
Chapter 7 BASIC PROPERTIES
OF SOLUTIONS
AND ALGORITHMS

In this chapter we consider optimization problems of the form

minimize f�x�
subject to x ∈ ��

(1)

where f is a real-valued function and �, the feasible set, is a subset of En.
Throughout most of the chapter attention is restricted to the case where � = En,
corresponding to the completely unconstrained case, but sometimes we consider
cases where � is some particularly simple subset of En.

The first and third sections of the chapter characterize the first- and second-
order conditions that must hold at a solution point of (1). These conditions are
simply extensions to En of the well-known derivative conditions for a function of
a single variable that hold at a maximum or a minimum point. The fourth and
fifth sections of the chapter introduce the important classes of convex and concave
functions that provide zeroth-order conditions as well as a natural formulation for a
global theory of optimization and provide geometric interpretations of the derivative
conditions derived in the first two sections.

The final sections of the chapter are devoted to basic convergence charac-
teristics of algorithms. Although this material is not exclusively applicable to
optimization problems but applies to general iterative algorithms for solving
other problems as well, it can be regarded as a fundamental prerequisite for a
modern treatment of optimization techniques. Two essential questions are addressed
concerning iterative algorithms. The first question, which is qualitative in nature, is
whether a given algorithm in some sense yields, at least in the limit, a solution to the
original problem. This question is treated in Section 7.6, and conditions sufficient to
guarantee appropriate convergence are established. The second question, the more
quantitative one, is related to how fast the algorithm converges to a solution. This
question is defined more precisely in Section 7.7. Several special types of conver-
gence, which arise frequently in the development of algorithms for optimization,
are explored.
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184 Chapter 7 Basic Properties of Solutions and Algorithms

7.1 FIRST-ORDER NECESSARY CONDITIONS
Perhaps the first question that arises in the study of the minimization problem
(1) is whether a solution exists. The main result that can be used to address
this issue is the theorem of Weierstras, which states that if f is continuous and
� is compact, a solution exists (see Appendix A.6). This is a valuable result
that should be kept in mind throughout our development; however, our primary
concern is with characterizing solution points and devising effective methods for
finding them.

In an investigation of the general problem (1) we distinguish two kinds of
solution points: local minimum points, and global minimum points.

Definition. A point x∗ ∈ � is said to be a relative minimum point or a local
minimum point of f over � if there is an � > 0 such that f�x� � f�x∗� for all
x ∈ � within a distance � of x∗ (that is, x ∈ � and �x−x∗� < �). If f�x� > f�x∗�
for all x ∈ �, x �= x∗, within a distance � of x∗, then x∗ is said to be a strict
relative minimum point of f over �.

Definition. A point x∗ ∈ � is said to be a global minimum point of f over
� if f�x� � f�x∗� for all x ∈ �. If f�x� > f�x∗� for all x ∈ �, x �= x∗, then x∗

is said to be a strict global minimum point of f over �.

In formulating and attacking problem (1) we are, by definition, explicitly asking
for a global minimum point of f over the set �. Practical reality, however, both
from the theoretical and computational viewpoint, dictates that we must in many
circumstances be content with a relative minimum point. In deriving necessary
conditions based on the differential calculus, for instance, or when searching for
the minimum point by a convergent stepwise procedure, comparisons of the values
of nearby points is all that is possible and attention focuses on relative minimum
points. Global conditions and global solutions can, as a rule, only be found if the
problem possesses certain convexity properties that essentially guarantee that any
relative minimum is a global minimum. Thus, in formulating and attacking problem
(1) we shall, by the dictates of practicality, usually consider, implicitly, that we are
asking for a relative minimum point. If appropriate conditions hold, this will also
be a global minimum point.

Feasible Directions
To derive necessary conditions satisfied by a relative minimum point x∗, the basic
idea is to consider movement away from the point in some given direction. Along
any given direction the objective function can be regarded as a function of a single
variable, the parameter defining movement in this direction, and hence the ordinary
calculus of a single variable is applicable. Thus given x ∈ � we are motivated to say
that a vector d is a feasible direction at x if there is an �̄ > 0 such that x+�d ∈ �
for all �, 0 � � � �̄. With this simple concept we can state some simple conditions
satisfied by relative minimum points.
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Proposition 1 (First-order necessary conditions). Let � be a subset of En and
let f ∈ C1 be a function on �. If x∗ is a relative minimum point of f over �,
then for any d ∈ En that is a feasible direction at x∗, we have �f�x∗�d � 0.

Proof. For any �, 0 � � � �̄, the point x��� = x∗ +�d ∈ �. For 0 � � � �̄ define
the function g��� = f�x����. Then g has a relative minimum at � = 0. A typical g
is shown in Fig. 7.1. By the ordinary calculus we have

g���−g�0� = g′�0��+o���� (2)

where o��� denotes terms that go to zero faster than � (see Appendix A). If
g′�0� < 0 then, for sufficiently small values of � > 0, the right side of (2) will be
negative, and hence g���−g�0� < 0, which contradicts the minimal nature of g�0�.
Thus g′�0� = �f�x∗�d � 0.

A very important special case is where x∗ is in the interior of � (as would be
the case if � = En). In this case there are feasible directions emanating in every
direction from x∗, and hence �f�x∗�d � 0 for all d ∈ En. This implies �f�x∗� = 0.
We state this important result as a corollary.

Corollary. (Unconstrained case). Let � be a subset of En, and let f ∈ C1 be
a function’ on �. If x∗ is a relative minimum point of f over � and if x∗ is an
interior point of �, then �f�x∗� = 0.

The necessary conditions in the pure unconstrained case lead to n equations
(one for each component of �f ) in n unknowns (the components of x∗), which
in many cases can be solved to determine the solution. In practice, however, as
demonstrated in the following chapters, an optimization problem is solved directly
without explicitly attempting to solve the equations arising from the necessary
conditions. Nevertheless, these conditions form a foundation for the theory.

g(α)

slope > 0

0 αα

Fig. 7.1 Construction for proof
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Example 1. Consider the problem

minimize f�x1� x2� = x2
1 −x1x2 +x2

2 −3x2�

There are no constraints, so � = E2. Setting the partial derivatives of f equal to
zero yields the two equations

2x1 − x2 = 0
−x1 + 2x2 = 3�

These have the unique solution x1 = 1, x2 = 2, which is a global minimum point of f .

Example 2. Consider the problem

minimize f�x1� x2� = x2
1 −x1 +x2 +x1x2

subject to x1 � 0� x2 � 0�

This problem has a global minimum at x1 = 1
2 , x2 = 0. At this point

	f

	x1

= 2x1 −1+x2 = 0

	f

	x2

= 1+x1 = 3
2 �

Thus, the partial derivatives do not both vanish at the solution, but since any
feasible direction must have an x2 component greater than or equal to zero, we have
�f�x∗�d � 0 for all d ∈ E2 such that d is a feasible direction at the point (1/2, 0).

7.2 EXAMPLES OF UNCONSTRAINED PROBLEMS
Unconstrained optimization problems occur in a variety of contexts, but most
frequently when the problem formulation is simple. More complex formula-
tions often involve explicit functional constraints. However, many problems with
constraints are frequently converted to unconstrained problems by using the
constraints to establish relations among variables, thereby reducing the effective
number of variables. We present a few examples here that should begin to indicate
the wide scope to which the theory applies.

