
7

Additional Topics

This chapter includes additional examples of fractals, and hints at parts of the
subject that we have not covered. In Sections 7.3 and 7.4, the computation
of the fractal dimension requires more than just a simple application of the
results of Chap. 6. So these examples show that there is more to the subject
than we have seen in this book.

7.1 *Deconstruction

Let K be the attractor for an iterated function system (fe) of similarities in
R

d, and let the ratio list have sim-value s. Then dim K ≤ Dim K ≤ s (The-
orem 6.4.10). If the parts fe[K] are disjoint, or have small overlap (specified
by the open set condition), then dimK = Dim K = s (Theorem 6.5.4). But if
there is too much overlap, then the dimension could be strictly smaller than
s. Sometimes the fractal dimension can be still computed by “deconstructing”
the attractor—interpreting it in a manner different from the one provided by
the iterated function system.

Recall the Li’s lace fractal on p. 84. It is made up of blocks of two kinds,
P,Q, as described on p. 126. From the decompostions of the two sets, we get
P ⊇ Q. Note that Fig. 4.3.3 not only describes the iterated function system,
but also shows that the graph open set condition is satisfied. So we have
dim P = dim Q = Dim P = Dim Q = s, where s = log(

√
2+2)/ log 2 ≈ 1.7716

is the sim-value for the M-W graph shown in Fig. 4.3.4(b).†

But that was not the way in which this fractal was originally defined.
Example (c) in Jun Li’s thesis [43] is described using an iterated function
system in the plane consisting of four similarities:

∗ Optional section.
† Answer for Exercise 4.3.11.
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Fig. 7.1.1. A fractal and a surrounding square

Fig. 7.1.2. Four images
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The attractor is shown in Fig. 7.1.1, and the iterated function system is illus-
trated in Fig. 7.1.2.

Deconstruction. We claim that if P,Q are the sets described on p. 126, and
four of these are assembled into a square F as shown,

then F is the attractor of the iterated function system 7.1.2. But we know
that the attractor is unique (Theorem 4.1.3), so we need only prove the self-
referential equation F = f1[F ]∪f2[F ]∪f3[F ]∪f4[F ]. We will prove this using
pictures, which can sometimes be more convincing than words.
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We should show that

is the union of four sets:

The outer triangles match as required. The triangles in f2[F ] do not align
with the others, so to see how the union behaves we require another level of
subdivision. We need to prove that the inner square

is the union of four sets:
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Everything now matches, taking into account P ∪ P = P and P ∪ Q = P .
In this example, then, the iterated function system 7.1.1 has sim-value 2,

but the attractor it defines has fractal dimension log(
√

2 + 2)/ log 2 ≈ 1.7716.

More Self-Similar Sets with Overlap

Now we consider a “similarity dimension” example with overlap in R, and
leave the details to the reader. We will use the ratio list (1/5, 1/5, 1/5).
Let a, b, c be three real numbers. Consider the three dilations f1, f2, f3 of R

with fixed points a, b, c, respectively. For certain choices of the points a, b, c,
this realization satisfies the open set condition, and the invariant fractal K
has Hausdorff dimension equal to the sim-value of the ratio list. For certain
other choices of a, b, c (such as two or three of them coincident) the Hausdorff
dimension of K is not equal to the dimension of the ratio list. There is,
nevertheless, always an inequality.

Let us normalize things by assuming a = 0, c = 1, 0 < b < 1. (Any choice
of three distinct points can be reduced to this case.) All three of the maps
send [0, 1] into itself, so the invariant set K is a subset of [0, 1]; in fact K may
be constructed in the usual way by the contraction mapping theorem starting
with [0, 1].

Exercise 7.1.3. For what values of b are the three images of the open interval
(0, 1) disjoint?

Exercise 7.1.4. Compute the Hausdorff dimension when b = 1/10.

Exercise 7.1.5. Compute the Hausdorff dimension when b = 1/5.

There is a result of Falconer [24] that is relevant in situations like this.
In this case it asserts that the Hausdorff dimension of the invariant set K is
equal to the similarity dimension log 3/ log 5 for almost all choices of b ∈ [0, 1].
That is, the set of all b ∈ [0, 1] for which dimK = log 3/ log 5 fails is a set of
Lebesgue measure 0.

Exercise 7.1.6. Give an example of an iterated function system of similarities
in R

d where the Hausdorff dimension of the invariant set coincides with the
similarity dimension, but Moran’s open set condition fails.

