ordering for the ob-
jects and to constrain the subsets present in a partition.
Finally, a recursive strategy of the same general form
just described is carried out to obtain a partitioning of S.

Hierarchical Clustering

The problem of hierarchical clustering will be charac-
terized by the search for an optimal collection of par-
titions of S, which are denoted generically as P1, . . . ,
Pn. Here, P1 is the (trivial) partition where all n objects
from S are placed into n separate classes, Pn is the (also
trivial) partition where a single subset contains all n ob-
jects, andPk is obtained fromPk�1 by uniting some pair
of classes present in Pk�1. As an optimization criterion
the sum of transition costs is minimized, irrespective of
how the costs might be defined, between successive par-
titions in a hierarchy. Specifically, suppose T(Pk�1, Pk)
denotes some measure of transition cost between two
partitions Pk�1 and Pk, where Pk is constructed from
Pk�1 by uniting two classes in the latter partition. An
optimal partition hierarchy P1, . . . , Pn will be one for
which the sum of the transition costs,

P
k>2 T(Pk�1,

Pk), is minimized. To apply the GDPP, first define n
sets˝1, . . . ,˝n, where˝k contains all partitions of the
n objects in S into n� k+ 1 classes. The value F(Ak) for
Ak 2˝k is the optimal sum of transition costs up to the
partition Ak; a transformation of an entity Ak�1 2˝k�1

to Ak 2 ˝k is possible if Ak is obtainable from Ak�1 by
uniting two classes in Ak�1, and has cost C(Ak�1, Ak)
� T(Ak�1, Ak). Beginning with an assumed value for
F(A1) of 0 for the single entity A1 2 ˝1 (which is the
partition of S into n subsets each containing a single
object), and constructing F(Ak) recursively for 2, . . . , n,
an optimal solution is identified by F(An) for the single
entity An 2˝n defined by the partition containing all n
objects in a single class.

A concept routinely encountered in discussions of
hierarchical clustering is that of an ultrametric, which
can be characterized by any nonnegative n × n symmet-
ric dissimilarity matrix for distinct pairs of the objects
in S, denoted generically asU = {uij}, where uij = 0 if and
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only if i = j and the entries in U satisfy the ultrametric
inequality: uij � max{uik, ujk} for 1 � i, j, k � n. Any
ultrametric identifies a specific partition hierarchy, P1,
. . . , Pn, where those object pairs defined between sub-
sets united in Pt�1 to form Pt all have a common ultra-
metric value; moreover, this latter value is not smaller
than those for object pairs defined within these same
subsets. One approach to the development of hierarchi-
cal clustering methods is by directly fitting an ultramet-
ric to P minimizing a loss criterion defined by an Lp-
norm between {pij} and a (to be identified) ultrametric
matrix {uij}. To be specific, for a given partition hierar-
chy, P1, . . . , Pn, let C(u)

t�1 and C
(v)
t�1 denote the two classes

united in Pt�1 to form Pt , and specify bt�1 to be some
appropriate aggregate (or ‘average’) value of the prox-
imities for object pairs between C(u)

t�1 and C
(v)
t�1. The loss

functions used to index the adequacy of a given parti-
tion hierarchy in producing an ultrametric fitted to P
are for the L1-norm:

nX
tD2

X

Oi02C
(u)
t�1;

O j02C
(v)
t�1

ˇ̌
pi 0 j0 � bt�1

ˇ̌
;

where bt�1 is the median proximity between C(u)
t�1 and

C(v)
t�1; for the L2-norm:

nX
tD2

X

Oi02C
(u)
t�1;

O j02C
(v)
t�1

(pi 0 j0 � bt�1)2;

where bt�1 is the mean proximity between C(u)
t�1 and

C(v)
t�1; and for the L1-norm:

nX
tD2

max
Oi02C

(u)
t�1;

O j02C
(v)
t�1

ˇ̌
pi 0 j0 � bt�1

ˇ̌
;

where bt�1 is the average of the minimum and maxi-
mum proximities between C(u)

t�1 and C(v)
t�1. For all three

Lp-norms, an optimal ultrametric will be one for which
the order constraint on the between-subset aggregate
values holds: b1 � � � � � bn�1, and the norm is mini-
mized. For such an optimal solution, b1, . . . , bn�1 de-
fine the distinct entries in an (optimal) fitted ultramet-
ric. To implement a dynamic programming approach
for locating an optimal ultrametric, C(Ak�1, Ak) is the
incremental cost of transforming Ak�1 to Ak character-

ized by the appropriate Lp-norm when that pair of sub-
sets in Ak�1 is united to form Ak. As developed in de-
tail in [11], an explicit admissibility criterion must also
be imposed for defining a permissible transition from
Ak�1 to Ak that could ensure a nondecreasing sequence
of between-subset aggregate values.

Constrained Hierarchical Clustering

Analogously to the admissibility conditions for parti-
tions, one constraint that might be imposed on each
partition in ˝k is for the constituent subsets to con-
tain objects consecutive in some given ordering (which
could be taken as O1 � � � � � On without loss of any
generality). Thus,˝k will be redefined to contain those
partitions that include n� k+ 1 classes, and where each
class is a segment in the given object ordering.

Optimal Sequencing of an Object Set

A combinatorial optimization task closely related to
both partitioning and hierarchical clustering is the
search for an optimal sequencing of the object set S
based on the proximity matrix P. A best reordering is
sought for the rows and columns of P that will opti-
mize, over all possible row/column reorderings, some
specified measure of patterning for the entries of the re-
ordered matrix. Irrespective of the particular measure
chosen, the GDPP is specialized as follows: A collec-
tion of sets ˝1, . . . , ˝n is defined, where ˝k includes
all the subsets that have kmembers from the integer set
{1, . . . , n}. The value F(Ak) is the optimal contribution
to the total measure of matrix patterning for the ob-
jects in Ak when they occupy the first k positions in the
(re)ordering. A transformation is now possible between
Ak�1 2˝k�1 and Ak 2˝k if Ak�1 � Ak (i. e., Ak�1 and
Ak differ by one integer). The contribution to the total
measure of patterning generated by placing the single
integer inAk�1�Ak at the kth order position isM(Ak�1,
Ak). As always, the validity of the recursive process will
require the incremental merit index, M(Ak�1, Ak), to
depend only on the unordered setsAk�1 andAk, and the
complement S � Ak, and specifically not on how Ak�1

may have been obtained beginning with˝1. Assuming
F(A1) for all A1 2 ˝1 are available, the recursive pro-
cess can be carried out from ˝1 to ˝n, with F(An) for
the single set An = {1, . . . , n} 2˝n defining the optimal
value for the specified measure of matrix patterning.
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Two general classes of measures of matrix pattern-
ing are mentioned here. The first is a row and col-
umn gradient index motivated by the ideal of reorder-
ing a symmetric proximity matrix to have an anti-
Robinson form (and which is the same structure noted
briefly in the clustering context when an optimal order-
constrained partition might also be optimal when un-
constrained). Specifically, suppose �(�) is some permu-
tation of the first n integers that reorders both the rows
and columns of P (i. e., P� � {p�(i)�(j)}). As noted ear-
lier, the reordered matrix P� is said to have an anti-
Robinson form if the entries within the rows and within
the columns of P� moving away from the main diag-
onal in any direction never decrease; or formally, two
gradient conditions must be satisfied:
� within rows: p�(i)�(k) � p�(i)�(j) for 1 � i < k < j � n;
� within columns: p�(k)�(j) � p�(i)�(j) for 1 � i < k <

j � n.
It might be noted that whenever P is an ultrametric, or
if P has an exact Euclidean representation in a single di-
mension (i. e., P = {|xj � xi|}, for some collection of co-
ordinate values, x1, . . . , xn), then P can be row/column
reordered to display a perfect anti-Robinson pattern.
Thus, the notion of an anti-Robinson form can be in-
terpreted as generalizing either a perfect discrete clas-
sificatory structure induced by a partition hierarchy
(through an ultrametric) or as the pattern expected in P
if there exists an exact unidimensional Euclidean repre-
sentation for the objects in S. In any case, if a matrix can
be row/column reordered to display an anti-Robinson
form, then the objects are orderable along a continuum
so that the degree of separation between objects in the
ordering is reflected perfectly by the dissimilarity infor-
mation in P, i. e., for the object ordering, O�(i) � O�(k)
� O�(j) (for i < k < j), p�(i)�(k) � p�(i)�(j) and p�(k)�(j) �
p{�(i)�(j).

A natural (merit) measure of how well a reordered
proximity matrix P� satisfies these two gradient con-
ditions would rely on an aggregate index of the vio-
lations/nonviolations over all distinct object triples, as
given by the expression:

X
i<k< j

f (p�(i)�(k); p�(i)�( j))

C
X
i<k< j

f (p�(k)�( j); p�(i)�( j)); (1)

where f (�, �) is some function indicating how a viola-
tion/nonviolation of a particular gradient condition for
an object triple within a row or within a column (and
defined above the main diagonal of P�) is to be counted
in the total measure of merit. The one option concen-
trated on here will be f (z, y) = sign(z � y) = + 1 if z >
y; 0 if z = y; and � 1 if z < y; thus, the (raw) number
of satisfactions minus the number of dissatisfactions of
the gradient conditions within rows above the main di-
agonal of P� is given by the first term in (1), and the
(raw) number of satisfactions minus dissatisfactions of
the gradient conditions within columns above the main
diagonal of P� is given by the second term. To carry
out the GDPP based on the measure in (1), an explicit
form must be given for the incremental contribution,
M(Ak�1, Ak), to the total merit measure of patterning
generated by placing the single integer Ak� Ak�1 at the
kth order position. For any ordering �(�) of the rows
and columns of P, the merit increment for placing an
integer, say, k0 (� �(k)) (i. e., {k0} = Ak� Ak�1) at the
kth order position can be defined as

Pn
kD1 Irow(�(k)) +Pn

kD1 Icol�(k)), where

Irow(�(k)) D
X

i 02Ak�1

X
j02S�Ak

f (pi 0k0 ; pi 0 j0 );

Icol(�(k)) D
X

i 02Ak�1

X
j02S�Ak

f (pk0 j0 ; pi 0 j0 );

and Ak�1 = {�(1), . . . , �(k�1)}, S � Ak = {�(k+1), . . . ,
�(n)}. Thus, letting F(A1) = 0 for all A1 2 ˝1, and
using the specification for f (�, �) suggested above, the
recursion can be carried out to identify an optimal
row/column reordering of the given proximity matrix P
to maximize this gradient measure over all row/column
reorderings of P.

A second class of measures of matrix patterning can
be derived indirectly from the auxiliary problem of at-
tempting to fit a given proximity matrix P by some type
of unidimensional scaling representation (i. e., a seri-
ation). Suppose the search is for a set of n ordered coor-
dinate values, x1 � � � � � xn (such that

P
k xk = 0), and

a permutation �(�) to minimize the least squares crite-
rion

X
i< j

(p�(i)�( j) �
ˇ̌
x j � xi

ˇ̌
)2:
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After some algebraic reduction (see [5]), this latter least
squares criterion can be rewritten as

X
i< j

p2i j

Cn
X
k

[xk�
�
1
n

�
G(�(k))]2�

1
n

X
k

[G(�(k))]2;

where

G(�(k)) D
k�1X
iD1

p�(k)�(i) �
nX

iDkC1

p�(k)�(i):

If the measure
nX

kD1

[G(�(k))]2 (2)

is maximized over all row/column reorderings of P,
and denoting the optimal permutation by ��(�), then
G(��(1)) � � � � � G(��(n)), and the optimal coordi-
nates can be retrieved as xk = (1/n)G(��(k)), for 1 �
k � n. To execute the GDPP recursion using (2), the
merit increment for placing the integer, say k0 (� �(k))
(i. e., {k0} = Ak � Ak�1) in the kth order position can be
written as [G(�(k))]2, where

G(�(k)) D
X

i 02Ak�1

pk0 i 0 �
X

j02S�Ak

pk0 j0 ;

with Ak�1 = {�(1), . . . , �(k�1)}, S � Ak = {�(k+1), . . . ,
�(n)}, and F(A1) for A1 = {k0} 2˝1 defined by

0
@ X

j02S�fk0g

pk0 j0

1
A

2

:

Optimal Sequencing Based on the Construction
of Optimal Paths

To tailor the GDPP (and for the moment emphasizing
the minimization of the sum of adjacent object prox-
imities in constructing a path among the objects in S),
a collection of sets ˝1, . . . , ˝n is defined so that each
entity in ˝k, 1 � k � n, is now an ordered pair (Ak,
jk). Here, Ak is a k element subset of the n subscripts
on the objects in S, and jk is one subscript in Ak (to be
interpreted as the subscript for the last-placed object in
a sequencing of the objects contained within Ak). The

function value F((Ak, jk)) is the optimal contribution to
the total measure of matrix patterning for the objects in
Ak when they are placed in the first k positions in the
(re)ordering, and the object with subscript jk occupies
the kth. A transformation is possible between (Ak�1,
jk�1) 2 ˝k�1 and (Ak, jk) 2 ˝k if Ak�1 � Ak and Ak

� Ak�1 = {jk} (i. e., Ak�1 and Ak differ by the one in-
teger jk). The cost increment C((Ak�1, jk�1), (Ak, jk)) is
simply p( jk�1) jk for the contribution to the total mea-
sure of patterning generated by placing the object with
the single integer subscript in Ak � Ak�1 at the kth or-
der position (i. e., the proximity between the adjacently-
placed objects with subscripts jk�1 and jk). The type of
GDPP recursion used for the construction of optimal
linear paths can be modified easily for the construction
of optimal circular paths: choose object O1 as an (arbi-
trary) origin and force the construction of the optimal
linear paths to include O1 as the initial object by defin-
ing F((A1, j1)) = 0 for j1 = 1 and A1 = {1}, and otherwise
by a very large positive or negative value (depending on
whether the task is a minimization or a maximization,
respectively). The function values F((An, jn)) for all jn,
1� jn � n for (An, jn) 2˝n and An = {1, . . . , n} can then
be used to obtain the optimal circular paths depending
on the chosen optimization criteria as follows:
� minimum path length:

min[F((An; jn))C p jn1];

� maximum path length:

max[F((An; jn))C p jn1];

� minimax path length:

min[max(F((An; jn)); p jn1)];

� maximin path length:

max[min(F((An; jn)); p jn1)]:

For the first discussions in the literature on construct-
ing optimal paths through DP, see [4,9]; for applica-
tions to a variety of data analysis tasks, see [13].

Optimal Ordered Partitions

The task of constructing an ordered partition of an ob-
ject set S = {O1, . . . ,On} intoM ordered classes, S1 � � � �
� SM , using some (merit) measure of matrix patterning
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and a proximity matrix P, can be approached through
the GDPP recursive process applied to the partition-
ing task but with appropriate variation in defining the
merit increments. Explicitly, the sets ˝1, . . . , ˝M will
each contain all 2n� 1 nonempty subsets of the n ob-
ject subscripts; F(Ak) for Ak 2 ˝k is the optimal value
for placing k classes in the first k positions, and the sub-
set Ak is the union of these k classes. A transformation
from Ak�1 2˝k�1 to Ak 2˝k is possible if Ak�1 � Ak;
the merit increment M(Ak�1, Ak) is based on placing
the class Ak�1 � Ak at the kth position (which will de-
pend on Ak�1, Ak, and S� Ak). Beginning with F(A1)
for all A1 2 ˝1 (i. e., the merit of placing the class A1

at the first position), the recursion proceeds from˝1 to
˝M, with F(AM) forAM = S 2˝M defining the optimal
merit value for an ordered partition intoM classes.

