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Measurable Chromatic Number of the Plane

9.1 Definitions

As you know, the length of a segment [a,b], a < b, on the line E1 is defined as
b − a. Area A of a rectangle R = [a1, b1] × [a2, b2], ai < bi on the plane E2 is
defined as A = (b1 −a1)(b2 −a2). The French mathematician Henri Léon Lebesgue
(1875–1941) generalized the notion of area to a vast class of plane sets. In place of
area, he used the term measure. For a set S in the plane, we define its outer measure
μ∗(S) as follows:

μ∗(S) = inf
∑

i

A(Ri ), (9.1)

with the infimum taken over all coverings of S by a countable sequence {Ri } of
rectangles. When the infimum exists, S is said to be Lebesgue-measurable or – since
we consider here no other measures—measurable set—if for any set B in the plane,
μ∗ (B) = μ∗ (B ∩ S) + μ∗ (B\S). For a measurable set S, its measure is defined by
μ (S) = μ∗(S).

Any rectangle is measurable, and its measure coincides with its area. It is shown
in every measure theory text that all closed sets and all open sets are measurable.
Giuseppe Vitali (1875–1932) was first to show that in the standard system of axioms
ZFC for set theory (Zermelo–Fraenkel system plus the Axiom of Choice), there are
non-measurable subsets of the set R of real numbers.

We will use the same definition (9.1) for Lebesgue measure on the line E1, when
the infimum is naturally taken over all covering sequences {Ri } of segments. For
measure of S on the line we will use the symbol l(S). Generalization of the notion
of measure to n-dimensional Euclidean space En is straight forward; here we will
use the symbol μn(S). In particular, for n = 2, we will omit the subscript and simply
write μ(S).

9.2 Lower Bound for Measurable Chromatic Number
of the Plane

While a graduate student in Great Britain, Kenneth J. Falconer proved the following
important result [Fal]:
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Falconer’s Theorem 9.1 Let R2 =
4⋃

i=1
Ai be a covering of the plane by four disjoint

measurable sets. Then one of the sets Ai realizes distance 1.

In other words, the measurable chromatic number χm of the plane is equal to 5,
6, or 7.

I found his 1981 publication [Fal1] to be too concise and not self-contained for
the result that I viewed as very important. Accordingly, I asked Kenneth Falconer,
currently a professor and dean at the University of St. Andrews in Scotland, for a
more detailed and self-contained exposition. In February 2005, I received Kenneth’s
manuscript, hand-written especially for this book, which I am delighted to share
with you.

Before we prove his result, we need to get armed with some basic definitions and
tools of the measure theory.

A non-empty collection ·� of subsets of E2 is called σ -field, if ·� is closed under
taking complements and countable unions, i.e.,

∗) if A ∈ ·�, then E2\A ∈ ·�; and
∗∗) if A1, A2, . . . , An, . . . ∈ ·�, then

∞⋃

i=1
Ai ∈ ·�.

Exercise 9.2 Show that any σ -field ·� is closed under countable intersection and set
difference. Also, show that ·� contains the empty set ∅ and the whole space E2.

It is shown in all measure theory textbooks that the collection of all measurable
sets is a σ -field. The intersection of all σ -fields containing the closed sets is a σ -field
containing the closed sets, the minimal such σ -field with respect to inclusion. Its
elements are called Borel sets. Since closed sets are measurable and the collection
of all measurable sets is a σ -field, it follows that all Borel sets are measurable.

(Observe that in place of the plane E2 we can consider the line E1 or an
n-dimensional Euclidean space En , and define their Borel sets.)

The following notations will be helpful:

C(x, r ) – Circle with center at x and radius r ;
B(x, r ) – Circular disk (or ball) with center at x and radius r .

For a measurable set S and a point x , we define the Lebesgue density, or simply
density, of S at x as follows:

D(S, x) = lim
x→0

μ(S ∩ B(x, r ))

μ(B(x, r ))
,

where μ (B(x, r )) is, of course, equal to πr2.

Lebesgue Density Theorem (LDT) 9.3 For a measurable set S ⊂ E2, the density
D(S, x) exists and equals 1 if x ∈ S and 0 if x ∈ R2\S, except for a set of points x
of measure 0.
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For a measurable set A, denote

Ã = {x ∈ A : D(A, x) = 1}.

