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Abstract 

The characteristic functions of relaxin are associated with female reproductive tract physi-
ology. These include the regulation of biochemical processes involved in remodeling the 
extracellular matrix of the cervix and vagina during pregnancy and rupture of the fetal 

membranes at term. Such modifications enable the young to move unimpeded through the birth 
canal and prevent dystocia. However, relaxins physiological actions are not limited to late gesta-
tion. New functions for this peptide hormone in implantation and placentation are also emerging. 
Relaxin promotes uterine and placental growth and influences vascular development and prolifera-
tion in the endometrium. This chapter provides an overview of the current Uterature on relaxin 
physiology in the uterus, cervix and vagina of pregnant females and the impact on fetal health. It 
also outlines the potential mechanisms of relaxin action, particularly in the cervical extracellular 
matrix and uterine endometrium. 

Introduction 
A role for the peptide hormone relaxin in female reproductive tract physiology was first 

described by Hisaw in 1926. He injected serum from pregnant guinea pigs into virgin guinea 
pigs and observed a relaxation of the pubic symphysis.̂  This allows the two innominate bones to 
widen and facilitate passage of the fetus with its relatively large head through the pelvic girdle. 
These experiments generated the concept that relaxin was an important hormone for successful 
parturition and deUvery of live young. It was not until the 1970s, when highly purified porcine 
and rat relaxin became available, that experiments could begin to investigate the physiological ef-
fects of relaxin treatment in the female reproductive tract (reviewed in ref 2). Many studies used 
ovariectomized pigs and rats, with hormone replacement paradigms. In the 1980s, Sherwood 
and colleagues developed a monoclonal antibody to rat relaxin (MCAl) and used it to neutralize 
endogenous relaxin in pregnant rats. Both these approaches showed that in the absence of relaxin 
there were substantial delays in the onset of labor, prolonged duration of delivery and a greater 
incidence of neonate mortality at birth. '̂̂  Relaxin gene knockout mice (RLnl'̂ ') were developed 
by Zhao and colleagues in 1999,^ and provided an equally valuable tool to further investigate the 
role of relaxin in reproductive tract physiology. The Rlnl'^ females give birth to live young without 
any apparent sign of dystocia, despite having abnormal cervical and vaginal morphology and no 
elongation of the pubic symphysis.^ This illustrates the complexity in the study of relaxin physiol-
ogy. There is considerable variation in the sources and secretion of relaxin during pregnancy, as 
well as the localization of the receptors for relaxin. Many actions of relaxin are specific to certain 
species and to date, there are no obvious clinical conditions in pregnant women associated with 
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relaxin deficiency/'^ However, relaxin treatment in pregnant animals clearly has several effects 
that could be perceived as beneficial for a successful pregnancy as well as facilitating the process 
of labor. This review outlines the current literature on relaxin physiology in the cervix, vagina 
and uterus of pregnant females, with an emphasis on the potential mechanisms of relaxin action 
in each tissue. 

Relaxin Receptors 
The receptor for relaxin is a leucine-rich repeat containing, heterotrimeric guanine nucleo-

