

Job #:108275

Author Name: Ralyte

Title of Book: IFIP Situational Method Engineering

ISBN #: 9780387739465

SITUATIONAL METHOD
ENGINEERING: FUNDAMENTALS AND
EXPERIENCES

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umb rella organization for
societies worki ng in information processing, IFIP's aim is two- fold : to support
informat ion processing within its memb er countries and to encourage technology transfer
to deve loping nations. As its miss ion statement clearly states ,

/F/P's mission is to be the leading, truly international, apolitical
organizatio n which encourages and assists in the development,
exploitation and application of information technology for the benefit
ofall people.

IFIP is a non-p rofi tmaking organizat ion, run almost solely by 2500 volunteers . It operates
thro ugh a numb er of techn ical committees, which organize events and publications.
IFIP 's events range from an international congress to local seminars , but the most
important are:

• The IFIP World Computer Co ngress , held every seco nd year;
• Open confer ences;
• Workin g conferences .

The flagship event is the IFIP World Computer Congress, at which both invited and
contr ibuted papers are presented. Contributed papers are rigoro usly refereed and the
rejec tion rate is high.

As with the Congress, part icipation in the open conferences is open to all and papers may
be invited or submitted. Again , submitted pape rs are stringe ntly refereed.

The working conferences are structured differently. They are usually run by a work ing
gro up and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorou s and
papers are subjected to extensive group discussion.

Publications arising from IFIP even ts vary . The papers presented at the IFIP World
Computer Congress and at open conferences are publ ished as conference proceedin gs,
while the resu lts of the working conferences are often published as co llections of selected
and edi ted paper s.

Any national soc iety whose primary act ivity is in information may apply to become a full
member of IFIP , although full membership is restr icted to one socie ty per country. Full
memb ers are entitled to vote at the annual General Assembly, National societies
preferring a less committed invo lvement may apply for associate or corresponding
memb ership . Associate memb ers enjoy the same benefits as full memb ers, but without
voting rights . Corresponding memb ers are not represented in IFIP bodies. Affil iated
membershi p is open to non-national societies, and indiv idual and honorary membersh ip
schemes are also offered .

SITUATIONAL METHOD
ENGINEERING:
FUNDAMENTALS AND
EXPERIENCES

Proceedings of the IFIP WG 8.1 Working
Conference, 12-14 September 2007, Geneva,
Switzerland

Edited by

Jolita Ralyte
University of Geneva, Switzerland

Sjaak Brinkkemper
Utrecht University, The Netherlands

Brian Henderson-Sellers
University of Technology, Sydney, Australia

€l Springer

Library of Congress Control Number: 2007931958

Situational Method Engineering: Fundamentals and Experiences

Edited by 1. Ralyte, S. Brinkkemper, and B. Henderson-Sellers

p. em. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN: 1571-5736/1861-2288 (Internet)
ISBN: 13: 978-0-387-73946-5

eISBN: 13: 978-0-387-73947-2
Printed on acid-free paper

Copyright © 2007 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

98765432
springer.com

Preface

This proceedings volume contains the papers of the scientific program of the
IFIP Working Group 8. I working conference on Situational Method Engineering:
Fundamentals and Experiences. The conference has been held from 12 to 14
September 2007 at the University of Geneva in Switzerland.

Since the early 1980s, the IFIP WG8.1 working conferences have provided a
forum for the presentation and exchange of research results and practical experiences
within the field of information systems development methods. After two successful
Method Engineering conferences in Atlanta in 1996 and in Kanazawa in 2002, it is
now time again to provide a forum for the exchange of ideas in and give a state of
the art overview in Method Engineering. The conference programme features three
invited keynote presentations, paper presentations and one interactive panel session.
Besides, tutorials have been arranged to learn about the basics of Method
Engineering. The format of a working conference allows for extensive paper
discussions featured by discussant reviews in plenary sessions.

Over the last decade Method Engineering, defined as the engineering discipline
to design, construct and adapt methods, including supportive tools, has emerged as
the research and application area for using methods for systems development.
Hundreds of methods have been published ranging from generic methods to methods
for specific projects or domains. We mention: Unified Process, RUP, DSDM,
SSADM, Merise, UML, OPEN Process Framework for general systems
development; ARIS and DEM for ERP implementations ; Serum, XP (Xtreme
Programming), Crystal in the agile movement; T-map for Testing; Attribute Driven
Design method and TOGAF for software architecture; Archimate and Dynamic
Architecture (DYA) for enterprise architecture.

Several theories have emerged as basic instruments in Method Engineering.
Meta-modelling proves useful to identify the concepts and internal structure of a
method, and provides means for building method support tools. Methods are
understood to be built from so-called method fragments or method chunks, which are
stored in a method base and can be assembled in a newly configured method.
Perspectives and viewpoints aid in distinguish ing processes, deliverables and events
in systems development. Situational method engineering was coined to deal with the
adaptation of a generic method to the actual situation of a project. Tool support for

vi

method engineering turns out to be not yet as successful as process management
tools and metaCASE tools seem not to make it beyond the arena of specialists.

Many issues are still open for research. Studies in particular domains reveal that
specific project needs are not covered, thus asking for method extensions or for
specialized domain methods. Another issue is the classification and granularity of
method fragments, or method chunks, that are to be configured into new methods.
The notion of situationality of a method and of the suitability of method fragments
has been investigated but still requires more theory and experimentation. The same
applies for assembly and configuration of methods and tools, where formal
construction techniques and assembly guidelines are to be explored. Most method
engineering activities are nowadays performed from open methods or from corporate
knowledge infrastructures and require further investigation. Experience reports and
empirical validation of all these issues in industrial contexts will contribute to the
theory building in the area of Method Engineering.

The conference organizers have send out a call for papers through the usual
channels of international mailing lists of researchers active in Method Engineering.
A total of 47 papers were received and each paper has been reviewed by four
members of the program committee, recruited from IFIP 8.1 members and other
researchers active in method engineering domain. The overall quality of the papers
was very high, and very well fitting to the scope of Method Engineering. During the
conference preparation meeting in Geneva the program committee decided to accept
23 papers for presentation in the main program and publication in this volume. For
the poster session 5 papers were selected.

We wish to thank the members of the international program committee and the
additional reviewers, who assisted in making a good selection for a high quality
program. A special word of thanks goes to the chairman ofIFIP Working Group 8.1,
Barbara Pernici of the Politecnico di Milano, and the leader of the Matis team of the
University of Geneva, Michel Leonard for their support and advice. We furthermore
thank the keynote speakers and tutorial organizers for their willingness to present the
latest views in our conference. We finally want to thank Mehdi Snene for his work
on the conference management system, and Inge van de Weerd for the design and
maintenance of the conference website.

We wish you a pleasant reading and a fruitful use of our research results in your
applications or research in methods for information systems development.

lolita Ralyte
Sjaak Brinkkemper

Brian Henderson-Sellers

Conference Committee

General Chair

Brian Henderson-Sellers, University of Technology, Sydney, Australia

Program Chairs

lolita Ralyte, University of Geneva, Switzerland
Sjaak Brinkkemper, Utrecht University, The Netherlands

Organising Chair

Mehdi Snene, University of Geneva, Switzerlands

Web Master

Inge van de Weerd, Utrecht University, The Netherlands

Program Committee

Par J. AGERFALK, Ireland
Jacky AKOKA, France
David AVISON, France
Per BACKLUND, Sweden
Albertas CAPLINSKAS, Lithuania
Massimo COSSENTINO, Italy
Rebecca DENECKERE, France
Xavier FRANCH, Spain
Cesar GONZALEZ-PEREZ, Spain

John GRUNDY, New Zealand
Peter HAUMER, USA
Frank HARMSEN, The Netherlands
Remko HELMS, The Netherlands
Manfred JEUSFELD, The Netherlands
Paul JOHANNESSON, Sweden
Frederik KARLSSON, Sweden
John KROGSTIE, Norway
Susanne LEIST, Germany

viii

Michel LEONARD, Switzerland
Mauri LEPPANEN, Finland
Kal1e LYYTINEN, USA
Isabel1e MIRBEL, France
Haralambos MOURATIDIS, UK
Mohan NARASIPURAM, Hong Kong
Selmin NURCAN, France
Antoni OLIVE, Spain
Leon J. OSTERWEIL, USA
Oscar PASTOR, Spain
Juan PAVON, Spain
Barbara PERNICI, Italy
Anne PERSSON, Sweden

Additional Referees

Lena AGGESTAM, Sweden
Tobias BUCHER, Switzerland
Stephan KURPJUWEIT, Switzerland
Valeria SEIDITA, Italy
Maurice VERHELST, Belgium
Jonas SJOSTROM, Sweden

Yves PIGNEUR, Switzerland
Klaus POHL, Germany
Naveen PRAKASH, India
Erik PROPER, The Netherlands
Colette ROLLAND, France
Matti ROSSI, Finland
Motoshi SAEKI, Japan
Guttorm SINDRE, Norway
Monique SNOECK, Belgium
I1-Yeol SONG, USA
Juha-Pekka TOLVANEN, Finland
Richard WELKE, USA
Robert WINTER, Switzerland

Table of Contents

Keynote Talks

Domain-Specific Modeling: The Killer App for Method Engineering? .
Steven Kelly

Method Engineering: Trends and Challenges. 6
Colette Rolland

Supporting Situational Method Engineering with ISO/IEC 24744 and the
Work Product Pool Approach 7

Cesar Gonzalez-Perez

Fundamentals

Multi-Grounded Action Research in Method Engineering: The MMC Case... 19
Fredrik Karlsson and Par J. Agerfalk

Situational Method Engineering: On the Differentiation of "Context" and
"Project Type" 33

Tobias Bucher, Mario Klesse, Stephan Kurpjuweit, Robert Winter

Examining Key Notions for Method Adaptation................................ 49
Mehmet N. Aydin

Situational Method Engineering

Method Chunks Selection by Multicriteria Techniques: an Extension of the
Assembly-based Approach... 64

Elena Kornyshova, Rebecca Deneckere, and Camille Salinesi

Reuse Mechanisms in Situational Method Engineering........................... 79
Jorg Becker, Christian Janiesch, Daniel Pfeiffer

Developer Driven Approach to Situational Method Engineering................. 94
Antero Jarvi, Harri Hakonen and Tuomas Makila

x

Meta-modelling Approaches

Characterizing Knowledge Intensive Tasks indicating Cognitive
Requirements; Scenarios in Methods for Specific Tasks 100

S.J. Overbeek, P. van Bommel, H.A. (Erik) Proper and D.B.B. Rijsenbrij

Partial Evaluation in Meta Modeling 115
Manfred A. Jeusfeld

Representation of Method Fragments: A Comparative Study....... 130
Anat Aharoni and Iris Reinhartz-Berger

Perspectives on Method Engineering

Taxonomic Dimensions for Studying Situational Method Development.. 146
Mehmet N Aydin, Frank Harmsen and Jos van Hillegersberg

Component-based Situational Methods: A framework for understanding SME 161
Yves-Roger Nehan and Rebecca Deneckere

Connecting Method Engineering Knowledge: A Community Based Approach 176
Isabelle Mirbel

Method Quality

Situational Method Quality. . 193
Liming Zhu and Mark Staples

Complete Methods for Building Complete Applications 207
Naveen Prakash

Process Patterns for Agile Methodologies 222
Samira Tasharofi and Raman Ramsin

Domain Specific Methods

Domain-specific Adaptations of Product Line Variability Modeling 238
Deepak Dhungana, Paul Griinbacher and Rick Rabiser

A Look at Misuse Cases for Safety Concerns 252
Guttorm Sindre

Engineering Medical Processes to Improve Their Safety: An Experience
Report 267

Leon J. Osterweil, George S. Avrunin, Bin Chen, Lori A. Clarke, Rachel
Cobleigh, Elizabeth A. Henneman and Philip L. Henneman

xi

Process Intproventent

Software Process Improvement Based on the Method Engineering Principles.. 283
Marko Bajec, Damjan Vavpotic, Stefan Furlan and Marjan Krisper

Defining a Scope for COTS Selection Methods 298
Fredy Navarrete, Pere Botella and Xavier Franch

Developing a Reference Method for Game Production by Method
Comparison 313

Inge van de Weerd, Stefan de Weerd and Sjaak Brinkkemper

Organisation Modelling

Towards Evidence Based Splitting of Organizations 328
Martin Op 't Land

A Formal Framework for Modeling and Analysis of Organizations.......... 343
Viara Popova and Alexei Sharpanskykh

Panel

Modularization Constructs in Method Engineering: Towards Common
Ground? 359

Piir J. Agerfalk, Sjaak Brinkkemper, Cesar Gonzalez-Perez, Brian
Henderson-Sellers, Fredrik Karlsson, Steven Kelly and Jolita Ralyte

Domain-Specific Modeling:
The Killer App for Method Engineering?

Steven Kelly
MetaCase

stevek@metacase.com
http://www.metacase.com

Abstract. The method creation heyday of the 1980s was characterized by
convivial chaos, leading to the idea of a discipline of method engineering.
Before it could grow, the unification and marketing machine of UML crushed
method development into "one size fits all" design by committee in the 1990s.
A scattering of brave souls went against the current, creating modeling
languages specific to their own problem domain, and were rewarded with
significantly higher productivity. As they seek to scale their solutions, they
need help from the research world to analyze their results, and to bring to bear
the learning from the early days ofmethod engineering.

1 Introduction

The 1980s were in many ways the heyday for the creation of new modeling
languages and associated processes, together known then as methods. It seemed
everybody with software development experience and a theoretical bent was creating
their own method. Many of the methods shared common features, whether by shared
ancestry, loaning, or convergent evolution. These factors gave rise to the idea of a
discipline of method engineering, to improve the process of creating a new method.

The 1990s poured cold water on the fledgling discipline, as UML progressively
out-marketed or subsumed most common methods. Rather than a chaotic yet
convivial mass of method creators, method development largely became something
only a single committee were doing. Some brave souls carried on under the radar,
but always with the stigma of working on a "non-standard" modeling language. Their
reward was often significantly higher productivity, as their modeling language was
made to fit tightly with just their problem domain, and production quality code could
often be generated directly from the models.

Please use the foilowingformat when citing this chapter:

Kelly, S., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational Method

Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkernper, S., Henderson-Sellers 8., (Boston Springer),

pp.I-5.

2 Steven Kelly

With the tum of the millennium, there were already some published success
stories of Domain-Specific Modeling [1]. Metamodeling tools offered method
engineers automatic tool support of any modeling language they chose to specify,
significantly reducing the cost of building and supporting a new method. The method
engineering research community began to emerge from hibernat ion, gaining new
members and a new direction. Rather than assembling methods from smaller
common build ing blocks, the focus was now on creating entirely new modeling
languages, and the skills and tools necessary for that task.

Now, the giants of Microsoft and Eclipse have joined the fray, bringing the ideas
of Domain-Specific Modeling to the masses . More mature tools go beyond the
giants' entry-level offerings, providing support for true method engineering: new
parts are created whenever necessary, but existing fragments can be reused, and
several modeling languages are integrated into an effective whole . To push the field
further requires four things:

1. understanding the state of the art from mature tools and previous research ,
2. empirical research on the use of DSM in the field,
3. condensing that information and experience into advice for method engineers ,
4. hypothesizing from it a set of new requirements for the next generation of tools .

As guardians of point 1 and one of the few trustworthy parties to carry out point 2,
the method engineering community is thus in a unique position of responsibility.
Those unaware of past results or current practice will leap to points 3 and 4 to form
unfounded conclusions, sending research and practice back to the dark ages. Many
commercial attempts to jump on the bandwagon are doing just that, with productivity
of "UML-based MDA" only increasing by 35% [2], and of "Software Factories" by
20% [3]. Even allowing for the vagaries of these particular cases, one by a major
MDA tool vendor and one by the most referenced users of Software Factories, these
meager productivity increases compare poorly with the 500%-1000% commonly
encountered with better-founded DSM approaches [1].

2 Meta- and meta-meta-development, but no development?

In order to achieve our goals, we must first know and agree what those goals are. In
our Working Group, the focus is on the planning, analysis, design and evaluation of
information systems . Conspicuously absent from the list is the construction of
information systems: their implementation in a programming language . This
omission is all the odder when one looks at other working groups in TC8, and sees
that none of them include a focus on construction in general; only for specific kinds
of systems such as smart cards. How can this be? Construct ion is clearly central , the
one phase without which there is no hope whatsoever for a project, and without
which there would be no information systems , good or bad, for us to study.
Construction is also more clear-cut than many phases , amenable to hard scient ific
analysis : an IF statement is unequivocal, whereas a UML Association can mean
different things to different people.

Domain-Specific Modeling: The Killer Appfor Method Engineering? 3

Perhaps the answer lies in that very clarity. In other phases we can believe that
we have a generic solution : there is enough fuzziness that a concept of
"Requirement" or "Entity" can be seen as applicable to almost any project. In the
unforgiving glare of compilers, let alone users, a particular part of a program can
clearly be found lacking. Bubble sort may be fine for a PC home address book, but
too sluggish in other domains such as mobile phones or enterprise databases .
Academic research strives to come up with results that are universally true, but IS
construction is clearly dependent on the domain.

Whilst only implicit by omission for construction, this situational contingency
has always been recognized by WG 8.1 for IS development methods: different
modeling languages are suited for different problem domains. Historically, such
domains have been considered broadly, e.g. vertical domains such as banking, or
horizontal domains such as database systems. Modeling languages have taken a
similarly broad outlook, e.g. ER diagrams for database design. This breadth was
taken to its extreme in UML, which claims to be a universal method for any discrete
software system. Unsurprisingly, in reaching out for this goal UML has grown to
include a great number of modeling concepts , each of whose semantics are
deliberatel y vague.

3 Broad or Narrow?

While UML claims to be able to model everything from space shuttles through
database applications to mobile phones, no one development group needs this
breadth. Rather, each group works in a far narrower domain: not just mobile phones,
say, but user-visible applications for the Nokia Series 60 range of phones. As this is
one of many thousands of other such domains in IS, a modeling language developed
specifically for this situation can thus be a much better fit than UML. Such a
Domain-Specific Modeling language could have fewer modeling techniques, and
their concepts would be much more precise. Above all, the concepts can be at a
significantly higher level of abstraction : rather than having a general "Event" causing
transitions in a State Diagram, their can be different concepts for events like "Button
Press", "Soft key press", or "Incoming call".

When comparing other related domains, e.g. Ericsson mobile phones , it quickly
becomes apparent that while there may be a number of similarities between the DSM
languages, there is no way to produce an integrated modeling language without
losing precision or introducing significant bloat. However, the differences between
the modeling languages pale into insignificance when compared to the difference
between the code written in the two related domains . Partly because of different
underlying component s, frameworks and platforms, but above all because of separate
evolution of in-house standards and traditions, the code in the two domains is
virtually unrecognizable. What remains common, however, is that for either domain
it is a relatively simple task for an expert developer to specify the mapping from their
DSM language to their code.

Generating full production quality code directly from high-level models has long
been a goal of the software industry. Earlier attempts have largely failed, except in a

4 Steven Kelly

few narrow domains. Unfortunately, while narrowness has been a virtue for good
code generation, it is normally bad news for business. Another major factor in the
failure of earlier code generation attempts has been the difference between the code
different groups expect or want, as seen above. Since an expert from the group is
now creating a domain-specific code generator, that problem is largely overcome, as
are issues of vendor lock-in and long change cycles. Narrowing down the problem
domain space that the modeling language and generator need cover also addresses
another problem: earlier generated code tended to be bloated and inefficient, having
to cope with so many possible situations.

4 Back to the Future?

Any right-thinking UMLer will of course respond with the standard argument:
standards (pun unavoidable) . But will the sky really fall if we use more than one
modeling language? DSM has consistently shown productivity increases greater than
any since the move from assembly language to 3rd Generation Languages. These
figures stand up to empirical experiment [e.g. 4] and industrial experience of several
hundred developers working on hundreds of products over a dozen years [5].

Looking back at assembly languages, we can note an interesting fact: there was a
different language for each family of chips. Indeed, there could be more than one
language for a family: assembler vendors added their own higher-level constructs,
which did not map one-to-one with a single machine code instruction on that chip.
Was the move from assembly language to 3GLs therefore a welcome escape from a
confusing plethora of languages to a single universal language, e.g. C? Emphatically
not, although many students and practitioners today seem to have assumed this.
Rather, there was a surprisingly broad range of languages available, and many
focused on a specific domain, e.g. scientific programming, business systems or
graphics.

The move was also a gradual one, with the majority of systems at the start of the
1980s still being built in assembler. Some groups made the move earlier than others,
but all made it for the same reason: the productivity in the 3GL was higher than in
assembler. The main reasons for this were that one statement in a 3GL corresponds
to several in assembly language, and that 3GL statements are closer to the way we
look at the world, rather than the way a chip interacts with binary data. Both these
reasons are also factors in why DSM is more productive than programming in a 3GL.

The rate of evolution of hardware has always been higher than that of software,
possibly constituting another factor: users of a 3GL did not have to rewrite their
programs each time a new chip was released. Instead, one compiler writer rewrote
the mapping for the new chip, and all users of that 3GL simply upgraded to the new
compiler version. Again, with DSM the situation is similar: to cope with a change in
platform version, or even platform or programming language, there is no need to
build all models from scratch, or even to edit them at all. Instead, the expert
developer updates the generator, and all models by all developers now produce code
for the new platform.

Domain-Specific Modeling: The Killer App for Method Engineering? 5

5 Conclusion

In the 1980s, the focus of method engineering was on helping method users to select
from among the many available modeling languages. With the advent of UML, the
choice has been so restricted that the focus has shifted to other areas such as
requirements or processes. With Domain-Specific Modeling, there is a call for a new
category of developer, creating a modeling language for their group. Whether that
group is a single project, a company, or even similar projects across many
companies, the task of building a new modeling language is a challenge.

Method engineering research of the 1990s led to some of the meta-metamodels
and metamodeling tools that are easing the adoption of DSM, enabling today's
method engineers to concentrate on building a good language, rather than getting
stuck down in reinventing the wheel of modeling tool construction. The basic task of
identifying suitable constructs has been analyzed from dozens of industrial cases,
giving useful initial guidance to the method engineer [6].

To move forward, method engineers will need advice on modularization and
continuous integration of models by separate developers, research results on the
changes needed in version control systems for models, new algorithms for
identifying and displaying differences between similar models, and above all
empirical studies on which modeling approaches work, which do not, and where
these results hold. Those building tools for method engineers will need theory and
in-depth analysis: are the existing meta-metamodels really different, or are people
twisting UML and MOF semantics to get closer to some actual set of useful
constructs.

To be relevant, researchers in method engineering must be at least as smart as the
method engineers. Having had the pleasure of working with many of today's method
engineers, I can promise you this is a tough challenge. In my quarter century in this
field, I have only met one group that could make that claim: the method engineering
researchers of the early 1990s, now 15 years older. It is high time for this conference,
and for a new group of leading lights. I have every hope for the class of 2007!

References

1. DSM Case Studies and Examples, 26.5.2007; http://www.dsmforum.org/cases.html
2. M. Burber and D. Herst, Productivity Analysis - Model-Driven, Pattern-based

development with OptimalJ, 26.5.2007
http://www.theserverside.com/tt/articles/ article.tss?l=Sympo siumCoverage

3. 1. Warmer, Case Study: Building a Flexible Software Factory using Small DSLs and Small
Models, (unpublished discussion from talk), Code Generation 2007

4. R.B. Kieburtz, L. McKinney, J.M. Bell, J. Hook, A. Kotov, J. Lewis, D.P. Oliva, T.
Sheard, I. Smith and L. Walton, A software engineering experiment in software component
generation, 18th International Conference on Software Engineering (ICSE'96), 1996

5. Nokia case study, MetaCase, 1999; www.metacase.com/papers/MetaEdit_in_Nokia.pdf
6. J. Luoma, S. Kelly and J-P. Tolvanen, Defining Domain-Specific Modeling Languages:

Collected Experiences, 4th OOPSLA Workshop on DSM, TR-33, University of Jyvaskyla,
2004

Method Engineering: Trends and
Challenges

Colette Rolland
CRl, Universite Paris 1 Pantheon - Sorbonne, 90, rue de Tolbiac, 75013

Paris, France
rolland@univ-parisl.fr

Method Engineering (ME) is the discipline to study engineering techniques for
constructing, assessing, evaluating and managing methods for developing
Information Systems Development Methods (ISDM). Method engineering can
therefore, be seen as concerned with meta-methods. The prevalent research view
point has been the one of a meta-method supporting the selection and integration of
ISDM parts that together form a new situational method i.e. a method adapted to the
situation of a specific ISD project. Research in Situational Method Engineering
(SME) has not exclusively, but undoubtedly produced a large portfolio of assembly
based approaches.

The talk will build upon the results achieved in SME to suggest cross fertilization
with other disciplines and to raise research challenges for our community.

The position of the author is on one hand, that some of the results achieved can
be 'exported' to other fields to the benefit of the SME research whereas on the other
hand, our discipline can expand its scope by 'importing' views and approaches that
other communities are developing on similar issues.

Please use the following format when citing this chapter:

Rolland. C.• 2007. in IFIP International Federation for Information Processing. Volume 244. Situational Method

Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S., Henderson-Sellers 8., (Boston Springer),

pp.6.

Supporting Situational Method Engineering
with ISO/lEe 24744

and the Work Product Pool Approach

Cesar Gonzalez-Perez
European Software Institute
cesargon@verdewek.com

http://www.verdewek.com/work

Abstract. The advantages of situational method engineering (SME) as an
approach to the development, specification and application of methods are
significant. However, taking this approach into practice in real-world settings
is often a daunting task, because the necessary infrastructure and
superstructure are not currently available. By infrastructure, we mean the
underpinning theoretical and technological foundations on which SME is
based; in this regard, this paper explains how the ISO/IEC 24744 metamodel
solves many long-standing problems in methodology specification and
enactment that other approaches, such as OMG's SPEM, cannot. By
superstructure, we mean the exploitation mechanisms, often in the form of
tools and decision procedures, that allow individuals and organisations to
obtain value out of SME during their daily activities. Without these, SME is
often seen as a purely theoretical exercise with little practical purpose. In this
regard, we this paper also introduces the work product pool approach, which
departs from the conventional view that methodologies must be described in a
process-centric fashion to focus on a product-centric worldview, thus
providing teams the capability to adopt an opportunistic and people-oriented
setting in which to conduct their work.

1 Introduction

The method engineering approach [3, 13] builds upon the assumption that no specific
methodology can solve enough problems and, therefore, methodologies must be
specifically created for a particular set of requirements. In order to make this feasible
and cost-effective, the old principles of modularity and reuse are utilised, and
methodologies are said to be assembled from pre-existing method components,
rather than created from scratch. Method components, consequently, take a very

Please use the following format when citing this chapter:

Gonzalez-Perez, C., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational Method

Engineering: Fundamentals and Experiences, eds. Ralyre, J., Brinkkemper, S., Henderson-Sellers B., (Boston Springer),

pp.7-18.

8 CesarGonzalez-Perez

preeminent role in method engineering, since they comprise the raw material from
which methodologies are obtained. Method components are often said to be stored
into a repository, and the kinds of method components, as well as the relationships
that are possible between these kinds, are given by an underpinning metamodel.
Several metamodels have been proposed, such as OMG's SPEM 1.1 [16], SPEM 2.0
[18] (still under development) and ISOIIEC 24744 [12]. Of these, the latter is
especially oriented towards method engineering, providing specific support for
extant issues that other proposals, such as the ongoing versions of OMG's SPEM,
have not been able to solve. This support occurs at two levels: on the one hand, the
appropriate theory is established, so that a viable method engineering-based solution
can be developed on top of it. This involves issues such as the interactions between
the product and process sides of a methodology, or the specification of the endeavour
domain from the metamodel domain . On the other hand, the necessary exploitation
mechanisms are developed, so that an ISO/IEC 24744-based methodological solution
can be used in practice to solve real problems, going beyond a mere academic
exercise,

The next section briefly introduces the ISO/IEC 24744 standard metamodel.
Section 3 focuses on infrastructural issues, describing the major theoretical aspects
that are solved by the ISO/IEC 24744 standard metamodel, and explaining how they
are relevant for the method engineering approach . Section 4, on the other hand,
focuses on superstructural issues , describing how the work product pool approach
works on top of repositories and methodologies in order to let software developers
achieve their goal, i.e. deliver working software .

2 The ISO/lEe 24744 Standard Metamodel

ISO/IEC 24744 is an International Standard that defines a metamodel for
development methodologies. Although it is geared towards software development
methodologies, there is nothing in it that can prevent it from being applied to systems
development methodologies or even other areas .

In this context, a metamodel means a semi-formal language capable of describing
methodologies, and that these methodologies are models themselves. This is similar
to what other metamodels (such as OMG's SPEM) claim to do, but with a larger
scope . The ISO/IEC 24744 metamodel covers the following domain areas:
• Work units, also known as the process aspect of methodologies. This describes

the work that has to be done in order to obtain the system to be delivered. SPEM
and other metamodels also cover this area.

• Work products, also known as the product aspect of methodologies. This
describes the artefacts that must be used and/or created in order to obtain the
system to be delivered. SPEM and other metamodels also cover this area,
although at a very high level of abstraction.

• Producers, also known as the people aspect of methodologies. This describes the
roles, teams and tools that actually perform the work units and create or use the
work products mentioned above. SPEM and other metamodels barely cover this
area.

Supporting Situational Method Engineering with ISO/IEe 24744 9

• Stages, also known as the temporal aspect of methodologies. This describes how
work units, work products and producers relate to each other over time,
providing a macro-structure for the methodology (and, consequently, to
endeavours). SPEM and other metamodels often mix this area together with work
units, using the same class in the metamodel to specify the "what" and the
"when". This poses heavy limitations on the modularisation of methodologies,
which, arguably should be avoided in a method engineering context.

• Model units, also known as the modelling aspect of methodologies. This
describes the modelling building blocks that developers can use in order to
construct the work products mentioned above. SPEM and other metamodels do
not cover this area, assuming that UML or other modelling language will be
adopted and magically made to work with the methodology.
The following sections describe the details of some of the particularities of

ISO/IEC 24744 and how they make it especially appropriate for method engineering.

3 Theoretical Aspects

The theory underpinning ISO/IEC 24744 departs from the classic views
implemented by other metamodels in some aspects, but still conforms to a very
conventional object-oriented worldview. The following sections describe the details
of this theory, focussing on how it can provide the infrastructure for the
implementation of a method engineering solution.

3.1 The Strict MetamodeIIing Paradigm

According to the OMG's worldview, models represent their subjects strictly by
means of "instance-of' relationships. In other words, a subject is an "instance-of' the
entity that models it. No "instance-of' relationships may occur other than these.
Because of this, elements organise themselves into layers, sometimes called
"metalevels" in the literature, connected only by "instance-of' relationships. This is
often depicted as the widely know stack of metalevels, usually labelled MO, MI, etc.
This worldview is called the strict metamodelling paradigm, and, although prevalent
within the OMG's technology suite, it has been widely criticised from academia [2,
7]. To the best of our knowledge, no convincing reasons have been shown to exist as
of why the strict metamodelling paradigm should be accepted. On the contrary, it is
usually presented as an a priori statement that is to be obeyed without further
explanation.

ISO/IEC 24744 departs from this stance, and organises elements according to the
communities of people that are involved in their production and usage (Figure 1). On
the one hand, method engineers maintain repositories of method components and
may use them to create methodologies, which, in tum, are used by software
developers to create software products. Method engineers and software developers
are two different communities that establish the boundaries between three different
domains: the metamodelling domain, the methodology domain, and the endeavour
domain. Each domain is a representation of the domain "below" it, in the sense that

10 CesarGonzalez-Perez

methodologies represent endeavours and metamodels represent methodo logies [5].
The concept of representation has been explored in the software engineering
literature (e.g. [9, 20D, and goes beyond that of "instance-of' . A full discussion of
the concept of representation is out of scope of this paper; please see [7] for an
extended treatment.

metamodel

7; ~
method engineer

methodology

7; ~
deve loper

endeavour

Figure 1. Overall structure of ISO/lEC 24744. Boxes depict domains, and arrows
depict the representation relationships between domains. Stick figures depict the
communities that are directly related to eachdomain or relationship between domains,
as describedin the main text.

The absence of the artificial restrict ions imposed by the strict metamodelling
paradigm, together with the flexible yet grounded concept of representation, gives
ISO/lEe 24744 some capabil ities that are discusses in the following sections .

3.2 Dual-Layer Modelling

The most important consequence of using the concept of representation as a means to
relate domains, rather than that of "instance-of ', is that the metamodel domain can
exert control over mult iple domains at the same time. With a traditional, strict
metamodelling-based approach, a methodology is seen as an instance of a
metamodel, and an endeavour as an instance of a methodology; therefore, there is no
way in which a metamodel and an endeavour can be directly related. In other words,
the designers of a metamodel cannot put in the metamodel anything that regulates
how the endeavours that will be generated from the methodo logies that will be
obtained from the metamodel being designed will look like. For example, let us
consider that the designers of a metamodel want to capture the fact that all the work
products created during the application of any methodology must have a version
number. Using a strict metamodelling approach, this is impossible , because work
products exist in the endeavour domain, which is an instance of the methodology
doma in; therefore, the WorkProduct class, with its VersionNumber attribute, belongs
to the methodology domain. The metamodel designers are free to design the
metamodel as they wish, but cannot dictate anything about the methodology domain.

Supporting Situational Method Engineering with ISOIIEC 24744 II

Methodologies are supposed to be put together by method engineers, not metamodel
designers. Therefore, the metamodel designer cannot guarantee that all the work
products created during the application of any methodology derived from the
metamodel being designed will have a version number.

Using a representation-based approach, the chain of reasoning that led us to
conclude that the WorkProduct class belongs to the methodology domain does not
need to happen. On the contrary, a community-oriented perspective is taken.
ISO/IEC 24744 assumes that any conceivable methodology will use work products,
and therefore the concept of a work product is universal enough as to be "frozen" as
part of the metamodel. In other words, the WorkProduct concept is provided to the
method engineering community as raw material from which they can construct
method components and populate repositories . The WorkProduct class, with its
VersionNumber attribute, belongs to the metamodel domain . Its instances (i.e.
specific work products, such as the requirements specification document that I can
see on my desk as I type this) still belong to the endeavour domain. We must realise
that this means that the representation relationship that links the WorkProduct class
and its instances travels across the methodology domain; a class in the metamodel is
being instantiated in the endeavour. This would be illegal in a strict metamodelling
environment, but is perfectly reasonable in ISO/IEC 24744. The result is that the
ISO/IEC 24744 metamodel is perfectly capable to exert control on the endeavour
domain (e.g. determine that every work product will have a version number) as well
as the methodology domain (see Figure 1).

Common sense dictates that the final purpose of any software development
methodology is to produce working software. Therefore, any approach for the
specification of methodologies should take into account the enactment (or
application) of methodologies onto specific endeavours. Using a programming
simile, we can say that an approach to methodology specification that does not take
into account their enactment is akin to a programming language that can express
programs but does not take into account the possibility of running them. The ability
for a metamodel to provide classes that get instantiated at the endeavour level is not a
plus, but something that should be essential. Furthermore, tracing between
endeavour-level elements and methodology-level elements (method components)
should be directly addressed by the structure of the metamodel. ISO/IEC 24744
achieves this by pairing classes that represent endeavour-level elements and
methodology-level elements into powertype patterns [6], in which the methodology
level class (the powertype) partitions the endeavour-level class (the partitioned type).
For example, ISO/IEC 24744 includes the classes Task and TaskKind. Task
represents an actual task as performed at the endeavour level. TaskKind, on the other
hand, represents a kind of task as documented in a methodology. Task has attributes
such as StartTime or Duration. TaskKind has attributes such as Name or Purpose.
Evidently, every task "is-of' a particular task kind. This is shown in the metamodel
by pairing Task and TaskKind into the powertype pattern Task/*Kind, meaning that
the TaskKind class (the powertype) partitions the Task class (the partitioned type) (

Figure 2).

12 Cesar Gonzalez-Perez

Figure 2. Powertype pattern formed by the Task and' TaskKind classes in ISO/IEC
24744.

Since most metamodel classes are paired into powertype patterns, they are used
together as well: a powertype pattern is "instantiated" as a whole. In fact, method
components are created in ISO/IEC 24744 as clabjects [1], i.e. dual-faceted entities
that exhibit a class facet plus an object facet. The object facet is obtained as a
conventional instance of the methodology-level (powertype) class in the powertype
pattern, whereas the class facet is obtained as a conventional subtype of the
endeavour-domain class in the powertype pattern. Within a method component
clabject, both facets, class and object, represent exactly the same concept, but using
different representational mechanisms.

Figure 3. The "instantiation" of a powertype pattern. A regular object is instantiated
from the TaskKind class, and a regular class is obtained by subtyping the Task class.
Both together form a clabject (depicted by the ellipse), which is the implementation of
a method component.

For example, if we were to "instantiate" the Task/*Kind powertype pattern to
define a "Write code" task method component, this would involve creating an object
as instance of TaskKind and giving values to its attributes (Name="Write code" and
Purpose="To write code..."); and then creating a class (named WriteCode, for
example) as subtype of Task, which would inherit its attributes (StartTime and
Duration). The object with Name="Write code" and the WriteCode class
(components of the clabject) represent the same concept, i.e. the task specification of
writing code (Figure 3). The class facet will be useful as a template from which
instantiation is possible during enactment, while the object facet is useful as "data" at
the methodology level.

3.3 Product/Process Interaction

Another aspect that is often neglected by metamodelling approaches is that of the
integration between the product and process aspects of methodologies. If we still

Supporting Situational Method Engineering with ISO/IEC24744 13

agree that the final purpose of any software development methodology is to produce
working software, it should be clear that, at least from a motivational standpoint,
methodologies should be product- rather than process-driven. To put it
unceremoniously, process is a necessary evil. Process is necessary to transform
ambiguous, incomplete and conflicting expectations given by stakeholders into
hopefully working software. The ultimate purpose of a methodology, however, is
obtaining the software, not performing the process . Interestingly, most metamodels
for development methodologies are strongly process-focussed, sometimes even being
called simply "processes" (hence the "P" in "SPEM"). The product aspect is usually
assumed to be solved externally by the adoption of an all-encompassing modelling
language such as UML [17, 19]. Such inattention to product results in a poor
integration between process and product , because, given that the product aspect of
the methodology to be used is unknown to the metamodel, very few assumptions
about it can be made and, therefore , the interfaces between process and product
elements in the metamodel must be kept to a minimum.

Code

Defect
Report

Figure 4. Action diagram showing that the "Write code" task kind creates work
products of the "Code" and "Defect Report" kinds, and that the "Unit test code" task
kind modifies work products of the "Code" kind and creates work products of the
"Defect Report" kind.

ISO/IEC 24744 takes a different route, namely, that of modelling not only the
process aspect but also the product aspect of methodologies. The former involves
everything related to the tasks, processes, techniques and stages that describe the
work- and time-oriented nature of the methodology, whereas the latter is concerned
with everything related to the models, documents, languages , notations and model
units from which models can be built. In other words, the product aspect of a
methodology describes, with very fine details , the modelling languages (plus their
potential forms of depiction) that may be used within an endeavour that follows the
methodology. The whole of UML, for example, would be subsumed as part of a
methodology defined as an instance of ISO/IEC 24744 (Figure 4).The major
advantage of this approach is that, since the metamodel includes classes that
represent both process and product aspects of the methodology, it can also specify
rich interfaces between them. Conventional, process-focussed metamodels such as
SPEM use an input/output approach to relate work products to the tasks that interact

14 CesarGonzalez-Perez

with them. For example, using SPEM, we can say that the work product "Code" is an
output of task "Write code", and an input to task "Unit test code". The input/output
approach, however, is not rich enough to describe the variety of ways in which tasks
can act upon work products. Consider the above mentioned task "Unit test code".
When a developer performs that task, she starts with some code, unit-tests it, and
then ends up with some code. Is the code at the end the same work product as the
code at the beginning? With SPEM, we can only say, at the methodology level, that
the work product "Code" is an input to "Unit test code" and also an output; it is not
possible to reflect whether the outgoing product is a new instance of the Code work
product kind, or the same instance that came in. ISO/lEC 24744 uses a richer
approach, based on the concept of actions. An action is a usage event that a task
performs upon a work product. An action is of a specific type: create, read-only,
modify or delete . We can express a similar meaning to what in SPEM is conveyed by
saying that the work product "Code" is an output of task "Write code" by saying in
ISOIIEC 24744 that the task "Write code" is related to the work product "Code" via
a "create" action. Notice that this meaning is richer, since we are specifying that the
code is being created by the task rather than just put out. The unit testing example is
more illustrative. With ISO/IEC 24744, we have the alternative of saying that the
task "Unit test code" is related to the work product "Code" via a "modify" action,
which means that the code that "comes in" and the code that "comes out" of the task,
to maintain the input/output metaphor, is the same entity, but gets changed by the
task . But we have the alternative to say that the task "Unit test code" is related to the
work product "Code" via two actions: one of them is "read-only", and another one is
"create". This means that unit-testing reads a piece of code but does not change it,
and then creates a new piece of code as a result. From a methodological perspective,
these two alternatives are very dissimilar, and can have dramatically different
traceability, dependency and efficiency effects when the methodology is carried out.

4 Methodology Exploitation

Method engineering assumes that methodologies are assembled from method
components and made available to their users, i.e. software developers. In order for
software developers to reap the benefits of using these methodologies, the
appropriate tools and techniques have to be provided as well. The following sections
explore how software developers can exploit a methodology by using an alternative
enactment approach and the work product pool approach.

4.1 Enactment Approaches

As we have said, most metamodels for development methodologies are strongly
process-focussed. This is often reflected in the adoption of the metaphor that the
organisation is a machine that executes the methodology as if it were a computer
programme. Consequently, metamodels such as OMG's SPEM describe processes in
terms of work breakdown structures and task precedence, borrowing from the most
classical management styles.

Supporting Situational Method Engineering with ISO/lEe 24744 15

This clashes frontally with the current trend towards agility [4, 22]. It is our
personal experience that organisations often take advantage of nudging their systems,
acting opportunistically when possible, and leveraging unexpected circumstances,
even when an agile style of work is not explicitly encouraged, and more so when it
is. Conventional management practices, on the contrary, try to impose up-front plans,
which, from a methodological perspective, are sometimes seen as the one-off
enactment of method components at the beginning of the endeavour. In other words,
if a project plan is supposed to specify what is going to happen in terms of actual
tasks and work products, why can't we instantiate the appropriate method
components at the beginning of the project in a large big-bang enactment event and
leave them sitting there for later use? Changes to the plan are supposed to be minor
(as compared to the overall magnitude to the plan) and can surely be addressed by
destroying or creating a few extra objects.

Let us consider, for a moment, that an up-front project plan is not possible or not
wanted. The "plan a little, design a little, code a little" approach has been proposed a
number of times in the context of evolutionary lifecycles [15], and most agile
approaches also share that an up-front plan is not a good idea. In a context like this, a
big-bag enactment event at the beginning of the endeavour is not feasible. Quite to
the contrary, the enactment of the methodology must proceed little by little as time
goes by and new method components in the methodology are "ready" to be
instantiated. Recall from Section 3.2 that most method components are c1abjects, and
that it is their class facet which gets instantiated at the endeavour level.

The fact that enactment is done just-in-time means that the exact situation of the
endeavour can be known and analysed prior to the instantiation of a method
component. For example, imagine a "Write code" task kind specified in a
methodology. Using a traditional approach, this task kind would have to be
instantiated at the beginning of the endeavour and assigned a start time and duration
well ahead of the actual time of performance. Since exact dates and durations cannot
be known beforehand with precision, rough estimates would be probably used. This
is, incidentally, the same problem that conventional project plans usually find. Using
a just-in-time enactment approach, the "Write code" task kind would not be
instantiated until a developer actually needs to write some code; at that precise
moment, an instance of the task kind is created, the situation of the whole endeavour
is evaluated, and the most favourable start time and duration values are assigned to
the task. Of course, anything is possible between these two extremes. Our point here
is that just-in-time enactment presents an interesting alternative to the more
traditional, one-off variant.

4.2 The Work Product Pool Approach

The work product pool can be conceived as a central repository where all the
intermediary work products managed by the endeavour are stored. We must take into
account that the work product pool is an abstract construct and very rarely it is
actually implemented as a real database or information store. In any case, more often
than not it would contain pointers to the actual work products rather than the work
products themselves . Initially, when the endeavour starts, the work product pool

16 Cesar Gonzalez-Perez

contains very few products, such as those that are internally available (e.g. a reusable
asset database) or those that are externally provided (e.g. a needs statement). As tasks
being to be carried out, and actions to be performed, existing work products are read,
modified and deleted, and new work products are created, changing the population of
the pool. Eventually, the final system (i.e. the ultimate goal of the endeavour)
appears in the pool and the endeavour can be considered complete .

This approach sees work products as the drivers of the endeavour, and tasks as
secondary elements that operate on them and transform them as necessary. This fits
nicely with our discussion of process- vs. product-centric methodologies in Section
3.3. It is also highly compatible with the notion of microprocesses described by [8],
and with the fountain model of [10].

A question still remains, namely, determining which method components are
"ready" to be enacted at any point in time. In our previous example, we assumed that
a developer needed to write some code, and that the situation of the endeavour was
such that writing code was feasible. This means that the developer had the
appropriate role and that all the work products that are necessary in order to write
code are available in the work product pool. It is possible to build a tool that
implements an algorithm that automatically finds which task kinds of a given
methodology are candidate task kinds, i.e. are ready to be enacted if a particular user
wishes. A candidate task kind is one that can be enacted at a given point in time
because:

• The user requesting the enactment has a role that is mapped, as per the
methodology specification, to that kind of task.

• The organisation carrying out the methodology is performing at a
capability level equal or higher to that of the task kind.

• All the work products that are necessary to perform a task of the given
kind are present in the pool.

An algorithm capable of verifying these three conditions is easily implementable
on top ofISO/IEC 24744 because of the following characterist ics of the metamodel:

• ISO/IEC 24744 contains classes that represent both the endeavour as
well as the methodology domains. This allows ISO/IEC 24744-based
tools to manipulate information belonging to both domains in an
integrated fashion, and trace back and forth as necessary . A metamodel
that only models the methodology domain will find it very difficult (if
not impossible) to implement this algorithm.

• ISO/IEC 24744 directly supports the concept of capability or maturity
levels as defined by standards such as CMMI [2I] or ISO/IEC 15504
[11]. This provides an additional dimension to methodologies, which can
be adjusted according to the desired capability of the performing
organisation .

• ISO/IEC 24744 implements rich semantics for the interface between
process and product aspects of the methodology, allowing the algorithm
to "reason" about the dependencies between work products and therefore
determine whether the required products for any particular task are
present in the pool or not. A metamodel based on a more conventional
input/output approach would be unable to attain this.

Supporting Situational Method Engineering with ISO/IEC 24744 17

A tool that implements an algorithm like this would allow a software developer
to display a list of candidate task kinds at any point in time and choose, from that list,
anyone that she wishes to enact. As we have said, which task kinds are candidate to
be enacted is determined just in time depending on the role of the developer, the
organisation's performing capability level, and the contents of the work product pool
at that precise point in time. The major advantages of this approach as opposed to a
conventional, plan-driven one, are two. First of all, it takes advantage of as much
information as possible, since it defers enactment to the last possible moment,
resulting in optimal decisions and a decreased need for corrections. Secondly, it is
highly opportunistic, meaning that the state of the endeavour (primarily given by the
contents of the work product pool) is what determines, at any point in time, the next
steps that must be taken. This, in tum, supports the appearance of complex emergent
behaviours, which have been described as a key component of modem business
environments [14].

5 Conclusions

In this paper we have introduced the ISO/IEC 24744 standard metamodel, focussing
on how it can help the implementation of a method engineering solution from both
infrastructural and superstructural perspectives. On the one hand, ISO/IEC 24744
can provide the theoretical background for method engineering to model the
methodology and endeavour domains together and maintain the relationships
between them, which is fundamental to keep the necessary traceability during
enactment. Also, this metamodel provides rich semantics to model the interface
between the process and product sides of methodologies, allowing a better
connection between these two often separated worlds. On the other hand, we have
shown how these properties make it possible that an algorithm can be implemented
on top of ISO/IEC 24744 that can determine what method components of a
methodology can be enacted at any point in time. Such just-in-time enactment has
the advantages over conventional, up-front enactment that it uses as much
information as possibly available (requiring less rework) and that it is highly
opportunistic, supporting the emergent behaviours that usually occur in modem
business environments.

We acknowledge that the advantages provided by ISO/IEC 24744 come to a
price: the theoretical underpinnings of the metamodel, based on powertype patterns
and clabjects, depart from the conventional strict metamodelling paradigm often
found in the literature. As with any other new technology, a moderately steep
learning curve is to be expected . We hope that the gains will be worth it.

References

I . Atkinson, C. and T. Kuhne , 2000. Meta-Le vel Independent Modelling. In International
Workshop on Model Engineering at 14th European Conference on Object-Oriented
Programming. 12-16 June 2000 .

18 Cesar Gonzalez-Perez

2. Atkinson, C. and T. Kuhne, 2001. Processes and Products in a Multi-level Metamodeling
Architecture. Int. J. Software Eng. and Knowledge Eng. 11(6): 761-783.

3. Brinkkemper, S., 1996. Method Engineering: Engineering of Information Systems
Development Methods and Tools. Information and Software Technology . 38(4): 275-280.

4. Chau, T., F. Maurer, and G. Melnik, 2003 . Knowledge Sharing: Agile Methods vs.
Tayloristic Methods. In 12th IEEE International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 2003). IEEE Computer Society.
302-307 .

5. Gonzalez-Perez, C. and B. Henderson-Sellers, 2005 . A Representation-Theoretical
Analysis of the OMG Modelling Suite. In The 4th International Conference on Software
Methodologies, Tools and Techniques. 28-30 September 2005 . Frontiers in Artificial
Intelligence and Applications 129. lOS Press: Amsterdam. 252-262 .

6. Gonzalez-Perez, C. and B. Henderson-Sellers, 2006. A Powertype-Based MetamodeIIing
Framework. Software and Systems Modelling. 5(I): 72-90.

7. Gonzalez-Perez, C. and B. Henderson-Sellers, 2007 . Modelling Software Development
Methodologies: A Conceptual Foundation. Journal ofSystems and Software. (in press).

8. Greenfield, 1. and K. Short , 2004. Software Factories: John Wiley & Sons.
9. Guizzardi, G., 2007 . On Some Modal Properties of Onto logically Well-Founded Structural

Conceptual Models. In CAiSE 2007. LNCS (in press). Springer-Verlag
10.Henderson-Sellers, B., 1992. A Book ofObject-Oriented Knowledge. New York : Prentice

Hall.
II .International Organization for Standardization I International Electrotechnical

Commission, 2004 . ISO/IEC 15504-1: 2004. Software Process Assessment - Part I:
Concepts and Vocabulary.

12.International Organization for Standardization I International Electrotechnical
Commission , 2007 . ISO/lEC 24744. Software Engineering - Metamodel for Development
Methodologies.

13.Kumar, K. and R.J. Welke, 1992. Methodology Engineering: a Proposal for Situation
Specific Methodology Construction, in Challenges and Strategies for Research in Systems
Development, W.W. Cotterman and J.A. Senn (eds.). John Wiley & Sons: Chichester (UK) .
257-269.

14.Lycett, M., R.D. Macredie, C. Patel, and R.J. Paul, 2003 . Migrating Agile Methods to
Standardized Development Practice. IEEE Computer. 36(6): 79-85.

15.McConnell, S., 1996. Rapid Development . Redmond : Microsoft Press.
I6.Object Management Group, 2005. formaI/05-01-06 . Software Process Engineering

Metamodel Specification , version 1.1.
I7.Object Management Group, 2005 . formaI/05-07-04. Unified Modelling Language

Specification: Superstructure, version 2.
18.0bject Management Group , 2006. ad/2006-08-01. Software & Systems Process

Engineering Meta-Model, version 2.0.
I9.Object Management Group, 2006. formaI /05-07-05. Unified Modelling Language

Specification: Infrastructure, version 2.
20.Seidewitz, E., 2003 . What Models Mean. IEEE Software. 20(5): 26-31.
21.Carnegie Mellon Software Engineering Institute , 2002. CMMI-SE /SW/IPPD/SS, V 1.I,

Continuous. CMMl for Systems Engineering/Software Engineering/Integrated Product and
Process Development/Supplier Sourcing, Continuous Representation, version 1.1.

22.Thomsett, R., 2002. Radical Project Management. Upper Saddle River , NJ: Prentice-Hall.

Multi-Grounded Action Research in
Method Engineering: The MMC Case

Fredrik KarlssonI and Par 1. Agerfalk2
,3,4

I Methodology Exploration Lab, Dept. of Informatics (ESI),
Orebro University, SE-70I 82 Orebro, Sweden

Email: fredrik.karlssorugtesi.oru.se,
2 Dept. ofInformation Science, Uppsala University, Sweden

3 Jonkoping International Business School,
P,O, Box 1026, SE-55I II Jonkoping, Sweden

4 Lero - The Irish Software Engineering Research Centre
University of Limerick, Limerick, Ireland

Email: agpa@jibs.hj.se

Abstract There appears to be two schools of information systems
development methods research that largely pursue their own agendas without
many cross-references, On the one hand there is the method engineering
research and on the other hand there is the method-in-action research, There
seems to be much to be gained from integrating these two schools, developing
knowledge that both has the formality (rigor) and reflects its enactment in
practice, To achieve this, the research approach adopted has to embrace this
duality, In this paper we explore how Multi-Grounded Action Research
(MGAR) can contribute to achieving this aim, MGAR has been used in the
development of a Method for Method Configuration, a research product that
integrates the strengths of both schools,

1 Introduction

As noted by Agerfalk and Fitzgerald [1], there appears to be two schools of
information systems development method (ISDM) research that largely pursue their
own agendas without many cross-references. On the one hand there is the method
engineering (ME) research which has to a large extent concentrated on deriving
situational methods from atomic method fragments or larger method chunks [2-7].
This school of ISDM research has paid limited attention to what actually happens in
software development projects where the situational method is used. On the other
hand, there is the method-in-action research that focuses specifically on how
espoused ISDMs are enacted in practice [e.g. 8, 9, 10]. This school of ISDM
research, while having contributed extensively to our understanding of method use,

Please use the following format when citing this chapter:

Karlsson. F., Agerfalk, P.I., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational

Method Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S., Henderson-Sellers B., (Boston

Springer), pp. 19-32.

20 Frcdrik Karlsson and Par J. Agerfalk

seems to neglect the intricate task of defining and validating consistent method
constructs .

Another way to put it is that there has been 11 lot of research on (a) the
construction of situational methods out of existing method parts, and (b) the
relationship between espoused methods and methods-in-action. According to
Agerfalk and Fitzgerald [I] , a basic flaw in the research of type (a) is that it often
does not pay sufficient attention to actual method use. Perhaps focusing too much on
what people should do, rather than on what they actually do. A basic flaw in re
search of type (b), on the other hand, is that it often does not pay sufficient attention
to the formality (rigour) required to ensure method consistency. That is, too little
focus on how to codify successful development practices into useful ISDMs.
Another flaw is that (b) usually does not acknowledge the difference between what is
termed base method [II] and situational methods, perhaps even confusing the latter
with method-in-action (i.e. an ISDM as enacted in practice).

As pointed out by Agerfalk and Fitzgerald [1], there seems to be much to be
gained from integrating these two schools, and they even suggest method rationale
could be an important link between the two. They argue that since ISDMs
fundamentally are linguistic expressions as result of and basis for social action, we
need to understand the complex social reality that shapes methods-in-action. On the
other hand, it is imperative to use that understanding as a basis for formal
construction, verification and validation ofISDMs. Subsequently, it becomes critical
for the adopted research process to reflect this duality. The aim of this paper is to
explore how Multi-Grounded Action Research (MGAR) can contribute to method
engineering research. This is explored through reflecting on its use in the
development of Method for Method Configuration (MMC) , a research product where
the rigor of ME research is combined with the social sensitivity of the method-in
action school.

The paper proceeds as follows. Section 2 contains an in-depth discussion of the
MGAR approach. While the focus of this paper is on the MGAR approach as such,
to facilitate understanding, Section 3 then provides a brief overview of the main
research product, MMC. Following this, Section 4 provides empirical experiences
from applying MGAR and provides an in-context perspective of the research
approach. Finally, the paper ends with a concluding discussion in Section 5.

2 Multi-Grounded Action Research

MMC is the result of a collaborative project involving the Swedish research network
VITS (with participants from Orebro University and University College Boras),
University of Limerick, Ireland , and three Swedish software developing
organizations: Volvo IT (a multi-national software and technology consultancy
organization), Posten IT (the information technology division of Posten AB), and
Precio (a mid-sized software consultancy company).

The research method used was that of Multi-Grounded [12] Action Research.
Similar to grounded action research [13] it draws on the well-established qualitative
research method Grounded Theory, particularly as it has evolved in the tradition of

Multi-Grounded Action Research in Method Engineering: The MMC Case 21

Strauss and Corbin [14]. In a multi-grounded approach evolving as well as existing
theory play an important part in data collection and analysis [cf. 15]. The idea is to
ground theory not only in empirical data, but also internally and in other existing
knowledge of theoretical character. This gives rise to three grounding processes,
which were applied in this research: internal grounding, external grounding and
empirical grounding.

Internal grounding means reconstructing and articulating 'background
knowledge', that is, knowledge that might otherwise be taken for granted. For
example, it is important to identify and explicate the basic assumptions behind MMC
to understand how and when it is applicable. Internal grounding also includes
defining concepts used and their interrelationships. The important contribution of
this process in this particular research is a consistent conceptual model of MMC, free
from ambiguities and with concepts that are anchored in explicit values and goals.
That is, it ensures that the developed knowledge (MMC in our case) is logically
consistent [16]. External grounding is concerned with relationships between the
developed knowledge (its concepts and internal relationships) and other knowledge
of a theoretical character. This is relevant for putting forward similarities and
differences between the evolving knowledge and other existing knowledge. In our
case, this meant ensuring that MMC builds on existing ME wisdom in a constructive
way and that it does not contradict relevant previous studies. Empirical grounding
emphasizes the importance of applying developed knowledge in practice to validate
the concepts and their relationships in an empirical environment. In this context we
use 'applying' in a broad sense, involving analysis, design and implementation, as
well as test and evaluation. In our case, this involved designing parts of MMC
together with qualified practitioners as well as gaining experience from using MMC
in real projects when specifying situational ISDMs. Furthermore, as we learn more
about the domain we research, knowledge can also be generated through
classification of empirical phenomena, which results in refinement of the theoretical
knowledge and thus triggers further internal and external grounding.

Our MGAR approach can be understood in terms of the traditional 'canonical'
action research method with cycles of diagnosing, action planning, action taking,
evaluating, and specifying learning [17]. The research project consisted of two such
MGAR cycles, which are elaborated further in the sections below. Within these two
cycles seven smaller 'action cases' [18] were performed, as shown in Table 1. An
action case means involving competent practitioners in collaborative design and
evaluation efforts. Problems and design decisions are discussed and taken together
by researchers and practitioners, which means continuous feedback and interaction
between the two [19]. The selection of action cases was based on finding a mixture
of different organization-wide ISDMs and organizations. The choice of organizations
was based on two premises: they had to use different, preferably well-known,
organization-wide ISDMs, and they had to agree to put aside resources to enable the
kind of collaboration envisaged. The organizations in this study ranged from quite
small to very large and the ISDMs used in these organizations were the Rational
Unified Process (RUP) and the Microsoft Solution Framework (MSF) - see Table 1.
Furthermore, each action case served a specific purpose towards the final research
product and was related to the action cycle discussed below.

22 FredrikKarlsson and ParJ. Agerfalk

Table 1. Actioncases in chronological order

Action case
I. Volvo IT - pre case
2. Volvo IT
3. ESI
4. Posten IT

5. Posten IT

6. Precio
7. Precio

Business
Large
Large
Small
Large

Large

Medium
Medium

ISDM
RUP
RUP
RUP
RUP

RUP

MSF
MSF

Case role
Methodconfiguration diagnosis
MMCdesign, configuration application
MMCvalidation, configuration application
MMCredesign & validation, configuration
application
MMCredesign & validation, reconstruction
of configuration
MMCvalidation, creating configuration
MMCvalidation, reconstruction of
configuration

2.1 The First Multi-Grounded Action Research Cycle

The first MGAR cycle was carried out between spring 2000 and spring 2002 . During
this cycle the first three action cases in Table I were carried out, together with the
research collaborators Volvo IT and ESL

Phase 1 - Diagnosing (Action case 1): Difficulties related to tailoring an
organization-wide method for a specific project was explored at Volvo IT through a
series of workshops with a systems development project requiring a situational
ISDM . Problems with the current way of tailoring the organization-wide ISDM were
documented. Based on principles from the situational ME literature, a vision of how
to improve method configuration was formulated. The data sources from this phase
were : log books from three workshop sessions, organization-wide ISDM (the RUP),
situational method , project deliverables. Data analysis was done using problem
analysis [20] and conceptual models. Problem analysis was used to separate real
problems from symptoms. Conceptual models of the organization-wide ISDM were
created to facilitate understanding of experienced phenomena, using UML and other
standard techniques.

Phase 2 - Action planning (Action case 2): A set of design principles for
improved method configuration was developed in a series of workshops. These were
anchored in the formulated vision, prioritized problems, and principles from the
situational ME literature. The proposed design principles were: the principle of
modularization, the principle of method rationale for selecting method parts and the
principle of a multi-layered reuse model. The data sources from this phase were: log
books from two planning sessions and the vision document.

Phase 3 - Action taking (Action case 2 & 3): Based on the design principles, a
prototype of MMC was developed. In a series of workshops, a conceptual structure
and a classification schema were chiseled, along with a number of instructions for
the method engineer role. The four main concepts were: the method fragment (based
on established situational ME principles [4]), the base method (the organization-wide
ISDM), the configuration package, and the configuration template . The latter two
concepts were introduced to facilitate modular reuse of method configurations.

Volvo IT provided a set of existing projects as input for the design sessions and
emerging concepts were tried against those projects' requirements. A summary of

Multi-Grounded Action Research in Method Engineering: The MMC Case 23

the work so far was presented at an international workshop [21]. When MMC had
stabilized sufficiently, it was used in a small scale project at ESI, which enabled
active participation throughout the project. The chosen base method was the RUP.
Identified data sources were: log books from twelve design sessions and a
preliminary version ofMMC.

Phase 4 - Evaluation (Action case 3): The first full-scale evaluation of MMC
was based on the active participation in the ESI project. The business objectives of
the systems development project were to offer the situational information about
personnel to internal users and external users outside the organization. The first
author was project manager and method engineer during this project. Five different
data sources were of interest from this phase: the situational ISDM that was used
during the project, defined reusable assets, project artifacts, project results, and the
project log book.

The data sources were analyzed with a focus on encountered problems and
achieved design goals. Documented problems were traced to possible causes. For
example, some of these causes could be traced back to the situational method and
MMC, the systems developer's knowledge of the base method, or a combination.
The developed software was evaluated through interviews with end users and change
requests tracking. [22].

Phase 5 - Specifying learning: On the basis of the data analysis in Phase 4,
lessons learnt, including practical advices on how to use the proposed meta-method,
and change requests were outlined. A summary of the work so far was published in
an international journal [II].

2.2 The Second Multi-Grounded Action Research Cycle

The second MGAR cycle included four action cases as shown in Table I . These were
carried out together with Posten IT and Precio between autumn 2002 and autumn
2004.

Phase 6 - Diagnosing: The diagnosing phase was based on the specified lessons
learnt from the first MGAR cycle. These lessons were analysed from two different
perspectives: design flaws in the MMC prototype were identified, and the need for a
CAME-tool based on MMC was identified (note that the tool aspect is beyond the
scope of this paper and is only mentioned here for completeness). Data sources
during this phase were the lessons learnt and change requests from the first action
research cycle. The data analysis, like in Diagnosing during the first MGAR cycle,
was done using problem analysis [20], to separate real problems from symptoms.

Phase 7 - Action planning (Action case 4 & 5): Based on lessons and change
requests from the first MGAR cycle, the set of design principles was refined. It
resulted in a set of sub-principles:

• The principle of modularization: self-contained modules, internally
consistent and coherent modules, support for information-hiding and
implementable in a CAME-tool;

24 Fredrik Karlsson and Par J. Agerfalk

• The principle of method rationale for selecting method parts: support
analysis of potential to achieve rationality resonance, and support 'method
in-action' [23] decisions;

• The principle of a multi-layered reuse model.

Phase 8 - Action taking (Action cases 4-7): MMC was redesigned based on the
refined principles. A new modularization concept was introduced, based on a
modification of an existing ME concept: the method component. This concept was
integrated with the two concepts configuration package and configuration template.
As a consequence of this redesign, the classification schema was changed as well.
The method rationale and method component concepts were presented at
international conferences [24, 25] and in an international journal [26]. During this
phase the following data sources were produced: log books from four design sessions
andMMC.

The redesigned MMC was used in live projects at Posten IT and Precio. In these
projects, RUP and MSF were used as base methods. In total MMC was used in four
different project settings as shown in Table 1. Two of the projects included
reconstruction of existing situational methods into reusable assets and the remaining
two projects focused actual tailoring of ISDMs.

Phase 9 - Evaluation (Action cases 4-7): Evaluation of MMC (Phase 8) was
performed during its use at Posten IT and Precio. Through-out these projects, group
interviews were performed with project members. The following data source was
used during the evaluation: log books from six configuration workshops, situational
methods, defined reusable assets, project artifacts, and four group interviews. Theses
data sources were analyzed with a focus on encountered problems and achieved
design goals.

Phase 10 - Specifying learning: On the basis of the data analysis in Phase 9,
lessons learnt and change requests were outlined. As during the first MGAR cycle
the first category contains practical advice and the second category contains
identified design flaws that have had subsequent design implications.

3 The Method for Method Configuration - MMC

The aim of the research product MMC is to support method configuration, as a
specific kind of ME, which we define as: the planned and systematic adaptation of a
specific method through the use of reusable assets. The foundation of MMC is its
conceptual framework, shown in Fig. I. MMC provides the possibility to work with
reusable assets of ISDMs through the three core concepts: the method component
[24, 26], the configuration package [27], and the configuration template [27].
Together they constitute types of reusable assets of different magnitude.

A method component is the smallest meaningful and coherent part of an ISDM,
and the organization-wide ISDM (base method) has to be represented as a set of such
components in order to use MMC. Method components are used as modularization
blocks that are excluded, added and exchanged from the base method. For example,
an ISDM might include a method component concerned with software packaging;

Multi-Grounded Action Research in Method Engineering: The MMC Case 25

involving copying the software on distributable medium, printing handbooks, and
designing a cardboard box with a selling cover. In projects where the final product is
delivered using the Internet such a component is often considered superfluous and
can be excluded.

Deliverable

....
Specifics

1.."

1.."

Expresses...

Input 0.."

....
Specifics

1...

.. Con figuration
fora

Fig. 1. A conceptual meta-model of Method for Method Configuration

Configuration packages and configuration templates are used to represent
situational versions of an ISDM. The main difference between these two concepts is
how much of a situational method they represent. Briefly, a configuration package
can be described as a pre-made method configuration designed to fit one single
specific development characteristic. If we continue on the short example in the
previous paragraph it is likely that we are working with a characteristic of Internet
delivery. In such a case the characteristic should affect method components aiming
for product distribution. The result of how such method components are selected
with respect to this characteristic is represented in the configuration package. This
selection of components can, if required, include components from complementing
ISDMs.

Real-life development situations obviously comprise a combination of several
characteristics. For example, a single project may involve a number of diverse
characteristics, such as unstable requirements, low degree of management support, a
new technical platform and Internet delivery. The configuration template then
represents this more complex configuration, and is a pre-configuration of the
complete organization-wide ISDM for a typical project situation in the organization .
A configuration template is constructed from a selection of configuration packages
(each one representing a characteristic) and can be viewed as an aggregate of
configuration packages. Hence, a configuration template reflects a recurring
development pattern in an organization.

The remainder of this section is structured based on the three core concepts
introduced above. For an extensive presentation of these concepts and content

26 Fredrik Karlsson and Par J. Agcrfalk

examples see Karlsson and Wistrand [26], Wistrand and Karlsson [24] and Karlsson
[27].

3.1 The Method Component Concept

In order to achieve a systematic yet straightforward way of working with method
configuration a modularization concept that implements information hiding is
required. Through such a concept it is possible to define the smallest coherent ISDM
part that can be suppressed, added or exchanged: A method component is a self
contained part ofan ISDM expressing the transformation ofone or several artifacts
into a defined target artifact. and the rationale for such a transformation.

The Method Component Content
A method component consists of two parts: its content and the rationale expressing
why the content is designed as it is and what it can bring about. The content of a
method component is an aggregate of method elements: A method element is a part
of an ISDM that manifests a method component's target state or facilitates the
transformation from one defined state to another.

The concept of method element can be specialized into five categories. First,
there are three interrelated parts frequently mentioned in the literature: prescribed
action, concept, and notation. Prescribed actions together with sequence restrictions
guide the performance of activities and tell project members what actions to take in
specific situations. In performing these actions, the concepts direct developers'
attention towards specific phenomena in the problem domain. Hence, concepts are
used to express an understanding of the problem domain, and also of the ISDM it
self. The results of the prescribed actions are documented using a specific notation,
which gives the concepts a concrete representation.

Second, based on empirical observations from MGAR Cycle I, these categories
are complemented with artifact and actor role as two further sub-types of method
element. Project members tended to discuss ISDMs from an artifact perspective
during method configuration and software development projects. This is also in line
with previous research emphasizing the importance of 'keeping the focus on what is
being produced' [28]. Artifacts act as deliverables from the transformation process as
well as input to this process. Our use of the term input should not be interpreted in
terms of a precondition. ISDMs are here viewed as heuristic procedures and
consequently specified inputs are considered to be recommended inputs. However, a
method component needs to have at least one input. Otherwise the method
component will not have any meaningful support in the method. One exception is
method components that initiate new activities that are later integrated with the result
from other method components. The selection of actor roles are determined by the
prescribed actions that need to be part of the transformation process. Actor roles are
played either as drivers or as participants of the prescribed actions in the method
component. Observations from MGAR Cycle I show that actor roles are important
when mapping the situational ISDM to the actual work organization.

The rationale part of the method component concept consists of two parts: goals
and values. Method elements exist for reasons, which are made explicit by means of

Multi-Grounded Action Research in Method Engineering: The MMC Case 27

associating method elements to the goals. These goals are anchored in values of the
method creator [1]. Taken together, goals and values are often considered important
constituents of an ISDM's underlying perspective or 'philosophy' [23]. When
working with method configuration according to MMC, method rationale is more
important than the deliverable as such. Through the method rationale it is possible to
address the goals that are essential in order to fulfill the overall goal of a specific
project. Prescribed actions and artifacts are only means to achieve something and
method rationale can thus help developers not to loose sight of that ultimate result,
and also help them find alternative ways forward.

The Method Component Interface
The second purpose of the method component concept is to hide unnecessary details
during method configuration, providing a sort of encapsulation. Thus, we draw on
how the component concept is traditionally used in software engineering [29]. How a
task is executed is not interesting from an external view of a component. A user of a
component is primarily interested in the results offered by the component and the
required inputs needed to achieve those results. The reduction of complexity is
achieved through the method component interface: A method component interface is
a selection ofmethodfragm ents and rationale that are relevant for the task at hand.

The interface creates an external view of method components. The interface's
content depends on the task at hand [26]. Empirical observations from MGAR Cycle
I show that the method component's overall goals and the artifacts are central during
method configuration. Therefore, they are part of the interface during method
configuration as shown in Fig. I. Artifacts are, as discussed above, designated as
input and/or deliverable (output). This is necessary in order to deal with the three
fundamental actions that can be performed on an artifact: create, update and delete.
In cases when an artifact is only created by a method component, it is classified as a
deliverable. If the artifact can be updated by the same method component it is
classified as input as well. Furthermore we stipulate that a component can take one
or several input artifacts, but has only one deliverable. Finally, the interface also
expresses the overall goals of the method component representing the method
rationale. These goals are used during method configuration and when discussing the
rationality resonance possible to achieve during a project with certain characteristics.

3.2 The Configuration Package

Method configuration is about deciding whether or not method components in a base
method are to be performed, and to what extent. This is done through the focus a
characteristic has on the rationale of a method; rationale that is expressed through the
method components' interfaces. A characteristic is viewed as a question about one
aspect of the development situation type [11]. This question can have one or more
possible answers that constitute the characteristic's dimension; one possible answer
is termed configuration package in MMC. Each characteristic addresses one or
several method components and their purpose of existence. Hence, each
configuration package has a scope: the method components that are of interest for
classification based on the characteristic. The scope is defined in order to reduce the

28 Fredrik Karlsson and Par J. Agerfalk

number of classification operations that have to be performed when creating a
configuration package.

Thus, a configuration package is a classification of method components (see Fig.
1) with regard to how relevant their overall goals are for a specific answer in a
characteristic's dimension. An example of a characteristic is 'Business processes
already well understood?' which could address method components about business
modeling. Two possible answers are 'We have good knowledge about existing
business processes' and 'We have no knowledge about existing business processes.'
In this case the dimension consists of two answers, or configuration packages. Thus
component-based method configuration links to the idea of larger reusable blocks of
method modules, blocks termed configuration packages: A configuration package is
a configuration ofthe base method suitable for a characteristic's value.

The classification of method components is based on a two-dimensional
classification schema. The vertical dimension focuses how much attention should be
devoted to a particular method component: 'None,' ' Insignificant,' 'Normal' or
'Significant' . If at this stage a method component is found to be unimportant, it can
be classified as 'Omit' outright. The three aspects of the horizontal dimension:
' Satisfactory,' 'Unsatisfactory ' and 'Missing' cut across the vertical dimension. This
dimension is referred to as the potential for achieving rationality resonance, based on
the content of the base method. Together this schema provides different variants of
the fundamental method configuration scenarios [24] that need to be supported: se
lection, exchange and addition.

3.3 The Configuration Template

The configuration package concept is used together with characteristics to simplify
analysis of the base method. Still, we can conclude that software projects are not
simple, nor are situational methods. Consequently, we need configurations that
reflect this more complicated picture where characteristics exist in combinations.
The configuration template concept is used for this purpose: A configuration
template is a combined method configuration, based on one or more configuration
packages, for a set of recurrent project characteristics (see Fig. 1). Hence,
configuration templates make it possible to tailor the base method more efficiently.
The concept as such allows reuse of combined configuration packages that target
development situation types common within the organization. Configuration
packages on the other hand are used to narrow the analysis and to reduce the
complexity.

The situational method is based on a selected configuration template and is the
ISDM delivered to the project team for use. This method is then turned into method
in-action when enacted by the project team members. Thus there is a difference
between the tailored version of the base method and the method-in-action [1].
Experiences from the latter should be fed back to the configuration process, in order
to improve configuration templates and/or configuration packages. This feedback is
typically done continuously throughout the project, for example, at the end of each
iteration, or during project close-out.

Multi-Grounded Action Research in Method Engineering: The MMC Case 29

4 Multi-Grounded Action Research in Action

4.1 Volvo IT - Emphasis on External Theoretical Grounding

From a retrospective point of view theoretical grounding has played an important
part during the research process. One clear example is the introduction of
modularization concepts, a joint decision by the researchers and the practitioners.

The method fragment concept was used during the initial development of the first
version of MMe, with a starting point in the process model [II] . Each process
fragment has a purpose, based on the assumption that prescribed actions are
prescribed for reasons. The effect on product fragments was then traced through the
relationship between the process and product model. Since it was found difficult to
balance precision and cost when using method fragments [II], a modified version of
the method component concept was later introduced [24]. The major changes to the
method component concept were the introduction of two distinctive views, the
operationalization of the interface concept and viewing method components as non
hierarchic. These changes were introduced in order to reduce the number of details to
present to the method engineer.

4.2 Posten IT - Emphasis on Internal Grounding

The empirical work at Posten IT included two action cases during the second MGAR
cycle. The systems development aim of the first action case was to adapt an existing
IS to new regulations, and in the second case to implement and host an IS in the
electronic government area. The first case was a reconstruction project from a
research point of view. Hence, the research aim \\;'as to test possibilities for
reconstructing reusable patterns, based on how a project had been working. In the
second case a configuration team was to deliver reusable patterns for an upcoming
project. Both projects shared some features and parts of situational ISDMs.

During one of the joint introduction sessions for the work at Posten IT the impact
of internal grounding became obvious. The tool mentor working with these project
teams found an inconsistency in the activity diagram that presented MMC's overall
process structure [11]. One of the decision points in the diagram was placed
illogically. This error had the following consequence when searching for a
configuration template as the base for a situational method: if a configuration
template could not be found when trying to define a situational method it triggered
an input to manage a change request for a template. But since no appropriate
configuration template could be found, the result would always be defining a new
configuration template. Subsequently, an improvement was to directly trigger the
prescribed action for defining a configuration template.

4.3 Precio - Emphasis on Empirical Grounding

The empirical work at Precio shared similarities with the studies conducted at Posten
IT, although Precio used MSF as their base method rather than RUP. Two action

30 Fredrik Karlsson and Piir J. Agerfalk

cases were carried out with Precio during the second MGAR cycle: one
reconstruction case and one case where method configuration was conducted in
preparation for an upcoming project. The reconstruction case concerned a booking
system involving two companies sharing the new IS. The second project concerned
extending an existing IS with a report module. The idea was to find reusable parts
during reconstruction and configuration work and hopefully share the configuration
packages between the two projects.

The empirical grounding during these two action cases showed that the artifact
focus of a method component together with method rationale is a natural starting
point for method engineers and project team members when discussing methods. For
example, the project manager of the booking system project expressed that 'it is easy
to translate to the use of deliverables' and a team member of the Report module
project expressed method components as 'easy to grasp.'

However, the team members of the Report module project suggested design
improvements for the method component interface concerning the use of method
rationale. They expressed in unison a need for more ' precise goals' to capture what a
component's deliverable could be used for subsequently. At that time, the conceptual
framework only allowed the interface to contain one goal. This limitation meant that
it was impossible to express multiple purposes of a method component. The
participating developers stressed that the resulting artifact of a method component
sometimes 'is used for different purposes.' Hence, the current design thus limited
their potential to discuss method components. This design restriction had forced
rewriting goals, found in the base method, into one comprehensive goal for each
component, which then became ambiguous. As a result the conceptual design of the
method component was changed to include the possibility to express multiple
purposes in the method component's interface.

5 Concluding Discussion and Lessons Learned

In this paper we have shown how Multi-Grounded Action Research (MGAR) can be
used in method engineering research, in our case to devise a Method for Method
Configuration (MMC). This research approach combines the need to capture
knowledge of how systems development methods are used and tailored in
organizations with how to formalize such knowledge, and evaluate it in use. MGAR
has proved to be a relevant and valuable approach in the development of MMC. The
approach provides a balanced research method that has been instrumental in
combining ME rigor with the social sensitivity of the method-in-action school.

In terms of MGAR, four major lessons can be learned from this research project.
First, the three grounding processes (internal, theoretical and empirical) are not to be
seen as a division of work between researchers and practitioners, where the
researchers do the theoretical and internal grounding and the practitioners do the
empirical grounding. Neither are they a classification schema for where the work is
carried out. Instead, they constitute processes carried out together; processes with a
specific focus. An example is the inconsistency discussion at Posten IT, which shows

Multi-Grounded Action Research in Method Engineering: The MMC Case 31

how internal grounding was carried out at the research site and involved joint efforts
by practitioners and researchers.

Second, these three grounding processes are intertwined. This means that
attention between the different processes can shift continuously . During a project
meeting it is, for example, possible to cover each process several times. This,
however, can raise difficulties when it comes to tracing the origin of data. For
example: Was the inconsistency discussion generated from internal or empirical
grounding? In this case it was clearly internal grounding since the discussion had a
conceptual focus. It was, however, induced by empirical grounding, witheout which
the problem would not have been identified.

Third, as is the case with Grounded Theory, MGAR opens a box with a vast
amount of empirical data. This is certainly another reason for why it is difficult to
trace data as the project moves on, sometimes in a rather fast pace. Since data is of
no use if it is not documented and analysed properly, it is important to have a weIl
functioning way of working with documentation. For this purpose, it is possible to
use existing theories as filters. In our case, design decisions about evolving concepts
were important together with method configuration results and judgments about the
concepts in use.

FinaIly, working with industry may imply a trade-off between relevance and
external theoretical anchoring. When solving day-to-day problems, external
theoretical grounding easily faIls into the background. Effectively, this means that
developed knowledge may not always build on and develop existing research, which
a conscious focus on external theoretical grounding then becomes a way to avoid.

References

1. P.J. Agerfalk and B. Fitzgerald, in: In Advanced Topics in Database Research, edited by K.
Siau (PA: Idea Group, Hershey, 2006), pp. 63-78.

2. S. Brinkkemper, Method engineering: engineering of information systems development
methods and tools, Informat ion and Software Technology. 38(4),275-280, (1996).

3. S. Brinkkemper, M. Saeki, and F. Harmsen, Meta-modelling based assembly techniques for
situational method engineering, Information Systems . 24(3), 209-228, (1999).

4. A.F. Harmsen, Situational Method Engineering (Moret Ernst & Young Management
Consultants , Utrecht, The Netherlands, 1997).

5. J. Ralyte, R. Deneckere, and C. Rolland, Towards a Generic Model for Situational Method
Engineering in: Advanced Information Systems Engineering, 15th International
Conference, CAiSE 2003, LNCS 3084, Springer-Verlag, pp.202-218.

6. C. Rolland and N. Prakash, A Proposal For Context-Specific Method Engineering in:
Method Engineering : Principles of method construction and tool support, edited by S.
Brinkkemper, K. Lyytinen, and R. Welke (Chapman & Hall, 26-28 August 1996).

7. A.H.M. ter Hofstede and T.F. Verhoef, On the Feasibility of Situational Method
Engineering, Information Syst ems. 22(617), 401-422, (1997).

8. D.E. Avison and G. Fitzgerald, Where now for development methodologies ? Association
fo r Computing Machinery. Communications ofthe ACM. 46(1), 78, (2003).

9. L.D. Introna and E.A. Whitley, Against Method-ism: Exploring the limits of method,
Information Technology & People. 10(1), 31-45, (1997).

32 Fredrik Karlsson and Par J. Agerfalk

10.N.L. Russo and E. Stolterman, Exploring the assumptions unde rlying inform ation systems
methodologies: their impact on past, present and future ISM research , Information
Technology & People. 13(4), 313-327, (2000).

11.F. Karlsson and P.J. Agerfalk, Method Configuration: Adapting to Situational
Charact eristics while Creating Reusable Assets, Inf ormation and Software Technology.
46(9),61 9-633, (2004).

12.M. Lind and G. Goldkuhl, How to develop a Multi-Ground ed Theory: The Evolution of a
Business Process Theory, Australian Journal of Inf ormation Systems. 13(2), 69-85 , (2006).

13.R. Baskerville and J. Pries-Heje, Grounded action research : a method for understanding IT
in practice, Accounting, Management and Information Technologies. 91 -23, (1999).

14.A.L. Strauss and J.M. Corbin , Basics of qualitative research: techniques and procedures
fo r developing grounded theory (SAGE, Thou sand Oaks, CA, 1998).

15.H.K. Klein and M.D. Myers, A Set of Principles for Condu cting and Evaluating
Interpretive Field Studies in Information Systems, MIS Quarterly . 1 67-94, (1999).

16.A.S. Lee, A Scientific Methodology for MIS Case Studies, MIS Quarterly . 13(1),33-51 ,
(1989).

l7. R. Baskervill e and A.T. Wood-Harper, Diversity in information systems action research
methods , European Journal of Information Systems. 7 90-107, (1998).

18.K. Braa and R. Vidgen, Interpretation , intervention, and reduction in the organizational
laboratory: a framework for in-context information system research, Accounting,
Management and Inf ormation Technologies. 9(1), 25--47, (1999).

19.L. Mathiassen, Collaborative Practice Research , Information Technology & People. 15(4),
321-345, (2002) .

20.G. Goldkuhl and A. Rostlin ger, Joint elicitation of problems: An important aspect of
change analysis, in Human. Organizational. and Social Dimensions of Information
Systems Development, D.E. Avison, J.E. Kendall , and J.1. DeGross, Editors. 1993: North
Holland. p. 107-1 25.

2 1.F. Karlsson, PJ. Agerfalk, and A. Hjalmarsson, Process Configuration with Developm ent
Tracks and Generic Project Types in: Proceedings of the 6th CAiSE/IFIP8. I International
Workshop on Evaluation of Modelling Methods in Systems Analysis and Design
(EMMSAD'01)(4-5 June 2001).

22.F . Karlsson, Method Configuration - A Systems Development Project Revisited in: The
Fourteenth International Conference on Informati on Systems Development (lSD 2005),
edited by A.G. Nilsson, et al. (Springer, Karlstad, Sweden, 14-17 August, 2005).

23.B. Fitzgerald, N.L. Russo, and E. Stolterman, Info rmation Systems Development - Methods
in Action (McGraw-Hill , London, 2002).

24. K. Wistrand and F. Karlsson, Method Components - Rationale Revealed in: The 16th
International Conference on Advanced Information Systems Engineering (CAiSE 2004),
edited by A. Persson and J. Stirna (Riga, Latvia, June 7 - 11, 2004).

25.PJ. Agerfalk and K. Wistrand, Systems Development Method Rationale: A Conceptual
Framework for Analysis in: Proceedings of the 5th International Conference on Enterprise
Information Systems (lCEIS 2003)(Angers, France, 23-26 April 2003).

26.F . Karlsson and K. Wistrand, Combining method engineering with activity theory:
theoretical grounding of the method component concept, European Journal ofInf ormation
Systems. 15 82-90, (2006).

27.F . Karlsson, Method Configuration - Method and Computerized Tool Support (Linkoping
University, Linkoping, 2005).

28.J . Cameron, Configurable Developm ent Processes, Communications of the ACM. 45(3),
72-77, (2002).

29.P. Stevens and R. Pooley, Using UML - Software Engineering with Objects and
Components (Addison Wesley, Essex, England, 2006).

Situational Method Engineering
On the Differentiation of "Context" and "Project Type"

Tobias Bucher, Mario Klesse, Stephan Kurpjuweit, Robert Winter
Institute of Information Management, University of St. Gallen

Mueller-Friedberg-Strasse 8, 9000 St. Gallen, Switzerland
{tobias.bucher, mario.klesse, stephan.kurpjuweit, robert.winter}@unisg.ch

http://www.iwi.unisg.ch

Abstract. Based on the experience that there cannot be a "one-size-fits-all"
method, different situational method engineering approaches are examined in
this paper. The result of the analysis shows that "situations" are conceptualized
very imprecisely. Therefore, we propose to differentiate between "context"
and "project type" in situational method engineering. Especially context is ne
glected in existing method engineering approaches. To close this gap, we en
hance existing method engineering processes by adding three steps to facilitate
the identification of context factors and project type factors, enabling the engi
neering of both contextual and project type-specific methods. Furthermore, we
propose a set of extensions to the method engineering meta model that allow
the method engineer to differentiate between "context" and "project type" in
describing situational methods.

1 Introduction

Since its first theoretical foundation almost four decades ago, the "sciences of the
artificial" [1] have evolved into a key research paradigm in the study of information
systems development that is commonly referred to as "design research" [2, 3, 4].
Unlike research in behavioral or natural sciences, design research is not aimed at
explaining the behavior of a system that is observable to the researcher but rather at
creating solutions to specific problems of practical relevance. Typical outputs pro
duced by design research are representational constructs (e.g. ontologies), models
(e.g. architecture models, process models), methods, and instantiations (e.g. proto
types, reference models) [2, 3].

This paper aims at contributing to the state-of-the-art in a particular subset of de
sign research, namely method engineering. Traditionally, method engineering (ME)
is concerned with the processes of designing, constructing, and adapting methods

Please lise the following format when citing this chapter:

Bucher, T., Klesse, M., Kurpjuweit, S., Winter, R., 2007, in IFIP International Federation for Information Processing,

Volume 244, Situational Method Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkernper, S.,

Henderson-Sellers B., (Boston Springer), pp. 33-48.

34 Tobias Bucher, Mario Klesse, Stephan Kurpjuweit andRobert Winter

directed at the development of information systems [5]. According to the definition
of Alter, an information system (IS) can be understood as a specific subtype of a
work system [6, 7]. Therefore, we refer to the objects that are to be engineered or
transformed by means of a method as work systems (WS) in the following.

According to Brinkkemper, a method is "[. ..] an approach to perform a systems
development project, based on a specific way of thinking, consisting of directions
and rules, structured in a systematic way in development activities with correspond
ing development products" [5].

In order to be applicable for WS development, methods need to be adapted to the
specific characteristics of the so-called development situation or project situation.
This approach is commonly referred to as "situational method engineering" [8, 9, 10]
and may be ascribed to the so-called "cont ingency model" proposed by Fiedler [11].
According to this scientific theory, there is no "best way" of organizing or leading an
organization. On the contrary, there are various internal and external factors that in
fluence organizational effectiveness, and therefore the organizational style must be
contingent upon those factors. This theory was often transferred to WS development
in the past [12, 13, 14] and apparently also to the ME field.

The paper at hand is aimed at contributing to the ME discipline by proposing a
new approach to situational ME that explicitly addresses the difference between
"context" and "project type". The remainder of this paper is therefore structured as
follows: In section 2, related work on situational ME is discussed. Based on the con
clusion that there is no generally accepted understanding of what is meant by the
term "situation", a model of context and project type within WS development ME
(cf. [15]) is proposed in section 3. Section 4 is dedicated to the discussion of exten
sions to the ME meta model that has been proposed by Heyrn [16] and Gutzwiller
[17]. The extensions recommended in this paper allow for the differentiation be
tween "context" and "project type" when describing situational methods. In section
5, a procedure model for the engineering of contextual and project-specific methods
(cf. [15]) is sketched. Implications and further research opportunities are discussed in
the concluding section 6.

2 Discussion of Related Work

Change constructions of generic artifacts such as models or methods always bear
reference to an initial artifact (model, method, partial model, method fragment,
method chunk) in contrast to which they are configured and/or composed with regard
to the characteristics of a specific scenario or project type.

Correspondingly, vom Brocke differentiates between the two modification tech
niques "configuration" and "aggregation" [18]. The configuration technique follows
the so-called adaptive principle, i.e. subsequent changes are explicitly allowed for
and planned already at the moment of the initial construction of the artifact. On the
other hand, the aggregation technique follows the compositional principle, permitting
subsequent changeability that is, at least to a certain degree, almost unrestricted.

Situational Method Engineering 35

Following this systematization, we propose to divide adaptation mechanisms of
the ME discipline into "situational method configuration" on the one hand and "situ
ational method composition" on the other hand (cf. [18]).

2.1 Situational Method Configuration

The distinguishing mark of situational method configuration is the adaptation of a
so-called base method against the background of a specific development situation or
project situation ofWS development [19, 20]. According to Karlsson and Agerfalk,
the adaptation process of a generic method is organized in three distinct phases:
• Defining Configuration Packages. A Configuration Package (CP) represents the

configuration of a base method with respect to the characteristics of one single,
well-defined part of a development situation.

• Combining CPs in Configuration Templates. A Configuration Template (CT)
represents the comprehensive configuration of a base method with respect to a
vector of recurrent project characteristics mapped onto a development situation
that comprehends several delimited characteristics . Thus, a CT is based on a spe
cific combination of CPs.

• Selecting a CT that is adequate for the project situation. By identifying the char
acteristics of a project situation and matching them with the characteristics of a
CT, an adequate configuration of the base method with respect to the project
situation can be obtained.

The configuration process proposed by Karlsson and Agerfalk [19] is characterized
by its systematic structure and its intuitive comprehensibility [19, 20]. However, the
authors do not provide a proper definition of what is actually meant by the terms
"development situation" and "project situation" respectively (cf. table I). They
merely point out that a development situation "is an abstraction of one or more exist
ing or future software development projects with common characteristics" [19] but
fail to offer any guidance in identifying and/or defining those characteristics.

2.2 Situational Method Composition

The fundamental idea of situational method composition is the selection and orches
tration of artifact fragments with respect to the specifics of a WS development situa
tion. Unlike situational method configuration, the composition process is not aimed
at configuring one single base method but at combining and aggregating several
method chunks in order to establish new constructional results. This approach to
situational ME is widely-used and discussed in-depth in the scientific literature [5, 8,
10,21,22,23,24,25].

Based on the seminal contributions of Brinkkemper [5] and Harmsen [8], the
composition process can as well be subdivided into three phases:
• Identifying situational characteristics. Those characteristics can be used for

characterizing specific development project types as well as artifacts and artifact
fragments.

36 TobiasBucher, Mario Klesse, Stephan Kurpjuweit andRobert Winter

• Decomposing generic artifacts into artifact fragments. In order to fill the method
base, generic artifacts need to be decomposed into artifact fragments. Further
more, the artifact fragments and their interrelationships need to be described by
use of the situational characteristics identified afore.

• Composing artifact fragments into a situational method. The actual composition
of a situational method takes place by choosing and orchestrating artifact frag
ments according to well-defined construction or composition principles in order
to fit the situational characteristics of the development project.

Although even early contributions to situational method composition put significant
emphasize on the necessity to identify situational characteristics [5, 8, 9, 22], merely
three articles offer some guidance regarding this requirement:

Punter and Lemmen [23] propose to apply the MADIS modeling framework [26,
27] for the characterization of the problem situation at the one side and the artifact
fragments on the other side. The underlying idea of MADIS is that the WS develop
ment process can be viewed at different levels of abstraction (object system model
ing, conceptual IS modeling, data system modeling, implementation modeling). At
each level, identical aspect domains (goal structure, environmental interaction, func
tional structure, entity structure, process structure, system dynamics, allocation as
pect, realization aspect) have to be considered as part of the development process
[23].

According to Rolland and Prakash [25], a development situation is characterized
both by the problem domain and the subject area. Within the problem domain, the
situational factors complexity (simple, moderate, complex) and risk (low, moderate,
high) are evaluated for both the target domain and the project domain [25]. With
respect to the specification of the problem domain, the authors refer to Franckson
[28] but fail to explicitly derive or state reasons for the choice of the situational fac
tors.

Van Slootes and Hodes [10] propose a list of 17 contingency factors whose val
ues (ranging between low and high) influence the project approach, i.e. the specific
method that has been adapted to fit the project context. The list of contingency fac
tors comprises characteristics that are primarily external to the method application,
i.e. they describe the environment to which the method is adapted and in which it is
deployed.

2.3 Concepts Used for Specifying Situational Characteristics

Irrespective of the preferred way of configuring (cf. section 2.1) or composing (cf.
section 2.2) generic methods with regard to the characteristics of a specific scenario
or project type, there is general agreement among all authors dealing with issues of
situational ME that one needs to explain the characteristics of the relevant develop
ment situation and to adapt generic methods with respect to these situational charac
teristics. However, there is also obvious dissent among the authors about what ex
actly is meant by the term "situational". Table I gives an overview of some related
concepts.

Aside from the contributions of Punter and Lemmen [23], Rolland and Prakash
[25], and van Slooten and Hodes [10], current research in the field of situational ME

Situational Method Engineering 37

offers no support at all in how to actually specify WS development situations . There
fore, this paper is aimed at bridging the gap by proposing a terminological differen
tiation between the concepts "context" and "project type" as well as by sketching a
procedure model that incorporates the idea of differentiating between context and
project type into the situational method construction processes (cf. [15]).

Table 1. Concepts Used for Specifying Situational Characteristics

Author Concept

Baumoel [21] Reference Context

Brinkkemper [5], Project Environment

Brinkkemper et al. [22],

Harmsen [8]

Karlssoon and Agerfalk [19], Project Situation

Karlsson et al. [20]

Development Situation

Punter and Lemmen [23] Project Environment

Rolland and Prakash [25] Situation

van Slooten and Hodes [10] Project Context

Project Approach

Concept Description

Reference contexts are abstractions ofproject

types that share common characteristics.

Since every project is different, the project

environment must be characterized according

to a list ofcontingency factors.

The project situation describes the characteris
tics of a specific software development project.

A development situation is an abstraction of

one or more existing or future software devel
opment projects with common characteristics.

The project environment is characterized by

the problem situation and its contingency.

Both the problem situation and the method

fragments are described using the MADIS

framework.

The development situation is characterized by

the problem domain and the subject area.
Within the problem domain, the situational

factors complexity and risk are evaluated for

both the target domain and the project domain.

The project context is made up of contingency

factors that affect the project approach . Project

context is external to method application .

The project approach is the result of the con

figuration process of methods/method compo

nents.

3 "Situation" as Combination of "Context" and "Project Type"

All existing method concepts in the ME discipline comprise a procedure/activity
model to accomplish the creation or transformation of a certain artifact [29], also
referred to as "product" by some authors [30]. While for IS development methods
this artifact is usually an information system [31], the concept of a method is also
applicable for engineering and transformation of work systems [21]. As stated in the
introduction, we stick to the term "work system" [6, 7] to subsume all systems which
can be constructed by using methods. These systems comprise one or more system

38 Tobias Bucher, Mario Klesse, Stephan Kurpjuweit and Robert Winter

elements that are to be engineered or changed by the method. In the following, we
use the term "transformation" for any engineering or change of a WS.

Consequently, a method can be viewed as a systematic aid that helps transform
ing a WS from an initial state to a target state (cf. figure 1). In the following, we des
ignate the WS that is transformed by the method's activities WSs, its initial state SA,
and its target state Sz. WSs comprises a set of system elements [32] that are trans
formed by the method.

Fig. 1. Context and Project Type of Work Systems within ME [15]

The tuple (SA, Sz) is qualified as "situation" by some authors [19, 20, 25]. A more
suitable designation for "situation" might be "project type" or "task type". A project
type can be characterized by an initial WS state and a designated WS target state:

SA := initialStateOflWSs]
Sz := targetStateOflWSs]
Project Type := (SA; Sz)

(1)
(2)
(3)

Table 2 exhibits two exemplary project types that occur in data warehouse (DWH)
development.

