
Chapter 10

Micromechanics of Composites

In this chapter we consider the results of incorporating a reinforcement (fibers,

whiskers, particles, etc.) in a matrix to make a composite. It is of great importance

to be able to predict the properties of a composite, given the properties of the

components and the geometric arrangement of the components in the composite.

We examine various micromechanical aspects of composites. A particularly simple

case is the rule-of-mixtures, a rough tool that considers the composite properties as

volume-weighted averages of the component properties. It is important to realize

that the rule-of-mixtures works in only certain simple situations. Composite density

is an example where the rule-of-mixtures is applied readily. In the case of mechani-

cal properties, there are certain restrictions to its applicability. When more precise

information is desired, it is better to use more sophisticated approaches based on the

theory of elasticity.

10.1 Density

Consider a composite of mass mc and volume vc. The total mass of the composite is

the sum total of the masses of fiber and matrix, that is,

mc ¼ mf þ mm: (10.1)

The subscripts c, f, and m indicate composite, fiber, and matrix, respectively.

Note that Eq. (10.1) is valid even in the presence of any voids in the composite. The

volume of the composite, however, must include the volume of voids, vv. Thus,

vc ¼ vf þ vm þ vv: (10.2)
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Dividing Eq. (10.1) by mc and Eq. (10.2) by vc and denoting the mass and

volume fractions by Mf, Mm and Vf, Vm, Vv, respectively, we can write

Mf þMm ¼ 1 (10.3)

and

Vf þ Vm þ Vv ¼ 1: (10.4)

The composite density rc (¼ mc/vc) is given by

rc ¼
mc

vc
¼ mf þ mm

vc
¼ rf vf þ rmvm

vc

or

rc ¼ rf Vf þ rmVm: (10.5)

We can also derive an expression for rc in terms of mass fractions. Thus,

rc ¼
mc

vc
¼ mc

vf þ vm þ vv
¼ mc

mf =rf þ mm=rm þ vv

¼ 1

Mf =rf þMm=rm þ vv=mc

¼ 1

Mf =rf þMm=rm þ vv=rcvc

¼ 1

Mf =rf þMm=rm þ Vv=rc
: (10.6)

We can use Eq. (10.6) to indirectly measure the volume fraction of voids in a

composite. Rewriting Eq. (10.6), we obtain

rc ¼
rc

rc Mf =rf þMm=rm
h i

þ Vv

or

Vv ¼ 1� rc
Mf

rf
þMm

rm

 !
: (10.7)

Example 10.1 A thermoplastic matrix contains 40 wt.% glass fiber. If the density of

the matrix, rm, is 1.1 g/cm3 while that of glass fiber, rf, is 2.5 g/cm3, what is the

density of the composite? Assume that no voids are present.
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Solution Consider 100 g of the composite:

Amount of glass fiber,mf ¼ 40 g

Amount of matrix, mm ¼ 60 g:

Volume of the composite, vc is the sum of the volumes of fiber, vf and matrix, vm

vc ¼ vm þ vf

¼ mm=rmð Þ þ mf =rf
� �

¼ 60=1:1þ 40=2:5ð Þcm3

¼ 54:5þ 16 ¼ 70:5 cm3:

The density of the composite, is

rc ¼ 100 g/70:5 cm3 ¼ 1:42 g/cm3:

10.2 Mechanical Properties

In this section, we first describe some of the methods for predicting elastic

constants, thermal properties, and transverse stresses in fibrous composites and

then we treat the mechanics of load transfer.

10.2.1 Prediction of Elastic Constants

Consider a unidirectional composite such as the one shown in Fig. 10.1. Assume

that plane sections of this composite remain plane after deformation. Let us apply a

force Pc in the fiber direction. Now, if the two components adhere perfectly and if

they have the same Poisson’s ratio, then each component will undergo the same

longitudinal elongation, Dl. Thus, we can write for the strain in each component

ef ¼ em ¼ ecl ¼ Dl
l
; (10.8)

where ecl is the strain in the composite in the longitudinal direction. This is called

the isostrain or action-in-parallel situation. It was first treated by Voigt (1910). If

both fiber and matrix are elastic, we can relate the longitudinal stress s in the two

components to the longitudinal strain el by Young’s modulus E. Thus,

sf ¼ Ef ecl and sm ¼ Emecl:
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Let Ac be the cross-sectional area of the composite, Am, that of the matrix, and Af,

that of all the fibers. The applied load on the composite, Pc is shared between the

fiber and the matrix. We can write

Pc ¼ Pf þ Pm;

where Pf and Pm are the loads on the fiber and the matrix, respectively. Converting

into stress components, we can write

sclAc ¼ sf Af þ smAm: (10.9)

From Eqs. (10.8) and (10.9), we get

sclAc ¼ EfAf þ EmAm

� �
ecl

or

Ecl ¼ scl
ecl

¼ Ef
Af

Ac
þ Em

Am

Ac
;

where Ecl is the longitudinal Young’s modulus of the composite. The longitudinal

modulus is also denoted by E11.

Now, for a given length of a composite, Af/Ac ¼ Vf and Am/Ac ¼ Vm. Then the

preceding expression can be simplified to

Ecl ¼ EfVf þ EmVm ¼ E11: (10.10)

Fig. 10.1 Unidirectional composite: (a) isostrain or action in parallel and (b) isostress or action in

series
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Equation (10.10) is called the rule-of-mixtures for Young’s modulus in the fiber

direction.

A similar expression can be obtained for the composite longitudinal strength

from (10.9), namely,

scl ¼ sf Vf þ smVm: (10.11)

For properties in the transverse direction, we can represent the simple unidirect-

ional composite by what is called the action-in-series or isostress situation; see

Fig. 10.1b. In this case, we group the fibers together as a continuous phase normal to

the stress. Thus, we have equal stresses in the two components and the model is

equivalent to that treated by Reuss (1929). For loading transverse to the fiber

direction, we have for isostress

sct ¼ sf ¼ sm

while the total displacement of the composite in the thickness direction, Dtc, is the
sum of displacements of the matrix and fiber, that is,

Dtc ¼ Dtm þ Dtf :

Dividing throughout by tc, the gage length of the composite, we obtain

Dtc
tc

¼ Dtm
tc

þ Dtf
tc

:

Now Dtc/tc ¼ ect, strain in the composite in the transverse direction, while Dtm
and Dtf equal the strains in the matrix and fiber times their respective gage lengths;

that is, Dtm ¼ emtm and Dtf ¼ eftf. Then

ect ¼ Dtc
tc

¼ Dtm
tm

tm
tc
þ Dtf

tf

tf
tc

or

ect ¼ em
tm
tc
þ ef

tf
tc
: (10.12)

For a given cross-sectional area of the composite under the applied load, the

volume fractions of fiber and matrix can be written as

Vm ¼ tm
tc

and Vf ¼ tf
tc
:

This simplifies Eq. (10.12) to

ect ¼ em Vm þ ef Vf : (10.13)
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Considering both components to be elastic and remembering that sct ¼ sf ¼ sm
in this case, we can write (10.13) as

sct
Ect

¼ sct
Em

Vm þ sct
Ef

Vf

or

1

Ect
¼ Vm

Em
þ Vf

Ef
¼ 1

E22

: (10.14)

The relationships given by Eqs. (10.5), (10.10), (10.11), (10.13), and (10.14) are

commonly referred to as rules-of-mixtures (volume weighted averages). Figure 10.2

shows the plots of Eqs. (10.10) and (10.14). The reader should appreciate that these

relationships and their variants are but rules-of-thumb obtained from a simple,

strength of materials approach. More comprehensive micromechanical models,

based on the theory of elasticity, can and should be used to obtain the elastic constants

of fibrous composites. We describe below, albeit very briefly, some of these.

10.2.2 Micromechanical Approaches

The states of stress and strain can each be described by six components.

An anisotropic body with no symmetry elements present requires 21 independent

elastic constants to relate stress and strain (Nye 1985). This is the most general case

of elastic anisotropy. An elastically isotropic body, on the other hand, is the simplest

case; it needs only two independent elastic constants. In such a body, when a tensile

Fig. 10.2 Variation of

longitudinal modulus (E11)

and transverse modulus (E22)

with fiber volume fraction

(Vf)
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stress sz is applied in the z direction, a tensile strain ez results in that direction. In

addition to this tensile strain, there are two equal compressive strains (ex ¼ ey) in the
x and y directions. In a generally anisotropic body, the two transverse strain

components are not equal. In fact, as we shall see in Chap. 11, in such a body, tensile

loading can result in tensile and shear strains. The large number of independent

elastic constants (21 in the most general case, i.e., no symmetry elements) represents

the degree of elastic complexity in a given system. Any symmetry elements present

will reduce the number of independent elastic constants (Nye 1985).

A composite containing uniaxially aligned fibers will have a plane of symmetry

perpendicular to the fiber direction (i.e., material on one side of the plane will be the

mirror image of the material on the other side). Figure 10.3 shows square, hexagonal,

and random fiber arrays in a matrix. A square array of fibers, for example, will have

symmetry planes parallel to the fibers aswell as perpendicular to them. Such amaterial

is an orthotropic material (three mutually perpendicular planes of symmetry) and

possesses nine independent elastic constants (Nye 1985). Hexagonal and random

arrays of aligned fibers are transversely isotropic and have five independent elastic

constants. These five constants as well as the stress–strain relationships, as derived by

Hashin and Rosen (1964) and Rosen (1973), are given in Table 10.1. There are two

Poisson’s ratios: one gives the transverse strain caused by an axially applied stress, and

the other gives the axial strain caused by a transversely applied stress. The two are not

independent but are related (see Sect. 11.3). Thus, the number of independent elastic

constants for a transversely isotropic composite is five. Note that the total number of

independent elastic constants in Table 10.1 is five (count the number of Cs).
More accurate results can be obtained if we take into account the inevitable scatter

in the distribution of fibers, i.e., in reality, they never have an idealized distribution in

the matrix. A summary of the elastic constants for a transversely isotropic composite

(see Fig. 10.4) in terms of the elastic constants of the two components is given in

Table 10.2 (Chamis 1983). Note the use of√Vf in these expressions. Because the plane

2–3 is isotropic in Fig. 10.4, the properties in directions 2 and 3 are identical. The

matrix is treated as an isotropic material while the fiber is treated as an anisotropic

material. Thus, Em and vm are the two constants required for the matrix while five

constants (Ef1, Ef2, Gf12, Gf23, and vf12) are required for the fiber. The expressions for
the five independent constants (E11, E22, G12, G23, and v12) are given in Table 10.2.