tide binding (G-protein)-coupled receptor (GPCR) known as LGR7,̂ '̂ ^ recently assigned the 
nomenclature RXFPl.^^ Activation of LGR7 by its ligand stimulates a Gj-cAMP-protein kinase 
A-dependent signaling pathway.̂ '̂̂ ^ Localization of relaxin receptors in the female reproductive 
tract initially reUed on biotinylated porcine relaxin and radiolabeled ligand. Relaxin binding sites 
were found mainly in epithelial cells in the cervix and vagina of rats and pigs,̂ '̂̂ ^ and the myome-
trium of the rat uterus.̂ '̂̂ ^ Once the human, mouse and rat relaxin receptors (LGR7/Lgr7) were 
cloned,̂ *̂  ̂ '̂ ^ researchers were able to analyze the expression and localization of Lgr7 more accurately. 
In the mouse, staining for Lgr7-specific p-galactosidase activity was identified underneath the basal 
layer of the vaginal epithelium and in the circular layer of the myometrium.̂ ^*^^ We have shown that 
Lgr7 mRNA is predominantly expressed in the myometrium compared with the endometrium or 
placenta of pregnant mice, with a down-regulation in myometrial Lgr7 at term.̂ -̂̂ ^ The receptor 
is also highly expressed in the cervix of pregnant mice, but surprisingly, there is no surge in Lgr7 
mRNA concentrations in the later stages of gestation to coincide with the dramatic changes in 
stromal extracellular matrix remodeling. Using in situ hybridization, we locaUzed Lgr7 mRNA 
in the mouse cervix and vagina to the stromal tissue underlying the basal layer of epithelial cells 
(Fig. 1). Lgr7 was not highly expressed within the epithelium, which contradicts data from previ-
ous studies in the rat and pig.̂ '̂̂ ^ However, the luminal epithelium is the predominant cell type in 
the human cervix and vagina (obtained from premenopausal hysterectomy patients) that expresses 
relaxin binding sites.̂ ^ Relaxin also binds to the circular and longitudinal smooth muscle layers and 
vascular smooth muscle cells associated with blood vessels in the human cervix and vagina.̂ ^ 

The pattern of uterine LGR7 expression in primates and humans is very similar to the cervix 
and vagina but there is no consensus between studies on the predominant region expressing relaxin 
receptors. Immunoreactive LGR7 has been localized to the endometrial stromal and epithelial com-
partments in human and marmoset monkey uterus,^'^^ with more intense staining in the secretory 
phase of the cycle. Autoradiography studies contradict this finding and show ^^P-labeled human 
relaxin predominantly in the glandular and luminal epithelium (Fig. 2A in ref. 28). Furthermore, 
LGR7 mRNA expression is significantly higher in isolated human glandular epithelial and decidual 
cells compared with endometrial stromal cells.̂ ^ Localization of biotinylated porcine relaxin in 
the uterus of hysterectomized women was similarly restricted to luminal and glandular epithelial 
cells,̂ ^ although a few cells in the stromal extracellular matrix were also positive for relaxin bind-
ing sites. Both human relaxin binding sites and LGR7 mRNA in the endometrium are markedly 
up-regulated during the early secretory phase of the cycle (Fig. 2B in ref 28). Only one study has 
identified LGR7 expression in human cultured myometrial cells,̂ ^ althot^h biotinylated porcine 
relaxin binding was shown in the myometrium of the marmoset monkey^^ and human.^^ Another 
proven target tissue for relaxin action in humans is the fetal membranes of late gestation. Initial 
studies with biotinylated porcine relaxin revealed prominent labeling in the amnion epitheUal 
cells and placental villi projecting into the lacuna system, shown at high magnification to be in 
the syncytiotrophoblast cells.̂ ^ The recent work of Lowndes et al̂ ^ demonstrated specific LGR7 
gene transcripts and immunoreactive LGR7 in the human decidua and chorionic cytotrophoblast, 
with very low expression of the receptor in the amniotic epithehum. The differences between 
studies may be explained by the variety of techniques used and issues associated with specificity 
of antibodies, biotinylated molecules and radiolabeled ligands, although all studies cited include 
appropriate negative controls. Another explanation is that these discrepancies may be due to the 
expression of various LGR7 splice variants which may or may not be fimctional.^^ Future LGR7 



36 Relaxin and Related Peptides 

localization studies should include concurrent gene and protein analysis of the known full-length 
functional LGR7 variant to resolve the questions related to temporal and spatial expression of these 
receptors in the human uterus throughout the cycle and during pregnancy. 

