
Chapter 4 DUALITY

Associated with every linear program, and intimately related to it, is a corresponding
dual linear program. Both programs are constructed from the same underlying cost
and constraint coefficients but in such a way that if one of these problems is one
of minimization the other is one of maximization, and the optimal values of the
corresponding objective functions, if finite, are equal. The variables of the dual
problem can be interpreted as prices associated with the constraints of the original
(primal) problem, and through this association it is possible to give an economically
meaningful characterization to the dual whenever there is such a characterization
for the primal.

The variables of the dual problem are also intimately related to the calcu-
lation of the relative cost coefficients in the simplex method. Thus, a study of
duality sharpens our understanding of the simplex procedure and motivates certain
alternative solution methods. Indeed, the simultaneous consideration of a problem
from both the primal and dual viewpoints often provides significant computational
advantage as well as economic insight.

4.1 DUAL LINEAR PROGRAMS
In this section we define the dual program that is associated with a given linear
program. Initially, we depart from our usual strategy of considering programs
in standard form, since the duality relationship is most symmetric for programs
expressed solely in terms of inequalities. Specifically then, we define duality through
the pair of programs displayed below.

Primal

minimize cT x
subject to Ax � b

x � 0

Dual

maximize �T b
subject to �T A � cT

� � 0

(1)

If A is an m × n matrix, then x is an n-dimensional column vector, b is an
n-dimensional column vector, cT is an n-dimensional row vector, and �T is an
m-dimensional row vector. The vector x is the variable of the primal program, and
� is the variable of the dual program.
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The pair of programs (1) is called the symmetric form of duality and, as
explained below, can be used to define the dual of any linear program. It is important
to note that the role of primal and dual can be reversed. Thus, studying in detail
the process by which the dual is obtained from the primal: interchange of cost
and constraint vectors, transposition of coefficient matrix, reversal of constraint
inequalities, and change of minimization to maximization; we see that this same
process applied to the dual yields the primal. Put another way, if the dual is
transformed, by multiplying the objective and the constraints by minus unity, so
that it has the structure of the primal (but is still expressed in terms of �), its
corresponding dual will be equivalent to the original primal.

The dual of any linear program can be found by converting the program to
the form of the primal shown above. For example, given a linear program in
standard form

minimize cT x
subject to Ax = b

x � 0�

we write it in the equivalent form

minimize cT x
subject to Ax � b

−Ax � −b
x � 0�

which is in the form of the primal of (1) but with coefficient matrix

⎡

⎣
A

- - -
−A

⎤

⎦. Using

a dual vector partitioned as (u, v), the corresponding dual is

minimize uT b−vT b
subject to uT A−vT A � cT

u � 0
v � 0�

Letting � = u −v we may simplify the representation of the dual program so that
we obtain the pair of problems displayed below:

Primal Dual

minimize cT x maximize �T b
subject to Ax = b subject to �T A � cT �

x � 0

(2)

This is the asymmetric form of the duality relation. In this form the dual vector �
(which is really a composite of u and v) is not restricted to be nonnegative.
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Similar transformations can be worked out for any linear program to first get
the primal in the form (1), calculate the dual, and then simplify the dual to account
for special structure.

In general, if some of the linear inequalities in the primal (1) are changed to
equality, the corresponding components of � in the dual become free variables. If
some of the components of x in the primal are free variables, then the corresponding
inequalities in �T A � cT are changed to equality in the dual. We mention again that
these are not arbitrary rules but are direct consequences of the original definition
and the equivalence of various forms of linear programs.

Example 1 (Dual of the diet problem). The diet problem, Example 1, Section 2.2,
was the problem faced by a dietician trying to select a combination of foods to
meet certain nutritional requirements at minimum cost. This problem has the form

minimize cT x
subject to Ax � b

x � 0

and hence can be regarded as the primal program of the symmetric pair above. We
describe an interpretation of the dual problem.

Imagine a pharmaceutical company that produces in pill form each of the
nutrients considered important by the dietician. The pharmaceutical company tries
to convince the dietician to buy pills, and thereby supply the nutrients directly rather
than through purchase of various foods. The problem faced by the drug company
is that of determining positive unit prices �1� �2� � � � � �m for the nutrients so as to
maximize revenue while at the same time being competitive with real food. To be
competitive with real food, the cost of a unit of food i made synthetically from pure
nutrients bought from the druggist must be no greater than ci, the market price of
the food. Thus, denoting by ai the ith food, the company must satisfy �T ai � ci

for each i. In matrix form this is equivalent to �T A � cT . Since bj units of the jth
nutrient will be purchased, the problem of the druggist is

maximize �T b
subject to �T A � cT

� � 0�

which is the dual problem.

Example 2 (Dual of the transportation problem). The transportation problem,
Example 2, Section 2.2, is the problem, faced by a manufacturer, of selecting the
pattern of product shipments between several fixed origins and destinations so as
to minimize transportation cost while satisfying demand. Referring to (6) and (7)
of Chapter 2, the problem is in standard form, and hence the asymmetric version of
the duality relation applies. There is a dual variable for each constraint. In this case
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we denote the variables ui� i = 1� 2� � � � �m for (6) and �j� j = 1� 2� � � � � n for (7).
Accordingly, the dual is

maximize
m∑

i=1
aiui +

n∑

j=1
bj�j

subject to ui +�j � cij� i = 1� 2� � � � �m�
j = 1� 2� � � � � n�

To interpret the dual problem, we imagine an entrepreneur who, feeling that
he can ship more efficiently, comes to the manufacturer with the offer to buy his
product at the plant sites (origins) and sell it at the warehouses (destinations). The
product price that is to be used in these transactions varies from point to point,
and is determined by the entrepreneur in advance. He must choose these prices, of
course, so that his offer will be attractive to the manufacturer.

The entrepreneur, then, must select prices −u1�−u2� � � � �−um for the m origins
and �1� �2� � � � � �n for the n destinations. To be competitive with usual transportation
modes, his prices must satisfy ui +�j � cij for all i� j, since ui +�j represents the
net amount the manufacturer must pay to sell a unit of product at origin i and buy
it back again at destination j. Subject to this constraint, the entrepreneur will adjust
his prices to maximize his revenue. Thus, his problem is as given above.

4.2 THE DUALITY THEOREM
To this point the relation between the primal and dual programs has been simply a
formal one based on what might appear as an arbitrary definition. In this section,
however, the deeper connection between a program and its dual, as expressed by
the Duality Theorem, is derived.

The proof of the Duality Theorem given in this section relies on the Separating
Hyperplane Theorem (Appendix B) and is therefore somewhat more advanced than
previous arguments. It is given here so that the most general form of the Duality
Theorem is established directly. An alternative approach is to use the theory of the
simplex method to derive the duality result. A simplified version of this alternative
approach is given in the next section.

Throughout this section we consider the primal program in standard form

minimize cT x
subject to Ax = b

x � 0
(3)

and its corresponding dual

minimize �T b
subject to �T A � cT �

(4)

In this section it is not assumed that A is necessarily of full rank. The following
lemma is easily established and gives us an important relation between the two
problems.
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Dual values Primal values
z

Fig. 4.1 Relation of primal and dual values

Lemma 1. (Weak Duality Lemma). If x and � are feasible for (3) and (4),
respectively, then cT x � �T b.