To generalize the gradient measure given in (1), the
merit increment for placing the class Ak� Ak�1 at the
kth order position is Irow(Ak� Ak�1) + Icol (Ak�Ak�1),
where

Irow(Ak � Ak�1)

D
X

i 02Ak�1

X
k02Ak�Ak�1

X
j02S�Ak

f (pi 0k0 ; pi 0 j0 );

and

Icol(Ak � Ak�1)

D
X

i 02Ak�1

X
k02Ak�Ak�1

X
j02S�Ak

f (pk0 j0 ; pi 0 j0 ):

To initialize the recursion, let F(A1) = 0 for all A1 2˝1.
A merit measure based on a coordinate representa-

tion for each of the M ordered classes, S1 � � � � � SM ,
that generalizes (2) can also be developed directly. Here,
M coordinates, x1 � � � � � xM , are to be identified so
that the residual sum-of-squares

X
k�k0

X
ik2Sk ;
jk02Sk0

(pik jk0 � jxk0 � xkj)2;

is minimized (the notation pikjk0) indicates those prox-
imities in P defined between objects with subscripts ik
2 Sk and jk0M 2 Sk0). A direct extension of the argument
that led to optimal coordinate representation for single
objects would require the maximization of

MX
kD1

�
1
nk

�
(G(Ak � Ak�1))2; (3)

where

G(Ak � Ak�1)

D
X

k02Ak�Ak�1

 X
i 02Ak�1

pk0 i 0 �
X

i 02S�Ak

pk0 i 0

!
;

and nk denotes the number of objects in Ak � Ak�1.
Themerit increment for placing the subset Ak �Ak�1 at
the kth order position would be (1/nk)(G(Ak � Ak�1))2,
with the recursion initialized by

F(A1) D
�

1
n1

� X
k02A1

X
i 02S�A1

pk0 i 0

!2

;

for all A1 2 ˝1. If an optimal ordered partition that
maximizes (3) is denoted by S�1 � � � � � S�M , the opti-
mal coordinates for each of the M classes can be given
as

x�k D
�
1
n

�
(
G(S�k )
nk

);

where x�1 � � � � � x�M , and
P

knkx�k = 0. A more com-
plete discussion of constructing optimal ordered parti-
tions appears in [10].

Heuristic Applications of the GDPP

When faced with the task of finding a single optimal
partition for a (large) object set S, if one had knowl-
edge that for an optimal M-class partition the classes
could be allocated to two (or more) groups, then the
aggregate collections of the objects within these latter
groups could be separately and optimally partitioned
and an optimal M-class partition for the complete ob-
ject set identified directly. Or, if it were known that cer-
tain elemental subsets of the objects in S had to ap-
pear within the classes of an optimal M-class partition,
one could begin with these elemental subsets as the ob-
jects to be analyzed, and an optimal M-class partition
could again be retrieved. The obvious difficulty is to
identify either the larger aggregate groups that might
be dealt with separately, or an appropriate collection
of elemental subsets, and in a size and number that
might be handled by the recursive optimization strat-
egy. For the latter task of identifying elemental subsets,
one possible approach would be to begin with a parti-
tion of S into several classes (possibly obtained through
another heuristic process), and where each class con-
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tained a number of objects that could be optimally an-
alyzed. Based on these separate subset analyses, a (ten-
tative) collection of elemental subsets would be identi-
fied. These could then be used to obtain a subdivision
of S, and again within each group of this subdivision,
the objects could be optimally partitioned to generate
a possibly better collection of elemental subsets. This
process could be continued until no change occurred in
the particular elemental subsets identified. As an alter-
native, one could start with some collection of tentative
elemental subsets obtained through another (heuristic)
optimization strategy and try, if possible, to improve
upon these through the same type of procedure. This
latter approach is illustrated in [12]. Similarly, the tasks
of constructing a (hopefully optimal) partition hierar-
chy or object order for a (large) set could be approached
through the identification of a collection of elemental
subsets, which would then be operated on as the basic
entities for the generation of a partition hierarchy or an
object sequence.
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Even though dynamic programming [1] was originally
developed for systems with discrete types of decisions,
it can be applied to continuous problems as well. In this
article the application of dynamic programming to the
solution of continuous time optimal control problems
is discussed.

Problem Formulation

Consider the following continuous time dynamical sys-
tem:

(
ż(t) D f (z(t); u(t));
z(0) D z0; 0 � t � T;

(1)

where z(t) 2 Rn is the state vector at time t with time
derivative given by ż(t), u(t) 2 U � Rm is the control
vector at time t,U is the set of control constraints, and T
is the terminal time. The function f (z(t), u(t)) is contin-
uously differentiable with respect to z and continuous
with respect to u. The set of admissible control trajecto-
ries are given by the piecewise constant functions, {u(t):
u(t) 2 U, 8t 2 [0, T]}. It is assumed that for any admis-
sible control trajectory, that a state trajectory zu(t) ex-
ists and is unique. For a full treatment of existence and
uniqueness, see [4].

The objective is to determine a control trajectory
and the corresponding state trajectory whichminimizes
a cost function of the form:

h(zu(T))C
Z T

0
g(zu(t); u(t)) dt; (2)

where the functions g, and h are continuously differen-
tiable with respect to both z and u.

Example

As a simple example, consider the problem of moving
a unit mass from an initial point to a given final point.

The position of the mass along a line is given by the
state z1(t) and its velocity by z2(t). The control u(t) is
the force applied to the mass, and is bounded u(t) 2
[�1, 1]. This system is described by:

ż1(t) D z2(t); ż2(t) D u(t);

z(0) D [z1(0); z2(0)]; t 2 [0; T];

u(t) 2 [�1; 1]:

The objective is to move this mass as near to the final
state point, [z1; z2], as possible. This can be formulated
as the minimization of the square error at the final time
point.

min
u(t)

2X
iD1

(zi(T) � zi (T))2 :

Converting this cost function into the form given by
(2)) results in:

h(z(T)) D
2X

iD1

(zi (T) � zi (T))2 ;

g(zu(t); u(t)) D 0; 8t 2 [0; T]:

Hamilton–Jacobi–Bellman Equation

The time horizon is divided intoN equally spaced inter-
vals with ı = T/N. This converts the problem into the
discrete-time domain and the dynamic programming
approach can be applied. Once the approach is applied,
the result is converted back into the continuous-time
domain by taking the limit as ı ! 0. The result is the
following partial differential equation,

0 D min
u2U�

g(z; u)Crt J�(t; z)Crx J�(t; z)> f (z; u)
�
;

J�(T; z) D h(z); 8z;

(3)

where J�(t, z) is the optimal cost-to-go function. This
equation is called the Hamilton–Jacobi–Bellman equa-
tion. It is also referred to as the continuous-time analog
of the dynamic programming equation.

PontryaginMinimum Principle

It is possible to derive the Pontryagin minimum princi-
ple using the Hamilton–Jacobi–Bellman equation given
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above. Using the system given by (1), the classic princi-
ple results:

ṗ(t) D �rzH(z�(t); u
(t); p(t));

p(T) D rh(z�(T));

H(z�(t); u�(t); p(t))

D g(z�(t); u�(t))C p>(t) f (z�(t); u�(t));

u�(t) D argmin
u2U

H(z�(t); u(t); p(t));

where z�(t) and u�(t) are the optimal state and control
trajectories, respectively.

A more detailed description of these two results are
given in the following sections. For dynamic program-
ming and optimal control problems, see [2] as well as
the classic optimal control text [3].
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Dynamic programming addresses models of decision
making systems of an inherent sequential character.
The problem of interest is defined as follows. We con-
sider a discrete-time dynamic system:

xkC1 D f (xk; uk ; !k); k D 0; 1; : : : :
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The state transitions, f , that define the evolution of the
system from time k to time k + 1 depend on the current
state of the system, xk, external disturbances, !k, which
are considered to be random variables, and finally on
a set of control, or policy, actions, uk. The state of the
system, xk, k = 0, 1, . . . , is an element of a space S, the
control variables, uk, k = 0, 1, . . . , belong to space C, and
the random external disturbance belongs to a countable
space D. The control variables are such that: uk 2 U(xk)
� C, k = 0, 1, . . . , and depend on the current state xk, k
= 0, 1, . . . . The random disturbances, !k, k = 0, 1, . . . ,
have identical, known, distributions which depend on
the current state and control, P(!K | xk, uk). Note that
!k does not depend on previous values of the distur-
bances, but may depend explicitly on the values of xk,
and uk. Given an initial state x0, the problem is to find
a control law  = {�0, �1, . . . }, belonging to the set of
admissible policies, ˘ , which is the set of all sequences
of functions  = {�0, �1, . . . } with:

�k : S ! C; �x (xk) 2 U(xk);

8xk 2 S; k D 0; 1; : : : ;

that minimizes the cost functional:

J� (x0) D lim
N!1

E

( kDN�1X
kD0

˛k gk(xk; uk ; !k)

)
:

The optimal cost function J� is thus defined as:

J�(x) D min
�2˘

J� (x); x 2 S:

The cost, J� (x0), for any x0 2 S and a given policy  ,
represents the limit of the expected finite horizon costs
and these are well defined. The discounted problems
with bounded cost per stage are such that the following
assumption holds:

Assumption 1
1) 8(x, u, !) 2 S × C × D the functions defining the

cost per stage g are uniformly bounded:

0 � jgk(xk ; uk ; !k)j � M;

2) M 2 R, and 0 < ˛ < 1.

This type of problem was first address through the pi-
oneering work of D. Blackwell, [6]. The scalar, ˛, is

the discount factor, and the range of its admissible val-
ues implies that future costs matter less that costs in-
curring at the present time, particularly when the cost
per stage has a monetary interpretation. Mathemati-
cally, the presence of the discount factor guarantees the
finiteness of the cost functional provided that the per
stage costs are bounded uniformly. Furthermore, al-
though the assumption of an infinite number of stages
may never be satisfied in practice, it constitutes a rea-
sonable approximation for problems involving a large
number of stages. A rather typical example of a dis
counted infinite horizon dynamic problem is the so-
called asset selling problem where the reward for selling
a particular asset at a given time k diminishes as time
progresses.

For any function J: S ! R we define the operator
(T(�)) as:

(TJ)(x) D min
u2U(x)

Efg(x; u; !)C ˛J( f (x; u; !))g:

This is in essence the function obtained when apply-
ing the standard dynamic programming mapping to J.
Note that (TJ) represents essentially the optimal cost for
a one-stage problem that has stage cost g and terminal
cost ˛J. For this operator, it can be shown, [4], that:
� For any bounded function J, the optimal cost func-

tion satisfies:

J�(x) D lim
N!1

(TN J)(x); 8x 2 S:

In other words, the dynamic programming algorithm
converges to the optimal cost function. The above re-
sult relies on Assumption 1. It should be noted that the
operator (TJ) can be shown to be:
1) monotonic:

J(x) � J0(x) ) (Tk J)(x) � (Tk J0)(x)

for any functions J: S! R and J0: S! R and,
2) contractive:

max
x2S

ˇ̌
ˇ(Tk J)(x)� (Tk J0(x)

ˇ̌
ˇ

� ˛k max
x2S

ˇ̌
J(x)� J0(x)

ˇ̌

for any bounded functions J: S! R and J0: S! R.
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Both of these properties are important so as to show not
only theoretical convergence of the dynamic program-
ming algorithm but also to construct numerical solu-
tion schemes. Furthermore, the optimal cost function
J� can be shown to satisfy Bellman’s equation, i. e., 8x
2 S:

J�(x) D min
u2U(x)

Efg(x; u; !)C ˛J�( f (x; u; !))g;

in other words: J� = TJ�. This proposition essentially
defines the necessary and sufficient condition for the
optimality of a policy �, i. e. �(x) is optimal if and only
if it attains the minimum in Bellman’s equation for ev-
ery x 2 S.

For the case where the state, control and distur-
bance space are finite, i. e., each set has a definite num-
ber of elements which can be found in principle, [9],
several approaches exist for numerically solving the dis-
counted problemwith bounded cost per stage. It should
be pointed out that under these conditions the prob-
lem is equivalent to a finite-state Markov chain. The
first, value iteration, is based on a successive compu-
tation of TJ, T2J, . . . , since we know that limk ! 1

(TkJ) = J�. Recall that the operator (TJ) is defined as the
minimum over all possible disturbances with respect
to the controls. Therefore, asymptotically we approach
the optimal cost as well as the optima policy. Tight up-
per and lower bounds on the iterations can be derived,
[3,4], which substantially improve the convergence rate
of the successive approximations. More specifically, it
can shown that for every vector J, state i, and time k:

(Tk J)(i)C ck � J�(i) � (Tk J)(i)C ck;

where:

ck D
˛

1 � ˛
min

iD1;:::;n
[(Tk J)(i) � (Tk�1 J)(i)];

ck D
˛

1 � ˛
max

iD1;:::;n
[(Tk J)(i) � (Tk�1 J)(i)]:

In fact, these error bounds can be used so as to further
prove the finite convergence of the value iteration after
k < k0 steps, k0 2 N. It can also be observed that instead
of performing the value iteration simultaneously for
all policies, one can perform the iteration in a Gauss–
Seidel fashion, [10]. The contractive characteristics of
the operator (FJ) make it possible to develop similar
schemes. Instead of iterating on the operator (TJ), we

define a new sequence based on the operator (FJ):

(FJ)(1) D min
u2U(1)

2
4g(1; u)C ˛

NX
jD1

p1 j(u)J( j)

3
5 ;

(FJ)(i) D lim
u2U(i)

"
g(i; u)

C˛

i�1X
jD1

pi j(FJ)( j)C ˛
nX
jDi

pi j(u)J( j)

3
5 ;

i D 1; : : : ; n :

In fact, when the error bounds are not used, a very in-
teresting property can be shown, [4]:
� If J satisfies:

J(i) � (TJ)(i) � J�(i); i D 1; : : : ; n;

then:

(Tk J)(i) � (Fk J)(i) � J�(i);

i D 1; : : : ; n; k D 1; 2; : : : :

In other words, the Gauss–Seidel iteration converges
faster than the ordinary, i. e., Jacobi, value iteration. An
excellent treatment of the comparisons between Gauss–
Seidel and Jacobi iterations and their parallel imple-
mentation can be found in [14]. Although the value
iteration can be shown to be convergent even when
the state and control spaces are infinite, the actual im-
plementation can only proceed via approximations. In
other words, instead of actually computing TJ we can
only compute J0, such that: maxx 2 S|J0(x)�(TJ)(x)| �
�. For such approximate methods to be in order, we
do not necessarily need infinite spaces but even spaces
with a very large number of states in which the actual
computation is deemed inappropriate. Any function
J0 that satisfies the above criterion can in principle be
used. Details regarding discretization approaches and
computational techniques for addressing infinite state
spaces can be found in [2,11].

The value iteration, thus far presented, is based on
successive evaluations of the cost functions. Early on,
[1], it was suggested that an alternate approach is to
iterate on policies so as to generate sequences of sta-
tionary policies with improved, over the preceding one,
costs. This method is know as the policy iteration. The
method proceeds in three steps:
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1) initialize control policy, u0.
2) given a stationary policy, �k, evaluate the cost func-

tion J
k by solving:

(I � ˛P
k )J
k D g
k :

3) Obtain a new policy such that it satisfies: T
kC1 J
k

= TJ
k .
In the above, the matrix P
 is the transition probability
matrix for a given stationary policy �, given by:

P
 D

0
@
p11(�(1)) � � � p1n(�(1))
� � � � � � � � �

pn1(�(1)) � � � pnn(�(n))

1
A

and g
 the associated cost vector:

g
 D

0
@
g(1; �(1))
� � �

g(n; �(n))

1
A :

Termination is detected once J
k = TJ
k , i. e., a fixed
point of the operator TJ has been identified. Notice that
because of the assumption that the policy space is finite,
the algorithm will terminate in a finite number of steps.
Similarly to the value iteration, infinite state and con-
trol spaces pause problems when implementing policy
iterations. Specifically, the policy evaluation and policy
improvement steps can only be performed via approxi-
mations.

In [5] an adaptive aggregation method is proposed
so as to address the issue of occasional slow conver-
gence. The fundamental premise is to lump states of
the original problem so as to generate a smaller dimen-
sion problem. In other words, the state space S is parti-
tioned into smaller-dimensional spaces as: S = S1 [ � � �
[ Sm. Given such a partitioning one can further define
the transition probabilities for the aggregate states as:

ri j D
X
s2Si

qis
X
t2S j

pst(�(s));

which is the probability that the next state will belong to
Sj given that the current state is Si. qij are the elements
of anm × nmatrix Q, such that qis 6D 0, if s 2 S.