Example 1 (Production). A common problem in economic theory is the deter-
mination of the best way to combine various inputs in order to produce a certain
commodity. There is a known production function f�x1� x2� � � � � xn� that gives the
amount of the commodity produced as a function of the amounts xi of the inputs,
i = 1� 2� � � � � n. The unit price of the produced commodity is q, and the unit prices
of the inputs are p1, p2� � � � � pn. The producer wishing to maximize profit must
solve the problem

maximize qf�x1� x2� � � � � xn�−p1x1 −p2x2 � � �−pnxn�
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The first-order necessary conditions are that the partial derivatives with respect
to the xi’s each vanish. This leads directly to the n equations

q
	f

	xi

�x1� x2� � � � � xn� = pi� i = 1� 2� � � � � n�

These equations can be interpreted as stating that, at the solution, the marginal
value due to a small increase in the ith input must be equal to the price pi.

Example 2 (Approximation). A common use of optimization is for the purpose
of function approximation. Suppose, for example, that through an experiment
the value of a function g is observed at m points, x1� x2� � � � � xm. Thus, values
g�x1�� g�x2�� � � � � g�xm� are known. We wish to approximate the function by a
polynomial

h�x� = anx
n +an−1x

n−1 + � � �+a0

of degree n (or less), where n < m. Corresponding to any choice of the approximating
polynomial, there will be a set of errors �k = g�xk�−h�xk�. We define the best approx-
imation as the polynomial that minimizes the sum of the squares of these errors; that
is, minimizes

m∑

k=1

��k�
2�

This in turn means that we minimize

f�a� =
m∑

k=1


g�xk�− �anx
n
k +an−1x

n−1
k + � � �+a0��

2

with respect to a = �a0� a1� � � � � an� to find the best coefficients. This is a quadratic
expression in the coefficients a. To find a compact representation for this objective

we define qij = m∑

k=1
�xk�

i+j , bj = m∑

k=1
g�xk��xk�

j and c = m∑

k=1
g�xk�

2. Then after a bit of

algebra it can be shown that

f�a� = aT Qa −2bT a + c

where Q = 
qij�, b = �b1� b2� � � � � bn+1�.
The first-order necessary conditions state that the gradient of f must vanish. This

leads directly to the system of n+1 equations

Qa = b�

These can be solved to determine a.
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Example 3 (Selection problem). It is often necessary to select an assortment of
factors to meet a given set of requirements. An example is the problem faced by
an electric utility when selecting its power-generating facilities. The level of power
that the company must supply varies by time of the day, by day of the week, and
by season. Its power-generating requirements are summarized by a curve, h�x�, as
shown in Fig. 7.2(a), which shows the total hours in a year that a power level of at
least x is required for each x. For convenience the curve is normalized so that the
upper limit is unity.

The power company may meet these requirements by installing generating
equipment, such as (1) nuclear or (2) coal-fired, or by purchasing power from a
central energy grid. Associated with type i �i = 1� 2� of generating equipment is
a yearly unit capital cost bi and a unit operating cost ci. The unit price of power
purchased from the grid is c3.

Nuclear plants have a high capital cost and low operating cost, so they are
used to supply a base load. Coal-fired plants are used for the intermediate level,
and power is purchased directly only for peak demand periods. The requirements
are satisfied as shown in Fig. 7.2(b), where x1 and x2 denote the capacities of the
nuclear and coal-fired plants, respectively. (For example, the nuclear power plant
can be visualized as consisting of x1/� small generators of capacity �, where � is
small. The first such generator is on for about h��� hours, supplying �h��� units
of energy; the next supplies �h�2�� units, and so forth. The total energy supplied
by the nuclear plant is thus the area shown.)

The total cost is

f�x1� x2� = b1x1 +b2x2 + c1

∫ x1

0
h�x� dx

+ c2

∫ x1+x2

x1

h�x� dx+ c3

∫ 1

x1+x2

h�x� dx�

power (megawatts) power (megawatts)

purchase

x

hours required hours required

(a) (b)

11 x2x1

Fig. 7.2 Power requirements curve
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and the company wishes to minimize this over the set defined by

x1 � 0� x2 � 0� x1 +x2 � 1�

Assuming that the solution is interior to the constraints, by setting the partial
derivatives equal to zero, we obtain the two equations

b1 + �c1 − c2�h�x1�+ �c2 − c3�h�x1 +x2� = 0

b2 + �c2 − c3�h�x1 +x2� = 0�

which represent the necessary conditions.
If x1 = 0, then the general necessary condition theorem shows that the first

equality could relax to � 0. Likewise, if x2 = 0, then the second equality could
relax to � 0. The case x1 +x2 = 1 requires a bit more analysis (see Exercise 2).

Example 4 (Control). Dynamic problems, where the variables correspond to
actions taken at a sequence of time instants, can often be formulated as unconstrained
optimization problems. As an example suppose that the position of a large object is
controlled by a series of corrective control forces. The error in position (the distance
from the desired position) is governed by the equation

xk+1 = xk +uk�

where xk is the error at time instant k, and uk is the effective force applied at time
uk (after being normalized to account for the mass of the object and the duration of
the force). The value of x0 is given. The sequence u0, u1� � � � � un should be selected
so as to minimize the objective

J =
n∑

k=0


x2
k +u2

k��

This represents a compromise between a desire to have xk equal to zero and
recognition that control action uk is costly.

The problem can be converted to an unconstrained problem by eliminating the
xk variables, k = 1� 2� � � � � n, from the objective. It is readily seen that

xk = x0 +u0 +u1 +· · ·+uk−1�

The objective can therefore be rewritten as

J =
n∑

k=0


�x0 +u0 +· · ·+uk−1�
2 +u2

k��

This is a quadratic function in the unknowns uk. It has the same general structure
as that of Example 2 and it can be treated in a similar way.
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7.3 SECOND-ORDER CONDITIONS
The proof of Proposition 1 in Section 7.1 is based on making a first-order approx-
imation to the function f in the neighborhood of the relative minimum point.
Additional conditions can be obtained by considering higher-order approximations.
The second-order conditions, which are defined in terms of the Hessian matrix �2f
of second partial derivatives of f (see Appendix A), are of extreme theoretical
importance and dominate much of the analysis presented in later chapters.

Proposition 1 (Second-order necessary conditions). Let � be a subset of En

and let f ∈ C2 be a function on �. If x∗ is a relative minimum point of f over
�, then for any d ∈ En that is a feasible direction at x∗ we have

i� �f�x∗�d � 0 �3�

ii� if �f�x∗�d = 0� then dT �2f�x∗�d � 0� �4�

Proof. The first condition is just Proposition 1, and the second applies only if
�f�x∗�d = 0. In this case, introducing x��� = x∗ + �d and g��� = f�x���� as
before, we have, in view of g′�0� = 0,

g���−g�0� = 1
2 g′′�0��2 +o��2��

If g′′�0� < 0 the right side of the above equation is negative for sufficiently small
� which contradicts the relative minimum nature of g�0�. Thus

g′′�0� = dT �2f�x∗�d � 0�

Example 1. For the same problem as Example 2 of Section 7.1, we have for
d = �d1�d2�

�f�x∗�d = 3
2 d2�

Thus condition (ii) of Proposition 1 applies only if d2 = 0. In that case we have
dT �2f�x∗�d = 2d2

1 � 0, so condition (ii) is satisfied.
Again of special interest is the case where the minimizing point is an interior

point of �, as, for example, in the case of completely unconstrained problems. We
then obtain the following classical result.