Proof. We have

�T b = �T Ax � cT x�

the last inequality being valid since x � 0 and �T A � cT .

This lemma shows that a feasible vector to either problem yields a bound on
the value of the other problem. The values associated with the primal are all larger
than the values associated with the dual as illustrated in Fig. 4.1. Since the primal
seeks a minimum and the dual seeks a maximum, each seeks to reach the other.
From this we have an important corollary.

Corollary. If x0 and �0 are feasible for (3) and (4), respectively, and if
cT x0 = �T

0 b, then x0 and �0 are optimal for their respective problems.

The above corollary shows that if a pair of feasible vectors can be found to the
primal and dual programs with equal objective values, then these are both optimal.
The Duality Theorem of linear programming states that the converse is also true,
and that, in fact, the two regions in Fig. 4.1 actually have a common point; there is
no “gap.”

Duality Theorem of Linear Programming. If either of the problems (3) or
(4) has a finite optimal solution, so does the other, and the corresponding
values of the objective functions are equal. If either problem has an unbounded
objective, the other problem has no feasible solution.

Proof. We note first that the second statement is an immediate consequence of
Lemma 1. For if the primal is unbounded and � is feasible for the dual, we must
have �T b � −M for arbitrarily large M , which is clearly impossible.

Second we note that although the primal and dual are not stated in symmetric
form it is sufficient, in proving the first statement, to assume that the primal has
a finite optimal solution and then show that the dual has a solution with the same
value. This follows because either problem can be converted to standard form and
because the roles of primal and dual are reversible.

Suppose (3) has a finite optimal solution with value z0. In the space Em+1

define the convex set

C = {
�r� w� � r = tz0 − cT x� w = tb−Ax� x � 0� t � 0

}
�

It is easily verified that C is in fact a closed convex cone. We show that the point
(1, 0) is not in C. If w = t0b − Ax0 = 0 with t0 > 0� x0 � 0, then x = x0/t0 is
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feasible for (3) and hence r/t0 = z0 −cT x � 0; which means r � 0. If w = −Ax0 = 0
with x0 � 0 and cT x0 = −1, and if x is any feasible solution to (3), then x +	x0 is
feasible for any 	 � 0 and gives arbitrarily small objective values as 	 is increased.
This contradicts our assumption on the existence of a finite optimum and thus we
conclude that no such x0 exists. Hence �1� 0� � C.

Now since C is a closed convex set, there is by Theorem 1, Section B.3, a
hyperplane separating (1, 0) and C. Thus there is a nonzero vector 
s��� ∈ Em+1

and a constant c such that

s < c = inf
{
sr +�T w � �r� w� ∈ C

}
�

Now since C is a cone, it follows that c � 0. For if there were �r� w� ∈ C such that
sr +�T w < 0, then 	�r� w� for large 	 would violate the hyperplane inequality. On
the other hand, since �0� 0� ∈ C we must have c � 0. Thus c = 0. As a consequence
s < 0, and without loss of generality we may assume s = −1.

We have to this point established the existence of � ∈ Em such that

−r +�T w � 0

for all �r� w� ∈ C. Equivalently, using the definition of C,

(
c −�T A

)
x − tz0 + t�T b � 0

for all x � 0, t � 0. Setting t = 0 yields �T A � cT , which says � is feasible for the
dual. Setting x = 0 and t = 1 yields �T b � z0, which in view of Lemma 1 and its
corollary shows that � is optimal for the dual.

4.3 RELATIONS TO THE SIMPLEX PROCEDURE
In this section the Duality Theorem is proved by making explicit use of the charac-
teristics of the simplex procedure. As a result of this proof it becomes clear that
once the primal is solved by the simplex procedure a solution to the dual is readily
obtainable.

Suppose that for the linear program

minimize cT x
subject to Ax = b

x � 0�
(5)

we have the optimal basic feasible solution x = �xB� 0� with corresponding basis B.
We shall determine a solution of the dual program

maximize �T b
subject to �T A � cT (6)

in terms of B.
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We partition A as A = 
B� D�. Since the basic feasible solution xB = B−1b is
optimal, the relative cost vector r must be nonnegative in each component. From
Section 3.7 we have

rT
D = cT

D − cT
BB−1D�

and since rD is nonnegative in each component we have cT
BB−1D � cT

D.
Now define �T = cT

BB−1. We show that this choice of � solves the dual problem.
We have

�T A = [
�T B��T D

]= [
cT

B� cT
BB−1D

]
�
[
cT

B� cT
D

]= cT �

Thus since �T A � cT �� is feasible for the dual. On the other hand,

�T b = cT
BB−1b = cT

BxB�

and thus the value of the dual objective function for this � is equal to the value
of the primal problem. This, in view of Lemma 1, Section 4.2, establishes the
optimality of � for the dual. The above discussion yields an alternative derivation
of the main portion of the Duality Theorem.

Theorem. Let the linear program (5) have an optimal basic feasible solution
corresponding to the basis B. Then the vector � satisfying �T = cT

BB−1 is an
optimal solution to the dual program (6). The optimal values of both problems
are equal.

We turn now to a discussion of how the solution of the dual can be obtained
directly from the final simplex tableau of the primal. Suppose that embedded in the
original matrix A is an m×m identity matrix. This will be the case if, for example,
m slack variables are employed to convert inequalities to equalities. Then in the
final tableau the matrix B−1 appears where the identity appeared in the beginning.
Furthermore, in the last row the components corresponding to this identity matrix
will be cT

I − cT
BB−1, where cI is the m-vector representing the cost coefficients of

the variables corresponding to the columns of the original identity matrix. Thus by
subtracting these cost coefficients from the corresponding elements in the last row,
the negative of the solution �T = cT

BB−1 to the dual is obtained. In particular, if, as
is the case with slack variables, cI = 0, then the elements in the last row under B−1

are equal to the negative of components of the solution to the dual.

Example. Consider the primal program

minimize − x1 − 4x2 − 3x3

subject to 2x1 + 2x2 + x3 � 4
x1 + 2x2 + 2x3 � 6

x1 � 0� x2 � 0� x3 � 0�
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This can be solved by introducing slack variables and using the simplex procedure.
The appropriate sequence of tableaus is given below without explanation.

2 ©2 1 1 0 4
1 2 2 0 1 6

−1 −4 −3 0 0 0

1 1 1/2 1/2 0 2
−1 0 ©1 −1 1 2

3 0 −1 2 0 8

3/2 1 0 1 −1/2 1
−1 0 1 −1 1 2

2 0 0 1 1 10

The optimal solution is x1 = 0, x2 = 1, x3 = 2. The corresponding dual program is

maximize 4�1 + 6�2

subject to 2�1 + �2 � −1
2�1 + 2�2 � −4
�1 + 2�2 � −3

�1 � 0� �2 � 0�

The optimal solution to the dual is obtained directly from the last row of the simplex
tableau under the columns where the identity appeared in the first tableau: �1 = −1,
�2 = −1.