Then due to LDT, we get μ( Ã
A) = 0, i.e., Ã is ‘almost the same’ as A.27

Observe also that μ (S ∩ B(x, r )) is a continuous function of x for r > 0; therefore,
Ã is a Borel set.

We will define the density boundary of a set A as follows:

�A = {x : D(A, x) �= 0, 1 or does not exist}.

By LDT,

μ(�A) = 0.

You can find on your own or read in [Cro] the proof of the following tool:

Tool 9.4 For a measurable set A ⊂ R2, such that both μ(A) > 0 and μ(R2\A) > 0,
we have �A �= ∅.

Tool 9.5 If R2 =
4⋃

i=1
Ai is a covering of the plane by four disjoint measurable sets,

then
4⋃

i=1
Ãi is a disjoint union with the complement M ≡

4⋃

i=1
�Ai .

Proof follows from Tool 9.4 and the observation that if x ∈ �Ai then also x ∈ �A j

for some j �= i .

The next tool claims the existence of two concentric circles with the common
center in M, which intersect M in length 0.

Tool 9.6 Let M be as in Tool 9.5; there exists x ∈ M such that

l(C(x, 1) ∩ M) = l
(

C(x,
√

3) ∩ M

)
= 0.

x 

y

z 

w 

1 1 

1 

1 1 

Fig. 9.1

27 Here A
B stands for the symmetric difference of these two sets, i.e., A
B = (A\B) ∪ (B\A).
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I will omit the proof, but include Falconer’s insight: “The point of this lemma is
that if we place the “double equilateral triangle” [Fig. 9.1] of side 1 in almost all
orientations with a vertex at x , the point x essentially has “2 colors” in any coloring
of the plane, and other points just one color. (Note |xw| = √

3.)”

Tool 9.7 Let R2 =
4⋃

i=1
Ai be a covering of the plane by four disjoint measurable

sets, none of which realizes distance 1. Let x ∈ M as in Tool 9.6, say without loss

of generality x ∈ �A1 and x ∈ �A2. Then l
(

C(x,
√

3)\( Ã1 ∪ Ã2

)
= 0.

Proof Since x ∈ �A1 and x ∈ �A2, there exists ε > 0 such that

(1) ε <
μ(A1∩B(x,r ))

πr2 < 1 − ε for some arbitrarily small r , and

(2) ε <
μ(A2∩B(x,r ))

πr2 < 1 − ε for some arbitrarily small r .

Consider the diamond (Fig. 9.1) consisting of two unit equilateral triangles xyz
and yzw, where x is the point fixed in the statement of this tool, and y, z, w /∈ M

(this happens for almost all orientations of the diamond, by Tool 9.6). Thus suppose
y ∈ Ãi(y), z ∈ Ãi(z), w ∈ Ãi(w), where i(y), i(z), i(w) ∈ {1, 2, 3, 4}. For
sufficiently small r , say r < r0, we get:

(3) 1 − ε
4 <

μ(Ai(y)∩B(y,r ))
πr2 ≤ 1;

(4) 1 − ε
4 <

μ(Ai(z)∩B(z,r ))
πr2 ≤ 1;

(5) 1 − ε
4 <

μ(Ai(w)∩B(w,r ))
πr2 ≤ 1.

We can now choose r < r0 such that (1) holds (as well as (3), (4), (5)). Let v be
a vector going from the origin to a point in B (0, r ) and consider translation of the
diamond x, y, z, w through v, i.e., to the diamond x + v, y + v, z + v, w + v. Now
(1), (3), (4), (5) imply that

1

πr2
μ

({
v ∈ B(0, r ) : x + v ∈ A1, y + v ∈ Ai(y), z + v ∈ Ai(z), w + v ∈ Ai(w)

})

> ε − ε

4
− ε

4
− ε

4
> 0.

