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Measure Theory

This chapter contains the background from measure theory that is required to
understand the Hausdorff dimension. It is true that the Hausdorff dimension
can be defined in half a page without reference to measure theory, but when
it is done that way there is no indication of the motivation for the definition.

Measure theory will also be indispensable in many of the proofs related
to fractal dimension. It will simplify many of the proofs of lower bounds for
Hausdorff dimension and of upper bounds for packing dimension. Instead of
repeating a combinatorial calculation in each instance, we do the combina-
torics once and for all in this chapter, and then repeatedly reap the benefits
in Chap. 6.

Since measure theory (like metric topology) is a standard part of graduate
mathematics curriculum today, most of the introductory remarks to Chap. 2
are also applicable here.

5.1 Lebesgue Measure

Certain calculations will be done with the symbols ∞ and −∞. They are not
real numbers, but they can be useful in connection with calculations involving
real numbers. Most of the conventions are sensible when you think about them.
Here are some examples:

(1) If a ∈ R, then −∞ < a < ∞.
(2) If a ∈ R, then a + ∞ = ∞ and a − ∞ = −∞. Also ∞ + ∞ = ∞ and

−∞−∞ = −∞. The combination ∞−∞ is not defined.
(3) If a ∈ R is positive, then a × ∞ = ∞ and a × (−∞) = −∞. If a ∈ R

is negative, then a × ∞ = −∞ and a × (−∞) = ∞. The combination
0 ×∞ is not defined. [However, we do understand that an infinite series∑∞

n=1 an, where every term an = 0, has sum 0.]
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The length of one of the intervals

(a, b) (a, b ] [ a, b) [ a, b ]

is b−a, where a, b ∈ R and a < b. The length of the degenerate interval [ a, a ] =
{a} is 0; the length of the empty set ∅ is 0. The length of an unbounded
interval

(a,∞) [ a,∞) (−∞, b) (−∞, b ] (−∞,∞)

is ∞. This follows the conventions on calculation with ∞.
We will be interested in a substantial generalization of the notion of the

“length” of a subset of R. The lemma that makes it possible asserts that the
length of a countable union of intervals cannot exceed the sum of the lengths
of the parts.

Lemma 5.1.1. Suppose the closed interval [c, d] is covered by a countable fam-
ily of open intervals:

[c, d] ⊆
⋃

i∈N

(ai, bi).

Then

d − c <

∞∑

i=1

(bi − ai).

Proof. First, since [c, d] is a compact set, it is in fact covered by a finite number
of the intervals:

[c, d] ⊆
n⋃

i=1

(ai, bi)

for some n. I will show that when this happens, the conclusion

d − c <
n∑

i=1

(bi − ai)

follows. The proof is by induction on n.
If n = 1, then [c, d] ⊆ (a1, b1), so a1 < c and d < b1. Thus d− c < b1 − a1,

as required.
Now suppose n ≥ 2, and the result is true for covers by at most n−1 open

intervals. Suppose

[c, d] ⊆
n⋃

i=1

(ai, bi).

If some interval (ai, bi) is disjoint from [c, d], it may be omitted from the cover;
then we have a cover by at most n − 1 sets, so we would be finished by the
induction hypothesis. So assume (ai, bi) ∩ [c, d] �= ∅ for all i. Among all of
the left endpoints ai, there is one that is no larger than any of the others. By
renumbering the intervals, let us assume that it is a1. Since c is covered, we
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must have a1 < c. Now if b1 > d, we have d − c < b1 − a1 ≤
∑n

i=1(bi − ai),
so we are finished. So suppose b1 ≤ d. Since (a1, b1) intersects [c, d], we have
b1 > c. So b1 ∈ [c, d]. At least one of the open intervals (ai, bi) covers the point
b1. By renumbering, we may assume it is (a2, b2). Finally, we have a cover of
[c, d] by n − 1 sets:

[c, d] ⊆ (a1, b2) ∪
n⋃

i=3

(ai, bi).

So by the induction hypothesis,

d − c < (b2 − a1) +
n∑

i=3

(bi − ai)

≤ (b2 − a2) + (b1 − a1) +
n∑

i=3

(bi − ai)

as required. This completes the proof by induction. 
�

A useful generalization of the notion of the length of a subset of R is the
Lebesgue measure of the set. This will be defined in stages. We will use
half-open intervals of the form [a, b) in the definition. Intervals of other forms
could be used instead, but these have been chosen because of this convenient
property:

Lemma 5.1.2. Let a < b be real numbers, and ε > 0. Then [a, b) can be
written as a finite disjoint union

[a, b) =
n⋃

i=1

[ai, bi),

with b − a =
∑n

i=1(bi − ai) and bi − ai ≤ ε for all i.

Proof. Choose n ∈ N so large that (b − a)/n ≤ ε. Let bi = a + i(b − a)/n for
0 ≤ i ≤ n, and ai = bi−1. 
�

Now let A be any subset of R. The Lebesgue outer measure of A is
obtained by covering A with countably many half-open intervals of total length
as small as possible. In symbols,∗

L(A) = inf
∞∑

j=1

(bj − aj)

where the infimum is over all countable families { [aj , bj) : j ∈ N } of half-open
intervals with A ⊆

⋃
j∈N

[aj , bj).

∗ In case you can’t tell, the symbol L is supposed to be a fancy letter L, for
“Lebesgue”.
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Lemma 5.1.3. Let A ⊆ R and let ε > 0. Then

L(A) = inf
∞∑

j=1

(bj − aj)

where the infimum is over all countable families { [aj , bj) : j ∈ N } of half-open
intervals with A ⊆

⋃
j∈N

[aj , bj) and bj − aj ≤ ε for all j.

Proof. This follows from Lemma 5.1.2. 
�

We must do some combinatorics on the line to see that the definition is
not trivial.∗

Theorem 5.1.4. If A is an interval, then L(A) is the length of A.

Proof. Suppose A = [a, b], where a < b are real numbers. First, if ε > 0, then
the singleton {[a, b + ε)} covers the set A, so L(A) ≤ b − a + ε. This is true
for any ε > 0, so L(A) ≤ b − a.

Now suppose A ⊆
⋃

j∈N
[aj , bj). Let ε > 0, and write a′

j = aj − ε/2j .
Then A ⊆

⋃
j∈N

(a′
j , bj). By Lemma 5.1.1,

∑∞
j=1(bj − a′

j) > b − a. So we have∑∞
j=1(bj − aj) ≥

∑∞
j=1(bj − a′

j)− ε > b− a− ε. This is true for any ε > 0, so∑∞
j=1(bj − aj) ≥ b− a. Therefore L(A) ≥ b− a. So we have L

(
[a, b]

)
= b− a.

Next consider A = (a, b). Then L(A) ≤ L([a, b]) = b − a and on the other
hand L(A) ≥ L([a + ε, b − ε]) = b − a − 2ε for any ε > 0. Similar arguments
cover cases [a, b) and (a, b]. If A = [a,∞), then A ⊇ [a, a + t] for any t > 0,
and therefore L(A) ≥ t; this means that L(A) = ∞. Similar arguments cover
the other cases of infinite length intervals. 
�

Here are some of the basic properties of Lebesgue outer measure.

Theorem 5.1.5. (1) L(∅) = 0;
(2) if A ⊆ B, then L(A) ≤ L(B);
(3) L

(⋃
n∈N

An

)
≤
∑∞

n=1 L(An).

Proof. For (1), note that ∅ ⊆
⋃

i∈N
[0, ε/2i), so L(∅) ≤ ε. For (2), note that

any cover of B is also a cover of A.
Now consider (3). If L(An) = ∞ for some n, then the inequality is clear.