Geometric Interpretation
The duality relations can be viewed in terms of the dual interpretations of linear
constraints emphasized in Chapter 3. Consider a linear program in standard form.
For sake of concreteness we consider the problem

minimize 18x1 + 12x2 + 2x3 + 6x4

subject to 3x1 + x2 − 2x3 + x4 = 2
x1 + 3x2 − x4 = 2

x1 � 0� x2 � 0� x3 � 0� x4 � 0�

The columns of the constraints are represented in requirements space in Fig. 4.2.
A basic solution represents construction of b with positive weights on two of the
ai’s. The dual problem is

maximize 2�1 + 2�2

subject to 3�1 + �2 � 18
�1 + 3�2 � 12

−2�1 � 2
�1 − �2 � 6�
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a3

a2

a1

a4

b

Fig. 4.2 The primal requirements space

The dual problem is shown geometrically in Fig. 4.3. Each column ai of the
primal defines a constraint of the dual as a half-space whose boundary is orthogonal
to that column vector and is located at a point determined by ci. The dual objective
is maximized at an extreme point of the dual feasible region. At this point exactly
two dual constraints are active. These active constraints correspond to an optimal
basis of the primal. In fact, the vector defining the dual objective is a positive linear
combination of the vectors. In the specific example, b is a positive combination
of a1 and a2. The weights in this combination are the xi’s in the solution of the
primal.

a3

a2

λ2

λ1

a1

b

a4

Fig. 4.3 The dual in activity space
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Simplex Multipliers
We conclude this section by giving an economic interpretation of the relation
between the simplex basis and the vector �. At any point in the simplex procedure
we may form the vector � satisfying �T = cT

BB−1. This vector is not a solution
to the dual unless B is an optimal basis for the primal, but nevertheless, it has an
economic interpretation. Furthermore, as we have seen in the development of the
revised simplex method, this � vector can be used at every step to calculate the
relative cost coefficients. For this reason �T = cT

BB−1, corresponding to any basis,
is often called the vector of simplex multipliers.

Let us pursue the economic interpretation of these simplex multipliers. As
usual, denote the columns of A by a1, a2� � � � � an and denote by e1, e2� � � � � em the
m unit vectors in Em. The components of the ai’s and b tell how to construct these
vectors from the ei’s.

Given any basis B, however, consisting of m columns of A, any other vector
can be constructed (synthetically) as a linear combination of these basis vectors.
If there is a unit cost ci associated with each basis vector ai, then the cost of a
(synthetic) vector constructed from the basis can be calculated as the corresponding
linear combination of the ci’s associated with the basis. In particular, the cost of
the jth unit vector, ej , when constructed from the basis B, is �j , the jth component
of �T = cT

BB−1. Thus the �j’s can be interpreted as synthetic prices of the unit
vectors.

Now, any vector can be expressed in terms of the basis B in two steps:
(i) express the unit vectors in terms of the basis, and then (ii) express the desired
vector as a linear combination of unit vectors. The corresponding synthetic cost of
a vector constructed from the basis B can correspondingly be computed directly by:
(i) finding the synthetic price of the unit vectors, and then (ii) using these prices
to evaluate the cost of the linear combination of unit vectors. Thus, the simplex
multipliers can be used to quickly evaluate the synthetic cost of any vector that
is expressed in terms of the unit vectors. The difference between the true cost of
this vector and the synthetic cost is the relative cost. The process of calculating
the synthetic cost of a vector, with respect to a given basis, by using the simplex
multipliers is sometimes referred to as pricing out the vector.

Optimality of the primal corresponds to the situation where every vector
a1, a2� � � � � an is cheaper when constructed from the basis than when purchased
directly at its own price. Thus we have �T ai � ci for i = 1� 2� � � � � n or equivalently
�T A � cT .

4.4 SENSITIVITY AND COMPLEMENTARY
SLACKNESS

The optimal values of the dual variables in a linear program can, as we have seen,
be interpreted as prices. In this section this interpretation is explored in further
detail.
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Sensitivity
Suppose in the linear program

minimize cT x
subject to Ax = b

x � 0�
(7)

the optimal basis is B with corresponding solution �xB� 0�, where xB = B−1b. A
solution to the corresponding dual is �T = cT

BB−1.
Now, assuming nondegeneracy, small changes in the vector b will not cause

the optimal basis to change. Thus for b+�b the optimal solution is

x = �xB +�xB� 0� �

where �xB = B−1�b. Thus the corresponding increment in the cost function is

�z = cT
B�xB = �T �b� (8)

This equation shows that � gives the sensitivity of the optimal cost with respect to
small changes in the vector b. In other words, if a new program were solved with b
changed to b+�b, the change in the optimal value of the objective function would
be �T �b.

This interpretation of the dual vector � is intimately related to its interpretation
as a vector of simplex multipliers. Since �j is the price of the unit vector ej when
constructed from the basis B, it directly measures the change in cost due to a change
in the jth component of the vector b. Thus, �j may equivalently be considered as
the marginal price of the component bj , since if bj is changed to bj +bj the value
of the optimal solution changes by �jbj .

If the linear program is interpreted as a diet problem, for instance, then �j is
the maximum price per unit that the dietician would be willing to pay for a small
amount of the jth nutrient, because decreasing the amount of nutrient that must
be supplied by food will reduce the food bill by �j dollars per unit. If, as another
example, the linear program is interpreted as the problem faced by a manufacturer
who must select levels x1, x2� � � � � xn of n production activities in order to meet
certain required levels of output b1, b2� � � � � bm while minimizing production costs,
the �i’s are the marginal prices of the outputs. They show directly how much the
production cost varies if a small change is made in the output levels.

Complementary Slackness
The optimal solutions to primal and dual programs satisfy an additional relation
that has an economic interpretation. This relation can be stated for any pair of dual
linear programs, but we state it here only for the asymmetric and the symmetric
pairs defined in Section 4.1.
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Theorem 1 (Complementary slackness—asymmetric form). Let x and � be
feasible solutions for the primal and dual programs, respectively, in the pair (2).
A necessary and sufficient condition that they both be optimal solutions is that†

for all i

i) xi > 0 ⇒ �T ai = ci

ii) xi = 0 ⇐ �T ai < ci.

Proof. If the stated conditions hold, then clearly ��T A− cT �x = 0. Thus �T b =
cT x, and by the corollary to Lemma 1, Section 4.2, the two solutions are optimal.
Conversely, if the two solutions are optimal, it must hold, by the Duality Theorem,
that �T b = cT x and hence that ��T A − cT �x = 0. Since each component of x is
nonnegative and each component of �T A−cT is nonpositive, the conditions (i) and
(ii) must hold.

Theorem 2 (Complementary slackness—symmetric form). Let x and � be
feasible solutions for the primal and dual programs, respectively, in the pair (1).
A necessary and sufficient condition that they both be optimal solutions is that
for all i and j

i) xi > 0 ⇒ �T ai = ci

ii) xi = 0 ⇐ �T ai < ci

iii) �j > 0 ⇒ ajx = bj

iv) �j = 0 ⇐ ajx > bj ,

(where aj is the jth row of A).

Proof. This follows by transforming the previous theorem.

