
Chapter 3 THE SIMPLEX
METHOD

The idea of the simplex method is to proceed from one basic feasible solution
(that is, one extreme point) of the constraint set of a problem in standard form
to another, in such a way as to continually decrease the value of the objective
function until a minimum is reached. The results of Chapter 2 assure us that it
is sufficient to consider only basic feasible solutions in our search for an optimal
feasible solution. This chapter demonstrates that an efficient method for moving
among basic solutions to the minimum can be constructed.

In the first five sections of this chapter the simplex machinery is developed from
a careful examination of the system of linear equations that defines the constraints
and the basic feasible solutions of the system. This approach, which focuses on
individual variables and their relation to the system, is probably the simplest, but
unfortunately is not easily expressed in compact form. In the last few sections
of the chapter, the simplex method is viewed from a matrix theoretic approach,
which focuses on all variables together. This more sophisticated viewpoint leads to
a compact notational representation, increased insight into the simplex process, and
to alternative methods for implementation.

3.1 PIVOTS
To obtain a firm grasp of the simplex procedure, it is essential that one first
understand the process of pivoting in a set of simultaneous linear equations. There
are two dual interpretations of the pivot procedure.
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34 Chapter 3 The Simplex Method

First Interpretation
Consider the set of simultaneous linear equations

a11x1 + a12x2 + � � � +a1nxn = b1

a21x1 + a22x2 + � � � +a2nxn = b2

· ·
· ·
· ·
am1x1 + am2x2 + · · · +amnxn = bm�

(1)

where m � n. In matrix form we write this as

Ax = b� (2)

In the space En we interpret this as a collection of m linear relations that must be
satisfied by a vector x. Thus denoting by ai the ith row of A we may express (1) as:

a1x = b1

a2x = b2

·
·
·

amx = bm�

(3)

This corresponds to the most natural interpretation of (1) as a set of m equations.
If m < n and the equations are linearly independent, then there is not a unique

solution but a whole linear variety of solutions (see Appendix B). A unique solution
results, however, if n − m additional independent linear equations are adjoined.
For example, we might specify n − m equations of the form ekx = 0, where ek

is the kth unit vector (which is equivalent to xk = 0), in which case we obtain a
basic solution to (1). Different basic solutions are obtained by imposing different
additional equations of this special form.

If the equations (3) are linearly independent, we may replace a given equation
by any nonzero multiple of itself plus any linear combination of the other equations
in the system. This leads to the well-known Gaussian reduction schemes, whereby
multiples of equations are systematically subtracted from one another to yield either
a triangular or canonical form. It is well known, and easily proved, that if the first
m columns of A are linearly independent, the system (1) can, by a sequence of such
multiplications and subtractions, be converted to the following canonical form:

x1 + y1�m+1xm+1 + y1�m+2xm+2 + · · · + y1�nxn = y10

x2 + y2�m+1xm+1 + y2�m+2xm+2 +· · · + y2�nxn = y20

· ·
· ·
· ·

xm + ym�m+1xm+1 + · · · + ym�nxn = ym0�

(4)
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Corresponding to this canonical representation of the system, the variables x1,
x2� � � � � xm are called basic and the other variables are nonbasic. The corresponding
basic solution is then:

x1 = y10� x2 = y20� � � � � xm = ym0� xm+1 = 0� � � � � xn = 0�

or in vector form: x = �y0� 0� where y0 is m-dimensional and 0 is the �n − m�-
dimensional zero vector.

Actually, we relax our definition somewhat and consider a system to be in
canonical form if, among the n variables, there are m basic ones with the property
that each appears in only one equation, its coefficient in that equation is unity, and
no two of these m variables appear in any one equation. This is equivalent to saying
that a system is in canonical form if by some reordering of the equations and the
variables it takes the form (4).

Also it is customary, from the dictates of economy, to represent the system (4)
by its corresponding array of coefficients or tableau:

1 0 · · · 0 y1�m+1 y1�m+2 · · · y1n y10

0 1 · · · 0 y2�m+1 y2�m+2 · · · y2n y20

0 0 · · · 0 · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
0 0 · · · 1 ym�m+1 ym�m+2 · · · ymn ym0

The question solved by pivoting is this: given a system in canonical form,
suppose a basic variable is to be made nonbasic and a nonbasic variable is to be
made basic; what is the new canonical form corresponding to the new set of basic
variables? The procedure is quite simple. Suppose in the canonical system (4) we
wish to replace the basic variable xp� 1 � p � m, by the nonbasic variable xq. This
can be done if and only if ypq is nonzero; it is accomplished by dividing row p by
ypq to get a unit coefficient for xq in the pth equation, and then subtracting suitable
multiples of row p from each of the other rows in order to get a zero coefficient
for xq in all other equations. This transforms the qth column of the tableau so that
it is zero except in its pth entry (which is unity) and does not affect the columns of
the other basic variables. Denoting the coefficients of the new system in canonical
form by y′

ij , we have explicitly

⎧
⎨

⎩

y′
ij = yij − ypj

ypq
yiq� i �= p

y′
pj = ypj

ypq
�

(5)

Equations (5) are the pivot equations that arise frequently in linear programming.
The element ypq in the original system is said to be the pivot element.
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Example 1. Consider the system in canonical form:

x1 + x4 + x5 − x6 = 5
x2 + 2x4 − 3x5 + x6 = 3

x3 − x4 + 2x5 − x6 = −1�

Let us find the basic solution having basic variables x4� x5� x6. We set up the
coefficient array below:

x1 x2 x3 x4 x5 x6

1 0 0 ©1 1 −1 5
0 1 0 2 −3 1 3
0 0 1 −1 2 −1 −1

The circle indicated is our first pivot element and corresponds to the replacement
of x1 by x4 as a basic variable. After pivoting we obtain the array

x1 x2 x3 x4 x5 x6

1 0 0 1 1 −1 5
−2 1 0 0 ©-5 3 −7

1 0 1 0 3 −2 4

and again we have circled the next pivot element indicating our intention to replace
x2 by x5. We then obtain

x1 x2 x3 x4 x5 x6

3/5 1/5 0 1 0 −2/5 18/5
2/5 −1/5 0 0 1 −3/5 7/5

−1/5 3/5 1 0 0 ©−1/5 −1/5

Continuing, there results

x1 x2 x3 x4 x5 x6

1 −1 −2 1 0 0 4
1 −2 −3 0 1 0 2
1 −3 −5 0 0 1 1

From this last canonical form we obtain the new basic solution

x4 = 4� x5 = 2� x6 = 1�

Second Interpretation
The set of simultaneous equations represented by (1) and (2) can be interpreted
in Em as a vector equation. Denoting the columns of A by a1� a2� � � � � an we write
(1) as

x1a1 +x2a2 +· · ·+xnan = b� (6)



3.1 Pivots 37

In this interpretation we seek to express b as a linear combination of the ai’s.
If m < n and the vectors ai span Em then there is not a unique solution but a whole

family of solutions. The vector b has a unique representation, however, as a linear
combinationofagiven linearly independent subsetof thesevectors.Thecorresponding
solution with n−m xi variables set equal to zero is a basic solution to (1).

Suppose now that we start with a system in the canonical form corresponding
to the tableau

1 0 · · · 0 y1�m+1 y1�m+2 · · · y1n y10

0 1 · 0 y2�m+1 y2�m+2 · · · y2n y20

0 0 · 0 · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
0 0 · 1 ym�m+1 ym�m+2 · · · ymn ym0

(7)

In this case the first m vectors form a basis. Furthermore, every other vector
represented in the tableau can be expressed as a linear combination of these basis
vectors by simply reading the coefficients down the corresponding column. Thus

aj = y1ja1 +y2ja2 +· · ·+ymjam� (8)

The tableau can be interpreted as giving the representations of the vectors aj in
terms of the basis; the jth column of the tableau is the representation for the vector aj .
In particular, the expression for b in terms of the basis is given in the last column.

We now consider the operation of replacing one member of the basis by another
vector not already in the basis. Suppose for example we wish to replace the basis
vector ap� 1 � p � m, by the vector aq. Provided that the first m vectors with ap

replaced by aq are linearly independent these vectors constitute a basis and every
vector can be expressed as a linear combination of this new basis. To find the new
representations of the vectors we must update the tableau. The linear independence
condition holds if and only if ypq �= 0.

Any vector aj can be expressed in terms of the old array through (8). For aq

we have

aq =
m∑

i=1
i �=p

yiqai +ypqap

from which we may solve for ap,

ap = 1
ypq

aq −
m∑

i=1
i �=p

yiq

ypq

ai� (9)

Substituting (9) into (8) we obtain:

aj =
m∑

i=1
i �=p

(

yij − yiq

ypq

ypj

)

ai +
ypj

ypq

aq� (10)
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Denoting the coefficients of the new tableau, which gives the linear combina-
tions, by y′

ij we obtain immediately from (10)

⎧
⎨

⎩

y′
ij = yij − yiq

ypq
ypj� i �= p

y′
pj = ypj

ypq
�

(11)

These formulae are identical to (5).
If a system of equations is not originally given in canonical form, we may put

it into canonical form by adjoining the m unit vectors to the tableau and, starting
with these vectors as the basis, successively replace each of them with columns of
A using the pivot operation.

Example 2. Suppose we wish to solve the simultaneous equations

x1 + x2 − x3 = 5
2x1 − 3x2 + x3 = 3
−x1 + 2x2 − x3 = −1�

To obtain an original basis, we form the augmented tableau

e1 e2 e3 a1 a2 a3 b
1 0 0 1 1 −1 5
0 1 0 2 −3 1 3
0 0 1 −1 2 −1 −1

and replace e1 by a1� e2 by a2, and e3 by a3. The required operations are identical
to those of Example 1.