So suppose L(An) < ∞ for all n. Let ε > 0. For each n, choose a countable
cover Dn of An by half-open intervals with

∑

D∈Dn

L(D) ≤ L(An) + 2−nε.

Now D =
⋃

n∈N
Dn is a countable cover of the union

⋃
n∈N

An. Therefore

∗ I can easily write down the same definition for subsets of the rational numbers.
But then every set turns out to have outer measure 0, so it is not a very useful
definition.
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L
(
⋃

n∈N

An

)
≤
∑

D∈D

L(D) ≤
∞∑

n=1

∑

D∈Dn

L(D)

≤
∞∑

n=1

L(An) +
∞∑

n=1

2−nε =
∞∑

n=1

L(An) + ε.

Since ε was any positive number, we have

L
(
⋃

n∈N

An

)
≤

∞∑

n=1

L(An). 
�

In general, the inequality in part (3) is not equality, even for two disjoint
sets. But we do have equality in some cases. The simplest case is the following:

Theorem 5.1.6. Let A,B ⊆ R with dist(A,B) > 0. Then L(A∪B) = L(A)+
L(B).

Proof. First, the inequality L(A ∪ B) ≤ L(A) + L(B) follows from part (3)
of Theorem 5.1.5. Let ε = dist(A,B)/2, and let A ∪ B ⊆

⋃
j∈N

[aj , bj), where
bj − aj ≤ ε for all j. Then each interval [aj , bj) intersects at most one of the
sets A and B. So the collection D = { [aj , bj) : j ∈ N } can be written as the
disjoint union of two collections, D = D1 ∪ D2, where D1 covers A and D2

covers B. Now L(A) ≤
∑

D∈D1
L(D) and L(B) ≤

∑
D∈D2

L(D), so

L(A) + L(B) ≤
∑

D∈D1

L(D) +
∑

D∈D2

L(D) =
∑

D∈D

L(D) ≤
∞∑

j=1

bj − aj .

Therefore, by Lemma 5.1.3, we have L(A) + L(B) ≤ L(A ∪ B). 
�

Corollary 5.1.7. If A,B ⊆ R are disjoint and compact, then we have L(A)+
L(B) = L(A ∪ B).

Proof. Apply Theorems 2.3.19 and 5.1.6. 
�

Theorem 5.1.8. If A ⊆ R, then

L(A) = inf
{
L(U) : U ⊇ A, U open

}
.

Proof. Certainly L(A) ≤ inf
{
L(U) : U ⊇ A, U open

}
. So I must prove the

opposite inequality. If L(A) = ∞, it is trivially true. So suppose L(A) < ∞.
Let ε > 0. Then there exists a cover

⋃
j∈N

[aj , bj) of A with
∑∞

j=1(bj − aj) ≤
L(A) + ε/2. Now the set U =

⋃
j∈N

(aj − ε/2j+1, bj) is open, U ⊇ A, and
L(U) ≤

∑∞
j=1(bj − aj) + ε/2 ≤ L(A) + ε. Therefore L(A) + ε ≥ L(U). This

shows that L(A) ≥ inf
{
L(U) : U ⊇ A

}
. 
�
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The outer measure L(A) of a set A ⊆ R is determined by approximat-
ing a set from the outside by open sets. There is a corresponding “inner
measure”, obtained by approximating a set from the inside. This time, how-
ever, we will use compact sets.

Let A ⊆ R. The Lebesgue inner measure of the set A is

L(A) = sup
{
L(K) : K ⊆ A,K compact

}
.

Again, we need an argument to see that the definition is interesting.

Theorem 5.1.9. If A is an interval, then L(A) is the length of A.

Proof. We consider the case of an open interval A = (a, b). Other kinds of
intervals follow from this case as before.

If K ⊆ A is compact, then K is covered by the single interval A, so that
L(K) ≤ b − a. Therefore L(A) ≤ b − a. On the other hand, if ε > 0, then the
set [a + ε, b − ε] is compact, so L(A) ≥ L([a + ε, b − ε]) = b − a − 2ε. This is
true for any ε > 0, so L(A) ≥ b − a. 
�

Exercise 5.1.10. If A ⊆ R is any set, then L(A) ≤ L(A).

It is not possible to prove that L(A) = L(A) in general. A set A is called
Lebesgue measurable, roughly speaking, when this equation is true. Pre-
cisely: If L(A) < ∞, then A is Lebesgue measurable iff L(A) = L(A). If
L(A) = ∞, then A is Lebesgue measurable iff A ∩ [−n, n ] is Lebesgue mea-
surable for all n ∈ N. If A is Lebesgue measurable, we will write L(A) for
the common value of L(A) and L(A), and call it simply the Lebesgue mea-
sure of A. We will often say simply measurable when we mean Lebesgue
measurable.

Theorem 5.1.11. Let A1, A2, · · · be disjoint Lebesgue measurable sets. Then⋃
n An is measurable, and L(

⋃
n An) =

∑
n L(An).

Proof. It is enough to prove the theorem in the case that L(
⋃

An) < ∞, since
the general case will then follow by applying this case to sets An ∩ [−m,m].
We know by Theorem 5.1.5 that L(

⋃
An) ≤

∑
L(An). Let ε > 0. For each

n, choose a compact set Kn ⊆ An with L(Kn) ≥ L(An) − ε/2n. Since An

is measurable, L(Kn) ≥ L(An) − ε/2n. Now the sets Kn are disjoint, so by
Corollary 5.1.7, the compact set Lm = K1 ∪K2 ∪ · · · ∪Km satisfies L(Lm) =
L(K1) + · · · + L(Km). Therefore L(

⋃
An) ≥

∑m
n=1 L(Kn). Now this is true

for all m, so L(
⋃

An) ≥
∑∞

n=1 L(Kn) ≥
∑∞

n=1 L(An)− ε. This is true for any
positive ε, so we have L(

⋃
n An) ≥

∑
L(An).

So L(
⋃

An) = L(
⋃

An), and therefore
⋃

An is measurable and L(
⋃

An) =∑
L(An). 
�

Theorem 5.1.12. Compact subsets, closed subsets, and open subsets of R are
Lebesgue measurable.
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Proof. Let K ⊆ R be compact. It is bounded, so K ⊆ [−n, n] for some n, and
therefore L(K) < ∞. The compact set K is a subset of K, so L(K) ≥ L(K).

Let F ⊆ R be a closed set. Then for each n ∈ N, the intersection F∩[−n, n]
is compact, and therefore measurable. Thus F is measurable.

Let U be an open set. It is enough to do the case L(U) < ∞. For each
x ∈ U , there is an open interval I with x ∈ I ⊆ U . By the Lindelöf property,
U is the union of countably many of these intervals, say U =

⋃
j∈N

Ij . Now
each set In \

⋃n−1
j=1 Ij is a finite union of intervals (open, closed, half-open) so

that U is a disjoint union of countably many intervals. So U is measurable. 
�

Theorem 5.1.13. Let A ⊆ R. Then A is measurable if and only if, for every
ε > 0, there exist an open set U and a closed set F with U ⊇ A ⊇ F and
L(U \ F ) < ε.

Proof. Suppose first that A is measurable. We consider first of all the case
L(A) < ∞. Then there exists an open set U ⊇ A such that L(U) < L(A)+ε/2.
There exists a compact (therefore closed) set F ⊆ A with L(F ) > L(A)−ε/2.
Now U \ F is open, hence measurable, and F is compact, hence measurable,
so L(U) = L(U \ F ) + L(F ). Since the terms are all finite, we may subtract,
and we get

L(U \ F ) = L(U) − L(F ) < L(A) + ε/2 − L(A) + ε/2 = ε.

