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Abstract Katabatic flows over high-latitude long glaciers experience the Coriolis
force. A sloped atmospheric boundary-layer (ABL) flow is addressed which partly
diffuses upwards, and hence, becomes progressively less local. We present the ana-
lytical and numerical solutions for (U, V, θ) depending on (z, t) in the katabatic flow,
where U and V are the downslope and cross-slope wind components and θ is the
potential temperature perturbation. A Prandtl model that accounts for the Coriolis
effect, via f , does not approach a steady state, because V diffuses upwards in time;
the rest, i.e., (U, θ), are similar to that in the classic Prandtl model. The V component
behaves in a similar manner as the solution to the 1st Stokes (but inhomogeneous)
problem. A WKB approach to the problem of the sloped ABL winds is outlined in
the light of a modified Ekman-Prandtl model with gradually varying eddy diffusivity
K(z). Ideas for parameterizing these high-latitude persistent flows in climate models
are revealed.

Keywords Low-level jet · Prandtl model · Strongly stable boundary layer

1 Introduction

Katabatic flows are regular features of the stable atmospheric boundary layer (ABL)
over inclined radiatively cooled surfaces. The ubiquitous nature of katabatic flows
over e.g., Antarctica and Greenland, not to mention smaller areas such as Iceland,
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and their cumulative effects, implies that the katabatic wind contributes to the general
circulation (Parish and Bromwich 1991). Moreover, as katabatic flows may impinge
on various coasts (Parmhed et al. 2004; Renfrew and Anderson 2006; Söderberg and
Parmhed 2006), they may interact with sea ice and coastal ocean areas. It has been
considered that katabatic flows might affect the thermohaline circulation and water
mass conversions through the formation of coastal polynyas and the associated strong
air–sea interaction (e.g., Gordon and Comiso 1988).

The detailed structure of katabatic flow still remains an important modelling issue
(e.g., Weng and Taylor 2003). The stably stratified boundary layer is usually poorly
resolved in many numerical models (e.g., Zilitinkevich et al. 2006), i.e., the modelling
of katabatic flows is reasonably successful only if a sufficient vertical resolution is
used (e.g., Renfrew 2004). A simple model of katabatic flows represents a balance
between the negative buoyancy production due to the surface potential temperature
deficit and dissipation by turbulent fluxes (e.g., Mahrt 1982; Egger 1990). On long
glaciers in higher latitudes the Coriolis force also becomes an important contributor
to the katabatic flow balance, deflecting the downslope component and leading to
the occurrence of a wind component directed across the slope (Denby 1999; Van den
Broeke et al. 2002). Stiperski et al. (2007) extended the Prandtl model by including
the Coriolis force in order to be able to cover long polar slopes and the corresponding
long-lived strongly stable ABL.

Furthermore, the pure katabatic flow is characterized by a pronounced low-level
jet (LLJ) and sharp near-surface vertical temperature gradient (e.g., King et al. 2001;
Grisogono and Oerlemans 2001a,b; Van den Broeke et al. 2002). Renfrew (2004) and
Renfrew and Anderson (2006) show that significant katabatic flows over Antarctica
most often exhibit clearly their LLJ and an anticlockwise backing of the wind with
height. The authors suggest that this is due to a decrease in frictional forcing with
height through the ABL. Moreover, Renfrew and Anderson (2006) indicate which
kind of problems the measurements of katabatic flows may have, e.g., capturing the
height of the LLJ that may exist just above a meteorological mast but still below
the lowest sodar level. These authors illustrate that even a fine-scale nonhydrostatic
numerical weather prediction (NWP) model encounters problems in modelling these
widespread flows (to capture the jet-shaped shallow flow a model set-up with high
vertical resolution is required), not to mention typical course-grid climate models.
Therefore, katabatic flows typically have to be parameterized in large-scale models
(e.g., Zilitinkevich et al. 2006), and to this end we further develop the Prandtl model
with the Coriolis effect and variable eddy diffusivity.

