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Fractal Dimension

Next we come to the fractal dimensions: in particular the Hausdorff dimension
and the packing dimension. The surprising feature for these dimensions is that
they need not be integers: they can be fractions. The Hausdorff dimension is
the one singled out by Mandelbrot when he defined “fractal”. The Hausdorff
and packing dimensions are perhaps a bit more difficult to define than some
of the other kinds of fractal dimension. But in recent years it has become clear
that they are the most useful of the fractal dimensions.

6.1 Hausdorff Measure

Let S be a metric space. Consider a positive real number s, the candidate
for the dimension. The s-dimensional Hausdorff outer measure is the
method II outer measure defined from the set function cs(A) = (diam A)s. It
is written H

s
. The restriction to the measurable sets is called s-dimensional

Hausdorff measure, and written Hs. Since H
s

is constructed by method II,
it is a metric outer measure. So all Borel sets are measurable (in particular,
all open sets, closed sets, compact sets).

Recall that the Method I theorem gives a more explicit construction: A
family A of subsets of S is called a countable cover of a set F iff

F ⊆
⋃

A∈A

A,

and A is a countable (possibly even finite) family of sets. Let ε be a positive
number (presumably very small). The cover A is an ε-cover iff diam A ≤ ε
for all A ∈ A. Define

H
s

ε(F ) = inf
∑

A∈A

(diam A)s,

where the infimum is over all countable ε-covers A of the set F . (By conven-
tion, inf ∅ = ∞.) A computation shows that when ε gets smaller, H

s

ε(F ) gets



166 6 Fractal Dimension

larger. Finally:
H

s
(F ) = lim

ε→0
H

s

ε(F ) = sup
ε>0

H
s

ε(F )

is the s-dimensional Hausdorff outer measure of the set F . Figures 6.1.1 and
6.1.2 illustrate some of the ideas behind the definition.

There are variants in the definition of the Hausdorff measure that are
sometimes useful. (i) Since the closure of a set has the same diameter as the
set itself, we may use only closed sets in the covers A. The class of closed sets
is a (method II) reduced cover class for Hs. (ii) If A is any set, it is contained
in an open set with diameter as close as I like to the diameter of A. The class
of open sets is a reduced cover class for Hs. (iii) Any set of diameter r is
contained in a closed ball of radius r (and diameter ≤ 2r). The collection of
open balls is a reduced cover class with factor 2s for Hs. (iv) In Euclidean
space R

d, the convex hull of any set has the same diameter as the set. The

Fig. 6.1.1. The Hausdorff measure (area) of a piece of surface A is approximated
by the cross-sections of little balls which cover it. (From [52])

Fig. 6.1.2. One must cover by small sets to compute length accurately. Here the
length of the spiral is well-estimated by the sum of the diameters of the tiny balls,
but grossly under-estimated by the diameter of the huge ball. (From [52])
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collection of convex sets is a reduced cover class for Hs. (v) If a set K is
compact, then every open cover of K has a finite subcover, so to compute the
Hausdorff measure of a compact set K, we may use finite covers A. (vi) If we
replace a set in a cover A of a set F by a subset of itself, so that the result is
still a cover of F , the sum ∑

A∈A

(diam A)s

only becomes smaller. So if F ⊆ T ⊆ S, the value of H
s

ε(F ) when F is
considered to be a subset of T is the same as when F is considered to be a
subset of S. In particular, we may assume (if it is convenient) that the sets
used in the covers A of the set F are subsets of F .

Exercise 6.1.3. If F is a finite set, then Hs(F ) = 0 for all s > 0.

Theorem 6.1.4. In the metric space R, the one-dimensional Hausdorff mea-
sure H1 coincides with the Lebesgue measure L.

Proof. If A ⊆ R has finite diameter r, then supA−inf A = r, so A is contained
in a closed interval I with length r, and L(A) ≤ L(I) = r. But by the Method I
theorem (5.2.2), H

1

ε is the largest outer measure M satisfying M(A) ≤ diam A

for all sets A with diameter less than ε. So H
1

ε(F ) ≥ L(F ) for all F . Therefore
H

1
(F ) ≥ L(F ).
Now if [a, b) is a half-open interval and ε > 0, we may find points a =

x0 < x1 < · · · < xn = b with xj − xj−1 < ε for all j. Then [a, b) is covered by
the countable collection { [xj−1, xj ] : 1 ≤ j ≤ n }, and

n∑

j=1

diam[xj−1, xj ] =
n∑

j=1

(xj − xj−1) = b − a.

Therefore H
1

ε

(
[a, b)

)
≤ b − a. But by the Method I theorem, L is the largest

outer measure satisfying L
(
[a, b)

)
≤ b − a for all half-open intervals [a, b).

Therefore L(F ) ≥ H
1
(F ). for all F .

The two outer measures L and H
1

coincide. The measurable sets in each
case are given by the criterion of Carathéodory, so the measures L and H1

also coincide. 
�
For a “zero-dimensional” Hausdorff measure, we can use the set function

c0 defined by c0(A) = 1 for A �= ∅ and c0(∅) = 0.

Exercise 6.1.5. With this definition, H0(A) = n if A has n elements, and
H0(A) = ∞ if A is infinite.

Hausdorff Dimension

How does the Hausdorff measure Hs(F ) behave as a function of s for a given
set F? An easy calculation shows that when s increases, Hs(F ) decreases.
But much more is true.
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Theorem 6.1.6. Let F be a Borel set. Let 0 < s < t. If Hs(F ) < ∞, then
Ht(F ) = 0. If Ht(F ) > 0, then Hs(F ) = ∞.

Proof. If diam A ≤ ε, then

H
t

ε(A) ≤ (diam A)t ≤ εt−s(diam A)s.

Therefore by the Method I theorem, H
t

ε(F ) ≤ εt−sH
s

ε(F ) for all F . Now if
Hs(F ) < ∞, then Ht(F ) ≤ limε→0 εt−s H

s

ε(F ) = 0 × Hs(F ) = 0. The second
assertion is the contrapositive. 
�

This means that, for a given set F , there is a unique “critical value”
s0 ∈ [0,∞] such that:

Hs(F ) = ∞ for all s < s0;
Hs(F ) = 0 for all s > s0.

This value s0 is called the Hausdorff dimension of the set F . We will write
s0 = dimF . Of course, it is possible that Hs(F ) = 0 for all s > 0; in that case
dim F = 0. In the same way, it is possible that Hs(F ) = ∞ for all s; in that
case dim F = ∞.

This idea of dimension is an abstraction of what we already know from
elementary geometry. If A is a nice smooth rectifiable curve, then its length
is a useful way to measure its size; but its “area” and “volume” are 0. The
dimensions 2 and 3 are too large to help in measuring the size of A. If B is
the surface of a sphere, then its area is positive and finite. We can say its
“length” is infinite (for example, since it contains curves that are as long as
we like which spiral around); its “volume” is 0, since it is contained in a solid
shperical shell whose thickness is as small as we like. So for the set B, the
dimension 1 is too small, the dimension 3 is too large, and the dimension 2 is
just right. The s-dimensional Hausdorff measure give us a way of measuring
the size of a set for dimensions s other than the integers 1, 2, 3, · · · .
Theorem 6.1.7. Let A,B be Borel sets.

(1) If A ⊆ B, then dim A ≤ dim B.
(2) dim(A ∪ B) = max{dim A,dim B}.
Proof. (1) Suppose A ⊆ B. If s > dim B, then Hs(A) ≤ Hs(B) = 0. Therefore
dim A ≤ s. This is true for all s > dim B, so dim A ≤ dim B.

(2) Let s > max{dim A,dim B}. Then s > dim A, so Hs(A) = 0. Similarly,
Hs(B) = 0. Then Hs(A∪B) ≤ Hs(A)+Hs(B) = 0. Therefore dim(A∪B) ≤
s. This is true for all s > max{dim A,dim B}, so we have dim(A ∪ B) ≤
max{dim A,dim B}. By (1), dim(A ∪ B) ≥ max{dim A,dim B}. 
�
Exercise 6.1.8. Suppose A1, A2, · · · are Borel sets. Is it true that

dim
⋃

k∈N

Ak = sup
k

dim Ak?
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Theorem 6.1.9. Let f : S → T be a similarity with ratio r > 0, let s be a
positive real number, and let F ⊆ S be a set. Then H

s
(f [F ]) = rsH

s
(F ). So

dim f [F ] = dim F .

Proof. We may assume that T = f [S]. Then f has an inverse f−1. A set
A ⊆ S satisfies diam f [A] = r diam A. Therefore (diam f [A])s = rs(diam A)s.
By the Method I theorem (applied twice), H

s

rε(f [F ]) = rsH
s

ε(F ). Therefore
H

s
(f [F ]) = rsH

s
(F ) and dim f [F ] = dimF . 
�

Exercise 6.1.10. Suppose f : S → T is a function. Let A ⊆ S be a Borel set.
Prove or disprove: (1) If f is Lipschitz, then

dim f [A] ≤ dim A.

(2) If f is inverse Lipschitz, then

dim f [A] ≥ dim A.

Exercise 6.1.11. Suppose S is a metric space and dim S < ∞. Does it follow
that S is separable?

6.2 Packing Measure

In this section we define the packing measures and the packing dimension.
Mandelbrot says that his definition for “fractal” (Cov S < dim S) is too

broad, in that it admits “true geometric chaos”. The sets that are of interest
for applications (and in mathematics) are generally not the most general set,
with few special properties. So it may be useful to restrict the term “fractal”
so that the sets meeting the conditions have useful properties. One possible
way to do this has been proposed by James Taylor. He proposed to apply the
term “fractal” to (Borel) sets where the packing dimension is equal to the
Hausdorff dimension.

Motivations

Before we formulate the definition of the packing measures, let us discuss some
of the reasons for the definition, and why it has the form given.

Hausdorff measure is based on “covering” of a set. The set E to be mea-
sured is covered by small sets Ai. We attempt to make the covering “efficient”
by minimizing ∑

i∈N

c(Ai),

subject to the constraint that the sets Ai cover E. When this sum is smaller,
the cover of E by {Ai} is considered to be more efficient.
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Another possibility for “measuring” the set E is to do it by packing rather
than covering. We want to put disjoint sets Ai inside E. We attempt to make
this packing “efficient” by maximizing

∑

i∈N

c(Ai),

subject to the constraint that the sets Ai are disjoint subsets of E. When this
sum is larger, the packing {Ai} is considered to be more efficient.

For fractal measures, the set function c should be of the form (diamA)s,
where s > 0 is the dimension we are interested in. But this leads to certain
undesirable features if taken at face value. For example, in the plane, what if
we pack a square as in Fig. 6.2.1(a)? By making the sets Ai narrow enough,
we can make the sum ∑

i∈N

(diam Ai)s,

as large as we like.
The way to avoid this is to pack only by sets of a special type. For example,

in R, packings with intervals cannot be beat. In Euclidean space, the choice is
often to pack with cubes. In order to get a definition that applies in a general
metric space, we will pack with balls.

Packing a set E with balls Ai ⊆ E is fine when E is an open set, but other
sets may contain no balls at all. So we drop the requirement that the balls be
contained in E. But to make sure the packing measures the set E we require
instead that the centers of the balls lie in E.

Let S be a metric space, x ∈ S and r > 0. Recall the notation

Br(x) = { y ∈ S : �(x, y) < r } , Br(x) = { y ∈ S : �(x, y) ≤ r } .

We will pack with closed balls. But open balls could be used just as well in
our setting.

For two balls Br(x), Bs(y) in Euclidean space, we know that they are
disjoint, Br(x) ∩ Bs(y) = ∅, if and only if �(x, y) > r + s. In metric space
other than Euclidean space, this equivalence may fail. But we do know that
if �(x, y) > r + s, then Br(x)∩Bs(y) = ∅. We will use �(x, y) > r + s for our
definition of “packing”.

Fig. 6.2.1. (a) Packing with any sets (b) packing with balls
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In Euclidean space, two balls are equal, Br(x) = Bs(y), if and only if x = y
and r = s. In metric space other than Euclidean space, this equivalence may
fail. For example, in an ultrametric space, every point of a ball is a center. This
is a reason for our use of “constituents” rather than balls in the definition.

In Euclidean space, the diameter of the ball Br(x) is 2r. In metric space
other than Euclidean space, this may not be true. For example, in an ul-
trametric space, diam Br(x) ≤ r. We will use the set function (2r)s for our
“radius-based” packing measure rather than the “diameter-based” option of
(diam Br(x))s.

In some texts—including the first edition of this one—one or more of the
above choices may be reversed. As noted, in Euclidean space this makes no
difference.

Definition

Let S be a metric space. A constituent in S is a pair (x, r), where x ∈ S
and r > 0. We think of the constutuent (x, r) as standing for the closed ball
Br(x). We may even call x the “center” and r the “radius” of the constituent
(x, r).

Let E ⊆ S. A packing of E is a countable collection Π of constituents,
such that: (a) for all (x, r) ∈ Π, we have x ∈ E; (b) for all (x, r), (y, s) ∈ Π
with (x, r) �= (y, s), we have �(x, y) > r + s.

For δ > 0, we say that a packing Π is δ-fine iff for all (x, r) ∈ Π we have
r ≤ δ. Let F ⊆ S, and let δ, s > 0. Define

P̃s
δ(F ) = sup

∑

(x,r)∈Π

(2r)s,

where the supremum is over all δ-fine packings Π of F . Note: because of the
sup involved, we may restrict this to finite packings Π only.

When δ decreases to 0, the value P̃s
δ(F ) decreases, so we define

P̃s
0(F ) = lim

δ→0
P̃s

δ(F ) = inf
δ>0

P̃s
δ(F ).

When we have done this, we get a family
(
P̃s

0

)
of set functions indexed by s.

As before, there is a critical value:

Exercise 6.2.2. Let F be a set in a metric space. There is s0 ∈ [0,∞] such
that

P̃s
0(F ) = ∞ for all s < s0;

P̃s
0(F ) = 0 for all s > s0.

This critical value s0 will be called the packing index of the set F .
However, the set functions P̃s

0 are not really what we want. They are not
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outer measures. This is not unexpected, since the process used to construct
them is not method II. Here is an illustration showing that P̃

1/2
0 fails to be an

outer measure on R:

Proposition 6.2.3. Let K be the compact set {0, 1, 1/2, 1/3, 1/4, 1/5, · · · } ⊆
R. Then P̃

1/2
0 (K) > 0.

Proof. Let k ∈ N be odd, let ε = 2−k, and let n = 2(k−1)/2. Then

1
n − 1

− 1
n

>
1
n2

= 2ε,

so the constituents with radius ε and centers 1, 1/2, 1/3, · · · , 1/n form a pack-
ing. (That is, the balls with radius ε and centers 1, 1/2, 1/3, · · · , 1/n are dis-
joint.) So

P̃1/2
ε (K) ≥ n (2ε)1/2 = 1,

and therefore P̃
1/2
0 (K) ≥ 1. 
�

For many purposes it is unreasonable to claim that this countable set K
has positive dimension. We know a good way (method I) to get an outer
measure from a set function. So we apply method I to the set function P̃s

0:

P
s
(E) = inf

∑

C∈C

P̃s
0(C),

where the inf is over all countable covers C of the set E.

Theorem 6.2.4 (The closure theorem). If C is a set and C is its closure,
then P̃s

0

(
C
)

= P̃s
0

(
C
)
.

Proof. Any packing of C is automatically a packing of C. This shows that
P̃s

δ

(
C
)
≤ P̃s

δ

(
C
)

for all δ and thus P̃s
0

(
C
)
≤ P̃s

0

(
C
)
.

