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The non-flavonoid phenolic constituents in wine are divided into hydroxybenzoic
acids and hydroxycinnamic acids, volatile phenols, stilbenes and miscellaneous
compounds (e.g. lignans and coumarins). Although non-colored, the non-flavonoid
constituents are known to enhance and stabilize the color of red wines by intra- and
intermolecular reactions. They furthermore contribute to wine flavor (volatile phe-
nolic acids) and some of them (e.g. resveratrol) exhibit potent biological activities.

9C.1 Phenolic Acids

9C.1.1 Hydroxybenzoic Acids (HBA)

Being derived from benzoic acid, hydroxybenzoic acids are characterized by a C6-
C1 skeleton (Fig. 9C.1). The most common derivatives found in wine are gallic acid,
gentisic acid, p-hydroxybenzoic acid, protocatechuic acid, syringic acid, salicylic
acid, and vanillic acid. In wine the different hydroxybenzoic acids can be mainly
found in their free form (Drawert et al. 1974; Fernandéz de Simon et al. 1992;
Garcia-Viguera and Bridle 1995; Güntert et al. 1986; Monagas et al. 2005a,b; Peña-
Neira et al. 2000; Pozo-Bayón et al. 2003; Salagoı̈ty-Auguste and Bertrand 1984;
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Fig. 9C.1 Structures of hydroxybenzoic acids in wine

Vanhoenacker et al. 2001). Gallic acid is one of the HBA with the highest con-
centrations in wine. It not only originates from the grape itself but is also formed
by hydrolysis of hydrolyzable and condensed tannins, i.e. the gallic acid esters of
flavan-3-ols.

The levels of HBA in wine show great variability depending on grape variety
and growing conditions. Pozo-Bayón et al. (2003) reported values between 0.3 and
1.3 mg/L for gallic acid in Spanish sparkling wines from white and red grapes,
respectively. For protocatechuic acid the values were between 0.5 and 0.93 mg/L,
while the concentrations for p-hydroxycinnamic acid were in the range of 0–0.22
mg/L. Peña-Neira et al. (2000) detected concentrations of gallic acid in wine from
La Rioja with up to 2.29 mg/L while Sladkovský et al. (2004) reported concentra-
tions of 4.8 mg/L in tawny port. In a study that evaluated the effect of certain yeast
strains during malolactic fermentation on non-flavonoid polyphenols in red wine
from La Rioja (Hernández et al. 2007) the authors report a gallic acid concentration
of up to 41.6 mg/L. However, in comparison to the group of hydroxycinnamic acids,
the overall concentration of HBAs in wine is relatively low.

Among the derivates of HBAs, further compounds have been identified. Güntert
et al. (1986) identified ethyl esters of vanillic acid and p-hydroxybenzoic acid, and
methyl esters of vanillic acid and protocatechuic acid. Ethyl esters of protocate-
chuic acid and vanillic acid, as well as the glucose ester of vanillic acid, were
isolated from a German Riesling wine (Baderschneider and Winterhalter 2001).
Analytically, HBA are mostly determined as trimethylsilane derivatives by using
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gas chromatographic analysis. A good overview on analytical methods as well as
mass spectrometric data is given by Monagas et al. (2005b).

9C.1.2 Hydroxycinnamic Acids (HCA)

Hydroxycinnamic acids possess a C6-C3 skeleton and formally belong to the
group of phenylpropanoids. The different compounds present in wine are mainly
derived from the hydroxycinnamic acids caffeic acid, p-coumaric acid, ferulic acid,
and sinapic acid (Fig. 9C.2). These derivatives can be present in cis- and trans-
configured forms, while the trans forms are more stable and therefore more preva-
lent. In wine HCA are present in low amounts in their free form, while the depside
forms, i.e. esters of l-(+)-tartaric acid, are predominant. The ubiquitous chlorogenic
acids, esters of HCA and quinic acid, cannot be found in wine but are replaced by
the tartaric acid esters instead (Ong and Nagel 1978; Singleton et al. 1978; Somers
et al. 1987).