Thus, we can choose v ∈ B (0, r ) such that x + v ∈ A1, y + v ∈ Ai(y), z + v ∈
Ai(z), w + v ∈ Ai(w). Since by our assumption none of the sets Ai , i = 1, 2, 3, 4
realizes distance 1, we conclude (by looking at the translated diamond) that 1 �=
i (y) , 1 �= i (z) , i (y) �= i (z) , i (z) �= i (w), and i (w) �= i (y).

The same argument, using (2), (3), (4), (5) produces 2 �= i (y) , 2 �= i (z) , i (y) �=
i (z) , i (z) �= i (w), and i (w) �= i (y). Therefore, i(y), i(z) are 3 and 4 in some
order, and thus i(w) = 1 or 2, i.e., w ∈ Ã1 or w ∈ Ã2.

By Tool 9.6, this holds for almost every orientation of the diamond. Since |xw| =√
3, we conclude that for almost all w ∈ C(x,

√
3), we get w ∈ Ã1 or w ∈ Ã2. Thus,

l
(

C(x,
√

3)\ (
Ã1 ∪ Ã2

)) = 0, as required.
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Tool 9.8 Let C be a circle of radius r > 1
2 and let E1, E2 be disjoint measurable

subsets of C such that l (C\(E1 ∪ E2) = 0. Then if ϕ = 2 sin−1
(

1
2r

)
is an irrational

multiple of π , either E1 or E2 contains a pair of points distance 1 apart.

1
r

ϕ

Fig. 9.2

Proof Assume that neither E1 or E2 contains a pair of points distance 1 apart.
Parameterize C (Fig. 9.2) by angle θ (mod 2π ).

Let l(E1) > 0, then by LDT, there is θ and ε > 0 such that

l(E1 ∩ (θ − ε, θ + ε)) >
3

4
2ε.

Let θ1 be an angle. Since ϕ is an irrational multiple of π , there is a positive integer
n such that

|θ1 − (2nϕ + θ )| <
1

4
ε (mod 2 π ).

Since neither E1 or E2 contain a pair of points distance 1 apart, we get (with
angles counted mod 2π ):

l (E1 ∩ (θ + kϕ − ε, θ + kϕ + ε)) = l (E1 ∩ (θ − ε, θ + ε)) for even k, and
l (E1 ∩ (θ + kϕ − ε, θ + kϕ + ε)) = 2ε − l (E1 ∩ (θ − ε, θ + ε)) for odd k.

In particular, l (E1 ∩ (θ + 2nϕ − ε, θ + 2nϕ + ε)) > 3
4 2ε, thus

l (E1 ∩ (θ1 − ε, θ + ε)) >
3

4
2ε − ε

4
− ε

4
= ε.

Hence for all θ1,

l (E1 ∩ (θ1 − ε, θ + ε))

2ε
≥ 1

2
,
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and by LDT l (C\E1) = 0. This means that E1 is almost all of C , and therefore
contains a pair of points until distance apart, a contradiction.

Surprisingly, we need a tool from abstract algebra, or number theory.

Tool 9.9 For any positive integer m,
(

1 − i
√

11
)2m

�= (−12)m .

Proof It suffices to note that Q
(√−11

)
is an Euclidean quadratic field, therefore,

its integer ring Z
(√−11

)
(with units +1/ − 1) has unique factorization. (See

Chapters 7 and 8 in the standard abstract algebra textbook [DF] for a proof).
I believe that an alternative proof is possible: it should be not hard to show that

the left side cannot be an integer for any m.

Now we are ready to prove Falconer’s Theorem 9.1.

Proof of Falconer’s Theorem 9.10 Let R2 =
4⋃

i=1
Ai be a covering of the plane by

four disjoint measurable sets, none of which realizes distance 1. Due to Tool 9.6,

there is x ∈ M such that l
(

C(x,
√

3)\( Ã1 ∪ Ã2

)
= 0. Taking E1 = Ã1, E2 = Ã2

and r = √
3, we get, the desired result by Tool 9.8—if only we can prove that

ϕ = sin−1
(

1
2
√

3

)
is an irrational multiple of π . We have sin θ = 1

2
√

3
; cos θ =

√
11

2
√

3
.

Assume mθ is an integer multiple of 2π for some integral 2m. Then

(√
11

2
√

3
+ i

1

2
√

3

)2m

= 1

or

(
1 − i

√
11

)2m
= (−12)m .