Now we take the case L(A) = ∞. All of the sets A∩[−n, n] are measurable,
so there exist open sets Un ⊇ A ∩ [−n, n] and compact sets Fn ⊆ A ∩ [−n, n]
with L(Un \ Fn) < ε/2n+2. Define U ′

n = Un ∩
(
(−∞,−n + 1 + ε/2n+2) ∪

(n − 1 − ε/2n+2,∞)
)

and F ′
n = Fn ∩

(
[−n,−n + 1] ∪ [n − 1, n]

)
, so that

U ′
n is open, F ′

n is compact, U ′
n ⊇ A ∩

(
[−n,−n + 1] ∪ [n − 1, n]

)
⊇ F ′

n and
L(U ′

n \ F ′
n) < 3ε/2n+2 < ε/2n. Now U =

⋃
U ′

n is open, and F =
⋃

F ′
n is

closed (Exercise 2.2.27). We have U ⊇ A ⊇ F , and U \ F ⊆
⋃

n∈N
(U ′

n \ F ′
n),

so that L(U \ F ) ≤
∑

L(U ′
n \ F ′

n) < ε.
Conversely, suppose sets U and F exist. By Theorem 5.1.12 they are

measurable. First assume M(A) < ∞. Then L(F ) < ∞, and L(U) ≤
L(U \F )+L(F ) < ε+L(F ) < ∞. Now M(A) ≤ M(U) = L(U) < L(F )+ ε =
L(F ) + ε ≤ L(A) + ε. This is true for any ε > 0, so M(A) = L(A), so A is
measurable.

For the case L(A) = ∞, we have U ∩ (−n − ε, n + ε) ⊇ A ∩ [−n, n] ⊇
F ∩ [−n, n], and the previous case may be applied to these sets, using 3ε in
place of ε. 
�

Here are the basic algebraic properties of Lebesgue measurable sets.

Theorem 5.1.14. (1) Both ∅ and R are Lebesgue measurable.
(2) If A ⊆ R is Lebesgue measurable, then so is its complement R \ A.
(3) If A and B are measurable, then so are A ∩ B, A ∪ B, and A \ B.
(4) If An is measurable for n ∈ N, then so are

⋃
n∈N

An and
⋂

n∈N
An.
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Proof. For (1), note that L(∅) = 0 and R ∩ [−n, n] is measurable for all n.
For (2), note that if F ⊆ A ⊆ U , then R \ U ⊆ R \ A ⊆ R \ F and

(R \ F ) \ (R \ U) = U \ F .
For the intersection in (3), note that if F1 ⊆ A ⊆ U1 and F2 ⊆ B ⊆ U2,

then F1∩F2 ⊆ A∩B ⊆ U1∩U2 and (U1∩U2)\(F1∩F2) ⊆ (U1\F1)∪(U2\F2).
This is enough to show that A ∩ B is measurable. Now A ∪ B = R \

(
(R \

A) ∩ (R \ B)
)
, so A ∪ B is measurable. And A \ B = A ∩ (R \ B), so A \ B is

measurable.
Finally, for (4), note that by (3) we may find disjoint measurable sets

Bn with the same union as An, so that Theorem 5.1.11 is applicable. The
intersection follows by taking complements. 
�

Note that (4) involves only countable unions and intersections.

Proposition 5.1.15. The Lebesgue measure of the triadic Cantor dust is 0.

Proof. The Cantor dust C is constructed on p. 2. The set Cn ⊇ C consists of
2n disjoint intervals of length 3−n. Therefore L(C) ≤ 2n · 3−n. This has limit
0, so L(C) = 0. 
�

Carathéodory Measurability

Carathéodory provided an alternate definition of measurability. Its disadvan-
tage is that the motivation is not as clear. Its advantage is (as we will see in
Sect. 5.2) that it can be used in other situations.

A set A ⊆ R is Carathéodory measurable iff

L(E) = L(E ∩ A) + L(E \ A)

for all sets E ⊆ R.

Proposition 5.1.16. A set A ⊆ R is Carathéodory measurable if and only if
it is Lebesgue measurable.

Proof. Suppose A is Lebesgue measurable. Let E be a test set. The inequality
L(E) ≤ L(E ∩ A) + L(E \ A) is always true. Let ε > 0. There exist an open
set U and a closed set F with F ⊆ A ⊆ U and L(U \ F ) < ε. Let V ⊇ E be
an open set. Then

L(E \ A) + L(E ∩ A) ≤ L(V \ F ) + L(V ∩ U)
≤ L(V \ U) + L(U \ F ) + L(V ∩ U)
< L(V ) + ε.

Now take the infimum over all such V , to get L(E∩A)+L(E \A) < L(E)+ε.
Therefore L(E ∩ A) + L(E \ A) ≤ L(E). This proves that A is Carathéodory
measurable.
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Conversely, suppose A is Carathéodory measurable. Consider the case in
which L(A) < ∞. Let ε > 0. Let U ⊇ A satisfy L(U) < L(A) + ε. Now we
have

L(U) = L(U ∩ A) + L(U \ A),

so that L(U \ A) < ε. So there is an open set V ⊇ U \ A with L(V ) < ε.
Then U \ V is Lebesgue measurable, and L(U \ V ) > L(U) − ε, so there is
a closed set F ⊆ U \ V ⊆ A with L(F ) > L(U) − ε. Thus F ⊆ A ⊆ U and
L(U \ F ) < ε. Therefore A is Lebesgue measurable. 
�
Theorem 5.1.17. Let A ⊆ R be Lebesgue measurable, and let a similarity
f : R → R with ratio r be given. Then f [A] is Lebesgue measurable and
L(f [A]) = rL(A).

Proof. [Strictly speaking, “similarity” disallows r = 0, but even if r = 0 is
allowed, this formula still works: If r = 0, then the range of f is a single point,
so of course f [A] is measurable and L(f [A]) = 0.] Now suppose r > 0.

Consider an interval I = [a, b). The image is an interval, either [f(a), f(b))
or (f(b), f(a)], with length |f(b) − f(a)| = r|b − a|. Therefore L(f [I]) =
r|b − a|. Now if A ⊆

⋃
j∈N

[aj , bj), then f [A] ⊆
⋃

f
[
[aj , bj)

]
, so L(f [A]) ≤∑

L
(
f
[
[aj , bj)

])
= r
∑

(bj − aj). Therefore we have L(f [A]) ≤ rL(A). If we
apply the same thing to the inverse map f−1, which is a similarity with ratio
1/r, we get L(f [A]) ≥ rL(A). Therefore L(f [A]) = rL(A)

Now f is a homeomorphism, so the image of an open set is open and the
image of a closed set is closed. If A ⊆ R is measurable, then, for every ε > 0,
there exist a closed set F and an open set U with F ⊆ A ⊆ U and L(U\F ) < ε.
So we have f [F ] ⊆ f [A] ⊆ f [U ] and L(f [U ] \ f [F ]) = L

(
f [U \ F ]

)
< rε. So

f [A] is also measurable. 
�
Next is a preview of how measure theory is related to fractal dimension. In

general, we do not yet know that the similarity dimension of a set is unique.
However, we can now establish that in one situation we can determine the
similarity dimension.

Exercise 5.1.18. Let (r1, r2, · · · , rn) be a contracting ratio list; let s be its
sim-value; let (f1, f2, · · · , fn) be a corresponding iterated function system in
R; and let A ⊆ R be a nonempty measurable set. Suppose L(fj [A]∩fk[A]) = 0
for j �= k, and

A =
n⋃

j=1

fj [A].

If 0 < L(A) < ∞, then s = 1.