Conversely, let δ > 0 and let Π be a finite δ-fine packing of C. Write Π =
{(x1, r1), · · · , (xn, rn)}. For any i �= j, we have �(xi, xj)−ri−rj > 0, and there
are only finitely many pairs i, j, so there is ε > 0 with �(xi, xj) − ri − rj > ε
for all i �= j. Now for each i, the point xi belongs to the closure of C, so
there is yi ∈ C with �(xi, yi) < ε/2. But then Π ′ = {(y1, r1), · · · , (yn, rn)} is
a packing of C, still δ-fine, and it has the same value

∑
(2ri)s as the packing

Π. Therefore we get P̃s
δ

(
C
)
≥ P̃s

δ

(
C
)

for all δ and thus P̃s
0

(
C
)
≥ P̃s

0

(
C
)
. 
�

The class of closed sets is a reduced cover class for P
s
:

Corollary 6.2.5. Let E ⊆ S. Then

P
s
(E) = inf

∑

C∈C

P̃s
0(C),

where the inf is over all countable covers C of the set E by closed sets.
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Lemma 6.2.6. Let A,B ⊆ S. Then P̃s
0(A∪B) ≤ P̃s

0(A)+P̃s
0(B). If dist(A,B)

> 0, then P̃s
0(A ∪ B) = P̃s

0(A) + P̃s
0(B).

Proof. Let δ > 0 be given. Let Π be a δ-fine packing of A∪B. Then Π is the
disjoint union of

Π1 = { (x, r) ∈ Π : x ∈ A } and Π2 = { (x, r) ∈ Π : x �∈ A } .

But Π1 is a δ-fine packing of A and Π2 is a δ-fine packing of B. So

∑

(x,r)∈Π

(2r)s =
∑

(x,r)∈Π1

(2r)s +
∑

(x,r)∈Π2

(2r)s ≤ P̃s
δ(A) + P̃s

δ(B).

Take the supremum over all δ-fine packings Π to get P̃s
δ(A ∪ B) ≤ P̃s

δ(A) +

P̃s
δ(B). Let δ → 0 to get P̃s

0(A ∪ B) ≤ P̃s
0(A) + P̃s

0(B).
Let dist(A,B) = ε > 0. Then if δ < ε/2, any δ-fine packing of A ∪ B is

the disjoint union of a δ-fine packing of A and a δ-fine packing of B. And
conversely, the union of a δ-fine packing of A and a δ-fine packing of B is a
δ-fine packing of A ∪ B. So P̃s

δ(A ∪ B) = P̃s
δ(A) + P̃s

δ(B). Let δ → 0 to get
P̃s

0(A ∪ B) = P̃s
0(A) + P̃s

0(B). 
�

Theorem 6.2.7. The set function P
s

is a metric outer measure.

Proof. The only packing of the empty set is the empty packing, and an empty
sum has the value 0. Therefore P̃s

δ(∅) = 0 for all δ > 0 and P̃s
0(∅) = 0.

The empty set can be covered ∅ ⊆
⋃

n∈N
En, where En = ∅ for all n, so

P
s
(∅) = 0.
If A ⊆ B, and B ⊆

⋃
n∈N

En, then also A ⊆
⋃

n∈N
En, so P

s
(A) ≤ P

s
(B).

Suppose A =
⋃

i∈N
Ai. We must show P

s
(A) ≤

∑∞
i=1 P

s
(Ai). If

∑
i P

s
(Ai)

diverges, then there is nothing to do, so assume
∑∞

i=1 P
s
(Ai) < ∞. Let ε > 0

be given. For each i, there exist sets Eni, n ∈ N, so that Ai ⊆
⋃

n Eni and∑
n P̃s

0(Eni) < P
s
(Ai) + ε/2i. Then A ⊆

⋃
i

⋃
n Eni is a countable cover of A,

so

P
s
(A) ≤

∑

i

∑

n

P̃s
0(Eni) <

∑

i

(
P

s
(Ai) +

ε

2i

)
=

(
∑

i

P
s
(Ai)

)
+ ε.

This holds for any ε > 0, so P
s
(A) ≤

∑
i P

s
(Ai).

The metric property follows from Lemma 6.2.6. 
�

The restriction of P
s

to the measurable sets is a measure, called the s-
dimensional packing measure, and written Ps. As usual there is a critical
value for s:
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Exercise 6.2.8. Let F be a Borel set in a metric space. There is s0 ∈ [0,∞]
such that

Ps(F ) = ∞ for all s < s0;
Ps(F ) = 0 for all s > s0.

This value s0 is called the packing dimension of the set F . We will write
s0 = Dim F . It is a more reasonable quantity than the packing index defined
above.

Elementary Properties

The packing dimension has many of the same properties as the Hausdorff
dimension.

Theorem 6.2.9. Let A,B be Borel sets.

(1) If A ⊆ B, then Dim A ≤ Dim B.
(2) Dim(A ∪ B) = max{Dim A,Dim B}.

Proof. (1) Assume A ⊆ B. Let s > Dim B. then P
s
(B) = 0. Therefore

P
s
(A) = 0. This shows Dim A ≤ s. This holds for all s > Dim B, so

Dim A ≤ Dim B.
(2) By (1), Dim(A ∪ B) ≥ Dim A and Dim(A ∪ B) ≥ Dim B. There-

fore Dim(A ∪ B) ≥ max{Dim A,Dim B}. If s > max{Dim A,Dim B}, then
P

s
(A) = 0 and P

s
(B) = 0. So by subadditivity, P

s
(A ∪ B) = 0. This shows

Dim(A ∪ B) ≤ s. It holds for all s > max{Dim A,Dim B}, so Dim(A ∪ B) ≤
max{Dim A,Dim B}. 
�

Exercise 6.2.10. Suppose A1, A2, · · · are Borel sets. Is it true that

Dim
⋃

k∈N

Ak = sup
k

Dim Ak?

Theorem 6.2.11. Let f : S → T be a similarity with ratio r > 0, let s be a
positive real number, and let E ⊆ S be a set. Then P

s
(f [E]) = rsP

s
(E). So

Dim f [E] = DimE.

Proof. Let Π be a δ-fine packing of F . Then
{ (

f(x), rt
)

: (x, t) ∈ Π
}

is an
rδ-fine packing of f [F ]. So

P̃s
rδ

(
f [F ]

)
≥
∑

(x,t)∈Π

(2rt)s = rs
∑

(x,t)∈Π

(2t)s.

This holds for all δ-fine packings of F , so

P̃s
rδ

(
f [F ]

)
≥ rsP̃s

δ

(
F
)
.
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Let δ → 0 to get
P̃s

0

(
f [F ]

)
≥ rsP̃s

0

(
F
)
.

This holds for all subsets F ⊆ S.
Since r > 0, the map f is one-to-one, and maps F onto f [F ]. Every rδ-

fine packing of f [F ] is of the form
{ (

f(x), rt
)

: (x, t) ∈ Π
}

for some δ-fine
packing of F . So the estimates hold in reverse, and we conclude

P̃s
0

(
f [F ]

)
= rsP̃s

0

(
F
)
.

Now if E ⊆
⋃

i Ai is a countable cover of a set E, then f [E] ⊆
⋃

i f [Ai] is
a cover of the image set f [E]. So

∑

i

P̃s
0(Ai) = rs

∑

i

P̃s
0

(
f [Ai]

)
≥ rsP

s(
f [E]

)
.

This holds for all covers of E, so P
s(

E
)
≥ rsP

s(
f [E]

)
.

If f [E] ⊆
⋃

Bi is a countable cover of f [E], let Ai = f−1[Bi], so that
E ⊆

⋃
Ai is a cover of E. Note f [Ai] ⊆ Bi. Now

rs
∑

i

P̃s
0(Bi) ≥ rs

∑

i

P̃s
0(f [Ai]) =

∑

i

P̃s
0(Ai) ≥ P

s
(E).

This holds for all covers of f [E], so rsP
s(

f [E]
)
≥ P

s
(E).

Therefore, we have P
s
(E) = rsP

s(
f [E]

)
. And Dim f [E] = DimE. 
�

Exercise 6.2.12. Suppose f : S → T is a function. Let A ⊆ S be a Borel set.
Prove or disprove: (1) If f is Lipschitz, then

Dim f [A] ≤ Dim A.

(2) If f is inverse Lipschitz, then

Dim f [A] ≥ Dim A.

Proposition 6.2.13. In the metric space R, the one-dimensional packing
measure P1 coincides with Lebesgue measure L.

Proof. First consider a half-open interval, [a, b). If Π is a finite packing of
[a, b), write Π = {(x1, r1), (x2, r2), · · · , (xn, rn)} with x1 < x2 < · · · < xn.
Then all the balls Bri

(xi) are contained in the interval [a− r1, b+ rn] and are
disjoint. By the additivity of Lebesgue measure (and the fact that intervals
are Lebesgue measurable sets), we have

n∑

i=1

(2ri) ≤ b − a + r1 + rn.

If Π is δ-fine, then
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n∑

i=1

(2ri) ≤ b − a + 2δ.

Take the supremum on all δ-fine packings of [a, b) to conclude

P̃1
δ

(
[a, b)

)
≤ b − a + 2δ.

Let δ → 0 to get
P̃1

0

(
[a, b)

)
≤ b − a.

On the other hand, given δ > 0, choose n with (b− a)/n < δ, then we can
pack [a, b) with n balls all of radius ri = (b − a)/(2n). So P̃1

δ

(
[a, b)

)
≥ b − a.

Take the limit to get P̃1
0

(
[a, b)

)
≥ b − a. Therefore P̃1

0

(
[a, b)

)
= b − a.

Now consider a finite disjoint union of half-open intervals [a, b). If two
of them are adjacent (the right endpoint of one is the left endpoint of the
other), then they may be combined into a single interval. If two of them are
not adjacent, then there is a gap of positive length between them. So by
Lemma 6.2.6 we have P̃1

0(V ) = L(V ) for all such finite disjoint unions. This
holds in particular for the dyadic ring R defined on p. 150.

Fix a large N > 0 and consider L and P
1

for subsets of [−N,N ]. We claim
that R is a reduced cover class for P

1
. Given any closed set F ⊆ [−N,N ] and

any ε > 0, there is V ∈ R with V ⊇ F and L(V \ F ) < ε/2; then there is
U ∈ R with U ⊇ V \ F and L(U \ (V \ F )) < ε/2. Then

P̃1
0(V ) ≤ P̃1

0(F ) + P̃1
0(V \ F ) ≤ P̃1

0(F ) + P̃1
0(U)

≤ P̃1
0(F ) + L(U) ≤ P̃1

0(F ) + ε.

Now the closed sets form a reduced cover class for P
1
, so this shows that the

dyadic ring R also forms a reduced cover class for P
1

in [−N,N ].
We have seen that P̃1

0 and L agree on R, so their method I measures also
agree: L = P

1
for subsets of [−N,N ]. For a general subset A of R, take the

increasing limit of [−N,N ] ∩ A. So L = P
1
. 
�

The packing dimension is related to the Hausdorff dimension.∗

Proposition 6.2.14. Let S be a metric space and F ⊆ S a Borel set. Then
Hs(F ) ≤ 2sPs(F ) and dim F ≤ Dim F .

Proof. I first show that H
s

4ε(F ) ≤ 2sP̃s
ε(F ). Now if P̃s

ε(F ) = ∞, then this
is clear. So suppose P̃s

ε(F ) < ∞. If there were an infinite packing of F with
all radii equal to ε, then P̃s

ε(F ) = ∞. So there is a maximal finite packing
{(x1, ε), (x2, ε), · · · , (xn, ε)} of F . Then P̃s

ε(F ) ≥ n(2ε)s. By the maximality,
∗ In the first edition, this was stated only in Euclidean space—one of the drawbacks

of the diameter-based definition of the packing measure.
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for any x ∈ F , there is some i between 1 and n with �(x, xi) ≤ 2ε. So the
collection

{
B2ε(xi) : 1 ≤ i ≤ n

}
covers F , and

H
s

4ε(F ) ≤
n∑

i=1

(
diam B2ε(xi)

)s ≤ n(4ε)s = 2sn(2ε)s ≤ 2sP̃s
ε(F ).

Therefore H
s

4ε(F ) ≤ 2sP̃s
ε(F ).

Now take the limit as ε → 0 and conclude Hs(F ) ≤ 2sP̃s
0(F ). So by the

Method I theorem, Hs(F ) ≤ 2sPs(F ).
Now if s < dim F , then Hs(F ) = ∞, so Ps(F ) = ∞, and therefore s ≤

Dim F . We therefore conclude that dimF ≤ Dim F . 
�

A set F ⊆ R
d is a fractal (in the sense of Taylor) iff dimF = Dim F .

6.3 Examples

According to Mandelbrot’s definition, a fractal is a set A with Cov A < dim A.
According to Taylor’s definition, a fractal is a set A with dimA = Dim A. In
order for these definitions to be useful, we will have to be able to compute the
dimensions involved. In some cases this is not easy to do.

In this section, we will do a few examples directly from the definitions.
We will carry out the calculations in great detail. In Sect. 6.4 we will discuss
self-similar sets in general.

Binary Tree

Here is our first official example of a fractal. We computed ind{0, 1}(ω) = 0
in Theorem 3.4.4. For {0, 1}(ω) we will use the metric �1/2 defined on p. 44
and the measure M1/2 defined on p. 160. Recall the notation [α] for cylinders
from p. 13.

Proposition 6.3.1. Let E = {0, 1} be a two-letter alphabet, let E(ω) be the
space of all infinite strings using E, and let �1/2 be the metric for E(ω). Then
H1 = M1/2 and dim E(ω) = 1.

Proof. To prove that H1 = M1/2, we will use two applications of the Method
I theorem.

If a set A ⊆ E(ω) has positive diameter, then (Proposition 2.6.7) there
is a string α ∈ E(∗) with A ⊆ [α] and diamA = diam[α]. So M1/2(A) ≤
M1/2([α]) = diam[α] = diam A. But H

1

ε is the largest outer measure with

H
1

ε(A) ≤ diam A for all sets A of diameter ≤ ε. So M1/2 ≤ H
1

ε. This is true

for all ε > 0, so M1/2 ≤ H
1
.
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On the other hand, let α ∈ E(∗) be a finite string, and ε > 0. There is n
so large that 2−n < ε and n ≥ |α|, the length of α. Then the basic open set
[α] is the disjoint union of all sets [β], where β ≥ α and |β| = n. There are
2n−|α| of these sets. Then

H
1

ε

(
[α]
)
≤
∑

β≥α
|β|=n

diam[β] =
∑

β≥α
|β|=n

2−n = 2−|α|.

But M1/2 is the largest outer measure with M1/2([α]) ≤ 2−|α| for all α ∈ E(∗).

So H
1

ε ≤ M1/2, and thus H
1 ≤ M1/2.

Therefore H
1

= M1/2. The measurable sets in both cases are given by the
criterion of Carathéodory, so H1 = M1/2.

Now since 0 < H1(E(ω)) < ∞, we conclude that dim E(ω) = 1. 
�

So we know that {0, 1}(ω) is a fractal in the sense of Mandelbrot. It is also
a fractal in the sense of Taylor:

Proposition 6.3.2. Let E = {0, 1} be a two-letter alphabet, let E(ω) be the
space of all infinite strings using E, and let �1/2 be the metric for E(ω). Then
P1 = 4M1/2 and Dim E(ω) = 1.

Proof. The outer measure M = M1/2 is the largest outer measure such that
M
(
[α]
)
≤ 2−|α| for all α ∈ E(∗). In fact, M

(
[α]
)

= 2−|α|.
We will describe the balls in E(ω). Let σ ∈ E(ω) and let r satisfy 0 < r < 1.