Table 2. Exemplary ME Project Types

Method Artifact WSs

Informational/analytical

IS landscape and its

supporting IT processes
(for elements see e.g.

[33,34,35])

Project Type

"Green field" ap

proach to DWH

development (ini

tial development)

"Consolidation"
approach to DWH

development (by

integrating extist

ing, independent
data marts)

Initial State SA

Elements are non

existent

Independent data marts
are existent, main

tained, and are regu

larly refreshed with

data ; Data between

data marts is inconsi s

tent; DWH is non

existent

Target State Sz

Data warehouse is imple

mented and filled with initial

data ; Development, operation ,

and support process es are es

tablished

Data warehouse is imple
mented and filled with initial

data; Development, operation ,

and support processes are es

tablished ; Former data marts

are abolished ; Platforms are

reused as far as possible

Situational Method Engineering 39

The project type has significant impact on the effectiveness and efficiency of method
application [21]. This fact leads to the concept of situational ME where methods or
method chunks are treated as situation-specific (cf. section 2). For each project type,
a suitable method has to be constructed either by recombining existing method
chunks or by adapting an existent method to the respective project type. A way to
systematically identify project types is presented by Baumoel [21].

Besides the project type, there are other - environmental - contingency factors
(e.g. [36]) that also have significant impact on the effectiveness and efficiency of
method application . It is a matter of fact that each WSs is part of a larger WS; e.g. an
information system is part of an IS landscape, an IS landscape is part of a company,
and a company is part of a business network. We refer to this larger work system as
WSo, with WSs as a subset of WSo. All elements that are not part of WSs but part of
WSo can be referred to as environmental work system of WSs. This environment
WSK is outside of the transformation scope of a method. It may comprise non
transformable system elements. Although it is out of the method's transformation
scope, the state of these environmental WS elements may influence the applicability
of transformation procedures or techniques (e.g. in form of restrictions).

In the following, we refer to the state of this environment as "context". The con
text is invariant during method application :

KA := initialStateOflWSK]

Kz := targetStateOflWSKl
Context := KA = Kz = K = stateOf(WSK) = stateOf (WSo \ WSs)

(4)
(5)
(6)

Table 3 lists some exemplary context element states of a method and their potential
impact on method applicability.

Table 3. Exemplary ME Contexts

Method Artifact WSs

Informational/analytical IS

landscape and its supporting

IT processes (for elements

see e.g. [33, 34, 35])

Context Description

Large company (more than

10'000 employees) and large

DWH

Medium company (number

of employees between 1'000

and 10'000) and small DWH

Possible Impact

Building a permanent organizational unit

for data warehousing is strongly indicated

to maintain the data warehouse [37]

Building a permanent organizational unit

for data warehousing is not cost-effective

to maintain the data warehouse. Instead

roles should be integrated into the existing

business organization [38]

In summary, both context and project type are relevant factors to be considered dur
ing method construction and application.

For our understanding of project type, a development methodology to identify
and structure project types has been proposed by Baumoel [21]. Most existing ME
approaches are designed to consider the project type (cf. section 2). For the concept
of context, however, such a methodology is missing, and context is neglected in ex
isting ME approaches. Therefore, we describe a three-step procedure for the engi
neering of both contextual and project type-specific methods in the section 5. This

40 Tobias Bucher, Mario Klesse, Stephan Kurpjuweit andRobert Winter

procedure can be integrated into any existing situational ME methodology (cf. step 4
of the process outlined in section 5). Since the context and project type may become
very complex due to the theoretically unlimited size of the work system WSs itself as
well as of the environment of WSs, relevant factors have to be identified that de
scribe context(s) and project type(s) at the best possible rate. Afterwards, these fac
tors can be used as configuration parameters or as method metadata as it is proposed
for situation descriptors in situational ME approaches [25]. Before turning to the
process, however, necessary extensions to the ME meta model are introduced that
allow for the differentiation between context and project type in the description of
situational methods .

4 Extensions to the Method Engineering Meta Model

Based on a review of different approaches to method construction and method im
plementation, Heym [16] and Gutzwiller [17] identified five constituent elements of
a method: design activities, documents specifying design results, roles, techniques,
and the information model of the method. By analyzing a total of twelve scientific
contributions to the ME body of literature, Braun et al. [29] validated this set of ele
ments that can be used for the description of generic methods. Therefore, it is rea
sonable to conclude that these five elements of work system design methods repre
sent a "core" meta model.

As we have outlined in the paper at hand, this core is incomplete and insufficient
for the adequate characterization of situational methods. We therefore propose to
extend the ME core meta model by adding the three concepts "adaptation mecha
nism", "context", and "project type". In accordance with situational ME literature
and with the ideas presented in the paper at hand, we regard "situation" as combina
tion of context and project type. Any tuple of context characteristics and project type
characteristics is referred to as situation. Furthermore, we introduce the "method
fragment" as connecting factor for the adaptation mechanism element. According to
Brinkkemper's definition that has been stated in section I, a method provides goal
oriented instructions and recommendations [5]. Design activities describe the tasks
that have to be executed (what?), and techniques specify possible ways in which the
results can be achieved (how?). Therefore, we denote the combination of these two
core elements as method fragment.

Our interpretation of the method fragment concept is largely in accordance with
the so-called general method fragment meta model that has been derived by
Cossentino et al. [39]. According to their research, a method fragment consists of the
elements design activity, technique (referred to as "guidance"), role (referred to as
"actor") , and design result (referred to as "artifact"). In our understanding, design
activities and techniques are intrinsically tied to design results. Therefore, we dissent
from Cossentino et al. solely with respect to the inclusion of the role element. In con
trast to their perception, we do not explicitly call for the inclusion of roles. However,
a role description may be attached to a design activity where required. The extended
ME meta model is depicted in figure 2. Our extensions are highlighted by use of
shaded element boxes and bold connectors.

Situational Method Engineering 41

is part of

representsproblerr
orientedview or

is part of predecessorI
successor

is part of

influences influences

is part of

I I
I I
I I
I I
I IL ---:

is part of

Fig. 2. Extended Method Engineering Meta Model

5 A Process for Engineering Contextual and Project Type
specific Methods

The purpose of the process proposed in this section is to identify the situations, i.e.
tuples of context and project type, in which a method (or a method fragment) has to
be valid, and to engineer a method that is suitable for these situations. The procedure
can be combined with any ME methodology (cf. e.g. section 2). It consists of four
steps, incorporating the selected method construction methodology as fourth step (cf.
figure 3). In the following, we describe each step and illustrate it with an example of
designing a method in the field of data warehousing.

Step 1: Plan or Evaluate Method
As we have shown in section 3, both context and project type influence the appropri
ateness of method application as well as the design of the method's product/artifact.
Therefore, as a prerequisite for identifying factors that describe the contextes) and the
project type(s), at least a rough idea about the method itself and the method's product
has to exist. We distinguish between two initial situations of our process:
• No method for a given situation exists yet. Thus, a method has to be built from

scratch. To this end, a procedure model and a product model of the method have
to be outlined first.

42 Tobias Bucher, Mario Klesse, Stephan Kurpjuweit and Robert Winter

• A method for a given situation exists. The method has to be enhanced for situ
ational appropriateness. Both procedure and product model can be extracted from
the existing method.

Example. We plan to develop a method for implementing an IT costing and charging
process for DWH organizations. As basis we identify an existing method that is
based on the IT Infrastructure Library (ITIL, cf. [40]). This method is not context
specific, i.e. it claims to be suitable for all IT organizations. The method's products
are a cost model, IT services, and a charging model. Consequently, different project
types such as "costing only" or "costing and charging" should be taken into consid
eration.

Fig. 3. Generic Process for Engineering Contextual and Project Type-specific Methods
(adapted from [15])

Step 2: Identify Context Factors and Project Type Factors
For the procedure and product model extracted in step 1, context factors and project
type factors are identified. This step includes a systematic screening of the existing
body of knowledge about the product and of existing procedures to design the prod
ucts and includes:
• Existing models, methods, procedure models, and theories about the method's

artifact,
• existing generic knowledge about procedure models, and
• experience from practice projects or gained by observation.
The list of factors describing context and project type may become very long. To
reduce it to potentially relevant factors, the following criteria should be applied:
• There is empirical or theoretical evidence that the factors have an impact on the

method artifact and/or on the procedure to design the artifact.
• Context factors are invariant during method application.
• Project type factors change their values/characteristics during method applica-

tion, i.e. they are part of the method's product.
To compact the list, both context factors and project type factors should be classified
and aggregated/systematized into a hierarchy. For each factor, possible values and/or
the values' range have to be specified.

At this juncture, techniques that are commonly used in behavioral and natural
sciences are applied to the design research process in order to support the construc
tion of design science artifacts. As pointed out by March and Smith [3] as well as by
Cao et al. [41], interaction between different research paradigms, their methods,
techniques, and activities are important since they complement each other in creating
solutions to specific problems that are observable in the entrepreneurial world. The

Situational Method Engineering 43

combination or "triangulation" (cf. [42]) of different methods and techniques will
eventually lead to more enlightening and relevant research results and construction
outcomes.

However, it is of particular importance to note that not all relevant context fac
tors and/or project type factors are necessarily quantifiable in a trivial way. This is
especially true if it comes to factors assessing organizational structures, complex
social environments [43], workplace culture, or power. In this case, measurement
constructs must be elaborated that can be used as auxiliary means for attributing nu
merical values to variables that would otherwise be non-quantifiable. This can be
accomplished with the help of structural equation modeling (cf. e.g. [44]). A struc
tural equation model (SEM) consists of a set of hypothetical constructs (so-called
latent variables), a set of exogenous variables, and a set of endogenous variables. The
model components are linked with each other by "directed" (i.e. causal) relation
ships. Ultimate goal of SEM is the prediction of interrelationships between endoge
nous, non-quantifiable variables through observation of exogenous, quantifiable
variables.

Example. By screening the body of literature, two potentially relevant context factors
and one project type factor restricting the applicability of the ITIL-based method can
be found: the maturity stage of the IT organization and systems [45] and the organ
izational positioning of the DWH service provider [37] influence the context, and the
coordination form between IT and business organization [46] influences the project
type. Maturity can be assessed by CMMI stages of the IT processes [47]. Organiza
tional positioning can be measured by the activities that are within responsibility of
the DWH organization and of the business organization [48]. The coordination form
can be expressed with the responsibility center concept (cost center, profit center,
investment center) [49].

Step 3: Analyze Contexts and Project Types
In reality, not all context factor values and not all project type factor values do exist
in any combination. Consequently, a method does not have to address all possible
permutations of context factor values and project type factor values but only those
combinations occurring with a certain frequency in practice. To extract these combi
nations, an exploratory empirical investigation can be conducted. This investigation
should survey all potentially relevant factors and their values in the population for
which the method should be applicable. Relevant context factor value combinations
and project type factor value combinations can be extracted by factor analysis and
cluster analysis techniques (cf. e.g. [50]) - yet another use case of integrating tech
niques from behavioral and natural sciences into the design research process . The
results of these analyses are contexts bundling context factor values that are common
in reality and project types that bundle project type factor values that occur in a mul
tiplicity of settings.

The identified context(s) and project type(s) can be summarized in matrix format
(cf. figure 4). As already stated before, a tuple of context(s) and project type(s) is
referred to as situation. A situation can relate to one or multiple contexts as well as to
one or multiple project types. Moreover, it is important to note that certain combina-

44 Tobias Bucher, Mario Klesse, Stephan Kurpjuweit and Robert Winter

tions of context and project type might not exist in reality. Therefore, the complete
enumeration of all situations might not lead to success at any rate.

~ Project Type A Jl Project Type B ~I Project Type C II Project Type ... I
Context a Situation 2 Situation 3

Context b Situation 4
....-...-.-.-.-.-

Situation 5
Situation 1

.-,_.._.-'-""

Context c Situation 6

......-'_.. -.-.Context .•• Situation 7 - Situation 8
o' 0'-

. .-
Fig. 4. The Context vs. Project Type Matrix (exemplary illustration)

Example. The analysis of the context factors and project type factors led to the fol
lowing results: DWH organizations have reached a medium to high level of maturity
today [51]. Most DWH organizations are responsib le for costs only [52] and posi
tioned as "DWH competence centers" or "business service providers" according to
their activity profile [48]. Thus, the matrix shows two contexts ("medium to high
maturity, DWH competence centers" and "medium to high maturity, business service
provider") and one project type ("costing only").

Step 4: Engineer and Validate Situational Method
For these situations, either a monolithic method or multiple method fragments that
can be composed into a situational method have to be constructed. Depending on the
ME approach (cf. section 2), the resulting methods can be of the following types:
• Method, confi gurable f or a specific situation. This type of method can be applied

to a real world setting by analyzing the context factors and project type factors
and by configuring it with respect to the situation at hand. Consequently, step 4
of our process can correspond either to a method configuration process as pro
posed by Karlsson and Agerfalk [19, 20] (cf. section 2.1) or to a method compo
sition process as proposed by Brinkkemper [5] and Harmsen [8] (cf. section 2.2).
In particular the first two phases of the configuration process ("defining configu
ration packages" and "combining configuration packages in configuration tem
plates") and the first phase of the composition process ("identifying situational
characterist ics") are supported by our process . By identifying and analyzing rele
vant contexts and project types, the situationa l appropriateness of configuration
packages, configuration templates, characterizations of specific development
situations, and descriptions of artifacts and artifact fragments can be improved
significantly. Furthermore, our process adds value to the both the configuration
and the composition approach since it particu larizes the individual concepts used
for specifying situational characteristics (cf. table 1).

• Method, situation-specific. This type of method is applicable only in one or more
situations for which it was specifically developed. As one can see in the context
vs. project type matrix (cf. figure 4), the characteristic trait of situation
specificity can either consist in context-specificity (method is specific to one par
ticular context but applicable for multiple project types, cf. e.g. situations 2 and 6

Situational Method Engineering 45

in the illustration), project type-specificity (method is specific to one particular
project type but applicable for multiple contexts, cf. e.g. situation 1 in the illus
tration), or simultaneous context-specificity and project type-specificity (method
is specific to one situation consisting of one context and one project type, cf. e.g.
situations 3, 4, 5, 7, and 8 in the illustration). Situation-specific methods repre
sent the output of any approach to situational ME, be it situational method con
figuration or situational method composition. The differentiation between context
and project type can help not only in the process of engineering methods but also
in describing the scope of method (or method fragment) applicability [5, 8].

• Method, valid in all situations. This type of method is applicable in all situations
(i.e. in all combinations of context and project type) that have been identified in
step 3. Consequently, this type of method represents a generalization of situation
specific methods as outlined before .

Regardless of the method type, the method has to be validated by applying it in a real
world situation for which it is claimed to be valid.

Example. Since the most probable situation for method application is a (more or less)
mature DWH competence center that is responsible for costs only, a method for im
plementing an IT costing process has to be developed and validated for this situation
only.

6 Conclusion and Further Research

Our discussion of existing ME approaches showed that nearly all approaches claim
to incorporate situational factors . Nevertheless, the existing engineering methodolo
gies do not detail what these situational factors comprise of and how they can be
identified. In our paper, we have presented a novel approach to situational ME.
Based on the conclusion that context and project type are different determinants of
method applicability, we have proposed a procedure model that incorporates both
context and project type into situational method construction processes . Our proce
dure model guides the identification of relevant context and project type factors, ex
amines their occurrences in practice, and classifies them into situations defined as
tuple of context and project type. For these situations, suitable methods can be con
structed that might be more appropriate than generic methods focusing solely on
single situational aspects that are a subset of our definition at the most. With evi
dence about the frequency of occurrence of contexts and project types in practice, the
method engineering discipline can concentrate on developing methods for the most
common (i.e. most relevant) situations .

Based on the initial work presented in this paper as well as in our previous work
(cf. [15]), three broad categories of research opportunities exist:
• First, our process needs to be validated at large. In the paper at hand, we have

proposed a procedure and provided substantial reasons for its meaningfulness
based on an extensive literature review as well as on our own experience. In or
der to prove the practicability and feasibility of the process, we have evaluated

46 Tobias Bucher, Mario Klesse, Stephan Kurpj uweit and Robert Winter

single steps (in particular steps 2 and 3) for different domains (cf. e.g. [48, 53]).
The validation of the process as a whole is subject to further research.

• Secondly, our process could be extended to cover epistemologically valid method
construction processes by evaluating and combing existing ME approaches de
scribed in section 2. This opportunity for further research has been sketched in
the description of step 4 of our process . However, we believe that further work is
necessary. The development of a reference process or even of a method for
method construction itself (a so-called "meta method") would help method engi
neers to design new methods more systematically.

• Thirdly, a reference information model of method fragments and their con
text(s)/project type(s) could be designed. As stated in section 5, the differentia
tion between context and project type can be of value for describing the scope of
method (or method fragment) applicability. The existence ofa reference informa
tion model would enable storing and managing situational method elements in an
electronic method base, and therefore enhance the potential for reusability of
method fragments.

7 References

I . H.A . Simon, The Sciences ofthe Artificial (MIT Press, Cambridge, 1969) .
2. A.R. Hevner, S.T. March, J. Park, and S. Ram, Design Science in Inform ation Systems

Research , MIS Quarterly , 28(I), pp . 75- 105 (2004).
3. S.T. March and G.F . Smith, Design and Natural Scien ce Research on Information Technol

ogy, Decision Support Systems, 15(4), pp . 251 -266 (1995).
4 . J.G. Walls, G.R. Widmeyer, and O.A. EI Sawy, Building an Information System Design

The ory for Vigilant EIS , Information Systems Research, 3(1), pp . 36 -59 (1992).
5. S. Brinkkemper, Method Engineering - Engineering of Information Systems Development

Methods and Tools, Inf ormation and Software Technology, 38 , pp . 275-280 (1996).
6. S. Alter, Work Systems and IT Artifacts - Does the Definition Matter?, Communications of

the Association fo r Information Systems, 17(14), pp. 299-313 (2006).
7. S. Alter, 18 Reasons Why IT-reliant Work Systems Should Replace "The IT Artifact" as the

Core Subject Matter of the IS Field, Communications of the Association f or Information
Systems, 12(23), pp . 366-395 (2003).

8. F. Harm sen, Situational Method Engineering (Moret Ern st & Young Management Con sult
ants, Utrecht, 1997).

9. K. Kum ar and R.J. Welke, Methodology Engineering - A Proposal for Situ ation -spec ific
Methodology Construction, in: Challenges and Strategies for Research in Systems Devel
opment, edit ed by W. Cotterman and JA Senn (John Wiley & Son s, 1992) , pp . 257-269.

10. K. van Siooten and B. Hodes, Characteri zing IS Development Projects, in: Method Engi
neering - Principles of Method Construction and Tool Support, edited by S. Brinkkemper,
K. Lytinnen, and R.J. We lke (Chapman & Hall , 1996), pp . 29 -44.

II. F.E. Fied ler , A Contingency Model of Leadership Effectiveness, Advances in Experimen
tal Social Psychology, I , pp . 149-190 (1964).

12. B. Arin ze , A Contingency Model of DSS Development Methodology , Journal of Man
agement Information Systems, 8(1), pp . 149-166 (199 1).

13. R.J. Schonberger , MIS Design - A Contingency Approach, MIS Quarterly, 4(1), pp . 13-20
(1980).

Situational Method Engineering 47

14. P. Weill and M.H. Olson, An Assessment of the Contingency Theory of Management In
formation Systems, Journa l ofManagement Information Systems, 6(1), pp. 59-85 (1989).

15. T. Bucher and M. Klesse , Contextual Method Engineering, University of St. Gallen , Insti
tute of Information Management, Working Paper , 2006 .

16. M. Heym, Methoden-Engineering - Spezifikation und Integration von Entwicklungsme
thoden fllr Informationssysteme , Univer sity of St. Gallen , Ph.D. Thesis, 1993.

17. T. Gutzwiller, Das CC RIM-Referenzmodell fiir den Entwurf von betrieblichen, transakti
onsor ientierten Informationssystemen (Physica, Heidelberg, 1994).

18. T. Bucher, S. Kurpjuweit, and B. Dinter, Risikomanagement im Data Warehousing - Situa
tive Komposition einer methodischen Vorgehensweise, in: DW2006 - Integration, Informa
tionslogistik und Architektur, edited by J. Schelp, R. Winter, U. Frank, B. Rieger , and K.
Turowski (Gesells chaft fiir Informatik, Bonn, 2006), pp. 35-59 .

19. F. Karlsson and PJ. Agerfalk, Method Configuration - Adapting to Situational Character
istics while Creating Reusable Assets , Information and Software Technology , 46(9), pp.
619-633 (2004) .

20. F. Karlsson, PJ. Agerfalk, and A. Hjalmarsson, Method Configuration with Development
Tracks and Generic Project Types, Paper Accepted for the 6th CAiSE/IFIP8 .1 International
Workshop on Evaluation of Modeling Methods in System Analysis and Design (EMM
SAD'OI) , http ://citeseer.ist.psu.edu/503218.html, 200 I.

21. U. Baumoel, Strategic Agility through Situational Method Construction, in: Proceedings of
the European Academy of Management Annual Conference (EURAM2005), edited by R.
Reichwald and A.S. Huff (http ://www.euram2005.de, 2005).

22. S. Brinkkemper, M. Saeki, and F. Harmsen, Assembly Techniques for Method Engineer
ing, in: Proceedings of the 10th International Conference on Advanced Information Sys
tems Engineering (CAiSE'98), Springer, LNCS 1413,1998, pp. 381-400.

23. T. Punter and K. Lemmen, The MEMA-Model - Towards a New Approach for Method
Engineering, Informat ion and Software Technology, 38(4), pp. 295-305 (1996).

24. J. Ralyte , lngenierie des Methodes a base de Composants, Universite Paris I - Sorbonne,
Ph.D. Thesis, 200 I.

25. C. Rolland and N. Prakash , A Proposal for Context -Specific Method Engineering, in:
Method Engineering - Principles of Method Construction and Tool Support, edited by S.
Brinkkemper, K. Lytinnen, and RJ. Welke (Chapman & Hall, 1996), pp. 191-207.

26. L.J.B. Essink, A Modelling Appro ach to Information System Development, in: Informa
tion Systems Design Methodologies - Improving the Practice, edited by T.W. Olle, H.G.
Sol, and A.A.V. Stuart (North-Holland, 1986).

27. L.J.B. Essink, A Conceptual Framework for Information Systems Development Method
ologies, in: First European Conference on Information Technology for Organ izational Sys
tems (Eurlnfo 1988), edited by HJ . Bullinger (North-Holland, 1988).

28 . M. Franckson, The Euromethod Deliverable Model and Its Contribution to the Objectves
of Euromethod, in: IFIP-TC8 International Conference on Methods and Tools for the In
formation Systems Life Cycle , edited by A.A.V. Stuart and T.W. Olle (North -Holland,
1994),pp.131-149.

29 . C. Braun , F. Wortmann, M. Hafner, and R. Winter, Method Construction - A Core Ap
proach to Organizational Engineering, in: Proceedings of the 20th Annual ACM Sympo
sium on Applied Computing (SAC 2005) , edited by H.L. Haddad, Lorie M.; Omicini, An
drea; Wainwright, Roger L. (ACM, Santa Fe, 2005), pp. 1295-1299 .

30. N. Prakash, On Method Statics and Dynamics, Informat ion Systems Journal, 24(8), pp.
613-637 (1999) .

3 I. D. Truex and D. Avison , Method Engineering - Reflections on the Past and Ways For
ward, Proceedings of the Ninth Americas Conference on Information Systems (AMCIS
2003) ,2003.

48 Tobias Bucher, Mario Klesse, Stephan Kurpju weit and Robert Winter

32. J. Ruegg-Stuerm, Das neue St. Galler Management-Modell >Grundkategorien einer integ
rierten Managementlehre (Paul Haupt , Bern, 2002).

33. W.H. Inmon, Building the Data Warehouse (Wiley, New York , 2002).
34. W.H. Inmon, J.D. Welch, and K.L. Glassey, Manag ing the Data Warehouse (Wiley, New

York, 1997).
35. R. Kachur , Data Warehouse Management Handbook (Prentice Hall , 2000).
36. B. Ives, S. Hamilton, and G.B. Davis, A Framework for Research in Computer-Based

Management Information Systems, Management Science, 26(9), pp. 910-934 (1980).
37. R. Winter and M. Meyer, Organization of Data Warehousing in Large Service Companies

- A Matrix Approach Based on Data Ownership and Competence Centers, Proceedings of
the Seventh Americ as Conference on Information Systems (AMClS 2001), 2001.

38. C. Limacher, Organisationskonzept und Erfolgsfaktoren fuer den Betr ieb und die Weiter
entwicklung einer Data Warehouse Loesung am Beispiel des Universitaetsspitals Zuerich ,
University of St. Gallen, Bachelor Thesis, 2005.

39. M. Cossentino, S. Gaglio, B. Henderson-Sellers, and V. Seidita , A Metamodelling-based
Approach for Method Fragment Comparison, in: The 18th International Conference on
Advanced Informati on Systems Engineering, edited by T. Latour and M. Petit (Presses
Universitaire de Namur , Luxembourg, 2006), pp. 419-432.

40. Office of the Government of Commerce, Introdct ion to ITIL (Stationary Office, London ,
2005).

41. J. Cao, J.M. Crews, M. Lin, A. Deokar, J.K. Burgoon, and J.F. Nunamaker Jr, Interactions
between System Evaluation and Theory Testing - A Demon stration of the Power of a Mul
tifaceted Approach to Information Systems Research , Journal ofManagement Inf ormation
Systems, 22(4), pp. 207-235 (2006).

42. EJ. Webb, D.T . Campbell, R.D. Schwartz , L. Sechrest, and J.B. Grove, Unobtrusive
Measures - Nonreactive Research in the Social Sciences (Rand McNally, Chicago, 1966).

43. R. Lamb and R. Kling, Reconceptuali zing Users as Social Actors in Informat ion Systems
Research, MIS Quarterly, 27(2), pp. 197-235 (2003).

44. R.B. Kline, Principles and Practice of Structural Equation Modeling (Guilford Press, New
York, 2005).

45. c.A. van Lengen and J.N. Morgan, Chargeback and Maturity of IS Use, Inf ormation &
Management, 25(3), pp. 155-163 (1993).

46. W.P. McKinnon and EA. Kallman, Mapp ing Chargeback Systems to Organizational Envi
ronments, MIS Quarterly, II (I), pp. 5-20 (1987).

47. D.M. Ahem, A. Clouse, and R. Turner, CMMI Distilled - A Practical Introduction to Inte
grated Process Improvement (Addison Wesley, 2003).

48. M. Klesse and R. Winter, Organizational Forms of Data Warehousin g - An Explorative
Analysis, in: Proceedings of the 40th Hawaii Intern ational Conference on System Sciences
(HlCSS-40), edited by IEEE Computer Society (IEEE Computer Society, Los Alamitos,
2007).

49. MJ . Earl , Management Strategies fo r Information Technologies (Prentice Hall, 1989).
50. B.G. Tabachnick and L.S. Fidell, Using Multivariate Statistics (Allyn & Bacon, 2006).
51. P. Chamoni and P. Gluchowski, Integrationstrends bei Business-Intelligence-Systemen

Empirische Untersuchu ng auf Basis des Business Intelligence Maturi ty Model, Wirt
schaft sinformatik, 46(2), pp. 119-128 (2004).

52. M. Klesse, Leistungsverrechnung im Data Warehousing - Ergebnisse einer empirischen
Studie, University of St. Gallen, Institute of Information Management, Workin g Paper,
2005.

53. T. Bucher and R. Winter, Classification of Business Process Management Approaches
An Exploratory Analysis, BIT - Banking and Inf ormation Technology , 7(3), pp. 9-20
(2006).

Examining Key Notions for Method
Adaptation

Mehmet N. Aydin
University of Twente, Department of Information Systems and Change

Management. P. O. Box 217, 7500 AE, Enschede, The Netherlands,
m.n.aydin@utwente.nl

Abstract. It is a well-known fact that IS development methods are not used as
prescribed in actual development projects. That is, every ISD method in a
development project is subject to its modifications because its peculiarities and
emerging situations cannot be understood adequately in a prescribed manner.
Though the idea of method modifications has been studied exclusively under
the subject matter called situational method development, the underlying
notions (situation, context, agency, and method fragment) for its theoretical
basis are not grounded explicitly in the literature. In this paper, we articulate
appropriate accounts for these key notions and induce a conjecture so-called
method adaptation referring to a process or capability in which agents holding
intentions through responsive changes in, and dynamic interplays between,
contexts, and method fragments develop a situated fragment for a specific
project situation. As concluding remarks, theoretical implications of method
adaptation are discussed.

1 Introduction

This research is concerned with situated method development, which is a particular
subject in the research domains of information systems development [I] and method
engineering [2], aiming to contribute to the understanding of how to achieve a
method that fits a project situation. It has been acknowledged as a promising research
endeavor to overcome a long-standing problem with information systems
development (ISD) methods [2]. That is, as methods are not used as prescribed in
practice, they fall short in supporting practitioners in the development of information
systems for, for instance, a globally networked organisation using new development
approaches such as agile systems development.

Please lise the following format when citing this chapter:

Aydin, M. N., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational Method

Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S., Henderson-Sellers B., (Boston Springer),

pp.49-63.

50 Mehmet N.Aydin

While new methods are promoted as a panacea for well-publicized ISD failures,
old ones have been criticized that they are rigid, comprehensive and are built upon
the idea that a method can be used for all projects which brings on a "one-size-fits
all" issue [3]. In fact a fundamental problem still remains that methods, irrespective
to their preferred features (agility, state-of-the art knowledge foundations), by nature
involve certain thinking and often prescribe certain actions for ISD [4]. The subject
matter at hand addresses this "one-size-fits all" issue and aims to deal with how an
ISD method is developed and can be supported so that the resulting method, so
called situated method, fits a project situation. The idea behind a situated method is
that any prospective method to be used for a development project is subject to certain
adjustments because of the fact that the method is limited to its preferred thinking
and prescribed actions for ISD which cannot fully accommodate the uniqueness of a
project situation. In this regard, such adjustments are needed for the method along
with a premise that the resulting method can provide a well-suited means for ISD and
in tum reduce the risk of its failures. As shown in the succeeding sections, the
existing studies appear to lack an appropriate theoretical ground that illuminates the
underpinnings of these adjustments, which are referred as method adaptation. It is
this missing ground that urges us to investigate what accounts the idea of situated
method development. So, the goal of this paper is to articulate its underlying key
notions at a foundation level.

The research can be considered as explorative research which employs a broader
view on the subject matter by applying a stratification research model and use logical
arguments to induce a conjecture so-called method adaptation. Basically, the
stratification model adopted in this research has four modes of the analysis of
relevant research [5]: (i) a classification system which includes generic categories of
those studies having affinities with method development and situated method
development in particular; (ii) a taxonomy which reflects basic dimensions for
studying situated method development; (iii) a conceptual system in which we
critically examine the conceptual elements of a few selected studies; and finally (iv)
a theoretical system which includes a generic model along with a number key
constructs and their relations. Notice that conceptual system and theoretical system
analysis is within the scope of this paper.

The paper is outlined as follows. Having presented the motivation of the research
in this introduction section, we sketch the overall research scope as well as relevant
research in the second section. It is the third section where we start presenting the
articulation of key notions, and providing basic understandings of the key notions.
This eventually leads us to the next step whereby we incorporate their basic
understandings into a conjecture that we call method adaptation. In light of this
conjecture we furthermore briefly discuss three basics models proposed in the
literature and conclude with its theoretical implications and future research.

2 Research Background

In a practical sense, the subject of this work is about supporting (human and non
human) an agent to make a method work for a project situation. This is often

Examining Key Notions for Method Adaptation 51

performed by a project manager or other actor responsible for the project. But
usually there is more than one actor involved in this task and surely more actors have
stakes in the outcome of this task -a situated method. This task is usually performed
at the early stages of a project and can result in, for instance, a project plan, project
proposal, or system development plan.

Among all the cited problems and issues hindering a better use of methods, it is
argued by many scholars that methods by nature have their own limited views on the
reality of IS development Truex et al. [6] assert that: "By adopting a single
engineering concept of method all of our thinking about information systems
development becomes imprisoned by this one concept. The method is not only our
way of thinking about systems development; it is our way of thinking about
"thinking about systems development".

Scholars in both the ISD research literature (see, for example, [7, 8]) and method
engineering (ME) (see, for example, [4, 9]) address this issue from their own
perspectives. In fact, the reactions of scholars in method engineering to problems
concerning methods are set forth along with the call for 'methodology engineering'
in [10, 11], 'method engineering' by Brinkkemper and his colleagues [9, 11, 12, 13].
Kumar and Welke [9] propose that " ... we need a formal (as opposed to ad-hoc) and
efficient (as opposed to time and money wasting) methodology for developing ISD
methods which are situation appropriate (as opposed to universal) and complete (an
opposite to partial), and at the same time rely on the accumulated experience and
wisdom of the past (as opposed to built from scratch)" (p. 322).

At a high level, [14] distinguishes three research domains (the ISD research,
Method Engineering, and Implementation research) that contribute to an
understanding of situated method development. The ISD and ME research domains
provide insights into the way or process (situated) method development takes places.
The ISD and Implementation research domains help us employ the content of such a
way (including characteristics and/or elements used in this process). [14] indicates
that situated method development related studies adopt a number of key notions
(situation, context, agency, method fragment) as basic elements for their models, but
their articulation along with theoretical ground needs to be done explicitly. Because
of this lack of explicitness, for instance, these basic notions have been incorporated
with different interpretations in research domains. What is interesting to see in this
review is that most of the studies mentioning and adopting these notions fall short in
incorporating the essential attributes, as we shall discuss them later on, and often do
not provide explicit definitions of the terms. In particular, the notion of agency as
part of situated method development is undervalued in the prevailing models. Only
Baskerville and Stage [15] emphasise the matter, but as a conceptual system their
proposed model requires factual validity in an empirical setting and lacks
unambiguous descriptions of certain elements (situation, context). With regard to the
conceptual system review mode, the common terms in the aforementioned studies
are conceptualized as sensitizing notions in their model building. We claim that the
treatments of these notions are partial as they provide alternative or complementary
viewpoints.

We contend that the prevailing models show alternative approaches to situated
method development along with their pros and cons. For the examination of
alternative approaches we propose to investigate situated method development as a

52 Mehmet N.Aydin

phenomenon . The examination should be done at a fundamental level where its key
underlying notions are naturally revealed and articulated. This examination will
provide a beginning for the foundation of the phenomenon for which we induce a
conjecture in section four.

3 Articulations of Key Notions

A detail literature review indicates that there are four essential notions (situation,
context, agency, and method fragment) underlying situated method development. We
shall now examine each notion in tum. By examining we mean to understand how
the notion is treated in its corresponding research domain and thereafter incorporate
its meaning into our research context. For instance, to understand how the notion of
situation is treated in literature, we have identified and discussed three relevant
studies in the research domain of linguistics, cognitive psychology, and sociology.
For the notion of context, we have discussed relevant studies in the research domain
of pragmatics and decision-making . For the notion of agency, we have examined the
theory of intention in the philosophy of mind. The treatments of these notions are
provided in their own discourses and at different levels of detail. It should be noted
that to avoid any misunderstanding on the adopted notions we stick to their original
meanings and remain clear about how relevant their meanings are to our subject. Let
us start with situation.

The Notion ofSituation. The term situation refers to, "the way in which something
is placed in relation to its surroundings" [16] or "a set of circumstances in which one
finds oneself, or location and surroundings of a place" [17]. The key words are here
circumstances, surroundings, and placing them in a certain way. This placement has
to do with cognitive activities (i.e., making sense of surrounding, circumstances, and
relating with a cognitive scheme) and/or physical activities (performing an activity to
do so). In Latin the term in situ as an adverb or adjective indicates a similar meaning
stating that "in the natural or original position or appropriate place" [16]. The term
has been used extensively in IS research in different ways, but its meaning is often
reduced to a number of factors without articulating its essential features or their
interplay in relation to human knowledge and action tied to its philosophical
treatment. In this sense, we briefly discuss its use in sociology, linguistics, and
cognitive science, and aim to come to its essential features (Table 1).

Perhaps the most comprehensive exposition of the term to appear so far in
linguistics is in [18] titled "Situation and Attitudes" and associative studies that deal
with situation semantics and propose a mathematical theory of situation . In
sociology, it is the work of Suchman [19], entitled "Plans and Situated Action"
which introduces "situated action". In cognitive science, especially in connection
with artificial intelligence, Endsley [20] and her colleagues introduce "situational
awareness" to emphasize "the knowing of what is going on". Three studies in this
work are representative studies which help us find three complementary views on the
notion of situation . In doing so, we have been able to reason about the underlying
features of situation in connection with the idea of situated method.

Examining Key Notions for Method Adaptation 53

Regarding the theory of situation [18], which has been applied in various areas
including design theory, linguistics, and artificial intelligence [21], it aims to
incorporate intentions and circumstances of the agents in the communication process.
[22] recognises the need to rethink the foundations of situation semantics and
provide the following definitions: "Situations are contrasted with worlds; a world
determines the answer to every issue, the truth-value of every proposition. A
situation corresponds to the limited parts of reality we perceive, reason about, and
live in. What goes on in these situations will determine answers to some issues, but
not all. (p. 1)"

Table 1. The very notion of situation in three complementary studies

Theo of Situation
Situational
Awareness
Situated Actions

Lin istics
Cognitive Psychology

Sociology

Partial reali ,Realism, Relations
Employment of cognitive mechanisms and
relevant factors for human knowing
Interactions, Partial plans and other
resources subsumed and produced

Regarding 'situated action' , Lucy Suchman [19] introduces this term to
underscore that actions take place in the context of particular, concrete, and possibly
material and social, circumstances. She contrasts her account with the traditional
view of human actions, specifically goal-directed behaviour as studied in cognitive
science, asserting that plans are taken to be either formal structures that control a
purposeful action or abstractions over its instances. Alternatively, her account as
drawn from ethno-methodology contends that: plans are representations of actions
and in the course of situated action, representation occurs when otherwise transparent
activity becomes problematic in some way. Further she asserts that a central resource
for achieving the objectivity of situations is language, which stands in a generally
indexical relationship to circumstances that it presupposes, produces and describes.
As a consequence of the indexicality of language, mutual intelligibility is achieved
on each occasion of interaction with reference to situation particulars, rather than
being discharged once and for all by a stable body of sharing.

The third representative study which introduces 'situational awareness' (SA),
employs the models of human thinking proposed in cognitive science [20]. By
'situational awareness' Endsly [20] means, " ... perception of the elements in the
environment within a volume of time and space, the comprehension of their meaning
and projection of their status in the near future". She argues that although the
elements of SA vary widely in several disciplines, the nature of SA and the
mechanisms used for achieving it are common (for instance, perception,
comprehension and projection are proposed as three 'levels' underlying SA and
blended with, but different from, the decision-making perspective that SA is aimed to
facilitate decision-making). By drawing on associated empirical studies, they argue
that certain elements (goals, expectations, mental models, schema, and automaticity)
influence SA and are vital for the agency's internal representation of state. It should
be noted that SA is concerned about the state of knowledge that has to do with the

54 MehmetN. Aydin

references to confirmed schemas and the 'yet-to-be-tested' hypothesis, rather than
the process of achieving this . Many factors (e.g., task under or overload, fatigue,
psycho logical stress) may also degrade SA, but they are, as claimed , independent
constructs. It is suggested that other terms like shared situational awareness, shared
understanding and distributed /shared cognition should be used for a collective
version of the SA as it has an originally individual focus. It is also suggested that
factors like culture, experience, personality, sex, and age as 'structural factors ' are
different from 'situational factors' such us mood, time pressure, stress, ambiguity,
etc.

Our understanding of the term situation has some commonalities with the three
representative studies . That is, situation is about:
• A limited portion of the world - partial reality - as emerging over location and

time
• Characterization (confined and yet-to-be-tested hypothesis)
• Subsumed and produced partial reality for planning (concerning future- and

present-directed act)
An important corollary of part ial reality is that a situation as constructed by the

agency is about knowing of the agency and it is in the head of an agency . This view
is in line with what [23] called "radical constructivism" which is developed
following Kant (1724-1804), Vico (1668-1744), and Piaget (1896-1980). This view
employs the basic principles of radical constructivi sm, such as that knowledge is not
passively received either through the senses or by way of communication; the
function of cognition is adaptive, tending towards fit or viability; cognition serves
the subject's organisation of the experiential world, not the discovery of an objective
ontological reality .

By drawing on the principles of radical constructivism, a constituent of a
situation is not a thing-in- itself, but something that the cognizing subject has
constructed by making distinctions and coordinat ion in his or her perceptual field
[24]. For the purpose of an analytical examination however, we see the three
constituents - context, agency and method fragment- as distinct elements ('things-in
themselves ') though each of them construes and includes the other two.

The Notion ofContext. In a broader sense the term context refers to a collection
of relevant conditions and surrounding influences that make a project situation
unique and comprehensible [25]. The complexity of context as a subject has been
acknowledged by many scholars, including [21]. [26] argues that relevant
discuss ions on this subject in philosophy evolve from its narrowest meaning about
the consideration of texts in linguistics, to its broadest meaning, something to do
with 'situated cognition'- that is invariably situated, as elaborated in the field of
pragmatism. In particular, a traditional view of the notion of context suggests that
contexts are pre-existing and stable environments that perhaps include unobservable
factors that cause agencies to behave in partly unpredictable ways [26]. This view
appears to be akin to what [26] calls the optimistic claims stating that for all classes
of cognitive tasks and processes, there is a uniform context matrix - whatever the
features or factors are granted, such that for all situations in the class, the outcome of
any process in the class is determined by the values taken by the matrix in the
situation.

Examining KeyNotions for Method Adaptation 55

This is often contrasted with the contemporary view which asserts that all
contextual regularities, conditions and any other relevant features, are assumed to be
dynamically activated and accomplished in the situation [27]. Context has also been
studied as a central notion in human decision-making. [28] illuminates the dynamics
of context and the employment of reasoning for 'practical ' decision-making.
Practical decision-making, as discussed by [28], is reminiscent of naturalistic
decision-making, an adopted orientation in this work.

Different kinds of context are introduced with a duality character [29] such as
'immediate' or 'proximate' contexts . These include features pertaining to actual
surroundings in situ versus 'distal' or 'mediate' contexts which cover background
knowledge , cognitive frames, or assumptions about on-going, up-coming, or even
priori activities relevant in situ. Another distinction is made between so-called
primary and secondary context, the extent to which influencing characteristics are
stable [28]. In relation to this duality character, [26] defends a 'mixed model of
inquiry ', which combines rationalist reliance either on fact or principles with a
consideration for appropriateness to the situation at hand. This is indeed where the
pragmatics view of context stands and of which several accounts are proposed. [30],
for instance, advocates this view and argues that ambiguity is inherent in
contextualization, decontextualization, and recontextualization (hereafter called
'contextualizing') through which one may effectively marginalize certain agencies
and their legitimate interpretations by virtue of an institutionally embedded context.

Human agency is central to contextualization. In connection with this work, of
course, method fragments are also considered during this contextualization. But
exclusion of the agency and method fragments is in effect when the context is framed
and reframed along with the cognitive structure and processes [24]. After successive
approximation , this eventually leads to an appropriate context under consideration
with respect to, upon, and in which the decision is made. Accordingly, cognitive
structures change through the process of adaptation by assimilation and
accommodation . This is boldly marked in the radical constructivism along with the
principle stating that the function of cognition is adaptive and serves the agency's
framing or organizing of the experiential world, not the discovery of an objective
ontological reality [23]. We employ the ideas of 'contextualizing', 'framing',
'appropriation' in relation to the very notion of context.

The Notion ofAgency. Cognitive elements come into place at the outset of situated
cognition when contextualizing takes place in situ where the agency is supposed to
make a decision and to perform actions. But what cognitive elements are manifest in
human thinking and actions? It has been argued for a long time that desire and belief
are the elements that have certain direct impacts on human thinking and actions.
There is no doubt that beliefs and desires are always present in the cognitive
structures and process with some effects, but contemporary studies in the field of the
philosophy of mind, including [31] and his associates, have questioned their direct
effects in the course of actions and corresponding decision- making .

Granting that human knowing, more broadly thinking, and actions are inherent in
determining situation, we turn our discussion to what cognitive elements are
necessary for situated method development. In principle, human thinking is subject
to the complexity of interplay between many cognitive elements such as beliefs,

56 Mehmet N. Aydin

norms, motives, goals, and intentions . The accounts on each term or their
combinations along with counter arguments are readily available in philosophy as a
reference discipline as well as in certain applied sciences (management science, IS
research, organisational science) where the prospective accounts are adopted. By
drawing upon the works of [32] in the philosophy of mind and Husserl (1859-1938)
and proponent scholars in the philosophy science, our aim in this section is to show
that as a cognitive element, the notion of intention serves best to explain the interplay
between the method fragments, the agency, and the context.

In the dictionary [16] and every day language, the tenn intention is synonymous
for volition, purpose, and significance, and indicates "a determination to act in a
certain way". Other derivations and uses of the term appear as intent, intentionality,
doing with an intention, or doing something intentionally . To ground explanations
concerning their differences would require a long philosophical treatise which
belongs to the philosophy of mind, but the treatment of intention and intentionality in
[32] and [32] is relevant to our subject. The treatment of the terms intention and
intentionality should be separated as the former has been articulated in relation to
action, planning and practical rationality [31], and the latter is proposed in
phenomenology, a particular school of thought in the philosophy. Intention is
considered a state of mind (what it is to intend to something) and a characteristic of
action (having an intention to do something or doing something intentionally).

'Intentionality' derives from the Latin verb 'intendere', which means "to point"
or "to aim at", and Brentano (1838-1917) accordingly characterized the intentionality
of mental states and experiences as their feature of each being 'directed toward
something'. Intentionality in this technical sense then subsumes the everyday notion
of doing something "intentionally": an action is intentional when done with a certain
"intention", i.e., a mental state of "aiming" toward a certain state of affairs.

One of the most comprehensive expositions of the term intention is in the work
of Michael Bratman [31]. His treatment reveals complexity and the essence of its
characteristics and functions along with two forrns (future- and present-directed) .
[31] extensively discusses his account in relation to planning theory and agent
rationality, for which we cannot condense the body of literature he employs in a few
pages. The forms and kinds of intention he proposed however, are especially useful
for characterizing the agency action in method adaptation.

Upon the deeper examination of the idea of intending to act, which channels a
future-directed form of intention, or having an intention to act, which is present
directed action, he contends that intentions are neither desires nor beliefs but plans,
and that plans have an independent place in practical thinking. One of the central
facts about intentions essential for this work is that they are conduct-controlling pro
attitudes and serve as inputs for further practical reasoning. According to [31],
distinct from normal beliefs, both desires and intentions are pro-attitudes, which have
a motivational function for an act. As distinct from desires or other weak proposition
attitudes such as beliefs and goals, (considered potential influencers of action)
intentions are conduct-controlling pro-attitudes. As such, intentions are parts of
partial plans for action, required by an agency that must make complex plans but
cannot make the plans complete. The partial plans playa central role in practical
reasoning, aimed at adjusting and completing prior but partial plans, and help extend

Examining Key Notions for Method Adaptation 57

the influence of deliberation beyond the present moment and facilitate coordination
within the agent's life and, socially, between agents .

The Notion of Method Fragment. Philosophical treatment of the term method is
often done implicitly while discussing the matters about, for instance , rationality of
agency, reasoning in the formation of thinking and action. In fact the definition of
method holds a very strong affinity with these matters, but its elaboration is beyond
the scope of this work. We therefore tum to the IS research literature to articulate the
notion of method and method fragment. Recall the definition of (ISD) method: an
explicit way to structure one's thinking and actions . It is the one, as we term agency
that has some affinity and involvement in a project [33]. The method does not do
anything itself though there are certain parts of method that perform some activities
together with an agent (modelling, testing, coding, etc.). What is interesting to see is
that a method structures or helps someone to structure other agencies' thinking and
actions. This is done together or without the others agencies at the time (tl) which
occurs before the actual execution (t2) of the structured thinking and actions. That is
where an intriguing relation with tl and t2 begins because,
• It is very optimistic to think that the context at t2 is truly taken into account in

this structuring at t1;
• It is too idealistic to consider that the agent who makes use of the method to

achieve this structure has the same intention embedded in the methods (i.e.
incongruence of the agent's perceived situation with the situation held by the
method);

• It is too strong, and possibly incorrect, to surmise that the agents who hopefully
hold and practice in the context at t2 will have the same intentions as presumed.
We argue that structuring at t1 and under the context c1, one's thinking and

actions to be executed at t2 under the context c2 is a yet-to-be-tested hypothesis.
Namely, neither the method to be situated nor the agent who wishes to achieve a
situated method can justify or even claim the structured thinking and actions will be
realized as intended and contextualized. But, if this is so, what is the rationale behind
a situated method?

First and foremost, a meaning of situated method is revised in that it is not with a
fine-grained description of the method that we are concerned, but instead the
intentions attached to a number of key deliberative actions to be appropriate to the
contexts under consideration. We also note that method as inanimate agency holds
'frozen-rational' of its producer. It is necessary to explicate how this frozen-rational
with its collectives are proposed to be situated, when present. If it does not include
this aspect (i.e. how it is to be situated), it fails to hold the very idea of situated
method . [33] criticizes methods on this matter, and proposes a framework containing
four essential elements: the 'problem situation' (similar to the term context we use),
the intended problem solver (methodology user), the problem-solving process (the
method), and the evaluation of the above three. The proposed framework has certain
interesting features pertaining to the goal, as opposed to forcing the method user to
use the method, that facilitate the designer to come to her own method. For this
purpose, the designer and user are encouraged to ask a number of questions and
critically examine the intention of every action needed. Some examples: What are
the methodology users' value sets? What believes do they hold as being "good"? For

58 Mehmet N. Aydin

example, which of the economic, political, cultural, or technical values do the
methodology users consider as uppermost? In this context what values do the
methodologies advocate? How congruent are these with methodology users' values?

4 Incorporating the Four Essential Notions for Method
Adaptation

As discussed above that the four essential notions are often conceived from what
we call a basic or simplistic view, they need to be extended to comprehensive and
possibly richer meanings. We consider the notion of ' situation' a phenomenon with
which the agen cy perceives, reasons about, and lives in at cert ain time . Three
complementary views on situation -Theory of Situation, Situational Awareness, and
Situated Actions, summarized in Table 1, indi cate underl ying features of this
construct, which is ess enti ally a composite one. By employing the theory of situation
[18] we contend that situation is partial real ity at best which has to do with the
relat ions among the collectives unde r consideration . By employing the idea of
situat ional awareness [20] , we argue that the agency needs to use all kinds of
cogn itive elements and mechanisms to be aware of the position held on and reason
about what we intend to do . By employing the idea of situated action [19] , situated
method is enacted by interactions among its collectives along partial plan s.

By drawing on the conception of situation we conjecture that agency, context,
and fragm ent are essenti al for situated method development. Situated method is
regarded as a phenomenon because it is:
• Based on partial reality construed by the agen cy that forms the intention in the

context at a certain time and in plac e,
• Enacted and re-constructed for the context in which the agencies ' thinking and

actions are structured and referred thereof

Table 2. An extension of four essential notions for situated method development

Four essential Basic View (Simplistic) Extension
notions
Situation characterizedby a number of the limited parts of reality that the

factors that influenceor are being agency perceive, reason about,
influenced by a method fragment and live in

Context Described in terms of aspects or dynamic interplays among
collectives in the process collectivesof work practice as

situatedand characterized by the
agency

Agency adheres to enactment of proposed interplays among fragments with
fragment in the work practice a certain intention in and for the

context
Method description of a methodical artefact comes into play with the agency
fragment or any coherent part thereof in the context when structuring

one's thinking and actions

The following summarises our conc ept ions of three notions (see Table 2) .

Examining KeyNotions for Method Adaptation 59

Regarding context, Andler's [34] account gives a hint about two aspects of a
context: On the one hand it is perceived, and perhaps influenced by means of the
agency's own fragments (fragments already used a priori by the agent) and proposed
fragments (the fragments not used a priori by the agent). On the other hand it
influences the agency's fragments and proposed fragments . It has then a duality
character on 'to influence' and 'being influenced', which is manifest in the process
of contextualizing, de-contextualizing, and re-contextualizing, In other words, this
process is about 'characterization of context for situation awareness'. This
characterization includes, as referred to in [20], perception, comprehension, and
projection. It is this characterization that uses a number of factors considered salient
to the situation at hand. Most of these characteristics are nothing more than
subjective views of the situation. By drawing on the literature of social cognition, we
contend that characterization remains effective when the relations among the
characteristics of the situation can be present to achieve a 'yet-to-be-tested
hypothesis', sometimes represented as heuristics . As time progresses in situated
method development and more insights are gained along emergent attributes of the
context, relations among the characteristics are subverted and (re)formed as the
meanings and their importance is characterized again.

Agency, is at the heart of situated method development where it interacts with the
fragments (owned and proposed) in and for the context. The agency conducts
characterization of the context in which all collectives (other agencies having one of
the roles as identified, methodical artefacts as shall be elaborated below), and other
constituents of the situation are considered. At any moment during this
characterization the agency may need to determine what to do with the fragments
owned and proposed (i.e., how to structure the agents' thinking and actions in the
situation foreseen). This determination is an intentional action of the situation at
hand and involves a human decision-making process. We argue that the concept of
intention, along with its main functions and forms (future- and present-directed),
paves the way for an account of the agency theorizing the wayan agent structures his
own and/or the user's thinking and action for constructing a situated method.
Accepting that the situation at hand and that which is foreseen (where the actions are
performed intentionally whether or not the associated intentions agree with the
proposed one) are partially construed and relative to the agency, uncertainty is
always inherent in situated method development and in determination of the
fragments. Therefore, a body of knowledge concerning 'decision-making under
uncertainty' is used to understand how decision-making is achieved in situated
method development. In particular, naturalistic decision-making accounts are found
to be appropriate as their particular view on decision matters fits our orientation on
the subject matter.

Regarding (method) fragment, which is of course, present in situated method
development and is a cognitive element that presupposes agents' future-directed
intentions and is materialized in different forms (template, procedure, technique,
etc.). Due to this cognitive aspect, a method fragment influences the way a designer
structures her thinking and actions that affect the way the user structures and realises
her thinking and actions. Various intriguing interplays occur between the agency and
method fragments that will be elaborated later on, but to give an example, consider a
simple case where the designer adopts the fragment without any change (i.e., the

60 Mehmet N. Aydin

designer role is not effective). In this case, the fragment becomes more dominant in
situated method development (i.e., it directly structures its user's thinking and
actions) . But that is only one direction of the influence; the other manifested as the
method fragment is subject to change in the execution of the proposed fragment (i.e.,
the proposed fragment is enacted and modified in a context). These two aspects of
fragment, similar to context, show a duality of method fragment (simply, 'to
influence' and 'being influenced') which manifests the process of contextualizing,
de-contextualizing, and re-contextualizing of the fragment. In other words, this
process is about 'characterization of method fragment for situation awareness' .

As we have incorporated basic understandings of the key notions for situated
method development , we are ready to induce the proposition about the meaning of
adaptation for situated method development as well as the conjecture asserting how
the underlying notions can be understood better.

Proposition: Adaptation Underpinning Situated Method Development.
Adaptation is essential to situated method development because the agents in a
'perfect' sense cannot arrive at matching, adjusting, and/or transferring elements of a
situated method where the context is unique and relative for each agency.

Conjecture: Method Adaptation Process (MAP). Given that three concepts
(context, fragment, and the agency) emphasise the idea of modifications, changes on,
and interplays among them, we conjecture that the 'Method Adaptation Process', in
short 'method adaptation' or ' MAP' , is a process or capability in which agents
holding intentions through responsive changes in, and dynamic interplays between,
contexts, and method fragments develop a situated fragment for a specific project
situation.

Notice that with this conjecture, we consider a situation as a collection of three
essential concepts: Agent, Context, and Fragment. The conjecture does not claim
how these interplays may occur, but asserts that this interplays come into an end in
the form of a situated method. In the following, we refer to three studies [35, 36, 14]
to discuss briefly how these interplays can manifest in terms of models. We shall
briefly mention the corresponding interplays as incorporated in their proposed
models.

The interplays between context and fragment are incorporated explicitly in the
Configuration Process [35]; on the other hand, the interplays between agent and
context are implicit in the model. The S3 Model of Situational Method Engineering
in [36] puts a special emphasis on the explicit interplay between context and
fragment and on the implicit interplays between agent and fragment. This implicit
mentioning of the other interplays in [35] and [36] is not surprising because the
notion of agency is not central to their articulation of the idea of situated method
development.

Baskerville and Stage [15] propose a social process for situated method
development along with the premise that a method should be situated at the ISD level
where ISD activities are carried out. Similar to the previous two basic models,
characterization of a context in terms, a number of elements are suggested though
their mutual relations are not addressed in such a characterization. In relation to the
Social Process for Method Fragment Adaptation in [15], the process as proposed is a

Examining KeyNotions for Method Adaptation 61

good example of a special emphasis on the explicit interplay between agent and
context and on the implicit interplays between agent and fragment.

To conclude with the examination of the conjecture in relation to the basic
models, we contend that as they correspond to specific interplays, they put special
emphasis on the interplays between agent, context, and fragment with different
degrees and explicitness. These models can be seen as specific patterns reflecting
specific orientation on the subject matter.

5 Conclusion

This paper is concerned with theoretical underpinnings of situational method
development, which concerns about how to make a method work for a project
situation . In literature, various approaches , models or alike are proposed to describe
or prescribe how to achieve a situated method, which is a method that fits a project
situation . Based on the review of relevant studies in ISD and method engineering
research domains, we point out that there is a lack of explicit articulation of key
notions underlying situated method development. Eventually, upon the deeper
examination of key notions in various disciplines, including cognitive psychology,
philosophy of mind, and linguistics, we induce a proposition about the meaning of
adaptation for situated method development and a conjecture called method
adaptation. This conjecture states that situation, as a combining construct, embraces
the other notions context, fragment and agency. As such, method adaptation asserts
that there are intriguing interplays among these key notions . We briefly discuss the
specific interplays that are found in basic models proposed for situated method
development in literature. One implication of method adaptation is that method,
context and the agent are not passive elements in these interplays but purposively
intervene in the agent's knowledge about how to handle construction of situated
method. This implies that we should advance in our thinking about the effect of
method in these interplays rather than reducing its meaning to certain aspects and
attributes. To show how to advance in thinking, we suggest looking beyond its
'frozen' rationale captured and often implicit in the presence of the method, and
possibly capture its creator's way of structuring the intended user's thinking and
actions.

This conjecture may suggest two basic directions for future research. First, it
seems that this conjecture gives a hint about a need for a generic model that explains
possible interplays among the key notions [37]. If this is possible , the existing basic
models can be considered as specific patterns that can be induced from a generic
model [38]. Description of a generic model should be made in an ambiguous way so
that the comparison of the generic model with other models can be made explicitly .
Second, empirical justifications of the specific interplays may be needed to show the
feasibility of studying certain models in practice. In fact, this is one of the immediate
needs for conducting relevant research to better understand how situated method
development occurs in practice. The deeper articulation of its underlying key notions
may accommodate the one intending to carry out follow-up research .

62 Mehmet N. Aydin

References

1. D. Avison, D and G. Fitzgerald, Reflections on Information Systems Development 1988
2002, in: Information Systems Development - Advances in Methodologies , Component s,
and Management, edited by M. Kirikova, J. Grundspenkis, W. Wojtkowskiet (KIuwer
Academic/ Plenium Publishers, 2002), pp. 1-I I.

2. K. Kumar and R. J. Welke, Methodology Engineering: A Proposal for Situation-Specific
Methodology Construction, in: Challanges and Strategies for Research in Systems
Development Method, edited by W. W. Cotterman, J. A. Senn (John Wiley & Sons, 1992).

3. G. J. Hidding, Reinventing Methodology: Communications ofthe ACM, 40(II) (1997)
4. B. Fitzgerald, The Use of Systems Development Methodologies in Practice: A Field Study.

Information Systems Journal , 7, 201-212 (1997).
5. J. Webster and R. T. Watson, Analyzing the Past to Prepare for the Future: writing a

Literature Review, MIS Quarterly 26(2), xiii-xxiii (2002).
6. D. Truex, R. Baskerville , and J. Travis, Amethodical system development: the deffered

meaning of systems development method. Accounting, Management & Technology, 10,53
79 (2000).

7. J. Iivari and H. Linger, Knowledge Work as Collaborative Work: A Situated Activity
Theory View. HICCS99, Hawaii, USA (1999).

8. T. W. Olle, H. G., Sol, and A. A. Verrijn-Stuart, Information Systems Design
Methdologies: A Comparative Review. Amsterdam, North-Holland (1982).

9. S. Brinkkemper , Method Engineering : Engineering of Information Systems Development
Methods and Tools, Journal of Systems and Software, 38, 275-280 (1996).

10. R. J. Welke, K. Kumar and H. van Dissel, Methodology Engineering: Een voorstel om te
komen tot situationeel specifieke methode-ontwikkeling, Informatie, 33(5), 11-20 (1981).

11. K. Kumar and R. J. Welke, Methodology Engineering: A Proposal for Situation-Specific
Methodology Construction. in: Challanges and Strategies for Research in Systems
Development Method , edited by W. W. Cotterman, J. A. Senn (John Wiley & Sons, 1992).

12. C. van Slooten, S. Brinkkemper, A Method Engineerin g Approach to Information Systems
Development, in: Information System Development Process, by N. Prakash, C. Rolland
and B. Pemici (Elsevier Science Publishers, North-Holl and, 1993).

13. F. Harmsen, S. Brinkkemper, and H. Dei, Situational Method Engineering for Information
Systems Projects. in: Methods and Associated Tools for Information Systems Life Cycle,
edited by T. W. Olle and A. V. Stuart (North-Holland , Amsterdam, 1994), pp. 169-194.

14. M. N. Aydin, F. Harmsen, and J. van Hillegersberg, Taxonomic Dimensions for Studying
Situational Information Systems Development , In: Situational Method Engineering :
Fundamentals and Experienc es, edited by J. Ralyte, S. Brinkkemper and B. Henderson
Sellers, IFIP Series in print (2007).

15. R. Baskerville and J. Stage, Accommodating emergent work practices: Ethnographic
choice of method fragments. In: Realigning research and practice: The social and
organisational perspectives (Kluwer Academic Publisher s, Boston, 2001), pp. 11-27.

16. Merriam-Webster, (February 13,2005); http://www.m-w.com.
17. OED - Oxford English Dictionary, (Feb 13, 2005; http://www.oed.com
18. J. Barwise and J. Perry, Situations and Attitudes (Cambridge, MIT-Bradford, 1983).
19. L. A. Suchman, Plans and situated actions: The problem of human-machine

communications (Cambridge University Press, Cambridge, 1987).
20. M. R. Endsley, Design and Evaluation for Situation Awareness Enhancement. the

Proceedings of the Human Factors Society 32nd Annual Meeting, Human Factors Society,
Santa Monica, CA, 97-101 (1988).

2 1. P. R. Cohen and H. J. Levesque, Persistence, Intention and Commitment. In: Proceedings
of Timberline workshop on Reasoning about Plans and Actions, 297-338 (1987).

Examining Key Notions for Method Adaptation 63

22. J. Perry, Semantics and Situation, Routledge Encyclopedia of Philosophy, retrieved from
http://www-csli.stanford.edu/-john/PHILPAPERS/sitsem.pdfon March 13,2002, (1987)

23. E. von Glasersfeld , Piaget's Legacy: Cognition as Adaptive Activity In: A. Riegler, M.
Peschl and A. von Stein (Eds.). Understanding representation in the cognitive sciences
Does representation need reality? New York/Dordrecht: (Kluwer Academic/Plenum
Publishers, 1997) 283-287 .

24. J. Piaget, Piaget's Theory. In P. Mussen (Ed.) Handbook of child psychology. (Wiley,
1983).

25. L. Hasher and R. T. Zacks, Automatic Processing of Fundamental Information: the Case of
Frequency of Occurrence. American Psychologist, 39(12), 1372-1388, (1984).

26. B. Rogoff and J. Lave, Everyday Cognition: Its Development in Social Context (Harvard
University Press, 1984).

27. P. Linel1and D. P. Thunqvi st, Moving in and Out of Framings: Activity Contexts in Talks
with Young Unemployed People Within a Training project. Journal ofPragmatics, 35(3),
409-434 (2003).

28. J. -Ch. Pomerol and P. Brezillon, About some relationships between knowledge and
context. Modeling and Using Context (CONTEXT-O!) . Lecture Notes in Computer
Science, Springer Verlag, 461-464 (200 I) .

20. E. Schegloff, In another context, Duranti, in: Rethinking Context: Language as an
Interactive Phenomenon, edited by A. Goodwin, (Cambridge: Cambridge University Press,
1992), pp. 193-227

30. J. L. Mey, Context and (dis)ambiguity: a pragmatic view, Journal ofPragmatics , 35, 331
347.

31. M. Bratman, Intention, Plans and Practical Reason. Harvard University Press (1987).
32. Morrison, James C. (1970) Husserl and Brentano on Intentionality. Philosophy and

Phenomenological Research , 31, 27-46 (2003).
33. N. Jayaratna, Understanding and Evaluating Methodologies (McGraw-Hil1 , Berkshire

1994).
34. D. Andler. Context: the case for a principles epistemic particularism, Journal of

Pragmatics, 35(3), 349-371 (2003)
35. C. van Slooten, Situated Methods For Systems Development , Doctoral Dissertation,

University of Twente (1995).
36. F. Harmsen, Situational Method Engineering. (Moret Ernst & Young Management

Consultants, Utrecht, 1997).
37. Aydin, M. N. Decision-Making and Support for Method Adaptation, PhD Dissertation,

University of Twente, ISBN: 90-365-2375-3 (2006)
38. Mirbel and J. Ralyte, Situational Method Engineering: Combining assembly-based and

roadmap driven approaches, Requirements Engineering, 11(1):58-78 (2006).

Method Chunks Selection by Multicriteria
Techniques: an Extension of the Assembly

based Approach

Elena Komyshova1
.2, Rebecca Dencckere', and Camille Salinesit

1 CRI, UniversityParis I - Pantheon Sorbonne
90, rue de Tolbiac, 75013 Paris, France,

2 ECD, Saint-PetersburgState University of Economics and Finance
21, Sadovaia Str, 191023Saint-Petersburg,Russia

{elena.komyshova,rebecca.deneckere,camille}@univ-paris I.fr,
WWW home page: http://crinfo.univ-parisl.fr/

Abstract. The work presented in this paper is related to the area of situational
method engineering (SME). In this domain, approaches are developed
accordingly to specific project specifications. We propose to adapt an existing
method construction process, namely the assembly-based one. One of the
particular features of assembly-basedSME approach is the selection of method
chunks. Our proposal is to offer a better guidance in the retrieval of chunks by
the introduction of multicriteria techniques. To use them efficiently, we
defined a typology of projects characteristics, in order to identify all their
critical aspects, which will offer a priorisation to help the method engineer in
the choice between similar chunks.

1 Introduction

It is now clearly assumed that one development process cannot fit all the existing
problems and development contexts. This assumption has lead to the development of
the Method Engineering domain, and more particularly of Situational Method
Engineering (SME) [0] [0). In this domain, approaches have been developed to adapt
existing methods to deal with the specifications of the project at hand. It allows the
construction of a specific process to meet the requirements of each particular
situation by reusing and assembling parts of existing methodologies called either
fragments [0], chunks [0], patterns [0], etc, that, similarly to a software component,
can be treated as separated unit. The knowledge encapsulated in these small method
parts is generally stored in a classic library repository called Method Base [0] [0] [0].

Please use the followingformat when citing this chapter:

Kornyshova, E., Deneckere, R., Salinesi, c.,2007, in IFIP International Federation for Information Processing, Volume

244, Situational Method Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S., Henderson

Sellers B., (Boston Springer), pp. 64-78.

Method Chunks Selection by Multicriteria Techniques 65

Following a complete assembly SME approach consists of executing the
following phases: (a) identification and formalisation of the method chunks,
(b) storage in a method chunks base, (c) chunks selection following the project
needs, and (d) assembling of the selected method chunks. In this paper, we will
consider the SME aspect regarding the selection of chunks in the repository. In our
proposal, we refer to the notion of "chunk" to describe every type of small method
parts (considered also as fragment or as pattern). The problem of chunk retrieval is
an important part of this process and has to be easy and effective.

The assembly based approach [0] uses a process (assembly process model
APM) that guides the engineer in the elaboration of a requirement map and uses this
map in order to select a set of related chunks. The final selection is then realised with
the help of similarity measures inspired from those proposed by [0] and [0]. They
distinguish two types of measures: those which allow to measure the similarity of the
elements of product models and those which allow to measure the closeness of
process models elements.

The similarity measures are provided in order to compare the method
requirements with the solutions proposed by the selected chunks but their application
is difficult. First, the difference between the formulation of requirements to achieve
and of requirements that can be achieved is more or less inexistent, which made the
requirements map creation difficult. Second, the results obtained by an application of
the similarity measures are not simple to handle. Furthermore, the cost of a project
can increase as, in order to offer a good comparison, method engineers have to
manage an increasing number of artefacts, which induce a combinatory explosion of
all the values to calculate. Finally, even if all these issues are solved, the final
selected chunks may be quite similar; this means that the method engineer has to
choose one over the other and to discriminate between them.

To solve these difficulties, we propose an extension of the APM by the
introduction of multicriteria (MC) techniques (or MC methods). Our objectives are
to (a) guide chunk retrieval and (b) to propose a priorisation of the selected chunks in
order to guide the method engineer into the final selection process. In order to use
the full potentiality of the MC techniques, we also propose a project characteristics
typology, in order to identify all its critical aspects. This typology is an adaptation of
two similar works. The first one is the typology created by Kees Van Slooten and
Bert Hodes in [0] to prove that the project approach is affected by the project
context. The second was made by Isabelle Mirbel and lolita Ralyte in [0]. In this
work, they define the concept of Reuse frame and they apply it to the assembly
approach. Their reasons are threefold: (a) to help the chunk selection by better
qualifying them, (b) to enable the use of more powerful matching techniques to
retrieve them when looking at similar methodological problems and (c) to express
better methodological needs for a specific project, improving this way the chance to
get adequate and useful method chunks. The merging of these two existing
typologies and their adaptation to be used by MC techniques will multiply the
process efficiency.

Our approach is presented in this paper as follows: In the section 2, we give a
brief introduction in MC techniques. The section 3 describes the assembly-based
approach extended by MC techniques with an example. The section 4 presents
conclusion and future works.

66 ElenaKomyshova, Rebecca Deneckere and Camille Salinesi

2 Multicriteria Techniques

Multicriteria techniques currently dominate in the field of decision-making [0], [0].
They appeared at the beginning of the Sixties, and their number and application
contexts increase continually. For example, these techniques are employed for
requirements priorisation [0], to choose evolution scenario [0], or to make
operational decisions [0].

Generally, a decision-making problem is defined by the presence of alternatives.
The traditional approach consists in using only one criterion to carry out the selection
between alternatives. The traditional example is the selection of the projects according
to the net present value (NPV). However, using a single criterion is not sufficient when
the consequences of the alternatives to be analyzed are important [0].

The goal of the multicriteria decision-making (MCDM) techniques consists in
defining priorit ies between alternati ves (actions, scenarios, projects) according to
multiple criteria. In contrast to monocriterion approach, MC techn iques allow a more
in-depth analysis of problem because of taking into consideration various aspects.
Nevertheless, their application has proved more difficult.

In spite of their complexity, MC techniques are often chosen and used by companies.
In general, the MC formulation of a problem is based on the definition of [0]:

- alternatives set represented by "concurrent" actions,
- criteria (attributes) set defined by parameters to be considered for priorisation,
- alternatives evaluations according to criteria (partial evaluations, which are

obtained by assignment of values to each alternative according to all criteria) ,
- aggregation rules (to select an alternative, it is necessary to incorporate the

partial evaluations in a general evaluation). The aggregation rules differ in
different techniques.

According to this, the decision-making steps are defined as follows:
I. diagnostics of problem (necessity to define priorities),
2. identification of problem's parameters: alternatives, criteria,
3. alternatives partial estimations,
4. priorities defin ition.
Five families of MCDM techniques can be considered: MAUT [0], AHP [0],

outranking techniques [0], weighting techniques [0], and fuzzy techniques [0]. These
are not detailed here for the sake of space.

3 Extended Assembly-based Approach

Using MC techniques allow to integrate new parameters into method chunk selection.
We propose to adapt namely the assembly based SME approach by integrating of MC
techniques expression.

The basic and extended APM are illustrated in Fig. I using the MAP formalism
[0].

The intentional modelling of MAP provides a generic model based on intentions
(goals) and the possible strategies to achieve each intention . The map is presented as
a graph where nodes are intentions and edges are strategies. The directed nature of

Method Chunks Selection by Multicriteria Techniques 67

the graph shows which intentions can follow which one. An edge enters a node if its
manner can be used to achieve its intention. Since there can be multiple edges
entering a node, the map is able to represent the many manners that can be used for
achieving an intention. The map includes two predefined intentions: "Start" and
"Stop", which mean accordingly the beginning and the end of the process. An
important notion in process maps are the sections witch represent the knowledge
encapsulated in a triplet <source intention, strategy, target intention>, in other terms,
the knowledge corresponding to a particular process step to achieve an intention (the
target intention) from a specific situation (the source intention) following a particular
technique (the strategy).

In the following figure, the basic components of APM are presented by solid
lines, and the components proposed to extend the basic approach are exposed by
dashed lines.

Refinement
strategy

Decomposition
strategy Aggregation

strategy

Verification
strategy

Association
strategy

Integration
strategy

Intention-driven
strategy

Assemble Method
Chunks

Specify Method
Requirements

Process-driven
strategy

Completeness
strategy

",,,
I

I
I

I,,
I
I
I
I Project
~ characterisation Evaluation

" strategy strategy
\
\ Refinement strategy

\ ------- --------------" ~~,~~--

",>,,' Specify Project ',..__~c;.-1~i~e..n_s!!E~efIY.. _

\, Characteristics "
' _-_"",.'

Fig. 1. Basic and extended APM

This map is described in the following sections. Firstly, we present the basic
APM, secondly, the extended one, and, finally, an illustrative example.

3.1 Basic Assembly-based Approach

The APM [0] is based on the notion of "chunk" as a representation of a method small
unit. It proposes different ways to select them that match requirements as well as
different strategies to assemble them. It is based on the achievement of two key
intentions: Select method chunks and Assemble method chunks. Achieving the first

68 Elena Komyshova, Rebecca Deneckere andCamille Salinesi

intention leads to the selection of chunks from the method base that matches the
requirements. The second intention is satisfied when the selected chunks have been
assembled in a consistent manner.

The process starts by selecting candidate chunks that are expected to match the
requirements expressed in a requirements map. Guidelines suggest formulating
queries to the method base in order to identify the chunks that are expected to match
part or the totality of the requirements. A set of strategies (decomposition,
aggregation, refinement, decomposition, aggregation) help to refine the candidate
chunk selection, but, any time a chunk has been retrieved , it can be validated by
applying an evaluation strategy. This helps in evaluating the degree of matching of
the candidate chunk to the requirements . This is based on similarity measures
between the requirements map and the map of the selected chunk.

When at least two chunks have been selected , the method engineer can progress
to the assembly of these chunks. Two strategies, namely the integration strategy and
the association strategy, are proposed to fulfil the intention Assemble method chunks.
The choice of the strategy depends on the presence/absence of overlaps between the
chunks to assemble. Similarity measures are used to compare chunks before their
assembly and to identify whether they are overlapping. This will help to choose the
right strategy between the integration strategy and the association strategy .

3.2 Proposed Extension of Assembly-based Approach

As we can see in Fig. 1, the basic APM may be extended by the following sections:
1. Specify Project Characteristics by Project characterisation strategy,
2. Specify Project Characteristics by Refinement strategy,
3. Select Method Chunks by Project Characteristics (PC)-driven strategy,
4. Select Method Chunks by Verification strategy.
These sections are described in the following paragraphs according to two

intentions: "Specify Project Characteristics" and "Select Method Chunks".

3.2.1 Specify Project Characteristics
Project characteristic s influence method chunks selection. Each method chunk is
described according to its contribution to these characteristics. This typology can be
enriched by introduction of characteristics proper to concrete methods (such a used
approach, tool presence , notation, difficulty etc).

Project characteristics typology
Project characteristics describe the main properties of IS development project. Their
difference with method requirements of basic APM lies in the way of definition and
presentation. The method requirement s are analysed and expressed in the form of
requirements map, whereas the project characteristics form a predefined typology
that method engineer investigates in order to choose those, which are needed for a
project.

Based on studies [0] [0], we propose a typology of project characteristics, which
includes four dimensions: organisational, human, applicat ion domain, and
development strategy.

Method Chunks Selection by Multicriteria Techniques 69

The typology of project characteristics is illustrated on Tables 1, 2, 3, and 4. The
characteristics proposed in this table are either inspired from the works presented in
[11] and [12] or suggested in this paper. In order to differentiate them in the table,
we identify the source (1) as the work of Van Slooten [11], the source (2) as Mirbel's
[12] and ours will be noted as the source (3).

The organisational dimension highlights organisational aspects of IS
development project and includes the following characteristics: management
commitment, importance, impact, time pressure, shortage of resources, size, and
level of innovation (Table 1).

Table 1. Organisational dimension.

Characteristic Values Source

Management commitment {low, normal, high} (1), (2), (3)

Importance {low, normal, high} (1), (3)

Impact {low, normal, high} (1), (2), (3)

Time pressure {low, normal, high} (1), (2), (3)

Shortage of resources {low, normal, high} (1), (2), (3)

{human, means} (1),(2)

{financial resources, human resources, temporal (3)
resources, informational resources}

Size {low, normal, high} (1), (2), (3)

Level of innovation {low, normal, high} (1), (2), (3)

{business innovation, technology innovation} (2),(3)

The human dimension describes the qualities of persons involved into IS
development project. It includes the following characteristics: resistance and conflict,
expertise, requirements clarity and stability, user involvement, stakeholder number
(Table 2).

Table 2. Human dimension

Characteristic Values Source
Resistance and conflict {low, normal, high} (1), (3)

Expertise (knowledge, {low, normal, high} (1), (2), (3)
experience, and skills) {tester, developer, designer, analyst} (2), (3)

Clarity and stability {low, normal, high} (1), (2), (3)

User involvement {real, virtual} (2), (3)

Stakeholder number num (3)

The application domain dimension includes formality, relationships, dependency,
complexity, application type, application technology, dividing project, repetitiveness,
variability, and variable artefacts (Table 3).

70 Elena Komyshova, Rebecca Deneckere and Camille Salinesi

Table 3. Application domain dimension.

Characteristic Values Source

Formality {low, normal, high} (1), (2), (3)

Relationships {low, normal, high} (1), (3)

Dependency {low, normal, high} (1), (2), (3)

Complexity {low, normal, high} (1), (3)

Application type {intra-organization application, inter-organization (2), (3)

application, organization-customer application}

Application technology {application to develop includes a database, (2), (3)

application to develop is distributed, application to

develop includes a GUI}

Dividing proj ect {one single system, establishing system-oriented (1), (2), (3)

subprojects, establishing process-oriented

subprojects, establishing hybrid subprojects}

Repetitiveness {low, normal, high} (3)

Variability {low, normal, high} (3)

Variable artefacts {organisational, human, application domain, and (3)

development strategy}

The development strategy dimension gathers source system, project organization,
development strategy, realization strategy, delivery strategy, tracing project, and goal
number (Table 4).

Table 4. Development strategy dimension.

Characteristic Values Source

Source system {code reuse, functional domain reuse, interface (2), (3)

reuse}

{weak, medium, strong} (2), (3)

Project organization {standard, adapted} (1), (2), (3)

Development strategy {outsourcing, iterative, prototyping, phase-wise, (1), (2), (3)

tile-wise}

Realization strategy {at once, incremental, concurrent, overlapping} (1), (2), (3)

Delivery strategy {at once, incremental, evolutionary} (1), (2), (3)

Tracing proj ect {weak, strong} (1), (2), (3)

Goal number {one goal, multi-goals} (3)

Specify Project Characteristics by Project characterisation strategy
This section consists in the identification of characteristics for a given project. The
method engineer explores the project characteristics typology and brings out the
project critical aspects, which are crucial for the current project.

Specify Project Characteristics by Refinement strategy
The refinement strategy is similar to this one of the basic APM. The distinction is
concluded in a refinement objective. The selection result may be presented by a set of
method chunks, which are homogeneous, i.e. have the same description with regard to

Method Chunks Selection by Multicriteria Techniques 71

previously identified project characteristics. Then, additional information is required to
define more precisely the differences between homogeneous method chunks. In this
case, the refinement aims to specify more closely the project characteristics.

3.2.2 Select Method Chunks

Select Method Chunks by PC-driven strategy
The PC-driven strategy consists in application of MC techniques for selecting
alternatives method chunks.

This section can be itself refined by a process map (illustrated on Fig. 2), which
contains two main intentions: "Define weights" and "Define priorities".

by identifying criteria
to be improvedfirst

by fuzzy
weighting

by addition

by outranking

by iteration

by weighted sum

by iteration

Fig. 2. Select Method Chunks by PC-driven strategy's process map

The choice between these two intentions is made according to needs for criteria
weighting. Criteria weighting enables to analyse their relative importance. When
they are not weighted, it means that their relative importance is equal.

These two strategies are developed in the following paragraphs (for more details
on outranking and weighting techniques, see Appendix 1).

I.Define weights. This intention can be achieved "by simple attribution ofweight
values", "by identifying criteria tot be improved first" (SWING), "by trade-off
technique" (trade-off weighting), and "by importance analysis" (SMART). The
choice between these possibilities can be carried out in function of decision-maker
preferences. This intention can be achieved "by iteration" (when the result must be
specified) and "byfuzzy weighting" (when fuzzy values are needed).

2. Define priorities (Priorisation). There are two ways to achieve this intention
that are: priorisation strategy with or without weighting and priorisation strategy with

72 Elena Komyshova, Rebecca Deneckere and Camille Salinesi

weighting. The objective of this stage is to aggregate the alternatives evaluations into
a unique (aggregated) evaluation and to priory alternatives.

Priorisation strategy without weighting. To carry out this strategy, we suggest
application of the following strategies: "by outranking" (outranking) without
weighting or "by addition". The addition of values requires that all of them must
have a homogeneous qualitative nature and be normalised. The outranking can be
applied to all data types (quantitative and qualitative) and does not require the
normalisation. However, it is most complicated.

Priorisation strategy with weighting. The possible strategies are "by outranking"
(outranking) with weighting or "by weighted sum" (weighting techniques)..The
difference between the given strategies is similar to the previous selection.

This intention too can be completed "by iteration" if the result has to be
specified.

The section Stop by impact analysis allows analysing the results of priorisation
by considering the impact and interactions between selected chunks.

Hence, we have identified four main strategies corresponding to these four different
MC techniques.Arguments for choosingone of them are presented in Table 5.

Table 5. Arguments for choosing a main strategy.

Addition Outranking

Without All criteria have the same relative importance; All criteria have the same

weighting All criteria have a homogeneous qualitative relative importance;

nature and are normalised. All data types.

With The criteria have different relative importance; The criteria have different

weighting All criteria have a homogeneous qualitative relative importance;

nature and can be normalised. All data types.

This table presents the combination of arguments allowing the user to choose the
right MC technique. The arguments include two essential aspects being the relative
importance of the criteria ("same" or "different") and their nature ("all" or
"homogeneous qualitative and normalised").

Select Method Chunks by Verificationstrategy
This strategy aims at verifying adequacy of chunks selected by MC techniques: if the
result is not sufficient, other project characteristics are needed for final decision
making. Then the section "specifyproject characteristics by refinement" is available.

3.3 Example

To illustrate our proposal, we have selected method chunks that deal with
information system (IS) security within requirements engineering (RE).

Five chunks of RE methods designed for analysing IS security were identified:
NFR Framework [0], KAOS [0], Secure Tropos [0], GBRAM [0], and Misuse Cases
[0]. The comparison of these methods is presented in [0]. Within this example, we

Method Chunks Selection by Multicriteria Techniques 73

illustrate only one part of extended APM that concerns the application of Me
techniques in SME.

The given project is described by:
the great influence on the whole organisation;
the need for ensuring the greater progress;
the organisation does not have the experts in this field and does not plan to
employ them;
the need for a better explanation of method chunks and their application.

The method engineer has chosen three project characteristics (since the weights
of the others are equal to zero) and has described the method chunks according to
methods properties. Thus, these methods chunks are compared according to six
criteria, which concern two groups: project characteristics and proper method
characteristics. The first group includes impact, level of innovation, and expertise.
The second group comprises guidance, approach, and formalism.

Depending on project description, the method engineer has defined the following
preferences rules for these criteria:

Impact on organisation: maximum;
Level ofinnovation: maximum;
Required expertise: minimum;
Guidance: a predefined taxonomy is better than heuristics, which is better
than a simple guidelines;
Approach: a systemic approach is better than exploratory, which is better than
explanatory.
Formalism: a formal approach is better than semi-formal one, which is better
than informal one.

The summary of chunks evaluation is presented in Table 6.

Table 6. IS security chunks evaluation.

Criteria
NFR

KAOS
Secure

GBRAM
Misuse

Framework Tropos Cases
Project Characteristics
Impact high low high low normal
Level of high high low high high
innovation
Expertise normal high high normal low
Method Chunk Characteristics
Guidance predefined reuse of No documents guidelines

taxonomy generic guidance analysis,
refinement heuristics
patterns,
heuristics

Approach explanatory exploratory systemic Not explanatory
applicable

Formalism semi-formal formal formal informal informal

In order to compare these chunks and to select one of them, which is more
adapted to the given project, we have applied three different calculations: simple
addition, weighted sum, and outranking with weighting.

74 Elena Komyshova, Rebecca Deneckereand Camille Salinesi

I) The simple addition was applied to the first three criteria, which are
"quantifiable". Two method chunks, which are the best ones , present the result: NF R
Framework and Misuse Cases (See Table 7).

Table 7. Method selection with simple addition.

Criter ia
NFR

KAOS
Secure

GBRAM Misuse CasesFramework Tronos
Impact 3 I 3 I 2
Level of

3 3 1 3 3innovation
Expertise 2 1 I 2 3

80O 5,00 5,00 6,00 8,00

2) In the case of weighted sum, we add the weights assigned to criteria. These
weights are defined by importance analysis (Appendix I). The chunk "Misuse Cases"
is the best one (see Table 8).

Ta ble 8. Method selection with weightedsum.

Criteria Weights NFR
KAOS Secure

GBRAM
Misuse

Fra mework Tropos Cases
Imoact 0,30 3 I 3 I 2
Levelof

0,20 3 3 I 3 3innovation
Exoertise 0,50 2 I I 2 3

2,50 1,40 1,60 1,90 2 7O

3) To apply the outranking technique, we selected ELECTRE [0] (Appendix I).
All calculations are not presented here for the sake of space. The concordance and
discordance matrices developed in our case study are shown in Table 9 (Table 9.a
concordance matrix; Table 9.b - discordance matrix). Appl ication of outranking
techniques allows considering the last three criter ia, which are not quantifiable.

Table 9. Method selection with outranking.

a) FrJ Fr2 Fr3 Fr4 FrS

FrJ X 0,45 0,45 0,85 0,85

Fr2 0,60 X 0,50 0,85 0,75

Fr3 0,65 0,80 X 0.65 0,65
Fr4 0,35 0,60 0,50 X 0,35

FrS 0,60 0,30 0,35 0,70 X

b) FrJ Fr2 Fr3 Fr4 FrS

FrJ X 0,33 0,67 0,50 0,50

Fr2 1,00 X 1,00 0,50 1,00

Fr3 1,00 0,67 X 0,67 1,00

Fr4 1,00 0,67 1,00 X 0,33

FrS 0,67 1,00 0,67 1,00 X

As we can see, on ly one alternative (NF R Framework) dominates the others
without any particular shortcoming in terms of discordance. As a result, this first chunk
is selected.

Method Chunks Selection by Multicriteria Techniques 75

Application of different MC techniques for selecting method chunks gives
different results . The simple addition is the simplest technique , but it implies the
following disadvantages: a) it does not take into account the relative importance of
criteria and b) it is applicable only for numeric or easy quantifiable criteria. The
weighted sum supports the criteria relative importance, but saves the restrictions on
data type (quantitative). The outranking technique is more complex, its application
requires additional skills. Nevertheless , the result is defined more precisely with
consideration of all data types. In this case, the chunk "NFR Framework" was
selected in order to analyse the requirements of IS security.

Hence, the approaches using diverse MC techniques imply a selection of
different method chunks . For this reason, we recommend to use one of strategies
described above to specify and to select the method chunks (by addition, by
weighting, or by outranking) according to available criteria.

4 Conclusion

We have proposed an adaptation of the existing assembly process with the
introduction of MC techniques. The two approaches (basic and extended) may be
combined within the same method engineering process as it will offer a more
complete guidance to select chunks .

Our objective is twofold . Firstly, we offer the possibility to the method engineer
to qualify the method chunks by their correspondence with projects and to choose
between similar chunks by an application of MC techniques. Secondly, we propose
to characterise the project and the chunks to improve their selection . This typology
allows to identify all their critical aspects and to weight them. Within our example,
we showed the utility of application of MC techniques and revealed that different
MC techniques give different selection result.

In near future, our research perspectives include :
improve the guidance ;
adapt other situational methods by integrating MC techniques ;
improve the typology presented in this paper in order to take into account
other critical characteristics;

- extend the MC techniques application to the field of System Engineering
based on MC techniques chunks.

References

I. S. Brinkkemper, Method Engineering: engineering of information systems development
method and tools, Informat ion and Software Technology, 38(7), (1996), pp 275-280

2. A.F. Harmsen, Situational Method Engineering, (Moret Ernst Young, 1997)
3. A.F. Harmsen, J.N. Brinkkemper, and J.L.H. Oei , Situational Method Engineering for

information Systems Project Approaches, Int. IFIP WG8. I Conference in CRIS series:
"Methods and associated Tools for the Information Systems Life Cycle", (North Holland,
1994)

76 Elena Kornyshova, Rebecca Deneckere and Camille Salinesi

4. C. Rolland, V. Plihon, and J. Ralyte, Specifying the reuse context of scenario method
chunks, Proceedings of the 10th CAiSE'98 (Pisa, Italy, 1998)

5. R. Deneckere and C. Souveyet, Patterns for Extending an 00 Model with Temporal
Features, Object Oriented Information Systems (OOlS), (Paris, France, 1998)

6. J. Ralyte, Reusing Scenario Based Approaches in Requirement Engineering Methods:
CREWS method base, Proc. 10th DEXA'99, (Los Alamitos, CA, USA, 1999), pp 305-309

7. M. Saeki, CAME: the first step to automated software engineering, Process Engineering for
OOPSAL 2003 Workshop, (COTAR, Sydney, 2003)

8. J. Ralyte and C. Rolland, An Assembly Process Model for Method Engineering,
Proceedings of the 13th CAISE'OI , (Interlaken , Switzerland, 2001) pp. 267-283

9. S. Castano and V. De Antonellis, A Constructive Approach to Reuse of Conceptual
Components, Proceedings of Advances in Software Reuse: Selected Papers from the
Second International Workshop on Software Reusability, (Lucca, Italy, 1993)

IO.G. Bianco, V. De Antonellis, S. Castano, and M. Melchiori, A Markov Random Field
Approach for Querying and Reconciling Heterogeneous Databases. Proceedings of the 10th
DEXA'99,(Florence, Italy, 1999)

I I.K. Van Slooten, B. Hodes, Characterising IS development project, IFIP WG 8.1
Conference on Method Engineering, (Chapman and Hall, 1996), pp. 29-44

12.Mirbel and J. Ralyte, Situational Method Engineering: Combining Assembly-Based and
Roadmap-Driven Approaches, Requirements Engineering, 11(1), (2006), pp. 58-78

13.M. Baudry and N. Vincent, Multicriteria decision making, First annual meeting on health
science and technology, (Tours, France, 2002)

14.J.A. Gomez-Limon, L. Riesgo, and M. Arriaza, Multi-Criteria Analysis of Factors Use
Level: The Case of Water for Irrigation, Proceedings of the 25th International Conference
ofAgricultural Economists, (2003)

15.K. Wiegers, First Things First: Prioritizing Requirements, Software Development, vol. 7,
no. 9, (1999)

16.E. Papadacci, C. Salinesi, and L. Sidler, Panorama des approches d'arbitrage dans Ie
contexte de I'urbanisation du SI, Revue des sciences et techniques de I'information (RSTI),
(Hermes, France, 2006)

17.D. Bouyssou, Outranking methods, In Encyclopedia of Optimization, (Kluwer, 200 I)
18.B. Roy, Multicriteria Methodology for Decision Aiding, (Dordrecht, Kluwer Academic

Publishers, 1996)
19.C. Zopounidis , Decisions financieres et analyse multicritere, Encyclopedie de Gestion, (Ed.

Economica, Paris, 1997), pp. 915-925
20.R.L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value

Trade-Offs, (Cambridge University Press, 1993)
21.T.L. Saaty, The Analytic Hierarchy Process, (NY, McGraw Hill, 1980)
22.R.L. Keeney, Foundations for Making Smart Decisions, liE Solutions, 31, No.5, (1999),

pp.24-30
23.R. Fuller and C. Carlsson, Fuzzy multiple criteria decision making: Recent developments,

Fuzzy Sets and Systems, 78, (1996), pp. 139-153
24.C. Rolland, N. Prakash, and A. Benjamen, A Multi-Model View of Process Modelling,

Requirements Engineering Journal, (1999)
25.L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-functional requirements in software

engineering, (Kluwer Academic Publishers, 1999)
26.Dardenne, A. Lamsweerde, and S. Fickas, Goal-directed Requirements Acquisition,

Science of Computer Programming, 20, (Elsevier, 1993), pp. 3-50
27.P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini, TROPOS: An

Agent Oriented Software Development Methodology, Journal of Autonomous Agents and
MultiAgent Systems, 8(3), (2004), pp. 203-236

Method Chunks Selection by MulticriteriaTechniques 77

28.A.1. Anton, Goal Identification and Refinement in the Specification of Software-Based
InformationSystems", Ph.D. Dissertation, Georgia Institute of Technology, (Atlanta, USA,
1997)

29.Alexander, Misuse cases help to elicit non-functional requirements, Computing & Control
EngineeringJournal, 14 (I), (2003), pp. 40-45

30.M. Lassoued and C. Salinesi, Shall IS Security be Treated Differently in the light of the
Open World Assumption? A Literature Review, Centre de Recherche en Informatique,
UniversityParis I, Internal Report, (2006)

3 I. Kangas, J. Kangas, and J. Pykalainen, Outranking Methods As Tools in Strategic Natural
Resources Planning, 35(2), (Silva Fennica, 2001) pp. 215-227

32.J. Mustajoki, R.P. Hamalainen, and A. Salo, Decision Support by Interval
SMART/SWING - IncorporatingImprecision in the SMART and SWING Methods, 36(2),
(DecisionSciences, 2005), pp. 317-339

33.M. Poyhonen, R.P. Hamalainen, On the convergence of multiattribute weighting methods,
EuropeanJournal of Operational Research, 129(3), (2001), pp. 569-585

Appendix 1

This appendix presents a brief description of two groups of MC techniques: outranking
and weighting techniques.

Outranking techniques
Outranking techniques [0], [0], [0] are inspired from the theory of social choice [0].

There are two kinds of approaches in the family of outranking techniques: ELECTRE
(created by Roy, since 1968) and PROMETHEE (created by Brans J.P., Mareschal R ,
and Vincke Ph, since 1984) [0], [0]. The most known technique is ELECTRE
(ELimination Et Choix Traduisant la Rfalite, B. Roy / Elimination And Choice
Corresponding to Reality). Outranking techniques serve for approaching complex
choice problems with multiple criteria and multiple participants. Outranking indicates
the degree of dominance of one alternative over another. Outranking techniques enable
the utilization of incomplete value information and, for example, judgments on ordinal
measurement scale.

It includes the following steps:
1. Calculation of the indices of concordance and discordance on the basis of

estimation of two given alternatives. These indices define the concordance and
discordance following the assumption that alternative A is preferred to alternative R
The principle is that the decision maker estimates that alternative A is at least as good
as B if the majority of the attributes confirm it (concordance principle) and the other
attributes (minority) are not strong enough (discordance principle).

2. Definition of levels for the concordance and discordance indices. If the
concordance index is higher then defined level and the discordance one is lower, then
an alternative is preferred to the other. If it is note the case , alternatives are
incompatible (what means that A is preferred to B according to criterion X, and B is
preferred to A according to the criterion V).

3. Elimination of dominated alternati ves. Then a first alternatives subset is
obtained, which can be either equivalent, or incompatible.

78 Elena Komyshova, Rebecca Deneckere and Camille Salinesi

4. Iterative application of stages 2 and 3 with "lower" levels of concordance and
discordance indices. A more restricted subset of alternatives is then carried out.

The procedure is applied until a suitable subset is obtained. A last subset includes
the best alternatives . The order of the obtained subsets determines the alternatives scale
according to their criteria given suitability.

The ELECTRE family has several members : ELECTRE I (for choice problems),
ELECTRE II, ELECTRE III, ELECTRE IV (for ranking problems), ELECTRE TRI
(for alternatives sorting). An advantage of outranking techniques is that they are based
on step-by-step identification of decision makers' ·preferences. A detailed analysis
makes it possible to the decision makers to formulate his preferences and to define
compromises between the criteria. The incompatibility relation can be employed to
find the contradictory pairs of alternatives, to stop on a subset whose choice is justified
(with available information). Difficulties can appear during the weight definition by the
decision maker. Moreover, the appearance of the cycles (when alternative A is
preferred to B, B is preferred to C and C is preferred to A) is rare but is not excluded.