Number Systems

Recall the situation from Sect. 1.6. Let b be a real number, and let D be a
finite set of real numbers, including 0. We are interested in representing real
numbers in the number system they define.
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Write W for the set of “whole numbers”; that is, numbers of the form

M∑

j=0

ajb
j .

Write F for the set of “fractions”; that is numbers of the form

−1∑

j=−∞
ajb

j .

We know (Proposition 3.2.21) that there is no number system that has a
unique representation for every real number. So we will try to represent all real
numbers, and arrange to have as few numbers as possible with more than one
representation. One way to specify that the set with multiple representations
is small is to require that it have Lebesgue measure 0.

If we analyze the size of the intersections (F +w1)∩(F +w2), w1, w2 ∈ W ,
w1 �= w2, then we will know about all numbers with multiple representations:

Exercise 5.1.19. The set of all numbers with multiple representations is a
countable union of sets, each of which is similar to one of the sets (F + w1)∩
(F + w2), w1, w2 ∈ W,w1 �= w2.

The set of all numbers that can be represented is F + W , a countable
union of sets isometric to F . So if all real numbers can be represented, then
L(F ) > 0. We know that F is a compact set, so also L(F ) < ∞. If the set of
all real numbers with multiple representations has Lebesgue measure 0, then
the sets (F + w1) ∩ (F + w2) have Lebesgue measure 0.

Suppose D has k elements. If F has positive Lebesgue measure, but the
intersections (F + w1) ∩ (F + w2) have Lebesgue measure zero, then by Ex-
ercise 5.1.18, F has similarity dimension 1. But the similarity dimension is
actually log k/ log |b|. Therefore |b| = k.

5.2 Method I

We will need to discuss measures other than Lebesgue measure. The basics
are contained in this section.

Measures and Outer Measures

A collection F of subsets of a set X is called an algebra on X iff:

(1) ∅,X ∈ F;
(2) if A ∈ F, then X \ A ∈ F;
(3) if A,B ∈ F, then A ∪ B ∈ F.
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Note that A ∩ B = X \ ((X \ A) ∪ (X \ B)) and A \ B = A ∩ (X \ B), so an
algebra is also closed under these two operations.

A collection F of subsets of a set X is called a σ-algebra on X iff:

(1) ∅,X ∈ F;
(2) if A ∈ F, then X \ A ∈ F;
(3) if A1, A2, · · · ∈ F, then

⋃
i∈N

Ai ∈ F.

Of course (by Theorem 5.1.14), the collection of all Lebesgue measurable
subsets of R is a σ-algebra on R. Combining the clauses of the definition will
produce a few more rules: For example, if A1, A2, · · · ∈ F, then

⋂
i∈N

Ai ∈ F;
if A,B ∈ F then A ∩ B,A ∪ B,A \ B ∈ F.

Theorem 5.2.1. Let X be a set, and let D be any set of subsets of X. Then
there is a set F of subsets of X such that

(1) F is a σ-algebra on X;
(2) F ⊇ D;
(3) if G is any σ-algebra on X with G ⊇ D, then G ⊇ F.

Proof. First I claim that the intersection of any collection of σ-algebras on X
is a σ-algebra. Let Γ be a collection of σ-algebras, and let B =

⋂
A∈Γ A be the

intersection. Then ∅ ∈ A for all A ∈ Γ , so ∅ ∈ B. Similarly X ∈ B. If A ∈ B,
then A ∈ A for all A ∈ Γ , so X \A ∈ A for all A ∈ Γ , and therefore X \A ∈ B.
If A1, A2, · · · ∈ B, then each An ∈ A for all A ∈ Γ , so

⋃
n∈N

An ∈ A for all
A ∈ Γ and therefore

⋃
n∈N

An ∈ B.
So suppose a set D of subsets of X is given. Let Γ be the collection of

all σ-algebras G on X with G ⊇ D. (There is at least one such σ-algebra,
namely the family of all subsets of X.) Then the intersection F =

⋂
G∈Γ G is

a σ-algebra on X. But clearly if G is any σ-algebra on X with G ⊇ D, then
G ∈ Γ , and therefore G ⊇ F. 
�

We say that F is the least σ-algebra containing D, or the σ-algebra
generated by D. Let S be a metric space. A subset of S is called a Borel
set iff it belongs to the σ-algebra on S generated by the open sets.

Let X be a set, and let F be a σ-algebra of subsets of X. A measure on
F is a set function∗ M : F → [0,∞] such that:

(1) M(∅) = 0;
(2) If An ∈ F is a disjoint sequence of sets, then

M

(
⋃

n∈N

An

)
=

∞∑

n=1

M(An).

We call (2) countable additivity.
Let X be a set. An outer measure on X is a function M defined on all

subsets of X, with values in the nonnegative extended real numbers [0,∞],
satisfying:
∗ A set function is a function whose domain is a family of sets.
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(1) M(∅) = 0;
(2) if A ⊆ B, then M(A) ≤ M(B);
(3) M

(⋃
n∈N

An

)
≤
∑∞

n=1 M(An).

We call (3) countable subadditivity.

Defining Outer Measures

The Lebesgue outer measure was constructed in Sect. 5.1. The way in which
the definition was formulated was not accidental. We will explore a general
method for constructing outer measures, known as “method I”. We begin with
candidate values for the measures of some sets (like the lengths of the half-
open intervals), and then attempt to produce an outer measure that is as large
as possible, but no larger than the candidate values.

Let X be a set, and let A be a family of subsets of X that covers X.
Let c : A → [0,∞] be any function. The theorem on construction of outer
measures is as follows:

Theorem 5.2.2 (Method I Theorem). There is a unique outer measure
M on X such that

(1) M(A) ≤ c(A) for all A ∈ A;
(2) if N is any outer measure on X with N(A) ≤ c(A) for all A ∈ A, then

N(B) ≤ M(B) for all B ⊆ X.

Proof. The uniqueness is easy: if two outer measures satisfy (1) and (2), then
each is ≤ the other, so they are equal.

For any subset B of X, define

M(B) = inf
∑

A∈D

c(A), (I)

where the infimum is over all countable covers D of B by sets of A. (Recall
that inf ∅ = ∞, so if there is no countable cover at all of B by sets of A, then
M(B) = ∞.)

I claim first that M is an outer measure. First, M(∅) = 0, since the empty
set is covered by the empty cover, and the empty sum has value 0. If B ⊆ C,
then any cover of C is also a cover of B, so M(B) ≤ M(C). Let B1, B2, · · · be
given. I must prove

M

(
⋃

n∈N

Bn

)
≤

∞∑

n=1

M(Bn).

If M(Bn) = ∞ for some n, then the inequality is clear. So suppose M(Bn) < ∞
for all n. Let ε > 0. For each n, choose a countable cover Dn of Bn by sets of
A with ∑

A∈Dn

c(A) ≤ M(Bn) + 2−nε.
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Now D =
⋃

n∈N
Dn is a countable cover of the union

⋃
n∈N

Bn. Therefore

M

(
⋃

n∈N

Bn

)
≤
∑

A∈D

c(A)

≤
∞∑

n=1

∑

A∈Dn

c(A)

≤
∞∑

n=1

M(Bn) +
∞∑

n=1

2−nε

=
∞∑

n=1

M(Bn) + ε.

Since ε was any positive number, we have

M

(
⋃

n∈N

Bn

)
≤

∞∑

n=1

M(Bn).

This completes the proof that M is an outer measure.
Now we may check the two assertions of the theorem. For (1), note that

for A ∈ A, the singleton {A} is a cover of A, so

M(A) ≤
∑

B∈{A}
c(B) = c(A).