Figure 1. Localization of Lgr7 mRNA by in situ hybridization in the cervix (A) and vagina 
(B) of Rln1+̂ + mice on day 14.5 gestation. Positive hybridization signals (arrow) are present 
in the stromal tissue underlying the basal layer of epithelial cells. S, stroma; E, epithelium; 
L, lumen. 
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Effects of Relaxin on the Cervix 
Several functional studies in rodents and pigs have demonstrated an important role for relaxin 

in the progressive softening of the cervix in the second half of gestation. There is a substantial re-
duction in cervical wet weight and extensibility in relaxin-deficient rats, with a higher incidence of 
neonate mortality.̂ '̂ '̂ '̂̂ "̂  Rlnl'^' and Lgr7'^' mice also have abnormal cervical morphology but are 
able to give birth to live young.̂ *̂ '̂̂ ^ The most obvious cervical phenotypes in pregnant Rlnl'^' mice 
are the increased density of stromal extracellular matrix (particularly collagen) and a lack of epi-
thelial proliferation (Fig. 3). These phenotypes are reversed by treatment with exogenous relaxin.̂ ^ 
Morphological changes in the cervix induced by relaxin treatment are the increased area of luminal 

Figure 2. A) Autoradiographic localization of pP]-relaxin binding sites using photographic 
emulsion on a slide mounted section of human uterus obtained during the early to mid secre-
tory phase. The dark field image shows silver grains in the glandular (GE) and luminal epithelial 
(LE) cells of the endometrium. B) LGR7 mRNA concentrations in the endometrium at five 
phases of the menstrual cycle. EP: early proliferative, ES: early secretory, MS: mid secretory, 
LS: late secretory, M: menstrual phase of the cycle. Adapted with permission from C.P. Bond 
et al. J Clin Endocr Metab; 89:3477-3485. ©2004 The Endocrine Society. 
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involutions and dispersal of collagen fibers, particularly in these involutions. There is also a marked 
proliferation of the epithelium, greater numbers of vacuolated epitheUal cells and a large increase 
in the amount of a mucopolysaccharide lining the epithelium.^^ Similar findings were described 
in the ovariectomized rat and pig relaxin-replacement models, but in addition, relaxin increased 
the percentage hydration and glycosaminoglycan content in the cervix. '̂̂ ^ 

Current theories on the mechanisms of relaxin action in the cervix focus predominantly on 
collagen dispersal and/or degradation. Relaxin treatment has little effect on cervical collagen 
content in pregnant ovariectomized rats or pigs,̂ '̂ ^ Similarly, there is no difference in the percent-

Flgure 3. Collagen fibre density in the cervix of pregnant (A) RlnU^^and (B) RlnV 
day 16.5 gestation. S, stroma; E, epithelium; L, lumen. 

mice on 
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Table /. The in vivo effects of relaxin deficiency and relaxin treatment on collagen 
and njatrix metalloproteinase (MMP) gene expression in the cervix of late 
pregnant RlnV^' mice 

Rlnr^ 

Gestation Term 

Rlnl^ V RlnV^* Rlnl-^- + Relaxin 

Collagen 1 

Collagen III 

TGFp-1 

MMP-13 
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MMP-2 
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t i 
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t 
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t (day 18.5 only) 
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t (day 18.5 only) 
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t 
^-> 
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Not measured 

<-> 

age hydroxyproline content in the cervix of late pregnant Rlnl^^^ and Rlnl'^' mice.̂ ^ These data 
are explained, in part, by the increased expression of ai(I) and ai(III) collagen in the cervix 
throughout gestation in Rlnl^^^ and Rlnl^ mice. The only difference between the genotypes was 
observed on day 18.5 gestation when ai(I) collagen mRNA levels decrease significandy in Rlnl^^^ 
mice but remain high in Rlnl'^' mice.̂ ^ These data suggest that de novo collagen is synthesized in 
increasing quantities in the cervix throughout gestation and that a lack of relaxin does not result in 
abnormally high amounts of collagen in these tissues. However, administration of human relaxin 
to pregnant Rlnl'^' mice caused a significant decrease in ai(I) collagen gene expression in the 
cervix on day 18.5 gestation,^^ demonstrating the ability of exogenous relaxin to reduce collagen 
synthesis. Relaxin may, therefore, be capable of suppressing collagen synthesis by a direct action 
on cervical fibroblasts. 