Proposition 2 (Second-order necessary conditions—unconstrained case).
Let x∗ be an interior point of the set �, and suppose x∗ is a relative minimum
point over � of the function f ∈ C2. Then

i) �f�x∗� = 0 �5�

ii) for all d� dT �2f�x∗�d � 0� (6)
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For notational simplicity we often denote �2f�x�, the n×n matrix of the second
partial derivatives of f , the Hessian of f , by the alternative notation F(x). Condition
(ii) is equivalent to stating that the matrix F�x∗� is positive semidefinite. As we
shall see, the matrix F�x∗�, which arises here quite naturally in a discussion of
necessary conditions, plays a fundamental role in the analysis of iterative methods
for solving unconstrained optimization problems. The structure of this matrix is the
primary determinant of the rate of convergence of algorithms designed to minimize
the function f .

Example 2. Consider the problem

minimize f�x1� x2� = x3
1 −x2

1x2 +2x2
2

subject to x1 � 0� x2 � 0�

If we assume that the solution is in the interior of the feasible set, that is, if
x1 > 0� x2 > 0, then the first-order necessary conditions are

3x2
1 −2x1x2 = 0� −x2

1 +4x2 = 0�

There is a solution to these at x1 = x2 = 0 which is a boundary point, but there is
also a solution at x1 = 6� x2 = 9. We note that for x1 fixed at x1 = 6, the objective
attains a relative minimum with respect to x2 at x2 = 9. Conversely, with x2 fixed
at x2 = 9, the objective attains a relative minimum with respect to x1 at x1 = 6.
Despite this fact, the point x1 = 6� x2 = 9 is not a relative minimum point, because
the Hessian matrix is

F =
[

6x1 −2x2 −2x1

−2x1 4

]

�

which, evaluated at the proposed solution x1 = 6� x2 = 9, is

F =
[

18 −12
−12 4

]

�

This matrix is not positive semidefinite, since its determinant is negative. Thus the
proposed solution is not a relative minimum point.

Sufficient Conditions for a Relative Minimum
By slightly strengthening the second condition of Proposition 2 above, we obtain a
set of conditions that imply that the point x∗ is a relative minimum. We give here
the conditions that apply only to unconstrained problems, or to problems where the
minimum point is interior to the feasible region, since the corresponding conditions
for problems where the minimum is achieved on a boundary point of the feasible
set are a good deal more difficult and of marginal practical or theoretical value. A
more general result, applicable to problems with functional constraints, is given in
Chapter 11.
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Proposition 3 (Second-order sufficient conditions—unconstrained case).
Let f ∈ C2 be a function defined on a region in which the point x∗ is an interior
point. Suppose in addition that

i� �f�x∗� = 0 �7�

ii� F�x∗� is positive definite� (8)

Then x∗ is a strict relative minimum point of f .

Proof. Since F�x∗� is positive definite, there is an a > 0 such that for all
d� dT F�x∗�d � a�d�2. Thus by the Taylor’s Theorem (with remainder)

f�x∗ +d�−f�x∗� = 1
2 dT F�x∗�d +o��d�2�

� �a/2��d�2 +o��d�2�

For small �d� the first term on the right dominates the second, implying that both
sides are positive for small d.

7.4 CONVEX AND CONCAVE FUNCTIONS
In order to develop a theory directed toward characterizing global, rather than local,
minimum points, it is necessary to introduce some sort of convexity assumptions.
This results not only in a more potent, although more restrictive, theory but also
provides an interesting geometric interpretation of the second-order sufficiency
result derived above.

Definition. A function f defined on a convex set � is said to be convex if,
for every x1, x2 ∈ � and every �, 0 � � � 1, there holds

f��x1 + �1−��x2� � �f�x1�+ �1−��f�x2��

If, for every �, 0 < � < 1, and x1 �= x2, there holds

f��x1 + �1−��x2� < �f�x1�+ �1−��f�x2��

then f is said to be strictly convex.

Several examples of convex or nonconvex functions are shown in Fig. 7.3.
Geometrically, a function is convex if the line joining two points on its graph lies
nowhere below the graph, as shown in Fig. 7.3(a), or, thinking of a function in two
dimensions, it is convex if its graph is bowl shaped.

Next we turn to the definition of a concave function.

Definition. A function g defined on a convex set � is said to be concave
if the function f = −g is convex. The function g is strictly concave if −g is
strictly convex.
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f

x
convex

(a)

f

x
nonconvex

(c)

f

x
convex

(b)

Fig. 7.3 Convex and nonconvex functions
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Combinations of Convex Functions
We show that convex functions can be combined to yield new convex functions
and that convex functions when used as constraints yield convex constraint sets.

Proposition 1. Let f1 and f2 be convex functions on the convex set �. Then
the function f1 +f2 is convex on �.

Proof. Let x1, x2 ∈ �, and 0 < � < 1. Then

f1��x1 + �1−��x2�+f2��x1�+ �1−��x2�

� �
f1�x1�+f2�x1��+ �1−��
f1�x2�+f2�x2���

Proposition 2. Let f be a convex function over the convex set �. Then the
function af is convex for any a � 0.

Proof. Immediate.

Note that through repeated application of the above two propositions it follows
that a positive combination a1f1 +a2f2 + � � �+amfm of convex functions is again
convex.

Finally, we consider sets defined by convex inequality constraints.

Proposition 3. Let f be a convex function on a convex set �. The set
�c = 
x � x ∈ ��f�x� � c� is convex for every real number c.

Proof. Let x1, x2 ∈ �c. Then f�x1� � c, f�x2� � c and for 0 < � < 1,

f��x1 + �1−��x2� � �f�x1�+ �1−��f�x2� � c�

Thus �x1 + �1−��x2 ∈ �c.

We note that, since the intersection of convex sets is also convex, the set of
points simultaneously satisfying

f1�x� � c1� f2�x� � c2� � � � � fm�x� � cm�

where each fi is a convex function, defines a convex set. This is important in
mathematical programming, since the constraint set is often defined this way.

Properties of Differentiable Convex Functions
If a function f is differentiable, then there are alternative characterizations of
convexity.
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Proposition 4. Let f ∈ C1. Then f is convex over a convex set � if and only
if

f�y� � f�x�+�f�x��y −x� (9)

for all x� y ∈ �.

Proof. First suppose f is convex. Then for all �, 0 � � � 1,

f��y + �1−��x� � �f�y�+ �1−��f�x��

Thus for 0 < � � 1

f�x +��y −x��−f�x�

�
� f�y�−f�x��

Letting � → 0 we obtain

�f�x��y −x� � f�y�−f�x��

This proves the “only if” part.
Now assume

f�y� � f�x�+�f�x��y −x�

for all x, y ∈ �. Fix x1, x2 ∈ � and �, 0 � � � 1. Setting x = �x1 + �1−��x2 and
alternatively y = x1 or y = x2, we have

f�x1� � f�x�+�f�x��x1 −x� (10)

f�x2� � f�x�+�f�x��x2 −x�� (11)

Multiplying (10) by � and (11) by (1−�) and adding, we obtain

�f�x1�+ �1−��f�x2� � f�x�+�f�x�
�x1 + �1−��x2 −x��

But substituting x = �x1 + �1−��x2, we obtain

�f�x1�+ �1−��f�x2� � f��x1 + �1−��x2��

The statement of the above proposition is illustrated in Fig. 7.4. It can be
regarded as a sort of dual characterization of the original definition illustrated in
Fig. 7.3. The original definition essentially states that linear interpolation between
two points overestimates the function, while the above proposition states that linear
approximation based on the local derivative underestimates the function.

For twice continuously differentiable functions, there is another characterization
of convexity.
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f (y)

y
x

f (x) + ∇ f (x) (y – x)

Fig. 7.4 Illustration of Proposition 4

Proposition 5. Let f ∈ C2. Then f is convex over a convex set � containing
an interior point if and only if the Hessian matrix F of f is positive semidefinite
throughout �.

