
Chapter 5

Analysis of Tensegrity
Dynamics

Throughout this chapter we construct dynamic models in the form of ordi-
nary differential equations for tensegrity structures. We make the following
assumptions:

a) Rods are rigid, thin, and long and so rotational motion about the longi-
tudinal axis can be neglected.

b) Strings are massless elastic elements with Hookean (linear) behavior only
when in tension.

c) The connectivity of the structure is fixed.

These assumptions reflect tensegrity structures where the rods are mas-
sive and stiff, here approximated as rigid, as compared with a network of
lightweight, elastic strings. Herein we are motivated by the network approach
in [Ske05]. We first study the dynamics of a single rod.

5.1 Vectors and Notation

In dynamics a vector was conceived as an entity that has magnitude and
direction in three-dimensional space. This concept was introduced by Gibbs
(see [Hug86]). In the more modern linear algebra, the axiomatic definitions
of a vector allow the treatment of an n-dimensional space, but the concepts
of inner products and outer products in linear algebra do not exactly match
the concepts of dot and cross products of the dynamics literature. Such
distinctions should be made clear. Let �r be the label we use to represent a
(Gibbs) vector in the three-dimensional (non-relativistic) space. This vector
is defined independently from any basis system or frame of reference. While
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the vector is not defined by any reference frame, this vector can be described
in any chosen reference frame. With that in mind we define the following
entities.

Definition 5.1 (Dextral Set) The set of vectors �ei, i = 1,2,3, form a dex-
tral set if the dot products satisfy �ei ·�ej = δij (where δij is a Kronecker delta)
and the cross products satisfy �ei × �ej = �ek, where the indices i,j,k form the
cyclic permutations, i,j,k = 1,2,3 or 2,3,1, or 3,1,2.

Definition 5.2 (Vectrix) Let �ei, i = 1, 2, 3, define a dextral set of unit vec-
tors fixed in an inertial frame, and define the vectrix �E by �E =

[
�e1 �e2 �e3

]
.

The item �E is called a vectrix, since it is an 1 × 3 array of the three
horizontally stacked items �ei, i = 1, 2, 3 (the dextral set). Hence, these arrays
�E contain Gibbs vectors �ei, so they are not matrices. Neither is the 1 × 3
item �E a vector in the sense of linear algebra. Hence the label vectrix, coined
by Peter Hughes [Hug86].

Now consider two reference frames, described by the dextral sets (vectrices
�E and �X), where the coordinate transformation between these two frames is
described by the 3 × 3 direction cosine matrix XE (orthonormal) so that �X

= �EXE , XET XE = I3. Let the three-dimensional column vectors rX and
rE describe the components of the same vector �r in the two reference frames
�X and �E, respectively. That is,

�r = �ErE = �XrX . (5.1)

Hence, if we wish to describe the relationship between the components of the
same vector �r, described in two different reference frames, then

�X = �EXE , �r = �XrX = �E XErX . (5.2)

After all terms in an equation are written in the same basis, then the chosen
basis (vectrix �E in this chapter) can be dropped, yielding

rE = XErX . (5.3)

The item labeled �r is a “Gibbs vector”, and the items labeled rX and rE

are “vectors” in the spirit of the linear vector spaces of linear algebra, where
we use the notation rX , rE ∈ R

3 to denote that the items rX and rE live in
a real three-dimensional space. However, the items rX and rE provide no
useful information unless we have previously specified the frames of reference
�X and �E for these quantities.

The above discussions on notation is for those familiar with traditional lit-
erature on rigid body dynamics. However, unlike many problems in aerospace,
where multiple coordinate frames are utilized (one fixed in each body), this
chapter uses only one coordinate frame (the inertial frame, described by the
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vectrix �E) to describe all vectors. Hence, one could then shorten the no-
tation for convenience. Instead of the proper notation of a Gibbs vector
�ni = �EnE

i , we will simplify the notation to nE
i = ni and write �ni = �Eni,

where nT
i =

[
nix

, niy
, niz

]
describes the components of the vector �ni

in coordinates �E. Hence the only difference between the Gibbs vector �ni and
the three-dimensional array of its components ni is that the frame is specified
a priori, �E, and in this chapter, all other vectors that might be mentioned
are referenced to the same frame �E.

Hence, for the given basis �E, the dot product and the components of the
cross product of any two Gibbs vectors �b = �Eb and �f = �Ef can be written
as

�b · �f = bT f , (5.4)

�b × �f = �Eb̃ f , b̃ =

⎡
⎣ 0 −b3 b2

b3 0 −b1

−b2 b1 0

⎤
⎦ . (5.5)

Since we are committed to the same reference frame �E throughout the chap-
ter, we wish not to burden the notation with the explicit notation of the
reference frame. So, by a slight abuse of vector notation, in lieu of the more
accurate notation of the cross product, �b × �f = �Eb̃f , we will simply write
b × f = b̃f .