Among the hydroxycinnamic acids, caftaric acid predominates (up to 50% of
total hydroxycinnamic acids). Other important substances are the tartaric esters
of p-coumaric acid and ferulic acid, and the trans-p-coumaric glucoside (Somers
et al. 1987). The concentration levels of hydroxycinnamic acid derivatives in wine
depend on many factors like grape variety, growing conditions, climate, etc. It is
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Fig. 9C.2 Structures of hydroxycinnamic acids in wine
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therefore not surprising to find great differences in the concentrations published
for different wines. In general, concentrations around 100 mg/L are described. For
p-coutaric and fertaric acid the values are around 55 mg/L and 16 mg/L, respectively
(Andres-Lacueva et al. 1996; Baldi et al. 1993; Boursiquot et al. 1986; Cheynier
et al. 1989; Herrick and Nagel 1985; Herrmann 1989; Lao et al. 1996; Lee and
Jaworski 1989; Okamura and Watanabe 1981; Ricardo-da-Silva et al. 1993; Sin-
gleton et al. 1978; Singleton et al. 1986). While in juices and young wines the
content of free hydroxycinnamic acids is very low, an increase can be observed
during storage. The tartaric esters are hydrolyzed and give rise to free forms of
HCAs (Andres-Lacueva et al. 1996; Betés-Saura et al. 1996; Somers et al. 1987;
Würdig and Woller 1989).

Betés-Saura et al. (1996) reported a loss of 27% of hydroxycinnamates during
vinification in white wines from Penedès (46.76 mg/L in juices vs 34.07 mg/L in
wine). With a share of around 73% of total phenolics, hydroxycinnamates were
the most important group of phenolics in these white wines. Among them trans-
caftaric acid was the major phenol with values between 10 and 13 mg/L. Okamura
and Watanabe (1981) gave an overview of the concentrations of caftaric, coutaric,
caffeic, and coumaric acid in commercial white wines. Average values were 23.0,
5.0, 0.9, and 0.7 mg/L for Semillon wines (Bordeaux), 29.0, 10.0, 1.7, and 0.9 mg/L
in Chardonnay (California), 112.0, 53.0, 3.1, and 2.1 mg/L for Koshu wine (Japan),
and 51.0, 13.0, 4.1, and 2.9 mg/L for Riesling wine (Germany).

There are also reports of numerous derivatives of HCAs occurring during aging.
Apart from tartaric esters, ethyl esters of caffeic acid and coumaric acid, as well
as ethyl esters and diethyl esters of caftaric acid were detected and character-
ized (Baderschneider and Winterhalter 2001; Somers et al. 1987). Also described
were the 4-O-glucosides of ferulic acid and coumaric acid, the glucosides of
caffeic acid, coumaric acid, ferulic acid, and sinapic acid (Baderschneider and
Winterhalter 2001; Cooper and Marshall 2001; Monagas et al. 2005a). Cheynier
et al. (1986) demonstrated that the reaction product of caftaric acid and glutathione,
2-S-glutathionylcaftaric acid, is the major phenolic product formed by enzymatic
oxidation. This colorless product that is also called “grape reaction product (GRP)”
is considered as a measure to estimate the oxidation and browning potential of grape
musts. High GPR levels were reported to correlate with a lower sensitivity to brown-
ing reactions (Rigaud et al. 1991).

Additionally, hydroxycinnamates are important constituents of acylated antho-
cyanins. In red wine, the 6-O-coumaroylglucosides and caffeoylglucosides are com-
mon constituents (Mazza and Miniati 1993). In the authenticity control of red wine
the relation of acetylated and coumaroylated anthocyanins can be used for the
assessment of the grape variety (Holbach et al. 2001; Otteneder et al. 2002).

9C.1.2.1 Reactions of Hydroxycinnamic Acids with Anthocyanins

Hydroxycinnamic acids take part in numerous reactions that occur during wine-
making and wine aging. They are important compounds in oxidation processes
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of wine. During storage oxygen reacts over a coupled oxidation with vicinal di-
and trihydroxyphenols, like caffeic acid, to produce the corresponding chinones
(Singleton 1987; Wildenradt and Singleton 1974) The subsequent reactions result
in the oxidation of ethanol to acetaldehyde, which has been shown to take part in
condensation reactions between the wine polyphenols, such as anthocyanins and
flavan-3-ols (Dallas et al. 1996a, b; Es-Safi et al. 1999; Fulcrand et al. 1996b; Rivas-
Gonzalo et al. 1995; Santos-Buelga et al. 1995) forming a great variety of new,
partly ethyl-linked, pigments (Dallas et al. 1996a, b; Es-Safi et al. 1999; Fulcrand
et al. 1996b; Rivas-Gonzalo et al. 1995; Santos-Buelga et al. 1995; Timberlake and
Bridle 1976). The oxidation of hydroxycinnamates also contributes to the browning
of white wines during aging (Cheynier et al. 1990; Cilliers and Singleton 1990).
The browning effect seemed to correlate with the oxidation of caffeic acid although
it was shown that the effect of catechin was far greater than that of hydroxycinnamic
acids (Okamura and Watanabe 1981).