The two Poisson’s ratios are not independent (see Chap. 11).

Frequently, composite structures are fabricated by stacking thin sheets of

unidirectional composites called plies in an appropriate orientation sequence

Fig. 10.3 Various fiber arrays in a matrix: (a) square, (b) hexagonal, and (c) random
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dictated by elasticity theory (see Chap. 11). It is of interest to know properties, such

as the elastic constants and the strength characteristics of a ply. In particular, it is

very valuable if we are able to predict the lamina characteristics starting from the

characteristics of the individual components. Later in the macro-mechanical analy-

sis (Chap. 11), we treat a ply as a homogeneous but thin orthotropic material.

Elastic constants in the thickness direction can be ignored in such a ply, leaving four

independent elastic constants, namely, E11, E22, v12, and G12, i.e., one less than the

number of constants required for a thick but transversely isotropic material. The

missing constant is G23, the transverse shear modulus in the 2–3 plane, normal to

the fiber axis. A brief description of the various micromechanical techniques used

to predict the elastic constants follows and then we give an account of a set of

empirical equations, called Halpin-Tsai equations, that can be used under certain

conditions to predict the elastic constants of a fiber composite.

In the so-called self-consistent field methods (Chamis and Sendecky 1968),

approximations of phase geometries are made and a simple representation of the

Table 10.1 Elastic moduli of a transversely isotropic fibrous composite

E ¼ C11 � 2C2
12

C22 þ C23

K23 ¼ 1

2
C22 þ C23ð Þ

G ¼ G12 ¼ G13 ¼ G44 G23 ¼ 1

2
C22 � C23ð Þ

n ¼ n13 ¼ n31 ¼ 1

2

C11 � E

K23

� �1=2

v23 ¼ K23 � fG23

K23 þ fG23

E2 ¼ E3 ¼ 4G23K23

K23 þ fG23

f ¼ 1þ 4K23n2

E

Stress–strain relationships

e11 ¼ 1

E1

s11 � n s22 þ s33ð Þ½ � e22 ¼ e33 ¼ 1

E2

s22 � ns33ð Þ � n
E
s11

g12 ¼ g13 ¼
1

G
s12 g23 ¼

2 1þ n23ð Þ
E2

s23

Source: Adapted with permission from Hashin and Rosen (1964)

Table 10.2 Elastic constants of a transversely isotropic composite in terms of component

constants (matrix isotropic, fiber anisotropic)

Longitudinal modulus E11 ¼ Ef 1Vf þ EmVm

Transverse modulus E22 ¼ E33 ¼ Em

1� ffiffiffiffiffi
Vf

p
1� Em=Ef2ð Þ

Shear modulus G12 ¼ G13 ¼ Gm

1� ffiffiffiffiffi
Vf

p
1� Gm=Gf12ð Þ

Shear modulus G23 ¼ Gm

1� ffiffiffiffiffi
Vf

p
1� Gm=Gf23ð Þ

Poisson’s ratio n12 ¼ n13 ¼ vf12Vf þ vmVm

Poisson’s ratio n23 ¼ E22

2G23

� 1

Source: Adapted with permission from Chamis (1983)
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response field is obtained. The phase geometry is represented by one single fiber

embedded in a matrix cylinder. This outer cylinder is embedded in an unbounded

homogeneous material whose properties are taken to be equivalent to those of

average composite properties. The matrix under a uniform load at infinity

introduces a uniform strain field in the fiber. Elastic constants are obtained from

this strain field. The results obtained are independent of fiber arrangements in the

matrix and are reliable at low-fiber-volume fractions (Vf), reasonable at intermedi-

ate Vf, and unreliable at high Vf (Hill 1964). Exact methods deal with specific

geometries, for example, fibers arranged in a hexagonal, square, or rectangular

array in a matrix. The elasticity problem is then solved by a series development, a

complex variable technique, or a numerical solution. The approach of Eshelby

(1957, 1959) considers an infinite matrix containing an ellipsoidal inclusion.

Modifications of the Eshelby method have been made by Mori and Tanaka (1973).

The variational or bounding methods focus on the upper and lower bounds on

elastic constants. When the upper and lower bounds coincide, the property is

determined exactly. Frequently, the upper and lower bounds are well separated.

When these bounds are close enough, we can safely use them as indicators of the

material behavior. It turns out that this is the case for longitudinal properties of a

unidirectional lamina. Hill (1965) derived bounds for the ply elastic constants that

are analogous to those derived by Hashin and Rosen (1964) and Rosen (1973).

In particular, Hill put rigorous bounds on the longitudinal Young’s modulus, E11, in

terms of the bulk modulus in plane strain (kp), Poisson’s ratio (n), and the shear

modulus (G) of the two phases. No restrictions were made on the fiber form or

packing geometry. The term kp is the modulus for lateral dilation with zero

longitudinal strain and is given by

kp ¼ E

2 1� 2nð Þ 1þ nð Þ :

Fig. 10.4 A transversely isotropic fiber composite: plane transverse to fibers (2–3 plane) is isotropic
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The bounds on the longitudinal modulus, E11, are

4VfVm vf � vm
� �2

Vf =kpm
� �þ Vm=kpf

� �þ 1=Gm

� E11 � Ef Vf � EmVm

� 4VfVm vf � vm
� �2

Vf =kpm
� �þ Vm=kpf

� �þ 1=Gf

(10.15)

Equation (10.15) shows that the deviations from the rule-of-mixtures (10.10) are

quite small (<2 %). We may verify this by substituting some values of practical

composites such as carbon or boron fibers in an epoxy matrix or a metal matrix

composite such as tungsten in a copper matrix. Note that the deviation from the

rule-of-mixtures value comes from the (vm � vf)
2 factor. For vf ¼ vm, we have E11

given exactly by the rule-of-mixtures.

Hill (1965) also showed that for a unidirectionally aligned fiber composite

n12 >
< vf Vf þ vmVm accordingly as ðvf � vmÞðkpf � kpmÞ >

< 0 (10.16)

Generally, vf < vm and Ef >> Em. Then, v12 will be less than that predicted by

the rule-of-mixtures (¼ vfVf + vmVm). It is easy to see that the bounds on v12 are not
as close as the ones on E11. This is because vf � vm appears in the case of n12
(10.16) while (vf � vm)

2 appears in the case of E11 (10.15). In the case where

vf � vm is very small, the bounds are close enough to allow us to write

n12 � vf Vf þ vmVm: (10.17)

10.2.3 Halpin-Tsai Equations

Halpin, Tsai, and Kardos (Halpin and Tsai 1967; Halpin and Kardos 1976; Kardos

1971) empirically developed some generalized equations that readily give satisfac-

tory results compared to the complicated expressions. They are also useful in

determining the properties of composites that contain discontinuous or short fibers

oriented in the loading direction. One writes a single equation of the form

p

pm
¼ 1þ x�Vf

1� �Vf
; (10.18)

� ¼ pf =pm � 1

pf =pm þ x
; (10.19)
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where p represents one of the moduli of composite, for example, E11, E22, G12, or

G23; pm and pf are the corresponding modulus of the matrix and fiber, respectively;

Vf is the fiber volume fraction; and x is a measure of the reinforcement that depends

on boundary conditions (fiber geometry, fiber distribution, and loading conditions).

The term x is an empirical factor that is used to make Eq. (10.18) conform to the

experimental data.

The function � in Eq. (10.19) is constructed in such a way that when Vf ¼ 0,

p ¼ pm and when Vf ¼ 1, p ¼ pf. Furthermore, the form of � is such that

1

p
¼ Vm

pm
þ Vf

pf
for x ! 0

and

p ¼ pf Vf þ pmVm for x ! 1:

These two extremes (not necessarily tight) bound the composite properties.

Thus, values of x between 0 and 1 will give an expression for p between these

extremes. Some typical values of x are given in Table 10.3. Thus, we can cast the

Halpin-Tsai equations for the transverse modulus as

E22

Em
¼ 1þ x�Vf

1� �Vf
and � ¼ Ef =Em � 1

Ef =Em þ x
: (10.20)

Comparing these expressions with exact elasticity solutions, one can obtain the

value of x. Whitney (1973) suggests x ¼ 1 or 2 for E22, depending on whether a

hexagonal or square array of fibers is used.

Nielsen (1974) modified the Halpin-Tsai equations to include the maximum

packing fraction fmax of the reinforcement. His equations are

p

pm
¼ 1þ x�Vf

1� �CVf
;

� ¼ pf =pm � 1

pf =pm þ x
;

C ’ 1þ 1� fmax

f2
max

 !
Vf ; (10.21)

Table 10.3 Values of x for

some uniaxial composites
Modulus x

E11 2(l/d)

E22 0.5

G12 1.0

G21 0.5

K 0

Source: Adapted from Nielsen (1974), courtesy of

Marcel Dekker, Inc.
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where fmax is the maximum packing factor. It allows one to take into account the

maximum packing fraction. For a square array of fibers, fmax ¼ 0.785, while for a

hexagonal arrangement of fibers, fmax ¼ 0.907. In general, fmax is between these

two extremes and near the random packing, fmax ¼ 0.82.

Example 10.2 Consider a unidirectionally reinforced glass fiber/epoxy composite.

The fibers are continuous and 60 % by volume. The tensile strength of glass fibers is

1 GPa and the Young’s modulus is 70 GPa. The tensile strength of the epoxy matrix

is 60MPa and its Young’s modulus is 3 GPa. Compute the Young’s modulus and the

tensile strength of the composite in the longitudinal direction.

Solution Young’s modulus of the composite in the longitudinal direction is

given by

Ecl ¼ 70� 0:6þ 3� 0:4 ¼ 42þ 1:2 ¼ 43:2 GPa:

To calculate the tensile strength of the composite in the longitudinal direction,

we need to determine which component, fiber or matrix, has the lower failure strain.