The other common hypothesis of relaxin action involves activation of collagen degrading en-
zymes in the extracellular matrix. Relaxin stimulates matrix metalloproteinase (MMP)-l activity 
in cultured guinea pig cervical cells,^ and MMP-1, gelatinases and stromelysin-1 in human lower 
uterine segment fibroblasts'^^ and normal human cervical stromal cells."̂ ^ These results using in 
vitro cell culture systems demonstrated that relaxin is a positive regulator of MMP expression. 
But in the cervix of wild type mice, there is no correlation between increased MMP expression 
and changes in tissue architecture. Only the gelatinase MMP-2 mRNA levels are greater at term 
compared with earlier stages of gestation. There are significant decreases in MMP-13 and MMP-7 
expression and no change in MMP-9 and MMP-3. The situation in pregnant Rlnl'^'mice is reversed. 
Expression of all MMPs examined, except MMP-2, is significandy higher compared with Rlnl^^^ 
mice (Table 1). Despite this increased level of MMP expression in the cervix of Rlnl'^' mice, there 
is no clear histological evidence of collagen degradation in this tissue. Interestingly, when pregnant 
Rlnl'^'mice are treated exogenously with a chronic infusion of human relaxin, there are significant 
decreases in cervical MMP-13 gene expression and no effects on MMP-2.^^ These findings are not 
dissimilar from earlier work in the pig cervix which described negative effects of relaxin treatment 
on tissue-associated MMP-2 and MMP-9 activity and no difference in gelatinase protein expression 
between control and relaxin treated animals."̂ ^ Recent data in the rhesus monkey demonstrated 
that relaxin negatively regulates endometrial MMP-1 and MMP-3 protein expression in vivo.^ 
These data are in contrast to the relaxin-induced increases in MMP-2 reported in nonreproductive 
tissues.̂ '̂"̂ ^ One problem with this data is that it only demonstrates MMP activity. But this gives no 
measure of the interaction between relaxin and MMP production, so the interpretation is limited 
to an association with MMP activation. The one exception is the work of Conrad and colleagues 
who clearly demonstrated the positive effects of relaxin treatment in male rats on MMP-2 gene 
and protein expression and MMP-2 activity in small renal arteries.̂ '̂̂ ^ 
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The processes by which MMPs regulate the extracellular matrix are complex and multifacto-
rial. One aspect is the role of tissue inhibitors of metalloproteinases (TIMPs), which directly 
regulate MM? activity. In the pig uterine cervix, relaxin enhanced expression of TIMP-1 and 
TIMP-2, whereas expression of both TIMPs in the vaginal cervix did not differ between control 
and relaxin-treated animals.̂ ^ Relaxin treatment also increases TIMP-1 in the endometrium of 
the rhesus monkey.^ The expression of TIMPs in reproductive tissues of Rlnl'^' mice has not been 
assessed, but perhaps inhibitor activity of TIMPs is enhanced. In summary, relaxin s interactions 
with MMPs remain an area of controversy but in the in vivo data do not support a stimulatory 
effect of relaxin on MMP expression in reproductive tissues. It is, therefore, unlikely that relaxin 
acts via MMPs to reduce the density of collagen fibers in the cervix. 

Structural changes in the cervix during pregnancy are not limited to the extracellular matrix. 
The proliferative activity of the cervical epithehum increases at two well-differentiated time points 
in the pregnant rat.̂ '̂̂ ^ The first occurs in mid-gestation and the second close to delivery. The 
effect of this cell proliferation is to increase the height of the luminal epithelium. In the cervical 
stroma, cell proliferation is generally much lower compared with the epithelium, but there is a net 
increase in cell number because very few cells undergo apoptosis.^^ This cervical cell proliferation is 
attributed, in part, to a decrease in the rate of programmed cell death. The rate of apoptosis in both 
cervical compartments varies between stages of pregnancy. Lee et al̂ ^ showed that the apoptotic 
index in the cervical epithehum was approximately 2% in early gestation in the rat, declined to 
approximately 0.5% in mid-late gestation and increased dramatically to 18% by the second day 
after delivery. Similarly, Ramos et al̂ ^ reported that the apoptotic aaivity in the cervical epithelium 
never exceeded 1.8%, with the highest scores for programmed cell death on day 5 and the lowest 
indices between days 13 and 23. A dramatic increase in epithelial apoptosis was observed on the day 
after parturition, reaching values of 9%.̂ ^ Stromal compartments had increased apoptotic indices 
postpartum, as seen in the epithelium. But the apoptotic rate in the cervical stroma was always 
lower than in the epithelium and was not observed in endothelial cells. These data strengthen the 
current hypothesis that apoptosis plays a major role in regulating cervical epithelial and stromal 
cell prohferation during pregnancy. 