5.2 Dynamics of a Single Rigid Rod

We start by defining some important quantities associated with the dynamics
of the single rigid rod in three-dimensional space as illustrated in Figure 5.1.
This rod has mass m > 0 and length � > 0 with extreme points nj , ni ∈ R

3,
hence ‖nj − ni‖ = �. We often make use of the normalized rod vector

b = �−1(nj − ni), ‖b‖ = 1. (5.6)

Any point in the rod can be located by the vector

v(μ) = μnj + (1 − μ)ni, (5.7)

where μ ∈ [0, 1]. Let ρ(μ) ≥ 0 be a density function defined on the interval
μ ∈ [0, 1] which describes the mass density along the rod, that is,

m =
∫ 1

0

ρ(μ) dμ > 0.

In this section we describe the position of the rod by means of the configu-
ration vector

q =
(

r
b

)
∈ R

6, (5.8)
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Figure 5.1: Illustration of a rigid rod with its configuration in R
3. The

vectors r and b describe the translational and rotational position of the rod,
respectively

where r = v(σ), σ ∈ [0, 1], is any fixed point in the rod. Whenever possible
r will be made to coincide with the center of mass of the rod.

Any point in the rod can be equivalently described as a linear function of
the configuration vector:

v(η) = r + η b =
[
I3 ηI3

]
q, η ∈ [−σ�, (1 − σ)�]. (5.9)

Note that μ and η are related by μ = σ+η/�. Using η we can compute higher
order mass moments around r, the next two of which are

f(σ) = �−1

∫ (1−σ)�

−σ�

ρ(σ + η/�) η dη,

J(σ) = �−1

∫ (1−σ)�

−σ�

ρ(σ + η/�) η2 dη > 0.

Such moments are associated with two important quantities, the kinetic en-
ergy and the angular momentum of the rod. The kinetic energy of the rod is
given by the formula

T =
1
2

∫ 1

0

ρ(μ) v̇(μ)T v̇(μ) dμ =
1
2

q̇T (J(σ) ⊗ I3) q̇, (5.10)

J(σ) =
[

m f(σ)
f(σ) J(σ)

]
� 0. (5.11)

We note that a Kronecker product of two n × n matrices A and B, denoted
by A⊗B, is an n2 × n2 matrix composed of n × n blocks of matrices of the
type AijB.
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The angular momentum of the rod about r is

h =
∫

m

ρ(μ) (v(μ) − r) × (v̇(μ) − ṙ) dμ

= J(σ)b × ḃ, (5.12)

= J(σ) b̃ ḃ, (5.13)

where b̃ denotes a skew-symmetric matrix composed of the three components
of the vector b, as defined in (5.4).

The matrix J(σ) is positive semidefinite because T ≥ 0 for all q̇. Indeed,
for most practical mass distribution functions ρ (see next section), matrix J
will be positive definite (J 
 0), a property that will be used in the next
chapters.

Note that if we choose σ =
∫ 1

0
ρ(μ)μdμ so that r coincides with the center

of mass of the rod then f(σ) = 0. This leads to the well-known decoupling
of the kinetic energy in translational and rotational components in a rigid
body described by its center of mass. One should choose to describe a rod
by its center of mass whenever possible, with the main exception being the
case when constraints are present in points of the rod other than the center
of mass. We will illustrate this case later in this book. The next example
discusses some useful mass distributions and their properties.

Example 5.1

In most parts of this book we consider rods with mass uniformly distributed
along the rod, that is,

ρ(μ) = m�−1.

In this case the mass moments f and J are

f(σ) =
1
2
m� (1 − 2σ) , J(σ) =

1
3
m�2

(
1 − 3σ + 3σ2

)
,

which are functions of σ, hence depends on the choice of the fixed point r.
Indeed, in this case the center of mass is the center of the bar, i.e., σ = 1/2 in
which case f and J are familiar

f(1/2) = 0, J(1/2) =
1
12

m�2.

Another familiar choice is when r coincides with one of the extreme points
of the rod, say r = ni (σ = 0) so that

f(0) =
1
2
m�, J(0) =

1
3
m�2.
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Interestingly, for any rod with uniform mass distribution matrix J is positive
definite, i.e., J 
 0, regardless of σ. Indeed, for any σ ∈ [0, 1] the function J(σ)
has two imaginary roots so that

J(σ) > 0, m − f(σ)2

J(σ)
=

m

4 (1 − 3σ + 3σ2)
> 0 for all σ ∈ [0, 1].

Using the Schur complement [BGFB94] this implies J 
 0.

The matrix S = A−BC−1D is called a Schur complement of the matrix
P if either

P =
[
A B
D C

]
or P =

[
C D
B A

]
. (5.14)

Example 5.2

A mass distribution of interest is that comprised of a number of lumped
masses along the rod, i.e.,

ρ(μ) =
K∑

k=1

mkδ(μ − μk),

where
∑K

k=1 mk = m and mk > 0, μk ∈ [0, 1] for all k = 1, . . . ,K. The
quantities f and J , expressed as a function of σ, are

f(σ) = �
K∑

k=1

mk(μk − σ), J(σ) = �2
K∑

k=1

mk(μk − σ)2.

