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CHAPTER 4

Cell Cycle Deregulation in Breast Cancer:
Insurmountable Chemoresistance or Achilles’ Heel?
Laura Lambert and Khandan Keyomarsi*

Abstract

Deregulation of the G1 cyclin, cyclin E, has been shown to be both the most powerful
predictor of prognosis in early stage breast cancer as well as a significant determinant
of tumor aggressiveness.1,2 It may also contribute to treatment failure due to chemore-

sistance. Because some form of cell cycle deregulation is present in all malignant cells,3 increas-
ing understanding of these processes is starting to provide new opportunities to overcome the
cells’ resistance mechanisms.

One particular form of cyclin E deregulation, the generation of hyperactive low molecular
weight isoforms, is especially intriguing. Because only tumor cells contain the machinery nec-
essary to generate these isoforms,4 they not only provide a mechanism of targeting critical cell
cycle events, but their presence may also provide both a means of increased specificity for
targeting malignant cells, as well as an objective measure of response.

This review describes the mechanisms of resistance to commonly used systemic therapies for
the treatment of breast cancer, with particular respect to the role of the cell cycle. The mechanisms
and effects of the deregulation of cyclin E in breast cancer are reviewed and novel approaches to
circumventing chemoresistance through abrogation of the malignant cell cycle are proposed.

Introduction
Tumor resistance to systemic antineoplastic therapy is the main cause of failure of breast

cancer treatment. For early stage breast cancer, adjuvant endocrine and cytotoxic agents have
resulted in only an 8-37% reduction in mortality.5,6 For patients with more advanced disease
the success rate is even lower. Investigation into the means by which tumor cells resist cytotoxic
therapies have revealed multiple mechanisms of drug resistance and efforts to devise ways of
circumventing resistance are currently underway.

The cytotoxic mechanisms of most conventional chemotherapeutic agents used in the current
treatment of breast cancer (doxorubicin, cyclophospamide, 5-flourouracil, methotrexate and the
taxanes) are attributable to their damaging or inhibitory effects on DNA. However, as illustrated
by the high rate of resistance, this approach is limited in a number of ways. First it is highly
nonspecific. Second, these agents rely upon a relative rate of cell division to establish a cytotoxic
threshold to distinguish between rapidly dividing malignant cells and normal cells. Another limi-
tation is the nonlethality of the effect of the drug on the DNA with the ultimate outcome (sus-
ceptibility versus resistance) dependent upon the status of the cell’s mechanisms of DNA repair
and apoptosis. Because of the redundancy of the cell salvage pathways, continuing to use conven-
tional approaches only prolongs the inevitable occurrence of drug resistance (Table 1).
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The sine quo non of the malignant phenotype is deregulation of the cell cycle.3 However,
while deregulation of the tightly controlled cell cycle events clearly leads to malignant transfor-
mation, it also provides intriguing targets for alternative therapeutic approaches to overcome
the problem of chemoresistance. One target of particular interest for this approach is the cyclinE/
cyclin-dependent kinase 2 (Cdk2) complex and the G1/S transition of the cell cycle.

The G1/S transition is regulated through the cooperation of two essential, parallel cell cycle
pathways, RB and Myc, which converge on the control of the G1 cyclin-dependent kinase

Table 1. Response rates and possible mechanisms of resistance in neoadjuvant
chemotherapy and endocrine regimens for breast cancer

Neoadjuvant
Chemotherapy/ Possible
Endocrine Mechanism(s)
Regimen Response of Resistance Ref.

Adriamycin Pathologic Adriamycin: 19-27,
(doxorubicin) and   complete 10%   Increased cellular efflux 31-42,
cyclophosphamide Objective   Alterations in topoisomerases 117
(AC)   clinical 70%   Aberrant intracellular localization

Cyclophosphomide:
  Intracellular inactivation
  Increased conjugation

Adriamycin and Pathologic Taxol: 87-92,
Taxol (paclitaxel)   complete 16%   Increased cellular efflux 117
(AT) Objective   Impaired microtubule polymerization

  clinical 89%   Microtubule instability

Flourouracil, Pathologic Flourouracil: 43,44,
Adriamycin, and   - complete 24%   Reduced anabolism 50-56,
cyclophosphamide   - partial 55%   Increased catabolism 118
(FAC) Clinical   Reduced FdUMP affinity

