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Chromatic Number of the Plane in Special
Circumstances

As you know from Chapters 4 and 6, in 1973, 3 years after Dmitry E. Raiskii,
Douglas R. Woodall published the paper [Woo1] on problems related to the chro-
matic number of the plane. In the paper he gave his own proofs of Raiskii’s inequal-
ities of Problems 4.1 and 6.1. In the same paper, Woodall also formulated and
attempted to prove a lower bound for the chromatic number of the plane for the
special case of map-type coloring of the plane. This was the main result of [Woo1].
However, in 1979 the mathematician from the University of Aberdeen Stephen
Phillip Townsend found an error in Woodall’s proof, and constructed a counterex-
ample demonstrating that one essential component of Woodall’s proof was false.
Townsend had also found a proof of this statement, which was much more elaborate
than Woodall’s unsuccessful attempt.

The intriguing history of this discovery and Townsend’s wonderful proof are a
better fit in Chapter 24, as a part of our discussion of map coloring—do not overlook
them! Here I will formulate an important corollary of Townsend’s proof.

Chromatic Number of Map-Colored Plane 8.1 The chromatic number of the
plane under map-type coloring is 6 or 7.

Woodall showed that this result implies one more meritorious statement:

Closed Chromatic Number of the Plane 8.2 ( [Woo1]). The chromatic number of
the plane under coloring with closed monochromatic sets is 6 or 7.

I do not like to use the Greek word “lemma” since there is an appropriate English
word “tool” :-). And I would like to offer my readers the following tool from topol-
ogy to prove on their own. We will use this tool in the proof that follows.

Tool 8.3 If a bounded closed set S does not realize a distance d, then there is ε > 0
such that S does not realize any distance from the segment [d − ε, d + ε].

Proof of Result 8.2 [Woo1]: Assume that the union of closed sets A1, A2, . . . , An

covers the plane and for each i the set Ai does not realize a distance di . Place onto
the plane a unit square lattice L , and choose an arbitrary closed unit square U of
L . Choose also i from the set {1, 2, . . . , n}. Denote by C(U )i the closed set that
contains all points of the plane that are at most distance di from a point in U . The set
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58 II Colored Plane

Ai ∩ C (U )i is closed and bounded, thus by Tool 8.3 there is εi (U ) such that no two
points of Ai , at least one of which lies in U , realize any distance from the segment

[di − εi (U ) , di + εi (U )] . (8.1)

Denote by ε (U ) the minimum of εi (U ) over all i = 1, 2, . . . , n.
Now for the square U we choose a positive integer m (U ) such that

1

2m(U )

√
2 <

1

2
ε (U ) . (8.2)

On the unit square U we place a square lattice L’ of little closed squares u of
side 1

2m(U ) . The inequality (8.2) guarantees that the diagonal of u is shorter than half
of our epsilon ε (U ).

For each little square u contained in each unit square U of the entire plane, we
determine f (u) = min {i : u ∩ Ai �= ∅}, and then for each i = 1, 2, . . . , n define
the monochromatic color set of our new n-coloring of the plane as follows:

Bi =
⋃

f (u)=i

u. (8.3)

As unions of closed squares u, each Bi is closed, and all Bi together cover the
plane. The interiors of these n sets Bi are obviously disjoint. All there is left to prove
is that the set Bi does not realize the distance di . Indeed, assume that the points b,c
of Bi are distance di apart. The points b,c belong to little squares u1,u2 respectively,
each little square of side 1

2m(U ) . Due to the definition (8.3) of Bi , the squares u1,u2

contain points a1,a2 from Ai respectively. With vertical bars denoting the distance
between two points, and by utilizing the inequality (8.2) we get:

|b, c| − ε (U ) < |a1, a2| < |b, c| + ε (U ) ,

i.e.,

di − ε (U ) < |a1, a2| < di + ε (U ) ,

which contradicts (8.1).
Thus, the chromatic number under the conditions of result 8.2 is not smaller than

the chromatic number under the conditions of result 8.1.

During 1993–1994 a group of three young undergraduate students Nathanial
Brown, Nathan Dunfield, and Greg Perry, in a series of three essays, (their first



8 Chromatic Number of the Plane in Special Circumstances 59

publications,) proved on the pages of Geombinatorics [BDP1], [BDP2], [BDP3]26

that a similar result is true for coloring with open monochromatic sets. Now the
youngsters are professors of mathematics, Nathan at the University of Illinois at
Urbana-Champaign, and Nathanial at Pennsylvania State University.

Open Chromatic Number of the Plane 8.4 (Brown–Dunfield–Perry). The chro-
matic number of the plane under coloring with open monochromatic sets is 6
or 7.

26 The important problem book [BMP] mistakenly cites only one of these series of three papers. It also
incorrectly states that the authors proved only the lower bound 5, whereas they raised the lower bound to
6.