There is a unique n ∈ N with 2−n ≤ r < 2−n+1. The prefix α = σ�n of length
n defines a cylinder [α]. I claim that Br(σ) = [α]. To see this, note that any
string τ ∈ [α] agrees with σ at least for the first n letters, so �(σ, τ) ≤ 2−n ≤ r.
And any string τ �∈ [α] disagrees with σ somewhere in the first n letters, so
the longest common prefix is shorter than n, and thus �(σ, τ) ≥ 2−n+1 > r.
The measure of the ball is M

(
Br(σ)

)
= M

(
[α]
)

= 2−n, so M
(
Br(σ)

)
≤ r,

M
(
Br(σ)

)
> r/2, and r < 2M

(
Br(σ)

)
.

(a) First we prove P̃1
0(E

(ω)) ≤ 4. Let δ > 0, and let Π be a δ-packing of
E(ω). Then the corresponding closed balls

{
Br(σ) : (σ, r) ∈ Π

}
are disjoint.

So ∑

(σ,r)∈Π

(2r) ≤ 4
∑

(σ,r)∈Π

M
(
Br(σ)

)
≤ 4.

This is true for all δ-packings, so P̃1
δ(E

(ω)) ≤ 4. This holds for all δ > 0, so
P̃1

0(E
(ω)) ≤ 4.

Because E(ω) is a one-element cover of itself, we have also P1(E(ω)) ≤ 4.
(b) Now we prove∗ P̃1

0(E
(ω)) ≥ 4. Fix N ∈ N, N ≥ 2. Write η = 1 − 2−N ,

so 0 < η < 1. Note (1 + 2−N )η = 1 − 2−2N < 1. Let δ > 0 be given. We will
construct a δ-fine packing Π. Choose M ∈ N so that 2−M < δ/2. Define
∗ A technical note: packing by balls all the same size is not the most efficient

packing in this case!
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N0 = M,N1 = M + N, · · · , Nk = M + kN, · · · .

For k = 0, 1, · · · , let Πk be the set of all constituents (σ, r) where r = 2−Nk+1η
and the string σ, counting from the beginning, has letter 0 in locations
N0, N1, · · · , Nk−1, letter 1 in location Nk and all 0s beyond location Nk.
Pictorially,

for Π0

xx · · ·x1︸ ︷︷ ︸ 000 · · · ,

M

for Π1

xx · · ·x0︸ ︷︷ ︸ xx · · ·x1︸ ︷︷ ︸ 000 · · · ,

M N

and in general for Πk

xx · · ·x0︸ ︷︷ ︸ xx · · ·x0︸ ︷︷ ︸ xx · · ·x0︸ ︷︷ ︸ · · · xx · · ·x0︸ ︷︷ ︸ xx · · ·x1︸ ︷︷ ︸ 000 · · · ,

M N N N N

where there are k blocks of length N . In the the locations x, arbitrary letters
are allowed. The number of elements in Πk is determined by the number of
locations where the letter may be freely chosen, so Πk has 2M−1+k(N−1) =
2Nk−k−1 elements.

Let Π =
⋃

k Πk. We claim that Π is a packing. Let (σ, r), (σ′, r′) ∈ Π.
We must show �(σ, σ′) > r + r′. First suppose that (σ, r), (σ′, r′) are in the
same Πk. So r = r′ = 2−Nk+1η. Strings σ, σ′ differ somewhere in the first
Nk − 1 places, so their longest common prefix has length at most Nk − 2,
and �(σ, σ′) ≥ 2−Nk+2. On the other hand, r + r′ = 2−Nk+1η + 2−Nk+1η =
2−Nk+2η < 2−Nk+2, as required. Now suppose (σ, r) ∈ Πk, (σ′, r′) ∈ Πk′ ,
k′ > k. Strings σ, σ′ differ in location Nk, so their longest common prefix
has length at most Nk − 1, so �(σ, σ′) ≥ 2−Nk+1. And r + r′ = 2−Nk+1η +
2−Nk′+1η ≤ 2−Nk+1(1 + 2−N )η < 2−Nk+1 as required.

Note that the packing Π is δ-fine, since for any k, the radius 2−Nk+1η ≤
2−M+1η < 2−M+1 ≤ δ. Now compute

P̃1
δ(E

(ω)) ≥
∑

(σ,r)∈Π

(2r) =
∞∑

k=0

∑

(σ,r)∈Πk

(2r)

=
∞∑

k=0

2Nk−k−12η2−Nk+1 = 2η

∞∑

k=0

2−k = 4η.

This holds for all δ > 0, so P̃1
0(E

(ω)) ≥ 4η. Now let N → ∞ so that η → 1, to
get P̃1

0(E
(ω)) ≥ 4.

From (a) and (b), we have P̃1
0(E

(ω)) = 4 = 4M(E(ω)).
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(c) Next: if [α] is a cylinder, then P̃1
0

(
[α]
)

= 4 × 2−|α|. The right shift
σ �→ ασ is a similarity with ratio 2−|α|, so this follows from the case already
proved. Then we have also P1

(
[α]
)
≤ 4M

(
[α]
)
. The method I outer measure

M is the largest outer measure such that M
(
[α]
)
≤ 2−|α| for all cylinders. So

we conclude P
1 ≤ 4M.

The clopen sets in E(ω) are exactly the finite disjoint unions of cylinders
[α]. Two disjoint cylinders have positive distance. Therefore, by Lemma 6.2.6,
for any clopen set V , we have P̃1

0(V ) = 4M(V ).
(d) Now we claim that the class of clopen sets is a reduced cover class for

P
1
. Let F be a closed set and ε > 0. Now M is a metric outer measure, so by

Proposition 5.4.3, there is an open set V ⊇ F with M(U \ F ) < ε/4; while V
is a union of cylinders, so by compactness we may replace it by a finite union.
Then applying Lemma 6.2.6 we have

P̃1
0(V ) ≤ P̃1

0(F ) + P̃1
0(V \ F ) ≤ P̃1

0(F ) + 4M(V \ F ) ≤ P̃1
0(F ) + ε.

So the collection of clopen sets is a reduced cover class. This means, in the
application of method I to define P

1
, we may use only covers by clopen sets.

But we have P̃1
0(V ) = 4M(V ) for all clopen sets V , and P

1
is the largest outer

measure such that P
1
(V ) ≤ P̃1

0(V ) for all clopen V . So 4M ≤ P
1
.

Thus we get P
1

= 4M. Then in particular, 0 < P1
(
E(ω)

)
< ∞, so

Dim E(ω) = 1. 
�

The Line

Next is our first official example of a non-fractal. We proved Cov R = 1 in
Theorem 3.2.15.

Proposition 6.3.3. The Hausdorff dimension of the line R is 1.

Proof. By Theorem 6.1.4, we have H1
(
[0, 1]

)
= L

(
[0, 1]

)
= 1. Therefore

dim[0, 1] = 1. Now [0, 1] ⊆ R, so dim R ≥ dim[0, 1] = 1. If s > 1, then
Hs([0, 1]) = 0. The intervals [n, n + 1] are isometric to [0, 1], so it follows that
Hs([n, n + 1]) = 0. Therefore

Hs(R) ≤
∞∑

n=−∞
Hs([n, n + 1]) = 0.

This means that dim R ≤ s. But this is true for any s > 1, so dim R ≤ 1.
Therefore we have seen that dim R = 1. 
�
Exercise 6.3.4. The packing dimension of the line R is 1.

Lebesgue Measure vs. Hausdorff Measure

Since the Lebesgue measure was useful in computing dim R, it is easy to guess
that L2 is useful in computing dim R

2.
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Proposition 6.3.5. The Hausdorff dimension of two-dimensional Euclidean
space R

2 is 2.

Proof. Consider the (half-open) unit square Q = [0, 1)× [0, 1). It is covered by
n2 small squares with side 1/n, so if ε ≥

√
2/n, we have H

2

ε(Q) ≤ n2(
√

2/n)2 =
2. Therefore H2(Q) ≤ 2, so dim Q ≤ 2.

On the other hand, if A is any cover of Q by closed sets, then (since any
set A of diameter r is contained in a closed square QA with side ≤ r),

∑

A∈A

(diam A)2 ≥
∑

A∈A

L2(QA)

≥ L2

(
⋃

A∈A

QA

)

≥ L2(Q) = 1.

Therefore H2(Q) ≥ 1, so dim Q ≥ 2.
For R

2, since Q ⊆ R
2, we have dim R

2 ≥ dim Q = 2. If s > 2, then
Hs(Q) = 0; but R

2 can be covered by a countable collection {Qn : n ∈ N } of
squares of side 1, so Hs(R2) ≤

∑
n Hs(Qn) = 0. This shows that dim R

2 ≤ s.
Therefore dim R

2 ≤ 2. 
�
Note that the proof showed 0 < H2(Q) < ∞, where Q is the unit square.
What is the relation between the two measures L2 and H2 on R

2? In fact,
one of them is just a constant multiple of the other.

Theorem 6.3.6. There is a positive constant c such that

H2(B) = cL2(B)

for all Borel sets B ⊆ R
2.

Proof. Let Q = [0, 1)×[0, 1) be the unit square. Let c = H2(Q). (We have seen
that 1 ≤ c ≤ 2.) First, if B = rQ = [0, r) × [0, r), then H2(B) = r2 H2(Q) =
r2c = cL2(B). Next, the same is true for a translate of such a square.

Both measures are metric measures, and these squares are Borel sets. So
we have H2(V ) = cL2(V ) for any finite disjoint union of squares. In particular,
this holds for V belonging to the dyadic ring R (see p. 155).

Now consider H2 and L2 restricted to subsets of a large square K =
[−N,N ] × [−N,N ]. The dyadic ring R is a reduced measure class for L2 on
K. And H2(V ) = cL2(V ) it follows that R is also a reduced measure class for
H2 on K. Since H2 and L2 agree on R, their method I extensions also agree.
Thus L2 and H2 agree on K.

By countable additivity, H2 and L2 agree on the whole plane R
2. 
�

Let d be a positive integer. The same method may be used to prove that
there exists a positive constant cd such that Hd(B) = cd Ld(B) for all Borel
sets B ⊆ R

d.

Exercise 6.3.7. If B ⊆ R
d, then dimB ≤ d. If B contains an open ball, then

dim B = d.
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Arc Length

Let f : [0, 1] → S be a continuous curve in S. The arc length of the curve is

sup
n∑

i=1

�
(
f(xi−1), f(xi)

)
,

where the supremum is over all finite subdivisions

0 = x0 < x1 < · · · < xn = 1

of the interval [0, 1]. If the arc length is finite, then we say that the curve is
rectifiable.

Theorem 6.3.8. Let f : [0, 1] → S be a continuous curve, let l be its arc
length, and write C = f

[
[0, 1]

]
.

(a) l ≥ H1(C);
(b) If f is one-to-one, then l = H1(C).

Proof. (a) Let ε > 0. Now f is uniformly continuous (Theorem 2.3.21), so
there is δ > 0 such that �

(
f(x), f(y)

)
< ε whenever |x − y| < δ. Choose a

subdivision
0 = x0 < x1 < · · · < xn = 1

of [0, 1] with |xi − xi−1| < δ for all i. Then the sets

Ai = f
[
[xi−1, xi]

]

cover C. (But diamAi may not be �
(
f(xi−1), f(xi)

)
.) By the compactness of

[xi−1, xi], there exist yi, zi with xi−1 ≤ yi < zi ≤ xi such that diam Ai =
�
(
f(yi), f(zi)

)
. Now we may use the subdivision

0 ≤ y1 ≤ z1 ≤ y2 ≤ z2 ≤ · · · ≤ yn ≤ zn ≤ 1

to estimate the length. So

l ≥
n∑

i=1

�
(
f(yi), f(zi)

)
=

n∑

i=1

diam Ai ≥ H
1

ε(C).

Now let ε → 0 to obtain l ≥ H1(C).
(b) First, I claim that if 0 ≤ a < b ≤ 1, then H1

(
f
[
[a, b]

])
≥ �
(
f(a), f(b)

)
.

To see this, consider the function h : f
[
[a, b]

]
→ R defined by h(u) =

�
(
f(a), u

)
. Now h is continuous, and h has values h(a) = 0 and h(b) =

�
(
f(a), f(b)

)
, so by the intermediate value theorem, applied to the contin-

uous function h ◦ f : [a, b] → R, we know that h also has all values between.
Now h satisfies the Lipschitz condition |h(u) − h(v)| ≤ �(u, v), and we have
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H1
(
f
[
[a, b]

])
≥ H1

(
h
[
f
[
[a, b]

]])

≥ H1
([

0, �
(
f(a), f(b)

)])

= �
(
f(a), f(b)

)
.

This proves the claim.
Now we apply this inequality. If we have a subdivision

0 = x0 < x1 < · · · < xn = 1

of [0, 1], then the set f
[
[xi−1, xi)

]
= f
[
[xi−1, xi]

]
\
{
f(xi)

}
is the difference of

two compact sets, hence measurable. The sets f
[
[xi−1, xi)

]
are disjoint, since

f is one-to-one. So

n∑

i=1

�
(
f(xi−1), f(xi)

)
≤

n∑

i=1

H1
(
f
[
[xi−1, xi)

])

= H1

(
n⋃

i=1

f
[
[xi−1, xi)

]
)

= H1
(
f
[
[0, 1)

])
≤ H1(C).

This is true for all subdivisions, so l ≤ H1(C). 
�

Exercise 6.3.9. What is the relation between the surface area (of a surface
in R

3) and its two-dimensional Hausdorff measure?

Fractal Dimension vs. Topological Dimension

We will see in the next section that it is possible for the Hausdorff dimension
dim F to have a non-integer value. But it is not completely unrelated to the
topological dimension.

Theorem 6.3.10. Let S be a metric space. Then Cov S ≤ dim S.

A complete proof of this result can be found, for example, in [18, Sect. 3.1].
(The proof uses Lebesgue integration, which we have avoided in this book.)
Here, we will prove it for compact spaces:

Theorem 6.3.11. Let S be a compact metric space. Then Cov S ≤ dim S.

Proof. Let n = Cov S. This means that Cov S ≤ n − 1 is false. So there exist
open sets U1, U2, · · · , Un+1 such that

⋃n+1
i=1 Ui = S, but for any closed sets

Fi ⊆ Ui with
⋃n+1

i=1 Fi = S, we must have
⋂n+1

i=1 Fi �= ∅.
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Define functions on S as follows:

di(x) = dist(x, S \ Ui), 1 ≤ i ≤ n + 1
d(x) = d1(x) + d2(x) + · · · + dn+1(x).

The functions are continuous—in fact, Lipschitz:

|di(x) − di(y)| ≤ �(x, y),
|d(x) − d(y)| ≤ (n + 1)�(x, y).

Since the sets Ui cover S, we have d(x) > 0 for all x. So since S is compact,
there exist positive constants a, b such that a ≤ d(x) ≤ b for all x ∈ S. Now
define h : S → R

n+1 by

h(x) =
(

d1(x)
d(x)

,
d2(x)
d(x)

, · · · ,
dn+1(x)

d(x)

)
.

The function h is Lipschitz:
∣∣∣∣
di(x)
d(x)

− di(y)
d(y)

∣∣∣∣ =
|d(x)di(y) − d(y)di(x)|

d(x)d(y)

≤ d(x) |di(y) − di(x)| + di(x) |d(x) − d(y)|
d(x)d(y)

≤ b(n + 2)
a2

�(x, y),

and therefore

|h(x) − h(y)| ≤ b(n + 1)(n + 2)
a2

�(x, y).