3.2 ADJACENT EXTREME POINTS
In Chapter 2 it was discovered that it is only necessary to consider basic feasible
solutions to the system

Ax = b

x � 0
(12)

when solving a linear program, and in the previous section it was demonstrated that
the pivot operation can generate a new basic solution from an old one by replacing
one basic variable by a nonbasic variable. It is clear, however, that although the pivot
operation takes one basic solution into another, the nonnegativity of the solution
will not in general be preserved. Special conditions must be satisfied in order that
a pivot operation maintain feasibility. In this section we show how it is possible to
select pivots so that we may transfer from one basic feasible solution to another.
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We show that although it is not possible to arbitrarily specify the pair of
variables whose roles are to be interchanged and expect to maintain the nonneg-
ativity condition, it is possible to arbitrarily specify which nonbasic variable is to
become basic and then determine which basic variable should become nonbasic.
As is conventional, we base our derivation on the vector interpretation of the linear
equations although the dual interpretation could alternatively be used.

Nondegeneracy Assumption
Many arguments in linear programming are substantially simplified upon the intro-
duction of the following.

Nondegeneracy assumption: Every basic feasible solution of (12) is a nonde-
generate basic feasible solution.

This assumption is invoked throughout our development of the simplex method,
since when it does not hold the simplex method can break down if it is not suitably
amended. The assumption, however, should be regarded as one made primarily for
convenience, since all arguments can be extended to include degeneracy, and the
simplex method itself can be easily modified to account for it.

Determination of Vector to Leave Basis
Suppose we have the basic feasible solution x = �x1, x2� � � � � xm� 0� 0� � � � � 0� or,
equivalently, the representation

x1a1 +x2a2 +· · ·+xmam = b� (13)

Under the nondegeneracy assumption, xi > 0, i = 1� 2� � � � �m. Suppose also that
we have decided to bring into the representation the vector aq� q > m. We have
available a representation of aq in terms of the current basis

aq = y1qa1 +y2qa2 +· · ·+ymqam� (14)

Multiplying (14) by a variable � � 0 and subtracting from (13), we have

�x1 −�y1q� a1 + �x2 −�y2q� a2 +· · ·+ �xm −�ymq� am +�aq = b� (15)

Thus, for any � � 0 (15) gives b as a linear combination of at most m+1 vectors.
For � = 0 we have the old basic feasible solution. As � is increased from zero,
the coefficient of aq increases, and it is clear that for small enough �, (15) gives
a feasible but nonbasic solution. The coefficients of the other vectors will either
increase or decrease linearly as � is increased. If any decrease, we may set � equal
to the value corresponding to the first place where one (or more) of the coefficients
vanishes. That is

� = min
i

{
xi/yiq � yiq > 0

}
� (16)
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In this case we have a new basic feasible solution, with the vector aq replacing the
vector ap where p corresponds to the minimizing index in (16). If the minimum in
(16) is achieved by more than a single index i, then the new solution is degenerate
and any of the vectors with zero component can be regarded as the one which left
the basis.

If none of the yiq’s are positive, then all coefficients in the representation (15)
increase (or remain constant) as � is increased, and no new basic feasible solution
is obtained. We observe, however, that in this case, where none of the yiq’s are
positive, there are feasible solutions to (12) having arbitrarily large coefficients.
This means that the set K of feasible solutions to (12) is unbounded, and this special
case, as we shall see, is of special significance in the simplex procedure.

In summary, we have deduced that given a basic feasible solution and an
arbitrary vector aq, there is either a new basic feasible solution having aq in its
basis and one of the original vectors removed, or the set of feasible solutions is
unbounded.

Let us consider how the calculation of this section can be displayed in our
tableau. We assume that corresponding to the constraints

Ax = b

x � 0�

we have a tableau of the form

a1 a2 a3 · · · am am+1 am+2 · · · an b
1 0 0 · · · 0 y1�m+1 y1�m+2 · · · y1n y10

0 1 0 0 y2�m+1 y2�m+2 · y20

0 0 1 · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 · 1 ym�m+1 ym�m+2 · · · ymn ym0

(17)

This tableau may be the result of several pivot operations applied to the original
tableau, but in any event, it represents a solution with basis a1, a2� � � � � am. We
assume that y10, y20� � � � � ym0 are nonnegative, so that the corresponding basic
solution x1 = y10, x2 = y20� � � � � xm = ym0 is feasible. We wish to bring into the
basis the vector aq, q > m, and maintain feasibility. In order to determine which
element in the qth column to use as pivot (and hence which vector in the basis will
leave), we use (16) and compute the ratios xi/yiq = yi0/yiq, i = 1� 2� � � � �m, select
the smallest nonnegative ratio, and pivot on the corresponding yiq.

Example 3. Consider the system

a1 a2 a3 a4 a5 a6 b
1 0 0 2 4 6 4
0 1 0 1 2 3 3
0 0 1 −1 2 1 1
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which has basis a1, a2, a3 yielding a basic feasible solution x = �4� 3� 1� 0� 0� 0�.
Suppose we elect to bring a4 into the basis. To determine which element in the
fourth column is the appropriate pivot, we compute the three ratios:

4/2 = 2� 3/1 = 3� 1/−1 = −1

and select the smallest nonnegative one. This gives 2 as the pivot element. The new
tableau is

a1 a2 a3 a4 a5 a6 b
1/2 0 0 1 2 3 2

−1/2 1 0 0 0 0 1
1/2 0 1 0 4 4 3

with corresponding basic feasible solution x = �0� 1� 3� 2� 0� 0�.

Our derivation of the method for selecting the pivot in a given column that
will yield a new feasible solution has been based on the vector interpretation of
the equation Ax = b. An alternative derivation can be constructed by considering
the dual approach that is based on the rows of the tableau rather than the columns.
Briefly, the argument runs like this: if we decide to pivot on ypq, then we first divide
the pth row by the pivot element ypq to change it to unity. In order that the new yp0

remain positive, it is clear that we must have ypq > 0. Next we subtract multiples
of the pth row from each other row in order to obtain zeros in the qth column.
In this process the new elements in the last column must remain nonnegative—if
the pivot was properly selected. The full operation is to subtract, from the ith row,
yiq/ypq times the pth row. This yields a new solution obtained directly from the last
column:

x′
i = xi −

yiq

ypq

xp�

For this to remain nonnegative, it follows that xp/ypq � xi/yiq, and hence again we
are led to the conclusion that we select p as the index i minimizing xi/yiq.

Geometrical Interpretations
Corresponding to the two interpretations of pivoting and extreme points, developed
algebraically, are two geometrical interpretations. The first is in activity space, the
space where x is represented. This is perhaps the most natural space to consider, and
it was used in Section 2.5. Here the feasible region is shown directly as a convex
set, and basic feasible solutions are extreme points. Adjacent extreme points are
points that lie on a common edge.

The second geometrical interpretation is in requirements space, the space where
the columns of A and b are represented. The fundamental relation is

a1x1 +a2x2 +· · ·+anxn = b�
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a2

a1

a3

a4

b

Fig. 3.1 Constraint representation in requirements space

An example for m = 2, n = 4 is shown in Fig. 3.1. A feasible solution defines a
representation of b as a positive combination of the a1’s. A basic feasible solution
will use only m positive weights. In the figure a basic feasible solution can be
constructed with positive weights on a1 and a2 because b lies between them. A
basic feasible solution cannot be constructed with positive weights on a1 and a4.
Suppose we start with a1 and a2 as the initial basis. Then an adjacent basis is found
by bringing in some other vector. If a3 is brought in, then clearly a2 must go out.
On the other hand, if a4 is brought in, a1 must go out.

3.3 DETERMINING A MINIMUM FEASIBLE
SOLUTION

In the last section we showed how it is possible to pivot from one basic feasible
solution to another (or determine that the solution set is unbounded) by arbitrarily
selecting a column to pivot on and then appropriately selecting the pivot in that
column. The idea of the simplex method is to select the column so that the resulting
new basic feasible solution will yield a lower value to the objective function than
the previous one. This then provides the final link in the simplex procedure. By an
elementary calculation, which is derived below, it is possible to determine which
vector should enter the basis so that the objective value is reduced, and by another
simple calculation, derived in the previous section, it is possible to then determine
which vector should leave in order to maintain feasibility.

Suppose we have a basic feasible solution

�xB� 0� = �y10� y20� � � � � ym0� 0� 0� � � � � 0�

together with a tableau having an identity matrix appearing in the first m columns
as shown below:
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a1 a2 · · · am am+1 · · · an b
1 0 0 y1�m+1 · · · y1n y10

0 1 0 y2�m+1 · · · y20 y20

· · · · · ·
· · · · · ·
· · · · · ·
0 0 1 ym�m+1 · · · ymn ym0

(18)

The value of the objective function corresponding to any solution x is

z = c1x1 + c2x2 +· · ·+ cnxn� (19)

and hence for the basic solution, the corresponding value is

z0 = cT
BxB� (20)

where cT
B = �c1� c2� � � � � cm	.

Although it is natural to use the basic solution (xB, 0) when we have the tableau
(18), it is clear that if arbitrary values are assigned to xm+1, xm+2� � � � � xn, we can
easily solve for the remaining variables as

x1 = y10 − n∑

j=m+1
y1jxj

x2 = y20 − n∑

j=m+1
y2jxj

·
·
·
xm = ym0 − n∑

j=m+1
ymjxj�

(21)

Using (21) we may eliminate x1, x2� � � � � xm from the general formula (19). Doing
this we obtain

z = cT x = z0 + �cm+1 − zm+1� xm+1

+ �cm+2 − zm+2� xm+2 +· · ·+ �cn − zn� xn (22)

where

zj = y1jc1 +y2jc2 +· · ·+ymjcm� m+1 � j � n� (23)

which is the fundamental relation required to determine the pivot column. The
important point is that this equation gives the values of the objective function z
for any solution of Ax = b in terms of the variables xm+1� � � � � xn. From it we can
determine if there is any advantage in changing the basic solution by introducing
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one of the nonbasic variables. For example, if cj −zj is negative for some j�m+1 �
j � n, then increasing xj from zero to some positive value would decrease the
total cost, and therefore would yield a better solution. The formulae (22) and (23)
automatically take into account the changes that would be required in the values of
the basic variables x1, x2� � � � � xm to accommodate the change in xj .