Finally, [7], noticed that since in the limit J � J� =
TJ�, the optimal policy can be derived as the solution of

the following linear programming problem:
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

max
X
i2S

�i

s.t. �i � g(i; u)C ˛
nX

jD1

pi j(u)�i ;

u 2 U(i);
i D 1; : : : ; n:

In the above formulation pij(u) denote the transition
probabilities: pij(u) = { P(xk+1 = j| xk = i, uk = u)}, i,
j 2 S, u 2 U(i). These can either be given or derived
based on the discrete dynamic system, xk+1 = f (xk, uk,
!k), and the known probability distribution P(�|x, u) of
the input disturbance !k. Linear programming formu-
lations can also be used to derived cost and policy eval-
uation approximations. One possibility is to approxi-
mate J� by a set of known basis functions as: J0(x, r) =Pm

kD1 rk!k(x). The vector r is an m-dimensional vec-
tor of known parameters, and for each state x we have
chose a set of known scalars !k(x). The vector r can be
determined as the solution of:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
X
x2S0

J0(x; r)

s.t. J0(x; r) � g(x; u)C ˛
X
y2S

px y J0(y; r);

x 2 S0 � S;
u 2 U 0(x) � U(x):

Furthermore, the cost function J
 for a given policy
� can be approximated via linear programming for-
mulations by identifying a vector r so as to minimize:
maxx 2 S | J0(x, r)�J
(x)|. This can be shown, [4], to be
equivalent to solving:
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min z

s.t.

ˇ̌
ˇ̌
ˇJ
0(x; r) � g(x; �(x))

�˛
X
y2S

px y(�(x))J0(y; r)

ˇ̌
ˇ̌
ˇ̌ � z;

x 2 S0 � S:

Extensions of the general ideas are discussed in [12]
where work on including constraints in the general
formulation of the discounted dynamic programming
problem is presented. Furthermore, [8] expanded the



850 D Dynamic Programming: Infinite Horizon Problems, Overview

scope of these models so as to address dynamic pro-
gramming optimization problems involving multiple
criteria by identifying the set of non-inferior, Pareto op-
timal, solutions.
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Dynamic programming deals with situations where op-
timal decisions are being sought in systems operating
in stages. Events occur in a specific order, such that the
decision at time k+ 1 depends on the state of the sys-
tem at time k. In general the key variables of the basic
formulation are as follows:
� k represents discrete time;
� xk represents the state of the system at time k;
� � (xk) represents the control, or decision, variable to

be selected at time k;
� !k represents a random disturbance occurring at

time k;
� N represents the time horizon.
Given the aforementioned variables, the basic dynamic
programming formulation requires the following in-
gredients:
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� a discrete-time dynamic system:

xkC1 D fk(xk; �k ; !k);

� an additive cost function of the form:

gN (xN)C
kDN�1X
kD1

gk(xk; �k ; !k);

where gk corresponds to the cost incurred at time k.
One is therefore wishing to identify that control policy,
 = {�0, . . . ,�N � 1, which minimizes the expected cost:

J�(x0) D min
�2˘

J� (x0)

D E

(
gN (xN)C

kDN�1X
kD1

gk(xk; �k ; !k )

)
:

The expectancy operator is needed since the presence of
the random parameters !k the cost function becomes
itself a random variable. As further complication, one
might also minimize the expected cost not only for
a given initial state of the system, x0, but also with re-
spect to all possible initial states.

Infinite horizon problems are further characterized
by the fact that the number of stages N is infinite. In
such a case, the cost functional over an infinite number
of stages for a given control policy  = {�0,�1, . . . }, and
initial state x0, is given by:

J� (x0) D lim
n!1

E

( kDN�1X
kD1

˛k gk(xk; �k ; !k)

)
:

The factor ˛ is termed discount factor and is a positive
scalar 0 < ˛ � 1 which simply implies that future costs
matter less than similar costs incurred at the present
time. Infinite horizon problems are by definition the
limit of the corresponding N-stage problem, as N !
1. Three points are pivotal in the analysis of infinite-
dimensional dynamic programming problems:
� The optimal cost for the infinite horizon is the limit

of the corresponding N-stage optimal cost, i. e., J� =
limN!1 JN .

� The optimal costs satisfy Bellman’s equation, i. e.,

J�(x) D min
u2U(x)

E fg(x; �;w)C J�( f (x; �;w))g :

� If the optimal policy that correspond to the mini-
mum of Bellman’s equation is �(x), then the policy
 = {�, �, . . . } should be optimal.

The assumption of an infinite number of stages may not
be satisfied in practice but is a very important one in
terms of analyzing the asymptotic behavior of systems
involving a finite but large number of stages. Depend-
ing on the nature of the cost per stage and the discount
factor, the following categories of infinite horizon dy-
namic programming problems can be identified, [1]:
� stochastic shortest path problems: this problem is ac-

tually a generalization of the deterministic shortest
path problem in the sense that we select not a succes-
sor but rather a probability distribution pij(�). Ob-
viously, if the probability pij(�) = 1 for a unique state
j, then we recover the deterministic shortest path
problem. One key feature of the stochastic short-
est path problem is that the termination state t is
cost-free termination state such that once the sys-
tem reaches that state it never leaves from it. In other
words, ptt(�) = 1 and g(t, �) = 0, for all policies �.
In effect, the horizon is finite but the actual length is
random. Furthermore, there exists at least one pol-
icy for which the destination state will be reached in-
evitably. A key assumption required for guarantee-
ing eventual termination states that there exists an
integer m such that for every initial state and policy,
there is a positive probability that the termination
state will be reached after no more than m stages.

� discounted problems with bounded cost per stage: this
type of infinite horizon dynamic programming en-
compasses problems for which:

jg(x; �; !)j � M; 8(x; �; !) 2 S � C � D;

i. e., there exists a finite scalar, M, that bounds the
per stage cost. Furthermore, the discount factor is
such that 0 < ˛ < 1.
Both of these conditions are important so as to show
that:

lim
K!1

E

( KX
kDN

˛k g(xk ; �(xk); !k)

)
! 0:

Boundedness and discounting results in succes-
sive approximation mappings which are contraction
mappings, [2], thus proving the convergence of such
schemes to the optimal solution of the discounted
with bounded costs infinite horizon dynamic pro-
gramming problems.

� undiscounted problems: this type of infinite horizon
problems covers situations in which the discount
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factor ˛ = 1, which greatly complicates the analy-
sis. The key distinction is that the lack of a discount
factor may result in infinite costs even when the per
cost stage is bounded.

� average cost per stage problems: In cases where nei-
ther discounting nor a cost-free termination state
exists, it is often meaningful to optimize the average
per stage cost starting from state i.

J(i)

D lim
N!1

1
N
E

( N�1X
kD1

g(xk ; �k(xk); !k) : x0 D i

)
:

In essence what is assumed is that for most problems
of interest the average and the optimal per stage cost
are independent of the initial state. As a result, costs
that incurred in the early stages do not matter since
their contributions vanishes, i. e.,

lim
N!1

1
N
E

( KX
kD0

g(xk ; �k(xk); !k)

)
D 0:

For discrete state and transition spaces, it is helpful
to consider the associated finite-state Markov chain. Let
the state space S consist of n states, denoted by 1, . . . , n:

S D f1; : : : ; ng:

The transitions probabilities from state i to state j are:

pi j(u) D P(xkC1 D jjxk D i; uk D u);

i; j 2 S; u 2 U(i):

The dynamics of the state transitions xk + 1 = f (xk, uk,
!k) can actually be used to compute the state transi-
tions. Given the above, the per stage expected cost can
be expressed as: g(i, u) =

Pn
jD1 pij(u) g

0(i, u, j) Given the
above definitions, a very important mapping can now
be defined:

(TJ)(i) D min
u2U(i)

2
4g(i; u)C ˛

nX
jD1

pi j(u)J( j)

3
5 ;

i D 1; 2; : : : ;

and also

(T
 J)(i) D g(i; �(i))C ˛
nX

jD1

pi j(�(i))J( j);

i D 1; 2; : : : ;

This operator can actually be written as:

T
 J D g
 C ˛P
 J:

Therefore, a stationary policy has a corresponding cost,
J
, which is the solution to the equation:

(I � ˛P
)J
 D g
:

Computationally, two major families of approaches
exists for determining the optimal additive costs and
the optimal policies. The first one, value iteration, is
based on the idea of successive approximations. It can
be shown, under conditions depending of the specific
type of infinite horizon problem, that:

lim
k!1

(Tk J)(i) D J�(i):

This property essentially implies that the successive ap-
plication of the mapping (TJ) will in the limit provide
the optimal cost.

On the other hand policy iteration operates on the
policy space and tries to identify a converging sequence
of stationary policies converging to the optimal one. In
all cases, the following basic three steps define the iter-
ation:
� Initialization: guess an initial stationary policy,mu0.
� Policy evaluation: given a stationary policy,�k, com-

pute the corresponding cost function, J
k from the
system:

(I � ˛P
k )J
k D g
k :

� Policy improvement: obtain a new stationary policy
satisfying:

T
kC1 J
k D TJ
k :
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Consider the problem of ordering a quantity of a cer-
tain item at each of the N periods so as to meet some
stochastic demand. In mathematical terms the problem
is defined as follows:
� xk, the stock of a particular commodity available at

the beginning of the kth period.
� uk the stock to be ordered and immediately deliv-

ered at the beginning of the kth period.
� !k the demand during the kth period, whose proba-

bility distribution is assumed to be known.
The demand distributions are assumed to be indepen-
dent random variables for each time period k. A sim-
ple stock balance at the beginning of each time period

provides the description of the discrete-time evolution
equation as:

xkC1 D xk C uk � !k :

In other words, the state of the system (stock) at the
beginning of period k + 1 was the state of the system
(stock) at period k plus the ordered stock minus the de-
mand at period k. The form of the replenishment of pol-
icy is very important and sits at the hart of the analysis
of similar problems. The one just presented is, as will be
seen, one of the two major assumptions regarding the
stock balance equations. Given the above definitions,
the cost incurred at period k has two components:
� a cost r(xk) representing either a penalty for positive

stock, storage, or negative stocks, shortage for un-
filled demand.

� a surcharging cost, cuk, where c is the per unit sur-
charged cost.

The problem just described is known as the inventory
control problem, one of the most important ones in the
area of operations research. The preceding formulation
illustrates the main characteristics of the inventory con-
trol problem:
� a discrete-time system that defines the system evo-

lution in time of the form:

xk D fk(xk; uk ; !k);

� a set of independent random disturbances, repre-
senting commodity demands;

� a set of control constraints that depend on the state
of the system at time k, xk, that is uk 2 U(xk);

� a period of N time intervals over which the operat-
ing cost has an additive form as:

E

 
gN (xN)C

N�1X
kD0

gk(xk; uk ; !k )

!
;

and, finally,
� we wish to optimally select the control actions at ev-

ery time interval k, so as to optimize over all possible
control policies the cost of operating the inventory
system.

Clearly, the above definition of the inventory control
problem, formulates the problem as dynamic program-
ming problem in which we try to minimize an expected
additive cost function.
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Stochastic inventory problems were first consid-
ered by [6,10], were an abstract stochastic inventory
model that allowed for possible constraints on the in-
ventory after ordering were considered. In the litera-
ture of stochastic inventory models, there are two dif-
ferent assumptions about the excess demand unfilled
from existing inventories: the backlog assumption and
the lost sales assumption. These affect the form of the
stock balance equation. The backlog assumption is his-
torically more popular in the literature because of the
inventory studies with spare parts inventory manage-
ment problems. This assumption essentially states that
an unfilled demand is being accumulated and satisfied
at later times. The lost sales assumption states that un-
filled demand is lost, which is the situation arising in
retail establishments. Under either assumption, an im-
portant issue has been to establish the optimality of the
(s, S)-type policy, [7]. It defines a very simple replenish-
ment rule:

��(xk) D

(
Sk � xk; xk < sk ;
0; xk � sk :

The above rule is referred to as the (s, S) policy, imply-
ing that when the current level is less than the reorder
point, s, an order up to the reorder level, S, has to be
placed. Under an (s, S) policy if the inventory level at
the beginning of a period is less than the reorder point s,
then a sufficient quantity must be re-ordered to achieve
an inventory level S upon replenishment. The key con-
cept of K-convexity, [1], was instrumental in proving
the optimality of the (s, S) policies. A real-valued func-
tion g is K-convex, where K � 0, if:

K C g(z C y) � g(y)C z
�
g(y) � g(y � b)

b

�
;

8z � 0; b > 0; y:

The parameter K is the fixed cost associated with a pos-
itive inventory order:

C(u) D

(
K C cu; u > 0;
0; u D 0:

The concept of K-convexity is one of the most impor-
tant tools for the analysis of inventory control problem.
It essentially expands the concept of convexity and is
instrumental in proving the optimality of policies in in-
ventory control problems. Regarding K-convexity, [2],
the following hold true:

1) A real-valued convex function g is also 0-convex and
hence also K-convex for all K � 0.

2) If g1(y) and g2(y) are K-convex and L-convex (K �
0, L � 0), respectively, then ˛g1(y) + ˇg2(y) is (˛K
+ ˇL)-convex for all ˛ > 0 and ˇ > 0.

3) If g(y) is K-convex and ! is a random variable, then
E!{g(y�!)} is also K-convex, provided E!{|g(y �
!)|} <1, for all y.

4) If g is a continuous K-convex function and g(y)!
1 as |y|!1, then there exist scalars s and S with s
� S such that:
a) g(S)� g(y), for all scalars y;
b) g(S) + K = g(s) < g(y), for all y < s;
c) g(y) is a decreasing function on (�1, s);
d) g(y)� g(z) + K, for all y, z with z � y � z.

If we further define a holding/storage cost as:

r(x) D pmax(0;�x)C hmax(0; x);

the function H as:

H(y) D pE
�
max(0; !k � y)

�
C E

�
max(0; y � !k )

�
:

Application of the dynamic programming algorithm for
zero final cost gives:

Jk(xk) D min�
Gk(xk);min

uk>0
fK C cuk C Gk(xk C uk)g

	
;

with Gk(xk) defined as:

Gk(y) D cyH(y)C E(JkC1(y � !))

and yk = xk + uk. Because of the K-convexity of G, it
can actually be shown, [7], that the (s, S) policy is op-
timal. See [11] for the optimality of the (s, S) policy in
the case of lost sales. For the case where the unfilled de-
mand is not backlogged but rather lost, the system dy-
namic equation is defined as:

xkC1 D max(0; xk C uk � !k):

Additional K-convexity results and the optimality of
the (s, S) for the case of lost-sales is presented and an-
alyzed in [4]. Finite storage capacity in most real-life
situations imposes an upper bound on theory that can
be kept. The recent analysis of [3] considers the multi-
product inventory model with stochastic demands and
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warehousing constraints. This is a fairly general model
in that it does not allow for surplus disposal, uk � 0, and
imposes constraints on the stored stock, xk + uk 2 � .

Similar ideas pertain the analysis of inventory con-
trol problems over an infinite horizon. Infinite horizon
problems need not necessarily correspond to physically
realistic situations, but nevertheless, they define the ve-
hicle for a thorough analysis of the asymptotic response
of the inventory system. A discounted version of the
backlogged problem can be stated as:

J� (x0) D lim
N!1

E

 N�1X
kD1

˛k(c�k(xk)C H(xk C �(xk) � !k ))

!
;

where:

H(y) D pmax(0;�y)C hmax(0; y):

The case of ˛ < 1, i. e., a discounted infinite horizon
problem, has also been analyzed, [8], and the existence
of an optimal state-dependent (s, S)-type policy for
problems with discounted costs was rigorously estab-
lished.