The complementary slackness conditions have a rather obvious economic inter-
pretation. Thinking in terms of the diet problem, for example, which is the primal
part of a symmetric pair of dual problems, suppose that the optimal diet supplies
more than bj units of the jth nutrient. This means that the dietician would be
unwilling to pay anything for small quantities of that nutrient, since availability
of it would not reduce the cost of the optimal diet. This, in view of our previous
interpretation of �j as a marginal price, implies �j = 0 which is (iv) of Theorem 2.
The other conditions have similar interpretations which the reader can work out.

∗4.5 THE DUAL SIMPLEX METHOD
Often there is available a basic solution to a linear program which is not feasible
but which prices out optimally; that is, the simplex multipliers are feasible for
the dual problem. In the simplex tableau this situation corresponds to having no
negative elements in the bottom row but an infeasible basic solution. Such a situation
may arise, for example, if a solution to a certain linear programming problem is

†The symbol ⇒ means “implies” and ⇐ means “is implied by.”
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calculated and then a new problem is constructed by changing the vector b. In such
situations a basic feasible solution to the dual is available and hence it is desirable
to pivot in such a way as to optimize the dual.

Rather than constructing a tableau for the dual problem (which, if the primal is
in standard form; involves m free variables and n nonnegative slack variables), it is
more efficient to work on the dual from the primal tableau. The complete technique
based on this idea is the dual simplex method. In terms of the primal problem,
it operates by maintaining the optimality condition of the last row while working
toward feasibility. In terms of the dual problem, however, it maintains feasibility
while working toward optimality.

Given the linear program

minimize cT x
subject to Ax = b

x � 0�
(9)

suppose a basis B is known such that � defined by �T = cT
BB−1 is feasible for

the dual. In this case we say that the corresponding basic solution to the primal,
xB = B−1b, is dual feasible. If xB � 0 then this solution is also primal feasible and
hence optimal.

The given vector � is feasible for the dual and thus satisfies �T aj � cj , for
j = 1� 2� � � � � n. Indeed, assuming as usual that the basis is the first m columns of
A, there is equality

�T aj = cj� for j = 1� 2� � � � �m� (10a)

and (barring degeneracy in the dual) there is inequality

�T aj < cj� for j = m+1� � � � � n� (10b)

To develop one cycle of the dual simplex method, we find a new vector �̄ such that
one of the equalities becomes an inequality and one of the inequalities becomes
equality, while at the same time increasing the value of the dual objective function.
The m equalities in the new solution then determine a new basis.

Denote the ith row of B−1 by ui. Then for

�̄T = �T −�ui� (11)

we have �̄T aj = �T aj −�uiaj . Thus, recalling that zj = �T aj and noting that uiaj =
yij , the ijth element of the tableau, we have

�̄T aj = cj� j = 1� 2� � � � �m� i �= j (12a)

�̄T ai = ci −� (12b)

�̄T aj = zj −�yij� j = m+1� m+2� � � � � n� (12c)
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Also,

�̄T b = �T b−�xBi� (13)

These last equations lead directly to the algorithm:

Step 1. Given a dual feasible basic solution xB, if xB � 0 the solution is optimal. If
xB is not nonnegative, select an index i such that the ith component of xB, xBi < 0.

Step 2. If all yij � 0, j = 1� 2� � � � � n, then the dual has no maximum (this follows
since by (12) �̄ is feasible for all � > 0). If yij < 0 for some j, then let

�0 = zk − ck

yik

= min
j

{
zj − cj

yij

� yij < 0
}

� (14)

Step 3. Form a new basis B by replacing ai by ak. Using this basis determine the
corresponding basic dual feasible solution xB and return to Step 1.

The proof that the algorithm converges to the optimal solution is similar in its
details to the proof for the primal simplex procedure. The essential observations
are: (a) from the choice of k in (14) and from (12a, b, c) the new solution will
again be dual feasible; (b) by (13) and the choice xBi

< 0, the value of the dual
objective will increase; (c) the procedure cannot terminate at a nonoptimum point;
and (d) since there are only a finite number of bases, the optimum must be achieved
in a finite number of steps.

Example. A form of problem arising frequently is that of minimizing a positive
combination of positive variables subject to a series of “greater than” type inequal-
ities having positive coefficients. Such problems are natural candidates for appli-
cation of the dual simplex procedure. The classical diet problem is of this type as
is the simple example below.

minimize 3x1 + 4x2 + 5x3

subject to xi + 2x2 + 3x3 � 5
2x1 + 2x2 + x3 � 6

x1 � 0� x2 � 0� x3 � 0�

By introducing surplus variables and by changing the sign of the inequalities we
obtain the initial tableau

−1 −2 −3 1 0 −5
−©2 −2 −1 0 1 −6

3 4 5 0 0 0

Initial tableau
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The basis corresponds to a dual feasible solution since all of the cj − zj’s are
nonnegative. We select any xBi

< 0, say x5 = −6, to remove from the set of basic
variables. To find the appropriate pivot element in the second row we compute
the ratios �zj −cj�/y2j and select the minimum positive ratio. This yields the pivot
indicated. Continuing, the remaining tableaus are

0 −©1 −5/2 1 −1/2 −2
1 1 1/2 0 −1/2 3
0 1 7/2 0 3/2 9

Second tableau

0 1 5/2 −1 1/2 2
1 0 −2 1 −1 1
0 0 1 1 1 11

Final tableau

The third tableau yields a feasible solution to the primal which must be optimal.
Thus the solution is x1 = 1, x2 = 2, x3 = 0.

∗4.6 THE PRIMAL–DUAL ALGORITHM
In this section a procedure is described for solving linear programming problems by
working simultaneously on the primal and the dual problems. The procedure begins
with a feasible solution to the dual that is improved at each step by optimizing an
associated restricted primal problem. As the method progresses it can be regarded
as striving to achieve the complementary slackness conditions for optimality. Origi-
nally, the primal–dual method was developed for solving a special kind of linear
program arising in network flow problems, and it continues to be the most efficient
procedure for these problems. (For general linear programs the dual simplex method
is most frequently used). In this section we describe the generalized version of the
algorithm and point out an interesting economic interpretation of it. We consider
the program

minimize cT x
subject to Ax = b

x � 0
(15)

and the corresponding dual program

maximize �T b
subject to �T A � cT �

(16)

Given a feasible solution � to the dual, define the subset P of 1� 2� � � � � n by
i ∈ P if �T ai = ci where ai is the ith column of A. Thus, since � is dual feasible,
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it follows that i �∈ P implies �T ai < ci. Now corresponding to � and P, we define
the associated restricted primal problem

minimize 1T y
subject to Ax +y = b

x � 0� xi = 0 for i �∈ P
y � 0�

(17)

where 1 denotes the m-vector �1� 1� � � � � 1�.
The dual of this associated restricted primal is called the associated restricted

dual. It is

maximize uT b
subject to uT ai � 0� i �∈ P

u � 1�
(18)

The condition for optimality of the primal–dual method is expressed in the following
theorem.

Primal–Dual Optimality Theorem. Suppose that � is feasible for the dual
and that x and y = 0 is feasible (and of course optimal) for the associated
restricted primal. Then x and � are optimal for the original primal and dual
programs, respectively.