Let us derive these relations from a different viewpoint. Let yi be the ith column
of the tableau. Then any solution satisfies

x1e1 +x2e2 +· · ·+xmem = y0 −xm+1ym+1 −xm+2ym+2 −· · ·−xnyn�

Taking the inner product of this vector equation with cT
B , we have

m∑

i=1

cixi = cT
By0 −

n∑

j=m+1

zjxj�

where zj = cT
Byj . Thus, adding

n∑

j=m+1
cjxj to both sides,

cT x = z0 +
n∑

j=m+1

(
cj − zj

)
xj (24)

as before.
We now state the condition for improvement, which follows easily from the

above observation, as a theorem.

Theorem. (Improvement of basic feasible solution). Given a nondegenerate
basic feasible solution with corresponding objective value z0, suppose that for
some j there holds cj − zj < 0. Then there is a feasible solution with objective
value z < z0. If the column aj can be substituted for some vector in the original
basis to yield a new basic feasible solution, this new solution will have z < z0.
If aj cannot be substituted to yield a basic feasible solution, then the solution
set K is unbounded and the objective function can be made arbitrarily small
(toward minus infinity).

Proof. The result is an immediate consequence of the previous discussion. Let
(x1, x2� � � � � xm� 0� 0� � � � � 0) be the basic feasible solution with objective value z0

and suppose cm+1 − zm+1 < 0. Then, in any case, new feasible solutions can be
constructed of the form (x′

1, x′
2� � � � � x′

m, x′
m+1� 0� 0� � � � � 0) with x′

m+1 > 0. Substi-
tuting this solution in (22) we have

z− z0 = �cm+1 − zm+1� x′
m+1 < 0�

and hence z < z0 for any such solution. It is clear that we desire to make x′
m+1

as large as possible. As x′
m+1 is increased, the other components increase, remain

constant, or decrease. Thus x′
m+1 can be increased until one x′

i = 0, i � m, in which
case we obtain a new basic feasible solution, or if none of the x′

i’s decrease, x′
m+1 can
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be increased without bound indicating an unbounded solution set and an objective
value without lower bound.

We see that if at any stage cj − zj < 0 for some j, it is possible to make
xj positive and decrease the objective function. The final question remaining is
whether cj − zj � 0 for all j implies optimality.

Optimality Condition Theorem. If for some basic feasible solution cj − zj � 0
for all j, then that solution is optimal.

Proof. This follows immediately from (22), since any other feasible solution must
have xi � 0 for all i, and hence the value z of the objective will satisfy z−z0 � 0.

Since the constants cj − zj play such a central role in the development of the
simplex method, it is convenient to introduce the somewhat abbreviated notation
rj = cj −zj and refer to the rj’s as the relative cost coefficients or, alternatively, the
reduced cost coefficients (both terms occur in common usage). These coefficients
measure the cost of a variable relative to a given basis. (For notational convenience
we extend the definition of relative cost coefficients to basic variables as well; the
relative cost coefficient of a basic variable is zero.)

We conclude this section by giving an economic interpretation of the relative
cost coefficients. Let us agree to interpret the linear program

minimize cT x

subject to Ax = b

x � 0

as a diet problem (see Section 2.2) where the nutritional requirements must be met
exactly. A column of A gives the nutritional equivalent of a unit of a particular food.
With a given basis consisting of, say, the first m columns of A, the corresponding
simplex tableau shows how any food (or more precisely, the nutritional content of
any food) can be constructed as a combination of foods in the basis. For instance,
if carrots are not in the basis we can, using the description given by the tableau,
construct a synthetic carrot which is nutritionally equivalent to a carrot, by an
appropriate combination of the foods in the basis.

In considering whether or not the solution represented by the current basis is
optimal, we consider a certain food not in the basis—say carrots—and determine if
it would be advantageous to bring it into the basis. This is very easily determined
by examining the cost of carrots as compared with the cost of synthetic carrots. If
carrots are food j, then the unit cost of carrots is cj . The cost of a unit of synthetic
carrots is, on the other hand,

zj =
m∑

i=1

ciyij�
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If rj = cj −zj < 0, it is advantageous to use real carrots in place of synthetic carrots,
and carrots should be brought into the basis.

In general each zj can be thought of as the price of a unit of the column aj when
constructed from the current basis. The difference between this synthetic price and the
direct price of that column determines whether that column should enter the basis.

3.4 COMPUTATIONAL PROCEDURE—SIMPLEX
METHOD

In previous sections the theory, and indeed much of the technique, necessary for
the detailed development of the simplex method has been established. It is only
necessary to put it all together and illustrate it with examples.

In this section we assume that we begin with a basic feasible solution and
that the tableau corresponding to Ax = b is in the canonical form for this solution.
Methods for obtaining this first basic feasible solution, when one is not obvious,
are described in the next section.

In addition to beginning with the array Ax = b expressed in canonical form
corresponding to a basic feasible solution, we append a row at the bottom consisting
of the relative cost coefficients and the negative of the current cost. The result is a
simplex tableau.

Thus, if we assume the basic variables are (in order) x1, x2� � � � � xm, the simplex
tableau takes the initial form shown in Fig. 3.2.

The basic solution corresponding to this tableau is

xi =
{

yi0 0 � i � m

0 m+1 � i � n

which we have assumed is feasible, that is, yi0 � 0, i = 1� 2� � � � �m. The corre-
sponding value of the objective function is z0.

a1 a2 · · · am am+1 am+2 · · · aj · · · an b
1 0 · · · 0 y1�m+1 y1�m+2 · · · y1j · · · y1n y10

0 1 · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 · yi�m+1 yi�m+2 · · · yij · · · yin yi0

· · · · · · · ·
· · · · · · · ·
0 0 1 ym�m+1 ym�m+2 · · · ymj · · · ymn ym0

0 0 · · · 0 rm+1 rm+2 · · · rj · · · rn −z0

Fig. 3.2 Canonical simplex tableau
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The relative cost coefficients rj indicate whether the value of the objective
will increase or decrease if xj is pivoted into the solution. If these coefficients
are all nonnegative, then the indicated solution is optimal. If some of them are
negative, an improvement can be made (assuming nondegeneracy) by bringing the
corresponding component into the solution. When more than one of the relative
cost coefficients is negative, any one of them may be selected to determine in
which column to pivot. Common practice is to select the most negative value. (See
Exercise 13 for further discussion of this point.)

Some more discussion of the relative cost coefficients and the last row of the
tableau is warranted. We may regard z as an additional variable and

c1x1 + c2x2 +· · ·+ cnxn − z = 0

as another equation. A basic solution to the augmented system will have m+ 1 basic
variables, but we can require that z be one of them. For this reason it is not necessary
to add a column corresponding to z, since it would always be �0� 0� � � � � 0� 1�.
Thus, initially, a last row consisting of the ci’s and a right-hand side of zero can be
appended to the standard array to represent this additional equation. Using standard
pivot operations, the elements in this row corresponding to basic variables can be
reduced to zero. This is equivalent to transforming the additional equation to the form

rm+1xm+1 + rm+2xm+2 +· · ·+ rnxn − z = −z0� (25)

This must be equivalent to (24), and hence the rj’s obtained are the relative cost coeffi-
cients. Thus, the last row can be treated operationally like any other row: just start with
cj’s and reduce the terms corresponding to basic variables to zero by row operations.

After a column q is selected in which to pivot, the final selection of the
pivot element is made by computing the ratio yi0/yiq for the positive elements yiq,
i = 1� 2� � � � �m, of the qth column and selecting the element p yielding the minimum
ratio. Pivoting on this element will maintain feasibility as well as (assuming nonde-
generacy) decrease the value of the objective function. If there are ties, any element
yielding the minimum can be used. If there are no nonnegative elements in the
column, the problem is unbounded. After updating the entire tableau with ypq as
pivot and transforming the last row in the same manner as all other rows (except
row q), we obtain a new tableau in canonical form. The new value of the objective
function again appears in the lower right-hand corner of the tableau.

The simplex algorithm can be summarized by the following steps:

Step 0. Form a tableau as in Fig. 3.2 corresponding to a basic feasible solution. The
relative cost coefficients can be found by row reduction.

Step 1. If each rj � 0, stop; the current basic feasible solution is optimal.
Step 2. Select q such that rq < 0 to determine which nonbasic variable is to

become basic.
Step 3. Calculate the ratios yi0/yiq for yiq > 0, i = 1� 2� � � � �m. If no yiq > 0, stop;

the problem is unbounded. Otherwise, select p as the index i corresponding to
the minimum ratio.

Step 4. Pivot on the pqth element, updating all rows including the last. Return to
Step 1.
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Proof that the algorithm solves the problem (again assuming nondegeneracy) is
essentially established by our previous development. The process terminates only
if optimality is achieved or unboundedness is discovered. If neither condition is
discovered at a given basic solution, then the objective is strictly decreased. Since
there are only a finite number of possible basic feasible solutions, and no basis
repeats because of the strictly decreasing objective, the algorithm must reach a basis
satisfying one of the two terminating conditions.

Example 1. Maximize 3x1 +x2 +3x3 subject to

2x1 + x2 + x3 � 2
x1 + 2x2 + 3x3 � 5

2x1 + 2x2 + x3 � 6
x1 � 0� x2 � 0� x3 � 0�

To transform the problem into standard form so that the simplex procedure
can be applied, we change the maximization to minimization by multiplying the
objective function by minus one, and introduce three nonnegative slack variables
x4, x5, x6. We then have the initial tableau

a1 a2 a3 a4 a5 a6 b
©2 ©1 1 1 0 0 2
1 2 ©3 0 1 0 5
2 2 1 0 0 1 5

rT −3 −1 −3 0 0 0 0

First tableau

The problem is already in canonical form with the three slack variables serving
as the basic variables. We have at this point rj = cj − zj = cj , since the costs of
the slacks are zero. Application of the criterion for selecting a column in which to
pivot shows that any of the first three columns would yield an improved solution.
In each of these columns the appropriate pivot element is determined by computing
the ratios yi0/yij and selecting the smallest positive one. The three allowable pivots
are all circled on the tableau. It is only necessary to determine one allowable pivot,
and normally we would not bother to calculate them all. For hand calculation on
problems of this size, however, we may wish to examine the allowable pivots and
select one that will minimize (at least in the short run) the amount of division
required. Thus for this example we select ©1 .