The classical papers [5,10] were also devoted to
stochastic inventory problems with the criterion of
long-run average cost. In other words, one is interested
in minimizing an average expected cost within an infi-
nite horizon

J� (x0) D lim
N!1

1
N

� E

 N�1X
kD1

˛k(c�k(xk)C H(xk C �(xk) � !k))

!
:

This analysis also concludes that (s, S)-type policies are
as well optimal for the long time average-return prob-
lem. The (s, S)-type of optimal policies are very impor-
tant and they have be shown to be optimal for a wide
variety of inventory problems including systems with
continuous demands and discrete order sizes, [9], in
other words for the cases where the orders uk are as-
sumed to be nonnegative integers, as well as the case
where special structure in the form of periodicity of var-
ious components of the formulation such as demands,
prices, and cost, [2].

Undoubtably, one of the most appealing features of
inventory theory has been the fact that (s, S) policies
are optimal for the class of dynamic inventory prob-

lems with random demands. However, real-life inven-
tory problems impose constraints that make the as-
sumption imposed on the analysis apparently too re-
strictive. The nature of demand, for instance, is an im-
portant factor in determining optimal policies. Classi-
cal models have assumed demand in each period to be
a random variable independent of demands in other pe-
riods and of environmental factors at other times. Nev-
ertheless, fluctuating economic conditions and uncer-
tain market conditions can have a major effect. Fur-
thermore, various constraints are observed in real life
that limit the nature of ordering decisions nd inventory
levels. The recent work of [8] addresses similar issues
so as to incorporate cyclic or seasonal demand, as well
as constraints imposed on the ordering periods, stor-
age and service level constraints. Nevertheless, it is still
shown that (s, S) policies are also optimal for these types
of generalized models.
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Discrete-Time Optimal Control

The cost function in the standard k-stage discrete-time
optimal control problem is defined by

J D lkC1(xkC1)C
kX

iD1

li(ui ; xi) (1)

and the recursion
(
x1 D a;
xiC1 D fi(ui ; xi); i D 1; : : : ; k:

(2)

In these equations, ui is a control vector in Rm and xi is
a state vector in Rn. For each vector-valued k-tuple u =
(u1, . . . , uk) in the direct sum Rkm = ˚k

iD1 R
m, there is

a unique state vector-valued (k + 1)-tuple x(u) = (x1(u),
. . . , xk+1(u)) 2 R(k+1)n satisfying (2), and a correspond-
ing unique value J(u) in (1). For present purposes, the
state transition functions f i, the terminal loss function
lk+1 and the stage-wise loss functions li, i = 1, . . . , k, are
assumed to be twice continuously differentiable. The
functions x(�) and J(�) are then also twice continuously
differentiable, and Newton’s method is formally appli-
cable to the problem ofminimizing J(�) overRkm. More-
over, for fixedm and n the km × km linear system asso-
ciated with the Newton iteration map for (1), (2) can be
solved efficiently with dynamic programming recursions
in O(k) floating point operations as k increases with-
out bound. In contrast, it requires O(k3) floating point
operations to assemble and solve the Newtonian linear
system for a general cost function J on Rkm by standard
Gaussian elimination methods.

The following discussion conforms to [4]. See [7]
and [8] for an alternative development with connec-
tions to differential dynamic programming, and for a re-
lated but nonequivalent treatment of discrete-time op-
timal control problems based on the Riccati transfor-
mation. For analogous constructions in the setting of
continuous-time optimal control problems, see [4] and
the original papers [5] and [6]. For extensions to New-
tonian projection methods and input-constrained opti-
mal control problems, see [2] and [3].

Newton’s Method

If J is any continuously differentiable real-valued func-
tion on RN with global or local minimizing vectors u,
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then all such vectors must satisfy the first order neces-
sary condition,

r J(u) D 0; (3)

where

r J(u) D
�
@J
@u1

(u); : : : ;
@J
@uN

(u)
�
:

A solution of (3) is called a stationary point.
Condition (3) comprises N scalar equations in N

scalar unknowns ui. If J is a quadratic function, then (3)
is a linear system which can be treated with standard
elimination algorithms or other techniques capable of
exploiting whatever structure may exist in the coeffi-
cient matrix for (3). On the other hand, if J is a non-
quadratic nonlinear function, then (3) is a nonlinear
system and iterative methods are generally needed to
generate successive approximations to a solution of (3).
One such method is Newton’s recursive linearization
scheme,

u! uC v;

r J(u)Cr2 J(u)v D 0: (4)

When J is twice continuously differentiable, the
vector-valued maprJ(�):RN!RN is continuously dif-
ferentiable and its first differential at u is the Hessian
operator r2 J(u): RN ! RN defined by

(r2 J(u)v)i D
NX
iD1

@2 J
@ui@uj

(u)v j

for i = 1, . . . , N. In such cases, (4) is formally applicable
to the nonlinear system (3). Furthermore, if r2 J(u) is
invertible at a solution u for (3), then in some neighbor-
hoodN of u,r2J(u) is also invertible and for each start-
ing point u0 2 N, the iteration (4) generates a sequence
of vectors, u0, u1, . . . , which remain in N and converge
rapidly to u. More precisely, either ui D u eventually,
or the errors



ui � u


 D (

˝
ui � u; ui � u

˛
)
1
2 satisfy the

superlinear convergence condition,

lim
i!1



uiC1 � u




kui � uk
D 0: (5)

A solution of (3) at which r2J(u) is invertible is said
to be a regular stationary point. Note that solutions of
(3) can be local maximizers or saddle points of J, and

that regular points of this kind can also attract the New-
ton iterates. Hence forminimization problems, a simple
steepest descent iteration is often employed at the out-
set to seek out likely starting points u0 for (4) near some
regular local minimizer for J.

If J is twice continuously differentiable, then every
global or local minimizer u must also satisfy the second
order necessary condition,

8v 2 RN ;
˝
v;r2 J(u)v

˛
� 0; (6)

where h�, �i is the standard Euclidean inner product,

hv;wi D
NX
iD1

viwi :

In RN , u is therefore a regular local minimizer if and
only if r2 J(u) is positive definite, i. e.,

8v 2 RN ; v ¤ 0)
˝
v;r2 J(u)v

˛
> 0: (7)

The gap between (6) and (7) is not large, hence regular
local minimizers are commonly encountered in RN .

By continuity, property (7) extends to r2J(u) in
some neighborhood of u. At each fixed u in this neigh-
borhood, the linear system in Newton’s iteration (4) is
equivalent to a corresponding unconstrained accessory
minimum problem

v 2 arg min
v2RN

�(v) (8)

with a strictly convex quadratic cost function

�(v) D hr J(u); vi C
1
2
˝
v;r2 J(u)v

˛
; (9)

and a unique global minimizer v. This equivalence
is computationally significant for unconstrained min-
imization problems in general and discrete-time opti-
mal control problems in particular.

The Accessory Minimum Problem

If J is the cost function of a discrete-time optimal con-
trol problem, then it can be shown that the accessory
minimum problem (8)–(9) is also a discrete-time con-
trol problem with quadratic loss functions and linear
state transition functions. Near a regular minimizer
for J, this linear-quadratic (LQ) problem has a strictly
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convex cost function that can be minimized with dy-
namic programming recursions. The required control-
theoretic construction for � and the related dynamic
programming algorithms are outlined below.

In the following development, the symbol umay de-
note a vector in Rm or a vector-valued k-tuple in Rkm.
Similarly, x may indicate a vector in Rn or a vector-
valued (k + 1)-tuple in R(k+1)n, and the bracket h�, �imay
denote the Euclidean inner product in any of the spaces
Rm, Rn, Rkm, or R(k+1)n. In each case, the correct inter-
pretation is always clear from the context. Now suppose
that J(�) is defined by (1)–(2) on Rkm, and fix u 2 Rkm.
Then for all v 2 Rkm the chain rule gives,

hr J(u); vi D
d
ds

J(uC sv)jsD0

D

kC1X
iD1

hrx li ; yii C
kX

iD1

hru li ; vii (10)

and

˝
v;r2 J(u)v

˛
D

d2

ds2
J(uC sv)jsD0

D

kC1X
iD1

hrx li ; zii C
kC1X
iD1

˝
yi ;r2

xx li yi
˛

C 2
kX

iD1

˝
yi ;r2

xu livi
˛
C

kX
iD1

˝
vi ;r2

uu li vi
˛
; (11)

where

yi D
d
ds

xi(uC sv)jsD0;

zi D
d2

ds2
xi(uC sv)jsD0;

(12)

and where all partial gradients and Hessians of lk+1 and
li, i = 1, . . . , k, are evaluated at xk+1(u) 2 Rn and (ui,
xi(u)) 2 Rm ˚ Rn, respectively.

Equations (2) and (12) and the chain rule also es-
tablish that yi and zi are recursively generated by the
equations of variation,

(
y1 D 0;
yiC1 D Ai yi C Bivi ; i D 1; : : : ; k;

(13)

and8̂
<̂
ˆ̂:

z1 D 0;
ziC1 D Aizi
C(Ci yi )yi C 2(Di yi )vi C (Eivi)vi

(14)

for i = 1, . . . , k, with linear differential maps,

Ai D
@ fi
@x
; Bi D

@ fi
@u

and

Ci D
@2 fi
@x@x

; Di D
@2 fi
@x@u

; Ei D
@2 fi
@u@u

evaluated at (ui, xi(u)). Useful control-theoretic repre-
sentations for rJ(u) and � can now be constructed by
removing yi from formula (10) and zi from formula (11)
with the aid of an adjoint recursion for (13) and (14).

Equations (13) and (14) are special instances of

8<
:
w1 D 0;

wiC1 D Aiwi C �i ; i D 1; : : : ; k;
(15)

with w = (w1, . . . , wk+1) 2 R(k+1)n and � = (�1, . . . , �k) 2
Rkn. For each �, there is a unique w =˚� satisfying (15),
and the resulting correspondence defines a linear map
˚ : Rkn! R(k+1)n. The map ˚ has an associated adjoint
linear map ˚�: R(k+1)n ! Rkn} which, in principle, is
uniquely determined by the requirement,

h˚��; �i D h�;˚�i ; (16)

imposed for all � 2 Rkn and � 2 R(k+1)n. The matrix rep-
resentor for ˚� in the standard basis for R(k+1)n is ob-
tained by transposing the analogous matrix represen-
tor for ˚ ; however, the adjoint map can also be com-
puted directly with recursions derived from (15), with-
out prior construction of ˚ . More precisely, for each �
2 R(k+1)n,

(˚��)i D  iC1 (17)

for i = 1, . . . , k, where  is the unique solution of the
adjoint recursion,

8<
:
 kC1 D �kC1;

 i D A�i  iC1 C �i ; i D 1; : : : ; k:
(18)
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To see this, note that if w and  are solutions of (15)
and (18) respectively, then

h�kC1;wkC1i D h kC1;wkC1i � h 1;w1i

D

kX
iD1

(h iC1;wiC1i � h i ;wii)

D

kX
iD1

h iC1;Aiwi C �ii

�

kX
iD1

˝
A�i  iC1 C �i ;wi

˛

D

kX
iD1

h iC1; �ii �

kX
iD1

h�i ;wii :

Hence for all � 2 Rkn and � 2 R(k+1)n condition (16)
gives,

h˚��; �i D h�;˚�i D h�;wi D
kX

iD1

h iC1; �ii ;

and this establishes (17).
With the preceding formulas, it is now possible to

write � as a sum of linear and quadratic terms in the
variables v1, . . . , vk and y1, . . . , yk+1, with coefficients de-
rived from the partial gradients and Hessians ofHamil-
tonian functions,

Hi(ui ; xi ;  iC1)

D li(ui ; xi)C h iC1; fi(ui ; xi)i : (19)

Fix u and v in Rkm, let �i(u) = rx li for i = 1, . . . , k + 1,
and let  (u) 2 R(k+1)n be the corresponding solution of
the adjoint recursion,

8<
:
 kC1 D rx lkC1;

 i D A�i  iC1 Crx li ; i D 1; : : : ; k:
(20)

In addition, let y and z be the unique solutions of (13)
and (14) respectively. Then with reference to (15)–(17)
and (20),

kC1X
iD1

hrx li ; yii D
kX

iD1

h iC1; Bivii

D

kX
iD1

˝
B�i  iC1; vi

˛

and

kC1X
iD1

hrx li ; zii D
kX

iD1

h iC1; (Ci yi )yii

C 2
kX

iD1

h iC1; (Di yi )vii C
kX

iD1

h iC1; (Eivi )vii :

When these expressions are substituted into (9)–(11), it
follows from (19) that � is prescribed by

�(v) D qkC1(ykC1)C
kX

iD1

qi(vi ; yi) (21)

and the recursions,
(
y1 D 0;
yiC1 D Ai yi C Bivi ; i D 1; : : : ; k;

(22)

where Ai and Bi are the differential maps

Ai D
@ fi
@x
; Bi D

@ fi
@u

as before, and the loss functions q are given by

qkC1(y) D
1
2
hy;QkC1yi

and

qi(v; y) D hri ; vi C
1
2
hy;Qi yi

C hy; Rivi C
1
2
hv; Sivi ;

for i = 1, � � � , k, with

QkC1 D r
2
xx lkC1;

ri D ruHi ;

and

Qi D r
2
xxHi ; Ri D r

2
xuHi ; Si D r2

uuHi

for i = 1, . . . , k. Moreover, the cost gradient rJ(u) is
separately recoverable from

r J(u) D (r1; : : : ; rk)

D (ruH1; : : : ;ruHk) : (23)

In these equations, the Hessian of lk+1 is evaluated at
xk+1(u) and the Hamiltonian gradients and Hessians are
evaluated at (ui, xi(u),  i+1(u)).
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Dynamic Programming Recursions

Recall that r2J(u) is positive definite in some neighbor-
hood of a regular local minimizer for J. When r2J(u)
is positive definite, the quadratic accessory minimum
problem with cost function (21)–(22) can be solved
by dynamic programming techniques, which rest on
a simple embedding scheme and a few elementary theo-
rems stated below without proof. For a fuller discussion
of dynamic programming, see [1].

For j = 1, . . . , k and y 2 Rn, define the family of cost
functions � j(�;y): R(k+1�j)m! R1 by

� j(v j; : : : ; vk ; y) D qkC1(ykC1)C
kX

iD j

qi(vi ; yi ) (24)

and the recursions,
(
y j D y
yiC1 D Ai yi C Bivi ; i D j; : : : ; k;

(25)

where qi, Ai and Bi are u-dependent entities defined as
before. Evidently, the cost function � in (21)–(22) is re-
covered from the equation,

�(v) D �1(v1; : : : ; vk ; 0): (26)

Moreover, the cost functions � j are recursively gener-
ated by

�k(vk ; y) D qk(vk ; y)C qkC1(Ak y C Bkvk)

and

� j(v j; : : : ; vk ; y) D q j(v j; y)

C � jC1(v jC1; : : : ; vk ;Aj y C Bjv j);

for j = k � 1, . . . , 1. It is likewise readily seen that

� j(v j; : : : ; vk ; 0) D �(0; : : : ; 0; vj; : : : ; vk);

r2
vv� j(v j; : : : ; vk ; y) D r2

vv� j(v j; : : : ; vk ; 0);

and

r2
vv�(v) D r

2 J(u)

for j = 1, . . . , k, v 2 Rkm and y 2 Rn. Note also that
since �(�) and � j(�;y) are quadratic functions, their cor-
responding v-Hessians are independent of v as well as
y. These facts and the basic principles of dynamic pro-
gramming yield the following theorems.