  - complete 18%   Increased thymidylate synthase
 - partial 82%   Mode of administration

Taxol Pathologic (See above) 118
  - complete 24%
  - partial 55%
Clinical
  - complete 18%
  - partial 82%

Tamoxifen Objective Tamoxifen: 87-92,
  clinical 17-36%   Her2 over-expression 119-124

  ER-negative tumor

Aromatase inhibitors Objective clinical Aromatase inhibitors: 114,
  Letrozole   Letrozole 30-55%   Lack of estrogen-response 119-124
  Anastrozole   Anastrozole 21-43%
  Exemestane   Exemestane 41%

Trastuzumab Objective Trastuzumab: 116,125
(Herceptin)*   - complete 6%   Decreased PTEN

  - partial 20%

*Used for treatment of metastatic breast cancer.
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- Cdk2.7-12 Cdk2 activity in the G1/S transition is both rate-limiting and necessary for cell
replication, and it is dependent upon appropriate interaction with the G1 cyclin, cyclin E.13,14

A number of recent studies have suggested that deregulation of cyclin E plays a significant role
in the aggressiveness of breast cancer and other malignancies.1,2,15-18 In fact, a form of cyclin E
deregulation caused by the generation of recently identified hyperactive low molecular weight
(LMW) isoforms has been shown to be the most powerful predictor of outcome in patients
with early stage breast cancer.2 Because only tumor cells possess the machinery to generate
these forms,4 they provide both a potential means of identifying malignant versus normal cells
as well as a multi-leveled target within an essential cell cycle pathway. For these reasons thera-
pies designed to take advantage of the deregulation of cyclin E and the G1/S transition are
appealing. This review describes the mechanisms of resistance to commonly used systemic
therapies for the treatment of breast cancer, with particular respect to the role of the cell cycle.
The mechanisms and effects of the deregulation of cyclin E in breast cancer are reviewed and
novel approaches to circumventing chemoresistance through abrogation of the malignant cell
cycle are proposed.

Conventional Chemotherapies of Breast Cancer

Anthracyclines
Anthracycline-based chemotherapy is the current standard of care in breast cancer treat-

ment. Anthracyclines (doxorubicin, epirubicin) are intercalating, topoisomerase II poisons that
bind to double-stranded DNA causing structural changes which interfere with DNA and RNA
synthesis. Multiple forms of resistance to these drugs have been identified. Because many of
these agents are natural products, resistance by cellular efflux mechanisms, such as the mdr1,
mrp1 and mrp2 gene product members of the ATP-binding cassette (ABC) family, have been
demonstrated.19-21 In addition, alterations in topoisomerases, including point mutations as
well as defects in phosphorylation, have been described in some drug-resistant cell lines.22,23

Furthermore, aberrant intracellular localization (cytoplasmic) has been implicated by decreas-
ing the potential for DNA binding.24-27 Finally, although not yet clearly demonstrated, be-
cause these agents function by causing structural DNA damage which should ultimately lead
to apoptosis, alterations in the apoptotic proteins of the cell (e.g., p53 and the Bcl-2 family),
have been suggested to confer drug resistance.28

Alkylating Agents
The alkylating agent cyclophosphamide is frequently used in anthracycline-based chemo-

therapy regimens for breast cancer. A member of the nitrogen mustard family, cyclophospha-
mide activation requires cytochrome P450-mediated oxidation in the liver to produce
4-hydroxycyclophosphamide. Relatively nonpolar, 4-hydroxycyclophosphamide readily diffuses
into target cells where its tautomer, aldophosphamide, decomposes to the active alkylating
agent, phosphoramide mustard.29 At least three mechanisms of resistance to cyclophospha-
mide have been identified. Because cyclophosphamide enters the cell through diffusion, it is
not a known substrate for the multiple-drug-resistance (MDR) export systems.30 Intracellular
inactivation of cyclophosphamide by its natural detoxifier, aldehyde dehydrogenase, has been
shown not only to protect normal cells from the cytotoxicity of this agent, but also to confer
resistance in tumor cells.31-36 In addition, increased 4-hydroxycyclophosphamide glutathione
conjugation, either spontaneous or through enhanced transcription of glutathione S-transferase,
has been shown to contribute to cyclophosphamide resistance.37-41 Finally, resistance related to
the cell’s ability to either repair DNA interstrand cross-links or to arrest in the G2 phase of the
cell cycle in response to the alkylating damage has also been demonstrated.42
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Antimetabolites
The pyrimidine analog 5-flourouracil (5-FU) is used in the management of many epithelial