2 1 1 1 0 0 2
−3 0 ©1 −2 1 0 1
−2 0 −1 −2 0 1 2
−1 0 −2 1 0 0 2

Second tableau
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We note that the objective function—we are using the negative of the original
one—has decreased from zero to minus two. Again we pivot on ©1 .

©5 1 0 3 −1 0 1
−3 0 1 −2 1 0 1
−5 0 0 −4 1 1 3
−7 0 0 −3 2 0 4

Third tableau

The value of the objective function has now decreased to minus four and we may
pivot in either the first or fourth column. We select 5 .

1 1/5 0 3/5 −1/5 0 1/5
0 3/5 1 −1/5 2/5 0 8/5
0 1 0 −1 0 1 4
0 7/5 0 6/5 3/5 0 27/5

Fourth tableau

Since the last row has no negative elements, we conclude that the solution corre-
sponding to the fourth tableau is optimal. Thus x1 = 1/5, x2 = 0, x3 = 8/5, x4 = 0,
x5 = 0, x6 = 4 is the optimal solution with a corresponding value of the (negative)
objective of −�27/5�.

Degeneracy
It is possible that in the course of the simplex procedure, degenerate basic feasible
solutions may occur. Often they can be handled as a nondegenerate basic feasible
solution. However, it is possible that after a new column q is selected to enter the
basis, the minimum of the ratios yi0/yiq may be zero, implying that the zero-valued
basic variable is the one to go out. This means that the new variable xq will come
in at zero value, the objective will not decrease, and the new basic feasible solution
will also be degenerate. Conceivably, this process could continue for a series of
steps until, finally, the original degenerate solution is again obtained. The result is
a cycle that could be repeated indefinitely.

Methods have been developed to avoid such cycles (see Exercises 15–17
for a full discussion of one of them, which is based on perturbing the problem
slightly so that zero-valued variables are actually small positive values, and
Exercise 32 for Bland’s rule, which is simpler). In practice, however, such proce-
dures are found to be unnecessary. When degenerate solutions are encountered, the
simplex procedure generally does not enter a cycle. However, anticycling proce-
dures are simple, and many codes incorporate such a procedure for the sake of
safety.
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3.5 ARTIFICIAL VARIABLES
A basic feasible solution is sometimes immediately available for linear programs.
For example, in problems with constraints of the form

Ax � b

x � 0 (26)

with b � 0, a basic feasible solution to the corresponding standard form of the
problem is provided by the slack variables. This provides a means for initiating the
simplex procedure. The example in the last section was of this type. An initial basic
feasible solution is not always apparent for other types of linear programs, however,
and it is necessary to develop a means for determining one so that the simplex
method can be initiated. Interestingly (and fortunately), an auxiliary linear program
and corresponding application of the simplex method can be used to determine the
required initial solution.

By elementary straightforward operations the constraints of a linear
programming problem can always be expressed in the form

Ax = b

x � 0 (27)

with b � 0. In order to find a solution to (27) consider the (artificial) minimization
problem

minimize
m∑

i=1

yi

subject to Ax +y = b

x � 0

y � 0

(28)

where y = �y1� y2� � � � � ym� is a vector of artificial variables. If there is a feasible
solution to (27), then it is clear that (28) has a minimum value of zero with y = 0. If
(27) has no feasible solution, then the minimum value of (28) is greater than zero.

Now (28) is itself a linear program in the variables x, y, and the system is
already in canonical form with basic feasible solution y = b. If (28) is solved using
the simplex technique, a basic feasible solution is obtained at each step. If the
minimum value of (28) is zero, then the final basic solution will have all yi = 0,
and hence barring degeneracy, the final solution will have no yi variables basic.
If in the final solution some yi are both zero and basic, indicating a degenerate
solution, these basic variables can be exchanged for nonbasic xi variables (again at
zero level) to yield a basic feasible solution involving x variables only. (However,
the situation is more complex if A is not of full rank. See Exercise 21.)
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Example 1. Find a basic feasible solution to

2x1 +x2 +2x3 = 4

3x1 +3x2 +x3 = 3

x1 � 0� x2 � 0� x3 � 0�

We introduce artificial variables x4 � 0, x5 � 0 and an objective function x4 +x5.
The initial tableau is

x1 x2 x3 x4 x5 b
2 1 2 1 0 4
3 3 1 0 1 3

cT 0 0 0 1 1 0

Initial tableau

A basic feasible solution to the expanded system is given by the artificial variables.
To initiate the simplex procedure we must update the last row so that it has zero
components under the basic variables. This yields:

2 1 2 1 0 4
©3 3 1 0 1 3

rT −5 −4 −3 0 0 −7

First tableau

Pivoting in the column having the most negative bottom row component as
indicated, we obtain:

0 −1 ©4/3 1 −2/3 2

1 1 1/3 0 1/3 1
0 1 −4/3 0 5/3 −2

Second tableau

In the second tableau there is only one choice for pivot, and it leads to the final
tableau shown.

0 −3/4 1 3/4 −1/2 3/2
1 5/4 0 −1/4 1/2 1/2
0 0 0 1 1 0

Final tableau

Both of the artificial variables have been driven out of the basis, thus reducing the
value of the objective function to zero and leading to the basic feasible solution to
the original problem

x1 = 1/2� x2 = 0� x3 = 3/2�
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Using artificial variables, we attack a general linear programming problem by
use of the two-phase method. This method consists simply of a phase I in which
artificial variables are introduced as above and a basic feasible solution is found
(or it is determined that no feasible solutions exist); and a phase II in which, using
the basic feasible solution resulting from phase I, the original objective function
is minimized. During phase II the artificial variables and the objective function of
phase I are omitted. Of course, in phase I artificial variables need be introduced
only in those equations that do not contain slack variables.

Example 2. Consider the problem

minimize 4x1 +x2 +x3

subject to 2x1 +x2 +2x3 = 4

3x1 +3x2 +x3 = 3

x1 � 0� x2 � 0� x3 � 0�

There is no basic feasible solution apparent, so we use the two-phase method. The
first phase was done in Example 1 for these constraints, so we shall not repeat it
here. We give only the final tableau with the columns corresponding to the artificial
variables deleted, since they are not used in phase II. We use the new cost function
in place of the old one. Temporarily writing cT in the bottom row we have

x1 x2 x3 b
0 −3/4 1 3/2
1 5/4 0 1/2

cT 4 1 1 0
Initial tableau

Transforming the last row so that zeros appear in the basic columns, we have

0 −3/4 1 3/2

1 ©5/4 0 1/2
0 −13/4 0 −7/2

First tableau

3/5 0 1 9/5
4/5 1 0 2/5

13/5 0 0 −11/5
Second tableau

and hence the optimal solution is x1 = 0, x2 = 2/5, x3 = 9/5.
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Example 3. (A free variable problem).

minimize −2x1 + 4x2 + 7x3 + x4 + 5x5

subject to −x1 + x2 + 2x3 + x4 + 2x5 = 7
−x1 + 2x2 + 3x3 + x4 + x5 = 6
−x1 + x2 + x3 + 2x4 + x5 = 4

x1 free� x2 � 0� x3 � 0� x4 � 0� x5 � 0�

Since x1 is free, it can be eliminated, as described in Chapter 2, by solving for
x1 in terms of the other variables from the first equation and substituting everywhere
else. This can all be done with the simplex tableau as follows:

x1 x2 x3 x4 x5 b
−©1 1 2 1 2 7
−1 2 3 1 1 6
−1 1 1 2 1 4

cT −2 4 7 1 5 0

Initial tableau

We select any nonzero element in the first column to pivot on—this will eliminate
x1.

1 −1 −2 −1 −2 −7
0 1 1 0 −1 −1
0 0 −1 1 −1 −3
0 2 3 −1 1 −14

Equivalent problem

We now save the first row for future reference, but our linear program only
involves the sub-tableau indicated. There is no obvious basic feasible solution for
this problem, so we introduce artificial variables x6 and x7.

x2 x3 x4 x5 x6 x7 b
−1 −1 0 1 1 0 1

0 1 −1 1 0 1 3
cT 0 0 0 0 1 1 0

Initial tableau for phase I

Transforming the last row appropriately we obtain

x2 x3 x4 x5 x6 x7 b
−1 −1 0 ©1 1 0 1

0 1 −1 1 0 1 3
rT 1 0 1 −2 0 0 −4

First tableau—phase I
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x2 x3 x4 x5 x6 x7 b
−1 −1 0 1 1 0 1
©1 2 −1 0 −1 1 2

−1 −2 1 0 2 0 −2

Second tableau—phase I

0 1 −1 1 0 1 3
1 2 −1 0 −1 1 2
0 0 0 0 1 1 0

Final tableau—phase I

Now we go back to the equivalent reduced problem

x2 x3 x4 x5 b
0 1 −1 1 3
1 2 −1 0 2

cT 2 3 −1 1 −14

Initial tableau—phase II

Transforming the last row appropriately we proceed with:

0 1 −1 1 3
1 ©2 −1 0 2
0 −2 2 0 −21

First tableau—phase II

−1/2 0 −1/2 1 2
1/2 1 −1/2 0 1
1 0 1 0 −19

Final tableau—phase II

The solution x3 = 1, x5 = 2 can be inserted in the expression for x1 giving

x1 = −7+2 ·1+2 ·2 = −1


thus the final solution is

x1 = −1� x2 = 0� x3 = 1� x4 = 0� x5 −2�

3.6 MATRIX FORM OF THE SIMPLEX METHOD
Although the elementary pivot transformations associated with the simplex method
are in many respects most easily discernible in the tableau format, with attention
focused on the individual elements, there is much insight to be gained by studying
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a matrix interpretation of the procedure. The vector–matrix relationships that exist
between the various rows and columns of the tableau lead, however, not only to
increased understanding but also, in a rather direct way, to the revised simplex
procedure which in many cases can result in considerable computational advantage.
The matrix formulation is also a natural setting for the discussion of dual linear
programs and other topics related to linear programming.