For (2), suppose that N is any outer measure on X with N(A) ≤ c(A) for all
A ∈ A. Then for any countable cover D of a set B by elements of A we have

∑

A∈D

c(A) ≥
∑

A∈D

N(A) ≥ N

(
⋃

A∈D

A

)
≥ N(B).

Therefore M(B) ≥ N(B). 
�

When we say that an outer measure is to be constructed by method I,
we are referring to this theorem. In practical terms, this means that the outer
measure is defined by the formula (I).

Reduced Cover Classes

When a measure is defined by method I, it may be helpful to know that the
covers D in (I) can be chosen from a smaller (“reduced”) class of sets.

Proposition 5.2.3. Let X be a set, and let c be a set function. For a collec-
tion of sets A, let MA be the method I outer measure defined using the class
A of sets and the restriction of c to A.
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(a) If B ⊆ A, then MA ≤ MB.
(b) Suppose that, for every A ∈ A and every ε > 0, there is B ∈ B with B ⊇ A

and c(B) ≤ c(A) + ε. Then MB ≤ MA.
(c) Let C > 0 be a constant, and suppose that, for every A ∈ A, there is B ∈ B

with B ⊇ A and c(B) ≤ C c(A). Then MB ≤ C MA.

Proof. (a) The outer measure MB is the largest outer measure such that
MB(E) ≤ c(E) for all E ∈ B. But MA also has this property, so MA ≤ MB.

(b) Let ε > 0 be given. Let D = {A1, A2, · · · } ⊆ A be a countable cover of
a set E. For each Aj , choose Bj ∈ B with Bj ⊇ Aj and c(Bj) ≤ c(Aj)+ ε/2j .
Then D′ = {B1, B2, · · · } is also a cover of E, and

ε +
∑

j

c(Aj) ≥
∑

j

c(Bj) ≥ MB(E).

Take the infimum over all countable D ⊆ A that cover E to get

ε + MA(E) ≥ MB(E).

This is true for all ε > 0, so MA(E) ≥ MB(E).
(c) Let D = {A1, A2, · · · } ⊆ A be a countable cover of a set E. For each Aj ,

choose Bj ∈ B with Bj ⊇ Aj and c(Bj) ≤ C c(Aj). Then D′ = {B1, B2, · · · }
is also a cover of E, and

C
∑

j

c(Aj) ≥
∑

j

c(Bj) ≥ MB(E).

Take the infimum over all countable D ⊆ A that cover E to get

C MA(E) ≥ MB(E). 
�

When condition (b) holds, we will say that B is a reduced cover class
for M. When condition (c) holds, we will say that B is a reduced cover class
with factor C for M.

Here is an example. Lebesgue measure L on R is defined (p. 140) using
the class of all intervals [a, b). The semi-dyadic intervals are sets of the
form [(k − 1)/2n, (k + 1)/2n), where n ∈ Z, k ∈ Z. The class of all semi-
dyadic intervals is a reduced cover class with factor 4 for Lebesgue measure.
Indeed, if a < b, let n be the integer with 2−n−1 < b − a < 2−n and k the
integer with k − 1 ≤ a/2n < k, and compute [k/2n, (k + 1)/2n) ⊇ [b − a) and
(k + 1)/2n − (k − 1)/2n < 4(b − a).

The dyadic net is the class of intervals of the form [k/2n, (k+1)/2n). It is
not a reduced cover class by itself. Let Rn consist of the finite disjoint unions
of dyadic intervals [k/2n, (k + 1)/2n) with denominator 2n. The dyadic ring
is R =

⋃
n Rn.

Proposition 5.2.4. Using the set function c : R → [0,∞) defined by c(E) =
L(E), the dyadic ring R is a reduced cover class for Lebesgue measure.



5.2 Method I 151

Proof. Let a < b and let ε > 0. Let n ∈ N be so large that 2−n < ε/2. Let
j ∈ Z be such that j ≤ 2na < j + 1, and m ≥ j such that m ≤ 2nb < m + 1.
Then

[a, b) ⊆ E :=
m⋃

k=j

[
k

2n
,
k + 1
2n

)
,

and

L(E) − (b − a) ≤ L
([

j

2n
, a

))
+ L

([
b,

m + 1
2n

))
≤ 2

2n
< ε. 
�

Measurable Sets

Let M be an outer measure on a set X. A set A ⊆ X is M-measurable (in
the sense of Carathéodory) iff M(E) = M(E ∩ A) + M(E \ A) for all sets
E ⊆ X.

Theorem 5.2.5. The collection F of M-measurable sets is a σ-algebra, and
M is countably additive on F.

Proof. First, ∅ ∈ F since for any E, we have M(E ∩ ∅) + M(E \ ∅) =
M(∅) + M(E) = M(E). It is also easy to see that a set A belongs to F if and
only if its complement X \ A does.

Suppose Aj ∈ F for j = 1, 2, · · · . Let E be any test set. Then

M(E) = M(E ∩ A1) + M(E \ A1)

= M(E ∩ A1) + M((E \ A1) ∩ A2) + M(E \ (A1 ∪ A2))
= · · ·

=
k∑

j=1

M

((
E \

j−1⋃

i=1

Ai

)
∩ Aj

)
+ M

⎛

⎝E \
k⋃

j=1

Aj

⎞

⎠ .

Hence

M(E) ≥
k∑

j=1

M

((
E \

j−1⋃

i=1

Ai

)
∩ Aj

)
+ M

⎛

⎝E \
⋃

j∈N

Aj

⎞

⎠ ,

so (let k → ∞)

M(E) ≥
∞∑

j=1

M

((
E \

j−1⋃

i=1

Ai

)
∩ Aj

)
+ M

⎛

⎝E \
⋃

j∈N

Aj

⎞

⎠ .

But

E ∩
⋃

j∈N

Aj =
⋃

j∈N

((
E \

j−1⋃

i=1

Ai

)
∩ Aj

)
,
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so

M(E) ≤ M

⎛

⎝E ∩
⋃

j∈N

Aj

⎞

⎠+ M

⎛

⎝E \
⋃

j∈N

Aj

⎞

⎠

≤
∞∑

j=1

M

((
E \

j−1⋃

i=1

Ai

)
∩ Aj

)
+ M

⎛

⎝E \
⋃

j∈N

Aj

⎞

⎠

≤ M(E).

Thus
⋃

Aj ∈ F. This completes the proof that F is a σ-algebra.
Now if the sets Aj ∈ F are disjoint, we can let E =

⋃
Aj in the previous

computation, and we get

M

⎛

⎝
⋃

j∈N

Aj

⎞

⎠ =
∞∑

j=1

M(Aj),

so M is countably additive on F. 
�

We will write simply M for the restriction of M to the σ-algebra F of mea-
surable sets. It is a measure on F. Thus we see that we have a generalization
of Lebesgue measure as constructed in Sect. 5.1.

Corollary 5.2.6. Every Borel set in R is Lebesgue measurable.

Proof. Open sets are measurable by Theorem 5.1.12. The collection of mea-
surable sets is a σ-algebra by Theorem 5.1.14. 
�

5.3 Two-Dimensional Lebesgue Measure

We next define two-dimensional Lebesgue measure. This is a measure defined
for subsets of the plane R

2.
A rectangle in R

2 is a set R of the form

R = [a, b) × [c, d) =
{

(x, y) ∈ R
2 : a ≤ x < b, c ≤ y < d

}

for some a ≤ b and c ≤ d. The area of this rectangle is c(R) = (b− a)(d− c),
as usual. In particular, if a = b or c = d, we see that c(∅) = 0. Two-

dimensional Lebesgue outer measure is the outer measure L2
on R

2

defined by method I from this function c.