King et al. (2001) show how sensitive the modelled Antarctic climate is to mod-
ifications of ABL parameterizations. Ever increasing resolution of the NWP and
various regional models calls for continuous and necessary improvements of current
parameterizations (e.g., various corrections to the Obukhov length). There is hardly
any horizontal surface over land where the NWP model grid spacing falls below sev-
eral km; in fact, slopes are typically between 0.5◦ and 10◦ to 20◦. The surface slope,
aside from violating horizontal homogeneity assumption, affects also Monin–Obuk-
hov (MO) scaling as such: MO theory considers only the vertical component of the
buoyancy (e.g., Munro and Davies 1978), neglecting its role as the driving force for
katabatic flow in the horizontal momentum equation. In this study we revoke a known
suggestion that an additional alternative for surface-layer scaling may be invoked —
that from the Prandtl model relating to the LLJ height (Munro 1989, 2004; Grisogono
and Oerlemans 2001a,b).
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We continue the work of Grisogono and Oerlemans (2001a,b) by introducing
a gradually varying eddy diffusivity in the analytical model given in Stiperski et al.
(2007). The new approximate (and possibly asymptotic) solutions for katabatic bound-
ary-layer flows, obtained by using e.g., the WKB method, may be useful in explaining
various measurements (e.g., over the Antarctic), and to lend credibility for a more
faithful parameterization of katabatic flows in meteorological and climate models.
The paper is organized as follows. In Sect. 2 we present the main findings of Stiperski
et al. (2007) as a starting point for introducing the varying eddy diffusivity. In Sect. 3
numerical solutions and approximate WKB solutions are presented. The conclusions
are given in Sect. 4.

2 Rotating Prandtl model and solutions for constant eddy diffusivity

The rotating Prandtl model describes a hydrostatic, one-dimensional Boussinesq flow
with the effects of the Coriolis force included. As in the classical Prandtl model (Mahrt
1982; Egger 1990; Parmhed et al. 2004), the K-theory is invoked to model the tur-
bulent fluxes. The governing equations of the rotating model are thoroughly derived
in Stiperski et al. (2007) under the assumption of a constant eddy thermal diffusivity
Kc and a constant turbulent Prandtl number Pr. In the case of non-constant K, the
equations for the downslope and cross-slope components of the wind vector (U, V),
the potential temperature perturbation θ (total minus the background prescribed
potential temperature) and the corresponding boundary conditions are:

∂U
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θ
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sin(α) + f cos(α)V + Pr

∂
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∂
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∂θ

∂t
= −γ sin(α)U + ∂
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∂θ
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)
, (3)

θ(z = 0) = C, U(z = 0) = V(z = 0) = 0, (4)

θ(z → ∞) = U(z → ∞) = V(z → ∞) = 0. (5)

Here the z axis is not vertical but perpendicular to the surface (x axis) sloped with
the negative (clockwise) angle α from the horizontal. The symbols have their usual
meaning: θ0 is a reference potential temperature, f is the Coriolis parameter, g is
acceleration due to gravity and C < 0 is the constant surface-potential-temperature
deficit, applied to an undisturbed atmosphere–surface interface instantaneously at
the time t = 0. Slope angle α, for which the katabatic wind is successfully treated by
the model, typically does not exceed 10◦, therefore giving a reasonable assumption
of using the constant gradient of the background potential temperature γ in the true
vertical (Eq. 3). More about the model derivation can be found in e.g., Denby (1999).

Equations (1) through (5) can be used to describe the “primarily katabatic driven”
flow, as selected by the criteria described in Renfrew and Anderson (2002). That is,
such flows develop in the stable ABL where the surface radiation balance is a net
cooling to space and the mesoscale pressure gradient is small, so that the influence
from larger-scale weather systems is reduced. Such “typical” katabatic flow is shal-
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low, with winds aloft decaying with height and rather weak compared to near-surface
winds (Renfrew and Anderson 2006).

Before attempting to derive the analytical solutions for U, V and θ let us briefly
revisit the main conclusions of Stiperski et al. (2007) for the case of K(z) = Kc, as
they represent the starting point of discussion for the more general case of varying K.

• The approximate solutions for the steady-state potential temperature perturba-
tion and down-slope velocity component (θs and Us) are analogous to the classical
Prandtl model:

θs = C exp

(
− z

hp

)
cos(

z
hp

), (6)

Us = CKcσ
2

γ sin (α)
exp

(
− z

hp

)
sin(

z
hp

), (7)

where hp = √
2/σ is the Prandtl layer height,

σ =
(

N2 Pr sin2 (α) + f 2 cos2 (α)

Pr2 K2
c

)1/4

, (8)

and N is the buoyancy (Brunt-Vaisala) frequency, satisfying N2 = γ g/θ0. In (6)
and (7) θs and Us are the solutions of the 6th-order partial differential equation
for each of the unknowns represented by the flow vector F = (θ , U, V):

d2

dz2

(
d4F
dz4 + σ 4F

)
= 0. (9)

Numerical solutions for U and θ asymptotically approach their steady state val-
ues Us and θs after the characteristic time scale for the katabatic flow T =
2π/(Nsin(α)) (Mahrt 1982; Grisogono 2003).