Theorem 1 The following statements are equivalent:
1) The quadratic function �(�) has a unique global min-

imizer v 2 Rkm.
2) r2J(u) is positive definite.
3) For all j = 1, . . . , k, r2

vv� j is positive definite.
4) For all j = 1, . . . , k and all y 2 Rn, the quadratic

function � j(�;y) has a unique global minimizer
(v j; : : : ; vk) 2 R(kC1� j)m

Theorem 2 The following statements are equivalent:
1) For all j = 1, . . . , k and y 2 Rn,

�0
j (y) :D inf

v j;:::;vk
� j(v j; : : : ; vk ; y) > �1; (27)

2) The real-valued functions �0
1(�), . . . , �

0
k(�) satisfy the

backward functional recursion,

�0
j (y) D inf

v2Rm
[q j(v; y)C �0

jC1(Aj yC Bjv)] (28)

for j = k, . . . , 1, with

�0
kC1(y) :D qkC1(y):

Theorem 3 Let ri, Ai, Bi, Qi, Ri, and Si be the vectors
and linear maps appearing in the representations (21)–
(22) and (24)–(25) for the functions �(�) and � j(�;y).
Then the following statements are equivalent for all v D
(v1; : : : ; vk) 2 Rkm:
1) v is the unique global minimizer for � in Rkm, i. e.,

arg min
v2Rkm

�(v) D fvg:

2) The vector v 2 Rkm is generated by the forward re-
cursions(

y1 D 0;
y jC1 D Aj y j C Bjv j;

(29)

fv jg D arg min
v2Rm

h
q j(v; y j)C �0

jC1(Aj y j C Bjv)
i

D f� j C � j y jg;

(30)

for j = 1, . . . , k, where

q j(v; y) D
˝
r j; v

˛
C

1
2
˝
y;Qj y

˛

C
˝
y; Rjv

˛
C

1
2
hv; Sivi ;

�0
j (y) D ˛ j C

˝
ˇ j ; y

˛
C

1
2
˝
y; 
 j y

˛
;
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Sj + B�j
j+1Bj is positive definite,

� j D �(Sj C B�j
 jC1Bj)�1(r j C B�j ˇ jC1); (31)

� j D �(SjCB�j
 jC1Bj)�1(R�j CB�j
 jC1Aj); (32)

and the linear maps 
j, vectors ˇj, and numbers ˛j
satisfy the backward recursions,

8̂
<̂
ˆ̂:


kC1 D 0;

 j D Qj C A�j
 jC1Aj

C(R�j C B�j
 jC1Aj)�� j;

(33)

(
ˇkC1 D 0;
ˇ j D (Aj C Bj� j)�ˇ jC1 C �

�
j r j;

(34)

and
8<
:
˛kC1 D 0;

˛ j D ˛ jC1 �
1
2

D
� j; (Sj C B�j
 jC1Bj)� j

E (35)

for j = k, . . . , 1.

These theorems support the following efficient scheme
for computing the Newton increment v in (4).

1 Given u 2 Rkm , solve the forward recur-
sion (2) for x(u), and construct the corre-
sponding linear maps Aj and Bj , and vectors
� j = rx l j.

2 Solve the backward adjoint recursion (20) for
 (u) and construct the corresponding vec-
tors r j .

3 Construct the linear maps Qi ; Ri and Si , solve
the backward dynamic programming recur-
sions (33) and (34) for 
 j and ˇ j , and com-
pute � j and � j in (31) and (32).

4 Solve the forward recursions (29)–(30) for y
and v.

Algorithm

Stages 1 and 2 in the foregoing algorithm are always
well-posed, and yield the cost gradient rJ(u) (see (23)).
The calculation for the Newton increment v is well-
posed if and only if stage 3 produces invertible linear
maps Sj + B�j
j+1Bj for j = k, . . . , 1. The calculation for

v is well-posed and stage 3 concludes with k positive
definite linear maps Sj + B�j
j+1Bj if and only if r2J(u)
is positive definite. If a positive semidefinite, indefinite
or singular linear map Sj + B�j
j+1Bj is encountered at
some point in stage 3, it follows that r2J(u) is not pos-
itive definite and the accessory minimum problem may
have no global minimizers or stationary points, or in-
finitely many such points. In such cases, it may be ad-
vantageous or even necessary to abort stage 3 and aban-
don Newton’s method temporarily in favor of a descent
iteration that employs the negative gradient �rJ(u)
computed in stages 1 and 2, or some other descent
direction. Alternative quasi-Newtonian descent direc-
tions can be obtained by replacing Sj in stage 3 with
Sj + �jI where �jI is a positive shift added where nec-
essary to maintain positive definiteness of Sj + �jI +
B�j
j+1Bj. This variant of stage 3 is automatically well-
posed and produces the unique global minimizer v of
the perturbed cost function,

�(v)C
1
2
hv; �(u)vi ;

where

�(u)v D (�1v1; : : : ; �kvk):

By construction, r2J(u) +�(u) is positive definite and

v D �(r2 J(u)C�(u))�1r J(u):

Hence v is a descent vector for J. On the other hand,
the simple steepest descent direction �rJ(u) may be
more cost-efficient, particularly when u is far from a lo-
cal minimizer for J.

If the work required to compute the differentials for
f j and lj in each time step j is uniformly bounded in j,
withm and n fixed, then the number of arithmetic oper-
ations required to execute the foregoing algorithm (or
its shifted variants) is directly proportional to k. This
compares very favorably with the standard O(k3) esti-
mate for general Newtonian calculations in Rkm.

Finally, references [9] and [10] revise the basic serial
dynamic programming algorithm for parallel computa-
tion, and thereby achieve significant reductions in the
time needed to calculate each Newton iteration.

See also

� Automatic Differentiation: Calculation of Newton
Steps
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A very powerful method for optimization of a system
that can be separated into stages is dynamic program-
ming developed by R. Bellman [1]. The main concept
of this technique lies in the principle of optimalitywhich
can be stated as follows:

An optimal policy has the property that whatever
the initial state and the initial decision are, the
remaining decisions must constitute an optimal
policy with regard to the state resulting from the
first decision.

Many engineering systems are in the form of indi-
vidual stages, or can be broken into stages, so the idea of
breaking up a complex problem into simpler subprob-
lems so that optimization could be carried out system-
atically by optimizing the subproblems was received en-
thusiastically. Numerous applications of the principle
of optimality in dynamic programming were given in
[2], and there was a great deal of interest in applying
dynamic programming to optimal control problems.
In the 1960s many books and numerous papers were
written to explore the use of dynamic programming as
a means of optimization for optimal control problems.
Since an optimal control problem, involving optimiza-
tion over a trajectory, can be broken into a sequence
of time stages, it appeared that dynamic programming
would be ideally suited for such problems.

Although dynamic programming could be success-
fully applied to some simple optimal control problems,
one of the greatest problems in using dynamic pro-
gramming, however, was the interpolation problem en-
countered when the trajectory from a grid point did not
reach exactly the grid point at the next stage [12]. This
interpolation difficulty coupled with the dimensionality
restriction and the requirement of a very large number
of grid points limited the use of dynamic programming
to only very simple optimal control problems. The limi-
tations imposed by the ‘curse of dimensionality’ and the
‘menace of the expanding grid’ for solving optimal con-
trol problems kept dynamic programming from being
used for practical types of optimal control problems,

until R. Luus [14] suggested effective means of over-
coming both the interpolation and the dimensionality
problems.

Optimal Control Problem

We consider the continuous dynamic system described
by the vector differential equation

dx
dt
D f(x;u) (1)

with the initial state x(0) given, where x is an (n × 1)
state vector and u is an (m × 1) control vector bounded
by

˛ j � uj(t) � ˇ j; j D 1; : : : ;m: (2)

The performance index associated with this system
is a scalar function of the state at the given final time tf ;
i. e.,

I D ˚(x(t f )): (3)

We may have also state constraints, but for simplicity
we shall leave these for later. The optimal control prob-
lem is to find the control u in the time interval 0 �
t < tf , so that the performance index in (3) is either
minimized or maximized. To set up the problem into
a staged form, we may approximate the optimal control
problem by requiring a piecewise constant control pol-
icy instead of a continuous control policy, over P stages,
each of length L, so that

L D
t f
P
; (4)

and we can consider the system at the grid points set
up at these P stages. We may also use a piecewise linear
approximation and the stages do not necessarily have
to be of equal length.

Iterative Dynamic Programming

M. DeTremblay and Luus [10] suggested that instead
of interpolation, an approximation can be used when
the trajectory from a grid point does not reach a grid
point at the next stage. They suggested that the con-
trol policy that was found to be optimal for the clos-
est grid point be used to continue the integration to the
next stage. If a large number of grid points are taken at
each stage then a reasonable approximation may be ob-
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tained, but the resulting control policy can still be quite
far from the optimum. Therefore, this simplification by
itself gives only a crude approximation.

However, by making a small change to the proce-
dure, the accuracy with which the optimum is obtained
can be improved substantially. This change requires the
use of the procedure repeatedly in an iterative fashion
[16], so that after every iteration, where the best value
is used as the center point, the regions for the allowable
values for control and for the grid points are reduced in
size. The idea of region reduction in optimization was
successfully used by Luus and T.H.I. Jaakola [37] in di-
rect search optimization. As was shown by Luus [16],
dynamic programming can be used in this fashion to
give a sufficiently accurate optimal control policy. Al-
though easy to program, the method was not computa-
tionally attractive until the idea of using accessible states
as grid points [14]. With this latter change, the method
was recognized as a feasible approach to solving optimal
control problems.

The advantage of generating the state grid points is
also that the dimensionality of the state vector then does
not matter. The application of the method to a non-
linear system described by 7 differential equations and
having 4 control variables was solved quite easily [15].
Also the method was used for system of difference equa-
tions, which is actually easier, since no discretization is
necessary [40]. In essence, the ‘curse of dimensional-
ity’ was eliminated and the new computational proce-
dure became known as iterative dynamic programming
(IDP).

Early Applications of IDP

Iterative dynamic programming provided a very conve-
nient way of investigating the effect of the choice of the
final time in optimal control problems [18]. However,
by generating the grid points, it was no longer possi-
ble to guarantee a global optimum. This was illustrated
by Luus and M. Galli [36]. Even the use of a very large
number of grid points does not guarantee getting the
global optimum. In fact, the number of grid points can
be quite small in many cases and the global optimum is
still obtained with good accuracy [4].

A very challenging problem is the bifunctional
catalyst problem, where it is necessary to determine
the blend of the catalyst along a tubular reactor to

maximize the yield of a desired component [35]. By us-
ing successive quadratic programming (SQP) and start-
ing from 100 randomly chosen starting points, 26 lo-
cal optima were located, but the global optimum was
not obtained. With IDP, however, the global optimum
was readily obtained with the use of a single grid point
[34]. To avoid the numerous local optima, all that was
required for this system was to take a sufficiently large
initial region size for the control.

Although the optimal control of fed-batch reactors
was very difficult to obtain by methods based on Pon-
tryagin’s maximum principle, iterative dynamic pro-
gramming provided a reliable means of obtaining the
global optimum, and the results were even marginally
better than had been previously reported [20,22]. The
additional advantage of IDP is that the computations
are straightforward and the algorithm can be easily pro-
grammed to run on a personal computer.

Choice of Candidates for Control

In the early work with IDP, the test values for the con-
trol variables were chosen over a uniform distribution.
This was easy to program and was easy to visualize. For
each control variable we could have a minimum of 3
values, namely �r, 0, and r, where r is the region size.
For m control variables we must examine then 3m can-
didates at each grid point. This is fine ifm is less than 4,
but ifm is large, this number becomes excessively large.

An alternative method for choosing candidates for
control was suggested by V. Tassone and Luus [47], but
a better approach as shown by B. Bojkov and Luus [3]
was to choose such candidates at random inside the al-
lowable range. This meant that in theory there was no
upper limit onm. Conceptuallym could be greater than
100. In fact, IDP was used successfully on a system with
130 differential equations and 130 control variables [21]
and later with 250 differential equations with 250 con-
trol variables [26].

Piecewise Linear Continuous Control

In the early work with IDP, the given time interval was
divided into P time stages of equal length and at each
time-stage we would have constant control. In many
cases the optimal control policy is quite smooth, and
therefore it may be beneficial to approximate the con-
trol policy by linear sections. This, indeed, gives a bet-
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ter result with a smaller number of time stages as was
shown by Luus [23], and allowed an optimal control
policy for very high-dimensional systems to be deter-
mined accurately [15,26]. For a piecewise linear control
we calculate the control policy in the time interval (tk,
tk+1) by the expression

u(t) D u(k)C
u(k C 1) � u(k)

L
(t � tk); (5)

where u(k) is the value of u at the time tk and u(k + 1)
is the value of u at time tk+1.

Algorithm for IDP

To illustrate the underlying logic in IDP, an algorithm
is given to solve the optimal control problem as out-
lined in (1)-(4), where it is required to minimize the
performance index in (3) with the use of piecewise con-
stant control over P stages, each of same length:
1) Divide the time interval [0, tf ] into P time stages,

each of length L.
2) Choose the number of test values for u, denoted

by R, an initial control policy and the initial region
size rin; also choose the region contraction factor �
used after every iteration and the number of grid
points N.

3) Choose the total number of iterations to be used
in every pass and set the iteration number index to
j = 1.

4) Set the region size vector r(j) = rin.
5) By using the best control policy (the initial control

policy for the first iteration) as reference, integrate
(1) from t = 0 to tf N times with different values
for control inside the allowable region to generate
Nx-trajectories and store the values of x at the be-
ginning of each time stage as grid points, so that
x(k� 1) corresponds to the value of x at beginning
of stage k.

6) Starting at stage P, corresponding to time tf � L,
for each of the N stored values for x(P � 1) from
step 5 (grid points) integrate (1) from tf � L to tf ,
with each of the R allowable values for the control
vector calculated from

u(P � 1) D u(P � 1)�( j) CDr( j); (6)

where u(P � 1)�(j) is the best value obtained in the
previous iteration andD is a diagonal matrix of dif-
ferent random numbers between �1 and 1. Out of

the R values for the performance index, choose the
control values that give the minimum value, and
store these values as u(P�1). We now have the best
control for each of these N grid points.

7) Step back to stage P� 1, corresponding to time
tf � 2L, and for each of theN grid points do the fol-
lowing calculations. Choose R values for u(P� 2)
as in the previous step, and by taking as the initial
state x(P� 2) integrate (1) over one stage length.
Continue integration over the last time stage by
using the stored value of u(P� 1) from step 6 by
choosing the control policy corresponding to the
grid point that is closest to the values of the state
vector that has been reached. Compare the R values
of the performance index and store the u(P� 2)
that gives the minimum value for the performance
index.

8) Continue the procedure until stage 1, correspond-
ing to the initial time t = 0 and the given ini-
tial state, is reached. This stage has only a single
grid point, since the initial state is specified. As be-
fore, integrate (1) and compare the R values of the
performance index and store the control u(0) that
gives the minimum performance index. Store also
the corresponding x-trajectory.

9) Reduce the region for allowable control

r( jC1) D �r( j); (7)

where j is the iteration number index. Use the best
control policy from step 8 as the midpoint for the
allowable values for the control denoted by the su-
perscript 
.

10) Increment the iteration index j by 1 and go to step 5
and continue the procedure for the specified num-
ber of iterations and interpret the results.

The application of this algorithm is illustrated with sev-
eral examples in [33], where also the computer program
in FORTRAN is given for IDP.

Time-Delay Systems

The great advantage of IDP over Pontryagin’s maxi-
mum principle is that no auxiliary variables have to be
calculated and no derivatives are required. The state
equation is integrated forward and there is no need
to integrate any equations backward. Therefore, the
method is applicable to more complex systems, such as
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time-delay systems. The initial attempt to apply IDP to
time-delay systems was made by S.A. Dadebo and Luus
[8]. By using piecewise linear continuous control very
good results for a difficult nonlinear time-delay CSTR
system were obtained by Luus et al. [43]. The method is
further illustrated in [32].