Theorem 5.3.1. Two-dimensional Lebesgue outer measure L2
is a metric

outer measure.
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Proof. Suppose A and B are sets with positive separation. Since L2
is an outer

measure, we have L2
(A ∪B) ≤ L2

(A) + L2
(B). So I must prove the opposite

inequality.
Let D be a cover of A∪B by rectangles. Now a rectangle R = [a, b)× [c, d)

can be written as a union of the four rectangles

[a, (a + b)/2) × [c, (c + d)/2)
[a, (a + b)/2) × [(c + d)/2, d)
[(a + b)/2, b) × [c, (c + d)/2)
[(a + b)/2, b) × [(c + d)/2, d) ,

and the area of the large rectangle is the sum of the areas of the four small
rectangles. So the sum ∑

R∈D

c(R)

is unchanged when we replace one of the rectangles by its four parts. Applying
this repeatedly, we may assume that the diameters of the rectangles in D are
all smaller than dist(A,B). Then no rectangle of D intersects both A and B.
So D is a disjoint union of two families, A and B, where A covers A and B

covers B. But then
∑

R∈D

c(R) =
∑

R∈A

c(R) +
∑

R∈B

c(R) ≥ L2
(A) + L2

(B).

So we conclude that L2
(A ∪ B) ≥ L2

(A) + L2
(B). 
�

The sets that are measurable in the sense of Carathéodory for L2
are again

called the Lebesgue measurable sets; the restriction of L2
to this σ-algebra

is called two-dimensional Lebesgue measure. We will write L2 for two-
dimensional Lebesgue measure.

The fact that two-dimensional Lebesgue measure is not identically zero is
left to you:

Exercise 5.3.2. If a < b and c < d, then a rectangle of the form R = [a, b)×
[c, d) is Lebesgue measurable and L2(R) = (b − a)(d − c).

Now that we know that the Lebesgue measure of a square is what it should
be, the usual scheme of approximating an area with a lot of little squares will
show that the usual sets of Euclidean plane geometry have two-dimensional
Lebesgue measure equal to their areas. In particular, a rectangle with sides
not parallel to the coordinate axes has the right area. This should be enough
to prove:

Exercise 5.3.3. Let f : R
2 → R

2 be a similarity with ratio r. If A ⊆ R
2 is

Lebesgue measurable, then so is f [A], and L2(f [A]) = r2 L2(A).
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This will tell us something about the similarity dimension of a set A ⊆ R
2,

as in the one-dimensional case (Exercise 5.1.18).

Exercise 5.3.4. Let (r1, r2, · · · , rn) be a contracting ratio list; let s be its
sim-value; let (f1, f2, · · · fn) be a corresponding iterated function system in
R

2; and let A ⊆ R
2 be a nonempty Borel set. Suppose L2(fj [A] ∩ fk[A]) = 0

for j �= k, and A =
⋃n

j=1 fj [A]. If 0 < L2(A) < ∞, then s = 2.

This result can be used for complex number systems in the same way as
the corresponding result was used for real number systems in 5.1.18

Exercise 5.3.5. Let b be a complex number, and let D be a finite set of
complex numbers, including 0. Suppose D has k elements. Suppose every
complex number can be represented in the number system defined by base b
and digit set D, and the set of complex numbers with multiple representations
has two-dimensional Lebesgue measure 0. What does this mean about the
relationship between b and k?

Higher Dimensions

Let d be a positive integer. In d-dimensional Euclidean space R
d, we will

consider hyper-rectangles of the form

R = [a1, b1) × [a2, b2) × · · · × [ad, bd),

where aj < bj for all j. The “hyper-volume” of this hyper-rectangle R is

c(R) =
d∏

j=1

(bj − aj).

We define d-dimensional Lebesgue outer measure to be the method I
outer measure defined from this set function c. We define d-dimension-
al Lebesgue measure to be the restriction to the measurable subsets. As
before, we use the notation Ld

and Ld.

Exercise 5.3.6. The outer measure Ld
is a metric outer measure. If

R = [a1, b1) × [a2, b2) × · · · × [ad, bd),

where aj ≤ bj for all j, then

Ld(R) =
d∏

j=1

(bj − aj).
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Dyadic Cubes

A semi-dyadic square in R
2 is a set of the form

[
j − 1
2n

,
j + 1
2n

)
×
[
k − 1
2n

,
k + 1
2n

)
.

Exercise 5.3.7. Show that the class of semi-dyadic squares is a reduced cover
class with factor 8 for L2.

A dyadic square in R
2 is a set of the form

[
j

2n
,
j + 1
2n

)
×
[

k

2n
,
k + 1
2n

)
.

For each n, let Rn be the set of finite disjoint unions of dyadic squares with
denominator 2n. Then R =

⋃
n Rn is called the dyadic ring in R

2.

Exercise 5.3.8. Using the set function c : R → [0,∞) defined by c(E) =
L2(E), the dyadic ring R is a reduced cover class for 2-dimensional Lebesgue
measure.

After you have completed the preceding two exercises, it should be easy to
formulate the corresponding results for d-dimensional Lebesgue measure for
any d ∈ N. You would define semi-dyadic cubes, dyadic cubes, and the dyadic
ring in R

d.

5.4 Metric Outer Measure

Consider the following example of a method I outer measure on R; the defini-
tion is very close to the definition used for Lebesgue measure. We begin with
the collection A = { [a, b) : a < b } of half-open intervals and the set func-
tion c

(
[a, b)

)
=

√
b − a. Let M be the corresponding method I outer measure.

I claim that the interval A = [0, 1] is not measurable.
Consider the measure of [0, 1). Certainly the singleton

{
[0, 1)

}
covers [0, 1),

so M
(
[0, 1)

)
≤ c
(
[0, 1)

)
= 1. If [0, 1) ⊆

⋃
i∈N

[ai, bi), then by what we know
about Lebesgue measure, we must have

∑∞
i=1(bi − ai) ≥ 1. So we have also

( ∞∑

i=1

√
bi − ai

)2

=
∞∑

i=1

(√
bi − ai

)2

+ 2
∑

i<j

√
bi − ai

√
bj − aj

≥
∞∑

i=1

(bi − ai) ≥ 1.

Therefore
∑∞

i=1

√
bi − ai ≥ 1. This shows that M

(
[0, 1)

)
≥ 1. So we have

M
(
[0, 1)

)
= 1.
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Similarly M
(
[−1, 0)

)
= 1. The singleton

{
[−1, 1)

}
covers [−1, 1), so as

before we have M
(
[−1, 1)

)
≤ c
(
[−1, 1)

)
=

√
2. So if A = [0, 1] and E = [−1, 1),

we have
M(E ∩ A) + M(E \ A) = 1 + 1 = 2 >

√
2 ≥ M(E).

This shows that A = [0, 1] is not measurable.
It is often desirable that the sets we work with be measurable sets. When

we work with subsets of a metric space (as is common in this book), the sets
are often open sets, closed sets, or sets constructed simply from open and
closed sets. In particular, the sets are often Borel sets. There is a condition
that will insure that all Borel sets are measurable sets.

Two sets A,B in a metric space have positive separation iff dist(A,B) >
0; that is, there is r > 0 with �(x, y) ≥ r for all x ∈ A and y ∈ B. Let M

be an outer measure on a metric space S. We say that M is a metric outer
measure iff M(A ∪ B) = M(A) + M(B) for any pair A,B of sets with
positive separation. (Theorem 5.1.6 shows that L is a metric outer measure.)
The measure M obtained by restricting a metric outer measure M to its
measurable sets will be called a metric measure.

The reason that metric outer measures are of interest is that open sets (and
therefore all Borel sets) are measurable sets. Before I prove this, I formulate
the lemma of Carathéodory.