Weighting techniques
Weighting techniques include SMART (Simple Multiattribute Technical Rating),

SWING, and Trade-off weighting [0], [0], and [0]. They are characterised by a weight
assignment to the decision criteria. Aggregation of the evaluations is based on weighted
sum.

The SMART technique (proposed by W. Edwards), which appeared the first,
includes the following stages: criteria scaling according to their importance, criteria
attribution of a value from I to 100, calculation of the relative importance of each
criterion . We call it definition of criteria weights by importance analysis.

In SWING weighting (D. Winterfeldt 11W. Edwards) , all criteria are supposed bad.
The expert chooses the one, which must be improved firstly and a value of 100 is
attributed to this criterion. The same operation is carried out with the other criteria to
determine their values (by identifying criteria to be improved first).

In Trade-off weighting (H. Raiffa and R.L. Keeney) the decision maker compares
two hypothet ical alternatives according to two criteria; other criteria are invariable . The
weights of these two criteria are refined so that the values of two given weighted
alternatives have the same importance for the decision maker. This operation is
repeated until all the weights are defined.

Reuse Mechanisms in Situational Method
Engineering

Jorg Becker, Christian Janiesch, Daniel Pfeiffer
European Research Center for Information Systems(ERClS)

Universityof Munster, Leonardo-Campus3,48149 Munster, Germany
{becker,janiesch,pfeiffer}@ercis.de,

WWW home page: http://www.ercis.de

Abstract. Methods describe systematic procedures to overcome problems. It
has been widely acknowledged that methods have to be adapted to the context
of their application in order to maximize their impact. Since the original
proposal of situational method engineering, numerous approaches have been
introduced to tackle this problem. In order to efficiently design situation
specific methods it is necessary to reuse existing knowledge. Reuse
mechanisms have emerged in different research areas that can be transferred to
method engineering. The objective of this paper is to identify relevant reuse
mechanisms for method engineering and to review the literature for their
usage. Thereof, we derive suggestions for the improvement of existing method
engineeringapproaches and the design of new ones.

1 Introduction

Methods describe systematic procedures to overcome problems. Problems can be
characterized as the discrepancy between an as-is and a to-be situation. It is widely
accepted that a universal method which can be used without modification in all
situations is not feasible [1-6]. Rather, appropriate methods for problem solving must
be chosen, adapted, or designed depending on the specific characteristics of a
situation, such as qualification, number of employees, or available time. In the
method engineering community, terms like domain specific method engineering [7,
8] or situational method engineering [9-11] have been used to voice this special
circumstance.

To design a method that meets the specific needs of a situation is very time
consuming and costly. Hence, it is not efficient to build situation specific methods
from scratch. Rather, it makes sense to reuse existing knowledge to reduce the cost
of construction and evaluation. For this purpose reuse approaches such as
components, reference models, or patterns have evolved. These approaches have
been successfully applied in diverse contexts. The underlying principles of these

Please use the foilowingformat when citing this chapter:

Becker, J.• Janiesch, c., Pfeiffer, D., 2007, in IFIP International Federation for Information Processing, Volume 244,

Situational Method Engineering: Fundamentals and Experiences, eds. Ralyte, 1., Brinkkemper, S., Henderson-Sellers B.,

(Boston Springer), pp. 79-93.

80 Jorg Becker, Christian Janiesch, Daniel Pfeiffer

approaches are so called reuse mechanisms. The aim of this paper is to explicate
these mechanisms from a method engineering perspective and to propose directions
for the improvement of existing and the design of new adaptable methods .

Accordingly, the paper is structured as follows: Following this motivation, a
classification of reuse and adaptation approaches and their mechanisms is introduced
to provide the basis for the analysis. In Section 3, approaches of situational method
engineering are reviewed concerning their exploitation of reuse mechanisms. Section
4 includes a discussion of the literature review as well as a classification of the
mechanisms. It concludes the analysis with an outlook and proposal for possible
future directions of research on situational method adaptation. The paper closes with
a short summary of the main results.

2 Reuse Approaches and Mechanisms

2.1 Reuse approaches

Reuse means to apply the experiences of a former projects to solve an actual problem
[12]. This implies that an existing knowledge base is utilized to avoid starting from
scratch. For the reuse of knowledge different approaches have been developed that
can be found in a similar form in software engineering, conceptual modeling, or
method engineering:

Patterns (P): A pattern defines a template to solve a commonly occurring
problem [13]. It contains a problem description and the abstract structure of a
possible solution. It is necessary to specialize the pattern and to fill the abstract
solution with additional information in order to meet the specific conditions of the
actual case. A pattern can be applied, when the issue at hand maps with the general
problem specification in the pattern . Examples are analysis patterns which contain
the knowledge on how to appropriately represent a certain fact in systems analysis or
requirements engineering [14]. Patterns are also used to guide model-based design of
software [15].

Compo nents (CO): Components are independent items that can be aggregated to
form a new artifact [16, 17]. They have been derived from recurrentl y occurring
elements or they are formulated to reach compliance with a certain standard.
Components provide a partial solution to a defined problem. Compared with patterns
they are more concrete as they can be used without modification. They act as
building blocks that can be assembled based on certain rules to achieve an intended
solution. Process building blocks are an example for model component s [18]. It can
be argued that components may also be configured or specialized before or after
aggregation. For the sake of selectiveness of mechanisms we have not included this
in the overview.

Modules (M): Modules or generic packages are abstract objects which have to be
instantiated to be of concrete use. The idea originates from the need in software
engineering to know data types before run-time [19]. By implementing a non-type
specific package, it can be reused, i.e. instantiated, for various data types. The
concept of generic packages [20] carries the idea on to offer unique data structures

Reuse Mechanisms in Situational Method Engineering 81

that can be reused for various data types. Lately, the idea to instantiate reference
models emerged [26].

Reference model (RM): A reference model is a robust yet flexible model which
comprises universal information that suits more than one situation [22]. Reference
models contain information which is relevant for a class of modeling scenarios. The
information within these models is applicable to several organizations in different
domains. Reference models can be used as-is, but commonly, they are adapted to the
specific conditions of a situation. They represent common or best practices and often
offer a normative suggestion to solve a certain problem. Compared with components,
reference models do not just provide a small part of a solution but they are more
comprehensive. Similar to patterns reference models normally also have to be
adapted to meet the specific conditions of an organization. Examples for reference
models are the Y-CIM model [23] or the Retail-H [24]. Reference models are used
by enterprise systems vendors to specify the functionality of their systems [21].

These reuse approaches are rather complementary then competing. For example a
reference model can be split up into components and later be aggregated. A reference
model can also be part of a pattern . Reference models imply a top down approach.
Components help to construct a solution bottom up. Patterns can, depending on their
granularity, address both ways. In the next section we want to analyze what basic
mechanisms are employed by the reuse approaches .

2.3 Reuse Mechanisms

All reuse approaches are based on a common set of reuse mechanisms [25, 26],
which enable their definition and application.

Analogy Construction (AC): An analogy implies the transfer of information from
one subject to another. This mechanism is very flexible as it can be drawn from any
aspect of an artifact. It is for example used by patterns (P/AC). Patterns employ this
mechanism in order to be applicable in domains they were not specifically
constructed for. The application of a pattern requires a conclusion by analogy to
establish a fit between the problem description in the pattern and the actual situation.
Also, reference models or their parts can be the basis of an analogy construction
(RMIAC), e.g. as proposed by the ebXML initiative [27]. By the annotation of
relevant parts of the reference model, its elements can be reused in different
situations.

Aggregation (A): Aggregation assembles independent parts to form a composite.
This mechanism is applied by components (COlA) (cf. e.g. [16, 28]). Interface
descriptions of model components offer information on the possibility to combine or
integrate the different components and their general compatibility [29]. One might
also argue that there are also reference models which support aggregation. These
models are not available as monolithic blocks but rather as independent elements that
can be assembled [25]. This is rather a special case which does not conform well
with our definition of a reference model as one universal model. Hence, we do not
consider aggregation a relevant mechanism for reference models.

Configuration (C): Configuration means to modify certain elements of an artifact
based on predefined rules that refer to specific project situations. Reference models

82 Jorg Becker, Christian Janiesch, DanielPfeiffer

can be designed as configurable artifacts (RMlC). They are provided with explicit
configuration points, which specify model variants regarding purpose-specific
characteristics [21, 26]. Based On the specific values assigned to configuration
parameters a reference model is projected into a company-specific model. Model
elements are removed or modified depending On the parameters. The actual
procedure of model projection can be automated based On the prior annotation of
configuration parameters to the model.

Specialization (S): Through specialization a particular artifact is derived from a
more general artifact by adopting, extending and/or partially modifying the more
general one [30]. Reference models can support specialization (RMlS). These
reference models have a higher level of abstraction than their organization-specific
counterparts. They offer only a relatively low number of model elements. Patterns
also use the specialization mechanism in order to transform the solution structure
into a concrete solution (PIS).

Instantiation (I): Instantiation selects a specific value or object from a predefined
domain with multiple possible occurrences. Instantiation can be applied on modules
(Mil). In order to prepare them for this mechanism they must be annotated with
placeholders [19, 20]. The placeholders are added during the construction of the
module . When a specific module is created, the placeholders are filled with valid
occurrences with respect to the particular circumstances. Depending on the
properties of the domain, numeric or alphanumeric attributes , distinct elements, or
even composed clusters can be defined as placeholders.

Table 1 maps the different reuse mechanisms to their corresponding reuse
approaches.

Table 1. Mapping of Identified Mechanisms to Approaches

Mechanism I Approach
Analogy Construction
Aggregation
Configuration
Specialization
Instantiation

Pattern
P/AC

PIS

Component

COlA

Module

Mil

Reference Model
RM /AC

RM/C
RM/S

3 Utilization of Reuse Mechanisms in (Situational) Method
Engineering

Since the establishment of the method engineering as an own research field within
the IS discipline in the 1990's many suggestions for the design of methods and the
combination of their components have been published. In this section the current
state-of-the-art of (situational) method engineering research is examined and
compared.

In IS literature a method is not considered as a single monolithic block but rather
consisting of a set of fragments [e.g. 11, 31, 32, 33], also called chunks [e.g. 34] or
components [e.g. 35, 36]. These fragments can have a very different granularity and

Reuse Mechanisms in Situational Method Engineering 83

they can describe the product (what is created) as well as the process aspect (how is
it created) of a method. The fragments can comprise a single activity or construct but
they can also contain a complete me tho d. Hence, a method engineering proj ect can

start with a set of atomic method fragments which must be assembled as well as an
existing method which has to be modified [37]. Method engineering research has
mainly focused on the first strategy so far [38]. Contrary to that, reuse mechanisms
primarily focus on an existing artifact and only additionally consider its design by
the aggregation of predefined components. Both strategies are viable approaches to
(situational) method engineering as the corresponding mechanisms can be widely
found in the method engineering literature as the following review shows (cf. Tabl e
2).

Table 2. Overview of Reuse Mechanisms in Method Engineering Approaches

No. Reference Reuse Denotation of the Objects of the Reuse
Mechanism Reuse Mechanism Mechanism

Baskerville and Aggregation Accommodation Method Fragments
Stage [39]

Specialization Accommodation Method Fragments
2 Bajec et al. [38] Configuration Process Configuration Base Method,

Configuration Rules,
Project Characteristics

3 Becker et al. [40] Configuration Method Configuration Configurable Method
4 Brinkkemper et al. Aggregation Method Assembly Method Fragments

[10, 11,3 1]
5 Cameron [41] Aggregation Tailoring Work Product

Descriptions, Work
Breakdown Structures

6 Fitzgerald [4] Aggregation Method Tailoring Original Formalized
Methodologies

7 Greiffenberg [42] Aggregation Creation ofMeta Concepts
Model

Specialization Choice of Reference Reference Meta Models
Meta Model Scope

Analogy Creation of Meta Typing Patterns
Construction Model

8 Gupta and Prakash Aggregation Method Assembly Method Components
[16]

9 Henninger [43] Specialization Refinement and Software Development
Tailoring Resources

10 Karlsson et al. [36, Configuration Configuration Base Method,
44,45] Framework Configuration Package,

Configuration Template
I I Kumar and Welke Aggregation Methodology Methodology

[9] Engineering Components
12 Leppanen [46] Aggregation Method Engineering Contextual Method

Methodical Skeleton Components
13 Nuseibeh [47] Aggregation Template Reuse Viewpoint Templates

Instantiation Instantiation Viewpoint Templates

84 Jorg Becker, Christian Janiesch, Daniel Pfeiffer

No. Reference Reuse Denotation of the Objects of the Reuse
Mechanism Reuse Mechanism Mechanism
Specialization Inheritance Super Templates

14 Odell [48] Specialization Single Framework Kernel Meta Model
Modeling

15 Patel et al. [49] Aggregation Selection and Method Fragments
Assembly

Specialization Method Tailoring Method Fragments
16 Punter and Aggregation Assembly Method Fragments

Lemmen [32]
17 Ralyte et al. [30, Aggregation Assembly-based Method Chunks

34, 37, 50] strategy
Specialization Extension-based Method Chunks, Meta

strategy, Paradigm- Models
based strategy

Analogy Paradigm-based Meta Models
Construction strategy

18 Rossi et al. [51,52] Aggregation Method Construction Method Components
Specialization Method Refinement Meta Models

19 Saeki and Wenyin Aggregation Method Integration Meta Models
[33]

20 van Offenbeek and Specialization/ Fit Scenarios
Koopman [53] Analogy

Construction

Harm sen [11], Brinkemper [10] and Brinkkemper et al. [31] focu s in their
situational method eng ineering approach in part icular on the recombination of
method fragments and, thus, are using the mechanism of aggregation. The y describe
rules in the context of the aggrega tion to guide the assembl y of method fragments.
Comparable approaches were for example published by Fitzgerald et al. [4] , Gupta
and Prakash [16] , Punter and Lemm en [32] , and Saeki and Wen yin [33]. Kumar and
Welke [9] handle methodology components similarly but also stress the disassembly
of old methods prior to the assembly of new methods. Cameron [41] puts so called
work products together and chooses their temporal order to define a spec ific
development process. Baskerville and Stage [39] as well as Patel et al. [49]
emphasize the need to adapt a method after the aggregation by means of deletion,
addition and/or modification . Th is so called method accommodation is considered an
application of the specialization mechanism.

Greiffenberg [42] has published a comprehensive approach for the development
of modeling languages. Greiffenberg specifies a meta modeling language, a reference
met a model, a set of meta modeling patterns as well as a process model for method
engineering. Following Greiffenberg, the construction of a met a models is based on
concepts. For this purpose the mechanism of aggregation is used . Furthermore,
Grei ffenberg includes the mechanism of specialization for selecting from the
reference model. Analogy con struction is taken into consideration by the application
of meta modeling patterns.

Henninger et al. [43] and van Offenbeek and Koopman [53] base their
methodology on existing scenarios or available resources. They gath er contextual
factors such as risk to guide the adaptation process of a method. The procedure

Reuse Mechanisms in Situational Method Engineering 85

results ultimately in a refined method that is a specialized version of the original or
that is analog to the original. The refinement process is strongly depending on the fit
of original model to the specific problem. A configuration in terms of specific
adaptation points or parameters is not in focus.

Karlsson and Agerfalk [45], Karlsson [44], and Karlsson and Wistrand [36] are
one of the few authors in method engineering who directly address the mechanism of
configuration. Adaptations of methods are performed by the use of configuration
packages which rest upon a base method. To manage complex situations with a
number of characteristics, configuration packages are combined to configuration
templates. Based on the characteristics of a project, an acceptable configuration
template is chosen and applied on the base method. Thus, the base method is
configured according to the project needs. The configuration of the method focuses
only the procedure model. Due to this fact, the modeling language and the resulting
products are only indirectly taken into consideration. A comparable approach that
also focuses the process part of the method is suggested by Bajec et al. [38]. Becker
et al. [40] transfer the mechanisms of configurative reference modeling to the
domain of method engineering.

Leppanen [46] also makes use of method components that can be aggregated to
form situation-specific methods. He, however, focuses on forming an ontology that
assists the selection and combination, i.e. integration, of these components. He
provides comprehensive interfaces that explicate the compatibility of method
components. However, his ontology is not intended to be the basis for any further
configuration and, thus, only provides a means to perform method aggregation.

The approach of Nuseibeh [47] focuses on the multi-perspectivity of software
development with the ViewPoint Framework. Due to the abstraction of viewpoints to
viewpoint templates, this can be understood as a method engineering approach. New
methods can be designed by the combination of viewpoint templates . On the basis of
an abstract super template, specialization (inheritance) results in a more specific sub
template. By applying the instantiation mechanisms on a viewpoint template, a
viewpoint is created.

Odell [48] suggests a basic vocabulary for describing modeling languages, which
is called kernel meta model. With the aid of the kernel meta model, which is based
on the mechanism of specialization, it is possible to derive specific concepts of meta
models. For example, the concept relation from the kernel meta model can be
specialized as is super type of

Ralyte and Rolland [37] provide a generic process model for situational method
engineering. With a map notation they describe different strategies to construct a
method that meets the contingencies of a project situation. The assembly-based
strategy reuses method chunks from a repository and compiles them by applying the
aggregation mechanism [30]. The extension-based approach uses the specialization
mechanism on an existing method and employs patterns to provide novel additions to
it [34]. The paradigm-based approach takes a meta-model that belongs to a certain
theoretical framework as starting point. By analogy construction and specialization
the meta model is adapted to the specific needs. Mirbel and Ralyte [50] include the a
detailed refinement of a project specific method by each project member. They
describe the aggregation of method chunks for the development of project specific
methods. For adapting the method with respect to the necessity of every project

86 Jorg Becker, Christian Janiesch , Daniel Pfeiffer

member, they suggest the adaptation of the procedure (roadmap) of the project
specific method by the mechanism of specialization ; e.g. the user is able to choose
between a prosaic way and use case diagrams to document a requirements analysis
depending on his expertise.

Tolvanen [51] and Rossi et al. [52] are highlighting the iterative, incremental
aspects of method engineering. They assume that due to the inadequate
acknowledgement of the application domain at the beginning of the method
engineering project, only a part of the language specification is possible. Thus, an
iterative process for evaluation and refinement of the method is necessary to reach an
adequate description level for the method. This includes adaptation (specialization)
and addition of missed constructs (aggregation). Becker et al. [54] also argue that the
feedback of situational adaptations has to be considered in the evolutionary
development of a method.

In the next section the results of this literature review are analyzed and
implications for method engineering research are derived.

4 Discussion of the Literature Review

Reuse mechanisms can be classified according to different dimensions. One
possibility of segmentation is to take the costs of preparation, i.e. the engineering of
the situational method, as the first dimension and the cost of utilization, i.e. the
reciprocal value of the degree of guidance in adaptation, as second dimension [25,
55].

The costs of preparation depend on how much effort is necessary before a certain
mechanism can be used. To be able to apply the mechanisms of configuration, rules
must be defined and the model elements must be annotated according to the rules.
This process is very time-consuming. It is necessary to define the domains of valid
values to be able to apply an instantiation of the corresponding placeholders.
Aggregation can specify constraints which restrain the possible combinations of
components but such rules are not obligatory. Specialization can exclude certain
sorts of modification and allows the general adaptation of models. An analogy
construction can always be applied and does not require any preparation.

The costs of utilization vary on how much the modeler is instructed when a
certain mechanism is employed. The guidance in the case of configu ration is high
and consequently, the costs of utilization are low. When the parameters are filIed
with values the model can be automatically configured. Interactions with the user are
only necessary to resolve possible conflicts . Instantiation specifies the domain of
possible values but gives no hints what values to choose in a certain situation. This
leads to higher efforts and thus, higher costs of utilization. The guidance of
aggregations and specialization depends on whether any restrictions have been
specified. Aggregation can be directed by interface definitions and specialization can
be supported by detailed descriptions of the required actions. Analogy construction
offers no instructions at alI on how to proceed and, hence, it results in the highest
cost of utilization. In Fig. I the different mechanisms are arranged in a portfolio .

Reuse Mechanisms in Situationa l Method Engineering 87

Cost of Utilization

Fig. 1. Cost of Preparation and Cost of Utilization of Reuse Mechanisms [25,56]

A different possibility to assess reuse mechanisms is by the complexity of the
reuse situation and the rate of repetition of the corresponding conditions. In Fig. 2
the different mechanisms are juxtaposed.

low

Repetition Rate of Reuse Situation

Fig. 2. Applicabil ity of Mechanisms Concerning the Complex ity of the Situation and the
Repetition Rate of Reuse

The complexity of the reuse situation describes how many contingency factors
influence the suitability of a solution. Configuration requires anticipating all

88 Jorg Becker, Christian Janiesch, Daniel Pfeiffer

circumstances that may affect the result. As all these factors can be mutually
dependent , the number of necessary configuration rules increases strongly with the
complexity of the potential reuse situations. Therefore, configuration is only
applicable in situations with a fair degree of complexity. Instantiation makes it
necessary to define an instantiation domain. Therefore , knowledge about the relevant
aspects that influences the corresponding instantiation values is needed. However,
this knowledge is only available in medium complex potential situations .
Aggregation and specialization can also be used in situations with a higher
complexity as they provide flexible means to adapt the solution to the specific needs
of a situation. Aggregation takes predefined artifacts to assemble a solution; with
specialization an existing solution is modified with loose guidance. Analogy
construction provides the highest degree of freedom to shape the result and can,
therefore , also meet the requirements of highly complex situations.

The repetition rate measures whether the specific conditions of a reuse situation
are unique or rather regularly reoccurring . Configuration is based on rules that fit to
a number of predefined situations . The efforts to construct these configurations rules
only payoff when the repetition rate of the situation is high and, thus, the rules can
be applied in more than one situation . Instant iation also leads to relatively high cost
of preparation but is less strongly coupled with a set of specific situations.
Aggregation and specialization can be used in a much wider variety of situations .
Hence, both of them do not depend on a high repetition rate of each single reuse
situation. As analogy construction does not induce high costs of preparation but can
help to construct a solution that meets the specific needs of a project, it can also be
applied when the reuse situation is unique . On the downside, its repeatability is very
low so that it cannot be ensured that results can be reproduced.

Table 3 gives an overview about the utilization of the reuse mechanisms in
situational method engineering literature . Every approach analyzed employs one or
more mechanisms . Thus, the sum of mechan ism utilization does not add up with the
sum of the reviewed method engineering approaches above.

Table 3. Utilization of Reuse Mechanisms in Method Engineering

Reuse Mechanism
Analogy Construction
Aggregation
Configuration
Specialization
Instantiation

Number of Utilizations
3 /20

14 / 20
3 / 20
9 /20
1/ 20

Percentage
15 %
70 %
15 %
45 %

5 %

The analysis shows that especially aggregation and specialization are included in
many approaches . Often both approaches appear in conjunction (6 out of 20, i.e.
30 %). Analogy construction is related to specialization as a specialization with a
very high degree of freedom can lead to similar results as an analogy construction
[26]. Furthermore , analogy construction is rarely employed ; often it is only used in
combination with specialization [37, 42,53].

It can also be deducted that the configuration and instantiation of methods has
not been sufficiently addressed yet. While instantiat ion was used in only one

Reuse Mechanisms in Situational Method Engineering 89

approach in conjunction with two others, configuration only appeared thrice.
Furthermore, when configuration was used, it was always the only mechanism
employed in the approach.

Hence, so far method engineers have focused mainly on mechanisms with low
costs of preparation but rather high costs of utilization (cf. gray box in Fig. I). This
means that the costs of designing method engineering approaches are comparably
low, but only little guidance is given on how to construct a situation specific method.
Consequently, method engineering research has mainly focused on complex and
singular situations where extensive preparations are not feasible (cf. gray box in Fig.
2). Hence, future method engineering research should also look at less complex but
repetitive situations. With domain specific methods [52, 57] the first results from this
research stream can be observed.

Ultimately, however, the goal has to be to engineer well-balanced methods,
which utilize the most applicable reuse mechanisms for their intended reuse scenario.
Since there are as many scenarios, i.e. situations, as there are possible ways to adapt
a method no universal answer can be derived from this analysis. However, it is to
assume that certain general assumptions hold true:

• If a (part of the) method is used and adapted more often than others and this
adaptation can be explicated beforehand, it should be a configurable method.

• If a (part of the) method's general path of adaptation can be foreseen but is
not as clearly laid out as with configuration, it should be a method that can
be adapted by instantiation .

• If a (part of the) method is very extensive and used in heterogeneous
environments so that only a small amount of the originally intended method
is used, but this part is used as is, it should be a component-based method.

• If a (part of the) method is used and adapted in a diverse way and only
limited adaptations have to take place to create variants, specialization
should be used.

• If a (part of the) method is used only seldom and adapted in a very diverse
way, the method should be adapted by analogy construction.

Naturally, a method engineering approach can combine multiple of these
mechanisms to form an adaptable situational method. For example, a situational
method can be aggregated from adaptable components . Some of the components can
be configurable , some might only be instantiable or specializable. Some might not
even exist and have to be engineered by analogy construction on demand.

Preliminary quantitative analysis hints at the fact that making only a limited but
integral part of a method configurable or instantiable, eases the adaptation of the
overall method considerably. Cf. for evidence concerning model component
configuration of business documents [58]. In this case it was observed that certain
central components of a method have been used more often than others. Making only
them configurable already allows the method engineering to reduce the adaptation
effort of the overall method considerably without reengineering the whole method.
This observation goes along with the Pareto principle observed in other areas.

90 Jorg Becker, Christian Janiesch, Daniel Pfeiffer

5 Conclusion

It has been widely acknowledged that methods have to be adapted to the context of
their application in order to maximize their impact. Situational method engineering is
considered to be a reasonable approach to support this adaptation process to reuse
existing knowledge.

As preliminary analysis has shown that there are at least three commonly
accepted approaches to knowledge reuse that are relevant to method engineering:
patterns, component s, and reference models. Each of these approaches uses one or
more of five distinct reuse mechanisms which facilitate employing existing
knowledge to a new situation. A subsequent literature review revealed that only two
of these mechanisms are used frequently within situational method engineering :
aggregation and specialization. The other three, configuration, analogy construct ion,
and instantiation , all have a specific purpose in method engineering. Their
application, however, involves different costs in preparation and utilization
compared with the other two mechanisms.

The results at hand, therefore, suggest that a mechanism mix should be used when
engineering methods that are to be situationally adapted. Central method parts, e.g.
aggregateable components, which are used often, should be configurable or at least
instantiable, parts of lesser detail and specificity should be specializable or available
to analogy construction . It should be avoided to solve all adaptation problems with
lesser structured mechanisms as reproducibility and lack of guidance cannot be
qualitatively compens ated by the cost savings in the preparation of a method .

This entails for method engineers to rethink their method proposals and to
consider the herein described mechanisms to enrich and refine their methods with
configuration, instantiation, aggregation, specialization, and if necessary analogy
construction. It is by no means prescriptive to use more than one of the mechanisms .
However, situations may be very diverse - why should not method adaptation be
diverse as well?

Future research on this topic will have to deal with an analysis of the actual
utilization of the mechanisms of situational methods in case studies. This analysis
may point out which mechanisms are considered to be more efficacious than others
by method users and can give hints on fruitful future research directions.
Furthermore, it will allow validating the five general assumptions we explicated in
the previous section.

References

I. F.P. Brooks, Essence and Accidents of Software Engineering, IEEE Computer 20(4), 10-19
(1987).

2. M. Lindvall and I. Rus, Process Diversity in Software Development, IEEE Sof tware 17(4),
14-18 (2000).

3. K. Kautz, The Enactment of Methodology: The Case of Developing a Multimedia
Information System, in: Proc. 25th International Conference on Information Systems (ICIS
2004) (Washington, D.C., 2004), pp. 671-683.

Reuse Mechanisms in Situational Method Engineering 91

4. B. Fitzgerald, N.L. Russo, and T. OKane, Software Development: Method Tailoring at
Motorola, Communications ofthe ACM 46(4),65-70 (2003).

5. K. Wistrand and F. Karlsson, Method Components - Rationale Revealed, in: Proc. 16th
International Conference on Advanced Information Systems Engineering (CAiSE 2004)
(Riga, 2004), pp. 189-201.

6. A.H.M. ter Hofstede and T.F. Verhoef, On the Feasibility of Situational Method
Engineering, Information Systems 22(6/7), 401-422 (1997).

7. S. Kelly, M. Rossi, and J.-P. Tolvanen, What is Needed in a MetaCASE Environment?,
Enterprise Modelling and Information Systems Arch itectures 1(1), 25-35 (2005).

8. J. Luoma, S. Kelly, and J.-P. Tolvanen, Defining Domain-Specific Modeling Languages
Collected Experiences, in: Proc. 4th Object-Oriented Programming Systems, Languages,
and Applications Workshop on Domain-Specific Modeling (OOPSLA 2004) (Vancouver,
2004).

9. K. Kumar and R.J. Welke, Methodology Engineering: A Proposal for Situation-specific
Methodology Construction, in: Challenges and Strategies for Research in Systems
Development, edited by W. W. Cottermann and J. A. Senn (John Wiley & Sons Ltd.,
Chichester, 1992), pp. 257-269.

10. S. Brinkkemper, Method Engineering - Engineering of Information Systems Development
Methods and Tools, Information and Software Technology 38(4), 275-280 (1996).

II . A.F. Harmsen, Situational Method Engineering (Twente, Utrecht, 1997).
12. K. Wimmer and N. Wimmer, Conceptual modeling based on ontological principles,

Knowledge Acquisition 4(4), 387-406 (1992).
13. C. Alexander, A Pattern Language: Towns. Buildings. Constructions (Oxford Univ. Press,

New York, 1977).
14. M. Fowler, Analysis Patterns: Reusable Object Models (Addison-Wesley, Menlo Park,

1996).
15. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns : Elements ofReusable

Object-Oriented Software (Addison-Wesley, Reading, 2005).
16.D. Gupta and N. Prakash, Engineering Methods from Method Requirements Specifications,

Requirements Engineering 6(3),135-160 (2001).
17. C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond Object-Oriented

Programming (Addison-Wesley, London, 2003).
18. J. Becker, L. Algermissen, T. Falk, D. Pfeiffer, and P. Fuchs, Model Based Identification

and Measurement of Reorganization Potential in Public Administrations - the PICTURE
Approach, in: Proc. 10th Pacific Asia Conference on Information Systems (PACIS) (Kuala
Lumpur, 2006), pp. 860-875.

19. P. Slater, Output from generic packages, ACM SIGAda Ada Letters XV(3), 76-79 (1995).
20. T.C. Jones, Reusability in Programming: A Survey of the State of the Art, IEEE

Transactions on Software Engin eering 10(5), 488-493 (1984).
21. M. Rosemann and W.M.P. van der Aalst, A Configurable Reference Modelling Language,

Information Systems 32(1), 1-23 (2007).
22. J. Becker, M. Kugeler, and M. Rosemann, Process Managem ent: A Guidefor the Design

ofBusiness Processes (Springer, Berlin, 2007).
23. A.-W. Scheer, Business Process Engineering : Reference Models fo r Industrial Enterpris es

(Springer, Berlin et al., 2002).
24. J. Becker and R. Schutte, Handelsinformationssysteme (Redline Wirtschaft, Frankfurt am

Main, 2004).
25. J. vom Brocke, Design Principles for Reference Modelling - Reusing Information Models

by Means of Aggregation, Specialisation, Instantiation, and Analogy, in: Reference
Modeling for Business Systems Analysis, edited by P. Fettke and P. Loos (Idea Group
Publishing, Hershey, 2007), pp. 47-75.

92 Jorg Becker, Christian Janiesch, Daniel Pfeiffer

26. J. Becker, P. Delfmann, and R. Knackstedt, Adaptive Reference Modeling: Integrating
Configurative and Generic Adaptat ion Techniques for Information Models, in: Proc .
Reference Modeling Conference (RefMod) (Passau, 2006).

27. C. Crawford: Core Components Technical Specification - Part 8 of the ebXML
Framework. Version 2.01. UNICEFACT (2003)

28. S. Brinkkemper, M. Saeki, and F. Harmsen, Meta-modelling Based Assembly Techniques
for Situational Method Eng ineering , Information Systems 24(3) , 209-228 (1999).

29. M. Leppanen, Contextual Method Integration, in: Adv ances in Information System
Development, edited by G. Knapp, G. Wojtkowski, J. Zupancic, and S. Wrycza (Springer,
2007) .

30. 1. Ralyte and C. Rolland, An Assembly Process Model for Method Engineering, in: Proc .
13th Intern ational Conference on Advanced Information Systems Engineering (CAiSE
2001) . Lecture Notes in Computer Science. Vol 2068 (Interlaken, 2001), pp . 267 -283 .

3 I. S. Brinkkemper, M. Saeki , and F. Harmsen, Assembly Techniques for Method
Engineering, in: Proc . 10th International Conference on Advanced Information Systems
Engineering (CAiSE 1998) . Lecture Notes in Computer Science (Pisa, 1998), pp. 381-400.

32. T. Punter and K. Lemmen, The MEMA-model: towards a new approach for Method
Engineering, Information and Softwar e Technology 38(4),295-300 (1996).

33. M. Saeki and K. Wenyin, Specifying Software Specification & Design Methods, in: Proc .
6th International Conference on Advan ced Information Systems Engineering (CAiSE
1994) (Utrecht, 1994) .

34. J. Ralyte and C. Rolland, An Approach for Method Reengineering, in: Proc . 20th
International Conference on Conceptual Modeling (ER 2001) (Yokohama, 2001), pp. 471
484 .

35. X. Song , Systematic Integration of Design Methods, IEEE Software 14(2) , 107-117
(1997).

36. F. Karl sson and K. Wistrand, Combining Method Engineering with Activity Theory:
Theoretical Grounding of the Method Component Concept, European Journal of
Information Systems 15(1), 82-90 (2006).

37. J. Ralyte , R. Deneckere, and C. Rolland, Towards a Generic Model for Situational Method
Engineering, in: Proc. 15th International Conference on Advanced Information Systems
Engineering (CAiSE 2003) (Klagenfurt, 2003), pp . 95-110.

38. M. Bajec , D. Vavpotic, and M. Krisper, Practice-driven Approach for Creating Project
specific Software Development Methods, Information and Software Technology 49(4),
345-365 (2007).

39. R. Baskerville and J. Stage, Accommodating Emergent Work Prac tices : Ethnographic
Choice of Method Fragements, in: Proc. IFIP TC8 /WG8 .2 Working Conference on
Realigning Rese arch and Practice in IS Development: The Social and Organisational
Perspective (Boise, ID, 200 I) , pp . 12-28.

40 . J. Becker, R. Knackstedt, D. Pfeiffer, and C. Janiesch, Configurative Method Engineering:
On the Appl icability of Reference Modeling Mechanisms in Method Engineering, in: Proc .
13th Americas Conference on Information Systems (AMCIS 2007) (Keystone, CO, 2007).

41 . J. Cameron, Configurable Development Processes, Communications ofthe ACM 45(3), 72
77 (2002).

42. S. Greiffenberg, Methodenentwicklung in Wirtschaft und Verwaltung (Verlag Dr. Kovac ,
Hamburg, 2003).

43 . S. Henninger, A. Ivaturi , K. Nuli , and A. Thirunavukkaras, Supporting Adaptable
Methodologies to Meet Evolving Project Needs, in: Proc . Joint Conference on XP Uni verse
and Agile Universe (Chicago, IL, 2002), pp. 33-44.

44. F. Karlsson: Method Configuration: Method and Computerized Tool Support. Linkoping
(2005)

Reuse Mechanisms in Situational Method Engineering 93

45. F. Karlsson and P.J. Agerfalk, Method Configuration: Adapting to Situational
Characteristics While Creating Reusable Assets, Information and Software Technology
46(9),619-633 (2004).

46. M. Leppanen: An Ontological Framework and a Methodical Skeleton for Method
Engineering : A Contextual Approach . Jyvaskyla (2005)

47. B.A. Nuseibeh: A Multi-Perspective Framework for Method Integration. London (I 994)
48. J. Odell, Meta-modelling, in: Proc. 00PSLA'95 Workshop on Metamodelling in 00

(Austin, TX, 1995).
49. C. Patel, S. de Cesare, N. Iacovelli, and A. Merico, A Framework for Method Tailoring: A

Case Study, in: Proc. 2nd OOPSLA Workshop on Method Engineering for Object-Oriented
and Component-Based Development (Vancouver, 2004).

50. I. Mirbel and J. Ralyte, Situational Method Engineering: Combining Assembly-based and
Roadmap-driven Approaches, Requirements Engineering 11(1),58-78 (2006).

51. J.-P. Tolvanen : Incremental Method Engineering with Modeling Tools: Theoretical
Principles and Empirical Evidence . Jyviiskylii (1998)

52. M. Rossi, B. Ramesh, K. Lyytinen, and J.-P. Tolvanen, Managing Evolutionary Method
Engineering by Method Rationale, Journal ofthe Association fo r Information Systems 5(9),
356-391 (2004) .

53. M.A.G. van Offenbeek and P.L. Koopman , Scenarios for System Development: Matching
Context and Strategy, Behaviour & Information Technology 15(4), 250-265 (1996).

54. J. Becker, C. Janiesch, S. Seidel, and C. Brelage, A Framework for Situational and
Evolutionary Language Adaptation in Information Systems Development , in: Advances in
Information System Development, edited by G. Knapp, G. Wojtkowski, J. Zupancic, and S.
Wrycza (Springer, 2007).

55. A. Mili, S.F. Chmiel, R. Gottumukkala, and L. Zhang, An Integrated Cost Model for
Software Reuse, in: Proc. 22nd International Conference on Software Engineering
(Limerick, Ireland, 2000), pp. 157-166.

56. J. Becker, C. Janiesch, and D. Pfeiffer, Towards more Reuse in Conceptual Modeling: A
Combined Approach using Contexts, in: Proc. 19th International Conference on Advanced
Information Systems Engineering (CAiSE 2007) Forum (Trondheim 2007) .

57. G. Guizzard i, L.F. Pires, and MJ.v. Sinderen, On the Role of Domain Ontologies in the
Design of Domain-Specific Visual Modeling Languages, in: Proc. 17th ACM Conference
on Object-Oriented Programming, Systems, Languages and Applicat ions (OOPSLA 2002)
(Seattle, WA, 2002).

58. C. Janiesch, Implementing Views on Business Semantics: Model-based Configurat ion of
Business Documents, in: Proc. 15th European Conference on Information Systems (ECIS
2007) (St. Gallen, 2007).

Developer Driven Approach to Situational
Method Engineering

Antero Jarvi1 , Harri Hakonen2 , and Thomas Makila1

1 Department of Information Technology, University of Turku, Finland
2 Aginit Oy, Turku, Finland

antero.jarvi@utu.fi

This position paper reflects SME into software development. We argue that to
apply SME in software development projects, construction of method fragments
should also take place during the project by the method users. The topic is cur
rent due to two key technologies, EPF and SPEM, that enable illustrative and
prompt method construction. The paper looks at the relevant background in
both SME and software development processes, identifies four levels of method
management work, discusses the method reuse strategy, and presents an exam
ple of on-the-fly method construction.

1 Introduction

Our background is on software engineering and on pragmatic research with
the companies. Currently, we focus on process modeling technologies and their
utilization in, for example, reducing the process/project gap. To retain the ap
plicability of the results we work with the processes and process frameworks
that are in real use. It has turned out that our work is closely related to Situa
tional Method Engineering (SME) in the Information Systems field, and we see
direct applicability of the SME concepts in the software development projects.
In what follows, we use 'process' and 'method' as synonyms.

The topic of this paper has become significant due to recent technolog
ical advances that have improved our ability to create, organize, reuse, and
manage methods. Two key technologies are The Software Process Engineering
Metamodel (SPEM) and The Eclipse Process Framework (EPF). SPEM is a
standard for defining processes and process components and it is fostered by
Object Management Group (O:\1G). Currently, version 2.0 is at the final stage
of standarization [1]. EPF is an open source project that provides tools and con
tent for software process engineering [2]. The EPF Composer supports for all
essential SPEM modeling mechanisms although it is not fully SPEM compliant.

Situational Method Engineering (SME) focuses on providing techniques and
tools for creating and using project specific methods, instead of having a single
generic method. The fundamental goal is to achieve flexibility, as opposed to
rigid methods, without sacrificing control over the development project. There
are several approaches for pursuing this goal that are reviewed and summarized

Please use the following format when citing this chapter:

Jarvi. A., Hakonen, H., Makila, T., 2007, in IFIP International Federation for Information Processing, Volume 244,

Situational Method Engineering: Fundamentals and Experiences, eds. Ralyte, 1., Brinkkernper, S., Henderson-Sellers B.,

(Boston Springer), pp. 94-99.

Developer Driven Approach to Situational Method Engineering 95

in [3]. The maj ority of SME methods approach t he goal by creating situational
method fragments t hat are selected according to project 's sit uation and then
assembled into a project specific method. Another st rategy is to st ar t with a
full method framework comprising of myriad of method contents capable of
support ing a wide range of project situat ions. A workable method is obtained
by configur ing t he framework wit h the cha racterist ics of a par t icular project ,
or common characteristics of severa l projects. T his approach is widely used
in software development industry; a well known example of such commer cial
method frameworks is Rational Unified P rocess (RUP) [4].

Distinctive work in flexible processes in the software engineering field in
cludes Boehm's risk-based approach for making methodology decisions t hat
integrate agile and plan-driven pract ices [5]. In Cockburn's approach, a method
is selected according to staffing size and system criticality [6]. Even t hough
t his aims at pre-selecting t he meth od , changing the selected meth od during t he
project is not uncommon . T his indicates t he difficulty of seeing t he sit uational
forces in advance and the volatility of the project sit uation.

Whil e t hese approaches have many differences, t hey all sha re a common
attribute : separation of method design from its use in te rms of time and par
t icipation roles. Methods are designed almost solely in advance by method en
gineers. Also, project specific methods are ty pically created at the beginning of
t he proj ect by a method engineer that is external to project 's staffing. Recent
approaches shift par t of t he method design into method users' responsibility.
Mirbel and Ralyt e describ e a two step method approach: The first step builds
a new method adapted for project sit uation, while t he second step allows t he
method users to configure fur th er the obtained method for t heir particular
needs [7] . However , the method users do not create new solut ions for the sit ua
t ion, but they select what exist ing method guida nce is used in the project . T his
is very different from a practice-driven approach by Ivar Jacobson et al. [8].
The approach puts a reusable practice in t he cente r of process design; teams
will mix and match pract ices t o create efficient ways of workin g. Pract ices are
used in a framework that allow, for example, to t rack how value is created and
captured in work pro ducts.

The hallm arks of recognized SME approaches - separating software pro cess
design from it s use, exte rnalizing process knowledge and st ruct ur ing t he process
modules to form a coherent syste m - form only one possible st rategy for coping
with the complexity and uncertainty of cur rent software projects [9]. We argue
t hat this strategy should be complemented with developer driven method design
also during the project execut ion in the real pro ject context.

2 Method management strategy

We identify four levels of meth od engineering. F irstly, method library manage
ment takes a facilit ating viewpoint to process use. A practi cal goal is to main
tain method conte nt modularized so that method use and reuse in t he ot her

96 Antero Jarvi, HaITi Hakon en and Tuomas Makila

three levels is expedient. T his level is the resp onsibili ty of method engineers and
higher man agement. Secondly, project specijic method design describes a method
for a par ticular project sit uation. The method imposes control onto the devel
opment, but leaves choices open where need for adaptation is ant icipate d. This
level implement s planned process flexibility. Thirdly, me thod jitting is t he re
sponsibility of the pro cess users. Based on the proj ect 's real sit uation, t he users
select method content that best fits t heir needs. The fit ting is const ra ined by
the proj ect speci fic method . Fourthly, on-the-fiy method construction responses
to unanticipated sit ua tio ns. A new method fragment is created in the project 's
process context. The constructed fragment communicates t he plan for coping
with the sit uat ion to all par t icipants, and documents it for fur ther use in pr ocess
improvement activit ies.

T he balance between these four levels of method engineering should be
treated as a strategic choice depending on the company's business and indi
vidua l project 's method needs. One of the main issues is the balanc e between
repeat ability and helping the project staff to man age t he un anticipated situ
ations. It is evident that one scheme does not fit all needs; some companies
ope rate in a highly dynamic business environment, whereas ot hers operate in
a stable business context [10]. The former will not benefit from rigid method
reposit ories. Instead , the st rategy should emphas ize facilit ation of the on-t he
fly method construction with method fragment s that reflect the teams t rue
capabilit ies and can be combined flexibly and promptly. T he proj ect sit uation,
involving both the business and engineering contexts, resolves on what levels
we should put t he emphas is.

Business contex t involves any goals that the project has in addit ion to pro
ducing t he deliverabl es. Requirement of high predictability of cost and time of
delivery, need to demonstrate quality or progress during the proj ect , and cre
at ing reusable software components highlight t he need for the project speci fic
method design . High emphas is on t ime-to-market and innovative or technically
cha llenging products require maneuver abili ty of t he teams. In this kind of sur
roundings the method is used as a facilitator of team capabilit ies in unexpected
sit ua tions . T his calls for on-the-fly method construc t ion.

Engineeri ng context involves the predict abili ty and the stability of the
method needs in a projec t. For example, a project affected by many forces
not controlled by itself has unpredict abl e method needs. An unst abl e project
has characteristics t hat cha nge over t ime, for example, growing project st aff or
decision to outsource par ts of development . The less predict abl e and stable the
project is, t he more we have to rely on on-t he-fly method const ruction.

3 Method reuse strategy

T he reusa bility of a method fragment is determined by its proj ect sit uation
coverage and the engineer ing scope it imp acts, illustrated in Fig. 1. Wide project
situation coverage implies high reuse value, whereas a fragment with narrow

Developer Driven Approach to Situational Method Engineering 97

coverage describes a solution to an unfrequent situation. The upper levels of
method management strategy should concern fragments of high reuse value.
Wide engineering scope means that the fragment affects several development
disciplines, and thus, should not be tampered with from a local point of view
without proper authorization. Fragments with narrow engineering scope are
localized and have well-defined and explicit interdependencies in the process.

Every company has a unique mixture of method needs from each of the
quadrants, and the challenge is to make the method quadrants work together.
Method fragments in the on-the-fly quadrant are solutions to local and possibly
unique situations. The challenge is how to construct methods on the fly without
impeding software development. The practice quadrant together with the dis
ciplined quadrant is the home ground of SME allowing specific method design
for wide range of process types. The challenge is the compatibility and com
posability of the method fragments so that they can form a seamless method.
The disciplined quadrant captures the backbone and dominant assumptions of
methods. The challenge is how to retain the process user's ability to modify the
method using fragments from practice quadrant [10]. The specialized methods
do not involve the reuse aspect, but are highly efficient end-to-end methods for
a specific development purpose.

practice

project situation
coverage

disciplined

code •
refactoring

RUP

•

XP
•technical

iteration•

narrow

~ I-- ~ engineering
wide scope

on-the-fly specialized

Fig. 1. Project situation coverage and engineering scope characterize the reuse strat
egy of a method fragment. 'Technical iteration' is an example of the result of on-the-fly
construction, 'code refactoring' is a highly reusable fragment having only a local im
pact, 'RUP' is an example where project dependent practices are intertwined into a
process backbone. 'XP' is specialized method for situations including on-site customer,
single development team and no architectural risks.

4 Example of the on-the-fly method construction

The following example serves two purposes: Firstly, it shows a typical on-the
fly constructed fragment, and secondly, it illustrates how effortless on-the-fly

98 Antero Jarvi, HaITiHakonen and Tuomas Makila

construction can be made. The example in Fig. 2 is taken from a real project
using an agile development process in Gaudi Software Factory [11]. The method
modification concerns using a customer requirement driven development itera
tion as a stating point for creating an iteration where the focus is on solving
the technical challenges of the product and new customer requirements are not
added. The customer driven acceptance testing is replaced with exploratory
testing that is run by the technical expert. 'Write user manual' is removed as
unnecessary and 'Refactor' is added to improve the code quality.

VVrite Test Scenarios

DesignreSSion

C>
~.-.-------'.'."

~
PublishReleaseBuild..............

I
~

P orm ACCJance Testing(.

DebugCode

C>

Fig. 2. Example of developing the method fragment 'technical iteration' in on-the-fly
construction. The starting and the resulting fragments are combined. The removed
activities are crossed out and the additions are shown as free-hand symbols. In prac
tice, the modifications are made with process modeling tools, in this case EPF 1.0.
Free-hand graphics is used here for illustrative purposes.

The example demonstrates that on-the-fly construction does not go into
details, instead it should focus on devising a plan rather than writing guidance.
When this is combined with reusing existing process fragments (e.g. 'refactor'
in the example) the construction becomes rapid. The fragment representation is
understandable, it communicates the created solution, and shows explicitly the
dependencies of the fragment so that they can be taken into account. Finally,
the created fragment would probably be useful in other projects and can be
analyzed and refined into a reusable practice.

Engineering Meta
pt c/ 07-03-03, 2007.

Developer Driven Approach to Situational Method Engineering 99

5 Conclusion

T he recent development in process standards and too ls makes on-the-fly method
and method fragment construction feasible in pract ice. This enables us to allo
cate par t of process management work to development teams: (i) The methods
can reach down to operational level development work as it is carried out in t he
project , nar rowing t he process/ project gap, and (ii) t he actual process needs in
projects can be captured by on-t he-fly construct ion and they can be communi
cated to process management to keep processes up to date.

Integrat ing on-the-fly meth od construct ion into exist ing process manage
ment pract ices is not st ra ight forwar d. We have present ed four levels of process
management st rategy, and outlined a framework for underst anding the reuse
st rategy and realization of t he fragments . However, t here are open quest ions
on, for example, st ructuring of method libraries, composa bility of method frag
ments and backbones, roles and responsibilities in process man agement , and
process imp rovement practices. On-the-fly method construction itself needs fur
t her research, in part icular t he required too l support, the modeling convent ions,
and sufficient conte nt and level of details in the const ructe d models.

References

1. Object Management Group. Software Process
model Specification, v2.0 Final Adopted Specification
ht tp:/ / www.omg.org/ cgi-bin/ doc?ptc/07-03-03.

2. Eclipse pro cess framework project homepage. ht t p: / / www.eclipse.org/ epfj. Ac
cessed on May 31 2007.

3. Ma ur i Lep pan en . Conceptua l evaluat ion of methods for enginee ring sit uationa l
ISD method s. Sof tw. Process Improve. Pract. , 11:539- 555, 2006.

4. Philippe Kruchten. The Rational Unified Process: An Introduction (Second Edi
tion) . Addison-Wesley P rofess ional, March 14 2000.

5. Ba rry Boehm and Richard Turner. Balancing Agility and Disci pline, A Guid e for
the Perpl exed. Addison-Wesley, 2003 .

6. Alistair Cockburn. Select ing a pro jects methodology. IEEE Software, pages 64- 71,
J uly/ August 2000.

7. Isab elle Mirb el and Jolita Ralyte. Situational method engineering: combin
ing assembly-based and roadmap-driven approaches . Requirem ents Engineering,
11:58- 78, 2006.

8. Ivar Jacobson , Pan-Wei Ng, and Ian Spence. Enough of processes: Let's do prac
tic es part 1. Dr.D obb's Journ al, April 2007.

9. Ivan Aaen . Software process improvement: Blueprints versus receipes. IEEE
Software, pages 86-93, Octobe r 2003 .

10. Antero Jarvi , Tuomas Makila , and Harri Hakonen . Changing role of SPI
opportunit ies and challenges of process modeling. In The Proceedings of the 13th
European Conference, EuroSPI 2006, LNCS 4257, 2006.

11. Ralph-Johan Back, Luka Milovanov, and Ivan Porres. Software developm ent and
expe rimentat ion in an academic environment: T he Gaudi fact ory. In Product
Focused Sof tware Process Imp rovem ent, LNCS 3547, 2005.

Characterizing Knowledge Intensive Tasks
indicating Cognitive Requirements;

Scenarios in Methods for Specific Tasks

S.J. Overbeek! , P. van Bommel", H.A. (Erik) Proper", and D.B.B. Rijsenbrij '

1 e-office B.V., Duwboot 20, 3991 CD Houten, The Netherlands, EU
Sietse.Overbeek©e-office.com

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

{P.vanBommel, E. Proper , D.Rijsenbrij}©cs.ru.nl

Abstract. Methods for specific tasks can among others be identified
in conceptual modeling of information systems and requirements engi
neering in software development. Such methods dictate a specific way of
working by describing necessary knowledge intensive tasks to fulfill while
applying the method. An actor may experience difficulties when trying
to fulfill tasks as part of a method application, related to the cognitive
abilities required to fulfill a certain task versus the specific cognitive
abilities possessed by the actor. This paper specifically focusses on the
cognitive abilities required to fulfill a knowledge intensive task while
applying a method for specific tasks. This is based on a categorization
and characterization of knowledge intensive tasks and on scenarios in
conceptual modeling of information systems and requirements engineer
ing.

1 Introduction

Methods for specific tasks contain a way of working, which is the strategy de
termining the manner how the method should be applied. This includes the
necessary knowledge intensive tasks to fulfill when using a method in a certain
context. When fulfilling a certain task, an actor that is applying a method may
experience difficulties during a task's fulfillment. Independent of other reasons
that may contribute to the existence of those difficulties, the research reported
in this paper is concerned with the cognitive abilities necessary to execute a
certain task while applying a method, as is shown in figure 1. As is described
by Meiran [6] and Schraagen et al. [8], research in task analysis has a cogni
tive basis in psychological research. Analyzing task fulfillment from a cognitive
viewpoint may yield knowledge underlying an actor's task performance. The
research reported in this paper is part of an ongoing research effort to better
understand cognitive settings of actors that are applying a method for specific
tasks versus the cognitive abilities required to fulfill a typical task. As part of
this ongoing research, it is also our wish to provide automated support to assist

Please use the foilowingformat when citing this chapter:

Overbeek, S. J., van Bornmel, P., Proper, H. A. (Erik), Rijsenbrij, D. B. B., 2007, in IFIP International Federation for

Information Processing, Volume 244, Situational Method Engineering: Fundamentals and Experiences, eds. Ralyte, 1.,

Brinkkemper, S., Henderson-Sellers B., (Boston Springer), pp. 100-114.

Characterizing Knowledge Intensive Tasks indicating Cognitive Requirements 101

Actor

applies fulfills possesses

Fig. 1. Cognitive abilities during task fulfillment in a method.

an actor (characterized by a certain cognitive setting) in fulfilling a certain task
(characterized by the cognitive abilities required to fulfill it). This automated
support should be able to guide an actor that is applying a method through
task fulfillment if his cognitive setting may cause difficulties in fulfilling a task.

To better understand knowledge intensive tasks and the nature of it, basic
definitions are discussed in section 2.1. Then, the distinguished tasks are clas
sified by their properties indicating an actor's requirements from a cognitive
point of view. These properties are further elaborated in sections 2.2 and 2.3
and materialized in methods for specific tasks within conceptual modeling of
information systems and requirements engineering (see sections 3 and 4). This
leads up to two scenarios in which required cognitive abilities are denoted while
fulfilling tasks in conceptual modeling and requirements engineering. Section 5
briefly compares our model with other approaches in the field and outlines
benefits of our approach compared to others. Section 6 concludes this paper.

2 Categorizing and Characterizing Knowledge Intensive
Tasks

Exploring the fundamentals of knowledge intensive tasks is necessary to gain a
better understanding of that what we would like to categorize and characterize.
The following subsections provide definitions and a cognition-based characteri
zation of knowledge intensive tasks.

2.1 Basic Definitions

As the notion knowledge intensive task suggests, knowledge is very important
and also emphatically present during an actor's fulfillment of a knowledge in
tensive task. It is relevant to mention that, according to Liang [4], knowledge
can be regarded as 'wrapped' in information, whilst information is 'carried' by
data (expressions in a symbol language). To be able to reason about those tasks
on a conceptual level, a general categorization of knowledge intensive tasks is

102 S.l Overbeek, P. van Bommel, H.A. (Erik) Proper and D.B.B. Rijsenbrij

suggested. For t his categorization a parallel with the induc tive-hypothetical re
search strategy mentioned in e.g. [9] has been made. T his research st rategy
consists of five phases, which are :

1. Ini ti ation , in which empirical knowledge of the problem domain is elicited.
2a. Abstraction , in which the elicited empir ical knowledge is applied in a de

scriptive conceptua l model.
2b. Theory formulation , in which the descrip tive conceptua l model is made

prescriptive.
3a. Implement ation , in which the prescriptive concept ual model is empirically

tested.
3b. Evaluation, a comparison of the elicited empirical knowledge (1) with t he

prescriptive empirical model (3a).

Following the research approach, possible knowledge intensive t asks t hat can
be fulfilled can be abs tracted to a pat tern of three types:

1. Acquisition tasks, which are related wit h the acquisition of knowledge.
This can be illustrated by a student reading a book in order to prepare
himself for an exam.

2. Synthesis tasks, which are related with t he actua l utili zation of t he ac
qui red knowledge. An example is a student who utilizes knowledge (acquired
by reading a book) while performing an exam.

3. Testing tasks, which are related with the identification and applicat ion of
knowledge in practi ce inducing an improvement of t he specific knowledge
app lied. E.g. a student who failed an exam studies a teacher 's feedb ack on
his exam. Then a re-examination attempt follows to improve his previously
acquired and utili zed knowledge.

The execut ion of an acquisit ion task can be compared to going t hrough an ini tia
tion phase of t he inductive-hypothetical research st rategy to acquire knowledge
and to underst and the pro blem domain well enough so that the acquired knowl
edge can be abstracted to concept ua l models as a next step. The abstraction
and theory formulation ph ases of the aforement ioned research st rategy can be
compared to t he nature of a synt hesis task, viz. applying elicited knowledge
into a descrip t ive and a prescrip tive conceptua l model. The nature of an imple
mentation phase and an evaluation ph ase is comparable to what is conducted
in a testing task, namely t o gain feedback by test ing earlier elicited and ap
plied knowledge. In t he research strategy this can be translated to testing t he
prescriptive conceptual model and further the comparison of t he elicited knowl
edge from the initi ation phase with the prescrip tive empirical model from the
implement ation phase. Now t he set of tasks can be represented as:

~.4 ~ {acquisition, synthesis , testing} (1)

A specific inst an ti ation of such a task is expressed by Task: TI ----- ~.4 , where
TI is a set of task instances which are fulfilled by an actor. Given a task inst ance
i of a t ask Task(i) , we can view the actor t hat is specifically fulfilling a task
instance as a function Fulfillment : .It? ----- TI. Here, TI is a set of task inst ances
which are fulfilled by an acto r (which is par t of a set of acto rs .It?).

Characterizing Knowledge Intensive Tasks indicating Cognitive Requirements 103

2.2 Characterization of Knowledge Intensive Tasks

T he following prop erti es are going to be discussed to charact erize knowledge
intensive tasks:

- T he property of satisfaction is related with a need for knowledge during a
task's fulfillment and the event ua l disappear an ce of that need.

- Relevance is concerned with whether or not knowledge acquired is deemed
appropriate during t he fulfillment of a task.

- T he applicability pro perty expresses to what extent knowledge is applicable
in a task.

- When knowledge is applied it shou ld meet its requirements. T his is indicated
by the correctn ess property.

- T he faultiness property is necessar y to be able to determine whether or not
applied knowledge cont ains flaws.

- To correct already applied knowledge containing flaws, t he rectification prop
erty can be determ ined.

Form ally, t he set of t ask properties ca n be represented as:

CP ~ {sat i s f ac t ion, r elevance , applicabil i t y, correctness , faul t i nes s , rect i f ication} (2)

The prop erties shown in table 1 are globa lly discussed independent from each

Table 1. Charact er izat ion of knowledge intensive tasks by their properti es

CP

TA ISatisfaction Relevance Applicability Correctness Fault iness Rect ification

Acquisit ion
Synth esis
Testi ng

x

x

x
x
x

x
x x

ot her in the following sect ions. We underst and t hat t here may be ot her prop
ert ies requiring speci fic cognit ive abilit ies when fulfilling knowledge intensive
tasks, but in this pap er we will limi t ourse lves to the mutua lly independent
propert ies mentioned above. T he function Characterization : TA ----+ p(CP) spec
ifies which properties belong to a certain task. So following from t abl e 1 an acto r
fulfilling e.g. an acquisit ion task should have t he cognit ive abilit ies t o ad here to
t he satisfa ction as well as t he relevance prop erty.

2.3 Definitions of Knowledge Intensive Task Properties

Before materi alizing t he six task properties of t abl e 1 in methods for specific
tasks, the prop erties t hems elves are elaborated in t his section.

104 S.l. Overbeek, P. van Bommel, H.A. (Er ik) Proper and D.B.B . Rij senbrij

Satisfaction T he first property that is discussed is t he prop erty of satisfaction.
A t ask has a satisfaction property, if a need for certain knowledge is present
during task fulfillment and t hat need is indulged if the required knowledge is
acquired. T he need for knowledge is influenced by what an actor already has
received in the past. T his can be modeled as a functi on :

Need : AS -+ (p(lCA) -+ lCA f-+ [0, 1]) (3)

T he set AS contains actor states. T he introduction of an actor state is necessary
to underst and how an actor's need for knowledge cha nges over t ime. T he set
KA represents t he know ledge assets an actor may receive. T hese assets are
t radeable forms of knowledge, i.e. knowledge which actors can exchange with
each ot her. This may include knowledge obtained by viewing a Web site or a
document or by conversing with a colleague. When an instructor explains a
learner how to dr ive a car for inst ance, the explanation may contain valuable
knowledge assets for t he learner. Needt(S, k) is interpreted as the residu al need
for a knowledge asset k of an actor in state t afte r t he set S has been presented
to an actor, where tE AS, k E KA and S ~ KA. T he set S can be interpreted
as t he personal knowledge of an actor (also called a knowledge profile) . When
an actor a in st at e t experiences a knowledge asset k, t hen this actor will end
up in a new st ate denoted as t ~ k:

(4)

No more knowledge is required by an actor if his need for knowledge de
teriorates after experiencing the required knowledge, which is denoted by
Needt ~ k (S , k) = O. Note t hat Needt ~ k (S , k) '= Need(t ~ k , S , k) . However , it
is not always necessary to include an actor's state for some of t he task proper
ti es discussed and can, t herefore, be omitted if des ired.

An actor's input and output of knowledge are also considered as important
concepts as part of t he task prop erti es. Input and out put of knowledge assets
can be rep resented as:

In, Out : AS -+ (..tt? -+ p(lCA)) (5)

Now that an indicator of the need for knowledge and t he notation for input
and output of knowledge have been exp lained, the satisfaction property can be
assembled:

Satisfaction : Need t (S, k) > 0 1\ k E Int (a) =;. Need t O<k (S , k) = 0 (6)

The satisfaction property includ es an actor having a need for knowledge asset
k while experiencing state t . To be ab le to adhere to the satisfact ion property,
such an actor receives knowledge asset k while in state t. When the actor is in a
succeeding state t ~ k the need for that specific knowledge asset k deteriorates
indic ating his speci fic needs have been satisfied. So if an actor st ill requi res, say,
knowledge assets k 1 and k2 to complete a task, that actor should cont inue to
gather knowledge until Need(S, kI) = 0 and Need(S, k2) = O. An acquisit ion
task as well as a testing task have t his property. Both tasks require knowledge
input , meaning that an actor is satisfied if t he requ ired knowledge has been
obtained.

Characterizing Knowledge Intensive Tasks indicating Cognitive Requirements 105

Relevance A task has a relevance proper ty if, during fulfillment of a task, t he
knowledge acquired is indeed needed by an actor. To acquire relevant knowl
edge, an actor shou ld experience a need for t he knowledge to be acquired and
an actor's knowledge profile should not alr eady contain the knowledge to be
acquired:

Relevance : k E In(a) ~ Need(S , k) > 0 /\ k if- S (7)

To make sure t hat an acto r solely acquires relevant knowledge, the relevance
property should be adhered to when executing an acquisit ion task.

Applicability A task has an applicability property if knowledge is applied dur
ing task fulfillment and t hat applied knowledge has a useful effect on successfully
complet ing t he task. To underst and to what extent knowledge is applicable for
a task, i.e, has a useful effect for complet ing the task, the following function is
necessary:

Applicable : 7T x !CA f-+ [0 , 1] (8)

If a knowledge asset k is not applicable at all for a task inst ance i the function
equals 0: Applicable(i , k) = O. If a knowledge asset k is most applicable for a
task, t he function equals 1. An actor adheres to t he applicability property only
if a certain knowledge asset k is app licable duri ng a task instan ce:

Applicability : k E Out(a) ~ Applicable(i , k) > 0 /\ k E S (9)

T he applicability pro perty is not relevant for an acquisit ion task, because
knowledge is not app lied in such a task.

Correctness A task has a correctness property when the knowledge t hat is
applied is useful for t he specific task and t he applied knowledge meets its re
quirement s. To be able to determine whether or not applied knowledge is correct
it should thus meet its requirements. The following function is t herefore intro
du ced:

Requirement ~ !CA x p(RQ) (10)

Sup pose t ha t a knowledge asset k should meet two requi rements r l and r2
which are par t of a set of requirements R: Then if knowledge k is applied and
indeed meets its requ irements this is indi cat ed by (k, {rl' r2}) E Requirement.
The correctness property can now be conceived as follows:

Correctness: App licable(i , k) > 0 /\ k E Out(a) ~ (k ,R) E Requirement /\ k E S (11)

Faultiness A f ault iness property is par t of a t ask if it is necessary to indicate
if certain knowledge that has been obtained by an actor is not meeting its
require ments:

Faultiness ; In(a) = JC /\ (k ,R) If- Requi rement /\ k E JC =} Out(a) = {k } (12)

Suppose t hat an actor a obtains a knowledge set K. If an actor a observes t hat
a knowledge asset k E K does not meets its requirements this spec ific asset is
returned as output to indicate t hat it is faul ty.

106 S.l Overbeek, P. van Bommel, H.A. (Erik) Proper and D.B.B. Rijsenbrij

Rectification A t ask has a rectification property if it is part of the task to
locate erroneously applied knowledge and then to rect ify and return that knowl
edge so that it does meet it s requirements. If an actor receives a knowledge asset
k1 and that knowledge does not meet its requirements R i.e, the knowledge is
wrongly applied, t hen t he act or broadcas t s knowledge asset k2 which does meet
the requirements instead. This improvement process by an acto r is denoted as
rectification :

Rectificat ion : In(a) = {k I}l\(k1 , R) It Requirement ee-Outfe) = {k2} I\ (k 2 , R) E Requirernent /xk j :::, k2 (13)

The not ation k1 ::S kz is verbalized as the know ledge in k1 is contained within
k2 and is modeled by the function:

::S : /CA ----> /CA (14)

In te rms of an actor's need for knowledge, t he knowledge containment relation
is defined as:

k1 ::s ka == k: ::SNeed ka == Need({k2}, kl) = 0 (15)

Here, k 1 ::SNeed k2 represents the knowledge containment relation in t he context
of t he knowledge need represented by ' Need'. In t he notation of the rectification
property we have omitted Need and denoted knowledge containment as ::S. It is
also possible that a certain knowledge asset is contained within more than one
knowledge asset. Therefore the + operator concatenates knowledge assets :

+: /CAx /CA ----> /CA (16)

The conca tenation of e.g. knowledge assets k 2 and k3 is therefore shown as
k2 + k3 . The function k1 ::S (k 2 + k3) expresses that the knowledge in k1 is
contained within k 2 and k3 .

In order to have a graphical representation of the discussed definitions , an
obj ect-role mod el (ORM) is presented in figure 2. For det ails on object-role
models, see e.g. [2] . Thus far we have focussed on a theory about knowledge
intensive t asks and their propert ies. In t he next sect ion a scenario in conceptua l
mod eling of information syste ms is introduced t o illust rate the t heory in the
context of a method for specific t asks.

3 Cognitive Requirements in Conceptual Modeling Tasks

The discussed theoretical model comes t o life when it is illust rated by a pr act ical
situation in t he pro cess of conceptua l modeling. An example of a method for
concept ua l modeling of information syst ems is obj ect-role modeling (ORM).
ORM is a fact oriented method and makes use of natural language statements
by examining them in te rms of elementary facts. ORM has a specific way of
working which makes it a suitable method to st udy t he cognit ive requirements
needed to fulfill possible knowledge int ensive tasks while applying the method.
Halpin [2] shows that t he way of working in ORM is called t he Conceptual
Schema Design Procedure (CSDP) , consist ing of seven ste ps:

1. Trans for m fa m ilia r in format ion examples in to elementary fact s , a nd a pp ly qua lit y checks .

Characterizing Knowledge Intensive Tasks indicating Cognitive Requirements 107

{'acquisition', 'synthesis', 'testing'}
Characterization

CognitiveProperties

Applicable

Fig. 2. Object-role model of knowledge intensive task properties.

2. Draw the fact types, and apply a population check.
3. Check for entity types that should be combined, and note any arithmetic derivations.
4. Add uniqueness constraints, and check clarity of fact types.
5. Add mandatory role constraints, and check for logical derivations.
6. Add value, set comparison and sub-typing constraints.
7. Add other constraints and perform final checks.

To let the theoretical model as discussed in section 2 materialize in a practical
aRM modeling situation, suppose that a certain actor a who is acting as an
ORM modeler wishes to create a conceptual model of an information system.
Therefore, the aRM modeler walks through the seven steps as mentioned above.
In this section we will focus on step one only, because the first step is already
complex enough to illustrate our theory in the aRM method.

When initiating step one, an aRM modeler fulfills several knowledge inten
sive tasks. To understand how our theory materializes in an aRM method, a
fragment of an information system's intended functionality is considered. One
function of the information system to be modeled is to provide insight in a user's
own knowledge profile. A partial screen mockup of an information system which
should eventually include such functionality is shown in figure 3. The partial
mockup shown is part of an application called DEXAR (Discovery and eXchange
of Revealed knowledge) which is also currently under development as part of
our research [7]. DEXAR is an application that assists the user in discovering
and retrieving knowledge by implementing a question and answer mechanism
with the user. The knowledge assets retrieved by the user are then stored in a
(searchable) profile as can be seen in figure 3.

Part of the modeling task is to clarify the meaning of the functionality in
tended. Conversations between a domain expert and the aRM modeler are
therefore needed to clarify the required functionality and to let the aRM mod-

108 S.l . Overbeek, P. van Bommel, H.A. (Erik) Proper and D.B.B. Rij senbrij

John Doe's (partial) knowledge profile

identification
of a patient

Q fever pneumonia

Fig. 3. Showing a (partial) knowledge profile.

...

eler interpret the example mockup correctly. Discussions with a domain expert
are part of an acquisit ion task instance acquire info rm ation examp les denoted
by iI, t hus Task(i l) = acquisition. Furthermore we can say t hat, with respect
to the par ti al DEXAR functionality, the ORM modeler responsible for acquir
ing t he inform ation examples has a need for t hose information exa mples. An
information example can be interpreted as information t ha t is presented to
the modeler , i.e. graphical information , inform ation on forms, tabularly infor
mation , etc . T he need for knowledge k concern ing an information example is
form ally expressed as Need(S , k) > 0, where S is the persona l knowledge profile
of the ORM modeler in this case. During fulfillment of task inst ance i l several
knowledge assets can be discerned which can be of import ance:

k 1 The knowled ge profi le of a user should b e di sp layed as a la t t ice .
k 2 T he user m ay browse t hroug h the la t t ice to lea rn about previously acqui re d kn owled ge and to

gain insig ht in h is own profile as a whole .
k 3 A la t ti ce s hou ld consist of index exp ressions.

When executing the acquisit ion t ask inst ance iI, t he modeler needs to satisfy
t he satisfac tion pro perty, denoted as : V'nE{l ,2,3}[Needt(5,kn) > 0 f\ k E Int (a) =>
Needt O< kn (5 , kn) = 0]. In order to acquire knowledge t hat is not irrelevant , t he
modeler should satisfy the relevance property as follows: V'nE{l ,2,3}[kn E In (a) {:}

Need(5, kn) > 0 f\ kn rf- 5] .
T he knowledge gather ed thus far is to be stated in te rms of elementary

facts as ste p one of t he ORM method dict ates. Basically, an elementary fact
asserts t hat a particular object has a prop erty, or t hat one or more objects
par ti cipate in a relationship, where that relationship cannot be expressed as
a conjunction of simp ler (or shorte r) facts. For example, to say that ORM is
a modeling language and C++ is a programming language is to assert two
elementary facts . Tas k inst an ce i l is now followed by a second t ask inst an ce
iz . Tas k inst an ce i 2 is concerne d with t he creation of elementary fact s based
on t he acquired knowledge k l , k2 and k3 thus far . So t his task instance can be
referred to as create eleme ntary f acts and can be class ified as a synt hesis task.

Characterizing Knowledge Intensive Tasks indicating Cognitive Requirements 109

T he aRM modeler applies the knowledge acquired to generate four different
elementary fact s:

k 4 User has KnowledgeProfile displayed as Lattice
ks User browses throu gh Latt ice
k 6 Lattice conta ins Knowledge
k 7 Lattice consist s of IndexExpressions

The applicability property now determines if the elementary facts are applica ble
for task inst an ce i2: 'v'nE{4,5,6,7}[Out(a) = {kn } {o} Applicable (i2, kn) > 0 /\ kn E S].
On ce applied, the correctness property determines if t he knowledge applied
meets the requirements: 'v'nE{4,5.6,7}[Applicablel iz, kn) > 0 /\ kn E Out(a) {o}

(k n , R) E Requirement x c., E S]. The set R contains t he requirements for correctly
conceiving elementary facts in aRM. Two possible requirements rl, r2 En can
be:

T l The first let t e r of object types sho uld be ca p it a lize d.
T2 Each eleme nta ry fact should assert a bi nary relations hi p b etween two ob ject types.

Knowledge asset k4 does not meet requirement r2, however , because t hree in
stead of two objects are part of k4 . In this case the correctness property fails:
(k4 , {r2}) if. Requirement and the modeler should first alter elementary fact k4.

When alte ring k4 , t he modeler fulfills a testing task inst an ce i3 denoted as
correct errors in elem entary facts. A testing t ask has four properties as can be
viewed in table 1. T he improvement process or 'quality checks' t hat are part of
task inst ance i3 should sa tis fy t he four propert ies. The faultiness property of
task inst ance i3 st ipulates t hat asset k4 does not meet requirement r2: In(a) =
K /\ (k4, {r 2}) if. Requirement /\ k4 E K '* Out(a) = {k4} . Now when fulfilling task
inst ance i z , t he modeler des ires at least one or perhap s more knowledge assets
t hat do meet requirement r2. To be able to meet the requirement , the modeler ,
curre nt ly in a state t , has a desire to split up knowledge asset k4 int o two new
knowledge assets: k4 , and k4" . These assets should be part of t he modeler 's
pro file S at state t t>< k4, t>< k4" . T herefore t he satisfactio n property is par t of
the t ask: 'v'nE{4' ,4"}[Needt (S, kn) > 0 /\ kn E Int (a) '* Needt t>< kn(S ,kn) = 0]. W hen
the newly produced knowledge assets are applied dur ing the task, they should
be relevant enough to reach the task's goa l. T he applicability property is t hus
also par t of t he task: 'v'n E{4'.4,,} [kn E Out(a) {o} Applicable (i3, kn) > 0 /\ k; E S].
Finally, t he rectification prop erty determines if requirement r2 has been met by
replacing k4 with asset s k4, and k4,,: In(a) = {k4} /\ (k4,{r2}) if. Requirement '*
Out (a) = {k4"k4,,} /\(k4,,{rd) E Requirement /\ (k4" ,{r 2}) E Requirement /\ k4 ::S
(k4 , +k4 ,,) . Remember from section 2.3 that the knowledge containment relation
can be determined by the ::S sym bol and that concatenate d knowledge assets are
repr esented by t he + symbol. In t he prop er ty above, t he following knowledge
containment relat ion is depicted: k« ::S (k4 , + k4 ,,) . T his can be verbalized as:
the knowl edge in k4 is contain ed within the concatenation of k4 , and k4" . T he
result ing facts are t hen displayed as follows after t he com plet ion of testing task
instan ce i3 :

k4 , User has KnowledgeProfile
k 4 " KnowledgeP rofile is displayed as Latt ice
ks User browses thr ough Lattice

110 S.J. Overbeek, P. van Bommel, H.A. (Erik) Proper and D.B.B. Rijsenbrij

k 6 Lattice conta ins Knowledge
k 7 Lattice consists of IndexExpressions

T he following section shows how t he defined task properti es can be sit ua te d
in a requirements engineering scenario by focussing on the way of working of
COLOR-X , which is an example of a requirements engineering method .

4 Cognitive R equirement s in Requirements E ngi neering
Tasks

In the previous sect ion a scenario in conceptua l modeling of information sys
te ms has been presented in which our theory came alive. We will now elaborate
a scena rio in t he area of requirements engineering. Requirements engineering is
an indication for t he first phase of a software development process, in which the
main objective is to correctly underst and t he needs of the syste m's customers or
users: What is the system supposed to do. The pro cess of underst anding these
needs or requirements, i.e, requirements engineering, can be defined as the sys
te mat ic pro cess of developing requirements through an iterative cooperat ive
process of ana lyzing the problem , documenting the resulting observations in a
variety of repr esentation formats, and checking the accuracy of the und erst and
ing gained [5]. The Ph.D. t hesis of Burg [1] illustrates t he COLOR-X method for
requi rements engineering . T he COLOR-X way of working covers requirements
specificat ion, verification and valid ati on phases. In this section we will limit our
selves to how the knowledge int ensive tasks of section 2.1 can be fulfilled in a
requirements specification phase indicating the cognit ive requirements for fulfill
ing t hose t asks. The process of requirements specificat ion consists of mapping
real-world phenomena as described in t he requirements document onto basic
concepts of a specificat ion language, i.e. describing a certain problem in an as
precise, concise, und erst andable and correc t as possible manner . The COLOR
X method divides the requirements specificat ion stage in two par ts: a natural
language approach and a scenario based approach. In t his sect ion we will limit
ourse lves to the natural language approach, which equals most how the ORM
method specifies a conceptua l model. The COLOR-X natural language approach
for specifying requirement s consists of four steps:

1. Se lect t he wo rd s a nd se ntences fro m the requir ement s d o cu m en t t hat a re re levant fo r t h e
C OLO R-X m ode ls .

2. Break up complex se ntences a n d / o r co m b ine se ve ra l red undant o r overla p pi ng sentences in t o
unders t anda bl e ones (i .e . s t ruct u re d se ntences) .

3 . Annotate add it ion a l syntact ic a nd sem a n t ic in format io n, retriev ed from t he lexi con, t o t h e
words se lected from the req u irement s d o cumen t .

4. Transform t h e s t r uc t u re d se nt e nces in t o formal s pecificatio ns.

In this section, a possible acquisit ion t ask as part of step one is dis
cussed. Furthermore a synt hesis task and a testing t ask as part of step two
are dealt with. Suppose that actor a is a requirem ents modeler and wishes
to go through the requirements specificat ion ph ase and therefore applies the
COLOR-X method . Assume that t he following snippet is part of the require
ments docum ent of the DEXAR applica t ion:

Characterizing Knowledge Intensive Tasks indicating Cognitive Requirements 111

A partial knowledge profile should be represented by a lattice also
referred to as a power index expression . Such a lattice should be
constructed by using index expressions. A power i ndex expression
contains all index expressions, including the empty index expression
and the most meaningful index expression . An example of an index
express ion is ' (i dent i f i cat i on of a patient) with (Q fever
pneumonia)' . Simply put , (power)index expressions are used by DEXAR
as a representation for a knowledge profile.

While walking t hrough t he first step as mentioned above, the requirements mod
eler selects t he words and sentences from the requir ements document snip pet.
T his is part of an acqu isitio n task instance acquire words and sentences denoted
by it, t hus Task(i l) = acquisition. T he requirements modeler has a need for
t hose words and sentences. T he acquired words and sentences i.e. knowledge
assets can be depict ed as follows:

k1 A partia l kn owled ge profile is rep resented by a lat t ice.
k2 A lattice equals a power index expres sion.
k 3 A power index expression contains a ll index ex pr essions.
k« A power in dex expression incl ud es the empty index ex pression and t he most meani ngfu l index

expression .

When executing the acquisi ti on t ask instance above, t he requirement s modeler
needs to satisfy t he satisfaction property, denoted as: 'v'nE{1 .2 ,3 ,4} [Needt(S , kn) >
Ol\k E Int (a) =} Needt >< kn(S , kn) = 0]. In order to acqu ire knowledge t hat is
not irre levant, t he modeler shou ld satisfy the relevance property as follows:
'v'n E{1,2,3 ,4 } [kn E In(a) '¢=> Need (S , kn) > 0 1\kn I/. S] .

Step one can be seen as an intensive knowledge acquirement step, i.e, t he
requirements document is sifted for relevant words and sentences . It is not until
step two of t he requirement s specificatio n process as prescribed by COLOR
X that a synthesis task can be identified. Tas k instance i 1 is now followed
by a t ask inst an ce i 2 • Tas k instance i 2 can be referre d t o as create struc
tured sen tences an d is part of ste p two. Table 2 represents t he knowledge
assets following from t ask i 2 . Knowledge assets ks up t o and including kg

Table 2 . The created structured sentences

Subject IPredicat e I Direct object

ks A lattice represents a knowledge profile
k6 A lattice equals a power index expression
k7 A power index expression contains all index expressions
kg A power index expression includes the empty index expression
kg A power index expression includes the most meaningful index expression

are mostly similar with assets k1 up to and including k4 , but t he knowledge
assets of table 2 include additio na l grammatical knowledge inst ead. T he ap
plicability property now determ ines if t he structured sentences are ap plicable

112 S.l Overbeek,P. van Bommel, H.A. (Erik)Properand D.B.B. Rijsenbrij

for t ask i z: 'v'nE{S,6,7,S,9} [Out(a) = {kn } <=? Applicable(i2,kn) > 0 1\ k n E 5]. Once
applied, the correctness property determines if the st ruct ured sentences meet
the requirem ents: 'v'nE{S,6,7,s,9d Applicable(i2, kn) > 0 1\ kn E Out(a) <=? (kn , R) E

Requirement 1\ k« E 5] . The set R contains the requirements for correctly con
ceiving structured sentences in COLOR-X. Two possible requirements rl , r2 E R
can be:

T l An notate a m a in sentence st r ucture , i .e , the subject, pre dicate and d irect object.
T2 An notate special gram matical eleme nts , i.e. t he adject ives , ad ve rbs a nd nominal predica tes .

Knowl edge asset s k5 up to and including kg do not meet requirement r2 , how
ever , because no special grammat ical element s are shown in t ab le 2. In this
case the correct ness property fails and the requirements modeler should first
add special grammat ica l elements.

When alte ring k5 up to and including kg, the requirements modeler ful
fills a t esting task inst ance i3 denoted as correc t omitted special grammatical
elements. The resulting special grammat ical elements are disp layed in table 3
after complet ing testing task instance iJ. Now the properties of t ask instance

Table 3. The created special grammatical elements

IGrammatical concept i Word Category

ks' Adjective
k6 , Nominal predicate
k7 , Adverb
ks' Adjective
k9 , Adjective

Partial Prop erty
A lattice is a power index expression Specialization
All Quantity
Empty Prop erty
Most meaningful Property

i3 should be analyzed to determine how they are satisfied . For asset k5 , the
faultiness property stipulates t ha t t he asset does not meet requirement r 2:
In(a) = K 1\ (ks, {r2}) If. Requirement 1\ ks E K =? Out(a) = {ks}. To be able to
meet the requirement, the modeler , cur rent ly in a st ate t , has a desire to create
anot her knowl edge asset k5' that includes special grammatical element s for the
sentence included in k 5 . The conca tenat ion of k5 and k5" i.e. k5+k5, should meet
both requirements rl and r2 . The concate nated asset should be part of the mod
eler 's profile S at state t ~ k5 +k5, . Therefore the satisfact ion property for k 5+k5,

results in: Need t(5, ks + ks') > 0 1\ ks + ks' E Int(a) =? Need t" ks+ks' (5, ks + ks') = o.
When t he conc atenated knowledge asset k5 + k5, is applied during the t ask, it
should be relevant enough to reach the t ask 's goal. This is expressed by the ap
plicability property: ks + ks' E Out(a) <=? Applicable(i3, ks + ks') > 0 1\ ks + ks' E 5 .
Finally, the rectific ation property determines if requirement r2 has been met
by creat ing asset k5, and concate nat ing it with k5: In(a) = {ks} 1\ (ks, {r2}) If.
Req uirement =? Out (a) = {k s + ks'} 1\ (k s + ks" {rd) E Requirement. Following the
same approach as above, properties k6 up to and including kg can be concate
nated with the created grammat ical elements. So k6 should be concatenated

Characterizing Knowledge Intensive Tasks indicating Cognitive Requirements 113

with k6' and so on. This complete ly satisfies the properties of task inst ance i3
event ua lly.

Now t hat the theoreti cal par t and possible applicat ions of it in methods for
speci fic tasks have been discussed , it is appropriate to compare our approac h
wit h ot her approaches in t he field. The next sect ion therefore deals with t his
matter.

5 Discussion

Literature indic ates t hat characterizing tasks on a cognit ive basis is possible in
severa l different ways. T he research of Weir et al. [10] includes a cha racteriza
ti on of informa tion management tasks by st udying activit ies of workers in t he
primary care setting. This has resulted in an abstraction of several information
man agement t asks during t he research, such as: assignment tasks, determina
t ion t asks, organization tasks, etc . First , Weir et al. [10] show t hat t hey have
analyzed t asks in primary clinical care and from t hat specialized analysis an
abst raction has been made constitut ing a general catego rization of tasks. Com
pared to our st udy, t his is a bot tom-up approach from analyzing tasks in a
certain context to t he event ual abstraction of t asks. We have analyzed tasks
using a to p-down approach by generalizing tasks based on parallels made with
an inductive-hypotheti cal research approach before materializin g the theory in
methods for specific tasks. An adva ntage of our approac h is that the theory is
not st emming from a study in a specialized context and thus does not run the
risk of being useful only in a certain context . Therefore, it is assumed t hat our
theory is applicable in numerous contexts and can be adapted to that context
if desired. For inst an ce, sections 3 and 4 are an indi cati on t hat this is possible.

Especially when methods for speci fic t asks are concerne d, it is difficult to
identify significant research related to mat ching an actor' s cognit ive abilit ies
with the cognit ive abilit ies required to perform a certain task. However , t he
research of Zhang et al. [11] shows that t he human-centered distributed infor
mation system design methodology includes user analysis and task analysis as
par t of inform ation system design . The method ology has a much broader focus
than only dealing wit h the match / mismatch between a user 's cognit ive ab ili
t ies and t he cognit ive abilit ies necessary to fulfill a specific task. An import ant
function of task ana lysis in human-centered dist ributed information system de
sign is t o ensure that the syste m implement ation includes only the necessary
and sufficient task features that match user capacity and are requ ired by the
t ask . This cont ras ts with our research, becau se we do not wish t o exclude the
sit uations in which an actor / task combination does not match very well, bu t
inst ead we would like t o provide support for it in t he future. We ass ume t hat
instead of excluding the sit uations in which an actor / t ask combination does
not match it is bet ter to provide support for it , simply becaus e it occurs often
enough in everyday pract ice. An early attempt by e.g . Harris and Brightman [3]
shows a prelimin ary at te mpt to couple potenti al automate d support with cog-

114 SJ. Overbeek, P. van Bommel, H.A. (Erik) Proper and D.B.B. Rijsenbrij

nitive task fulfillment by academics. The proposed automated support however
cons ist s of existing tools only and suggestions for future, possibly better , tools
are not made. Hence it seems that our longer t erm research goals, as mentioned
in section 1, are worth pursuing.

6 Conclusion

This paper describes a categorizat ion and characteriza t ion of knowled ge in
t en sive tasks, illu strated by definitions of task properties indicating cognit ive
requirements for t ask fulfillment. Proceeding from these definitions method ap
plication scenarios in conceptual modeling of information systems respectively
requirements eng inee ring show how the theory can be mater ialized.

References

1. J.F.M. Burg. Linguisti c In strum ent s in Requirem ents Engineering. PhD thesis,
Vrije Universiteit Amst erdam , The Netherlands, EU, 1997.

2. T . Halpin. Information Modeling and Relational Databases, from Con ceptual
Analysis to Logical Design. Morgan Kaufmann , San Mateo, CA, USA, 2001.

3. S.E. Harri s and H.J . Brightman . Design implications of a task-driven approach
to unstructured cognit ive tasks in office work. ACM Transactions on Information
Sy st em s, 3(3) :292-306, 1985.

4. T .Y. Liang. The basic enti ty model: A fundamental theoret ical model of in
formation and information processing. Information Processing (3 Managem ent ,
30(5) :647-661 , 1994.

5. P. Loucopoulos and V. Karakostas . Sy st em Requirem ents Eng in eering . McGraw
Hill Book Company Europe, Berkshire, UK, EU, 1995.

6. N. Meiran . Modeling cognit ive cont rol in task-swit ching. Psychological Research,
63(3-4):234-249, 2000.

7. S.J. Overb eek, P. van Bommel , H.A. Proper, and D.B.B. Rijsenbrij . Knowledge
discovery and exchange - Towards a web-based applicat ion for discovery and
exchange of revealed knowledge. In J. Filipe, J . Cordeiro, B. Encarnacao, and
V. Pedrosa , editors, Proceedings of th e Th ird International Conference on W eb
Information Sy st ems and Technologies (WEBIST) , pages 26-34. Barcelona , Spain ,
EU, INSTICC Press, Setubal, Portugal, EU, 2007.

8. J . Schraagen , S. Chipman, and V. Shalin. Cognitive Task Analyis. Lawrence
Erlbaum Associates, Mahway, NJ , USA, 2000.

9. H.G. Sol. Simulation in Information Systems . PhD thesis, University of Gronin
gen, The Netherlands, EU, 1982.

10. C.R. Weir, J.J .R. Nebeker, L.H. Bret, R. Campo, F. Drews, and B. LeBar. A
cognit ive task analysis of information management strategies in a computerized
provider order ent ry environment. Jou rn al of the Ameri can Medical Informatics
Associat ion , 14(1) :65-75, 2007.

11. J . Zhang, V.L. Patel, K.A. Johnson, J .W. Smith, and J . Malin. Designing human
centered distributed information systems. IEEE Intelligent Sy st ems, 17(5) :42-47,
2002.

Partial Evaluation in Meta Modeling

Manfred A. Jeusfeld
Tilburg University, Department oflnformation Systems and Management,

Warandelaan 2, 5037 AB Tilburg, The Netherlands
jeusfeld@uvt.nl

WWW home page: http://infolab.uvt.nl/-jeusfeld

Abstract. Meta modeling is a well-established technique to describe the
structure modeling languages. Method engineering environments utilize the
technique to provide a flexible environment for defining and adapting
modeling environments. We show that basing meta modeling strictly on first
order logic provides not only clean semantics but also the ability to define
high-level constructs such as transitivity at the meta model, or even meta meta
model level and to efficiently map the constructs to lower levels by partial
evaluation. We show that it applies both to universally and existentially
quantified expressions. Examples are included to demonstrate the usefulness.
A full implementation is available in the ConceptBase meta modeling
environment.

1 Introduction

A model is a structured representation of statements about some world, be it real
or imagined. A meta model is a model about models, i.e. it contains some statements
about some set of models, in particular models that conform to the same modeling
language.

Typically, meta models are denoted in a style similar to models. Graphical
notations are dominant providing rather few features to encode the desired meaning
of constructs in the meta model. In this paper, we are concerned about extending the
usefulness of meta models by enriching them with first -order logical expressions.
Such expressions can both be used for defining some syntax rules and for defining
the logic-based semantics of the use of the constructs in models conforming to the
meta models.

This paper shall first recap the use of models and meta models as inspired by the
model-driven architecture. The analogy of instantiation to variable substitution

Please use the following format when citing this chapter:

Jeusfeld, M. A., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational Method

Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S., Henderson-Sellers 8., (Boston Springer),

pp. 115-129.

116 Manfred A. Jeusfeld

allows for a simple partial evaluation technique borrowed from deductive databases
that translates high-level logical expressions, i.e. expressions ranging over objects at
more than two meta modeling layers, to lower-level expressions down to simple
expressions that relate just two meta modeling layers.

We demonstrate some generic examples to show its applicability to various meta
modeling scenarios, e.g. the definition of required attributes and transitivity of
attributes, which can be used to specify the semantics of the PartOf concept as well
as the IsA concept. Throughout the paper, we assume Herbrand interpretations of the
logical formulas. Even more, we restrict ourselves to those first order formulas that
can be translated to Datalog with negation, i.e. to logical theories that have a unique
minimal Herbrand interpretation. The technique has been implemented in the
ConceptBase system (Jarke et aI., 1995).

We claim that the incorporation of a sound meta modeling component is essential
for method engineering, in particular in cases where dedicated modeling languages
have to be constructed.

2 Meta Modeling Layers

The OMG meta object facility MOF [OMG 2006] organizes expressions in
models with respect to their abstraction level. The lowest level MO contains
expressions that are such concrete that they do not have examples. They are
representations of examples or example objects. The next level M1 contains
expressions that classify or constrain the expressions at the MO level. Expressions at
the M1 level are also called classes. The M2 level organizes the classes of the M1
level into so-called meta classes. Meta classes are used to make statements about
classes and we associate the term meta model to this level. Finally, the M3 level
classifies meta classes into meta meta classes (or meta models). From a formal
language point of view, the M2 level contains definitions of modeling languages, and
the M3 level contains facilities to define modeling languages. The layer hierarchy
can in principle continue to M4, M5 etc. but these levels are rarely used in the
literature. Apparently four abstraction levels are regarded as sufficient by most
authors.

Figure 1 motivates the
four MOF layers. The
triangular display symbolizes
the expectation that the
number of concepts
decreases with the layer
index. Intuitively, an M1
model (e.g. an entity
relationship diagram) has less
elements than a MO object
model that conforms to it
(e.g. the tuples of a
database). This numerical

Figure 1: An interpretation of the MOF abstraction levels

Partial Evaluation in Meta Modeling 117

relation continues with the other layers. Since each layer constrains the subsequent
layer, the scope of an expression increases with the layer at which it is defined. For
example, if we define the meaning of ERD cardinality constraints at the M2 layer,
then it will range in principal over all databases that are conforming to some ERD
model at the M1 layer.

Our goal is to allow for the efficient management of logical expressions at any
MOF abstraction layer. The higher the degree of abstraction, the higher will be the
degree of reuse of the expression and ultimately the more efficient will be the design
of new modeling languages.

3 Models and Logic

The higher a concept is located in the MOF abstraction layers, the more abstract
is also its meaning. For reasons of simplicity, we will interpret all objects at any
abstraction level by itself, i.e, we assume a Herbrand interpretation where each
object as shown in figure 1 is a constant being its own interpretation.

Rather than defining a predicate c(x) to denote that object x is an instance of
concept c, we introduce a binary predicate In(x,c) . In figure I, the instantiations are
displayed in green color. They correspond to the following facts being a possible
Herbrand interpretation of the predicate In:

{In(anne ,Employee) ,
In (mary , Employee) , In(lOOO , Integer) ,
In (Employee, EntityType) ,
In(Integer, Domain) , In (EntityType , Concept) , ... }

We introduce two further predicates Isa(c,d) for declaring c as specialization of d,
and AL(x,m,n,y) for declaring an attribution link (x has an attribute labelled n to y
and this attribute has the category m). Applied to the example of figure 1, we would
get the following Herbrand interpretation of these two predicates

{Isa(Employee, Person) ,
AL(bill,salary,sall ,lOOO) ,
AL(Employee,e_attr, salary, Integer) ,
AL(EntityType,attribute,e_attr,Domain)}

The three predicates are capable to represent concepts at any abstraction layer
and are the basis for defining the meaning of abstract features such as inheritance,
transitivity of partOf, cardinality constraints, and so forth.

To represent the meaning of concepts, we need to refer to attributes as being
concepts. This is also called reification. If x is concept and n is the label of some
attribute of x, then x!n is the constant denoting the attribute as a concept. In our
running example, we have the attribute concepts bill l sall,
Employee l salary, EntityTypelent_attr. Like any other concept,
attribute concepts can occur in the In, Isa, and AL predicates. For example
In (bi 11 l sall , Employee! salary) states that the sal I attribute of bill is an
instance of the salary attribute of Employee. If 0 is an attribute, then the predicate
P(o.x.l.y) returns the source x, the label I and the destination y of the attribute o. The
following examples are true:

P(Employeelsalary, Employee , salary, Integer)

118 Manfred A. Jeusfeld

P(bill lsall,bill ,sall,lOOO)
Let us recall some implications of basing the semantics on Herbrand models . We

demand that any model is finite we also have a finite number of constants. This is an
important restriction. While finiteness for M1, M2 and M3 models is intuitive, the
MO layer might be regarded as infinite, e.g. containing all possible database states.
For our purpose however, we strictly demand finiteness. It implies that any Herbrand
interpretation of the three base predicates is also finite.

First order logic can be used to provide additional information about the concepts
in a model. They are statements over the three base predicates . For example, we can
express that each employee must have a salary:

[Formula 1] V e In(e , Employee) => 3 s ,n In(s ,Integer) A

AL(e ,salary ,n,s)

At the M2 level, we can demand that any entity type has at least one entity
attribute:

[Formula 2] V et In(et,EntityType) => 3 t,n In(t ,Domain) A

AL(et,e_attr,n,t)

The first formula contains constants from the Ml level and the variables are
substitutable by constants from the MO layer. The second formula contains constants
from the M2 layer and the variable range over constants from the Ml layer. We call
such formulas type 1 formulas since they relate two neighbouring abstractions layers.
Apparently, both formulas have the same structure. Instead of copying the same
formula code, we aim for a facility were we only code a meta fo rmula once and re
use it wherever required . There more of such formulas are defined, the richer is the
meta modeling environment since the meaning of modeling constructs can be
recombined from the meta formulas.