The failure strain of the fiber is

ef ¼ sf =Ef ¼ 1=70 ¼ 0:014

while that of the matrix is

em ¼ 60� 10�3
� �

=3 ¼ 0:020:

Thus, ef < em, i.e., fibers fail first. At that strain, assuming a linear stress–strain

curve for the epoxy matrix, the matrix strength is s0m ¼ Emef ¼ 3� 0:014 ¼ 0:042
GPa. Then, we get the composite tensile strength as

sc ¼ 0:6� 1þ 0:4� 0:042

¼ 0:6þ 0:0168 ¼ 617 MPa:

10.2.4 Transverse Stresses

When a fibrous composite consisting of components with different elastic moduli is

uniaxially loaded, stresses in transverse directions arise because of the difference in

Poisson’s ratio of the matrix and the fiber, that is, because the two components have

different contractile tendencies. Here we follow Kelly’s (1970) treatment of this

important but, unfortunately, not well-appreciated subject. This problem in
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elasticity is also useful in computing thermal stresses in composites; in which case

the two components have different thermal expansion coefficients.

Consider a unit fiber reinforced composite consisting of a single fiber (radius a)
surrounded by its shell of matrix (outer radius b) as shown in Fig. 10.5. The

composite as a whole is thought to be built of an assembly of such unit composites,

a reasonably valid assumption at moderate fiber volume fractions. We axially load

the composite in direction z. Owing to the obvious cylindrical symmetry, we treat

the problem in polar coordinates, r, y, and z. It follows from the axial symmetry that

the stress and strain are independent of angle y and are functions only of r, which
simplifies the problem. We can write Hooke’s law for this situation as

er 0 0

0 ey 0

0 0 ez

2
4

3
5 ¼ 1þ n

E

sr 0 0

0 sy 0

0 0 sz

2
4

3
5� n

E
sr þ sy þ szð Þ

1 0 0

0 1 0

0 0 1

2
4

3
5 (10.22)

where e is the strain, s is the stress, n is the Poisson’s ratio, E is Young’s modulus in

the longitudinal direction, and the subscripts r, y, and z refer to the radial, circum-

ferential, and axial directions, respectively. The only equilibrium equation for this

problem is

dsr
dr

þ sr � sy
r

¼ 0: (10.23)

Fig. 10.5 A single fiber surrounded by its matrix shell
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Also, for the plane strain condition, we can write for the strain components, in

terms of displacements,

er ¼ dur
dr

; ey ¼ ur
r
; ez ¼ const (10.24)

where ur is the radial displacement.

From Eq. (10.22) we have, after some algebraic manipulation,

sy
K

¼ 1� nð Þey þ n er þ ezð Þ;
sr
K

¼ 1� nð Þer þ n ey þ ezð Þ;
(10.25)

where

K ¼ E

1þ nð Þ 1� 2nð Þ :

From Eqs. (10.24) and (10.25), we get

sy
K

¼ n
dur
dr

þ 1� nð Þ ur
r
þ nez;

sr
K

¼ 1� nð Þ dur
dr

þ n
ur
r
þ nez:

(10.26)

Substituting Eq. (10.26) in Eq. (10.23), we obtain the following differential

equation in terms of the radial displacement ur:

d2ur
dr2

þ 1

r

dur
dr

� ur
r2

¼ 0: (10.27)

Equation (10.27) is a common differential equation in elasticity problems with

rotational symmetry (Love 1952), and its solution is

ur ¼ Cr þ C0

r
(10.28)

where C and C0 are constants of integration to be determined by using boundary

conditions. Now, Eq. (10.28) is valid for displacements in both components, that is,

fiber andmatrix. Let us designate the central component by subscript 1 and the sleeve

by subscript 2. Thus, we can write the displacements in the two components as

ur1 ¼ C1r þ C2

r
;

ur2 ¼ C3r þ C4

r
:

(10.29)
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The boundary conditions for our problem can be expressed as follows:

1. At the free surface, the stress is zero, that is, sr2 ¼ 0 at r ¼ b.
2. At the interface, the continuity condition requires that at r ¼ a, ur1 ¼ ur2 and

sr1 ¼ sr2.
3. The radial displacement must vanish along the symmetry axis, that is, at r ¼ 0,

ur1 ¼ 0.

The last boundary condition immediately gives C2 ¼ 0, because otherwise ur1
will become infinite at r ¼ 0. By applying the other boundary conditions to Eqs.

(10.26) and (10.29), we obtain three equations with three unknowns. Knowing these

integration constants, we obtain ur and thus the stresses in the two components. It is

convenient to develop an expression for radial pressure p at the interface. At the

interface r ¼ a, if we equate sr2 to�p, then after some tedious manipulations it can

be shown that

p ¼ 2ez n2 � n1ð ÞV2

V1=kp2 þ V2=kp1 þ 1=G2

; (10.30)

where kp is the plane strain bulk modulus equal to E/2(1 + n)(1 � 2n) while the

subscripts 1 and 2 refer to the two components. The expressions for the stresses in

the components involving radial pressure, p are

Component 1:

sr1 ¼ sy1 ¼ �p;

sz1 ¼ E1ez � 2n1p:
(10.31)

Component 2:

sr2 ¼ p
a2

b2 � a2

� �
1� b2

r2

� �
;

sy2 ¼ p
a2

b2 � a2

� �
1þ b2

r2

� �
;

sz2 ¼ E2ez þ 2n2p
a2

b2 � a2

� �
:

(10.32)

Note that p is positive when the central component 1 is under compression, that

is, when n1 < n2.
Figure 10.6 shows the stress distribution schematically in a fiber composite

(1 ¼ fiber, 2 ¼ matrix). We can draw some inferences from Eqs. (10.31) and

(10.32) and Fig. 10.6.

1. Axial stress is uniform in components 1 and 2, although its magnitude is

different in the two and depends on the respective elastic constants.
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2. In the central component 1, sr1 and sy1 are equal in magnitude and sense. In the

sleeve 2, sr2 and sy2 vary as 1 � b2/r2 and 1 + b2/r2, respectively.
3. When the Poisson’s ratio difference (n2 � n1) goes to zero, sr and sy go to zero;

that is, the rheological interaction will vanish.

4. Because of the relatively small difference in the Poisson’s ratio of the

components of a composite, the transverse stresses that develop in the elastic

regime will be relatively small. If one of the components deforms plastically

(n ! 0.5), then Dn can become significant and so will the transverse stresses.

10.3 Thermal Properties

Thermal energy is responsible for the atomic or molecular vibration about a mean

position in any material. As the temperature of the materials is increased, the

amplitude of thermal energy-induced vibrations is increased and the interatomic

or intermolecular spacing increases, i.e., an expansion of the body occurs.

Most materials show such an expansion with increasing temperature. In general,

the thermal expansion of a material is greater in the liquid state than in the

crystalline state, with the transition occurring at the melting point. In the case of

Fig. 10.6 Three-dimensional

stress distribution (schematic)

in the unit composite shown

in Fig. 10.5. In this case, the

transverse stresses (sr and sy)
result from the differences in

the Poisson’s ratios of the

fiber and matrix
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a glassy material, such a transition occurs at the glass transition temperature,

although it is not as well defined as the one at the melting point. Over a certain

range of temperature, one can relate the temperature interval and thermal strain by a

coefficient, called the coefficient of thermal expansion. In the case of a linear strain,
the linear thermal expansion coefficient, a, is a second-rank symmetric tensor, and

is related to the strain tensor, e, by the following relationship:

eij ¼ aijDT; (10.33)

where DT is the temperature change. The two indexes indicate the second-rank

tensor. The thermal expansion coefficient, a, generally does not have a constant

value over a very large range of temperature. Thus, we can define aij in a more

general way by taking into account this variation with temperature as follows:

aij ¼ deij=dT:

If we consider a volumetric strain, the volumetric coefficient of thermal expan-

sion, b, is given by

bij ¼
1

V

dV
dT

� �
;

where V is the volume and T is the temperature. For small strains, it can be easily

shown that

bij ¼ 3aij:

Recall that the sum of the diagonal terms of the strain tensor is equal to volume

change. Hence, the volumetric expansion coefficient, b, is equal to the sum of the

diagonal terms of the strain tensor, i.e.,

b ¼ e11 þ e22 þ e33 ¼ 3a (10.34a)

or

a ¼ 1

3
e11 þ e22 þ e33½ �: (10.34b)

As we said earlier, only over some specified range of temperature can the coeffi-

cient of thermal expansion (CTE) be treated as a constant. Consider a temperature

range DT over which a is a constant. We can write Eq. (10.33) in an extended form as

e11 e12 e13
e22 e23

e33

						
						 ¼

a11 a12 a13
a22 a23

a23

						
						DT: (10.35a)
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Or, using the contracted notation (see Sect. 11.1), we can write

e1
e2
e3
e4
e5
e6

											

											
¼

a1
a2
a3
a4
a5
a6

											

											
DT (10.35b)

If an arbitrary direction [hkl] has direction cosines n1, n2, and n3, then we can

write for the linear thermal expansion coefficient, ahkl, in that direction

ahkl ¼ n21a1 þ n22a2 þ n23a3: (10.36)

In a transversely isotropic fibrous composite (i.e., hexagonal symmetry), we

have a1 ¼ a2 ¼ a⊥, perpendicular to the fiber axis and a3 ¼ a||, parallel to the fiber
axis. Then, remembering that n21 þ n22 þ n23 ¼ 1, Eq. (10.36) becomes

ahkl ¼ n21 þ n22
� �

a1 þ n23a3;

ahkl ¼ a?sin2yþ ajjcos2y; (10.37a)

ahkl ¼ a? þ ajj � a?
� �

cos2y; (10.37b)

where y is the angle between direction [hkl] and the fiber axis.

10.3.1 Expressions for Coefficients
of Thermal Expansion of Composites

Various expressions have been proposed that give the thermal expansion coefficients

of a composite, knowing the material constants of the components and their geo-

metric arrangements. Different expressions predict very different values of expan-

sion coefficients for a given composite. Almost all expressions, however, predict

expansion coefficient values that are different from those given by a simple rule-of-

mixtures (¼ afVf + amVm). This is because these expressions take into account the

important fact that the presence of a reinforcement, with an expansion coefficient

less than that of the matrix, introduces a mechanical constraint on the expansion of

the matrix. A fiber will cause a greater constraint on the matrix than a particle. Let us

consider the expansion coefficients of particulate and fibrous composites.