• Numerical solution for the cross-slope velocity component does not reach the
steady state, but diffuses upwards through a several hundred m thick layer. How-
ever, the scale analysis carried out in Stiperski et al. (2007) has shown that the
changes in V do not exert a significant influence on U and θ , which remain very
close to their steady profiles Us and θs. The ratio of the Coriolis term to the buoy-
ancy term in (1) is, for typical katabatic flows, O(10−2); hence, it is reasonable to
neglect the Coriolis term for the analytical treatment of the simplified problem.
Then (1) and (3) become weakly decoupled from (2), which becomes a forced
diffusion equation. The analytic solution for V is thus obtained from Eq. (2), with
Us on the right-hand side as its forcing:

Vf = Cf cot (α)

Pr γ

[
1 − erf

(
z

2
√

tKc Pr

)
− exp

(
− z

hp

)
cos(

z
hp

)

]
. (10)

The above solution holds after time t > T needed for the forcing in (2), via Us, to
approach its steady state.

The derived solutions, together with the results from Grisogono (2003), lead us to
the hypothesis that similar behaviour can also be expected in the case of a vertically
varying eddy diffusivity. That is, the numerical results for U and θ would approach
steady state within T−1.5T, while V would continue to diffuse upwards, only this time
with the limitations imposed by the K(z) profile. Thus, V would behave as a solution
to the 1st Stokes inhomogeneous problem (e.g., Kundu and Cohen 2002).
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3 Solutions for varying eddy diffusivity

3.1 The WKB solutions

For K = K(z), analytical solutions can be derived using the WKB method (Grisogono
1995; Grisogono and Oerlemans 2001a,b). More about the mathematical background
of the method can be found in Bender and Orszag (1978). Furthermore, its use for
pure katabatic flows is justified in Grisogono and Oerlemans (2002) and Parmhed
et al. (2004).

We apply the method with a zero-order solution for θ and U. This approach keeps
the balance between the terms with the largest amplitude in Eq. (9), modified for
the varying K. Here, the derivatives of K are neglected and only its variations in σ

are allowed. Nevertheless, it must be emphasized that, for the WKB method to be
valid, the K(z) profile must be either constant or gradually varying with respect to
the vertical scale variations of the analytical solution. The latter means not only that
K(z) has to be a gradually varying function itself (Grisogono and Oerlemans 2001a),
but also that the height of the maximum value of K(z) (hereafter denoted by Kmax)

must be above the LLJ height. In this paper we use the analytical K(z) profile from
Grisogono and Oerlemans (2001a,b), and Parmhed et al. (2004):

K(z) = Kmax
√

e
z
h

exp

(
− z2

2h2

)
, (11a)

Kmax = 3Kc, (11b)

where h is the level where Kmax is reached. Here h can be estimated from the fact
that the WKB solution for U will always place the LLJ below that calculated via the
constant-K solution (Grisogono and Oerlemans 2001a,b). Moreover, the position of
the LLJ height in Vf is always higher than in Us, and also gradually increases in time,
reaching ≈ 100 m (Stiperski et al. 2007). Simultaneously, the value of h is limited by
the depth of the strongly stable ABL (Grisogono and Oerlemans 2002). The above
conditions, together with the conditions imposed by the WKB method, give us a rea-
sonable estimate of h = 200 m for the K(z) profile used in the following example
(Subsect. 3.2).

Relations between the best choices for Kc and Kmax are discussed in Grisogono
and Oerlemans (2001a). Here we just adopt the fact that it is reasonable if Kc ≈ 30%
of Kmax, as in Eq. (11b). Of course, other choices are possible depending on specific
cases addressed. Further details on estimating Kmax and h can be found in Grisogono
and Oerlemans (2002) and Parmhed et al. (2004); Parmhed et al. (2005).