The color of red wine is also strongly influenced by the presence of
hydroxycinnamic acids. They play an important role in the phenomenon of copig-
mentation which describes the color intensification of anthocyanin solutions by
the presence of other phenolic compounds (Baranac et al. 1996; Darias-Martı́n
et al. 2002; Dimitric Markovic et al. 2000, 2005; Miniati et al. 1992). The inten-
sification and the observed bathochromic shift of color are due to two main mech-
anisms, the intermolecular and the intramolecular copigmentation. Intermolecular
copigmentation describes the stabilization of flavylium cations of anthocyanins by
copigments over -complexes between different molecules. Intramolecular copig-
mentation can occur for example in the case of anthocyanins acylated with hydrox-
ycinnamic acids (sandwich type) (Figueiredo et al. 1999). A summary of copigmen-
tation effects in red wine is given by Boulton (2001).

Another important reaction of hydroxycinnamic acids with anthocyanins is the
formation of pyranoanthocyanins (Rentzsch et al. 2007b). These pigments are
formed by direct reaction of hydroxycinnamic acids and their corresponding vinyl-
phenols with anthocyanins present in red wine (Fig. 9C.3) (Fulcrand et al. 1996a;
Hayasaka and Asenstorfer 2002; Håkansson et al. 2003; Sarni-Manchado et al. 1996;
Schwarz et al. 2003). While in young wines the reaction of the vinylphenols is
predominating, due to an enzymatic decarboxylation of coumaric and ferulic acid,
during storage the share of direct reaction products of caffeic acid becomes more
important (Rentzsch et al. 2007a; Schwarz et al. 2004). It was shown that caffeic
and sinapic acid are not decarboxylated to their vinylphenols by yeast activity (Cha-
tonnet et al. 1993); instead the formation of pyranoanthocyanis takes place over the
direct reaction of caffeic acid, sinapic acid and anthocyanins. Schwarz et al. (2003)
described the pathway of formation of hydroxyphenyl-pyranoanthocyanins over
direct reaction with hydroxycinnamates. The stabilization of an intermediated car-
benium ion structure by electron donating substituents on the aromatic ring of
hydroxycinnamic acids is essential for the formation of these new pigments. Among
the hydroxycinnamic acids, sinapic acid showed the fasted reaction followed by caf-
feic acid and ferulic acid. Coumaric acid exhibited the slowest reactivity. However,
due to the high concentration of coumaric acid and caffeic acid in red wine, the
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hydroxyphenyl-pyranoanthocyanins resulting from these precursors are predomi-
nant. An overview on pyranoanthocyanins is given by Rentzsch et al. (2007b).

9C.2 Volatile Phenols

The volatile phenols possess the lowest concentration among the phenolic com-
pounds in wine. However, due to their odor activity they have a great influence on
the sensory characteristics of wine. Two sources for volatile phenols can be dis-
tinguished. One is the enzymatic formation from precursors present in wine and
the other origin is due to migration from wood during barrel maturation. Among the
volatile phenols, the vinyl and ethyl phenols play the most important role. Emerging
from the decarboxylation of hydroxycinnamic acids, these compounds are responsi-
ble for off-flavors of wines. Vinylphenols exhibit unpleasant odors. With thresholds
of between 420 
g/L for a 10/1 mixture of 4-vinlyphenol and 4-vinylguaiacol in
white wine and 720 
g/L for a 1/1 mixture of the ethyl-phenols in red wine, these
compounds can easily spoil the wine. As reported by Chatonnet et al. (1989), the
yeast Saccharomyces cerevisiae can only decarboxylate coumaric and ferulic acid.
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More potent yeasts responsible for spoilages of wines with volatile phenols are of
Brettanomyces/Dekkerra type that can produce the vinyl phenols and ethyl phenols
of hydroxyl cinnamic acids. Ribéreau-Gayon et al. (2000) give an overview on this
topic. Another source of volatile phenols is the oak wood of barrel and oak chips.
These phenols are characterized by smoked and toasted aromas. Important volatile
phenols in wine are depicted in Fig. 9C.4.

