
26
De Bruijn–Erdős’s Theorem and Its History

26.1 De Bruijn–Erdős’s Compactness Theorem5

They were both young. On August 4, 1947 the 34-year-old Paul Erdős, in a letter
to the 29-year-old Nicolaas Govert de Bruijn of Delft, The Netherlands, offered the
following conjecture [E47/8/4ltr]:

Let G be an infinite graph. Any finite subset of it is the sum of k independent sets
(two vertices are independent if they are not connected). Then G is the sum of k
independent sets.

Paul added in parentheses “I can only prove it if k = 2”. In his 5-page August 18,
1947 reply [Bru1], de Bruijn reformulated the Erdős conjecture in a way that is very
familiar to us today:

Theorem: Let G be an infinite graph, any finite subgraph of which can be k-colored
(that means that the nodes are coloured with k different colours, such that the two
connected nodes have different colours). Then G can be k-coloured.

Following a nearly three-page long transfinite induction proof of the “Theorem,”
de Bruijn observed [Bru1]:

I am sorry that this proof takes so much paper; its idea, however, is simple. Perhaps,
you do not call it a proof at all, because it contains “Well ordering”, but we can hardly
expect to get along without that.

This was an insightful observation, for de Bruijn and Erdős relied on the Axiom
of Choice or equivalent (like Well-Ordering Principle or Zorn’s Lemma) very heav-
ily. When in early 2004 Professor de Bruijn received from me a reprint of Shelah–
Soifer 2003 paper (to be discussed in Chapter 46) which analyzed what happens
with the de Bruijn–Erdős Theorem in the absence of the Axiom of Choice, de Bruijn
replied to me on January 27, 2004 as follows [Bru7]:

5 I am infinitely grateful to N.G. de Bruijn for providing me with copies of his correspondence with Paul
Erdös.
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About the axiom of choice, I remember a conversation with Erdős, during a walk
around 1954. I told him that I hated the axiom of choice, and that I wanted to do
analysis without it, maybe except for the countable case. He was surprised, and said:
but you were always so good at it. Indeed, I had loved transfinite induction, just because
it worked exactly the same way as ordinary induction.

This invaluable de Bruijn’s e-mail also contained the conclusion of the story of
the de Bruijn–Erdős Theorem [Bru5]:

Erdős and I did not take any steps to publish the k-coloring theorem. In 1951 I met
Erdős in London, and from there we went together by train to Aberdeen, which took a
full day. It was during that train ride that he told me about the topological proof of the
k-coloring theorem. Not long after that, he wrote it up and submitted it for publication.
I do not think I had substantial influence on that version.

Let us look at a proof of this celebrated theorem, which we have formulated
without proof and used in chapter 5.

De Bruijn–Erdős’s Compactness Theorem 26.1 ([BE2], 1951). An infinite graph
G is k-colorable if and only if every finite subgraph of G is k-colorable.6

In what follows, we will need a few definitions from set theory.

Given a set A; any subset R of the so-called Cartesian product A×A = {(a1, a2) :
a1, a2 ∈ A} is called a binary relation on A. We write a1 Ra2 to indicate that the
ordered pair (a1, a2) is an element of R.

Poset, or partially ordered set, is a set A together with a particularly “nice” binary
relation on it, i.e., a relation that satisfies the following three properties:

1. Reflexivity: a ≤ a for all a ∈ A;
2. Anti-symmetry: If a ≤ b and b ≤ a for any a, b ∈ A, then a = b;
3. Transitivity: If a ≤ b and b ≤ c for any a, b, c ∈ A, then a ≤ c.

A chain, or totally ordered set, is a poset that satisfies a fourth property:

4. Comparability: For any a, b ∈ A, either a ≤ b or b ≤ a.

Let A be a set with a partial ordering ≤ defined on it, and B a subset of A. An
upper bound of B is an element a ∈ A such that b ≤ a for every b ∈ B.

Let ≤ be a partial ordering on a set A, and B ⊆ A. Then, we say that b ∈ B is
a maximal element of B if there exists no x ∈ B such that b ≤ x and x �= b.

In 1935 Max Zorn (1906, Germany-1993, USA) introduced the following impor-
tant tool, which he called maximum principle. (It was shown by Paul J. Campbell
that, in fact, a number of famous mathematicians—Hausdorff, Kuratowski, and
Brouwer—preceded Zorn, but Zorn’s name got as attached to this tool as, say,
Amerigo Vespucci’s name to America.)

6 This theorem requires the Axiom of Choice or equivalent.
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Zorn’s Lemma 26.2 If S is any non-empty partially ordered set in which every
chain has an upper bound, then S has a maximal element.

During the summer of 2005, I supervised at the University of Colorado, a
research month of Dmytro (Mitya) Karabash, who had just completed his freshman
year at Columbia University, and asked to come and work with me. One of my
assignments for him was to prove the de Bruijn–Erdős Theorem 26.1, and then to
write the solution as well. After going through several revisions, Mitya produced a
fine proof, which follows here, slightly edited by me.7

Proof of Theorem 26.1 by D. Karabash: We say that G has the property P and
write P(G) if every finite subgraph of G is k-colorable. For a graph G we write
G = (V, E), where V is the vertex set and E is the edge set of G. Now let S be the
set of all graphs with the property Pwhich are obtained from G by an addition of
edges, i.e., S = {(V, F)|E ⊆ F and P(V, F)}.