malignancies, including breast cancer. Potential mechanisms of cytotoxicity caused by 5-FU
include RNA incorporation,43,44 dTTP depletion by thymidylate synthase inhibition,45 DNA
incorporation, or DNA damage due to excision of uracil or 5-FU.46-49 Resistance to 5-FU
therapy has been demonstrated in the form of reduced anabolism of the analog to the nucle-
otide form either through altered condensation with pyrophosphorylribose-5-PO4 (PRPP) or
the pyrimidine salvage pathway.43,44 In addition, increased catabolism of 5-FU due to elevated
dihydropyrimidine dehydrogenase (DPD) activity can lead to decreased sensitivity and has
been shown to be a predictor of decreased response in some tumor types.50,51Other mecha-
nisms of resistance have been related to changes in thymidylate synthase (reduced affinity for
FdUMP,52 increased rate of synthesis or activity53), and the mode of exposure to the drug
(enteral versus parenteral).54-56

Folate Antagonists
Another important agent in the management of breast cancer is the folate antagonist,

methotrexate (MTX). MTX stoichiometrically inhibits the enzyme dihydrofolate reductase
(DHFR) leading to decreased availability of thymidine, decreased DNA synthesis and ulti-
mately cell death.57 Resistance to MTX can be either intrinsic or acquired. A significant
mechanism of intrinsic resistance to MTX is reduced formation of long-chain MTX
polyglutamates due to decreased folylpolyglutamate synthetase (FPGS) activity which can
lead to both decreased affinity for DHFR as well as increased cell efflux.58-62 Other mecha-
nisms of intrinsic resistance to MTX include impaired transport through the reduced folate
carrier (RFC),63,64 and increased DHFR levels due to increased levels of the transcription
factor E2F which occur in the absence of the tumor-suppressor retinoblastoma protein.65-67

Acquired mechanisms of resistance to MTX include increased DHFR activity due to ampli-
fication of its gene,68-74 altered binding of MTX to DHFR due to DHFR mutations,75-79

decreased MTX uptake secondary to decreased long-chain polyglutamate formation, and
decreased influx through the RFC.80

Microtubule-Targeting Agents
Recently added to the breast cancer chemotherapy armamentarium are the taxanes (paclitaxel,

docetaxel) which are naturally-occurring antimicrotubule agents. Taxanes have been shown to
prevent depolymerization of the microtubule by binding and stabilizing the molecular confor-
mation of the protofilament of the microtubule.81 This stabilization causes a mitotic arrest at
the metaphase/anaphase juncture.82 The mechanisms of cell death caused by the taxanes in-
clude apoptosis through the activation of caspase 3 and 8 as well as a noncaspase activated
mechanism of DNA fragmentation that causes apoptosis.83-86 Multiple possible mechanisms
of resistance to taxane therapy exist including increased expression of the mdr1 gene and Pgp
efflux pump,87 structural alterations in the - and - tubulins which impair microtubule poly-
merization,87-92 and dynamic instability of the microtubule caused by increased expression of
the III isotype of  tubulin.90-92

Hormonal and Targeted Therapies
Because of the important role of estrogen in the development of breast cancer, endocrine

therapy, either in the form of anti-estrogens or estrogen deprivation, plays a significant role in
the medical treatment of breast cancer. With respect to the cell cycle, estrogen has been shown
to have a regulatory role of the molecules involved in the G1/S phase progression, including
the expression and function of c-Myc93-95 and cyclin D1.96,97 Furthermore, other studies have
demonstrated estrogen-mediated inhibition of the generation of the cyclin-dependent kinase
inhibitor (CKI) p21, resulting in increased cyclinE/Cdk2 complex activity.96,98,99 Deregula-
tion of any of these cell cycle regulators may contribute to increased anti-estrogen resistance.
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In addition, increasing evidence suggests that breast cancer growth may also be influenced
by the coordinated actions of the estrogen receptor (ER) and the HER2 growth factor receptor
signaling pathway.100 Estrogen binding of the ER induces a series of both membrane-bound
(G-protein-coupled receptor activation101) and nuclear events (phosphorylation of the recep-
tor, conformational alteration, receptor dimerization, receptor complex-promoter binding, and
recruitment of coactivators).102 The nuclear events ultimately lead to the transcriptional regu-
lation of the ER target genes.103,104 The membrane-bound events have been shown to lead to
the paracrine or autocrine activation of the HER2 signaling pathway through the release of
epidermal growth factor (EGF).105 Activation of the HER2 signaling pathway initiates a kinase
signaling cascade which has been shown to augment the transcriptional activation potential of
ER resulting in enhanced cell proliferation and survival.105-107 This “crosstalk” between the ER
and the HER2 signaling pathway may also be one of the major mechanisms for resistance to
endocrine therapy in breast cancer treatment.105,108,109