Proof. By Taylor’s theorem we have

f�y� = f�x� = �f�x��y −x�+ 1
2 �y −x�T F�x +��y −x���y −x� (12)

for some �, 0 � � � 1. Clearly, if the Hessian is everywhere positive semidefinite,
we have

f�y� � f�x�+�f�x��y −x�� (13)

which in view of Proposition 4 implies that f is convex.
Now suppose the Hessian is not positive semidefinite at some point x ∈ �. By

continuity of the Hessian it can be assumed, without loss of generality, that x is an
interior point of �. There is a y ∈ � such that �y −x�T F�x��y −x� < 0. Again by
the continuity of the Hessian, y may be selected so that for all �, 0 � � � 1,

�y −x�T F�x +��y −x���y −x� < 0�

This in view of (12) implies that (13) does not hold; which in view of Proposition 4
implies that f is not convex.

The Hessian matrix is the generalization to En of the concept of the curvature
of a function, and correspondingly, positive definiteness of the Hessian is the
generalization of positive curvature. Convex functions have positive (or at least
nonnegative) curvature in every direction. Motivated by these observations, we
sometimes refer to a function as being locally convex if its Hessian matrix is positive
semidefinite in a small region, and locally strictly convex if the Hessian is positive
definite in the region. In these terms we see that the second-order sufficiency result
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of the last section requires that the function be locally strictly convex at the point
x∗. Thus, even the local theory, derived solely in terms of the elementary calculus,
is actually intimately related to convexity—at least locally. For this reason we can
view the two theories, local and global, not as disjoint parallel developments but
as complementary and interactive. Results that are based on convexity apply even
to nonconvex problems in a region near the solution, and conversely, local results
apply to a global minimum point.

7.5 MINIMIZATION AND MAXIMIZATION
OF CONVEX FUNCTIONS

We turn now to the three classic results concerning minimization or maximization
of convex functions.

Theorem 1. Let f be a convex function defined on the convex set �. Then
the set � where f achieves its minimum is convex, and any relative minimum
of f is a global minimum.

Proof. If f has no relative minima the theorem is valid by default. Assume now
that c0 is the minimum of f . Then clearly � = 
x � f�x� � c0� x ∈ �� and this is
convex by Proposition 3 of the last section.

Suppose now that x∗ ∈ � is a relative minimum point of f , but that there
is another point y ∈ � with f�y� < f�x∗�. On the line �y + �1 −��x∗, 0 < � < 1
we have

f��y + �1−��x∗� � �f�y�+ �1−��f�x∗� < f�x∗��

contradicting the fact that x∗ is a relative minimum point.

We might paraphrase the above theorem as saying that for convex functions, all
minimum points are located together (in a convex set) and all relative minima are
global minima. The next theorem says that if f is continuously differentiable and
convex, then satisfaction of the first-order necessary conditions are both necessary
and sufficient for a point to be a global minimizing point.

Theorem 2. Let f ∈ C1 be convex on the convex set �. If there is a point
x∗ ∈ � such that, for all y ∈ �, �f�x∗��y−x∗� � 0, then x∗ is a global minimum
point of f over �.

Proof. We note parenthetically that since y − x∗ is a feasible direction at x∗,
the given condition is equivalent to the first-order necessary condition stated in
Section 7.1. The proof of the proposition is immediate, since by Proposition 4 of
the last section

f�y� � f�x∗�+�f�x∗��y −x∗� � f�x∗��

Next we turn to the question of maximizing a convex function over a convex
set. There is, however, no analog of Theorem 1 for maximization; indeed, the
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tendency is for the occurrence of numerous nonglobal relative maximum points.
Nevertheless, it is possible to prove one important result. It is not used in subsequent
chapters, but it is useful for some areas of optimization.

Theorem 3. Let f be a convex function defined on the bounded, closed convex
set �. If f has a maximum over � it is achieved at an extreme point of �.

Proof. Suppose f achieves a global maximum at x∗ ∈ �. We show first that this
maximum is achieved at some boundary point of �. If x∗ is itself a boundary point,
then there is nothing to prove, so assume x∗ is not a boundary point. Let L be any
line passing through the point x∗. The intersection of this line with � is an interval
of the line L having end points y1, y2 which are boundary points of �, and we have
x∗ = �y1 + �1−��y2 for some �, 0 < � < 1. By convexity of f

f�x∗� � �f�y1�+ �1−��f�y2� � max
f�y1�� f�y2���

Thus either f�y1� or f�y2� must be at least as great as f�x∗�. Since x∗ is a maximum
point, so is either y1 or y2.

We have shown that the maximum, if achieved, must be achieved at a boundary
point of �. If this boundary point, x∗, is an extreme point of � there is nothing
more to prove. If it is not an extreme point, consider the intersection of � with a
supporting hyperplane H at x∗. This intersection, T1, is of dimension n−1 or less
and the global maximum of f over T1 is equal to f�x∗� and must be achieved at
a boundary point x1 of T1. If this boundary point is an extreme point of T1, it is
also an extreme point of � by Lemma 1, Section B.4, and hence the theorem is
proved. If x1 is not an extreme point of T1, we form T2, the intersection of T1 with a
hyperplane in En−1 supporting T1 at x1. This process can continue at most a total of
n times when a set Tn of dimension zero, consisting of a single point, is obtained.
This single point is an extreme point of Tn and also, by repeated application of
Lemma 1, Section B.4, an extreme point of �.

7.6 ZERO-ORDER CONDITIONS
We have considered the problem

minimize f�x�

subject to x ∈ � (14)

to be unconstrained because there are no functional constraints of the form g�x� � b
or h�x� = c. However, the problem is of course constrained by the set �. This
constraint influences the first- and second-order necessary and sufficient conditions
through the relation between feasible directions and derivatives of the function f .
Nevertheless, there is a way to treat this constraint without reference to derivatives.
The resulting conditions are then of zero order. These necessary conditions require
that the problem be convex is a certain way, while the sufficient conditions require
no assumptions at all. The simplest assumptions for the necessary conditions are
that � is a convex set and that f is a convex function on all of En.
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Fig. 7.5 The epigraph, the tubular region, and the hyperplane

To derive the necessary conditions under these assumptions consider the set
� ⊂ En+1 = 
�r� x� � r � f�x�� x ∈ En�. In a figure of the graph of f , the set � is the
region above the graph, shown in the upper part of Fig. 7.5. This set is called the
epigraph of f . It is easy to verify that the set � is convex if f is a convex function.

Suppose that x∗ ∈ � is the minimizing point with value f ∗ = f�x∗�. We
construct a tubular region with cross section � and extending vertically from −	
up to f ∗, shown as B in the upper part of Fig. 7.5. This is also a convex set, and it
overlaps the set � only at the boundary point �f ∗� b∗� above x∗ (or possibly many
boundary points if f is flat near x∗).

According to the separating hyperplane theorem (Appendix B), there is a
hyperplane separating these two sets. This hyperplane can be represented by a
nonzero vector of the form �s� �� ∈ En+1 with s a scalar and � ∈ En, and a
separation constant c. The separation conditions are

sr +�T x ≥ c for all x ∈ En and r ≥ f�x� (15)

sr +�T x ≤ c for all x ∈ � and r ≤ f ∗� (16)

It follows that s �= 0; for otherwise � �= 0 and then (15) would be violated for some
x ∈ En. It also follows that s � 0 since otherwise (16) would be violated by very
negative values of r. Hence, together we find s > 0 and by appropriate scaling we
may take s = 1.

It is easy to see that the above conditions can be expressed alternatively as two
optimization problems, as stated in the following proposition.