A preliminary observation in the development is that the tableau at any point in
the simplex procedure can be determined solely by a knowledge of which variables
are basic. As before we denote by B the submatrix of the original A matrix consisting
of the m columns of A corresponding to the basic variables. These columns are
linearly independent and hence the columns of B form a basis for Em. We refer to
B as the basis matrix.

As usual, let us assume that B consists of the first m columns of A. Then by
partitioning A, x, and cT as

A = �B� D	

x = �xB� xD� � cT = [
cT

B� cT
D

]
�

the standard linear program becomes

minimize cT
BxB + cT

DxD

subject to BxB + DxD = b
xB � 0� xD � 0�

(29)

The basic solution, which we assume is also feasible, corresponding to the
basis B is x = �xB� 0� where xB = B−1b. The basic solution results from setting
xD = 0. However, for any value of xD the necessary value of xB can be computed
from (29) as

xB = B−1b−B−1DxD� (30)

and this general expression when substituted in the cost function yields

z = cT
B�B−1b−B−1DxD�+ cT

DxD

= cT
BB−1b+ (

cT
D − cT

BB−1D
)

xD�
(31)

which expresses the cost of any solution to (29) in terms of xD. Thus

rT
D = cT

D − cT
BB−1D (32)

is the relative cost vector (for nonbasic variables). It is the components of this
vector that are used to determine which vector to bring into the basis.
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Having derived the vector expression for the relative cost it is now possible to
write the simplex tableau in matrix form. The initial tableau takes the form

⎡

⎢
⎣

A
�

� b
−− � −−
cT

�

� 0

⎤

⎥
⎦=

⎡

⎢
⎣

B
�

� D
�

� b
−− � −− � −−
cT

B

�

� cT
D

�

� 0

⎤

⎥
⎦ � (33)

which is not in general in canonical form and does not correspond to a point in
the simplex procedure. If the matrix B is used as a basis, then the corresponding
tableau becomes

T =
⎡

⎢
⎣

I
�

� B−1D
�

� B−1b
−− � −−−−−−− � −−−−−
0

�

� cT
D − cT

BB−1D
�

� −cT
BB−1b

⎤

⎥
⎦ � (34)

which is the matrix form we desire.

3.7 THE REVISED SIMPLEX METHOD
Extensive experience with the simplex procedure applied to problems from various
fields, and having various values of n and m, has indicated that the method can be
expected to converge to an optimum solution in about m, or perhaps 3m/2, pivot
operations. (Except in the worst case. See Chapter 5.) Thus, particularly if m is
much smaller than n, that is, if the matrix A has far fewer rows than columns,
pivots will occur in only a small fraction of the columns during the course of
optimization.

Since the other columns are not explicitly used, it appears that the work
expended in calculating the elements in these columns after each pivot is, in some
sense, wasted effort. The revised simplex method is a scheme for ordering the
computations required of the simplex method so that unnecessary calculations are
avoided. In fact, even if pivoting is eventually required in all columns, but m is
small compared to n, the revised simplex method can frequently save computational
effort.

The revised form of the simplex method is this: Given the inverse B−1 of a
current basis, and the current solution xB = y0 = B−1b,

Step 1. Calculate the current relative cost coefficients rT
D = cT

D − cT
BB−1D. This can

best be done by first calculating �T = cT
BB−1 and then the relative cost vector

rT
D = cT

D −�T D. If rD � 0 stop; the current solution is optimal.

Step 2. Determine which vector aq is to enter the basis by selecting the most
negative cost coefficient; and calculate yq = B−1aq which gives the vector aq

expressed in terms of the current basis.
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Step 3. If no yiq > 0, stop; the problem is unbounded. Otherwise, calculate the
ratios yi0/yiq for yiq > 0 to determine which vector is to leave the basis.

Step 4. Update B−1 and the current solution B−1b. Return to Step 1.

Updating of B−1 is accomplished by the usual pivot operations applied to an
array consisting of B−1 and yq, where the pivot is the appropriate element in yq. Of
course B−1b may be updated at the same time by adjoining it as another column.

To begin the procedure one requires, as always, an initial basic feasible solution
and, in this case, the inverse of the initial basis. In most problems the initial basis
(and hence also its inverse) is an identity matrix, resulting either from slack or
surplus variables or from artificial variables. The inverse of any initial basis can,
however, be explicitly calculated in order to initiate the revised simplex procedure.

To illustrate the method and to indicate how the computations and storage can
be handled, we consider an example.

Example 1. We solve again Example 1 of Section 3.4. The vectors are listed once
for reference

a1 a2 a3 a4 a5 a6 b
2 1 1 1 0 0 2
1 2 3 0 1 0 5
2 2 1 0 0 1 6

and the objective function is determined by

cT = �−3�−1�−3� 0� 0� 0	 �

We start with an initial basic feasible solution and corresponding B−1 as shown
in the tableau below

Variable

4
5
6

B−1

︷ ︸︸ ︷

1 0 0
0 1 0
0 0 1

xB

2
5
6

We compute

�T = �0� 0� 0	 B−1 = �0� 0� 0	

and then

rT
D = cT

D −�T D = �−3�−1�−3	 �
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We decide to bring a2 into the basis (violating the rule of selecting the most negative
relative cost in order to simplify the hand calculation). Its current representation is
found by multiplying by B−1; thus we have

Variable

4
5
6

B−1

︷ ︸︸ ︷

1 0 0
0 1 0
0 0 1

xB y2

2 ©1
5 2
6 2

After computing the ratios in the usual manner, we select the pivot indicated. The
updated tableau becomes

Variable

2
5
6

B−1

︷ ︸︸ ︷

1 0 0
−2 1 0
−2 0 1

xB

2
1
2

then

�T = �−1� 0� 0	 B−1 = �−1� 0� 0	

r1 = −1� r3 = −2� r4 = 1�

We select a3 to enter. We have the tableau

Variable

2
5
6

B−1

︷ ︸︸ ︷

1 0 0
−2 1 0
−2 0 1

xB y3

2 1
1 ©1
2 −1

Using the pivot indicated we obtain

Variable

2
3
6

B−1

︷ ︸︸ ︷

3 −1 0
−2 1 0
−4 1 1

xB

1
1
3

Now

�T = �−1�−3� 0	 B−1 = �3�−2� 0	 �

and

r1 = −7� r4 = −3� r5 = 2�



∗3.8 The Simplex Method and LU Decomposition 59

We select a1 to enter the basis. We have the tableau

Variable

2
3
6

B−1

︷ ︸︸ ︷

3 −1 0
−2 1 0
−4 1 1

xB y1

1 5
1 −3
3 −5

Using the pivot indicated we obtain

Variable

1
3
6

B−1

︷ ︸︸ ︷

3/5 −1/5 0
−1/5 2/5 0
−1 0 1

xB

1/5
8/5

4

Now

�T = �−3�−3� 0	 B−1 = �−6/5�−3/5� 0	 �

and

r2 = 7/5� r4 = 6/5� r5 = 3/5�

Since the ri’s are all nonnegative, we conclude that the solution x = �1/5� 0�
8/5� 0� 0� 4� is optimal.

∗3.8 THE SIMPLEX METHOD AND LU
DECOMPOSITION

We may go one step further in the matrix interpretation of the simplex method and
note that execution of a single simplex cycle is not explicitly dependent on having
B−1 but rather on the ability to solve linear systems with B as the coefficient
matrix. Thus, the revised simplex method stated at the beginning of Section 3.7
can be restated as: Given the current basis B,

Step 1. Calculate the current solution xB = y0 satisfying By0 = b.

Step 2. Solve �T B = cT
B , and set rT

D = cT
D − �T D. If rD � 0, stop; the current

solution is optimal.

Step 3. Determine which vector aq is to enter the basis by selecting the most
negative relative cost coefficient, and solve Byq = aq.

Step 4. If no yiq > 0, stop; the problem is unbounded. Otherwise, calculate the
ratios yi0/yiq for yiq > 0 and select the smallest nonnegative one to determine
which vector is to leave the basis.

Step 5. Update B. Return to Step 1.
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In this form it is apparent that there is no explicit need for having B−1, but
rather it is only necessary to solve three systems of equations, two involving
the matrix B and one (the one for �) involving BT . In previous sections these
three equations were solved, as the method progressed, by the pivoting operations.
From the viewpoints of efficiency and numerical stability, however, this pivoting
procedure is not as effective as the method of Gaussian elimination for general
systems of linear equations (see Appendix C), and it therefore seems appropriate to
investigate the possibility of adapting the numerically superior method of Gaussian
elimination to the simplex method. The result is a version of the revised simplex
method that possesses better numerical stability than other methods, and which for
large-scale problems can offer tremendous storage advantages.

We concentrate on the problem of solving the linear systems

By0 = b� �T B = cT
B� Byq = aq (35)

that are required by a single step of the simplex method. Suppose B has been
decomposed into the form B = LU where L is a lower triangular matrix and U is
an upper triangular matrix.† Then each of the linear systems (35) can be solved by
solving two triangular systems. Since solving in this fashion is simple, knowledge
of L and U is as good as knowledge of B−1.

Next, we show how the LU decomposition of B can be updated when a single
basis vector is changed. At the beginning of the simplex cycle suppose B has
the form

B = �a1� a2� � � � � am	 �

At the end of the cycle we have the new basis

B = [
a1� a2� � � � � ak−1� ak+1� � � � � am� aq

]
�

where it should be noted that when ak is dropped all subsequent vectors are shifted
to the left, and the new vector aq is appended on the right. This procedure leads to
a fairly simple updating technique.