Lemma 5.4.1. Let M be a metric outer measure on the metric space S. Let
A1 ⊆ A2 ⊆ · · · , and A =

⋃
j∈N

Aj. Assume dist(Aj , A \ Aj+1) > 0 for all j.
Then M(A) = limj→∞ M(Aj).

Proof. For all j we have M(A) ≥ M(Aj), so M(A) ≥ limj→∞ M(Aj). (This
inequality is true for any outer measure.) If limj→∞ M(Aj) = ∞, then the
equation is true. So suppose limj→∞ M(Aj) < ∞.

Let B1 = A1 and Bj = Aj \ Aj−1 for j ≥ 2. If i ≥ j + 2, then Bj ⊆ Aj

and Bi ⊆ A \ Ai−1 ⊆ A \ Aj+1, so Bi and Bj have positive separation. So

M

(
m⋃

k=1

B2k−1

)
=

m∑

k=1

M(B2k−1)

M

(
m⋃

k=1

B2k

)
=

m∑

k=1

M(B2k).

Since limj→∞ M(Aj) < ∞, both of these converge (as m → ∞). So

M(A) = M

⎛

⎝
⋃

j∈N

Aj

⎞

⎠ = M

⎛

⎝Aj ∪
⋃

k≥j+1

Bk

⎞

⎠

≤ M(Aj) +
∞∑

k=j+1

M(Bk)
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≤ lim
i→∞

M(Ai) +
∞∑

k=j+1

M(Bk).

Now as j → ∞, the tail of a convergent series goes to 0, so we get

M(A) ≤ lim
i→∞

M(Ai). 
�

Theorem 5.4.2. Let M be a metric outer measure on a metric space S. Then
every Borel subset of S is M-measurable.

Proof. Since the σ-algebra of Borel sets is the σ-algebra generated by the
closed sets, and since the collection F of measurable sets is a σ-algebra, it is
enough to show that every closed set F is measurable. Let A be any test set. I
must show that M(A) ≥ M(A∩F ) + M(A \F ), since the opposite inequality
is true for any outer measure.

Let Aj = {x ∈ A : dist(x, F ) ≥ 1/j }. Then dist(Aj , F ∩ A) ≥ 1/j, so

M(A ∩ F ) + M(Aj) = M
(
(A ∩ F ) ∪ Aj

)
≤ M(A). (1)

Now since F is closed, F contains all points of distance 0 from F , so A \F =⋃
j∈N

Aj . We check the condition of the lemma: If x ∈
(
A \ (F ∪Aj+1)

)
, then

there exists z ∈ F with �(x, z) < 1/(j + 1). If y ∈ Aj , then

�(x, y) ≥ �(y, z) − �(x, z) >
1
j
− 1

j + 1
.

Thus
dist

(
A \ (F ∪ Aj+1), Aj

)
≥ 1

j
− 1

j + 1
> 0.

Therefore, applying the lemma, we get M(A\F ) ≤ limj→∞ M(Aj). Taking
the limit in (1), we get M(A ∩ F ) + M(A \ F ) ≤ M(A), which completes the
proof. 
�

Proposition 5.4.3. Let M be a finite metric measure on a compact metric
space S. Let E ⊆ S be a Borel set. For any ε > 0, there exist a compact set
K and an open set U with U ⊇ E ⊇ K and M(U \ K) < ε.

Proof. Let A be the collection of all sets E ⊆ S such that for all ε > 0, there
exist a compact set K and an open set U with U ⊇ E ⊇ K and M(U \K) < ε.

First I claim that all closed sets belong to A. Let F ⊆ S be closed and
ε > 0. Now

Un =
{

x ∈ S : dist(x, F ) <
1
n

}

defines open sets Un with U1 ⊇ U2 ⊇ · · · and
⋂

n∈N
Un = F . So we have

limn→∞ M(Un) = M(F ). There is n so large that M(Un) − M(F ) < ε. Then:
Un ⊇ F ⊇ F , Un is open, F is compact, and M(Un \ F ) < ε.
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Clearly ∅ ∈ A.
Next, A is closed under complements. Let E ∈ A. Consider the comple-

ment E′ = S \ E. Let ε > 0. There is an open U and a compact K with
U ⊇ E ⊇ K and M(U \K) < ε. But then U ′ = S \U is compact, K ′ = S \K
is open, K ′ ⊇ E′ ⊇ U ′, and M(K ′ \ U ′) = M(U \ K) < ε.

Now I claim A is closed under countable unions. Let En ∈ A for n ∈ N.
Write E =

⋃
n∈N

En, and let ε > 0. Then there exist open Un and compact
Kn with Un ⊇ En ⊇ Kn and M(Un \ Kn) < ε/2n+1. Then U =

⋃
n∈N

Un is
open. Now

Lm =
m⋃

n=1

Kn

is compact, increases with m, and
⋃

m∈N
Lm =

⋃
n∈N

Kn. There is m so large
that

M

(
⋃

n∈N

Kn

)
− M(Lm) <

ε

2
.

So we have U ⊇ E ⊇ Ln and

M(U \ Ln) ≤ M

(
⋃

n∈N

(Un \ Kn)

)
+ M

(
⋃

n∈N

Kn

)
− M(Lm)

<
∞∑

n=1

ε

2n+1
+

ε

2
= ε.

Therefore A includes at least the Borel sets. 
�

Method II

We have seen that method I may fail to yield a measure where open sets
are measurable. There is a related construction, called “method II” that will
overcome this difficulty.

Let A be a family of subsets of a metric space S, and suppose, for every
x ∈ S and ε > 0, there exists A ∈ A with x ∈ A and diamA ≤ ε. Suppose
c : A → [0,∞] is a given function. An outer measure will be constructed based
on this data. For each ε > 0, let

Aε = {A ∈ A : diam A ≤ ε } .

Let Mε be the method I outer measure determined by c using the family Aε.
Then by Proposition 5.2.3(a), for a given set E, when ε decreases, Mε(E)
increases. Define

M(E) = lim
ε→0

Mε(E) = sup
ε>0

Mε(E).

It is easily verified that M is an outer measure. As usual, we will write M for
the restriction to the measurable sets. This construction of an outer measure
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M from a set function c (and a measure M from M) is called method II. It is
more complicated than method I, but (unlike method I) it insures that Borel
sets are measurable:

Theorem 5.4.4. The set function M defined by method II is a metric outer
measure.

Proof. Let A,B ⊆ S with dist(A,B) > 0. Since M is an outer measure, we
have M(A ∪ B) ≤ M(A) + M(B). So I must prove the opposite inequality.

Let ε > 0 so small that ε < dist(A,B). Let D be any countable cover of
A ∪ B by sets of Aε. The sets D ∈ D have diameter less than dist(A,B), so
such a set D intersects at most one of the sets A,B. Therefore, D may be
divided into two disjoint collections, D1 and D2, where D1 covers A and D2

covers B. Then

∑

D∈D

c(D) =
∑

D∈D1

c(D) +
∑

D∈D2

c(D) ≥ Mε(A) + Mε(B).

Now we may take the infimum over all covers, and conclude Mε(A ∪ B) ≥
Mε(A)+Mε(B). Then we may take the limit as ε → 0 to conclude M(A∪B) ≥
M(A) + M(B). 
�

Exercise 5.4.5. Let S be a metric space, and let c be a set function. For a
collection of sets A, let MA be the method II outer measure defined using the
class A of sets and the restriction of c to A.

(a) If B ⊆ A, then MA ≤ MB.
(b) Suppose that, for every η > 0 there is δ > 0 such that for all A ∈ A with

diam A ≤ δ, and every ε > 0, there is B ∈ B with diamB ≤ η, B ⊇ A,
and c(B) ≤ c(A) + ε. Then MB ≤ MA.