Proposition 1 (Zero-order necessary conditions). If x∗ solves (14) under the
stated convexity conditions, then there is a nonzero vector � ∈ En such that x∗

is a solution to the two problems:
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minimize f�x�+�T x

subject to x ∈ En (17)

and

maximize �T x

subject to x ∈ �� (18)

Proof. Problem (17) follows from (15) (with s = 1) and the fact that f�x� ≤ r
for r ≥ f�x�. The value c is attained from above at �f ∗� x∗�. Likewise (18) follows
from (16) and the fact that x∗ and the appropriate r attain c from below.

Notice that problem (17) is completely unconstrained, since x may range over
all of En. The second problem (18) is constrained by � but has a linear objective
function.

It is clear from Fig. 7.5 that the slope of the hyperplane is equal to the slope
of the function f when f is continuously differentiable at the solution x∗.

If the optimal solution x∗ is in the interior of �, then the second problem (18)
implies that � = 0, for otherwise there would be a direction of movement from
x∗ that increases the product �T x above �T x∗. The hyperplane is horizontal in
that case. The zeroth-order conditions provide no new information in this situation.
However, when the solution is on a boundary point of � the conditions give very
useful information.

Example 1 (Minimization over an interval). Consider a continuously differen-
tiable function f of a single variable x ∈ E1 defined on the unit interval [0,1] which
plays the role of � here. The first problem (17) implies f ′�x∗� = −�. If the solution
is at the left end of the interval (at x = 0) then the second problem (18) implies
that � ≤ 0 which means that f ′�x∗� ≥ 0. The reverse holds if x∗ is at the right end.
These together are identical to the first-order conditions of section 7.1.

Example 2 As a generalization of the above example, let f ∈ C1 on En, and let f
have a minimum with respect to � at x∗. Let d ∈ En be a feasible direction at x∗.
Then it follows again from (17) that �f�x∗�d ≥ 0.

Sufficient Conditions. The conditions of Proposition 1 are sufficient for x∗ to be
a minimum even without the convexity assumptions.

Proposition 2 (Zero-order sufficiency conditions). If there is a � such that
x∗ ∈ � solves the problems (17) and (18), then x∗ solves (14).

Proof. Suppose x1 is any other point in �. Then from (17)

f�x1�+�T x1 � f�x∗�+�T x∗�

This can be rewritten as

f�x1�−f�x∗� � �T x∗ −�T x1�
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By problem (18) the right hand side of this is greater than or equal to zero. Hence
f�x1�−f�x∗� � 0 which establishes the result.

7.7 GLOBAL CONVERGENCE OF DESCENT
ALGORITHMS

A good portion of the remainder of this book is devoted to presentation and analysis
of various algorithms designed to solve nonlinear programming problems. Although
these algorithms vary substantially in their motivation, application, and detailed
analysis, ranging from the simple to the highly complex, they have the common
heritage of all being iterative descent algorithms. By iterative, we mean, roughly,
that the algorithm generates a series of points, each point being calculated on the
basis of the points preceding it. By descent, we mean that as each new point is
generated by the algorithm the corresponding value of some function (evaluated at
the most recent point) decreases in value. Ideally, the sequence of points generated
by the algorithm in this way converges in a finite or infinite number of steps to a
solution of the original problem.

An iterative algorithm is initiated by specifying a starting point. If for arbitrary
starting points the algorithm is guaranteed to generate a sequence of points
converging to a solution, then the algorithm is said to be globally convergent. Quite
definitely, not all algorithms have this obviously desirable property. Indeed, many of
the most important algorithms for solving nonlinear programming problems are not
globally convergent in their purest form and thus occasionally generate sequences
that either do not converge at all or converge to points that are not solutions. It is
often possible, however, to modify such algorithms, by appending special devices,
so as to guarantee global convergence.

Fortunately, the subject of global convergence can be treated in a unified
manner through the analysis of a general theory of algorithms developed mainly
by Zangwill. From this analysis, which is presented in this section, we derive
the Global Convergence Theorem that is applicable to the study of any iterative
descent algorithm. Frequent reference to this important result is made in subsequent
chapters.

Algorithms
We think of an algorithm as a mapping. Given a point x in some space X, the
output of an algorithm applied to x is a new point. Operated iteratively, an algorithm
is repeatedly reapplied to the new points it generates so as to produce a whole
sequence of points. Thus, as a preliminary definition, we might formally define
an algorithm A as a mapping taking points in a space X into (other) points in
X. Operated iteratively, the algorithm A initiated at x0 ∈ X would generate the
sequence 
xk� defined by

xk+1 = A�xk��
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In practice, the mapping A might be defined explicitly by a simple mathematical
expression or it might be defined implicitly by, say, a lengthy complex computer
program. Given an input vector, both define a corresponding output.

With this intuitive idea of an algorithm in mind, we now generalize the concept
somewhat so as to provide greater flexibility in our analyses.

Definition. An algorithm A is a mapping defined on a space X that assigns
to every point x ∈ X a subset of X.

In this definition the term “space” can be interpreted loosely. Usually X is the
vector space En but it may be only a subset of En or even a more general metric
space. The most important aspect of the definition, however, is that the mapping
A, rather than being a point-to-point mapping of X, is a point-to-set mapping of X.

An algorithm A generates a sequence of points in the following way. Given
xk ∈ X the algorithm yields A�xk� which is a subset of X. From this subset an
arbitrary element xk+1 is selected. In this way, given an initial point x0, the algorithm
generates sequences through the iteration

xk+1 ∈ A�xk��

It is clear that, unlike the case where A is a point-to-point mapping, the sequence
generated by the algorithm A cannot, in general, be predicted solely from knowledge
of the initial point x0. This degree of uncertainty is designed to reflect uncertainty
that we may have in practice as to specific details of an algorithm.

Example 1. Suppose for x on the real line we define

A�x� = 
−�x�/2� �x�/2�

so that A�x� is an interval of the real line. Starting at x0 = 100, each of the sequences
below might be generated from iterative application of this algorithm.

100� 50� 25� 12� −6� −2� 1� 1/2� � � �
100� −40� 20� −5� −2� 1� 1/4� 1/8� � � �

100� 10� −1� 1/16� 1/100� −1/1000� 1/10� 000� � � �

The apparent ambiguity that is built into this definition of an algorithm is not
meant to imply that actual algorithms are random in character. In actual imple-
mentation algorithms are not defined ambiguously. Indeed, a particular computer
program executed twice from the same starting point will generate two copies of the
same sequence. In other words, in practice algorithms are point-to-point mappings.
The utility of the more general definition is that it allows one to analyze, in a
single step, the convergence of an infinite family of similar algorithms. Thus, two
computer programs, designed from the same basic idea, may differ slightly in some
details, and therefore perhaps may not produce identical results when given the
same starting point. Both programs may, however, be regarded as implementations
of the same point-to-set mappings. In the example above, for instance, it is not
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necessary to know exactly how xk+1 is determined from xk so long as it is known
that its absolute value is no greater than one-half xk’s absolute value. The result will
always tend toward zero. In this manner, the generalized concept of an algorithm
sometimes leads to simpler analysis.

Descent
In order to describe the idea of a descent algorithm we first must agree on a subset
� of the space X, referred to as the solution set. The basic idea of a descent function,
which is defined below, is that for points outside the solution set, a single step of
the algorithm yields a decrease in the value of the descent function.

Definition. Let � ⊂ X be a given solution set and let A be an algorithm on
X. A continuous real-valued function Z on X is said to be a descent function
for � and A if it satisfies

i) if x � � and y ∈ A�x�, then Z�y� < Z�x�
ii) if x ∈ � and y ∈ A�x�, then Z�y� � Z�x�.