We have

L−1B = [
L−1a1� L−1a2� � � � � L−1ak−1� L−1ak+1� � � � � L−1am� L−1aq

]

= [
u1� u2� � � � � uk−1� � � � � um� L−1aq

]= H�

†For simplicity, we are assuming that no row interchanges are required to produce the LU
decomposition. This assumption can be relaxed, but both the notation and the method itself
become somewhat more complex. In practice row interchanges are introduced to preserve
accuracy or sparsity.
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where the ui’s are the columns of U. The matrix H takes the form

H =

with zeros below the main diagonal in the first k−1 columns, and zeros below the
element immediately under the diagonal in all other columns. The matrix H itself
can be constructed without additional computation, since the ui’s are known and
L−1aq is a by-product in the computation of yq.

H can be reduced to upper triangular form by using Gaussian elimination to
zero out the subdiagonal elements. Thus the upper triangular matrix U can be
obtained from H by application of a series of transformations, each having the form

Mi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

·
·

1
mi 1

·
·

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36)

for i = k�k+1� � � � �m−1. The matrix U becomes

U = Mm−1Mm−2 � � � MkH� (37)

We then have

B = LH = LM−1
k M−1

k+1 � � � M−1
m−1 U� (38)

and thus evaluating

L = LM−1
k � � � M−1

m−1� (39)

we obtain the decomposition

B = LU� (40)
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Since M−1
i is simply Mi with the sign of the off-diagonal term reversed, evaluation

of L is straightforward.
There are numerous variations of this basic idea. The elementary transforma-

tions (36) can be carried rather than explicitly evaluating L, the LU decomposition
can be periodically reevaluated, and row and column interchanges can be handled in
such a way as to maximize stability or minimize the density of the decomposition.
Some of these extensions are discussed in the references at the end of the chapter.

3.9 DECOMPOSITION
Large linear programming problems usually have some special structural form
that can (and should) be exploited to develop efficient computational procedures.
One common structure is where there are a number of separate activity areas that
are linked through common resource constraints. An example is provided by a
multidivisional firm attempting to minimize the total cost of its operations. The
divisions of the firm must each meet internal requirements that do not interact with
the constraints of other divisions; but in addition there are common resources that
must be shared among divisions and thereby represent linking constraints.

A problem of this form can be solved by the Dantzig–Wolfe decomposition
method described in this section. The method is an iterative process where at each
step a number of separate subproblems are solved. The subproblems are themselves
linear programs within the separate areas (or within divisions in the example of
the firm). The objective functions of these subproblems are varied from iteration
to iteration and are determined by a separate calculation based on the results
of the previous iteration. This action coordinates the individual subproblems so
that, ultimately, the solution to the overall problem is solved. The method can be
derived as a special version of the revised simplex method, where the subproblems
correspond to evaluation of reduced cost coefficients for the main problem.

To describe the method we consider the linear program in standard form

minimize cT x

subject to Ax = b (41)

x � 0�

Suppose, for purposes of this entire section, that the A matrix has the special
“block-angular” structure:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

L1 L2 · · · LN

A1

A2

� � �

AN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(42)
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By partitioning the vectors x� cT , and b consistent with this partition of A, the
problem can be rewritten as

minimize
N∑

i=1

cT
i xi

subject to
N∑

i=1

Lixi = b0 (43)

Aixi = bi

xi � 0� i = 1� � � � �N�

This may be viewed as a problem of minimizing the total cost of N different linear
programs that are independent except for the first constraint, which is a linking
constraint of, say, dimension m.

Each of the subproblems is of the form

minimize cT
i xi

subject to Aixi = bi (44)

xi � 0�

The constraint set for the ith subproblem is Si = �xi � Aixi = bi� xi � 0�. As for
any linear program, this constraint set Si is a polytope and can be expressed as
the intersection of a finite number of closed half-spaces. There is no guarantee
that each Si is bounded, even if the original linear program (41) has a bounded
constraint set. We shall assume for simplicity, however, that each of the polytopes
Si� i = 1� � � � �N is indeed bounded and hence is a polyhedron. One may guarantee
that this assumption is satisfied by placing artificial (large) upper bounds on each
xi.

Under the boundedness assumption, each polyhedron Si consists entirely of
points that are convex combinations of its extreme points. Thus, if the extreme
points of Si are �xi1� xi2� � � � � xiKi

�, then any point xi ∈ Si can be expressed in the form

xi =
Ki∑

j=1

ijxij�

where
Ki∑

j=1

ij = 1

and 
ij � 0� j = 1� � � � �Ki�

(45)

The 
ij’s are the weighting coefficients of the extreme points.
We now convert the original linear program to an equivalent master problem, of

which the objective is to find the optimal weighting coefficients for each polyhedron,
Si. Corresponding to each extreme point xij in Si, define pij = cT

i xij and qij = Lixij .
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Clearly pij is the equivalent cost of the extreme point xij , and qij is its equivalent
activity vector in the linking constraints.

Then the original linear program (41) is equivalent, using (45), to the master
problem:

minimize
N∑

i=1

Ki∑

j=1

pij
ij

subject to
N∑

i=1

Ki∑

j=1

qij
ij = b0 (46)

Ki∑

j=1

ij = 1


ij � 0� j = 1� � � � �Ki

⎫
⎪⎬

⎪⎭
i = 1� � � � �N�

This master problem has variables

� = (

11� � � � �
1K1

�
21� � � � �
2K2
� � � � �
N1� � � � �
NKN

)

and can be expressed more compactly as

minimize pT �

subject to Q� = g (47)

� � 0�

where gT = �bT
0 � 1� 1� � � � � 1	; the element of p associated with 
ij is pij; and the

column of Q associated with 
ij is

[
qij

ei

]

�

with ei denoting the ith unit vector in EN .
Suppose that at some stage of the revised simplex method for the master

problem we know the basis B and corresponding simplex multipliers �T = pT
BB−1.

The corresponding relative cost vector is rT
D = cT

D −�T D, having components

rij = pij −�T

[
qij

ei

]

� (48)

It is not necessary to calculate all the rij’s; it is only necessary to determine the
minimal rij . If the minimal value is nonnegative, the current solution is optimal and
the process terminates. If, on the other hand, the minimal element is negative, the
corresponding column should enter the basis.
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The search for the minimal element in (48) is normally made with respect
to nonbasic columns only. The search can be formally extended to include basic
columns as well, however, since for basic elements

pij −�T

[
qij

ei

]

= 0�

The extra zero values do not influence the subsequent procedure, since a new
column will enter only if the minimal value is less than zero.

We therefore define r∗ as the minimum relative cost coefficient for all possible
basis vectors. That is,

r∗ = minimum
i∈�1�����N�

{

r∗
1 = minimum

j∈�1�����Ki�
�pij −�T

[
qij

ei

]

�

}

�

Using the definitions of pij and qij , this becomes

r∗
i = minimum

j∈�1�����Ki�

{
cT

i xij −�T
0 Lixij −�m+i

}
� (49)

where �0 is the vector made up of the first m elements of ��m being the number
of rows of Li (the number of linking constraints in (43)).

The minimization problem in (49) is actually solved by the ith subproblem:

minimize �cT
i −�T

0 Li�xi

subject to Aixi = bi (50)

xi � 0�

This follows from the fact that �m+i is independent of the extreme point index j
(since � is fixed during the determination of the ri’s), and that the solution of (50)
must be that extreme point of Si, say xik, of minimum cost, using the adjusted cost
coefficients cT

i −�T
0 Li.

Thus, an algorithm for this special version of the revised simplex method
applied to the master problem is the following: Given a basis B

Step 1. Calculate the current basic solution xB, and solve �T B = cT
B for �.

Step 2. For each i = 1� 2� � � � �N , determine the optimal solution x∗
i of the ith

subproblem (50) and calculate

r∗
i = (

cT
i −�T

0 Li

)
x∗

i −�m+i� (51)

If all r∗
i > 0, stop; the current solution is optimal.

Step 3. Determine which column is to enter the basis by selecting the minimal r∗
i .

Step 4. Update the basis of the master problem as usual.
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This algorithm has an interesting economic interpretation in the context of a
multidivisional firm minimizing its total cost of operations as described earlier.
Division i’s activities are internally constrained by Axi = bi, and the common
resources b0 impose linking constraints. At Step 1 of the algorithm, the firm’s central
management formulates its current master plan, which is perhaps suboptimal, and
announces a new set of prices that each division must use to revise its recommended
strategy at Step 2. In particular, −�0 reflects the new prices that higher management
has placed on the common resources. The division that reports the greatest rate of
potential cost improvement has its recommendations incorporated in the new master
plan at Step 3, and the process is repeated. If no cost improvement is possible,
central management settles on the current master plan.

Example 2. Consider the problem

minimize −x1 − 2x2 − 4y1 − 3y2

subject to x1 + x2 + 2y1 � 4
x2 + y1 + y2 � 3

2x1 + x2 � 4
x1 + x2 � 2

y1 + y2 � 2
3y1 + 2y2 � 5

x1 � 0� x2 � 0� y1 � 0� y2 � 0�

The decomposition algorithm can be applied by introducing slack variables and
identifying the first two constraints as linking constraints. Rather than using double
subscripts, the primary variables of the subsystems are taken to be x = �x1� x2�,
y = �y1� y2�.

Initialization. Any vector (x, y) of the master problem must be of the form

x =
I∑

i=1


ixi� y =
J∑

j=1

�jyj�

where xi and yj are extreme points of the subsystems, and

J∑

i=1


i = 1�
J∑

j=1

�j = 1� 
i � 0� �j � 0�

Therefore the master problem is

minimize
I∑

i=1

pi
i +
J∑

j=1

tj�j

subject to
I∑

i=1


iL1xi +
J∑

j=1

�jL2yj + s = b
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I∑

i=1


i = 1� 
i � 0� i = 1� 2� � � � � I

j∑

j=1

�j = 1� �j � 0� j = 1� 2� � � � � J�

where pi is the cost of xi, tj is the cost of yj , and where s = �s1� s2� is a vector of
slack variables for the linking constraints. This problem corresponds to (47).