Consider the Barnsley leaf fractal B defined on p. 26. It is the attrac-
tor of an iterated function system with three maps, and sim-value 2 log(1 +√

2 )/ log 2. This is > 2, so it is certainly not the fractal dimension of the
fractal B itself. Plate 10 shows the set B. The three images are in three col-
ors cyan, magenta, and yellow. Where cyan and magenta overlap, it is blue.
Where all three overlap it is black.

Exercise 7.1.7. Deconstruct Barnsley’s leaf, and determine its fractal dimen-
sion.
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7.2 *Self-Affine Sets

The idea of an iterated function system makes good sense even when the maps
are not similarities. One possibility that comes up often involves affine maps.
The invariant set is then said to be self-affine. In the general self-affine
case the evaluation of the Hausdorff dimension is not completely understood.
It has even been argued [45] that the Hausdorff dimension is not the proper
dimension to use at all. We will present a few examples in this section.

A Self-Affine Dust

As a reference, take the unit square in R
2:

S = { (x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 } .

The images of S under the two maps will be two rectangles:

R1 = { (x, y) : 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 2/3 }
R2 = { (x, y) : 1/2 ≤ x ≤ 1, 1/3 ≤ y ≤ 1 } .

The function f1 is an affine map of R
2 onto itself, and sends the vertices of

S to the corresponding vertices of R1. The function f2 is an affine map of R
2

onto itself, and sends the vertices of S to the corresponding vertices of R2.

Fig. 7.2.1. Self-Affine Dust

∗ Optional section.
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Fig. 7.2.4. Kiesswetter’s curve

Exercise 7.2.2. There is a unique compact nonempty set K ⊆ R
2 such that

K = f1[K] ∪ f2[K].

Exercise 7.2.3. Compute the Hausdorff dimension of the set K.

Kiesswetter’s Curve

This is illustrated in two different ways. The set can be decomposed into four
subsets, which are affine images of the whole thing. The four affine maps may
be written in matrix notation. A point (x, y) in the plane is identified with a
2 × 1 column matrix.
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[
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]
=
[
1/4 0
0 1/2
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y

]
+
[
3/4
1/2

]
.

The first construction starts with the rectangle M0 = [0, 1] × [−1, 1], and
at each stage replaces the current set Mn with Mn+1 = f1[Mn] ∪ f2[Mn] ∪
f3[Mn] ∪ f4[Mn]. Because each of the maps fj sends M0 to a subset of M0,
this results in a decreasing sequence of compact sets. Kiesswetter’s curve is
the intersection

⋂
n∈N

Mn.
The second construction starts with the line segment from (0, 0) to (1, 1),

and makes the same transformation as before. Since fj

(
(1, 1)

)
= fj+1

(
(0, 0)

)

for j = 1, 2, 3, these sets are all polygons. They are graphs of a sequence of
continuous functions defined on [0, 1]; this sequence converges uniformly. The
limit g is called Kiesswetter’s function. Its graph G = { (x, y) : y = g(x) }
is Kiesswetter’s curve.
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Fig. 7.2.5. Kiesswetter’s curve

Exercise 7.2.6. Let g be Kiesswetter’s function. Then for any integers k ≥ 0
and 0 ≤ j < 2k, prove

∣∣∣∣g
(

j

4k

)
− g

(
j + 1
4k

)∣∣∣∣ =
1
2k

.

Exercise 7.2.7. Kiesswetter’s curve is the graph of a continuous but nowhere
differentiable function g : [0, 1] → R.

Exercise 7.2.8. Find the Hausdorff and packing dimensions of Kiesswetter’s
curve.

Besicovitch–Ursell Functions

Besicovitch and Ursell investigated the dimension of the graphs of non-
differentiable functions. The most famous examples of these functions, dating
back to Weierstrass, have a form

f(x) =
∞∑

k=0

ak sin(bkx),

for appropriate choices of ak and bk. A simpler variant was used by Besicovitch
and Ursell, which will now be described.

Define a “sawtooth” function g : R → R by:

g(x) = x for −1/2 ≤ x ≤ 1/2
g(x) = 1 − x for 1/2 ≤ x ≤ 3/2

g(x + 2) = g(x) for all x.

If 0 < a < 1, the Besicovitch–Ursell function with parameter a is:

f(x) =
∞∑

k=0

akg(2kx).



232 7 Additional Topics

Fig. 7.2.9. Sawtooth function

Fig. 7.2.10. Partial sums
∑n

k=0 akg(2kx) with n = 0, 1, 2, 5, 6, 12

Partial sums
∑n

k=0 akg(2kx) of the series are illustrated in Fig. 7.2.10, with
a = 0.6. The pictures show only 0 ≤ x ≤ 1, but the rest of the graph is simply
related to this part.