Proof. Clearly x is feasible for the primal. Also we have cT x = �T Ax, because
�T A is identical to cT on the components corresponding to nonzero elements of x.
Thus cT x = �T Ax = �T b and optimality follows from Lemma 1, Section 4.2.

The primal–dual method starts with a feasible solution to the dual and then
optimizes the associated restricted primal. If the optimal solution to this associated
restricted primal is not feasible for the primal, the feasible solution to the dual is
improved and a new associated restricted primal is determined. Here are the details:

Step 1. Given a feasible solution �0 to the dual program (16), determine the
associated restricted primal according to (17).

Step 2. Optimize the associated restricted primal. If the minimal value of this
problem is zero, the corresponding solution is optimal for the original primal by
the Primal–Dual Optimality Theorem.

Step 3. If the minimal value of the associated restricted primal is strictly positive,
obtain from the final simplex tableau of the restricted primal, the solution u0 of
the associated restricted dual (18). If there is no j for which uT

0 aj > 0 conclude the
primal has no feasible solutions. If, on the other hand, for at least one j, uT

0 aj > 0,
define the new dual feasible vector

� = �0 +�0u0
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where

�0 = ck −�T
0 ak

uT
0 ak

= min
j

{
cj −�T

0 aj

uT
0 aj

� uT
0 aj > 0

}

�

Now go back to Step 1 using this �.

To prove convergence of this method a few simple observations and explana-
tions must be made. First we verify the statement made in Step 3 that uT

0 aj � 0
for all j implies that the primal has no feasible solution. The vector �� = �0 +�u0

is feasible for the dual problem for all positive �, since uT
0 A � 0. In addition,

�T
� b = �T

0 b + �uT
0 b and, since uT

0 b = 1T y > 0, we see that as � is increased we
obtain an unbounded solution to the dual. In view of the Duality Theorem, this
implies that there is no feasible solution to the primal.

Next suppose that in Step 3, for at least one j, uT
0 aj > 0. Again we define

the family of vectors �� = �0 + �u0. Since u0 is a solution to (18) we have
uT

0 ai � 0 for i ∈ P, and hence for small positive � the vector �� is feasible for
the dual. We increase � to the first point where one of inequalities �T

� aj < cj ,
j �∈ P becomes an equality. This determines �0 > 0 and k. The new � vector
corresponds to an increased value of the dual objective �T b = �T

0 b + �uT
0 b. In

addition, the corresponding new set P now includes the index k. Any other index i
that corresponded to a positive value of xi in the associated restricted primal is in
the new set P, because by complementary slackness uT

0 ai = 0 for such an i and thus
�T ai = �T

0 ai +�0uT
0 ai = ci. This means that the old optimal solution is feasible for

the new associated restricted primal and that ak can be pivoted into the basis. Since
uT

0 ak > 0, pivoting in ak will decrease the value of the associated restricted primal.
In summary, it has been shown that at each step either an improvement in

the associated primal is made or an infeasibility condition is detected. Assuming
nondegeneracy, this implies that no basis of the associated primal is repeated—and
since there are only a finite number of possible bases, the solution is reached in a
finite number of steps.

The primal–dual algorithm can be given an interesting interpretation in terms
of the manufacturing problem in Example 3, Section 2.2. Suppose we own a facility
that is capable of engaging in n different production activities each of which
produces various amounts of m commodities. Each activity i can be operated at any
level xi � 0, but when operated at the unity level the ith activity costs ci dollars and
yields the m commodities in the amounts specified by the m-vector ai. Assuming
linearity of the production facility, if we are given a vector b describing output
requirements of the m commodities, and we wish to produce these at minimum
cost, ours is the primal problem.

Imagine that an entrepreneur not knowing the value of our requirements vector
b decides to sell us these requirements directly. He assigns a price vector �0 to
these requirements such that �T

0 A � c. In this way his prices are competitive with
our production activities, and he can assure us that purchasing directly from him is
no more costly than engaging activities. As owner of the production facilities we are
reluctant to abandon our production enterprise but, on the other hand, we deem it not
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frugal to engage an activity whose output can be duplicated by direct purchase for
lower cost. Therefore, we decide to engage only activities that cannot be duplicated
cheaper, and at the same time we attempt to minimize the total business volume
given the entrepreneur. Ours is the associated restricted primal problem.

Upon receiving our order, the greedy entrepreneur decides to modify his prices
in such a manner as to keep them competitive with our activities but increase the
cost of our order. As a reasonable and simple approach he seeks new prices of
the form

� = �0 +�u0�

where he selects u0 as the solution to

maximize uT y
subject to uT ai � 0� i ∈ P

u � 1�

The first set of constraints is to maintain competitiveness of his new price vector for
small �, while the second set is an arbitrary bound imposed to keep this subproblem
bounded. It is easily shown that the solution u0 to this problem is identical to the
solution of the associated dual (18). After determining the maximum � to maintain
feasibility, he announces his new prices.

At this point, rather than concede to the price adjustment, we recalculate the new
minimum volume order based on the new prices. As the greedy (and shortsighted)
entrepreneur continues to change his prices in an attempt to maximize profit he
eventually finds he has reduced his business to zero! At that point we have, with
his help, solved the original primal problem.

Example. To illustrate the primal–dual method and indicate how it can be imple-
mented through use of the tableau format consider the following problem:

minimize 2x1 + x2 + 4x3

subject to x1 + x2 + 2x3 = 3
2x1 + x2 + 3x3 = 5

x1 � 0� x2 � 0� x3 � 0�

Because all of the coefficients in the objective function are nonnegative, � = �0� 0�
is a feasible vector for the dual. We lay out the simplex tableau shown below

a1 a2 a3 · · b
1 1 2 1 0 3
2 1 3 0 1 5

−3 −2 −5 0 0 −8
ci −�T ai → 2 1 4 · · ·

First tableau
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To form this tableau we have adjoined artificial variables in the usual manner.
The third row gives the relative cost coefficients of the associated primal problem—
the same as the row that would be used in a phase I procedure. In the fourth row
are listed the ci −�T ai’s for the current �. The allowable columns in the associated
restricted primal are determined by the zeros in this last row.

Since there are no zeros in the last row, no progress can be made in the
associated restricted primal and hence the original solution x1 = x2 = x3 = 0, y1 = 3,
y2 = 5 is optimal for this �. The solution u0 to the associated restricted dual is
u0 = �1� 1�, and the numbers −uT

0 ai, i = 1� 2� 3 are equal to the first three elements
in the third row. Thus, we compute the three ratios 2

3 � 1
2 � 4

5 from which we find
�0 = 1

2 . The new values for the fourth row are now found by adding �0 times the
(first three) elements of the third row to the fourth row.

a1 a2 a3 · · b
1 ©1 2 1 0 3
2 1 3 0 1 5

−3 −2 −5 0 0 −8
1/2 0 3/2 · · ·

Second tableau

Minimizing the new associated restricted primal by pivoting as indicated we obtain

a1 a2 a3 · · b
1 1 2 1 0 3
1 0 1 −1 1 2

−1 0 −1 2 0 −2
−1/2 0 3/2 · · ·

Now we again calculate the ratios 1
2 � 3

2 obtaining �0 = 1
2 , and add this multiple of

the third row to the fourth row to obtain the next tableau.

a1 a2 a3 · · b
1 1 2 1 0 3
©1 0 1 −1 1 2

−1 0 −1 2 0 −2
0 0 1 · · ·

Third tableau

Optimizing the new restricted primal we obtain the tableau:

a1 a2 a3 · · b
0 1 1 2 −1 1
1 0 1 −1 1 2
0 0 0 1 1 0
0 0 1 · · ·

Final tableau
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Having obtained feasibility in the primal, we conclude that the solution is also
optimal: x1 = 2, x2 = 1, x3 = 0.