In this case

J(σ) > 0, m − f(σ)2

J(σ)
= m −

(∑K
k=1 mk(μk − σ)

)2

∑K
k=1 mk(μk − σ)2

≥ 0 for all σ ∈ [0, 1].

Note that for K > 1 and μk �= μj for at least one j �= k then m > f(σ)2/J(σ).
For instance, with K = 2

m − f(σ)2

J(σ)
=

�2m1m2(μ1 − μ2)2

J(σ)
> 0 for all μ1 �= μ2 and σ ∈ [0, 1],

in which case J 
 0.
In the absence of constraints to the rod kinematics, such as in class 1

tensegrity structures, we find it convenient to work with a configuration ma-
trix

Q =
[
r b

]
∈ R

3×2 (5.15)
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Figure 5.2: A single rod with three strings

as opposed to the configuration vector (5.8). Points on the rod can be de-
scribed simply as

v(η) = Q
[
1
η

]
. (5.16)

Compare the above with (5.9).

5.2.1 Nodes as Functions of the Configuration

In dynamics, the node vectors must be expressed as a function of the con-
figuration matrix Q or the configuration vector q. In the next sections we
focus on the configuration matrix Q. The configuration vector q will be con-
sidered when we deal with constrained rods in Section 5.4. One of the major
advantages of our approach is that the relationship between the configuration
matrix and nodes is linear for all tensegrity structures, as illustrated in the
next example.

Example 5.3

Consider the single rod pinned at one end with three strings as illustrated
in Figure 5.2. Let Q be as in (5.15). Because any node ni located in a rod is
computed through

ni = Q
[

1
ηi

]
, i = {1, 2},

where η1 = 0, η2 = �, we have that

N =
[
n1 · · · n5

]
= Q

[
1 1 0 0 0
0 � 0 0 0

]
+
[
0 0 n3 n4 n5

]
.

In general we should have

N = QΨT + Y, N,Y ∈ R
3×n, Ψ ∈ R

n×2, (5.17)

where Ψ ∈ R
n×2 and Y ∈ R

3×n are constant. The above expression is valid
even when more than one rod is considered (see Section 5.3).
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5.2.2 String Forces

Forces on the rod are due to the elongation of strings and ground reactions.
For simplicity, we assume that the strings are Hookean, as in Section 2.3,
and that they are firmly attached to nodes on the rods or on fixed space
coordinates. That is, strings are linear force elements with rest length l0i and
stiffness ki. The force vector of the ith string is

ti :=

{
0, ‖si‖ < l0i ,

−κi(‖si‖ − l0i )‖(si/‖si‖), ‖si‖ ≥ l0i ,
(5.18)

where si is a vector in the direction of the ith string. String vectors are linear
functions of the nodes of the structure. As in Sections 2.1 and 2.4, assembling
a matrix of string vectors and nodes

S =
[
s1 · · · sm

]
∈ R

3×m, N =
[
n1 · · · nn

]
∈ R

3×n, S = NCT
S ,

where the vector nk denotes the kth node in the structure and the string
connectivity matrix CS ∈ R

m×n, it follows that

T = −SΓ, F =
[
f1 · · · fn

]
= TCS = −NCT

SΓCS , (5.19)

where we made use of the diagonal matrix Γ which contains the force densities

γi := max{0, κi(‖si‖ − l0i )‖/‖si‖} (5.20)

on its diagonal, as in Sections 2.2 and 2.4. The matrix F is the matrix of
nodal forces.

5.2.3 Generalized Forces and Torques

Equations of motion will be written in terms of the configuration matrix or
vector, whereas the forces in the previous section are functions of the nodes.
Hence, one needs to express forces in terms of the configuration matrix or
vector coordinates. That is, one needs to compute generalized forces. As
shown at the end of the chapter and because of linearity of (5.17) the matrix
of generalized forces is computed as

FQ = −(QΨT + Y)CT
S ΓCS Ψ. (5.21)

A closer look at (5.21) reveals that

FQ =
[
fr fb

]
, fr =

n∑
i=1

fi, fb =
n∑

i=1

ηifi,

where fr is simply the sum of all forces applied to the rods and fb is related
to the sum of the torques on the rod. Indeed

b̃ fb =
n∑

i=1

τi, τi = ηib̃ fi.