Exercise 7.2.11. The function f(x) exists and is continuous.

Exercise 7.2.12. Is the graph of f the invariant set for some iterated function
system?

Pictures for various values of a are shown in Fig. 7.2.15.

Exercise 7.2.13. For what values of a is f a Lipschitz function?

Exercise 7.2.14. Compute the Hausdorff dimension of the graph of the
Besicovitch-Ursell function with parameter a = 3/5.

Hironaka’s Curve

Pictured (Fig. 7.2.16) are some approximations to Hironaka’s curve. The
first approximation consists of two vertical line segments, one unit long, one
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Fig. 7.2.15. Besicovitch-Ursell Functions

unit apart. For each subsequent approximation, additional line segments are
added. The length of the new line segments is decreased by a factor of 1/2 at
each stage. The distance between the line segments is decreased by a factor

Fig. 7.2.16. Hironaka’s curve
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of 1/3 at each stage. The position of the line segments is determined by the
pattern illustrated. Hironaka’s curve is the limit set.

Exercise 7.2.17. Find topological and Hausdorff dimensions for Hironaka’s
curve.

Number Systems

Here is a way to generalize the “number systems” of Sect. 1.6. Elements of R
d

should be identified with d × 1 column matrices. Let D be a finite set in R
d,

including 0, and let B be a d × d matrix. What conditions should B satisfy
so that all of the following vectors exist?

∞∑

j=1

Bjaj ,

where the “digits” aj ∈ D. The set F of all these vectors is the invariant set
of an iterated function system of affine maps.

7.3 *Self-Conformal

An affine transformation that is not a similarity changes distances by different
ratios in different directions. Here we will talk about non-affine transforma-
tions that change distances by the same ratio in all directions, but only in the
limit near a point.

Let S be a metric space, let f : S → S be a transformation, let r > 0, and
let a ∈ S. We say that f is conformal at a with ratio r if:

lim
x,y→a

x�=y

�
(
f(x), f(y)

)

�(x, y)
= r.

More technically stated: for every ε > 0 there is δ > 0 such that for all
x, y ∈ S, if �(x, a) < δ and �(y, a) < δ, then

(1 − ε)r�(x.y) ≤ �
(
f(x), f(y)

)
≤ (1 + ε)r�(x, y).

We say that f is conformal on a set E if a is conformal at every point of E,
but not necessarily with the same ratio.

Proposition 7.3.1. Let f : R → R be continuously differentiable, let a ∈ R,
and assume f ′(a) �= 0. Then f is conformal at a with ratio |f ′(a)|.

∗ Optional section.
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Proof. Let ε > 0 be given. Then since f ′ is continuous, there is δ > 0 so that
if |x − a| < δ, then

(1 − ε)|f ′(a)| < |f ′(x)| < (1 + ε)|f ′(a)|.

Now let x, y satisfy |x − a| < δ, |y − a| < δ, and x �= y. Applying the Mean
Value Theorem on the interval from x to y, we conclude there is z between x
and y so that

f(x) − f(y)
x − y

= f ′(z).

Now |z − a| < δ, so we have

|f(x) − f(y)|
|x − y| = |f ′(z)| < (1 + ε)|f ′(a)|,

so that
|f(x) − f(y)| < (1 + ε)|f ′(a)| |x − y|.

Similarly,
|f(x) − f(y)| > (1 − ε)|f ′(a)| |x − y|.

Thus f is conformal at a with ratio |f ′(a)|. 
�

Is continuity of the derivative required?

Exercise 7.3.2. Give an example where f : R → R is differentiable at a point
a with f ′(a) �= 0, but f is not conformal at a.

If you have studied multi-dimensional calculus, you can attempt the next
exercise.

Exercise 7.3.3. Let f : R
d → R

d be continuously differentiable, and let a ∈
R

d. If the derivative Df(a), interpreted as as d×d matrix, defines a similarity
on R

d, then f is conformal at a, and the ratio of f at a is the same as the
ratio of the similarity Df(a).

In Euclidean space R
d, examples of conformal maps (where they are de-

fined) are: translation, rotation, reflection in a hyperplane, reflection in a
sphere. In particular, in R

2, reflection in a circle (p. 28) is conformal. Of
course the ratio is not the same everywhere.