There are a number of ways a solution set, algorithm, and descent function can
be defined. A natural set-up for the problem

minimize f�x�
subject to x ∈ �

(19)

is to let � be the set of minimizing points, and define an algorithm A on � in
such a way that f decreases at each step and thereby serves as a descent function.
Indeed, this is the procedure followed in a majority of cases. Another possibility
for unconstrained problems is to let � be the set of points x satisfying �f�x� = 0.
In this case we might design an algorithm for which ��f�x�� serves as a descent
function or for which f�x� serves as a descent function.

Closed Mappings
An important property possessed by some algorithms is that they are closed. This
property, which is a generalization for point-to-set mappings of the concept of
continuity for point-to-point mappings, turns out to be the key to establishing a
general global convergence theorem. In defining this property we allow the point-
to-set mapping to map points in one space X into subsets of another space Y .

Definition. A point-to-set mapping A from X to Y is said to be closed at
x ∈ X if the assumptions

i) xk → x, xk ∈ X,
ii) yk → y, yk ∈ A�xk�

imply
iii) y ∈ A�x�.
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The point-to-set map A is said to be closed on X if it is closed at each point of X.

Example 2. As a special case, suppose that the mapping A is a point-to-point
mapping; that is, for each x ∈ X the set A(x) consists of a single point in Y . Suppose
also that A is continuous at x ∈ X. This means that if xk → x then A�xk� → A�x�,
and it follows that A is closed at x. Thus for point-to-point mappings continuity
implies closedness. The converse is, however, not true in general.

The definition of a closed mapping can be visualized in terms of the graph
of the mapping, which is the set 
�x� y� � x ∈ X� y ∈ A�x��. If X is closed, then A
is closed throughout X if and only if this graph is a closed set. This is illustrated
in Fig. 7.6. However, this equivalence is valid only when considering closedness
everywhere. In general a mapping may be closed at some points and not at others.

Example 3. The reader should verify that the point-to-set mapping defined in
Example 1 is closed.

Many complex algorithms that we analyze are most conveniently regarded
as the composition of two or more simple point-to-set mappings. It is therefore
natural to ask whether closedness of the individual maps implies closedness of the
composite. The answer is a qualified “yes.” The technical details of composition
are described in the remainder of this subsection. They can safely be omitted at
first reading while proceeding to the Global Convergence Theorem.

Definition. Let A � X → Y and B � Y → Z be point-to-set mappings. The
composite mapping C = BA is defined as the point-to-set mapping C � X →
Z with

C�x� = ∪
y∈A�x�

B�y��

This definition is illustrated in Fig. 7.7.

Proposition. Let A � X → Y and B � Y → Z be point-to-set mappings. Suppose
A is closed at x and B is closed on A(x). Suppose also that if xk → x and
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Fig. 7.7 Composition of mappings

yk ∈ A�xk�, there is a y such that, for some subsequence 
yki�, yki → y. Then
the composite mapping C = BA is closed at x.

Proof. Let xk → x and zk → z with zk ∈ C�xk�. It must be shown that z ∈ C�x�.
Select yk ∈ A�xk� such that zk ∈ B�yk� and according to the hypothesis let y

and 
yki� be such that yki → y. Since A is closed at x it follows that y ∈ A�x�.
Likewise, since yki → y, zki → z and B is closed at y, it follows that z ∈ B�y� ⊂

BA�x� = C�x�.

Two important corollaries follow immediately.

Corollary 1. Let A � X → Y and B � Y → Z be point-to-set mappings. If A
is closed at x, B is closed on A(x) and Y is compact, then the composite map
C = BA is closed at x.

Corollary 2. Let A � X → Y be a point-to-point mapping and B � Y → Z a
point-to-set mapping. If A is continuous at x and B is closed at A(x), then the
composite mapping C = BA is closed at x.

Global Convergence Theorem
The Global Convergence Theorem is used to establish convergence for the following
general situation. There is a solution set � . Points are generated according to
the algorithm xk+1 ∈ A�xk�, and each new point always strictly decreases a
descent function Z unless the solution set � is reached. For example, in nonlinear
programming, the solution set may be the set of minimum points (perhaps only
one point), and the descent function may be the objective function itself. A suitable
algorithm is found that generates points such that each new point strictly reduces
the value of the objective. Then, under appropriate conditions, it follows that the
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sequence converges to the solution set. The Global Convergence Theorem estab-
lishes technical conditions for which convergence is guaranteed.

Global Convergence Theorem. Let A be an algorithm on X, and suppose that,
given x0 the sequence 
xk�

	
k=0 is generated satisfying

xk+1 ∈ A�xk��

Let a solution set � ⊂ X be given, and suppose

i) all points xk are contained in a compact set S ⊂ X
ii) there is a continuous function Z on X such that

(a) if x � � , then Z�y� < Z�x� for all y ∈ A�x�
(b) if x ∈ � , then Z�y� � Z�x� for all y ∈ A�x�

iii) the mapping A is closed at points outside � .

Then the limit of any convergent subsequence of 
xk� is a solution.

Proof. Suppose the convergent subsequence 
xk�, k ∈� converges to the limit x.
Since Z is continuous, it follows that for k ∈� , Z�xk� → Z�x�. This means that Z is
convergent with respect to the subsequence, and we shall show that it is convergent
with respect to the entire sequence. By the monotonicity of Z on the sequence 
xk�
we have Z�xk�−Z�x� � 0 for all k. By the convergence of Z on the subsequence,
there is, for a given � > 0, a K ∈ � such that Z�xk� − Z�x� < � for all k > K,
k ∈ � .

Thus for all k > K

Z�xk�−Z�x� = Z�xk�−Z�xK�+Z�xK�−Z�x� < ��

which shows that Z�xk� → Z�x�.
To complete the proof it is only necessary to show that x is a solution. Suppose

x is not a solution. Consider the subsequence 
xk+1�� . Since all members of this
sequence are contained in a compact set, there is a �̄ ⊂ � such that 
xk+1��̄
converges to some limit x̄. We thus have xk → x, k ∈ �̄ , and xk+1 ∈ A�xk� with
xk+1 → x̄, k ∈ � . Thus since A is closed at x it follows that x̄ ∈ A�x�. But from
above, Z�x̄� = Z�x� which contradicts the fact that Z is a descent function.

Corollary. If under the conditions of the Global Convergence Theorem �
consists of a single point x̄, then the sequence 
xk� converges to x̄.

Proof. Suppose to the contrary that there is a subsequence 
xk�� and an � > 0
such that �xk − x̄� > � for all k ∈� . By compactness there must be � ′ ⊂� such that

xk�� ′ converges, say to x′. Clearly, �x′ − x̄� � �, but by the Global Convergence
Theorem x′ ∈ � , which is a contradiction.

In later chapters the Global Convergence Theorem is used to establish
the convergence of several standard algorithms. Here we consider some simple
examples designed to illustrate the roles of the various conditions of the theorem.
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Example 4. In many respects condition (iii) of the theorem, the closedness of
A outside the solution set, is the most important condition. The failure of many
popular algorithms can be traced to nonsatisfaction of this condition. On the real
line consider the point-to-point algorithm

A�x� =
{

1
2 �x−1�+1 x > 1
1
2 x x � 1

and the solution set � = 
0�. It is easily verified that a descent function for this
solution set and this algorithm is Z�x� = �x�. However, starting from x > 1, the
algorithm generates a sequence converging to x = 1 which is not a solution. The
difficulty is that A is not closed at x = 1.