The current mainstay of anti-estrogen therapy, tamoxifen, is known to display partial
agonist-antagonist activities in different tissues and cells, depending upon the various ER
coactivators and corepressors present.110 Like estrogen, tamoxifen also has both nuclear and
membrane-bound effects.105 In addition to preventing the binding of estrogen to the ER,
under favorable conditions such as negative or very low levels of HER2, tamoxifen’s effects are
primarily antagonistic and nuclear. In this setting, the ER conformation induced by the bind-
ing of tamoxifen leads to the recruitment of corepressors and deacetylases which inhibit tran-
scriptional activity. On the other hand, in the setting of abundant HER2, evidence suggests
that agonist effects of tamoxifen may predominate through membrane-bound events which
lead to HER2 signaling activation, tumor growth and resistance to anti-estrogen therapy.105,110

Options to overcome anti-estrogen therapy resistance in breast cancer patients include two
currently used therapies: estrogen deprivation through aromatase inhibition and inhibition of
HER2 signaling by the monoclonal antibody receptor tyrosine kinase inhibitor—trastuzumab
(Herceptin). Aromatase inhibitors (AIs) are a group of agents that inhibit the steroid hydroxy-
lations involved in the conversion of androstenedione to estrone, thereby lowering both the
circulating and intratumoral amounts of estrogen available to bind the ER.111 In theory, these
agents should be able to abrogate both the membrane-bound HER2 activating ER events, as
well as the nuclear steroid signaling events. In support of this theory, clinical trials have demon-
strated the superiority of AIs over tamoxifen in both HER2-overexpressing breast cancers as
well as ER-positive/PR-negative tumors.112,113 Resistance to AIs is thought not to be due to
failure of these agents to suppress estradiol, but rather through resistance to the hormone it-
self.114

Trastuzumab is a humanized monoclonal antibody that specifically binds to the extracellu-
lar domain of the HER2/neu tyrosine kinase receptor. Down-regulation and inactivation of
the receptor by the antibody occur through multiple mechanisms including accelerated degra-
dation, interference with the hetrodimerization of the receptor, and targeting of the immune
system to HER2 overexpressing cells.115 In addition, trastuzumab has been shown to stabilize
and activate the PTEN tumor suppressor leading to down-regulation of the P13K-Akt signal-
ing pathway and initiating cell cycle arrest.116 Recently, Nagata et al demonstrated that when
the expression of PTEN is reduced, the antitumoral effects of trastuzumab are impaired. Based
on these findings, the authors predicted and confirmed that clinical resistance to trastuzumab
correlated with low levels of PTEN.116

The Cell Cycle as a Therapeutic Target in Breast Cancer

Deregulation of G1/S Transition
Cell division is a complex and orderly process divided into four phases involving cell growth

and monitoring (G1 and G2 phase), DNA synthesis (S phase), and mitosis (M phase).126 In
the settings of favorable cellular and tissue environments, cells can initiate their own division
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and enter a mitogen-dependent growth phase (early G1). Upon entering the cell cycle, the
order and quality of the cell cycle events are monitored and ensured by a series of check-
points.127 Commitment to genome replication and eventual cell division occurs late in the G1
phase at a period defined as the restriction point.128 Recent studies have suggested that this
molecular “point of no return” revolves around the activity of Cdk2 and its G1-associated
cyclin, cyclin E, which is also the point of convergence of the RB (p16-Cdk4/6-cyclin D-pRb)
and Myc proto-oncogene pathways.7-12