In the mathematical subject of complex analysis, you can find this:

Proposition 7.3.4. Let f : C → C be continuously differentiable in the com-
plex sense, let a ∈ C, and assume f ′(a) �= 0. Then f is conformal at a with
ratio |f ′(a)|.
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If a function f (defined for complex numbers z) has the form

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C, then f is called a linear fractional transformation.
If ad − bc = 0, then f is constant, so we will assume ad − bc �= 0. Then f is
defined everywhere in C except z = −b/a, and

f ′(z) =
ad − bc

(cz + d)2

is never zero. So f is conformal. An important property of a linear fractional
transformation is that it maps circles to circles (provided a line is considered
to be a circle).

The attractor of an iterated function system consisting of conformal
maps is known as a self-conformal set. Of course self-similar sets are self-
conformal. Pharaoh’s breastplate (p. 30) is self-conformal but not self-similar.

Appolonian Gasket

Figure 7.3.5 shows a subset of the plane. The first approximation is obtained
by taking three mutually tangent circles with radius 1. The set C0 is the region
enclosed by three arcs (including the arcs themselves). Each approximation
will consist of some regions bounded by three mutually tangent circular arcs.
To obtain Ck+1, remove from each region of Ck the circle in the region tangent
to all three of the arcs. (The boundary of the circle remains.) The Appolonian
gasket is the “limit” (intersection) of the sets Ck.

The gasket is is self-coinformal. It is not self-similar or self-affine.

Exercise 7.3.6. The Appolonian gasket is an invariant set for an iterated
function system of linear fractional transformations.

Exercise 7.3.7. Discuss the topological dimension and fractal dimension of
the Appolonian gasket.

Fig. 7.3.5. Appolonian Gasket
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Julia Set

Recall the Julia set described on p. 28 for the function ϕ(z) = z2 + c, where
c = −0.15 + 0.72i. The two branches f0, f1 of the function

√
z − c are not

continuous on the set J that we construct, so it is not so simply interpreted
as the attractor of an iterated function system.

The Julia set J is the union of two sets U and L = −U . See Fig. 7.3.8. There
are choices of inverse maps f0(z), f1(z) = −f0(z) for ϕ that are continuous on
U and choices of inverse maps g0(z), g1(z) = −g0(z) for ϕ that are continuous
on L so that

U = f0[U ] ∪ g0[L], V = f1[U ] ∪ g1[L].

See Fig. 7.3.9. The point c does not belong to J , and
√

z − c is conformal ex-
cept at the point c. All four maps are conformal on their appropriate domains,
since they are continuous branches of

√
z − c. Sets U and L are isometric; U

is the attractor of the iterated function system consisting of conformal maps
f0(z), g0(−z). So U is self-conformal.

Fig. 7.3.8. J made up of U and L

Fig. 7.3.9. f0[U ] and g0[L] make up U
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7.4 *A Multifractal

Most of the fractals that have been considered in this book are closed sets (or
even compact sets). We will discuss now an example that is not closed. Man-
delbrot calls it the Besicovitch fractal. It was studied by Besicovitch and
Eggleston; more recently it occurs in the physics literature in connection with
“multifractals” or “fractal measures”. The proof will require some knowledge
of probability theory, however.

Given x ∈ [0, 1], consider its binary expansion, x =
∑∞

i=1 ai2−i, where each
ai is 0 or 1. We are interested in the frequency of the occurrence of the digit
0. More precisely, let K

(0)
n (x) be the number of 0’s and K

(1)
n (x) the number

of 1’s occurring among the first n digits, (a1, a2, · · · , an). The frequencies in
question are

F (0)(x) = lim
n→∞

K
(0)
n (x)
n

,

F (1)(x) = lim
n→∞

K
(1)
n (x)
n

.

(Of course, the limits in question exist for only some x ∈ [0, 1].)
Fix a number p, with 0 < p < 1. We are interested in the set

Sp =
{

x ∈ [0, 1] : F (0)(x) exists, and F (0)(x) = p
}

.

We will compute the Hausdorff dimension of the set Sp. If we write q = 1− p,
so that F (0)(x) = p implies F (1)(x) = q, then we will show that

dim Sp =
−p log p − q log q

log 2
.

The proof will use a string model, as usual. But it will also use the “strong
law of large numbers”, an important result from probability theory.