State Constraints

Control constraints actually simplify the problem by
decreasing the range over which the admissible values
of control are to be taken. Research in how to handle
state constraints is still continuing, but already very use-
ful results have been obtained. As was shown in [39]
and [17], the use of penalty functions appears to be
the best way to deal with state constraints. The best
type of penalty function has not yet been firmly estab-
lished. Although Dadebo and K.B. McAuley [9] sug-
gested the use of absolute value type of penalty function
for state equality constraints, the recent work of Luus
[27], and Luus and C. Storey [41] show that a quadratic
penalty function with shifting terms also works very
well. The advantage of using the quadratic penalty func-
tion with shifting terms is that, at the optimum, the
shifting terms yield useful sensitivity information with
respect to the constraints. Handling of state inequality
constraints can be achieved by introducing through dif-
ferential equations auxiliary variables that are increased
in value whenever the constraint is violated and then
including these auxiliary variables at the final time as
penalty functions in the augmented performance index
[46]. The use of differential equations is better than the
use of difference equations as was used by Luus [17],
because this will prevent violation of the constraint in-
side a time stage. The auxiliary variables when incorpo-
rated into the augmented performance index through
a penalty function with a sufficiently large penalty func-
tion factor thus prevent a violation of the state con-
straint anywhere in the time interval.

Singular Control Problems

When Pontryagin’s maximum principle is used, com-
putational difficulties arise if the Hamiltonian is not an
explicit function of the control for a portion of the tra-
jectory. Such problems do not arise when IDP is used,
and therefore this area was investigated by using IDP.
The early work [19] showed that IDP can be used with-

out much difficulty for such problems, and Luus [29]
was able to obtain solutions to singular control problems
that had eluded many investigators. For these problems
the main difficulty is the very low sensitivity of the per-
formance index on control.

Sensitivity of Control Policy

Especially for batch reactors, it is found that the cause of
computational difficulties lies in the sensitivity of con-
trol policy with respect to the yield that is to be maxi-
mized [24]. Whereas we are not concerned with more
than four figure accuracy in the yield, we would never-
theless like to know what the optimal control policy is.
The very low sensitivity was brought out by Luus [25]
where in the optimal control of a fed-batch reactor, it
was shown that the optimal control policy is relatively
smooth.

Use of Variable Stage-Lengths

Bojkov and Luus [5,6] suggested the use of flexible
stage-lengths in IDP for time optimal control problems
where the time of switching is very important. For gen-
eral type of optimal control problems the use of vari-
able stage-lengths enabled the optimum to be more ac-
curately obtained, and in some instances the local op-
tima encountered with the use of stages of fixed length
could be avoided [7]. The problem of applying this idea
to problemswhere the final time was specified was over-
come by the use of shifting terms in a quadratic penalty
function [27]. The use of flexible stage-lengths provides
a means of obtaining accurate switching times and al-
lowed some optimal control problems, that had gone
by unsolved for several decades, to be readily solved
[29]. The use of variable stage lengths and a quadratic
penalty function with shifting terms enables time opti-
mal control problems to be solved directly [31], so that
a difficult boundary value problem is avoided. Further
illustration of the usefulness of variable stage lengths is
given in [30] and [33].

Nonseparable Problems

Problems where the performance index is a function
of all the control variables and states, and where sep-
aration into stages as required for dynamic program-
ming is not possible, constitutes and interesting class
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of problems. D. Li and Y.Y. Haimes [13] suggested
a method of tackling such problems, and Luus and Tas-
sone [42] considered the application of IDP to nonsepa-
rable problems. Luus [28] showed that even for complex
nonseparable problems a large number of grid points
is not necessary, and the optimum can be obtained
quite readily. If the number of stages is large, then IDP
has a great advantage over direct search optimization
where optimization is carried out simultaneously over
all the stages. The best means for the application of IDP
to nonseparable problems are still to be determined.
The strategy of using the values for some of the vari-
ables from previous iteration appears to work very well,
however.

Future Directions

Iterative dynamic programming has been developed
into a useful optimization procedure. As has been
shown in [11], IDP has certain advantages over other
optimization procedures for the optimization of a fed-
batch reactor. The reliability of getting the global op-
timum is very high. Now that the personal computers
have become very powerful, the method can be easily
used on very complex optimal control problems. When
G. Marroquin and W.L. Luyben [44] suggested operat-
ing a batch reactor at its best isothermal temperature
as the set point, the computational power of the exist-
ing computers was relatively low and the cost of com-
putation was very high. It appeared then that optimal
control could not be used for realistic systems. Now,
however, we can, in effect, have a feedback control if
the measurements of the pertinent state variables can
be done sufficiently fast, by solving the optimal control
problem many times during the time of operation of
the batch reactor. If the trend in the enhancement of
computer speed continues, we can use realistic mod-
els and carry out optimization ‘on-line’, so that optimal
control calculations can be carried out during the op-
eration and the required changes in the control can be
immediately implemented. Then the optimal control’s
application will not be only for investigation of design
possibilities, but will constitute an important part of the
actual operation of the process.

The viability of using IDP for on-line optimal con-
trol has been illustrated for reactor control by Luus and
O.N. Okongwu [38].

Since derivatives are not required in the use of IDP,
the method is applicable to more general types of op-
timal control problems. Also, since no auxiliary vari-
ables are necessary, except to handle state inequality
constraints, the method is easier to use than varia-
tional methods based on Pontryagin’s maximum prin-
ciple. As convergence properties of IDP are studied in
greater detail, further improvements will inevitably be
introduced, to make IDP even more useful. Luus [30]
showed that variable stage lengths can be incorporated
into optimal control problems where state inequality
constraints are also present, by combining the approach
of Bojkov and Luus [7] along with that of W. Mekara-
piruk and Luus [46]. Although the best choice for the
penalty function to be used in IDP has not yet been
established, good progress has been made in this field
[45] and further research in this area is continuing. Fur-
thermore, since no derivatives are required for IDP, the
method should have important applications where non-
differentiable functions are encountered.
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The shortest path problem is considered to be one of the
classical and most important combinatorial optimiza-
tion problems. Given a directed graph and a length ˛ij
for each arc (i, j), the problem is to find a path of min-
imum length that leads from any node i to a node t,
called the destination node. So, for each node i, we need
to optimally identify a successor node u(i) so as to reach
the destination at the minimum sum of arc lengths over
all paths that start at i and terminate at t. Of particu-
lar relevance is, in the area of distributed computation,
the problem of data routing within a computer com-
munication network. In such a case, the cost associated
with a particular link (i, j) is related to an average de-
lay. The stochastic shortest path problem is a general-
ization whereby for each node i we must select a prob-
ability distribution over all possible successor nodes j
out of a given set of probability distributions pij(u), pa-
rameterized by a control u 2 U(i). Clearly, the path tra-
versed and its length are random variables, but the op-
timal path should lead to the destination with probabil-
ity 1 and have the minimum expected length. Further-
more, if the probability distributions are such that they
assign a probability of 1 to a single successor we then re-
cover the deterministic shortest path problem. Clearly,
sequential decisions have to be made optimally so as to
determine the sequence of controls that would produce
for any current state, i. e. node, a successor state, i. e.
node, so as to minimize the expected length for reach-
ing the terminal state. If we were to assume that a par-
ticular policy  , i. e., set of control actions, has been
selected the total expected cost starting from an initial
state i, using this policy would be:

J� (i)

D lim
N!1

E

( N�1X
kD0

˛k g(ik; �k (i); ikC1) : i0 D i

)
:
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The optimal cost-to-go starting from state i is denoted
by

J� D min
�

J� (i):

This problem is defined as s special case of the total cost
infinite horizon problem. The need to assume an infi-
nite horizon is not required by the actual description
of the problem, but rather it is a necessity since the ac-
tual length is random as well as unknown. The follow-
ing are the key characteristics of the stochastic short-
est path problem description within the infinite horizon
dynamic programming framework:
1) There is no discounting, ˛ = 1.
2) The state space is S = {1, . . . , n, t}.
3) The transitions probabilities are:

pi j(u) DD P(xkC1 D jjxk D i; uk D u);

i; j 2 S; u 2 U(i):

4) The state t is absorbing, that is,

ptt(u) D 1; 8u 2 U(t);

the state t, the termination state, is special in the
sense that reaching it is inevitable.

5) The control set U(i) is finite.
6) The destination is cost-free, i. e.,

g(t; u; t) D 0; 8u 2 U(t):

If we denote by g0(i, u, j) the cost of moving from i to j
using control u, then the expected cost per stage will be
defined as:

g0(i; u) D
nX

jD1

pi j(u)g(i; u; j):

The concept of the absorbing state implies that this state
will either be reached inevitably, or there is an incen-
tive to reach it with the minimum expected cost. The
stochastic shortest path problem was first formulated
in [3] while addressing a fundamental problem in con-
trol theory, namely finding the input that would take
a given system to a specified terminal state at minimum
cost. A fundamental assumption regarding the types of
stochastic shortest path problems that can be analyzed
states that:

Assumption 1 There exists at least one proper policy.

A proper policy � is a stationary policy which, when
used, results in a positive probability that the destina-
tion state will be reached after at most n stages, regard-
less of the initial state. That is:

�
 D max
iD1;:::;n

P fxn ¤ t : x0 D i; �g < 1:

A stationary policy is a policy of the form  = {�, �,
. . . }.

For analysis purposes, the following operator for
any vector J is defined:

(TJ)(i) D min
u2U(i)

2
4g(i; u)C

nX
jD1

pi j(u)J( j)

3
5 ;

i D 1; : : : ; n;

which is obtained by applying one iteration of the basic
dynamic programming algorithm to the cost function J,
by realizing that the expectancy operator can be refor-
mulated based on the functional form of the state tran-
sition probabilities pij. It can actually be shown, [1], that
T is a contraction mapping with respect to a weighter
sup norm. In other words there exist positive constants
v1, . . . , vn, and some � with 0 < � < 1, such that for all
J1, J2:

max
iD1;:::;n

1
vi
j(TJ1)(i) � (TJ2)(i)j

� � max
iD1;:::;n

1
vi
jJ1(i) � J2(i)j :

Furthermore, the operator T is monotone, that is: for
any vector J and J such that J(i) � J(i), i = 1, . . . , n, and
for any stationary policy � we have:

(Tk J)(i) � (Tk J)(i);

(Tk

 J)(i) � (Tk


 J)(i);

i D 1; : : : ; n; k D 1; 2; : : : :

The main results of the theoretical analysis of stochas-
tic shortest path problems are analogous to those for
discounted problems:
i) The optimal cost vector is a solution to Bellman’s

equation: J� = TJ�.
ii) For every proper policy the cost vector J satisfies:

lim
k!1

(Tk J)(i) D J�(i); i D 1; : : : ; n:
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iii) A stationary policy � is optimal if and only if T
J�

= TJ�.
iv) For every proper policy �:

lim
k!1

Tk

 J D J
;

J
 D T
 J
:

A thorough analysis of the computational complexity
of stochastic shortest path problems has been presented
in [5].

In order to address computationally stochastic
shortest path problems the general methods, i. e., value
iteration, and policy iteration, as well as approximation
schemes along the lines presented in [1] as developed
for discounted problems. A detailed account can also be
found in [6]. Value iteration is a principal method for
calculating optimal cost J� by generating sequences TkJ
starting from some J. Issues related to the Gauss–Seidel
implementation of the value iteration are discussed in
[2]. Although in principle an infinite number of iter-
ations will be required, under certain conditions finite
convergence can be achieved. An alternative way is to
perform policy iterations, in the sense that starting with
a proper policy �0, a sequence of policies converging to
the optimal one is constructed. According to property
iv), for any given policy �, the cost vector can be evalu-
ate as the solution of a system of linear equations:

J(i) D
nX

jD1

pi j(�k(i))(g(i; �k(i); j)C J( j));

i D 1; : : : ; n:

A policy improvement can be know determined as in:

�kC1(i)

D arg min
u2U(i)

nX
jD0

pi j(u)(g(i; u; j)C J
k ( j)):

These approaches assume that mathematical models for
the cost structure and the transition probabilities of the
system exist. In may cases however, such information
is not available and methods based on simulation have
been developed. This information can be derived by
simulating, for given control and state spaces, the sys-
tem’s response so as to derive the associated transition
costs g(i, u, j). The ideas ofMonte-Carlo simulation can

be utilized so as to use simulation for policy evaluations.
A straightforward way of computing the corresponding
cost vector J
 for a given policy �, is to generate many
sample trajectories starting at i, average the correspond-
ing costs, therefore obtaining an estimate for J
(i). An
alternative way, is to perform an infinite (large) num-
ber of simulation runs from various initial states up to
the destination state, and any time that state i is en-
countered we record the corresponding cost of reaching
state t:

c(i;m) D g(i; i1)C g(i1; i2)C � � � C g(iN ; t):

By averaging the simulations we obtain:

J
(i) D lim
M!1

1
M

MX
mD1

c(i;m):

The iterative implementation of the update process re-
sults in:

J
(ik) D J
(ik)

C �k
�
g(ik ; ikC1)C g(ikC1; ikC2)

C � � � C g(iN ; t) � J
(ik)
�
;

k D 1; : : : ;N;

�k D
1
m
; m D 1; 2; : : :

Using simulation to perform the policy evaluation as
just described, can be utilized so as to improve on the
actual policies in order to achieve optimality. The con-
cept of temporal differences, [7], was proposed recently
as an alternative way so as to develop policy iterations,
[1,2]. This concept originated in the field of reinforce-
ment learning, and the key premise is to adjust the esti-
mations appropriately so as to modify prior predictions
when a temporal difference if observed, by essentially
looking back in time and correcting previous predic-
tions. The temporal difference is defined as the quantity:

dk D g(ik ; ikC1)C J
kC1 � J
k ;

k D 1; : : : ;N:

The temporal difference represents the difference be-
tween the current estimate J
(ik) of expected cost-to-go
to the termination state and the predicted cost-to-go to
the termination state g(ik, ik+1)+ J
kC1 . The key idea
of the Monte-Carlo simulation using temporal differ-
ences is to update the individual cost-to-go as soon as
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the cost to go of the successor has been estimated. In
other words J
(i1) is update as soon as g(i1, i2) and i2
are generated during the simulation runs. Then update
both J
(i1) and J
(i2) immediately after g(i2, i3) and i3
are generated, etc.

For the cases where the number of stages becomes
prohibitively large, approximations schemes can be
used so as to derive accurate estimates of either the
optimal cost, J�, or the optimal policy, �. By approx-
imating the optimal cost, J�, we need to generate for
a given state i and approximation J0(i, r) of J�(i), where
r a parameter vector that is to be determined by using
some type of least squares minimization. Once the cost
is know, it can then be used so as to generate subopti-
mal policies as:

�0(i)

D arg min
u2U(i)

nX
jD1

pi j(u)(g(i; u; j)C J0( j; r)) :

The type of the approximation is nonunique but usually
the approximations are of the form:

J0(i; r) D
mX

kD1

rkwk(i):

In essence the approximation is a linear combination of
a set of basis functions.

Recently (1994), [8], presented an approximation
scheme referred to as feature-based aggregation. The
idea is to develop an approximation by making use of
the fact that several states may share some common
characteristics (features). For a stochastic shortest path
problem with n states, one can identify m disjoint sub-
sets Sk, k = 1, . . . , m, such that:

S D S1 [ � � � [ Sm :

The basis functions !k(i) can therefore be defined as:

!k(i) D

(
1 if i 2 Sk ;
0 if i 2 Sk :

The approximate cost can thus be defined as:

J0(i; r) D
mX

kD1

rk!k(i):

The optimal vector r can be determined as the solution
of the aggregate stochastic shortest path problem, for
which the aggregate aggregate transition probabilities
qki express the probability of moving from any state in
Sk to state i. The vector r solves the corresponding Bell-
man’s equation of the aggregate problem:

rk D
nX

iD1

qki

� min
u2U(i)

nX
jD1

pi j(u)

 
g(i; u; j)C

mX
sD1

rs!s( j)

!
;

k D 1; : : : ;m:

For the aggregate problem, the simulation ideas previ-
ously developed can be utilized so as to obtain the opti-
mal vector r and therefore obtain the required approxi-
mation.