Cdk2 belongs to a family of serine and threonine protein kinases whose substrates include
intracellular, cell cycle-regulatory proteins that control the major cell cycle events: DNA repli-
cation, mitosis and cytokinesis. One of the most important functions of Cdk2 is the mid-late
G1 phase phosphorylation and inactivation of the tumor suppressor pRb which, in normal
cells, is essential to cell cycle progression. Like all Cdks, Cdk2 activity is governed by an array
of enzymes and proteins, the most prominent of which are cyclins. Unlike Cdk levels which
normally remain constant throughout the cell cycle, cyclins, as the name implies, undergo a
tightly regulated cycle of synthesis and degradation resulting in the cyclic assembly and activa-
tion of cyclin-Cdk complexes.129,130 In each phase of the cell cycle, Cdk activity is dependent
upon binding to the appropriate cyclin protein and it is this activation that propels the cell
through the cell cycle. In late G1 phase, cyclin E complexes with Cdk2 to control the transition
into S-phase.131

In normally dividing cells, the G1-synthesis and S phase-degradation of cyclin E are tightly
regulated.132 In late G1, cyclin E transcription is activated when pRb is hyperphosphorylated
by cyclin D/Cdk4/Cdk6 complexes, relieving repression of the cyclin E gene. This event causes
a G1 arrest allowing further accumulation of cyclin E protein. This accumulation continues to
a level where cyclin E/Cdk2 itself phosphorylates pRb, relieving the repression of the S-phase
cyclin, cyclin A, and Cdk1, and allowing the cell cycle to progress to mitosis.133 Concomitant
activation of cyclin E-Cdk2 kinase also occurs through the Myc proto-oncogene pathway.12

c-Myc proto-oncogene is a mitogen-induced transcription factor of the helix-loop-helix/leu-
cine zipper protein family whose role in cyclin E activation includes both direct mechanisms
(transcriptional effects) and indirect mechanisms (sequestration or enhanced degradation of
the cyclinE/Cdk2 inhibitor p27).11,12,134-136 Deregulation of any of these cell cycle compo-
nents can lead to the unscheduled expression of cyclin E that is often seen in cancer (Fig. 1).

Multiple mechanisms of malignant deregulation of cyclin E have been identified including
gene amplification,137,138 overexpression,139,140 downregulation of inhibitory proteins such as
p27,141 faulty degradation139,140,142 and the generation of LMW isoforms of cyclin E.4,143 Of
these cyclin E alterations, the most profound is the generation of the LMW isoforms which
have been associated with poor clinical outcomes in breast cancer and other malignancies. In
fact, in a retrospective study of 395 breast cancer patients, the presence of the LMW isoforms
of cyclin E was found to be eight times more predictive of poor prognosis than nodal status.2

Significant biochemical and functional differences between the full-length and LMW isoforms
of cyclin E are thought to explain the correlation between this type of deregulation and in-
creased breast cancer mortality.144

Six cyclin E isoforms (EL1-6) have been identified (Fig. 2).1 The predominant, full-length
(50-kDa) isoform (EL1) is the only isoform found in normal cells. The LMW isoforms (EL2-6)
are generated either by alternative translation (EL4) or proteolytic processing of the full-length
protein by an elastase-like protease which creates two paired-isoforms (EL2/3 and EL5/6).
Only tumor cells are capable of processing cyclin E into its LMW forms which are nuclear and
functionally hyperactive.143

Tumorigenic properties associated with the LMW cyclin E isoforms involve both aber-
rant control of both the cell cycle as well as many aspects of DNA replication. In normal
cells, direct binding of chromatin by cyclin E initiates DNA replication and also potentially
blocks rereplication.145 Cyclin E has been shown to induce histone gene transcription at the
beginning of S phase through the phosphorylation of NPAT146,147 and control centrosome
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duplication through the phosphorylation of nucleophosmin B23148,149 and stabilization of
the Mmps1p-like kinase.148 Additional cyclin E substrates involved in other DNA replica-
tion processes such as transcriptional regulation (SWI/SNF),150 pre-mRNA splicing
(spliceosomal protein)151,152 and modulation of transcription factors

(Id2, Id3)153,154 have also been identified. Deregulation of cyclin E impacts many of these
aspects of DNA replication, often conferring a growth advantage to tumor cells.