Before we turn to the proof, let us consider the set Sp more carefully. Note
that [0, 1] is not equal to

⋃
0≤p≤1 Sp, since the limit F (0)(x) does not exist for

many x.
I will next prove that the set Sp is a Borel set. (This is the first example

we have seen where measurability is not immediately obvious.) First, given
a, b, n, the set

{
x : a ≤ K(0)

n (x) ≤ b
}

∗ Optional section.
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is a Borel set, since it consists of a finite number of intervals of length 2−n.
Then

Sp =

{
x : lim

n→∞

K
(0)
n (x)
n

= p

}

=
⋂

k∈N

⋃

N∈N

⋂

n≥N

{
x : p − 1

k
≤ K

(0)
n (x)
n

≤ p +
1
k

}
,

so Sp is a Borel set.
Next, note that if x and y agree except in the first k digits, then F (0)(x) =

F (0)(y). So any open interval in [0, 1] intersects Sp. That is, Sp is dense in
[0, 1]. Certainly Sp �= [0, 1], so of course Sp is not closed.

If the digits of x are all shifted to the right, and a new digit is added on
the left, then the frequencies are unchanged. So Sp exhibits a natural self-
similarity: If x ∈ [0, 1], then F (0)(x) = F (0)(x/2) = F (0)(1/2+x/2). Thus the
two similarities

f0(x) =
x

2
,

f1(x) =
x + 1

2
,

have the property

Sp = f0[Sp] ∪ f1[Sp],

with no overlap. The similarity dimension of the iterated function system
(f0, f1) is 1. The conclusion is: similarity dimension may be misleading for
non-closed sets.

Theorem 7.4.1. The Hausdorff dimension of the set Sp is

s =
−p log p − q log q

log 2
.

Proof. Let E = {0, 1} be our two-letter alphabet, and recall the “base 2”
model map h : E(ω) → [0, 1] defined on p. 14. Then h[E(ω)] = [0, 1]. Also,
diam[α] = diam h

[
[α]
]

= 2−n if α ∈ E(n). We define frequencies for strings in
the same way as for numbers: For α ∈ E(∗), let K(0)(α) be the number of 0’s
in α, let K(1)(α) be the number of 1’s in α. For σ ∈ E(ω) let

F (0)(σ) = lim
n→∞

K(0)(σ�n)
n

,

F (1)(σ) = lim
n→∞

K(1)(σ�n)
n

.
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These limits are defined for some strings σ ∈ E(ω), and not for others. Let

Tp =
{

σ ∈ E(ω) : F (0)(σ) = p
}

.

Then clearly Sp = h[Tp].
Now consider a measure Mp defined on E(ω) as follows. Let α ∈ E(n). If

k = K(1)(α), n − k = K(0)(α), let wα = pn−kqk. Then wα = w0 + w1, so
these numbers define a metric measure Mp on E(ω) with Mp

(
[α]
)

= wα for
all α ∈ E(∗).

Now we require the result from probability theory. According to the mea-
sure Mp just defined, the “digits” of σ constitute independent Bernoulli trials,
with probability p of outcome 0 and probability q = 1 − p of outcome 1. So
by the strong law of large numbers (for example, [7, Example 6.1]), we have

Mp(Tp) = 1, or, equivalently, Mp(E(ω) \ Tp) = 0.

We will take the case p < 1/2. The case p > 1/2 is similar, and the
case p = 1/2 is the usual measure M1/2 and dimension 1 computed before
(Proposition 6.3.1).

We begin with the upper bound, dimSp ≤ s. Let ε > 0 be given, and let
N ∈ N satisfy 2−N < ε. Let q′ < q. We will show that dimSp ≤ s′, where
s′ = (−q′ log q − (1 − q′) log p)/ log 2.

Consider the set G ⊆ E(∗) defined as follows: if α ∈ E(n), and k = K(1)(α),
then α ∈ G iff k/n > q′. For such α, we have diam[α] = 2−n and

Mp

(
[α]
)

= pn−kqk = pn

(
q

p

)k

> pn

(
q

p

)q′n

= p(1−q′)nqq′n

=
(
2−n
)s′

=
(
diam[α]

)s′
.

Let G′ be the set of all α ∈ G with length |α| ≥ N but α�n �∈ G
for N ≤ n < |α|. That is, α belongs to G, but no ancestors of α (ex-
cept possibly ancestors before generation N) belong to G. If σ ∈ Tp, then
limn→∞ K(1)(σ�n)/n = q > q′, so for some n ≥ N we have σ�n ∈ G, and
therefore for some n ≥ N we have σ�n ∈ G′. So

{ [α] : α ∈ G′ }

is a disjoint cover of Tp. But
∑

α∈G′

(
diam[α]

)s′
<
∑

α∈G′

Mp

(
[α]
)

= Mp

(
⋃

α∈G′

[α]

)
≤ 1.
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Therefore H
s′

ε (Tp) ≤ 1. Let ε → 0 to conclude Hs′
(Tp) ≤ 1, and therefore

dim Tp ≤ s′. Now when q′ → q we have s′ → s, so dim Tp ≤ s.
Now the model map h has bounded decrease, so dim Sp ≤ s. (Or, cover Sp

with the sets h
[
[α]
]
, α ∈ G′.)