Now I claim that h[S] includes the simplex

T =

{
(t1, t2, · · · , tn+1) ∈ R

n+1 : ti > 0,

n+1∑

i=1

ti = 1

}
.

Given (t1, t2, · · · , tn+1) ∈ T , consider the sets

Fi =
{

x :
di(x)
d(x)

≥ ti

}
.

Then Fi is closed, Fi ⊆ Ui, and
⋃n+1

i=1 Fi = S since
∑

i di(x)/d(x) = 1. So we
know by hypothesis that

⋂n+1
i=1 Fi �= ∅. That is, there exists a point x ∈ S with

di(x)/d(x) ≥ ti for all i. But since
∑

i di(x)/d(x) = 1 we have di(x)/d(x) = ti
for all i. That is, h(x) = (t1, t2, · · · tn+1). So h[S] ⊇ T .

Now T is isometric to an open set in R
n. By Theorem 6.1.7 and Exer-

cise 6.1.10, we have dim S ≥ dim T = n. 
�
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Exercise 6.3.12. Let S be a metric space. If Cov S ≥ 1, then dim S ≥ 1.

6.4 Self-Similarity

Self-similarity is one of the easiest ways to produce examples of fractals. This
section deals with the question of when the similarity dimension can be used to
compute the Hausdorff dimension. When the two coincide we have a desirable
situation: the similarity dimension is easy to compute, and the Hausdorff
dimension is more generally applicable and has many useful properties.

Let (r1, r2, · · · , rn) be a contracting ratio list. Let (f1, f2, · · · , fn) be an
iterated function system of similarities realizing the ratio list in a complete
metric space S. Let s be the sim-value for the iterated function system. Let
K is the invariant set for the iterated function system. Of course, K is a mea-
surable set, since it is compact. Does it follow that dim K = s? In general,
the answer is no. There is always an inequality dimK ≤ s. But simple exam-
ples show that if there is “too much” overlap among the pieces fi[K], then
dim K < s is possible.

String Models

Hausdorff and packing measures are often easy to compute for the string
models we use. Or if not easy to compute exactly, easy to estimate. Often
estimates are good enough, since to compute the fractal dimensions dim and
Dim it is enough to know merely whether Hs or Ps is positive or finite.

When computing Hs or Ps in our string spaces, we often already have a
candidate measure M. This helps in the computation.

Lemma 6.4.1. Let E be a finite alphabet, let E(ω) be the space of all infinite
strings constructed from E. Let s > 0 and let M be a finite metric outer
measure on E(ω). (i) If P̃s

0

(
[α]
)

= M
(
[α]
)

for all α ∈ E(∗), then P
s

= M.
(ii) If P̃s

0

(
[α]
)
≤ M

(
[α]
)

for all α ∈ E(∗), then P
s ≤ M.

Proof. The balls in E(ω) are the cylinders [α]. The clopen sets in E(ω) are the
finite disjoint unions of cylinders. Write R for the class of clopen sets in E(ω).
Note that R is an algebra of sets. By Lemma 6.2.6, we have P̃s

0(V ) = M(V )
for all V ∈ R in case (i) and P̃s

0(V ) ≤ M(V ) in case (ii).
Let F ⊆ E(ω) be closed, and let ε > 0. Then there is an open set U ⊇ F

with M(U \F ) < ε. The open set U is a union of cylinders, so by compactness
of F there is a finite union V of cylinders with F ⊆ V ⊆ U . (Alternatively,
think of this as the fact that E(ω) is zero-dimensional.) We conclude (as in
the proof of Proposition 6.3.2) that P̃s

0(V ) ≤ P̃s
0(F ) + ε. So R is a reduced

cover class for Ps. For any set A ⊆ E(ω) we have
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P
s
(A) = sup

{
∑

n

P̃s
0(Fn) : A ⊆

⋃

n

Fn, Fn closed

}

= sup

{
∑

n

P̃s
0(Vn) : A ⊆

⋃

n

Vn, Vn ∈ R

}

= sup

{
∑

n

M(Vn) : A ⊆
⋃

n

Vn, Vn ∈ R

}
= M(A)

in case (i) and inequality ≤ in case (ii). 
�

Exercise 6.4.2. Let E be a finite alphabet, let E(ω) be the space of all infinite
strings constructed from E. Let s > 0 and let M be a finite metric outer
measure on E(ω). If H

s(
[α]
)

= M
(
[α]
)

for all α ∈ E(∗), then H
s

= M. If
H

s(
[α]
)
≤ M

(
[α]
)

for all α ∈ E(∗), then H
s ≤ M.

The Natural Measure

Begin with a contracting ratio list (r1, r2, · · · , rn), with n > 1. Then the
sim-value s associated with it is the unique positive number s satisfying

n∑

i=1

rs
i = 1.

Let E be an n-letter alphabet, and let E(ω) be the string model. The
metric � on E is defined so that the right shifts realize the given ratio list. We
define r(α) recursively, starting with the empty string Λ, by:

r(Λ) = 1,
r(αe) = r(α) re,

then define � so that diam[α] = r(α).
We will also need a measure defined to fit the ratio list. The basis is the

equation defining the sim-value s:
n∑

i=1

rs
i = 1.

It follows from this that
n∑

i=1

(
r(α)ri

)s = r(α)s.

That is, the expression r(α)s satisfies the additivity condition for a metric
outer measure (Theorem 5.5.4). The measure M in question is defined on the
string space E(ω), and satisfies M([α]) = r(α)s for all α. Of course, it is no
coincidence that s was chosen so that M([α]) = (diam[α])s.
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Theorem 6.4.3. Let E(ω) have metric � and measure M defined from ratio
list (re) with sim-value s. Then (a) Hs = M, (b) there is a constant c > 0 so
that Ps = cM, and thus (c) dim E(ω) = Dim E(ω) = s.

Proof. Write rmax = maxe re and rmin = mine re.
(a) If a set A ⊆ E(ω) has positive diameter, then (Proposition 2.6.7) there

is a string α ∈ E(∗) with A ⊆ [α] and diamA = diam[α]. So M(A) ≤ M([α]) =
(diam[α])s = (diam A)s. But H

s

ε is the largest outer measure with H
s

ε(A) ≤
(diam A)s for all sets A of diameter ≤ ε. So M ≤ H

s

ε. This is true for all ε > 0,
so M ≤ H

s
.

On the other hand, let α ∈ E(∗) be a finite string, and ε > 0. There is n
so large that rn

max < ε, n ≥ |α|, and so r(β) < ε for all β ∈ E(n). The cylinder
[α] is the disjoint union of all sets [β], where β ≥ α and |β| = n. Then

H
s

ε

(
[α]
)
≤
∑

β≥α
|β|=n

(
diam[β]

)s =
∑

β≥α
|β|=n

M
(
[β]
)

= M
(
[α]
)
.

Let ε → 0 to get H
s(

[α]
)
≤ M

(
[α]
)
. Therefore H

s ≤ M.
(b) Now consider the packing measure. We will show that c = P̃s

0

(
E(ω)

)

satisfies the condition. Note that

P̃s
0

(
E(ω)

)
≥ Ps

(
E(ω)

)
> 0

by part (a) and Proposition 6.2.14.
We will describe the balls in E(ω). Let σ ∈ E(ω) and 0 < t < 1. Consider

the ball Bt(σ). The ratios r(σ�n) go to 0 as n → ∞, and r(Λ) = 1. So
there is a unique n with r(σ�n) ≤ t < r(σ�(n − 1)). Then as in the proof
of Proposition 6.3.2 we have Bt(σ) = [α] where α = σ�n. And M

(
Bt(σ)

)
=

M
(
[α]
)

= r(α)s. Estimate from above: M
(
Bt(σ)

)
= r(α)s ≤ ts. Estimate

from below: M
(
Bt(σ)

)
= r(σ�n)s ≥

(
rmin r(σ�(n − 1))

)s
> (rmin/2)s (2t)s.

Now let Π be a packing of E(ω). The corresponding balls Bt(σ), (σ, t) ∈ Π,
are disjoint. So

∑

(σ,t)∈Π

(2t)s <
2s

rs
min

∑

(σ,t)∈Π

M
(
Bt(σ)

)
≤ 2s

rs
min

.

This holds for all δ-fine packings, so P̃s
δ(E

(ω)) ≤ 2s/rs
min. This holds for all

δ > 0, so P̃s
0(E

(ω)) ≤ 2s/rs
min < ∞.

Thus c = P̃s
0(E

(ω)) is positive and finite. Now if α ∈ E(∗), then the right
shift σ �→ ασ is a similarity with ratio r(α), and it maps E(ω) onto [α].
Therefore P̃s

0

(
[α]
)

= r(α)s c = cM
(
[α]
)
. And thus, by Lemma 6.4.1(i), we

have Ps = cM. 
�

Exercise 6.4.4. Let s be any positive real number. There is a metric space
S with dim S = s.
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Exercise 6.4.5. Prove versions of Lemma 6.4.1, Exercise 6.4.2, and Theo-
rem 6.4.3 for the path spaces E

(ω)
v defined by a directed multigraph (V,E, i, t).

Exercise 6.4.6. Compute the value of the constant c in Theorem 6.4.3(b).

Cantor Dust

Let us consider the fractal dimension of the triadic Cantor dust (defined on
p. 2). The ratio list for this set is (1/3, 1/3). The string model is the set E(ω)

of infinite strings from the alphabet E = {0, 1}, together with the metric �1/3.
The two similarities on the model space are the right shifts, say θ0 and θ1,
defined as follows:

θ0(σ) = 0σ

θ1(σ) = 1σ.

Thus (θ0, θ1) is a realization of the ratio list (1/3, 1/3), with invariant set E(ω).

Proposition 6.4.7. The Hausdorff dimension and packing dimension for
E(ω) with metric �1/3 are both log 2/ log 3.
Proof. For the sim-value, solve 2 (1/3)s = 1 for s to get s = log 2/ log 3. By
Theorem 6.4.3 we have dim = Dim = s. 
�
Corollary 6.4.8. The Cantor dust has Hausdorff dimension and packing di-
mension log 2/ log 3.

Proof. A lipeomorphism preserves the Hausdorff dimension (Exercise 6.1.10)
and the packing dimension (Exercise 6.2.12). The addressing function h from
E(ω) onto the triadic Cantor dust C is a lipeomorphism (Proposition 2.6.3).


�

Sierpiński gasket

Next we discuss a slightly more difficult example, the Sierpiński gasket
(see p. 8).

Let S be the Sierpiński gasket. It is the invariant set for an iterated function
system with ratio list (1/2, 1/2, 1/2). Let s [ = log 3/ log 2] be the sim-value
of the ratio list. Let E = {L,U,R} be the appropriate three-letter alphabet.
Next we describe the natural metric and measure defined on E(ω) from the
ratio list.

Let � be the metric on E(ω) for the ratio list (1/2, 1/2, 1/2). That is, � is
defined so that diam[α] = 2−|α| for all α ∈ E(∗). Then the right shifts realize
the ratio list:

�(Lσ, Lτ) =
1
2

�(σ, τ),

�(Uσ,Uτ) =
1
2

�(σ, τ),

�(Rσ,Rτ) =
1
2

�(σ, τ).
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The measure M is specified by M([α]) = 3−|α|. Each node in E(∗) has
exactly 3 children, so these numbers satisfy the required additivity (Theo-
rem 5.5.4). The fact to notice is this:

M([α]) =
(
diam[α]

)s

for all α ∈ E(∗), where s = log 3/ log 2. By Theorem 6.4.3, the Hausdorff
dimension of the string space E(ω) is s = log 3/ log 2.

The dimension calculation for the string model will be used to help with
the dimension calculation of the Sierpiński gasket S itself.

Let h : E(ω) → R
2 be the addressing function that sends E(ω) onto the

gasket S. If the iterated function system in R
2 is (fL, fU, fR), then

h(Lσ) = fL

(
h(σ)

)
,

h(Uσ) = fU

(
h(σ)

)
,

h(Rσ) = fR

(
h(σ)

)
.

Proposition 6.4.9. The Sierpiński gasket has Hausdorff dimension and pack-
ing dimension at most log 3/ log 2.

Proof. The addressing function h is Lipschitz (Exercise 4.2.1). By Exer-
cise 6.1.10, we have dim S ≤ Dim S ≤ Dim E(ω) = log 3/ log 2. 
�

For the general iterated function system, the upper bound is proved in the
same way.

Theorem 6.4.10. Let (re)e∈E be a contracting ratio list. Let s be its sim-
value, and let (fe)e∈E be a realization in a complete metric space S. Let K be
the invariant set. Then dim K ≤ Dim K ≤ s.

Proof. The string model E(ω) with the natural metric � has Dim E(ω) = s
(Theorem 6.4.3). The addressing function h : E(ω) → K is Lipschitz. Therefore
Dim K ≤ s. 
�

Lower Bound

The addressing function for the Sierpiński gasket is not inverse Lipschitz. In
fact, it is not even one-to-one. (This is the answer to Exercise 4.2.2.) So we
will need a bit more effort to prove the lower bound for the fractal dimension
of S. Pay attention to the ingredients of the proof, since they will be used
again for the general case. To simplify the notation, we will write L(x) in
place of fL(x), and similarly for the other two letters, and write α(x) for a
finite string α.

Proposition 6.4.11. The Sierpiński gasket S has Hausdorff dimension equal
to the similarity dimension log 3/ log 2.
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Proof. Let V be the interior of the first triangle S0 approximating the Sierpiń-
ski gasket S. Then L2(V ) =

√
3/4, and if |α| = |β|, α �= β, then α[V ]∩β[V ] =

∅. Also, h
[
[α]
]

= α[V ] ∩ S. The set Sk approximating S is the union
⋃

α∈E(k)

α[V ].

Given a set A ⊆ S, let k be the positive integer satisfying

2−k < diam A ≤ 2−k+1.

Let
T =

{
α ∈ E(k) : α[V ] ∩ A �= ∅

}
.

I claim that T has at most 100 elements. Let m be the number of elements in
T . A set α[V ] is the image of V under a similarity with ratio 2−k, so it has
area

L2
(
α[V ]

)
= 4−k

√
3

4
.

The sets α[V ] with α ∈ T are all disjoint. If x is a point of A, then all of the
elements of all of the sets α[V ] with α ∈ T are within distance diam A+2−k ≤
3 · 2−k of x. So m disjoint sets of area 4−k

√
3/4 are contained in the ball with

center x and radius 3 · 2−k. Therefore

m4−k

√
3

4
≤ π(3 · 2−k)2.

Solving for m, we get m ≤ 36π/
√

3, which is smaller than 100.
Next I claim M

(
h−1[A]

)
≤ 100 (diam A)s for all Borel sets A ⊆ S. Given

A, let k and T be as above. Then A ⊆
⋃

α∈T α[V ], so h−1[A] ⊆
⋃

α∈T [α].
Therefore

M
(
h−1[A]

)
≤
∑

α∈T

M([α])

≤ 100 × 3−k = 100 (2−k)s

≤ 100 (diam A)s.

By the Method I theorem, M
(
h−1[A]

)
≤ 100,Hs(A) for all Borel sets A.

So 1 ≤ 100,Hs(S), and therefore dimS ≥ s. 
�

Exercise 6.4.12. Improve the estimate 100.