A starting basic feasible solution is s = b, 
1 = 1, �1 = 1, where x1 = 0, y1 = 0
are extreme points of the subsystems. The corresponding starting basis is B = I
and, accordingly, the initial tableau for the revised simplex method for the master
problem is

Variable B−1 Value

s1 1 0 0 0 4
s2 0 1 0 0 3

1 0 0 1 0 1
�1 0 0 0 1 1

Then �T = �0� 0� 0� 0	 B−1 = �0� 0� 0� 0	.

Iteration 1. The relative cost coefficients are found by solving the subproblems
defined by (50). The first is

minimize −x1 − 2x2

subject to 2x1 + x2 � 4
x1 + x2 � 2

x1 � 0� x2 � 0�

This problem can be solved easily (by the simplex method or by inspection). The
solution is x = �0� 2�, with r1 = −4.

The second subsystem is solved correspondingly. The solution is y = �1� 1�
with r2 = −7.

It follows from Step 2 of the general algorithm that r∗ = −7. We let y2 = �1� 1�
and bring �2 into the basis of the master problem.

Master Iteration. The new column to enter the basis is

⎡

⎢
⎢
⎣

L2y2

0
1

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

2
2
0
1

⎤

⎥
⎥
⎦ �
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and since the current basis is B = I, the new tableau is

Variable B−1 Value
New

column

s1 1 0 0 0 4 2
s2 0 1 0 0 3 2

1 0 0 1 0 1 0
�1 0 0 0 1 1 ©1

which after pivoting leads to

Variable B−1 Value

s1 1 0 0 −2 2
s2 0 1 0 −2 1

1 0 0 1 0 1
�2 0 0 0 1 1

Since t2 = cT
2 y2 = −7, we find

� = �0 0 0 −7	 B−1 = �0 0 0 −7	�

Iteration 2. Since �0, which comprises the first two components of �, has not
changed, the subproblems remain the same, but now according to (51), r∗ = −4
and 
2 should be brought into the basis, where x2 = �0� 2�.
Master Iteration. The new column to enter the basis is

⎡

⎢
⎢
⎢
⎣

L1x2

1
0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

2
2
1
0

⎤

⎥
⎥
⎥
⎦

�

This must be multiplied by B−1 to obtain its representation in terms of the current
basis (but the representation does not change it in this case). The master tableau is
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then updated as follows:

Variable B−1 Value New
column

s1 1 0 0 −2 2 2
s2 0 1 0 −2 1 ©2

1 0 0 1 0 1 1
�2 0 0 0 1 1 0

Variable B−1 Value

0. s1 1 −1 0 0 1

2 0 1/2 0 −1 1/2

1 0 −1/2 1 1 1/2
�2 0 0 0 1 1

Since p2 = −4, we have

�T = �0�−4� 0�−7	 B−1 = �0�−2� 0�−3	 �

Iteration 3. The subsystem’s problems are now

minimize −x1

subject to 2x1 + x2 � 4
x1 + x2 � 2

x1 � 0� x2 � 0

minimize −2y1 − y2 +3
subject to y1 + y2 � 2

3y1 + 2y2 � 5
y1 � 0� y2 � 0�

It follows that x3 = �2� 0� and 
3 should be brought into the basis.
Master Iteration. Proceeding as usual, we obtain the new tableau and new � as
follows.

Variable B−1 Value

s1 1 −1 0 0 1 2

2 0 1/2 0 −1 1/2 0

1 0 −1/2 1 1 1/2 ©1
�2 0 0 0 1 1/2 0

s1 1 0 −2 −2 0

2 0 1/2 0 −1 1/2

3 0 −1/2 1 1 1/2
�3 0 0 0 1 1

�T = �0�−4�−2�−7	 B−1 = �0�−1�−2�−5	



70 Chapter 3 The Simplex Method

The subproblems now have objectives −x1 −x2 +2 and −3y1 −2y2 +5, respectively,
which both have minimum values of zero. Thus the current solution is optimal. The
solution is �1/2�x2 + �1/2�x3 +y2, or equivalently, x1 = 1, x2 = 1, y1 = 1, y2 = 1.

3.10 SUMMARY
The simplex method is founded on the fact that the optimal value of a linear program,
if finite, is always attained at a basic feasible solution. Using this foundation there
are two ways in which to visualize the simplex process. The first is to view the
process as one of continuous change. One starts with a basic feasible solution
and imagines that some nonbasic variable is increased slowly from zero. As the
value of this variable is increased, the values of the current basic variables are
continuously adjusted so that the overall vector continues to satisfy the system of
linear equality constraints. The change in the objective function due to a unit change
in this nonbasic variable, taking into account the corresponding required changes
in the values of the basic variables, is the relative cost coefficient associated with
the nonbasic variable. If this coefficient is negative, then the objective value will
be continuously improved as the value of this nonbasic variable is increased, and
therefore one increases the variable as far as possible, to the point where further
increase would violate feasibility. At this point the value of one of the basic variables
is zero, and that variable is declared nonbasic, while the nonbasic variable that was
increased is declared basic.

The other viewpoint is more discrete in nature. Realizing that only basic
feasible solutions need be considered, various bases are selected and the corre-
sponding basic solutions are calculated by solving the associated set of linear
equations. The logic for the systematic selection of new bases again involves the
relative cost coefficients and, of course, is derived largely from the first, continuous,
viewpoint.

3.11 EXERCISES
1. Using pivoting, solve the simultaneous equations

3x1 +2x2 = 5

5x1 + x2 = 9�

2. Using pivoting, solve the simultaneous equations

x1 +2x2 +x3 = 7

2x1 −x2 +2x3 = 6

x1 +x2 +3x3 = 12�

3. Solve the equations in Exercise 2 by Gaussian elimination as described in Appendix C.
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4. Suppose B is an m × m square nonsingular matrix, and let the tableau T be
constructed, T = �I� B	 where I is the m × m identity matrix. Suppose that pivot
operations are performed on this tableau so that it takes the form [C, I]. Show that
C = B−1.

5. Show that if the vectors a1� a2� � � � � am are a basis in Em, the vectors
a1� a2� � � � � ap−1� aq� ap+1� � � � � am also are a basis if and only if ypq �= 0, where ypq is
defined by the tableau (7).

6. If rj > 0 for every j corresponding to a variable xj that is not basic, show that the
corresponding basic feasible solution is the unique optimal solution.

7. Show that a degenerate basic feasible solution may be optimal without satisfying rj � 0
for all j.

8. a) Using the simplex procedure, solve

maximize −x1 +x2

subject to x1 −x2 � 2

x1 +x2 � 6

x1 � 0� x2 � 0�

b) Draw a graphical representation of the problem in x1, x2 space and indicate the path
of the simplex steps.

c) Repeat for the problem

maximize x1 +x2

subject to −2x1 +x2 � 1

x1 −x2 � 1

x1 � 0� x2 � 0�

9. Using the simplex procedure, solve the spare-parts manufacturer’s problem (Exercise 4,
Chapter 2).

10. Using the simplex procedure, solve

minimize 2x1 + 4x2 + x3 + x4

subject to x1 + 3x2 + x4 � 4
2x1 + x2 � 3

x2 + 4x3 + x4 � 3
x1 � 0 i = 1� 2� 3� 4�

11. For the linear program of Exercise 10

a) How much can the elements of b = �4� 3� 3� be changed without changing the
optimal basis?

b) How much can the elements of c = �2� 4� 1� 1� be changed without changing the
optimal basis?
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c) What happens to the optimal cost for small changes in b?
d) What happens to the optimal cost for small changes in c?

12. Consider the problem

minimize x1 − 3x2 − 0�4x3

subject to 3x1 − x2 + 2x3 � 7
−2x1 + 4x2 � 12
−4x1 + 3x2 + 3x3 � 14

x1 � 0� x2 � 0� x3 � 0�

a) Find an optimal solution.
b) How many optimal basic feasible solutions are there?
c) Show that if c4 + 1

3 a14 + 4
5 a24 � 0, then another activity x4 can be introduced with

cost coefficient c1 and activity vector �a14� a24� a34� without changing the optimal
solution.

13. Rather than select the variable corresponding to the most negative relative cost coefficient
as the variable to enter the basis, it has been suggested that a better criterion would be
to select that variable which, when pivoted in, will produce the greatest improvement
in the objective function. Show that this criterion leads to selecting the variable xk

corresponding to the index k minimizing max
i�yik>0

rkyi0/yik.

14. In the ordinary simplex method one new vector is brought into the basis and one removed
at every step. Consider the possibility of bringing two new vectors into the basis and
removing two at each stage. Develop a complete procedure that operates in this fashion.

15. Degeneracy. If a basic feasible solution is degenerate, it is then theoretically possible
that a sequence of degenerate basic feasible solutions will be generated that endlessly
cycles without making progress. It is the purpose of this exercise and the next two to
develop a technique that can be applied to the simplex method to avoid this cycling.

Corresponding to the linear system Ax = b where A = �a1� a2� � � � � an	 define the
perturbed system Ax = b��� where b��� = b+�a1 +�2a2 +· · ·+�nan� � > 0. Show that
if there is a basic feasible solution (possibly degenerate) to the unperturbed system with
basis B = �a1� a2� � � � � am	, then corresponding to the same basis, there is a nondegenerate
basic feasible solution to the perturbed system for some range of � > 0.

16. Show that corresponding to any basic feasible solution to the perturbed system of
Exercise 15, which is nondegenerate for some range of � > 0, and to a vector ak not in
the basis, there is a unique vector ai in the basis which when replaced by ak leads to a
basic feasible solution; and that solution is nondegenerate for a range of � > 0.