Example 5. On the real line X consider the solution set to be empty, the descent
function Z�x� = e−x, and the algorithm A�x� = x+1. All conditions of the conver-
gence theorem except (i) hold. The sequence generated from any starting condition
diverges to infinity. This is not strictly a violation of the conclusion of the theorem
but simply an example illustrating that if no compactness assumption is introduced,
the generated sequence may have no convergent subsequence.

Example 6. Consider the point-to-set algorithm A defined by the graph in Fig. 7.8
and given explicitly on X = 
0� 1� by

A�x� =
{


0� x� 1 � x > 0

0 x = 0�

where 
0� x� denotes a half-open interval (see Appendix A). Letting � = 
0�, the
function Z�x� = x serves as a descent function, because for x �= 0 all points in A�x�
are less than x.

0

1

1
x

A (x)

Fig. 7.8 Graph for Example 6
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The sequence defined by

x0 = 1

xk+1 = xk − 1
2k+2

satisfies xk+1 ∈ A�xk� but it can easily be seen that xk → 1
2 � � . The difficulty here,

of course, is that the algorithm A is not closed outside the solution set.

7.8 SPEED OF CONVERGENCE
The study of speed of convergence is an important but sometimes complex subject.
Nevertheless, there is a rich and yet elementary theory of convergence rates that
enables one to predict with confidence the relative effectiveness of a wide class
of algorithms. In this section we introduce various concepts designed to measure
speed of convergence, and prepare for a study of this most important aspect of
nonlinear programming.

Order of Convergence
Consider a sequence of real numbers 
rk�

	
k=0 converging to the limit r∗. We define

several notions related to the speed of convergence of such a sequence.

Definition. Let the sequence 
rk� converge to r∗. The order of convergence
of 
rk� is defined as the supremum of the nonnegative numbers p satisfying

0 � lim
k→	

�rk+1 − r∗�
�rk − r∗�p < 	�

To ensure that the definition is applicable to any sequence, it is stated in terms
of limit superior rather than just limit and 0/0 (which occurs if rk = r∗ for all k) is
regarded as finite. But these technicalities are rarely necessary in actual analysis,
since the sequences generated by algorithms are generally quite well behaved.

It should be noted that the order of convergence, as with all other notions related
to speed of convergence that are introduced, is determined only by the properties
of the sequence that hold as k → 	. Somewhat loosely but picturesquely, we are
therefore led to refer to the tail of a sequence—that part of the sequence that is
arbitrarily far out. In this language we might say that the order of convergence is
a measure of how good the worst part of the tail is. Larger values of the order p
imply, in a sense, faster convergence, since the distance from the limit r∗ is reduced,
at least in the tail, by the pth power in a single step. Indeed, if the sequence has
order p and (as is the usual case) the limit

� = lim
k→	

�rk+1 − r∗�
�rk − r∗�p
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exists, then asymptotically we have

�rk+1 − r∗� = ��rk − r∗�p�

Example 1. The sequence with rk = ak where 0 < a < 1 converges to zero with
order unity, since rk+1/rk = a.

Example 2. The sequence with rk = a�2k� for 0 < a < 1 converges to zero with
order two, since rk+1/r2

k = 1.

Linear Convergence
Most algorithms discussed in this book have an order of convergence equal to unity.
It is therefore appropriate to consider this class in greater detail and distinguish
certain cases within it.

Definition. If the sequence 
rk� converges to r∗ in such a way that

lim
k→	

�rk+1 − r∗�
�rk − r∗� = � < 1�

the sequence is said to converge linearly to r∗ with convergence ratio (or
rate) �.

Linear convergence is, for our purposes, without doubt the most important
type of convergence behavior. A linearly convergent sequence, with convergence
ratio �, can be said to have a tail that converges at least as fast as the geometric
sequence c�k for some constant c. Thus linear convergence is sometimes referred
to as geometric convergence, although in this book we reserve that phrase for the
case when a sequence is exactly geometric.

As a rule, when comparing the relative effectiveness of two competing
algorithms both of which produce linearly convergent sequences, the comparison is
based on their corresponding convergence ratios—the smaller the ratio the faster the
rate. The ultimate case where � = 0 is referred to as superlinear convergence. We
note immediately that convergence of any order greater than unity is superlinear,
but it is also possible for superlinear convergence to correspond to unity order.

Example 3. The sequence rk = 1/k converges to zero. The convergence is of
order one but it is not linear, since lim

k→	
�rk+1/rk� = 1, that is, � is not strictly less

than one.
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Example 4. The sequence rk = �1/k�k is of order unity, since rk+1/r
p
k → 	 for

p > 1. However, rk+1/rk → 0 as k → 	 and hence this is superlinear convergence.

∗Average Rates
All the definitions given above can be referred to as step-wise concepts of conver-
gence, since they define bounds on the progress made by going a single step: from
k to k+ 1. Another approach is to define concepts related to the average progress
per step over a large number of steps. We briefly illustrate how this can be done.

Definition. Let the sequence 
rk� converge to r∗. The average order of
convergence is the infimum of the numbers p > 1 such that

lim
k→	

�rk − r∗�1/pk = 1�

The order is infinity if the equality holds for no p > 1.

Example 5. For the sequence rk = a�2k�, 0 < a < 1, given in Example 2, we have

�rk�1/2k = a�

while

�rk�1/pk = a�2/p�k → 1

for p > 2. Thus the average order is two.

Example 6. For rk = ak with 0 < a < 1 we have

�rk�
1/pk = ak�1/p�k → 1

for any p > 1. Thus the average order is unity.

As before, the most important case is that of unity order, and in this case we
define the average convergence ratio as lim

k→	
�rk − r∗�1/k. Thus for the geometric

sequence rk = cak, 0 < a < 1, the average convergence ratio is a. Paralleling the
earlier definitions, the reader can then in a similar manner define corresponding
notions of average linear and average superlinear convergence.

Although the above array of definitions can be further embellished and
expanded, it is quite adequate for our purposes. For the most part we work with
the step-wise definitions, since in analyzing iterative algorithms it is natural to
compare one step with the next. In most situations, moreover, when the sequences
are well behaved and the limits exist in the definitions, then the step-wise and
average concepts of convergence rates coincide.
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∗Convergence of Vectors
Suppose 
xk�

	
k=0 is a sequence of vectors in En converging to a vector x∗. The conver-

gence properties of such a sequence are defined with respect to some particular
function that converts the sequence of vectors into a sequence of numbers. Thus,
if f is a given continuous function on En, the convergence properties of 
xk�
can be defined with respect to f by analyzing the convergence of f�xk� to f�x∗�.
The function f used in this way to measure convergence is called the error function.

In optimization theory it is common to choose the error function by which to
measure convergence as the same function that defines the objective function of the
original optimization problem. This means we measure convergence by how fast the
objective converges to its minimum. Alternatively, we sometimes use the function
�x−x∗�2 and thereby measure convergence by how fast the (squared) distance from
the solution point decreases to zero.

Generally, the order of convergence of a sequence is insensitive to the particular
error function used; but for step-wise linear convergence the associated convergence
ratio is not. Nevertheless, the average convergence ratio is not too sensitive, as the
following proposition demonstrates, and hence the particular error function used to
measure convergence is not really very important.

Proposition. Let f and g be two error functions satisfying f�x∗� = g�x∗� = 0
and, for all x, a relation of the form

0 � a1g�x� � f�x� � a2g�x�

for some fixed a1 > 0, a2 > 0. If the sequence 
xk�
	
k=0 converges to x∗ linearly

with average ratio � with respect to one of these functions, it also does so with
respect to the other.