One can regard a particulate composite as a homogeneous material in a statistical

sense, i.e., we assume a uniform distribution of the particles in the matrix. Let us

denote the volume fractions of the two phases making a particulate composite by V1
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and V2 (¼1 � V1). Various researchers have derived bounds and given expressions

for the expansion coefficients and other transport properties such as thermal con-

ductivity. Kerner (1956) developed the following expression for the volumetric

expansion coefficient, bc, of a composite consisting of spherical particles dispersed

in a matrix:

bc ¼ bmVm þ bpVp � bm � bp
� �

Vp

1=Km � 1=Kp

Vm=Kp þ Vp=Km þ 0:75Gm


 �
;

where subscripts c, m, and p denote the composite, matrix, and particle, respec-

tively; b is the volumetric expansion coefficient, and K denotes the bulk modulus.

Kerner’s expression does not differ significantly from the rule-of-mixtures because

the particle reinforcement constrains the matrix much less than fibers. The coeffi-

cient of linear thermal expansion according to Turner (1946) is given by:

ac ¼ amVmKm þ apVpKp

VpKp þ VmKm
;

where the symbols have the significance given earlier. Turner’s expression, gener-

ally, gives an expansion coefficient much lower than the rule-of-mixtures value.

Unidirectionally aligned fibrous composites have two (or sometimes three)

thermal expansion coefficients: acl in the longitudinal direction and act in the

transverse direction. Fibers generally have a lower expansion coefficient than that

of the matrix, and thus the fibers mechanically constrain the matrix. The constraint

is more along the length of the fiber than in the radial direction. This results in the

longitudinal coefficient of expansion of the composite, acl being smaller than

the transverse coefficient, act for the composite. At low fiber volume fractions, it

is not unusual to find the transverse expansion of a fibrous composite, act, greater
than that of the matrix in isolation. The reason for this is as follows. The long, stiff,

low CTE fibers prevent the matrix from expanding in the longitudinal direction, and

as a result the matrix is forced to expand more than normal in the transverse

direction. It should be pointed out that in the case of some CMCs, this situation

can be reversed. For example, in the case of alumina fibers (a ¼ 8 � 10�6 K�1) in

a low-expansion glass or ceramic matrix, it is the matrix that will constrain the

fibers, i.e., the situation in this case is the reverse of the one commonly encountered.

We give below some expressions for the CTE of unidirectionally reinforced fiber

composites. All of these analyses involve the following assumptions:

1. The bonding between the fiber and matrix is perfect and mechanical in nature,

i.e., no chemical interaction is allowed.

2. The fibers are continuous and perfectly aligned.

3. The properties of the constituents do not change with temperature.

Schapery (1969) used energy methods to derive the following expressions for

expansion coefficient of a fibrous composite, assuming Poisson’s ratios of the
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components are not very different. The longitudinal expansion coefficient for

the composite is

acl ¼ amEmVm þ af Ef Vf

EmVm þ EfVf
(10.38)

and the transverse expansion coefficient is

act ’ 1þ vmð ÞamVm þ 1þ vf
� �

af Vf � acl�n;

�n ¼ vf Vf þ vmVm: (10.39a)

For high fiber volume fractions, Vf > 0.2 or 0.3, act can be approximated by

act ’ 1þ vmð ÞamVm þ af Vf : (10.39b)

The longitudinal and transverse CTE for alumina fibers in an aluminum matrix

are plotted in Fig. 10.7. Note the marked anisotropy in the expansion for aligned

fibrous composites.

The anisotropy in expansion can be reduced somewhat if the composite contains

randomly oriented short fibers or whiskers in three dimensions. We can write its

isotropic thermal expansion coefficient

a ¼ acl þ 2act
3

; (10.40)

where acl and act are given by Eqs. (10.38) and (10.39a, 10.39b).

Fig. 10.7 Longitudinal and

transverse linear thermal

expansion coefficients vs.

fiber volume fraction for

alumina fiber in an aluminum

matrix
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It should be pointed out the length of fiber as well as fiber orientation has an

effect on the CTEs (Marom and Weinberg 1975; Vaidya et al. 1994). It would

appear that the fiber length has a more sensitive effect on the expansion

characteristics because the constraint on the matrix is highest when the fibers are

continuous. An extreme case of a low constraint is one of a matrix containing

spherical particles, i.e., aspect ratio ¼ 1. Continuous fibers with an aspect ratio of

infinity represent the other extreme in constraint.

The effect of the fiber length on the thermal expansion can be incorporated into

Schapery’s equation as (Marom and Weinberg 1975; Vaidya and Chawla 1994)

a11 ¼ kaf Vf Ef þ amVmEm þ aiViEi

kVf Ef þ VmEm þ ViEi

;

where the value of k is given by

k ¼ l
lc

l<lc; 0< k<0:5ð Þ;

k ¼ 1� lc=2l l>lc; 0<k<1ð Þ;

where l is the length and lc is the critical length of the fiber (see Sect. 10.4).

Chamis (1983) used a simple force balance to arrive at the following expressions

for a1 and a2:

a1 ¼ Ef1af1Vf þ EmamVm

Ef1Vf þ EmVm

� 
;

a2 ¼ af2
ffiffiffiffiffi
Vf

p þ 1� ffiffiffiffiffi
Vf

p� �
1þ Vf vm

Ef1

Ec

� �
am:

Rosen and Hashin (1970) used a plane strain model to derive expressions for a1
and a2:

a1 ¼ �aþ af � am
1=Kf � 1=Km


 �
3ð1� 2vcÞ

Ec
� 1

Kc


 �
;

a2 ¼ �aþ af � am
1=Kf � 1=Km

� 
3

2kc
� 3ð1� 2vcÞvc

Ec
� 1

Kc

� 
;

where �a ¼ af Vf þ amVm; Kc is the composite bulk modulus, Ec is the composite

Young’s modulus, and kc is the composite transverse bulk modulus.

Many applications of composites require controlled thermal expansion

characteristics. All the expressions given above predict thermal expansion

coefficients of composites based on continuum mechanics. That is, no account is

taken of the effect of fiber or particle size on the CTE. Xu et al. (1994) examined the
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effect of particle size on the CTE of TiC/Al XD™ composite, with two TiC particle

sizes, 0.7 and 4 mm. The results of this work showed the effect of particle size on the

thermal expansion coefficient of particle reinforced aluminum composites in terms

of the degree of constraint on the matrix expansion. Careful TEM work showed

lattice distortion at the interfacial zone. The effect of particle size on the CTE of

composite was related to the volume fraction of interfacial zone through which the

constraint occurs. A phenomenological approach that takes into account the differ-

ent degree of constraint on the matrix expansion based on the TEM work allows us

to compute the CTE of this composite with different particle sizes.

10.3.2 Expressions for Thermal Conductivity of Composites

Thermal conductivity is an important physical property. The heat flow in a material

is proportional to the temperature gradient, and the constant of proportionality is

called the thermal conductivity. Thus, in the most general form, using indicial

notation, we can write

qi ¼ �kij dT=dxj;

where qi is the heat flux along the xi axis, dT/dxj is the temperature gradient across a

surface perpendicular to the xj axis, and kij is the thermal conductivity. As should be

evident from the two indexes, thermal conductivity is also a second-rank tensor.

Although kij is not a symmetric tensor in the most general case, it is a symmetric

tensor for most crystal systems. For an isotropic and a cubic material, kij reduces to
a scalar number, k. For an orthotropic material, we have three constants along the

three principal axes, viz., k11, k22, and k33. For a transversely isotropic material such

as a unidirectionally reinforced fibrous composite, there will be two constants:

thermal conductivity in the axial direction, kcl, and that in the transverse direction,

kct. The thermal conductivity in the axial direction, kcl, can be predicted by a rule-

of-mixtures type expression (Behrens 1968)

k1 ¼ kcl ¼ kf1Vf þ kmVm; (10.41)

where kf1 is the thermal conductivity of the fiber in the axial direction, km is that of

the isotropic matrix, and Vf and Vm are the volume fractions of the fiber and matrix,

respectively.

In a transverse direction, the thermal conductivity of a unidirectionally aligned

fiber composite (i.e., transversely isotropic) can be approximated by the action-in-

series model discussed earlier. This would give

kct ¼ k2 ¼ kf2km= kf2Vf þ kmVm

� �
:
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More complicated expressions have been derived for the transverse thermal

conductivity. These expressions implicitly assume perfect contact between the

fiber and the matrix. In real composites, it is likely that the thermal contact at the

fiber/matrix interface will be less than perfect because of any microvoids, thermal

mismatch, etc. An expression for the transverse thermal conductivity that takes into

account the fact that the interface region may have a different thermal conductance

than the matrix or the fiber is as follows (Hasselman and Johnson 1987):

kct ¼ k2 ¼ km kf =km � 1� kf =ahi
� �

Vf

�
þ 1þ kf =km þ kf ahi
� ��

1� kf km þ kf =ahi
�� �

Vf

��
þ 1þ kf km þ kf

�
ahi=

� �
;

(10.42)

where km is the matrix thermal conductivity, kf is the transverse thermal conductivity

of the fibers, Vf is the fiber volume fraction, a is the fiber radius, and hi is the thermal

conductance of the interface region. Note that the units of thermal conductivity are

W/mK while for thermal conductance the units are W/K. The effect of interfacial

conductivity is governed by the magnitude of nondimensional parameter, kf/ahi. hi
will have a value of infinity for perfect thermal contact and it will be equal to zero for

a pore. Bhatt et al. (1992) studied the important role of interface in controlling the

effective thermal conductivity of composites. In particular, one can use the mea-

surement of thermal conductivity as a nondestructive tool to determine the integrity

of the fiber/matrix interface.

We can also use Halpin-Tsai-Kardos equations to obtain the following express-

ion for the transverse thermal conductivity of a composite containing unidirection-

ally aligned fibers:

kc2 ¼ kc3 ¼ kct ¼ 1þ �Vf

� �
1� �Vf

� �
km

�
and

� ¼ kf2=kmð Þ � 1½ � kf2 km=ð Þ þ 1½ �= ;

where we have taken z equal to 1 in the Halpin-Tsai-Kardos equation.

Similar to the description of the coefficient of thermal expansion, we can find

thermal conductivity of a unidirectionally reinforced fiber composite in any arbi-

trary direction if we know the thermal conductivity in directions 1 (longitudinal)

and 2 (transverse). The thermal conductivity kx and ky in any arbitrary directions, x
and y, respectively, are given by the following equations:

kx ¼ k1cos
2yþ k2sin

2y;

ky ¼ k1sin
2yþ k2cos

2y;

kxy ¼ k2 � k1ð Þ sin y cos y;
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where y is the angle between longitudinal (1) axis and the x axis, and kxy can be

considered to be a thermal coupling coefficient.