6.5 The Open Set Condition

Let (r1, · · · , rn) be a contracting ratio list with dimension s. Let (f1, · · · , fn)
be a corresponding iterated function system of similarities in R

d. Suppose K
is the invariant set for the iterated function system. Write s for the sim-value.
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In general it is not true that dimK = s. For example, consider the iterated
function system(fL, fU, fR) for the Sierpiński gasket, realizing the ratio list
(1/2, 1/2, 1/2). Now the iterated function system(fL, fL, fU, fR) has the same
invariant set, of course, but it realizes the longer ratio list (1/2, 1/2, 1/2, 1/2).
The Hausdorff dimension of the invariant set K is log 3/ log 2, but the sim-
value of the iterated function system is 2.

Of course, the problem is that the first two images fL[K] and fL[K] overlap
too much. Now we might require that the images do not overlap at all, as in the
Cantor dust. But that would rule out many of the most interesting examples,
such as the Sierpiński gasket itself, where the overlap sets like fL[K] ∩ fU[K]
are nonempty.

We do have inequality between the Hausdorff dimension, packing dimen-
sion, and similarity dimension. If s is the similarity dimension, then the string
model has packing dimension s and the addressing function is Lipschitz, so
dim K ≤ Dim K ≤ s.

Lower Bound

Now we turn to the “lower bound” proof. That is, we want to show dimK ≥
something or Dim K ≥ something. Generally we do this by showing Hs(K) >
0 or Ps(K) > 0.

The iterated function system (f1, f2, · · · , fn) satisfies Moran’s open set
condition iff there exists a nonempty open set U for which we have fi[U ] ∩
fj [U ] = ∅ for i �= j and U ⊇ fi[U ] for all i. Such an open set U will be called
a Moran open set for the iterated function system.

For example, consider the Cantor dust. The similarities are

f0(x) =
x

3
,

f1(x) =
x + 2

3
.

The open set U = (0, 1) is a Moran open set: the two images are (0, 1/3) and
(2/3, 1), which are disjoint and contained in U .

Or, consider the Sierpiński gasket (Fig. 1.2.1). The interior∗ U of the large
triangle S0 is a Moran open set. The three images are three small triangles,
contained in U , and disjoint.

For a third example, consider the Koch curve (Fig. 1.5.1). The interior of
the triangle L0 is a Moran open set.

The fourth example to consider is Heighway’s dragon. This time the open
set condition is not quite as trivial. The interior U of Heighway’s dragon itself
will serve. The fact that the two images are contained in U is a consequence of
the fact that Heighway’s dragon itself is the invariant set of the iterated func-
tion system. The fact that the two images are disjoint is a consequence of the

∗ The interior of a set consists of all the interior points of the set.
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fact that the approximating polygon never crosses itself (Proposition 1.5.7).
The verification requires some work, but it is left to the reader:

Exercise 6.5.1. The interior of Heighway’s dragon is a Moran open set for
the iterated function system realizing Heighway’s dragon.

In one case, the open set condition is easily verified:

Exercise 6.5.2. If the invariant set K for an iterated function system {fi}
satisfies fi[K] ∩ fj [K] = ∅ for i �= j, then Moran’s open set condition is
satisfied.

The proof of the lower bound will proceed following the same technique as
Proposition 6.4.11. The area is replaced by the d-dimensional volume, namely
Ld. You may find it instructive to compare this argument with the proof of
the special case in Proposition 6.4.11.

Let E be an alphabet with n letters. Write the ratio list as (re)e∈E and
the iterated function system as (fe)e∈E . To simplify the notation, we will
write e(x) in place of fe(x), and similarly α(x) for a finite string α. With this
notation, the model map h : E(ω) → R

d satisfies h(eα) = e
(
h(α)

)
for α ∈ E(∗)

and e ∈ E.
The open set condition implies that α[U ] ∩ β[U ] = ∅ for two strings

α, β ∈ E(∗) unless one is an initial segment of the other. If α is a string with
length k ≥ 1, we will write α− for the parent of α; that is: α− = α�(k − 1).

Lemma 6.5.3. Let (re)e∈E be a contracting ratio list. Let s be its sim-value,
and let (fe)e∈E be a realization in R

d. Let K be the invariant set. Let U be a
Moran open set for (fe). Then there is a constant c > 0 such that: if A ⊆ K,
then the set

T =
{

α ∈ E(∗) : α[U ] ∩ A �= ∅, diam α[U ] < diam A ≤ diam α−[U ]
}

has at most c elements.

Proof. As α ranges over T , the sets α[U ] are disjoint, since no such α is an
initial segment of another. The map fα is a similarity with ratio equal to
diam[α], so if w is the diameter of U , then w diam[α] is the diameter of α[U ].
Write rmin = min re. Then

diam α[U ] = w diam[α] ≥ wrmin diam[α−]

= rmin diam α−[U ] ≥ rmin diam A.

If p = Ld(U) is the volume of U , then the volume of α[U ] is

Ld
(
α[U ]

)
= p

(
diam α[U ]
diam U

)d

≥ prd
min

wd
(diam A)d
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If x is a point of A, then every point of every set α[U ] for α ∈ T is
within distance diamA + diam α[U ] ≤ 2 diam A of x. If m is the number of
elements of T , then we have m disjoint sets α[U ], all with volume at least
(prd

min/wd)(diam A)d, contained within a ball of radius 2 diamA. So if t =
Ld(B1(0)) is the volume of the unit ball, we have

mprd
min

wd
(diam A)d ≤ t(2 diam A)d.

Solving for m yields

m ≤ twd2d

prd
min

.

Summary: We may use the constant c = twd2d/prd
min, where r = min re, t

is the volume of the unit ball, p is the volume of the Moran open set U , and
w is the diameter of U . 
�

Theorem 6.5.4. Let (re)e∈E be a contracting ratio list. Let s be its sim-value,
and let (fe)e∈E be a realization in R

d. Let K be the invariant set. If Moran’s
open set condition is satisfied, then dim K = s.

Proof. Let c be a constant as in the lemma. I claim there is a positive constant
b so that for any Borel set A ⊆ K, we have

M
(
h−1[A]

)
≤ b (diam A)s.

Let U be a Moran open set, and let w = diam U . Given A, let T be as
in the lemma. So A ⊆

⋃
α∈T α[U ], and h−1[A] ⊆

⋃
α∈T [α]. If α ∈ T , then

M([α]) = (diam[α])s = ((1/w) diam α[U ])s ≤ (1/ws)(diam A)s. Therefore

M
(
h−1[A]

)
≤
∑

α∈T

M([α])

≤ c(1/ws)(diam A)s.

So b = c/ws will work.
Therefore, by the Method I theorem, 1 = M

(
h−1[K]

)
≤ bHs(K), so we

have dimK ≥ s. 
�

The proof given above clearly used the properties of Lebesgue measure in
R

d. What happens in other metric spaces? Readers who know about some
exotic metric spaces may like to attempt this:

Exercise 6.5.5. Let S be a complete metric space (other than R
d). Let

(f1, f2, · · · , fn) be a realization in S of a contracting ratio list (r1, r2, · · · , rn)
with dimension s. Let K be the invariant set. Suppose Moran’s open set con-
dition is satisfied. Does it follow that dimK = s?
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Exercise 6.5.6. Let (r1, r2, · · · , rn) be a contracting ratio list with dimen-
sion s. Let (f1, f2, · · · , fn) be an iterated function system consisting not of
similarities, but of maps fi : R

d → R
d satisfying

�
(
fi(x), fi(y)

)
≥ ri �(x, y).

Suppose the open set condition holds, and suppose there is an invariant set
K. Does it follow that dimK ≥ s?

Heighway Dragon Boundary

Heighway’s Dragon (p. 20) is a set P in the plane with nonempty interior (a
space-filling curve) which tiles the plane (p. 74). We have Cov P = dimP =
Dim P = 2, so it is not a fractal in the sense of Mandelbrot. We now have the
tools to analyze the boundary of P . It turns out that ∂P is a fractal. So the
tile P is an example of what we have called a fractile.

Recall the discussion on p. 74 showing that P tiles the plane. Let us con-
tinue with this line of reasoning. In Plate 16 we see a black segment from A
to B that produces a sequence Pn of polygons that converge to P , the black
tile in Plate 17.

First note that the point A in P0 also belongs to all Pn and is a boundary
point of P , since point A lies not only in the black tile P , but also in the
brown, gray, and red tiles. Similarly point B is a boundary point of P . We
will write ∂P = U ∪V as follows. Set U is the portion of the boundary to the
left of curve AB—that is, the points that belong not only to the black tile,
but also to at least one of the brown, blue, or yellow tiles. Set V is the portion
of the boundary to the right of curve AB—that is, the points that belong not
only to the black tile, but also to at least one of the red, green, or cyan tiles.
(In fact, the cyan tile never meets the black tile, as we can see by looking at
P1 in Plate 16.) No other tiles can touch the black tile, because the plane has
topological dimension 2, so they would have to cross one of the curves shown
to reach the black tile.

Consider set U . According to P1 in Plate 16, the “midpoint” C of P is a
boundary point, since it lies in both the black and blue tiles. The portion of
U between A and C is a copy of U shrunk by factor 1/

√
2. The portion of U

between B and C is a copy of V shrunk by factor 1/
√

2.
Now consider set V . Look at P2 in Plate 16. The “three-quarter” point

D of P is a boundary point, because it lies in both the black and red tiles.
The portion of V between B and D is a copy of U shrunk by factor 1/2.
The portion of V between D and A is the boundary between black and red;
looking at it from the red point of view, we see it is a copy of U shrunk by
factor 1/2.

Set V is made up of two copies of U , so dim U = dimV and DimU =
Dim V . Set U is made up of one copy of U (shrunk by factor 1/

√
2 ) and one

copy of V (shrunk by factor 1/
√

2 ). That copy of V is made up of two copies
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of U each shrunk by a further factor of 1/2. So the complete decomposition
has U made up of three copies of itself, with ratio list (2−1/2, 2−3/2, 2−3/2).

This ratio list has sim-value s ≈ 1.52 given by s = 2 log λ/ log 2, where
λ ≈ 1.6956 is a solution of λ3 − λ2 − 2 = 0. In order to claim that this value
s is also the Hausdorff and packing dimensions of U , we need an open set
condition. Define an open set G as follows: in Plate 16 start with the four
segments: black, yellow, blue, brown. The curve U lies in the union of the four
tiles they produce: see the black, yellow, blue, brown in Plate 17. The open
set G will be the interior of this union. Set G is shown in blue in Plate 18,
with U shown in yellow. The images of G under the three maps that make
up the iterated function system for U are shown in the second picture. The
large red set is an image of G shrunk by factor 1/

√
2. The cyan and green

sets are images of G shrunk by factor 2−3/2. These (open) images are disjoint,
since the tiles generated from different segments in Plate 16 have disjoint
interiors. The three images descend from the edges bordering the like-colored
squares shown in P3 of Plate 18. This completes our description of the open
set condition.

Eisenstein Boundary

Let us consider next the set F of “fractions” for the Eisenstein number system
(Fig. 1.6.11). The base is b = −2, and the digit set consists of 0, 1, A = ω, and
B = ω2. The set F may be done in the same way as the twindragon (p. 33).
But let us proceed in a more direct way. The first set L0 is just the point 0.
The next set L1 consists of the four points (.0)−2, (.1)−2, (.A)−2, and (.B)−2.
The set L2 contains 16 points, all that can be represented with two digits in
this system. The illustrations in Fig. 6.5.7 show these approximations. The
set F obtained this time has (of course) similarity dimension 2.

To see that F is a “fractile” we need to analyze its boundary. The Eisen-
stein boundary is made up of six congruent parts, as shown in Fig. 6.5.8. The
individual parts are self-similar. Each consists of three copies of itself, shrunk
by factor 1/2. See Fig. 6.5.9(a).

Drawings in Logo can be done. When it is done as a curve, we need to
take into account that some parts are drawn backward and/or reflected.

Fig. 6.5.7. Eisenstein fractions
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Fig. 6.5.8. The Eisenstein boundary consists of six congruent parts

to EBforward "depth "size "parity
if :depth = 0 [forward :size stop] [
left (60 * :parity)
EBbackward (:depth - 1) (:size / 2) (-:parity)
right (120 * :parity)
EBforward (:depth - 1) (:size / 2) :parity
left (60 * :parity)
EBforward (:depth - 1) (:size / 2) (-:parity)]

end
to EBbackward "depth "size "parity
if :depth = 0 [forward :size stop] [
EBbackward (:depth - 1) (:size / 2) (-:parity)
right (60 * :parity)
EBbackward (:depth - 1) (:size / 2) :parity
left (120 * :parity)
EBforward (:depth - 1) (:size / 2) (-:parity)
right (60 * :parity)]

end

The iterated function system and the open set condition for this curve are
both illustrated by Fig. 6.5.9(b)(c). So we may conclude that the Eisenstein
boundary has fractal dimension s (both Hausdorff and packing) satisfying
3 (1/2)s = 1, so s = log 3/ log 2. This is > 1, so this boundary is a fractal.
That is, F is a fractile.

Examples for the Reader

Here is another dragon curve (Fig. 6.5.10, Plate 11), known as the terdragon.

Fig. 6.5.9. (a) Decomposition (b)(c) Iterated function system and OSC
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Fig. 6.5.10. Terdragon

make "shrink 1 / sqrt 3
to ter :depth :size
if :depth = 0 [forward :size stop] [
right 30
ter :depth - 1 :size * :shrink
left 120
ter :depth - 1 :size * :shrink
right 120
ter :depth - 1 :size * :shrink
left 30]

end

This is a space-filling curve. (Six copies of the terdragon exactly fit around
a point; Plate 12.) It is not a fractal. But what about its boundary? Is it a
“fractile”?

Exercise 6.5.11. Compute the Hausdorff and packing dimensions for the
boundary of the terdragon.

A variant of the dragon that constructs the McWorter pentigree (p. 24) is
shown in Fig. 6.5.12. Five copies of the limit set fit together to form a certain
“dendrite”. This will be called the pentadendrite. (Fig. 6.5.13).

Exercise 6.5.14. Compute the topological, Hausdorff, and packing dimen-
sions of the pentadendrite.

The set of “fractions” for the number system with base −1 + i and digit
set {0, 1} is the twindragon (Fig. 1.6.8).

Exercise 6.5.15. Compute the Hausdorff and packing dimensions of the
boundary of the twindragon.
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Fig. 6.5.12. Pentadendrite construction

Fig. 6.5.13. Complete pentadendrite

Exercise 6.5.16. Compute the Hausdorff and packing dimensions for the
limit of the sets constructed by the following program (p. 116). Warning:
it is not self-similar.

to Schmidt :depth :size
if :depth = 0 [stop] [
repeat 3 [

forward :size
Schmidt :depth - 1 :size / 2
right 120] ]

end

Another example of the same kind is the “I” fractal, p. 135.
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Fig. 6.5.17. Leaf outline; leaf lake

Barnsley Leaf Outline

Recall Barnsley’s leaf B (p. 26). Because of the overlap among the parts of
the iterated function system, the open set condition fails, so the methods of
this section cannot compute its dimension (as far as I know). Discussion of
overlap is in Sect. 7.1. But there are some related dimensions that can be done
now. When all of the surrounded areas of B are filled in, we get a solid leaf
with fractal boundary. Call that boundary the “leaf outline” J . Or consider
one of the small regions surrounded by the leaf: call that a “leaf lake” K.

We will do a “deconstruction” of the leaf in Sect. 7.1 and conclude that
there is a set H so that B consists of 8 copies of H (and its reflection H ′)
arranged as shown in Fig. 6.5.18: four copies of the tile H on the right, and
four copies of the reflected tile H ′ on the left.