Proof. The statement is easily seen to be symmetric in f and g. Thus we assume

xk� is linearly convergent with average convergence ratio � with respect to f , and
will prove that the same is true with respect to g. We have

� = lim
k→	

f�xk�
1/k � lim

k→	
a

1/k
2 g�xk�

1/k = lim
k→	

g�xk�
1/k

and

� = lim
k→	

f�xk�
1/k � lim

k→	
a

1/k
1 g�xk�

1/k = lim
k→	

g�xk�
1/k�

Thus

� = lim
k→	

g�xk�
1/k�

As an example of an application of the above proposition, consider the case
where g�x� = �x−x∗�2 and f�x� = �x−x∗�T Q�x−x∗�, where Q is a positive definite
symmetric matrix. Then a1 and a2 correspond, respectively, to the smallest and
largest eigenvalues of Q. Thus average linear convergence is identical with respect
to any error function constructed from a positive definite quadratic form.
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Complexity
Complexity theory as outlined in Section 5.1 is an important aspect of convergence
theory. This theory can be used in conjunction with the theory of local convergence.
If an algorithm converges according to any order greater than zero, then for a
fixed problem, the sequence generated by the algorithm will converge in a time
that is a function of the convergence order (and rate, if convergence is linear). For
example, if the order is one with rate 0 < c < 1 and the process begins with an
error of R, a final error of r can be achieved by a number of steps n satisfing
cnR � r . Thus it requires approximately n = log�R/r�/ log�1/c� steps. In this form
the number of steps is not affected by the size of the problem. However, problem
size enters in two possible ways. First, the rate c may depend on the size–say
going toward 1 as the size increases so that the speed is slower for large problems.
The second way that size may enter, and this is the more important way, is that
the time to execute a single step almost always increases with problem size. For
instance if, for a problem seeking an optimal vector of dimension m, each step
requires a Gaussian elimination inversion of an m × m matrix, the solution time
will increase by a factor proportional to m3. Overall the algorithm is therefore a
polynomial time algorithm. Essentially all algorithms in this book employ steps,
such as matrix multiplications or inversion or other algebraic operations, which are
polynomial-time in character. Convergence analysis, therefore, focuses on whether
an algorithm is globally convergent, on its local convergence properties, and also
on the order of the algebraic operations required to execute the steps required. The
last of these is usually easily deduced by listing the number and size of the required
vector and matrix operations.

7.9 SUMMARY
There are two different but complementary ways to characterize the solution to
unconstrained optimization problems. In the local approach, one examines the
relation of a given point to its neighbors. This leads to the conclusion that, at an
unconstrained relative minimum point of a smooth function, the gradient of the
function vanishes and the Hessian is positive semidefinite; and conversely, if at
a point the gradient vanishes and the Hessian is positive definite, that point is a
relative minimum point. This characterization has a natural extension to the global
approach where convexity ensures that if the gradient vanishes at a point, that point
is a global minimum point.

In considering iterative algorithms for finding either local or global minimum
points, there are two distinct issues: global convergence properties and local conver-
gence properties. The first is concerned with whether starting at an arbitrary point
the sequence generated will converge to a solution. This is ensured if the algorithm
is closed, has a descent function, and generates a bounded sequence. Local conver-
gence properties are a measure of the ultimate speed of convergence and generally
determine the relative advantage of one algorithm to another.
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7.10 EXERCISES
1. To approximate a function g over the interval [0, 1] by a polynomial p of degree n (or

less), we minimize the criterion

f�a� =
∫ 1

0

g�x�−p�x��2 dx�

where p�x� = anx
n + an−1x

n−1 + � � � + a0. Find the equations satisfied by the optimal
coefficients a = �a0� a1� � � � � an�.

2. In Example 3 of Section 7.2 show that if the solution has x1 > 0, x1 +x2 = 1, then it is
necessary that

b1 −b2 + �c1 − c2�h�x1� = 0

b2 + �c2 − c3�h�x1 +x2� � 0�

Hint: One way is to reformulate the problem in terms of the variables x1 and y = x1 +x2.

3. a) Using the first-order necessary conditions, find a minimum point of the function

f�x� y� z� = 2x2 +xy +y2 +yz+ z2 −6x−7y −8z+9�

b) Verify that the point is a relative minimum point by verifying that the second-order
sufficiency conditions hold.

c) Prove that the point is a global minimum point.

4. In this exercise and the next we develop a method for determining whether a given
symmetric matrix is positive definite. Given an n×n matrix A let Ak denote the principal
submatrix made up of the first k rows and columns. Show (by induction) that if the
first n−1 principal submatrices are nonsingular, then there is a unique lower triangular
matrix L with unit diagonal and a unique upper triangular matrix U such that A = LU.
(See Appendix C.)

5. A symmetric matrix is positive definite if and only if the determinant of each of its
principal submatrices is positive. Using this fact and the considerations of Exercise 4,
show that an n×n symmetric matrix A is positive definite if and only if it has an LU
decomposition (without interchange of rows) and the diagonal elements of U are all
positive.

6. Using Exercise 5 show that an n×n matrix A is symmetric and positive definite if and
only if it can be written as A = GGT where G is a lower triangular matrix with positive
diagonal elements. This representation is known as the Cholesky factorization of A.

7. Let fi, i ∈ I be a collection of convex functions defined on a convex set �. Show that
the function f defined by f�x� = sup

i∈I
fi�x� is convex on the region

where it is finite.
8. Let � be a monotone nondecreasing function of a single variable (that is, ��r� � ��r ′�

for r ′ > r) which is also convex; and let f be a convex function defined on a convex
set �. Show that the function ��f� defined by ��f��x� = �
f�x�� is convex on �.
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9. Let f be twice continuously differentiable on a region � ⊂ En. Show that a sufficient
condition for a point x∗ in the interior of � to be a relative minimum point of f is that
�f�x∗� = 0 and that f be locally convex at x∗.

10. Define the point-to-set mapping on En by

A�x� = 
y � yT x � b��

where b is a fixed constant. Is A closed?

11. Prove the two corollaries in Section 7.6 on the closedness of composite mappings.

12. Show that if A is a continuous point-to-point mapping, the Global Convergence Theorem
is valid even without assumption (i). Compare with Example 2, Section 7.7.

13. Let 
rk�
	
k=0 and 
ck�

	
k=0 be sequences of real numbers. Suppose rk → 0 average linearly

and that there are constants c > 0 and C such that c � ck � C for all k. Show that
ckrk → 0 average linearly.

14. Prove a proposition, similar to the one in Section 7.8, showing that the order of conver-
gence is insensitive to the error function.

15. Show that if rk → r∗ (step-wise) linearly with convergence ratio �, then rk → r∗ (average)
linearly with average convergence ratio no greater than �.

REFERENCES
7.1–7.5 For alternative discussions of the material in these sections, see Hadley [H2], Fiacco
and McCormick [F4], Zangwill [Z2] and Luenberger [L8].

7.6 Although the general concepts of this section are well known, the formulation as zero-
order conditions appears to be new.

7.7 The idea of using a descent function (usually the objective itself) in order to guarantee
convergence of minimization algorithms is an old one that runs through most literature
on optimization, and has long been used to establish global convergence. Formulation of
the general Global Convergence Theorem, which captures the essence of many previously
diverse arguments, and the idea of representing an algorithm as a point-to-set mapping are
both due to Zangwill [Z2].

7.8 Most of the definitions given in this section have been standard for quite some time. A
thorough discussion which contributes substantially to the unification of these concepts is
contained in Ortega and Rheinboldt [O7].