Definition 1: A variable occurrence xl in a predicate P is called a meta variable iff
P::::ln(x,xl), or P::::AL(x,xl,n,y). A metaformula is a first order formula with at least
one meta variable.

There are plenty of examples for meta formulas. We use the following example
for discussing the method (meta variables are c,d and m):

[Formula 3] V x,a,c,m,d In(a,required) A P(a ,c,m,d) A In(x,c) =>
3 y,n In(y,d) A AL(x,m,n,y)

4 Partial Evaluation of Meta Formulas

A meta formula has no peculiar property except that it has constants and
variables ranging over more than 2 abstraction layers. To understand this, we show
how a meta formula can be compiled to a type 1 formula by means of partial
evaluation. There are a few reasons why partial evaluation is useful for meta
modeling:

1. By translating a meta formula to a type 1 formula, one can understand its
meaning in terms of the context in which it is used. For example, the

Partial Evaluation in Meta Modeling 119

formulas 1 and 2 are partially evaluated from formula 3. They are more
understandable than formula 3 because they use constants from the
appropriate abstraction layer.

2. The partially evaluated formulas have less variables than the corresponding
meta formula. Since the computational complexity grows exponentially in the
number of variables, the partially evaluated formulas are more efficient to
evaluate.

3. View maintenance on the basis of meta formulas is virtually intractable since
the predicate occurrences In(x,c) will match facts of any model base update.
An important example of view maintenance is integrity checking.

The last reason is the most relevant one: if we want to efficiently check the
integrity of a set of models in an incremental way, then we have to restrict to type 1
formulas.

Our partial evaluation technique is inspired by the 'simplification' method for
deductive integrity checking. The simplification method generates from an update
and a formula that matches some facts in the update a new formula. The matching
binds variables to constants. In our case, the new formula is not just evaluated
against the database but it becomes part of the logical theory that represents our
model base. Assume that MF is a meta formula and C is the list of some meta
variables in MF.

Step 1: Rearrange MF into one of the two possible normalized forms (called
input formula subsequently)

"if C E(C) => F(C)

:3 C E(C) /\ F(C)

where E(C) is a predicate and F(C) is the rest of the formula. It is allowed to
define auxiliary deductive rules for E(C) in order to match one of the two forms.

The normalized forms are ensuring that the meta variables in C are restricted to
those values V for which E(V) is in the interpretation of the E-predicate. The
syntactic form is now as 'range-restricted' or 'domain-independent' in deductive
database literature (Nicolas, 1979; Bry, 1989). To continue the example, step 1
rearranges formula 3 to

[Formula 4]::1 c,d El(c,d) => (\] x In(x,c) => ::I y,n In(y,d) 1\

AL(x,m,n,y))

with the auxiliary deductive rule

\] a,c,m,d In(a, required) 1\ P(a,c,m,d) => El(c,d,m)

In the next step, we compute the interpretation of the E-predicate (also called the
extension). The goal is to replace the E-predicate by its extension.

Step 2: Compute the Herbrand interpretation for the E-predicate, say
IE={E(V1),E(V2) , ••,E(VK) } and replace the predicate E(C) in the normalized meta
formula by the disjunction ((C=V1) v (C=V2) v ... v (C=VK)) .

120 Manfred A. leu sfe1d

The Herbrand interpretation shall be finite because the base predicates are finite.
If C has more than one variable, then C=V is a the pairwise equality of variables in C
with values in V, i.e. «cl=vI) 1\ (c2=v2) 1\ • ••) .

Example: Assume that In(EntityTypele_attr, required) is true.
Then, El (Enti tyType , Domain, e_a t tr) becomes derivable via the auxiliary
deductive rule. As a consequence, the partially evaluated formula is:

[Formula 5] V c , d (c=EntityType 1\ (d=Domain) 1\ (m=e_ a t t r) ~ V

x (In(x,c) ~ 3 y,n In(y,d) 1\ AL(x,m,n,y))

If the meta formula is universally quantified, then each entry (C=V) in the value
disjunction leads to a substituted subformula F(C)[V/C], i.e. the formula F(C) where
all occurences of variables ofC are replaces by the corresponding values ofV.

Lemma 1: If the input formula is a universally quantified meta formula, then the
conjunction F(C)[V I/C) 1\ F(C)[V2/C) 1\ . . • 1\ F(C)[VKlC] of all such substituted
subformulas is equivalent to it.

Proof: The follows directly from the fact that V x (x=v) => F(x) is equivalent to F(v)
and the finiteness assumption.

Example: Let I E1={El (EntityType, Domain, e_attr), El (Employee,
Integer, salary) }. By lemma I, formula 4 is equivalent to the conjunction

[Formula 6]
V x In(x ,EntityType) ~ 3 y ,n In(y ,Domain) 1\ AL(x ,e_attr ,n, y))
1\

V x In(x ,Employee) ~ 3 y,n In(y,Integer) 1\ AL (x , s a l a r y, n , y))

Except variable naming, these two formulas are exactly formulas I and 2 of our
initial example!

Lemma 2: If the input formula is an existentially quantified meta fonnula, then the
disjunction F(C)[Vl /C) v F(C)[V2/C) v ... v F(C)[VKlC] of all such substituted subformulas
is equivalent to it.

The proof is analogous to lemma I. Not any meta formulas can be partially
evaluated. Some meta formulas can simply not transformed into the normalized form
of step 1. An example is

3 c V x In(x,c)

Step 3: Generate the target formula as specified in Lemma I (universal
quantification) and Lemma 2 (existential quantification) .

Steps I to 3 constitute a term rewriting system where a meta fonnula MF is
transformed to a representation with less meta variables. Note that the rewriting is
also applicable to sub-formulas of a meta formula MF. As noted above, the term
rewriting system is not complete, i.e. there are meta formulas that can't be rewritten .

Partial Evaluationin Meta Modeling 12I

If a meta formula is range-restricted, then there is always a rewriting to a formula
without meta variables (proof pending).

5 Complexity Considerations

The above method has been implemented in the ConceptBase system. The crucial
problem is the transformation in step 1, i.e . the selection of the E-predicate. In
general, there is more than one candidate. So the question is, which candidate is the
best one. We real ized a strategy where the candidate is chosen that binds the
maximum number of meta variables.

A second criterion in the selection is the size of the interpretation IE of the meta
predicate. The larger the size, the more subformulas F (C) [V / C] will be generated.
One can easil y think of scenarios where the number of generated subformulas grows
to the size of the model base itself. In such a case, partial evaluation is intractable.
We have to demand that the abstraction layers of figure I are indeed decreasing in
size, i.e. layer 0 has many more objects than layer I , layer I has many more objects
than layer 2, etc. Since the concepts become more and more abstract, this is true in
most meta modeling scenarios, in particular in the scenario of specifying modeling
languages (layer 2) . If one has a large number of concepts in layer 2 (e.g. an
elaborated ontology of concepts occurring in information systems development), and
only few concepts in layer I and 0, then it makes less sense to apply the technique. It
would be analogous to run a large set of queries against a tiny database.

Another issue is the incremental maintenance of the partially generated formulas.
When an update to the model base changes the extension of some E-predicate, then
step 3 has to be executed again. If the interpretation IE gets more entries
{E(VK+1),E(VK+2,. ••}, then one only has to re-apply incrementally step 3 to the new
entries. If the interpretation shrinks, then one has to remove the corresponding
subformulas. ConceptBase attaches triggers to the E-predicate to achieve this type of
formula maintenance. If the majority of update s to the model base include updates to
the interpretation of E-predicates, then the partial evaluation method is rather
expensive . Fortunately, the 'triangular' nature of layers in figure I suggests that this
is not the case in 'normal' applications of meta modeling.

6 Application to Meta Modeling Cases

The benefit of meta formulas is that they encode the meaning of abstract concepts
such as the concept of 'required' attributes encoded in formula 3. It was possible to
partially evaluate this formula to a conjunction of type I formulas by a single E
predicate. We call such a meta formula a type 2 formula. If the meta formula has
predicate occurrences In (x , c) , In (e , me) where c and me are meta variables,
one has to apply the partial evaluation method successively until the result is a type I
formula. The first iteration eliminates mc as a variable, and subsequently c is
eliminated. Such a meta formula is called a type 3 formula. If we have a predicates
like In(x,e), In(e,me), and In(me,mme) with all c, me, mmc being meta

122 Manfred A. Jeusfeld

variables, then we speak of a level 4 formula. A type 4 formulas has variables
ranging over 4 different abstraction levels.

6.1 Meta level instantiation and attribution

It is useful to define some formulas that describe the relative instantiation
between layers:

[Formula 7] V x i c i mc In(me,Coneept) 1\ In(e,me) 1\ In(x,e) ~

In2(x,me)

There are two meta variables in this example: c and mmc. The E-predicate is
In(mc,Concept) where Concept is some constant denoting the class of all concepts in
the model base. The normalized form is

[Formula 8] V me In(me,Coneept) ==> (V x,e In(e ,me) 1\ In(x,e)

~ In2 (x,me))

Let In(EntityType,Concept) be in the interpretation of the E-predicate. Then, the
partial evaluation yields

[Formula 9] V
In2(x,EntityType))

x,e In(e, EntityType) 1\ In(x ,e)

Formula 9 happens to be again a meta formula (type 3). The meta variable is c
and the E-predicate is In(x,c) . Let In (Employee, EntityType) be in the
interpretation. The partial evaluation will then yield

[Formula 10] V x In(x,Employee) ~ In2(x,EntityType)

The derived predicate In2 (x , mc) has an important contribution to meta
modeling. It defines the relation of a concept x to its meta class mc . It can be used to
define the meaning of being an entity or being a value:

[Formulas 11] V x In2(x,EntityType) ~ In(x,Entity)
[Formulas 12] V x In2(x ,Domain) ~ In(x , Value)

Note that the variable x ranges over concepts at the MO abstraction layer. Thus,
formulas 11 and 12 really separate entities from values. It is defined independently
from the MI level and works for any Ml model instantiated to the M2 model. One
can now easily express a condition that an entity may never be a value and vice
versa. We leave this exercise to the reader. The In2 predicate can be accompanied by
a similar predicate AL2 on attribution.

[Formula 13] V e ,d,x,m ,mm,n ,y In(x,e) 1\ In(y ,d) 1\ AL(e,mm ,m ,d)
1\ AL(x ,m ,n,y) ~ AL2(x ,mm,m ,y)

Partial Evaluation in MetaModeling 123

Here AL(c,mm,m,d) can serve as E-predicate. For
AL(Employee,e_attr,salary,lnteger) it is partially evaluated to

[Fo~ula 14] ~ x,m,n,y In(x,Employee) A In(y,Integer) A

AL(x,salary,n,y) => AL2(x,e_attr,salary,y)

With AL2, we can now define a predicate A2 as follows:

[Fo~ula 15] ~ x,mm,y AL2(x,mm,m,y) => A2(x,mm,y)

This predicate is using an attribute label from the meta class layer (e.g. M2) while
x,y are ranging over concepts two levels below (e.g. MO). Applied to our running
example, A2 (x, e_attr, y) subsumes all attribute links between objects x and y
from the MO level. Again, the A2 predicate is independent from the middle layer MI.
If we extend our running example at the M2 level by an attribute 'key' between
EntityType and Domain, then the predicate A2(x,key,y) precisely defines the key
values y for a given entity x. The formula

[Fo~ula 16] ~ xl,x2,k A2(xl,key,k) A A2(x2,key,k) => (xl = x2)

axiomatizes the key property based on the A2 predicate. Figure 2 illustrates this
application. It implies that A2 (bi 11 I key I 13 a6 06) is true.

The two predicate In2 and A2 may also be used to query the MO level from the
M2 level, i.e. to formulate queries to a database that are independent from the

database schema. For
example, one can find
those entities that are
identified by a key that
occurs as normal
attribute value (e_attr) in
another entity.

Analogous to In2 and
A2, one can define In3
and A3 predicate that
relate concepts from the
M3 layer and the MO
layer. We do not provide
their definition but state
that it allows to express
properties of concepts

Figure2: Formalizing the key property from the MO layer that
are not only independent

from the Ml layer (e.g. database schema) but also independent from the M2 layer,
i.e. the modeling language. For example, one can define the fact that two concepts
are linked to each other regardless of the type of the link.

We have applied meta formulas to provide a complete definition of the ERD
modeling language including specialization (ISA), key attributes, and cardinalities.
Apparently data modeling languages with their static semantics are affined to

124 Manfred A. Jeusfeld

predicate logic with Herbrand interpretation. The same is not true for dynamic
modeling languages like Petri nets' . While the semantics of ERDs can be explained
in terms of the finite MO models, dynamic modeling languages are defined on MO
layers encoding potentia lly infinitely many states of the execution of the dynamic
model.

6.2 Relation properties

Some constructs in meta modeling are defined by re-usable patterns. For
example, both the IsA relation between classes and subclasses and the PartOf
relation between classes are transitive. However, while the IsA relation is reflexive,
the partOf relation is anti-symmetric . Meta formulas easily cope with this partial
semantic overlap of concepts . All that one has to do is to define the appropriate meta
formulas and then instantiate the modeling constructs to those meta formulas that are
applicable to them. Let us first define the relation properties by adapting their
textbook definitions to our base predicates . To do so, we introduce the A predicate in
terms of the AL predicate.

[Fo rmu l a 17] V x ,m , n ,y AL (x , m, n , y) => A (x,m ,y)

There is nothing special about the A predicate . It is simply a project ion on AL.
Analogous to the AL predicate, we regard a variable in A (x , ill , y) to be a meta
variable.

[Formula 18 : transitivity] V AC, x, y, z , M,C In(AC, transit i ve) A

P(AC,C ,M,C) A In(x ,C) A In(y,C) A In (z, C) A A(X, M,y) A A(y , M,Z)
=> A (x , M,z)

[Formula 19: symmetry]

V AC, x ,y ,M, C I n (AC, s ymme t r ic) A P(AC , C,M ,C) A I n (x , C) A In(y,C)
A I n (z , C) A A (X, M,y) => A(y , M, x)

[Formula 19: a ntisymmetry] V AC, x ,y,M ,C In (AC, a n t i s ymme t r i c) A

P (AC, C, M, C) A In(x , C) A In(y, C) A In(z,C) A A (X,M,y) A A (y ,M , X)

=>(x = y)

[Formula 20: reflexivity]
V AC,x,M, C In(AC,ref lexi ve) A

P(AC , C, M, C) A In(x ,C) A In(y,C) A In (z ,C) => A (x ,M,x)

Figure 3 shows how the meta formulas are applied to a the r sx and PartOf
relations of classes. It is sufficient to declare

{In (Cla ss!lsA,transitiv e), In (Cla s s!IsA,reflexive),

I The ConceptBase system is capable to model the dynamic semant ics of languages such as
Petri nets by so-called active rules. They are however of a procedural nature and therefore
beyond the scope of this paper.

Partial Evaluation in Meta Modeling 125

In(Class!PartOf, transitive) ,
In(Class!PartOf,antisymmetric)}

for encoding the desired meaning of the two constructs. Hence, the more meta
formulas are available, the higher are the chances of re-use for multiple cases.

transitive reflexive antisymmetric

IsA

PartOf

Figure 3: Configuring semantics via instantiation

7 Implementation

The method of partially evaluating meta formulas has been fully implemented in
ConceptBase since 2003 for universally quantified formulas. The generated formulas
are incrementally maintained when an update to an E-predicate occurs. This works
both for additions and deletions. The bulk of the implementation work was not the
partial evaluator but the code that selects the best E-predicate out of multiple
candidates.

Except for pathological cases with large extensions of the E-predicate, there are
no performance penalties when using meta formulas like the one on transitivity. We
did tests with large model bases where version I defined transitivity 'by hand' and the
version II used the meta formula. Both versions exhibit virtually the same evaluation
times for queries over the transitive attribute. In the table below, reponse times of
four queries are reported. Query Q1 is computing the dead ends of a network, i.e.
those nodes that are connected only to nodes that lead to leave nodes. Query Q2 is an
incomplete test on cliques and Q3 computes the transitive closure. Finally, Q4
returns the inverse of the transitive closure, i.e. nodes that are not reachable to each
other. The size of the network is about 1400 nodes with about 5000 links. The table
shows that there is no performance penalty to use the partially evaluated meta
formulas.

Version Q1 Q2 Q3 Q4

I 0.084 0.812 4.31 1.417
II 0.083 0.820 4.39 1.418

The universally quantified meta formulas are slightly easier to handle since they
produce conjunctions of subformulas. Hence, each individual subformula can be
maintained as a separate formula in the (deductive) theory. Existentially quantified

126 Manfred A. Jeusfe1d

meta formulas produce disjunctions of subformulas that must remain in one formula.
ConceptBase currently does not support this case.

We used the MOF layers to motivate meta models and meta meta models. The
implementat ion does not require this view. In fact by abandoning the strict
association of concepts to MOF layers, one gets a more expressive meta modeling
framework. Consider the concept 'Concept' in figure I. It is located at the M3 layer
and classifies concepts of the M2 level. ConceptBase allows objects like 'Concept' to
have any another concept as instance regardless at which MOF layer we prefer to
locate it. By this, any feature defined for Concept becomes available to any defined
concept. For example, transitivity can be applied to the PartOf relation (M2 layer),
but also to some domain model construct like 'hasAncestor' (Ml layer). In the first
case, the partially evaluated formulas allow to compute the transitive closure
between model elements (MI layer). In the second case, they operate on the MO
layer. So, concepts like transitivity should not be assigned to strictly one abstraction
layer. They constitute a relation between pairs of abstraction layers: M2 to MO, M3
to MI, M4 to M2, and so forth. Once defined, meta formulas can be used in
ConceptBase by just making sure that the corresponding E-predicate is populated.

8 Related Work

While the partial evaluation technique itself is an adaption of the simplification
method for deductive datab9ases (Nicolas, 1979), our contribution is to apply it to
meta modeling. By our technique abstract constructs like transitivity can be defined
once and forever. While the simplification method generates simplified formulas for
any predicate occurrence, the partial evaluation method requires determining a single
so-called E-predicate to compile a meta formula. The flat representation of the model
base by predicates is inspired by Telos (Mylopoulos et aI, 1990). In contrast to Telos,
we have no predefined axioms to make the approach generally applicable . In
particular the P predicate has a purely auxiliary function in our approach whereas it
is central in the Telos axiomatization.

There are other ways to represent models and meta models by flat facts. The
approach by (Bezivin, 2006) uses predicate names to encode concept names . As
pointed out in section 2, such representations are preventing a management of first
order meta formulas.

Meta formulas are also treated by ontology management systems, in particular
Protege (Protege, 2006). Protege has predefined expressions for transitivity,
symmetry etc. They are however not evaluated against some database as we do.

In linguistic semantics, so-called generalized quantifiers (Barwise and Cooper,
1981) have been investigated to descripe higher-order predicates, in particular to
express properties of properties. Lambda parameters expressions abstract the
predicate names from the logical formula. By substituting the parameters by actual
predicate names, one yields a first order expression. For example,

lambda .X lambda .Y (X subset Y) (Student) (Person)
would be reduced to

Student subset Person.

Partial Evaluation in MetaModeling 127

We note that our definition of meta formulas is completely embedded into first
order logic and does not require additional abstractions such as the lambda operator.

The HiLog logic programming language (Chen et ai, 1993) deals with properties
of properties much in the spirit of generalized quantifiers . Properties like transitive
closure are expressed in a higher-order syntax of logic. HiLog has a mechanism to
encode such higher-order expressions to predicate calculus using the apply
predicate that shifts the higher order predicate symbol like 'transitive' to an argument
position. The difference to our approach is that HiLog has a one-to-one encoding, i.e.
the higher order formula is mapped to a single first order formula . In our approach,
the meta formula (expressing the same principle of transitive closure) is mapped to
many first order formulas, each specialized for one element of the extension of the E
predicate. So, we stick to first-order syntax to express higher order features and we
provide for an efficient evaluation of the meta formulas via partial evaluation. On the
other hand, HiLog is not limited by a finiteness assumption . HiLog is a Turing
complete programming language while our approach is defined for a deductive
theory with finite perfect model semantics.

9 Application to Method Engineering

Partial evaluation of meta-level formulas has a somewhat theoretic flavor as it
deals with highly abstract concepts . The most obvious application of the technique is
for designing new modeling languages or formally defining existing modeling
languages. The abstract concepts such as transitivity and multiplicity of relationships
can be employed directly to define constructs like specialization and part-of in
modeling languages. The added value of the meta-level formulas is that they only
have to be defined once. Instantiating them leads to the automatic generation of a
formula (either a rule or a constraint) specialized for the modeling language. In
essence, the meta level formulas are the building blocks for the semantics of
formally defined modeling languages.

The modeling languages are the product side of a method to be engineered . There
is also a production side, namely the guidelines or processes that create and
manipulate the products. The two sides are dependent on each other leading to
amalgamated model such as process-data diagrams (Weerd et aI., 2006) or software
process models (Jarke et ai, 1990). The amalgamated model constitutes a method
fragment subject to be incorporated in complex methods. Such models also conform
to some schema, i.e. there is a meta model in the sense of MOF that describes how
the product side and the production side may be linked to each other. The link types
themselves are elements of a modeling language, namely the language to describe
the connection between a process and its products. This language has a meaning that
should be reflected in the defininition of its constructs . Not surprisingly, the abstract
concepts like transitivity are applicable to define the desired semantics . As an
example, we focus on the traceability of products , i.e. of models and their elements .
Traceability is has been a hot topic in the requirements engineering community. It
allows following the development of the products of a development process. Each
product (and each element of a product) depends on other products (and their

128 Manfred A. Jeusfeld

elements) . This is essentially the transitivity concept. All we would need to do would
be to define a predicate A (pl, dependsOn r p2) in the meta model of the
amalgamated process /product diagrams and to declare that dependsOn is transitive,
i.e. In (Product! dependsOn, transitive) .

As a second example consider the versioning of product models as described in
(Saeki, 2006). A product model is versioned by applying change operations on it.
Let's assume that the version relation is represented by a predicate
A (pl, versionedTo, p2) where p I and p2 are product models. Then, one would
define the versionedTo relation to be transitive and assymetric (a product model
cannot be versioned to itself). The newest version of a given product model p can
then be retrieved simply by querying

A (p,versionedTo,pv) A ~ 3 px (pv,versionedTo,px)

10 Conclusions

We presented an approach to manage first order formulas defining the meaning
of modeling constructs at the meta and meta meta class levels. It turned out that it is
sufficient to demand range-restrictedness in order to partially evaluate the meta
formulas into conjunctions or disjunctions of non-meta formulas that are more
efficient to evaluate.

The flat representation of the model base with predicate facts is powerful enough
to capture the MOF abstraction layers. Since instantiation is stated explicitly, our
method is more general by allowing models that link concepts of different
abstraction layers. To apply the partial evaluation approach, one simply has to
encode that one concept is an instance of another concept rather than by specifying
to which MOF layer a concept belongs. It is perfectly possible to define a meta class
(or even a meta meta class) that has an attribute link to a concept that one would
regard as MO concept. For example, a meta class can have an attribute 'createdBy'
that links it to its creator. This phenomenon systematically occurs when one
superimposes a product meta model (e.g. ERD) with a process meta model, i.e. a
specification of operations that manipulate instances of the product meta model. This
is the common case in method engineering as it links process models (the procedural
steps of the method) with product models (the input and output of the steps) .

The greatest benefit of our method arises when meta formulas are defined at the
most generic layer. Then, the semantics of modeling language constructs is generated
by instantiating them to the meta formulas. This level of re-use of meta formulas
makes meta modeling itself a more productive activity: instead of coding formulas
one simply declares a construct as an instance of the abstract concepts defined by the
meta formulas. As an additional bonus, the generated formulas are materialized and
can be attached to the meta model describing the modeling language.

As mentioned earlier, semantics of dynamic modeling languages are not covered
by our technique because they require to reason about infinite extensions. We plan to
investigate whether certain principles like state transitions can be defined as an
abstract concept, i.e. independently from the specific modeling language, and then be
instantiated to a specific modeling language by an analogous approach . That
capability would further enrich the toolbox for engineering modeling languages from

Partial Evaluation in Meta Modeling 129

pre-fabricated building blocks. For example, languages like event-process chains
should be definable from building blocks that can also be used to define petri nets .

The partial evaluation technique described in this paper is fully implemented in
the ConceptBase system and has been used in various meta modeling scenarios .
Some details are on the web page http://conceptbase.cc.

Acknowledgements: We cordially thank Rene Soiron for implementing a major
part of the meta formula compiler in ConceptBase.

References

Barwise, J. and Cooper, R., 1981. Generalized quantifiers and natural language. Linguistics
and Philosophy 4: 159-219.

Bezivin, J., 2006. On the Unification Power of Models. Software and System Modeling
(SoSym) 4(2):171--188.

Bry, F., 1989. Logical rewritings for improving the evaluation of quantified queries. Proc. 2nd
IntI. Symposium on Mathematical Fundamentals of Database Systems, Visegrad,
Hungary, 1989, Springer-Verlag, LNCS 364.

Chen, W., Kifer, M., Warren, D.S., 1993. HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming 15(3):187-230.

OMG, 2006. Meta Object Facility. Online http://www.omg.org/mof/, June 2006.
Protege, 2006. The Protege ontology editor and knowledge acquisition system. Online

http://protege.stanford.edul, June 2006.
Jarke, M., R. Gallersdorfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S, 1995.: ConceptBase - a

deductive object base for meta data management. Journal of Intelligent Information
Systems, 4,2, 1995,pp.167-192.

Jarke, M., Jeusfeld, M.A., Rose, T., 1990: A software process data model for knowledge
engineering in information systems. In Information Systems, 15, I, 1990, pp. 85-116.

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., 1990. Telos - a language for
representing knowledge about information systems. In ACM Trans. Information Systems,
8,4,1990,pp.325-362.

Nicolas, J.-M., 1979. Logical formulas and integrity constraints: the range restricted property
and a simplification method. Technical report T-R CERT-LBDI79-1, Toulouse, France.

Saeki, M., 2006: Configuration management in a method engineering context. Proceedings
CAiSE 2006, Springer-Verlag, LNCS 4001/2006, pp. 384-398.

Weerd, I. van de, Versendaal, J., Brinkkemper, S., 2006. A product software knowledge
infrastructure for situational scpability maturation: vision and case studies in product
management, Technical Report UU-CS-2006-008, Utrecht University, The Netherlands .

Representation of Method Fragments
A Comparative Study

Anat Aharoni and Iris Reinhartz-Berger
Department of Management Information Systems,

University of Haifa, Haifa 31905, Israel
anatah@mis.haifa.ae.il, iris@mis.haifa.ae.il

Abstract. The discipline of situational method engineering promotes the
idea of retrieving and adapting fragments, rather than complete
methodologies, to specific situations. In order to succeed in creating good
methodologies that best suit given situations, fragment representation and
cataloguing are very important activities. This paper presents and
compares three existing approaches to fragment representation. It further
provides a set of evaluation criteria for comparing fragment representation
approaches. These criteria include expressiveness, consistency,
formalism, situational cataloguing, adaptability and flexibility to changes,
comprehensibility, and connectivity. Based on this comparison, we
introduce a new visual approach that combines the benefits of the three
reviewed approaches and attempts to overcome their limitations. This
approach relies on a specific domain engineering method, called
Application-based DOmain Modeling (ADaM), which enables
specification of fragments at various levels of details, specification of
fragment types and their constraints, and validation of specific fragments
against their relevant fragment types. All these activities arc done using a
well known modeling language (UML), increasing user accessibility (and
consequently comprehensibility).

1 Introduction

As the complexity and variety of computer-based systems have increased, the
need for well-defined guidelines that will make the development process most
efficient and effective has become crucial. Although sticking to an individual
methodology has potential advantages, such as reducing learning and training
times and improving the expertise of developers in the chosen methodology,
there is no single methodology that can be uniquely pointed as "the best".
Furthermore, the possible existence of a universally applicable methodology has
been doubted by many researchers, such as [0], and, hence, different types of
"local" adaptations and modifications have to be made in order to adjust a
methodology to the specific requirements and constraints of a project. The area
of method engineering [00] aims at providing effective solutions for building,
improving, and supporting evolution of development methodologies. Situational
method engineering [0], which can be viewed as a sub-field of method

Please use thefollowingformat when citing this chapter:

Aharoni, A., Reinhartz-Berger, I., 2007, in IFIP International Federation for Information Processing, Volume 244,
Situational Method Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S., Henderson-Sellers B.,
(Boston Springer), pp. 130-145.

Representation of Method Fragments: A Comparative Study 131

engineering, focuses on creating methodologies especially for specific situations.
Both regular and situational method engineering refer to fragments, the building
blocks of methodologies, rather than to complete methodologies. They offer
ways to represent fragments, catalogue them according to different features,
retrieve the most appropriate ones to given situations, and organize them into
complete methodologies. In order to succeed in creating good situational
methodologies, i.e., methodologies that best fit given situations, fragment
representation and cataloguing are very important activities. In particular, the
fragments have to be represented in a uniform way that includes all the necessary
information that may influence their retrieval and assembling. This paper focuses
on these activities, presenting and comparing three existing approaches to
fragment representation. Based on this comparison, which involves criteria such
as expressiveness, consistency, and situational cataloguing, we introduce a new
visual approach that combines the benefits of the three reviewed approaches and
attempts to overcome their limitations. The contribution of this paper is two
folded. First, it provides evaluation criteria for comparing and analyzing
situational method engineering approaches that concentrate on fragment
representation and cataloguing. To the best of our knowledge, such criteria have
not been suggested yet and the comparison of situational method engineering
approaches is done based on general method engineering criteria. We use the
evaluation criteria for comparing the three reviewed fragment representation
methods and for explaining the benefits and limitations of the new introduced
approach. Second, the new introduced approach brings further advantages that
are not exhibited by the three reviewed representation approaches (or by others):
it improves the situational cataloguing ability; it enables constraining and
specifying fragment types; and it enables validating the completeness and
correctness of fragments (against their fragment types).

The structure of the rest of the paper is as follows . Section 2 motivates the
need for situational method engineering. We later use this example for
exemplifying the different approaches, their limitations, and advantages. Section
3 lists seven evaluation criteria for comparing fragment representation
approaches, while Section 4 uses these criteria for presenting and comparing
three particular fragment representation approaches. Section 5 introduces and
exemplifies our approach, discussing its benefits and limitations in the light of
the other three approaches and the evaluation criteria. Finally, Section 6
concludes and refers to future research plans .

2 The need for situational method engineering: a motivation
example

As already noted, situational method engineering deals with creation of
methodologies that best fit given situations. The situation can be given as a
vector of different properties related to the project, the customer, the developing
team, the developing organization, etc. Examples to researches that list such
properties can be found at [0, 0). To motivate the need for situational
methodologies, consider the following simple Obsert Oglesby case [0).

Obsert Oglesby is an art dealer who requests an information system to assist
him in buying and selling paintings for his gallery. After consulting with an
independent consultant, Obsert decided to tum to a well-known development

132 Anat Aharoni and Iris Reinhartz-Berger

company in order to buy a system which will enable him calculating the minimal
and maximal prices of a painting and will also serve in detecting new trends in
the art market as soon as possible. The development company which was chosen
is familiar with the art world and has developed similar systems. The company
mainly works with eXtreme Programming (XP) [0] for small projects which
need to be developed quickly in an environment of rapidly changing
requirements and with RUP [0] for complex projects which are developed by
large teams and require detailed documentation . Since Obsert's case does not
completely fit to any of these options, the development team decided to use
suitable fragments from both methodologies and to adapt them for the particular
case. In order to succeed in this mission, the development team has to tackle
three main questions: (1) How to divide a methodology into different fragments
that can be reused in various contexts? (2) What are the properties that best
characterize each fragment? (3) How (or to what extent) can different fragments
be adapted and organized into a complete, consecutive methodology? In the
context of fragment representation, these questions can be transformed into the
following ones: (1) What are the expressiveness and consistency requirements
needed for specifying all kinds of method fragments? (2) What are the
situational cataloguing abilities required to be supported at the fragment
representation level? (3) How (or to what extent) can the possible adaptation
(that a fragment may undergo in a situational methodology) be constrained?

Returning to our Obsert's case, the required system is small, the client (Obsert
Oglesby) requests his involvement during the development process, and detailed
documentation, especially of the business model and system requirements, is
required. Hence, the fragments which may be found as relevant to the early
development stages of the requested system are "extract requirements" and
"build a business model" from RUP and "on-site customer" from XP. The
"extract requirements" fragment may be selected due to the generality of the
requirements and their extraction by an external consultant. The "building a
business model" may be chosen due to the explicit request of the client to
receive a detailed documentation of his business. Finally, the "on-site customer"
fragment may be selected due to the client's request to be involved throughout
the entire development process. However, since the company has already
previous obligations and since the client is relatively small, the "on-site
customer" fragment cannot be followed literally. Instead, the company may
suggest that the client representative will have the authority and ability to
provide information pertaining to the system and to make timely decisions
regarding the requirements and their prioritization. However, he/she will not be
able to physically present in the development site. This limitation will be
overcome by creating a time schedule that defines slots and places for
collaboration during the development period.

In order that all these selections and modifications will finalize in a complete,
consecutive methodology, the way the fragments are presented and constrained
is very crucial. In the next section, we list and elaborate on evaluation criteria for
examining and comparing fragment representation approaches .

Representationof Method Fragments: A Comparative Study 133

3 Evaluation criteria for fragment representation approaches

The set of evaluation criteria listed here aims at supporting correct, complete,
and consistent representation and cataloguing of method fragments, as well as
supporting the successive activities of retrieval, adaptation, and building
situational methodologies. These crite ria were derived from works on qualities
of representation models or languages, especially from [0] and [0].

Expressiveness. Although using the same term, fragments differ from each
other. Brinkkemper et al. [0] refer to three orthogonal dimensions when
modeling and classifying fragm ents : perspective, abstraction, and granularity.
According to the perspective dimension, a fragment can be either product- or
process-oriented: product fragments relate to the structural and static aspects of
methodologies (e.g., deliverables, documents, and models), whereas process
fragments capture the behavioral and procedural aspects of methodologies (e.g. ,
stages, tasks, and activities to be carried out) . The abstraction level of a
fragment can be conceptual or technical : conceptual fragments are descriptions
and specifications of methodology parts, while technical fragments are
implementations of operational parts of the methodology in the form of tools.
Finally , a fragment can reside in one of five possible granularity levels : method,
stage , model, diagram, or concept. The expressiveness of a fragment
representation approach can be measured as how much of this variety of
fragment types can be specified using the approach. For specifying process
fragments, for example, means for expressing branching, loops, and concurrency
are required. For expressing fragments at different granularity levels,
encapsulation and generalization mechanisms are required for combining several
concepts to one (aggregated or generalized) concept. Furthermore, the relations
between different fragments, mainly the interactions between process and
product fragments, should be specified somehow.

Consistency. Consistency refers to the fact that the same fragment can be
(re)used in different contexts, e.g., while describing a specialized or an
aggregated fragment, while defining the relations between process and product
fragments, while adapting the fragment to the situation at hand, etc. It is
important that all these occurrences of the fragment will be consistent with each
other, meaning that changes in one place will be applied to all the other places as
well . However, if those changes regard to a specific situation, a separate version
of the fragment should be maintained.

Formalism. There are different ways to represent things: graphically,
textually, logically, mathematically , etc . Generally speaking, representation
formalism is a set of syntactic and semantic conventions that allows describing
and specifying things. It can be formal , semi-formal, or completely informal,
affecting comprehensibility and non-ambiguity of the specifications. In the
context of situational method engineering, the presented fragments have to be
retrieved, adapted, and tailored latter and, hence, it is important that their
representation will be formal or at least semi-formal.

Situational cataloguing. In order to make fragment retrieval easy, effective,
and optionally (semi-)automated, fragment representation approaches should
wisely catalogue and index the different fragments according to characteristics
and features that may define and distinguish different situations. This criterion
checks the ability to describe for each fragment the different organizational,
human, and project-related features that best characterize it and are likely to be

134 Anat Aharoni and Iris Reinhartz-Berger

used for retrieval purposes [0, 0]. These lists of characteristics may be modified
over time and location (the developing organization) and may vary when
different types of fragments are considered.

Adaptability and flexibility to changes. Situational method engineering
mainly deals with two ways for integrating fragments to new methodologies,
customization and assembling. Customization includes operations that have to be
carried out on the original method fragments in order to create new (usually
slightly different) versions of that fragments that suit the given situations.
Assembling deals with attaching and connecting methodology fragments, while
transformation and gluing parts between the fragments can be added in order to
create complete, consecutive methodologies. This criterion checks the ability to
support these operations in the representation level.

Comprehensibility. This criterion checks how easy it is to learn and use the
fragment representation approach. This is derived from the approach complexity
(number of different concepts), ambiguity, and expected stakeholders (users) .
Although both regular and situational method engineering are perceived as the
responsibility of method engineers only , involving other stakeholders, such as
software engineers, developers, and even managers, in the associated method
engineering processes and decisions may improve their commitment to the
chosen constructed methodologies, so they will actually follow them.

Connectivity. Connectivity measures the ability of the method to tailor
fragments derived from different source methodologies [0]. Since different
methodologies have different assumptions and characteristics, the ability to
represent fragments from various source methodologies is not a trivial task .
Furthermore, assembling them to consecutive situational methodologies often
requires maintaining transformation and gluing fragments. Although this type of
fragments can be analyzed and described in terms of product and process
fragments, it has also special requirements which need to be considered by the
representation approach, such as storing the associated source and target
fragments.

4 Fragment representation approaches

There are several works in the area of method engineering and situational
method engineering whose focus is fragment and/or methodology representation.
We chose to use three particular approaches in this paper which are consistently
cited in the literature and refer to (at least) several of our evaluation criteria,
discussed in Section O. Next, we briefly present each approach, exemplify how it
represents the "extract requirements" fragment from RUP , and discuss its
benefits and limitations according to the seven evaluation criteria. The main
outcomes of this comparison are summarized in the appendix.

4.1 An assembly-based situational method engineering approach

The assembly-based situational method engineering approach [0] aims at
supporting the development of web-based Content Management Systems (CMS).
The four main stages in this approach are identification of the implementation
situation, selection of candidate methods, analysis and storage of relevant

Representation of Method Fragments: A Comparative Study 135

fragments in the method base , and assembly of the fragments into a complete
methodology using route maps for tuning the fragments to the situation at hand
[0]. Regarding fragment representation, the approach uses process-data
diagrams, which integrate the process model described by UML activity
diagrams with the product model described by UML class diagrams. The
relations between these two parts are described by dotted arrows that connect
activities with the artifacts they create or adjust. Figure I for example, describes
the "extract requirements" fragment in this approach.

Several adjustments have been made to the standard UML notation in this
approach. First, the approach allow s specifying unordered activities. The sub
activities "set priority", "estimate risk" , and "set status" in Figure I, for example,
are unordered, but they are all sequential to the sub-activity "categories to
functional/nonfunctional requirements" . Second, the approach uses three
different types of symbols for indicating simple vs. compound concepts. A
simple concept, denoted by a rectangle, is atomic and, hence, does not contain
other (sub-)concepts. An open concept, denoted by a white shadowed rectangle,
consists of a collection of (sub-)concepts. Finally, a closed concept, denoted by a
black shadowed rectangle, is an unexpanded compound concept, which con sists
of (sub-)concepts in other fragments. "Value", "Requirement", and "Priority" in
Figure I are simple concepts, "Domain Glossary" and "Requirement Document"
are open concepts, and Business Model is a closed concept.

Refine the requ irement and y _---'----------'----
L~!~~J- - ------ -- ---- -------- --. ,'

....

1."

- - - - -_ . -- - - _ .~ - -~~~===~
,

List requir ements

Construct a domain g lo5sarf

(

I C;3t" g:.riZf.ld to functionaFnon fUllctionai ~

I

-J $ -Jt~
[

scanrelenllll$ft~1f.Make I f Anat~'$5 di1l.retft] , ,'
j ml.rvle....-s ! ,jOOJmoilll , ' •

-J., .~. . -J.,'

...v

I,-__,......,,,..-.....r~- - - - - • • - - - • • - - - - - - - - - -
S"'t priorities I [S",t stanrs tunctionatnon 1

. functlCfle:.11rooUIrrfomoots _

Figure I. The "extract requirements" fragment of RUP expressed in the
assembly-based situational method engineering approach [0].

The approach enables expression of both process and product fragments, as
well as the mutual relationships among them. It uses a well known semi-formal,
modeling language (UML) with minor changes, which might slightly affect the
approach comprehensibility and accessibility. However, it only partially refers to
consistency issues by introducing closed concepts, and does not enable
specification of the allowed adaptations and changes that a fragment may
undergo when assembling or customizing it to a given situation. It further misses

136 Anat Aharoni and Iris Reinhartz-Berger

the ability to specify the situational features that characterize each fragment,
leaving the selection process to the user (i.e ., the method engineer) .

4.2 The OPEN Process Framework (OPF)

The OPEN Process Framework (OPF) [0] is a large repository for supporting
flexible creation of numerous tailored methodologies. Although OPF started as a
method engineering approach, we decided to choose it in our research due to its
good informational website, its large, diverse, and free repository, and its lately
adaptation to situational method engineering requirements.

The OPF consists of three main parts, which are : (1) a repository of reusable
method components documented as hierarchical linked Web pages, (2) a meta
model describing the organizational structure of the repository, and (3)
construction and usage guidelines. Being a general method engineering
approach, OPF does not explicitly refer to method fragments. However, work
products, which are significant elements that are described using fields such as
contents, stakeholders, and conventions, can be considered as product fragments.
Work units, on the other hand, which are described using fields such as
completion criteria, tasks, and work products to be produced, can be considered
as process fragments. To implement the "extract requirements" fragment, for
example, one can consider the following Web pages from the OPF repository:
"application requirements engineering" and "business requirements
engineering", which are sub-activities of the "requirements engineering" work
unit, and "requirements work product" which is a sub-work product of the
"requirements" work product.

The main advantage of this approach is its deeply detailed elements which
include a wide variety of aspects that are relevant to each fragment, e.g., goals,
preconditions, completion criteria, guidelines, etc. The approach can and does
support different types of fragments at different granularity levels. The
documentation of the various fragments can also be used for assembling and
customizing them into complete methodologies. However, this documentation
may be too long, informal (expressed in text), and complex to comprehend and
learn to use. Furthermore, the approach does not (semi-)formally support crucial
concepts, such as branching, loops , and concurrency, assembling, evolution
tracing, or situational cataloguing.

4.3 The scenario-based approach

The scenario-based approach [0] refers to method scenario chunks rather than
to fragments. Differently from fragments, a method chunk tightly connects both
product and process parts , allowing specifying mutual relations between them.
The scenario method base is organized in two levels, the method knowledge and
the method meta-knowledge. The method knowledge level includes for each
chunk its interface and body . The chunk body describes the product to be
delivered and the guidelines to be applied in order to produce the product. The
guidelines are defined as hierarchies of related contexts which are connected
through three types of links: refinement, composition, and action. The chunk
interface describes its conditions for applicability to different situations and the
'intention' the chunk aims to fulfill. The method meta-knowledge aims at

Representation of Method Fragments: A Comparative Study 137

supporting the retrieval process and deals with the context in which method
knowledge can be (re)used. This is done by using chunk descriptors which
express the situation to which the chunk is suitable in terms of the application
domains and the desi gn activities in which the chunk can be reused. The chunk
interface, body, and descriptor are specified using Standard Generalized Markup
Language (SGML) [OJ.

exemplifies the approach for the "extract requirements" chunk. For the sake of
clarity and brevity, we brought here only parts of the SGML description,
emphasizing the representation template.

(a) <DESC RIPTOR_SIT UATI ON>
<APPLICATION_DOMAIN> all types of application <IAPPLIC ATION_DOMAIN>
<DESIGN_ACTIVITY> requirements <I DESIGN_ACTIVITY >

<lDESCRIPTOR_SITUATIO N>
<DESCRIPTOR_INT ENTION>

<VERB> capture <N ERB>
<TARGET role=«rcsult» Type=«non-sccnario-based» >App . Requirements
<lTARGET>
<COMPLEX_MANNER>

<VERB> Produc e </VERB>
<TARGET role=<<result>> Type =<<scenario-based> >...>requirements doc.
<ITARGET>
<SIMPLE_MANNER> by the requirement workflow of RUP
</SIMPLE _MANNE R>

<I COMPLEX_MANNE R >
</DESCRIPTOR INTENTION >

(b)
<C HUNK name>« produce requirements document »
typer-c cformal> informal descripti on = « produce requ irements document by obtain an

initial understanding a/the domain than draw up an initial set ofrequirements andfinally refi ne
the requ irem ents art ifacts » >

<GRAPHICAL_REPRESENTATION ><AHR EF=«fileName .gif.» ><1A>
</GRAPHICAL_REPRESENTATION>

<INTERFACE>
<CHUN K_SITUATION > <CHUNK_SITUATION>

<ICHUNK_INTENTION> <CHUNK_INTENTION>
</INTERFACE>
<BO DY>

<PRODUCT name>« Requirements document»
informal dcscription>c informal description of the requirements docum ent
structure>»> . ..

<I PRODUCT>
<PRODUCT_GRAPHICAL REPRESENTATION>
.
<I GUIDELINE > <GUIDELINE>

</BODY>
<ICHUN K>

Figure 2. The "extract requirements" chunk of RUP expressed in the scenario-based
approach: a partial SGML code of (a) the chunk descriptor (b) chunk interface and body

This approach supports specification of method chunks, including their
product and process parts, at different granularity levels . It uses a (semi-)formal
language in the form of SGML code that might be complex to understand and
manage by human users. Each chunk can be reused in a more complex
aggregated chunk. Furthermore, the approach enables adapting and changing
chunks to specific situations by supporting the definition of parameters within
the SGML code. However, the tight coupling between product and process
fragments in the approach may cause redundancy and difficulties in reusing the

138 Anat Aharoniand Iris Reinhartz-Berger

same process or product fragment in different contexts, raismg consistency
issues that must be handled. Furthermore, at the current stage, the situational
cataloguing capabilities of the approach are limited to the application domain
and the relevant design activities only.

5 A domain engineering-based approach for fragment
representation

As discussed in the previous section, the main limitations of existing method
representation approaches are in their user accessibility and comprehensibility,
their situational cataloguing abilities, and their ability to constrain the structure
and behavior of fragments in order to support a smooth transition to the
successive situational method engineering activities (mainly assembling and
customization). In order to overcome these limitations, we propose a holistic,
visual, domain engineering-based approach for managing, representing,
retrieving, customizing, and integrating method fragments in order to create new
methodologies that best suit a situation at hand. The fragment representation part
of this approach provides the ability to express different types of methodologies
and their fragments, their associated characteristics and values, their pre- and
post-conditions, and other fragment-related requirements, such as mandatory
participants, recommended (optional) participants, triggers, etc. This is done by
using a domain engineering approach called Application-based DOmain
Modeling (ADOM) and the standard notation ofUML 2.0 [0].

Domain engineering [0] is a software engineering discipline concerned with
building reusable assets and components that fit to a family of applications,
termed a domain. The purpose of domain engineering is to identify, model,
construct, catalog, and disseminate a set of software artifacts that can be applied
to existing and future software in a particular application domain. As such, it is
an important type of software reuse, knowledge representation, and validation.
ADOM [0, 0] is a particular domain engineering approach perceiving that
applications and domains are similar in many aspects, thus it enables modeling
domains with regular software engineering techniques. The application models
use domain models mainly for creation (instantiation, reuse) and validation
purposes. ADOM is based on a three layered architecture: application, domain,
and language. The application layer consists of models of particular applications,
including their structure and behavior. The language layer includes meta-models
of modeling languages, such as UML. The intermediate domain layer consists of
specifications of various domains (i.e., application families) . These
specifications describe the commonality as well as the variability allowed among
applications in the domain. The ADOM approach further enforces constraints
among the different layers; in particular, the domain layer enforces constraints
on the application layer, while the language layer enforces constraints on both
domain and application layers.

ADOM is a quite general architecture and can be applied to different modeling
languages that support element classification. ADOM-UML, in which ADOM is
used in combination with UML 2.0 [0], was chosen in this context due to the
familiarity and establishment of UML in the software development area.

Representation of Method Fragments: A Comparative Study 139

5.1 ADOM-UML

In ADOM-UML, UML stereotypes are used both for classifying application
elements according to their relevant domain elements and for specifying the
allowed variability among applications in the domain.

In the language layer, a new stereotype of the form « multiplicity min=m
max = n> is defined in order to represent how many times, constrained by the
lowest and upper most multiplicity boundaries, a model element of this type can
appear in a specific context'.

In the domain layer the main concepts of the domain and the relations among
them are specified using UML. The allowed variability within the domain is also
specified in this layer by attaching multiplicity stereotypes to the various domain
concepts and by adding additional logical constraints (such as "or" to denote
variations and "xor" to denote alternatives) .

In the application layer, the stereotype mechanism is used in order to classify
the appl ication elements according to the pre-defined domain elements. The
classified application elements are required to fulfill the constraints induced by
their classifying domain elements at the domain layer. In addition, the ADOM
approach allows adding to application models non-classified elements which are
specific to the application at hand and, hence, do not appear in the domain
model. These additions are allowed as long as they do not violate the domain
constraints.

5.2 Representing and cataloguing fragments in ADOM-UML

The structure and guidelines of fragments are described within the domain layer
of ADOM, while their instantiations, which specify particular situational
methodologies, are defined in the application layer. In these two layers , process
and product fragments are respectively described by UML activity and class
diagrams, while the lowest (simple, atomic) fragments may link to Web pages,
similar to those exist in the OPF repository. The dependencies among process
and product fragments can be concluded from the consistency constraints
required to be maintained between the relevant class and activity diagrams in
UML (e.g., the classes of object nodes that appear in the activity diagrams have
to be described in the class diagrams). Furthermore, the different features that
characterize each fragment are represented and associated to the fragment
models as UML templates, i.e., parameterized elements that can be used to
generate other model elements using binding relationships. The exact lists of
features that characterize the different types of fragments can be derived from
works that were done in the area of situational method engineering, such as [0,
0], and from practitioners.

Figure 3 and Figure 4 respectively exemplify process and product fragments
taken from RUP [0]. Figure 3 describes the "extract requirements" process

I For clarity purposes. we defined four commonly used multipli city groups on top of this stereotype:
« optional many» , wher e min=O and maxvunboundcd, « optional single» . where min=O and
max=l , « mandatory many». wher e min=1 and max=unbounded, and « mandatory single».
where min=max=l .

140 Anat Aharoni and Iris Reinhartz-Berger

fragment, including its optional inputs, required participants, expected
deliverables, skeletal steps and flow of control'',

<<work11ow1ragnenb> !«~t10nal mal"lY» I Extnc:t requirements

« lnp.Jt;.>
« maM llOry m'"'Y» J « ",tlOnal many»

client Inrtlal I «worknow ste p» «~roCiJCb>

Informatlm

~
obt3Jnan InItlaJundentarldlng of lit. domain ~

contract

l-edJ
\It

/« mandllOry m'"'Y» ~ « mandao ry mal)'» J
«partJclpar1» <<wor1d1owstep»

cuent draw~ anlntuaJ l.of~lntm..ts

(\ <..._<WYm~··1
Are hereQuremel1:

<<'N:lrt to'Wstep• •
satisfactory! :-7 «manoa!:ory Single»

Oelrnltng the scope lYeSJ « atr1'act»
of the proposed projed I

iNOJ requirement oocurnere

~.
[intld)

« maM atory m'"'Y» I ",c;ma ndatory l'Tl!lr'IYn /'« parbClpart» 1\ <<woI1cnOW'step>JO

tutlXe use" R~l'IAth ereq ulfP.m!'nlS Mtraet 1/V-
I \1/ \1/

« manda ory mcrrp > «mandaorym'"'Y»]
« maM a ory m'"'Y» r <<work1'low step» <<wor1d1QW step»

«pamclpart» renne tne set DDtaina aeeperurnerst7J1ding
teM'! member atrequirements atthedoman

\1/ \1/

(b) <SIT UATI ON_C HARACT ERISTI CS fragmentType=«proeess»
fragmentName=«extraet requirements» >
<PROJECT_CHARACTERISTICS>

<APPLICATION_DOMAIN >AIl</APPLICATION_DOMAIN>
<PROJECT_SIZE>greater or equal 2 sub syste ms</ PROJEC T_SIZE >
<FLEXIBILITY_TO_CHANGES>low</ FLEXIBILITY_TO_CHANGES>

</ PROJECT_CHARACTERISTICS>
<METHOD_CHARACTERISTICS>

<SOURCE_METHOD>RUP</ SOURCE_M ETHOD >
<DEVELOPMENT_ACTIV ITY>requirements
</D EVELOPMENT_ACTIVITY>

<PRE-ACTIVITIES>signed eontraet</ SOURCE_METHOD >

</ METHOD_CHARACTERISTICS>
</SIT UATIO N_CHARACTERISTICS

Figure 3. (a) A descripti on of the "extract requirements" process fragment of RUP in the
ADOM-UML-based approach. (b) Its associated characterization file.

Figure 4 describe s the "requirement docum ent" , which is an artifact that may
be produced by the "extrac t requirements" fragment or another process fragment.
The fragment model constrains the general structure of a requirement document,
including its possible variability, without referring to its production way. A
requirement document , for example, may relate to several business models and
business dom ain glossa ries, which are also types of artifacts. Figure 4 also
specifies, using UML templ ates, the situations in which usage of the

Note that UML enables associating separated icons to the various stereotypes in order to help
differentiate among them (e.g. humans vs. deliverables). Howe ver, in this paper, we preferred
using the full (mea ningfu l) stereotype labels so that readers who arc not familiar with ADOM
will easily understand the models.

Representationof Method Fragments: A ComparativeStudy 141

"requirement document" product fragment is desirable: the project life cycle is at
least one year, the project size is at least two sub systems, and the flexibility to
change is low. As this description might become long and embedding it within
the grap hics may badly affect the comprehensibility of the diagram, we also
support the possibility to define the situations to which the fragment is suitable
in a separate XML or SGML file. Figure 3 (b) exemp lifies such a
characterization file for the "extract requirements" process fragment.

I «optional many» I
I

« optional many»

I
« mandatory many» « artifact> :>

« artifact»

« partlclpart» business model
business domain glossary

tea m memb er
«oononai many»

« optIonal m~ny

«mandatory single» « identifier» -particlpantlD ... « relates to»
« relates P»

~------- - - ---- -- - - - -,

based on
Iprojec1Li1eCycle _ greBter or eq uar 1ye ar USES

:projectSize ""greater or equal aeuo svstems :
IlIe)dbil ltyToC h8 nge s . low J« mandatory many» «artifact»

<<is resoonstote nn» requirement document -

I manages
« mandatory sing le» « identifier» -co cumena0

« mandatory many» «mandatory single» « lnformationDate» -creationDate

« participart» «mandatory many» « informatlonDate>:> -upcateoats

manager «optional many» « hghLeveIOescription» -comment

«optional single» « participantlnfo» -rarx
' <manda Ory many»

«mandatory many» <dl"Iandatory many»

« participant» « artifactEle ment»

sy stem analys t
requirement

« ootlonal smnles « nartlcinantlnfo» -roie
eerr enoatcrv s1ngle~:> <:d dentt ier» -reuuirementm

l~mandatOry many»

<dTlandatory s1n g le~:> <:<:elementl nformati on:» -eescretlon
eemandatnty single» <:<:elementl nformation:>:> -tvpe . {fun ctional non·functional }
« mandatory singlen <"<elementlnformation :» -crtonfv , numeric

<<is responsible on» « optional maf1l/ >:>o eememnrormeucn, -requestingUser : FutureUsar

WOr!<Son

Figure 4. A description of the "requirement document" product fragment of RUP in the
ADOM-UML-based approach

<,<optional many,, >

I
reia e to

product t ragment

<><mandatory single » -icernr ter
I--« optional many» -rnormanonpate

«optional many» -highLevelDescnpuon

« mandatory many» I I
is responsible on I « mandatory many,....> I I <~opti onal many» I

I I artifact by product
« mandatory many» ,

p artic ip ant

~<mandatory single» -ioerr mer
«:ootional man ~>). -narttcmennnro

<;<,maM atory malY»

I artifactElement

« mandatory many» « mandatory single;:,., - identifier

is responsible on < <mandatory many» -elernennntormation

Figure 5. A description of an artifact, which is a specialization of a product
fragment, in the ADOM-UML-based approach

Note that all the stereotypes that are used in these diagrams, except from the
multiplicity stereotypes discussed earlier, are meaningful concepts in the
situational method engineering area . Hence, they can (and may) be generalized
and constrained, so that the particular method fragments will be specified in a
uniform way. These specifications can be done with in ADOM-UML as more

142 Anat Aharoni and Iris Reinhartz-Berger

general domain models. Figure 5, for example, presents a partial model of an
artifact. As can be seen, this meta-model is in yet a more abstract level than the
fragment models depicted in Figure 3 and Figure 4, allowing its usage for
different kinds of artifacts, e.g., business models and domain glossaries.
However, note that the model given in Figure 4 uses the stereotypes defined in
Figure 5 and fulfills all the constraints imposed by this figure.

5.3 Analyzing the ADOM-UML-based approach according to the

evaluation criteria

Analyzing our fragment representation approach according to the seven
aforementioned criteria raises some strengths and limitations that are discussed
here and summarized in the appendix, along a comparison with the other
fragment representation approaches.

Referring to expressiveness, the ADOM-UML-based approach represents
both process and product fragments in different granularity levels. The abilities
to zoom into activities and to decompose classes in UML are employed in order
to specify particular fragments to the required level of details without losing the
"big picture" of the fragment as a whole. Furthermore, our approach enables
refining the fragment types, such as artifacts and workflow fragments, and
representing them in domain models in order to capture the relevant knowledge
and to formally constrain the creation of specific fragments of those types. The
separation of fragments into different specifications (sometimes expressed by
different diagram types) enables using the same fragment in several contexts,
e.g., a product that is used by two processes, while preserving autonomy of each
part. However, as the fragments might become very complex, this approach also
has to deal with visibility problems in the diagrams, both in developing the
models and in understanding them . Separating a specification into several
diagrams some of which are more specific views of the others is one way to
tackle this obstacle.

Regarding consistency, the ADOM-UML-based approach allows a fragment
to be (re)used in different contexts by different operations and enables managing
separated fragment versions according to specific situations. Furthermore, it
enables preserving references from derived fragments to their source ones,
helping easily identify the reused vs. new fragments, original vs. customized
fragments, and the gluing and transformation fragments. In general, the approach
provides full support for reuse and composition operators. However, it inherits
from UML consistency problems among its diagram types [0].

As for situational cataloguing, the ADOM-UML-based approach supports
comprehensive and dynamic definition of organizational, human-related, and
project-related characteristics, which can be associated to the different fragments
and fragment types using UML templates or associated XML files . These
features may be used latter for retrieving and assembling the fragments.

Referring to formalism, the ADOM-UML-based approach is visual and semi
formal. However, since it applies the well-known modeling language UML, its
accessibility to different types of users, such as developers or managers with
technical background, is increased over other more formal fragment
representation approaches. As noted, the approach accessibility is important for
increasing the probability of using the resultant situational methodologies and

Representation of Method Fragments: A Comparative Study 143

for making the process of learning and using the fragment representation method
easy (earlier referred to as the comprehensibility criterion).

Regarding adaptability and flexibility to changes, the ADOM-UML-based
approach enables all its fragment types to be specialized, adapted, and
customized. These operations create new fragments that can be modified as
requested by allowing specification of gluing and transformation fragments,
customization parts, etc., but without violating the core constraints of the
fragment types and of the fragments from which they were derived.

Regarding connectivity, the uniform representation of all fragments in the
ADOM-UML-based approach enables assembling and connecting fragments that
are derived from different source methodologies as long as their pre- and post
conditions fit. Even if they do not exactly fit, the approach allows defining
transformation and gluing fragments that help create complete and consecutive
situational methodologies.

6 Conclusions and future work

As there is no (and probably will not be) a single universally applicable
methodology, the importance of situational method engineering and fragment
representation approaches has been increased. In this paper, we listed seven
important criteria for evaluating and comparing fragment representation
approaches, used them for analyzing the benefits and limitations of three known
approaches, and proposed a new approach that aims at overcoming the
shortcomings and offering some additional benefits. In the new ADOM-UML
based approach, the fragments are generalized and specified in a domain layer,
while the situational methodologies, which assemble and customize the relevant,
retrieved fragments, are specified and modeled in the application layer. Due to
space limitations, we have not exemplified here a situational methodology, but
such an example can be found at [0] along with a description of the supporting
CASE tool. Fragment types are also generalized in ADOM as more abstract
domain models that guide and constrain the creation of particular fragments of
those types . We used UML class and activity diagrams in order to be able to
express both product and process fragments and to maintain their consistency.
Our comparative analysis shows that the ADOM-UML-based approach supports
comprehensive and dynamic definition of characteristics and situational
cataloguing information; it better guides the creation of different types of
fragments; it is accessible to both method engineers and other potential
stakeholders; and it may enable a smooth transition to the successive situational
method engineering activities (mainly assembling and customization) by
constraining and guiding fragment creation.

As for the future, we plan to elaborate the evaluation criteria to other
situational method engineering activities, as well as to show how our extended
ADOM-based approach supports these activities in a semi-automatic manner.

References
I. Aydin MN, Harmsen F. Making a Method Work for a Project Situation in the

Context ofCMM. LNCS 2559, Springer, pp. 158-171,2002.
2. Brinkkemper, S. Method Engineering: Engineering of information systems

development methods and tools . Information and Software Technology, 38(4), pp.
275-280, 1996.

144 Anat Aharoni and Iris Reinhartz-Berger

3. Brinkkemper, S. Saeki, M., Harmsen, F. Meta-modelling based assembly
techniques for situational method engineering. Information Systems, 24(3), pp.
209-228. 1999.

4. Bryan, M. SGML - An Author's Guide to the Standard Generalized Markup
Language. Addison-Wesley publishers Ltd., 1995.

5. Carnegie Mellon Software Engineering Institute. Domain Engineering: A Model
Based Approach, http://www.sei.cmu.edu/domain-engineering , 2002.

6. Extreme Programming Web Site, Extreme Programming: A gentle introduction,
http://www.extremeprogramming.org, 2006.

7. IBM, Rational Unified Process, http://www-306.ibm.com/software/awdtools/rup/
8. Krogstie, J. and Arnesen, S. Assessing Enterprise Modeling Languages using a

Generic Quality Framework. In J. Krogstie, K. Siau, & T. Halpin, (Eds.),
Information Modeling Methods and Methodologies, Idea Group, pp. 63-79, 2005.

9. Krogstie, J., Lindland, 0.1., and Sindre, G. Defining Quality Aspects for
Conceptual Models. In E. D. Falkenberg, W. Hesse, & A. Olive (Eds.), Proceedings
of the IFIP8.1 working conference on Information Systems Concepts (ISC03):
Towards a consolidation of views, pp. 216-231, 1995.

10. Malouin, J.L., Landry, M. The mirage of universal methods in system design.
Journal of applied systems analysis, 10, pp. 47-62, 1983.

11. Mirbel, I. Rethinking ISD methods: Fitting project team members profiles. I3S
technical report I3S/RR-2004-13-FR, 2004. Available from
http://www.i3s.unice.fr/...-.mirbellpublis/im-isd-04.pdf.

12. Mirbel, I., Method chunk federation. Available at
http://www.i3s.unice.fr/...-.mhlRR/2006/RR-06.04-I.MIRBEL.pdf. 2006.

13.0MG, "Unified Modeling Language: Superstructure", Version 2.0, 2005,
http://www.omg.org/docs/formall05-07-04.pdf

14. OPEN Process Framework (OPF) Web Site. http://www.opfro.org/.
15. Ralyte, J., Deneckere, R., Rolland, C., Towards a generic model for situational

method engineering, CAiSE 2003, LNCS 2681, pp. 95-110, 2003.
16. Reinhartz-Berger, I. Conceptual Modeling of Structure and Behavior with UML

The Top Level Object-Oriented Framework (TLOOF) Approach, 24th International
Conference on Conceptual Modeling (ER'2005), LNCS 3716, 1-15,2005.

17. Reinhartz-Berger, I. and Aharoni, A. Representation of Method Fragments: A
Domain Engineering Approach. Accepted to the EMMSAD'07 workshop in
conjunction with CAiSE'07, 2007.

19. Reinhartz-Berger, I., Sturm, A. Behavioral Domain Analysis - The Application
based Domain Modeling Approach, UML'2004, LNCS 3273, pp. 410-424, 2004.

20. Rolland, C., Plihon, V., Ralyte, J., Specifying the reuse context of scenario method
chunks, Proceedings of the CAiSE'98, LNCS 1413, Springer, pp. 191, 1998.

21. Schach, S. R. An Introduction to Object-Oriented Analysis and Design with UML
and the Unified Process. McGraw-Hill/Irwin, pp. 56, 2004.

22. Sturm, A., Reinhartz-Berger, I., Applying the Application-based Domain Modeling
Approach to UML Structural Views, ER'2004, LNCS 3288, pp. 766-779,2004.

23.Wistrand, K. Karlsson, F. Method Components - Rationale Revealed. Proceedings
of the CAiSE 04, LNCS 3084, Springer, pp. 189-201,2004.

24.Weerd, I. Brinkkemper, S., Souer, J., Versendaal, J. A situational implementation
method for web-based content management system-application: method
engineering and validation in practice. Software process: improvement and practice
11(5): 521-538,2006.

Represent ation of Method Fragments: A Comparative Study 145

Appendix: The main outcomes from the comparative analysis
of the four fragment representation approaches

Criterio n Weerd et al. [0] OPF [0] Roll and et al. ADOM-UML-
[0] based approach

Product and Product and Method Product and process
process fragme nts process chunks; fragments; different

'"
and the relations fragments; different granularity levels;

'" among them; differe nt granularity supports branching,..,
t: different granularity levels; looping and..,
>.;;; granularity levels; levels; does not suppo rts concurrency;
'".., unordered formally support branching and preserves references...
I:l. activities and three controlling loops to origina l>(

U.l types of concepts constructs fraa rnents
Does not support Does not support Each fragme nt Full support for
reuse & assembly evolution tracing can be reused reuse and

e-,
operations, only while compositionu

t:
E the overall route aggregating operations
'".;;; maps contr ibutes fragments
t:

to prevent from0
U inconsistencies

A visua l, semi- A structured A semi A visual, semi-
S forma l UML-based hierarchy of Web structured, formal UML- based

. ~ language; Some pages integra ted markup language; fragment0;;
§ unique adjus tments into a visua l langu age types are specified
0 are introduced meta-model (SG ML) by domain models

"'"'
Limited to 7 No explicit Limited to 2 Supports dynamic

OJ) characterist ics that support characteristics: lists of
0;; t: refer to the application characteristicst: .-o ::l organiza tion, the domain and according to the. _ OJ)

- 0ol _
technique and the design activity fragment typesB .'S

. - ol context<FJ o

Supports Provides only Supports Supports
0 customization of construction and parameters specia lization,

0 :'= the process-data usage guidelines adaptation, and. - . - 00

] P- ~ diagrams and the customization of
.5 ~ ~
1:l.P+: ..c: route maps are fragments
.a -o u flexible to<e: t: 0'" - situational chanzes

Only the unique The repository The visual part The used language
g adjustments to structure helps facilitates is familiar to the
:.0 UML have to be learn and use the fragment different
.;;;

studied and fragments; usage and stakeholders,t:..,
com prehend provides learning; does including method..c:..,

information on not support and software...
c,
S stakeholders' stakeholders' engineers
0

U involvement involvement

Does not include Does not provide Does not Supports
any rules for rules or provide rules customizing and

0
connecting guidelines for or guidelines assembling of

:2: fragments; the connecting for connecting fragments, as well
t) route maps support fragmen ts fragments as speci fication of..,

assembling of transformation andt:
t:

fragments gluing fragments0
U

Taxonomic Dimensions for Studying
Situational Method Development

Mehmet N. Aydin", Frank Harrnsen'' and Jos van Hillegcrsberg'
1 University of Twente, Department ofInformation Systems and Change

Management. P. O. Box 217, 7500 AE, Enschede, The Netherlands,
{m.n.aydin, j.vanhillegersberg}@utwente.nl

2 Cap Gemini, Practice Manager Technology Advisory Services, The
Netherlands, frank.harmsen@capgemini.nl

Abstract. This paper is concerned with fragmented literature on situational

method development, which is one of fundamental topics related to
information systems development (ISD) methods. As the topic has attracted
many scholars from various and possibly complementary schools of thought,

different interpretations and understandings of key notions related to method
development are present. In this paper, we regard such understandings as both
challenges and opportunities for studying this topic. Upon the extensive review
of relevant research, this paper shows how this literature fragmentation has
resulted in and what needs to be done to make sense of the various
understandings for studying situational ISD methods. For the latter, we

propose the use of a number of taxonomic dimensions. We argue that these
dimensions can help to ease the conduct of literature review and to position
disparate research endeavors concerning situational method development

properly. In particular, we discuss three basic studies to demonstrate how the
taxonomic dimensions can be useful in studying the subject matter.

1 Introduction

IS development (ISD) methods have been of interest to IS scholars and practitioners
for a long time since they are essential to structuring method users' thinking and
actions in projects and achievement of desired information systems. Among other
topics, there is a specific subject, which we call method development, addressing all
kinds of problems, issues, and solutions with ISD methods. This particular subject

Please use the following format when citing this chapter:

Aydin, M. N., Harmsen, F., van Hillegersberg, J., 2007, in IFIP International Federation for Information Processing,

Volume 244, Situational Method Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S.,

Henderson-Sellers B., (Boston Springer), pp. 146-160.

Taxonomic Dimensions for Studying Situational Method Development 147

has a long tradition in several schools of thought. Over the last decades, academics
have been urged to investigate the effectiveness of methods as they are not used in
practice as prescribed. This research is concerned with fragmented literature for
studying method development (MD) and situational method development (SMD) in
particular , with a focused research endeavor aiming at studying adaptation of a
method to a project situation.

The problem, as perceived and addressed in this paper, is a fragmented body of
knowledge (literature) on MD and SMD, which has accumulated significantly over
the last two decades. By fragmented literature we mean to say that various research
schools of thought do exist, but are disparate and utilization of the existing studies
from these schools is lacking. We believe that this fragmentation in tum hinders the
advances in the intellectual development on studying method development. Our goal
in this paper is two fold. First, it is to bring up this issue and make academics aware
of it. Second, it is to propose a means for making sense of literature fragmentation
and to draw a generic picture where the academic endeavors are heading.

2 Review Studies Concerning Method Development

2.1 Existing Review Studies and Approaches for MD

Let us first discuss the concepts of method development (MD) and situational
method development (SMD). MD is a subject matter concerning the way through
which method stakeholders (such as method experts, project managers and other
method users) develop a method in a specific context. Technically, this 'way' can be
considered as a mental activity by which method stakeholders analyze [1], adapt and
assemble [2] [3] appropriate means to support ways of thinking and actions for ISD
projects. SMD is a sub-subject of method development and refers to this adaptation
process of method development. It is this process or ability through which (human
and non-human) agents determine a system development approach for a specific
project situation through responsive changes in, and dynamic interplays between,
contexts, intentions, and method fragments [4]. SMD especially employs the input of
the analysis and provides the output for the assembly, rather than focuses on method
analysis or assembly of method fragments per se. The key issue of situational
method development is not exclusive focus on the analysis or the assembly, it is how
method fragments, context, and method stakeholders are adapted to each other in a
project situation. Thus, what lies at heart of SME is method adaptation [4].

Kumar and Welke [5], and Van Slooten [6] have provided classifications of the
approaches to method development. They argue that the "method engineering
approach" in Kumar and Welke's terminology and the "situated method engineering"
in Van Slooten's terminology are promising approaches for method development.
Additionally, Harmsen's [7] and Tolvanen 's [8] classifications are specifically for
SMD. Harmsen et al. [9] positions various approaches in what they call a "situational
method spectrum". As the most flexible or most radical approach to achieve effective
method, he proposes an approach, which is central to his thesis and called

148 Mehmet N. Aydin, Frank Harmsen and los van Hillegersberg

"situational method engineering". Tolvaneri 's [8] classification uses criteria applied
to achieve the methodical requirements of ISD.

Two review studies are worth to mention as they show how MD literature has
evolved . One is about the progress of information systems development (ISD)
research [10] and the other is concerned with method engineering (ME) research
[II]. The progress of ISD research over the past IS years is referred in terms of the
early methodical era (until 1988), the methodical era (until 1995), and the era of
method assessment. It is argued that at the end of the methodical era, researchers
studying ISD methods questioned and 'listened to ' what the field really needed, how
practitioners felt about methods, and how they dealt with ISD from a method use
perspective. Thus, as they claim, the relevance of exposed methods to practice has
been undervalued and not studied thoroughly until 1995. The other review draws a
picture of what method engineering research has focused up until 1996 [II] . They
claim that most of the studies focus on the technical context (which is about how to
efficiently process and store data or sign related concerning method development)
and the language context (which concerns different topics such as metamodelling
formalisms [12], integration of methods , evaluation of methods , and representational
paradigms of ME languages (i.e., supporting a multiparadigmatic representational
metamodelling environment- e.g., metaEdit+ and metaCASE [13]). They urge the
researchers in the method engineering field to study the organisational context
(which concerns human activities, interactions, etc) [14] and actual use methods,
tools in fields.

The review studies summarized above provide limited "sense making" (that is,
each discusses the subject matter from its own perspective) about the classification of
relevant research . The articulations are partial in that they are limited to their schools
of thought. They also lack focus on understanding what accounts for situational
method development. There is a need for a classification of studies broader on
incorporating ideas on method development in various domains. To do this, we visit
not only ME and ISD literature, but IS implementation literature that provides
insights into the course of implementing (situational) method in an empirical setting .

2.3 Classification of (Situational) Method Development Related Studies

At a high level, we distingui sh three research domains (the ISD research, Method
Engineering, and Implementation research domain (see table 1)) that contribute to an
understanding of (situated) method development. The ISD and ME research domains
provide insights into the way (situated) method development takes places (that is, a
model or process describing how to arrive at a situated method) . The ISD and
Implementation research domains study the content of such a way (including
characteristics and/or elements used in this process) .

Having stated the contribut ions of the three research domains , we examine each
domain by using certain elements of the codification schema. The research domains
differ in terms of motives , the phenomenon of interest, the label or metaphor used,
and associated researchers.

Taxonomic Dimensions for Studying Situational MethodDevelopment 149

ISD Research. The main motives in ISO research are to improve IS and ISO, and
to reveal and resolve issues concerning them. The ISO research includes two kinds of
research focusing on IS, ISO, and ISO method: the variance and process research.
The variance research (e.g., [10 15]) aims to build and/or test a model by which
cause-effect relationships among dependent, independent, and mediating factors
essential to the subject matter are studied. In contrast, the process strategy [16, 17,
18, 19] is used to study the phenomenon as a process, a number of events, actions, or
episodes that occur in an actual setting where the phenomenon is realized and
observed.

The ISO research domain employs ideas and theories from sociology, economics,
psychology, and system sciences. One of the earl iest uses of this model for
determining Management Information Systems design approaches is in [21] . Having
stated an overview of this research domain, we pos it that their contribution to the
theoretical basis of our research may be summarized as follows. The ISO research
literature provides: (1) insights into what problems of methods should be targeted in
(situated) method development, (2) insights into the functioning, use of method and
in work practice, (3) alternative ways of characterizing a target work system, (4)
alternative ways of characterizing a method, and (5) alternative ways of selecting the
elements of a method.

Method Engineering Research. Under this research domain, we distinguish the
following sub- domains: Software Engineering, Requirements Engineering, and
SME. Even though the object of interest of these sub-research domains varies with
respect to the scope of method under investigation, they often provide procedures for
the select ion, assembly of components of a method. We briefly discuss the three sub
research streams, but it should be noted that SME is different in that the research
efforts are directed to customization of a method to better suit a project situation.
Often in this research stream, constituents of method are specified with a certain
degree of formality to achieve unambiguous descriptions of the constituents (see e.g.,
[7], [22]) .

Recently, in the Software Engineering (SE) research sub-domain, number of
methods has been promoted as the solution to the long-standing problem of the so
called conventional software development methods characterized as complex, rigid
to change for different project types , technology oriented, and inappropriate for post
modem forms of organisations whose distinctive character was adaptable to
continual change [23] . The reaction of software engineers and associated researchers
[24] has been presented as a manifesto for agile software development. The 'new'
methods have been described as ' agile' methods in that they adopt lightweight
development processes based on iterative and incremental development, active user
involvement, priorit ized requirements, etc . [25]. Software engineering literature pays
more attention to the stage of appl ication construction and selection of elements of
development process by applying techniques in a pragmatic manner. For instance,
CMMI (Capability Maturity Model Integration) is used as a model to standardize and
measure maturity of the practices for software development. Among a number of key
process areas, software product engineering (SPE) indicates the need of tailoring a
method. For this purpose, a matrix is often used to match project characteristics to
the standardized elements of a software development process [26, 27].

v. o 3: g. a ~ ;z ~ 0
- .s' '"r
j § ::<
"

:r
: § en C1

l ::s III ::s 0

.

o en <
: g; :r
:

;:; ~ (;
l

0
-

cia

R
el

at
ed

S
tu

d'
fM

e
th

od
D

'fi
T

a
b

le
I.

C
l

-
-

-
-

-
-

--
-

--
-

-
--

-
--

-
_

..
-

--
-

R
es

ea
rc

h
M

ot
iv

es
Ph

en
om

en
on

o
fi

nt
er

es
t

M
et

ap
ho

rs
o

r
K

ey
T

er
m

s
u

se
d

Pr
o

po
se

d
id

ea
s,

th
eo

ri
es

,o
r

al
ik

e
fo

r
E

xa
m

p
le

s
o

f
st

re
am

s
m

et
h

od
de

ve
lo

pm
en

t
S

tu
d

ie
s

T
he

IS
O

R
es

ea
rc

h

V
ar

ia
nc

e
T

o
id

en
ti

fy
Ul

C
-

A
na

ly
si

s
an

d
ev

al
ua

ti
on

o
f

an
IS

O
ap

pr
o

ac
h

de
te

rm
in

at
io

n
,

-
M

od
e

ls
fo

r
th

e
se

le
ct

io
n

o
fm

et
h

od
s,

[1
0,

15
]

R
es

ea
rc

h
an

te
ce

de
nt

s
o

fm
et

ho
d

ap
pr

o
ac

h
or

m
et

ho
d

co
n

ti
ng

en
cy

-b
as

ed
ap

pr
oa

ch
,

to
o

ls
,a

nd
te

ch
ni

qu
es

(M
IT

s)
an

d
IS

O
an

d
th

ei
r

-
D

es
cr

ip
ti

on
o

f
IS

D
w

it
h

an
em

ph
a

si
s

o
n

a
te

ch
ni

qu
es

,t
oo

ls
se

le
ct

io
n

-
Fa

ct
o

rs
in

fl
ue

nc
in

g
th

e
de

te
rm

in
at

io
n

o
f

im
p

lic
at

io
ns

on
be

tte
r

IS
so

ci
o

-o
rg

an
is

at
io

na
l

d
im

en
si

o
n

of
th

e
IS

O
ap

pr
oa

ch
us

c
in

an
or

ga
ni

sa
ti

on
al

de
ve

lo
pm

en
t

pr
oc

es
s

-
S

uc
ce

ss
/f

ai
lu

re
fa

ct
or

s
in

IS
D

se
tti

ng
-

Se
le

ct
io

n
o

fM
IT

s
by

us
in

g
co

nt
in

ge
nc

ie
s

-
E

vo
lu

ti
on

of
IS

D
in

pr
ac

ti
ce

an
d

of
a

pr
oj

ec
ts

itu
at

io
n

ac
ad

em
y

Pr
oc

es
s

E
xa

m
in

in
g

a
ri

ch
pi

ct
ur

e
E

le
m

en
ts

o
fm

et
ho

d
em

e
rg

e
nt

IS
O

,e
m

an
ci

pa
tio

n,
fi

tn
es

s
-

A
pp

ro
ac

h
es

o
r

m
od

el
s

fo
r

de
te

rm
in

in
g

[1
6,

17
,

18
,

R
es

ea
rc

h
of

th
e

ba
si

s
an

d
In

te
lle

ct
u

al
st

ru
ct

ur
es

o
fm

et
ho

d
o

f
ap

pr
oa

c
h

to
a

pr
oj

ec
t

co
nt

ex
t.

th
e

IS
O

ap
pr

oa
c

h
35

)
de

ve
lo

pm
en

to
fI

S
A

sp
ec

t
an

d
le

ve
ls

of
m

et
h

od
am

ct
ho

di
ca

l,
ag

ai
ns

t
m

et
h

od
is

m
,

-
Fr

am
ew

or
ks

or
ta

xo
no

m
ie

s
fo

r
C

ha
ra

c
te

ri
za

ti
on

o
f

IS
D

de
si

gn
id

ea
ls

fo
r

a
m

et
ho

d
ch

ar
ac

te
ri

zi
ng

IS
O

an
d/

o
r

m
et

h
od

s
E

xp
er

ie
nc

ed
-b

as
ed

m
et

ho
d

dc
v,

T
he

M
et

h
od

En
ui

nc
cr

in
u

S
itu

at
io

na
lM

E
S

up
po

rt
in

g
si

tu
at

io
na

l
D

es
ig

n
,

co
ns

tr
uc

ti
on

.
as

se
m

b
ly

o
f

R
ou

te
m

ap
,

sc
en

ar
io

,
ta

ilo
ri

ng
,

-
M

od
el

s
fo

r
th

e
se

le
ct

io
n,

m
od

if
ic

at
io

n
[2

,
7,

9,
22

,
m

et
ho

d
de

ve
lo

pm
en

t
co

m
po

ne
nt

s
of

,
m

ai
nt

en
an

ce
o

fa
m

et
h

od
ap

pr
oa

ch
de

te
rm

in
at

io
n

of
M

IT
s

33
,3

6,
49

]
-

Fo
rm

u
liz

e
th

e
co

ns
ti

tu
en

ts
o

fa
m

et
h

od

R
eq

u
ir

em
en

ts
S

up
po

rt
in

g
R

E
ac

ti
vi

ti
es

A
na

ly
si

s
o

f
an

d
su

pp
o

rt
fo

r
th

e
pr

oc
es

s
of

Se
le

ct
io

n
of

M
IT

,
to

o
l-

bo
x

ba
se

d
C

o
nt

in
g

en
cy

-b
as

ed
se

le
c

tio
n

o
f

M
IT

s
[2

9,
30

,5
0]

En
g

in
ee

ri
ng

by
se

le
ct

in
g

an
dl

o
r

th
e

se
le

ct
in

g
M

IT
s

de
ve

lo
pe

d
fo

r
R

E
se

le
c

ti
on

d
es

ig
n

ra
ti

o
na

le
fo

r
R

E
us

ed
fo

r
R

E
(R

E
)

cr
ea

ti
ng

M
IT

s
So

ft
w

ar
e

S
up

po
rt

in
g

S
E

at
la

te
r

A
na

ly
si

s
an

d
de

ve
lo

pm
en

t
o

f
so

ft
w

ar
e

T
ai

lo
ri

ng
.

ba
la

nc
in

g
ag

ili
ty

an
d

-
R

is
k

-b
as

ed
m

od
el

fo
r

SE
m

et
ho

d
,

[2
0,

26
,

27
,

En
g

in
ee

ri
ng

st
ag

es
(c

on
st

ru
ct

io
n,

en
gi

ne
er

in
g

m
et

h
od

pl
an

n
ed

ap
pr

oa
ch

,s
pi

ra
lm

od
el

ta
ilo

ri
ng

o
r

cu
st

o
m

iz
in

g
m

et
h

od
28

]
(S

E
)

m
ai

nt
en

an
ce

,
et

c.
)

by
-

A
lis

to
f

so
ft

w
ar

e
pr

oj
ec

t
ri

sk
s

M
IT

s
T

h
e

Im
pl

em
en

ta
ti

o
n

R
es

ea
rc

h
U

nd
er

st
an

d
in

g
pr

ob
le

m
s

IS
us

e,
so

c
io

-o
rg

an
is

at
io

na
l

im
pl

ic
at

io
ns

o
f

P
la

n
ap

pr
oa

ch
,

Ph
as

e
m

od
el

s,
-

A
Pr

oc
es

s
th

eo
ry

of
E

S
su

cc
es

s
[3

7,
38

,
39

,
re

ga
rd

in
g

th
e

us
c

o
f

IS
IS

,
im

p
le

m
en

ta
ti

on
ap

pr
oa

ch
,

M
ap

p
in

g
of

m
et

h
od

s,
to

ol
s,

-
Si

tu
at

io
n

-A
ct

iv
it

y
Fr

am
ew

o
rk

fo
r

B
PR

40
,5

2
]

an
d

ex
am

in
in

g
IS

Im
pl

em
en

ta
tio

n
of

En
te

rp
ri

se
Sy

st
em

s
te

ch
ni

qu
es

fo
r

E
R

P,
B

PR
-

A
T

ax
on

o
m

y
o

f
E

R
P

im
p

le
m

en
ta

ti
on

im
pl

em
en

ta
ti

on
in

(E
R

P
,

C
R

M
,)

an
d

ID
S

(E
-c

o
m

m
cr

ce
or

ga
ni

sa
tio

na
ls

et
ti

ng
ap

pl
ic

at
io

ns
)

Taxonomic Dimensions for Studying Situational Method Development 151

Another example cited is an experience-based approach to method development
by which method use-experiences concerning development processes and associated
elements such as activities, roles, and deliverables are collected, stored, maintained ,
and distributed. To facilitate the choice of the appropriate method elements by
developers, a case-based reasoning technique is often used through which
characteristics of the situation realized are linked to the applied process model and its
constituents [28].

The Requirements Engineering (RE) research sub-domain has produced many
methodical means for major requirements engineering activities such as requirements
elicitation, analysis, triage, specification , and verification. Two orientations are seen
with regard to method development: the way to support the requirements engineering
process along with the design process and the way to select, engineer tools as part of
a method. For the requirements engineering process, researchers aim to capture the
design rationale and provide the systems developer and project manager with
potential benefits in understanding and monitoring the RE process [29]. Several
models and support environments (e.g., REMAP: Representation and Maintenance of
Process knowledge) are proposed for capturing and supporting design decisions [30].
Rossi et al. [31] adopt REMAP for method rationale in method engineering. For
selecting and engineering tools as part of the method, [21] points out the need for
developing strategies for information requirements.

The Situational Method Engineering (SME) research sub-domain plays a central
role in this work; it provides accounts, approaches, and models for studying method
adaptation. The proposed research approaches are of primary importance to this work
and called alternately situated method engineering [32], situational method
engineering [14], context-specific method engineering [22], and incremental method
engineering [13], method configuration [23]; roadmap-driven approaches [33, 34]. In
the literature there are a few known accounts that these efforts have been fully
utilized [35] and this challenges the applicability of the proposed procedures,
models, instruments, and support means concerning method development. This
limitation is mentioned in both the ISD (e.g., [35]) and ME literature (e.g., [36]).

Implementation Research. This particular literature (see, exemplary studies [38, 39])
refers to those studies that examine method development in particular domains for
certain application types. We use the term implementation because studies in this
research domain consider applications as ready-made solutions and often focus on
later stages of ISD (e.g., modifications and installation). The level of analysis is
limited to a general description of phases, stages, key activities, and tools used in
implementation.

We identify a number of sub-research areas that provide relevant studies usually
related to enterprise systems implementations, IT-enabled business process
(re)engineering, and inter-organisational systems implementation . With regard to
method development, the implementation research focuses on risk and success
factors of implementation projects and relates them to 'implementation approach' or
' implementation strategy' which is a high level description of the way in which
implementation is carried out. Considering an implementation project as technology

152 Mehmet N. Aydin, FrankHarmsen andJos van Hillegersberg

adoption appears to be the dominant view in studying implementation projects.
Taxonomies of implementation approaches are provided based on these theories,
(see, for instance, [37]). In fact, these phase models or taxonomies (see, e.g., [38,
39]) provide implementation strategies (e.g., big-bang, evolutionary) concerning the
development process and essential activities for ISD where the focus is on
organisational change-related activities. There are few studies in this domain that
specifically examine method development in the context of enterprise systems
implementation (especially in relation to enterprise resources planning applications).

This classification of relevant studies and their review indicate that:
• ISD literature (e.g., [10, 15, 16]) provides a partial examination of situational

method development as both process and content wise. Most of the proposed
models of SME adopt a contingency-based approach which appears to fall short in
detailing situated method development.

• ME literature (e.g., [2, 7, 9, 22, 33]) provides an elaborate examination of
situational method development as process wise. A few models proposed for
situational method development are actually adopted or extended by most of the
studies in the ME research domain.

• Implementation literature (e.g., [37, 38, 39]) provides a partial examination of
situational method development as content-wise. Most of the proposed models of
method development adopt a contingency-based approach.

3 Manifestation of Taxonomic Dimensions for Studying
Situational Method Development

In this section we propose what we call taxonomic dimensions, which allow to
position situational method development related studies (Table 2). The proposed
dimensions are induced from those studies which are concerned about comparison of
accounts, models for SME [7, 8, 14,23]. We use taxonomic dimensions to critically
examine three studies ([2], [7], and [41]), which are considered as prevailing models.
The three studies are chosen because: they are found to be the most relevant studies
for our purpose (illustrating the usefulness of the proposed dimensions) and they
provide underpinnings ofSME in terms of basics models.

The first dimension (level of abstraction) has already been mentioned in method
engineering. Harmsen [7] introduces three levels of the method engineering
hierarchy each of which contains different method knowledge. These levels are:
classes of method concepts are described at the method engineering (ME) level,
instances of the concepts at the ME level are examined at the ISD method (lSDM)
level, and the third level is the information system development (lSD) level at which
the actual method fragments of an IS project are located. Notice that the IS situation
in which actual business activities are performed is not included in the hierarchy.
Most of the IS method engineering studies stay at the ME and ISDM levels, while
studies in ISD research and implementation research stay mostly at the ISD level,
only few stay at the ISDM level.

The second dimension concerns types of method knowledge [8] in relation with
typology of method aspects or components as described in [51]. The shell model on

Taxonomic Dimensions for Studying Situational Method Development 153

method knowledge has six types of method knowledge: conceptual structure
including the fundamental concepts of a method and their interrelations; notation
with which modeIling techniques can be represented; process which indicates how
models are created, adopted, and used; participation and roles; development
objectives and decisions concerning design choices; and finally assumption and
values embedded in a method. For this work, method knowledge concerning
development objectives and decisions is central to the examination of situational
method development. Related to this dimension, one might consider the level of
details or granularity level (fine or coarse grained, see [7]) and degree of
formulization via modelling techniques for each type of knowledge.

Table 2. Taxonomic Dimensions for Studying Situational ISD Method

Taxonomic Dimensions Operationalisation

Level of Abstraction Method Enginee ring Hierarchy [7]: Method

Engineer ing Level, IS Developm ent Method Level, IS

Development Level

Knowledge Types The Shell Mode l [8]: Conceptual Structure, Notation,

Process, Participation and Roles, Development

Objectives and Decisions, Assumptions and Values

Adaptation Situat ion Project Spec ific, Pro ject Independent [4]

Aspects of a Situational Method The Philosophy, The Framework, The Techniques [43]

Adaptation Stage Pre- or Ear ly Stage, Later Stage, Final or Post-Stage

Decision Support Aspec t Descripti ve, Prescriptive, Normative [42]

In addition to these two dimensions, we suggest four additional taxonomic
dimensions specifically for situational method development: types of the situation in
which adaptation takes place, aspects of a method, adaptation stage, and decision
making and support orientation on situational method development. The last
dimension is particularly essential for situational method development as it relates to
possible viewpoints of decision-making and support on situational method
development.

The third dimension, adaptation situation, has two generic variants: project
independent and project-specific method adaptation. Project-independent refers to
the situation in which some predefined situations are taken for granted and for which
some contextual attributes are used as a priori knowledge (e.g., types of applications,
types of problem situation, target domain characteristics, or other typical project
characteristics such as size of project, degree of time pressure) [43]. The latter refers
to the consideration of method adaptation in an actual ISD project where the
knowledge used for method adaptation is situational in the course of the project
rather than based on a priori knowledge. Mirbel and Ralyte [34] propose a typology
of (generic model for) various processes and strategies for this kind of adaptation.
While this work concerns both types of situations, in the following section we
especially focus on those studies examining project-specific method adaptation.

Consider the fourth and fifth dimensions, the aspects of a method along with
granularity level and the development level of an IS. For the first, we distinguish
three essential aspects at a high level: the philosophy, the framework and essential
techniques, and we adopt Wijers' way of thinking, modelling, working, supporting,

154 Mehmet N. Aydin, Frank Harmsen andJos vanHillegersberg

and controlling [44]. The philosophy aspect is akin to the way of thinking, the
essential techniques aspect is more or less similar to the way of controlling and
supporting, and the other ways ofWijers [44] are subsumed in the framework aspect.

The fifth dimension indicates the positioning of situational method development
on the ISD timeline. Several notions or terms are used to logically split the timeline
or workflow of ISD. For instance, Harmsen [7] used the term ' stages of lSD'
referring to decreasing level of abstraction (e.g., business modelling, functional
design, technical design, and implementation) or increasing level of detail (e.g.,
global analysis, detailed analysis, global design, detail design). Van Slooten [2] uses
'the levels' as he adopts Zachman's framework [46] (e.g., scope, object system and
analysis and design level (OSAD), information system analysis and design (ISAD)
level and so on). The implementation literature (e.g., [39]) uses several stages or
phases. Given the multiplicity of the terms, we prefer to use the timeline notion in
terms of beginning, earlier, during, and later time in ISD.

The final dimension is decision-making and support orientation on situational
method development. We address three basic views on decision-making and decision
support: normative, descriptive, and prescriptive. These are cited as key orientations
pertaining to the decision-making and support model (e.g., [42]). We closely
examine these three orientations later and outline them now to see how method
adaptation can be analysed from a decision-making and support point of view. The
normative view is mainly concerned with the question "How should people ideally
make decisions?"; the descriptive view focuses on "How and why people make
decisions" whereas the prescriptive view addresses "How can we help people make
better (not necessarily ideal) decisions while still taking human cognitive limitations
into account".

3.1 Examining Prevailing Models for Situational Method Development

In this section we examine each of the three models based on the proposed
taxonomic dimensions (see table 2, which summarizes the examination). While
articulating these dimensions we show how to characterize and in tum compare
them.

"Situated Method Engineering" and Configuration Procedure for a Scenario
Van Slooten introduces "Situated Method Engineering", a particular model of
situation-specific approach to method development. Four notions (project context,
configuration process, project performance, and method engineering information
systems consisting of formalized rules and a method base that includes method and
route map fragments) are suggested to describe the process of SME. The
configuration procedure, acknowledged as the heart of method engineering, that
includes other notions such as (method) fragments, route maps, intermediate
variables (aspects, levels, constraint, and development strategy) scenarios, and their
relations.

Positioning Along With Taxonomic Dimensions. With a concise and in-depth
presentation of SME, we are ready to explicate the taxonomic dimensions. Notice
that Van Slooten [2] has not used or mentioned the proposed taxonomic dimensions

Taxonomic Dimensions for StudyingSituational MethodDevelopment 155

in his work . Given the fact that he was one of few researchers investigating the idea
of situation-specific approach to metho d adaptation in the 1990s, his works can be
seen as exp lorations of this idea in an organisational setting and the introduction of a
new model, new notions, and new concepts without always providing their clear cut
definitions as his findings have been conceptualized and perpetuated during the
course of an investigation that goes back to 1987 [47]. Nevertheless, we are now able
to apply the taxonomic dimensions to better understand his endeavors.
Tab le 3. Applying the taxonomic dimensions to the three modelsproposedfor SME

Taxonomic The Configuration The S3 (Situation A Social Process for

dimensions Procedure for a Scenario Scenario and Success) Method Fragment

(2) Mode l (7) Adaptation (41)

Level of The ISD Method and ISD The ME, ISD Method The ISD Method and

Abstraction levels levels ISD levels

Knowledge Mainly development All types, except Mainly conceptua l

Types objectives and decisions assumptions and values structure, notation

Adaptation Project independent and Project independent and Project specific

Situation to a certain extent project to a certain extent

specific project specific

Aspects of a The framework and The framework and The framework

Situationa l techniqu es techniques

Method

Adaptation Stage Mainly early stage Mainly early stage Not specifically

ment ioned

Decision Support Mainly prescriptive Mainly prescript ive Descript ive

Aspect

With regard to the level of abstraction, the SME proposed appears to stay at the
ISDM level for which he provides a 'configuration procedure' model and at the ISD
level for which he has described how (route map or method) fragments have been
used in an actual project context. With regar d to the type of method knowledge, we
contend that the proposed SME emphasizes the method know ledge type pertaining to
the deve lopment objectives and decisions concerning design choices of a situational
method. With regard to the adaptation situation, it suggests the use of a configuration
process in the course of the project situation, but appea rs that project execution is a
black box for method adaptation: only the output of the black box is used to feed
'method base' and 'project characterization' . The SME proposed employs on the one
hand a priori knowledge (known or foreseen contingencies, project characteristics)
about the project that implies project-independent method adaptation, whi le on the
other hand it acknowledges the unprecedented project situation and includes a
feedback mechanism but is not fuUy operationalized to accommodate metho d
adaptation in the progress of ISD. With regard to the aspect of a method, the SME
proposed supports aU aspects except the way of thinking, along with a variety of
fragments. With regard to the adaptation stage, it is clearly proposed for the
beginning or earlier time . With regard to the final dimen sion , we contend that the
decision-making model behind the configuration procedure is prescriptive, but the
decision-making model behind the framework is descriptive as mentioned in [2]. The

156 Mehmet N. Aydin, Frank Harmsenand JosvanHillegersberg

SME proposed does not exclusively focus on whatlhow or by whom decision support
is or can be provided for situational method development.