Next I must prove the lower bound, dimSp ≥ s. Let q′ > q, and define
s′ = (−q′ log q − (1 − q′) log p)/ log 2. I will show dim Sp ≥ s′. Now

Mp

{
σ ∈ E(ω) : lim

K(1)(σ�n)
n

= q

}
= Mp(Tp) = 1,

and therefore

Mp

{
σ : there exists N ∈ N such that for all n ≥ N ,

K(1)(σ�n)
n

< q′
}

= 1.

So by countable additivity,

lim
N→∞

Mp

{
σ : sup

n≥N

K(1)(σ�n)
n

< q′
}

= 1.

Choose N so that Mp(F ) > 1/2, where

F =
{

σ : sup
n≥N

K(1)(σ�n)
n

< q′
}

.

Let ε = 2−N .
Suppose A is a countable cover of Sp by sets A with diam A ≤ ε. First, we

reduce to a cover by intervals of the form h
[
[α]
]
. Each set A ∈ A is covered

by (at most) three of the intervals h
[
[α]
]
, where the length |α| is the integer

n with 2−n < diam A ≤ 2−n+1. Let G ⊆ E(∗) be the set of all these α. (We
may assume that the sets [α] are disjoint, since if two of them intersect, then
one is a subset of the other, so we may delete the smaller one.) Thus

∑

α∈G

(
diam[α]

)s′
< 3

∑

A∈A

(diam A)s′

and Tp ⊆
⋃

α∈G[α], so Mp

(⋃
α∈G[α]

)
= 1.

For α ∈ G we have |α| ≥ N . If [α]∩F �= ∅, |α| = n and K(1)(α) = k, then

Mp

(
[α]
)

= pn−kqk = pn

(
q

p

)k

< pn

(
q

p

)q′n

= p(1−q′)nqq′n

=
(
2−n
)s′

=
(
diam[α]

)s′
.
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Now if G′ = {α ∈ G : [α] ∩ F �= ∅ }, then

1
2

< Mp(F ) ≤ Mp

(
⋃

α∈G′

[α]

)

=
∑

α∈G′

Mp

(
[α]
)

<
∑

α∈G′

(
diam[α]

)s′

≤
∑

α∈G

(
diam[α]

)s′
< 3

∑

A∈A

(diam A)s′
.

Now A is any cover of Sp by sets of diameter ≤ ε, so H
s′

ε (Sp) > 1/6. Therefore

Hs′
(Sp) > 1/6, so dim Sp ≥ s′. Now let q′ → q to obtain dimSp ≥ s. 
�

Exercise 7.4.2. Compute the box dimension (the lower entropy index) of the
set Sp.

Exercise 7.4.3. Compute the packing dimension DimSp.

Exercise 7.4.4. Let E be a finite alphabet, let M be a metric measure on
the space E(ω) of infinite strings, and let � be a metric on E(ω). Suppose t is
a positive real number, and let

S =

{
σ ∈ E(ω) : lim

n→∞

log M
(
[σ�n]

)

log diam[σ�n]
= t

}
.

If 0 < M(S) < ∞, does it follow that dimS = t?

7.5 *A Superfractal

Examples called “Kline curves” were included in the first edition of this
book. It was included as extra material that could be assigned to students for
independent investigation. The Kline curves provide examples of parametric
curves in the plane where the Lipschitz classes of the two coordinate functions
and the fractal dimension of the curve itself can be controlled independently.
Kline’s paper [40] was published in 1945.

Around 2005, motivated by their study of fractal methods for picture gen-
eration, Barnsley, Hutchinson, and Stenflo developed the superfractal for-
malism (see Barnsley’s book [4]). Unexpectedly, the Kline curves give us an
interesting example of a superfractal.