Approximation and simulation schemes can also be
combined so as to provide alternatives to performing
policy iterations, [1]. For a given stationary policy �,
a number of simulations, M, can be performed so as
to obtain the estimates c(i, m). subsequently, a least
squares optimization can be solved to provide an ap-
proximation to the costs J
0(i, r, and the coefficients r
are derived by solving the following optimization prob-
lem:

min
r

X
i2S

MX
mD1

ˇ̌
J0(i; r) � c(i;m)

ˇ̌2
:

Once the costs function have been determined, and im-
proved policy, �(i) is identified as:

�(i) D arg min
u2U(i)

X
j

pi j(u)(g(i; u; j)C J0(i; r)):

In essence, the method iterates between a policy evalu-
ation and a policy improvement step, using both simu-
lation techniques for obtaining, for a given state i and
policy �, sample costs and approximation techniques
for obtaining representation of these costs. There are
subsequently used so as to estimate improved policies
and the iterations continue. The concept of Q-learning,
[9], was recently proposed as an alternative way of im-
plementing the concept of re-enforcement learning in
the solution of dynamic programming, [4].
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Total cost infinite horizon problems deal with optimal
decision making problems in the presence of uncer-
tainty of systems in which events occur sequential. In
general, the state transitions are described by a station-
ary dynamic system of the form:

xkC1 D f (xk; uk; !k ); k D 0; 1; : : : ;

where for each time instance (stage) k, the state of the
system is an element of the space S, the control action u
that is to be implemented so as to achieve optimality be-
long to a space C, and finally the uncertainty is modeled
through a set of random disturbances ! that belong
to a countable set D. Furthermore, it is assumed that
the control uk is constrained to take values in a given
nonempty set U(xk) 2 C, which depends of the cur-
rent state xk. The random disturbances !k, k = 0, 1,
. . . , have identical statistics and the probability distri-
butions P(�|xk, uk) are defined onD. These may depend
explicitly on xk and uk but not on prior disturbances.
Given an initial state x0, we seek a policy  such that 
= {�0, �1, . . . } for which:

�k : S ! C;
�k(xk) 2 U(xk ); 8xk 2 S;

that minimizes a cost function defined as:

J� (x0) D lim
N!1

E

( N�1X
kD1

˛k g(xk ; �k(xk); !k )

)
:

The function g() is the cost per stage such that: g: S ×
C × D! R and is assumed to be given. Finally, the pa-
rameter ˛ is termed discount factor and it holds that: 0
< ˛ � 1. We denote by ˘ the set of all admissible poli-
cies  = {�0, �1, . . . }, that is, the set of all sequences of
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such functions for which:

�k : S ! C;

�k(xk) 2 U(xk); 8xk 2 S:

The optimal cost function J� is then defined as:

J� D min
�2˘

J� (x); x 2 S:

An admissible policy of the form  = {�, �, . . . } is
termed stationary and its corresponding cost is J�.

Nevertheless, it is often the case that either the dis-
count factor, ˛, does not have to be less than one, or
even the cost per stage does not have to be bounded
from either above or bellow. If that is the case, then it
is quite possible that for some initial states x0, the cost
functional J� (x0) may become infinite.

D. Blackwell [4] was among the first to analyze the
case in which the discount factor ˛ becomes 1. His ap-
proach was based on the idea of studying the behavior
as the discount factor approaches 1. Based on the ideas
introduced in [7], undiscounted problems are analyzed
under either of the following assumptions:
� Positivity assumption:

0 � g(x; u; !); 8(x; u; !) 2 S � C � D;

� Negativity assumption:

g(x; u; !) � 0; 8(x; u; !) 2 S � C � D:

Having costs per stages being bounded from either
above or belowmay result in the complication of having
unbounded costs for some initial states. Therefore, the
assumption will be made that1, (�1), are admissible
costs J� , under the positivity (negativity) assumption.
Defining the following two mappings, greatly simplifies
the analysis. For any function J defined in S that takes
the values [0, +1] under the positivity assumption, or
the values [� 1, 0] under the negativity assumption,
the mappings T and T
 are defined as:

(TJ)(x) D min
u2U(x)

Efg(x; u; !)C J( f (x; u; !)g:

Furthermore, for any admissible stationary policy, the
mapping T
 is defined as:

(T
 J)(x) D Efg(x; �(x); !)C J( f (x; �(x); !)g:

Under both the positivity or negativity assumptions,
it can be shown, [1], that Bellman’s equation is satisfied:

� Under either the positivity or the negativity assump-
tion, the optimal cost function, J� satisfies:

J�(x) D min
u2U(x)

Efg(x; u; !)C J�( f (x; u; !)g

Clearly, the optimality conditions requires that:

J� D TJ�:

Equivalently, for any stationary policy, it holds true
that:

J
 D T
(J
):

It is to be noted though that for undiscounted
problems, ˛ = 1, the function J� need not be the
unique function minimizes Bellman’s equation. In
other words, the mapping T does not have a unique
fixed point. Nevertheless, the optimal cost vector, J�, is
the smallest fixed point, under the positivity assump-
tion, or the largest fixed point, under the negativity as-
sumption.
� Under the positivity assumption, if J0: S! [0, +1]

satisfies J0 = TJ0, then:

J� � J0:

� Under the negativity assumption, if J0: S! [�1, 0]
satisfies J0 = TJ0, then:

J0 � J�:

It should be pointed out, that in the analysis of undis-
counted problems the concept of monotonicity plays
a key role. The following monotone convergence theo-
rem summarizes the key properties, [3]:

Theorem Let P = (p1, p2, . . . ) be a probability distri-
bution over S = {1, 2, . . . }. Let {hN} be a sequence of ex-
tended real-valued functions on S such that for all i 2 S
and N = 1, 2, . . . :

0 � hN(i) � hNC1(i):

Let h: S! [0,1] be the limit function:

h(i) D lim
N!1

hN(i):

Then:

lim
N!1

1X
iD1

pi hN(i) D
1X
iD1

pi lim
N!1

hN(i)

D

1X
iD1

pi h(i):
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As examples of undiscounted problems, let us consider
two types of problems that define interesting classes
that can be cast as undiscounted dynamic program-
ming problems, namely the optimal stopping and the
optimal gambling strategy problem. The former defines
a situation in which at each state x of the state space
there are two possible actions that are available. One
may either decide to stop, by selecting control u1, and
pay a terminal cost t(x), or, select control u2, pay a cost
c(x) and continue the process, with a new state be given
by:

xkC1 D f (xk; !k ):

For completeness purposes one also defines a termina-
tion state s that is entered once the stopping decision is
made. In other words,

xkC1 D s if uk D u1 or xk D s:

If it is further assumed that both the termination and
the continuation costs are positive (or negative), then
the problem satisfies the positivity (negativity) assump-
tion. ThemappingT defined earlier takes now the form:

(TJ)(x) D min ft(x); c(x)C EfJ( f (x; !))gg ;

8x 2 S:

The objective is to find the optimal stopping policy
that minimizes the total expected costs over an infi-
nite number of stages. Insofar regarding external dis-
turbances, !, it is assumed that they have the same
probability distribution for all time instances and de-
pend only on the current state xk.

The early work [5] details the gambling problem,
but was also one of the early works on undiscounted
problems. The problem is defined as one in which
a player may stake at any time k any amount uk � 0 that
does not exceed his/her current fortune, xk. The stake is
won back with probability p, and lost with probability
1� p. The discrete-time state evolution is described by:

xkC1 D xk C !kuk; k D 1; 2; : : : :

The disturbance !k is considered to be 1 with proba-
bility p, and �1 with probability 1� p. The gambling is
continued until reaching given fortune or loosing the
entire initial capital. The problem is to determine that
optimal gambling strategy that maximizes the probabil-
ity of reaching the target fortune. As gambling strategy

is defined the specific rule that specifies what the stakes
should be at time k. It can be shown that the bold strat-
egy is an optimal policy. The bold strategy is defined as:

��(x) D

(
x; 0 < x � 1

2 ;

1 � x; 1
2 � x < 1:

As suggested by the theory of undiscounted problems,
the bold strategy is simply an optimal strategy and oth-
ers can also be derived, [5].

From a computational standpoint it is important to
knowwhether the method of successive approximations,
i. e., value iteration, converges to the optimal cost func-
tion. In other words, it is important to know whether
the basic dynamic programming algorithm converges.
Under either of the two basic assumptions we have:
� Positivity assumption:

J0 � T(J0) � � � � � Tk (J0) � � � � :

� Negativity assumption:

J0 � T(J0) � � � � � Tk (J0) � � � � :

In either case

J1(x) D lim
k!1

Tk (J0)(x); x 2 S:

In other words, the sequence generated by successive
approximation, i. e., by successively applying the map-
ping T, converges and the limit is well defined, includ-
ing the values of +1 and �1. For the value iteration
method though to be valid we also need to have that J1
= J�. In order for the above to be true under the posi-
tivity assumptions, an additional condition needs to be
satisfied, [2]:
� Let the positivity assumption be satisfied and as-

sume that the sets:

Uk(x; �) D
n
u 2 U(x) :

Efg(x; u; !)C Tk (J0)( f (x; u; !))g � �
o

are compact subsets of a Euclidean space for every x
2 S, � 2 R, and for all k greater than some integer k.
Then:

J1 D T(J1) D J�:
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It should be noted that since U(x) is assumed to be fi-
nite, the above condition is satisfied. A detailed account
of the value iteration method of undiscounted Markov
decision problems can also be found in [6].

It can also be shown, [3], that it is possible to de-
vise computational methods based on mathematical
programming when the state, control, and disturbance
spaces are finite. Under the negativity assumption, the
vector J solves the following linear programming prob-
lem:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
nX

iD1

�i

s.t. �i � g(i; u)C
nX

jD1

pi j(u)� j

i D 1; 2; : : : :

Under the positivity assumption, the corresponding
program takes the form:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
nX

iD1

�i

s.t. �i � min
u2U(x)

8<
:g(i; u)C

nX
jD1

pi j(u)� j

9=
; ;

i D 1; 2; : : : :

Unfortunately, this two-level optimization problem is
neither linear nor convex, and therefore its solution
highly nontrivial.
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Congested urban transportation networks represent
complex systems in which travelers interact so as to
determine unilaterally their cost-minimizing routes of
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travel between their points of origin and their desti-
nations. The governing concept here is that of ‘user-
optimization’, which dates to J.G. Wardrop [19] (and
was so termed by S.C. Dafermos and F.T. Sparrow [4]),
and states that, in equilibrium, all used paths connect-
ing an origin/destination pair of nodes will have travel
costs that are equal and minimal.

The complexity of user-optimized transportation
networks, sometimes also referred to as the ‘traffic as-
signment’ problem, has stimulated much research in
the past several decades, both frommethodological per-
spectives, as well as in terms of practical application.
Notable developments include: the proof by M.J. Beck-
mann, C.B. McGuire, and C.B. Winsten [1] that, under
certain symmetry assumptions on the link travel cost
functions (and travel disutility functions), the traffic
network equilibrium solution also satisfies the Kuhn–
Tucker conditions of an appropriately constructed op-
timization problem, and the identification by Dafermos
[2] that the traffic network equilibrium conditions, as
formulated by M.J. Smith [17] (without any imposi-
tion of a symmetry assumption), satisfy a variational
inequality problem. Books that discuss methodologi-
cal approaches to static traffic equilibrium problems in-
clude [9,14,16] (see also [6]).

The study of dynamic travel route choice models on
general transportation networks, where time is explic-
itly incorporated into the framework, was initiated by
D.K. Merchant and G.L. Nemhauser [8], who focused
on dynamic system-optimal networks with the char-
acteristic of many origins and a single destination. In
system-optimal networks, in contrast to user-optimal
networks, one seeks to determine the path flow and link
load patterns that minimize the total cost in the net-
work, rather than the individual path travel costs.

M.J. Smith [18], in turn, proposed a dynamic traf-
fic user-optimized model with fixed demands. H. Mah-
massani [7] also proposed dynamic traffic models and
investigated them experimentally. The recent book [15]
provides an overview of the history of dynamic traffic
network models and discusses distinct approaches for
their analysis and computation.

Here we present a dynamic trafficmodel with elastic
demands proposed by P. Dupuis and A. Nagurney [5],
who, along with D. Zhang and Nagurney [22], estab-
lished the foundations for a new methodology, that of
‘projected dynamical systems’ theory. The notable fea-

ture of a projected dynamical system is that its set of sta-
tionary points coincides with the set of solutions of the
corresponding variational inequality problem. There,
thus, exists a fundamental linkage between the static
world of finite-dimensional variational inequality prob-
lems and the dynamic world exhibited by a new class of
dynamical system.

The dynamic adjustment process that is presented
here models the travelers’ day-to-day dynamic behav-
ior of making trip decisions and route choices associ-
ated with a travel disutility perspective. Subsequently,
some of the stability results of this travel-route choice
adjustment process obtained by Zhang and Nagurney
[21] are reviewed, which address whether and how the
travelers’ dynamic behavior in attempting to avoid con-
gestion leads to a traffic equilibrium pattern. Finally, we
recall the discrete-time algorithms devised for the com-
putation of traffic network equilibria with elastic de-
mands and with known travel disutility functions. The
convergence of these discrete-time algorithms was es-
tablished by Zhang and Nagurney [10,13]. Additional
dynamic traffic network models, as well as qualitative
and numerical results, using this methodology can be
found in [11,12], and [22]. For alternative dynamic traf-
fic network models and approaches, see [15], and the
references therein.

ADynamic Traffic Network Model

The model that we present is due to Dupuis and Nagur-
ney [5]. It is a dynamic counterpart to the static traffic
network equilibrium model with elastic travel demands
developed by Dafermos [3].

We consider a network [N, L] consisting of nodes
[N] and directed links [L]. Let a denote a link of the
network connecting a pair of nodes, and let p denote
a path (assumed to be acyclic) consisting of a sequence
of links connecting an origin/destination (O/D) pair w.
Pw denotes the set of paths connecting the O/D pair w
with nPw paths. We let W denote the set of O/D pairs
and P the set of paths in the network.

Let xp represent the flow on path p and let f a denote
the load on link a. The following conservation of flow
equation must hold for each link a:

fa D
X
p

xpıap;
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where ıap = 1, if link a is contained in path p, and 0
otherwise. The expression states that the load on a link
a is equal to the sum of all the path flows on paths that
contain the link a.

Moreover, if we let dw denote the demand associ-
ated with an O/D pair w, then we must have that for
each O/D pair w

dw D
X
p2Pw

xp;

where xp � 0, for all p, that is, the sum of all the path
flows on paths connecting the O/D pairwmust be equal
to the demand dw. Let x denote the column vector of
path flows with dimension nP .

Let ca denote the user cost associated with traversing
link a, and let Cp denote the user cost associated with
traversing path p. Then

Cp D
X
a

caıap:

In other words, the cost of a path is equal to the sum of
the costs on the links comprising that path. We group
the link costs into the column vector c with nA com-
ponents, and the path costs into the column vector C
with nP components. We also assume that we are given
a travel disutility function �w for each O/D pair w. We
group the travel disutilities into the column vector �
with J components.

We assume that, in general, the cost associated with
a link may depend upon the entire link load pattern,
that is,

ca D ca( f )

and that the travel disutility associated with anO/D pair
may depend upon the entire demand pattern, that is,

�w D �w (d);

where f is the nA-dimensional column vector of link
loads and d is the J-dimensional column vector of travel
demands.

We now, for completeness, recall the traffic network
equilibrium conditions.

Definition 1 (traffic network equilibrium, [1,3]) A
vector x� 2 Rnp

C , which induces a vector d� through the

demand equations, is a traffic network equilibrium if for
each path p 2 Pw and every O/D pair w:

Cp(x�)

(
D �w (d�); if x�p > 0
� �w (d�); if x�p D 0:

In equilibrium, only those paths connecting an O/D
pair that have minimal user costs are used, and their
costs are equal to the travel disutility associated with
traveling between the O/D pair.

The equilibrium conditions have been formulated
as a variational inequality problem by Dafermos (cf.
[2,3]). In particular, we have:

Theorem 2 [3] (x�, d�) 2 K1 is a traffic network equi-
librium pattern, that is, satisfies the equilibrium condi-
tions if and only if it satisfies the variational inequality
problem (path flow formulation):

˝
C(x�)>; x � x�

˛
�
˝
�(d�)>; d � d�

˛
� 0;

8(x; d) 2 K1;

where K1 � {(x, d) : x � 0, and the demand constraints
hold}.