Situational Method Engineering and the S3 -Situation, Scenario and Success
Model

Harmsen and his colleagues [7, 9] have worked on the idea of the situation
specific approach to method adaptation by adopting a slightly different orientation on
the subject. Most of their work seems to provide clear-cut definitions of the models,
notions, and concepts suggested for what they call "Situational Method Engineering"
(SME), referring to the research discipline focus on development of situational
methods. In Harmsen [7] basic concepts of SME are described. Among other things,
his works include an ontology for product fragments and a process classification
system to anchor fragments with their semantics, Method Engineering Language
(MEL) to enable method fragment representation, the SME process indicating the
necessary steps needed to achieve situational method, and the S3 model relating the
three key notions- Situation, Scenario, and Success, which is proposed for the
selection and assembly of method fragments

Positioning Along With Taxonomic Dimensions. SME is one of the first attempts to
provide a full-fledged description of the basic concepts needed for the design and
construction of a situational method. Harmsen and his colleagues' endeavours have
often been cited as a significant attempt for formalization of the basic concepts
required for a situational method or as a limited view on the way a method
adaptation can be realized (see, for instance, [22], [33], [36]). With regard to the
level of abstraction, SME stays at the ME level where it provides descriptions of
basic concepts and their relationships for a situational method. With regard to
knowledge type, SME does not limit itself to any particular type of method
knowledge, but appears to employ a special conceptual structure and notation
pertaining method knowledge probably due to the need for a degree of formalization
of concepts and their relationships often expected by the IS ME community. The
level of detail preferred is fine grained in terms of semantics of method fragments in
SME. With regard to the adaptation situation, situated and situational method
engineering have some similarities. Nevertheless, this approach puts more attention
on project-specific adaptation as it acknowledges changes in project situation in the
later stages of ISD. Given the characteristics mentioned, the adaptation stage is
clearly proposed for the beginning or earlier time of ISD. Finally, SME includes
procedures for method adaptation with a reservation that human and/or inanimate
agents have some freedom to adhere to these procedures with regard to decision
making and support. In general, however, SME opts for a prescriptive view and even
uses some normative techniques like cluster analysis on method adaptation. We
believe that decision-making support for situational method development is not the
central focus of these suggested CAME tools.

A Social Processfor Method Fragment Adaptation
Baskerville and Stage put more emphasis on the emergent aspect of ISD and argue
that much of the literature on method development is normative, conceptual and that
empirical work is lacking [41]. One of the central notions in their work is 'work
practice'. This refers to the way in which a concrete development process is actually

Taxonomic Dimensions for StudyingSituational Method Development 157

conducted in practice. They show that this notion may be best understood together
with two additional concepts: situation and constraint. Though they do not provide
clear definitions of these terms, they discuss how the concepts are related. They
assert that "The conditions and work practice influence the situations that occur, the
situations may change conditions and work practices, and work practices may filter
the influence of conditions on the situations that occur (p. 15)". Their work focuses
on the way work practice is supported and the selection of a method fragment. Such
a selection process is seen as a sociological process in their work. They acknowledge
that method engineering endeavours are directed towards such a selection process
and have some limitations on the way method adaptation is treated .

Positioning Along With Taxonomic Dimensions. Baskerville and Stage 's [41]
comment on the limitations of ' method engineering' on method adaptation appears in
R. Baskerville's earlier work. For instance , Baskerville [48] already mentions the
need to look into work practice, which corresponds to the level of ISD in method
engineering hierarchy, to identify ISD conflicts and fit these conflicts to structural
artefacts at the third level of abstraction which corresponds to the ISD method
engineering hierarchy. So, with regard to level of abstraction, their work concerns
method adaptation at the ISD method and ISD levels. With regard to the types of
method knowledge, their framework does not emphasize certain types, but examples
in their work are related to conceptual structure and notational types of method
knowledge. The degree of formality used in their illustrative case is coarse grained
and expressed in terms of narratives. The proposed process model aims for a project
specific method adaptation and does not focus on particular aspects of method. Even
though there is no clear emphasis on the timeline dimension of method adaptation in
their work, from the illustrative case study it appears more attention is given to the
earlier time of 1SD. Concerning the decision -making and support dimension, the
object of interest in terms of method stakeholders is extended to a broader audience
including designers, users, programmers, method engineers, and other people
involved in the project and/or the target IS domain . Their work does not mention any
decision-making support in method adaptation and the decision rational behind their
model reflects a descriptive view on method adaptation.

4 Concluding Remarks

This research is aimed to bring up the issue of fragmented literature on method
development in general and situational method development in particular. We show
three basic research domains studying method development, as each domain its own
motives, research concerns , research approaches and methods. We argue that the
academics in these domains do rarely refer to cross domains . Their endeavors are
diverging rather than overlapping. As we regard these domains as complementary
rather than competing, they need to be utilized . For instance, one can study how
these domains understand and adopt certain notions (situation, context , agency,
method fragment) for their theoretical underpinn ings. We suspect that such notions
have been incorporated with different interpretations in their domains .

158 Mehmet N. Aydin, Frank Harmsen and Jos van Hillegersberg

To make sense of the fragment literature, we propose taxonomic dimensions for
studying situational method development. One might argue completeness of the
taxonomic dimensions, but in this work we consider them as a means to characterize
and compare models of SME. That is, one can evaluate these dimensions in tenus of
their relevance to the subject examined and so the dimensions can be extended. To
demonstrate how to use these dimensions we have examined three basic studies and
showed that they are providing three alternative approaches to studying the subject
matter. For instance, by employing the decision support dimension we point out that
the models of [2, 7] are aimed to support SME practice in a prescriptive manner. On
the other hand, the model of [41] is directed towards identifying and understanding
of the SME practice in a project situation (that is, a descriptive view on the decision
support dimension). In a similar way, the other proposed dimensions can help one to
better understand the existing accounts, models and alike related to method
development. In particular we contend that fragmented literature can be seen as an
opportunity for utilizing complementary views on and enhancing the understanding
of method development. It is this understanding that can help academics to know
where their research stands and where research endeavors are heading towards.

References

1. N. Jayaratna, Understanding and Evaluating Methodologies (McGraw-Hill, Berkshire,
1994).

2. C. van Slooten, Situated Methods for Systems Development, Doctoral Dissertation,
University ofTwente (1995).

3. S. Brinkkemper, M. Saeki and F. Harmsen, Assembly Techniques for Method Engineering.
CAiSE 1998,381-400 (1998).

4. M. N. Aydin, F. Harmsen, C. van. Slooten R. A. Stegwee, On the Adaptation of An Agile
Information Systems Development Method, Journal of Database Management, Special
issue on Agile Analysis, Design, and Implementation, 16(4): 24-40 (2005).

5. Kumar and R. J. Welke, Methodology Engineering: A Proposal for Situation-Specific
Methodology Construction. in: Challenges and Strategies for Research in Systems
Development Method, edited by W. W. Cotterman, J. A. Senn (John Wiley & Sons, 1992).

6. C. van Slooten and B. Schoonhoven, Contingent Information Systems Development,
Journal ofSystems and Software, 33(2) 153-161 (1996).

7. F. Harmsen, Situational Method Engineering (Moret Ernst & Young Management
Consultants, Utrecht, 1997).

8. J. -P, Tolvanen, Incremental Method Engineering with Modeling Tools - Theoretical
Principles and Empirical Evidence. Computer Science, Economics and Statistics. ER-Paino
Ky, University of Jyvaskyla: 301 (1998).

9. F. Harmsen, S. Brinkkemper, and H. Oei, Situational Method Engineering for Information
Systems Projects. in: Methods and Associated Tools for Information Systems Life Cycle,
edited by T. W. Olle and A. V. Stuart (North-Holland, Amsterdam, 1994) pp.169-194.

10. D. Avison and G. Fitzgerald, Reflections on Information Systems Development 1988
2002, in: Information Systems Development - Advances in Methodologies, Components,
and Management, edited by M. Kirikova et al. (Kluwer Academic Publishers, 2002) pp.l
II.

11. J. -P, Tolvanen, M. Rossi, and H. Liu, Method Engineering: Current research directions
and implications for future research, in: Principles of Method Construction and Tool
Support, edited by S. Brinkkemper, K. Lyytinen and R. J. Welke (Chapman & Hall: 1996).

Taxonomic Dimension s for Studying Situational Method Development 159

12. 1. van Hillegersberg and K. Kum ar, Using metamodeling to integrate object-oriented
analysis, design and programming concepts, Information Systems. 24 (2), 113-129 (199 9)

13. S. Kell y, A Matrix Editor for a metaCASE Environment, Information and Software
Technology, 36(6), 361-171 (1994).

14. K. Lyytinen, A Taxonomic Perspective of Information Systems Development: Theoretical
Constructs, in: Critical issues in information systems research, edited by R. 1. Boland, R. A.
Hirschheim (John Wiley & Sons Ltd ., 1987) pp . 3-4 1.

15. 1. Iivari, R . Hirschheim, and H. K. Klein, A Dynamic Framework for Classifying
Information Systems De velopment Methodologies and Approaches, Journal of
Management Information Systems, 17(3), 179-21 8 (200 I).

16. A. G. van Offenbeek and P. L. Koopman, Scenario s for system development: matching
context and strategy, Behavior & Information Technology , 15(4),250-265 (1996).

17. L. D. Intron a and E. A. Whitley Against method: Exploring the limit s of method,
Information Technology & People, March 10(1),31-45 (1997).

18. D. R. Truex, R. Baskerville, and 1. Travi s, Amethodical system development: the deferred
meaning of systems development method, Accounting. Management & Technology, 10,:
53-79 (2000).

19. G. F. Lan zara and L. Mathiassen, Mapping Situations. Information and Management, 8(1):
71-107 (1985).

20 . L. Mathiassen , and 1. Stage, The Principle of Limited Reduction in Software Design,
Information. Technology and People, 6(2) (1992).

21 . G. B. Davis, Strategies for Inform ation Requirements Determination, IBM Systems
Journal, 20(I) , 4-30 (1982).

22 . C. Rolland, and N. Prakash, A proposal for context-specific method eng ineering, in:
Principles of Method Construction and Tool Support, edited by S. Brinkkemper, K.
Lyytinen and R.l. Welke (Chapman & Hall : 1996) pp .191-208.

23 . F. Karlsson and P.l . Agerfalk, Method Configuration : Adapting to situational
characteristics while creating reu sable assets, Information and Software Technology, 46(9):
619-633 (2004).

24 . Beck, K. et aI., Manifesto for Agil e Software Development [Online Web Site]. The Agile
Alliance . Available WWW: http: //agilemanifesto.org! (2001)

25. P. Abrahamsson, 1. Warsta, M. T . Siponen, 1. Ronkainen, New Directions on Agile
Methods: A Comparative Analysis. ICSE 2003 , May 3- 10, Portland, Oregon , USA ., 244
254 (2003).

26. C. Larman , V. R. Basili , Iterative and Incremental Developments: A Brief History, IEEE
Computer, 36(6), 47-5 6 (2003).

27 . T. Kaltio and A. Kinnula, Deploying the Defined SW Process, Journal of Software
Process: Improvement and Practice, 5(1), 65-83 (2000).

28. S. Henninger and K. Baumgarten, A Case-Based Approach to Tailoring Software
Processes. Interna tiona l Conference on Cas e-Based Reasoning, Vancouver , Canada, 249
262 (2001).

29 . L. Nguyen and P. A. Swatman, Managing the Requ irements Engineering Process.
Requirements Engineering Journal, 8, 55-68 (2003).

30 . C. Potts and G. Bruns, Recording the reason s for design dec isions. the Proceedings of 10th
Int. Conf. Software Eng., IEEE CompoSoc. Press (1998).

3 1. M. Rossi et aI., Method Rationale in Method Engineering. Proceedings of the HICSS-33,
Maui , HI, IEEE Computer Society (2000)

32. C. van Slooten, B. Hodes, Characterizing IS development projects, in: Principles of
Meth od Construction and Tool Support, edited by S. Brinkkemper, K. Lyytinen and R. 1.
Welke (Chapman & Hall : 1996) pp. 29-44.

33 . 1. Ralyte , R. Denecker, C. Rolland, Towards a Generic Model for Situational Method
Engineering. CAiSE 2003, Springer-Verlag Berl in Heidelberg (2003).

34 . I. Mirb el and 1. Ralyte, Situational Method Engineering: Combining assembly-based and
road map driven approaches, Requirements Engineering 11(I):58-78 (2006).

160 Mehmet N. Aydin, Frank Harmsen and Jos van Hillegersberg

35 . R. Hirschheim, H. K. Klein, and K. Lyytinen , Exploring the Intellectual Structures of
Information Systems Development: A Social Action Theoretic Analysis. Accounting,
Management & Technology 6(1/2), 1-64 (1996).

36. B. Henderson-Sellers, Method Engineering for 00 Systems Development.
Communications ofthe ACM, 46(10), 73-78 (2003).

37. A. Parr, G. Shanks, and P. Darke , Identification of Necessary Factors for Successful
Implementation of ERP Systems. New Information Technologies In Organisational
Processes - Field Studies And Theoretical Reflections On The Future Of Work, Kluwer
Academic Publishers, 99-119 (1999).

38. H. C. Lucas, J. Walton, and M. J. Ginzberg, M. J., Implementing Packaged Software., MIS
Quarterly, 12(4) 537-549 (1988).

39. M. L. Markus et al. Learning from Adopters' Experiences with ERP-Successes and
Problems, Journal ofInformation Technology, 15(4) (December) 245-265 (2000)

40 . W. J. Kettinger, J. T. C. Teng, and S, Guha, Business Process Change: A Study of
Methodologies, Techniques, and Tools, MIS Quarterly, 21(3) : 55-80 (1997).

41. R. Baskerville and J. Stage, Accommodating emergent work practices: Ethnographic
choice of method fragments. In realigning research and practice: The social and
organisational perspectives, Boston, Kluwer Academic Publishers, 11-27 (2001) .

42 . D. E. Bell, H. Raiffa, and A. Tversky, Descriptive, normative, and prescriptive interactions
in decision making, in: Decision making: Descriptive, normative, and prescriptive
interactions, edited by Bell, Raiffa, and Tversky (Cambridge University Press, New York,
1988) .

43 . M. N. Aydin, F. Harmsen, Making a Method Work for a Project Situation, in: the Context
ofCMM, edited by Oivo and Komi-Sirvio, LNCS : 2559, Springer Verlag Berlin, 158-171
(2002).

44 . G. M. Wijers, Modelling Support in Information Systems Development, Delft University
ofTechnology , Delft (1991).

45 . M. Leppanen, Conceptual Evaluation of Methods for Engineering Situational ISD
Methods, in: Software Process: Improvement and Practice, 11 (5), 539-555 (2006)

46 . J. A. Zachman, A Framework for Information Systems Architecture. IBM Systems Journal,
26(3) (1987) .

47 . C. van Slooten, Systeemontwikkelingsmethoden (In English: Systems Development
Methods) Informatie, 4 (1987).

48. R. Baskerville, Structural artifacts in method engineering: the security imperative in:
Principles of Method Construction and Tool Support, edited by S. Brinkkemper, K.
Lyytinen and R. J. Welke (Chapman & Hall : 1996) pp. 8-28 .

49 . I. van de Weerd, S. Brinkkemper, J. Souer, and 1. Versendaal,. A Situational method for
web-based content management system-applications: Method engineering and validation in
practice. Software Process Improvement and Practice, 11:52 1-538 (2006) .

50. T. Tsumaki and T. Tarnai. Framework for matching requirements elicitation techniques to
project characteristics, Software Process Improvement and Practice, 11, 505-519 (2006) .

51. K. Wistrand and F. Karlsson, Method Components - Rationale Revealed. In: A. Persson
and J. Stima (Eds .). CAiSE 2004 , LNCS : 189-201 (2004).

52. A. Parr, G. Shanks, and P. Darke, Identification of Necessary Factors for Successful
Implementation of ERP Systems. New Information Technologies, in: Organisational
Processes - Field Studies and Theoretical Reflections on the Future of Work (Kluwer
Academic Publishers, 1999), pp . 99-119 .

Component-based Situational Methods
A frameworkfor understanding SME

Yves-RogerNehanand RebeccaDeneckere
CRI, University Paris I - Pantheon Sorbonne

90, rue de Tolbiac, 75013 Paris, France,
Habas.Nehan@malix.univ-paris I.fr,rebecca.deneckere@univ-parisl.fr

WWW home page: http://crinfo.univ-parisl.fr/

Abstract. The work presented in this paper is related to the area of Situational
Method Engineering (SME) which focuses on project-specific method
construction. We propose a faceted framework to understand and classify issues
in system development SME. The framework identifies four different but
complementary viewpoints. Each view allowsus to capturea particularaspect of
situational methods. Inter-relationships between these views show how they
influence each other. In order to study, understandand classifya particularview
of SME in its diversity, we associate a set of facets with each view. As a facet
allowsan in-depthdescription of one specificaspectof SME, the views show the
varietyand diversityof these aspects.

1. Introduction

Method Engineering aims to bring effective solutions to the construction, improvement
and modification of the methods used to develop information and software systems.
Several authors tried to design methods that would be as effective and as adapted as
possible to the development needs of information systems [0,0]. This goal was not
always reached, especially because the methods were not always well adapted to
projects specificities. The situational methods were designed to correct this weakness.
The situational approach finds its justification in the practical field analysis which
shows that a method is never followed literally [0, 0]. The discipline of Situational
Method Engineering (SME) promotes the idea of retrieving, adapting and tailoring
components, rather than complete methodologies, to specific situations [0]. In order to
succeed in creating good methodologies that best suit given situations, components
(building blocks of methodologies) representation and cataloguing are very important
activities. In particular, the components have to be represented in a uniform way that
includes all the necessary information that may influence their retrieval and
assembling. This paper is an attempt to explore some of the issues underlying
component-based approaches to Situational Method Engineering (SME) and to propose

Please use the following format when citing this chapter:

Nehan, Y.-R., Deneckere, R., 2007, in IFIP International Federation for Information Processing, Volume 244,

Situational Method Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S., Henderson-Sellers B.,

(Boston Springer), pp. 161-175.

162 Yves-Roger Nehan andRebecca Deneckere

a framework for their classification. This framework is 4-dimensional as it advocates
that a SME approach can be defined by four views, each capturing a particular aspect
of SME. Each view has multiple facets and the associated metric. The idea of a four
views framework and its facets has been used in several domains such as: requirements
engineering for understanding and classifying scenario based approaches [0], system
engineering [0], etc.
When used in the SME domain, a facet provides a means of classification. For
instance, the formalism facet of the system view (see section below) helps in
classifying SMEs according to the underlying paradigm used: informal, semi-formal
and formal. Each facet has values which are defined in a domain. A domain may be a
predefined type, an enumerated type, or a structured type.
We use the four views framework as a baseline and attach an aspect ofSME to each of
the views and a set of facets to each view. As a result, it is possible to identify and
investigate four major viewpoints of SME: what is the objective of SME, , how are
represented the method components, how can the methods be developed and used and
finally what does SME achieve.
This paper is organised as follows: Section 2 describes our four views framework.
Section 3, 4, 5, 6 explain each view and list a set of their facets for comparing and
evaluating the component representation approach. Section 7 presents and illustrates
eight of the most recent situational methods, then further analyses each SME approach
according to these four different views of our framework. A conclusion is done in
Section 8.

2. The Four-views Framework

The four views framework, originally proposed in [7], has proved its efficiency in
enhancing the understanding of various engineering disciplines such as information
systems engineering [0], requirements engineering [0], IS development process
engineering [0] and method engineering [0].

In the original SE framework [0], the views where described as follows.
The subject view contains knowledge of the domain about which the proposed IS

has to provide information . It contains real-world objects which become the subject
matter for system modeling .

The system view includes specifications of what the system does, at different levels
of detail. It holds the modeled entities, events, processes, etc. of the subject world as
well as the mapping onto design specifications and implementations.

The usage view describes the organizational environment of the information
system, i.e. the activity of agents and how the system is used to achieve work,
including the stakeholders who are system owners and users.

The development view focuses on the entities and activities which arise as part of
the engineering process itself.

Our point of view is that this framework concept can be used to help in
understanding the field of SME disciplines which consists of applying engineering
approaches, techniques, and tools to the construction and representation of
components. The purpose of this work is then to present a state of the art in Situational
Method Engineering. The four views composing the 4-dimensional framework

Component-based Situational Methods 163

proposed in this work try to answer the following questions about component-based
situational methods:

what is a component-based situational method ?
how is represented a situational method component?
how can situational methods be developed and used ?
what is the rationale of component-based situational method engineering ?

Fig. I: The four views ofSME

What is the rationale of

SME?

What is a component
situat ional method ?

For our purpose, we define the SME 4-dimensional framework as follows.
The subject view as the dimension which deals with the situational method

definition, its nature.
The representation of method component is described in the system view.
In the usage view, we will investigate the reasons, the rationale for SME and relate

users needs to the situational methods that can best meet them.
The development view deals with the process of constructing component-based

situational methods. This process is a meta-process in that it supports the construction
of components which will in tum support the development of methods . The way this
process might be supported by a tool environment is also relevant in this view.
This allows us to discuss in a focused manner the different concerns of SME: the
definitions of components, their representations, the way of developing these
representations, and the rationale for using these representations. This is done in the
subject, system, development, and usage views respectively. Each view is described
by a set of facets that allow a more detailed study of the situational methods. However,
this set is not exhaustive and can be completed by other studies.

3. The Subject view

This view of SME deals with the notion of method nature.
In [0], I. Mirbel defines different objectives that are targeted by the approaches.

Following this typology, we define a facet representing the nature of the SME methods.
A first family of approaches aims at documenting methods through well-defined

components [0, 0). This kind of method does not state precisely how to retrieve and
reuse a component but offers a good effort of specification with regards to the elements
a method is made of.

164 Yves-RogerNehan and Rebecca Deneckere

The second category focuses on the retrieving of components to reuse them and
evaluating their similarity [0].

The third category focuses on method fragmentation with the definition of
guidelines for reusing the different components in daily developer tasks by project
team members [0,0].

The nature of SMEs can thus be classified as follows:
Nature: SET (ENUM {Documenting, Retrieving and evaluating, Reuse guiding})

4. The Usage view

The usage view concerns the objectives we try to achieve with SME methods as well
as the means necessary to their implementation . The SME approaches use high
flexibility and thus modify methods to adapt them to a given situation by taking
account of its specificities. This leads us to see the usage view as imposing three strict
requirements : how the methods must be constructed the nature of method components
and how these components must be developed. It is in the usage view that the method
objectives must be stated. These aspects depend on the components management
policy. This policy is to build methods starting from components whose names and
contents vary according to the design. The use of components allows capturing
knowledge which changes with time. The use of a library allows capitalizing the
experiments of prior projects. A particular policy may be formalised with the two
following facets: Construction technique and knowledge representation.

4.1 Constr uction technique facet

This facet represents the various ways of building a method which are instantiation,
assembly, extension and reduction.

The instantiation approaches use an identification of the common and generic
method characteristics and represent them by a system of concepts called meta-model.
These approaches allow the creation of a whole set of methods sharing the same
properties [0, 0, 0].

The assembly approaches concentrate on the grouping of method components
belonging 10 complementary methods [0.0]. They assemble separate selected method
components with regard to the studied specific project to form a unique method. To be
successful, it is necessary to have a modular process model.

The extension approaches allow the transformation of a basic method into a new
method adapted to the project' s needs [0, 0] with addition of new functionalities in a base
method.

The reduction approaches allow removal of basic method operators in order to
transform it to match the engineer's needs [0, 0].

A method can be classified according to its defined type of construction:
Construction technique: SET (ENUM {instantiation, assembly, extension,

reduction })

Component-based Situational Methods 165

4.2 Knowledge representation facet

The question of the component retrieval is an important issue of the SME field. Three
possibilities have emerged in the literature : (1) the project is globally characterized
with use of contingency factors, (2) the components are described with use of
descriptors and (3) patterns are used to instantiate the right componant following the
project needs. We can then define three SME categories following the knowledge
representation.

An SME fragm ent based method consists in encouraging a global analysis of the
projects while basing itself on contingency criteria . The projects and the situations are
characterized by means of factors associated with the methods. [0] uses a contingency
model based on 17 contingency factors which take value between Low and High as
'Importance of the Project', ' Knowledge and Experience ' , 'Stability' and so on.
According to the authors, the characterization of the project allows them to select the
method components appropriate to the project. Construction is supported by
component assembly rules and constraints having to be satisfied by the created method .

An SME chunk based method aim at associating these reusable components to their
description in order to facilitate component research and extraction according to the user's
needs. [0] uses the concept of descriptor [0] like a means to describe method components.
The descriptors are organized in a contextual way: each one of them defines the situation
in which the component can be employed and describe its usage intention.

An SME pattern based method. A pattern describes a recurring problem with his
associated solution [0]. It provides a solution which becomes reusable for any situation
concerned with this problem. By developing patterns, the users condense part of their
knowledge on the field of the problem and allow its availability for the other users.

The knowledge representation can thus be classified as follows:
Knowledge representation : ENUM {fragment, chunk, pattern}

5. The System view

This specific view is focused on the component representation by defining what is
represented, at what level of abstraction, how is it represented and what propert ies
should have the representation. These aspects are captured by the following three facets
: Dimension, Abstraction and Formalism.

5.1 Dimension facet

A component is not always viewed with the same dimension. The situational methods
use various techniques to represent knowledge: fragments, chunks and patterns.
Although terminology between research groups differs, typically a chunk [0, 0] will
encapsulate both a process and a product part whereas a fragment [0] can be either a
product or a process fragment:
- product fragment relate to the structural and static aspects of methodologies (e.g.;
deliverables, documents , models, diagrams, and concepts), whereas
- process fragment capture the behavioral and procedural aspects of methodolo gies
(stage, tasks, activities, and techniques to be carried out) [0].

166 Yves-Roger Nehan and Rebecca Deneckere

Dimension can thus be classified as follows:
Dimension: SET (ENUM {product-oriented, process-oriented})

5.2 Abstraction facet

In [0], this notion in SME is related to the abstraction level of a component that can be

- conceptual, as in [0] where components are expressed with descriptions and
specifications of methodology parts, or
- technical as in [0, 0] where there is an implementation of operational parts with tools.

Abstraction can thus be classified as follows:
Abstraction : ENUM: {conceptual, technical}

5.3 Formalism facet

Generally speaking, representation formalism is a set of syntactic and semantic natural
language, semi-formal such as diagram [0] or completely formal [0, 0).

A formal formalism is required to support the verification of the expected properties
of the process model and validation of the process model using, for instance,
simulation or enactment techniques. The use of informal notations has made it difficult
for process models to be followed systematically. Formal or semi-formal formalism
make these efforts considerably more effective as a formal formalism is necessary for
providing automatic enactment support.

In the context of SME, the presented components have to be retrieved, assembled,
tailored, and customized later and, hence, it is important that the representation
approach will be formal or at least semi-formal.

The formalism facet helps classifying SME by one of the three values of the
following enumeration :

Formalism: ENUM {formal, semi-formal, informal}

6. The Development view

The development view deals with two specific issues: the process of constructing
component method, and the enactment of process as the SME methods are carried out
with an aim of assisting the application engineers. The environment to offer assistance
to the process in its execution course thus forms part of the problems whose solutions
are provided by the development view. Three facets allow covering these aspects:
Flexibility, knowledge construction, knowledge organisation.

6.1 Flexibility facet

Traditional methods (also named rigid methods) follow a static approach, which
consist in prescribing entirely and statically the method, whereas SME methods use a
contingency approach which consist in defining contingency factors defined on an

Component-based Situational Methods 167

application development. This is strongly related to the library of method components
which must be enriched by the specific projects experiments.

[0] proposed a spectrum to organize the engineering methods approaches according
to their degree of flexibility towards a new situation. The methods are organized on a
scale of flexibility varying of "low" to "high". At the "low flexibility" level are the
rigid methods while, at the "high flexibility" level, we find the SME methods. They are
represented with the two last types of this spectrum:

either the method engineer performs operations that have to be carried out on the
original methodologies in order to create a new one, process that we will call
Customization, as in [0] or

he refers to methodology components, including their retrieval and assembly,
process called Modularity, as in [0, 0]. In this last case, each component is usually
treated as a closed unit that cannot be modified, while transformation and gluing parts
between the components can be added in order to create "consecutive" methodologies.

This typology may be captured by a facet called Flexibility witch classifies the
methods in two distinct categories.

Flexibility: ENUM {customization,modularity}

6.2 Knowledge construction techniques facet

The traditional knowledge construction is the expression of the application engineer
experience. As long as this experience is not formalized and that a basic available
knowledge does not constitute an available part for the various applications, one can
say that this knowledge is the result of a ad-hoc construction technique [0]. This has
two major consequences: ignorance in the way in how was carried out the construction
and dependence on the field of expertise. If this knowledge must be independent of the
expertise field and rapid to built, it is then necessary for construction techniques based
on the experiment to use moreformalizedtechniques [0].

The techniques of knowledge construction can thus be classified as follows:
Knowledge Construction: ENUM {formalised, ad hoc}

6.3 Knowledge organization techniques facet

The knowledge used during SME construction can be stored in library or repository to
be reused later. Those provide the basic functions for the management of a components
repository. As these libraries can contain a large number of components, they generally
offer research techniques, as indexation techniques or the use of keywords.

Other approaches, in addition to the component extraction formalism, have an
organisational process which helps to manage the knowledge coherence . The
organization processes thus allow managing this problem in a more formal way [0, 0].

The knowledge organization technique can be classified as follows:
Knowledge organisation: SET (ENUM {repository, organization process})

Figure 2 summarizes the views and facets of the framework presented:

168 Yves-RogerNehanand RebeccaDeneckere

Construction

Nature

\\natis a component

situational method 'I

\\ 1m(is thernl ionale of SM I'r~ 1_ --'=-_ --,

!'1ex ibilil)'

Kllm"'It,t!Kt' orgonlsation

Kmw.-/t'l!Kt·r "prc.{(·n/I1I ;U"

Fig. 2: Viewsand FacetsofSME framework

This framework is used in the following section to evaluate a panel of SME
approaches.

7. Review of SME approaches according to the framework

We propose a review of eight component-based SME approaches. We choose our
method panel in the set of the most recent approaches and with the intention to offer a
more complete study of the different views and their facets.
The aim is, firstly, to get a 'big picture' of the SME research area and to help
understanding the achievements gained from currently developed 5MB based approaches
in the literature. It is, secondly, to check the framework against eight SME approaches.

7.1 SME approaches

7.1.1 Method configuration approach

[0] proposed a meta-method called Method for Method Configuration, which is based on
the concept of Configuration Packages and Configuration Templates . These concepts are
used to configure methods following the specificities of a project while creating reusable
assets. Method configuration uses a specific base method as a basis for creating specific
configurations . The reusability advantage is obvious since pre-made configurations can
be used over and over again. Hence, there is no need to perform a complete method
assembly or method configuration for each new project. Experiences can be gathered and
reused more efficiently since they can be attributed to coherent set of prescribed actions
common in the organization, rather than to context-free actions.

7.1.2 Process Configuration approach

[0] proposes an approach called process configuration that tells how to create a project
specific methodology from an existing one, taking into account the project circumstances.

Component-based Situational Methods 169

The idea that lies behind is: for each individual project a specific process configuration
(project-specific methodology) is create. This is done by selecting component from
methodology that has been specifically designed for the organization and thus reflects the
actual ways of working in the organization (base methodology). The configuration is done
by processing the rules (in the engine) that are part of the base methodology. The rules
define, for each methodology component, in what circumstances (project situations) its use
is compulsory, advisable or discouraged.

7.1.3 Method extension approach

This approach [0] guides the method engineer by providing extension patterns that help
identifying typical extension situations and provide advises to perform the required
extension. In the extension-based, there is two ways to extend a method: directly
through the pattern-m atching strategy or by using some generic knowledge related to
the domain for which the extension is to be done through the path select a meta-pattern ,
extend a method with the pattern-based strategy. The former help to match extension
pattern stored in a library to the extension requirements whereas the latter select first, a
meta-pattern corresponding to the extension domain and then, guides the method
extension by applying the patterns suggested by the meta-pattern. Both way-of
working use a library of extension patterns but do it in different ways.

7.1.4 Method chunks approach

This approach [0] for assembly-based SME aims at constructing a method ' on the fly'
in order to match as well as possible the situation of the project at hand . It consists in
the selection of method components (called method chunks) from existing methods
that satisfy some situational requirem ents and their assembly. This approach is
requirements-driven, meaning that the method engineer must start by eliciting
requirements for the method. Next, the method chunks matching these requirements
can be retrieved from the method base. And finally, the selected chunks are assembled
in order to compose a new method or to enhance an existing one. As a consequence,
the three key intentions in the assembly-based method engineering process are: specify
method requirements, select method chunks and assemble method chunks.

7.1.5 Application-basedDomain Modeling (ADOM) approach

ADOM [0] is a domain engineering approach and uses the standard notation of UML 2.0
[0]. This approach is a visual methodology for managing representing, retrieving,
customizing and tailoring situational method components. ADOM allows to express
different types of methodologies and their components, their associated characteristics and
values, their pre and post-condition and other component-related requirements, such as
mandatory participants, recommended participants, triggers, etc. The structure and
guidelines of components are described within the domain layer of ADOM, while their
instantiations, which specify particular situational methodologies, are defined in the
application layer.

170 Yves-Roger Nehan and Rebecca Deneckere

7.1.6 Evolution-Driven (or Paradigm-Based) approach

This approach [0] uses meta-modelling as an underlying method engineering
technique. The hypothesis of this approach is that the new method is obtained either by
abstracting from an existing model or by instantiating a meta-model. Meta-modelling is
known as a technique to capture knowledge about methods. It is a basis for
understanding, comparing, evaluating an engineering method. A new methodology is
then created by first constructing a product model and then a process model. There is
different strategies available to construct both product and process model.

7.1.7 OPEN Process Framework (OPF) approach

The OPEN Process Framework [0] uses a meta-model to generate method components that
are stored in a repository. OPEN offers a set of construction guidelines that are considered
to be part of existing methodologies used to construct new methods. The OPF meta-model
is composed of five main meta-classes [0] [0]: Stage, Producers, Work Units, Work
Products and Languages; a method component is produced as soon as a meta-class is
instantiated.An OPEN guideline helps method engineers both to instantiatethe meta-model
element to create method components and to select the best method components (from the
repository) in order to create the situationalmethod.

7.1.8 FIPA (Foundation for Intelligent Physical Agent) approach

FIPA [0] entered the IEEE computer Society Standards Committee with the mission of
promoting agent-based technologies and the interoperability of agents with other
technologies. FIPA defines the method fragment with a process meta-model [0,0]. In this
model, a process is composed of a set of activities performed by some active entities
whose task is to produce a well-defined state of an Artefact as input/output. A process is
defined as strongly oriented to the production of products. As a result, a method
component [0] is defined as a reuse part of a design process composed of two elements:
the structure of the product and the necessary procedures to construct this product [0].

7.2 Review of component-based SME approaches according to the framework

In this section, we propose a review of eight component-based SME approaches. Table I
evaluates these eight approaches with respect to the four view defmed facets and the four
following sub-sections give more details about it, each one corresponding to a specific
view of the framework.

Subject View
The subject view contains only one facet concerning the SME objectives. We can notice
that almost all the approaches aims at documenting methods through well-defined
fragments. Their strength resides in the effort of specification with regards to the elements a
method is made of (tasks, activities, resources, etc.). In the method chunks approach, the
focus is on the operators provided to allow a new combination of existing process fragments

Component-basedSituational Methods 171

and on mechanisms to evaluate the similarity among them. Finally, five over the eight
studied approaches focuses on method fragmentation for project team members, to provide
them with guidelines which are to be reused while performing their daily task. We see here
that only the Method chunks approach is addressing the particular aspect of the component
retrieving with a formalized evaluation strategy. However, we think that the retrieval and
selection of a component is a very important issue of the SME field and that a particular
attention had to be drawn on it.

Usage View
The objective for the methods engineers, in situational approaches, is to make methods
completely flexible and situation adaptable. This is possible with the components that
enrich method library or repository and are reused for method construction. Thus, method
chunks use directives and signatures. Its method construction technique is done by
instantiation and chunks assembly. The following methods use the same technique:
Evolution-Driven, ADOM-UML and OPEN. Method configuration and processes
configuration build their method through the technique of reduction and extension and
they propose a combination of the cancellation and extension operators. All of this show
that the construction techniques are often combined, which increase the flexibility of the
SME approaches.

The components representation of these methods varies. Thus the method extension uses
extension patterns and the FlPA method defines its components like a set of activities. As
knowledge representation model, method configuration uses packages and templates as
method components and process configuration uses process components which are then to
enrich by a set of rules which define how the component has to be used. More than half the
approaches studied use a chunk knowledge representation, which allows to describe more
effectively the component.

System View
Six of the studied methods (chunks, extension, OPF, Evolution-Driven , FIPA, ADOM)
integrate two aspects of the method fragment, the product and the process, so they
represents a portion of process together with its related product(s). Process configuration
tends to bring the construction process closer to its users by providing facilities for
managing the rules. Method configuration is based rather on the product.
Regarding the abstraction, we notice that some methods (Process Configuration, OPF,
Evolution driven, ADOM) define their fragments as technical fragment i.e. in the form of
tools. ADOM-UML has to develop a supporting CASE tool for managing the activities. On
the same way, Evolution-Driven develop the LyeeALL CASE tool in order to generate
programs, as a set of well-formatted software requirements are given. OPF use the tool
OPENPC (OPEN Process Construction) that use the OPEN repository of methodological
components (firstly conceived for the development of directed objects but used widely for
other applications) .

Three methods (configuration, chunks and evolution-Driven), have a formal
representation approach. These approaches deals with the definition, the representation, the
cataloguing of components according to different features, the retrieval of the most
appropriate ones, and the customization and tailoring of them to complete methodologies
that best fit a given situation. In these approaches, component representation and
cataloguing are very important activities. The others approaches are semi-formal.

V
ie

w
s

S
u

b
je

ct
U

sa
g

e
Sy

st
em

D
ev

el
o

p
m

en
t

Fa
cc

t
N

at
ur

e
C

on
st

ru
ct

io
n

K
no

w
le

dg
e

K
n

o
w

le
d

g
e

K
n

o
w

le
d

ge
D

im
cn

si
on

A
bs

tr
ac

ti
on

F
or

m
al

is
m

Fl
cx

ib
ili

ty
te

ch
ni

qu
e

rc
p

rc
sc

nt
at

io
n

C
on

st
ru

ct
io

n
o

rg
au

iz
at

lo
n

Pr
oc

es
s

D
oc

u
m

en
ti

ng
+

E
xt

en
si

on
+

Se
m

i-
C

on
fl

gu
ra

tio
n

R
eu

se
G

ui
di

ng
R

ed
uc

tio
n

C
hu

nk
Pr

oc
es

s
T

ec
hn

ic
al

fo
rm

al
C

us
to

m
iz

at
io

n
A

d
ho

c
R

ep
os

ito
ry

M
et

bo
d

E
xt

en
si

on
+

R
ep

os
ito

ry
+

co
nf

ig
ur

at
io

n
R

eu
se

G
ui

di
ng

R
ed

uc
tio

n
Fr

ag
m

cn
t

Pr
od

uc
t

C
on

ce
pt

ua
l

Fo
rm

al
C

us
to

m
iz

at
io

n
Fo

rm
al

is
ed

O
rg

an
iz

at
io

n

pr
oc

es
s.

M
ct

bo
d

D
oc

um
en

tin
g

+
In

st
an

tia
tio

n
+

Pr
od

uc
t+

S
em

i-
R

ep
os

it
or

y
+

Pa
tte

rn
C

on
ce

pt
ua

l
C

us
to

m
iz

at
io

n
Fo

rm
al

is
ed

O
rg

an
iz

at
io

n
E

xt
cn

si
on

R
eu

se
G

ui
d

in
g

E
xt

en
si

on
Pr

oc
es

s
fo

rm
al

pr
oc

es
s

O
P

E
N

Pr
oc

es
s

D
oc

um
en

ti
ng

,+
In

st
an

tia
tio

n
+

Pr
od

uc
t+

C
hu

nk
T

ec
hn

ic
al

Fo
rm

al
M

od
ul

ar
it

y
Fo

rm
al

is
ed

R
cp

os
ito

ry
Fr

am
ew

o
rk

R
eu

se
G

u
id

in
g

A
ss

e
m

b
ly

Pr
oc

es
s

D
oc

um
en

ti
ng

+

M
et

ho
d

ch
un

ks
R

eu
se

G
ui

di
ng

In
st

an
tia

tio
n

+
C

hu
nk

Pr
od

uc
t+

R
cp

os
ito

ry
C

on
ce

pt
ua

l
Fo

rm
al

M
od

ul
ar

ity
Fo

rm
al

is
ed

+
R

et
ri

ev
in

g
A

ss
em

bl
y

Pr
oc

es
s

an
d

ev
al

ua
ti

ng

F
IP

A
D

oc
um

en
tin

g
+

Pr
od

uc
t+

C
on

ce
pt

ua
l

Se
m

i-
M

od
ul

ar
ity

A
d

ho
c

R
cp

os
ito

ry
R

eu
se

G
ui

d
in

g
A

ss
em

bl
y

C
hu

nk
Pr

oc
es

s
fo

rm
al

E
vo

lu
lio

n-
D

oc
um

en
ti

ng
+

In
st

an
tia

tio
n

+
Pr

od
uc

t+
R

ep
os

ito
ry

+
C

hu
nk

T
ec

hn
ic

al
Fo

rm
al

M
od

ul
ar

it
y

Fo
rm

al
is

ed
O

rg
an

iz
at

io
n

D
ri

ve
n

R
eu

se
G

ui
d

in
g

A
ss

em
bl

y
Pr

oc
es

s
pr

oc
es

s

In
st

an
ti

at
io

n
+

Pr
od

uc
t+

Se
m

i-
M

ct
ho

d
A

D
O

I\
I

D
oc

um
en

ti
ng

Fr
ag

m
en

t
T

ec
hn

ic
a

l
C

us
to

m
iz

at
io

n
Fo

rm
al

is
ed

R
ep

os
ito

ry
A

ss
em

bl
y

Pr
oc

es
s

fo
rm

al

T
a

bl
e

1
R

ev
ie

w
of

SM
E

m
et

ho
ds

-.
.)

N -< -e '"00 ~ o ~ Z go § § 0
 i":
'

g, '"o n ~ tl '":I '"o "'" ~ '"

Component-based Situational Methods 173

Development View
Regarding flexibility, four approaches (method extension, method configuration, process
configuration) enable all their components to be specialized,adapted and customized.These
operations create new components that can be modified as requested by allowing
specification ofgluing and transformation components, customization parts. They start with
a particular basic method as initial point of departure, then configure them with different
reusable components. In that case, there is no assembly but rather a configuration from
different parameters or reusable components. In Method configuration, the configuration of
a methodology is supported by configuration packages and configuration templates which
present reusable assets that can be used in particular software development situation. In
process configuration, each process component or components is supplemented by a set of
rules that defme when to use the component. Method extension uses the patterns as reusable
components to configure the method. On the other hand, the other methods (ADOM-UML,
OPEN, method chunk, Evolution-Driven, FlPA) use modularity construction strategy's
which focus on consistent and congruent method modules. Project-specificmethodology is
created from fragments that might come from different methodologies. These approaches
design their fmal approaches starting from a set of different and reusable modules to
assemble them. This illustrates that authors do not favour one approach to the other, they
either use customization or modularity.

All methods use a library to organize the components. Some of them also use an
organization process to manage the coherence. Thus, method extension and
Evolution-Driven use the process organization based on the "Map" process of [0] to
organize their components. Method configuration proposes an organization based on
three repositories of components (characteristic, configuration packages and templates).
This is showing that the use of a library is required when using an SME approach, as all the
components have to be stored somewhere. However, the use of an organization process is
not always offered This may be an issue that authors should work on.

8. Conclusion

Our study has shown that component-based SME approaches are very complex, multi
dimensional entities. They cannot be treated adequately with simple predicate based
classification techniques. Rather, the need is for a 4-dimensional framework for a
component-based approach to be well described.

Every view is itself multi-faceted. Some facets have been proposed by other
researchers earlier, others have been introduced by us here . We believe that we have
incorporated in our proposals a comprehensive set of facets which cover all the
dimensions of our framework.

Through the notion of a view and a facet, we are able to successfully capture the
global view and the more detailed view of a component-based SME approach. In this
way, the individual characteristics of these approaches are captured within the larger
view of SME nature, component management policy, component use and knowledge
representation and construction.

Applying the framework on eight recent approaches shows that they all share some
of the properties that characterise component-based SME methods. However, they

174 Yves-Roger Nehan and Rebecca Deneckere

differ in a lot of the selected parameters and their application to this framework allow a

precise inventory of their differences.

One of our objectives for our further researches is to review more of the existing

SME approaches in order to apply our 4-dimensional framework on a panel as

complete as possible. This will allow us to test the validity of our framework and

maybe to identify more facets to compare more effectively the methods. Moreover,

discussion with other SME approaches authors will help to check the validity, or the

invalidity, of our facets.

The main perspective of this work is to identify the real key facets of SME in order

to identify reusable components from these construction approaches. As a result,

components would be of two types, either a capture of method knowledge or a capture

of method construction knowledge. This will offer the possibil ity to the method

engineer to reuse them in order to create a new approach to construct SME methods,

perfectly adapted to his way of working.

References

I. D. Firesmith and B. Henderson- sellers , The OPEN Proce ss Framework. An Introduction,
Add ison- Wesley (200 I).

2. C. Rolland and C.Cauvet, Object-Oriented Conceptual Modelling, CISMOD'92,
International Conf. on Management of Dat a, Bangalore (July, 1992) .

3. J. Ralyte, Method chunks engineering, PhD thesis, University of Paris I-Sorbonne (2001).
4. I. Mirbel and V. de Rivieres, Adapting Analysis and Design to Software Context : The jecko

Approach, In 8th international Conferen ce on Object Orirented Information Systems (2002).
5. C. Rolland and J. Ralyte, An Assembly Process for Method Engineering, Proc . of the 13th

CAISE, Springer, pp.267-283 (2001) .
6. C. Rolland , C. Ben Achour, C. Cauvet, 1. Ralyte , A. Sutcliffe, N.A.M. Maiden, M. Jarke, P.

Haumer, K. Pohl, Dubo is and P. Heymans , A propo sal for a scenario classification
framework. Requirements Engineering Journal 3: I (1998) .

7. M. Jarke and K. Pohl , Information systems quality and quality information systems , In Proc.
Of the IFIP 8.2 working conference on the impact of computer-supported techniques on
information systems development, Mineapolis, NM (june 1992).

8. M. Jarke and K. Pohl, Requirements Engineering: An Integrated View of Repre sentation,
Process and Domain , Proc. 4th European Software Conf., Springer Verlag (1993).

9. C. Rolland, A comprehensive view of proce ss engineering, proceeding of CAIS E'98 , Pisa,
Italy, (1998).

10. C. Rolland , A primer for method engineering, proceeding of INFORSID' 97, Toulouse,
France (1997)

II. 1. Mirbel, Rethinking ISD methods, Fitting project team members profiles. I3S technical
Report 13SIRR-2004-13-FR, (2004) .

12. B. Hender son-Sellers, Process meta-modelling and process construction: examples using the
OPF. Ann . Software Engineering 14(1-4) (2002) 341-362

13. H. Storrie , Describing proce ss patems with UML , in ESWT , (200 I).
14. M. Gnatz, F. Marshall, G. Popp and W. Schwerin, Modular process patems supporting an

evolutionary software development proce ss. Lectures notes in Computer sciences, 2188,
(2001)

15. C. Rolland , J. Ralyte and M. Ayed , Construction the Lyee method with a method engineering
approach, Knowledge-Based System, 17 (2004) 2396248

16. J. Ralyte, Towards Situational Methods for Information Systems Development: Engineering Reusable
Method Chunks. Proc. of ISD'04 , Vilnius, Lithuania, September 9-11, 2004. pp. 271-282. ISBN 9986-D5
762-D

Component-based Situational Methods 175

17. I. Reinhartz-Berger and A. Sturn, Applying the Application-based Domain Modeling
Approa ch to UML Structure Views, ER'2004, Springer, pp. 766-779

18. R. Deneckere, Approche d'extension de methodes fondee sur I'utilisation de composants
generiques, PhD thesis, University of Paris l-Sorbonne (2001) .

19. J. Ralyte, R. Deneckere and C. Rolland, Towards a Generic Model for Situational Method
Engineering, International Conference on Advanced information Systems Engineering
(CAISE), Springer Verlag, Velden , Austria, (2003).

20. F. Karlsson and Par 1., Agerfalk, Method Configuration: Adapting to Situational
Characteristics while Creating Reusable Assets, In Information and Software Technoloy,
Volume 46, Issue 9.

2 I. B. Marko, An approach for creating project-specific software development methodologie s,
TPSE Cairo (2005).

22. K. Van Slooten and B. Hodes, Characterising IS develop. project, IFIP WG 8th Conf. on Method
Engine ering, Chapman and Hall, pp. 29-44, (1996).

23. V. De Antonellis., B. Pernici and P. Samarati , F-ORM METHOD: A methodology for
reusing specifications, in Object Oriented Approach in Information Systems, F. Van
Assche, B. Moulin and C. Rolland (eds), North Holland, (1991)

24. S. Brinkkemper, M, Saeki and F. Harmsen, Meta-Modelling based assembly techniques
for situational method engineering, Information Systems 24 (1999) 209-228

25. B. Henderson-Sellers, SPI - A role for Method Engineering, Proceedings of the 32nd

EUROMICRO, SEAA'06, (2006).
26. A. F. Harmsen, S. Brinkkemper and H. Oei, , SME for IS project s, In T.W. Olle & A.A.

Verrijn Stuart (Eds.), Methods and associated tools for the IS life cycle - Proceedings of
the IFIP WG8.1 Working Conference (CRIS'94) (pp. 169-194). Amsterdam: North
Holland (1994) .

27.0MG, « unified Modeling Language: Superstructure », Version 2.0 (2005) ;
http://www.omg.org/docs/formaIlOS-07-04.pdf

28. M. Cossentino, S. Gaglio, B. Henderson-sellers, V. Seidita, A metamodelling approach for
method fragment comparison, Proceedings of the I Ith International Workshop on
Exploring Modeling Methods in Systems Analysis and Design (EMMSAD), Luxembourg
(june 2006).

29. B. Henderson-Sellers, M. Serour, T. McBride, C. Gonzalez-Perez and L. Dagher, Process
construction and customization , Journal of Universal Computer Sciences, 10(3), online
journal accessible at http://www.jucs.org (2004)

30. B. Henderson-Sellers, C. Gonzalez-Perez and McBride, A meta-model for assessabl e
software development methodologies. Software Quality Journal, 13(2) (2005)

31. M. Cossentino and V. Seidita, Composition of a new process to meet agile needs using
method engineering. Software Engineering for Large Multi-Agent Systems Vol. III. LNCS
Series, Vol. 3390. Springer-Verlag GmbH (2005)

32. http ://www.fipa.orgl
33. G. Terracina, A. Garro and D. Ursino, A multi-agent system for supporting the predition of

protein structures. ICAE, II (3) lOS Press, Amsterdam, The Netherlands (2004), 256-280
34. Method fragment definit ion, FIPA Document (Nov 2003) ;

http://www.fipa.org/activities/methodology.html
35. C. Rolland , N. Prakash and A. Benjamen, A multi-mod el view of process modeling ,

Requirements Engineering Journal, pp . 169-187 (1999).

Connecting method engineering knowledge: a
community based approach

Isabelle Mirbel

I3S Laboratory
UMR 6070 UNSA-CNRS

Les Algorithmes - Route des Lucioles, BP 121
F-06903 Sophia Antipolis Cedex, France

Isabelle.Mirbel@unice.fr

Abstract. Current practices in the field of information system devel
opment reveal a crucial need for spreading and sharing methodological
knowledge in addition to existing proposals about formalizing, build
ing and tailoring methods. Currently, the methodological knowledge is
mostly shared and spreaded inside an organization by organizing train
ing sessions, attending to conferences and reading manuals. Moreover,
it is not very interactive and do not provide efficient support for evo
lution. The methodological knowledge under consideration ranges from
very formal descriptions to informal experience report, empirical know
how and best practices. But in reality, feedbacks about methods in
practice are most of the time neither captured nor integrated to the
corporate knowledge. And finally, method bases which have been devel
oped to store predefined method fragments to support method tailoring
inside organizations have not been very successful in the industrial con
text. For all these reasons we propose an approach to share and spread
methodological knowledge based on the concept of community of prac
tice. Our proposal aims at supporting exchange of knowledge outside
of the boundaries of the organization and deepens members knowledge
and expertise about methodological knowledge by interacting on an on
going basis. In this paper, we focus on the lightweight top ontology we
propose to specify the core concepts required to qualify any piece of
knowledge about method.

1 Introduction

Current practices in the field of Information System Development (ISD) show
that methods are almost never suited literally and that there is a wide difference
between the formalized sequences of steps prescribed by the method and their
real application in practice. Indeed, there is a tension between the 'method
in-concept' (the method as formalized in manual) and the 'method-in-action'
(as interpreted by practitioners) [4]. And even among the different practical
applications of a specific method, differences exist: methods are often uniquely
tailored to the project and organizational characteristics [3]. Moreover, practi
tioners have a negative perception of methods which are seen as too rigid and

Please lise the following format when citing this chapter:

Mirbel, I., 2007, in TFIP International Federation for Information Processing, Volume 244, Situational Method

Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkernper, S., Henderson-Sellers B., (Boston Springer),

pp.176-192.

Connecting method engineering knowledge : a community based approach 177

too prescriptive [24]. Even if a method is decomposed into fragments, pr act i
t ioners must apprehend t he method as a whole and und erst and all its concepts
in order t o use it. It can have negative impact and discourage pr acti tioners
from using methods. Methods are often crit icized for the emphasized focus on
the method art ifacts as such, making t hem look cumbersome. Methods should
not be in t he forefront during lSD, it should be viewed as heuristi c pro cedures
[11]. Most of t he provided approaches have been devot ed to method engineering
(ME) while method use (MU) needs also dedicated approac hes [27,7]. Methods
need to be maint ained based on reflection from practi ce, t ransforming tacit
knowledge int o exp licit knowledge. The import ance of tacit knowledge par tly
explains the low acceptance and use of methods [21]. MU is a learning pro cess in
which an individu al or an organizat ion creates new knowledge about methods
and how to apply t hem [21].

All t hese tendencies reveal a crucial need for sprea ding and sharing method
ological knowledge (MU) in addit ion to exist ing proposals about formalizing,
building and tailoring methods (ME).

Current ly, the methodological knowledge is mostl y shared and sprea ded in
side an organization by organizing t raining sessions, attending to conferences
and readin g manu als. T hese basic t ransmission means require that the practi
t ioners are present (to attend to t he t ra ining or t he conference). It is not very
interactive and do not provide efficient support for evolut ion. Therefore, we
propose an approach which allows to collect heterogeneous cont ribut ions and
to make them evolve collaboratively in a more interactive way.

The methodological knowledge und er consideration ranges from very for
mal descriptions to informal exper ience report , empirical know-how and best
practi ces. Bu t in reality, feedbacks about meth ods in pract ice are most of the
t ime neither capt ured nor integrated to t he corporate knowledge. By providing
means to exploit different kind s of methodological knowledge in a homogeneous
way, we aim at redu cing t he gap between 'method-in-concept' and 'method-in
action' . As emphasized in [3], alt hough a method focus is important for obtain
ing coherence in t he organization, it is t he pr acti ce of people t hat brings the
method to life. Integrating t he different kind s of methodological knowledge in
a common framework will encourage practi tioners to be act ive in documenting,
using and keeping the method alive and t he related knowledge up to date. It
will also contribute to make methods look less cumbersome and less prescrip
t ive. Among our aims, one is to provide means to integrat e emerging feedback
from practi tioner sit uations to various materials describing methods.

Exisiti ng works dealin g with feedback from pract itioner sit uations (method
rationale) capture, represent and ana lysis t his kind of knowledge in order to
support method evolut ion [27]. T herefore they propose to formalize the method
knowldge with t he help of a meta model and t hey provide means to relate the
method rationale knowledge to the method met a model in order to explicit it
[21]. Such a proposal is willing to support evolut ion inside t he frame of a specific
method. Our aim is slight ly different as we want to facilitate methodological
knowledge sharing accross different methods. We want our ap proach for in-

178 IsabeIIe Mirbel

st ance to allow to bring together knowldge about two different object-oriented
notations which would be represented by two different met a models but which
may have poin ts to share because of their common paradigm. Moreover we fo
cus on MU and th erefore we are focusing on MU rationale [27] . We propose an
approach based on an ont ology which allows to share concepts among methods,
mode ls, notations, meta-models or whatever is related to method knowledge.
In addit ion, we exploit t he cap abilities of a semantic search engine to bring
knowledge together . Indeed , t his need to share and exchange methodological
knowledge goes beyond the scope of a particular method, project or organi
zation. Therefore, our aim is to provide support for collect ing contributions
from the whole ISD community (researchers , method engineers, developers, ...)
: actors from t his community may face similar problems independently of their
environment (project, team, organizational unit, ...). In addit ion, method bases
which have been developed to store predefined method fragments to support
method tailoring inside organizations have not been very successful in the in
dustrial context [23] . Therefore, we do not want to provide a cent ra lized ap
proach based on a repository of resources about methods. On th e contrary, we
propose a distributed approach based on a sha red representation of method
ological knowledge and means to annotate resources with regards to this shared
representation .

In this context, our aim is twofold: we want to improve the support dedicated
to practitioners in order to help them in their daily act ivit ies and we also want to
improve the corporation support about methodological knowledge by prov iding
means to int egrate var ious kinds of methodological knowledge and to keep the
corporate knowledge up to date.

We cont ribute in supporting t he collect of MU experiences, the recording
of comment s and observations. These experiences may then be for instance an
alyzed in th e way it is proposed in [27] in order to support evolut ion in ME ,
but not only. Our focus is mainly on MU. Therefore we aim at capitalizing
knowledge to explain and transmit way of working without only focusing on
ME evolution aspect s. Our proposal aims at giving unexp erimented practition
ers a way to learn about best practices relat ed to method. We cont ribute to
experience-based learn ing and to explicitly collect MU rationale across differ
ent use contexts and populations.

The paper is organized as follows. Section 2 presents th e concept of com
munity of practice our work is based on. The context of our work is presented
in Section 3. The concepts of our top ontology, which is the backbone of our
approach, are discussed in Section 4. Section 5 presents a motivating example to
demonstrate the feasibility of th e proposed approach. Section 6 is a conclusion
and a summary of the important points dealt with in t his paper and int roduces
perspectives on t he future work .

Connecting method engineering knowledge: a community based approach 179

2 Communities of Practice

The concept of a community of practice (abbrev iated as CoP in t he following)
refers to t he process of social learning t hat occurs when people who have a com
mon inte rest in some sub ject or problem collaborate over an extended period
to share ideas , find solut ions, and build innovations [1].

Recently, CoP have become assoc iated with knowledge management as peo
ple have begun to see them as ways of developing social capital, nur turing new
knowledge, st imulating innovation, or sha ring exist ing tacit knowledge within
an organization [9].

These communit ies aim at capitalizing individu al knowledge, increasing t he
number of exchanges amo ng people and allowing the identification of domain
experts. They help in storing and preserving know-hows through a collect ive
distributed and dyn amic process. They create connect ions among people beyond
t he geographical and organizational st ructures .

A community is characterized by its doma in (ISD methodological knowledge
in our case), it s practice (methodological pratice through ISD experiences), its
members (all the actors pa rt icipating in the ISD pr ocess), its external environ
ment (t he organization the actors belong to, the ot her CoPs and networks t he
actors are involved in , ...), its resour ces (documents and to ols about method
ological aspects of the ISD process) and its history and life. CoPs differ from
business or functional uni ts, from teams and networks because people belong
to CoPs at the same t ime as t hey belong to ot her organizationa l structures .
An effective organization comprises a constellation of inte rconnected CoPs, as
these are privileged nodes for t he exchange and interpret ation of informat ion
[1 2]. T he concept of CoP seems promising for methodological knowledge man
agement because it is an effective support of transm ission of knowledge from
expert to novice, especially in te rms of practices. It also makes the par ticipating
actors more active and impli cated , not und ergoing the method in our case . It
allows exchange of knowledge outside of the boundaries of the organization and
deepens members knowledge and expertise in the CoP domain by inte racting
on an ongoing basis.

Web-based technologies have allowed the emergency of vir tual CoPs. Virtual
CoPs (VCoPs) are informal networks, existing outside of anyone par t icular or
ganisation, that support professional practionners to develop a sha red meaning
and engage in knowledge building among their memb ers by providing opportu
nities for relationship building and interaction t hrough the use of internet based
information and communication technology's as well as ot her methods [28].

A dist ributed network of practi ce (DNoPs) consists of a larger , geogra phi
cally dispersed gro up of par ticipants engaged in a shared practice or commo n
topic of interest . CoPs and DNoPs share t he cha racterist ics of being emergent
and self-orga nizing, and t he participants create communication linkages inside
and between organizations that represent a kind of " invisible" net exist ing be
side the form al organizationa l hierarchies [8].

180 Isabelle Mirbel

Virtual CoPs, as well as DNoP s, are concepts which allow to share tacit
knowledge [28] , albeit to a lesser degree t han CoPs : th ey are for instance
particularly suitable for transmitting internet specific soft skills; they prov ide
quick and easy comment syste ms in blogs and interactive environment provided
in online forum s for instance and they help feedb ack mechanisms by reducing
first t he cost of communication and second the cost of storing and retrieving
them efficient ly.

But efforts have still to be made to fully explo it the potential of web-based
technologies. Dedicated solutions have to be provided to answer the needs re
lated to the dom ain of knowledge und er considera t ion. Tools have been proposed
to support CoP [10] (VCoPs and DNoPs) . Some of them are generic enough to
be suitable whatever the domain of knowledge is, for instance tools ensur ing in
dividual participation or tools ensur ing community cult ivation [10]. Other tools
may be customized to match the requirements of the methodological knowledge.

Formality of the ME design is increased rationally in approaches where it is
mod eled as an argumentat ion process organized into specific discourse st ruct ure
[27]. CoP dedicat ed tools are promising to answer this need. They may provide
good support to adequate ly capture th e context in which decisions are made
and support met hod rationale during ME as well as MD.

Whatever the sit uat ion, crea t ion, accumulation and diffusion of knowledge
cannot be achieved without a good description of this knowledge which is the
purpose of this paper.

3 Context of the work

Our aim is to provide means for practitioners to shar e and exchange knowled ge
about method engineering. Similar at te mpts have been made in the field of re
quir ement engineering [23] and in the field of business int erop erability [20] to
spread and share successful solutions to requirement engineering or interoper
ability pr oblems .

In [20] , a repo sitory of method chunks is suggested as a knowledge man
agement application for project s within the interoperability domain. In this
approach the knowledge about interoperab ility, based on experience and best
pr actic es is formalized in th e form of reusab le method chunks stored in a method
chunk repo sitory. A met a-model for int eroperability problem classification is
provided to support method chunk qualification and ease the indexing and re
trieval of t he pieces of knowledge stored in the repository.

In [23], the pieces of knowledge are formalized in the form of patterns which
are stored in a common repository. Patterns are mainly described t hrough a
problem description, a context , references and keywords. Different versions of
patterns are managed in association with feedbacks information in terms of
comments and evaluations. An original and polymorphic way to link patterns
among them is also provided.

Connecting method engineering knowledge: a community based approach 181

On t he cont rary of the prop osals discussed above, we don 't want to encapsu
late the heterogeneous resources we are dealing with into chunks or pat terns to
get uniform pieces of knowledge. We rely on annotation mechani sms to qu alify
them and allow their exploitation.

In addit ion, we don 't propose to keep t he knowledge inside a un ique repos
itory. We want t he resources to be kept at t he pr acti ti oners side, making t hem
responsible of it .

As in t he discussed approac hes, we provide a way to classify the pieces of
knowledge we are dealing with. We choose to represent t his classificati on as an
ontology, as it will be explain in t he remaining of t his pap er , in orde r to take
adva ntage of t he web semantic techniques and to ols and fully rely on annotation
mechanisms and semantic search engine capabilities.

Our aim is to provid e a sound basis to build dedicate d knowledge man age
ment serv ices (or tools) t o support the cult ivat ion of CoPs (or DNoPs) dedicated
to methodological knowledge.

In our approac h, data is collected from various sources pa rticipating in the
CoP and stored in a resource description collection belonging to the CoP (se
manti c storage in Figure 1). It is collected from t he practi tioners t ha t want
to spread t heir methodological knowledge. As we don 't wan t to cent ralize the
resources but only t heir descriptions and in order to let all t he practitioners be
aware about the referenced knowledge, we ass ume only descriptions of resources
are sto red in the repos itory sha red by the community.

As our aim is to help pract itioners to share and spread methodological
knowledge, t he descripti ons need to be expressed using a commonly agreed
set of concepts. It is the purpose of t he ME ontology to preserve in the CoP
a shared set of te rms and concepts about ME. In this lightweight ontology,
the sha red vocabulary is expressed in te rms of concepts , relationships and con
st ra ints. When imp orting new resource desc riptions , pr acti tioners browse t he
ontology and find suitable concepts or enr ich the ontol ogy with new concepts
or lab el in orde r to annotate t he resources t hey are dealing wit h.

A semant ic search engine can eas ily exploit t he onto logy to search the
resource desc ription collect ion. Indeed , such an engine supports applications
allowing practit ioners to exploit the resource descripti on collection and find
pointers on method ological knowledge meaningful for t hem, thus keeping t he
community aware and alive about each one cont ribution. The ontology and
t he sear ch engine constit ute the semantic enric hment part of our framework
on top of which dedicated knowledge man agement services may be developed ,
as summarized in Figure 1. T he knowledge man agement services form the set
of tools dedicated to the CoP cult ivat ion. Examples of such knowledge man
agement services are onto logy creation and annotation, cooperative knowledge
creation to support collaborative problem solving, knowledge retrieval , knowl
edge disseminat ion , knowledge visualizat ion, knowledge evaluation, evolution
and maintenance.

The architecture we presented has several adva ntages with regards to our
concern:

182 Isabelle Mirbel

Importation I ~ ----------- ~

________t ,~: I ME Ontology I :~ ~
U 1 1 I. . 10" 3

:L:i QJ I ~ Resource 1 I I :::r Q)c 0\1 1 3
Cl] ~I D" 1 I I ...,JE 0 1 escription I I Search engine I (1) ~
QJ -hi 1 I I I ~ n
U')U')I I 1 I I

~---------------I L I

t t----------------------------- ~
I I (1)

: Application Application Application:~. ~
I I @
~---------------------------~~

Fig. 1. System Architecture

- It is open and allows easily new practitioners to contribute to the community
by exporting the description of their resources in a standard language.

- It is not fully centralized since it does not hold the resources. Resources are
kept at the practitioner side, making them responsible of it.

- It allows to reference and qualify in a same way different kinds of knowledge
ranging from very formal descriptions to informal experience report, empirical
know-how and best practices.

4 A method engineering top ontology

The aim of our work is to provide support to practitioners to help them quali
fying the knowledge they own in order to share it with other practitioners. Our
approach is based on a lightweight ontology that is shared by all practitioners.
We provide a top ontology holding the core concepts we thought required to
qualify any piece of knowledge about method. This top ontology will be enrich
by the practitioners: they will add new labels for the core concepts and also
refine them in order to be able to precisely qualify the knowledge they are deal
ing with. In this section we discuss the core concepts that constitute the top
ontology. In the next section we will show on an example how the top ontology
may be refined while importing resource descriptions and how it allows to join
heterogeneous resources together.

Our purpose is nor to provide a general ontology about ME or lSD, as it has
already been carefully studied in [26,25] for instance, nor to provide a survey
of existing approaches about ME or lSD, as good surveys have already been
proposed [5,29]. Our aim is to provide the core concepts required in order to
support the cultivation of a CoP about ME, that is to say, in a first time, the
spreading and sharing about various and heterogeneous pieces of knowledge
about methods.

Connecting method engineering knowledge: a community based approach 183

According to the literature about CoP [12], different actors participate in
a community which aim is to support the creation, accumulation and diffusion
of knowledge resources about a domain. The resources or outcomes developed
by the CoP (artifacts, stories, routines, documents) constitute the practice of
the CoP. In the ME domain, we are dealing with method of course and models
which are used to formalize the content of method deliverables as well as to for
malize the different steps recommended to built the deliverables. A method may
be viewed as a set of loosely coupled method components expressed at differ
ent levels of granularity. A method component is an autonomous and coherent
part of a method supporting the realization of some specific ISD activities.
Such a modular view of methods favors the exchange of knowledge about it
among different practitioners. The significance of situationality of a method
and even more of method components has been clearly enlightened in the lit
erature [30,19]. Therefore, the concept of context has to be associated to each
practice in order to increase its reusability. These main concepts constitute the
backbone of our top ontology. They are summarized in Figure 2 and will be
discussed more in detail in the following.

IResource I

Fig. 2. Top of the ontology

The main information that will help practitioners to understand a method
usefulness is its purpose. One can for instance want to share a feedback about an
approach to build a situational method, an experience report about an Xtreme
Programming framework or simply advertise a web site about an ISD process. In
addition to the purpose of the method, indication about the manner the prob
lem is tackled in the method may be interesting to understand the suitability of
the piece of knowledge under consideration (while describing it or while search
ing for methodological knowledge). Method for building methods, for instance,
are classified into ad-hoc, by evolution, by extension or by assembly approaches
[5]. Requirements engineering methods are usually classified into goal-based,
scenario-based or goal-and-scenario based approaches [6]. Similar purposes and
manners can be supported by different approaches and different pieces of knowl-

184 Isabelle Mirbel

edge. By providing these concepts in the to p ontology, as it is shown in Figure
3, it will be possible to join resources together based on these concepts .

A method is considered as a couple of two interrelat ed models : product m odel
and process model . T he product model of a method defines a set of concepts, re
lationship s between these concepts and const raints for a corresponding schema
construction. The pro cess model describes how to construct t he corresponding
product model. Different not ations and lan guages exist to specify products and
processes. Different paradigm s have been proposed to model produ cts and pro
cesses. T he relation al , functional , intentional and object-oriented par adi gms are
examples of well-known product model paradigms . Activity-oriented , product
oriented, decision-orient ed , context-oriented and st rategy-oriented paradigms
are examples of process model paradigms. Different object-oriented notations
have been for inst ance proposed to model product s. Different pieces of knowl
edge, each of them expressed with a different object-oriente d model, may be
referenced in our CoP. And even if slight ly different from the not ation point of
view, the resources may contain information that could be shar ed by the dif
ferent pr act itioners becau se of t he common par adigm. Figure 3 illustrates t he
concepts related to the model speci ficatio n.

A m ethod fragm ent ensure s a t ight coupling of some process part of a method
process model and its related product part [14]. In the product par t , also called
product fragment, t he product to be delivered by the method component is ca p
t ured whereas in t he process par t , also called process fragment , t he guidelines
allowing to produce the product are given . A method fragment , also called a
method bloc or a method chunk, is characte rized at least by a name and an
intention which specify t he goa l that the method component achieves. A piece
of knowledge may be described as being a product fragment only or a pro
cess fragment only or both of t hem depending on it s level of granularity and
focus. Indeed, some authors propose two types of method components whil e
ot hers consider only process aspects. Integrated approaches also exist [14]. T he
resources described with t he help of these concepts (method frag ment, prod
uct fragment and process frag ment) consist in guidelines about how to use t he
meta models (to build models) in addit ion to references to ap propriate parts
of product and/or process met a-models. Another way to reuse method ological
knowledge is based on generic elements [1 8]. The m ethod patt ern concept aims
at describing resources which capt ure generic lows governi ng t he construct ion
and ada ptation of methods. Decision-making pat terns capt uring t he best prac
tices in enterprise modeling and domain- specific process pattern s and product
patterns [14] are examples of pat terns. Fragments as well as pat terns may be re
spectively decomposed into more refined fragments and patterns. Figure 3 sum
marizes t he different concepts suitable for cha racterizing method components.
The relat ionships between method components and models is summarized in
Figure 4.

As our aim is to help pr act itioners to spread and share methodological
knowledge, it is import ant to provide mean s for them to express in which con
text the resource may be useful. T herefore we introduce the concept of context .

Connecting method engineering knowledge: a community based approach 185

Fig. 3. Content of the ontology

Fig. 4. Relationships among models, fragments and patterns

It is useful for defining potential reuse situations when describing a resource and
importing its description into the resource description collection. It is also prof
itable when searching for resources : it allows to specify the situation in which
the resources could be reused. It contributes to better specify what the prac
titioner is searching for, in addition to the kind of knowledge (model, method,
method component, ...) and features about the element under consideration
(intention of a method component, paradigm of a model, ...). The context also
allows to specify characteristics which are not dependent on the kind of concept
under examination and therefore allows to join together heterogeneous knowl
edge. By heterogeneity we mean resources about different concepts (model,
method component, purposes, etc) as well as resources with different levels of
formalization ranging from formal descriptions to informal experience report.
A context is defined by a set of criteria belonging to different domain of in
terest [13]. The organizational perspective (and especially contingency factors
[22]) and the human dimension are examples of domain. The practitioner in
volvement in the ISD project or the time pressure on the project are examples

186 Isabelle Mirbel

of criterias relat ed to the orga nizationa l perspective. T he concepts required to
specify a context are illust rated in Figure 3.

5 Motivating example

In this sect ion we show on an example how t he to p ontology we discussed in the
previous sect ion can be refined to describ e two specific methodological resources
in a generic and reusable way and how t hese resources may be joined together
t hanks to the ontological knowledge.

Figure 5 shows an example of method chunk extracted from [1 9,14]. As it
is ind icat ed in t he descriptor of t he chunk, t he aim of t his chunk is to pro
vide guidelines to build a use-case mod el from a problem descript ion. This
chun k cont ains a product part and a process part. In t he prod uct part , t he
use-case model the chunk is dealing with is specified. T he process par t is speci
fied thro ugh tactical guidelines. This formalism is par t of the NATURE process
model and allows to express complex guide lines t hrough a set of steps .

4>rDblem Description, Constructa UseCaseMDdeI>

~Prob. Description). I
Identifyan actor>" I

case>

FT--J
AetDn. ~Use case rrodel),

Identifya use case:>' Refineuse case
model>

~Usecase). <{Usecase).~
Write basic Writeexception •
scenario> scenario:>' <{fjse case].

<{fjse case]. Defineuse relationship>
Defineinclude relationship> I

<{fJse case].
Defineextend relationship>

Fig. 5. A method chun k

T he description of this resource in a graphical way is given in Figure 6. T he
name and intention of the chunk have been represented , as well as the use-case
and NATURE model referred to in t he chunk body. A context has been speci fied
to help in und erstanding t he reuse context of the method chunk. It has been
descri bed with regar ds to t he design activi ties it is suitable for : requirement
elicitation and analysis . It has also been qua lified wit h regards to the kind of
application domain it is suitable for: when designing an information system or
human computer in terfaces. Of course, in pa rallel with the specificat ion of t his
descrip ti on , the to p ontology has to be enr iched to take into acco unt the new

Connecting method engineering knowledge: a community based approach 187

concepts the chunk contains: use-case model, NATURE model, Information
system, Human computer interfaces, Analysis, Requirement elicitation, design
activity and Application domain.

belongs to
Application

domain: Domain

:':":'=:':":"::';=:":':":'~=I be onqs to

Fig. 6. The chunk description

Figure 7 shows another example of resource about methodological knowl
edge. It is a method fragment which has been extracted from the JECKO
framework [2]. This framework, which is the result of a collaboration between
Amadeus 8A8 and the 138 research laboratory [16], is a context-driven ap
proach to analysis and design to address the problem of adapting methodology
to specific development environment. Dedicated method fragments as well as
dedicated UML profiles have been proposed to deal with different criteria quali
fying the application under development [15,17]. The method fragment shown in
Figure 7 is dedicated to applications with a graphical user interface (situation:
when dealing with GUI) and provides guidelines to help in defining the user
interface specification by starting from the business domain specification, as it
is explained in the intention of the method fragment. The method fragment
provides textual guidelines about this specification activity during the require
ment analysis phase (in this framework fragments are grouped by phases and
steps that are recalled in the name of the fragment). It assumes the use-case
model is used to support this activity.

A graphical view of the description of this resource is given in Figure 8.
The name and intention of the fragment have been represented, as well as the
use-case model referred to in the fragment guidelines. A context has been spec
ified to help in understanding the reuse context of the method fragment. It has
been described with regards to the design activity it is suitable for : require
ment analysis. It has also been qualified with regards to the kind of application
domain it is suitable for: when dealing with a graphical user interface.

Again, in parallel with the specification of the method fragment description,
the top ontology is enriched to take into account the new concepts the chunk
refers to : Requirement analysis. The part of the top ontology enriched to take

188 Isabelle Mirbel

I Name

I Situation

Intention

Associated
Fragments

Guideline

RequirementAnalysis: :Core: :UI-View

When dealing with GUI

Define User Interface (UI) specifications
from Business Domain (BO) ones

RequirementAnalysis: :Core:: BO-View

UML diagram: use-case diagrams
* Deduct UI use-cases from «BO»and «BD-WF» use-cases.
UI use-cases are derived from BO use-cases, at least as a starting
point. A UI use-case is created for each BD use-case related to an
actor through a «UI» association. Use-cases which are included
or extend BO use-cases related to actor(s) through «Ul» asso
ciation may also lead to the creation of «UI» use-cases, except
if the contrary is specified.
* If dependency relationships exist among BD use-cases used to
deduct «UI» use-cases, they also have to be taken into account
through the UI view. Use «BD-extend» or «BO-include»
dependency stereotypes to show the dependencies deducted from
BO dependencies.
* If a BD use-case has been stereotyped «BD-WF», then the
deducted UI use-case is stereotyped «UI-WF».
* Group the models related to the UI View in «UI» package(s).
* When UI use-cases have been deducted from BD use-cases, show
it explicitly via <<For> > dependencies,

Fig. 7. A method fragment

seO JECKO:Method
~QO

0(('/.;°· ~p
\$,(\ is qualified by

r----------,
Fragmntl ContextFragmtl

:MethodComponent :Context

·o\\.
"l()

\0
te ~

Define user interface ~
from business domain

specifications

ReguirementAnalysis:
:Core: :UI-View

Fig. 8. The fragment description

is speci
fied by

When dealing
with GUI: Criteria

I belongs to

Application
domain: Domain

into account the concepts required to qualify the chunk and the fragment under
concern is shown in Figure 9.

With the help of a semantic search engine the collection of resource descrip
tions can be searched and similarities between the two method components

Connecting method engineering knowledge: a community based approach 189

(*) Associated labels: Human Computer
Interfaces or When dealing with GUI

Fig. 9. The extended ontology

under consideration could be found. The chunk and the fragment would be
considered as close because of their common product model of course, but also
because they share part of their context (the user interface concept) and because
they cover design activities which are join together by generalization relation
ships (analysis in the chunk context and requirement analysis in the fragment
context).

The proposed top ontology makes a difference to current practice because
pieces of knowledge not expressed with the same formalism (NATURE pro
cess model in one case textual description in the other), not belonging to the
same method may still be joined together and presented to practitioners as two
possible answers to a single query.

Compared to a localized Google search engine, our approach allows experts
to provide, through the refinement of the top ontology, a set of meaningful
concepts to describe the ME domain. It could be especially useful for novice
practitioners when looking for resources about methods. Moreover, as we deal
with heterogeneous kinds of resources ranging from very formal descriptions
to informal experience report, empirical know-how and best practices, it could
be difficult to index all of them in a homogeneous and meaningful way. Key
words extracted from the text body would not lead to good retrieval results.
By following an ontology-based approach to capture domain concepts we aim
at improving resource indexing and retrieval.

Thanks to our lightweight top ontology, which is very basic and concise, each
practitioner participating in the community can contribute to the methodologi
cal knowledge description by refining the top ontology when exporting descrip
tions of resources. Each CoP will then obtain an ontology which reflects the
knowledge cultivated in this CoP. It will make possible to reference hetero
geneous pieces of knowledge in a common framework and let practitioners ex
change pieces of knowledge whatever the formalism, the granularity, the level of
detail of what they want to spread and share are. The ontology also constitutes

190 Isabelle Mirbel

a guida nce, especially for novice practitioners , when searching for resources. It
provides a set of core elements to start from to express a need and a reuse
sit uation.

6 Conclusion

In this paper we presented an app roach to help practitioners in spreading and
sharing methodological knowledge. We exploited t he concept of CoP, which
allows exchange of knowledge outs ide of the boundaries of the organization and
deepens members knowledge and expe rtise in t he CoP domain by interacti ng
on an ongoing basis.

Our concern is more precisely on providing an interactive and evolut ive
support to integrate heterogeneous cont ribut ions about ME to encourage prac
t itio ners to be act ive in documenting, using and keeping the method alive.

In this context, our contribut ion deals with a lightweight top ontology to
specify t he core concepts required to qualify any piece of knowledge about
method. This top onto logy is refined by pra cti tioners when they imp ort re
source descriptions which const it ute the CoP practi ce. It allows practi tioners
to join toget her resources with different levels of formalization and not ations. An
access to a large amount of practi ces, not inevit ably par ti tioned by models, no
tations or approaches is gained. Moreover, the ontology provides a guidance for
defining pra cti tioner need and specifying practi tioners situation when searching
t he resource descrip tion collect ion.

Fut ure works will proceed in both theoretical and practi cal dir ections. The
t heory will focus on providing core concepts to describ e actors and ISD activit ies
and techniques in orde r to extend t he scope of our top ontology and bet ter
handle all t he key element of a CoP [1 2] devoted to ME . Associated dedicated
too ls will also be studied. The pract ical work will consist in testing this approach
t hrough several case st udies.

References

1. ht tp:/ / fr.wikiped ia .org.
2. ht t p:/ / www.i3s.unice.fr/mirbel/ jecko/jecko.ht ml.
3. A. de Moor and H. Delugac h (2006) Software P rocess Validation: Comparing

P rocess and P ractice Models. 18th Conference on Advanced In format ion Systems
Engineering - CAISE 2006 Workshop on Ex plor ing Mode ling Met hods in Systems
Analysis and Design - EMMSAD.

4. B. Lings and B. Lundell (2004) . Met hod-in-Action and Method-in-Tool: Som e
Implicat ions for CASE. 6t h Interna tion al Co nference on Enterprise Infor mat ion
Systems - ICEI S 2004, Porto, Portugal.

5. C . Rolland (2005). L'm genierie des metho des : une visit e gu idee. e-TI
- la revu e elect ronique des techno logies d 'information, ht tp:/ / www .revu e
et Lnetdocument .php?id= 726, (1) .

Connecting method engineering knowledge: a community based approach 191

6. C. RoIland and C. Salinesi (2001) . Ingeni erie des syste mes d 'information. Hermes.
7. A. Jarvi and H. Hakonen and T . Makil a (2007) . Developer driven approach to

sit ua tio nal method engineering. IFIP WG8.1 working conference on sit uat iona l
method engineering: fundamentals and expe riences (ME07), Geneva , Switzerland.

8. E. Hustad (2007). A conceptual framework for knowledge integration in dis
tributed networks of practice. 40th Hawaii In ternational Conference on System
Sciences.

9. E. Wenger (1998) . Communit ies of practice: learning, meaning, and identity.
Cambridge University Press, Cambridge, U. K. and New York , N.Y.

10. E. Wenger , N. White, J . Smith , K. Rowe (2005). Technology for communities.
CEFRIO.

11. E. Hustad (2007) . A conceptual framework for know ledge integration in dis
t ributed networks of pr actice. 40t h Hawaii In ternational Conference on System
Sciences.

12. E. Wenger (1998). Communit ies of practice: learning, meaning, and identi ty.
Cambridge University Press, Cambridge, U.K. and New York , N.Y.

13. E. Wenger , N. White, J . Smith, K. Rowe (2005). Technology for communit ies.
CEFRIO.

14. F. Karlsson and K. Wistrand (2006) . Combining method enginee ring with activ
ity theory : theoretical grounding of the method component concept . European
Journal of Information Systems , (15) , 2006, pp. 82-90.

15. G. Vidou, R . Dieng-Kuntz , A. EI Gh ali, C. Evangelou , A. Giboin, A. Tifous
and S. Jacquemart (2006) . Towards an Ontology for Know ledge Management in
Communit ies of Practice.. 6th International Conference on Practical Asp ects of
Kn owledge Management - PAKM 2006, Vienna, Austria, 2006, pp. 303-314.

16. I. Mirbel (2004) . A polymorphic context frame to support scalability and evolv
abili ty of information sys te m development processes. 6t h In ternational Confer
ence on Enterprise Information Systems - ICEIS 2004, Porto, Portugal , April ,
2004, pp. 131-138.

17. I. Mirbel and J . Ralyte (2006) . Situational method enginee ring : combining
assembly-based and roadrnap-driven approaches . Requirement Engineering Jour
nal, 11(1) , 2006, pp . 58- 78.

18. I. Mirbel and V. De Rivi eres (2003) . Concilia t ing User Interface and Business
Domain An alysis and Design . 9th International Conference on Object-Oriented
Information Systems - OOIS 2003, Geneva, Switzerl and, September , 2003, pp.
383-399.

19. I. Mirbel and V. de Rivieres (2002) . Adapting Analysis and Design to Soft
war e Context : The JECKO Approach .. 8th International Conference on Object
Oriented Information Systems - OOIS 2002, , Montpellier , France, Sept. , 2002,
pp . 223-228.

20. I. Mirbel and V. de Rivieres (2003) . UML and the unifi ed process . IRMA Press,
2003.

21. J . Ralytee and R . Deneckere and C. RoIland (2003) . Towards a Gen eric Mod el
for Situational Method Engineering.. 15th International Conference on Advan ced
Information Systems En gineering (CAISE 2003) , 2003, pp. 95-110.

22. J. Ralyte (2001). Ingenierie des method es it base de composants. Univers ite Paris
I - Sorbonne, January, 2001.

23. J . Ralyte and P. Backlund and H. Kiihn and M. A. Jeusfeld (2006) . Method
Chunks for Interop erability. 25t h Intern ational Conference on Con ceptual Mod
eling, ER 2006, 2006, pp. 339-353.

192 Isabelle Mirbel

24. J .P. Tolvanen (1998) . Incremental Met hod Engineering with Modeling . Tools:
T heoretic al Principles and Empirical Evid ence. Unive rsity of Jyvskyl, Finlan d,
1998.

25. K. van Slooten , B. Hobbes (1998) . Characte rizing IS development proj ects. IFIP
WG8.1 Working Conference on Meth od Engineering: Principle s of method con
stru ct ion and tool support , Great Brit ain , 1996, pp . 29-44.

26. L.H . Jean- Bap tiste, C. Salinesi and G. Fanmuy (2005). Sharing Met hodological
Kn owledge with REGAL: " Requirements Engineering Guide for All". 13th IEEE
Intern ational Con ference on Requirements Engineer ing, Paris , France, 2005, pp.
461-462 .

27. M. Bajec , D. Vav potic and M. Kirsper (2004) . The scenario and too l-support for
constructing flexible, people-focused syste m developement methodologies. 13th
International Con ference on In formation Systems Development - ISD 2004, Vil
niu s, Lituani a , September.

28. M. Leppanen (2005). Conceptual Analysis of Cur rent ME Arti facts in Terms of
Coverage : A Contextua l Approach . 1st International Workshop on Situationa l
Engineering Processes Methods, Techniques and Tools to Support Situation
Specific Requirements Engineering Processes (SRE P) , in conjunction with 13th
IEEE Intern ati onal Requirements Engineering Con ference, pp . 75-90.

29. M. Leppanen (2006) . Towards an Ont ology for Inform ation Systems Develop
ment . 18th Conference on Advanced Inform ation Systems Engineering - CAISE
2006 Workshop on Exploring Modeling Meth ods in Systems Analysis and Design
- EMMSAD.

30. M. Rossi and B. Ramesh and K. Lyytinen and J .P. Tolvanen (2004). Manag ing
evolutionary method engineering by method ra t iona le. Jo urnal of the Association
for Information Syste ms, 5(9) , pp . 356-391.

31. M.P. Zarb (2006) . Modelling pa rticipation in Virtu al Communities of Pract ice.
London , UK.

32. S. Brinkkemper (1996). Met hod Engineering : Engineering oflnformation Systems
Development Met hods and Tools. Inform ation and Software Technology, 38(4),
1996, pp . 275-280.

33. S. Brinkkemper and M. Saeki and F . Harmsen (1998). Assembl y techniques for
method engineering. 10th Intern ational Conference on Advanced Information
Systems Engi neering, P isa , It aly, 1998.

Situational Method Quality

Liming Zhu and Mark Staples
NICTA, Australian Technology Park, Eveleigh, NSW 1430, Australia

2 School of Computer Science and Engineering
University of New South Wales, NSW, Australia

[Liming.Zhu, Mark.Staples]@nicta.com.au
WWWhome page: http://www.cse.unsw.edu.au/~limingz/

Abstract. Some overall method characteristics, such as agility and scalability,
have become increasingly important. These characteristics are different from
existing method requirements which focus on the functional purposes of
individual method chunks and overall methods. Characteristics like agility and
scalability are often not embodied in the function of a single method chunk but
are instead reflected in constraints over one or more method chunks,
connections between method chunks and cross-cutting aspects of the overall
method. We propose the concept of method tactics, which are techniques for
achieving certain method quality attributes. We identify a list of method tactics
focusing on agility and scalability by considering factors that affect these
quality attributes. We validate the feasibility of using method tactics by
applying them to traditional software development method chunks and
deriving practices for agile development. We examine the effectiveness of the
tactics by comparing our derived practices with existing practices for agile
development. The comparison results show that most of the derived practices
are found in existing agile methods. We also identify new practices that may
have potential for use in agile methods. The results demonstrate initial support
for our proposal for the use of method tactics, and for the extraction or
invention of further cross-cutting primitive method tactics for more flexible
situational method engineering.

1 Introduction

Method quality is often considered to be functional conformance to method
requirements or industry best practices. However, in system development, quality is
defined not only in terms of correctness (conformance to functional requirements)
but also satisfaction of non-functional requirements. Non-functional requirements are
equally important for method engineering. Some examples of non-functional
characteristics for methods include:

Please lise the following format when citing this chapter:

Zhu, L., Staples, M., 2007, in IFTPInternational Federation for Information Processing, Volume 244, Situational Method

Engineering: Fundamentals and Experiences, eds. Ralyte, J., Brinkkemper, S., Henderson-Sellers B., (Boston Springer),

pp. 193-206.

194 Liming Zhu and Mark Staples

• Agility: the ability of a method t o accommodate expected change rapidly and
efficiently

• Scalability: the ability of a method to retain its effectiveness with larger (or
smaller) team size and product size

• lnteroperability: the ability a method to interact with other methods and
environments

• Usability: the ease of use of the method by human agents to achieve the goals
supported by the method

The current approach to improve quality characteristics of a method is to tailor
an existing method or select and integrate existing method chunks [20] that posses
some degree of the desired quality characteristic. For example, in the software
development domain, existing agile practices can be added to a method, or a
particular agile method can be tailored.

However, this approach has some limitations. A method engineer should be able
to directly and systematically improve specific quality attributes of a method, rather
then rely solely on selecting and integrating method chunks from among existing
practices. This can not be achieved if method engineers do not understand the
underlying reasons why an existing method chunk supports those quality attributes.
This limits the flexibility and precision of a method engineer's ability to improve the
quality characteristics of a method.

In this paper, we propose a new concept called "method tactic". A method tactic
is a technique for method engineering, intended to achieve specific method qualities.
Method tactics can apply to an existing method chunk, a collection of method
chunks, or an entire method. Although some method tactics can themselves be
realized as method chunks, usually method tactics manifest as constraints over a
method chunk, or more frequently as cross-cutting constraints over multiple method
chunks. We observe that the cross-cutting nature of these tactics also makes it
difficult to treat them as a single method chunk in a method repository. Thus this
approach complements existing approaches for method engineering that rely mostly
on selecting method chunks from a method repository.

We have collected an initial collection of tactics for agility and scalability. We
have not intended to collect a complete set of such tactics or to rigorously categorize
them. Our goal has been to identify some practical techniques that a method engineer
can use to improve the non-functional quality of a method. We have conducted an
initial validation of our method tactics by applying them to software development
methods. Using the method tactics we have been able to derive practices that exhibit
the desired method qualities and that match industry best practices and methods that
promote the same qualities. We have also been able to identify new practices that
have not yet been included in software development processes. These new practices
can be further empirically validated and considered as candidates to be included in
future software development methods. Our work has a number of contributions:

• Method tactics characterize why methods achieve specific method quality
characteristics.

• Applying method tactics directly allows more flexible method design, and can
potentially identify new reusable method chunks as best practices.

Situational Method Quality 195

• A method tactic may affect multiple method quality characteristics in different
directions. Our approach makes such trade-offs explicitly understood for
resolution by method engineers. For example, the trade-offs between agility and
scalability in software development methods is an area of growing interest [5,
12].

This paper is organized as follows. We first discuss related work in section 2. In
section 3, we introduce the concept of method tactics and illustrate them by
providing a list of tactics that affect agility and scalability. In section 4, we apply
these tactics to general activities (method chunks) in software development processes
in order to achieve specific method characteristics. We demonstrate that the derived
practices closely resemble existing software development practices that promote
those characteristics. We discuss the limitations of our work in section 5, and
present conclusions and future work in section 6.

2 Related Work

Methods possess both functional and non-functional characteristics. Situational
method requirements often specify non-functional requirements of methods, such as
being able to handle large team size, large project size, high product requirement
volatility, fast responsiveness to change, and flexibility.

Many approaches to method engineering focus on assembly techniques [6, 8, 13,
21, 24]. Such approaches propose strategies such as association and integration to
bridge or merge method chunks [20], and use configuration packages [11] during
assembly and adapting. Such approaches do not include atomic means to achieve
cross-cutting concerns such as method qualities. Our work addresses this issue by
identifying and using method tactics, which complement method chunks and
bridging/merging-based assembly techniques.

Method engineering theories have been successfully applied to software
development domains to create situation and project specific methods [1-3, 9, 17].
Assembly approaches have been used to investigate support for product qualities,
such as system interoperability [19]. Certain method quality attributes, such as agility
has been investigated [10, 22] and compared among methods. However, the agility
of these methods has only been analyzed at the phase and practice level. The atomic
and primitive reasons why these practices are "agile" has not been explicitly captured
and analyzed. Our work is the first attempt to extract these underlying reasons and to
use them in the context of method engineering.

The concept of tactics for design is not new. Atomic architectural and design
tactics have been used to achieve non-functional cross-cutting product quality at the
architectural level [4]. These tactics have been useful because most non-functional
product requirements can not be achieved by selecting and assembling functional
components. The analogy between products and methods (processes) is well-
recognized [18]: a method should be designed to satisfy method requirements [20]
just as products are designed to satisfy product requirements. By further following
this analogy, we observe that applying the concept of tactics to method engineering
can provide atomic means of achieving cross-cutting method quality.

196 Liming Zhu and Mark Staples

3 Method Tactics

As defined previously, a method tactic is a technique for method engineering,
intended to achieve specific method qualities. Ideally, it should be possible to
systematically analyze a specific quality of a method by using a method quality
reasoning model. Such a model would represent how a method tactic could
manipulate parameters leading to the quality, and would help to explain the
effectiveness of such tactics. However, no formal method for reasoning about
method quality exists. Nonetheless, some informal factors can be identified.

In this paper, we use the method qualities of agility and scalability as illustrative
examples. We have chosen from the software development methodology literature a
number of well-recognized factors that affect these two qualities:

• Efficiency of information flow (speed, responsiveness and leanness)
• Type of feedback
• Frequency of activity/feedback/auditing
• Incremental completion of tasks
• Reversible actions
• Task interdependency

By inventing techniques to try to affect these factors, we have identified a
preliminary list of method tactics. This list is not intended to be a complete list. As
expected, most tactics affect multiple method qualities in different directions. That
is, by achieving one quality method engineers may have to sacrifice another quality.
The analysis of method tactics that we present using these informal factors should be
taken as general analyses - we note where counter-examples may exist in some
circumstances. In presenting our list of method tactics, we have grouped them for
ease of analysis.

Method Tactic: Use verbal communication and "light" informal documentation
Method Tactic: Use formal documentation

Verbal communication can increase the agility of a method through increased
speed of information flow, responsiveness and leanness. Relying primarily on verbal
communication does not necessarily remove documentation completely. Many
industry practices that promote verbal communication tactics are also conveyed as
practices about using less documentation. "Light" informal documentation can
include forms such as email or instant messaging logs, and wiki pages. Verbal
communication can suffer from poor scalability to larger team size and longer project
durations. Purely verbal communication on complex topics among a large number of
people is not highly effective, and informal documentation is prone to obsolescence
through poor maintenance. Longer project durations present an increased risk of
higher personnel turnover, leading to a decrease in the effectiveness of organizational
memory and knowledge. Verbal communication and informal documentation can
also negatively affect method reliability. Verbal communication and informal
documentation is often used in smaller projects and for methods that require
extremely high agility in terms of responsiveness and leanness. Formal documented
communication manifests the opposite quality attributes. Extensive and rigorous

Situational Method Quality 197

documentation usually decreases method agility but can increase reliability and
scalability. (However, counter-examples to this can exist if documentation is poorly
maintained.)

Method Tactic: Downstream-driven input (feed-back)
Method Tactic: Upstream-driven input (feed-forward)

The inputs into an activity can be based on downstream activities/artifacts or
upstream activities/artifacts. For example, in the software development method
context, design activities could rely solely on the upstream requirements to verify
design output against the requirements. However, design activities could also rely on
inputs from downstream activities such as coding (Code Smell) or testing (Design
for Test).