9C.3 Stilbenes

Stilbenes are a subclass of phenolic compounds naturally occurring in various fami-
lies of plants, but grapes and wine are considered the most important dietary sources
of these substances (Guebailia et al. 2006). Stilbenes can be biosynthesized by
grapevines as a defence response to stress, such as microbial infection and UV irra-
diation, and they are transferred during the winemaking process into the must and
wine. Due to their antioxidative, anticarcinogenic and antimutagenic potency, stil-
benes are considered to play a central role in the human diet (Buiarelli et al. 2007).
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Stilbenoids are derived from cinnamic acid and three acetate units from mal-
onyl coenzym A. The first part of the biosynthesis is in common to flavonoids. The
two biosynthetic routes are diverging at the point of cyclization of a styryl-3,5,7-
triketoheptanoic acid. A C-acylation produces a chalcone and subsequent modi-
fications lead to the flavonoids. An aldol condensation of the same intermediate
polyketide produces a stilbene-2-carboxylic acid that is unstable and constitutes a
range of structures known as stilbenoids. Figure 9C.5 shows an overview of the
biosynthetic pathway (Gorham 1995).

One of the most relevant and extensively studied stilbene is trans-resveratrol
(3,5,4’-trihydroxystilbene), a phytoalexin produced by grapevines in response to
fungal infection, particularly Botrytis cinerea. Synthesis of resveratrol in grape
berries is mainly located in the skin cells and is absent or low in the fruit flesh.
In nature, resveratrol exists in two isomeric forms (cis- and trans-configured) in the
free as well as in ß-glucoconjugated form. The 3-O-ß-D-glucosides of cis- and trans-
resveratrol cis-and trans-configured are called piceids. The chemical structures of
resveratrol and further stilbenes are depicted in Fig. 9C.6.

Stilbenes can also occur in oligomeric and polymeric forms, so-called viniferins.
They are induced by oxidative polymerization of the monomer resveratrol through
the activity of a peroxidase (Jean-Denis et al. 2006). Figure 9C.7 shows the biosyn-
thesis of trans-ε-viniferin.

Numerous stilbenes such as ε-viniferin (Landrault et al. 2002) and δ-viniferin,
two resveratrol dehydrodimers (Vitrac et al. 2005), the resveratrol dimer pallidol
(Vitrac et al. 2001), α-viniferin, a trimer of resveratrol (Pryce and Langcake 1977)
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and the resveratrol tetramer hopeaphenol (Guebailia et al. 2006) have
been identified in grapevine and wine. In addition, some oligomeric glucosides like
cis- and trans-ε-viniferin diglucosides and pallidol-3-3′′-diglucoside could be iso-
lated and characterized from Riesling wine (Baderschneider and Winterhalter 2000).

The content of stilbenes in wine varies considerably and depends on several fac-
tors including climate, grape variety, fungal infections (Perrone et al. 2007; Jeandet
et al. 1995), UV light, heavy metal ions (Püssa et al. 2006) and enological methods
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(Cantos et al. 2003; Gambuti et al. 2004). It is also influenced by yeast enzymatic
activities, in particular those of isomerase and glucosidase (Jeandet et al. 1994).
Equally, activities of lactic acid bacteria, which are responsible for malolactic fer-
mentation (Hernández et al. 2007), can also affect stilbene content in wine (Poussier
et al. 2003). Aging of wine appears to have no important influence on the concen-
tration of stilbenes (Jeandet et al. 1995).

Red wines usually contain higher stilbene concentrations than rosé or white
wines. This depends on the more prolonged skin contact of the must during fer-
mentation and the high phenolic content of red grape cultivars (Perrone et al. 2007).

Free trans- and cis-resveratrols are present in a concentration range of
0.2–13 mg/L in red wines and 0.1–0.8 mg/L in white wines. Consistently, high
concentrations of trans-resveratrol are obtained in wines from Pinot noir. On the
one hand, Cabernet Sauvignon wines cover a wide range of concentrations, with
relatively high values in those from cool-climate countries such as Ontario and the
Bordeaux region of France, whereas, on the other hand, wines from warmer climates
like California, South America, and Australia tend to have much lower concentra-
tions. In comparison to wine, grape juice offers a content of trans-resveratrol in a
range of 0.09–0.18 mg/L (Stecher et al. 2001).

For piceid, the resveratrol-3-O-glucoside, concentrations are reported to be in a
range of 0.3–9 mg/L in red and 0.1–2.2 mg/L in white wines (Goldberg et al. 1995,
1996a, b; Lamuela-Raventós et al. 1995; Sato et al. 1997; Naugler et al. 2007;
Romero-Pérez et al. 1996). In Portuguese red wines piceids were even determined in
concentrations up to 68 mg/L (Ribeiro de Lima et al. 1999). In comparison to wine,
grapes were found to contain mainly trans-resveratrol glucoside in concentrations
ranging from 1.5 to 7.3 
g/g (Burns et al. 2002).

In a survey of commercial wines from the South of France, levels of pallidol and
viniferin have been reported. Viniferin was found to be present in red and botrytized
sweet white wines with levels between 0.1 and 1.63 mg/L. Pallidol was not found in
dry and sweet white wines but only in wines made by maceration with stems, with
levels between 0.38 and 2.22 mg/L (Landrault et al. 2002).