With respect to the cell cycle, the LMW forms of cyclin E have been shown to result in
decreased cell doubling times, decreased cell size and loss of growth factor requirements for
proliferation.131,155 These effects are due to both the increased biochemical and biological ac-
tivity of the LMW forms as compared with the full-length cyclin E. Specifically, because of the
increased affinity for Cdk2 of the LMW cyclin E, there appears to be at least a two-fold in-
crease in associated Cdk2 kinase activity and a three- to five-fold increase in resistance to the
Cdk inhibitors p21 and p27 in cells with these forms.156 Through this increased activity de-
regulated cyclin E has been shown to independently and sufficiently phosphorylate pRb, enough
to induce aberrant cell cycle progression.4

Targeting the G1/S Transition Therapeutically
The central role of cyclinE/Cdk2 in the regulation of the G1/S transition makes this com-

plex an attractive target for novel cancer therapy. First, differential expression of the tumor-specific
LMW cyclin E provides a unique means of both identifying and targeting tumor cells only,
potentially increasing selective lethality of the therapy. In addition the same target may also act
as a more objective measure of both the degree of tumor aggressiveness as well as therapeutic
response. Elucidation of the mechanisms of this differential expression have helped identify
opportunities for therapeutic exploitation.

Figure 1. Regulation of the G1/S transition by the cyclin-dependent kinase (Cdk) 2 and its G1-associated
cyclin, cyclin E, at the point of convergence of the RB (p16-Cdk4/6-cyclin D-pRb) and Myc proto-oncogene
pathways.
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Proteolytic processing of the full length cyclin E has recently been identified as the mecha-
nism responsible for the generation of the hyperactive LMW forms of cyclin E seen in some
tumor cells.4,143 Two proteolytically sensitive domains in cyclin E have been identified and
four of the five LMW forms are accounted for by proteolysis at these two sites, with
post-translational modification creating two closely migrating doublets—EL2/3 and EL5/6.
Sequence analysis of the proteolytically cleaved regions of cyclin E have identified an elastase-like
serine protease as responsible for generating these LMW forms.4

The differential expression of the LMW forms of cyclin E in tumor versus normal cells may
be due to either increased elastase-like activity in tumor cells, increased elastase inhibitor levels
in normal cells, or decreased elastase-inhibitor levels in tumor cells. Each of these possible
mechanisms presents a potential target for cancer therapy. Recent studies looking at the neu-
trophil (elastase) inhibitor, CE-2072, demonstrated partial abrogation of some of the LMW
forms of cyclin E in the breast cancer cell line MDA-MB-157, a cell line that expresses all 6
isoforms of cyclin E. In comparison, CE-2072 treatment of MCF-10A breast cancer cells,
which do not express the LMW isoforms, did not affect the expression of cyclin E in these cells.
In addition, treatment with CE-2027 was found to cause partial arrest in the G1 phase of the
cell cycle in tumor cells, but not normal cells. These results suggest a cause and effect relation-
ship between the disappearance of some of the LMW forms of cyclin E in tumor cells and
partial growth arrest of these cells.156 Although elastase inhibitors are not used in the clinic for
the treatment of cancer at this time, some reports have suggested that the use of these agents for
chemotherapy may provide a high therapeutic index. Following identification of the specific
protease of the elastase class which cleaves cyclin E into the LMW forms, cyclin E-specific
protease inhibitors may then be engineered.

The differential expression of the LMW forms of cyclin E in tumor versus normal cells
may also occur through a relative decrease in the presence or function of an endogenous
elastase inhibitor—elafin.156 Thus an alternative approach to elastase inhibition could be to
increase intracellular levels of functional elafin. Potential mechanisms for this approach in-
clude increased elafin expression through adenoviral gene therapy or by the administration
of the elafin protein in target-specific, trigger-specific liposomes. While effective results through
this means of drug delivery remain on the horizon,157 it is possible that someday liposomes
targeted to breast cancer-specific membrane receptors (e.g., ER, HER2) could deliver the
relatively small elafin protein (9 kDa) intracellularly where a tumor-specific enzyme (elastase)
could release the liposomal payload. Finally, as on-going studies better elucidate the mecha-
nisms by which elafin is down-regulated in tumor cells, other approaches to increasing elafin
expression will become available.