Relaxin plays an important function is stimulating cell proliferation and reducing apoptosis 
in the cervical epithehum and stroma during late pregnancy.̂ -̂̂ "̂  It promotes a marked increase in 
the accumulation of new epithelial and stromal ceUs.̂ ^ One explanation of these data is the direct 
effect of relaxin on programmed cell death. Immunoneutralization of endogenous relaxin in late 
pregnant rats with MCAl increased the rate of apoptosis in cervical cells.̂ ^ The effect was greatest 
in late pregnancy when the rates of apoptosis in cervical epitheUal cells and stromal cells were up 
to 10-fold higher in MCAl-treated rats compared with controls.^^ 

Effects of Relaxin on the Vagina 
Many of the actions of relaxin in the vagina are similar to those in the cervix. Early stud-

ies demonstrated that relaxin promoted growth of the vagina in pregnant rats, mice and pigs 
(reviewed in ref 2). This was shown by the increase in wet and dry weights and vaginal collagen 
content.^^ In both MCAl-treated rats and Rlnl''' mice, the collagen fibers do not disperse and 
there is a marked lack of epitheUal proliferation.̂ '̂̂ ^ Administration of relaxin to RlnT^' mice 
reverses this phenotype and in particular stimulates a dramatic increase in epithelial cell number. 
The recent work of Sherwood and colleagues has clearly demonstrated that the increase in vaginal 
epithelial cell number in the late pregnant rat involves an inhibition of apoptosis.^^ A physiological 
role for relaxin in the vagina has not been defined as such, but the relaxin-induced morphological 
changes are likely to facilitate the process of parturition. 

Effects of Relaxin on the Uterus 
Relaxin has been dismissed as an important player in uterine physiology largely because pups 

of Rlnl'^' and Lgr7'̂ ' mice are born alive, with no delay and within normal birth weights.̂ '̂ ^ 
Furthermore, women who become pregnant through ovum donation have normal pregnancies 
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Table 2. A summary of the putative factors involved in the different mechanisms of 
relaxin action in the uterus associated with angiogenesis, implantation and 
growth 

VEGF 

lnterleukin-11 

IGF-I, IGF-II 

IGFBPs 

E-cadherin 

Connexins 

Prolactin 

ER alpha 

ER beta 

PR 

Stromal Cells 
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r 
-«• but t with MPA^ '̂ 
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Epithelial Cells 

t & i'' 

76,78 

•69 

Decidual Cells 

•29,78 

•78 

Uterus 

•100 

t secretion only^^ 

t secretion only^^ 
•69 

•68 

j 4 4 ^ ^ 2 4 , 7 1 

^ 4 4 ^ ^24,71 

^44 

despite having no circulating relaxin.̂ ^ However, it is important to recognize that experiments 
involving administration of exogenous relaxin have yielded some important functional data. 
These actions of relaxin in the endometrium, myometrium and placenta have been reviewed ex-
tensively,̂ *̂ '̂ ^ so this section will focus on the proposed mechanisms of relaxin action, particularly 
in the endometrium (Table 2). 