17. Show that the tableau associated with a basic feasible solution of the perturbed system
of Exercise 15, and which is nondegenerate for a range of � > 0, is identical with that of
the unperturbed system except in the column under b���. Show how the proper pivot in
a given column to preserve feasibility of the perturbed system can be determined from
the tableau of the unperturbed system. Conclude that the simplex method will avoid
cycling if whenever there is a choice in the pivot element of a column k, arising from a
tie in the minimum of yi0/yik among the elements i ∈ I0, the tie is resolved by finding
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the minimum of yi1/yik, i ∈ I0. If there still remainties among elements i ∈ I , the process
is repeated with yi2/yik, etc., until there is a unique element.

18. Using the two-phase simplex procedure solve

a� minimize −3x1 +x2 +3x3 −x4

subject to x1 + 2x2 − x3 + x4 = 0
2x1 − 2x2 + 3x3 + 3x4 = 9
x1 − x2 + 2x3 − x4 = 6
x1 � 0� i = 1� 2� 3� 4�

b� minimize x1 + 6x2 − 7x3 + x4 + 5x5

subject to 5x1 − 4x2 + 13x3 − 2x4 + x5 = 20
x1 − x2 + 5x3 − x4 + x5 = 8

x1 � 0� i = 1� 2� 3�4� 5�

19. Solve the oil refinery problem (Exercise 3, Chapter 2).

20. Show that in the phase I procedure of a problem that has feasible solutions, if an artificial
variable becomes nonbasic, it need never again be made basic. Thus, when an artificial
variable becomes nonbasic its column can be eliminated from future tableaus.

21. Suppose the phase I procedure is applied to the system Ax = b, x � 0, and that the
resulting tableau (ignoring the cost row) has the form

x1 x2 · · ·xk xk+1 · · ·xn y1 y2 · · ·yk yk+1 · · ·ym

1
1

1

R1 S1

0 · · · 0
0 · · · 0
���
0 · · · 0

b̄1
���

b̄k

0 0 · · · 0
���
0 · · · 0

R2 S2

1
1

1

0
���
0

This corresponds to having m−k basic artificial variables at zero level.

a) Show that any nonzero element in R2 can be used as a pivot to eliminate a basic
artificial variable, thus yielding a similar tableau but with k increased by one.

b) Suppose that the process in (a) has been repeated to the point where R2 = 0. Show that
the original system is redundant, and show how phase II may proceed by eliminating
the bottom rows.

c) Use the above method to solve the linear program

minimize 2x1 + 6x2 + x3 + x4

subject to x1 + 2x2 + x4 = 6
x1 + 2x2 + x3 + x4 = 7
x1 + 3x2 − x3 + 2x4 = 7
x1 + x2 + x3 = 5

x1 � 0� x2 � 0� x3 � 0� x4 � 0�
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22. Find a basic feasible solution to

x1 + 2x2 − x3 + x4 = 3
2x1 + 4x2 + x3 + 2x4 = 12
x1 + 4x2 + 2x3 + x4 = 9

x1 � 0� i = 1� 2� 3� 4�

23. Consider the system of linear inequalities Ax � b, x � 0 with b � 0. This system can
be transformed to standard form by the introduction of m surplus variables so that it
becomes Ax − y = b, x � 0, y � 0. Let bk = maxi bi and consider the new system in
standard form obtained by adding the kth row to the negative of every other row. Show
that the new system requires the addition of only a single artificial variable to obtain an
initial basic feasible solution.
Use this technique to find a basic feasible solution to the system.

x1 + 2x2 + x3 � 4
2x1 + x2 + x3 � 5
2x1 + 3x2 + 2x3 � 6
xi � 0� i = 1� 2� 3�

24. It is possible to combine the two phases of the two-phase method into a single procedure
by the big–M method. Given the linear program in standard form

minimize cT x
subject to Ax = b

x � 0�

one forms the approximating problem

minimize cT x + M
m∑

i=1
yi

subject to Ax + y = b
x � 0
y � 0�

In this problem y = �y1� y2� � � � � ym� is a vector of artificial variables and M is a large

constant. The term M
m∑

i=1
yi serves as a penalty term for nonzero yi’s.

If this problem is solved by the simplex method, show the following:

a) If an optimal solution is found with y = 0, then the corresponding x is an optimal
basic feasible solution to the original problem.

b) If for every M > 0 an optimal solution is found with y �= 0, then the original problem
is infeasible.

c) If for every M > 0 the approximating problem is unbounded, then the original problem
is either unbounded or infeasible.

d) Suppose now that the original problem has a finite optimal value V���. Let V�M�
be the optimal value of the approximating problem. Show that V�M� � V���.

e) Show that for M1 � M2 we have V�M1� � V�M2�.
f) Show that there is a value M0 such that for M � M0, V�M� = V���, and hence

conclude that the big–M method will produce the right solution for large enough
values of M .
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25. A certain telephone company would like to determine the maximum number of long-
distance calls from Westburgh to Eastville that it can handle at any one time. The
company has cables linking these cities via several intermediary cities as follows:

4
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6

8

5

5
6

3

3

5

1

2

2

8

3

Southgate

Westburgh Eastville

Northgate Northbay

Southbay

Each cable can handle a maximum number of calls simultaneously as indicated in
the figure. For example, the number of calls routed from Westburgh to Northgate
cannot exceed five at any one time. A call from Westburgh to Eastville can be routed
through any other city, as long as there is a cable available that is not currently being
used to its capacity. In addition to determining the maximum number of calls from
Westburgh to Eastville, the company would, of course, like to know the optimal routing
of these calls. Assume calls can be routed only in the directions indicated by the
arrows.

a) Formulate the above problem as a linear programming problem with upper bounds.
(Hint: Denote by xij the number of calls routed from city i to city j.)

b) Find the solution by inspection of the graph.

26. Using the revised simplex method find a basic feasible solution to

x1 + 2x2 − x3 + x4 = 3
2x1 + 4x2 + x3 + 2x4 = 12
x1 + 4x2 + 2x3 + x4 = 9
x1 � 0� i = 1� 2� 3� 4�

27. The following tableau is an intermediate stage in the solution of a minimization problem:

y1 y2 y3 y4 y5 y6 y0

1 2/3 0 0 4/3 0 4
0 −7/3 3 1 −2/3 0 2
0 −2/3 −2 0 2/3 1 2

rT 0 8/3 −11 0 4/3 0 −8

a) Determine the next pivot element.



76 Chapter 3 The Simplex Method

b) Given that the inverse of the current basis is

B−1 = �a1� a4� a6	
−1 = 1

3

⎡

⎣
1 1 −1
1 −2 2

−1 2 1

⎤

⎦

and the corresponding cost coefficients are

cT
B = �c1� c4� c6� = �−1�−3� 1� �

find the original problem.

28. In many applications of linear programming it may be sufficient, for practical purposes,
to obtain a solution for which the value of the objective function is within a prede-
termined tolerance � from the minimum value z∗. Stopping the simplex algorithm at
such a solution rather than searching for the true minimum may considerably reduce the
computations.

a) Consider a linear programming problem for which the sum of the variables is known
to be bounded above by s. Let z0 denote the current value of the objective function
at some stage of the simplex algorithm, �cj − zj� the corresponding relative cost
coefficients, and

M = max
j

(
zj − cj

)
�

Show that if M � �/s, then z0 − z∗ � �.
b) Consider the transportation problem described in Section 2.2 (Example 2). Assuming

this problem is solved by the simplex method and it is sufficient to obtain a
solution within � tolerance from the optimal value of the objective function, specify
a stopping criterion for the algorithm in terms of � and the parameters of the
problem.

29. Work out an extension of LU decomposition, as described in Appendix C, when row
interchanges are introduced.

30. Work out the details of LU decomposition applied to the simplex method when row
interchanges are required.

31. Anticycling Rule. A remarkably simple procedure for avoiding cycling was developed
by Bland, and we discuss it here.
Bland’s Rule. In the simplex method:

a) Select the column to enter the basis by j = min�j � rj < 0�; that is, select the lowest-
indexed favorable column.

b) In case ties occur in the criterion for determining which column is to leave the basis,
select the one with lowest index.

We can prove by contradiction that the use of Bland’s rule prohibits cycling. Suppose
that cycling occurs. During the cycle a finite number of columns enter and leave the
basis. Each of these columns enters at level zero, and the cost function does not change.



References 77

Delete all rows and columns that do not contain pivots during a cycle, obtaining a new
linear program that also cycles. Assume that this reduced linear program has m rows
and n columns. Consider the solution stage where column n is about to leave the basis,
being replaced by column p. The corresponding tableau is as follows (where the entries
shown are explained below):

a1 · · · ap · · · an b
� 0 0 0
� 0 0 0

���
���

���
> 0 1 0

cT < 0 0 0

Without loss of generality, we assume that the current basis consists of the last m
columns. In fact, we may define the reduced linear program in terms of this tableau,
calling the current coefficient array A and the current relative cost vector c. In this
tableau we pivot on amp, so amp > 0. By Part b) of Bland’s rule, an can leave the basis
only if there are no ties in the ratio test, and since b = 0 because all rows are in the
cycle, it follows that aip � 0 for all i �= m.

Now consider the situation when column n is about to reenter the basis. Part a)
of Bland’s rule ensures that rn < 0 and ri � 0 for all i �= n. Apply the formula ri =
ci −�T ai to the last m columns to show that each component of � except �m is nonpos-
itive; and �m > 0. Then use this to show that rp = cp − �T ap < cp < 0, contradicting
rp � 0.

32. Use the Dantzig–Wolfe decomposition method to solve

minimize −4x1 − x2 − 3x3 − 2x4

subject to 2x1 + 2x2 + x3 + 2x4 � 6
x2 + 2x3 + 3x4 � 4

2x1 + x2 � 5
x2 � 1

− x3 + 2x4 � 2
x3 + 2x4 � 6

x1 � 0� x2 � 0� x3 � 0� x4 � 0�
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3.9 For a more comprehensive description of the Dantzig and Wolfe [D11] decomposition
method, see Dantzig [D6].

3.11 The degeneracy technique discussed in Exercises 15–17 is due to Charnes [C2]. The
anticycling method of Exercise 35 is due to Bland [B19].
For the state of the art in Simplex solvers see Bixby [B18]