This fact will be used next.
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5.2.4 Equations of Motion

Newtonian approach

In this section let us assume that r coincides with the location of the center
of mass of the rod. Then the translation of the center of mass is governed by
the equations of motion

m r̈ =
n∑

i=1

fi, (5.22)

where fi are external forces applied to the rod. Let τ =
∑n

i=1 τi be the torques
applied to the rod, assuming that the fixed point r is both the center of mass
and center of rotation. Then from Newton’s laws ḣ = τ , where h = J b̃ ḃ, so
that

ḣ = J
(˜̇b ḃ + b̃ b̈

)
= J b̃ b̈, (5.23)

where, for ease of notation, we have omitted the dependence of J on σ. We
shall do the same with respect to f from now on. Hence

J b̃ b̈ =
n∑

i=1

τi. (5.24)

We must add to these equations a constraint on the length of the rod,
(�b)T (�b) = �2, or simply bT b = 1, as described in (5.6). Differentiating this
constraint twice with respect to time yields

bT ḃ = 0, bT b̈ + ‖ḃ‖2 = 0. (5.25)

Equations (5.23) and (5.25) must be solved simultaneously for b̈. Note that
they are linear in the vector b̈, yielding the solution for b̈ (proof at the end
of chapter),

b̈ = −(‖ḃ‖/‖b‖)2 b −
n∑

i=1

J−1(b̃ τi)/‖b‖2. (5.26)

We also show at the end of the chapter that with the help of the projection
matrix

P(b) := I − (bbT )/‖b‖2, (5.27)

we can write
n∑

i=1

b̃ τi = −‖b‖2P(b) fb

to express the torques in the right-hand side of (5.26) in terms of the gener-
alized force fb =

∑n
1 ηifi so that,

b̈ = J−1P(b) fb − (‖ḃ‖/‖b‖)2 b. (5.28)
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Lagrangian approach

In Section 5.4 we will deal with tensegrity structures in which some or all the
rods may have kinematic constraints. In such structures it may be advanta-
geous to make r not coincide with the location of the center of mass of the
rod. In such cases, deriving the equations of motion using the momentum
approach of the previous section may be unnecessarily complicated. A sim-
pler approach is the use of energy methods, whose full potential we explore
in Section 5.4. In the present section we simply rederive the equations of the
previous section in order to introduce the reader to energy methods.

Consider the Lagrangian function

L = T − V − Jξ

2
(
bT b − 1

)
, (5.29)

where ξ is the Lagrange multiplier responsible for enforcing the constraint
that b must remain unitary (5.6) and V is some appropriately defined po-
tential function. Assume once again that r coincides with the location of
the center of mass of the rod, i.e., f = 0. Following standard derivations as
shown at the end of the chapter we arrive at the equations of motion

m r̈ = fr, J b̈ = fb − Jξb, bT b − 1 = 0, (5.30)

where fr and fb are the vector of generalized forces acting on the rod written
in the coordinates q (see Section 5.2.1).

The difficulty in (5.30) is not solving for b̈ (which can be done easily
because J > 0) but avoiding the explicit calculation of the Lagrange multi-
plier ξ. This can be overcome once again by using the constraint (5.6), as
shown in the notes at the end of the chapter, where it is found that

ξ = (‖ḃ‖/‖b‖)2 + J−1bT fb/‖b‖2. (5.31)

Substituting ξ on (5.30) produces the rotational equations of motion

b̈ = J−1P(b) fb − (‖ḃ‖/‖b‖)2b, (5.32)

where P(b) is the projection matrix (5.27). Not surprisingly, the above
equation is the same as the one previously obtained in (5.28).

5.3 Class 1 Tensegrity Structures

The equations of motion developed in the previous section can be extended
to cope with general class 1 tensegrity structures in a fairly straightforward
way. Instead of presenting a lengthy and detailed derivation of the equations
of motion for general class 1 tensegrity systems, we shall limit ourselves to
indicate what are the steps needed to be taken in order to undertake such
generalizations based on the material presented so far.
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Because in class 1 tensegrity structures no rods touch each other, there
exists no extra constraint that should be taken into consideration beyond the
ones already considered in Section 5.2. In fact, using the energy approach
all that needed to derive equations of motion for a class 1 tensegrity system
with K rods is to define the combined Lagrangian

L =
k∑

j=1

Lj ,

where each Lj is a Lagrangian function written for each rod j = 1, . . . , k as
in (5.29) and following the procedure outlined in Section 5.2.4 for enforcing
the individual rod constraints and deriving the equations of motion. With
that in mind define the configuration matrix

Q =
[
R B

]
∈ R

3×2k, (5.33)

where

R =
[
r1 · · · rk

]
, B =

[
b1 · · · bk

]
∈ R

3×k. (5.34)

Note that in the absence of constraints (5.17) is still valid provided an ap-
propriate matrix Ψ ∈ R

n×2k is constructed. Likewise, generalized forces are
easily computed using (5.21)

FQ =
[
FR FB

]
∈ R

3×2k, (5.35)

where

FR =
[
fr1 · · · frk

]
, FB =

[
fb1 · · · fbk

]
∈ R

3×k. (5.36)

The relationship between each column of FB and torques is the same as
provided in Section 5.2.1.