∗ Optional section.
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Fig. 7.5.1. Kline rules

Kline curves

The Kline curves are subsets of the plane R
2. They are constructed using

approximation by “Kline polygons”. We begin with the line segment from the
point (0, 0) to the point (1, 1); it is the diagonal of the rectangle (actually a
square) [0, 1] × [0, 1]. There are three rules used to build more complicated
Kline polygons. Each of them replaces each of the line segments by three
line segments. Rule a is implemented by subdividing the horizontal dimension
of the containing rectangle in thirds, and replacing the diagonal by a three-
part zig-zag, as illustrated. Rule b is implemented by subdividing the vertical
dimension of the containing rectangle in thirds, and replacing the diagonal by
a three-part zig-zag. Rule c is implemented by subdividing both the horizontal
and vertical dimensions by three, and replacing the line segment by three parts
of itself, inside the three diagonal subrectangles.

Each Kline polygon is obtained by applying these three rules in some
order. Each finite string built from the alphabet {a, b, c} may be considered a
“program” for the construction of a polygon. Several examples are illustrated
in Fig. 7.5.3. We will write Kline[α] for the Kline polygon corresponding to
the string α.

Now let σ ∈ {a, b, c}(ω) be an infinite string. The Kline curve Kline[σ]
is the limit of the Kline polygons Kline[σ�k] as k increases.
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Fig. 7.5.3. Kline polygons, Kline curve

Exercise 7.5.2. If σ is an infinite string from the alphabet {a, b, c}, then
Kline[σ�k] converges in the Hausdorff metric.

What is the justification of the use of the word “curve”? The “natural”
parameterization of a polygon Kline[α] with 3n segments of equal length (n =
|α|) is obtained by subdividing [0, 1] into 3n subintervals of equal length, and
mapping each of the subintervals affinely onto the corresponding segment of
the polygon.

Exercise 7.5.4. Determine necessary and sufficient conditions on the string
σ for the natural parameterizations of the polygons Kline[σ�n] to converge
uniformly to a parameterization of the Kline curve Kline[σ] (which will again
be called the natural parameterization).

There are two periodic strings σ that deserve special mention. They are
cases where Kline[σ] specializes to curves which we have seen before. For the
constant string ccc · · · , the Kline curve is a line segment. It has Cov = dim =
Dim = 1. For the period-two string abab · · · , the Kline curve is the Peano
space-filling curve (p. 70). It has Cov = dim = Dim = 2. Clearly for a general
string σ, the topological dimension Cov Kline[σ] is either 1 or 2. And the
fractal dimension satisfies 1 ≤ dim Kline[σ] ≤ 2.

Exercise 7.5.5. Prove necessary and sufficient conditions on the string σ for
Cov Kline[σ] = 1.

Exercise 7.5.6. Let σ ∈ {a, b, c}(ω) be the program for a Kline curve. For
n ∈ N, let an(σ) be the number of times the letter a occurs in the restriction
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σ�n. Similarly, let bn(σ) be the number of times the letter b occurs and cn(σ)
the number of times the letter c occurs. Assume the limits

α = lim
n→∞

an(σ)
n

, β = lim
n→∞

bn(σ)
n

, γ = lim
n→∞

cn(σ)
n

exist and α ≥ β. Show that the Hausdorff dimension of Kline[σ] is

2α + γ

α + γ
= 2 − γ

α + γ
= 2 − γ

1 − β
.

Exercise 7.5.7. Discuss the packing dimension of a Kline curve.

Exercise 7.5.8. Let σ ∈ {a, b, c}(ω), assume α, β, γ exist as in Exercise 7.5.6,
and assume 1 > α ≥ β > 0. Let

(
ϕ(t), ψ(t)

)
, t ∈ [0, 1], be the natural

parameterization of Kline[σ]. Show that

ϕ ∈ Lip
(

1
1 − α

)
, ψ ∈ Lip

(
1

1 − β

)
.

SuperIFS

Let us review the definition of a hyperbolic iterated function system and its
attractor. We have a complete metric space S. We have a finite index set,
an alphabet, E. For each letter e ∈ E we have a contractive Lipschitz map
fe : S → S. The data of the iterated function system let us define a map
F : H(S) → H(S) by

F (A) =
⋃

e∈E

fe[A]. (1)

Sometimes we use the same letter (here F ) to refer either to the iterated func-
tion system (fe)e∈E itself or to the corresponding map (1) of the hyperspace.
The attractor for the iterated function system F is the fixed point, the unique
K ∈ H(S) satisfying the self-referential equation F (K) = K. The attractor K
may be described using a string model. The addressing function h : E(ω) → S
defined on the string space E(ω) is defined by

h(σ) = lim
n

fσ�n(x),

where the limit is independent of the point x ∈ S. The range of h is K.
A superIFS is, roughly speaking, an IFS where the space is a hyperspace

H(S) and the maps are themselves IFSs on S. The space S itself is where we
are interested in describing sets, but there are two layers of data used to do it.