Accordingly, the outline J is made up of 8 copies of the “upper left” edge of
H (when oriented as shown). Tile H is deconstructed as in Fig. 6.5.19(a); the
portion in the lower right is irrelevant for us now. Thus the segment of the leaf
outline obeys an iterated function system also represented by 6.5.19(a). The
picture also provides a Moran open set. The ratio list is (2−1, 2−3/2, 2−3/2).
The fractal dimension is −2 log r/ log 2 ≈ 1.21076, where r ≈ 0.657298 is a
solution of the cubic r2 + 2r3 = 1.

6.6 Graph Self-Similarity

Next we consider evaluation of the Hausdorff dimension connected with graph
self-similar sets.

Fig. 6.5.18. Deconstruction of Barnsley’s leaf
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Fig. 6.5.19. (a) Decomposition of H (b) Self-similarity of the segment

The Two-Part Dust

We begin with a simple example, the two-part dust. It has been “rigged”
so that the calculation of the dimension is easier than the general case. The
Mauldin–Williams graph is as illustrated in Fig. 6.6.1. Here is a description of
the realization in R

2 that will be considered. The map a has ratio 1/2, fixed
point (0, 0), and rotation 30 degrees counterclockwise. The map b has ratio
1/4, fixed point (1, 0), and rotation 60 degrees clockwise. The map c has ratio
1/2, fixed point (0, 0), and rotation 90 degrees counterclockwise. The map d
has ratio 3/4, fixed point (1, 0), and rotation 120 degrees clockwise.

As we know, there is a unique pair of nonempty compact sets U, V ⊆ R
2

satisfying

U = a[U ] ∪ b[V ]
V = c[U ] ∪ d[V ].

This pair of sets is the two-part dust. A sequence of approximations is pic-
tured in Fig. 6.6.2. They converge in the Hausdorff metric. We may start with
any two nonempty compact sets U0 and V0 in R

2. In this case, both have
been chosen as the line segment from the point (0, 0) to the point (1, 0). Then
further approximations are defined recursively:

Un+1 = a[Un] ∪ b[Vn],
Vn+1 = c[Un] ∪ d[Vn].

The sequence (Un) converges in the Hausdorff metric to a nonempty compact
set U , and the sequence (Vn) converges in the Hausdorff metric to a nonempty
compact set V . This pair of sets is the required invariant list.

Here is the Logo program for the pictures.

; two-part dust
to U :depth :size

Fig. 6.6.1. Graph for the two-part dust
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Fig. 6.6.2. Two-part dust

if :depth = 0 [forward :size stop] [
left 30
U :depth - 1 :size / 2
penup

back :size / 2
right 30
forward :size
right 60
back :size / 4

pendown
V :depth - 1 :size / 4 left 60]

end
to V :depth :size
if :depth=0 [forward :size stop] [
left 90
U :depth - 1 :size / 2
penup

back :size / 2
right 90
forward :size
right 120
back :size * 0.75

pendown
V :depth - 1 :size * 0.75
left 120]

end

We are interested in computing the Hausdorff (and packing) dimensions
of the sets U and V . Since each of the sets is similar to a subset of the other,
their dimensions must be the same. As usual, we begin by computing the
dimension of the path models corresponding to the Mauldin–Williams graph.
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We will need to use the Perron numbers of the graph. In this case,
the Perron numbers (one for each node) are qU = 1/3 and qV = 2/3. The
important facts about these numbers are: they are positive and they satisfy
equations

qU = r(a)qU + r(b)qV,
qV = r(c)qU + r(d)qV.

(1)

By Proposition 4.3.16, the graph has∗ sim-value 1. I want to show that U
and V have Hausdorff dimension 1. We will use the Perron numbers to assign
diameters to the nodes of the path forest. Two ultrametrics �, one on each of
the two path spaces E

(ω)
U , E

(ω)
V , will be defined so that the diameters of the

basic open sets [α] are as follows: Begin with diam[ΛU] = qU and diam[ΛV] =
qV. If α is a path and e is an edge with t(e) = i(α), then the diameter for the
string eα is diam([eα]) = r(e) diam([α]).

Next, we will use the same numbers to define measures.
There is a metric measure M on each of the path spaces E

(ω)
v such that

M([α]) = diam([α]) for all finite paths α. The additivity condition (Exer-
cise 5.5.5) is true by equations (1). Of course we can repeat the steps from
Lemma 6.4.1 and Exercise 6.4.2 to conclude that the path spaces E

(ω)
U , E

(ω)
V

both have Hausdorff and packing dimension 1. (Therefore, we say that U and
V have [graph] similarity dimension 1.)

But we are more interested in the Hausdorff and packing dimensions of U
and V . We will need an “open set condition”. A little experimentation with a
graphics program reveals that this may be satisfied by the two sets pictured
in Fig. 6.6.3. The two sets are a rectangle and an irregular hexagon. (The
images of these sets under the maps are appropriately disjoint and contained
in the appropriate sets.) The dimension is now easy to check.

Exercise 6.6.4. Let U and V be the two parts of the two part dust. Show
that the addressing functions

hU : E
(ω)
U → R

2

hV : E
(ω)
V → R

2

are lipeomorphisms.

Fig. 6.6.3. Open set condition

∗ Solution to Exercise 4.3.14.
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As consequences of this we have dim U = Dim U = dimE
(ω)
U = 1 and

dim V = Dim V = dim E
(ω)
V = 1.

Perron Numbers

To compute the Hausdorff dimension for the other examples with graph self-
similarity, we need only find the proper sort of “Perron numbers” in those
cases. (It will not be quite as simple as the rigged example above if the di-
mension is not 1.)

Consider a Mauldin-Williams graph (V,E, i, t, r). We will consider only
the case when the graph is strongly connected (p. 80). This will mean that
when the invariant set list is found, each of the sets will be similar to a subset
of each of the others. So they will all have the same fractal dimension.

We are interested in assigning metrics to the spaces E
(ω)
v of strings. (There

is one space for each tree in the path forest.) The realization consists, as usual,
of the right shifts. For an edge e ∈ Euv, the function θe defined by

θe(σ) = eσ

maps E
(ω)
v to E

(ω)
u . The metrics should be chosen in such a way that θe is a

similarity with ratio r(e). We are also interested in defining measures (one for
each space E

(ω)
v ) that will make the computation of the Hausdorff dimension

easy.
In order to do this, we need the proper Perron numbers. If s is a positive

real number, then s-dimensional Perron numbers for the graph are positive
numbers qv, one for each vertex v ∈ V , such that

qs
u =

∑

v∈V
e∈Euv

r(e)s qs
v

for all u ∈ V .
There is exactly one positive number s such that s-dimensional Perron

numbers exist. This unique number s will be called the sim-value of the
Mauldin-Williams graph. The existence and uniqueness of the sim-value were
proved for the case of a 2 node graph in Sect 4.3. For the general graph, the
proof requires some linear algebra. See Theorem 6.9.5.

We can proceed even without the proof of this result: if we can find Perron
numbers, then we will be able to do the computations. When the set V of nodes
is small, finding Perron numbers can often be done by trial and error.

Fractal Dimension

Now that all of the ingredients have been specified, we may proceed to analyze
the Hausdorff and packing dimensions in this case. Suppose that (V,E, i, t, r)
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is a strongly connected, contracting Mauldin-Williams graph. Let s > 0 be
such that s-dimensional Perron numbers qv exist. We will suppose that the
graph is strictly contracting so that r(e) < 1 for all e. We will compute the
dimension for the path model. There is one path space E

(ω)
v for each node

v ∈ V .
First we need metrics for the path spaces. We want the right shifts to

realize similarities with the ratios assigned by the Mauldin-Williams graph.
For each finite path α, let r(α) be the product of the numbers r(e), for all the
edges e in α. For α ∈ E

(∗)
uv , we want the diameter of [α] to be r(α)qv.

Ultrametrics � exist with these diameters. (One for each space E
(∗)
v .) They

satisfy
�(eσ, eτ) = r(e) �(σ, τ)

for σ, τ ∈ E
(∗)
v and e ∈ Euv.

Next we want to define measures on the path spaces. (The measures will
all be called M.) Because of the equations satisfied by the Perron numbers, we
see that the values (diam[α])s satisfy the additivity condition (Theorem 5.5.4),
namely

(diam[α])s =
∑

i(e)=t(α)

(diam[αe])s.

So there exists a metric measure on each of the spaces E
(ω)
v satisfying M([α]) =

(diam[α])s for all α ∈ E
(∗)
v .

We can easily find an upper bound for the packing dimension. This is done
in much the same way as has been done in previous cases. By Lemma 6.4.1,
there is a positve constant c such that Ps(E(ω)

v ) = cM(E(ω)
v ) = cqs

v. And by
Exercise 6.4.2, Hs(E(ω)

v ) = M(E(ω)
v ) = qs

v. But 0 < qs
v < ∞, so dim E

(ω)
v =

Dim E
(ω)
v = s.

Once we know the Hausdorff and packing dimensions of the path spaces,
we can try to apply it to the sets in R

d that we are really interested in. Let
(fe)e∈E be an iterated function system realizing the Mauldin-Williams graph
(V,E, i, t, r) in R

d. Let (Kv)v∈V be the unique invariant list of nonempty
compact sets. As usual, we may construct the addressing functions

hv : E(ω)
v → R

d,

one for each v ∈ V , such that

hu(eσ) = fe(hv(σ)),

for σ ∈ E
(∗)
v and e ∈ Euv. Then hv[E(ω)

v ] = Kv for v ∈ V . These
are Lipschitz maps, so the upper bound for the fractal dimensions is easy:
dim Kv ≤ Dim Kv ≤ Dim E

(ω)
v = s.
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6.7 Graph Open Set Condition

For the lower bound, we need to limit the overlap. We will use an open set
condition.

Definition 6.7.1. If (fe) is a realization of (V,E, i, t, r) in R
d, then we say it

satisfies the open set condition iff there exist nonempty open sets Uv, one
for each v ∈ V , with

Uu ⊇ fe[Uv]
for all u, v ∈ V and e ∈ Euv; and

fe[Uv] ∩ fe′ [Uv′ ] = ∅

for all u, v, v′ ∈ V , e ∈ Euv, e′ ∈ Euv′ with e �= e′.

Now the argument proceeds as before. Fix a node v ∈ V . I want to show
that dim Kv ≥ s. As before, if α is a finite (nonempty) string, write α− for its
parent. Also, we will use the notation e(x) for fe(x), and similarly for strings:
α(x).

First, I claim that there is a constant c > 0 such that: if A ⊆ Kv, then the
set

T =
{

α ∈ E(∗)
v : α[Ut(α)] ∩ A �= ∅,

diam α[Ut(α)] < diam A ≤ diam α−[Ut(α−)]
}

has at most c elements.
Writing

wmax = max
u∈V

diam Uu, wmin = min
u∈V

diam Uu, rmin = min
e∈E

re,

we have for α ∈ T :

diam α[Ut(α)] = r(α) diam Ut(α) ≥ wminrmin r(α−)

≥ wminrmin

wmax
diam α−[Ut(α−)] ≥

wminrmin

wmax
diam A.

Now if p = minu∈V Ld(Uu), we have the volume calculation

Ld(α[Ut(α)]) ≥ p

(
diam α[Ut(α)]
diam Ut(α)

)d

≥ p
(wminrmin

w∗2

)d

(diam A)d.

Now if x ∈ A, then every point of every set α[Ut(α)] for α ∈ T is within
distance diam A + diam α[Ut(α)] < 2 diam A of x. The sets α[Ut(α)] are dis-
joint, so if T has m elements, then there are m disjoint sets, with volume
at least p(wminrmin/w∗2)d(diam A)d inside a ball with radius 2 diamA. If
t = Ld

(
B1(0)

)
, we have

mp
(wminrmin

w∗2

)d

(diam A)d ≤ t(2 diam A)d.
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Solving for m, we get

m ≤ t

p

(
2w∗2

wminrmin

)d

.

Next, I claim that there is a constant b > 0 so that for any Borel set
A ⊆ Kv, we have

M
(
h−1

v [A]
)
≤ b(diam A)s.

Given A, let T be as before. Write q = maxu∈V qu. Then h−1
v [A] ⊆

⋃
α∈T [α].

If α ∈ T , then

M
(
[α]
)
≤ r(α)s qs ≤ qs

(
diam α[Ut(α)]

wmin

)s

≤ qs(diam A)s

ws
min

.

Therefore
M
(
h−1

v [A]
)
≤
∑

α∈T

M
(
[α]
)
≤ cqs

ws
min

(diam A)s.

Then we conclude from the Method I theorem that M(h−1
v [A]) ≤ bHs(A) for

all Borel sets A. In particular,

Hs(Kv) ≥ M(h−1
v [Kv])
b

=
M
(
E

(ω)
v

)

b
=

qs
v

b
> 0.

Therefore dim Kv ≥ s. And of course DimKv ≥ dim Kv.
We have established the result:

Theorem 6.7.2. Let (V,E, i, t, r) be a strongly connected contracting Maul-
din-Williams graph describing the graph self-similarity of a list (Kv)v∈V of
nonempty compact sets in R

d. Let s > 0 be such that s-dimensional Perron
numbers exist. Then dim Kv ≤ Dim Kv ≤ s for all v. If, in addition, the
realization satisfies the open set condition, then dim Kv = Dim Kv = s.

Exercise 6.7.3. Let (V,E, i, t, r) be a strongly connected contracting Maul-
din-Williams graph. Let (fe)e∈E be a family of maps on R

d satisfying

�(fe(x), fe(y)) ≤ r(e)�(x, y).

Formulate the proper analog of Theorem 6.7.2.

Exercise 6.7.4. Let (V,E, i, t, r) be a Mauldin-Williams graph. Let (fe)e∈E

be a family of maps on R
d satisfying �(fe(x), fe(y)) ≥ r(e)�(x, y). Formulate

the proper analog of Theorem 6.7.2.

Exercise 6.7.5. Discuss Hausdorff dimension for graph self-similar sets with
Mauldin-Williams graph not strongly connected.
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Li Lake

The graph self-similar set called Li’s Lace is seen on p. 84. Its description is
on p. 126 shows it is is made up of isosceles right trianglar blocks of two kinds,
called P and Q. An open space completely surrounded by the fractal is called
a lake. The boundary of one lake is shown in Fig. 6.7.6(b). This boundary can
also be described in the language of graph self-similarity. Fig. 6.7.7 identifies
two boundary parts A and B in tile P . The lake boundary is made up of eight
parts A.

Fig. 6.7.6. (a) Two tiles P (b) Lake boundary

Fig. 6.7.7. (a) Parts A and B (b) Four parts A = half of boundary



208 6 Fractal Dimension

Exercise 6.7.8. The parts A and B may be described using the descriptions
of P and Q from Fig. 4.3.3. Set A is made up of two copies of A shrunk by
factor 1/4 and one copy of B shrunk by factor 1/4. Set B is made up of four
copies of A shrunk by factor 1/2 and one copy of B shrunk by factor 1/2.
Compute the corresponding sim-value for sets A and B. Verify the OSC to
conclude this is the Hausdorff and packing dimension for the lake boundary.

Pentigree Outline

Recall the construction on p. 25 of the second form of McWorter’s pentigree.
The pentigree outline is what we get if we fill in all the “lakes”, and take
the boundary of the result (Fig. 6.7.9, see also p. XIII).

Here is the program used to draw Fig. 6.7.9.