A summary of the general expressions for the thermal properties of a trans-

versely isotropic fiber composite is given in Table 10.4.

Example 10.3 A unidirectional glass fiber reinforced epoxy has 50 vol.% of fiber.

Estimate its thermal conductivity parallel to the fibers. Given kglass ¼ 0.9 W/mK,

kepoxy ¼ 0.15 W/mK.

Solution Glass fiber is isotropic, i.e., kf1 ¼ kf2 ¼ kf. The longitudinal thermal

conductivity is given by

kct ¼ Vmkm þ Vf kf

¼ 0:5� 0:15þ 0:5� 0:9

¼ 0:075þ 0:45 ¼ 0:525W/mK:

Example 10.4 Derive an expression for the heat capacity, Cpc, of a composite.

Solution The total quantity of heat in the composite, Qc, is the sum of heats in the

fiber (Qf) and matrix (Qm). Thus,

Qc ¼ Qf þ Qm:

The quantity of heat is heat capacity times the mass, i.e.,

Qc ¼ mCp ¼ vrCpc;

where m is the mass, v is the volume, r is the density, and Cpc is the heat capacity.

Heat capacity is the amount of heat or thermal energy (J) required to raise

the temperature of one mole of the maternal through one degree. It has the units

of J/mol K. The specific heat of a material is the heat capacity per unit mass and it

has the units of J/g K.

Table 10.4 Thermal properties of a transversely isotropic composite (matrix isotropic, fiber

anisotropic)

Heat capacity C ¼ 1

r
VfrfCf þ VmrmCmð Þ

Longitudinal conductivity k11 ¼ Vfkf 1 þ Vmkm

Transverse conductivity k22 ¼ k33 ¼ 1� ffiffiffiffiffi
Vf

p� �
km þ km

ffiffiffiffiffi
Vf

p

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vf 1� km kf2=ð Þp

Longitudinal thermal expansion

coefficient

a11 ¼ VfEf1af1 þ VmEmam
Ef1Vf þ EmVm

Transverse thermal expansion

coefficient

a22 ¼ a33 ¼ af2
ffiffiffiffiffi
Vf

p þ am 1� ffiffiffiffiffi
Vf

p� �
1þ VfvmEf1

Ef1Vf þ EmVm

� �

Source: Adapted with permission from Chamis (1983)
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Using the subscripts c, f, and m for composite, fiber, and matrix, respectively, we

can write

vcrcCpc ¼ vfrf Cpf þ vmrmCpm:

Remembering that vf/vc ¼ Vf, the fiber volume fraction, and vm/vc ¼ Vm, the

matrix volume fraction, we can write

rcCpc ¼ Vfrf Cpf þ VmrmCpm

or

Cpc ¼ 1

rc½Vfrf Cpf þ VmrmCpm�:

10.3.3 Electrical Conductivity

Electrical conductivity or its inverse electrical resistivity is another important

physical property. In terms of electrical conductivity, composites represent a

mixed bag. PMCs and CMCs are generally poor electrical conductors. The electri-

cal conductivity of polymers can be increased by the addition of carbon fibers,

carbon black, and graphite. Such composites can be used for situations involving

electromagnetic and radio-frequency interference (EMI/RFI) shielding for elec-

tronic devices and for dissipation of static charge (Clingerman et al. 2002). Most

metal matrix composites are mixtures of good electrical conductors (e.g., Cu, Al,

etc.) and insulators (e.g., B, SiC, Al2O3, etc.), with W/Cu composite being a notable

exception. We can write for the resistivity of a fiber reinforced composite in the

axial direction a simple rule-of-mixtures type expression

rc‘ ¼ r1V1 þ r2V2;

where r is the electrical resistivity, V is volume fraction, and the subscripts c‘, 1,
and 2 designate the composite in the longitudinal direction and the two components

of the composite, respectively. Or in terms of electrical conductivity in the axial

direction, s, we can write

sc‘ ¼ s1V1 þ s2V2:

In the transverse direction, we have

1

sct
¼ V1

s1
þ V2

s2
;
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where the symbols have the usual significance.

There is a logarithmic expression also

log sc ¼ V1 log s1 þ V2 log s2:

Of course, one can generalize these expressions to more than two components in

the composite, should that be the case.

Self-consistent models can also be used to get expressions for the electrical

conductivity of a composite (Hale 1976).

The electrical resistivity (and therefore electrical conductivity) of the metal

matrix in a composite is likely to be different from that of the unreinforced metal

because of possible plastic deformation during processing which will introduce

dislocations due to thermal mismatch between the matrix and the reinforcement; the

dislocations in turn will increase the resistivity of the matrix. It should be pointed

out that unlike the unreinforced metal, one cannot recover electrical conductivity by

resorting to an annealing treatment. Physical properties such as thermal and elec-

trical conductivity of composites depend on the properties of the matrix and

reinforcement, their volume fractions, characteristics of the interface region,

shape of the reinforcement, and the connectivity of the phases (Weber et al.

2003a, b; Weber 2005). The conductivity (thermal or electrical) of a composite

will depend on conductivity characteristics of the matrix, reinforcement, volume

fraction, and aspect ratio of the reinforcement, and, of course, the interfacial

characteristics. In particular, interfacial resistance will vary with the form and

size of reinforcement.

10.3.4 Hygral and Thermal Stresses

Hygroscopy, the ability of a substance to absorb water absorption, can be a problem
with polymeric resins and natural fibers because it can lead to swelling. Swelling

can lead to stresses if, as is likely in a composite, the material is not allowed to

expand freely because of the presence of the matrix. Such stresses resulting from

moisture absorption or hygroscopy are called hygral stresses. Thermal stresses will

result in a material when the material is not allowed to expand or contract freely

because of a constraint. When both hygral and thermal stresses are present, we call

them hygrothermal stresses. Mathematically, these two types of internal stresses

are quite similar, and we can treat them together.

Consider the passage of a composite from a reference state, where the body is

stress-free and relaxed at a temperature T, concentration of moisture C ¼ 0, and

external stress s ¼ 0, to a final state where the body has hygrothermal as well as

external stresses. We can consider that the final state of the composite with

hygrothermal stresses and external loading is attained via two intermediate stages

shown in Fig. 10.8. The final strain in the body can then be written as the sum of
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nonmechanical (thermal strain, eTi and hygral strain, e
H
i ) and mechanical strains. The

mechanical strain is given by the Hooke’s law (compliance times the stress). Thus,

et ¼ eTi þ eHi|fflfflfflffl{zfflfflfflffl}
nonmechanical strains

þ Sijsj|{z}
mechanical strain

; (10.43)

where Sij is the compliance. If we regard the composite as transversely isotropic, we

can immediately write the following relationships for the strain components

eTxy ¼ eHxy ¼ 0;

eTy ¼ eTz and eHy ¼ eHz ;

eTi ¼ ai T � T0ð Þ;
eHi ¼ biC;

(10.44)

where the ai are thermal expansion coefficients (K�1), the bi are nondimensional

swelling coefficients, T is the temperature, T0 is the equilibrium temperature, C is

the concentration of water vapor, and the superscripts H and T indicate hygral and

thermal strain components, respectively.

Total volumetric hygrothermal strain can be expressed as the sum of the dia-

gonal terms of the strain matrix. It is important to note that the thermal and hygral

effects are dilational only, i.e., they cause only expansion or contraction but do not

affect the shear components. Thus,

DV
V

¼ eTx þ eTy þ eTz þ eHx þ eHy þ eHz

¼ eTx þ 2eTy þ eHx þ 2eHy : (10.45)

Fig. 10.8 (a) Strain-free reference state; (b) thermal strain (eT); (c) hygral (eH) and thermal (eT)
strains; and (d) final state: hygral (eH), thermal (eT), and mechanical strain
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Hygrothermal stresses are very important in polymer matrix composites (see

also Chaps. 3 and 5).

We first consider the constitutive equations for an isotropic material and then for

an anisotropic material. Consider an isotropic material, in plane stress, subjected to

a temperature change, DT, and a change in moisture content, DC. We can write the

constitutive equations for this case as follows

e1 ¼ s1=E� vs2=Eþ bDCþ aDT;

e2 ¼ vs1=E� s2=Eþ bDCþ aDT;

e6 ¼ s6=G:

Note that, as pointed out earlier, DC and DT do not produce shear strains. For a

specially orthotropic, unidirectionally reinforced fiber lamina (i.e., one in which

material and geometric axes coincide, see also Chap. 11), we can write

e1
e2
e6

2
4

3
5 ¼

S11 S12 0

S22 0

S66

2
4

3
5 s1

s2
s6

2
4

3
5þ

a1
a2
0

2
4

3
5DCþ

b1
b2
0

2
4

3
5DT:

In this expression the subscript 6 indicate inplane shear. We explain this notation

in Chap. 11. In a PMC, the matrix is likely to absorb more moisture than the fiber,

which will lead to b2 > b1. In an off-axis, generally orthotropic, unidirectionally

reinforced fiber lamina, the material and geometric axes do not coincide, and the

strain components take the following form

ex
ey
es

2
4

3
5 ¼

S11 S12 S16
S22 S26

S66

2
4

3
5 sx

sy
ss

2
4

3
5þ

ax
ay
as

2
4

3
5DCþ

bx
by
bs

2
4

3
5DT;

where �Sij designate the compliance matrix for the generally orthotropic lamina.

10.3.5 Thermal Stresses in Fiber Reinforced Composites

During curing or solidification of the matrix around reinforcement fibers or

particles, a large magnitude of shrinkage stresses can result. The interfacial pressure

developed during curing is akin to that obtained upon embedding a cylinder

(sphere) of radius r + dr in a cylindrical (spherical) hole of radius r. The thermal

stresses generated depend on the reinforcement volume fraction, reinforcement

geometry, thermal mismatch (Da), and the modulus ratio, Er/Em where E is the

Young’s modulus and the subscripts r and m refer to the reinforcement and matrix,

respectively. Generally, am > af; that is, on cooling from T0 to T (T0 > T), the
matrix would tend to contract more than the fibers, causing the fibers to experience

axial compression. In extreme cases, fiber buckling can also lead to the generation

of interfacial shear stresses. This problem of thermal stresses in composite materials

is a most serious and important problem. It is worth repeating that thermal stresses
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are internal stresses that arise whenever there is a constraint on the free dimensional

change of a body (Chawla 1973a). In the absence of this constraint, the body can

experience free thermal strains without any accompanying thermal stresses. The

constraint can have its origin in (1) a temperature gradient, (2) crystal structure

anisotropy (e.g., a noncubic structure), (3) phase transformations resulting in a

volume change, and (4) a composite material made of dissimilar materials (i.e.,

materials having different CTEs). The thermal gradient problem is a serious one in

ceramic materials in general. A thermal gradient DT is inversely related to the

thermal diffusivity, a, of a material. Thus,

DT ¼ f
1

a

� �
¼ f

Cpp

k

� �
; (10.46)

where Cp is the specific heat, r is the density, and k is the thermal conductivity.