As discussed in Sect. 2, following the scale analysis in Stiperski et al. (2007) we
neglect the Coriolis term in (1). This enables us to straightforwardly use the zero-
order WKB approach for the modified flow vector F = (θ , U):

F0 ∝ exp

[
− (1 − i)√

2
σ0I(z)

]
, (12)

where

I(z) =
z∫

0

K (z)−1/2 dz, (13)
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and

σ 4
0 = N2 Pr sin2 (α) + f 2 cos2 (α)

Pr2 . (14)

Furthermore, we define:

σWKB (z) = σ0I(z), (15)

which, together with the boundary conditions given in Eqs. (4) and (5), yield the
solutions for θ and U:

θWKB = C exp

(
−σWKB (z)√

2

)
cos

(
σWKB (z)√

2

)
, (16)
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0
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(
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2

)
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(
σWKB (z)√

2

)
. (17)

As can be seen from previous studies (Grisogono 1995; Grisogono and Oerlemans
2001a,b, 2002) the WKB solutions are structurally similar to the constant-K case. In
this study I(z) is evaluated numerically, but it may be calculated also analytically, care-
fully taking into consideration its often divergent nature that is successfully overcome
by the negative exponential in (12), and then in (16) and (17).

Moreover, the WKB solutions approach the constant-K solutions (6) and (7) as
K(z) → Kc. Then, I(z) in (13) becomes K−1/2

c z, and σWKB (z) /
√

2 in (16) and (17)
becomes σz/

√
2 = z/hp (Eqs. 6 and 7). This yields a reasonable assumption that Vf

may also be considered as the limit value of the corresponding WKB solution and
implies the expansion of the argument of the error function in (10) for the case of
variable K(z). That is, zK−1/2

c → I(z) in (10), giving us the solution for V(z, t):

VWKB ≈ Cf cot (α)

Pr γ
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1 − erf
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2
√

t Pr

)
− exp

(
−σWKB (z)√

2
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(
σWKB (z)√

2

)]
. (18)

Again, t > T as in (10). The comparison between the analytical and numerical
solutions, as well as comparison with the constant-K case, is given in the following
section.

3.2 Comparison with the numerical and constant-K solutions

Following Stiperski et al. (2007), the analytical solutions are verified against the numer-
ical solutions of the time-dependent system (1)–(3) obtained using the simple numer-
ical model from Grisogono (2003). The numerical and WKB solutions for U and
θ tot = θ + γ z are compared for a case with physical parameters (f , α, γ , Pr, C) =
(1.1 × 10−4 s−1, −4◦, 4 × 10−3 K m−1, 1.1, −8◦C), and the prescribed K(z) from (11a)
and (11b). Here θ tot is calculated and plotted without the reference potential tem-
perature θ0 (to reword, the constant θ0 is already subtracted from θ tot). From Fig. 1 it
can be seen that the numerical solution (dashed) for both U and θ tot are in excellent
agreement with the steady state solutions (16) and (17) for t ≥ T (solid). Such agree-
ment is expected from the results for the constant-K case described in Stiperski et al.
(2007, see their Figure 2).

Figure 2 displays both the WKB and constant-K solutions for U and θ tot, show-
ing the improvement in describing the sharp near-surface gradients in temperature
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Fig. 1 Numerical θ tot
num and Unum (dashed) and analytical WKB θ tot

WKB and UWKB (solid), Eqs. (16)
and (17), solutions for the Prandtl model, at (a) t = T and (b) t = 10T, T = 2π/(N sin(α)) ≈ 2.1 h.
Here K(z) is from (11a) and (11b), with Kmax = 3 m2s−1 at h = 200 m; other parameters are
(f , α, γ , Pr, C) = (1.1 × 10−4 s−1, −4◦, 4 × 10−3 K m−1, 1.1, −8◦C). The numerical model top is at
2,000 m

Fig. 2 The prescribed K(z) profile (dot-dashed) and analytic solutions of the rotating Prandtl model
for the case of varying (solid) and constant K (dashed). Here K(z) is from Eqs. (11a) and (11b),
Kc = 1 m2s−1, and θ tot

s and Us from (6) and (7). The rest as in Fig. 1
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and wind that are often observed (Defant 1949; Munro 1989; Egger 1990; Oerlemans
1998; Parmhed et al. 2004). This is also in agreement with the analysis of Grisogono
and Oerlemans (2001a,b) for the non-rotating model, and yields the better estimate
of both the LLJ height, and surface heat and momentum fluxes. Yet another differ-
ence can be seen between UWKB and Us: both profiles have the return flow around
z ≈ 200 m of similar amplitude, but this layer is thicker for the K(z) case.