A surprisingly compact matrix expression for the resulting equations of
motion is possible by combining (5.30) and (5.31) as follows:

(Q̈ + QΞ)M = FQ, (5.37)

where

M = diag[m1, . . . ,mk, J1, . . . , Jk] (5.38)

is a constant matrix and

Ξ = diag[0, . . . , 0, ξ1, . . . , ξk], (5.39)

where ξj are Lagrange multipliers computed as in (5.31) for each individual
bar bj . The above discussion is summarized in the next theorem.
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Theorem 5.1 Consider an unconstrained class 1 tensegrity system with k
rigid fixed length rods. Define the configuration matrix (5.33)

Q =
[
R B

]
∈ R

3×2k,

where the columns of R describe the center of mass of the k rods and the
columns of B describe the rod vectors. The Ψ ∈ R

n×2k and Y ∈ R
3×n

are constant matrices that relate the n ≥ 2k nodes of the structure with the
configuration matrix through (5.17)

N = QΨT + Y, N,Y ∈ R
3×n, Ψ ∈ R

n×2.

The dynamics of such unconstrained class 1 tensegrity systems satisfy
(5.37)

(Q̈ + QΞ)M = FQ,

where

M = diag[m1, . . . ,mk, J1, . . . , Jk], Ξ = diag[0, . . . , 0, ξ1, . . . , ξk].

The Lagrange multipliers ξi, i = 1, . . . , k, are computed by

ξi = (‖ḃi‖/‖bi‖)2 + J−1
i bT

i fbi
/‖bi‖2, (5.40)

where fbi
are columns of the matrix FB which is part of the matrix of gen-

eralized forces

FQ =
[
FR FB

]
∈ R

3×2k,

which is computed by (5.21)

FQ = [W − (QΨT + Y)CT
S ΓCS ]Ψ,

where CS is the string connectivity matrix, and the external force acting on
node ni is wi, and the matrix of all such external forces is

W =
[
w1 w2 · · · w2k

]
. (5.41)

By parametrizing the configuration in terms of the components of vec-
tors, the usual transcendental nonlinearities involved with the use of angles,
angular velocities, and coordinate transformations are avoided. Indeed, the
absence of trigonometric functions in this formulation leads to a simplicity in
the analytical form of the dynamics. This might facilitate more efficient nu-
merical solutions of the differential equations (simulations) and the design of
control laws. Actually, the simplicity of the structure of these equations (5.37)
is partly due to the use of the matrix form and partly due to the enlarged
space in which the dynamics are described. The actual degrees of freedom for
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each rod is 5, whereas the model (5.37) has as many equations as required for
6 degrees of freedom for each rod. That is, the equations are a non-minimal
realization of the dynamics. The mathematical structure of the equations are
simple, however. This will allow much easier integration of structure and
control design, since the control variables (string force densities) appear lin-
early, and the simple structure of the nonlinearities can be exploited in later
control investigations.

Example 5.4

Consider the tensegrity prism depicted in Figure 5.3. This structure has 6
nodes, 3 rods, and 12 strings. Let the node matrix be

N =
[
n1 n2 n3 n4 n5 n6

]
,

where each pair of nodes is a pair of bottom and top nodes on a rod. That is,

B =
[
�−1
1 (n1 − n2) �−1

2 (n3 − n4) �−1
3 (n5 − n6)

]
.

Assuming that the mass mj of the jth rods is uniformly distributed then the
center of each rods is its center of mass

R =
1
2
[
n1 + n2 n3 + n4 n5 + n6

]
.

The nodes can be retrieved from the configuration matrix Q =
[
R B

]
through

(5.17) with

Ψ =
[

1 1 1 1 1 1
�1/2 −�1/2 �2/2 −�2/2 �3/2 −�3/2

]
,

and, because of the uniform mass distribution and the choice of R, we have that
fj = 0 and

Jj =
1
12

mj�
2
j , j = {1, 2, 3}.

The string connectivity is

CS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0
0 0 1 0 −1 0
−1 0 0 0 1 0
0 1 0 −1 0 0
0 0 0 1 0 −1
0 −1 0 0 0 1
0 1 −1 0 0 0
0 0 0 1 −1 0
−1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With this information one can write the equations of motion (5.37).
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Figure 5.3: A class 1 tensegrity prism with 3 rods and 12 strings

5.4 Constrained Class 1 Tensegrity Structures

We now consider class 1 tensegrity structures in which nodes in some of
the rods may have linear kinematic constraints due to its interaction with
the environment. Still no rods touch each other. In such cases, it may be
advantageous to work with a reduced configuration vector as opposed to our
oversized configuration matrix Q, since the latter might not be well defined,
as in the next example.

Example 5.5

Let the z-coordinate of node r = v(0) of Example 5.3 be constrained to stay
at xy-plane, i.e., rz = 0. Define the reduced configuration vector

q =

⎛
⎝rx

ry

b

⎞
⎠ .