Downstream-driven inputs effectively establish a feedback loop. Downstream
feedback can provide rich information that is quite different to that from upstream
activities. Exiting an activity with low quality outputs may lead to higher
downstream or overall cost due to unnecessary rework not caused by changing
environment and requirements. In such situations, the longer and less frequent the
feedback loop, the greater the overall cost. Thus, downstream-driven input is often
used with a very short loop and with frequent feedback.

This tactic may not scale well for large systems when rework cost is not linear
due to the effects of complexity. The cost of rework may outweigh the richer
feedback obtained through "trialing" downstream activities. On the other hand, the
value of downstream feedback may decrease when a domain is very mature or a team
is very experienced. This is why large projects in mature domains often still follow
waterfall methods to some degree, with less frequent iterations.

Method Tactic: Introduce continuous feedback/auditing
Method Tactic: Introduce staged feedback/auditing

Continuous feedback is effectively a very small feedback loop between
interconnected method chunks. For example, in software development methods, it is
possible to maintain such feedback loops between designing and coding or between
coding and testing. Continuous feedback improves agility tremendously. In terms of
scalability, it works well if the activities within a loop are performed by one
individual. However, if it involves multiple people, the communication overhead,
synchronization issues and potential resource contention will harm the sealability of
the method. For example, continuous integration in software development involves a
coding/building continuous feedback loop. This can suffer from scalability due to the
reasons mentioned above.

Method Tactic: Allow a single method chunk to be carried out incrementally
Method chunks may be carried out incrementally to fit with tactics for iteration

or feedback. However, there are other reasons for incremental execution. For
example, requirements change volatility can lead to a risk that early work might be
rendered obsolete. Incremental execution allows certain decisions to be deferred until
required. Just-in-time elaboration and maximizing work-not-to-be-done are practices
that employ this tactic. Some product properties have an emergent nature (especially

198 Liming Zhu and Mark Staples

in large scale systems [16]) and are difficult to plan. Incremental execution can be
useful in these situations.

This tactic improves method agility but may suffer from scalability over the long
run on certain activities. Long-term incremental refinement of large products may
reach a breaking point that can only be solved by a comprehensive overhaul [5].

Method Tactic: Use configuration management
In order to allow reversible changes, configuration management should be used

to track all changes. This tactic increases method agility by enabling managed
changes. Configuration management may introduce additional cost and overhead.
However, for any project involving multiple working in parallel on the same
artifacts, the benefits of configuration management normally outweigh its costs.

Tactics such as configuration management clearly have it's a cross-cutting
aspect. Introducing a single method chunk called "configuration management" won't
work. Although initial method chunks may be required to plan and establish a
configuration management environment, configuration controls influence many
existing method chunks, for example to support "check-out" and "check-in"
activities before and after their execution.

Method Tactic: Reduce task dependencies between multiple resources.
Task dependency between multiple resources introduces communication and

synchronization overhead. Method chunks should be designed to support maximum
parallelism not only among method chunks but also among instances of a single
method chunk. Although the nature of the task often has a major impact on its
ability to be partitioned and executed in parallel, process analysis techniques can
improve this. As we have demonstrated, method tactics can be applied in different
ways:

• One can add constraints to a single method chunk. For example, to make an
activity shorter or allow it to be carried out incrementally.

• One can add constraints to a block of method chunks. For example, to introduce
continuous feedback loop or fixed iteration times in an area of method chunks.

• One can add method elements to many method chunks to realize cross-cutting
tactics. For example, to apply configuration management activities to each of the
method chunks in a method that are affected by configuration control policies.

Figure 1 shows relationships between method tactics and method chunks in
method engineering. Tactics can also be applied to instances of method or method
chunks. None of these method transformations can be easily modeled using
traditional method chunks and integration/association-based assembly techniques.

4 Applying Method Tactics to Software Development Methods

In order to validate the feasibility and effectiveness of using method tactics, we now
apply method tactics to general software development method chunks. We have only
selected tactics listed in section 3 that improve method agility. Some of these also

Situational Method Quality 199

harm scalability. The generic method chunks include eliciting and defining
requirements (R), design (D), coding (C), testing (T), and product and project
management (P). This is shown in Table 1. Each cell represents the practice derived
from applying the corresponding method tactic to the generic activity. Multiple
related method chunks can be involved during the process due to the cross-cutting
nature of the tactics and non-functional method requirements. We then determine if
the derived practices match existing agile practices in industry, and consider if they
suffer from poor scalability. We looked at eight agile methods:

1. Feature Driven Development (FDD)
2. Extreme Programming (XP)
3. Dynamic Systems Development Method (DSDM)
4. Scrum (Scrum)
5. Agile Software Development (ASD)
6. Crystal (Crystal)
7. Lean Software (Lean)
8. Agile RUP (ARUP)

Situational Method

rC

Method Tactics

Tact ics for A~ i l i ty

I " " . , . Tact ics for Scalabi l i ty - "

Tact ics for Rel iab i l i ty

Me thod Ins tance

Chunk Block -

.

C~i~" D ,; ~1 CI,Lri E i I

• ' . ~ I t i p l e i n s t a n t e c h u n k

Method

L "11

Figure 1 Method Tactics

Due to a high degree of overlap, we only include the first four in the following
report. All eight methods were considered when we try to identify potential missing
practices.

200 Liming Zhu and Mark Staples

Table 1. Applying method tactics to generic software development method chunks

R
1 Verbal communication
2 Downstream driven feedback
3 Frequent feedback/checking

4 Incremental completion

5 configuration management

6 Reduce task dependency

D C T P
lxR lxD lxC lxT lxP
2xR 2xD 2xC 2xT 2xP
3xR 3xD 3xC 3xT 3xP

4xR 4xD 4xC 4xT 4xP

I xR: Use verbal communication and informally documented requirements
Existing Agile Practices: On-Site Customer (XP), User Stories (XP), Active User
Involvement (DSDM), Collaboration and Cooperation among stakeholders (DSDM),
Domain Object Modeling (FDD)

Applying verbal communication to requirements means relying less on formally
documented requirements. Customers tell stories and the stories are recorded and not
immediately scrutinized. Such methods rely on the on-site-customer to elaborate
requirements verbally in a just-in-time fashion.

lxD: Use verbal communication and informally documented design
Existing agile practices: Pair Programming (XP), Code as Design Documentation
(XP), Metaphor (XP)

lxC: Use verbal communication or lightly documented code
Existing agile practices: Pair Programming (XP), Code as Documentation (XP)

Most agile methods promote lightly documented design and use standard-
complying self-documenting code as the main design artefact. Since design is
essentially integrated with coding, pair programming also acts as a way of
communicating designs.

lxT: Use verbal communication and informally documented tests
Existing agile practices: Unit Testing by Developer (XP), Pair Programming (XP)

The goal of verbal communication is to reduce communication overhead between
resources. Making a single resource perform multiple functional goals reduces
communication overhead to zero since only one person is involved. Making
developers do unit testing is an example of applying this tactic.

lxP: Use verbal communication and informally documented products
Existing agile practices: Co-location (XP), On-site Customer (XP), Code as
Documentation (XP)

Situational Method Quality 201

When this tactic is applied cross-cuttingly to the overall project, co-location is
the result. However, providing co-location and on-site customers is difficult for large
projects, and in global development and outsourcing contexts.

2xR: Design/Coding/Testing/Product driven requirements validation with user
Existing agile practices: Just-in-time requirements elaboration (XP - design/coding
driven), Testable Requirements (XP -testing driven), Short Release (XP -product
driven), Productionizing (XP - product driven), Frequent Product Delivery (DSDM
- product driven)

The downstream activities for requirements are design, coding, testing and
product. We consider them separately as indicated in the brackets. Products are
considered have the richest feedback because: 1) productionizing leads to more
intermediate steps to be carried out which may reveal more issues; and 2) products
can be used to seek feedback from users directly. The second point is especially
important for requirements activities. However, the cost of constantly producing
working and tested products can be costly for large projects. The trade-off between
cost and agility should be considered here.

2xD: Coding/Testing/Product driven design validation
Existing agile practices: Spiking (XP - coding driven), Code Smell (XP - coding
driven), Design for Test (XP - testing driven),
Potential missing practices: Release driven design review, non-functional
requirements validation through design review

2xC: Testing/Product driven coding
Existing agile practices: Test Driven Development
Continuous/Nightly Build (XP - product driven)

(XP - testing driven),

2xT: Product driven testing
Existing agile practices: Acceptance Testing (XP)

Coding and designing are often intertwined activities in agile processes.
Although testing is extensively used for driving all upstream activities (requirements,
design and coding), there is no emphasis on using the product feedback to improve
design and coding directly. Products are often used as a way to elicit feature-based
feedback rather than systematic non-functional requirements, e.g. performance,
reliability, scalability validation through design review. We identify this as a
potential missing agile practice.

3xR: Continues requirement validation
Existing agile practices: On-Site Customer (XP), Active User Involvement
(DSDM), Collaboration and Cooperation among stakeholders (DSDM), Domain
Object Modeling (FDD)

3xD: Continuous design validation
Existing agile practices: Refactoring/Code Smell (XP)

202 Liming Zhu and Mark Staples

3xC: Continuous code validation
Existing agile practices: Test Driven Development (XP), Pair Programming (XP),
Regression Testing (XP), Continuous Integration (XP)

The continuous method tactic can be applied in two ways:
1. By creating immediate feedback loop between adjacent method chunks.

Refactoring and test driven development are two examples.
2. By adding extra resources on the same task to provide immediate feedback. Pair

programming and on-site customers are two examples.
Continuous feedback will improve software development agility. The cost and

scalability of this very short feedback loop is affected by whether multiple people are
involved. For example, one benefit of continuous integration is that messages about
build failures can be sent to the specific individual(s) who caused the failure. The
entire development team need not be involved. However, continuous integration may
not scale well due to resource contention on build servers and synchronization issues
during a long build. Adding extra resources is also costly and can only be justified in
certain circumstances. For example, the increased cost of pair programming is often
justified by mentoring and training benefits.

3xT: Continuous test code validation
Existing agile practices: Pair Programming (XP)
Potential missing practices: Continuous test quality check, test refactoring, test
smell.

It has been argued that test driven development will produce code as good as the
test design. Since test code is not as rigorously examined as other part of the
development, low quality code could be produced due to low quality test code.
Currently, test design largely depends on experience. Employing more rigorous test
design techniques or auto-test-generation can mitigate the risks involved.

3xP: Continues product validation
Existing agile practices: Short Release (XP), Productionizing (XP), Sprint/Sprint
Review (Scrum), Frequent Product Delivery (DSDM)

Continuous product validation has appeared in almost all agile methods.
However, it is not exactly continuous, but instead usually a very short release
iteration. Different methods put different constraints or use different criteria for the
length of iterations.

4xR: Incremental requirement definition
Existing agile practices: Just-in-time
Requirement Changes (all agile methods)

requirement elaboration (XP), Accept

4xD: Incremental design
Existing agile practices: YAGNI/Simple Design (XP), Refactoring (XP)

4xC: Incremental coding

Situational Method Quality 203

Existing agile practices: Short Release (XP), Developing by Feature (FDD),
Iterative and Incremental development (DSDM), Product Backlog (Serum)

4xT: Incremental testing
Existing agile practices: N/A
Potential missing practices: Simple Testing.

Incremental execution of method chunks has been an important practice in all
agile methods due to a number of reasons:
• Constantly changing environment and requirements
• Emergent properties instead of planned properties of a system [16]
• Inevitable programming rework [7]

The focus of incremental work has been on all activities except testing. This
might be due to the fact that testing is essential in quality assurance. However, it has
been observed that one difficulty in test driven development is the amount of time
taken to setup testing infrastructure, including high quality skeletons, stubs and mock
objects. Due to the high volatility of requirements change and design refactoring
(which affects interfaces), testing code can become obsolete quickly. There is a need
to balance the sophistication of the testing code and its ability to perform high
quality testing. The XP YAGNI principle (You Aren't Gonna Need It) can be
applied cautiously to progressively improve the coverage and quality of testing code.

4xP: Incremental product development
Existing agile practices: Short Release (XP), Developing by Feature (FDD),
lterative and Incremental development (DSDM), Product Backlog (Serum)

Tactics such as configuration management and task dependency are overall
cross-cutting tactics. Thus, we try to apply them to the overall method.

5: Configuration management
Existing agile practices: Reversible Changes (DSDM), Configuration Management
(FDD).

6: Task Dependencies:
Existing agile practices: Collective ownership (XP)
Potential missing practices: Architecture driven process planning

Task dependency in software development is very much related to the
architecture of a product [27]. Architecture is usually not systematically used to
optimize method parallelism and concurrent development. However, there has been
some preliminary research [15] into the issue.

As discussed in section 3, some tactics promoting agility suffer from scalability
issues. The software development agile practices we derived here inherit these
scalability issues. Some issues can be mitigated [12]. Others have to be accepted on
balance [5].

Overall there is a high degree of fit between our derived practices and existing
industry practices. Variants or different elaborations exist in industry for most of our

204 Liming Zhu and Mark Staples

derived practices, but they achieve agility through the same means. This supports our
claim that method tactics can be and should be discovered and used in situational
method design. By applying these method tactics systematically to relevant method
chunks, we can potentially identify new practices. The quality trade-offs documented
for each tactic can be used to analyze practice trade-offs within new situations.
Certain situations may exacerbate quality problems while others may make them less
relevant. We have demonstrated that agility and sealability trade-offs in software
development methods can be better understood through method tactic analysis.

5 Discussion

The discovery and accumulation of method tactics should be based on both
theoretically sound grounds and also empirical observation and validation. Because
there is little existing theory on non-functional method quality, we have conducted
our initial work by observing important factors in practices within existing software
development methods. Similar general observations have also been made in other
specific development domains such as product line development [23] and COTS-
based development [14]. However, the observations are usually too high-level to be
useful in validating fine-grained practice-level method chunks. There are a number
of limitations of our work due to this.
• Our list of tactics may appear to be arbitrary in terms of their orthogonality and

level of abstraction. Some of the tactics are overlapping and some others have
close relationships. Some tactics may be able to be divided into more atomic
ones. This limitation could be addressed by the development and validation of
reasoning models and parameters for each method quality attribute. Then,
method tactics could be organized around their influence on these parameters.
We are currently working on establishing such reasoning models.

• Our list may omit some important kinds of tactics, especially those used in other
method domains. We are looking into other method engineering domains and
may expand our use of method tactics to these broader domains.

6 Conclusion

Just like a product, a method has to be designed to satisfy situational requirements.
These situational requirements include both functional requirements and non-
functional requirements. Achieving scalability, agility, reliability and usability of a
method is equally important as achieving functional requirements. We observe such
non functional requirements can often be achieved only through using cross-cutting
techniques rather than changing or adding single method chunks. We propose the
concept of method tactics to capture these cross-cutting techniques. Our preliminary
work identified a number of such tactics for achieving agility and scalability. Most of
the tactics affect both -ilities in different directions. This raises interesting trade-off
analysis opportunities in situational method design. We validated these general
tactics by applying them to general software development methods. The result

Situational Method Quality 205

demonstrates that agile practices can be designed intentionally and these derived
agile practices match existing agile methodologies. This opens a new door to
designing new method chunks in more flexible and creative ways. We plan to
visualize these tactics and affected development processes in process definition
languages such as Little-JIL[25] or goal-oriented languages such as i*[26]. We also
plan to include a more systematic evaluation framework to evaluate newly proposed
techniques which claim certain cross-cutting ilities.

Acknowledgements

NICTA is funded by the Australian Government's Department of Communications,
Information Technology, and the Arts and the Australian Research Council through
Backing Australia's Abili ty and the ICT Research Centre of Excellence programs.

References

1. M. N. Aydin and F. Harmsen, "Making a Method Work for a Project Situation in the
Context of CMM," in Product-Focused Software Process Improvement (PROFES), 2002
pp. 158-171.

2. M. Bajec, R. Rupnik, and M. Krisper, "A Framework for Reengineering Software
Development Methods " in International Conference on Software Engineering Advances
(ICSEA '06), 2006 p. 28.

3. M. Bajec, D. Vavpotir, and M. Krisper, "Practice-driven approach for creating project-
specific software development methods," Information and Software Technology, vol.
49(4), pp. 345-365, 2007.

4. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2 ed.: Addison-
Wesley, 2003.

5. B. W. Boehm and R. Turner, Balancing agility and discipline : a guide for the perplexed.
Boston: Addison-Wesley, 2003.

6. S. Brinkkemper, M. Saeki, and F. Harmsen, "Assembly Techniques for Method
Engineering," in l Oth International Conference Advanced Information Systems
Engineering (CAiSE'98), 1998.

7. A. Cass and L. Osterweil, "Programming Rework in Software Processes," Department of
Computer Science, University of Massachusetts UM-CS-2002-025, 2002.

8. E. Dominguez and M. A. Zapata, "Noesis: Towards a situational method engineering
technique," Information Systems, vol. 32(2), pp. 181-222, 2007.

9. B. Henderson-Sellers and C. Gonzalez-Perez, "A comparison of four process metamodels
and the creation of a new generic standard," Information and Software Technology, vol. 47,
pp. 49-65, 2005.

10. B. Henderson-Sellers and A. Qumer, "An Evaluation of the Degree of Agility in Six Agile
Methods and its Applicability for Method Engineering," Information and Software
Technology, vol. In Press, 2007.

11. F. Karlsson and P. Agerfalk, "Method configuration: adapting to situational characteristics
while creating reusable assets " Information and Software Technology, vol. 46(9), pp. 619-
633, 2004.

206 Liming Zhu and Mark Staples

12. D. Leffingwell, Sealing software agility : best practices for large enterprises. Upper
Saddle River, N J: Addison-Wesley, 2007.

13. I. Mirbel and J. Ralyte, "Situational Method Engineering: Combining Assembly-based and
Roadmap-driven Approaches," Requirements Engineering, vol. 11 (1), pp. 58-78, 2006.

14. F. Navarrete, P. Botella, and X. Franch, "Reconciling Agility and Discipline in COTS
Selection Processes " in the Sixth International IEEE Conference on Commercial-off-the-
Shelf (COTS)-Based Software Systems (ICCBSS'07), 2007.

15. M. Nonaka, L. Zhu, M. A. Barbar, and M. Staples, "Project Delay Variability Simulation
in Software Product Line Development,," in International Conference on Software Process
(ICSP'07) co-located with ICSE'07, 2007.

16. L. Northrop, R. Kazman, M. Klein, D. Schmidt, K. Wallnau, and K. Sullivan, "Ultra-Large
Scale Systems: The Software Challenge of the Future," 2006.

17. B. Nuseibeh, A. Finkelstein, and J. Kramer, "Method engineering for multi-perspective
software development," Information and Software Technology, vol. 38(4), pp. 267-274,
1998.

18. L. Osterweil, "Software Processes Are Software Too," in International Conference on
Software Engineering (1CSE), 1987.

19. J. Ralyte, P. Backlund, H. Kuhn, and M. Jeusfeld, "Method Chunks for Interoperability,"
in International Conference on Conceptual Modeling (ER), 2006.

20. J. Ralyte, R. Deneckere, and C. Rolland, "Towards a Generic Model for Situational
Method Engineering," in International Conference Advanced Information Systems
Engineering (CA iSE'03), 2003.

21. M. Rossi, J.-P. Tolvanen, B. Ramesh, K. Lyytinen, and J. Kaipala, "Method Rationale in
Method Engineering," in 33rd Hawaii International Conference on System Sciences
(HICSS), 2000.

22. M. K. Serour and B. Henderson-Sellers, "Introducing Agility: A Case Study of Situational
Method Engineering Using the OPEN Process Framework," in 28th Annual International
Computer Software and Applieations Conference (COMPSAC '04), 2004.

23. K. Tian and K. Cooper, "Agile and Software Product Line Methods: Are They So
Different?," in the First International Workshop on Agile Product Line Engineering
(APLE'06), 2006.

24. I. v. d. Weerd, S. Brinkkemper, J. Souer, and J. Versendaal, "A Situational Implementation
Method for Web-based Content Management System-applications: Method Engineering
and Validation in Practice," Software Process Improvement and Practice, vol. 11, pp. 521-
538, 2006.

25. A. Wise, "Little-JIL 1.5 Language Report," Department of Computer Science, University
of Massachusetts, Amherst, MA 2006.

26. E. Yu, "Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering," in the Third International Symposium on Requirements Engineering
(RE'97), 1997.

27. L. Zhu, R. Jeffery, M. Huo, and T. T. Tran, "Effects of Architecture and Technical
Development Process on Micro-Process," in International Conference on Software Process
(1CSP'07) co-located with ICSE'07, 2007.

Complete Methods for Building Complete
Applications

Naveen Prakash
1 Knowledge Park Phase II, Greater NOIDA 201306, India

praknav@hotmail.com

Abstract. nfomaation systems development methods (ISDMs) produce a
product, the application, by following a development process model. We argue
that in failing to produce the application process model that supports the
application product, ISDMs only address part of the IS development problem.
Additionally, we show that there is, in fact, a range of abstractions of the
application product and process and ISDMs do not build these abstractions..
To address these issues, we define the completeness principle that integrates
the 100% and conceptualization principles of conceptual modelling. This
principle states that an information system should be a faithful representation
of the product and process models at the required level of conceptualization. A
method that complies with this principle is called a complete method. We
develop a complete method and discuss issues raised in developing such
methods.

1 Introduction

The development of products embedded in business is an issue taken up by the
Information Systems community. We have put in considerable effort in product
development and in modelling IS development processes for producing products.
The approach to product development is to build a schema, given an application and
a data model. Thus, for example, for the Oberoi Hotels Reservation System an
Oberoi schema in ER form is built. Several process models have been built to define
the process to be followed in constructing such schemata. Two points are to be
noticed:

In developing an application product, our concern is the immediate application
and not the larger domain of which the application is a part. Thus we develop the

Please use the followingfi)rmat when citing this chapter:

Prakash, N., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational Method
Engineering: Fmadamentals and Experiences, eds. Ralyt6, J., Brinkkemper, S., Henderson-Sellers B., (Boston Springer),
pp. 207-221.

208 Naveen Prakash

Oberoi Hotel schema but not a generic hotel reservation schema. Extending this, we
find that there is in fact a range of abstractions above the Oberoi Hotel schema: the
hotel reservation schema, the more abstract 'reservation' schema, the even more
abstract resource allocation schema and so on. Yet the IS development process aims
to develop an application product and not the range of schema abstractions as
products.

Interest in process models is centred on our problem of product development. We
investigate process models that help us in solving our problem of developing
schemata. However, there is an application views point that we totally ignore. To
illustrate, consider a hotel reservation schema and assume that it meets its
requirements. When installed in an organization, this schema is instantiated for the
different hotel booking requests. Let the hotel be a transit hotel that gives bookings
for one day only. Then, upon getting a reservation request, we can instantiate the
schema components in two different orders. We refer to a schema instantiation order
as an Application Process Model (APM). The two APMs in our example are shown
in Table I.

Table I: Two Application Process Models

APM1 APM2
Requestor (name, address)
Booking(date, price)
Availability(number of rooms, Requestor (name, address)
type of room)

Booking(date, price)
Availability(number of rooms, type of room)

The application process models of Table I show two strategies for room
reservation. APM1 considers booking issues like availability, prices etc. only after
all requestor information is obtained whereas APM2 considers booking issues first
and thereafter, once the booking is notionally done, considers requestor information
to complete it. Evidently, these constitute two different ways of doing business. The
APM selected should be the one that best fits into the business process in which the
reservation system is embedded.

The foregoing shows an APM plays an important role in the success of an IS
product. Yet the IS community ignores these. Consequently, methods that produce
an APM have not been engineered

We believe that complete application development cannot be restricted to
development of application products only but must also have the capability to
support the range of schema abstractions and associated APMs. We propose the
completeness principle that states that an information system should be a faithful
representation of the product and process models at the required level of
conceptualization. A diagrammatic representation of this principle is shown in Fig.
I. As shown, at abstraction level i, 0 < i < n, both the APM and product models are
to be represented.

The completeness principle subsumes both the 100% and conceptualization
principles (Gri82, Hoe94) of conceptual modelling. According to the 100%
principle, everything that is relevant should be represented, and the representation
should contain only that which is relevant. Traditionally, this principle has been
applied to product aspects only and the completeness principle here proposes to

Complete Methods for Building Complete Applications 209

extend it to the process aspects of applications as well: when developing the product
model of an application, one should develop the APM as well. This is shown in the
boxes of Fig. 1 and implies that an application is the integration of the product and
application process models.

The conceptualization principle says that the representation should be
independent of any implementation issues. In conceptual modelling, this has been
interpreted to mean independence of the conceptual schema from the underlying
implementation platform. The completeness principle proposed here extends this to
cover every pair of abstraction levels of the representation. This is shown on the left
side of Fig. 1. Consider abstractions at level n and level (n-l). The completeness
principle treats level (n-l) as the 'implementation platform' of the abstraction at
level n. When n---1 then we get the conceptual modelling view of the
conceptualization principle: the schema at the first level is the conceptual schema
whereas the 0 ~ level is its implementation platform.

Abstraction Level n

Abstraction Level n -1

Product model + Process model]

I refine

[Product model + Process model]

F]
Abstraction Level 1 [Product model + Process model J

/ /

refine
| !

Abstraction Level 0 [Product model + Process model]

Fig. 1" The completeness principle

Taken as a whole, the completeness principle says that applications can be
visualized at different levels of abstraction and at each level modelling is complete if
and only if both the application product and application process models have been
developed. The application at level (n-l) is a refinement of its abstraction at level n.

In this paper, we consider the impact of the completeness principle on
Information Systems Development Methods (ISDM). We shall refer to an ISDM that
complies with the completeness principle as a complete method. That is, a complete
method is one that provides capability to develop both the product and associated
application process model at the stated level of conceptualization. We show that
method engineering approaches that integrate the product and process aspects of
methods have the capacity to build complete methods. In doing this, we use the
generic method model (Pra06). This model treats a method as a triple <M, Dep, E>
where M is a set of method blocks, Dep is a set of dependencies between these
methods, and E is an enactment mechanism. M and Dep can be organized in a
dependency graph. This graph is the set of all routes that can be followed in the
method; it is the set of all process models that can be built by performing a walk
through the dependency graph.

210 Naveen Prakash

The layout of this paper is as follows. In the next section we consider the impact
of the completeness principle on IS development. In section III contains a brief
overview of the generic model that highlights those features that we shall use here. In
section IV we illustrate the completeness principle by taking the example of issuing
permits. We build product and process models at two abstraction levels. In section V,
we outline a tool that takes process information as input and produces the process
model for a product. In section V1, we consider related work and show how the
completeness principle brings new issues to the forefront.

2 Implication of the Completeness Principle

The completeness principle implies that information systems can be developed in
two ways
1. By extending the scope of Information Systems Development Methods to cover

systems at all levels of abstraction.
2. By starting with an abstraction at level n and refining it to construct abstraction

level (n-1) recursively till the desired level of abstraction is reached.
Though the concern in this paper is the former, we briefly consider each of these

in turn.

~bstraction level q Abstraction level (n-l) ~bstraction level 2 ~bstraction level 1

Fig. 2: Scope of an IS Development Method

Fig. 2 shows the scope of an ISDM. Whereas today, an ISDM builds only
abstraction level 1, the completeness principle says that it should have the capability
to build any level. An example of this is shown in Fig. 3.

Resource Meta domain model
allocation

Reservation
Application Domain domain
model

Oberoi, Taj
Application reservation

Fig. 3: Example of Levels of Abstraction

On the left hand side of this Figure, we see three abstraction levels. The lowest is
the Application layer, the next higher is the Application Domain layer and the

Complete Methods for Building Complete Applications 211

highest is the Meta domain layer. On the right hand side is an example of each of
these. As shown, the lowest layer is inhabited by the Oberoi Hotels application; its
domain is the Reservation domain at the next higher level and finally, its meta
domain is that of Resource Allocation. The completeness principle says that an
ISDM should be able to develop all the models on the right hand side of Fig. 3.

The second implication of the completeness principle is illustrated in Fig. 4. As
shown, the Meta layer is converted to the domain layer through a domain
development process and the latter is in turn Converted to the application by an
application development process.

. . . . f Meta-domain model + Meta-
domain process model

Application
domain
development
process Application domain +

Domain process model

Application
Development
Process

Application + Application
process model

Fig. 4: Progressing through Meta Levels

This is exemplified in Fig. 5. As shown, the resource allocation meta domain is
converted to the reservation domain by the reservation domain development process
which, in turn, is converted to the application proper by the hotel reservation
development process.

Resource allocation model
+ Resource process model

Reservation
domain
development
process , Reservation model +

Reservation Process model

Hotel Reserv.
Development
Process

Oberoi hotel reservation + Oberoi
hotel reservation process model

Fig. 5: Building an Application through Progression

As mentioned earlier, the focus of this paper is on elaborating the scope of an
ISDM and the second approach indicated here shall be the subject of another paper.

212 Naveen Prakash

3 The Generic Method Model

The generic method model was developed (Pra06) as means to capture the
essential nature of methods, devoid of any commitment to meta concepts as in meta-
models. The generic method model integrates product and process aspects together.
We shall provide only a broad view of the generic model so as to show its capability
to meet the completeness criterion. For full details of the generic model please refer
to (Pra06). However, it must be noted that we have extended the generic model to
explicitly represent the relationship of process primitives with the process model as
shown in Fig. 6.

According to the generic view, a method is a triple <M, D, E> where M is the set
of method blocks, D is the set of dependencies between method blocks, and E is the
enactment mechanism. The notion of a dependency is used to build a dependency
graph with nodes as method blocks and edges as dependency types. A dependency
graph has START nodes that have no edges entering them and STOP nodes that have
no edges leaving them. The enactment algorithm guides method enactment from
START nodes through the intermediate nodes to STOP nodes.

lMethod block I

Cor@osed / / ~ " ~ Depends

 om. ex
method Lmeme hod I Method

ck I primitive block Jbl,

1,N

Product
model

1,N@ toBel°ngs

1,NI
Product

primitive

Process
primitive

Fig. 6: The Generic Model

The generic model (Pra06) displays class independence. That is, the generic
model is independent of any meta-model: the holistic structure of the artefact, its
component parts and inter-relationships between these components must be
expressed in abstractions high enough to instantiate a recta-model. These concepts of
the generic model are themselves not technical artifacts, graphs, relationships,
objects, fragments, chunks and the like. Instead, generic concepts should directly
capture the notions of product and process. This is done through the notion of
product and process primitives explained below.

As shown in Fig. 6, there are three kinds of method blocks, complex ones
composed out of other simpler ones, abstract ones that are
generalizations/specializations of method blocks and method primitives that are
atomic method blocks. A method primitive is a pair <product primitive, process
primitive>. Extending this to all method blocks, a method block can be considered as
having two parts, an argument part and an action part where the action part is
capable of manipulating the argument in the desired way. These two parts
correspond to product primitive and process primitive respectively of Fig. 6. For

Complete Methods for Building Complete Applications 213

example, <entity, attribute, attach> is a method block. It specifies that an attribute
can be attached to an entity. In order for a method block to be enacted, it is necessary
that instances of arguments are available. In our example, instances of attribute
attributes and entity to be attached to one another must be available in the product
under construction. In order to handle method blocks like <entity, create> a special
product instance called 'don't care' is postulated that exists in all products. Such
method blocks assume the availability of 'don't care'.

Product primitives have their origin in the product model and depending on the
abstraction level and the nature of the product to be developed. Process primitives
originate from the process model, and capture the kinds of operations one wants to
do in the application. For a corporate system these may be Recruit and Promote for
operating on Employee and Allot Budget for Department.

Table 1: Types of Dependencies

Type Urgency
Immediate

Necessity
Must

Abbreviation
IM

2 Immediate Can IC
3 Deferred Must DM
4 Deferred Can DC

Now consider the notion of a dependency. Two attributes, urgency and necessity,
are associated with each dependency type. Urgency refers to the time at which the
dependent method block, O2, is to be enacted. If 02 is to be enacted immediately
after O1 is enacted then this attribute takes on the value Immediate. If 02 can be
enacted any time, immediately or at any moment, after O1 has been enacted, then
urgency takes on the value Deferred. Necessity refers to whether or not the
dependent method block 02 is necessarily to be enacted after Ol has been enacted. If
it is necessary to enact 02, then this attribute takes the value Must otherwise it has
the value Can. This gives rise to four dependency types displayed in Table 1.

Using the notion of a dependency, a method can be organized as a dependency
graph. We illustrate this by considering a method with the set of method primitives O
= {O1, O2 O~4}. Let there be two dependency types IM and IC respectively. Let
the following dependencies be defined:

IM dependencies IC dependencies

O1 --) 02 O1 -> 03 O1 ") 06 O1 ") 09

O 1 --~ 04 O1 --~ 05 06 --~ O13 06 ~ O14

06 "-) 07 06 "-) Os

09 ") Olo 09 "-) 011

O9 -) O12

The organization of the method as a dependency graph for our method is shown in
Fig 7. So as not to clutter up the Figure, only the IC dependencies are labelled. The
non-labelled ones are assumed to be IM dependencies.

214 Naveen Prakash

To summarize, from the perspective of the completeness principle, the generic
model brings two key notions, meta-model independence and dependency graph.
The former contributes to product and process construction at any abstraction level.
Thus, it is a matter of choosing the abstraction level of the product, determining the
interesting product model concepts and carrying out the instantiation of the generic
model. Similarly, process concepts comprising the process model at the same level
of abstraction as the product are to be determined and instantiation performed. Thus,
meta-model independence is the basis for development of product and process
models at any abstraction level.

The dependency graph contributes to the construction of the process model
associated with the product model. A path from START to STOP node represents a
process model. In this sense, the dependency graph is the set of all process models
that are permissible under the method.

01 04

012

Fig. 7: A Dependency Graph

4 Illustrating Completeness Principle

In this section we present an example to show that the generic model follows the
completeness principle: it can support the construction of a product and the
associated process model at any level of abstraction. We do this by presenting a
small example at different levels of abstraction as in Fig. 8. At the second abstraction
level of Fig. 1, let us consider the domain of governance systems for issuing permits
of different kinds, driving licenses, passports, election identity cards, running a
restaurant, etc. Since all these issue permissions, we shall refer to their domain as the
permit domain. We shall develop a product model and associated process model for
this domain. Thereafter, at abstraction level 1, we shall consider the passport
application as a refinement of the permit domain.

Complete Methods for Building Complete Applications 215

Permit
Application Domain domain
model

Application
Passport

Fig. 8: The Permit Domain and its Refinement

4.1 The Permit Domain

In the domain of permits, a request is received for obtaining the permit. Usually,
a permit is issued to an individual who may be a person, a company, a society etc.
The request is processed to see that it can be further treated, that all information
required is supplied, and statutory requirements are met. To check fraud or to enforce
standards, verifications/inspections are carried out. There may be transaction costs
associated with the issue of permits that are recovered from the requestor in the form
of fees. Finally, if the requestor is found fit to receive the permit then it is issued.
Permits may be lost or damaged. So, a facility for issuing duplicate permits is
required. Similarly, certain permits may have to be issued on an emergency basis.

The following set of product primitives are of interest:

P = {Request, Permit, Emergency Permit, Duplicate Permit}

The Process primitives are

A= {Receive, Verify, Refuse, Issue, Terminate}

D C / ~ Request, Refuse I

Permit, Issue]

IRequest, Receive~-M-~ Request, Verify
Duplicate Permit, Issue I

DC ~ Emergency Permit, Issue I

Fig. 9: The Permit Process Model

The set of method primitives is obtained by associating meaningful process types
with their product types. The set of meaningful method primitives for our example is
as follows:

O = {<Request, Receive>, <Request, Verify>, <Permit, Refuse>, <Permit,
Issue>, <Duplicate Permit, Issue>, <Emergency Permit, Renew>, <Permit,
Terminate>}

216 Naveen Prakash

Fig. 9 shows the method primitives and dependencies of the Permit domain. The
product model is not shown here. It can be developed using any standard data model
like the ER. Clearly, it consists of entity types like request, permit and its
specializations etc. and relationships between these.

4.2 The Passport Application

In this section we consider building a method for issuing Passports. The Passport
Office has forms in which an application for passport services can be made. These
services may be the issue of a fresh passport, renewal of an expired passport, issue of
a duplicate passport, termination of a valid passport. The passport office verifies the
details of the requestor and checks that there is no police record that might disallow
the issue of the passport. Thereafter, the passport is issued. It is possible to add
dependents of the passport holder on his/her passport or to delete them from the
passport. The set of product primitives, P, is as follows:

P = {Request, Passport, Expired passport, Duplicate Passport, Dependent}

The set of process primitives, A, is

A= {Receive, Verify, Refuse, Issue, Renew, Terminate, Add, Delete}

Refus__ee]

oc/ ,
DM Request, ~] [Reque st, Receive~--~-}~-~ Verify

~ " EC

Fig. 10: The Passport Process Model

The set of method primitives is as follows:

O = {<Request, Receive>, <Request, Verify>, <Request, Refuse>, <Passport,
Issue>, <Duplicate Passport, Issue>, <Expired Passport, Renew>, <Passport,
Terminate>, <Dependent, Add>, <Dependent, delete>}

Fig. 10 shows the dependencies as well as the set of method primitives organized
as a process model. Again, as for the permit domain, the product model is not shown
here.

Complete Methods for Building Complete Applications 217

5 A Complete CASE Tool

Information Systems Development methods present user interfaces in their
CASE tools. Regarding the process model adopted by these tools, at least three
attitudes exist:
1. Assume a process model. Indeed, many methods and their CASE tools assume

the Linear, Cartesian one.
2. Prescribe the set of process models that can be adopted. The application engineer

selects the needed one from this assembly.
3. Make no commitment to a process model. The method provides the basic

structure for the application engineer to follow any process model.

Notice that all these continue to work in the case of complete methods as well.

We illustrate a CASE tool interface that obtains dependency information during
application engineering. This interface (see Fig. 11) has been designed for the
generic method model introduced earlier.

File ProcessModel ProductModel Help

D e p e n d e n c y I. C o m p l e x }

. Abstract

[Na~n~

)PMIiptl°n {:',MIami OK

Fig. 11: Defining Method Blocks

This interface is similar to that of MetaEdit (Met93) and uses a menu bar that
consists of combo boxes. As shown in the Figure, there are two menu items called
Product Model and Process Model respectively. The combo box of the former
contains concepts used for developing the product. Since it well understood, we do
not consider this aspect here and elaborate the Process Model combo box that helps
us develop the process model.

In order to produce the process model, information about method blocks and
dependency information must be captured. This is achieved by the Process Model
option. Clicking on the Process Model option causes the model components, Method
Block and Dependency to be displayed (Fig. 11). Clicking further on method blocks
enables selection of the kind of method block desired, method primitive, abstract or
complex method block. Selection of these enables a pop-up box that asks for the
name, description etc. of the method block. In case of abstract and complex method
blocks, information about the components and specialized method blocks
respectively is also asked for.

218 Naveen Prakash

• ' M e t h o d B o c k m i .

=
. IM i " ~ A
. D C T t

: : i i i i i : DN i i i i : : : : i

I o @ o

Fig. 12: Defining Dependencies between Method Blocks

Clicking on the Dependency choice (Fig. 12) invokes two capabilities. First, a
cursor is enabled that is used to select two method blocks, the first of which is the
source of the dependency and the second is its sink. Thus, the direction of the
dependency is displayed. Second, the application engineer is asked to make a
selection of the dependency type, DM, DC etc. from the displayed combo box.

6 Comparison and Discussion

In this section we consider the implications of developing complete methods.
First we consider the aspect of developing multi-level abstractions. Thereafter we
consider the integration of products and processes.

Multi-level Abstractions

The concern in Information Systems is the development of the instant
application. This approach is well suited to bespoke product development: domain
knowledge, technical capability, and organizational functional/non-functional
requirements are all brought together to build the new product. If there is any reuse
then this involves picking up components of legacy products. The point is that
development is concerned exclusively with products and not with abstractions of
these.

The completeness principle proposes multi-level abstractions of products. By
analogy with meta models of methods that abstract out common features of methods,
it can be seen that application concepts can also be meta modeled, thus giving rise to
an application abstraction. Extending this argument to pairs of levels, the
completeness principle proposes multi-levels of application abstractions. From the
perspective of the conceptualization principle, this can be understood as its
application to levels above the traditional conceptual one.

ERP systems (ASA99) model the wider context of applications. Thus, if an
organization wants to use an ERP system for materials management, then a general
framework exists that must be customized to the specific needs of the organization.
Additional functionality can be introduced by using adaptation features like ABAP
of SAP. Further, ERP systems are defined at relatively low, operational levels of
abstraction. However, the problem of the Information Systems community is
different from that solved by ERP systems. This community gives primacy to

Complete Methods for Building Complete Applications 219

conceptualization and abstractions and leaves the task of converting these into
operational systems to downstream stages in the life cycle. Complete methods and
the completeness principle addresses the conceptualization/abstraction concerns of
the Information Systems community.

Enterprise modeling (Fox97, Fox 98, Lou95) is again different from developing
abstractions of applications because of its emphasis on modeling the larger
information context of the enterprise within which the system To-Be is embedded. It
is not interesting per se to look at the information system to be developed which is
only a fall out of enterprise modeling. In contrast, complete methods limit
themselves to multi-level abstractions of information systems. As to whether or not
enterprises can be usefully abstracted for each level of application abstraction is an
open issue.

We can draw an analogy between product families and product lines on the one
hand and method abstractions on the other. Consider a path from the root of the
abstraction hierarchy to a leaf. A method on this path is a variant of another
irrespective of whether it is above or below it in the hierarchy. In this sense, we
obtain a method line that is analogous to product lines.

Balancing Products with Processes

The area of method engineering lays great emphasis on meta models (Har94,
Gro97, Pra98). Depending on the nature of the meta model, we can instantiate
methods that can build exclusively the application product, or the Information
System Development process, or both of these. Irrespective of this, for the
application engineer, the end result of the application of a method is the Information
Systems product that can eventually be installed and operated upon. Even the 100%
principle that lays emphasis on an exact representation of the real world does so in
terms of the IS product: application concepts, inter-relationships between these, and
constraints. Complete methods give equal emphasis to the IS product and the
application process. It argues for an equal treatment to be given to process concepts,
inter-relationships between these and constraints, heuristics etc.

The process model is represented in its full richness and variations as a
dependency graph. This enables us to look at each individual method feature and its
relationship with other features. There is a successor-predecessor relationship
between method features. However, this relationship is controlled by the urgency and
necessity properties. These properties specify the time delay in the relationship and
also identify whether a feature must necessarily be enacted or is only a possibility, a
choice.

The dependency graph looks similar to the notion of a map [Ro199]. However,
the map is at a completely different level of abstraction. Its nodes are intentions and
edges are strategies for fulfilling these intentions. This is in contrast to a dependency
graph where nodes represent the capability of operating on given product elements
and edges are dependencies of different types. Again, in a map, there is a successor-
predecessor relationship between intentions and this relationship is controlled by
different map topologies: bundles, multi-paths, etc. In contrast, a dependency graph
uses the properties of dependencies to exercise control of what can/must be enacted
next. It can be seen that there is no notion in a map corresponding to that of the
property, urgency, of our dependencies.

220 Naveen Prakash

Impact on Method Engineering

The completeness principle introduces two new problems in method engineering,
corresponding to the two aspects of multiple level of abstractions and application
process models respectively. Consider the former. When a new method is to be
engineered, its position in the abstraction hierarchy is to be determined. If it is a
refinement of another method, then an appropriate relationship between the two is
established. If it is an abstraction of another method, then it is to be placed at a
higher level of refinement than this one. Finally, if none of these two conditions is
satisfied then the new method is the root of a new abstraction hierarchy.

The organization of and retrieval from the method repository now becomes more
complex than in traditional method engineering. Whereas earlier we were concerned
with issues of keeping method descriptors or project characteristics in the repository,
we now have to additionally move to a different kind of information.
Descriptor/characteristic data only becomes relevant after the method is located in
the abstraction hierarchy first. One way of handling this is to partition the repository
into two parts, a meta method data part that contains abstraction hierarchy
information and another, the method data part that contains descriptor/characteristic
information. However, this is an open issue connected with the implementation of
the completeness principle.

Now consider the issue of application process models. Any new method that we
build must be engineered to accept information about the APM to be followed. We
see two possible strategies. The first is the one we have adopted in this paper:
generate the set of all possible application process models from which the desired
one can be chosen. The second strategy is to produce the unique application process
model that shall be used. Experience with the Map shows that the first strategy is
perhaps better. One reason for this is the possibility of capturing variations in the set
of models. However, we believe that this issue needs to be investigated further.

7 Conclusion

Traditional methods are limited in two ways (a) they fail to produce the
application process model, and (b) they do not consider product abstractions.
Complete methods attempt to address both these. The completeness principle
provides:

Tight integration of the product and process aspects: Research in methods has
pointed out the need to integrate product and process aspects of methods together.
The completeness principle combines the existing 100% and conceptualization
principles to put this integration on a firm conceptual basis.

Better product fit: Products are to be embedded in organizational processes. The
completeness principle requires methods to build the application process model
associated with the product under development. This shall provide a basis to verify
that the process model built is in conformity with the business process of the
organization. The closer these two are to one another the more likely it shall be that
the product shall smoothly fit in the organization.

Complete Methods for Building Complete Applications 221

Support for process re-engineering: The ability to build the APM makes it
possible to determine the extent of its fitness with organizational processes. Any
differences between these can form the basis for informed debate on APM
selection/process re-engineering.

References

(ASA99) ASAP World Consultancy and J. Blain et al, Using SAP R/3, Prentice Hall of India,
1999

(Fox97) Fox M.S. & Gruninger M., On Ontologies and Enterprise Modelling, Intl. Conf. On
Enterprise Integration Modelling, Italy, 1997

(Fox98) Fox M.S. & Gruninger M., Enterprise Modelling, AI Magazine, 19, 3, 109 - 121,
1998

(Gri82) Griethuysen JJ van (ed.) Concepts and Terminology for the Conceptual Scheme and
the Information Base, Publication Nr. ISO/TC97/SC5/WG3-N695, ANSI, New York

(Gro97) Grosz G., et al, Modelling and Engineering the Requirements Engineering Process:
An Overview of the NATURE Approach, Requirements Engineering Journal, 2, 3, 115-131

(Har94) Harmsen F., et al, Situational Method Engineering for Information System Project
Approaches, in Methods and Associated Tools for the Information Systems Life Cycle,
Verrijn-Stuart and Olle (eds.), Elsevier, 169-194

(Hoe94) ter Hoefstede, Propoer AHM., van der Weide, Formal Description of a Conceptual
Language for the Description and Manipulation of Information Models, Information
Systems, 18(7) 489-523

(Lou95) Loucopoulos P., & Kavakli E., Enterprise Modeling and the Teleological Approach to
Requirements Engineering, IJCIS, 45 - 79, 1995

(Met93) MetaEdit version 1.2, MetaCase Consulting, Jyvaskyla, Finland
(Pra99) Prakash N., (1999) On Method Statics and Dynamics, information Systems Journal,

24, 8, 613-637.
(Pra06) Prakash Naveen, On Generic Method Models, Requirements Engineering Journal, 11,

4,221-237, 2006
(Ro199) Rolland C., Prakash N., and Benjamen A., A Multi-model View of Process

Modelling, Requirements Engineering Journal, 4, 4, 169-187, 1999
(Ral03) Ralyt~ J; Deneck~re R., Rolland C., Towards a Generic Model for Situational Method

Engineering, Proc. CAiSE 2003, Eder J. & Missikoff M. (eds.) LNCS 2681, Springer, 95-
110.

Process Patterns for Agile Methodologies

Samira Tasharofi j and Rarnan Ramsin 2
1 University of Tehran, Department of Electrical and Computer Engineering

North Karegar, Tehran, Iran, stasharofi@ut.ac.ir
2 SharifUniversity of Technology, Department of Computer Engineering

Azadi Avenue, Tehran, Iran, ramsin@sharif.edu

Abstract. The need for constructing software development methods that have
been tailored to fit specific situations and requirements has given rise to the
generation of general method fragments, or process patterns. Process patterns
can be seen in some third-generation integrated methodologies (such as
OPEN) and in Method Engineering approaches where they are used asprocess
components. They have also been presented as components in generic software
development lifecycles where they represent classes of common practices in a
specific domain or paradigm; object-oriented process patterns are well-known
examples. Agile methodologies, however, are yet to be thoroughly explored in
this regard. We provide a set of high-level process patterns for agile
development which have been derived from a study of seven agile
methodologies based on a proposed generic Agile Software Process (ASP).
These process patterns can promote method engineering by providing classes
of common process components which can be used for developing, tailoring,
and analyzing agile methodologies.

1 Introduction
A pattern is a "general solution to a common problem or issue, one from which a
specific solution may be derived" [1, 2]. Process Patterns are results of applying
abstraction to recurring software development processes and process components;
they are an effective mechanism for highlighting and establishing methods and
approaches that have proven to be successful in practice [2].

Process patterns were first introduced by Coplien in 1994 [1], and were defined
as "the patterns of activity within an organization (and hence within its project)".
Coplien's patterns were relatively fine-grained techniques for exercising better
organizational and management practices. Therefore, they did not constitute a
comprehensive and coherent whole for defining a software development process.

Process patterns were later focused upon in the object-oriented paradigm. In his
two books on object-oriented process patterns, Ambler defined an object-oriented
process pattern as "a collection of general techniques, actions, and/or tasks

Please use theJbllowingjormat when citing this chapter:

Tasharofi, S., Ramsin, R., 2007, in IFIP International Federation for Infonaaation Processing, Volume 244, Situational
Method Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Brinkkemper, S., Henderson-Sellers B., (Boston
Springer), pp. 222-237.

Process Patterns for Agile Methodologies 223

(activities) for developing object-oriented software" [2, 3]. The proposed object-
oriented patterns were categorized as belonging to three different types, commonly
ordered by ascending level of abstraction and granularity as tasks, stages, and
phases. A task process pattern depicts the detailed steps to execute a specific fine-
grained task of a process. A stage process pattern defines the steps that need to be
executed in order to perform a stage of the process and is usually made up of several
task process patterns. Finally, a phase process pattern represents the interaction of
two or more stage process patterns in order to execute the phase to which they
belong. The process patterns introduced by Ambler constitute a proposed generic
Object-Oriented Software Process (OOSP), which helps make sense of the relative
position of the patterns in a general lifecycle, and their interrelationships. The
approach relates to the one later put forward, in a more detailed and formal fashion,
by Prakash [4]. Although these patterns have been intended to abstract common
practices over a vast range of object-oriented methodologies, and are consequently
rather general, their object-oriented-software-development nature makes them more
tangible to software practitioners than Coplien's patterns.

Process patterns create means for developing methodologies through
composition of appropriate pattern instances [5], a practice also commonly seen in
assembly-based Situational Method Engineering [6, 7, 8]. One of the core elements
in situational method engineering is a repository of reusable building blocks (also
called method fragments or method chunks) from which method elements can be
instantiated [9, 10]. Process patterns can provide a rich repository for the purpose of
process assembly and/or tailoring. One of the main concerns with this repository is
the provision of a good classification of building blocks so that it leads the method
engineer to better selections. Classification of process patterns according to different
domains of application (methodology types) can aid the method engineer in
addressing this problem.

Process patterns have already been used to great effect in methodologies such as
OPEN [11, 12] and are rapidly gaining popularity as process building blocks in
method composition/configuration approaches such as the Rational Method
Composer (RMC) [13]. Agile development, however, has enjoyed little attention in
this regard: efforts have mostly been confined to Software Process Improvement
(SPI) [14] and dual-methodology integration/customization [15]. A generic view on
agile methodologies can only be seen in Ambler's proposed Agile System
Development Life Cycle (ASDLC) [16], which is not only rather cursory in its
treatment of the constituent process patterns, but also lacks ample coverage, as the
abstraction and generalization it provides is mainly based on just two methodologies:
XP [17, 18] and AUP [19].

In this work, we identify process patterns commonly encountered in agile
methodologies. Because of common defining characteristics and basic underlying
principles - as presented in [20] and set out in the Agile Manifesto [21] - Agile
methodologies share many common constituents, which if extracted in terms of
process patterns, can be used in constructing and/or tailoring other agile
methodologies. In order to achieve this goal, we start from a generic model for agile
software processes, which has resulted from inspecting seven prominent, widely-
used agile methodologies. We then extract the recurring process patterns in a top-
down fashion according to the three abstraction levels suggested by Ambler [2]. The

224 Samira Tasharofi and Raman Ramsin

approach is similar to that applied in [2], yet the main contribution of our work is
that the process patterns thus defined are agile-specific.

The organization of this paper is as follows: In Section 2, the proposed generic
Agile Software Process (ASP) will be described. Section 3 introduces the process
patterns derived from the ASP. Section 4 shows how different agile methodologies
can be realized using the proposed pattems. Section 5 discusses the benefits obtained
from the proposed agile process patterns, and finally, Section 6 contains the
conclusions and suggestions for future work.

2 Agile Software Process (ASP)

The Agile Software Process (ASP), depicted in Fig. 1, is the proposed generic
process model of agile methodologies. This model is obtained as a result of
investigating seven agile methodologies: DSDM [22], Serum [23], XP [17, 18], ASD
[24], dX [25], Crystal Clear [26], and FDD [27].

ASP is composed of three serial phases which are in turn composed of internal
iterative stages. According to these phases, an agile process begins with initiating the
project; in the activities that follow, the software will be developed and deployed
into the user environment through multiple iterations. In most agile methodologies,
maintenance does not appear as a separate phase, but is rather performed through
further iterations of the main development phases. Therefore, in ASP, maintenance is
supported by a transition from the Release phase to the Initiation or the Development
Iterations Phase. The other intention behind the transition from Release phase to
Development Iterations phase is to accommodate frequent releases of software,
which is followed as a principle in most agile methodologies.

The arrow at the bottom of the diagram indicates umbrella activities (expressed
as task process patterns) which are critical to the success of a project and are applied
to all stages of development. The phase and stage process patterns in ASP, as well as
the tasks specified in the arrow, can in turn be detailed by delving into their
constituent task process patterns.

ASP can be compared with Ambler's Object Oriented Software Process (OOSP)
[2]. They are similar in several aspects: Some common stages can be found in their
constituent phases, e.g., Justify and Define Infrastructure, and they are especially
quite similar in the umbrella activities that they propose. But that is where the
similarity ends. Since OOSP is proposed for all object-oriented methodologies
regardless of their types, it is more general and consequently more abstract. This
means that the patterns extracted from OOSP belong, more or less, to all object-
oriented methodologies, whereas in ASP we have limited the extracted patterns to
those found in agile methodologies. Therefore, ASP and OOSP are different in their
structure and pattern content. The differences arise from the principles that define
agility: For example, continuous verification and validation requires the existence of
a review stage in the Development Iterations phase, the need for early and frequent
releases of software necessitates the possibility of deploying working software
increments into the user environment before deploying the complete system, and the
change-based nature of agile methodologies has resulted in the absence of
maintenance as a separate phase (as mentioned earlier). In the following sections,

Process Patterns for Agile Methodologies 225

the agile process patterns obtained from ASP are described in more detail. These
patterns are classified, according to [2], as phase-, stage-, and task process patterns,
and have been extracted from the generic ASP in a top-down fashion.

I Initiafior y Development iterations I~F Release
O2; e 1 1 - - = - - - I I De,i0r, °

Define High-level Define
Requirement, II'n'ras'r°c'u][Re :w U Devel°pmen' ~,,t._ _ _ _

"-<..A Manage the project Form teams and manage the people Manage risk., Assure quality Document

Legend
~-----::--'. I I

Optiona Stag~

I

Fig. 1. The proposed Agile Software Process (ASP)

3 Agile Process Patterns

In this section, the agile process patterns extracted from the ASP will be described.
For sake of simplicity and brevity, we use a more abstract notation than that used for
describing object-oriented process patterns in [2]. For the same reason, we have
avoided delving into the details of task process patterns and umbrella activities.

3.1 Phase Process Patterns

ASP consists of three phase process patterns: Initiation, Development Iterations, and
Release. These are described below.

Initiation Phase
The goal in this phase is to initiate the project through preliminary analysis of the
system. This phase consists of four iterative stages for providing an outline plan,
justifying the project, and defining high level requirements and the infrastructure of
the project.

Development Iterations Phase
In this phase, the working software is generated in multiple iterations. Each iteration
is made up of planning, design, coding, testing and (optionally) review activities.
These activities are covered by Plan, Model~Design, Development, and Iteration
Review stage process patterns. As noted earlier, the transition from this phase to the
Release phase and vice versa provides the possibility of deploying the newly
generated software into the user environment after one or multiple iterations; the
choice of the multiplicity depends on many factors, including the project type, and
lies with the developer/manager.

226 Samira Tasharofi and Raman Ramsin

Release Phase
Deployment activities of software engineering are performed in this phase. System-
level testing (Test in the large) is done to verify and validate the system, and
deliverable increments are deployed into the operational environment (Deploy). I f it
is revealed that the generated system satisfies its specification completely, or that the
evolution of the system is impossible or unnecessary, the project will be terminated
and may be reviewed by Post-mortem Review, in which the experiences obtained
from the project are documented in order to be used in later projects. Otherwise, a
return to Initiation or Development Iterations phases is required. As some agile
methodologies (e.g., DSDM and Scrum) exclude post-mortem review, it has been
specified as an optional stage.

3.2 Stage Process Patterns

Each phase in ASP is stated in terms of its constituent interrelated stages. Most of
these stages can be performed iteratively. In this section, the stage process patterns of
ASP are described in terms of their interrelated constituents - consisting of tasks and
other nested stages - and the work products produced in and/or transferred among
phases and stages.

Justify
In this stage (Fig. 2), the intention is to justify the project via a feasibility study and
gain initial support and funding for the project.

.omar Fseto, I IResoorceanc I I Analys s 1~ i Plan Azalysis i ~ Garnerinc Initial Support

I Process Filters] @ Financia L ~ and Constraints
Analysi• F ~ - I Analyiis

Domain Technica
Analysis Analysi~

Fig. 2. Components of the Justify stage process pattern

As can be seen from Fig. 2, the input work products to this stage are Project
Description, Customers' Viewpoint about the project, and the documented Previous
Projects Experiences. The result of this stage is the project Business Case which
represents the business value of the project. In this stage, feasibility study is
performed through risk analysis which involves Resource and Plan Analysis,
Human-Factor Analysis, Financial Analysis, and Technical Analysis. These tasks are
coupled with the application of project constraints and process suitability filters in
Process Filters and Constraints Analysis, Defining Objectives, and a domain
walkthrough in the Domain Analysis tasks. At the end of this stage, customer
approval and initial support for the start of the project will be obtained in the
Garnering Initial Support task.

Process Patterns for Agile Methodologies 227

Define High-level Requirements
The requirements form the basis for other steps of the project. At the start of the
project, initial high-level requirements are defined which will later be detailed and
refined (Fig. 3). The required work products for this stage are Project Description,
Customers' Viewpoints about the project, the Business Case defined in the Justify
stage, and other related Projects Experiences; these documented experiences are
often provided by the post-mortem reviews at the end of projects.

The requirements are identified and defined in Problem Domain and Solution
Domain Analysis, and require active customer collaboration (Get Customer
Approval). Examination of the problem and solution domains can be performed more
precisely with the aid of modeling which is specified as the Design~Model stage in
Fig. 3. A description of this stage will be given in the next section. Because of the
model-phobic nature of many agile methodologies, this stage has been specified as
optional. The products of this stage are a document of discriminated requirements
(Requirements DocumenO and the generated models (Models).

Legend
[222223 ffZ;S~
Optiona Task Stage

ptio•n Problem Solution Domain
Project Descri Doman anayss I Analysis]

Viewpoints \
Business Case /
Previous Project~ / • Experiences / ~ Desigr,Mode, ~ I Get customer's b o Approval }

Fig. 3. Components of the Define High-level Requirements stage process pattern

Design/Model
Design and modeling may be used for defining and/or refining the requirements, the
architecture, the design of the system, and the plans. Prototyping can also be
considered as a task belonging to this stage. The iterative tasks of this stage, as
depicted in Fig. 4, are defining the goal of design/modeling, designing and defining
the alternatives, (optionally) using tools and prototyping to propose different
alternatives, and reaching an agreement on the produced designs/models. The
generated designs, models, and prototypes are packaged in the Models document.

Legenc] [_-_----] [ZZZ~
Optionar Task

Models
~eqUirmee~nt" ~
Projecl /
Infrastructure/

Designs~Models

Fig. 4. Components of the Design~Model stage process pattern

228 Samira Tasharofi and Raman Ramsin

Define Infrastructure
In this stage, project constraints, standards, and the system architecture are defined.
As shown in Fig. 5, it uses the Requirements Document, Business Case, Project
Deseription and Previous Projects Experiences to provide the Project Infrastructure.

This stage is performed through iterative tasks for defining rules and constraints,
designing the architecture, specifying the development and operational platforms,
defining goals and objectives, and (optionally) defining methodology conventions.
The task Define Methodology Conventions is not found in all agile methodologies,
yet it is considered an essential activity in some agile methodologies, such as Crystal.
It has therefore been specified as optional. To define the system architecture,
modeling, designing or prototyping may be needed. Therefore, the possibility of
moving from Define Architecture to the Design~Model stage and vice versa has been
accommodated. As a consequence of applying this stage, the requirements document
may be changed or refined.

Sj•
Define Rules I ~ SpecJfy [

and Constraints Development~
Operational Platform

Requirement
Document Model• \ Defin, I_ I .I D°fine OOJectiv°' I
Business Case % ~ and Goals I Project Description / Architecture
Previous Projects / 1 Legend Stage Experi l ~ "~:~'~'~o~'~ I _!----~i~---7

C---------,' ~ ~ g I ~ Methodology I
Optiona Task ! L _ _Co_n~en_tio_ns _]

Fig. 5. Components of the Define Infrastructure stage process pattern

Outline Plan
In this stage the preliminary plan and schedule of the project are defined. As results
of this stage, the initial project management document (Management Document) and
the project plan and schedule (Plan) are produced. As deduced from Fig. 6, the
required tasks include estimating the time, resources, and the effort needed for
project completion, and preparing the management document according to these
estimates. The management document contains all the information needed for project
management (e.g., project schedule, plan, people communication paths, etc.). It may
be needed to perform these tasks in multiple iterations. The requirements, project
infrastructure, models, and previous projects experiences help refine the estimates.

Requirements ~ k
Document Project \
/nfr;iS:ruUsCpUrr~ e cM ° d e I s 9
Exper ence~ ~ '

TJme I I Resource and I

Document I u°cumen~l///"

Fig. 6. Components of the Outline Plan stage process pattern

Process Patterns for Agile Methodologies 229

Requirements Analysis
The detailed analysis of requirements is carried out in this stage (Fig. 7). Existing
requirements are refined and some new ones may also be added. Additionally, the
requirements are prioritized according to different criteria depending on the project
at hand, e.g., interdependencies, business value, or risks associated with the
requirements. Designing and modeling can be used to gain a better understanding of
the requirements. The requirements document is refined and completed in this stage.

Requirements~k~
Document Plan \ r%er:SsCase /
Infrastructure [/

Legenc Stage
C'_:29 C : ~ I " "~
Optiona Task

i- - g~ ,~Fe- ~ _ r - - ~ u ~ t T - - ,
.~gependenciesJ -~l Requirements

. I Risks

F -- Ev'-alust'-e-- --] | Use Rules,
I Business Value I~---~ Constraints L 1

Define~Refin¢ ~_ _~ Prioritize
Requirements Requ rements

BesignJMode

 e c ire2 L
Models

Fig. 7. Components of the Requirements Analysis stage process pattern

Plan
Because of frequent reviews in the development iterations of agile methodologies,
the plan is likely to be refined or otherwise modified during the iterations. Therefore,
at the start of each iteration in the Development Iterations phase, the project plan and
schedule are reviewed and revised. This stage is shown in Fig. 8. The Requirements
Analysis stage refines or otherwise changes the requirements document. Time boxes
and artifacts of the next iteration(s) are then specified. The documented lessons
learnt from previous iterations (Iteration Review Document), if existing, form an
important artifact, based on which planning and scheduling decisions are made in
this stage. The stage also involves the definition of tasks and their assignment to
project team members. Some agile methodologies, e.g. DSDM, exclude defining and
assigning tasks in each iteration; the two tasks are therefore specified as optional.

Legene]
I

'ZZ-2:21 i I ~ I
Optional Task Stage I I

Plan Requirem 2 I Requirements ~ Assigr
Document Iteration \ Analyei~ Ii I ~. T_ask_s
Review Document ~ DefineTime Ll~ i 6e7,~
Models Managemen/V Boxes ant ~ 1 Tasks
Document [/ / / / I Artifacts I ~

1%onsid'erR~vTew "]
I[Lessons I

Fig. 8. Components of the Plan stage process pattern

Test in the Small
During the stages in which the system is evolved, the generated increments must be
tested. These tests are not system-level, and specifically consist of unit testing, black-
box testing, regression testing, and integration testing. Testing may be performed

230 Samira Tasharofi and Raman Ramsin

with the aid o f tools, as seen in XP. The constituent tasks and artifacts of this stage
are demonstrated in Fig. 9. The requirements document is the basic artifact for this
stage. If any test collections and documented results exist, they too will be used for
regression testing or in repeating the failed tests. At the start o f this stage, the goal o f
testing and the targets must be defined through planning the test. Test cases are then
generated or may be selected from test collections according to the test plan. The
results o f running test cases are documented in the Test Document artifact. Because
o f active user involvement in agile methodologies, users may also test the product
and give feedback to producers. While validation is a must in all projects, in some
agile methodologies (e.g. Crystal Clear) this is done after multiple iterations, and not
during each iteration. This is why the User Test task is specified as optional in this
stage.

nt•
Plan Test

Test Docume
Ir I Use Tools Test Collection \ I] [GeneratelSelect

Requi ts / I_ i i [Test C a s . e s i / Test /Test Collection \
r / Requirements / Document I / I I Run Tesl I Cases , / D o c u m e n t /

O:p:t]'-o3na 'Tas:] Analyze ~ ' Document
I Results I I Resu'ts I

Fig. 9. Components of the Test in the Small stage process pattern

Test in the Large
This stage (Fig. 10) is where system-level testing is performed. The defects found in
testing may be resolved by the Fix Bugs task in this stage, or deferred to the
Development Iterations phase. The constituent tasks in this stage are similar to the
Test in the Small stage with some differences: l) the User Test task is not optional, 2)
the defects found may be resolved in this stage, 3) Planning and generating test cases
is based on system-level tests strategies, and 4) because of the need for bug fixing,
the constituent tasks may be performed iteratively.

Test Document Tes~l
Collectior \
Requirements
Documenl /
E table_Syste~ 1 /

[' _222 :3 ~ I _ _

Optiona Task j

~ Generate~Selecl I
Test Cases I k

~ i ~ i ~ - - 1
Fig. 1O. Components of the Test in the Large stage process pattern

Process Patterns for Agile Methodologies 231

Review
Reviews play an important role in agile methodologies. Different types of reviews
extracted from agile methodologies are: Product Review, Process~Plan Review, and
Project Review (Post-mortem Review).

Product Review
The product is reviewed via analyzing the test results, validating the product through
delivery to customers, comparing the results with defined goals, and documenting
the conclusions in the Product Review Document (Fig. 11). As a consequence, the
requirements and project infrastructure may be changed.

k
Test Document I ~ Evaluate Tesl l_ _1 Deliver the product
Test Collectior \ Results I ~ to Reviewers
Project Infrastructur~
Requirements / Consider ~ Document

I Document t /
1]/ ,

, ~ ~ I Update Requirement~J I
Optiona Task j 2 _ _ Infl._.a,,_tru_~...ut_e - -- /

RequJrements~
Document \
Product Review
Document Projeey Infrastructure~

Fig. 11. Components of the Product Review stage process pattern

Process~Plan Review
Process/Plan Review, as shown in Fig. 12, aims at adapting the applied process/plan
with the current state of the project. The plan of the project, management document,
project infrastructure, and product review document help assess the process/plan.
Therefore, the project plan and schedule must be compared with the current state of
the project and the project velocity, the encountered problems must be analyzed, and
the tuning points of the process/plan must be specified. The results are recorded in
the Process~Plan Review Document.

Post-mortem Review (Project Review)
At the end of the project, the project will be investigated and the lessons learned are
documented in the Post-mortem Review Document. This stage, as illustrated in Fig.
13, uses the product- and process/plan review documents, management document,
project plan and infrastructure to make a tour of the system, compare the initial
estimates with the current state of the project, using users' opinion on the system,
and analyze the problems and solutions. This stage provides a good protection
against the Reinvent the Wheel process antipattern [28].

232 Samira Tasharofi and Raman Ramsin

~ , Compare
Current State Analyze

with Pla~qJ Problems
Management schedule
Document Plar \ [I
Project \ Specify Document
Infrastructure / Project Results
Product Review / Velocity

Specify Tuning
Points

Plar Manageme~n
Document \
ProcessJPlar /
Review Docum[~/

Fig. 12. Components of the Process/Plan Review stage process pattern

E

menre~l C°mpare ~ Analyze ~ / Results Problem~JTour o1 I Estimated Plat }
Management Docu with Real Plan Solutions

Plar Project Infrastructure\ [I
Product Review Document) Document Make Shod
ProcessJ Plan Review /

Consider Users
Opinion on the

System

Fig. 13. Components of the Post-mortem Review stage process pattern

Implement
Implementing the requirements and resolving the defects are performed in this stage
(Fig. 14).

Document the RequirmecmlnTt~s , I I,~[~ Sync the Code~ I SoGuenceerctedCes I 1 [with Designs/
Models Leg~ c::::~ E=~ ~ / / [5~.;zg,~eT~t~]

Optional Task L__C°_d~__ t
Fig. 14. Components of the Implement stage process pattern

The test document is used for fixing the hugs diagnosed during test activities.
The generated code (which may include the test code, as commonly seen in Test-
Driven Development) must conform to the requirements/defects and models/designs.
Code inspection with the aim of refactoring and code optimization is a practice used
in most agile methodologies after generating the source code (e.g., XP and ASD).
The outcome of this stage is a new version of the product.

Integrate
Integration of newly generated increment(s) with the current system is handled in
this stage (Fig. 15). Inputs to this stage are the new increment, the current integrated
system, and the project infrastructure which contains the standards and constrains
governing integration. The environment must first be prepared for the new
increment; the new application is then integrated with the current system (this may

Process Patterns for Agile Methodologies 233

be done iteratively) and the new system is prepared for testing (e.g., integration test,
regression test, etc.). The strategy governing the time and frequency of integration is
dependent on the nature of the process, the plan, and the project itself.

x~k Integrate the New ~ x
Application with the I ~ \ New Appiicatior

Current Application \ I Current on

/ Legenc Prepare Prepare the I
I I Enviroment Application

for Tesl

Fig. 15. Components of the Integrate stage process pattern

Deploy
This stage, as seen in Fig. 16, is made up of all the tasks related to the deployment of
the system into the user environment. It consists of setting up the user environment,
deploying the system, preparing user documents, and training the users. Tasks must
be performed with attention to the constraints delineated in the project infrastructure.

Setup User ~ _ ~ Deploy ~ e r k ~ Enviromenl Systerr I

Prepare User
Documents aRc

Train User. ~

Fig. 16. Components of the Deploy stage process pattern

Iteration Review
This type of review is carried out after performing the iteration(s) in the
Development Iterations phase. The aim is to adapt the plan and the process with the
project and the development team in order to enhance product quality. Therefore, as
shown in Fig. 17, it consists of Process~Plan Review and Product Review stages
performed in an iterative manner.

Development
This stage (Fig. 18) is preformed via iterative application of the Implement, Test in
the Small, and Integrate stages. The input and output work products are the union of
the inputs and outputs of the constituent stages. The goal is to produce, integrate and
test different parts of the system.

234 Samira Tasharofi and Raman Ramsin

Management Document1
Plan Project Infrastructure\
Test Documenl Test) I ProcessJPlan

] Collectior Requirement, // I Review I I
Product
Review

Management Documenl~
Plan Requirements \
Document Iteration Review \

I Document (ProcessJPlan)
and Product Review /
Documents) P r o j e c t /

[nfrastructur~] //

Fig. 17. Components of the Iteration Review stage process pattern

Test Collection Tesf \
Document Requirements \
IDf;a%tm:crlur MOdels Pr 7

Test Collection Tesl I ~

Fig. 18. Components of the Development stage process pattern

4 Realization of the Proposed Process Patterns in Agile Methods

Table 1 shows how different phases of the agile methodologies studied in our work
can be realized by our suggested process patterns. We abstract away from umbrella
activities, e.g., people and project management, which span all phases of the project
and correspond to task process patterns. Therefore, they do not appear in this table.
The realization table has been used to verify that the extracted process patterns
indeed cover the methodologies used as the bases.

5 Applications of the Proposed Agile Process Patterns

The Agile process patterns proposed herein can facilitate situational method
engineering (SME) when aimed at constructing agile methodologies to match given
organizational settings or specific development projects [8, 29]. The process patterns
can be used in the assembly-based approach of SME [29, 9] as classes of agile
method chunks which can be used for composing agile methodologies. Furthermore,
ASP and agile process patterns can be used in enacting the paradigm-based
approach of SME [29] for instantiation and adaptation of process and product
models.

The process patterns can also provide the basis for a rich component library for
instantiating process components according to a predefined framework, typically
depicted as a method engineering meta-model; much in the fashion of OPEN/OPF
[11, 12].

Process Patterns for Agile Methodologies 235

Table 1. Realization of the proposed agile process patterns in agile methodologies

Methodology Phases Corresponding Stage Process Patterns

Feasibility Study Justif}. Outline Plan

Business Study Define tligh-level Requirements. Plan. Define Infrastructure

Functional Model Plan. Requirements Analysis. Design:Model
DSDM

Design and Build Plan. Dcvelopmcnt. Design/Model

hnplementation [cs t in thc large, I)cploy, Product Review

Serum

Post-Projcct

Pre-game: planning

Further iteration of previous five main phases

Define lligh-lcvcl Requiremcnts, Rcquircments Analysis, Outline

PlaI1

Pro-game: Architecture, I)cfinc [nfiastructurc

High-level Design

I)cvelopmcnt Plan, Process'Plan P, cvicx~, Design Model .hnplenlent, Test ill the

Small. Iteration P, cview

Post-gamc Integrate. Ics t in thc large, Deploy

Define High-levcl P, cquircments. Define Infrastructure Exploration

Planning Outline Plan. Plan

Iterations to First P.elcase Plan, I)esign'Model, Development, Proccss Plan Review
XP

Productionizing Dcplo}. Test in tile Large

Maintenance Repetition ufthree previous phases

Death Post -inortcm Rcvicw

Proicct Initiation .lustif,,,. Define l ligh-lcvcl Requirements. Define Infrastructure

ASD Itcrativc I)cvclopment Phases Plan, I)c~clopinent. Iteration Rcvic~s

Final Q'A and Release "I'cst in the largc. Dcploy, Post-mortenl P, cvicx~

Inception Define High-level P, cquiremcnts. Define Infrastructure. Outline Plan

151aboration Plan. Dcsign Modcl. Development. Iteration Reviews
dX

Construction Plan. l)esign Model. Dex,elopment

Transition

Chartering

Dcplo}. Test in Ihe large

.luslif,,,, Outlmc Plan,

hlffastructurc. Plan

I)efine lligh-levcl Rcquircments. Define

('rystal (' lear
l)clive W ('~clu Plan, Design 'Model. Development, Iteration Ruvie~

Wrap-up Test ill file large, Deploy, Posl-mortenl Rcvic~

Develop an Overall Model Design Model

Build a I:eatures List Rcquircnrcnts Analssis

FDD Plan by Feature Plan

Design by Fcamrc Design Modcl

Build by Feature lmplcnmnt.]cs t in the Small

Finally, because of their abstract nature, the proposed process patterns lend
themselves better to adaptation and tailoring, thereby enhancing configurability and
dynamic flexibility; a feature which can be indispensable in agile methodologies,
where the process itself needs to be adaptable based on the circumstances
surrounding different proj ect situations.

236 Samira Tasharofi and Raman Ramsin

6 Conclusion

We have proposed a set of agile-specific process patterns that can be used for method
engineering purposes. Pattern extraction was based on detailed inspection of seven
prominent agile methodologies, and a generic Agile Software Process (ASP) was
identified and used as the starting point for the extraction process. We have also
demonstrated how each studied agile methodology can be realized using the
proposed process patterns. Our suggested process patterns thus provide classes of
reusable agile process building blocks that can be instantiated and used for
composing and tailoring agile processes.

This work can be further extended to investigate the full details of the task process
patterns, and especially address the umbrella activities covered in the generic ASP.
Future work can then be directed towards developing a Computer Aided Method
Engineering (CAME) environment [7, 30] that facilitates assembly-based
engineering of agile methodologies using the agile process patterns introduced herein
as reusable method fragments stored in a method base. ASP's role will be that of a
generic method model providing a general template for agile methodologies, thus
adding the support for paradigm-based SME. Another strand can focus on defining
extension points for agile process patterns, further layering the patterns architecture
into core process patterns and available extensions, thereby enhancing complexity
management and promoting the production of lighter methodologies.

Acknowledgment. We wish to thank the Research Vice-Presidency of Sharif
University of Technology for sponsoring this research.

References

1. J. O. Coplien, A Generative Development Process Pattern Language, in: Pattern Languages
of Program Design (ACM Press/Addison-Wesley, 1995), pp. 187-196.

2. S. W. Ambler, Process Patterns: Building Large-Scale Systems Using Object Technology
(Cambridge University Press, 1998).

3. S. W. Ambler, More Process Patterns: Delivering Large-Scale Systems Using Object
Technology (Cambridge University Press, 1999).

4. N. Prakash, On generic method models, Requirements Engineering 11(4), 221-237
(September 2006).

5. K. Bergner, A. Rausch, M. Sihling, and A. Vilbig, A Componentware Development
Methodology based on Process Patterns, in: Proceedings of PLoP-98 (1998).

6. K. Kumar and R. J. Welke, Method engineering: a proposal for situation-specific
methodology construction, in: Systems Analysis and Design: A Research Agenda, (Wiley,
1992), pp. 257-268.

7. A. F. Harmsen, Situational Method Engineering (Moret Ernst & Young, 1997).
8. I. Mirbel and J. Ralyt6, Situational method engineering: combining assembly-based and

roadmap-driven approaches. Requirements Engineering 11(1), 58-78 (March 2006).
9. S. Brinkkemper, M. Saeki and F. Harmsen, Assembly techniques for method engineering.

in: Proceedings of CAiSE'98 (1998), pp. 381-400.
10. S. Brinkkemper, Method engineering: Engineering of information systems development

methods and tools. Information and Software Technology 38(4), 275-280 (Apr.1996).
11. D. Firesmith and B. Henderson-Sellers, The OPEN Process Framework: An Introduction

(Addison-Wesley, 2001).
12. B. Henderson-Sellers, Method Engineering for OO Systems Development,

Communications of the ACM 46(10), 73-78 (October 2003).

Process Patterns for Agile Methodologies 237

13. P. Kroll, Introducing IBM Rational Method Composer, published on the web at:
http://www- 128.ibm.com/developerworks/rational/library/nov05/kroll (2005).

14. B. Henderson-Sellers and M. K. Serour, Creating a dual-agility method: The value of
Method Engineering, Journal of Database Management 16(4), 1-23 (Oct./Dec. 2005).

15. B. Fitzgerald, G. Hartnett and K. Conboy, Customizing agile methods to software
practices at Intel Shannon, European Journal of Information Systems, 15(2), 200-213
(April 2006).

16. S. W. Ambler, The agile system development lifecycle, published on the web at:
http://www.ambyso ft.com/essays/agileLifecycle.html (2006).

17. D. Wells, Extreme programming: A gentle introduction, published on the web at:
http://www.extremeprogramming.org (2006).

18. K. Beck and C. Andres, Extreme Programming Explained: Embrace Change, 2nd Ed
(Addison-Wesley, 2004).

19. S. W. Ambler, The agile unified process, published on the web at:
http://www.ambysoft.com/unifiedprocess/agileUP.html (2005).

20. D. Turk, R. France and B. Rumpe, Limitations of agile software processes, in: Proceedings
of XP (2002), Alghero, Italy.

21. K. Beck, et al, Manifesto for agile software development, published on the Web at:
http://agilemanifesto.org (2001).

22. DSDM Consortium, J. Stapleton, DSDM: Business Focused Development, 2nd Ed.
(Addison-Wesley, 2003).

23. K. Schwaber and M. Beedle, Agile Software Development with Scrum (Prentice-Hall,
2001).

24. J. Highsmith, Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems (Dorset House, 2000).

25. G. Booch, R.C. Martin and J. Newkirk, Object Oriented Analysis and Design with
Applications, 2rid ed. (1998), (Unpublished).

26. A. Cockbum, Crystal Clear: A Human-Powered Methodology for Small Teams (Addison-
Wesley, 2004).

27. S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven Development
(Prentice-Hall, 2002).

28. W. J. Brown, R. C. Malveau, H. McCormick, T. Mowbray, Antipatterns: Refactoring
Software, Architectures, and Projects in Crisis (Wiley, 1998).

29. J. Ralyt6, R. Deneck6re and C. Rolland, Towards a generic model for situational method
engineering, in: Proceedings of CAiSE2003 (2003), pp. 95-110.

30. S. Kelly, K. Lyytinen, M. Rossi, MetaEdit+: A Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment, in: Proceedings of CAiSE'96 (1996), pp. 1-21.

Domain-specific Adaptations of Product
Line Variability Modeling

Deepak Dhungana, Paul Grfinbacher and Rick Rabiser
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler Universit/it, Linz, Austria
dhungana@ase.jku.at

Abstract. Despite its increasing popularity the widespread adoption of product
line engineering is still hampered by a lack of flexible and extensible
approaches that can be tailored to deal with diverse organizational specifics
such as architectural styles, languages, or modeling notations. Many existing
product line approaches focus on process aspects and provide general-purpose
modeling approaches. In this paper we present a flexible and extensible
variability modeling approach that can be adapted to domain-specific needs.
The approach is supported by the meta-tool DecisionKing. The tool treats
variability as a prime modeling concept and supports the domain-specific
definition of dependencies between model elements. We demonstrate the
feasibility of our approach with two case studies in the areas of industrial
automation and service-oriented systems.

1 In trod uc t ion

Conventional single-system software engineering is often insufficient to meet the
tight budget and schedule constraints faced by software industry. Companies
therefore aim at understanding the relationships between similar products to exploit
commonalities regarding marketing, technical, or end-user aspects. Software product
line engineering (PLE) is based on creating and managing artifacts and processes
such that they can be reused for building different yet related products. It has been
shown that PLE can increase productivity, reliability, and quality of software
development thereby also reducing cost and time-to-market [3, 4, 14, 17, 22]. This is
achieved by modeling techniques for capturing the variability of reusable core assets
such as requirements, architecture, code, processes, documents, or models.

Please use the.fi~llowing.fi~rmat when citing this chapter:

Dhungana, D., Grfinbacher, P., Rabiser, R., 2007, hi IFIP international Federation for information Processing, Volume
244, Situational Method Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Brinkkemper, S., Henderson-
Sellers B., (Boston Springer), pp. 238-251.

Domain-specific Adaptations of Product Line Variability Modeling 239

While there is a strong consensus on the benefits of PLE, it remains challenging
for organizations to identify methods and techniques applicable for their particular
context, to adapt these methods and techniques to address the specific needs of their
domain, and to integrate them with their current practices, tools, and standards [16].
A reason for these problems lies in the inflexibility of existing product line modeling
approaches and tools which often do not support the diverse needs of different
organizations. A key goal of our research is thus to make our methods and tools as
flexible as possible.

Variability modeling is central in PLE to capture commonalities and variability
of a product line's core assets. Variability has to be understood and modeled at
different levels (e.g., requirements, architecture, or implementation level) and for
diverse domain-specific artifacts [7]. The traceability between variation points, i.e.,
decision points describing possible choices about assets' functions or qualities, and
the management of variability mechanisms implementing these points are important
aspects. The need for a flexible variability modeling approach becomes evident when
considering the heterogeneous languages, modeling notations, or architectural styles
used by different organizations. There are two important problems faced by both
research and industry [7]: (1)there is a lack of integrated variability modeling
approaches that work well with arbitrary and heterogeneous types of assets in the
product line; (2) there is a lack of flexible and extensible tools that can be tailored to
support a particular organization's needs.

In our ongoing research collaboration with Siemens VAI we are developing an
approach addressing these issues. DOPLER (Decision-Oriented Product Line
Engineering for effective Reuse) is an approach that works with heterogeneous
domain-specific artifacts while being independent of specific architectural styles,
languages, or modeling notations. The approach is supported by the meta-tool
DecisionKing [7] supporting the identification, design, implementation, and
maintenance of a product line's assets. Unlike existing general purpose recta-tools
[11, 21, 26] DecisionKing provides support for variability as a first class modeling
concept. Furthermore, it adopts a rule engine to master the complexity of
dependencies in the models. Organizations can also incorporate company-specific
capabilities by exploiting the tool's plug-in architecture.

This paper is organized as follows: We describe our variability modeling
approach and show how it allows domain-specific adaptations. We present the recta-
tool DecisionKing [7] and discuss method engineering concepts used in our
approach. Two case studies illustrate the benefits and feasibility of our approach in
two significantly different domains: (i) Together with Siemens VAI, the world's
leader in building plants for the iron, steel, and aluminum industries, we are using
DOPLER to model the variability of their automation software for continuous
casting in steel plants; (ii) In an ongoing research project [5, 10] we are modeling
service variability by complementing the i* modeling language [25] with variability
modeling. We conclude the paper with a discussion of related work and an outlook
on future work.

240 Deepak Dhungana, Paul Grfinbacher and Rick Rabiser

2 Product Line Variability Modeling

Leveraging reuse in PLE relies on documenting tacit knowledge about variability
and making it explicit and manageable in models [4]. Variability models cover the
product line's problem space (stakeholder needs and desired features) and its
solution space (architecture and components of the technical solution). Variability
models define a product line's assets with organization- and domain-specific
properties and dependencies. They capture different variants of features and solution
components and their valid combinations, i.e., the possible variants together with
constraints and dependencies. Variability models also document fundamental
system-wide decisions for the configuration and derivation of a product [8] and the
rationale for these decisions.

DOPLER can deal with diverse product line assets and allows arbitrary
dependency links between the assets. It relates the assets with decisions for product
derivation and customization. The approach is based on a generic variability meta-
model (Fig. 2) which has to be extended and adapted to organizational needs. The
recta-model does not encompass every modeling element that may be relevant in
certain organizations. It defines just the basic concepts to be modeled on a higher
level of abstraction. Unlike a general-purpose recta-model, our approach treats
variability as a prime concept by modeling decisions. Fig. 1 depicts the DOPLER
modeling process encompassing domain modeling (the adaptation of the recta-
model), asset modeling (the definition of the PL's assets based on the recta-model),
and decision modeling (the definition of variability):

is based on Variabil i ty documents variabil i ty using
M o d e l

J
\ Domain-

Domain) Specific
Knowledgej l Meta-Model

i ,&

consists of

Product Lln
Assets J Asset

Models

[- ~ ' ~ ~ ,

Decision
Model

Technical
Solution) J

Constraints/

Fig. 1 DOPLER variability modeling approach [7].

(1) Domain Modeling. Managing different kinds of assets in a PL relies on the
precise definition of their specific characteristics in a domain-specific meta-model.
Building such a model requires knowledge about the domain and the organization's
settings and specifics. The recta-model defines the types of assets to be included in
the product line (e.g., Components, Services, Documents, Properties, etc.) and the
possible relationships between the different asset types.

Domain-specific Adaptations of Product Line Variability Modeling 241

(2) Asset Modeling. An asset model is created on the basis of a domain-specific
meta-model and describes the concrete reusable elements in a product line and
dependencies among them. Asset models can often be created semi-automatically if
product line development does not start from scratch and core assets already exist.
For example, call dependencies defined in existing system configuration files can be
utilized to automatically derive requires dependencies among software components
that reflect the underlying technical restrictions (cf. Section 5.1). Modeling these
dependencies is essential for later product derivation.

Structural Hierarchical
Dependency, .~ependency

F " I " " ~ I unctiona _ _ _ T ~ Logical
Dependency Dependency

Fig. 2 Core meta-model for variability [8].

(3) Dec&ion Modeling: Variability stemming from technical or marketing
considerations is expressed using decisions to be taken when deriving products from
the product line [19]. Decision models link external variability (visible to customers,
sales people, or marketing staff) with internal variability (visible to engineers). A
decision model is a graph where the nodes represent decisions and the edges
represent relationships between them. Decisions are variables which can have special
dependencies to other variables. These dependencies are expressed using a rule
language. Decisions are presented to decision-takers in the form of questions.
Validity conditions restrict the range of possible values. In order to link assets and
decisions, assets specify an inclusion condition which has to be satisfied for a
particular asset to be included in the final product. This expression can be composed
of arbitrary decisions. Decisions and inclusion conditions also establish trace links
between user demands and assets [8]. Decision models reduce modeling complexity
as they represent variability at a higher level of abstraction. For instance, variability
mechanism in the asset base can be changed without having to change the variation
points of the system. Experience also shows that fewer decisions are necessary to
reach the desired variability than adding variability specifications to all assets [8].
The core meta-model (Fig. 2) currently supports hierarchical dependencies
specifying how the decisions are organized and logical dependencies specifying the
known consequences of taking decisions:

Hierarchical dependencies are Boolean expressions that specify when a particular
decision is visible to the user. For example, the user needs to decide if an archiving
feature is required before taking more specific decisions on the type of database used
for archiving. Considering the example in Fig. 3, this kind of relationship is modeled
between the decision DeburrerPredecessor and Oeburrer. The decision

DeburrerPredecessor is visible to the user only if the value of decision Deburrer is true.
Logical dependencies specify actions that need to be executed after a decision has

been taken. Typically, these are business rules that need to be checked (before and)
after a decision is taken. In the example presented in Fig. 3, we can see such a

242 Deepak Dhungana, Paul Grfinbacher and Rick Rabiser

relationship between DeburrerPredecessor and MarkingPredecessor. If the user enters

INPUT as the value for DeburrerPredeeessor the value of the variable

MarkingPredecessor is also set to INPUT. After a decision is taken, its effects are
propagated automatically to all the other affected decisions in the model. This is
important to guarantee the consistency of selected options and taken decisions during
product derivation.

[Wo,....lConooc,,oo I.M,Used l
debur'rer. : : =kPue l i

t |

[DeburrerPredecessor j W e igh tL1Connec t i on t r u e .:

11(ttN1 (ls(.'d lals(.')
1 l (D ('.b ur rt?r t~'(~" d~.~ (:(;s st) r INI~UT)
HarkinqPrc(l(;(:c~,:sor 11'4PIUT; [W e i g h i n g M a c h i n e] ManualW(~ighLEnl.rV Ia l se ;

/ ,
/ WeighingMaehine== ~ u e

/ \
':~ [MarkingMachine] ManualWeightEntry],- "

l
Mark ingMachine= = Lrue

I
...... [MarkingPredecessor]

Fig. 3 Example of a Decision Model based on an existing variability model of the
Siemens VA1 subsystem Runout. Decision variables (nodes) are modeled with their

hierarchical and logical dependencies (edges) thereby forming a graph.

3 Adopting Method Engineering Concepts

Method Engineering offers important concepts for achieving a higher level of
flexibility: (i) Meta-models have proven to be useful to identify and describe the
concepts of a generic method, (ii) Generic methods can be adapted to the actual
situation of a project using concepts of Situational Method Engineering (SME) [15],
and (iii) Meta-tools provide a automated support for such adaptations. Our approach
is based on these concepts: we provide a generic meta-model, which has to be
adapted to domain-specific needs. We also offer tool support through adaptations of
our meta-tool DecisionKing.

Meta-model adaptation and evolution. Every domain has its own concepts,
dependencies, and rules. These characteristics are defined by a meta-model
specifying the attributes, dependencies, syntax, and semantics of these concepts. A
meta-model defines the "language" in which domain models can be expressed and
from which tools for writing domain models can be generated. While the meta-model
is specified by method experts, the models are developed by domain experts using
the generated domain-modeling tools. For example, in our approach the core meta-
model (Fig. 2) is refined using new asset types together with attributes and
relationships among them to support domain-specific concepts. The behavior of

Domain-specific Adaptations of Product Line Variability Modeling 243

model elements is defined by semantic classes, i.e., model element interpreters and
dependency resolvers for relationships between the assets.

Meta-models can change just like other models. Variability modeling tools and
techniques must be adaptable to provide an effective model-driven development
cycle. We allow domain evolution via updates to the meta-model [20] thereby also
adapting the variability modeling tool. This allows us to react to changing
requirements of the problem domain. For instance, the introduction of new asset
types as well as the modification of existing assets requires techniques for schema
evolution of already existing models, automatic adaptation of tools, and methods for
checking the semantic consistency of the evolved models. The evolution of the recta-
model is of particular interest when introducing a new product line. In order to
master the complexity, one can begin with a relatively simple meta-model which is
extended as the product line evolves.

Meta-tools and tool extensions. Meta-tools are needed to benefit from the
flexibility offered by recta-modeling and recta-model evolution. Such recta-tools
allow the generation of specific tools for a target environment. Recent developments
in the area of software tools such as the Eclipse platform allow the development of
extensible recta-tools that can be augmented with domain-specific capabilities. For
instance, the plug-in approach supports a compact core that can be extended with
plug-in components tailored to the users' needs to improve focus and reduce clutter
by providing a customized user environment [24]. In DOPLER we used a plug-in
approach to incorporate a domain-specific rule language, an off-the-shelf rule engine,
a model visualization system, and domain-specific tools for semi-automatically
creating initial decision models from existing assets.

4 DecisionKing: A Meta-Tool for Variability Modeling

DecisionKing can be configured to support domain-specific variability modeling
with domain recta-models specifying relevant characteristics of the application
domain. DecisionKing distinguishes itself from more general-purpose recta-tools like
MetaEdit+ [21] or Pounamu [11, 26] by treating variability as a primary modeling
concept. Also, the dependencies among model elements are not just plain trace links
as they are interpreted using a rule engine. The plug-in-based architecture of the tool
makes it flexible and extensible to domain-specific adaptations (cf. Fig. 4). The
result of adapting DecisionKing for a particular organization is a domain-specific
variability model editor for domain-specific assets. Implementing tool-extensions
allows a tight integration of this editor with current practices, standards, and existing
tools of the organization. Fig. 4 shows an overview of the DecisionKing's
capabilities for domain-specific adaptations:

Meta-model editor. An editor allows the creation of domain-specific recta-
models by specifying domain-specific asset types (e.g., components, services, data,
code, settings, documents, component descriptions), their attributes (e.g., description,
URL, cost), and dependencies (e.g., component requires component). Domain-
specific behavior can be added to model elements and relationships by providing
model element interpreters and dependency resolvers as domain-specific plug-ins.

244 Deepak Dhungana, Paul Griinbacher and Rick Rabiser

The meta-model adaptation framework (cf. Fig. 4) adjusts the variability modeling
editor according to the domain-specific meta-model.

Domain-specific tool extensions and plug-ins. The DecisionKing customization
framework supports two types of extensions:

(i) We provide extension points for adapting the functionality of the tool. Default
implementations of these capabilities can easily be replaced with domain-specific
plug-ins without having to touching the tool's implementation. We have created
default plug-ins of a rule language, a constraint editor, a rule engine, and a model
visualizer. For example, one can provide a model viewer with domain-specific
graphical layouts and symbols. Another example is the rule specification language
needed to model dependencies among decisions. The language used for this purpose
and choice of technology depends highly on the domain and current practices of the
organization. We have experimented with different domain-specific languages for
rule specification, using JBOSS] Rules as the rule engine. We have also tried JESS 2,
where we modeled our decisions as facts of an expert shell.

(ii) A generic extension point is provided in the form of a model API which
allows arbitrary tools to manipulate, use, or create models. This AP! has for instance
been useful to develop model importers, which analyze the existing asset base to
semi-automatically create asset models. The integration of existing domain-specific
tools is another important aspect.

-------Decisio~King Customizat ion Framework. -,

Predefined extension points: Generic extension-point providing
Rule language/Evaluation engine, Model API for arbitrary domain-specific
Model visualizer, Constraint Editor tool-extensions

~ M e t a - m o d e l Adaptation Framework

Domain-specific asset types, attributes, and dependencies between them

Semantic asset interpreters and inter-asset dependency resolvers

Meta-modeling Core
' Meta-model consisting of Support for meta-model evolution

Assets and Decisions Schema evolution for existing models [1
Fig. 4 Overview of DecisionKing's adaptation mechanisms.

5 Case Studies

To demonstrate the feasibility of our approach, we present two case studies from
two different contexts. The goal of the case studies was to validate the generic meta-
model and to gain experience with method engineering concepts (cf. Section 3) in
practical settings. The case studies were also instrumental to demonstrate the
usefulness and usability of our tools in different contexts. We describe the meta-

I h t tp : / /www. jboss . comJproduc t s / ru l e s

2 http://herzberg.ca.sandia.gov/jess/

Domain-specific Adaptations of Product Line Variability Modeling 245

model adaptations and domain-specific extensions of our tools developed for the
case study contexts, as well as key experiences gained.

5.1 Case study I: Industrial automation

Siemens VAI 3 is the world's leading engineering and plant-building company for
the iron, steel, and aluminum industries. In an ongoing research project, we are
modeling the variability of their software product line for process automation,
optimization, supervision, and material tracking of continuous casting in steel plants.