(c) Let C > 0 be a constant, and suppose that, for every η > 0 there is δ > 0
such that for all A ∈ A with diam A ≤ δ, there is B ∈ B with diam B ≤ η,
B ⊇ A, and c(B) ≤ C c(A). Then MB ≤ C MA.

When condition (b) holds, we will say that B is a reduced cover class
for M. When condition (c) holds, we will say that B is a reduced cover class
with factor C for M.

5.5 Measures for Strings

One of the useful ways we will employ the material of this chapter is by
defining measures. Sometimes (for example Lebesgue measure or Hausdorff
measure) we will define a measure on subsets of Euclidean space R

d. But also
measures will be defined on our string models and path models.



160 5 Measure Theory

An Example

We will consider an easy example before we attack the more general case.
Begin with the two-letter alphabet E = {0, 1}. Consider, as usual, the

metric space E(ω) of infinite strings with metric �1/2. We will construct a
measure on E(ω). We begin with the family of “basic open sets”:

A =
{

[α] : α ∈ E(∗)
}

together with the set function c : A → [0,∞) defined by

c([α]) =
1

2|α| .

(Recall the notation |α| for the length of the string α.)

Proposition 5.5.1. The method I outer measure M1/2 constructed using this
function c is a metric outer measure and satisfies M1/2([α]) = c([α]) for all
α ∈ E(∗).

Proof. Write A =
{

[α] : α ∈ E(∗) }, Aε = {D ∈ A : diam D ≤ ε }. Let Nε

be the method I measure defined by the set function c restricted to Aε. If
D ∈ Aε, then of course c(D) ≥ M1/2(D), so by the Method I theorem,

Nε(A) ≥ M1/2(A)

for all A. Therefore the method II measure N defined by

N(A) = lim
ε→0

Nε(A)

satisfies N(A) ≥ M1/2(A).
Note that, for any α ∈ E(∗), if k is the length |α|, then we have

c([α]) =
1
2k

=
1

2k+1
+

1
2k+1

= c([α0]) + c([α1]).

Applying this repeatedly, we see that, for any ε > 0, any set D ∈ A is a finite
disjoint union D1 ∪ D2 ∪ · · · ∪ Dn of sets in Aε with c(D) =

∑
c(Di). This

means that Nε(D) ≤ c(D), so by the Method I theorem, Nε(A) ≤ M1/2(A)
for all sets A. So N(A) ≤ M1/2(A)

Therefore M1/2 = N is a method II outer measure, so it is a metric outer
measure. 
�

Exercise 5.5.2. Let h : E(ω) → R be the “base 2” addressing function defined
on p. 14. If A ⊆ E(ω) is a Borel set, then M1/2(A) = L(h[A]).
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Measures on String Spaces

Let E be a finite alphabet with at least two letters. Consider the space E(ω)

of infinite strings. This space is a metric space for many different metrics
�. But all of the metrics constructed according to the scheme in Proposi-
tion 2.6.5 produce the same open sets. A countable base for the open sets is{

[α] : α ∈ E(∗) }. Also E(ω) is a compact ultrametric space. An important
feature of all these metrics is limk→∞ diam[σ�k] = 0 for each σ ∈ E(ω).

Exercise 5.5.3. It follows that limk→∞
(
sup
{

diam[α] : α ∈ E(k)
})

= 0.

Suppose a non-negative number wα is given for each finite string α. Under
what conditions is there a metric outer measure M on E(ω) with M([α]) = wα

for all α? Since it is a metric outer measure, the open sets [α] are measurable,
so M is additive on them. Now the set [α] is the disjoint union of the sets [β]
as β ranges over the children of α (that is, β = αe for e ∈ E).

Theorem 5.5.4. Suppose the non-negative numbers wα satisfy

wα =
∑

e∈E

wαe

for α ∈ E(∗). Then the method I outer measure defined by the set function
c([α]) = wα is a metric outer measure M on E(ω) with M([α]) = wα.

Proof. Write A =
{

[α] : α ∈ E(∗) }, Aε = {D ∈ A : diam D ≤ ε }. Let Nε

be the method I measure defined by the set function c restricted to Aε. If
D ∈ Aε, then of course c(D) ≥ M(D), so by the Method I theorem,

Nε(A) ≥ M(A)

for all A. Therefore the method II measure N defined by

N(A) = lim
ε→0

Nε(A)

satisfies N(A) ≥ M(A).
Note that, for any α ∈ E(∗), we have

c([α]) = wα =
∑

e∈E

wαe =
∑

e∈E

c
(
[αe]
)
.

Applying this repeatedly, together with Exercise 5.5.3, we see that, for any
ε > 0, any set D ∈ A is a finite disjoint union D1 ∪ D2 ∪ · · · ∪ Dn of sets in
Aε with c(D) =

∑
c(Di). This means that Nε(D) ≤ c(D), so by the Method

I theorem, Nε(A) ≤ M(A) for all sets A. So N(A) ≤ M(A).
Therefore M = N is a method II outer measure. So we may conclude that

it is a metric outer measure. 
�
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How should we formulate the corresponding theorem for the path spaces
E

(ω)
v defined by a directed multigraph (V,E, i, t)? We will define measures for

each of the spaces E
(ω)
v . We only need to define one of them at a time.

Fix a vertex v. Suppose nonnegative numbers wα are given, one for each
α ∈ E

(∗)
v . They should (of course) satisfy

wα =
∑

i(e)=t(α)

wαe

for α ∈ E
(∗)
v . Note that this has consequences for the troublesome exceptional

cases that came up when we were defining the metric. If α has no children,
then (interpreting an empty sum as 0), we see that wα = 0. Similarly, if α has
only one child β, then wα = wβ .

Exercise 5.5.5. Suppose the non-negative numbers wα satisfy

wα =
∑

i(e)=t(α)

wαe

for α ∈ E
(∗)
v . Then the method I outer measure defined by the set function

c([α]) = wα is a metric outer measure M on E
(ω)
v with M([α]) = wα.

5.6 *Remarks

Henri Lebesgue’s measure and integration theory dates from about 1900. It
is one of the cornerstones of twentieth century mathematics. I have not dis-
cussed integration at all, in order to reduce the amount of material to its bare
minimum. (My more advanced text [18] develops integration using the same
ideas.) The more abstract measure theory was developed by many others,
such as Constantin Carathéodory, during the early 1900’s. Theorem 5.5.4
on the existence of measures on the string spaces is due essentially to A. N.
Kolmogorov.

The σ-algebra F generated by a family D of sets (as in Theorem 5.2.1) is
a complicated object to describe constructively. The proof given for 5.2.1 has
the advantage of not requiring such a constructive description. Certainly F

contains all countable unions ⋃

i∈N

Di

with Di ∈ D; it contains complements of those unions; it contains countable
intersections ⋂

i∈N

Ei

where each Ei is either a countable union or a complement of a countable
union. But that may not be everything in F. (See, for example, the proof of
Theorem (10.23) in [34].)
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An example of a set in the line not measurable for Lebesgue measure may
be found in many texts. For example: [7, pp. 36–37], [11, Theorem 1.4.7], [34,
(10.28)], or [58, Chap. 3, Sect. 4].

Exercise 5.3.5: k = |b|2.
Exercise 5.5.2. Both measures are method I measures; use the Method I

theorem twice, once to prove an inequality in each direction.

O, wiste a man how manye maladyes
Folwen of excesse and of glotonyes

He wolde been the moore mesurable
—G. Chaucer, The Pardoner’s Tale
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