∗4.7 REDUCTION OF LINEAR INEQUALITIES
Linear programming is in part the study of linear inequalities, and each progressive
stage of linear programming theory adds to our understanding of this important
fundamental mathematical structure. Development of the simplex method, for
example, provided by means of artificial variables a procedure for solving such
systems. Duality theory provides additional insight and additional techniques for
dealing with linear inequalities.

Consider a system of linear inequalities in standard form

Ax = b

x � 0�
(19)

where A is an m×n matrix, b is a constant nonzero m-vector, and x is a variable
n-vector. Any point x satisfying these conditions is called a solution. The set of
solutions is denoted by S.

It is the set S that is of primary interest in most problems involving systems
of inequalities—the inequalities themselves acting merely to provide a description
of S. Alternative systems having the same solution set S are, from this viewpoint,
equivalent. In many cases, therefore, the system of linear inequalities originally used
to define S may not be the simplest, and it may be possible to find another system
having fewer inequalities or fewer variables while defining the same solution set S.
It is this general issue that is explored in this section.

Redundant Equations
One way that a system of linear inequalities can sometimes be simplified is by the
elimination of redundant equations. This leads to a new equivalent system having
the same number of variables but fewer equations.

Definition. Corresponding to the system of linear inequalities

Ax = b

x � 0�
(19)

we say the system has redundant equations if there is a nonzero � ∈ Em

satisfying

�T A = 0

�T b = 0�
(20)
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This definition is equivalent, as the reader is aware, to the statement that a
system of equations is redundant if one of the equations can be expressed as a linear
combination of the others. In most of our previous analysis we have assumed, for
simplicity, that such redundant equations were not present in our given system or
that they were eliminated prior to further computation. Indeed, such redundancy
presents no real computational difficulty, since redundant equations are detected and
can be eliminated during application of the phase I procedure for determining a basic
feasible solution. Note, however, the hint of duality even in this elementary concept.

Null Variables

Definition. Corresponding to the system of linear inequalities

Ax = b

x � 0�
(21)

a variable xi is said to be a null variable if xi = 0 in every solution.

It is clear that if it were known that a variable xi were a null variable, then the
solution set S could be equivalently described by the system of linear inequalities
obtained from (21) by deleting the ith column of A, deleting the inequality xi � 0,
and adjoining the equality xi = 0. This yields an obvious simplification in the
description of the solutions set S. It is perhaps not so obvious how null variables
can be identified.

Example. As a simple example of how null variables may appear consider the
system

2x1 + 3x2 + 4x3 + 4x4 = 6
x1 + x2 + 2x3 + x4 = 3
x1 � 0� x2 � 0� x3 � 0� x4 � 0�

By subtracting twice the second equation from the first we obtain

x2 +2x4 = 0�

Since the xi’s must all be nonnegative, it follows immediately that x2 and x4 are
zero in any solution. Thus x2 and x4 are null variables.

Generalizing from the above example it is clear that if a linear combination of
the equations can be found such that the right-hand side is zero while the coefficients
on the left side are all either zero or positive, then the variables corresponding to
the positive coefficients in this equation are null variables. In other words, if from
the original system it is possible to combine equations so as to yield

�1x1 +�2x2 +· · ·+�nxn = 0

with �i � 0� i = 1� 2� � � � � n, then �i > 0 implies that xi is a null variable.
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The above elementary observations clearly can be used to identify null variables
in some cases. A more surprising result is that the technique described above can
be used to identify all null variables. The proof of this fact is based on the Duality
Theorem.

Null Value Theorem. If S is not empty, the variable xi is a null variable in
the system (21) if and only if there is a nonzero vector � ∈ Em such that

�T A ≥ 0

�T b = 0�
(22)

and the ith component of �T A is strictly positive.

Proof. The “if” part follows immediately from the discussion above. To prove the
“only if” part, suppose that xi is a null variable, and suppose that S is not empty.
Consider the program

minimize − eix
subject to Ax = b

x � 0�

where ei is the ith unit row vector. By our hypotheses, there is a feasible solution
and the optimal value is zero. By the Duality Theorem the dual program

maximize �T b
subject to �T A � −ei

is also feasible and has optimal value zero. Thus there is a � with

�T A � −ei

�T b = 0�

Changing the sign of � proves the theorem.

Nonextremal Variables

Example 1. Consider the system of linear inequalities

x1 +3x2 +4x3 = 4

2x1 +x2 +3x3 = 6 (23)

x1 � 0� x2 � 0� x3 � 0�
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By subtracting the second equation from the first and rearranging, we obtain

x1 = 2+2x2 +x3� (24)

From this we observe that since x2 and x3 are nonnegative, the value of x1 is greater
than or equal to 2 in any solution to the equalities. This means that the inequality
x1 � 0 can be dropped from the original set, and x1 can be treated as a free variable
even though the remaining inequalities actually do not allow complete freedom.
Hence x1 can be replaced everywhere by (24) in the original system (23) leading to

5x2 +5x3 = 2

x2 � 0� x3 � 0 (25)

x1 = 2+2x2 +x3�

The first two lines of (25) represent a system of linear inequalities in standard
form with one less variable and one less equation than the original system. The last
equation is a simple linear equation from which x1 is determined by a solution to
the smaller system of inequalities.

This example illustrates and motivates the concept of a nonextremal variable.
As illustrated, the identification of such nonextremal variables results in a significant
simplification of a system of linear inequalities.

Definition. A variable xi in the system of linear inequalities

Ax = b
x � 0 (26)

is nonextremal if the inequality xi � 0 in (26) is redundant.

A nonextremal variable can be treated as a free variable, and thus can be
eliminated from the system by using one equation to define that variable in terms
of the other variables. The result is a new system having one less variable and one
less equation. Solutions to the original system can be obtained from solutions to the
new system by substituting into the expression for the value of the free variable.

It is clear that if, as in the example, a linear combination of the equations in
the system can be found that implies that xi is nonnegative if all other variables are
nonnegative, then xi is nonextremal. That the converse of this statement is also true
is perhaps not so obvious. Again the proof of this is based on the Duality Theorem.

Nonextremal Variable Theorem. If S is not empty, the variable xj is a
nonextremal variable for the system (26) if and only if there is � ∈ Em and
d ∈ En such that

�T A = dT � (27)
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where

dj = −1� di � 0 for i �= j�

and such that

�T b = −�� (28)
for some � � 0.