Uterine Growth 
The growth effects of relaxin on the uterus have been well described in many species. Relaxin 

causes an increase in water content, protein, collagen and glycogen concentration in the uteri 
of estrogen primed, nonpregnant rats and an increase in uterine weight.̂ '̂̂ ^ In addition, relaxin 
promotes uterine growth in the prepubertal^^'^ and neonate pig.̂ ^ There is evidence to surest 
that the growth effects of relaxin in prepubertal pigs are mediated by insulin-like growth factors 
(IGFs) and IGF-bindingproteins (IGFBPs).^'^^ Uterine fluids collected from relaxin-treated gilts 
contained significantly higher amounts of IGF-I, IGF-II, IGFBP-2 and IGFBP-3 compared with 
controls.^ However, relaxin administration did not alter IGF-I or-II gene expression in uterine 
tissue or systemic IGFs and IGFBPs. These data demonstrate a mechanism by which relaxin could 
contribute to uterine and conceptus growth in the early establishment of pregnancy. The work of 
Bagnell and colleagues in the prepubertal pig model also demonstrated relaxin-induced increases 
in gap junction proteins connexins and the glycoprotein E-cadherin, both thought to be important 
mediators of uterine growth and remodeling. Specifically, relaxin administration enhanced the 
expression of connexin-26, -32 and -43.̂ ^ It was suggested by these authors that relaxin may mediate 
cell-cell communication between endotheUal cells and the surrounding stroma and smooth muscle 
by increasing connexin protein expression. Relaxin-induced uterine growth in the prepubertal pig 
is also associated with a significant increase in epithelial cadherin (E-cadherin) protein and mRNA 
levels.̂ ^ This calcium-dependent adhesion molecule is thought to mediate cell-to-cell recognition 
and maintain tissue integrity. The prepubertal pig is an interesting model because it lacks the local 
or systemic steroid hormones progesterone and estradiol Therefore, it does not necessarily replicate 
the endocrine environment of pregnancy in many species. However, it has highlighted a number 
of novel mechanisms through which relaxin is capable of producing growth effects in the uterus. 

In other animal models, relaxin s growth-promoting effects in the uterus are largely dependent 
on estrogen and progesterone. When administered with these steroids, relaxin stimulates growth 
by causing both cellular hyperplasia and hypertrophy.^^ More recent studies demonstrated that 
the uterotropic effects of relaxin are blocked by the specific estrogen receptor (ER)a antagonist 
ICI 182,780 in immature ovariectomized rats,̂ ^ and that relaxin treatment decreases uterine ERp 
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expression within 6 hours, but has no effect on ERa7^ Treatment of RJnl''' mice from day 12.5 
gestation with a continuous infusion of recombinant human relaxin for 6 days has no effect on 
ERa gene expression but causes a significant down-regulation in ERP expression and reverses the 
ER(3 phenotype observed in Rln 1''' mice.̂ "̂  These data mirror the data of Pillai et al, ^̂  and support 
their idea that a down-regulation in ERP expression by relaxin may be essential to allow for full 
activation and/or expression of ERa in the uterus. Several groups have reported that both ER^l 
and ER|32 inhibit ERa-mediated transcriptional activity or signaling/ '̂̂ ^ so a relaxin-induced 
down-regulation of ERP may be a prerequisite for estrogen and other ER activators to stimulate 
their target tissues. However, this idea was recendy challenged in ovariectomized rhesus monkeys 
that were primed with exogenous estradiol and progesterone in a manner that simulated a human 
menstrual cycle. Relaxin treatment significantly decreased uterine protein levels of ERa and both 
isoforms of the progesterone receptor, but had no effect on ERp."^ These authors concluded that 
relaxin may be responsible for the decline in endometrial expression of ERa and progesterone 
receptors that occurs during the late secretory phase of the human cycle. As with many responses to 
relaxin, there are large differences between species. It is possible that the variation in the response 
of ERs to relaxin treatment is due to the different experimental paradigms used, including stage of 
reproductive cycle and circulating steroid hormone levels. Furthermore, it is yet to be established 
how the peptide hormone activates steroid receptors in vivo. 