Note that, in view of the demand constraints, one may
defineb�(x) � �(d), in which case one may rewrite the
variational inequality in the path flow variables x only,
that is, we seek to determine x� 2 Rnp

C , such that
D
(C(x�) � �(x�))>; x � x�

E
� 0; 8x 2 RnP

C ;

where �(x) is the nPw1 × . . .nPwJ
-dimensional column

vector with components:

(b�w1 (x); : : : ;b�w1 (x); : : : ;b�wJ (x); : : : ;b�wJ (x));

where J is the number of O/D pairs. If we now let
F(x) � (C(x) � �(x)) and K � {x : x 2 Rnp

C }, then,
clearly, this inequality can be placed into standard vari-
ational inequality form.

The Trip-Route Choice Adjustment Process

The dynamical system, first presented in [5], whose sta-
tionary points correspond to solutions of the latter vari-
ational inequality problem above, is given by:

ẋ D ˘K(x; �(x) � C(x)); x(0) D x0 2 K;
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where, assuming that the feasible set K is a convex poly-
hedron (as is the case here), and given x 2 K and v 2
Rn, we define the projection of the vector v at x (with
respect to K) by

˘K(x; v) D lim
ı!0

PK(x C ıv) � x
ı

;

where PK is defined as:

PK(x) D argmin
z2K
kx � zk ;

and k � k denotes the Euclidean norm.
This dynamical system is a projected dynamical sys-

tem (cf. [10,22]), since the right-hand side, which is
a projection operator, is discontinuous.

The adjustment process interpretation of the dy-
namical system, as discussed in [5], is as follows: Users
of a transportation network choose, at the greatest rate,
those paths whose differences between the travel disu-
tilities (demand prices) and path costs are maximal;
in other words, those paths whose costs are minimal
relative to the travel disutilities. If the travel cost on
a path exceeds the travel disutility associated with the
O/D pair, then the flow on that path will decrease; if
the travel disutility exceeds the cost on a path, then the
flow on that path will increase. If the difference between
the travel disutility and the path cost drives the path
flow to be negative, then the projection operator guar-
antees that the path flow will be zero. The process con-
tinues until there is no change in path flows, that is,
until all used paths have path costs equal to the travel
disutilities, whereas unused paths will have costs which
exceed the disutilities. Specifically, the travelers adjust
their route choices until an equilibrium is reached.

The following example, given in a certain discrete-
time realization, shows how the dynamic mechanism
of the above trip-route choice adjustment would real-
locate the traffic flow among the paths and would react
to changes in the travel disutilities.

Example 3 Consider a simple transportation network
consisting of two nodes, with a single O/D pair w, and
two links a and b representing the two disjoint paths
connecting the O/D pair. Suppose that the link costs
are:

ca( fa) D fa C 2; cb( fb) D 2 fb;

and the travel disutility function is given by:

�w (dw ) D �dw C 5:

Note that here a path consists of a single link and,
hence, we can use x and f interchangeably. Suppose
that, at time t = 0, the flow on link a is 0.7, the flow
on link b is 1.5; hence, the demand is 2.2, and the travel
disutility is 2.8, that is,

xa(0) D 0:7; xb(0) D 1:5;

dw (0) D 2:2; �w (0) D 2:8;

which yields travel costs: ca (0) = 2.7 and cb(0) = 3.0.
According to the above trip-route choice adjust-

ment process, the flow changing rates at time t = 0 are:

ẋa(0) D �w(0) � ca(0) D 0:1;

ẋb(0) D �w (0) � cb(0) D �0:2:

If a time increment of 0.5 is used, then at the next
moment t = 0.5, the flows on link a and link b are:

xa(0:5) D xa(0)C 0:5ẋa(0)

D 0:7C 0:5 � 0:1 D 0:75;
xb(0:5) D xb(0)C 0:5ẋb(0)

D 1:5 � 0:5 � 0:2 D 1:4;

which yields travel costs: ca(0.5) = 2.75 and cb (0.5) =
2.8, a travel demand dw(0.5) = 2.15, and a travel disu-
tility �w(0.5) = 2.85. Now, the flow changing rates are
given by:

ẋa(0:5) D �w (0:5) � ca(0:5)

D 2:85 � 2:75 D 0:1;

ẋb(0:5) D �w(0:5) � cb(0:5)

D 2:85 � 2:8 D 0:05:

The flows on link a and link b at time t = 1.0 would,
hence, then be:

xa(1:0) D xa(0:5)C 0:5ẋa(0:5)

D 0:75C 0:5 � 0:1 D 0:80;
xb(1:0) D xb(0:5)C 0:5ẋb(0:5)

D 1:4C 0:5 � 0:05 D 1:425;

which yields travel costs: ca(1.0) = 2.80 and cb(1.0) =
2.85, a travel demand dw(1.0) = 2.225, and a travel disu-
tility �w(1.0) = 2.775. Now, the flow changing rates are
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given by:

ẋa(1:0) D �w (1:0) � ca(1:0)
D 2:775 � 2:800 D 0:025;

ẋb(1:0) D �w(1:0) � cb(1:0)

D 2:775 � 2:850 D �0:075:

The flows on link a and link b at time t = 1.5 would
be:

xa(1:5) D xa(1:0)C 0:5ẋa(1:0)

D 0:8 � 0:5 � 0:025 D 0:7875;

xb(1:5) D xb(1:0)C 0:5ẋb(1:0)
D 1:425 � 0:5 � 0:075 D 1:3875;

which yields travel costs: ca(1.5) = 2.7875 and cb(1.5)
= 2.775, a travel demand dw(1.5) = 2.175, and a travel
disutility �w(1.0) = 2.82.

In this example, hence, as time elapses, the trip-
route choice adjustment process adjusts the flow vol-
ume on the two links so that the difference between the
travel costs of link a and link b is being reduced, from
0.3, to 0.05, and, finally, to 0.0125; and, the difference
between the disutility and the travel costs on the used
links is also being reduced from 0.2, to 0.1, and to 0.045.
In fact, the traffic equilibrium with: x�a = 0.8 and x�b =
1.4, which induces the demand d�w = 2.2, is almost at-
tained in only 1.5 time units.

Stability Analysis

We now present the stability results of the trip route
choice adjustment process. The results described herein
are due to Zhang and Nagurney [21]. For example,
the questions that motivate transportation planners and
analysts to study the stability of a transportation sys-
tem include: Will any initial flow pattern be driven to
an equilibrium by the adjustment process? In addition,
will a flow pattern near an equilibrium always stay close
to it? These concerns of system stability are important
in traffic assignment and form, indeed, a critical base
for the very concept of an equilibrium flow pattern.

For the specific application of transportation net-
work problems, the following definitions of stability of
the transportation system and the local stability of an
equilibrium are adapted from the general stability con-
cepts of projected dynamical systems (cf. [22]).

Definition 4 (stability at an equilibrium) An equilib-
rium flow pattern x� is stable if it is a global mono-
tone attractor for the corresponding route choice ad-
justment process.

Definition 5 (asymptotical stability at an equilibrium)
An equilibrium flow pattern x� is asymptotically stable
if it is a strictly global monotone attractor for the corre-
sponding route choice adjustment process.

Definition 6 (stability of the system) A route choice
adjustment process is stable if all its equilibrium flow
patterns are stable.

Definition 7 (asymptotical stability of the system)
A route choice adjustment process is asymptotically
stable if all its equilibrium flow patterns are asymptoti-
cally stable.

We now present the stability results in [21] for the trip-
route choice adjustment process.

Theorem 8 ([21]) Suppose that the link cost functions
c are monotone increasing in the link load pattern f and
that the travel disutility functions � are monotone de-
creasing in the travel demand d. Then the trip-route
choice adjustment process is stable.

Theorem 9 ([21]) Assume that there exists some equi-
librium path flow pattern. Suppose that the link cost
functions c and negative disutility functions � � are
strictly monotone in the link load f and the travel de-
mand d, respectively. Then the trip-route choice adjust-
ment process is asymptotically stable.

The first theorem states that, provided that monotonic-
ity of the link cost functions and the travel disutility
functions holds true, then any flow pattern near an
equilibrium will stay close to it forever. Under the strict
monotonicity assumption, on the other hand, the sec-
ond theorem can be interpreted as saying that any ini-
tial flow pattern will eventually be driven to an equilib-
rium by the route choice adjustment process.

Discrete Time Algorithms

The Euler method and the Heun method were em-
ployed in [13] and [10] for the computation of solu-
tions to dynamic elastic demand traffic network prob-
lems with known travel disutility functions, and their
convergence was also established therein. We refer the
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reader to these references for numerical results, includ-
ing traffic network examples that are solved on a mas-
sively parallel computer architecture.

In particular, at iteration � , the Euler method com-
putes

x�C1 D PK (x� � a�F(x� ));

whereas, according to the Heun method, at iteration �
one computes

x�C1

D PK
�
x� � a�

1
2
�
F(x� )C F(P(x� � a�F(x� )))

��
:

In the case that the sequence {a�} in the Euler
method is fixed, say, {a� } = �, for all iterations � , then
the Euler method collapses to a projection method (cf.
[2,6,9], and [14]).

In the context of the dynamic traffic network prob-
lem with known travel disutility functions, the projec-
tion operation in the above discrete-time algorithms
can be evaluated explicitly and in closed form. Indeed,
each iteration � of Euler method takes the form: For
each path p 2 P in the transportation network, compute
the path flow x�C1

p according to:

x�C1
p D maxf0; x�p C a� (�w (d� ) � Cp(x� ))g:

Each iteration of the Heunmethod, in turn, consists
of two steps. First, at iteration � one computes the ap-
proximate path flows:

x�p D maxf0; x�p C a� (�w(d� ) � Cp(x� ))g;

8p 2 P;

and updates the approximate travel demands:

d
�

w D
X
p2Pw

x�p; 8w 2 W:

Let

x� D fx�p; p 2 Pg

and

d
�
D fd

�

w ;w 2 Wg:

Then, for each path p 2 P in the transportation net-
work one computes the updated path flows x�C1

p ac-
cording to:

x�C1
p D max

n
0;

x�p C
a�
2
[�w (d� ) � Cp(x� )C �w (d

�
) � Cp(x� )]

o
;

8p 2 P;

and updates the travel demands d�C1
w according to:

d�C1
w D

X
p2Pw

x�C1
p ; 8w 2 W:

It is worth noting that both the Euler method and
the Heunmethod at each iteration yield subproblems in
the path flow variables, each of which can be solved not
only in closed form, but also, simultaneously. Hence,
these algorithms in the context of this model can be in-
terpreted as massively parallel algorithms and can be
implemented on massively parallel architectures. In-
deed, this has been done so by Nagurney and Zhang
[13] (see also [11] for the case where the demand func-
tions are given, rather than the travel disutility func-
tions).

In order to establish the convergence of the Euler
method and the Heun method, one regularizes the link
cost structures.

Definition 10 (regular cost function) The link cost
function c is called regular if, for every link a 2 L,

ca( f )!1; as fa !1;

holds uniformly true for all link flow patterns.

We note that the above regularity condition on the link
cost functions is natural from a practical point of view
and it does not impose any substantial restrictions. In
reality, any link has an upper bound in the form of
a capacity. Therefore, letting f a ! 1 is an artificial
device under which one can reasonably deduce that
ca(f )!1, due to the congestion effect. Consequently,
any practical link cost structure can be theoretically ex-
tended to a regular link cost structure to allow for an
infinite load.

The theorem below shows that both the Euler
method and the Heun method converge to the traffic
network equilibrium under reasonable assumptions.
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Theorem 11 ([10,13]) Suppose that the link cost func-
tion c is regular and strictly monotone increasing, and
that the travel disutility function � is strictly monotone
decreasing. Let {a� } be a sequence of positive real num-
bers that satisfies

lim
�!1

a� D 0

and
1X
�D0

a� D1:

Then both the Euler method and the Heun method pro-
duce sequences {x� } that converge to some traffic network
equilibrium path flow pattern.
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� Auction Algorithms
� Communication Network Assignment Problem
� Cost Approximation Algorithms
� Directed Tree Networks
� Equilibrium Networks
� Evacuation Networks
� Generalized Networks
�Maximum Flow Problem
�Minimum Cost Flow Problem
� Network Design Problems
� Network Location: Covering Problems
� Nonconvex Network Flow Problems
� Piecewise Linear Network Flow Problems
� Shortest Path Tree Algorithms
� Steiner Tree Problems
� Stochastic Network Problems: Massively Parallel

Solution
� Survivable Networks
� Traffic Network Equilibrium

References
1. Beckmann MJ, McGuire CB, Winsten CB (1956) Studies in

the economics of transportation. Yale Univ. Press, New
Haven, CT

2. Dafermos S (1980) Traffic equilibrium and variational in-
equalities. Transport Sci 14:42–54

3. Dafermos S (1982) The general multimodal traffic equilib-
rium problem with elastic demand. Networks 12:57–72

4. Dafermos SC, Sparrow FT (1969) The traffic assignment
problem for a general network. J Res Nat Bureau Standards
73B:91–118

5. Dupuis P, Nagurney A (1993) Dynamical systems and vari-
ational inequalities. Ann Oper Res 44:9–42

6. Florian M, Hearn D (1995) Network equilibrium mod-
els and algorithms. In: Ball MO, Magnanti TL, Monma
CL, Nemhauser GL (eds) Network Routing. Handbook
Oper Res and Management Sci. Elsevier, Amsterdam,
pp 485–550

7. Mahmassani H (1991) Dynamic models of commuter
behavior: Experimental investigation and application to
the analysis of planned traffic disruptions. Transport Res
24A:465–484

8. Merchant DK, Nemhauser GL (1978) A model and an algo-
rithm for the dynamic traffic assignment problems. Trans-
port Sci 12:183–199

9. Nagurney A (1999) Network economics: A variational in-
equality approach, 2nd edn. Kluwer, Dordrecht

10. Nagurney A, Zhang D (1996) Projected dynamical systems
and variational inequalities with applications. Kluwer, Dor-
drecht

11. Nagurney A, Zhang D (1997) Massively parallel computa-
tion of dynamic traffic networks modeled as projected dy-
namical systems. In: Pardalos PM, Hearn DW, Hager WW
(eds) Network Optimization. Lecture Notes Economics and
Math Systems. Springer, Berlin, pp 374–396

12. Nagurney A, Zhang D (1997) Projected dynamical sys-
tems in the formulation, stability analysis, and computa-
tion of fixed demand traffic network equilibria. Transport
Sci 31:147–158

13. Nagurney A, Zhang D (1998) Massively parallel implemen-
tation of a discrete time algorithm for the computation
of dynamic elastic demand traffic problems modeled as
projected dynamical systems. J Econom Dynam Control
22:1467–1485

14. Patriksson M (1994) The traffic assignment problem. VSP,
Utrecht

15. Ran B, Boyce DE (1996) Modeling dynamic transportation
network, 2nd revised edn. Springer, Berlin

16. Sheffi Y (1985) Urban transportation networks. Prentice-
Hall, Englewood Cliffs, NJ

17. Smith MJ (1979) Existence, uniqueness, and stability of
traffic equilibria. Transport Res 13B:295–304

18. Smith MJ (1984) The stability of a dynamic model of traf-
fic assignment-An application of a method of Lyapunov.
Transport Sci 18:245–252

19. Wardrop JG (1982) Some theoretical aspects of road traffic
research. Proc Inst Civil Engineers II:325–278

20. Zhang D, Nagurney A (1995) On the stability of projected
dynamical systems. J Optim Th Appl 85:97–124

21. Zhang D, Nagurney A (1996) On the local and global stabil-
ity of a travel route choice adjustment process. Transport
Res 30B:245–262

22. Zhang D, Nagurney A (1997) Formulation, stability, and
computation of traffic network equilibria as projected dy-
namical systems. J Optim Th Appl 93:417–444



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