Proof. The “if” part of the result is trivial, since forming the corresponding linear
combination of the equations in (28) yields

xj = �+d1x1 +· · ·+dj−1xj−1 +dj+1xj+1 +· · ·+dnxn�

which implies that xj is nonextremal.
To prove the “only if” part, let ai, i = 1� 2� � � � � n denote the ith column of

A. Let us assume that the solution set S is nonempty and that xj is nonextremal.
Consider the linear program

minimize xj

subject to Ax = b
xi � 0� i �= j�

(29)

By hypothesis the minimum value is nonnegative, say it is � � 0. Then by the
Duality Theorem the value of the dual program

maximize �T b
subject to �T ai � 0� i �= j

�T aj = 1

is also �. Taking the negative of the optimal solution to the dual yields the desired
result.

Nonextremal variables occur frequently in systems of linear inequalities. It can
be shown, for instance, that every system having three nonnegative variables and
two (independent) equations can be reduced to two non-negative variables and one
equation.

Applications
Each of the reduction concepts can be applied by searching for a � satisfying an
appropriate system of linear inequalities. This can be done by application of the
simplex method. Thus, the theorems above translate into systematic procedures for
reducing a system.

The reduction methods described in this section can be applied to any linear
program in an effort to simplify the representation of the feasible region. Of course,
for the purpose of simply solving a given linear program the reduction process is
not particularly worthwhile. However, when considering a large problem that will
be solved many times with different objective functions, or a problem with linear
constraints but a nonlinear objective, the reduction procedure can be valuable.
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x2

a1x = b1

a2x = b2

a3x = b3

x1

Fig. 4.4 Redundant inequality

One interesting area of application is the elimination of redundant inequality
constraints. Consider the region shown in Fig. 4.4 defined by the nonnegativity
constraint and three other linear inequalities. The system can be expressed as

a1x � b1� a2x � b2� a3x � b3� x � 0� (30)

which in standard form is

a1x +y1 = b1� a2x +y2 = b2� a3x +y3 = b3� x � 0� y � 0� (31)

The third constraint is, as seen from the figure, redundant and can be eliminated
without changing the solution set. In the standard form (31) this is reflected in
the fact that y3 is nonextremal and hence it, together with the third constraint, can
be eliminated. This special example generalizes, of course, to higher dimensional
problems involving many inequalities where, in general, redundant inequalities
show up as having nonextremal slack variables. The detection and elimination of
such redundant inequalities can be helpful in the cutting-plane methods (discussed
in Chapter 14) where inequalities are continually appended to a system as the
method progresses.

4.8 EXERCISES
1. Verify in detail that the dual of a linear program is the original problem.

2. Show that if a linear inequality in a linear program is changed to equality, the corre-
sponding dual variable becomes free.
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3. Find the dual of

minimize cT x
subject to Ax = b

x � a
where a � 0�

4. Show that in the transportation problem the linear equality constraints are not linearly
independent, and that in an optimal solution to the dual problem the dual variables are
not unique. Generalize this observation to any linear program having redundant equality
constraints.

5. Construct an example of a primal problem that has no feasible solutions and whose
corresponding dual also has no feasible solutions.

6. Let A be an m×n matrix and b be an n-vector. Prove that Ax � 0 implies cT x � 0 if
and only if cT = �T A for some � � 0. Give a geometric interpretation of the result.

7. There is in general a strong connection between the theories of optimization and free
competition, which is illustrated by an idealized model of activity location. Suppose
there are n economic activities (various factories, homes, stores, etc.) that are to be
individually located on n distinct parcels of land. If activity i is located on parcel j that
activity can yield sij units (dollars) of value.
If the assignment of activities to land parcels is made by a central authority, it might
be made in such a way as to maximize the total value generated. In other words, the
assignment would be made so as to maximize

∑
i

∑
j sijxij where

xij =
{

1 if activity i is assigned to parcel j

0 otherwise.

More explicitly this approach leads to the optimization problem

maximize
∑

i

∑

j
sijxij

subject to
∑

j
xij = 1� i = 1� 2� � � � � n

∑

i
xij = 1� j = 1� 2� � � � � n

xij � 0� xij = 0 or 1�

Actually, it can be shown that the final requirement (xij = 0 or 1) is automatically
satisfied at any extreme point of the set defined by the other constraints, so that in fact the
optimal assignment can be found by using the simplex method of linear programming.

If one considers the problem from the viewpoint of free competition, it is assumed
that, rather than a central authority determining the assignment, the individual activities
bid for the land and thereby establish prices.

a) Show that there exists a set of activity prices pi� i = 1� 2� � � � � n and land prices
qj� j = 1� 2� � � � � n such that

pi +qj � sij� i = 1� 2� � � � � n� j = 1� 2� � � � � n

with equality holding if in an optimal assignment activity i is assigned to parcel j.
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b) Show that Part (a) implies that if activity i is optimally assigned to parcel j and if j′

is any other parcel

sij −qj � sij′ −qj′ �

Give an economic interpretation of this result and explain the relation between free
competition and optimality in this context.

c) Assuming that each sij is positive, show that the prices can all be assumed to be
nonnegative.

8. Game theory is in part related to linear programming theory. Consider the game in
which player X may select any one of m moves, and player Y may select any one
of n moves. If X selects i and Y selects j, then X wins an amount aij from Y . The
game is repeated many times. Player X develops a mixed strategy where the various
moves are played according to probabilities represented by the components of the vector

x = �x1� x2� � � � � xm�, where x1 � 0� i = 1� 2� � � � �m and
m∑

i=1
xi = 1. Likewise Y develops

a mixed strategy y = �y1� y2� � � � � yn�, where yi � 0� i = 1� 2� � � � � n and
n∑

i=1
yi = 1. The

average payoff to X is then P�x� y� = xT Ay.

a) Suppose X selects x as the solution to the linear program

maximize A

subject to
m∑

i=1
xi = 1

m∑

i=1
xiaij � A� j = 1� 2� � � � � n

xi � 0� i = 1� 2� � � � �m�

Show that X is guaranteed a payoff of at least A no matter what y is chosen by Y .

b) Show that the dual of the problem above is

minimize B

subject to
n∑

j=1
yj = 1

n∑

j=1
aijyj � B� i = 1� 2� � � � �m

yj � 0� j = 1� 2� � � � � n�

c) Prove that max A = min B. (The common value is called the value of the game.)
d) Consider the “matching” game. Each player selects heads or tails. If the choices

match, X wins $1 from Y ; if they do not match, Y wins $1 from X. Find the value
of this game and the optimal mixed strategies.

e) Repeat Part (d) for the game where each player selects either 1, 2, or 3. The player
with the highest number wins $1 unless that number is exactly 1 higher than the
other player’s number, in which case he loses $3. When the numbers are equal there
is no payoff.
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9. Consider the primal linear program

minimize cT x
subject to Ax = b

x � 0�

Suppose that this program and its dual are feasible. Let � be a known optimal solution
to the dual.

a) If the kth equation of the primal is multiplied by � �= 0, determine an optimal solution
w to the dual of this new problem.

b) Suppose that, in the original primal, we add � times the kth equation to the rth
equation. What is an optimal solution w to the corresponding dual problem?

c) Suppose, in the original primal, we add � times the kth row of A to c. What is an
optimal solution to the corresponding dual problem?

10. Consider the linear program (P) of the form

minimize qT z
subject to Mz ≥ −q

z ≥ 0

in which the matrix M is skew symmetric; that is, M = −MT .