; pentigree outline
make "shrink (3 + sqrt 5)/2
to pent :depth :size

repeat 5 [A :depth :size]
end
to A :depth :size
if :depth = 0 [forward :size right 72 stop] [
B :depth - 1 :size / :shrink
A :depth - 1 :size / :shrink
A :depth - 1 :size / :shrink
BR :depth - 1 :size / :shrink]

end
to B :depth :size
if :depth = 0 [forward :size left 36 stop] [
C :depth - 1 :size / :shrink
A :depth - 1 :size / :shrink
BR :depth - 1 :size / :shrink]

end
to BR :depth :size

Fig. 6.7.9. Pentigree outline
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if :depth = 0 [forward :size left 36 stop] [
B :depth - 1 :size / :shrink
A :depth - 1 :size / :shrink
C :depth - 1 :size / :shrink]

end
to C :depth :size
if :depth = 0 [forward :size left 72 stop] [
B :depth - 1 :size / :shrink
BR :depth - 1 :size / :shrink]

end

Exercise 6.7.10. Does this really converge to the outline of McWorter’s
pentigree?

Exercise 6.7.11. Determine the Mauldin-Williams graph describing the self-
similarity of curve A.

Exercise 6.7.12. Compute the Hausdorff dimension of the pentigree outline.

Number Systems

Let b be a complex number, |b| > 1, and let D be a finite set of complex num-
bers, including 0. We are interested in the numbers that can be represented
in the form ∞∑

j=1

ajb
−j .

In some cases, the set of representations may be restricted to allow only certain
combinations of digits. Consider b = 3 and D = {0, 1, 2}. Let F be the set of
all numbers x of the form

x =
∞∑

j=1

ajb
−j ,

where each aj is in the set D, and such that aj + aj+1 ≤ 2 for all j. This set
is graph self-similar.

Let F (d1) be the set of numbers where the representation has a1 = d1.
Let F (d1, d2) be those numbers where the representation has a1 = d1 and
a2 = d2. Then F = F (0) ∪ F (1) ∪ F (2). The set F (0) is similar to F , with
ratio 1/3. The set F (1) = F (1, 0) ∪ F (1, 1), since F (1, 2) = ∅. But F (1, 0)
is similar to F with ratio 1/9 and F (1, 1) is similar to F (1) with ratio 1/3.
Finally, F (2) = F (2, 0) is similar to F with ratio 1/9. The graph is shown in
Fig. 6.7.13.

Exercise 6.7.14. Compute the Hausdorff dimension of the set F .
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Fig. 6.7.13. Graph

Exercise 6.7.15. Let b = (1 +
√

5 )/2 and D = {0, 1}. Let F be the set of
numbers of the form ∞∑

j=1

ajb
−j ,

where each aj ∈ D, and two consecutive digits 1 are not allowed. Describe the
set F .

Topological Dimension

The addressing function, or model map, which has been developed here for
the purpose of computing the fractal dimension of a [graph] self-similar set,
can also sometimes be used for the topological dimension as well. The address-
ing functions hv : E

(ω)
v → K are continuous and surjective. The spaces E

(ω)
v

are compact. When the overlap is small, the characterization of topological
dimension of Theorem 3.4.19 is often applicable. Let us do some examples.

The addressing function for the Cantor dust is one-to-one. Therefore the
Cantor dust is zero-dimensional.

The addressing function for the Sierpiński gasket maps at most 2 strings
to each point. Therefore the Sierpiński gasket has small inductive dimension
≤ 1. It contains line segments, so it has dimension exactly 1.

Exercise 6.7.16. Show that McWorter’s pentigree has small inductive di-
mension 1.

If you have not solved Exercise 1.6.5 yet, you can now do so painlessly.
Theorem 3.4.19 yields only an inequality. The addressing function for the

Menger sponge (using the construction suggested in Fig. 4.1.9) is 4-to-1 at
some points, so we obtain the uninteresting result that the topological dimen-
sion is ≤ 3. In fact, the topological dimension is 1. Is there another way to
produce the Menger sponge as a self-similar set such that the model map is
only at most 2-to-one?

6.8 *Other Fractal Dimensions

According to Mandelbrot, a fractal is a set S with dim S > Cov S. We will
consider (for the moment) only nonempty compact sets in Euclidean space.
∗ Optional section.
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Mandelbrot expressed dissatisfaction with the definition for two reasons: (1)
“borderline fractals” are excluded; and (2) “true geometric chaos” is included.

Borderline Fractal

What might be meant by a “borderline fractal”? This will be a set K with
the usual features of fractals that we have seen often, but where dimK =
Cov K anyway. To illustrate this, we will consider a curve, with a dragon-
like construction. We begin with a sequence of positive numbers wk, with
w0 = 1, wk > wk+1 > wk/2, and limk→∞ wk = 0. The first set is a line
segment P0 with length w0 = 1. If the polygon Pk has been constructed,
consisting of many line segments of length wk, then to construct Pk+1, we
replace each of those line segments by two segments of length wk+1. (It is
possible to do this, and still have a polygon, since wk+1 > wk/2.) If wk → 0
fast enough, we can avoid having the curve cross itself (even in the limit) by
alternating between sides of the curve, as shown in the illustration. Then the
limit will be homeomorphic to an interval, and therefore have small inductive
dimension 1.

If we choose wk that satisfy ws
k = 1/2k, for some s > 1, then this is a self-

similar dragon curve that we have seen before. In the binary tree, if α is a finite
string of length k, then when we use the metric and measure appropriate for
the tree, we have diam[α] = wk and M([α]) = 1/2k = (diam[α])s. The usual
calculation shows that the Hausdorff dimension for the curve will be s.

But suppose we have wk that satisfy

wk

log(1/wk)
=

1
2k

.

This means that wk goes to zero more rapidly than (1/2k)1/s for any s > 1,
but more slowly than 1/2k itself.

Exercise 6.8.2. When

Fig. 6.8.1. Borderline dragon
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wk

log(1/wk)
=

1
2k

,

the topological, Hausdorff, and packing dimensions are all 1.

Why would we call this a “borderline fractal”?

Box Dimensions

We will next discuss some other fractal dimensions known as box dimensions.
We will begin with R

2 for simplicity. But first consider a variant of the Haus-
dorff dimension.

If r > 0, then the square net of side r consists of all squares of the form

A =
[
(m − 1)r,mr

)
×
[
(n − 1)r, nr

)
,

where m,n ∈ Z. Write Sr for this set of squares. So the plane R
2 is the disjoint

union of this countable collection of squares. Write S =
⋃

r>0 Sr.
For s > 0, consider the method II outer measure M

s
defined using the set

function c : S → [0,∞) defined by: c(A) = rs if A ∈ Sr. Now any set B ⊆ R
2

of diameter r is contained in the union of at most 4 sets of Sr. On the other
hand, a square with side r has diameter

√
2 r. This means that

2−s/2 H
s
(F ) ≤ M

s
(F ) ≤ 4H

s
(F ).

Therefore s0 = dimF is the critical value for which

M
s
(F ) = ∞ for all s < s0;

M
s
(F ) = 0 for all s > s0.

Some calculations involving the Hausdorff dimension are simplified by using
this alternative to the definition (for example [23, Chapt. 5]).

Now we discuss another variant. Fix a number r > 0, and cover only by
sets of Sr; then let r → 0. It should be emphasized that this is not method
II. Now if A ⊆ Sr covers a set F , then

∑
A∈A rs is just Nrs, where N is the

number of elements of A. So the definition may be phrased as follows. Let
Nr(F ) be the number of sets of the square net Sr that intersect F . Define

K̃s
r(F ) = Nr(F ) rs,

K̃s(F ) = lim inf
r→0

K̃s
r(F ).

As usual there is a critical value for s.

Exercise 6.8.3. Let

s0 = lim inf
r→0

log Nr(F )
log(1/r)

.
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Then

K̃s(F ) = ∞ for all s < s0;

K̃s(F ) = 0 for all s > s0.

The critical value s0 will be called the lower box dimension or lower
box-counting dimension or lower entropy index of F . We will write
dimB F . The set functions K̃s have the same shortcoming as P̃s:

Exercise 6.8.4. There is a countable compact set K with positive lower box
dimension.

Because of this undesirable property, we can apply Method I to K̃s to
get a metric outer measure. Or we can modify the dimension directly. The
modified lower box dimension is

dimMB F = inf sup
i

dimB Fi

where the infimum is over all countable covers F ⊆
⋃

i∈N
Fi of F .

A variant is obtained by replacing lim inf with lim sup. The set functions
are then

lim sup
r→0

K̃s
r(F ).

The critical value for s, called the the upper box dimension,∗ is given by

dimB F = lim sup
r→0

log Nr(F )
log(1/r)

.

Again the set function is not an outer measure, and dimB is not countably
stable, so define the modified upper box dimension by

dimMB F = inf sup
i

dimB Fi

where the infimum is over all countable covers F ⊆
⋃

i∈N
Fi of F .

Exercise 6.8.5. Let F ⊆ R
2. Then

dim F ≤ dimB F ≤ dimB F ≤ packing index of F,

dim F ≤ dimMB F ≤ dimMB F ≤ Dim F.

So if F is a fractal in the sense of Taylor, these four fractal dimensions all
coincide. (In fact, we will see below that dimMB F = Dim F .)

Exercise 6.8.6. Define the set functions K̃s and K
s

in the space R
d. Prove

analogs of Exercise 6.8.5.
∗ Barnsley [3] uses the term “fractal dimension” for this value.
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Boxes do not make sense in a general metric space, but a box dimension
can be defined there anyway. Let S be a metric space, let F ⊆ S, and let r > 0.
Define Ṅr(F ) to be the maximum number of disjoint closed balls with radius
r and center in F . (Actually, instead of “disjoint” we can take the sense used
for the packing measure: the centers xi satisfy �(xi, xj) > 2r for all i �= j.)

Proposition 6.8.7. Let F ⊆ R
2. Then

lim inf
r→0

log Nr(F )
log(1/r)

= lim inf
r→0

log Ṅr(F )
log(1/r)

lim sup
r→0

log Nr(F )
log(1/r)

= lim sup
r→0

log Ṅr(F )
log(1/r)

Proof. Let δ > 0. There are Ṅδ(F ) disjoint balls with radius δ and center in
F . No two of those centers have distance ≤ 2δ, so no two of those centers are
in the same square of Sδ

√
2. So Ṅδ(F ) ≤ Nδ

√
2(F ).

Let r > 0. In each square of Sr that meets F , choose one point of F , and
use it as the center of a closed ball of radius r/4. Any such ball intersects at
most 4 squares of Sr, and Nr(F ) ≤ 4Ṅr/4(E).

Therefore, for any r > 0 we have

log Nr(F )
log(1/r)

≤
log(4Ṅr/4(F ))
log((1/4)(4/r))

=
log Ṅr/4(F ) + log 4

log(4/r) − log 4

log Nr(F )
log(1/r)

≥
log Ṅr/

√
2(F )

log((1/
√

2)(
√

2/r))
=

log Ṅr/
√

2(F )

log(
√

2/r) − log
√

2
.

But as r → 0, we have log(1/r) → ∞, so we get the lim sup and lim inf results
claimed. 
�

In a metric space S, define the upper and lower box dimension using Ṅ
in place of N . Then define the upper and lower modified box dimensions as
before. It doesn’t have “boxes” in the defintion any more. Sometimes dimB

or dimB may be called Bouligand dimension or Minkowski dimension
instead.

Proposition 6.8.8. Let S be a metric space and F ⊆ S. Then dimMB F =
Dim F .

Proof. First we claim: Dim F ≤ dimB F . Let t < s < Dim F . Then P
s
(F ) =

∞, so P̃s
0(F ) = ∞ and P̃s

δ(F ) = ∞ for all δ > 0. Now let δ be given with
0 < δ < 1. Then there is a δ-fine packing Π of F with

∑
(x,r)∈Π rs > 1. For

k ∈ N, let nk be the number of (x, r) ∈ Π with 2−k−1 < r ≤ 2−k. Then there
is some k with nk > 2kt(1 − 2t−2), since if not we would have

1 <
∑

(x,r)∈Π

rs ≤
∞∑

k=0

nk2−ks ≤ (1 − 2t−s)
∞∑

k=0

2k(t−s) = 1.
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For that k, we get nk disjoint balls centered in F with radius 2−k−1, so

Ṅ2−k−1(F ) ≥ nk > 2kt(1 − 2t−2),

log Ṅ2−k−1(F )
log(2k+1)

≥ kt log 2 + log(1 − 2t−s)
(k + 1) log 2

.

Now the right-hand side goes to t as k → ∞, and for any δ there is k as given
with 2−k < δ, so we conclude that dimB F ≥ t. But t was any value < Dim F ,
so in fact dimB F ≥ Dim F .

Next we claim Dim F ≤ dimMB F . Let F ⊆
⋃

i Fi be a countable cover of
F . Then

Dim F ≤ sup
i

Dim Fi ≤ sup
i

dimB Fi.

Take the infimum over all such covers to get Dim F ≤ dimMB F .
And finally we claim dimMB F ≤ Dim F . Let s > Dim F . Then P

s
(F ) = 0,

so there is a countable cover F ⊆
⋃

Fi with
∑

i P̃s
0(Fi) < ∞ for all i. Fix an

i. There is δ > 0 with P̃s
δ(Fi) < ∞. Then since Ṅδ(Fi)δs ≤ P̃s

δ(Fi), it remains
bounded as δ → 0, so dimB Fi ≤ s. This is true for all i, so supi dimB Fi ≤ s.
Take the infimum on all covers to get dimMB F ≤ s. This is true for all
s > Dim F , so dimMB F ≤ Dim F . 
�

Lipschitz Condition of Order p

Let S, T be metric spaces, and let p > 0. We say that a function f : S → T
satisfies a Lipschitz condition of order p if there is a constant M so that
for all x, y ∈ S,

�
(
f(x), f(y)

)
≤ M�(x, y)p. (1)

We may say f ∈ Lip(p). This is also called a Hölder condition of order p.

Proposition 6.8.9. Let f : S → T , f ∈ Lip(p). Then (a) p dim f [S] ≤ dim S
and (b) p Dim f [S] ≤ Dim S.

Proof. Let M satisfy (1). (a) If A ⊆ S, then diam f [A] ≤ M (diam A)p. Let
δ > 0, s > 0, and let {An} be a cover of S by sets of diameter ≤ δ. Then
{f [An]} is a cover of f [S] by sets of diameter ≤ Mδp. So

H
s

Mδp

(
f [S]

)
≤
∑

n∈N

(
diam f [An]

)s ≤ Ms
∑

n∈N

(
diam An

)ps
.

Taking the infimum over all δ-covers, we get

H
s

Mδp

(
f [S]

)
≤ MsH

ps

δ (S).

Taking the limit as δ → 0, we get

H
s(

f [S]
)
≤ MsH

ps
(S).
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If s > (1/p) dim S, then H
ps

(S) = 0 so H
s
(f [S]) = 0, which means s ≥

dim f [S]. Therefore dim f [S] ≤ (1/p) dim S as required.
(b) Let δ > 0. Define δ′ = Mδp. Then δ′ → 0 as δ → 0. Also, log(2/δ′) =

p log(2/δ) + C for a certain constant C. Now let E ⊆ S. If u1, · · · , uN ∈ f [E]
have �(ui, uj) ≥ δ′ for all i �= j, then there exist xi ∈ E with f(xi) = ui and
�(xi, xj) ≥ δ for all i �= j. Therefore

Ṅδ/2(E) ≥ Ṅδ′/2

(
f [E]

)
,

and thus dimB E ≥ p dimB f [E].
Let S =

⋃
i Ei be a countable cover. Then

sup
i

dimB Ei ≥ p sup
i

dimB f [Ei] ≥ p dimMB f [S].