In this case, the relationship between the configuration vector q and the
nodes is of the form

n = Φq + y. (5.42)

Note that when (5.17) holds then (5.42) is obtained from (5.17) by vectoriza-
tion with n = vecN, y = vecY, and Φ = Ψ ⊗ I3. In general, Φ �= Ψ ⊗ I3,
as in the next example. As shown at the end of the chapter, with external
forces wi added to each node (where the total external vector of forces is w),
generalized forces are computed as

fq = ΦT w − ΦT
(
CT

S ΓCS ⊗ I3

)
(Φq + y) . (5.43)
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Example 5.6

Consider the reduced configuration vector of Example 5.5. For the same
configuration of strings as in Example 5.3 we have

Φ =

⎡
⎢⎢⎢⎢⎣
E 0
E � I3

0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦ , E =

[
I2

0

]
, y =

⎡
⎢⎢⎢⎢⎣

0
0
n3

n4

n5

⎤
⎥⎥⎥⎥⎦ . (5.44)

Note that Φ �= Ψ ⊗ I3.

5.4.1 Single Constrained Rigid Rod

Let r = v(σ) for some σ ∈ [0, 1] be a fixed point in the rod which may not
coincide with the rod’s center of mass and is subject to the linear constraint

Dr = r̄, (5.45)

where r = rank(D) < 3 and r̄ ∈ R
r constant. Let E ∈ R

3×(3−r) be an
orthonormal matrix, i.e., ET E = I, such that DE = 0. Then all solutions to
(5.45) are parametrized by

r = D†r̄ + Ez, (5.46)

where z ∈ R
3−r. Define the reduced configuration vector

q =
(

z
b

)
. (5.47)

Example 5.7

In Example 5.5 we have r = v(0) with

D =
[
0 0 1

]
, r̄ = 0.

Then

D† =

⎡
⎣0

0
1

⎤
⎦ , E =

[
I2

0

]
.

The particular case when r = rank(D) = 3 is handled by defining the
reduced configuration vector as
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q = b, (5.48)

because r = D−1r̄ is simply a constant.
The above discussion also provides clues on how to compute matrices Φ

and y in Section 5.2.1. For instance, after one has computed Ψ and Y such
that

N = QΨT + Y,

where Q is the “non-reduced” configuration matrix (5.15), it becomes clear
that n and q should be related through (5.42) where

Φ = (Ψ ⊗ I3)
[
E 0
0 I3

]
, y = vecY + (Ψ ⊗ I3)

(
D†r̄
0

)
,

because

vecQ =
[
r
b

]
=
[
D†r̄ + Ez

b

]
=
[
E 0
0 I3

]
q +

(
D†r̄
0

)
.

Equations of motion

Since r may not be the center of mass, the equations of motion are expected
to be more complex than the ones seen so far. This is justified by the extra
work that is required to handle the constraint (5.6). As shown at the end of
the chapter, the equations of motion for a single constrained rod are of the
form

M(q) q̈ + g(q, q̇) = H(q) fq, (5.49)

where

M(q) :=
[
m I − f2J−1ET P(b)E 0

fJ−1P(b)E I

]
,

H(q) :=
[
I −fJ−1ET P(b)
0 J−1P(b)

]
,

g(q, q̇) := (‖ḃ‖/‖b‖)2
(
−f ET b

b

)
. (5.50)

When dealing with equations of motion of the form (5.49) an issue that arises
is that of solving for q̈ as a function of q and q̇. This is indeed the case in
most cases of interest where J is positive definite due to the following lemma
which is proved at the end of the chapter.

Lemma 5.1 Let J and M(q) be defined by (5.11) and (5.50), respectively.
If J 
 0 then M(q) is nonsingular for all q such that ‖b‖ = 1.
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5.4.2 General Class 1 Tensegrity Structures

The equations of motion developed in the previous section can be generalized
to cope with general constrained class 1 tensegrity structures as done in
Section 5.3.

After defining local configuration vectors qj , j = 1, . . . ,K, we can follow
the derivations in the previous section and arrive at the system of differential
equations of the form (5.49), that is,

Mj(qj) q̈j + gj(qj , q̇j) = Hj(qj) fqj
, j = 1, . . . , K, (5.51)

where Mj , gj , and Hj are as defined in (5.50) for the jth rod.

Example 5.8

Consider again the tensegrity prism of Example 5.4 depicted in Figure 5.3.
As before, the mass of the three rods is assumed to be uniformly distributed but
this time rj = v(0), for all j = {1, 2, 3},

σj = 0, =⇒ fj =
1
2
mj�j , Jj =

1
3
mj�j , j = {1, 2, 3},

that is, the vectors rj all point to one extreme node of each rod. Now set r1

to be the origin (r1 = 0) and consider that nodes r2 and r3 be constrained as
in (5.45) and (5.46) with

r̄2 = 0, D2 =
[
0 0 1

]
, E2 =

⎡
⎣1 0

0 1
0 0

⎤
⎦ ,

r̄3 =
(

0
0

)
, D3 =

[
1 0 0
0 0 1

]
, E3 =

⎡
⎣0

1
0

⎤
⎦ .