We are done, as the last equality contradicts Tool 9.9.

9.3 Kenneth J. Falconer

I am always interested in learning about the life and personality of the author whose
result impressed me, aren’t you! Accordingly, I asked Kenneth to tell me about
himself and his life. The following account comes from his September 30, 2005,
e-mail to me.

I was born on 25th January 1952 at Hampton Court on the outskirts of London (at a
maternity hospital some 100 metres from the gates of the famous Palace). This was
two weeks before Queen Elizabeth II came to the throne and when food rationing
was still in place. My father had served in India for 6 years during the war while my
mother brought up my brother, 12 years my senior, during the London blitz. My parents
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were both school teachers, specializing in English, my brother studied history before
becoming a Church of England minister, and I was very much the ‘black sheep’ of the
family, having a passionate interest in mathematics and science from an early age. . .

I gained a scholarship to Corpus Christi College, Cambridge to read mathematics
and after doing well in the Mathematical Tripos I continued in Cambridge as a research
student, supervised by Hallard Croft. I worked mainly on problems in Euclidean geom-
etry, particularly on convexity and of tomography (the mathematics of the brain scan-
ner) and obtained my PhD in 1977.

I had the good fortune to obtain a Research Fellowship at Corpus Christi College,
where I continued to study geometrical problems, including the fascinating problem of
the chromatic number of the plane, showing in particular that the chromatic number of
a measurable colouring of the plane was at least 5. Also around this time I worked on
generalizations of the Kakeya problem (the construction of plane sets of zero area con-
taining a line segment in every direction). Thus I encountered Besicovitch’s beautiful
idea of thinking of such sets as duals of what are now termed ‘fractals’, with directional
and area properties corresponding to certain projections of the fractals. This led to my
‘digital sundial’ construction – a subset of R3 with prescribed projections in (almost)
all directions. . .

In 1980 I moved to Bristol University as a Lecturer, where the presence of theoretical
physicist Michael Berry, and analyst John Marstrand were great stimulii. Here I started to
workongeometricmeasure theory,or fractalgeometry, inparticular lookingatproperties
of Hausdorff measures and dimensions, and projections and intersections of fractals. . .

It became clear to me that much of the classical work of Besicovitch and his
School on the geometry of sets and measures had been forgotten, and in 1985 I pub-
lished my first book ‘The Geometry of Fractal Sets’ to provide a more up to date and
accessible treatment. This was around the time that fractals were taking the world by
storm, following Mandelbrot’s conceptually foundational work publicised in his book
‘The Fractal Geometry of Nature’ which unified the mathematics and the scientific
applications of fractals. My book led to requests for another at a level more suited to
postgraduate and advanced undergraduate students and in 1990 I published ‘Fractal
geometry – Mathematical Foundations and Applications’ which has been widely used
in courses and by researchers, and has been referred to at conferences as ‘the book
from which we all learnt our fractal mathematics’. A sequel ‘Techniques in Fractal
Geometry’ followed in 1998. In collaboration with Hallard Croft and Richard Guy, I
also authored ‘Unsolved Problems in Geometry’, a collection of easy to state unsolved
geometrical problems. Happily (also sadly!) many of the problems in the book are no
longer unsolved!. . .

In 1993 I was appointed Professor at the University of St Andrews in Scotland, where
I have been ever since. Although St Andrews is a small town famous largely for its
golf, the University has a thriving mathematics department, in particular for analysis and
combinatorial algebra, to say nothing of its renowned History of Mathematics web site.
I became Head of the School of Mathematics and Statistics in 2001, with the inevitable
detrimental effect on research time. I was elected a Fellow of the Royal Society of Edin-
burgh in 1998, and to the Council of the London Mathematical Society in 2000. . .

My main leisure activity is long distance walking and hillwalking. I have climbed
all 543 mountains in Britain over 2500 feet high. I am a keen member of the Long Dis-
tance Walkers Association, having been Editor of their magazine ‘Strider’ from 1986–
91 and Chairman from 2000–03. I have completed the last 21 of the LDWA’s annual
hundred mile non-stop cross-country walks in times ranging from 26 to 32 hours.