Figure 2. Western blot analysis of cyclin E in normal and immortalized breast epithelial cell lines and
estrogen receptor positive (ER+ve) and negative (ER-ve) breast cancer cell lines. Deregulated cyclin E caused
by the proteolytic generation of hyperactive, low molecular weight isoforms (35-50 kDa), is seen only in
the breast cancer cell lines.
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Another target at this nodal point in the cell cycle is Cdk2. Because of their central role in
cell cycle regulation, Cdks have been targeted for both drug and small molecule therapy. The
two basic schemes employed to inhibit Cdks include either direct blockade of their kinase
activity or targeting of their major regulators (indirect). Over 50 direct chemical Cdk inhibi-
tors have been described with varying degrees of Cdk specificity. Most of these compounds
modulate kinase activity by interacting specifically with the ATP-binding pocket of the en-
zyme. Both in vitro and in vivo Cdk-specific cell cycle and anti-tumoral effects have been
described for three Cdk modulators—flavopiridol, R-roscovitine, and BMS-387032—which
have also recently been tested in phase I and II clinical trials.

Flavopiridol is a semisynthetic flavonoid which appears to induce cell cycle arrest by direct
inhibition of all Cdks as well as through transcriptional repression of cyclin D1.158-160 Phase I
trials for flavopiridol have demonstrated tolerable toxicity with some objective responses across
a spectrum of advanced solid and nonsolid tumors.161,162 Furthermore, a Phase II trial in meta-
static lung cancer showed a median overall survival consistent with both a randomized trial of
four platinum-based chemotherapy regimens and with the survival observed with the approved
EGFR inhibitor gefitinab (Iressa).163-165 R-roscovitine (CYC202) is an olomoucine analogue
and a potent inhibitor of Cdk1, Cdk2, and Cdk5.166 Preclinical studies in multiple xenograft
models have shown antitumoral effects in the forms of both cell cycle arrest as well as evidence
of apoptosis.167 Two phase I clinical trials of oral CYC202 have demonstrated tolerable toxic-
ity168,169 and both single agent and combination chemotherapy phase II clinical trials are being
planned. BMS-387032 is an aminothiazole Cdk2 inhibitor with a 10-100-fold selectivity for
Cdk2 over Cdk1, Cdk4 and other kinases.170 In vitro and in vivo antiproliferative effects of
this class of compounds include cell cycle arrest with loss of pRb phosphorylation and some
evidence of apoptosis. Three phase I trials have shown tolerable toxicity and some objective
responses.171-173 Phase II and combination phase I trials are planned.

One nonspecific chemical Cdk modulator, UCN-01, has also been tested in clinical trials.
In addition to anti-Cdk activity, UCN-01 also exhibits a number of other cell cycle and non-cell
cycle molecular effects. With respect to the cell cycle, UCN-01 has been shown to abrogate
both the G1174-181 and G2 checkpoints through inappropriate cdc2 activation182 and chk1
inhibition,183-185 and also appears to possess increased cytotoxicity in cells with p53 muta-
tions.182 Important non-cell cycle effects include potent inhibition of protein kinase C isoen-
zymes and modulation of the PI3 kinase/Akt survival pathway.186,187 UCN-01 has been evalu-
ated in both phase I and II trials with tolerable toxicity and some objective responses.188,189

Synergistic effects of UCN-01 have been observed with many chemotherapeutic agents in
preclinical models174,190-193 and clinical trials of combination chemotherapies are underway.

While the Cdk modulation approach is certainly intriguing, one major limitation of the
current agents under investigation is their lack of true cytotoxicity. Although most of the agents
being tested in clinical trials have shown some preclinical evidence of inducing apoptosis, a G1
or G2 cell cycle arrest is the predominant result. For this reason, results of the combination
chemotherapy trials are eagerly awaited.

Another limitation shared by both these agents and other conventional chemotherapies is a
lack of tumor-specificity. Once again, cell cycle deregulation in the form of LMW cyclin E
isoforms may help overcome this lack of specificity. Indole-3-carbinol (I3C) is an indirect
Cdk2 inhibitor which has recently been shown to induce a G1 arrest in breast cancer cells by
inhibiting Cdk2 activity associated with the LMW forms of cyclin E.194 In a study by, Garcia
et al, MCF-7 breast cancer cells treated with I3C demonstrated a shift in the size distribution
of the Cdk2 protein complex from an enzymatically active 90kDa protein to a larger, 200kDa
protein, with reduced kinase activity. In addition, the treated cells appeared to have lost their
association with the 35 kDa LMW isoform of cyclin E as compared with nontreated cells.
Furthermore, I3C treatment was also associated with a subcellular cytoplasmic localization of
the Cdk2-cyclin E complex. These changes were felt to be indole-specific as treatment with the
I3C natural dimerization product, DIM, or the anti-estrogen, tamoxifen, did not produce
similar results. No changes in CKI (p21 or p27) levels were seen with I3C treatment. While
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compelling, this study is not without some limitations. Whether the effects of I3C on MCF-7
breast cancer cells are tumor-specific has not been determined as they were not compared to
normal breast epithelial cells. Nor was the generalizability of the I3C treatment effects assessed
in other cancer cell lines that express the proteolytic generated LMW isoforms of cyclin E (e.g.,
MDA-MB-157, MDA-MB-436, and Ovcar).