: ~.,.p,>,~m

i [, e s o q , . i . , , I X I
a I i i ,d l ldgd l~

URL

I e ' ~ l l e s .;" P[,) l~el lV .~

g e l l t H l , l l l e ~ I o .> [. i

V, e s o u , c e

N a m e

. h ~ l u d ~ d I [

File N,I~IIe

P . c e

C,.Rlll;lne%l,, - ~*,~

• Pl ~ l)e lW

l l lC l l ld . d l [

~, v a h m

¢ ~ d r i b l l l e ~ T a > R ~

[m H i . ~ , l

A . a l n e

A I lK lu (led I [

• CBllllhbln@ST,l > ~qg~

i , : q l l l e S

~ , Cnl r l l iI,tl~e 5To

<

C ~ p o n ~ t

r~erT~ ~ ~, lHp, r~eqd

- A t t l , b u t e {

N . m , e

D e s c l i p t i ,) n

a h ~ d m i e d l F
A I I R L

• R e l a [I o n s h ~ s

~ e , l , m ~ s : t c
l e q u h ~ s :

o H i l d h u l ~ s I ,)

c . l l l l J b t l l e S I n

N~me Ilhl , lJh. ; £i~ n ~ w c i p ~) l c

l d A e c l F Hi . , h l ~ i (h h oh . I r a ~ 1 . 2 1

.... rg]

l h l c k j l l 0 S e r v e l . l x l : i Shan'T ^
q ¢ ~ e , I

L t u n ~

>

l e q u H e s

, . p h H j l n ~ _ d 2 o i , l h . i z e :;~ ~ a T

z c ~

:~ t t C m

! L l ~ C t

i L ~ C t *

.... - +-

; , l u q x : v . , 17 *~V, ~, h l g * , ~

D l u q l r , 5 c l ~ i, v c \ u , w c A l a]

> l u a z = : = e l f ~ v c ' ~ v c h r c l

pluqln= c12 mvc ~,~,cRMI

D h l g l n ~ c l ~ . m v c x ~ w c U l d

p l u , ; l : ; ~ u 1 2 . , q 0 t l ~ . x z e r ,
D l u 9 1 r . m _ c l ? ~ p l l ~ l z m r }

plugir.~ el. o p t l ~ . l z e r

pluqinz c12 oDti~izcr t

~luqln~ elf optl~izer.t

plugi:.s elf optixlzer ,

Dlugir.~_c i ~ o p t l ~ . l z e r . r

> l u q i n = _ c l d o p t i ~ , l z e r r

pluqin: cl~ oDti~,izcr *

Dluqin~ el: opti~izer.t

pluglx~ clZ opti~izer t

i , l u A : : , - , 17 , q , ~ i a l u e r ,
} e - r . r . n ~ . s

:~ g a r e v t a r t E a n d l e r g / 3
, hodclEuppl lerBiO

II~t erm IxHe~t LD~iqnmen %

i ID3enera t or ~:i9

,:u~ i~t DeLCI ot o~B/9

i U~, u t F r n / : c ~ I n f c P c , nl~-7

'~p recur] r~n=lat ori{c 1

'bt ~ nnd~ or ~ot I racl:er~it,

TurretSvstenBLO . .

Fig. 5 DecisionKing's Meta-Model Editor (left) and Variability Model Editor (right). The
variability model on the right is based on the meta-model on the left.

Meta-model adaptation. In various workshops conducted with the engineers and
sales experts of Siemens VAI, we identified the types of core assets to be reused in
the product line: Components (specified using Spring 4 XML files), Properties
(configuration parameters for components), Resources (legacy hard- or software
elements, configuration files, etc), and Documents (e.g., descriptions of components,
notes, fragments of end user documentation, etc). We also identified the functional
dependency requires between assets. E.g., a software component may rely on
another component to function properly (similar modeling capabilities are available

3 http://www.industry.siemens.com/metals/en/

4 http://www.springffamework.org/

246 Deepak Dhungana, Paul Griinbacher and Rick Rabiser

in architecture description languages such as xADL [6]). A domain-specific resolver
for the relationship requires adds all components required by a certain component as
soon as the parent is added to the final system (i.e., by taking a decision during
product derivation). Information about the deployment structure of the system is
modeled using the relationship contributesTo (e.g., a component contributes to the
sub-system it belongs to).

Domain-specific extensions and plug-ins. We developed a tree-based graphical
viewer for Siemens VAI variability models based on GEF viewers 5 which is
seamlessly integrated in the modeling environment of DecisionKing. In order to
represent the relationships between the decisions needed to derive a product, we have
implemented a default rule language with Java-like syntax that includes a simple
interpreter as part of the rule engine. As already mentioned, Siemens VAI's software
components are described using Spring XML. To expedite the modeling process and
to ensure consistency of the models with the technical solution we developed a
model importer extension capable of analyzing existing component descriptions and
creating an initial asset model based on these descriptions. This model importer
extension is also capable of suggesting decisions if two Spring XML describe two
different implementations of the same interface. The user can decide whether to
contribute the decision to the decision model.

Experiences. Despite its simplicity, the meta modeling core provided a good
match to describe the variability for the different asset types. A key to accelerate the
modeling process are automatic importers. Support for domain evolution turned out
to be essential because the characteristics of the problem domain needed to stabilize
in the initial stages of product line adoption. We were able to adapt our modeling
paradigm to these often-changing requirements. The concepts of domain evolution
are important for organizations introducing product lines. It allows them to start with
a simple domain-model and adapting it over time as new modeling aspects are
needed (cf. Section 4).

5.2 Case study 2: Multi-Stakeholder distributed Systems

Multi-stakeholder distributed systems (MSDS) are distributed systems in which
subsets of the nodes are designed, owned, or operated by distinct stakeholders [12].
MSDS are quickly gaining importance in today's networked world as, e.g., shown in
the field of service-oriented computing. We have been using the i* language [25] to
model a service-oriented multi-stakeholder distributed system in the travel domain to
validate the usefulness of i* for that purpose. A major goal of the project was to
enhance i* with capabilities for variability modeling in the context of our MSDS
framework [5].

Meta-model adaptation. We identified four asset types in our framework
relevant to variability modeling: goals, service types, services, and service instances.
The element Goal in DecisionKing's meta-model maps to the element "actor goal"
in i*. Different Service types contribute to fulfilling these goals. Available services
realizing a service type are modeled as a Service. Finally, available mntime
implementations of services can be modeled as Service instances. We also identified

5 http://www.eclipse.org/gef/

Domain-specific Adaptations of Product Line Variability Modeling 247

two kinds of relationships between the assets: A requires relationship is used
whenever the selection of a service leads to the selection of another service. This can
be the result of logical dependencies between goals, conceptual relationships
between service types, relationships between services, or functional dependencies
between service instances. The contributesTo relationship is used to capture
structural dependencies between assets of different levels. Service instances for
example contribute to services. Services contribute to service types which
themselves contribute to goals. It is however also possible that a goal is split up into
sub-goals. Such compositional relationships between goals can also be modeled
using the contributesTo relationship.

A,aNv

v e t st~n*

i l ¢ l l l , lo , iF

De s C l l l l l l n l l -~

SelX~¢e I ~'l~e

#laule

ia lClU4e,~f

A , . a l a b i l l ~

• ¢Oll lr lhl lf e ST o

IL,me

;, b e s t l ipli,~n

Ill,ell S}~I el II

~, Nan~

<

Attrlbt~e~

,~dd r,~w a : ! r L u ~

l u d u , l ~ d l [

A a a l l a l , l l i l X
A D u s c l i p l i . l ~

i ~ , l . b e ,
¢ , . m d b u l e ~

" 7,,1 L ~

• ~ +

/ HIIIIhIJI $ ~ (III Ol~lH IS ~SSiSJ,II~ ~

I t le l ~ ~l~ .~iOl l [,l¢,tle Fin~je* pltlTI

• hl~lf~, ic.sU,~l lh]¢,d ~ Lol)II I

• l h . ~ l ¢.~lX~Ce I ' ,~ll l l l l l l 9

' .awe E m , d l A ~ y h , : h l , nUS SUl , I . : p t k ~ ¢

> < >

: ' l de ra~aaon ~ F ~

/ l d e e ~ l,~c.de tccp

) Pa~ ~¢ C ~ & t r~td

: >

Fig. 6 DecisionKing's Meta-Model Editor (left) and Variability Model Editor (right). The
variability model on the right is based on the recta-model for service-oriented systems on the

left.

Domain-specific extensions and plug-ins. The dependencies among decisions
were expressed using a domain-specific language; the rules were transformed to
JBOSS rules using a rule-converter. We use the JBOSS rule engine to evaluate the
dependencies among decisions and the inclusion conditions between assets and
decisions (cf. Section 2). We have not yet implemented a specific visualization for
service-oriented variability models. The model can however be visualized using the
default model viewer. We will develop a connector to tools for the i* modeling
approach, e.g., the REDEPEND tool [9] that is capable of storing i* models in XML.

Experiences. The use of DecisionKing in the project confirmed the need for a
general-purpose model API that allows arbitrary external tools to update and query
the variability model. This capability will allow us to use DecisionKing as one
component in our framework for service monitoring and adaptation. We are planning
to utilize variability models to support the controlled runtime adaptation of service-

248 Deepak Dhungana, Paul Grtinbacher and Rick Rabiser

oriented systems, e.g., by replacing a malfunctioning service with a similar service
specified in the variability model.

6 Related Work

We focus the discussion of related work on variability modeling approaches and
tools, recta-tools, and plug-in frameworks.

Variability modeling approaches and tools. Many variability modeling
approaches have been proposed. Our work was strongly influenced by the work of
John and Schmid [19] who presented an approach for orthogonal variability
modeling and management across different stages of the software development life-
cycle. Similar to their approach we also use decision models for describing the
variation of products in a product line. Bachmann et al. [1] have described an
approach for representing variability in a uniform way separated from the
representation of concrete assets. Their view on variability is similar to our approach.
Berg et al. [2] emphasize on the importance of mapping variability between the
problem and solution space, an aspect we also address with our approach. Numerous
commercial and research tools for variability modeling and management have been
developed, for example: Pure.':variants [18] by pure-systems GmbH is a variant and
variability management tool for managing software product lines based on feature
models and family models. Feature models describe the variability whereas asset
modeling is supported by family models describing the software in terms of
architectural elements. The family model is extensible; however no specialization
hierarchy for the model elements is supported. No explicit support is provided to
model domain-specific asset types such as hardware resources, data models,
development process guidance, libraries, etc. Gears [13] by Big Lever Software Inc.
is a development environment for maintaining product family artifacts and
variability models. Variability is handled at the level of files and captured in terms of
features, product family artifacts, and defined products that can be derived from the
variability model. The tool supports the identification of common and variable
source code files. Our approach differs form this because we treat all assets as model
elements and don't deal with them at file level.

Meta-Tools. Meta-tools can be seen as generators for domain-specific tools.
Examples for Meta-tools are MetaEdit+ [21] and Pounamu [11, 26]. MetaEdit+ [21]
is a tool for designing a modeling language, its concepts, rules, notations, and
generators. The language definition is stored as a meta-model in the MetaEdit+
repository. MetaEdit+ follows the given modeling language definition and
automatically provides full modeling tool functionality like diagramming editors,
browsers, generators, or multi-user support. Pounamu [26] is a meta-tool for the
specification and generation of multiple-view visual tools. The tool permits rapid
specification of visual notational elements, the tool information model, visual
editors, the relationships between notational and model elements, and behavior.
Tools are generated on the fly and can be used for modeling immediately. Changes
to the meta-tool specification are immediately reflected in tool instances. Typically
recta-tools provide support for their target domain environments but are restricted in

Domain-specific Adaptations of Product Line Variability Modeling 249

their flexibility and integration capabilities with other tools [23]. They do not treat
variability as a prime modeling concept, which hampers their use for product line
modeling.

Plug-in frameworks. Plug-in concepts are widely used in modem development
platforms. DeeisionKing is an Eclipse 6 Rich Client Application based on the Eclipse
plug-in platform [24]. It uses the platform's plug-in mechanisms to define extension
points allowing the integration of different domain-specific plug-ins.

7 Conclusions and Further Work

In this paper we described the DOPLER approach which adopts method
engineering concepts supporting the creation of domain-specific variability modeling
tools. We presented DecisionKing, a meta-tool that can easily be tailored to a
particular organization's needs by refining its core meta-model and exploiting its
plug-in architecture. DOPLER provides tools for the creation and management of the
models. The approach does not assume any particular approach to software product
line engineering beyond the basic tenets implied by the definition of a software
product line. We showed the adaptability of the approach using two case studies in
different domains. It is noteworthy mentioning that an automated approach is only as
good as the model underlying the approach. Meta-model evolution capabilities allow
us to start with a small language first that can be extended in the project after the
team has gained some experience and confidence.

We are currently working on the following issues and will report about them in
the future:

Use of variability models to support runtime adaptation of systems. We are
currently adapting DecisionKing to the domain of ERP systems. We are developing
plug-ins allowing to adapt an ERP system at runtime based on variability models.

Validation of the model evolution capability. Our model evolution framework is a
great help in coping with changing architectures and implementations of a product
line under development. We are currently refining and evolving the variability
models for Siemens VAI to further validate our capabilities for model evolution and
meta-model evolution.

Improvement of generic visualization support. We intend to make the current
model visualization more generic. The graphical representation of a model has to be
changed for different domains because of domain-specific symbols and layouts. This
enables the use of symbols and layouts which stakeholders of the domain already
know and understand. In particular, we are interested in using graphical ways to
specify variability to overcome shortcomings of a purely text-based approach.

6 http://eclipse.org

250 Deepak Dhungana, Paul Griinbacher and Rick Rabiser

Acknowledgements

This work has been conducted in cooperation with Siemens VA! and has been
supported by the Christian Doppler Forschungsgesellschaft, Austria. We would like
to express our sincere gratitude to Klaus Lehner, Christian Federspiel, and Wolfgang
Oberaigner from Siemens V M for their support and the valuable insights.

References

1. F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and A. Vilbig, "A Meta-
model for Representing Variability in Product Family Development," in Lecture Notes in
Computer Science: Software Product-Family Engineering. Siena, Italy: Springer Berlin /
Heidelberg, 2003, pp. 66-80.

2. K. Berg, J. Bishop, and D. Muthig, "Tracing Software Product Line Variability - From
Problem to Solution Space," presented at 2005 annual research conference of the South
African institute of computer scientists and information technologists on IT research in
developing countries, White River, South Africa, 2005.

3. G. B6ckle, P. Clements, J. D. McGregor, D. Muthig, and K. Schmid, "Calculating ROI for
Software Product Lines," IEEE Software, vol. 2 l, pp. 23-31, 2004.

4. P. Clements and L. Northrop, Software Product Lines." Practices and Patterns: SEI Series in
Software Engineering, Addison-Wesley, 2001.

5. R. Clotet, F. Xavier, P. Griinbacher, L. L6pez, J. Marco, M. Quintus, and N. Seyff,
"Requirements Modelling for Multi-Stakeholder Distributed Systems: Challenges and
Techniques. ," presented at RCIS'07: 1st IEEE Int. Conf. on Research Challenges in
Information Science, Quarzazate, 2007.

6. E. M. Dashofy and A. van der Hock, "Representing Product Family Architectures in an
Extensible Architecture Description Language," presented at 4th International Workshop
on Software Product-Family Engineering, Bilbao, Spain, 2001.

7. D. Dhungana, P. Gruenbacher, and R. Rabiser, "DecisionKing: A Flexible and Extensible
Tool for Integrated Variability Modeling," in First International Workshop on Variability
Modelling of Software-intensive Systems - Proceedings, K. Pohl, P. Heymans, K.-C. Kang,
and A. Metzger, Eds. Limerick, Ireland: Lero - Technical Report 2007-01, 2007, pp. 119-
128.

8. D. Dhungana, R. Rabiser, and P. Griinbacher, "Decision-Oriented Modeling of Product Line
Architectures," presented at Sixth Working IEEE/IFIP Conference on Software
Architecture, M umbai, India, 2007.

9. G. Grau, X. Franch, N. A. M. Maiden, and " REDEPEND-REACT: an architecture analysis
tool," presented at 13th IEEE International Conference on Requirements Engineering,
2005. Proceedings.

10. P. Griinbacher, D. Dhungana, N. Seyff, M. Quintus, R. Clotet, F. Xavier, L. L6pez, and J.
Marco, "Goal and Variability Modeling for Service-oriented System: Integrating i* with
Decision Models," presented at Software and Services Variability Management Workshop:
Concepts, Models, and Tools, Helsinki, 2007.

11. J. Grundy, J. Hosking, N. Zhu, and N. Liu, "Generating Domain-Specific Visual Language
Editors from High-level Tool Specifications " presented at 21st IEEE International
Conference on Automated Software Engineering (ASE'06), Tokyo, Japan, 2006.

Domain-specific Adaptations of Product Line Variability Modeling 251

12. R. J. Hall, "Open modeling in multi-stakeholder distributed systems: requirements
engineering for the 21 st Century," presented at First Workshop on the State of the Art in
Automated Software Engineering, Irvine, California, 2002.

13. C. W. Krueger, "Software Mass Customization," BigLever Software, Inc 2005.
14. C. W. Krueger, "New Methods in Software Product Line Development," presented at 10th

International Software Product Line Conference, Baltimore, USA, 2006.
15. K. Kumar and R. J. Welke, "Method Engineering: a proposal for situation-specific

methodology construction " in Systems Analysis and Design : A Research Agenda: John
Wiley & Sons, Inc., 1992 pp. pp257-268.

16. D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. D6rr, and K. Schmid, "GoPhone - A
Software Product Line in the Mobile Phone Domain," IESE-Report No. 025.04/E, 2004.

17. L. Northrop, "SErs Software Product Line Tenets," IEEE Software, vol. 19, pp. 32-40,
2002.

18. pure-systemsGmbH, "Technical White Paper, Variant Management with pure::variants,,"
2004.

19. K. Schmid and 1. John, "A Customizable Approach to Full-Life Cycle Variability
Management," Journal of the Science of Computer Programming, Special Issue on
Variability Management, vol. 53, pp. 259-284, 2004.

20. D. C. Schmidt, A. Neehypurenko, and E. Wuchner, "MDD for Software Product-lines:
Fact or Fiction?," presented at 8th international Conference on Model driven Engineering
Languages and Systems (MODELS '05), Jamaica, 2005.

21. J.-P. Tolvanen and M. Rossi, "MetaEdit+: defining and using domain-specific modeling
languages and code generators," presented at Conference on Object Oriented Programming
Systems Languages and Applications, Anaheim, CA, USA, 2003.

22. F. van der Linden, "Software Product Families in Europe: The Esaps & Cafe Projects,"
IEEESoftware, vol. 19, pp. 41-49, 2002.

23. A. I. Wasserman, "Tool integration in software engineering environments," presented at
Proceedings of the international workshop on environments on Software engineering
environments Chinon, France, 1990

24. R. Wolfinger, D. Dhungana, H. Pr/ihofer, and H. M6ssenb6ck, " A Component Plug-in
Architecture for the .NET Platform," presented at Proceedings of 7th Joint Modular
Languages Conference, (JMLC'06), Oxford, UK, 2006.

25. E. S.-K. Yu., "Modeling Strategic Relationships for Process Reengineering," vol. PhD
Thesis. Toronto: University of Toronto 1996.

26. N. Zhu, J. Grundy, and J. Hosking, " Pounamu: A Meta-Tool for Multi-View Visual
Language Environment Construction," presented at 2004 IEEE Symposium on Visual
Languages and Human Centric Computing, 2004.

A Look at Misuse Cases for Safety
Concerns

Guttorm Sindre
Dept of Computer and Info Science, Norwegian University of Science

and Technology, NO-7491 Trondheim, Norway, guttors@idi.ntnu.no
WWW home page: http://www.idi.ntnu.no/-guttors

Abstract. Given the huge industrial take-up of UML, it has become less
feasible to invent entirely new methods and modeling languages to address
systems development challenges not covered by that language. Instead, the
most fruitful way to go often seems to be to adapt UML to address such
special challenges. In the security and safety domain, various such adaptations
have been proposed. In this paper we look at misuse cases, originally proposed
for security, with the purpose of investigating whether they are also useful for
safety, and to what extent they can complement existing diagrammatic
modeling techniques in the safety domain. Misuse cases is thus compared to
several traditional techniques for safety analysis, such as fault trees, cause-
consequence diagrams, HazOp, and FME(C)A, identifying strengths and
weaknesses of either.

1 Introduction

As observed in [1] an increasing number of safety-critical systems are being fielded
as IT penetrates more and more into the core operations of industry and society.
Many problems with such systems stem from requirements defects. Although safety
concerns may have been taken into account in the development of a system,
unforeseen combinations of external events, system faults, and human failure may
sometimes lead to disastrous effects [2]. There are many methods for safety analysis,
some quite rigorous and other informal. Both have their advantages and
disadvantages. The rigorous methods allow for formal analysis, perhaps automated.
Informal methods may be better for creativity, e.g., imagining possible hazards, and
for involving a diverse set of stakeholders in the discussion of safety concerns.
Indeed, [3] points out both a better integration of formal and informal methods and a
better integration of safety techniques with mainstream software engineering as
important directions for improving the engineering of safety-critical software
systems.

Please use theJbllowingjblwtat when citing this chapter:

Sindre, G., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational Method

Enginee6ng: Fundamentals and Experiences, eds. Ralyt~, J., Brinkkemper, S., I lenderson-Sellers B., (Boston Springer),
pp. 252-266.

A Look at Misuse Cases for Safety Concerns 253

One proposal for a technique towards the informal end of the spectrum, but which
can easily be integrated with mainstream software engineering practices, is that of
misuse cases [4]. These were originally proposed for looking at security threats, but
in some case studies by Alexander [5, 6] the problems investigated were just as much
concerned with safety hazards - the distinction being that security considers threats
from malicious attackers, while safety considers hazards resulting from accidental
human or system failure. The same notation can be used for safety-oriented as for
security-oriented misuse cases, i.e., the misuse case uses an oval icon of the same
shape as a use case icon, only inverted, and the actor performing the misuse case is
similarly inverted compared to a normal use case actor. If addressing security and
safety concerns in the same diagram, one might also distinguish between the two - as
it might be of some importance whether something happens as a result of a malicious
attack or because of an accident. One possible way of doing this is shown in Figure

?
/' \

Admln

/ Take ~ \ \
I \ .> backup ,t~t threat '\

/
/'

/ / Configure '
/ / }~-. system

inspect
Activity log. , , . _ . /

\'x "

, / , .
Update virus x, I / .- /

(, protect ion. ~ ~ - " ' . , / ..-"" ?
"-~ __ J- :h,~t.,:,F~_ I ~'"

I_LqlU~]I ~'
I lser

1, using black nodes for security threats and grey nodes for safety hazards.

Fig. 1. Misuse case diagram with both safety and security threats

Attacker

The diagram of Fig 1 does not show all the use cases o f the system in question,
only some of those relating to a system administrator, who in this case is responsible
for backup, configuration, virus protection, and the inspection of activity logs.
Middle and right it then shows safety-related misuse cases (grey) and security-related
misuse cases (black). The difference between these would be that the grey ones result
from human or system failure, while the black ones result from a malicious attack.
Alternatively, all these might have been shown as black, not distinguishing the
notation of various types of misuse cases. However, the explicit distinction between

254 Guttonn Sindre

safety and security makes the picture clearer, in particular demonstrating how human
error on the system administrators side ("Unlucky Admin") 1, such as misconfiguring
the system, may in turn increase the possibility for malicious attacks such as
"Penetrate system". This is often the case: Many organizations have adequate
firewalls, virus protection software etc., but vulnerabilities exist because the software
is not used properly, necessary updates not done frequently enough, or similar.

It can be noted that diagrams quickly grow complex when trying to look at
realistic examples and including both safety and security problems. In the rest of the
paper we will therefore restrict ourselves to looking only at misuse cases for safety.
Our research questions are as follows:

• RQI: Can misuse cases, both diagrammatic and textual, be applied in the
safety domain? (i.e., can they faithfully capture hazards and mitigations)

• RQ2: Do misuse cases add value to other textual and diagrammatic
representations traditionally used for safety hazard analysis, such as fault
trees, cause-consequence diagrams, HazOp, and FME(C)A? As observed in
[2] the traditional techniques for hazard analysis do have limitations, so there
is reason to believe that misuse cases could provide something useful, at
least as a supplement to the existing techniques.

The rest of the paper is structured as follows: In section 2 we look at misuse
cases vs. fault trees, in section 3 we compare them with cause-consequence analysis,
in section 4 with HazOp, and in section 5 with FME(C)A. Section 5 provides
comparison with related work, and then section 6 contains a discussion and
conclusion to the paper.

2 Misuse Case Diagrams vs. Fault Trees

Fault tree analysis is a top-down method primarily meant to analyze the causes of
hazards rather than identifying the hazards. From a top event (rectangle) which
captures some harm that should be avoided in the system, decomposition into various
possible causes for this continues until basic events are reached (circles). These basic
events are those that really happen in the system, while the intermediate rectangles
are pseudoevents (collective sets of basic events). Figure 2 shows an example of a
fault tree for a Patient Monitoring System (PMS) adapted from [2], the top event is
that wrong / inadequate treatment is given to the patient. This is then decomposed
until basic events are reached. The gates with concave bottoms are OR-gates, i.e., the
top event can occur if either of the two pseudo-events on level 2 happen, while gates
with flat bottoms are AND-gates, i.e., for vital signs not to be reported, it is
necessary that both the basic events below occur: the sensor failing and the nurse
failing. We use a textbook fault tree rather than a self-developed one, to pose a less
biased challenge for misuse cases. With a home-made example, there would be a
greater risk that we either consciously or unconsciously made up one that could be
represented elegantly with misuse cases.

Of course, the Admin might not only be "unlucky" but possibly also incompetent,
overworked or something else. The chosen phrasing, however, appears more sympathetic,
and it must be remembered that in concrete projects the system admin in question will be
one important stakeholder in the analysis.

A Look at Misuse Cases for Safety Concerns 255

I
Vital signs

erroneously reported
as exceeding limits

Frequency of
measurement

too low

I

#Trong or inadequate
treatment

administered

I
Vital signs I

exceed limits but not I
correcte_din time J

Vital signs
not reported

Fig. 2. Partial fault tree for Patient Monitoring System (PMS), adapted from [2]

/

X " X

Nurse

Patient Monitoring System

(' Input vital ,~,
/ ' , SlgqS " t i / [e ate n,:

y ~ - z j -~ i ' ~ , , ~ l ~ n ~ _ _ ~

, p a t i e n t . , - , f ~ -

b
"~ F, es~,or, d to) . _
, alarm I

" - . - - - s ~ th rea :ens -- -- ~ (

Fig. 3. First attempt at a MUC diagram for the PMS

S J / '

~ ~ Ur~lucky
Nurse

/ x

L,ensor
Failure

/ ,

I [o m p u [e r

Failure

256 Guttorm Sindre

A first attempt to represent the same problem domain with misuse cases is shown in
figure 3, taking the PMS as the system boundary. Moreover, apart from standard
UML diagram notation, we follow the recommendation of [7] that automated actors
(e.g., computer systems, sensors etc.) be shown with square heads so as not to
confuse them with humans. Nevertheless, there are several awkward things about
this diagram:

• The top level hazard of the fault tree is not at all depicted. This is because
"wrong treatment" is something that happens between the nurse and the
patient. Use cases (and thus also misuse cases) concentrate on what takes
place at the system boundary, and when the PMS is chosen as the system, the
diagram therefore shows what the nurse is supposed to do in the PMS, but not
what she is supposed to do with the patient.

• The diagram fails to show the hierarchy and AND/OR-relationships.
In the light of this example, misuse case diagrams mostly seem to have

weaknesses relative to fault trees, but an interesting possibility is to put the patient at
the center of the analysis. This yields a quite different misuse case diagram, shown in
Figure 4. Now it is straightforward to represent not only the top level hazard of
giving wrong treatment, but also the primary use case "Give treatment". This better
discloses the motivation for the PMS in the first place: a nurse with no automated
help would easily overlook emergency situations. A possible advantage of misuse
case diagrams vs. fault trees is that while fault tree s only show what can go wrong,
misuse case diagrams show what is supposed to be done together with what can go
wrong and can also indicate how use cases might mitigate the hazards. On the other
hand, the diagram of figure 4 fails to show the interaction between the Nurse and the
PMS. Combining the two views yields Figure 5. This would soon become too
complex if taking more hazards into account, so it is most practical to develop
diagrams looking at one system boundary at a time.

_?
y

F'}I£
(~*mgrl3 eni7 % }"

8 ,.}rrq s ~ - - _

\ ~'r~atens

' \ z -

Fig. 4. New misuse case diagram, now with the Patient as system boundary

A Look at Misuse Cases for Safety Concerns 257

r,urse

/

/

/
/

/

' Set up, pat~ert ' (" Input v la l
• ' , r[ILIr Iturlrlq \ s~,zIs

thre,~tens 7 1 ~ ~ threater.9"

I Inluc~y
HU'SO

/ ' R'al£e

n . . . L , , -

/
/

\

7 ~

• Faulty
Pqs

Fig. 5. Combining the two perspectives of Figure 3 and 4

3 M i s u s e C a s e D i a g r a m s vs . C a u s e - C o n s e q u e n c e D i a g r a m s

Figure 6 shows an example cause-consequence diagram for a boiler system, again
taken from [7]. Such diagrams are focused on a critical event - in this case "Pressure
too high" - and look both at causes of the event (backward search) and results of the
event (forward search). In the example, the cause is "Uncontrolled action", while the
final harm if everything fails is "Explosion". Hence, the reading direction is from top
to bottom, implying both a timeline and causal development. In addition to the
square events, the diagram shows conditional boxes (with Yes/No continuations),
basic conditions (circles), and OR-connectors. There are also AND-connectors, as
well as several other symbols available which are not used in this small example.

Figure 7 shows a misuse case diagram representation of the same system. In this
case, it is quite straightforward to represent the same phenomena in the misuse case
diagram with one single system boundary. Each representation has advantages and
disadvantages. The CCD explicitly shows the timeline and causal relationship
between various events, and also has explicit Yes/No choices. In the misuse case
diagram causal relationships are implicit in "threatens" and "mitigates" relationships,
but no so easy to spot quickly since there is no standard reading direction for such
causal chains. In addition to the OR (shown), AND, and XOR nodes, there are
several other kinds of nodes available in CCD's that would be difficult or impossible
to capture in a misuse case diagram, such as time delays.

On the other hand, the CCD only shows events or conditions that directly affect
the critical event. Misuse case diagrams can also easily include mitigations with an
indirect effect - as exemplified by "Raise alarm" in Figure 8 - which will make it

258 Guttorm Sindre

less likely that the Operator fails to open Valve 2. With CCD's one would normally
use several diagrams in this case. It would also be straightforward to introduce
indirect negative actions in the misuse case diagram, for instance that the Failing
Operator accidentally switches off computer auto-response for high pressure (not
shown in diagram), this could then be another misuse case threatening "Open relief
valve 1". Finally, as mentioned for the fault tree example, misuse cases again have
the potential advantage of better showing the relationship between what actors are
supposed to do, and what can fail.

Critical
event

Fig. 6. Cause-consequence diagram (CCD) for a boiler system

B o i l e r s y s t e m

, -- -- - - - - - - ii-, re ~t~.e rlS (' ~
. - i ':'t:,a,~a ",i ((

. , SVSte m /

..... - . . _~ _ . J . / . / \ ,

. , J " J Uncontrulled

. ~ { L,p., : e 'r - ~ ' / 1

/ \ . - - . . ~ . ,, ---7.._ - z ~ ~
J ," - . " : / "-,q~jealer,~--_ i J /

c perat~.,~ ,, e:ter,J'- I Operator
' , , ~ i[,; ~:.., fai ure

~ - ~ - - , ~ valve 1 .)
',, - . ~ j . s "f--~!eatens- --.-___

Control " ~ - . \ ~ < . . . Va:ve failure

Fig. 7. Misuse case diagram for the boiler system

A Look at Misuse Cases for Safety Concerns 259

An overall observation here is that misuse case diagrams and cause-consequence
diagrams have quite different purposes, the former meant for a high level overview
of a system, while the latter is for a detailed exploration of specific chains of
causation. Also, cause-consequence diagrams appear as a design level technique
rather than requirements level, in that it must already be known which components
the system consists of. For a requirements level misuse case diagram it would for
instance be more appropriate to have a generic use case "Relieve pressure" than the
two use cases assuming the existence of specific valves. Hence, rather than
suggesting that one technique is better than the other here, a more natural question
for further investigation would be whether they could be combined.

4 Textual Misuse Cases vs. HazOp

HazOp (Hazards and Operability Analysis) does not use diagrams but a textual
representation, and would therefore be more relevant to compare with textual misuse
cases. HazOp looks at the design of a system, e.g., a plant, and considers this system
node by node, tentatively trying a number of guidewords for each node:

• NO: intended result not achieved
• MORE: more of a relevant physical property than there should be, e.g.,

pressure, voltage, temperature, flow, ...
• LESS: opposite of MORE
• AS WELL AS: something comes in addition to what was intended
• PART OF: only part of the intended result is achieved
• REVERSE, e.g., backflow instead of forward flow, closing valves instead

of opening them
• OTHER THAN: the intended result is not achieved - as with NO -

moreover, something completely different happens
A full HazOp requires that it is known exactly which nodes the system consists

of, i.e., the design must be quite finished. This means that it is often too costly to
change the design to avoid a hazard, so instead the outcome is to add protective
measures. Many therefore prefer to do a preliminary HazOp considering early design
sketches when it is still possible to change to a safer design. Still, even this
preliminary HazOp is normally a design phase technique - although one could
imagine looking at use cases as "nodes" for investigation rather than design
components. The report produced by a HazOp will contain a number of table formed
entries, an example of such an entry is shown in Table 1.

Table 1. Example HazOp entry, adapted from [7]

Guide word Deviation Possible causes

NO No flow 1. pump failure

2. suction filter blocked

3. isolation valve closed

Possible consequences

l . overheatingin heat

exchanger

2. loss of ~edtoreac tor

260 Guttorm Sindre

A direct attempt to translate the above into textual misuse cases is shown in
Table 2. Clearly, the HazOp entry is more compact and easier to understand in this
case, and not surprisingly, since misuse cases are not intended for describing systems
at the design level, and especially not continuous physical systems like this one.
Misuse cases share with use cases a primary suitability for systems where action is
performed in discrete chunks. It can also be noticed that there is hardly any scenario
path here.

Table 2. Textual misuse case reflecting the HazOp entry

Misuse Case Name: Pump failure causes flow loss

Basic path:

bp-1. A pump fails.
bp-2. Flow is lost.

Alternatives:
a-1. Instead of pump failure, flow loss is caused by a blocked suction filter.
a-2. Instead of pump failure, flow loss is caused by a closed isolation valve.

Hazards:
hi. heat exchanger is overheated.
h2. feed to the reactor is lost.

On the other hand, textual misuse cases can again do something else better than
the traditional safety techniques, namely relate threats directly to the actions to be
performed in the system. For instance, this could be done through the lightweight
textual misuse case notation suggested in [4]. Table 3 shows an example where the
normal use case is described in the two leftmost columns, following the format of an
essential use case, as proposed by [7]. Then, an additional column is added on the
right, describing the potential hazards. An advantage of this, compared to the HazOp
entry format of Table 1, is that it becomes clear which specific step in an activity the
hazard relates to. Also, the practice of looking for threats for each use case step can
in itself contribute to creativity in brainstorming threats - as can be seen, 11 different
hazards are identified only for this quite small use case. If one had been asked to
imagine hazards just based on the use case name "provideEmergencyTreatment", not
relating the hazards to the various steps, there is high chance that some of these
hazards might have been overlooked.

A Look at Misuse Cases for Safety Concerns 261

T a b l e 3: Example of lightweight misuse case notation including hazards per step

Nu/we i/Ttentio/7

provideEmergencyTreatment

PMS Response tazard

Stay on guard Nurse falls asleep

Alarm nurse of PMS fails to raise alarm

emergency condition Alarm not noticed

Nurse fails to take action
Acknowledge alarm Nurse busy with other alarm

Show patient and Wrong patient shown

location Wrong location shown

Administer treatment Wrong treatment given
Treatment to wrong patient

Patient status incorrectly
Condition normalizes

displayed

Log treatment
Erroneous logging,

misinforming next shift

Clearly, HazOp and misuse cases thus complement each other, at least for
systems where it is natural to apply use cases in the first place. A further possibility
to consider would be if they could be combined more systematically, for instance
whether HazOp guidewords could be applied for each use case step. When thinking
about physical variables such as temperature, voltage and flow, it is quite clear what
MORE, LESS, REVERSE etc. would mean, but this could be fuzzier when talking
about actions involving information and human interaction, such as use case steps.
For instance, looking at the sentence "The nurse administers the necessary treatment
to the patient", we could have:

• NO: nurse fails to administer treatment
• MORE: administers too much of the treatment, e.g., giving an overdose of

medication, or using too high voltage at defibrillation
• LESS: administers too little of the treatment.
• AS WELL AS: does something else in addition to the needed treatment, e.g.,

administration of another drug, too
• P A R T O F : gives only one of several treatments that were needed in

conjunction. Another guideword that is sometimes used for time dependent
systems, and which would clearly be of relevance in this example, is TOO
LATE.

• REVERSE: not always applicable, e.g., cannot do the reverse of
defibrillation, but might be relevant in some cases, e.g., decreasing rather than
increasing the intensity of a drip

• OTHER THAN: meant to cover "something completely different", i.e., this
should be wider than just the combination NO + AS WELL AS. Looking at
the starting sentence, several OTHER THAN's could be imagined, e.g.,

262 Guttorm Sindre

OTHER SUBJECT: somebody else than the authorized nurse treats the
patient, OTHER VERB: nurse does something else to the patient than giving
treatment, OTHER DIRECT OBJECT: nurse gives something else to the
patient than the treatment, OTHER INDIRECT OBJECT: nurse gives the
treatment to another patient than the one intended.

As can be seen, not all of the hazards above are equally relevant in the given
case, and for the latter bullet some seem partly overlapping. Yet, such a combination
of use cases and guidewords may inspire the analysts to consider hazards that would
otherwise have been overlooked, and these could then be captured in use cases like
the one shown in Table 3.

5 Textual misuse cases vs. F M E (C) A

Failure Modes and Effects Analysis (FMEA) uses forward search where the
initiating events are failures of individual components (i.e., failure modes), then
deriving from this what harm this could possibly lead to on a higher level (i.e.,
effects). Failure Modes, Effects, and Criticality Analysis (FMECA) is an extension
of the same technique, where the criticality of each effect is analyzed in more detail.
Table 4 shows a sample FMECA for a missile system, again adapted from [2].

Table 4: Sample FMECA for a missile system, from [2]

Failure Modes and Effects Criticality Analysis

S u b s y s t e m : Prepared by: Date:

Item Failure Cause of Possible P Level

Modes Failure Effects

Motor Rupture Destruction 0.0006 Critical
case of missile

a. poor work
b.defective materials
c.transport damage
d.handling damage
e.overpressurization

Mitigation

Closely control
manufacturing

This is difficult to translate to a misuse case, since "The missile's motor case
ruptures" is a single event, not a use case style step by step action. Similar to HazOp
the focus is also on design (and not on the requirements level) - one needs to be able
to list all the components in the system and then perform FME(C)A on each of them.
Still, the previous section suggested that a combination of misuse cases and HazOp
might be useful, so the same might be the case for FME(C)A and misuse cases.
Indeed, there already exists a proposal combining FMEA and use cases [8], but then
looking at the use case as a whole when generating ideas for possible threats, and
considering the use case as a "node" for investigation rather than looking at design
components as nodes. A possible extension of this idea could be to look at threats per
step and document the results in a textual misuse case similar to that of Table 3, or

A Look at Misuse Cases for Safety Concerns 263

similar to Table 2 if more details are needed. For each use case step one could then
ask:

• What are the possible causes for failure of this step?
• What are the possible consequences of failure of this step?

This analysis could for instance prompt the inclusion of more alternative or
exceptional paths in the use case, to address safety concerns and ensure that the use
case as a whole might succeed even if one planned step fails. However, for space
reasons the further exploration of this opportunity is beyond the scope of this paper.

6 Related Work

There are several techniques that seek to combine use cases or scenarios with safety
analysis. [9] and [10] propose to apply use cases as input for performing safety
analysis by means of safety engineering techniques such as Functional Hazard
Assessment (FHA) [11] and HAZOP [12]. [13] proposes to formalize use cases to
deal with the specification of fault-tolerant systems. In the CORAS project misuse
cases were combined with other UML notations such as sequence diagrams, also
specifically adapted for safety analysis [14].

Other adaptations of UML have also been proposed to address safety concerns,
but then more on the design level. [15] extends UML specifically for safety,
primarily achieved by profiles of packages, class and component diagrams. Safe-
UML for modeling in the railway domain is proposed in [16]. Similar adaptations
have been made for UML with respect to security in UMLsec [17] and SecureUML
[18]. This work is different from the abovementioned in trying to compare the
advantages and disadvantages of misuse cases relative to traditional safety analysis
techniques.

7 Discussion and conclusions

In this paper we have mainly looked further at the possibility of applying misuse
cases (both diagrams and text) for identifying safety hazards, which can be seen as a
prerequisite for eliciting safety requirements. Several examples of safety-related
misuse case diagrams and textual descriptions have been shown, comparing misuse
cases with traditional safety techniques such as fault trees, cause-consequence
diagrams, HAZOP, and FME(C)A. The examples show that these techniques,
specially geared towards safety analysis, have many advantages versus misuse cases,
and that it would certainly not be a good idea to throw away previous safety-analysis
techniques and use misuse cases instead. In particular, it appears that misuse cases
will be of little use in describing physical systems of continuous nature, where the
accidents are sudden events rather than mistakes made in step-by-step processes. In
short: if use cases are not suitable for the activity that goes on, neither will misuse
cases be suitable for describing hazards of those activities.

Yet, on the other hand it has been indicated that misuse cases do also have
something to offer for problems involving step-by-step activities. Better than the
traditional safety techniques, misuse cases show the relationships between the

264 Guttorm Sindre

normal activities on the one side and faults and hazards on the other side. Also, it
provides a simple intuitive notation which is well geared towards brainstorming, and
if use cases or use case diagrams are anyway used in the project in question, the
additional effort needed to apply misuse cases is small. Hence, it provides a good
possibility for including safety concerns in the requirements phase of mainstream
projects, in a similar way to what has previously been discussed for security. So, to
answer the research questions:

RQI : Can misuse eases, both diagrammatic and textual, be applied in the safety
domain? Yes, but not necessarily for all problems. If the problem is dominated by
continuous processes and physical concerns - and it is anyway not natural to apply
use cases - then misuse cases are not likely to be suitable. On the other hand, for
systems where activity is performed in a typical step-by-step manner appropriate for
use cases, misuse cases can be suitable for early discussion of safety problems.

RQ2." Do misuse cases add value to other textual and diagrammatic
representations traditionally used for safety hazard analysis... ? Yes, but it is not all
advantages - there are both pros and cons to misuse cases compared to other
description formats. Hence, misuse cases cannot replace other techniques, but it
could be useful in combination with other techniques. Typically, one could first use
misuse cases for an early brainstorming of hazards, then follow up with other
techniques such as fault trees, cause-consequence analysis, HAZOP, and FME(C)A.
This also makes sense since these other techniques are primarily meant to be applied
in the design stage, whereas misuse cases are intended for the requirements analysis
stage.

Further investigation is of course needed to suggest in detail how misuse cases
should be combined with other techniques. A particular weakness of the current
paper is that all the examples looked at are small and simple. But at least, the
examples were not invented by the author but taken from a textbook [2] which
offered only one example for each of the techniques looked at. This means that the
possibility for the author consciously or unconsciously to invent or pick examples
that would be particularly fitting for misuse cases was removed, so at least the
examples provide an unbiased challenge for misuse cases with examples that are
representative of the safety field. But the most interesting topic for further work
would of course be to investigate the application of misuse cases in real projects with
significant safety concerns.

It can also be argued that safety issues might cause particular needs for
situational method engineering [19-21], due to the following:

• Much variation in expertise: In some projects there are team members with
much previous experience in safety analysis with traditional / heavyweight
methods. In other projects this is lacking. And even in projects with high
expertise, it may be necessary to use lightweight informal approaches at some
stages to involve diverse groups of stakeholders with no competence in safety
analysis.

• Variation in the degree of importance of the safety concerns. In some projects
these are essential to every aspect of the software, while in others safety
issues only apply to certain modules.

• Variation in the stage where safety analysis would take place. In some
projects it might be natural to do some safety analysis very early (e.g.,

A Look at Misuse Cases for Safety Concerns 265

requirements elicitation stage), whereas in other projects participants might
need to see some possible designs to be able to reason about safety issues.

One interesting topic for further work would therefore be to establish systematized
criteria on the selection of safety modeling techniques such as those compared in this
paper, based on task and stakeholder characteristics.

References

1. D.G. Firesmith, Engineering Safety Requirements, Safety Constraints, and Safety-Critical
Requirements, Journal of Object Technology, 3 (3), 27-42 (2004).

2. N.G. Leveson, Safeware: System Safety and Computers (Addison-Wesley, Boston, 1995).
3. R.R. Lutz, Software Engineering for Safety: A Roadmap, in: The Future of Software

Engineering, edited by A. Finkelstein (ACM Press, New York, 2000), pp. 213-226.
4. G. Sindre and A.L. Opdahl, Eliciting Security Requirements with Misuse Cases,

Requirements Engineering, 10 (1), 34-44 (2005).
5. I.F. Alexander, Initial Industrial Experience of Misuse Cases in Trade-Off Analysis, in:

10th Anniversary IEEE Joint International Requirements Engineering Conference (RE'02),
Essen, Germany, 9-13 Sep, edited by K. Pohl (IEEE, 2002).

6. I.F. Alexander, Misuse Cases, Use Cases with Hostile Intent, 1EEE Software, 20 58-66
(2003).

7. L.L. Constantine and L.A.D. Lockwood, Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design (ACM Press, New York, 1999).

8. J. Zhou and T. S~lhane, A Framework for Early Robustness Assessment, in: 8th IASTED
Conference on Software Engineering and Application, MIT, Cambridge, MA, 8-10 Nov,
edited by M.H. Hamza (Acta Press, 2004).

9. K. Allenby and T. Kelly, Deriving Safety Requirements Using Scenarios, in: Fifth 1EEE
international Symposium on Requirements Engineering (RE'01), Toronto, Canada, edited
by B. Nuseibeh, and S. Easterbrook (IEEE, 2001), pp. 228-235.

10.H.-K. Kim and Y.-K. Chung, Automatic Translation from Requirements Model into Use
Cases Modeling on UML, in: Computational Science and Its Applications (1CCSA'05),
Singapore, 9-12 May, Lecture Notes in Computer Science Vol. 3482, edited by O. Gervasi,
M.L. Gavrilova, V. Kumar, A. Laganfl, H.P. Lee, Y. Mun, D. Taniar, and C.J.K. Tan
(Springer-Verlag, 2005), pp. 769-777.

l l.SAE, Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment, Society of Automotive Engineers, Technical report,
ARP4761, 1996 (unpublished).

12.F. Redmill, M. Chudleigh, and J. Catmur, System Safety: HAZOP and Software HAZOP
(Wiley, Chichester, UK, 1999).

13.A. Ebnenasir, B.H.C. Cheng, and S. Konrad, Use Case-Based Modeling and Analysis of
Failsafe Fault-Tolerance, in: 14th IEEE International Requirements Engineering
Conference (RE'06), St.Louis, USA, 11-15 Sep, edited by M. Glinz (IEEE, 2006), pp. 343-
344.

14.B.A. Gran, R. Fredriksen, and A.P.-J. Thunem, An Approach for Model-Based Risk
Assessment, in: Computer Safety, Reliability, and Security, 23rd International Conference,
SAFECOMP 2004, Potsdam, Germany, 21-24 Sep, Lecture Notes in Computer Science
Vol. 3219, edited by M. Heisel, P. Liggesmeyer, and S. Wittmann (Springer, 2004), pp.
311-324.

266 Guttorm Sindre

15.J. Jiirjens, Developing Safety-Critical Systems with UML, in: The Sixth International
Conference on The Unified Modeling Language (UML'03), San Francisco, USA, 20-24
Oct, Lecture Notes on Computer Science Vol. 2863, edited by P. Stevens, J. Whittle, and
G. Booch (Springer-Verlag, 2003), pp. 144-159.

16.K. Berkenk6tter, U. Hannemann, and J. Peleska, HYBRIS - Efficient Specification and
Analysis of Hybrid Systems - Part III: RCSD - A UML 2.0 Profile for the Railway Control
System Domain (Draft Version), Univ. Bremen, Germany, 2006 (unpublished).

17.J. Jfirjens, UMLsec: Extending UML for Secure Systems Development, in: The Unified
Modeling Language, 5th International Conference (UML 2002), Dresden, Germany, Sep
30 - Oct 4, Lecture Notes in Computer Science Vol. 2460, edited by J. M. Jezequel, H.
Haussmann, and S. Cook (Springer, 2002), pp. 412-425.

18.T. Lodderstedt, D. Basin, and J. Doser, SecureUML: A UML-Based Modeling Language
for Model-Driven Security, in: The Unified Modeling Language, 5th International
Conference (UML 2002), Dresden, Germany, Sep 30 - Oct 4, Lecture Notes in Computer
Science Vol. 2460, edited by J.M. Jezequel, H. Haussmann, and S. Cook (Springer, 2002),
pp. 426-441.

19.C. Rolland and N. Prakash, A proposal for context-specific method engineering, in: IFIP
TCS, WG8.1/8.2 working conference on Method engineering: principles of method
construction and tool support, Atlanta, edited by S. Brinkkemper, K. Lyytinen, and R.J.
Welke (Chapman & Hall, 1996), pp. 191-208.

20.S. Brinkkemper, M. Saeki, and F. Harmsen, Assembly techniques for method engineering,
in: 10th international conference on advanced information systems engineering
(CAiSE'98), Pisa, Italy, Lecture Notes in Computer Science Vol. 1413, edited by B.
Pernici, and C. Thanos (Springer, 1998).

21.I. Mirbel and J. Ralyt6, Situational method engineering: combining assembly-based and
roadmap-driven approaches, Requirements Engineering, 11 (1), 58-78 (2006).

Engineering Medical Processes to Improve
Their Safety

An Experience Report

Leon J. Osterweil 1, George S. Avrunin l, Bin Chen 1, Lori A. Clarke], Rachel
Cobleigh 1, Elizabeth A. Henneman 2 and Philip L. Henneman 3

1 Laboratory for Advanced Software Engineering Research (LASER)
University of Massachusetts at Amherst, Amherst, MA 01003

{ljo, avrunin, chenbin, clarke, rcobleig} @ cs.umass.edu
2 School of Nursing, University of Massachusetts at Amherst, Amherst,

MA 01003, henneman@nursing.umass.edu
3 Baystate Medical Center, Springfield, MA and Tufts University
School of Medicine, Boston, MA, philip.henneman@bhs.org

Abstract. This paper describes experiences in using precise definitions of
medical processes as the basis for analyses aimed at finding and correcting
defects leading to improvements in patient safety. The work entails the use of
the Little-JIL process defmition language for creating the precise definitions,
the Propel system for creating precise specifications of process requirements,
and the FLAVERS systems for analyzing process definitions. The paper
describes the details of using these technologies, employing a blood
transfusion process as an example. Although this work is still ongoing, early
experiences suggest that our approach is viable and promising. The work has
also helped us to learn about the desiderata for process definition and analysis
technologies that are intended to be used to engineer methods.

1 Introduction: The Problem and Our Proposed Approach

Medical errors cause approximately 98,000 patients to die each year [1] in the
United States. US Institute of Medicine (IOM) reports have suggested that the
delivery of healthcare must fundamentally change to address medical error (eg. see
[1, 2]). In particular, these studies suggest that many serious medical errors result
from system rather than individual failures, leading the IOM to advocate the
development of healthcare systems that directly address patient safety. In particular,
the IOM report states, "what is most disturbing is the absence of real progress. . , in
information technology to improve clinical processes [italics ours]" ([1 pg. 3]).

Please use the fi)llowing.fbrmat when citing this chapter:

Osterweil, L. J., Avrunin, G. S., Chen, B., Clarke, L. A., Cobleigh, R., Henneman, E. A., Henneman, P. L., 2007, in IFIP
International Federation for Information Processing, Volume 244, Situational Method Engineering: Fundamentals and
Experiences, eds. Ralyt~, J., Brinkkemper, S., Henderson-Sellers B., (Boston SpringeO, pp. 267-282.

268 Leon J. Osterweil et al.

Encouraged by these findings, the authors of this paper began a project to investigate
how software engineering research in process definition and analysis might be
applied and extended to help reduce errors and improve safety in medical processes.

Our preliminary research (eg. [3]) showed that in many cases current medical
processes are often described only at a high-level of generality and are usually not
defined completely and precisely. These processes typically describe standard
practices, but usually do not address how healthcare providers should react when
unusual, yet expectable, situations arise. Because of this, healthcare providers can
often find themselves in situations that are not directly addressed by the processes
they learned, and thus are often unsure of whether or not their actions conform to
recommended care guidelines. In addition, aspects of current care process
descriptions are frequently vague, ambiguous, or inconsistent, allowing different
providers to arrive at different understandings about their specifics. Such
descriptions may lead workers to believe they are following recommended care
guidelines when, in fact, their care has deviated, increasing the possibility of error.

In the work we describe here, software engineering researchers and medical
experts developed precise, rigorous definitions of medical processes that capture not
only the standard cases, but also the exceptional situations that can arise. The
process definitions also captured the inherent concurrency and multi-tasking
frequently undertaken by busy healthcare providers, as well as details of the complex
use of resources in performing medical processes. The processes defined covered
different aspects of medical care, such as blood transfusion, chemotherapy, and
emergency department patient flow. In all of these domains, the literature indicates
that errors can be frequent and can result in serious negative consequences [1,4, 5].

This preliminary investigation indicated somewhat different goals for the
engineering of methods in these different areas of medical practice, and thus
suggested somewhat different approaches. The Emergency Department (ED) sought
to reduce patient waiting time, as delay is a safety hazard (and a source of pain and
inconvenience). Moreover, the highly concurrent nature of Emergency Department
activities is believed to increase the chance of incorrect process execution, which
also leads to safety hazards. Other concerns included identifying bottlenecks and
improving resource utilization. This suggested the desirability of analyzing precise,
rigorous process definitions to study their concurrency and resource utilization.

In blood transfusion and chemotherapy there was concern for the identification
and removal of process defects that create hazards to patient health and safety.
These concerns suggested the value of at least two complementary engineering
approaches, namely fault tree analysis and finite-state verification, each applied to a
precise definition of safety-critical processes. Analysis of fault trees promises to
indicate possible effects of incorrect performance of process steps [6, 13], while
finite state verification (eg., [8, 9]) promises to identify sequences of tasks that, even
if performed perfectly, could still lead to safety hazards [1610].

Our project aims to evaluate the effectiveness of defining medical processes
using a rigorously defined language, carrying out rigorous analysis of the processes
to detect defects, and then improving the processes by defect removal. Here we
address in detail only one research activity, namely our work in improving processes
related to blood transfusion in a clinical setting and only touch briefly upon some of
our other activities. In the next section we present the Little-JIL process definition

Engineering Medical Processes to Improve Their Safety 269

language and provide some examples of how it was used to define a blood
transfusion process. Section 3 describes and evaluates our experiences, and Section 4
summarizes some related work. Section 5 summarizes some of our other work on
medical processes, and suggests future directions for this research.

2 An Example: A Clinical Blood Transfusion Process

The administration of blood and blood products is a common, high-risk,
resource-intensive medical intervention. Despite strict regulation by the US Food and
Drug Administration as well as healthcare accreditation agencies, the error rate in
transfusion medicine is significant and believed to be underreported [11]. To
investigate whether the precise definition and analysis of this process could help
identify defects that lead to such errors, we used the Little-JIL process definition
language [12, 13] to define a transfusion process in detail. We then used the Propel
property definition system [14] to specify desired properties, and then used the
FLAVERS finite-state verification system [9] to determine whether the properties
could ever be violated by any path through the defined process.

2.1 Principal Features of Little-JIL

Little-JIL [12, 13] is a language originally developed for defining the processes
by which software is developed and maintained. Wise [13] provides full technical
details of the language. Here we outline its salient features. A Little-JIL process is
defined by means of specification of three components, an artifact collection, a
resource repository, and a coordination specification. Each addresses a different area
of concern. The artifact collection contains the various items, initial, intermediate,
and final, that are the focus of the activities carried out by the process. The resource
repository specifies the agents and other capabilities available to support performing
the activities. The coordination specification ties these together by specifying which
agents, aided by which supplementary capabilities, will perform which activities
upon which artifacts at which time(s). Because of its central role in specifying this,
the coordination diagram is generally the central focus of a Little-JIL process
definition.

A Little-JIL coordination specification has a visual representation, but is,
nevertheless, precisely defined using finite-state automata. This renders processes
defined in Little-JIL amenable to definitive analyses that are analogous to those used
to evaluate application software. Among the key features of Little-JIL that
distinguish it from most process languages are its 1) use of abstraction to support
scalability and clarity, 2) use of scoping to make the use of step parameterization
clear, 3) facilities for specifying parallel processing, 4) extensive capabilities for
defining bow to handle exceptional conditions, and 5) clarity and precision in
specifying iteration.

A Little-JIL coordination specification is defined using hierarchically
decomposed steps (Figure 1), where a step represents a task to be done by an
assigned agent. Each step has a name and a set of badges to represent control flow

270 Leon J. Osterweil et al.

among its sub-steps, its interface (a specification of its input/output artifacts and the
resources it requires), the exceptions it handles, etc. A step with no sub-steps is
called a leaf step and represents an activity to be performed by an agent, without any
guidance from the process.

Resources and Agents--Each Little-JIL step contains as part of its interface a
specification of the types of resources that are required in order to support the
execution of the step. Some examples of resources are physicians, blood units, beds,
and accesses to medical records of various sorts. The assignment of an actual
resource instance is carried out by a separate Resource Manager, which maintains a
repository of available resources and their capabilities, and identifies a specific
resource instance to be assigned in response to the step's request. Each step always
requires one specially designated resource instance, called its agent, which is the
resource that is assigned responsibility for the performance of the step. Little-JIL
agents may be either humans or automated devices. In some cases either might be
appropriate, and the choice is then made by the Resource Manager, rather than being
dictated by the process definition.

Substep Decomposition--Little-JIL steps may be decomposed into substeps of
two different kinds, ordinary substeps and exception handlers. The ordinary substeps
define the details of how the step is to be executed. The substeps are connected to
their parent by edges, which may be annotated by specifications of the artifacts that
flow between parent and substep and also by cardinality specifications. Cardinality
specifications define the number of times the substep is to be instantiated and may be
a fixed number, a Kleene *, a Kleene +, or a Boolean expression (indicating whether
the substep is to he instantiated). Exception handlers define how exceptions thrown
by the step's descendants are handled. The edge from exception handler to parent is
annotated with the type of the exception being handled, parameters being passed, and
an indication of how execution continues after the exception has been handled.

Step sequencing -A non-leaf step has a sequencing badge (an icon embedded on
the left of the step bar; e.g., the right arrow in Figure 1), which defines the order of
substep execution. For example, a sequential step (right arrow) indicates that its
substeps execute from left to right. A parallel step (equal sign) indicates that its
substeps execute in any (possibly interleaved) order. A choice step (circle slashed
with a horizontal line) indicates that step execution is by choosing any of the
alternative substeps. A try step (right arrow with an X on its tail) mandates a
sequence in which substeps are to be tried as alternatives.

Artifacts and artifact flows - An artifact is an entity (e.g., a physical entity or
data item) that is used or produced by a step. Parameter declarations are specified in
the interface to a step (circle atop the step bar) as lists of the artifacts used by the step
(IN parameters) and the artifacts produced by the step (OUT parameters). Artifact
flow through steps can be defined to take place in one of two different ways, 1)
hierarchically, as the flow of artifacts between parent and child steps, and 2) by
means of data channels. The flow of artifacts along a parent-child edge is indicated
by attaching to the edge identification of the artifacts and their direction of flow.

Engineering Medical Processes to Improve Their Safety 271

@
V step N~me

~.~ ~xcep:~on Handler

Figure 1 - A Little-JIL step icon.

Data Channels- -Data Channels are named entities that directly connect
specifically identified source step(s) with specifically identified destination step(s).
A data channel acts much like a buffer, with some steps using the data channel as an
output and others using it as an input. This construct helps define how streaming
data, for example, is handled by a process. It can also be used to synchronize
concurrently executing steps, since steps may choose to block when sending or
receiving.

Requisites - A Little-JIL step optionally can be preceded or succeeded by a step
that is executed before or after execution of the main body of the step. A prerequisite
is represented by a down arrowhead to the left of the step bar, and a post-requisite is
represented by an up arrowhead to the right of the step bar. Requisites facilitate
checking for a condition either before executing a step or to assure that execution has
been acceptable. The failure of a requisite triggers the occurrence of an exception.

Exception Handling - A step in Little-JIL can signal the occurrence of
exceptional conditions when some aspect of the step's execution fails (e.g., the
violation of one of the step's requisites). This triggers the execution of a matching
exception handler associated with an ancestor step that throws the exception (and
represented as a step attached by an edge to an X on the right of the step bar in
Figure 1). Little-JIL also incorporates a facility for specifying in which, of a variety
of ways, execution should proceed after completion of the exception handler. This is
an important feature that is difficult to represent in many other languages.

Scoping - The parent step and its descendants represent a scope in Little-JIL,
enabling specification that certain entities and datasets can be considered local to that
scope. Little-JIL also supports recursive specifications of steps within its own scope,
which clarifies the iterative application of a process step to its defined arguments.

2.2 An Example Using Little-JIL to Define a Blood Transfusion Process

Figure 2 is a blood transfusion process coordination diagram. The actual
process has 112 Little-JIL steps, and is too large to present here. Thus, we present a
version that fits the needs of terse exposition, but is still representative of the actual
process.

Figure 2 shows that the full transfusion process, Single-Unit Transfusion
Process, consists of four substeps to be executed in sequence (note the fight arrow in
the step bar), namely Bedside Checks, Prepare for Infusion, Transfuse Blood, and
Post Transfusion Work. The first three are all decomposed into subprocesses that are

272 Leon J. Osterweil et al.

defined by separate diagrams. In this paper we show only the decomposition of the
first step, Bedside Checks (in Figure 3). The last of the four substeps, Post
Transfusion Work is further decomposed in Figure 2 into two substeps that can be
executed in parallel (note the equal sign in its step bar), namely Discard Transfusion
Materials and Record Infusion Information. Here too, these substeps are further
decomposed in separate coordination diagrams, each of which adds further details.
Substeps are the primary method of supporting the incorporation of details into
Little-JIL process definitions, since decomposition can proceed to any level of
abstraction.

Single Unit Transfusion Process

Reaction Suspected

Handle Transfusion Reaction
Bedside Checks

i / /
/ Transfuse Blood

~ A

Post Transfusion Work

Discard Transfusion Materials

Record Infusion Information

Figure 2: A coordination diagram ofa Little-JlL blood transfusion process.

Note also that the Transfuse Blood step has a postrequisite (indicated by the fact
that the arrowhead on the right of its step bar is colored in). We do not show the
decomposition of this step, but the postrequisite defines the activities to be
performed after this step's execution to determine whether there has been an adverse
reaction to the blood transfusion. I f so, this postrequisite will throw a Reaction
Suspected exception, causing control to be transferred to the Handle Transfusion
Reaction exception handler, which is another substep of the parent, Single-Unit
Transfusion Process. Handle Transfusion Reaction is also elaborated by a structure
of substeps, again not shown here for lack of space. But, as might be expected, this
handler is of significant size and thus represented by a non-trivial structure. Note
that the exception handler edge is annotated with the type of exception that is
handled and with a right arrow icon indicating that execution continues as though the

Engineering Medical Processes to lmprove Their Safety 273

step that threw the exception finished execution. Thus, the next step executed is Post
Transfusion Work.

We note that the diagrams in Figures 2 and 3 do not contain all the information
comprising a complete coordination specification. The Visual-JIL editor is used to
create Little-JIL coordination diagrams, and it can elide much information in the
interests of reducing visual clutter. In particular the step's agent and resource
requirements are not shown in these diagrams, but are represented iconically by the
circle above the step. Likewise, the artifacts that are arguments to the various steps
must be specified on the edges of a Little-JIL diagram and as part of the information
attached to the circle above each step. This information too is elided here for
clarity.

While the process depicted in Figure 2 presents a straightforward top-level view
of the transfusion process, this view is somewhat illusory. There is considerable
additional complexity that must be defined in detail in order to capture salient issues
in blood transfusion, thereby rendering them amenable to definitive analysis. To
illustrate this, we decompose the first substep, Bedside Checks. This step, depicted
in Figure 3, represents the checking that is to be done prior to a transfusion, and is
thus of central importance in establishing a good basis for safety analysis.

Note that the hierarchical elaboration of Bedside Checks makes it clear that this
step consists of two separate checks, one to assure the transfusion is being given to
the right patient and one to assure the blood to be transfused is correct. The equal
sign in the Bedside Checks step bar indicates that these two checks can be performed
in any order, and indeed can be interleaved with each other. The details of the two
checks are interesting and important, and also indicate the value of some of the
semantic power of a language such as Little-JIL. Note, for example, that the first
substep, Check Patient ID, consists of the execution of Get Patient ID, followed by
the execution of Check ID to Patient Match. Each of these requires considerable
further elaboration (not shown for lack of space), as they can be seriously
complicated by various combinations of situations such as an unconscious patient, a
patient who is bleeding profusely, and a patient who has no ID band. The full
elaboration of these substeps deals with combinations of these situations, using
language features such as exception handling. Of central concern to this step,
however, is the possibility that the Check ID to Patient Match step might fail. This
may happen for many different reasons, but here we indicate that it might happen as
a consequence of the evaluation of this step's postrequisite, in which case this
contingency is handled by throwing the ID and Patient Don't Match exception. The
handling of this exception is done by recursively calling the Check Patient ID step.
Here we note that, because Little-JIL steps are abstractions, and thus function very
much like procedure calls, this recursive call of Check Patient ID occurs in the scope
and context of the exception handler, thus making available to the step information
that may be carried along as arguments to the recursive call. Thus, Little-JIL
supports sending information about the reasons that the check has failed. This is a
faithful representation of what would happen in the real-world situation, where this
information would be used to guide the next execution of the Get Patient ID step (eg.
gathering new information on the patient),and the next invocation of the Check
PatientID step. This shows the value of providing strong support for abstraction.

274 Leon J. Osterweil et al.

Chec[

@
B e ~ k s

/~ ,~ ",\.. ..

\

te~ Agent: Nurse #1 Agent: Nurse #2
@ @

C~

Figure 3: The hierarchical elaboration of the Bedside Checks step

The other checking step, Redundant Product Check, provides examples of the
value of other Little-JIL language features. Here we note that this step consists of
the parallel execution of two different instances of the Check Product step, not
elaborated here for lack of space. But we have specified that the resources required
as agents for the two steps are two different nurses (Nurse #1 and Nurse #2),who are
obliged to perform the identical check to be sure that the blood product is correct.

Redundant Product Check has a postrequisite, a comparison (not shown here) of
the reports from the two nurses to make sure that both agree that the blood product is
correct. We show two possible exceptions that can be thrown. If the two nurses
disagree, a Nurses Disagree exception is thrown, and is handled by rethrowing
(upward arrow) the exception to an ancestor step for resolution. If there is agreement
that the blood product is incorrect, a Wrong Product exception is thrown, and is
handled by the Get Blood Product step, which is a reinstantiation of the step defining
how a blood product is requested from the blood bank. That step appeared
previously in this process definition, but is not shown for lack of space. Again, note
that the fact that Get Blood Product is called in the context of the handling of this
exception means that the report from the nurses providing details about what was
wrong with the blood product can now be transmitted to the blood bank.

2.3 Using Propel and FLAVERS Analysis to Look for Process Defects

We now provide a very brief and simplified example of how we applied finite-
state verification to the blood transfusion process definition. Our approach to finite-

Engineering Medical Processes to Improve Their Safety 275

state verification is described in detail in [9]. In that paper we describe how
FLAVERS performs exhaustive checks of all possible paths through a system in
order to determine whether or not the execution of any path would cause a violation
of a desired property. For our purposes, a property is a specification of the
requirements for some aspect of the behavior of a system. As a requirement, the
property is a specification against which a system is to be verified. For example, a
property may specify that a certain event may not occur until another event has
occurred. In our work we compare a process against such properties. In cases
where the property is violated we modify the process (note, we ignore for the
moment the possibility that the property may be incorrectly specified) and verify the
modified process to the property again, continuing until the verification succeeds,
thereby improving the process. For our analysis, properties are represented as finite-
state automata and describe certain sequences of events that must (or must not) occur
in every execution of the process. Figure 4 shows an example of one such property
for our blood transfusion process. This automaton specifies that after executing the
Get Patient ID step, executing the Check ID to Patient Match step moves the process
into a state where Tramfuse Blood is acceptable as the next step. The automaton
also specifies, however, that Transfuse Blood is not acceptable if Get Patient ID or
Check ID to Patient Match has not yet been executed. This would cause the
automaton to be moved to the error state. Note also that if Check ID to Patient
Match is followed by Get Patient ID, the automaton is moved back into the initial
state, from which Transfuse Blood again causes a transition to the ERROR State.
This event sequence occurs if Check ID to Patient Match is followed by the throwing
of an exception, because the match has failed. The exception is handled by
reinvoking the Check Patient ID step. Because its first substep is Get Patient ID,
this repeated execution of Get Patient ID indicates that the Check ID to Patient
Match step has failed and that Transfuse Blood is not acceptable now. Automata
such as that indicated in Figure 4 were generated with the aid of our Propel system
[14], which facilitates the generation of such automata by using a question tree to
elicit specifics of the properties. Propel also features a natural language facility to
describe the semantics of the automaton in natural English. Note, that for this
example there are several other important properties that need to be verified,
including one that states that Check ID to Patient Match must always be immediately
preceded (e.g., no intermediate Transfuse Blood events) by Get Patient ID.

Once a process and an automaton are defined, using Little-JIL and Propel
respectively, we use the FLAVERS finite-state verification system to determine
whether any execution of the process could drive the automaton to the error state.
While the verification may appear straightforward for this example, we note that
even this small example poses serious challenges. The parallel step allows all
possible interleavings of substep executions, and the recursive invocation adds
further complexity. Finally, the sheer size of the final process (112 steps) makes the
verification problem very large. A verifier such as FLAVERS, which employs a
number of optimization techniques, is usually able to handle the verification of
properties of modest-sized processes such as this one.

276 Leon J. Osterweil et al.

Get PaUent ID

) ~ , ~ [)~ (Transfuse Blood,
-(Check I~to Patient Ma~h,~ "~-J Get Patient ID) Any Event
Transfuse Blood) - ~

E R R O R STATE

Figure 4: This finite-state automaton requires Transfuse Blood to happen only if Check ID to

Patient Match has executed, but NOT been followed by Get Patient ID.

3 Experiences and Evaluation

Our experience in defining and analyzing the blood transfusion process suggests
the value in this approach, as it has resulted in detection and correction of process
defects. Some of our experiences were as expected, but many were unexpected.

3.1 Process Elicitation

Many process deficiencies were realized just in the interviewing that was
necessary to elicit the complete, detailed process. We quickly found that the original
process guidelines often did not use terms consistently. For example, we found that
a word such as "check" sometimes was used in the same way as the word "verify",
but sometimes it had different connotations. Careful elicitation of what was meant,
by using Little-JIL to clarify the exact meanings, often led to the desired
understandings. This led the medical professionals to examine their terms, to define
them more carefully, and to use them more consistently. In doing so, the resulting
process definitions left less room for confusion, misunderstanding, and ambiguity.

It was not uncommon for the process guidelines to leave responses to exceptions
unspecified. For example, in some cases a process required a "check" for a
condition, with the understanding that some alternative processing was necessary if
the "check" fails. In many cases, however, the existing process description assumed

Engineering Medical Processes to Improve Their Safety 277

that check would always succeed and provided little or no guidance about what to do
in case of a failure. Here again specifying details of the process quickly raised such
issues and led the medical professionals to synthesize responses, thereby improving
the process.

We note that the Little-JIL language itself was very helpful in this regard. We
found that bundling resource specification, exception management, pre- and post-
requisites, and artifact flow together in the definition of a step caused interviewers to
ask about each of these issues each time the need for a new step was recognized. In
asking such questions as "where is this exception handled?" and "what kind of agent
is responsible for execution of this step?" important issues were raised, and
significant process improvements were made. We have concluded that a language
offering rich semantics can be important in suggesting the absence of important
details from a process definition and in suggesting the need for elaboration.

The semantic features of Little-JIL were useful in this work. In particular we
found that the facilities for handling exceptions were valuable and generally effective
in representing exceptional behavior. The facilities for specifying agent types for
each step were also useful and important. As we proceeded with the detailed
elaboration of the blood transfusion process, the value of abstraction, scoping, and
hierarchy became increasingly apparent. While this example gives only a hint of
scaling issues, as our process became larger, the problems posed by increasing size
became more apparent. Hierarchy is a well-established device for dealing with
scaling issues, and its use in Little-JIL underscored that point. But hierarchy in
Little-JIL also incorporates the use of abstraction. Thus, for example, specifying the
same step in more than one place causes the elaboration of that step, but Little-JIL's
use of scoping causes each elaboration to be done in the context of its enclosing
scope(s). The previous example indicated how useful this can be.

Thus our experience suggested that a process definition language should offer
facilities for abstraction, scoping, hierarchy, exception management, resource
specification, and artifact specification--at the very least. This experience also
suggested the value of other features not present in Little-JIL, for example
transaction semantics and real-time specification.

Finally it seems important to note that the Little-JIL pictorial notation proved to
be quite accessible to the medical professionals. Although we expected to find
medical professionals unwilling to learn the semantics and iconography of Little-JIL
we discovered that within an hour most were relatively comfortable with the
language and were becoming increasingly adept at using its features skillfully.

3.2 Property Elicitation

Our work also indicated the importance of eliciting the properties that are
required of the process being elicited. We were especially interested in properties
that are stated at a high enough level to apply not just to the specific process we had
elicited, but to other processes intended to achieve the same goals. In particular, we
would like to use finite-state verification not just to detect possible problems with the
existing process but also to evaluate proposed modifications to that process. Our
experience demonstrated that property elicitation is valuable additionally as another

278 Leon J. Osterweil et al.

vehicle for drawing out important process details. We found that it was not
uncommon for medical domain experts to specify the details of what they do without
having a clear idea of what higher-level goals they are trying to achieve when they
perform certain activities in certain ways. By using property specification as a way
to place a focus on the goals, motivations, and desiderata for a process, we were
often able to cause process performers to think about their processes in a new light,
sometimes leading to realizations of possible improvements. In other cases we found
that the careful specification of process desiderata, phrased in terms of required or
forbidden sequences of steps, led quickly to a realization that some of the steps were
missing from the process definition, were misnamed in the process definition, or
were used incorrectly in the process definition. Thus, property elicitation also led to
improvements in the process. It complemented the focus on "what do you do?" with
"why do you do that?" or "what are you really trying to do here?".

We found that Propel was an important aid to the elicitation of precise property
specifications. Experience with other projects had demonstrated that it is quite
common to specify a property formally in terms of a finite-state automaton or some
form of temporal logic, only then to find that important property details were not
captured correctly. For example, the property, "A consent form must be signed prior
to blood transfusion", leaves unanswered such questions as, "does one consent form
suffice for multiple transfusions?" and "can the consent be revoked prior to
transfusion?". Propel uses a question tree to automatically pose such questions, thus
improving the likelihood that the specified property will correctly reflect the full
intent of the person specifying the property. Propel's use on this project supported
this conclusion.

3.3 Verification of the Process

Our work on this project is just beginning to employ the FLAVERS finite-state
verifier to analyze the blood transfusion process for adherence to some properties.
To date we have been able to verify adherence to a small number of properties, most
of which have been relatively trivial. There have been numerous verification
failures, but most have been due to errors in the process definition itself or the
property definition. Although to date we have not yet uncovered serious defects in
the process itself, we expect that process defects will start to appear once we begin to
verify larger portions of the process and verify them against more stringent
properties.

In analyzing larger portions of the process, however, it has become increasingly
clear that it is important to employ the services of a reasoning system that can handle
this scale. We note that processes, such as blood transfusion, that entail substantial
amounts of concurrency and exception handling have accordingly very large
execution state spaces, thus making scaling an important issue. Indeed the
underlying graph structures that we generated from our process definitions and used
as the basis for our finite-state verification often had tens of thousands of nodes and
edges. The relative terseness of Little-JIL often serves to mask the size of this state
space, but it is this state space that must be explored in order to verify properties.

Engineering Medical Processes to Improve Their Safety 279

Our experiences so far suggest that the performance of FLAVERS does seem to
scale acceptably well.

4 Related Work

There has been some prior work in using process definition and analysis to
improve medical processes. For example, the Protocure II project [15] has goals that
are quite similar to ours, but uses a rather different, AI-based, linguistic paradigm for
defining processes. Noumeir has also pursued similar goals, but using a notation like
UML to define processes [16]. Others (eg. [17]), view medical processes as
workflows and use a workflow-like language to define processes and drive their
execution. But, we note that these projects seem to place less emphasis on analysis.

There have been other approaches to improving medical safety, as well, but
much of the emphasis of this work has been targeted towards quality control
measures [5,18], error reporting systems [19], and process automation in laboratory
settings [20], such as those where blood products are prepared for administration. In
other work, Bayesian belief networks have been used as the basis for discrete event
simulations of medical scenarios and to guide treatment planning (eg. [21]).

We note that many languages and diagrammatic notations have been evaluated as
vehicles for defining processes. It was suggested that processes be defined using a
procedural language [22]. In MARVEL/Oz [23] processes were defined using rules.
SLANG [24] used modified Petri Nets to define processes. More recently, the
workflow [25] and electronic commerce [26] communities have pursued similar
research. This work has shown that some notations aid process understanding, while
others provide the semantic rigor needed to support verifying processes to varying
degrees of certainty. None, however, seems able to support process definitions that
are clear and precise enough. Main failings of these approaches include inadequate
specification of exception handling, weak facilities for controlling concurrency, lack
of resource management, and inadequate specification of artifact flows.

We also note that there has been a great deal of work on the analysis of software
artifacts. Most of this work has been focused on analysis of code or models of
systems. Finite-state verification, or model checking, techniques (eg. [8, 9, 27]),
work by constructing a finite model that represents all possible executions of the
system and then analyzing that model algorithmically to detect executions that
violate a particular property specified by the analyst. As noted above one of the
major concerns of these techniques is controlling the size of the state-space model,
while maintaining precision in the analysis result. Our team has been involved in the
analysis and evaluation of various finite-state verification approaches [9], and the
development of verifiers such as FLAVERS [9] and INCA [28]. Our work seems to
be among the first that has applied FSV approaches to process definitions [10].

280 Leon J. Osterweil et al.

5. Extensions of the Work

We have used the blood transfusion process definition to automatically generate
a fault tree representation of the process and have used the fault tree to identify
single points of failure. This shows the use of process definitions to improve the
robustness of a process by identifying and removing single points of failure. Work
with chemotherapy processes has confirmed most of the findings stated above.
Work with patient flow in the Emergency Department, however, has led to
realization of the centrality and complexity of issues pertaining to resources.

We have applied our process improvement approach to processes to a broad
range of domains such as labor-management negotiation, elections, and scientific
data processing. The work in each domain has shown the need for additional
language facilities and a broader research focus, but has confirmed the general
applicability of our approach, thus, pointing to the need for interesting
complementary work.

In conclusion, we observe that this work has shown considerable promise and has
suggested extensions in several directions. We propose to pursue further research in
this domain. We expect that this research will lead to notable improvements in the
quality of medical processes, and we also expect it to lead to better understandings of
how process definition and analysis technology can become key components in the
more effective engineering of methods in this critically important domain.

Acknowledgements

This research was supported by the US National Science Foundation under
Award Nos. CCR-0204321 and CCR-0205575 and by the U. S. Department of
Defense/Army Research Office under Award No. DAAD19-03-1-0133. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of the U.S. National Science Foundation, U. S. Department of
Defense/Army Research Office, or the U.S. Government.

The authors gratefully acknowledge the work of Sandy Wise, who had major
responsibility for the development of Little-JIL, as well as Barbara Lerner and Aaron
Cass, who also made major contributions. Many students participated in the case
studies described here, and major contributions were made by Irene Ros, Ethan Katz-
Bassett, Huong Phan, M.S. Raunak, and Dave Miller.

References

1. L.T. Kohn, J.M. Corrigan, M.S. Donaldson (Eds). To Err is Human." BuiMing a Safer
Health System. Washington, DC: National Academy Press, 1999.

Engineering Medical Processes to Improve Their Safety 281

2. P.P. Reid, W.D. Compton, J.H. Grossman, G. Fanjiang (Eds). Building a Better Delivery
System." A new Engineering/Healthcare Partnership. Nat. Academies Press, Washington.
DC, 2005.

3. E.H. Henneman, R.L. Cobleigh, K. Frederick, E. Katz-Bassett, G.A. Avrunin, L.A. Clarke,
L.J. Osterweil, C. Andrzejewski, K. Merrigan, P.L. Henneman, Increasing patient Safety
and Efficiency in Transfusion Therapy using Formal Process Definitions, Transfusion
Medicine Reviews, 21, 1, pp. 49-57, January 2007

4. J.L. Callum, H.S. Kaplan, L.L. Merkley, et.al. Near-miss Event Reporting for Transfusion
Medicine: Improving Transfusion Safety, Transfusion, 41,1204-1211, 2001.

5. D. Voak, J.F. Chapman, P. Phillips, Quality of transfusion practice beyond the blood
transfusion laboratory is essential to prevent ABO-incompatible death. Transfusion
Medicine 10: 95-96, 2000.

6. J. Burgmeier, Failure Mode and Effect Analysis: An Application in Reducing Risk in
Blood Transfusion. Quality Improvement 28, 331-339, 2002.

7. B. Chen, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, Automatic Fault Tree Derivation from
Little-JIL Process Definitions, SPW/PROSIM 2006, Shanghai, China, May 20-22, 2006,
Springer-Verlag LNCS. 3966, pp. 150-158.

8. A. Cimatti, E. Clarke, E. Giunehiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
A. Tacchella, NuSMV vers. 2: An Open-Source Tool for Symbolic Model Checking,
Computer Aided Verification Conf., Springer-Verlag, 2002, 359-365.

9. M.B. Dwyer, L.A. Clarke, J.M. Cobleigh, G. Naumovich, Flow Analysis for Verifying
Properties of Concurrent Software Systems. ACM Trans. on Software Engineering and
Methodology, 13(4) 359-430, 2004.

10. J.M. Cobleigh, L.A. Clarke, L.J. Osterweil, Verifying Properties of Process Definitions,
ACM SIGSOFT Intl. Syrup. on Software Testing & Analysis, Portland, OR, ACM Press,
2000:96-101

11. J.V. Linden, K. Wagner, A.E. Voytovich, et.al., Transfusion Errors in New York State: An
Analysis of 10 Years' Experience, Transfusion, 40 (10), 1207-1213, 2000.

12. A.G. Cass, B.S. Lerner, E.K. McCall, et al. Little-JIL/Juliette: A Process Definition
Language and Interpreter, lntl Conf. on Software Engineering. Limerick, Ireland, 754-758,
2000.

13. A. Wise, Little-JIL 1.5 Language Report, Lab. for Advanced SW Eng. Research (LASER).
Dept. of Comp. Sci., UMass, Amherst, Tech. Report, 2006.

14. R.L. Smith, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, PROPEL: An Approach To
Supporting Property Elucidation, 24th Intl. Conf. on Software Engineering, Orlando, FL,
11-21,2002.

15. A. ten Teije, M. Marcos, M. Balser, J. van Croonenborg, C. Duelli, F. van Harmelen, P.
Lucas, S. Miksch, W. Reif, K. Rosenbrand, A. Seyfang, Improving Medical Protocols by
Formal Methods. Artificial Intell. in Medicine, 36 (3), 193-209, 2006.

16. R. Noumeir, Radiology interpretation process modeling. Journal of Biomedical
Informatics 39(2) 103-114, 2006.

17. M. Ruffolo, R. Curio, L. Gallucci, Process Management in Health Care: A System for
Preventing Risks and Medical Errors, Business Process Mgmt. 334-343 2005.

18. M.L. Foss, S.B. Moore, Evolution of Quality Management: Integration of Quality
Assurance Functions Into Operations, or "Quality is Everyone's Responsibility".
Transfusion 43 1330-1336, 2003.

19. J.B. Battles, H.S. Kaplan, T.W. van der Schaaf, C.E. Shea, The Attributes of Medical
Event Reporting Systems for Transfusion Medicine. Arch Pathology Laboratory Medicine
122,231-238, 1998.

20. S.A. Galel, C.A. Richards, Practical Approaches to Improve Laboratory Performance and
Transfusion Safety, Am. J. Clinical Pathology 107 (Suppl 1):$43-$49, 1997.

282 Leon J. Osterweil et al.

21.L.C. van der Gaag, S. Renooji, C.L.M. Witteman, B.M.P. Aleman, B.G. Taal,
Probabilities for a Probabilistic Network: A Case-Study in Oesophageal Cancer, Artificial
Intelligence in Medicine, 25(2), 123-148.

22. S.M. Sutton Jr., D.M. Heimbigner, L.J. Osterweil, APPL/A: A Language for Software-
Process Programming, A CM Trans. on Software Engineering and Methodology, 4 (3), 221-
286, 1995.

23. I.Z. Ben-Shaul, G. Kaiser, A Paradigm for Decentralized Process Modeling and its
Realization in the Oz Environment, 16th Intl. Conference on Software Engineering, 179-
188, 1994.

24. S. Bandinelli, A. Fuggetta, C. Ghezzi, Process Model Evolution in the SPADE
Environment. 1EEE Transactions on Software Engineering 19(12) 1993.

25. S. Paul, E. Park, J. Chaar, RainMan: A Workflow System for the Internet, Usenix
Symposium on Internet Technologies and Systems, 1997.

26. B. Grosof, Y. Labrou, H.Y. Chan, A Declarative Approach to Business Rules in
Contracts: Courteous Logic Programs in XML, ACM Conf. on Electronic Commerce (EC
99), Denver, CO, 68-77, 1999.

27. G. J. Holzmann, The SPINModel Checker, Addison-Wesley, 2004.
28. J.C. Corbett, G.S. Avrunin, Using Integer Programming to Verify General Safety and

Liveness Properties, Formal Methods in System Design, 6, 97-123, 1995.

Software Process Improvement Based on
the Method Engineering Principles

Marko Bajec, Damj an Vavpoti6, gtefan Furlan and Marjan Krisper
University of Ljublj ana, Faculty of Computer & Information Science

Trzaska 25, 1000 Ljubljana, Slovenia
{marko.bajec, damjan.vavpotic, stefan.furlan, marjan.krisper}@fri.uni-lj.si

Abstract. While it used to be a common belief that the use of rigorous
methods in software development is beneficial if not compulsory to assure
success of software development projects, the investigations in practice reveal
developers often avoid to follow prescribed methods and that there is a wide
gap between the organisations' official methods and the work actually
performed by their developers in IT projects. According to the literature, there
are many reasons contributing to this rather undesirable situation. The two of
them are rigidity of methods and their social inappropriateness. In the
MasterProc project we have addressed these issues by developing a
framework and tool-support for the reengineering of software development
methods. Using the framework an organisation can reengineer its existing
ways of working into a method that is organisation-specific and auto-
adjustable to specifics of its projects. The evaluation that was performed in
five partner companies is motivating, as it shows the framework can be very
useful in improving software development practice. This paper describes the
framework philosophy and its main components.

1 Introduction

It was decades ago when the software development became acknowledged as a
complex process that needed disciplined methodological approaches. Since then a
number of software development methods have emerged. Interestingly, in the last ten
years, software development methods are not seen anymore as a panacea for
software development and the wave of enthusiasm about their practical value has
started to decrease. It has been empirically proved that in real practice the use of
methods is actually low (see e.g. [1 - 5]). In the research community, several reasons
have been identified as explanatory for this situation (see e.g. [4 - 5]). The two of
them that seem to be the most important are: inflexibility, which is a characteristic of

Please use thejbllowingjblvnat when citing this' chapter:

Bajec, M., Vavpoti6, D., Furlau, S., Krisper, M., 2007, in IFIP International Federation for Information Processing,
Volume 244, Situational Method Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Brinkkemper, S.,
Hendcrson-Scllcrs B., (Boston Springer), pp. 283-297.

284 Marko Bajec, Damjan Vavpoti6, Stefan Furlan and Marjan Krisper

methods that permits virtually no adjustments to specific circumstances (a.k.a.
rigidity), and social inappropriateness, i.e. unsuitability of the prescribed method to
the company's actual performance or to the characteristics of the company's
development team.

In this paper we present a framework for reengineering software development
methods that we have developed under the MasterProc project 1. Building on the
established principles of the software process improvement initiatives and
specifically of the method engineering, the framework facilitates companies that
wish to improve their software development processes with guidelines and tools for
acquiring their ways of working, for their continuous improvement, and for their
adaptation to circumstances of a particular project or team.

The paper is organised as follows. In Section 2 we describe the research approach
adopted in our work. Next is the related works section that briefly describes related
research areas and explains how our work fits into this research. The core of the
paper is in Sections 4 where the philosophy and main components of the suggested
framework are described. The paper ends with concluding remarks and ideas for
further work on the subject.

2 Research Method

The MasterProc project was organized as a collaborative practice research [6] using
a combination of action research, experiments and study practices. Interviews and
surveys were used to carry out the assessment of the existing state of the art of
software development methods in each of the participating software companies. The
main focus of the assessment was to determine how socio-technically suitable are the
methods for typical projects carried out by each of the software companies.
Furthermore, the goal was to identify the level of flexibility of the existing processes.
The information that we received from the interviews and surveys was
complemented by action research. For each of the participating software companies a
working team was set up comprising two researchers and two practitioners. The main
responsibility of the team was to take part in real projects to get firsthand
information. The practitioners acted as project managers and methodologists, while
the researchers were more or less observers.

In the organization of the MasterProc project the principles of a general learning
cycle have been adopted, i.e. interpret current situation, find ways to improve
practice, plan and implement improvements, and learn from the actions taken. The
CPR supports such learning cycle by the three goals it identifies: to understand the
current state of software development, to build new knowledge that can support
practice, and finally to plan changes and implement them as necessary. After
implementing the improvements, the interpretation of the lessons learned have to
take place, hopefully leading into the next learning cycle.

1 The MasterProc is a research project which is carried out under the umbrella of the Centre of
excellence. The project was co-founded by the Slovenian Ministry of Higher Education,
Science and Technology, European Commission and the participating Software
Companies.)

Software Process Improvement Based on the Method Engineering Principles 285

3 Related work

The main principles on which we build our research can be found in two autonomous
but related research areas: Software process improvement (SPI) and Situational
method engineering (SME). While the main purpose of the SPI is to facilitate the
identification and application of changes to the software development process in
order to improve the product, the SME primarily deals with developing or tailoring
software methods in order to facilitate specific projects and circumstances. The
introduction of a specific SME approach into a software company to improve the
flexibility of its existing methods can be thus seen as a specific step towards SPI. In
this section we shortly describe both research fields and their relation to our work.

3.1 Software Process Improvement

Today, many organisations are trying to adopt models of total quality management
(TQM) principles. In the software development arena these efforts typically manifest
through software process improvement (SPI) initiatives of software companies that
strive to improve the quality, safety, and reliability of the software they develop and
in this way try to increase productivity and customer satisfaction with their products.

One of the commonly known models in the SPI is the capability maturity model
(CMM), which represents a central framework for software quality and process
improvement (see e.g. [7-8]). The CMM introduces five levels of maturity into
which an organisation can fall according to the quality of their software processes.
The five levels are: initial, repeatable, defined, managed and optimised. While in the
initial level (level 1) the process is typically ad-boc and chaotic, the repeatable level
(level 2) introduces basic project management processes to track cost, schedule and
functionality. The necessary process discipline is in place to repeat earlier successes
on projects with similar applications. In level 3 (defined), the software process for
both management and engineering activities is documented, standardized and
integrated into a standard software process for the organization. All projects use an
approved, tailored version of the organization's standard software process for
developing and maintaining software. In level 4 (managed), detailed measures of the
software process and product quality are collected. Both the software process and
products are quantitatively understood and controlled. Finally, in level 5 (optimized),
continuous process improvement is enabled by quantitative feedback from the
process and from piloting innovative ideas and technologies 2.

In our framework we use CMM as a model against which we evaluate how
mature are specific software processes and identify desired maturity levels, i.e. the
maturity levels the evaluated organisations want to achieve. Building on the
empirical studies that have shown there is a correlation between CMM levels and
software quality [9-10], we assume the increased maturity will lead also to the
improved software quality. The use of the framework for method reengineering
inherently leads to at least level 3 (defined) while it includes also activities, such as
constant measurement of success and continuous evaluation and feedback from the

2 The description of CMM maturity levels is based on [7].

286 Marko Bajec, Damjan Vavpoti6, ~tefan Furlan and Marjan Krisper

process that can lead to higher levels of CMM maturity, i.e. level 4 (managed) and
level 5 (optimised).

3.2 Situational Method Engineering

As described above, if we want to achieve the maturity level 3 or more, all projects
must be performed according to an approved, tailored version of the organization's
standard software process for developing and maintaining software. This is where
SME fits in. In the SME literature, a number of approaches can be found that
propose how to create project-specific methods. One that is probably the most
popular is based on the so-called reuse strategy. In this approach a new method is
constructed from the fragments of existing methods. The notion of method fragment
was introduced by Harmsen et al [11] who defined it as a reusable part of a method.
Fragments can be further categorized into product and process fragments depending
on the perspective they cover. Much effort has been put into decomposing existing
methods into fragments [12]. Also, different repositories have been proposed for
their storage (e.g. [11-13]). The method construction using the reuse strategy is,
however, far from easy, as the fragments have to be first retrieved from the
repository, changed if necessary and than assembled together into one consistent and
congruent method.

Another approach to SME, known from the literature as the extension-based
approach, uses the extension strategy. In this approach, method engineers are
provided with extension patterns that help them to identify typical extension
situations and provide guidance to perform extensions. In [13], Ralyt~ describes two
possible ways to perform extensions: (a) directly through matching extension
patterns stored in a library to satisfy the extension requirements, and (b) indirectly
through first selecting a meta-pattern corresponding to the extension domain and
then guiding the extension applying the patterns suggested by the meta-pattern.
Karlsson and Agerfalk have, however, criticized this approach for not considering
situations that are actually very frequent in practice, i.e. when a method is both
extended in some fragments and reduced in others [l 4]. As a solution they proposed
a new method for SME that uses a combination of the cancellation and extension
operators. They named it method for method configuration (MMC). The MMC
differs from the aforementioned approaches also in the fact that it does not deal with
modular construction of a method but rather with method tailoring taking a particular
method as the starting point. From the literature, it is clear that this approach has
been somewhat overlooked by the method engineering research in the past.

Finally, the approach to SME that seems to be a result of the most recent efforts
in the method engineering research is the paradigm-based approach [13] a.k.a.
evolution-based approach [15]. This approach is founded on the idea that the new
method can be obtained either by abstracting from an existing model or by
instantiating a metamodel. A new method is then created by first constructing a
product model and then process model while for the construction of both product and
process model different strategies are available.

For the purpose of our framework we created our own approach to SME which
uses a combination of the meta-modelling and extension/reduction based approaches.

Software Process Improvement Based on the Method Engineering Principles 287

The approach shares several commonalities with other approach to SME, but most
notably with MMC. Both, our approach and MMC suggest configuring an existing
method rather then assembling fragments from different methods to construct a new
one. Detailed description as well as comparison between our approach and other
SME approaches can be found in [16].

4 A framework for method reengineering

The idea that lies behind the framework for reengineering software development
methods is relatively simple. It is based on the assumption that in each software
development company, patterns of work could be found that tell how the company is
developing software. While a large percentage of software companies own some
kind of formalized methods (typically commercial methods), empirical investigations
show that what they really do on IT projects differs a lot from what is written in the
methods they own (e.g. [4, 17]). Our assumption in the suggested framework is that
in a typical software company the ways of working are sufficiently repeatable to be
captured into a formalized method (base method) reflecting how the company
actually performs its IT projects. If base methods are captured and represented in the
way we suggest in this paper then project-specific methods can be created on-the-fly
almost without any need for method engineers to intervene. This is done by
processing the rules that define, for each method component, in what circumstances
its use is compulsory, advisable or discouraged. The configuration process is
however interactive. The questions that are subjective in their nature and influenced
by particular developers involved in the project can be addressed when they arise and
users may intervene as they wish.

The framework consists of four distinct but related phases: (I) Method
Construction, (II) Method Configuration, 0II) Method Use and (IV) Method
Evaluation and Improvement. In the remaining part of this section each of the phases
will be described in more detail.

4.1 Method Construction

Method construction is probably the most important phase of the method
reengineering framework and a prerequisite for the other phases. Its aim is to
construct a base method that will provide formal description of how the organization
that is being analyzed is performing its project. Furthermore, the construction of a
base method is crucial as it presents a foundation for creating project-specific
methods on-the-fly. Due to the limits of space we will provide here only a brief
description of the main activities of the method construction process. For details
please refer to [17] and [16].

The construction of a base method is a process that has to be done for each
organization individually. It starts with the analysis of existing practice in the
company and leads into identification of the parts that are technically and socially
sound and those that are in these respects problematical. For the analysis of the

288 Marko Bajec, Damjan Vavpoti6, Stefan Furlan and Marjan Krisper

socio-technical suitability of the existing practice an evaluation model has been
designed that facilitates the evaluation [18]. Possible improvements to the existing
practice are then suggested and discussed with the company's development team.
Once the vision for the new method is developed and accepted, a metamodel is
designed that helps to formalize the method. The metamodel can be developed either
from scratch or from existing metamodels that have been recently constructed to
both underpin and to help formalize methods. Those represent a good source for
selecting generic concepts for method formalization. Finally, the metamodel is
instantiated and fragments of the base method are captured. Besides the fragments of
the existing practice that have been previously approved as technically and social
appropriate, many new fragments may emerge. These are based on the suggestions
for improvements that have been identified within the analysis of the existing
practice. The fragments are first classified according to the underlying metamodel
and then described using templates. The templates, which belong to the metamodel,
outline how elements of a certain metamodel type should be described.