In addition, Guebailia et al. (2006) have investigated the concentration of hopea-
phenol in North African wines. Ksarwine presented the highest concentration of
hopeaphenol (3.8 mg/L), followed by Muscat (3.06 mg/L), Guerrouane (2.68 mg/L),
Merlot (2.1 mg/L), Cabernet Sauvignon (1.48 mg/L), Sidi-Brahim (0.61 mg/L),
Amjad (0.34 mg/L), and Gris d’Algérie (0.3 mg/L).

Since Siemann and Creasy (1992) described the presence of trans-resveratrol in
wines, many different methods have been developed to determine this compound
and its derivatives (Romero-Pérez et al. 1996). Various methods use RP18-HPLC
and gradient elution with UV detection (Lamuela-Raventós et al. 1995; Naugler
et al. 2007; Ribeiro de Lima et al. 1999; Vitrac et al. 2005).

Trans-configured stilbenes such as trans-resveratrol, trans-pterostilbene and
trans-ε-viniferin show two characteristic bands corresponding to high absorbances
from 308 to 336 nm and from 281 to 313 nm. Cis-configured stilbenes like cis-
resveratrol, cis-pterostilbene and cis-ε-viniferin exhibit a UV maximum at 285nm
(Jeandet et al. 1997).
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In addition, stilbenes are fluorescent compounds which are easily detected by flu-
orometry. For resveratrol, fluorescence detection is highly selective and even twice
as sensitive as UV detection (Stecher et al. 2001). Due to this potential, methods
by using HPLC coupled with absorbance and fluorescence detection were devel-
oped (Jeandet et al. 1997; Vitrac et al. 2002). Otherwise identification of stilbenes
in wine by HPLC-DAD can be limited by coelution of two or more compounds.
Therefore application of modern mass-spectrometry techniques is important to con-
firm the structure of stilbenes and to detect novel compounds in wine (Monagas
et al. 2005b; Buiarelli et al. 2007; Careri et al. 2004; Jean-Denis et al. 2006;
Kammerer et al. 2004; Mark et al. 2005; Püssa et al. 2006; Stecher et al. 2001).
Table 9C.1 shows an overview on stilbenoid molecular ions and fragments identified
in wine and grapevine by mass spectrometry.

It is widely accepted that polyphenols in wine are responsible for beneficial
health effects (Sun et al. 2006). Particularly trans-resveratrol has been intensively
studied and marked biological activities with regard to the prevention of cardio-
vascular disease and cancer have been reported (Ito et al. 2003). Other stilbenes
also have properties similar to those of trans-resveratrol. Therefore, monitoring new
stilbene derivatives in wine is of particular relevance (Guebailia et al. 2006).

9C.4 Miscellaneous Compounds

In addition to phenolic acids, volatile phenols, and stilbenes, other non-flavonoid
phenolic compounds are also known to occur in wine. Marinos et al. (1992)
were able to identify the lignans isolariciresinol-4′-O-ß-D-glucopyranoside and
seco-isolariciresinol-ß-D-glucoside in an Australian Riesling wine as first repre-
sentatives of a new category of wine phenols. By applying preparative all-liquid
chromatographic techniques (i.e. countercurrent chromatography), Baderschneider
and Winterhalter (2001) succeeded in isolating and fully characterizing nine addi-
tional lignans and neolignans from a German Riesling. Their structures are depicted
in Fig. 9C.8. Nurmi et al. (2003) reported lignan concentrations in red wines in
the range of 0.8-1.4 mg/L, with isolariciresinol being the main compound. Until
now, it has not been clearly distinguished as to which extent these compounds are
genuine grape constituents or rather formed during aging of wines in oak barrels.
Clearly oak-wood derived are the coumarins which can be considered as cinnamic
acid derivatives. The coumarins umbelliferone, 4-methyl-umbelliferone, esculin,
and scopoletin have been extracted from oak wood (Puech and Moutounet 1988),
and scopoletin (7-hydroxy-6-methoxycoumarin) has been reported as marker for
the storage of wine in oak barrels (Tricard et al. 1987). More recently, oak-derived
ellagtannins were reported to react with various nucleophilic wine constituents, such
as catechin, epicatechin, anthocyanins, glutathione, and ethanol during barrel aging,
giving rise to a formation of condensation products including ß-1- O-ethylvescalin
and the potent antitumor agent Acutissimin A (Quideau et al. 2003, 2005;
Saucier et al. 2006).
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