Other potential indirect modulators of Cdk2 activity worth considering include the CKIs p27
and p21. With respect to breast cancer, increasing the expression of p21 may provide an addi-
tional means of overcoming some anti-estrogen resistance as well as increase anti-estrogen sensi-
tivity in ER-negative breast cancers. In a study by Chen et al,195 after demonstrating a strong
association between p21 and ER expression, the investigators proceeded to induce the ER and
estrogen receptor element promoters in an estrogen responsive manner through over-expression
of p21 in a p21-negative, ER-negative breast cancer cell line. These cells were sensitive to both the
growth inhibitor effects of anti-estrogen treatment as well as the growth stimulatory effects of
17 -estradiol. These findings suggest that p21 may play a significant role in the estrogen-signaling
pathway and raise the possibility that anti-estrogen therapy may be effective in p21-positive,
ER-negative breast cancers. Furthermore, a number of commonly used breast cancer chemo-
therapeutic agents have also been shown to induce p21, including paclitaxel,196,197 doxorubi-
cin,198 and vinorelbine,199 raising the potential of treatment strategies that combine chemotherapy
and anti-hormonal therapy in ER-negative breast cancers induced to express p21.

Other possible strategies for targeting CKIs include increased protein expression through
gene therapy or administration of tumor-targeted peptidomimetics of CKIs or other peptides
that inhibit CDK activity. Because both p21 and p27 are substrates for ubiquitination and
proteosome-dependent degradation, strategies designed to decrease the turnover of these CKIs
through inhibition of ubiquitin-mediated proteolysis by the proteosome should also be consid-
ered. In fact, induction of both p21 and p27 in MDA-MB-157 cells through inhibition of the
proteosome by treatment with the HMG-CoA reductase inhibitor, lovastatin, has been dem-
onstrated to cause a G1 arrest.200 In this study, the mechanism of p21 and p27 accumulation
was clearly shown to be due to unique inhibitory effects of the closed-ring prodrug form of
lovastatin on the proteosome, and not related to the HMG-CoA reductase inhibition of the
open-ring form of the drug. With respect to breast cancer, as low levels of p27 have also been
correlated with poor prognosis in young breast cancer patients,16 efforts geared towards in-
creasing the levels of both p27 and p21, for previously described reasons, may be particularly
helpful in overcoming cell cycle-related drug resistance. Currently investigations with other
proteosome inhibitors such as farnesyl transferase inhibitors are also on-going.

Summary
As some facet of cell cycle deregulation is present in all tumors, it is reasonable to consider

cancer a disease of the cell cycle. In addition to driving the malignant transformation of normal
cells, cell cycle deregulation also contributes to the chemotherapy resistance of cancer cells, as
these agents often rely on the presence of normal cell cycle checkpoints to cause cell death.
However, while this cell cycle-driven resistance often seems insurmountable, it may ultimately
prove to be the Achilles’ heel of cancer cell survival.

As illustrated in this review, the deregulated cell cycle provides multiple opportunities for
tumor targeted therapies to either break the cycle by reregulation or to target it in combination
with more conventional chemotherapies in ways that result in mitotic catastrophe (e.g., DNA
damage plus G1 and G2 checkpoint abrogation.) However, in order for these cell cycle-directed
strategies to work, there are some basic requirements that need to be met. First, specificity
through differential expression of the target in normal versus tumor cells must be present.
Second, the mechanism of the differential expression needs to be understood. Finally, the mecha-
nism needs to be exploited therapeutically. Deregulation of cyclin E through the proteolytic
generation of hyperactive LMW isoforms meets these criteria and means of exploiting this
potential Achilles’ heel are underway.
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