Let S be partially ordered by the inclusion of edge sets. Observe that for every
chain Ai in S, its union A = (V,

⋃

i
E(Ai )) is also in S (here E(Ai ) stands for the

edge set of the graph Ai ). Indeed, every finite subgraph F of A must be contained in
some Ai (because F is finite) and therefore F is k-colorable. Since A has property
P, A is in S, as desired.

We have just proved that in S every chain has an upper bound. Therefore, by
Zorn’s Lemma, S contains a maximal element, call it M . Since M is in S, M has
property P; since M is maximal, no edges can be added to M without violating
property P .

We will now prove that non-adjacency (here to be denoted by the symbol ¬ad j)
is an equivalence relation on M , i.e., for every a, b, c ∈ V (M), if a ¬ad j b and
b ¬ad j c, then a ¬ad j c. Let us consider all finite subgraphs of M that contain a
and b, and all k-colorings on them. Since a ¬ad j b, there must be a subgraph Mab

for which the colors of a and b are the same for all k-colorings of this subgraph,
for otherwise we could add the edge ab to M with preservation of property P and
attain a contradiction to M being a maximal element of S. Construct a subgraph
Mbc similarly. The subgraph Mab ∪ Mbc is finite and thus k-colorable. Mab ∪ Mbc

contains subgraphs Mab and Mbc, therefore by construction of Mab and Mbc, any
coloring of Mab ∪ Mbc must have pairs (a, b) and (b, c) colored in the same color.
Thus, a and c have the same color for all k-colorings of the subgraph Mab ∪ Mbc

and therefore a is not adjacent to c.
From the fact that the non-adjacency is an equivalence relation on M , we con-

clude that the edge-complement M ′ of M is made of some number of disjoin
complete graphs Ki because in M ′ adjacency is an equivalence relation. Therefore
a ∈ Ki , b ∈ K j , i �= j implies a ¬ad j b in M ′ or equivalently a adj b in M .

7 You can also read the original proof in [BE2]; a nice proof by L. Pósa in the fine book [Lov2] by
László Lovász; and a clear insightful proof of the countable case in the best introductory book to Ramsey
Theory [Gra2] by Ronald L. Graham.
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Suppose there is more than k disjoint complete subgraphs Ki in M ′. Then pick
k +1 vertices, all from distinct V (Ki ). Since all of the vertices are located in distinct
V (Ki ), they must all be pairwise non-adjacent in M ′ and thus form a complete graph
Mk+1 on k +1 vertices in M . We obtained a finite subgraph Mk+1 of M which is not
k-colorable, in contradiction to M having property P . Therefore, M ′ consists of at
most k complete subgraphs V (Ki ), i = 1, . . . , k. Now we can color each subgraph
V (Ki ) in a different color. Since no two vertices of an V (Ki ) are adjacent in M , this
is a proper k-coloring. Since G is a subgraph of M, G is k-colorable, as desired.

Corollary 26.3 Compactness Theorem 5.1 is true.

The proof of Theorem 26.1 is much more powerful than you may think. It works
not only for graphs, but even for their important generalization—hypergraphs. Per-
mit me to burden you with a few definitions.

As you recall from chapter 12, a graph G = G(V, E) is a non-empty set V (of
vertices) together with a family E of 2-element subsets (edges) of V . If we relax the
latter condition, we will end up with a hypergraph.

A hypergraph H = H (V, E) is a non-empty set V (of vertices) together with a
family E of subsets (edges) of V each containing at least two elements. Thus, an
edge e of H is a subset of V ; its elements are naturally called vertices of the edge e
(or vertices incident with e).

Let n be a positive integer. We would say that a hypergraph H is n-colored, if
each vertex of H is assigned one of the given n colors. If all vertices of an edge e
are assigned the same color, we call e a monochromatic edge.

The chromatic number �(H ) of a hypergraph H is the smallest number of colors
n for which there is an n-coloring of H without monochromatic edges.

A hypergraph H1 = H1(V1, E1) is called a subhypergraph of a hypergraph H =
H (V, E), if V1 ⊆ V and E1 ⊆ E .

Compactness Theorem for Hypergraphs 26.4 The chromatic number �(H ) of a
hypergraph H is equal to the maximum chromatic number of its finite subhyper-
graphs.

Proof Repeat word-by-word the proof of Theorem 26.2 (just replace “graph” by
“hypergraph”).