Take the infimum over all covers to get dimMB S ≥ p dimMB f [S]. And by
Prop. 6.8.8, dimMB = Dim. 
�

Theorem 6.8.10. Let 0 < p ≤ 1. Suppose f : [a, b] → R satisfies a Lipschitz
condition of order p. Then the graph

G =
{ (

x, f(x)
)

: x ∈ [a, b]
}

satisfies dim G ≤ 2 − p.

Proof. We may assume that [a, b] = [0, 1]. Divide [0, 1] into n sub-intervals of
length 1/n. On each of these intervals f can vary by no more than M(1/n)p.
Thus, the part of the graph over one of the sub-intervals can be covered by
no more than Mn1−p + 1 squares of side 1/n. Thus

H
s√

2/n(G) ≤ n(Mn1−p + 1)

(√
2

n

)s

= M2s/2n2−p−s + 2s/2n1−s.

If s = 2 − p, then this shows Hs(G) ≤ M2(2−p)/2 + 2(2−p)/2, so dim G ≤ s =
2 − p. 
�

Besicovitch and Ursell [5, part V] gave examples of functions satisfying a
Lipschitz condition of order p (and no better) where dimG = 2− p and other
examples where dim G < 2 − p.

6.9 *Remarks

Felix Hausdorff [32] formulated the concepts that we call today the Hausdorff
measures and the Hausdorff dimension. Almost all of the early work on the
subject was done by A. S. Besicovitch [5]. Mandelbrot therefore uses the term
“Hausdorff–Besicovitch dimension”.
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In fact, Hausdorff proposed a much more general class of measures than
the ones discussed here. For example, he proposed using functions of the di-
ameter other than a power: for example, the function h(x) = xs

(
1/ log(1/x)

)t

corresponds to the construction in 6.8.2 when s = t = 1. He also proposed
using characteristics of the covering sets other than the diameter. The seminal
paper [32] is required reading for the aspiring expert on fractals. Computation
of the Hausdorff dimension using self-similarity appears even in Hausdorff’s
paper. It was carefully worked out by P. A. P. Moran [51] for subsets of R,
and by John Hutchinson [36] for subsets of R

d. The open set condition is used
in both of these papers.

The similarity dimension agrees with the Hausdorff and packing dimen-
sions also for iterated function systems in (complete separable) metric spaces
other than Euclidean space. But the open set condition must—in general
[59]—be replaced by a strong open set condition. In addition to the prop-
erties listed on p. 149, the closure U of the open set U must intersect the
attractor K.

The packing measure was introduced by Claude Tricot (but see [34, Exer-
cise (10.51), p. 145]), and advocated by Taylor & Tricot [61], Saint Raymond
& Tricot [60], and Taylor [62]. Fractal dimensions in addition to those defined
here can be found in [44, p. 357ff ] and [45].

The generalization of self-similarity that we have called “graph self-
similarity” has a complicated history. The version that is used here is based
on the work of R. Daniel Mauldin and S. C. Williams [48]. The “two-part
dust” was invented explicitly to illustrate the computation of the Hausdorff
dimension for graph self-similar sets.

The pentadendrite was shown to me by my colleague W. A. McWorter.
The terdragon comes from Chandler Davis and Donald Knuth [13].

Topological vs. Hausdorff Dimension

In Theorem 6.3.11, Cov S ≤ dim S was proved only for some spaces S, such
as compact spaces. In fact, it is true for any metric space S. A complete proof
is in [18, Sect. 3.1]. As noted, that proof used Lebesgue integration. Recently,
a proof without integration was published by M. G. Charalambous [9]. The
covering dimension of a space S is a topological property of the space. That
is, if S is homeomorphic to T , then Cov S = Cov T . The Hausdorff dimension
is not a topological property. The spaces (E(ω), �r), where E = {0, 1} is a two-
letter alphabet, are all homeomorphic, but the Hausdorff dimension varies as r
varies. We know that Cov S ≤ dim S. In fact, Cov S is the largest topologically
invariant lower bound for dimS:

Theorem 6.9.1. Let S be a separable metric space. Then

Cov S = inf {dim T : T is homeomorphic to S } .

I will prove here only the simplest case:
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Proposition 6.9.2. Let S be a separable zero-dimensional metric space. Then

0 = inf {dim T : T is homeomorphic to S } .

Proof. First, S is homeomorphic to a subset T of the string space {0, 1}(ω), by
Theorem 3.4.4. With metric �r, the space {0, 1}(ω) has Hausdorff dimension
log 2/ log(1/r). But limr→0 log 2/ log(1/r) = 0. 
�

The general case may be proved in a similar way [35, Theorem VII 5].
For example, the Menger sponge is a universal 1-dimensional space, so met-
ric spaces homeomorphic to the Menger sponge, but with Hausdorff dimen-
sion close to 1 should be exhibited. The approximation shown in Fig. 6.9.3
suggests the idea. It is self-affine, rather than self-similar, so our meth-
ods of computation will not evaluate its Hausdorff dimension, however.

Two-Dimensional Lebesgue Measure Compared
to Two-Dimensional Hausdorff Measure

According to Theorem 6.3.6 there is a positive constant c such that H2(B) =
cL2(B). We will show here that c = 4/π.

For the lower bound on H2, we need an interesting fact from two-
dimensional geometry: Among all sets with a given diameter, the disk has
the largest area. That is, if A is a set with diameter t, then L2

(A) ≤ πt2/4.∗

The proof requires some knowledge concerning convexity in two dimensions.
First, A has the same diameter as its convex hull, so we may assume that A
is convex. Similarly we may assume that A is closed. Choose any boundary
point of A; let it be the origin of coordinates. A has a support line there,

Fig. 6.9.3. Homeomorph of the Menger Sponge

∗ The corresponding fact for higher dimensions can be proved from Steiner’s sym-
metrization construction. See, for example, [21, p. 107].
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Fig. 6.9.4. Polar Coordinates

let it be the x-axis. Then the set A is given in polar coordinates (r, θ) by
equations

0 ≤ r ≤ R(θ), 0 ≤ θ ≤ π,

for some function R. Now A has diameter t. So the distance between the polar
points (R(θ), θ) and (R(θ + π/2), θ + π/2) is at most t (Fig. 6.9.4). By the
Pythagorean theorem, we may conclude

R(θ)2 + R(θ + π/2)2 ≤ t2.

Then the area may be computed in polar coordinates:

∫ π

0

R(θ)2

2
dθ =

∫ π/2

0

R(θ)2

2
dθ +

∫ π

π/2

R(θ)2

2
dθ

=
∫ π/2

0

R(θ)2 + R(θ + π/2)2

2
dθ

≤
∫ π/2

0

t2

2
dθ =

πt2

4
.

So: a set A ⊆ R
2 with diameter t has area at most πt2/4. Then the

argument given in Theorem 6.3.6, with a = 4/π, will show that (4/π)L2(B) ≤
H2(B) for any Borel set B.

For the upper bound, we use the Vitali covering theorem [23, Theo-
rem 1.10] or [18, Theorem 1.3.7]. Let b = H2(Q), where Q is the open unit
square. Now a disk can be approximated inside and outside by little squares,
so we have (by the argument in the proof of Theorem 6.3.6) H2(B) = bL2(B)
for all disks B. The collection of all closed disks with diameter < ε and con-
tained in the square Q satisfies the hypothesis of the Vitali theorem, so there
is a countable disjoint set {Bi : i ∈ N } of them with L2(Q \

⋃
i∈N

Bi) = 0.
But then, by the inequality H2(B) ≤ bL2(B), we know that H2(Q\

⋃
i∈N

Bi)
is also 0, so H2

ε(Q \
⋃

i∈N
Bi) = 0. Now
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H2
ε

(
⋃

i∈N

Bi

)
≤

∞∑

i=1

(diam Bi)2

=
4
π

∞∑

i=1

π

4
(diam Bi)2

=
4
π

∞∑

i=1

L2(Bi)

=
4
π
L2(Q) =

4
π

.

Therefore b = H2(Q) = H2(
⋃

i∈N
Bi) ≤ 4/π.

So we have exactly H2(B) = (4/π)L2(B) for all Borel sets B.
The same result is true in R

d, namely Hd(B) = cd Ld(B), where cd is the
appropriate constant 1/Ld(B1/2(0)).

The Sim-Value of a Mauldin–Williams Graph

The sim-value of a Mauldin–Williams graph exists and is unique. The proof
of this fact will be given here. It requires some knowledge of linear algebra. In
particular, it requires information from the Perron–Frobenius theorem (stated
below).

Let A be a square matrix. The spectral radius of A is the maximum
of the absolute values of all of the complex eigenvalues of A. We will write
sp radA for the spectral radius of A.

We will use some additional notation: A ≥ 0 means all of the entries of
A are nonnegative, and A > 0 means all of the entries of A are positive;
A ≥ B means A − B ≥ 0, and A > B means A − B > 0. The matrix A ≥ 0
is called reducible iff the rows and columns can be permuted (by the same
permutation) so that A has the form

A =
[
B O
C D

]
,

where B and D are square matrices (with at least one row each), and O is a
rectangular matrix of zeros. If A is not reducible, then it is irreducible. A
column matrix with all entries 0 is 0, and a column matrix with all entries 1
is 1.

Here is (part of) the Perron-Frobenius theorem. See [27, Chap. XIII] for a
proof.

Theorem 6.9.5. Let A ≥ 0 be an irreducible square matrix, and let λ ∈ R.
Then:

(1) If λ = sp radA, then there is a column matrix x > 0 with Ax = λx.
(2) If there is a nonzero column matrix x ≥ 0 with Ax = λx, then λ =

sp radA.
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(3) If there is a nonzero column matrix x ≥ 0 with Ax < λx, then λ >
sp radA.

(4) If there is a nonzero column matrix x ≥ 0 with Ax > λx, then λ <
sp radA.

Now we are in a position to prove that the dimension of a strongly con-
nected, strictly contracting Mauldin-Williams graph exists and is unique.

Theorem 6.9.6. Let (V,E, i, t, r) be a strongly connected, strictly contracting
Mauldin–Williams graph. There is a unique number s ≥ 0 such that positive
numbers qv exist satisfying

qs
u =

∑

v∈V
e∈Euv

r(e)s qs
v

for all u ∈ V .

Proof. We will be using matrices with the rows (and columns) labeled by V .
For each pair u, v ∈ V , and s ≥ 0, let

Auv(s) =
∑

e∈Euv

r(e)s.

Let A(s) be the matrix with entry Auv(s) in row u column v. Let Φ(s) =
sp radA(s) be the spectral radius of the matrix A(s). Now the matrix A(s)
has nonnegative entries. The entry Auv(s) is positive if and only if Euv is
not empty. Since the graph is strongly connected, the matrices A(s) are ir-
reducible. I will prove: (a) s-dimensional Perron numbers exist if and only if
Φ(s) = 1, and (b) the equation Φ(s) = 1 has a unique solution in [0,∞).

First, suppose that s-dimensional Perron numbers exist, so that

qs
u =

∑

v∈V
e∈Euv

r(e)s qs
v

for all u ∈ V . Thus, if the column matrix x has entries qs
v, then x > 0 and

A(s)x = x, so by the Perron-Frobenius theorem, 1 is the spectral radius of
A(s).

Conversely, suppose that 1 = sp radA(s). Then by the Perron-Frobenius
theorem, there is a column matrix x > 0 with A(s)x = x. If we write xv for
the entries of x, then the numbers qv = x

1/s
v will be s-dimensional Perron

numbers.
Next, I claim that the function Φ is continuous. Certainly the entries

Auv(s) of the matrix are continuous functions of s. Fix a number s0. Let
x > 0 be the Perron-Frobenius eigenvector: A(s0)x = Φ(s0)x. Let the entries
of x be xv. Define positive numbers a, b by a = min xv, b = max xv. Suppose
V has n elements, so the matrices are n × n. Let ε > 0 be given. By the
continuity of the entries Auv, there exists δ > 0 so that if |s − s0| < δ, then
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|Auv(s) − Auv(s0)| <
aε

nb

for all u, v. Now we have
∑

v

Auv(s)xv =
∑

v

Auv(s0)xv +
∑

v

(
Auv(s) − Auv(s0)

)
xv

≤ Φ(s0)xu + n
aε

nb
b ≤
(
Φ(s0) + ε

)
xu.

Therefore, by the Perron–Frobenius theorem, Φ(s) = sp radA(s) ≤ Φ(s0) + ε.
Similarly Φ(s) ≥ Φ(s0) − ε. This shows that Φ is continuous.

Since the graph is strongly connected, each row has at least one nonzero
entry. So for each u there is v with Auv(0) ≥ 1. Therefore A(0)1 ≥ 1, so that
Φ(0) ≥ 1. The entries Auv(s) → 0 as s → ∞, so for large enough s, we have
Auv(s) ≤ 1/(2n) for all u, v, so that A(s)1 ≤ (1/2)1, and thus Φ(s) ≤ 1/2.
Now by the intermediate value theorem, there is a solution s to the equation
Φ(s) = 1.

Finally, to prove the uniqueness, we will show that Φ is strictly decreasing.
The derivative of Auv is ≤ 0, and in fact < 0 unless Auv is identically 0. Each
row has at least one nonzero entry, so if s > s0 and x is the Perron-Frobenius
eigenvector for A(s0), we have A(s)x < A(s0)x = Φ(s0)x. So Φ(s) < Φ(s0).
Therefore the function Φ is strictly decreasing. 
�

Exercise 6.9.7. Let (V,E, i, t, r) be a contracting, strongly connected Maul-
din–Williams graph. Are the conclusions of Theorem 6.9.6 still correct?

To compute the dimension of a strictly contracting, strongly connected Maul-
din–Williams graph, we would ordinarily find the numbers s such that 1 is an
eigenvalue of the matrix A(s). If that s is unique, it is the dimension. If not,
then we find for each s the corresponding eigenvector for A(s); only one of
the values s will admit an eigenvector with all entries positive.

Remarks on the Exercises

Exercise 6.1.10: f : S → T is Lipschitz, and A ⊆ S. Say �
(
f(x), f(y)

)
≤

b�(x, y). If D is a countable cover of A by sets with diameter at most ε, then
D′ = { f [D] : D ∈ D } is a countable cover of f [A] by sets with diameter at
most bε. Now ∑

D∈D

(diam f [D])s ≤ bs
∑

D∈D

(diam D)s,

so H
s

bε(f [A]) ≤ bs H
s

ε(A). Therefore dim f [A] ≤ dim A. The case of inverse
Lipschitz is similar.

Exercise 6.3.12: Suppose Cov S ≥ 1. Then S does not have a base for the
open sets consisting of clopen sets. So there is a point a ∈ S and ε > 0 such
that for 0 < r < ε, the ball Br(a) is not clopen. The function h : S → R
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Fig. 6.9.8. All edges have value (3 −
√

5 )/2

defined by h(x) = �(x, a) satisfies |h(x) − h(y)| ≤ �(x, y). Its range includes
the interval (0, ε). So we have dimS ≥ dim h[S] ≥ dim(0, ε) = 1.

For Exercise 6.5.11: The terdragon boundary is made up of two copies
of the 120-degree dragon of Fig. 1.5.8. The open set condition (Plate 13) is
satisfied by an open set the shape of the filled-in fudgeflake (Fig. 1.5.8); it may
be thought of as the union of three terdragons. Exercise 6.7.11. Fig. 6.9.8.

Exercise 6.7.12. 1.22.
Exercise 6.7.5. [48].
Exercise 6.7.14. The graph of Fig. 4.3.13. This is a special case of the

situation considered in [17].

The fractile lines of the sandstone.
—Scribner’s Magazine, April, 1893

(quoted in the Oxford English Dictionary)
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