The sharper near-surface gradient and the lower LLJ height are also seen for
the cross-slope wind component V, when K(z) is employed, Fig. 3. There Vnum still
diffuses upwards but, as expected, its propagation is now limited to the height where
the values of K(z) approach zero (z ≈ 800 m, Fig. 2). This leads us to the conclusion
that the hypothesis of V influencing the polar vortex after sufficient time imposed
by Stiperski et al. (2007) should be more relaxed in this more realistic case. There
is another significant difference, i.e., the presence of a secondary bulge in V above
the height of Kmax at z ≈ 400 or 500 m. As the integration time increases, this bulge
strengthens and expands with height, nevertheless obeying the limitations imposed
by K(z). The bulge in V(z, t) occurs because of two opposing effects. Both V(z, t),
namely Vnum and VWKB, try to diffuse upwards as in the 1st Stokes problem, which
is nicely emulated in Stiperski et al. (2007). However, at progressively higher levels
there is less and less K(z) for mixing the V component upward. Hence, V(z, t) finds
less and less medium to diffuse through and starts to accumulate below K(z) → 0
level (Fig. 3, black solid line). On the contrary, deep and non-decaying K supports the
vertical diffusion of V(z, t) (Fig. 3, grey solid line).

The overall behaviour of Vnum is very well described with the new approximate
WKB solution VWKB from (18), only slightly overestimating the maximum ampli-
tude. Similar behaviour of the analytical solution Vf has also been observed for the
constant-K case in Stiperski et al. (2007). The detailed calculation presented here for
V(z, t) also explains the behaviour of the V component in Denby (1999), which was
not commented there (see his Figure 2e and 5).

Additional remarks on how to estimate the input parameters for this Ekman–Pra-
ndtl model type with K(z) can be found in Parmhed et al. (2004); Parmhed et al.
(2005). The new analytical solutions (U, V, θ)WKB, (16), (17) and (18) are not named
“asymptotic”, which usually holds for the WKB solutions, only because we weakly
decoupled (2) so that VWKB does not feed back to the original system (1)–(3). The
numerical result shows, as also in Stiperski et al. (2007), that the V effect on the kat-
abatic dynamics is negligible. However, the induced V(z, t) affects the wind direction
and the horizontal momentum flux.

4 Conclusions

A better understanding of katabatic flows is necessary for better treatment and param-
eterization of the coupling between the atmosphere and cool, inclined surfaces (e.g.,
King et al. 2001; Weng and Taylor 2003). The rotating Prandtl model (Stiperski et al.
2007), although providing the analytical tool for analyzing this coupling, does not hold
for the real atmosphere due to the assumption of constant eddy diffusivity. In this work
an attempt is made towards a more realistic description of the long-lived katabatic
strongly stable ABL through the approach of Grisogono and Oerlemans (2001a,b).
There, the asymptotic solutions for the Prandtl model with gradually varying K(z),
but without rotation, were obtained using the WKB method. The obtained solutions
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Fig. 3 The analytical (solid) and numerical (dashed) solutions for V at (a) t = 2T, (b) t = 10T, (c)
t = 20T and (d) t = 50T. The WKB solution VWKB is in (18); the constant K solution, Vf , is given in
(10). The rest as in Fig. 1
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were verified against the results from the numerical model (Grisogono 2003), and
independently against a dataset from Breidamerkurjokull, Iceland (Parmhed et al.
2004). Here, the analytical and numerical solutions for (U, V, θ) depending on (z, t)
in the rotating katabatic flow are presented.

As expected, the overall change of the flow vector (U, V, θ) is structurally similar
to the constant-K case (Stiperski et al. 2007). Both U and θ reach their steady-state
profiles after the typical time scale for simple katabatic flows T ≈ 2π/(N sin(α)), and
V still diffuses upwards in time without a well-defined time scale. Contrary to the
constant-K case, the upward propagation of V(z, t) is now limited by the vertically
decaying values of K(z) above its maximum. As the result, the elevated bulge in the
V(z, t) profile is observed above the weak return flow in U. This feature indicates
the trapping of the V momentum at the height where K(z) approaches a zero value,
whereas for the constant-K values the V momentum continuously propagates under
diffusion in the vertical (Stiperski et al. 2007). For example, if there was pre-existing
elevated turbulence, e.g., residual turbulent layer(s), then the katabatic effect could,
in principle, still influence the polar vortex after sufficiently long duration of the flow
during the polar night.

This study shows that the WKB method of zero-order may be successfully applied
to find the approximate analytical solutions for all the model components. The new
WKB solution is relatively simple to derive and calculate either by analytical or
numerical evaluation of the integral expression (13). The proposed analytical solu-
tions (16), (17) and (18) can be used for studying katabatic flows over long slopes.
Together with the introduction of the varying eddy diffusivity profile, the proposed
solutions give a more realistic description of sloped surface-flux parameterizations in
climate models and data analysis.
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