Decidualization 
Early studies using human endometrial stromal cells demonstrated that relaxin stimulates 

prolactin secretion after administration of relaxin.̂ ^ Relaxin does not result in endometrial stromal 
cell growth, only increases prolactin production.^^ In order for relaxin to have an effect in stromal 
cells, a progestin (MPA) needs to be present. Relaxin also causes a transient stimulation of prolactin 
and IGFBP-1 mRNA within the endometrium. However, when relaxin was administered with 
MPA, higher mRNA levels were measured then if cells were treated with MPA alone or had MPA 
withdrawn.^^ More recent studies have further demonstrated relaxins potential involvement in 
decidualization as treatment of human endometrial stromal cells with the hormone increases inter-
leukin-11 mRNA expression and secretion via cAMP/protein kinase A pathways.^ These authors 
proposed that relaxin acts in synergy with prostaglandin E2 to stimulate interleukin-11 production 
in the mid-late secretory phase of the cycle, before prolactin is detected and may therefore initiate 
endometrial cell differentiation. In other work, relaxin promotes induction of IGFBP-1 by binding 
to the cAMP regulatory element (CRE) in the IGFBP-1 promoter.^^ However, a progestin (MPA) 
needs to be administered together with relaxin,̂ ^ or stromal cells need to be transfected with an 
LGR7 expression vector, in order to increase IGFBP-1 expression.̂ ^ Tseng and colleagues also re-
ported that relaxin increased the phosphorylation of CRE binding protein, indicating that relaxin 
activates the protein kinase A system. The complex nature of relaxin s interaction with the IGFBP-1 
promoter is further demonstrated by studies using protein kinase A inhibitors. Relaxin-induced 
IGFBP-1 promoter activity was inhibited by the cAMP dependent protein kinase A inhibitor, 
H-89. Similarly, activation of prolactin by relaxin appears to be mediated through the region in the 
prolactin promoter containing multiple CCAAT/enhancer-binding proteins (C/EBP) binding 
sites.̂ ^ Prolactin promoter activity was also inhibited by protein kinase A inhibitors. In summary, 
Tseng and colleagues proposed that relaxin acts via protein kinase A-dependent signaling pathways 
to activate two markers of decidualization, IGFBP-1 and prolactin. 

Uterine Vascularization 
New roles for relaxin as a vascular hormone within the uterus have also been established. 

Relaxin promotes endometrial and placental growth,̂ '̂ ^ and may increase uterine blood flow 
in early pregnancy.̂ ^ There are two explanations for these effects. The first is that relaxin causes 
vascular development or proliferation (angiogenesis), a view supported by in vitro cell culture 
studies using human endometrial stromal cells. The current hypothesis is that relaxin regulates 
uterine angiogenesis via vascular endothelial growth factor (VEGF). Relaxin upregulates VEGF 
gene expression and secretion from human endometrial stromal and glandular epithelial cells ̂ '̂ ^̂ ^ 



Relaxin Physiology in the Female Reproductive Tract during Pregnancy 43 

by activating the VEGF promoter region.̂ ^ This may occur via ERa, hypoxia inducible factor 1 
alpha (HIF-1 a) or SP1 }^'^^ Increased vascularization in prostate xenograft tumors that over-express 
human relaxin is also associated with elevated VEGF gene expression.̂ ^ 

This work on angiogenesis was extended to an in vivo primate model, to demonstrate that 
relaxin treatment stimulated new blood vessel formation in the endometrium (Fig. 4 in ref. 44). 
These data strengthened much of the early work in ovariectomized rats and monkeys treated with 
porcine relaxin in combination with estrogen. It was only when animals were pretreated with 
estrogen that relaxin increased arteriole number per unit area and dilated blood vessels on the 
endometrial luminal surface.̂ ^ It also caused a thickening of blood vessels and the proliferation of 
endothelial cells in arterioles and capillaries in the endometrium.^^^^ Relaxin increases vasculariza-
tion in immature rats by enlarging the diameter of arteries and veins in the area between the circular 
and muscular sections of the uterus, thus providing increased blood flow.^^ This data was placed 
in context of human physiology in a phase II/III clinical trial for the treatment of scleroderma. 
Women receiving human relaxin reported heavier or irregular menstrual bleeding, indicating 
increased endometrial vascularization.̂ '̂̂ ^ 