(a) Show that problem (P) and its dual are the same.
(b) A problem of the kind in part (a) is said to be self-dual. An example of a self-dual

problem has

M =
[

0 −AT

A 0

]

� q =
[

c
−b

]

� z =
[

x
y

]

�

Give an interpretation of the problem with this data.
(c) Show that a self-dual linear program has an optimal solution if and only if it is

feasible.

11. A company may manufacture n different products, each of which uses various amounts
of m limited resources. Each unit of product i yields a profit of ci dollars and uses aji

units of the jth resource. The available amount of the jth resource is bj . To maximize
profit the company selects the quantities xi to be manufactured of each product by
solving

maximize cT x
subject to Ax = b

x � 0�

The unit profits ci already take into account the variable cost associated with manufac-
turing each unit. In addition to that cost, the company incurs a fixed overhead H , and
for accounting purposes it wants to allocate this overhead to each of its products. In
other words, it wants to adjust the unit profits so as to account for the overhead. Such an
overhead allocation scheme must satisfy two conditions: (1) Since H is fixed regardless
of the product mix, the overhead allocation scheme must not alter the optimal solution,
(2) All the overhead must be allocated; that is, the optimal value of the objective with
the modified cost coefficients must be H dollars lower than z—the original optimal
value of the objective.
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a) Consider the allocation scheme in which the unit profits are modified according to
ĉT = cT − r�T

0 A, where �0 is the optimal solution to the original dual and r = H/z0

(assume H � z0).

i) Show that the optimal x for the modified problem is the same as that for the
original problem, and the new dual solution is �̂0 = �1− r��0.

ii) Show that this approach fully allocates H .

b) Suppose that the overhead can be traced to each of the resource constraints. Let

Hi � 0 be the amount of overhead associated with the ith resource, where
m∑

i=1
Hi � z0

and ri = Hi/bi � �0
i for i = 1� � � � �m. Based on this information, an allocation scheme

has been proposed where the unit profits are modified such that ĉT = cT − rT A.

i) Show that the optimal x for this modified problem is the same as that for the
original problem, and the corresponding dual solution is �̂0 = �0 − r.

ii) Show that this scheme fully allocates H .

12. Solve the linear inequalities

−2x1 + 2x2 � −1
2x1 − x2 � 2

− 4x2 � 3
−15x1 − 12x2 � −2

12x1 + 20x2 � −1�

Note that x1 and x2 are not restricted to be positive. Solve this problem by considering
the problem of maximizing 0 ·x1 +0 ·x2 subject to these constraints, taking the dual and
using the simplex method.

13. a) Using the simplex method solve

minimize 2x1 −x2

subject to 2x1 −x2 −x3 � 3

x1 −x2 +x3 � 2

xi � 0� i = 1� 2� 3�

(Hint: Note that x1 = 2 gives a feasible solution.)
b) What is the dual problem and its optimal solution?

14. a) Using the simplex method solve

minimize 2x1 +3x2 +2x3 +2x4

subject to x1 +2x2 + x3 +2x4 = 3

x1 + x2 +2x3 +4x4 = 5

xi � 0� i = 1� 2� 3� 4�

b) Using the work done in Part (a) and the dual simplex method, solve the same problem
but with the right-hand sides of the equations changed to 8 and 7 respectively.
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15. For the problem

minimize 5x1 +3x2

subject to 2x1 −x2 +4x3 � 4

x1 +x2 +2x3 � 5

2x1 −x2 +x3 � 1

x1 � 0� x2 � 0� x3 � 0�

a) Using a single pivot operation with pivot element 1, find a feasible solution.
b) Using the simplex method, solve the problem.
c) What is the dual problem?
d) What is the solution to the dual?

16. Solve the following problem by the dual simplex method:

minimize −7x1 + 7x2 − 2x3 − x4 − 6x5

subject to 3x1 − x2 + x3 − 2x4 = −3
2x1 + x2 + x4 + x5 = 4
−x1 + 3x2 − 3x4 + x6 = 12

and xi � 0� i = 1� � � � � 6�

17. Given the linear programming problem in standard form (3) suppose a basis B and the
corresponding (not necessarily feasible) primal and dual basic solutions x and � are
known. Assume that at least one relative cost coefficient ci −�T ai is negative. Consider
the auxiliary problem

minimize cT x

subject to Ax = b
∑

i∈T

xi +y = M

x � 0� y � 0�

where T = �i � ci −�T ai < 0�, y is a slack variable, and M is a large positive constant.
Show that if k is the index corresponding to the most negative relative cost coefficient
in the original solution, then ��� ck −�T ak� is dual feasible for the auxiliary problem.
Based on this observation, develop a big–M artificial constraint method for the dual
simplex method. (Refer to Exercise 24, Chapter 3.)

18. A textile firm is capable of producing three products—x1� x2� x3. Its production plan for
next month must satisfy the constraints

x1 +2x2 +2x3 � 12

2x1 +4x2 +x3 � f

x1 � 0� x2 � 0� x3 � 0�

The first constraint is determined by equipment availability and is fixed. The second
constraint is determined by the availability of cotton. The net profits of the products are
2, 3, and 3, respectively, exclusive of the cost of cotton and fixed costs.
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a) Find the shadow price �2 of the cotton input as a function of f . (Hint: Use the dual
simplex method.) Plot �2�f� and the net profit z�f� exclusive of the cost for cotton.

b) The firm may purchase cotton on the open market at a price of 1/6. However, it may
acquire a limited amount at a price of 1/12 from a major supplier that it purchases
from frequently. Determine the net profit of the firm ��s� as a function of s.

19. Consider the problem

minimize 2x1 +x2 +4x3

subject to x1 +x2 +2x3 = 3
2x1 +x2 +3x3 = 5

xi � 0� x2 � 0� x3 � 0�

a) What is the dual problem?
b) Note that � = �1� 0� is feasible for the dual. Starting with this �, solve the primal

using the primal–dual algorithm.

20. Show that in the associated restricted dual of the primal–dual method the objective �T b
can be replaced by �T y.

21. Given the system of linear inequalities (19), what is implied by the existence of a �
satisfying �T A = 0��T b �= 0?

22. Suppose a system of linear inequalities possesses null variables. Show that when the
null variables are eliminated, by setting them identically to zero, the resulting system
will have redundant equations. Verify this for the example in Section 4.7.

23. Prove that any system of linear inequalities in standard form having two equations and
three variables can be reduced.

24. Show that if a system of linear inequalities in standard form has a nondegenerate basic
feasible solution, the corresponding nonbasic variables are extremal.

25. Eliminate the null variables in the system

2x1 + x2 −x3 + x4 + x5 = 2

−x1 +2x2 +x3 +2x4 + x5 = −1

−x1 − x2 −3x4 +2x5 = −1

x1 � 0� x2 � 0� x3 � 0� x4 � 0� x5 � 0�

26. Reduce to minimal size

x1 + x2 +2x3 + x4 + x5 = 6

3x2 + x3 +5x4 +4x5 = 4

x1 + x2 − x3 +2x4 +2x5 = 3

x1 � 0� x2 � 0� x3 � 0� x4 � 0� x5 � 0�
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