A more precise description: Let S be a complete metric space. Let E be
a finite set, an alphabet. For each e ∈ E, let Fe be a hyperbolic IFS on the
space S, so that the corresponding map Fe : H(S) → H(S) is a contractive
Lipschitz map. (The IFSs Fe all act on the same space S, and each one has
an alphabet and set of maps. Their alphabets may or may not be the same
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as each other, and probably are not the same as the master alphabet E.) An
IFS (Fe)e∈E constructed in this way is known as a superIFS on S. So we
define a map F : H(H(S)) → H(H(S)) by

F(A) =
⋃

e∈E

Fe[A]. (2)

Sometimes we use the same letter (here F) to refer either to the SuperIFS
(Fe)e∈E itself or to the corresponding map (2) of the hyperhyperspace. And
there is an attractor: a unique K ∈ H(H(S)) satisfying the self-referential
equation F(K) = K. This is called a superfractal.∗ There is, as usual, a
string model. For any string σ ∈ E(ω) define

h(σ) = lim
n

Fσ�n(A).

This limit is taken according to the Hausdorff metric in H(S), and it does not
depend on the starting set A ∈ H(S). So h : E(ω) → S is continuous, and its
range is the superfractal K.

Fig. 7.5.9. Kline IFSs

∗ In [4] this is called a “1-variable superfractal”, and that book also discusses
V -variable superfractals.
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Fig. 7.5.10. Kline superfractal

The Kline curve construction described above is an example of a superfrac-
tal. Space S is the unit square. The master alphabet is E = {a, b, c}. The three
IFSs are shown in Fig. 7.5.9. The superfractal K attractor is made up of all
the Kline curves. The addressing function is σ �→ Kline[σ]. Some Kline curves
are shown in Fig. 7.5.10. A family resemblance among the images reflects the
fact that they all arise from a single superfractal K.

See Barnsley [4, Chap. 5] and the references there for additional material
on superfractals.

7.6 *Remarks

Robert Strichartz took the modern literary term “deconstruction” for use
with iterated function systems. Deconstruction of a literary or philosophical
text may mean finding meanings that were not intended by the original author.
So deconstruction of the invariant set of an IFS means decomposing it in a
way different from the one provided by the original iterated function system.

Karl Kiesswetter’s curve is from [39]. It was proposed as a particularly
elementary example of a continuous but nowhere differentiable function.

Theorem 7.4.1 is due to A. S. Besicovitch [5, Part II] and H. G. Eggle-
ston [21]. Another proof is given by Patrick Billingsley [6, Section 14].
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Comments on the Exercises

Exercise 7.1.4. The open set condition is satisfied, but not by the open set
(0, 1).

Exercise 7.1.5. The set K is contained in [0, 1]. Consider 4 parts of the set:

A = K ∩ [4/5, 1]
B = K ∩ [1/5, 4/5]
C = K ∩ [4/25, 1/5]
D = K ∩ [0, 4/25],

and observe that (1/5)A ⊆ C. Show that the graph similarity obeys Fig. 7.6.1,
and the open set condition is satisfied for the corresponding realization. The
dimension is log

(
(
√

5+3)/2
)
/ log 5 ≈ 0.59799; compare it to the upper bound

obtained from the the ratio list (1/5, 1/5, 1/5), namely log 3/ log 5 ≈ 0.6826.
Exercise 7.1.7. This is more like a class project than a homework as-

signment. Of course there are many possible answers. My deconstruction in-
volves four isosceles right triangluar blocks A,D,H,K and their reflections
A′,D′,H ′,K ′ with the graph iterated function system and open set condition
shown in Fig. 7.6.2. The fractal dimensions are ≈ 1.92926.

Exercise 7.2.7. If g is differentiable at a point a, and xn ≤ a ≤ yn, lim xn =
a = lim yn, xn < yn, then

lim
n→∞

g(yn) − g(xn)
yn − xn

= g′(a).

This is false by Exercise 7.2.6.
Exercise 7.2.8: 3/2.

Fig. 7.6.1. A graph
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Fig. 7.6.2. Leaf deconstruction

Exercise 7.2.14: [5, Part V].
Exercise 7.2.17: [49].
Exercise 7.3.7: [23, Section 8.4].
Exercise 7.4.4: [6, Section 14].
Exercise 7.5.6: [40].

Life is a fractal in Hilbert space.
—Rudy Rucker, Mind Tools

I am a strange loop.
—Douglas Hofstadter
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