The above matrices reflect the fact that the z-coordinate of the bottom node of
the second rod (r2) is set to zero, i.e., it is free to move only in the xy-plane;
and the x- and z-coordinates of the bottom node of the third rod (r3) are set to
zero, i.e., it can move only on the y-axis. This set of six constraints eliminates
the six rigid body modes of the structure. The configuration vector of the system
q ∈ R

12 is then q = (b1, z2,b2, z3,b3).

With the data on the above example one can construct the equations of
motion (5.51) with the exception of the generalized force vector fqj

, which
should be computed using (5.43) and the data in the following example.

Example 5.9

For the same tensegrity prism depicted in Figure 5.3 of Examples 5.4 and 5.8
let the node matrix N ∈ R

3×5 be

N =
[
n1 n2 n3 n4 n5

]
,
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with connectivity matrix

CS =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 −1 −1 −1 −1 0 0 0 0
1 0 0 0 1 0 0 0 −1 −1 0 0
0 1 0 0 0 1 0 0 0 0 −1 −1
0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎦

T

∈ R
12×5,

and the matrix

Φ =

⎡
⎢⎢⎢⎢⎣

�1I 0 0 0 0
0 E2 0 0 0
0 E2 �2I 0 0
0 0 0 E3 0
0 0 0 E3 �3I

⎤
⎥⎥⎥⎥⎦ ∈ R

15×12.

Vector y ∈ R
15 is equal to zero.

5.5 Chapter Summary

The equations of motion for any tensegrity system composed of rods and
strings are provided in simple form, to make computation and control design
easier. One might argue that the absence of simple equations for the dynamics
of tensegrity systems has been a limiting factor to the acceptance of tensegrity
in engineering practice.

Axially loaded elements (rods and strings) are used throughout. Two
kinds of constraints are treated in the dynamics. The length of rods are con-
stant, and position of any node may be fixed. The main contributions of the
chapter include both energy and Newtonian approaches, constrained and un-
constrained systems, non-minimal realizations of the constrained dynamics,
and finally a new matrix form of the equations in Theorem 5.1.

To obtain equations that are efficient for dynamic simulation, with con-
straints, there are many debates about which method is more efficient. Here
the energy and the Newtonian derivations produce the same equations. This
is done without using the classical angular velocity vector, since in our case
where a 5 DOF system is modeled by 6 DOF (non-minimal equations), the
angular velocity about the long axis of a rod is undefined. By using the vec-
tor along the rod as a generalized coordinate, the final equations are devoid
of the transcendental functions that complicate the form of the dynamics.
Putting these equations in matrix form allow the mathematical structure of
the equations to be extremely simple. The motivation for seeking simple
structure of the equations is the hope that control laws can be found to ex-
ploit the known simple structure of the dynamic model. This hope is high
enough, we believe, to justify the non-minimality of the equations. Quite
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often in mathematics the minimal number of equations are often the most
complex in form.

The constraints are treated with and without the use of Lagrange multipli-
ers. Without Lagrange multipliers it is shown that the correct equations are
obtained by linear algebra, to obtain a least squares solution which enforces
the constraints.

The distribution of members and forces are characterized as networks,
where efficient matrix methods simplify the description of forces and connec-
tions. A connectivity matrix is introduced that characterizes the topology
of all rod to string connections. These network equations, together with a
simple characterization of the dynamics of a rigid body, allow efficient forms
for the final equations.

By using force densities as the input variable (later to be the control
variable) the final equations of motion for the general nonlinear tensegrity
system has a bilinear structure (equations are nonlinear in the generalized
coordinates, but linear in the string force densities). This will offer great
advantage in control design.

5.6 Advanced Material

5.6.1 Dynamics of a Single Rigid Rod

Most of the quantities defined in Section 5.2 can be visualized directly from
Figure 5.1, from where (5.9) follows. The kinetic energy formula comes
from (5.9) after expanding

T =
1
2�

∫ (1−σ)�

−σ�

ρ(σ + η/�) (ṙT ṙ + 2η ṙT ḃ + η2 ḃT ḃ) dη =
1
2

q̇T (J(σ) ⊗ I) q̇.

Likewise, the angular momentum formula follows from

h = �−1

∫ (1−σ)�

σ�

ρ(σ + η/�) η2 (b̃ ḃ) dη = J b̃ ḃ.