26.2 Nicolaas Govert de Bruijn

Ever since 1995, I have exchanged numerous e-mail messages—and sometimes
letters—with the Dutch mathematician N. G. de Bruijn. His elegant humor, open-
ness in expressing views even on controversial issues, and his eyewitness accounts
of post W.W.II events in Holland made this correspondence most fascinating and
enjoyable for me. We also shared interest in finding out who created the conjec-
ture on monochromatic arithmetic progressions, which was proven by B. L. van der
Waerden (see chapter 34 for the answer). Yet, for years I have been asking Professor
de Bruijn to share with me his autobiography to no avail. For a long while, I did not
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even know what “N. G.” stood for. On October 29, 2005, I tried to be a bit more
specific in my e-mail. I wrote:

May I ask you to describe your life – and any participation in political affairs – during
the occupation, May 1940–1945, and during the first post war years, 1945 up to your
Sep-1952 appointment to replace Van der Waerden at Amsterdam?

De Bruijn understood my maneuver, but provided the desired reply on November
1, 2005 [Bru12]:

You are asking for an autobiography in a nutshell.
I was born in 1918 [on July 9th in Den Haag], so I just left elementary school

in 1930 when the great depression broke out. I managed to finish secondary school
education in 4 years (the standard was 5 or 6). After that, I could not get any job,
and could not get any financial support for university education. I used my next two
years (1934–1936) to study mathematics from books, without any teacher. I passed
the examinations that qualified me as a mathematics teacher in all secondary schools
in the Netherlands. But there weren’t any jobs. Yet I had some success: I could get
a small loan that enabled me to study mathematics and physics at Leiden University.
In the academic year 1936–1937 I attended courses in physics and astronomy, and
in 1937–1938 courses in mathematics on the master’s degree level. That was all the
university education I had. The most inspiring mathematician in those days at Leiden
was H. D. Kloosterman.

In 1939 I was so lucky to get an assistantship at Delft Technical University. It
didn’t pay very much, but it left me plenty of time to get involved in various kinds
of mathematical research. It was quite an inspiring environment, and actually it was
the only place in the Netherlands that employed mathematical assistants (Delft had
about 8 or 9 of them). In 1940 the country was occupied, and from then on the main
problem was to avoid being drawn into forced labour in Germany. In that respect my
assistantship was a good shelter for quite some time.

All the time I lived with my parents in The Hague, not so safe as it seemed. We
were hiding a Jewish refugee (a German boy, a few years younger than me), who
assisted my brother in producing and distributing forbidden radio material, like anten-
nas that made it possible to eliminate the heavy bleep-bleep-bleep that the Germans
used in the wavelengths of the British Radio. And later, when radios were forbidden
altogether, my brother built miniature radios, hidden in old encyclopedia volumes. All
this activity ended somewhere in the beginning of 1944 when our house was raided by
the Sicherheitspolizei. My brother and his Jewish assistant where taken into custody,
but by some strange coincidence they came back the next day. Nevertheless they had
to leave to a safer place, where both of them survived the war. A few months later,
I got my first real job. It was at the famous Philips Physical Labs at Eindhoven. The
factory worked more or less for German war production, just like most factories in the
country, but the laboratories could just do what they always did.

Four months later, Eindhoven was occupied by the allied armies, in their move
towards the battle of Arnhem. From then on we were cut off from the rest of the
country, where people had a very bad time.

So this was about my life during the war. Compared to others, I had been quite
lucky. I had even managed to get my doctorate at the [Calvinist] Free University,
Amsterdam [March 1943], just a few weeks before all universities in the country
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were definitely closed (Leiden University had already been closed in 1940, because
of demonstrations against the dismissal of Jewish professors).

In 1946 I got a professorship at Delft Technical University. I had to do quite ele-
mentary teaching, leaving me free to do quite some research, mainly in analytical num-
ber theory. It got me into correspondence with Erdős, and around 1948 he visited us
at Delft.

In 1951 I made a mathematical trip abroad for the first time in my life. There I had
contact with Erdős too. We had a long train ride together from London to Edinburgh.

In 1952 I got that [Van der Waerden’s] professorship at Amsterdam, at that time
the mathematical Mecca of the Netherlands. I stayed there until 1960, when I got my
professorship at Eindhoven Technological University, where I retired in 1984. After
that, I always kept a place to work there.

I think this is all you wanted to know.

In fact, on November 1, 2005 I asked for a few additional details:

I know you are one of the most modest men. Yet, I would think you were not just
an observer when your family hid a Jewish boy, and your brother did activities not
appreciated by the occupiers. Would you be so kind to share with me your role is these
activities during 1940–1945? What were the names of your brother and his Jewish-
German assistant? What was the difference in age between you and your brother?

Two days later, my questions were answered [Bru13]:

I hardly ever participated in my brother’s activities. At most three times I delivered an
antenna or a radio to some stranger. My brother was a year and a half older than I. His
name was Johan.

The Jewish boy’s name was Ernest (Ernst) Goldstern. He was born 24 December
1923 (in Muenchen, I believe). His family came to Holland in the late 1930’s, where
Ernst just completed his secondary school education in Amsterdam. He lived with us
in The Hague from 1940 to 1944. I helped him to study advanced mathematics, which
he could use after the war. He went into Electrical Engineering and got his degree in
Delft. He died 19 January 1993. Johan died in 1996.

On July 9, 2008 N. G. de Bruijn is turning 90—Happy Birthday, Nicolaas!