Metals generally have high thermal diffusivity and any thermal gradients that might

develop are dissipated rather quickly. It should be emphasized that in composite

materials even a uniform temperature change (i.e., no temperature gradient) will

result in thermal stresses owing to the ever-present thermal mismatch (Chawla

1973a). Thermal stresses resulting from a thermal mismatch will generally have an

expression of the form

s ¼ f EDaDTð Þ: (10.47)

We describe below first the three-dimensional thermal stress state in a composite

consisting of a central fiber surrounded by its shell of matrix; see Fig. 10.5. After

this, we derive the three-dimensional stress state for a particulate composite.

The elasticity problem is basically the same as the one discussed for transverse

stresses (see Sect. 10.2.4). We use polar coordinates; r, y, and z (see Fig. 10.5).

Axial symmetry makes shear stresses go to zero and the principal stresses are

independent of y. At low volume fractions, the outer cylinder is the matrix and

the inner cylinder is the fiber. The expressions for strain in the generalized Hooke’s

law contain an aDT term. Thus, for component 2,

er2 ¼ sr2
E2

� v2
E2

sy2 þ sz2ð Þ þ a2DT

ey2 ¼ sy2
E2

� v2
E2

sr2 þ sz2ð Þ þ a2DT

ez2 ¼ sz2
E2

� v2
E2

sr2 þ sy2ð Þ þ a2DT

The resultant stresses in 1 and 2 will have the form (see Sect. 10.2.4)

Component 1 Component 2

sr1 ¼ A1 sr2 ¼ A2 � B2

r2

sy1 ¼ A1 sy2 ¼ A2 þ B2

r2

sz1 ¼ C1 sz2 ¼ C2

: (10.48)
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The following boundary conditions exist for our problem:

1. At the interface r ¼ a, sr1 ¼ sr2 for stress continuity.
2. At the free surface r ¼ b, sr2 ¼ 0.

3. The resultant of axial stress sz on a section z ¼ constant is zero.

4. Radial displacements in the two components are equal at the interface; that is, at

r ¼ a, ur1 ¼ ur2.
5. The radial displacement in component 1 must vanish at the symmetry axis; that

is, at r ¼ 0, ur1 ¼ 0.

Using these boundary conditions, it is possible to determine the constants given

in Eq. (10.48). The final equations for the matrix sleeve are given here (Poritsky

1934; Chawla 1973b):

sr ¼ A 1� b2

r2

� �
; sy ¼ A 1þ b2

r2

� �
; sz ¼ B; (10.49)

where

A ¼ � Em am � af
� �

DT a=bð Þ2

1þ a=bð Þ2 1� 2vð Þ b=að Þ2 � 1
h i

Em=Ef

2
4

3
5;

B ¼ A

a=bð Þ2

� 2v
a

b

� �2
þ
1þ a=bð Þ2 1� 2vð Þ þ a=bð Þ2 1� 2vð Þ b=að Þ2 � 1

h i
Em=Ef

1þ b=að Þ2 � 1
h i

Em=Ef

2
4

3
5:

vm ¼ vf ¼ v

A plot of sr, sy, and sz against r/a, where r is the distance in the radial direction
and a is the fiber radius, is shown in Fig. 10.9 for the system W/Cu for two fiber

volume fractions (Chawla and Metzger 1972). Note the change in stress level of sz
with Vf. This thermoelastic solution can provide information about the magnitude

of the elastic stresses involved. A comparison with the yield or fracture strength of

the matrix can inform us whether or not plastic deformation or fracture of matrix

will occur. Also, if the matrix deforms plastically in response to these thermal

stresses, the plots of thermal stress distribution can tell where the plastic deforma-

tion will begin. Chawla and Metzger (1972) and Chawla (1973a, b, 1974, 1976a, b),

in a series of studies with metal matrix composites, showed that the magnitude of the

thermal stresses generated is large enough to deform the soft metallic matrix

plastically. Depending on the temperatures involved, the plastic deformation of

the metal matrix could involve slip, cavitation, grain boundary sliding, and/or

migration. They measured the dislocation densities in the copper matrix of tungsten

filament/copper single-crystal composites by the etch-pitting technique and showed
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that the dislocation densities were higher near the fiber/matrix interface than away

from the interface, indicating that the plastic deformation, in response to thermal

stresses, initiated at the interface. Figure 10.10 shows the variation of dislocation

density (’etch pit density) vs. distance from the interface. The increase in the

dislocation density in the plateau region with Vf (in Fig. 10.10) is due to a higher

sz with higher Vf value (see Fig. 10.9). Tresca or von Mises yield criteria applied to

the stress situation shown in Fig. 10.9 will indicate that the matrix plastic flow starts

at the interface. Dislocation generation due to thermal mismatch between reinforce-

ment and a metallic matrix has been observed in TEM by many researchers (e.g.,

Arsenault and Fisher 1983; Vogelsang et al. 1986); see Fig. 10.11a. In the case of a

fiber reinforced CMC, the ceramicmatrix is unlikely to undergo plastic deformation;

it is more likely to suffer microcracking as a result of thermal stresses. As an example

of this, consider a composite made of CaTiO3 and Al2O3. The laminated composite

was made by hot pressing of these two ceramic components, which involved a cool

down of about 1,000 �C. Such a temperature excursion would result in tensile stress

in CaTiO3 because CaTiO3 has a larger CTE (13 � 10–6 K–1) compared to Al2O3

(8 � 10–6 K–1). The magnitude of tensile stress is large enough to cause cracks in

CaTiO3 during cool down after hot pressing; see the cracks in the CaTiO3 layer in

Fig. 10.11b (Gladysz and Chawla 2001).

10.3.6 Thermal Stresses in Particulate Composites

The particulate form of reinforcement can result in a considerably reduced degree

of anisotropy. However, so long as a thermal mismatch exists between the particle

and the matrix, thermal stresses will be present in such composites as well.

Consider a particulate composite consisting of small particles distributed in a

Fig. 10.9 Three-dimensional

thermal stress state in a

tungsten fiber/copper matrix

composite for two different

volume fractions. Note the

change in sz level with Vf

[from Chawla and Metzger

(1972), used with permission]
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matrix. If we regard this composite as an assembly of elastic spheres of uniform size

embedded in an infinite elastic continuum, then it can be shown from the theory of

elasticity (see, for example, Timoshenko and Goodier 1951) that an axially sym-

metrical stress distribution will result around each particle. Figure 10.12 shows a

schematic of such a particle reinforced composite. The particle radius is a while the

Fig. 10.10 Variation of dislocation density (’pit density) with distance from the interface. The

higher dislocation density in the plateau region with high Vf is due to a higher sz with higher Vf

(Fig. 10.9) [from Chawla and Metzger (1972), used with permission]

Fig. 10.11 (a) Dislocations generated at SiC whiskers in an aluminum matrix in an in situ thermal

cycling experiment done in a high-voltage electron microscope [from Vogelsang et al. (1986),

used with permission]. (b) Cracking in the CaTiO3 layer in a CaTiO3/Al2O3 composite due to

thermal stresses generated during cool down from the processing temperature (from Gladysz and

Chawla 2001)
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surrounding matrix sphere has a radius b. This elasticity problem has spherical

symmetry, therefore the use of spherical coordinates, r, y, and f as indicated in

Fig. 10.13a makes for a simple analysis. We have the following components of

stress, s, strain, e, and displacement, u:

sr; sy ¼ sf;

er; ey ¼ ef;

ur ¼ u; independent of y orf:

The equilibrium equation for this spherically symmetric problem is

dsr
dr

þ 2

r
sr � syð Þ ¼ 0 (10.50)

while the strain–displacement relationships are

er ¼ du

dr
; ey ¼ u

r
: (10.51)

Substituting Eq. (10.51) in Eq. (10.50), we get the governing differential equa-

tion for our problem:

d2u

dr2
þ 2

r

du

dr
� 2

r2
u ¼ 0 (10.52)

The solution to this differential equation is

u ¼ Ar þ C

r2
:

Fig. 10.12 A particle reinforced composite
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Fig. 10.13 (a) Spherical

coordinate system. (b) Stress

distribution in a particulate

composite for cool down from

the processing temperature



We apply the following boundary conditions:

1. Stress vanishes at the free surface (i.e., at r ¼ b).
2. The radial stress at the interface (r ¼ a) is the interfacial pressure, P, i.e.,

srðaÞ ¼ �P

The particle has a hydrostatic state of stress with the stress components

srp ¼ �P ¼ constant ¼ syp (10.53)

while the stresses in the matrix are

srm ¼ P

1� Vp

a3

r3
� Vp


 �
; (10.54)

sym ¼ � P

1� Vp

1

2

a3

r3
þ Vp


 �
; (10.55)

P ¼ am � ap
� �

DT

0:5 1þ vmð Þ þ 1� 2vmð ÞVp

Em 1� Vp

� � þ 1� 2vp
Ep

" # ; (10.56)

Vp ¼ a

b

� �3
;

where Vp is the particle volume fraction, a is the particle radius, b is the matrix

radius, and other symbols have the significance given earlier. Figure 10.13b shows

the stress distribution in a particulate composite when cooled down from the

processing temperature and for am > ap. Note the different stress distribution in a

particulate composite from that in a fibrous composite. The particle is under a

uniform pressure, P, while the matrix has different radial and tangential stress

components. The radial and tangential components in the matrix vary with distance,

as shown in Fig. 10.13b. The radial component goes to zero at the free surface,

r ¼ b, as per our boundary conditions. The tangential component has a nonzero

value at the free surface.