Generalized forces and torques

The matrix of generalized forces (5.21) is obtained after analyzing the work
produced by the matrix of nodal forces W + F, where W is the matrix of
external forces and F is the matrix of internal string forces (that is, the ith
column of W summed with the ith column of F is the total force vector
acting on node ni). Hence, from string connectivity, F = −NCT

SΓCS , and
for an infinitesimal matrix displacement ΔN

trace((W + F)T ΔN) = trace(ΔN)T (W + F) = traceΔT
N(W−NCT

SΓCS).
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Recalling that N = QΨT + Y so that ΔN = ΔQΨT , then

traceΔT
N(W + F) = traceΨΔT

Q(W − NCT
SΓCS) = traceΔT

QFQ,

where FQ = (W − NCT
SΓCS)Ψ = (W − (QΨT + Y)CT

SΓCS)Ψ. In the
absence of external forces, expression (5.43) follows from vectorization:

fq =
(
ΨT ⊗ I3

)
w −

(
ΨT CT

S ΓCS ⊗ I3

)
((Ψ ⊗ I3)q + y) ,

and using Φ = Ψ ⊗ I3.

Equations of motion

Newtonian approach The two equations that describe the constrained
system are

J b̃ b̈ = τ, φ = bT b − 1 = 0. (5.52)

Here we will completely ignore the original constraint φ = 0 and its first
derivative, φ̇ = 0, but we will honor the second derivative of the constraint
φ̈ = 0. Assembling these into a single equation yields[

b̃
bT

]
b̈ =

[
J−1τ

−‖ḃ‖2

]
. (5.53)

The task of solving (5.53) for b̈ is simply a linear algebra problem. Uniqueness
of the solution is guaranteed by linear independent columns of the matrix
coefficient of b̈. We prove this linear independence by noting that[

b̃
bT

]T [
b̃
bT

]
= ‖b‖2I.

The above identity can be expanded to provide an expression for the square
of a skew-symmetric matrix

b̃2 = bbT − bT bI = −P(b)‖b‖2, (5.54)

in terms of the projection matrix (5.27).
Next we use the properties of the unique Moore–Penrose inverse [SIG98]

to conclude that the unique Moore–Penrose inverse of the coefficient matrix
of the left-hand side of (5.53) is[

b̃
bT

]+
=
[
−b̃ b

]
/‖b‖2.

Using this fact and τ = b̃
∑n

i ηifi = b̃ fb, the unique solution of (5.53) is

b̈ = −J−1b̃ τ/‖b‖2 − b(‖ḃ‖/‖b‖)2

= J−1P(b) fb − b(‖ḃ‖/‖b‖)2,

where we have used (5.54).



5.6. Advanced Material 177

Lagrangian approach From the Lagrangian function (5.29) and with the
assumption that f = 0 the equations of motion of the rod are given by

m r̈ =
d

dt
∂ṙL = ∂rL = fr,

J b̈ =
d

dt
∂ḃL = ∂bL = fb − Jξb, (5.55)

0 = 2J−1∂ξL = bT b − 1. (5.56)

Now multiply (5.55) by bT on the left and differentiate (5.56) twice with
respect to time to obtain

J bT b̈ = bT fb − Jξ‖b‖2, bT b̈ + ‖ḃ‖2 = 0,

from where

ξ = (‖ḃ‖/‖b‖)2 + J−1bT fb/‖b‖2.

Equation (5.32) follows after substituting ξ into (5.55) and using the defini-
tion of the projection matrix (5.27). Hence, the final form of the equations
of motion is

m r̈ = fr,

J b̈ = P(b)fb − J(‖ḃ‖/‖b‖)2b. (5.57)

Note that the two terms on the right-hand side of (5.57) are orthogonal to
each other. This feature is expected to lend some efficiency to the numerical
simulations, although we have not tried to quantify this.

5.6.2 Constrained Class 1 Tensegrity Structures

Note that when Φ �= Ψ ⊗ I3 one should compute the vector of generalized
forces fq using the vectorial version of the principle of virtual work

δT
n f = δT

q tq,

after recalling that n = Φq + y so that δn = Φδq and consequently

δT
n f = δT

q ΦT f = δT
q tq,

where

tq = ΦT f = −ΦT (CT
SΓCS ⊗ I3)(Φq + y),

which is (5.43).
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Single constrained rigid rod

Here is a proof that M(q) is nonsingular when J 
 0. Matrix M(q) is block
lower-triangular; therefore, it is nonsingular whenever its diagonal blocks are
nonsingular. In this case this means that M(q) is nonsingular if and only if
its first diagonal block

Σ := m I − f2J−1ET P(b)E

is nonsingular. Recall that q ∈ Q implies b �= 0 so that P(b) is well defined
and that E is an orthonormal constant matrix, that is, it is full column rank
and ET E = I. Therefore,

Σ = ET ΘE, Θ := (m − f2J−1)I + f2J−1bbT /‖b‖2.

Because J 
 0 we have that J > 0 and m > f2J−1 ≥ 0. Therefore,

Θ � (m − f2J−1)I 
 0 =⇒ Σ = ET ΘE 
 0.

Hence M(q) is nonsingular.
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