Relaxin has also been implicated in the regulation of uterine blood flow. A direct effect of 
the peptide on uterine artery relaxation has been shown in mid-pregnant rats,^ and it increases 
uterine artery blood flow in conscious, ovariectomized nonpregnant rats.̂ ^ Furthermore, in vitro 
analysis of uterine artery vasodilation demonstrated that treatment with relaxin increased vessel 
diameter in response to elevated intraluminal pressure.̂ ^ As discussed previously, relaxin binding 
sites are localized to blood vessels in the pig and human uterus,̂ '̂̂ '̂̂ ^ and on blood vessels within 
the human amnion and placental viUi.̂ ^ Recent work has shown Lgr7 gene and protein expression 
in the aorta, mesenteric and small renal arteries of nonpregnant rats and mice.̂ ^ Therefore, relaxin 
could be acting directly on Lgr? in uterine arteries to mediate vasodilation and increase uterine 
blood flow to the placenta. 
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Figure 4. The effects of relaxin 
treatment on arteriole number in 
the endometrium of ovariecto-
mized, steroid-primed rhesus mon-
keys. Reprinted with permission 
from L.T. Goldsmith et al. PNAS; 
101:4685-4689. ©2004The National 
Academy of Sciences (USA). 
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Placental Growth 
In humans, relaxin is produced in low concentrations by intrauterine tissues such as the amnion, 

chorion, decidua, basal plate and placental trophoblast.^^ Therefore it is likely that relaxin acts as an 
autocrine or paracrine hormone to influence placental tissue growth.̂ ^ Relaxin stimulates IGF-II 
to cause proliferation of human anmiotic epithelial (WISH) cells in vitro.̂ ^ Relaxin-treated WISH 
cells failed to proliferate when an antibody for IGF-II was added.^° In addition, an in vivo com-
ponent of this study identified that an increase in relaxin mRNA expression levels was correlated 
with a larger fetal membrane surface area and neonatal birth weight.̂ ^ Small for gestational age 
infants have smaller placentas than controls, signifying that placental size is an indicator of fetal 
growth rate.̂ ^ In conclusion, Millar et al su^ested that relaxin could be an indicator of normal 
placental size and fetal growth rate. Of interest, increased risk of spontaneous abortion in horses 
is associated with placental insufficiency and low placental relaxin levels,̂ '̂ ^ especially in mares 
with twin fetuses.^ '̂̂  No study to date has examined placental growth or endometrial function 
in relaxin-deficient mice, nor have measurements been taken of fetal growth during pregnancy. 
Preliminary data from our laboratory indicate a lower conceptus weight in early gestation in 
Rlnl'^' mice and a7% reduction in fetal weight in Rlnl'^' mice on day 18.5 gestation (1 day before 
expected births in mice). However, relaxin is not essential for implantation because fetuses develop 
to term and the average litter size is not different fi-om wild-type mice.^ 

Summary 
In order for pregnancy to be maintained until the appropriate time for parturition, many 

changes need to take place within the maternal reproductive tract. During early pregnancy, the 
endometrial stromal cells decidualize around the time of implantation and the placenta forms. In 
addition, uterine blood flow increases and the vascular bed proliferates to maintain a good supply 
of oxygen and nutrients to the fetus. The uterus also increases in size to accommodate the growing 
fetus and the myometrium remains quiescent to prevent premature contraaions. At the end of 
pregnancy, the cervix softens and ripens to enable it to dilate during birth and the myometrium 
switches to a contractile apparatus. Although not common to all species, relaxin has been shown 
to play key roles in all these aspects of female reproductive physiology. In some species, a lack of 
relaxin can have serious implications for the maintenance of pregnancy and the birth of live young. 
This review has highlighted that relaxin treatment in a variety of pregnant animals has several 
stimulatory effects on growth factors, angiogenic factors and extracellular matrix components 
that could be perceived as beneficial for establishing and maintaining a successful pregnancy as 
well as facilitating the process of labor. 
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