10.4 Mechanics of Load Transfer from Matrix to Fiber

The topic of load transfer from the matrix to the fiber has been treated by a number

of researchers (Cox 1952; Dow 1963; Schuster and Scala 1964; Kelly 1973). The

matrix holds the fibers together and transmits the applied load to the fibers, the real

load-bearing component in most cases. Let us focus our attention on a high-
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modulus fiber embedded in a low-modulus matrix. Figure 10.14a shows the situa-

tion prior to the application of an external load. We assume that the fiber and matrix

are perfectly bonded and that the Poisson’s ratios of the two are the same. Imagine

vertical lines running through the fiber/matrix interface in a continuous manner in

the unstressed state, as shown in Fig. 10.14a. Now let us load this composite axially

as shown in Fig. 10.14b. We assume that no direct loading of the fibers occurs. Then

the fiber and the matrix experience locally different axial displacements because of

the different elastic moduli of the components. Different axial displacements in the

fiber and the matrix mean that shear strains are being produced in the matrix on

planes parallel to the fiber axis and in a direction parallel to the fiber axis. Under

such circumstances, our imaginary vertical lines of the unstressed state will become

distorted, as shown in Fig. 10.14b. Transfer of the applied load to the fiber thus

occurs by means of these shear strains in the matrix. Termonia (1987) used a finite

difference numerical technique to model the elastic strain field perturbance in

composite consisting of an embedded fiber in a matrix when a uniform far field

strain was imposed on the matrix. An originally uniform orthogonal mesh around

the fiber became distorted when an axial tensile stress was applied.

It is instructive to examine the stress distribution along the fiber/matrix interface.

There are two important cases: (1) both the matrix and fiber are elastic, and (2) the

matrix is plastic and the fiber is elastic. Fibers such as boron, carbon, and ceramic

fibers are essentially elastic right up to fracture. Metallic matrices show elastic and

plastic deformation before fracture, while thermoset polymeric and ceramic matri-

ces can be treated, for all practical purposes, as elastic up to fracture.

10.4.1 Fiber Elastic–Matrix Elastic

Consider a fiber of length l embedded in amatrix subjected to a strain; see Fig. 10.15.

We assume that (1) there exists a perfect bonding between the fiber and matrix

(i.e., there is no sliding between them) and (2) the Poisson’s ratios of the fiber and

matrix are equal, which implies an absence of transverse stresses when the load is

applied along the fiber direction. Let the displacement of a point at a distance x from
one extremity of the fiber be u in the presence of a fiber and v in the absence of a fiber.
Then we can write for the transfer of load from the matrix to the fiber

dPf

dx
¼ B u� vð Þ; (10.57)

Fig. 10.14 A high-modulus fiber embedded in a low-modulus matrix: (a) before deformation,

(b) after deformation
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where Pf is the load on the fiber and B is a constant that depends on the geometric

arrangement of fibers, the matrix type, and moduli of the fiber and matrix.

Differentiating Eq. (10.57), we get

d2Pf

dx2
¼ B

du

dx
� dv

dx

� �
: (10.58)

We have

du

dx
¼ strain in fiber =

Pf

Ef Af
;

dv

dx
¼ strain in thematrix away from the fiber

= imposed strain, e:

Thus, Eq. (10.58) can be rewritten as

d2Pf

dx2
¼ B

Pf

Af Ef
� e

� �
: (10.59)

Fig. 10.15 Load transfer in a fiber/matrix composite and variation of tensile stress (sf) in the fiber
and interfacial shear stress (t) with distance along the interface
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A solution of this differential equation is

Pf ¼ EfAf eþ S sinh bxþ T cosh bx; (10.60)

where S and T are constants of integration and

b ¼ B

AfEf

� �1=2
: (10.61)

We use the following boundary condition to evaluate the constants S and T:

Pf ¼ 0 at x ¼ 0 and x ¼ l:

Putting in these values and using the half-angle trigonometric formulas, we get

the following result:

Pf ¼ EfAf e 1� cosh b l=2� xð Þ
cosh bl=2ð Þ


 �
for 0<x<l=2 (10.62)

or

sf ¼ Pf

Af
¼ Ef e 1� cosh b l=2� xð Þ

cosh bl=2ð Þ

 �

for 0<x<l=2: (10.63)

The maximum possible value of strain in the fiber is the imposed strain e, and
thus the maximum stress is Efe. Therefore, if we have a long enough fiber, the stress
in the fiber will increase from the two ends to a maximum value, sfu ¼ Efe. It can
be shown readily that the average stress in the fiber is

sf ¼ Ef e

l

ðl
0

1� cosh b l=2� xð Þ
cosh bl=2ð Þ


 �
dx ¼ Ef e 1� tanh bl=2ð Þ

bl=2


 �
: (10.64)

We can obtain the variation of shear stress t along the fiber/matrix interface by

considering the equilibrium of forces acting over an element of fiber (radius rf).
Thus, from Fig. 10.15 we can write

dPf

dx
dx ¼ 2prf dx t: (10.65)

Now Pf, the tensile load on the fiber, is equal to pr2f sf . Substituting this in

Eq. (10.65), we get

t ¼ 1

2prf

dPf

dx
¼ rf

2

dsf
dx

: (10.66)
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From Eqs. (10.63) and (10.66), we obtain

t ¼ Ef rf eb
2

sinh b l=2� xð Þ
cosh bl=2ð Þ : (10.67)

Figure 10.15 shows the variation of t and sf with distance x. The maximum shear

stress, in Eq. (10.67), will be the smaller of the following two shear strength values:

(1) the shear yield strength of the matrix or (2) the shear strength of the fiber/matrix

interface. Whichever of these two shear strength values is attained first will control

the load transfer phenomenon and should be used in Eq. (10.67).

Now we can determine the constant B. The value of B depends on the fiber

packing geometry. Consider Fig. 10.15 again and let the fiber length l be much

greater than the fiber radius rf. Let 2R be the average fiber spacing (center to center).

Let us also denote the shear stress in the fiber direction at a distance r from the axis

by t(r). Then, at the fiber surface (r ¼ rf), we can write

dPf

dx
¼ �2prf t rf

� � ¼ B u� vð Þ:

Thus,

B ¼ � 2prf t rf
� �

u� v
: (10.68)

Let w be the real displacement in the matrix. Then at the fiber/matrix interface,

no sliding being permitted, w ¼ u. At a distance R from the center of a fiber, the

matrix displacement is unaffected by the fiber presence and w ¼ v. From the

equilibrium of forces acting on the matrix volume between rf and R, we can write

2prtðrÞ ¼ constant = 2prf tðrf Þ;

or

tðrÞ ¼ t rf
� �

rf

r
: (10.69)

The shear strain g in the matrix is given by t(r) ¼ Gmg, where Gm is the matrix

shear modulus. Then

g ¼ dw

dr
¼ tðrÞ

Gm
¼ tðrf Þrf

Gmr
: (10.70)

Integrating from rf to R, we obtain
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ðR
rf

dw ¼ Dw ¼ t rf
� �

rf

Gm

ðR
rf

1

r
dr ¼ t rf

� �
rf

Gm
ln

R

rf

� �
: (10.71)

But, by definition,

Dw ¼ u� u ¼ � u� vð Þ: (10.72)

From (10.71) and (10.72), we get

t rf
� �

rf

u� v
¼ � Gm

ln R=rf
� � : (10.73)

From Eqs. (10.68) and (10.73), one obtains

B ¼ 2pGm

ln R=rf
� � (10.74)

and from Eq. (10.61), one can obtain an expression for the load transfer parameter b:

b ¼ B

EfAf

� �1=2
¼ 2pGm

Ef Af ln R=rf
� �

" #1=2
: (10.75)

The value of R/rf is a function of fiber packing. For a square array of fibers,

we have ln R=rf
� � ¼ 1

2
ln p=Vf

� �
. For a hexagonal packing of fibers, we have

ln R=rf
� � ¼ 1

2
ln 2p=

ffiffiffi
3

p
Vf

� �
. We can define ln R=rf

� � ¼ 1
2
ln fmax=Vf

� �
; , where

fmax is the maximum packing factor. Substituting this in Eq. (10.75), we get

b ¼ 4pGm

EfAf ln fmax=Vf

� �
" #1=2

:

Note that the greater the value of the ratio Gm/Ef, the greater the value of b and

the more rapid the stress increase in the fiber from either end.

More rigorous analyses give results similar to the one above and differ only in

the value of b. In all analyses, b is proportional to (Gm/Ef)
1/2, and differences occur

only in the term involving fiber volume fraction, ln(R/rf), in the preceding equation.
Termonia (1987) used the finite difference method to show the high shear

strains in the matrix near the fiber extremeties. Micro-Raman spectroscopy has

been used to study the deformation behavior of organic and inorganic fiber

reinforced composites (Galiotis et al. 1985; Day et al. 1987, 1989; Schadler and

Galiotis 1995; Yang et al. 1992; Young et al. 1990). Characteristic Raman spectra

can be obtained from these fibers in the undeformed and the deformed states. Under

tension, the peaks of the Raman bands shift to lower frequencies. The magnitude of
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frequency shift is a function of the material, Raman band under consideration, and

the Young’s modulus of the material. The shift in Raman bands results from

changes in force constants due to changes in molecular or atomic bond lengths

and bond angles. Micro-Raman spectroscopy is a very powerful technique that

allows us to obtain point-to-point variation in strain along the fiber length embedd-

ed in a transparent matrix. An example of this for Kevlar aramid 149/epoxy

composite is shown in Fig. 10.16 (Young 1994). In Fig. 10.16a, b, we see that up

to 1 % strain, the strain in the fiber builds from the two ends as predicted by the

shear lag analysis described earlier, while in the middle of the fiber length the strain

in the fiber and matrix are equal. In Fig. 10.16c, d, we see that as fiber fractures at

different sites along its length, the strain in fiber drops at those sites.

Fig. 10.16 Micro-Raman

spectra of Kevlar aramid 149

when the Kevlar/epoxy

composite is loaded axially.

(a, b) Strain build up in the

fiber from the two ends. (c, d)

Fiber fracture leads to a drop

in strain at those sites [after

Young (1994)]
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Let us reexamine Fig. 10.15. As per our boundary condition, the normal stress is

zero at the two extremities of the fiber. The normal stress, s, rises from the two ends

to a maximum value along most of the fiber length, provided we have a long enough

fiber. This gives rise to the concept of a critical fiber length for load transfer (see the

next section). The shear stress is maximum at the fiber ends. Matrix yielding or

interfacial failure would be expected to start at the fiber ends.

Fig. 10.16 (continued)
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10.4.2 Fiber Elastic–Matrix Plastic

It should be clear from the preceding discussion that in order to load high-strength

fibers in a ductile matrix to their maximum strength, the matrix shear strength must

be large. A metallic matrix will flow plastically in response to the high shear stresses

developed. Of course, if the shear strength fiber/matrix interface is less than the shear

yield strength of the matrix, then the interface will fail first. InMMCs, assuming that

the plastically deforming matrix does not work-harden, the shear stress at the fiber

surface, t(rf), will have an upper limit of ty, the matrix shear yield strength. In PMCs

and CMCs, frictional slip at the interface is more likely than plastic flow of the

matrix. In the case of PMCs and CMCs, therefore, the limiting shear stress will be

the interface strength in shear, ti. The term ti should replace ty in what follows for

PMCs and CMCs. If the polymer shrinkage during curing results in a radial pressure

p on the fibers, then ty should be replaced by mp because ti ¼ mp, where m is

the coefficient of sliding friction between the fiber and matrix (Kelly 1973).

The equilibrium of forces, then, over a fiber length of l/2 gives

sf
pd2

4
¼ typd

l

2

or

l

d
¼ sf

2ty
:

We consider l/2 and not l because the fiber is being loaded from both ends. Given

a sufficiently long fiber, it should be possible to load it to its breaking stress sfu by
means of load transfer through the matrix flowing plastically around it. Let (l/d)c be
the minimum fiber length-to-diameter ratio necessary to accomplish this. We call

this ratio (l/d) the aspect ratio of a fiber and (l/d)c is the critical aspect ratio

necessary to attain the breaking stress of the fiber, sfu. Then we can write

l

d

� �
c

¼ sfu
2ty

: (10.76)

For a given fiber diameter d, we can think of a critical fiber length lc. Thus,

lc
d
¼ sfu

2ty
: (10.77)

Over a length lc, the load in the fiber builds up from both ends. Strain builds in a

likewise manner. Beyond lc (i.e., in the middle portion of the fiber), the local

displacements in the matrix and fiber are the same, and the fiber carries the major

load while the matrix carries only a minor portion of the applied load. Equation

(10.77) tells us that the fiber length l must be equal to or greater than lc for the fiber
to be loaded to its maximum stress, sfu. For l < lc, the matrix will flow plastically

around the fiber and will load it to a stress in its central portion given by
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sf ¼ 2t
l

d
<sfu (10.78)

This is shown in Fig. 10.17. An examination of this figure shows that even for

l/d > (l/d)c the average stress in the fiber will be less than the maximum stress to

which it is loaded in its central region. In fact, one can write for the average fiber stress

sf ¼ 1

l

ðl
0

sf dx ¼ 1

l
sf l� lcð Þ þ bsf lc
� � ¼ 1

l
sf l� lc sf � bsf

� �� �

or

sf ¼ sf 1� 1� b
1=lc

� �
; (10.79)

where bsf is the average stress in the fiber over a portion lc/2 of its length at both

ends. One can thus regard b as a load transfer function. Its value will be precisely

0.5 for an ideally plastic material; that is, the increase in stress in the fiber over the

portion lc/2 will be linear. The longitudinal strength of a composite containing short

but well aligned fibers will always be less than that of a composite containing

unidirectionally aligned continuous fibers. For the strength of short fiber composite,

per rule-of-mixtures, we can write:

sc ¼ sf Vf þ s0mVm

sc ¼ sf Vf 1� 1� b
1=lc

� �
þ s0m 1� Vf

� �
:

(10.80)

If b ¼ 0.5,

Fig. 10.17 Schematic of variation of tensile stress in a fiber (sf) and interface shear stress (t) with
different fiber aspect ratios (l/d)
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sc ¼ sf Vf 1� lc
2l

� �
þ s0m 1� Vf

� �
;

wheres0m is the in situ matrix stress at the strain under consideration. Suppose that in

a whisker or short fiber reinforced metal the whiskers have an l/lc ¼ 10; then it can

easily be shown that the strength of such a composite containing discontinuous but

aligned fibers will be 95 % of that of a composite containing continuous fibers.

Thus, as long as the fibers are reasonably long compared to the load transfer length,

there is not much loss of strength owing to their discontinuous nature. The stress

concentration effect at the ends of the discontinuous fibers has been neglected in

this simple analysis.

10.5 Load Transfer in Particulate Composites

The shear lag model described in the previous section is suitable for explaining the

load transfer from the matrix to a high aspect ratio reinforcement via shear along the

interface parallel to the loading direction. No direct tensile loading of the reinforce-

ment occurs. Such a model will not be expected to work for a particulate composite.

A modified shear lag model (Fukuda and Chou 1981; Nardone and Prewo 1986)

takes into account tensile loading at the particle ends. According to this modified

shear lag model, the yield strength of a particulate composite is given by

syc ¼ sym 1þ Lþ tð Þ=4L½ �Vp þ sym 1� Vp

� �
;

where sym is the yield stress of the unreinforced matrix, Vp is the particle volume

fraction, L is the length of the particle perpendicular to the applied load and t is the
length of the particle parallel to the loading direction.

For the case of a composite with equiaxed particles (aspect ratio ¼ 1), the above

expression reduces to

syc ¼ sym 1þ 0:5Vp

� �
:

Note that this expression predicts a linear but modest increase in the strength of

the composite with particle volume fraction. However, no account is taken of the

particle size or other microstructural parameters.

Models involving the modified shear lag model, Eshelby’s equivalent inclusion

approach, and Weibull statistics have been proposed (Lewis and Withers 1995;

Song et al. 2010). Incorporation of Weibull statistics (see Chap. 12) makes sense

because the brittle, ceramic particles in a metallic matrix can debond and/or crack

during deformation. The yield strength of the particulate MMC increases as the

volume fraction and aspect ratio of the particles increase, while it decreases as

the size of the SiC particles increases.
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Problems

10.1. Describe some experimental methods of measuring void content in

composites. Give the limitations of each method.

10.2. Consider a 40 % Vf SiC whisker-reinforced aluminum composite. Ef ¼ 400

GPa, Em ¼ 70 GPa, and (l/d) ¼ 20. Compute the longitudinal elastic mod-

ulus of this composite if all the whiskers are aligned in the longitudinal

direction. Use Halpin-Tsai-Kardos equations. Take x ¼ 2(l/d).
10.3. A composite has 40 % Vf of a 150 mm diameter fiber. The fiber strength is

2 GPa, the matrix strength is 75 MPa, while the fiber/matrix interfacial

strength is 50MPa. Assuming a linear build up of stress from the two ends of

a fiber, estimate the composite strength for (a) 200 mm long fibers and (b)

3 mm long fibers.

10.4. Derive the load transfer expression Eq. (10.62) using the boundary conditions.

Show that average tensile stress in the fiber is given by Eq. (10.63).
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10.5. Consider a fiber reinforced composite system in which the fiber has an

aspect ratio of 1,000. Estimate the minimum interfacial shear strength ti,
as a percentage of the tensile stress in fiber, sf, which is necessary to avoid

interface failure in the composite.

10.6. Show that as x ! 0, the Halpin-Tsai equations reduce to

l=p ¼ Vm=pm þ Vf =pf

while as x ! 1; they reduce to

p ¼ Vmpm þ Vf pf :

10.7. Consider an alumina fiber reinforced magnesium composite. Calculate the

composite stress at the matrix yield strain. The matrix yield stress 180 MPa,

Em ¼ 70 GPa, and n ¼ 0.3. Take Vf ¼ 50 %.

10.8. Estimate the aspect ratio and the critical aspect ratio for aligned SiC

whiskers (5 mm diameter and 2 mm long) in an aluminum alloy matrix.

Assume that the matrix alloy does not show much work hardening.

10.9. Alumina whiskers (density ¼ 3.8 g/cm3) are incorporated in a resin matrix

(density ¼ 1.3 g/cm3). What is the density of the composite? Take

Vf ¼ 0.35. What is the relative mass of the whiskers?

10.10. Consider a composite made of aligned, continuous boron fibers in an

aluminum matrix. Compute the elastic moduli, parallel, and transverse to

the fibers. Take Vf ¼ 0.50.

10.11. Fractographic observations on a fiber composite showed that the average

fiber pullout length was 0.5 mm. If Vfu ¼ 1 GPa and the fiber diameter is

100 mm, calculate the strength of the interface in shear.

10.12. Consider a tungsten/copper composite with following characteristics: fiber

fracture strength ¼ 3 GPa, fiber diameter ¼ 200 mm, and the matrix shear

yield strength ¼ 80 MPa. Estimate the critical fiber length which will make

it possible that the maximum load bearing capacity of the fiber is utilized.

10.13. Carbon fibers (Vf ¼ 50 %) and polyimide matrix have the following

parameters:

Ef ¼ 280GPa Em ¼ 276MPa

vf ¼ 0:2 vm ¼ 0:3

(a) Compute the elastic modulus in the fiber direction, E11, and transverse

to the fiber direction, E22.

(b) Compute the Poisson ratios, n12 and n21.

10.14. Copper or aluminum wires with steel cores are used for electrical power

transmission. Consider a Cu/steel composite wire having the following data:

inner diameter ¼ 1 mm

outer diameter ¼ 2 mm
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ECu ¼ 150 GPa aCu ¼ 16� 10�6 K�1

Esteel ¼ 210 GPa asteel ¼ 11� 10�6 K�1

syCu ¼ 100 MPa vCu ¼ vsteel ¼ 0:3
systeel ¼ 200 MPa

(a) The composite wire is loaded in tension. Which of the two components

will yield plastically first? Why?

(b) Compute the tensile load that the wire will support before any plastic

strain occurs.

(c) Compute the Young’s modulus and CTE of the composite wire.

10.15. A composite is made of unidirectionally aligned carbon fibers in a

glass-ceramic matrix. The following data are available:

Ef1 ¼ 280 GPa, Ef2 ¼ 40 GPa, Em ¼ 70 GPa

nf1 ¼ 0:2 nm ¼ 0:3

Gf12 ¼ 18 GPa

(a) Compute the elastic modulus in the longitudinal and transverse

directions.

(b) Compute the two Poisson’s ratios.

(c) Compute the principal shear modulus, G12.
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