For the purpose of representing a base method we designed a generic data
structure that can be used to underpin any metamodel. The idea of a generic data
structure is to allow method engineers to design metamodels according to their
perception of how their methods should be formally represented.

GENERIC DATA STRUCTURE

1 .I I hom

MetaElement I ,~ t~ MetaLink

1

I,'~ an •
hist,;nee of

Element

1 ~l i horn

1 "~ to

• iS O n

/t~Sfa(~CO. Of

] ~ COt;straiP, tS
Link

BASE METHOD

Condition

1

Selected
Element

1 ~ itOtT,;

1 ~ to

1

• po,'nts 1o

Selected
Link

PROJECT-SPECIFIC METHOD

Fig. 1. A generic data structure

Fig. 1 illustrates the main components of the aforementioned generic data
structure, base method and project-specific method. The classes representing
metamodel are: a metaelement (it can be of two types: content element, such as
activity, tool, discipline, role, etc. or process flow element, such as decision node,

Software Process Improvement Based on the Method Engineering Principles 289

join and synchronization) and metalink (links between metaelements). By using such
a generic data structure, a base method is represented as a structure of instances of
the metaelements and metalinks, and a project-specific method is represented as a
selection of the elements and links of the base method.

LEGEND

Process flow elements

Decision node
l Synchronisation

Content elements

U Discipline

Q Activity

E ~ Adifact

Role

Tool

Delphi MS Visio

R, ~ . .~ d'
i
[

System ~ ~ . , ,
Analyst

'l

I

Fig. 2. Representation of a base method

Technical

Strategy

DecisL%r~
rc(;e

r

S,:,nch rortEsa ion

Decision
'-ode:

/An al},'sJs ResuItsX~
X o Custome/

I

As mentioned before, a base method encompasses various situations that may
occur when projects are performed. In other words, it comprises a number of
elements and their alternatives which describe several possible ways to perform a
particular project (similar to project paths as defined by Hares [12]). The paths and
method structure, however, are not static. They are defined by the rules that tell
which elements to consider in specific circumstances and consequently which path to
take. As depicted in Fig. 1, rules apply directly to the links that bind elements of the
method (see the element Condition).

290 Marko Bajec, Damjan Vavpoti6, gtefan Furlan and Marjan Krisper

Besides the rules that put constraints on the links between elements of the
method there are also other types of rules that play important role in the suggested
framework. In general, they can be categorised into constraint rules and facts. Since
in configuring the base method for the needs of a particular project or situation these
rules play essential role we will explain their taxonomy in more detail.

4.1.1 Constraint rules
Constraint rules can be seen as assertions that constrain some aspect of the procedure
for constructing project-specific methods. They can be decomposed into four
subgroups: process flow rules, structure rules, completeness rules, and consistency
rules.

Process flow rules are rules that define conditional transitions among activities in
the process view of a method. They define the conditions that have to be met to
perform a particular transition. For example, in Fig. 2., the rule R1 defines a
conditional transition to the activity Analyse Logical Structure while the rule R2
determines in what circumstances the activity Analyse Logical Structure can be
omitted.

Similar to process flow rules are rules that belong to the structure rule category.
Their distinction is that they can constrain any link between method elements and not
just links between activities. In Fig. 2, the rule R4 represents an example of a
structure rule. It constrains the link between the activity Develop Prototype of the
System and the tool MS Visio.

Structure and process flow rules that belong to a base method of a particular
organisation actually define project characteristics that are important at a particular
stage of projects performed by the organisation. Examples of process flow rules
(rules RI, R2 and R3) and structure rules (rule 114 and Rs) are provided below 3.

• R~: If the process is in the decision node 1 and the scope of the system is large or
incremental SDLC is chosen then go to the activity Analyse logical structure of
the system.

• R2: If the process is in the decision node 1 and the scope of the system is not large
and incremental SDLC is not chosen then go to the synchronisation point 2.

• R3: If the process is in the decision node 2 and the problem domain is new or
customer requires the prototype of the system then go to the activity Develop
prototype of the system.

• R4: If the process is in the activity Develop prototype of the system and the time
frame for producing the prototype is more than 1 month then develop the
prototype of the system using Delphi tool.

• Rs: If the process is in the activity Develop prototype of the system and important
reports are to be developed then create output artifact Reports as a part of the
prototype.

Project characteristics, such as project length, project risk, project complexity,
the scope of the system, the number of parties involved, etc. and their respective
domains are defined within the organisation's base method. However the values that

3 The rules are here written in natural language to ensure their understanding.

Software Process Improvement Based on the Method Engineering Principles 291

these characteristics receive are project-specific and are thus defined during the
configuration process.

Besides process flow rules and structure ~-ules that both put constraints on
associations between elements of a base method the constraint rule category
comprises also completeness and consistency rules. The purpose of these two
subcategories is to assure that each project-specific method, created from the
elements of a base method, is complete and consistent.

Completeness rules apply - in contrast to the process flow rules and structure
rules - to a metamodel and not to a base method (see Fig. 1). Their responsibility is
to define the conditions that must be met when creating a project-specific method.
Completeness rules actually help to check whether a project-specific method that has
been created includes all required components. For example, an organisation may
decide the following rules have to be followed when creating methods for projects:

• R6: each activity except the last one must have at least one successor activity.
• R7: each activity must be linked with exactly one role.
• Rg: each technique must be linked with at least one tool, etc.

Consistency rules are the last category in the group of constraints. They are
similar to completeness rules. Their goal is to assure that the selection of fragments
comprising a project-specific method is consistent. While completeness rules only
apply to elements that are linked together, consistency rules deal with
interdependency between any two elements. In other words, for each element e they
determine a set of other elements E that need to be included into a project-specific
method if e is included. In the example below the rule R9 asserts that the deliverable
Business model is dependent on the activity Business modelling.

• R9: The deliverable Business Model depends on the activity Business modelling.

This means that if the deliverable Business model is selected for the inclusion
into a project-specific method, the activity Business modelling has to be selected too.
While such a dependency may seem trivial it is important as it helps to avoid
conflicting situations.

4.1.2 Facts
Another important group of rules that are considered during the configuration
process are facts. Facts are assertions that define characteristics of the project for
which we create a project-specific method. Depending on how they define project
characteristics they can be classified into base facts or derived facts. Base facts
define project variables directly while derived facts are derived from base facts using
inferences or calculations. In the examples below, the rule R10 is a base fact while the
rule Rll is a derived fact.

• R10: Theproject domain is well known.
• Rl1: If the project field is telecommunications or healthcare then the project

domain is well known.

In the method configuration process facts are very important as they are checked
when structure and process flow rules are processed. For example, a structure rule
might state that "when performing requirements validation there is no need to

292 Marko Bajec, Damjan Vavpoti6, Stefan Furlan and Marjan Krisper

produce a prototype if the problem domain is well known". To be able to perform
this rule we must first check the facts about the project domain to find out whether
the domain is well known or not.

As indicated in the examples of the constraint rule category (see e.g. rules R3 or
Rs) facts can describe virtually any condition that is important for the project.
Furthermore, they are created dynamically during the method configuration process.
For example, when an element e is selected to be included into a project-specific
method this becomes a fact (e is selected) which could become important latter on in
the method configuration process.

4.2 Method configuration and use

Once a base method has been successfully established and discussed with its users it
is ready for use. However before it is actually applied to a specific project or
situation it has to be configured so that it includes only the components that are
relevant to the situation in question. At this point the representation of a base method
that was described before reveals its value. With an appropriate tool the adjustment
can be done automatically. In this section we describe the algorithms that facilitate
the auto-adjustment process.

The algorithm that supports the method configuration process is relatively simple.
It starts with an element in the base method (typically this would be a starting
activity) and ends when there is no link that would connect the current element
further with any other element. I f such links are found they are examined for
constraints they might have. When a particular link has no constraints or when
constraints exist but are satisfied than the element at the end of that link is processed
in the same way using recursion.

PROCEDURE CreateProjectMethod(pm,e);
/ / p m - project method, e - starting element of the base method
BEGIN

Find [inks for the element e
For each Link •

IF conditions are satisfied for the [ink [
THEN

Mark the output element of the Unk [as selected for the pm
Mark the [ink [as selected for the pm
CreateProjectMethod(output etement of the Link [,pm)//recursion
END IF

NEXT
END;

When a project-specific method is created using the algorithm above, the
elements that have been selected has to be checked for consistency and
completeness. The verification algorithms below show how this can be done.

PROCEDURE CheckComp[etness (pm);

Software Process Improvement Based on the Method Engineering Principles 293

/ / p m - project method
BEGIN

//completeness verif ication
Se[ect a[[links from the pm
For each Link l

/ /Check the completeness constraint for the l ink l
Count the [inks that connect the input element of the Link I with the

output elements of the same type as is the output e[ement of the
Link l

IF the number of links is outside the min, max limits
THEN mark the Link [as problematicat.

NEXT;
END;

PROCEDURE CheckConsistency (pm, e);
/ / p m - project method, e - starting element or
/ / [i n k of the project-specific method
BEGIN

//consistency verif ication
Select the set of e[ements and links D that e is dependent on
For each etement or link d from D

IF d is not se[ected THEN Mark d as prob[ematica[
CheckConsistency(pm, d) / / recurs ion

NEXT;
END;

For detailed description on the process configuration approach, its comparison
with other SME approaches, as well as on the experiences with its application in
practice, please see [16].

4.3 Method evaluation and improvement

In the suggested framework it is essential that the underlying base method and
corresponding rules continuously evolve as a reflection of knowledge and
experiences acquired through project performance. This means that when using the
framework new fragments may emerge as a result of situations that are specific and
thus not yet supported by a current base method. In such cases, additional fragments
are captured and circumstances for their use are determined. In practice, it actually
takes some time for a base method to become all-inclusive in terms of providing
guidelines for all kinds of situations that may happen in projects a particular
company is performing. This phase, in which the base method rapidly evolves, is
called the learning phase. It takes place in the first few projects after the framework
has been introduced into a company. Eventually however, the base method would
become more stable and changes on a large scale less frequent.

For the aforementioned reasons the framework provides specific activities for the
continuous method evaluation and improvement. To retain social and technical

294 Marko Bajec, Damjan Vavpoti6, Stefan Furlan and Marjan Krisper

suitability base methods are regularly evaluated and improved. The evaluation is
performed on a level of a single method element, which enables precise
identification of less suitable method elements, determination of reasons for their
unsuitability and creation of improvements consequentially.

The evaluation activities are based on the method evaluation model. Although
various method evaluation models have been proposed in the past, they tend to
consider either only technical [19 - 21] or only social [22 - 24] dimension of a
method. However, such partial evaluation does not provide a complete understanding
of method's suitability. Therefore, an evaluation model was created that facilitates
simultaneous evaluation of method suitability on a social and technical dimension.
The social dimension focuses on method's suitability for social and cultural
characteristics of a development team and facilitates determination of the level of
method's adoption. The technical dimension considers suitability of a method for
technical characteristics of a project and an organization, and helps to determine the
level of method's efficiency.

CO

g~

C
P~

z

....,--.- .q

,:ii>

0

O

0
0

Technical Unsuitab!e suitability Suitable

Fig. 3. Application of the evaluation model

Fig. 3 depicts application of the evaluation model in practice. After an evaluation
is completed, all method elements are positioned in a scatter plot diagram that is
divided into four quadrants distinguishing between four different types of method
elements (regarding their value):

Software Process Improvement Based on the Method Engineering Principles 295

• A useless method element is both technically and socially unsuitable. Different
reasons for such unsuitability can be identified. For instance, unsuitability can be
caused by constant technology change that eventually renders a method element
technically unsuitable. Consequently, developers stop using the element, which
finally results in its complete unsuitability. Alternatively, an element might have
been technically unsuitable from the beginning and therefore never used.

• An inefficient method element is socially suitable, but does not suit technical
needs of a project or an organisation. For instance, these can be method elements
that have been technically suitable in preceding projects and are well adopted
among users, but are technically inappropriate for the current project.

• In contrast to an inefficient element, an unadopted method element is technically
suitable, but its potential users do not use it because it is socially unsuitable.
Many reasons why potential users do not adopt a technically efficient method
element can be identified. The element might be overwhelmingly complex, it
might be difficult to present advantages of its use to the potential users, it might
be incompatible with existing user experience and knowledge, etc.

• A useful method element is socially and technically suitable. Such method
element is adopted among its users and suits technical needs of the project and
the organisation.

A method element that is perceived as not suitable can be improved by using
different improvements scenarios. These depend on the quadrant where the element
is positioned. In case of an inefficient method element (see Fig. 3, arrow A.), its
technical suitability should be improved and social suitability retained. Since users
already adopted the element, it should be modified only to the extent that it becomes
technically efficient again. In case of an unadopted but technically suitable method
element (see Fig. 3, arrow B.), the causes for element's rejection among its potential
users should be explored. For instance, potential users of the element might lack
knowledge and experience to use it. Consequentially the improvement should focus
on training of element's potential users rather than on altering the element. In case of
a useless element (see Fig. 3, arrow C.) that is both socially and technically
unsuitable the most reasonable action would be to replace or discard it completely.
Most likely a technically and/or socially more suitable element can be found or the
element is not needed at all.

After application of improvement scenarios most method elements are expected
to move to useful method elements quadrant, though some of the elements might still
need further improvements or even replacement.

Two distinctive qualities of the proposed model can be identified. Firstly, it
simultaneously considers social and technical suitability of a method; and secondly,
it facilitates evaluation on a scale of a single method element. These allow a software
development organization to observe value of its method in detail, to identify
technically and/or socially inappropriate parts, and to create customized
improvement scenarios based on the evaluation of each method element. For the
detailed information on the method evaluation model please see [18] and [25].

296 Marko Bajec, Damjan Vavpoti6, Stefan Furlan and Marjan Krisper

5 Conclusions and further work

In this paper we presented a framework for reengineering software development
methods. Using the framework organisations can reengineer their existing ways of
working and establish formalised methods that are organisation-specific and auto-
adjustable to specifics of their projects.

In respect to the method engineering field the contribution of the framework
should be seen in the integration of the method engineering principles within the
software process improvement scenario. This way we assure the improved methods
are not rigid but adjustable to specific circumstances. Furthermore, the framework
encapsulates activities for continuous method evaluation and improvement based on
the organisation's technical and social characteristics. Specifically the latter have
been very often neglected by the traditional approaches to method engineering.

There are several directions in which we tend to continue the existing research
work. Firstly, we wish to extend the framework to cover not only the creation and
configuration of software development processes but rather arbitrary IT processes or
even business processes. The research on this subject has started and is reported in a
separate paper submitted to this conference. Next, we wish to improve the
framework by incorporating a repository of best practices in software development
which will facilitate (following assembly-based method engineering principles)
semi-automatic creation of base methods. Finally, our goal is to employ the
framework, specifically the method configuration phase, in the research project
aimed at software development in rapidly created virtual teams.

6 References

1. C. J. Hardy, J. B. Thompson, and H. M. Edwards, The use, limitations and customization
of structured systems development methods in the UK, Information and Software
Technology, 37(9), 467-477 (1995).

2. M. Huisman and J. Iivari, The individual deployment of systems development methods,
Lecture Notes in Computer Science, (Springer 2348, 134-150, 2002).

3. M. Huisman and J. Iivari, The organizational deployment of systems development
methods, Information Systems Development: Advances in Methods, Components, and
Management, (Kluwer 87-99, 2003).

4. B. Fitzgerald, An empirical investigation into the adoption of systems development
methods, Information & Management, 34(6) 317-328 (1998).

5. P. Middleton, Managing information system development in bureaucracies, Information
and Software Technology. 41 (8), 473-482 (1999).

6. L. Mathiassen, Collaborative practice research. Information Technology and People, 15,
321-345 (2002).

7. M.C. Paulk, B. Curtis, M. B. Chrisis, C. V. Weber, Capability Maturity Model for
Software, version 1.1, CMU/SEI-93-TR-24, February, Software Engineering Institute
(1993).

8. R. S. Pressman, Software Engineering: A Practitioner's Approach. McGraw-Hill, New
York (2004).

9. D.E. Harter, M. S. Krishnan, S. A. Slaughter, Effects of process maturity on quality,
cycle time, and effort in software projects. Management Science April 46 (4), 451 (2000).

Software Process Improvement Based on the Method Engineering Principles 297

10.M.J. Parzinger, R. Nath, R., A study of the relationships between total quality management
implementation factors and software quality. Total Quality Management 11 (3), 353-371
(2000).

11. F. Harmsen, S. Brinkkemper, and H. Oei, Situational Method Engineering for IS Project
Approaches, in: Methods and Associated Tools for the IS Life Cycle, edited by A. Verrijn-
Stuart and T. W. Olle (Elsevier, 1994), pp. 169 - 194.

12. S. Brinkkemper, K. Lyytinen, and R. J. Welke, Method engineering: principles of method
construction and tool support. Conf. on Principles of Method Construction and Tool
Support, selected papers. Edited by S. Brinkkemper, K. Lyytinen, and R. J. Welke,
(Kluwer Academic Publishers, Boston, MA, 1996).

13. J. Ralyt6, R. Deneck6re, and C. Rolland, Edited by J. Eder et al, Towards a generic model
for situational method engineering (CAiSE 2003), Klagenfurt, Austria, June 16-18, 2003,
(Springer, Haidelberg, 2003), pp 95-110.

14. F. Karlsson, and P. J. /kgerfalk, Method configuration: adapting to situational
characteristics while creating reusable assets, Information and Software Technology, 46(9),
619-633 (2004).

15. M. B. Ayed, J. Ralyte, C. Rolland, Constructing the Lyee method with a method
engineering approach, Knowledge-Based Systems 17(7-8), 239-248 (2004).

16. M. Bajec, D. Vavpoti6, M. Krisper, Practice-driven approach for creating project-specific
software development methods, Information and Software Technology, 49(4), 345-365
(2007).

17. M. Bajec, D. Vavpoti6, and M. Krisper, The scenario and tool-support for constructing
flexible, people-focused systems development methodologies, in: Proc. ISD'04, Vilnius,
Lituania, (2004).

18. D. Vavpoti6, M. Bajec, M. Krisper, Measuring and improving software development
method value by considering technical and social suitability of its constituent elements, in:
Advances in theory, practice and education: proc. of the 13th Inter. Conf. on 1S
Development, edited by O. Vasilecas, J. Zupan6i6, (Technika, Vilnius, 2004), pp. 228-238.

19. CMU/SEI-2002-TR-029, Capability Maturity Model ® Integration (CMMISM), Version
1.1. SEI., (2002)

20. ISO/IEC-15504, Information technology - software process assessment, (1998)
21. ISO/IEC-FCD-9126-1, Software product quality- Part 1: Quality model, (1998)
22. E. M. Rogers, Diffusion of innovations, (Free Press, New York, 2003).
23. I. Ajzen, The Theory of Planned Behavior, Organizational Behavior and Human Decision

Processes, 50, 179-211 (1991).
V. Venkatesh, and F. D. Davis, A theoretical extension of the Technology Acceptance Model:

Four longitudinal field studies, Management Seienee 46(2), 186-204 (2000).
24. D. Vavpoti6, M. Bajec, M. Krisper, Scenarios for improvement of software development

methodologies, in: Advances in information systems development. Vol. 1, Bridging the
gap between academia and industry, edited by A.G. Nilsson, R. Gustas, W. Wojtkowski,
W.G. Wojtkowski, S. Wrycza and J. Zupancic, (Springer, New York, 2006), pp. 278-288.

Defining a Scope for COTS Selection Methods

Fredy Navarrete, Pere Botella and Xavier Franch
Universitat Polit~cniea de Catalunya

~navarrete, botella, franch}@lsi.upc.edu
http://www.lsi.upc, edu/-gessi

Abstract. The specification of a methodology defines a set of procedures and
techniques that are associated to a specific domain. As part of this
specification, it is advisable to establish a scope that allows identifying the set
of roles and activities that should be covered to develop a life-cycle for a
specific domain. If such a scope is not clearly defined in a methodology, some
problems may arise, e.g., the set of roles in charge of carrying out the
processes may lack of coordination, cooperation, and communication during
the development of the life-cycle for the domain. In the Commercial Off-The-
Shelf (COTS) components selection domain, there are currently different
methodologies which define procedures and techniques to select or to license a
COTS component from the marketplace. The application of these COTS
selection methods results in processes that are different from usual
development ones, yielding to new activities and responsibilities that should be
defined in a scope which covers the interactions of specialized roles. However
it may be observed that these methods do not put emphasis neither on the
identification of these roles, nor on their subsequent interactions, nor on their
combination to form a selection team. Furthermore, activities differ from one
method to another. The contribution of this work is to define a scope for COTS
selection processes, identifying and defining the undertaken activities, the
roles that take place, their interactions and their responsibilities, and to
organize a life-cycle around them. We use a goal-oriented approach, the i*
notation, and a framework to model the engineering process, the OPEN
Process Framework (OPF), with the purpose of issuing a well-defined work
team that can adapt itself to the internal processes of a particular organization.

1 Introduction

Commercial Off-The-Shelf (COTS) components are software components that may

be purchased or l icensed from the marketplace [13]. COTS-based systems require
some specific software activities, and among them C O T S components selection play
a crucial role [14]. In some previous work [1, 2], we studied some of the most
widespread C O T S selection methods (CARE [3], S C A R L E T [4], O T S O [5], EPIC

Please use the fiJllowing f~rmat when citing this chapter:

Navarrete, F., Botella, P., Franch, X., 2007, in IFIP International Federation for InFormation Processing, Volume 244,
Situational Method Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Brinkkernper, S., Henderson-Sellers B.,
(Boston Springer), pp. 298-312.

Defining a Scope for COTS Selection Methods 299

[6], STACE [7], PECA [8]) with the purpose of analyzing if the agile principles and
values briefed in the agile manifesto [9] influence them. We observed in this analysis
that neither the human factor, nor the conformation of a selection team, were clearly
defined within the processes suggested by those methods. But in fact, even a more
relevant observation not specifically bound to this agile perspective, was concluding
that COTS selection projects need specific roles and new activities to support a
successful selection [10] but that in fact we may say that current methods either do
not address this issue because they emphasise the analysis of the artifacts generated
during the process, or they just outline some general recommendations but do not
provide a comprehensive framework.

To tackle this point, we may recall that a methodology specifies a set of
procedures, techniques, rules, and postulates employed by a discipline [11] which
influences the development of a specific domain. In [12], Cockburn proposes to use
structural terms (Process, Milestones, Quality, Activities, Teams, Products,
Techniques, Roles, Standards, Tools, Skills, Personality and Team Values) to
embrace a methodology to be applied to any team endeavour. Some of these
structural elements are defined by a specific Scope. Cockburn defines the scope of a
methodology as: ...consists of the range of roles and activities that it attempts to
cover [12]. Then, he characterizes the scope of a methodology along three axes:

o Role coverage: describes the set of roles that fall into the coverage of a
methodology.

o Activity coverage: defines which activities of a specific project fall into the
coverage of the roles in a methodology.

o Life-cycle coverage: mainly, specifies the coverage of a methodology over a
life-cycle in a specific project.

Therefore, our attempt to clarify which are the roles, activities and life-cycle
specifities in the domain of COTS components selection, may be rephrased as
identifying and defining a scope for COTS selections methods, and this is the goal of
our paper. Building such a scope requires taking into account the concrete roles and
the main activities that must be assigned to cover a life-cycle of COTS selection
processes. To define formally a scope for COTS selection methods, we have started
by modelling COTS selection processes in a high level, to identify their main
activities. We have used a process-focussed OO methodology, the OPEN Process
Framework (OPF) [15], to formalize these activities. Next, we have identified the
roles proposed by current COTS selection methods, describing some activities that
they do not cover. Next, we have used a widespread goal-oriented notation, the i*
framework [16], to put together the roles conforming a selection team, and to state
the interactions among these roles, and also among the selection team and its
environment, obtaining a scope from a highly strategic perspective. Finally, we have
considered the life-cycle perspective in order to complete the scope.

2 The Activity Dimension in the COTS Selection Scope

In some recent work [2] we have identified the most relevant processes that
appear during COTS selection methods, we have decomposed these processes into

300 Fredy Navarrete, Pere Botella and Xavier Franch

tasks, and finally we grouped these tasks into five categories. We summarize the
result in this section.

2.1 Market Exploration

The COTS marketplace is composed of different kinds of technology segments
from which COTS components are acquired or licensed. Currently, we may find a
significant quantity of COTS information from the marketplace. Nevertheless, the
market dynamics and continuous updates of COTS components, makes this
information obsolete quickly. For this reason, we need selecting the necessary
information produced in the market exploration process taking into account the
provider information, the COTS component features themselves, and other aspects
that we can reuse. In Table 1, we summarize the main activities undertaken in the
market exploration process.

Table 1. MARKET EXPLORATION ACTIVITIES

It identifies the candidate components fiom the market,
classifying them into suitable categories and domains that fit to
main requirements of the problem at hand.

It identifies ensembles of related COTS components from the
marketplace that conform to the required type of system.
This task analyzes the main aspects of vendors from the
marketplace.
Monitoring COTS vendors helps to establish relationships with
mutual benefit in which users and vendors work together with
each other.

2.2 Requirements Engineering

Requirements engineering applied to COTS projects heavily depends on the
dynamics and evolution of the components available from the marketplace. The
processes and technical tools that we use to steer the elicitation and specification of
requirements must try to adapt user needs to the real state of marketplace. In table 2,
we describe the main tasks involved in COTS requirements engineering.

2.3 System Architecture Analysis

Before integrating a component from the marketplace into a specific information
system, we must consider the constraints, restrictions and composition o f the system
architecture. For this reason, we need a system description to know the main features
over which we integrate the new components. In Table 3, we describe the five main
activities that take part of the system architecture process.

Defining a Scope for COTS Selection Methods 301

Table 2. REQUIREMENT ENGINEERING ACTIVITIES

~:~ : ~ : - ' , ° ~ ~ i" ~ t ~ , ' ~ ' . ~

This task comprises the set of activities necessary to carry out the
requirements formulation. Therefore, activities such as to identify
properly the user requirements, to hold a continuous requirements
analysis, and to negotiate the requirements with user
representatives, are essential acmqtms m COTS projects to
maintain the system architecture integrity, to understand the user
needs, and to seek suitable components from the marketplace.

It specifies the set of tasks necessary to compare the user
requirements against organizational goals. For this reason, the
market analysis is perforlned, identifying the suitable providers,
analyzing the specific market technology segment where the

organization technology is developed. Furthermore, user goals are
analyzed throughout the COTS pro.ject to preserve the user vision.

It includes the set of activities needed to manage properly user
requirements; for example, activities to negotiate, to store and to
control requirements are proposed.

This requirements engineering task produces and documents the
vision of user representatives about a required component.

Table 3. SYSTEM ARCHITECTURE ACTIVITIES

It is focused on seeking reusable elements and artefacts within the
system architecture. In order to carry out this task, we need an

architecture description timely updated.

Considering this task can help us to support and validate the
decisions that can impact over the system architecture

This task identifies Ihe set of features that compose the system
architecture, determining their advantages, restrictions, and
constraints against the user requirements.

The purpose of this task is gathering the architecture information
that we must store to obtain the component that we can reuse, and
the added functionality of the system components

This task preser,es the architecture integrity to be not violated
when we select or we integrate a new component in the system

architecture

2.4 Candidate Component Evaluation

As suggested in previous categories, we can find different components in the
marketplace that adjust to user requirements. The evaluation process must take into
account techniques and tools that help to discriminate between the different options.
The team that steers component evaluation must have either knowledge or
experience in the component domain under evaluation. Therefore, the team members
must be able to handle technical tools; besides, they must have a good understanding

302 Fredy Navarrete, Pere Botella and Xavier Franch

of the users' needs to evaluate components according to them. In Table 4, we
describe the main tasks performed in candidate component evaluation.

Table 4. CANDIDATE COMPONENT EVALUATION ACTIVITIES

Its responsibility is evaluating the COTS candidate component
features with respect to user requirements.
Ensembles of COTS candidate components which may be part
of the possible final solution are evaluated.

This task analyzes the impact of component candidates over
objectives of the business.
This represents the main aspects of possible vendors, which
influence component evaluation criterion.

2.5 Component Selection

We need considering different criteria to choose a suitable component, because
neither the most expensive component nor the cheapest one are necessarily the most
advisable components to integrate into the information system. There are a lot of
aspects that play a crucial role when selecting a candidate component, such as the
contract, the component aggregated functionality, the verification of the functionality
offered by the COTS vendor and the integration ability, among other factors. In
Table 5, we describe briefly the main tasks that are part of selection processes.

Table 5. COMPONENT SELECTION ACTIVITIES

It represents tile set of tasks to control and monitor the vendor repre-
sentati',e in the selection processes and component integration.
It undertakes the tasks to control the component performance during the
evaluation processes and selection. Besides. it proposes the control of
future versions and releases of selected components.
Its responsibility is measuring the impact of selected components over
the business goals.
It comprises the set of tasks fi~r discarding or selecting the candidate
components that are part of the possible final solution
This definition is relevant to maintain updated the changes of the system
architecture when the COTS components are selected for integration.

3 The Role Dimension in the COTS Selection Scope

After addressing the activity dimension of the scope, we cope with roles. The
situation is fairly different. Nowadays, the most used COTS selection methods have
their own set of practices and suggested processes and activities. But as we have

Defining a Scope for COTS Selection Methods 303

pointed out in previous work [1], these methods do not fully succeed in considering
individual motivations, as well as in defining the human factor, within their
suggested processes. In fact, building a work team is considered a secondary aspect
in conventional methodologies [19]. Although a set of roles is included in some
methods, they are more focused on the artifacts produced by the roles than on the
formalization of the specific scope and the composition of the team in which all the
roles will develop their activities. In table 6 we summarize the most relevant
statements about COTS selection roles found in these approaches [3, 6, 8, 20],
complementing them with some roles specified in the RUP-for-COTS proposal:, for
lack of space we have highlighted some roles that take part in the selection processes
and that not overlap with other roles [21].

Table 6. DEFINITION OF ROLES IN SEVERAL COTS SELECTION METHODS

er: complete and correct description of
mical background"
~fining the outline lbr the software
ng the baseline software architecture"
maintaining the component repository"
omplete and CO~Tect information about
iS'"

organization that acquires or procures a
,duct (which may be part of a system)

~r organization that performs
(including requirements analysis, design,

race) during tile life cycle process"
organization that enters into a contract
le supply of a software product (which
n) under the terms of tile contract"
evant COTS packages and vendors"
rsees the entire system and all t;actors that
pment'"
COTS package configuration

~ping between tile data sources and the

,'e technical experience"
cope and constrains of the evaluation"
ers: are those individuals or groups with
esults of a COTS evaluation..."

The roles of this set are mainly concerned on their work products, rather than
defining the interactions that take an important part at the moment of selecting a
COTS component. For example: in activities as "candidate component
identification", "business process modification", "update definition of system

304 Fredy Navarrete, Pere Botella and Xavier Franch

architecture", and "architecture production" (among others), the specific contribution
of all team members to develop these activities is not defined.

In the rest of the section, we propose a set of roles primarily based on Table 6 but
complemented with some missing roles covering the activities not included in
current COTS selection methods. As a result, we have identified nine specific roles
for COTS selection, which are identified in Table 7 with the following capital letters:

A System Architect: Defines the structure of the information system, identifying
constraints and technological specifications that compose it.

B Market Watcher: Explores the marketplace segments involved in the
undertaken selection process to find the candidate COTS components which
are to be evaluated and assessed with respect to user specifications.

C COTS Component Evaluator: Evaluates candidate COTS components which
are assessed with respect to user requirements using the appropriate
techniques. Experience in the component domain under evaluation is required.

D Requirements Engineer: Guides the elicitation, negotiation and validation of
user requirements. To do so, he or she needs a minimum technical background
and socialization ability.

E COTS Vendor Interface: Communicates with a particular COTS component
provider company, trying to involve it inside the project, looking for mutual
benefits of both parts.

F Stakeholder Representative: Someone who has an interest on the system-to-be
and, as a consequence, has an interest on the success of the selection process.

G COTS Data Expert." Evaluates and stores the information that is produced
during the process, part of which may be used in future selection projects
taking place in the same or similar domains.

H COTS Lawyer: Protects the company interests at the moment of acquiring or
licensing a component, collaborating in the writing and review of contracts.

| COTS Provider." for providing detailed information and demos of components
during detailed analysis.

In Table 7 we show the correspondence of those proposed roles with the ones
identified in Table 6 (each column stands for a role using the capital letters
introduced above). Besides this set of roles specific for COTS selection, other
transversal ones can be incorporated in the selection team. Among them, we consider
at least the Project Manager [22] and the COTS Quality Engineer. The existence of
these roles will be made explicit in the next section.

Once the roles that compose a COTS selection team have been identified, we
address the different interactions that may occur among them. With this purpose, we
use the i* framework [16] basically because of two reasons: 1) it includes roles as
part of its model elements; 2) it is possible to declare both high-level and low-level
interactions, using the same model element (dependencies). For this reason, we use
Strategic Dependency (SD) models to identify the Strategic Dependencies that arise
inside a selection team. We use the RiSD methodology to construct this SD model
[23], because RiSD suggests a construction guide and specific syntax for each
constructor of an SD model.

Defining a Scope for COTS Selection Methods 305

Table 7. MAPPING THE PROPOSED ROLES WITH EXISTING ONES

- ~ ~ ~ • Requirement engineer X
................ ~ Soflv,,are architect X ,:! {;¢ #:,>

Engineer component
i Component vendor

Acquirer
Developer
Supplier
Acquirer

~ . :{:~ . System architect
~, :::; !,.~: 4 ~ ! Designer

Data designer
Evaluator

• ': ~ ,::?:: :::~i:?! : : : Charter
Evaluation stakeholders

X X X

X

X X X

X X

X

X

X

X

X

X

X

In our scope, i* models consists of a set of nodes that represent roles and a set of
dependencies that represent the relationships among them, expressing that an actor
(depender) depends on some other (dependee) in order to achieve some objective
(dependum). The dependum is an intentional element that can be a: resource (a
physical or informational entity), task (particular way of doing something), goal
(condition or state of affairs in the world that the actor would like to achieve) or
sofigoal (a condition in the world which the actor would like to achieve, but the
criteria for the condition being achieved is not sharply defined a priori, and is subject
to interpretation) [16, 23] (see Figure 1 for a legend).

A C T O R

G O A L

T A S K

A C T O R
B O U N D A R Y

R O L E

S O F T G O A L

R E S O U R C E

D E P E N D E N C Y
L I N K

Fig. 1. Graphical representation of i* constructs.

In Figure 2 we can observe the SD model that identifies the interactions among
the members of a selection team. In the model we may distinguish the selection team
(whose boundary is drawn in green) that contains the different roles defined in
previous sections. Furthermore, some external actors appear, which represent the
environment in which the selection team operates: the Organization interested in the
selection, the Information System under construction, the COTS Marketplace and the
Vendor Representative company. Dependencies among these actors and the roles
inside the selection team are also included in the model.

We explain next, the most important interactions that appear in the model (we
use the capital letters to identify the abbreviations of each role):

306 Fredy Navarrete, Pere Botella and Xavier Franch

- Stakeholder Representative (UR): depends on Requirements Engineer to
validate his/her requirements, because the Requirements Engineer must
negotiate and steer the user needs.

- System Architect (SA): depends on Market Watcher to compare the candidate
components with the system architecture, for this reason the Market Watcher
has to explore the marketplace to find components that will be evaluated.

- Requirements Engineer (RE): depends on Stakeholder Representative to
negotiate user requirements, because the Stakeholder Representative has to
adapt his/her requirements to the market.

- COTS Component Evaluator (CE): depends on Market Watcher to evaluate
candidate components, because the Market Watcher must explore the
marketplace to find components to be evaluated.

- Market Watcher (MW): depends on Requirements Engineer to locate the
candidate components, since the Requirements Engineer must define user
requirements with the purpose of driving the component search in the market.

- Vendor Representative (VR): depends on COTS Vendor Interface to answer
to the organization needs, since the COTS Vendor Interface is the
communication bridge between the organization and the provider.

n f o r m a t l o n
M a r k e t p l a c e Systen-

/ ~ S e l e c t i o r
/ / - T e a l n

S y ~ t e r r - S y s t e r r
a r c h i t e c t u r e a r c h i t e c t u r e " " " ~

/ d e f i n e d . . . u p d a t e c P r o j e c t - , - , ~
- - p e r f o r m a n c e

/ " m a n a g e ~
/ S y s t e r r - - - - - - - - - \

/ A r c h , f e e t S e l e o t i o r 8 e h a v t o u t " N
E x p l o r e tearr P r o l e c l a d j u s t e d of - -L~s~fOT s e g m e n t s -. m a l ~ g e a _

/ O f m a r k e . M a n a g e r - s e t e c t l o r i n f o r m a t i o n
tear r / stored

+ " T i m e est~rTlatec +j ' - ' " " ~
• C o m p o n e n t s C o m p a r e c a n d i d a t e s o f s e l e c t i o n ~ Main{a iR+ ,
: C O T S c o m p o n e n t s V s p r o c e s s e . ~ p r o j e c t , ~ "

/ pro=video s y s t e m a rch i tec tu re i n f o r m a t i o n

C O T S C O T S
V e n d o r Qua l i t y
n t e r f a c e . , . C o m p o n e n t s E n e n e a r

/ " p(c a n d l d a t e ' ~ " "
M a r k e t e v a l u a t e d C O T S

. Dat~
W a t c h e r . . Q u a l i t y E x p e r t

- C a n d i d a t e s a t t r ibu tes
Cb-rr~ W~u h i c a [e corn o n e n t s d e f i n e e "

- p r o v i d e r . s e l e c t e d --- ~ - - - . - ~ - - - - - -
- - - R a n k e d

o p i n i o n s C o m ~ n ~ R t S e v a l U a t l o r

M u t u a C o m m u n i c a t e d e D e n d e n ~ e ~ V a l i d a t e
b e n e f i t s p r o t e c t def ine(:

canq~date. -
. s o u g h t r ~ u i r e m e n t s C O T S c o m p o n e n t ~

C o m p o n e n l

C o m p o n e n t E v a l u a t o r /
i n f o r m a t i o n

o b t a i n e d / -" - U s e r s - " U s e r
r e q u i r e m e n t s R e p r e s e n t a t l v ~

;- • d e f i n e ~ . /
/

N e g o t i a t e /
U s e r s

, r e q u i r e m e n t s
/

__ _ V a l i d a t e /
r e q u i r e m e n t s /

/

U s e r s n e e d s
r e p r e s e n t e c

\
\

V e n d o l
R e D r e s e n t a t l v (\

\
\ -

%%~ ~
r e p r e s e n t e {

~ p r o t e c t e d

ReClu l rements
E n g neer

V V t l t e a n d
r e v i e w

c o n t r a c L ~ J - _ _ " /

O r g g ~ | i o r C O T S /
we l f a r~ L a w y e r /

J /

C O T S O r g a n l z a t l o r
Prov iders

Fig. 2. Interaction of roles in a strategic i* model.

Defining a Scope for COTS Selection Methods 307

- COTS Vendor Interface (VI): depends on Vendor Representative to
communicate him/her the project requirements, because the Vendor
Representative can provide information to select a suitable component.

- COTS Lawyer (LW): depends on Vendor Representative to write and review
the acquisition contracts since the Vendor Representative is the owner of
components that the organization wants to acquire or license.

- COTS Quality Engineer (QE): depends on the whole selection team to
estimate the time for each process, because the selection team has the
knowledge for doing this task.

- COTS Data Expert (DE): depends on the whole selection team to store useful
information, since the selection team must take advantage of this information.
Project Manager (MN): depends on the whole selection team, because only
with its help, the project manager can achieve his objectives.

4 Defining a scope formally

In this section we aim at fonnalising the scope for COTS methods, defining the roles
and the activities to cover the main selection processes. To do so, we use OPEN, a
framework consolidated in the field of process modelling. OPEN was created by a
group of methodologists, researchers, tool vendors and practitioners [17], which
includes concepts bound to business modelling, business decision making,
maintenance, and application development. Our main purpose is to take the OPEN
processes repository defined in [18] (OPF, the Open Process Framework) making
stress in the activities that should be undertaken to carry out COTS selection
processes, which belong to the five categories mentioned in section 2. On the other
hand, in OPF, the roles compose teams and these teams are part of organizations; for
lack of space, we focus on the roles hierarchy without specifying what kind of
organizations or what kind of teams the roles compose.

In Figure 3, we present our COTS selection role hierarchy. We identify which
roles are taken from the OPF (shaded boxes) and which are specific COTS selection
roles (thick-lined boxes). These roles are classified according to two kinds of OPF
roles, Internal Role ("it is a producer internal") and External Role ("# is a producer
external, outside of the work product to be developed but it is relevant to the
development process"). As a class of External Role, OPF proposes the
Representative abstract class, which corresponds to a person that represents a
specific type of organization or group of people that have common interests. Some of
the roles identified in the previous section are defined as concrete classes that inherit
directly from Representative:
o Vendor Representative (OPF), is a representative of the COTS provider

company, with the purpose of providing detailed information and demos of
components, among others benefices;

308 Fredy Navarrete, Pere Botella and Xavier Franch

z~x
I I

/X
I I EL~< ernal Role [Intenlal Role [

abstract>> I <<abstract>>
4x

Fig. 3. Formalization of COTS selection roles using the OPF.

o User Representative (OPF), representing the needs of the stakeholders in the
selection team;

o COTS Lawyer (COTS), this class inherits from Partner Representative (OPF)
the knowledge about the contracts that are carried out with the Vendor
Representative (OPF);

o COTS Vendor Interface (COTS), this class makes part of organization that
requests a component, thus it inherits from Customer Representative (OPF);

o Market Watcher (COTS), this class inherits from two OPF classes: as a
representative, it inherits from Marketing Representative (OPF), because it uses
the knowledge about the marketplace where the organization technology is
developed; as an Engineer (OPF), it needs technical skills to perform
marketplace exploration, e.g. classifying technological segments therein.

On the other hand, among the Internal Roles, we find in OPF three abstracts classes
of interest for our work. The first of them is Engineer, and as descendants we define:
o Requirements Engineer (O P F) ;
o COTS Quality Engineer (COTS), helps in the definition of quality attributes of

COTS components. This class inherits from Quality Engineer (OPF) the skills to
provide improvement and time estimates of each selection activity;

o COTS Data Expert (COTS), this role inherits from Database Engineer (OPF),
Technical Writer (OPF) and Database Architect (OPF) because is the role for a
person who creates, maintains and plans the data structure that will support the

Defining a Scope for COTS Selection Methods 309

information that somebody can reuse inside the project or in future projects (for
the project it is very important storing the information that someone can use
without documenting each process excessively);

o COTS Component Evaluator (COTS) and Market Watcher (COTS) are very-
specific COTS roles that we define them as direct heir of Engineer.

The next abstract class that inherits from Internal Role is Manager (OPF), which
makes reference to the administration activities carried out by a person. We find a
class that inherits from Manager:
o Project Manager (OPF), which corresponds to the person in charge of

representing the selection team at the organization. A person playing this role
drives the work team through the selection process. This class inherits from
other abstract class Endeavor Manager (OPF), because this class has the
necessity of carrying out the project goals.

The final abstract class that inherits of Internal Role is Architect, which makes
reference to the person that produces a specific architecture. We can find a concrete
class in this hierarchy:
o System Architect (OPF), because this class has to describe the structure of

information system.
With the model depicted in Figure 4, we are able to identify the abstract activities

that roles must undertake during specific projects, where concrete activities have a
set of task to make a work (Work Unit) during COTS process, and where we can
classify them to be reused in future projects.

i Work Unil
<<abstract>> I ,_x

Activity [] Task]
" [<<abstract>>lO-----I <<abstract>>l

Alvhitecnllv Archileetu~ Arcltit~tu~ Archlt~tur¢
I I[,ro,o p,n, II ' I
[<<cone~te>>[I <<conerete>>ll <<concrete>> I I Assur~ce I

Engineer Task I I
Busines~ Requiremenl e ul e en Visiol)
Analysis Elieitatior M~agemen~ <<abstract>>

<<abstract>> <<abstract >> <<abstract>>

I i
Cm,didate C C o<nlp;o2eI~tV>7o'

[C°m~P~<ene::rElreal>u:>ati°r] CatldidJtsol<ut<icOnn~ e~leu>ati°~ I I lm<p<acCot~cA~ntlv>~sP <<A*~:elyms~es>>lV

C- l ik)7/

C o mponoenctr eSteel>e c>t i o n < I] I j I L ~ I I Component V~ldo/ Compon~ll Business Pro~s= Componenl pdate oefillitiml of
<Mc°n~ct °crlen>g > <Mc°nniet r°;~e ~ > <M< e° od~cl rCealt ie°>ll > <SceoleCtin ~ / S" st<e~¢Ancr~lel~et 7>~u~

Fig. 4. Formalization of activities using the OPF.

3 l0 Fredy Navarrete, Pere Botella and Xavier Franch

6 Life-cycle coverage

COTS selection processes are continuous processes, and usually they arrive at their
end when the development of the information system under study does not evolve
across the time. For that reason, the interaction of the roles during the life-cycle of an
information system is constant. Therefore, we want in this section to represent the
continuous movement of COTS process as a kind of orbital system, with activities
gravitating around the project at the center, where capital letters SA represent
software architecture, RE requirement engineering, M E market exploration, CE
component evaluation, and CS component selection (see Figure 5).

- J J - ? D - J - - -

/"D"/b,-~
/ / . , . ,p , '>1 r

\.?--'--~>.-27

Fig. 5. Life-cycle coverage and roles coverage.

SCOPE

In COTS projects it is common that we can select more of one COTS component
from the marketplace. Therefore, the scope defined within a specific project (role
coverage, activity coverage, and life-cycle coverage) helps us to know in an explicit
time instant T, the set of roles and the activities that are adaptable to the needs of
project. For instance, in a time T1 within a COTS project X, the priority can be
centered in the component evaluation, and the second level of importance could be
the definition of the system architecture to obtain a successful selection, because the
market exploration and the requirement engineering have been performed and they
have been controlled for a time T1. I f we have defined previously a scope for our
project, we can obtain for a time T1 a life-cycle coverage, role coverage, and activity
coverage to develop our COTS project, and doing so we gain in knowledge and
learning over the process carried out.

Defining a Scope for COTS Selection Methods 311

sCOPF , ,,

'~. / d • [PROJECTX 1 '\, ,.,.. J '~ "', ,

Fig. 6. Identifying a scope for a specific time 7"1

7 Conclusions

There are several COTS selection methods available, but they do not define formally
the interactions among the roles and the activities needed to cover the life-cycle in
the COTS projects. For this reason, we have proposed the definition of a scope to
improve the process engineering perspective of those methods. Defining and
identifying the roles and the activities that may be needed in COTS selection projects
provides an improvement in the maturity of COTS processes and helps to identify
the endeavors that are needed during the COTS project development. The use of
formal or at least rigorous frameworks such as OPF and i* has been of great help to
identify the roles and the activities involved in selection processes, and as a result,
we have defined the roles and the activities identified in the previous section by
contextualizing them in the OPF.

Our research agenda primary includes the definition of a COTS selection method
built upon our presented proposal, based in a model able to consider what scope is
necessary for a whole COTS-based development life-cycle.

References

1. Navarrete, F., Botella, P., Franch, X. "How Agile COTS Selection Methods are (and can
be)?" in Proc. Euromicro 2005. Porto, Portugal.

312 Fredy Navarrete, Pere Botella and Xavier Franch

2. Navarrete, F., Botella, P., Franch, X. "Reconciling Agility and Discipline in COTS
Selection Processes" in Proc. Commercial-off-the-Shelf (COTS)-Based Software Systems,
2007. ICCBSS '07.

3. Chung, L. Cooper, K. Courtney, S. "COTS-Aware Requirements Engineering and
Software Architecting" in Proc. SERP 2004.

4. Maiden, N. Kim, H. Ncube, C. "Rethinking Process Guidance for Selecting Software
Components" in Proc. 1 st ICCBSS, LNCS 2255, 2002.

5. Kontio, J. "A Case Study in Applying a Systematic Method for COTS Selection" in Proc
18th Intl' ICSE, 1996.

6. Albert, C. Brownsword, L. "Evolutionary Process for Integrating COTS-Based System
(EPIC): An Overview". Carnegie Mellon University, Software Engineering Institute
CMU/SEI-2002-TR-099 ESC-TR-2002-009, July 2002.

7. Kunda, D. "STACE: Social Technical Approach to COTS Software Evaluation" in Proc.
Component-Based Software Quality - Methods and Techniques, LNCS 2693, 2003.

8. Dorda, C. Dean, C. Morris, E. Obemdorf, P. "A Process for COTS Software Product
Evaluation." in Proc. 1st ICCBSS, LNCS 2255, 2002.

9. Beck, K., et al. Manifesto for Agile Software Development. Available at:
http://www.agilemanifesto.org

10. Ncube, C. Maiden, N. "PORE: Procurement Oriented Requirements Engineering Method
for a Component-Based System Engineering Development Paradigm." in Procs. 2nd
International Workshop on Component-Based Software Engineering (CBSE), 1999

l l. Merriam-Webster, On-Line Dictionary http://www.m-w.com/dictionary/methodology.
Last Update April 2007.

12. Cockburn, A. "Agile Software Development". Addison Wesley 2000-2001.
13. Meyers, B., Oberndorf, P., Managing Software Acquisition: Open Systems and COTS

Products, Addison-Wesley, 2001.
14. Finkelstein, A., Spanoudakis, G., Ryan, M., "Software Package Requirements and

Procurement", in Procs. 8th IEEE IWSSD, 1998.
15. Firesmith, D. Henderson-Sellers, B. Graham, I. "OPEN Modeling Language (OML)

Reference Manual". Cambridge Univ. Press, New York, 1998.
16. Yu, E. "Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering" in Proc 3rd IEEE Int. Syrup. on Requirements Engineering, RE'97.
Washington, USA.

17. Henderson-Sellers, B. "The OPEN framework for enhancing productivity" Software, IEEE
17(2), March-April 2000 Page(s): 53 - 58

18. Firesmith, D. Henderson-Sellers B. Graham, I. OPEN Process Framework (OPF).
Available: http://www.opfro.org/. Last update April 2007.

19. McBreen, P. "Questioning Extreme Programming". Addison Wesley, 2003.
20. IEEE recommended practice for software acquisition, IEEE Standard 1062, 1998.
21. Pannone, R. Peraire. C. "The IBM Rational Unified Process for COTS-based projects: An

introduction". Available at: http://www-
128.ibm.com/developerworks/rational/library/aug05/peraire-pannone/

22. Albert, C. Brownsword, L. "Evolutionary Process for Integrating COTS-Based System
(EPIC): An Overview". Carnegie Mellon University, Software Engineering Institute
CMU/SEI-2002-TR-099 ESC-TR-2002-009, July 2002.

23. Grau, G., Franch, X., Mayol, E., Ayala, C.P., Cares, C., Haya, M., Navarrete, F., Botella,
P., Quer, C.. "RiSD: A Methodology for Building i* Strategic Dependency Models". In
Proc 17th International Conference on Software Engineering and Knowledge Engineering
(SEKE), 2005.

Developing a Reference Method for Game
Production by Method Comparison

Inge van de Weerd, Stefan de Weerd and Sjaak Brinkkemper
Department of Information and Computing Sciences, Utrecht University,

PO Box 80.089, 3508TB Utrecht, The Netherlands
{i.vandeweerd, sweerd, s.brinkkemper}@cs.uu.nl

WWW home page: http://www.cs.uu.nl/

Abstract. In this research, we use a formal method comparison approach to
construct a reference method for game production. First, we analyze four game
production methods by using a meta-modelling technique: three documented
methods and one method obtained via a case study at a game production
company. By developing a super method, containing all activities and concepts
of four analyzed methods, we compare the four methods. Based on the super
method, a reference method is constructed to give a complete overview of all
possible steps and deliverables in a game production process: the reference
method for game production.

1 Method Comparison

Several motives exist for evaluating and comparing methods. In literature many
reasons are listed; see for example [1] and [2]. We can order these motives according
the point of view form the actor that is involved. From the method user 's point of
view, method comparison can aid in selecting the best method for a particular
situation. A tangle of methods exists in the IS development world. To know which
method is best in a certain situation, one has to now the strengths and weaknesses of
candidate methods. Furthermore, method users might want to use a tool to support
their method. Method comparison makes it easier to select the right tool.

From the developer or researcher's point of view, comparing methods leads to a
better understanding of methods and their rationale. Also, existing methods can be
improved and new situational methods can be assembled. Ultimately, it allows the
researcher to develop a reference method, which can be used to identify the
similarities and differences between the various methods in a systematic way.

Several empirical and non-empirical approaches exist for method evaluation [1].
Empirical approaches for method evaluation are often time-costly. A laboratory
setting, for example, is almost unfeasible. Case studies take a lot of time to get

Please use the following format when citing this chapter:

van de Weerd, I., de Weerd, S., Brinkkemper, S., 2007, in IFIP International Federation for Information Processing,
Volume 244, Situational Method Engineering: Ftnldamentals and Experiences, eds. Ra13¢6, J., Brhlkkemper, S.,
Henderson-Sellers B., (Boston Springcr), pp. 313-327.

314 Inge van de Weerd, Stefan de Weerd and Sjaak Brinkkernper

enough case studies for a reliable result. Another drawback from some empirical
approaches is that the evaluation of the method can be highly influenced by the
performers and their experience, and the domain or project in which the method is
used. Non-empirical methods are in general less time-costly.

In this paper we use a qualitative and formal approach to develop a reference
method for game production; namely a comparison approach based on conceptual
differentiation of meta-models, as described in [3]. In this comparison, we compare
three documented methods for game production. A fourth method is obtained via a
case study at a game developer company. We develop a super method, based on the
four analyzed methods, which we use for the method comparison. Finally, we
construct a reference method that can be used to a) give an overview of the steps and
deliverables in a game production process, b) develop a uniform terminology field
within the game production domain, c) serve as input for a public knowledge
infrastructure on development methods, and d) give recommendation to the game
production company that was researched in the case study.

The remainder of this paper presents our approach to the development of the
reference method. Related work in the method engineering and method comparison
domain is described in Section 2. Then, in Section 3, we describe our approach. We
present the resulting reference method for game production in Section 4, and discuss
the results in Section 5. Finally, in Section 6, we present our conclusions and future
research.

2 Related Work

Siau and Rossi [1] give an extensive overview of empirical and non-empirical
method evaluation techniques. They distinguish the following empirical techniques:
surveys, laboratory experiments, field experiments, case studies and action research.
The non-empirical methods are: feature comparison, recta-modeling, metrics
approach, paradigmatic analyses, contingency identification, ontological evaluation
and approaches based on cognitive psychology. They state that none of these
techniques is inherently superior to others, but that the choice to use a certain
technique should be based on the research questions, the environment, the strengths
of the researchers, and the opportunities available. Also Fettke and Loos [2] compare
the different approaches on evaluation. They propose a framework for the multi-
perspective evaluation of frameworks, in which the same perspectives as Siau and
Rossi are used. However, the framework is extended with an economic-based
evaluation, a master reference model-based evaluation, and a plain text-based
evaluation.

In [3], a formal approach to the comparison of six object-oriented analysis and
design methodologies is presented. From all six methods a meta-process model and a
meta-data model is created in order to obtain a uniform and formal representation of
the methods. The meta-models are then used to compare the analysis and design
steps, the concepts, and the techniques provided in each method. The result is a set of
tables that reveal the similarities and differences between the methods.

Developing a Reference Method for Game Production by Method Comparison 315

Several method comparison frameworks have been developed; see for example
the ACRE framework for selecting the right requirements acquisition method [4], the
Method Characteristics Framework for evaluating information engineering methods
[5], and the Cataloging Framework for software development methods [6]. All these
frameworks use a number of features or properties which are used to characterize the
methods.

3 Method Comparison: A More Formal Approach

In this section we describe the approach that we followed to come to a systematic
method comparison. The approach we use was first applied in [3] for the comparison
of Object-Oriented methods as described in Section 2.

3.1 Approach

Based on the formal approach for method comparison, proposed by Hong, van den
Goor and Brinkkemper [3], we use the following steps to come to a complete method
comparison:
1. Method selection

In this research we compare four methods. Three of these methods are
documented in game production literature, namely Game Development and
Production [7], Introduction to Game Development [8], and The Game
Production Handbook [9]. The reason for this choice lies in the fact that all three
books are written from a management perspective, rather than a technical
development perspective. All three methods have received good reviews and
they complement each other in the topics that are covered. The fourth method is
proprietary method used at a game production company.

2. Method modeling
For the analysis of methods, we use process-deliverable diagrams (PDDs), a
meta-modeling technique that is based on UML activity diagrams and UML
class diagrams. This meta-modeling technique is clear, compact and consistent
with UML standards. The resulting PDDs models the processes on the left-hand
side and deliverables on the right-hand side, see for examples figure 1 and 2.
Details on this modeling technique can be found in [10] and [11]. The process
and deliverables are explained by accompanying activity and concept tables, in
which all activities and deliverables are described.

3. Development of super method
The four methods, modeled in PDDs, are decomposed in activities and concepts.
From both activities and concepts a comparison table is created that lists all
activities and concepts of all four methods, using a similar approach as is
described in [3].
Comparison of methods
The method comparison is performed by filling in the fields in the comparison
tables with comparison symbols: an '= ' symbol to indicate that the concept or
activities are the same; the '< ' and '> ' symbols to indicate whether an activity in

4.

316 Inge van de Weerd, Stefan de Weerd and Sjaak Brinkkemper

the super method comprises more or less than the activity in the concerning
method; and the '><' symbol to indicate that the activity in the supermodel
partly overlaps the activity of the process model. In case a field in the
comparison table is left blank it means that the activity or concept is not present
in the concerning method.

The comparison is as formal as can be at the moment at a large scale. Even more
formal would be that all concepts tabulated in step 2 are formally described using an
ontological language like [12]. The activities of step 2 can be sequentially formalized
as manipulations (create, modify, delete) of concepts. Then, the comparison of
concepts and activities can be executed at the m o s t formal level. However, it is
debatable whether this most formal comparison would really provide valid results, as
the field of game production is young and dynamic, which makes the formal
comparison outdated the moment it is presented.

3.2 Meta-models of documented methods

In this section, an overview is given on the game development methods derived
from the theories in the three books. Altogether, the analysis of game development
methods resulted in 13 PDDs.

Chandler [9] describes in 'The Game Production Handbook' four main processes
in the game production cycle. These are Pre- Production, Production, Testing and
Post-Production. The pre-production phase encompasses the definition of the game
concept, the definition of the game requirements and the definition of the game plan.
After pre-production there is production, in which builds of the game are created and
localized. In the successive testing phase quality assurance tests are performed and
the final game code is released, after which in the post-production phase post
mortems are conducted and closing kits created. In Figure 1, the PDD of the Game
concept definition is depicted to give an example of a PDD.

. i Define game concept i - - - ~ COMPETITIVE ANALYSIS
i

Begin t ' le process __ _ L _ _ ~ INITIAL CONCEPT ~'1

i Genre is detailed in
]else] L Platform . . •

approved] ... ~ 1

,__,) Define th p ~ DETAILED CONCEPT
Lead du~L:ne, L~0 ~rl Wf :~1 CO, ~pt :lrt 5~ L~ se~,qr~er

Mission_statement

Create Prototypes Game setting ~ GAMEPLAY ELEMENT I

$
F Perform Risk Analysts

$
Pitch Idea

Ptocucef Leads

[elsel

i Gameplay_mechanics
I Storysynops is

- - I Concept_art 1 ,?'/~
, I Aud!?=e lements]

, ' L . ~ PROTOTYPE
t:: : : L

111: 1 .

i RISK C'ASSIF~CATION GRID
iS positioned in I- i ..

. _3 Probebility_of_occu ring

~i IrnpacLon~°rojegt

Fig. 1. Process-deliverable diagram of the Concept Phase in "The Game Production
Handbook" [9]

Developing a Reference Method for Game Production by Method Comparison 317

The main activity Define game concept consists o f five sub activities that all result in

one or more del iverables and/or a decision point. In Tables 1 and 2, we descr ibe the

activities and the del iverables respectively.

Table 1. Activity table for Define game concept
Activity

Define Game Concept

Sub-Activity

Begin the Process

Define the Concept

Create Prototype

Perform Risk Analysis

Pitch Idea

Description
At the start of the process, the Lead designer,
Producer and Marketing manager develop an
INITIAL CONCEPt for the new game. In the
INITIAL CONCEPT the genre and platform on
which the game is supposed to run are
described. They also perform a COMPETITIVE
ANALYSIS.
When the INITIAL CONCEPT is approved, the
Lead designer, Lead art, Writer, Concept art,
and Sound designer define the concept in a
DETAILED CONCEPT.

The Lead designer and Producer create a
PROTOTYPE, based on the DETAILED CONCEPT.

The Producer develops together with the rest of
the Team a RISK CLASSIFICATION GRID, in which
all RISKS are plotted.

The Producer and Lead pitch the idea to the
management. When it is approved, they can
carry on with defining the game requirements.

Table 2. Concept table for Define game concept
Concept Definition
INITIAL CONCEPT A not detailed concept of the game that needs to present a compelling goal

for the game to achieve.
DETAILED CONCEPT

COMPETETIVE ANALYSIS

A definition of the concept of a game that specifies the game mechanics,
setting, characters, storyline, and major features.
An identification of the strengths and weaknesses of your game's
competition, market opportunities for your game, and any threats that might
impact the game's success in the market.

GAMEPLAY ELEMENT Elements that are defined in the detailed concept, like mission statement,
game setting, gameplay mechanics, story synopsis, concept art, and audio
elements.

PROTOTYPE An original type, form, or instance serving as a basis or standard of the full
game for later stages.

RISK CLASSIFICATION The result of performing risk analysis, where risks have been identified,
GRID analyzed and classified on probability of occurring and impact on the

project.
RISK The possibility of suffering harm or loss.

The second method, descr ibed in ' G a m e Deve lopment and Product ion ' (Eric

Bethke [7]) recognizes four main steps in game deve lopment project life cycles;

Business Context, Game Design, Game Implementa t ion and Post Release Support.

Finally, in ' In t roduct ion to Game Deve lopmen t ' , edi ted by Steve Rabin [8], the

game deve lopment process is d ivided in five phases; the Concep t Phase,

Preproduct ion Phase, Product ion Phase, Pos tproduct ion Phase and Af ter -Market

Phase.

In Table 3 we give an overview o f the amount o f activities, sub activities and

concepts per method. The method derived f rom Game Deve lopment and Product ion

318 Inge van de Weerd, Stefan de Weerd and Sj aak Brinkkemper

[7] is referred to as GD&P; Introduction to Game Development [8] is abbreviated to
ITGD; and The Game Production Handbook [9] is referred to as TGPH.

Table 3. Method statistics

GD&P ITGD TGPH

Activities 6 10 9

Sub activities 23 37 36

Concepts 36 42 49

3.3 Processes of the Zylom case study

We carried out a case study at a developer and publisher of casual games: Zylom,
which is part of RealNetworks Inc. Zylom develops retro arcade games, new games
inspired by retro games, card and board games, puzzle games, and the like. These
games are often referred to as "casual games" because it is possible for the casual
consumer to pick them up and learn to play quickly [13]. The Zylom Media Group
was established in 2001 in the city of Eindhoven, the Netherlands, and still has its
headquarters there nowadays. The company currently employs over 60 people.

3.3.1 Case Study Design

The case study was carried out in a period of three weeks. Resulting from the case
study, activities and deliverables are identified, which are used to compare to
literature on game development. The research is done by means of an exploratory-
explanatory case study. The case study concentrates on the game development
process, from the initial idea for a game until the final release of it. The primary goal
of this case study is to obtain an overview of the game development processes at
Zylom at present. The procedure in the case study is as follows:

a. Perform explorative interviews
b. Analyze documentation
c. Perform feedback interviews to affirm and explain results

The explorative interviews were conducted with seven employees: a game designer,
three game developers, an employee of the localization department, an employee
responsible for Q&A and support and a member of the Management. Each employee
answered the following questions
- What are the chronological steps taken in your specific part of the game

development process?
- What are typical activities that are performed in your department?
- What are the dependencies between these activities?
- What deliverables are created and/or used by your department?
Complementary documentation was provided by access to the internet and via email.

After modeling the activities and deliverables in PDDs, a second interview
session was carried out to check the results. Eight employees were interviewed, of
which 4 were the same employees as in the first interview round.

Developing a Reference Method for Game Production by Method Comparison 319

3.3.2 Results

Initiate design I

! Have brainstorming sessions
Game desl:jn*,r All i;,mc~o{

build prototype]

i
Bui ld basic prototype ~

Game des c~er

Evaluate ideas and prototype
Game r!osl~net Art ~:rec~

sitive judgement l

lelse
{build prolotype]~

J is input for

1

~ detailed in

i~,e}

iesel

Build advanced prototype
Game ~es,gner Art a re~:~

7-i U7$17 7
' Evaluate advanced prototype

G~ln,l~ dUSlg~ler Art U,e(:l~

ositive judgement 1

Perform usability tests . ,
Syslem des,q~er QA agent Respor~¢leqts

Have final decision meeting ~ .
Game des gret Art ~,rect~ Game orooucer

garne idea acceptedl

................ A0VANCED: OTO :E

Create visualizations~Mid rec~u~ - - - - ~ VIZUALIZATION I

1"'i IOEA

Fig. 2. Process-deliverable diagram 'Initiate design'

The game production process as it is carried out at Zylom is divided into four phases,
namely Design, Development, Quality assurance and Localization. The method
process consists of 11 activities, 59 activities, and 60 concepts.

In Figure 2, the PDD that illustrates the activity of the Design activity, namely
'Initiate design'. We identify one main activity, 'Initiate design' and eight sub
activities. Each sub activity results in a deliverable (e.g. BASIC PROTOTYPE), or
proceeds to decision point (e.g. 'Evaluate ideas and prototype'). In each sub activity,
roles are added, which describe the actor(s) that carries out the activity. Roles in the
'Initiate design' activity are: Game designer, Art director, System designer, QA
agent, Respondent, and Game producer.

3.3.3 Validity Issues
To make sure that the gathered information about Zylom and the game development
theories is valid, the research design applies to the case study tactics defined by Yin
[14]. These case study tactics encompass various facets that underwrite the validity
of four research design tests; construct validity, internal validity, external validity
and reliability. By making sure that the collected data from the research met the case
study tactics, the validity of the scientific research is vouched for.

320 Inge van de Weerd, Stefan de Weerd and Sjaak Brinkkemper

The case study that was performed at Zylom can be classified as a single-case
study design, since there is no more than one source for the data collected from the
case study. Moreover the case study design is a single-case embedded design as
multiple units of analysis, in this case departments of the company, are included.
Various sources of evidence were used to collect the data for the research.
Information was gathered from documentation, archival records, interviews and - to
some lesser extent - observations.

Because the character of this case study is exploratory, the internal validity of the
design is irrelevant [14]. In order to vouch for construct validity, external validity
and reliability, the case study tactics were applied. This implies that multiple sources
of evidence were used and a chain of evidence was established during data
collection. Having key informants review draft case study reports increased the
validity of the composition of the data. External validity is difficult to obtain in a
single-case study. Yin [14] claims that external validity could be achieved from
theoretical relationships, and from these generalizations could be made. However,
due to the type of game production company Zylom is, namely a casual game
company, limitations exist to the extent we can generalize the research. Nevertheless,
we do not believe this is a major issue, since the Zylom case study is only one of the
four sources that is used for the method. We believe it is complementary to the other
three methods. Finally, the reliability of the case study is obtained by using a formal
case study protocol and developing a case study database.

3.4 Super method: tabulation and comparison

The second step in the comparison of methods is the tabulation of the analyzed
methods, leading to a so-called super method. Two tables were created. For the
activity table the procedure is as follows: In case a field in the comparison table is
left blank it means that the activity on that particular row is not present in the process
model of the corresponding column. When a field is not blank, these are the
notations that describe the comparative relationship between two methods:

An '-- ' symbol indicates that a similar activity to the one in the super method
is available in the concerning method.
The '< ' and '> ' symbols indicate whether the activity in the super method
comprises more than the activity in the concerning method or less than the
activity in the concerning method, respectively.
The '>< ' symbol is used when a part of the activity in the supermodel
overlaps a part of the activity of the process model, but other parts don' t
overlap.

For the comparison of concepts a similar approach is used; a super set of concepts is
derived from the meta-deliverable models and forms the basis for the comparison of
concepts. The notation is somewhat different than for the activities. A blank field is
representing that a concept from the super method is not available in the conceming
method. Other notations used in the concept comparison table are:

The '= ' symbol is still used to indicate that a concept in the super method is
also included in the concerning method.

Developing a Reference Method for Game Production by Method Comparison 321

A string in a field indicates the same; howeve r the naming for the concept is
different than in the super method.

In Tables 4 and 5, we show excerpts o f the resulting activity compar ison and

concept comparison table respectively. We use the same abbreviations as in Section

3.2 to refer to the different methods.

Table 4. Activity comparison table (excerpt)
2. Preproduction Phase GD&P ITGD TGPH Zylom

2.1 Create game design

2.1.1 Brainstorm =

2.1.2 Delegate design =

2.1.3 Write game design document = > =
2.1.4 Evaluate game design document =

2.1.5 Write technical design document = >< <
2.1.6 Create visualizations =

2.1.7 Present game design =
2.1.8 Evaluate technology =
2.1.9 Define tools and pipeline =

2.1.10 Create documentation =

Table 5. Concept comparison table (excerpt)
12. Preproduction Phase GD&P ITGD TGPH Zylom
2.1 Create game design

2.1.1 GAME DESIGN DOCUMENT
= = DESIGN DOC. =

2.1.2 CORE GAMEPLAY =

2.1 .3 CONTEXTUAL GAMEPLAY =

2.1.4 STORY =
2.1 .5 TECHNICAL DESIGN DOCUMENT TECHNICAL

DOC.
2.1.6 REQUIREMENT ASSET FEATURE FEATURE ASSET
2.1.7 VISIBLE REQUIREMENT

2.1.8 NONVISIBLE REQUIREMENT =

2 .1 .9 FEATURE LIST = ASSET LIST

2.1.10 DOCUMENTATION =

2.1.112 PROTOTYPE =

The super method consists o f four phases, in which we can identify 13 activities

and 96 sub activities. These sub activities have the fol lowing distribution over the

four comparison methods: GD&P: 26; ITGD: 37; TGPH: 37; and Zylom: 40. The

activities result in a total o f 117 concepts, which are distributed as follows: GD&P:

32; ITGD: 40; TPGH: 49; and Zylom 46. Please note that these statistics do not
match the statistics described in Section 3.2. This is due to two reasons: a) only

relevant activities and concepts are included in the comparison table, and b) some
activities in the comparison methods are listed more than once, due to the fact that
this act ivi ty covers more activities in the reference method.

One important observat ion from the comparison of activities o f the different
methods is that some methods cover areas or phases in the game product ion process

322 Inge van de Weerd, Stefan de Weerd and Sjaak Brinkkemper

that are neglected by other methods. It can be concluded that GD&P is clearly
written from a management perspective; most processes in the method focus either
on the preparation, measuring or monitoring of tasks. The more basic tasks that
directly relate to game development are mainly omitted. The focus in the theory is
also clearly on deliverables that need to be completed in game production projects.

The ITGD method is the only one to address in detail the hiring of staff members
as part of the game production process and performing marketing and sales related
activities. Activities are not only management specific; also the actual game
development process is covered in quite some detail. However, the localization of
finished games is described very briefly and is therefore too basic to be really useful.
Still, ITGD covers many important parts of the game production process and is
therefore quite complete.

In TGPH some extra activities in the pre-production phase are suggested; the
evaluation of technology, creation of documentation and definition of tools and
pipelines to be used during the project are available in this method. Management
related activities in this method are quite basic and high-level. The TGPH method
excels when it comes to the localization process and the finalization of the game
production project. The localization steps and the definition and creation of closing
kits are thoroughly discussed. Finally, the part of the project in which code is
released is also well explained in TGPH compared to other methods.

The Zylom method contains very detailed descriptions of the localization and
quality assurance testing activities. Besides that, prototyping during several phases in
a game production processes and usability testing using these prototypes are
fragments that are only available in Zylom and valuable for the reference method.

3.5 Determination of reference method

The final step is the creation of the reference method. This reference method is an
executable method that includes the best method fragments from the super method,
based on the comparison of the four methods. In the next section we present the
method.

4 R e f e r e n c e m e t h o d

4.1 A Reference Method for Game Production

The resulting reference method for game production consists of thirteen main
activities, expressed in four PDDs, which correspond to the four production phases.
In Figure 4, we provide a high-level overview of the game production process,
comprising four phases: Concept phase, Pre-production phase, Production phase and
Post-production phase. The reference method consists of 13 main activities and 69
sub activities, which result in 93 deliverables. In the concept phase first the business
parameters are identified, which comprises, among others, the budget, recourses and
competitive analysis. A detailed game concept is defined and presented by means of

Developing a Reference Method for Game Production by Method Comparison 323

prototypes. Then, in the pre-production phase, the game design document is
developed, which described the story, gameplay and requirements. Also, a project
plan and staffing plan is created. This late moment for project planning and staffing
has to do with the nature of the game production process. Rather than the
straightforward development process from requirements to implementation that is
used in the information systems domain, first the game concept needs to be
approved. Developing this game concept is a creative activity, comparable with the
production of movies. Someone has to approve or invest in the idea that is developed
in this phase, before you can think about a project and staffing plan.

Concept phase t

; Idenbfy bus~ness parameters

$
Donne game concept

,r =Oo:Z l-

$ $
Creale game design i Make proieet plan

.1.
Hire staff

[Production phase

$ $
Implement game Manage project

4,
Perform marketing acwitles

1

p~,i:,ro~L;iO, , , , . i "
Localrze builds,

i J,
Perform Q&A tests

J,
Perform rnarketin a & sales activltJes

,1, 4,
Flnahze project : Release code

Fig. 3. Reference Method for Game Production: Process Overview

Next, in the production phase, the game is implemented in a working game; the
final version. During the implementation scope changes are managed. At the end of
this phase, a demo is developed for marketing purposes. Finally, the fourth phase
comprises the typical post-production activities. The game needs to be localized so it
can be released in different countries, QA tests are done and promotion material for
the marketing department is created. Finally, the project concludes with developing a
closing kit and releasing and shipping the game.

324 Inge van de Weerd, Stefan de Weerd and Sjaak Brinkkemper

4.2 Define game concept

To elaborate the reference method a bit further, we illustrate one of the main
activities, namely 'Define game concept' (Figure 4). When we compare this PDD
with the PDD of Zylom's first development activity, described in Section 3.3.2, we
see that the first has more activities and deliverables. The process is more structured
and there are less decision points. Furthermore, usability tests are included very early
in the process. An important issue is the formal definition of a game concept, which
is missing in the Zylom method.

): D g Preceder De, e,cpersd Pt[Je~ u '~'~ I - ~ WISH LIST i ~ 1. ' . i WISH l
i , ~ . i

i is input for
Evaluale ideas 1 .7

P I / DETAILED C O N C E P T

I t Wrl le vision documentp,~u~er Define~,~Lthe=~ D*,.~ ~,p~game concep~,~ - ~]~ ~- -~ Missionstatement
, i ~ : Game_setting
. _-_~)1 1 I Gameplay mechanics ', !N!TI,~[:..CONCEP:[........... ~ Story. synopsis

Creale visualLzations , Create & evaluate prototype IIi Genre Concept_art

,, . " - : : - : - : - v - ,4 .

i i . -
" ~

Perform usabihty tests i V IS ION D O C U M E N T ~ V ISUALIZATION

4, ', . :
Present concept tc pubhsher i 01"*

. - - - i ~ -> P R E S E N T A T I O N O

$,,
Have final d e et~ng L ~ , , , , pROTOTYPE, , I

,p,ov.°. ======================= BASIC P R O T O T Y P E i

Fig. 4. Process-deliverable diagram of 'Define game concept'

5 Discussion

5.1 Reference Method

Theories on game production are not unambiguous; there exist quite some
differences in elements of the game production domain between the various sources.
For example, the importance of localization of a game was stressed in some theories,
while the localization process was completely omitted in others. Also, the
importance of defining your business parameters before commencing with the design
phase was not indicated in all methods. However, globally there are many
similarities between the methods when it comes to the main game production
process. All fragments from the methods have been included in the reference
method, leaving the duplicates out. In case there were more than one fragments
representing one and the same activity, the clearest and most comprehensible

Developing a Reference Method for Game Production by Method Comparison 325

fragments have been selected and included in the reference method. This has resulted
in a complete reference method of the game production process that should quickly
provide people with insight in what game development projects exactly encompass.
Note that we do not want to prescribe this method as the best game production
method, but rather as a complete reference of all activities and deliverables, showing
how the method could be organized.

5.2 Public Knowledge Infrastructure

The result of this research, the reference method and the method comparison can be
of great value for game companies. Various employees of Zylom that were
interviewed indicated that task descriptions and templates would be useful to include
in the project planning. Providing employees with proper, unambiguous descriptions
of the tasks that they need to perform in a specific period of time can improve the
process. In our vision this is realizable by developing a public knowledge
infrastructure for game production methods, consisting of process descriptions,
templates and best practices. Currently, we are working on such an infrastructure in
the domain of product software [11].

5.3 Uniforming Terminology

During the analysis of the four game production methods, we encountered a wide
range of terms that often are used for the same concepts. Especially in the
comparison of the deliverables this was a problem, since it was difficult to detect
whether two concept with different names, meant the same thing and vice versa. A
de facto standardization of the terms would make the comparison of methods
considerable easier.

5.4 Method Comparison

The comparison technique that is used in this research has some great
advantages. The visibility and intelligibility that was already signaled in the
comparison study of object-oriented analysis and design methodologies [3] also
shows in this research. Moreover, the use of the activity and concept tables,
improved the comparison method. However, the actual comparison of activities and
concepts proved to be quite complex. When comparing activities, it was hard to
identify whether two activities were totally similar, or if one activity encompassed
more or less than another. For concepts it was often not easy to see whether or not
two concepts with different names actually represent one and the same thing, due to
the different terminologies that were used. Finally, after completing the comparison
process, the resulting tables provide a good overview of the differences between the
various activities and concepts.

326 Inge van de Weerd, Stefan de Weerd and Sjaak Brinkkemper

5.5 Recommendations Zylom

A major observation from the processes at Zylom is that there are many decisions in
a game development project whether or not to continue with the project. Especially
in the designing phase of development projects these so called go - no go decisions
occur often which might result in starting over the whole design process from
scratch. In some cases it might prove useful not to reject a game idea as a whole, but
refine or redefine a game idea by adjusting a prototype or brainstorm about other
features or concepts.

In the current situation at Zylom the project plan is defined after the design
phase. This means that design activities are not as properly planned as the rest of the
game development activities. A suggestion is to create the project plan before the
designing of a game takes place, in order to improve the managing and progress
tracking of projects. It was indicated by various interviewees that game development
projects are commonly significantly over time and thus that predefined targets in
terms of numbers of games that need to be completed are not met.

5.6 Game Production versus Standard Information Systems Development

When it comes to the differences between managing the game production process
and software development for other types of software, there are some differences that
are identified. First of all, the concept phase in game production projects is quite
different and more complex, because a game's atmosphere has to be defined and an
initial concept version of a game is far less representative for the final game than in
other software engineering projects. Especially the determination of the future 'look-
and-feel' of a game and its atmosphere implies that the concept is likely to be
changed more often during the concept phase than in other types of software
products. The inventive and creative character of games also results in a design phase
that is different from other software production projects. Because the atmosphere of
a game needs to be defined, lots of art work and gameplay prototypes are created
already during the design phase. Because creativity in game production plays an
important role, and (elements of) games can be seen as kind of art, defining a basic
concept with some wishes for requirements is not enough. Game production projects
contain many decision moments during the design phase whether or not to cancel a
project and start up with a complete new idea, while ideas for other types of software
products are more easily defined in a product design and then developed.

6 C o n c l u s i o n s and Future Research

In this paper we presented an approach to the development of a reference framework
for game production. We used a more formal approach to method comparison by
using activities and concept tables. We analyzed three documented game production
methods and carried out a case study at a game production company to analyze a
fourth method. By developing meta-models with accompanying activity and concept

Developing a Reference Method for Game Production by Method Comparison 327

tables, we were able to carry out a method comparison and develop a reference
method.

We can conclude that all methods are written from different perspectives, which
causes a difference in the activities and concepts they contain. The reference method
integrates these perspectives and can be used as a complete reference of how a
method could be organized.

The use of activity and concept tables improves the method comparison approach
as described in [3]. In future research, the method can be improved by making it
more formal by using ontologies. This will also solve the problem of the ambiguous
terminology that is used in the domain. Finally, we aim to develop a knowledge
infrastructure for game production methods, containing process descriptions,
templates and best practices.

References

1. K. Siau and M. Rossi, Evaluation of Information Modeling Methods - A Review,
Proceedings of the 31st Annual Hawaii International Conference on System Sciences 5,
(1998), p. 314.

2. P. Fettke and P. Loos, Multiperspective Evaluation of Reference Models - Towards a
Framework, LNCS 2814, 80-91 (2003).

3. S. Hong, G. van den Goor, and S. Brinkkemper, A Formal Approach to the Comparison of
Object-oriented Analysis and Design Methodologies, Proceeding o f the 26 th Hawaii
International Conference on System Sciences 4, (1993), pp. 689-698.

4. N.A.M. Maiden and G. Rugg, ACRE: Selecting Methods for Requirements Acquisition,
Software Engineering Journal 11(3), 183-192 (1996).

5. R.D. Hackathorn and J. Karimi, A Framework for Comparing Information Engineering
Methods. MIS Quarterly 12(2), 203-220 (1988).

6. G.M. Karam, R.S. Casselman, A Cataloging Framework for Software Development
Methods, Computer 26(2), 34-45 (1993).

7. E. Bethke, Game Development and Production (Wordware Publishing, Inc., Plano, Texas,
2003).

8. S. Rabin, Introduction to Game Development (Charles River Media, Boston, 2005).
9. H. Chandler, The Game Production Handbook (Charles River Media, Boston, 2006).
10. I. van de Weerd, S. Brinkkemper, J. Souer, and J. Versendaal, A Situational

Implementation Method for Web-based Content Management System-applications,
Software Process: Improvement and Practice 11(5), 521-538 (2006).

11. I. van de Weerd, J. Versendaal, and S. Brinkkemper, A Product Software Knowledge
Infrastructure for Situational Capability Maturation: Vision and Case Studies in Product
Management, Proceedings of the 12 t~ Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ'06), Luxembourg (2006)

12. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen, From SHIQ and RDF to OWL:
The Making of a Web Ontology Language, Journal o f Web Semantics 1(1), 7-26 (2003).

13. G.E. Mills et al., 2005 Casual Games White Paper (IGDA Casual Games SIG, 2005).
14. R.K. Yin, Case Study Research: Design and Methods (Sage Publications, Thousand Oaks,

CA, 2003).

Towards Evidence Based Splitting of
Organizations

Martin Op 't Land
Delft University of Technology, Netherlands

Capgemini, P.O. Box 2575, 3500 GN Utrecht, Netherlands

Abstract. The reported research program aims at finding and testing principles
for adequately splitting organizations. Using actors from Enterprise Ontology
as organization building blocks on one hand and criteria from organization
science on the other hand, an expert-meeting was presented the organization-
splitting choices for a part of the Dutch Agency of Public Works and Water
Management. The experts could construct their own free-format (gut-feeling)
organization choice and they could choose from predefined alternatives, based
on the High lnternal Cohesion / Low External Coupling criterion and
calculated using the rain-cut algorithm from graph-theory. The gut-feeling
alternative appeared to be close to the (non-trivial) calculated organization
alternative, with separation of functions as main reason for difference. Also,
business service dependencies appeared to determine organization-splitting far
more dominantly than information dependencies.

1 I n t r o d u c t i o n

Organizations increasingly [1] split off parts and start cooperating with those
parts, for instance in Shared Service Centers or by in- or outsourcing activities.
Splitting organizations is believed to make organizations more agile [2] in offering
complex products, in participating in complex product-offerings of another party or
in timely dropping current products. Such agility has become a business requirement
in many lines of business [3], from Defense via car industry to banking industry [4].
Splitting organizations in units with clear customer-supplier-responsibilities, clear
competencies and geo-flexibility in operations and ICT also improves its current
operations, stimulates entrepreneurship and gives those units a customer-oriented
focus, with the potential to broaden the customer base [5]. Through a reduction of

Please use the following format whet7 citing this chapter:

Op't Lmld, M., 2007, in IFIP International Federation for Information Processing, Volume 244, Situational Method
Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Brinkkemper, S., Henderson-Sellers B., (Boston Springer),
pp. 328-342.

Towards Evidence Based Splitting of Organizations 329

redundancy in processes and ICT, this results in saving costs, simplifying operations
and making those operations more manageable [6].

The question where to split an organization is not an easy one: what criteria and
what organizational building blocks should be used? Already in a simple example we
can see a complex trade-off in motives of customer intimacy, efficiency, product
uniqueness, broadening the product portfolio, cost control and equalizing capacity.
And even if the (functional) priorities chosen in those motives are clear, it is not
immediately clear how this mix of priorities leads to choices in splitting the
enterprise [7]. Dietz [8] proposes to use actors of an Enterprise Ontology according
to the Design & Engineering Methodology for Organizations (DEMO) [9] as
organization building blocks. Mulder [10] actually tested the use of actors in
organization design, letting the criteria appear bottom-up while discussing the
positioning of actors. Op 't Land [11] adds to this method the test on previously
defined situational criteria.

In this paper we extend the method to include testing previously defined general
criteria. The extended method is applied in a real-life case study in splitting an
organization by an expert-meeting in a Group Decision Support (GDS) room. The
participating experts were presented a choice in assigning organizational building
blocks, using actors from a DEMO Construction Model. We summarized general
criteria from organization science and system theory and tested its use in the actual
expert choices. Especially we tested an operationalization of the High Internal
Cohesion / Low External Coupling (HICLEC) criterion, as introduced into IS
development by Stevens et al [12] and into organizational studies by Karl Weick
[13]. We measured the strength of business service dependencies compared with
information dependencies. This operationalization took the shape of prepared graph
alternatives, using the min-cut algorithm. We found that business service
dependencies determined the organization splitting far more than information
dependencies. We found also that (non-trivial) calculated organization alternatives
appeared to be close to the gut-feeling alternative with separation of functions as the
main reason for difference.

The remainder of this paper is structured as follows. Section 2 explains the
research design applied, from the level of the research program until the level of an
individual case. For each individual case in the program we discern an intervention-
and a measurement-phase; in this case-study we describe the intervention-phase.
Section 3 introduces the actual intervention in the case Rijkswaterstaat- Deltaresl:
what was its context, how did the models and criteria specific for its situation look
like and how was the expert-meeting constructed? Section 4 discusses the results of
the intervention: how was the expert-meeting conducted, which of the prepared
alternatives were chosen and what were the underlying hypotheses. Finally, section
5 provides the conclusions as well as directions for further research.

Rijkswaterstaat is the Dutch Agency for Public Works and Water Management; this
Directorate-General is the implementing organisation of the Ministry of Transport, Public
Works and Water Management. Deltares is a Dutch-based international institute for applied
research and specialist consultancy in the field of water and the subsurface. For further
details, see section 3.

330 Martin Op 't Land

2 Research Des ign

This case-study is part of the CIAO-research program [14] "Applying
Architecture and Ontology to the Splitting and Allying of Enterprises" [7]. We look
for answers to the question "which organization-construction rules lead to adequate
splitting of enterprises?". In this section we will first introduce the research design of
the research program as a whole, which has the shape of action research. In this
action research cycle we then position this individual case study. Next we formulate
for this case study the desired exploration and the hypothesis we wanted to test.
Finally we explain the structure of the expert meeting used.

2.1 Position of case study in research program

The research program "Applying Architecture and Ontology to the Splitting and
Allying of Enterprises" aims at finding validated principles and organization
construction rules, whose application leads to adequate splitting of enterprises. We
define an enterprise as a goal-oriented cooperative of people and means. Splitting
and allying enterprises are two sides of the same medal: the moment the work for an
enterprise is split over parties, those parties have to ally in order to stay that "goal-
oriented cooperative of people and means".

Let's now further introduce the basic concepts of the program (see Figure 1). For
a specific enterprise E we want to arrive at an adequate splitting proposal (E).
Adequate is defined as being compliant with professional principles, enterprise
specific principles, situational process requirements and situational result

J
~ ~,r chitectUr e(,E) ~ '~

(Professional P r i n c i p l e s) /

suit-requirements(E) ~ J construction I_ adequate splitting
' rules enterprise

/ ()ntology(E)) lenterprise-splitting |
. __~ k.___ J \ _ _ "V ~ -M

situation- situation- situation-
specific input specific process specific result

Figure 1. Concepts of Enterprise Splitting

A professional principle is broadly applicable and not situation requirements.
specific, e.g. "minimize need for tuning"; it will typically originate from general
systems theory and organization sciences. Enterprise specific principles
(Principles(E-spec)) are the operationalization of enterprise E's strategic choices and
policies, e.g. "re-use before buy before build" or "all employees should be able to
work everywhere in our country in the same way". Situational process requirements
(Process-requirements(E)) are specific for a specific process or project of splitting,
e.g. project costs, timeliness, effectiveness and quality. Situational result
requirements (Result-requirements(E)) are the goals to be reached by splitting the

Towards Evidence Based Splitting of Organizations 331

enterprise, including the constraints to be complied with. As mentioned in section 1,
the goals for splitting of enterprises can be quite diverse and include saving costs
(location, people, tax), improving quality (right people with right qualifications in
e.g. language, training and experience) and improving agility and flexibility.
Constraints will typically originate from the ecosystem of the organization, like from
(legal or branch-) supervisors, customers, suppliers and other network partners.
Following xAF [15], architecture is understood (1) conceptually as a normative
restriction of design freedom and (2) operationally as a consistent and coherent set of
design principles that embody general requirements, where these general
requirements hold for a class of systems. Therefore the architecture of enterprise E
(Architecture(E)) consists of the professional principles and the enterprise-specific
principles. By the ontology of the enterprise E (Ontology(E)) we understand a model
of E's construction that is completely independent of the way in which it is realized
and implemented. After Dietz [8], we will use a DEMO Construction Model for such
an ontology. Organization-construction rules guide the decisions where to split, e.g.
"don't cut the enterprise on a spot with heavy information-exchange, because this
will increase the error-rate". In the organization-construction rules the trade-offs are
made between all requirements and principles, using the ontology as language of the
essence of the enterprise and delivering finally that adequate splitting proposal.

To find the organization-construction rules, which is in the black-box of the
enterprise-splitting process, we have to repeatedly execute that splitting process,
controlling the in- and output. This fits in the notion of action research, defined by
Avison et al [16] as a repeating cycle of intervention, measuring, evaluation and
improvement. In action research, the researcher selects or develops new concepts and
tools, in our research program organization-construction rules for splitting
enterprises, to use it (or let it be used) in new situations. Each case study in the
program, including this one, has its own sub problem, method, result and conclusions
and therefore also each case has its own research design. As Lee [17] shows,
studying single cases can satisfy the standards of the natural science model of
scientific research.

Where does this case-study fit in the action research cycle? Dietz [8] proposed to
use actors of an Enterprise Ontology according to the Design & Engineering
Methodology for Organizations (DEMO) [9] as organization building blocks. Mulder
[10] actually tested the use of actors in organization redesign, letting the criteria
appear bottom-up while discussing the positioning of actors. Op 't Land [11] earlier
added to this method the test on previously defined situational criteria. In this case-
study we extend the method by a test of previously defined general principles and
organization-construction rules. And we apply this method in an intervention, the
actual splitting of an organization by an expert-meeting in a Group Decision Support
(GDS) room. This case-study should have results on two levels, a case-result and a
research result. The intended case-result is an adequate splitting proposal, including
an underpinning why that proposal is advisable. This splitting proposal will in turn
be the basis for drafting SLA's and for migration planning. The intended research-
result is (1) explorative: which professional principles and organization-construction-
rules have been applied and why (2) validating the well-known general construction
principle "high internal cohesion, loose external coupling" (HICLEC) as hypothesis.

332 Martin Op 't Land

2.2 Using DEMO modelling in the organizational building blocks

We will now briefly introduce the required concepts of the DEMO Construction
Model (CM), using Figure 2. A DEMO Construction Model expresses the coherence
(chain/network) of business

Legend DEMO CM
services, delivered by actors to ~y~bo,
other actors within a defined ~ system border

scope. E.g. actor AO1 executes ' ~ aggregated actor

transaction TO 1, which delivers / [A- el tary actor • ~ transaction type

a business service to actor A00. ~ ini t iator l ink

Actor A00 is called the ini t iator tor,.k , " information link

and actor A01 the executor of ...
transaction T01. The execution
of transaction T01 results in a Figure 2. Typical DEMO Construction Model

new fact in reality. Another actor A07, for its responsibility in executing transaction
T07, needs information about those facts from transaction T01; this in format ion l ink

between actor A07 and (the fact bank of) transaction T01 is indicated by a dashed
line. In the fact bank of T01 we find both the production facts and the coordination
facts (like status "requested", "promised", "stated", "accepted") of transaction T01.

In terms of a DEMO CM, making an organization-split is the assigning of actors
to separate organizational units. Parnas states [18] that in modularization the modules
should be structured in such a way that changes in reality influence the modules in an
isolated way, so that modules are islands of stability. In a DEMO CM actors fulfill
Parnas' "information hiding" principle, because they have a relatively simple outside
interface - a new fact brought about in reality - and potentially hidden complexity on
the production process needed to produce that fact.

2.3 The general criteria for splitting and their application

Based on the scripts of several case studies [10, 11, 19] and supplemented by
organization science and systems theory literature (a/o [20], [21]), Op 't Land [22]
summarized organization construction rules and professional principles (see Tables l
and 2).

Table 1. Professional principles

nr Professional principle
GO 1 better quality of operations
G02 more flexibility in service levels
G03 accelerated operations
G04 accelerated time-to-market
G05 lower operational costs
G06 increased turnover
G07 client centricity
G08 customer ownership
G09 multi-channel offering ability

Towards Evidence Based Splitting of Organizations 333

Table 2. Organization-construction rules

nr Organization-construction rule: keep actors together, when ...
CO 1 ... their mutual interface cannot well be standardized, due to complexity
C02 ... their mutual interface cannot well be standardized, due to frequent change
C03 ... they cannot have a supporting role for other actors
C04 ... they use the same language / culture
C05 ... they operate under the same regulatory, legal and tax-regime
C06 ... those actors more or less work on the same case / deal with the same event
C07 ... the risk to fail (in banking sector: operational risk) of a split is unacceptable high
C08 ... they need comparable competencies
C09 ... a transaction-relationship exists between those actors
CIO ... an information-relationship exists between those actors

The general criteria mentioned (G01-G09 and C01-C10) should be tested in the
organization-splitting case study, except for the criteria C09 and C10. Indeed, rules
C09 and CI 0 can directly be derived from the DEMO CM and therefore didn't need
not be tested by the expert-meeting. And as we will see, these two criteria play a
special role in the operationalization of the HICLEC-criterion.

Galbraith [21] brings his four organization-design strategies (1. Slack Resources;
2. Self-Contained Tasks; 3. Vertical Information Systems; 4. Lateral Relationships)
ultimately back to a trade-off between two variables: either build in / accept slack in
cooperation relationships or strengthen the information-relationship. This inspired
our curiosity: how important would those cooperation-relationships (freely translated
by us to transaction-relationships) be compared with information relationships in
deciding about the organizational split? We suppose Galbraith considered
information to be an important organization-design variable, because implementing
information relationships at that time (1974) was very costly. That could be different
today, since the costs of implementing information relations are considerably lower,
caused by emerging standards and widely available cheap and reliable ICT-
infrastructure.

We therefore like to test the following hypothesis: transaction relations are more
important than information relations, when deciding about organizational splits. We
did that by calculating several organization-alternatives in which the transaction- and
information-relationships got different weights. During the expert-meeting, the
experts were asked to choose which calculated organization-alternative they
preferred, thus implicitly choosing for a certain weight-ratio between transaction-
and information-relationships. This procedure is an application of the so-called
conjoint analysis, also called multi-attribute compositional models or stated
preference analysis [23].

The hypothesis is made operational in the following way.
1. We assigned a weight to each transaction and information relationship in the

DEMO CM. A simple example is "all Transaction relationships (T) get the
weight 9, all Information relationships (I) get the weight 1"; for short, we code
this as TI-91.

2. We interpret those weights as follows (see Figure 2). A high weight of a
transaction relationship between actor roles A00 and A01 is an indication that
those actor roles A00 and A01 should stay together in one organization /

334 Martin Op 't Land

3.

4.

.

department. A high weight of an information relationship between actor role A07
and the fact bank of transaction T01, we interpret as an indication that the actor
roles A07 and (the executing actor role of T01 =) A01 should stay together in one
organization / department. The underlying assumptions are that (1) information
in an information link mostly deals with the production information of the
transaction, not its coordination information (2) production information of
transaction T01 is caused by its executor A01, not by its initiator A00 (3)
coordination information is caused as much by initiator A00 as by executor A01.
A certain organizational-splitting solution S, which splits the organization in two
parts - say Orgl and Org2 -, is fully characterized by the collection of actor roles
which reside in Orgl and (therefore automatically the remainder of actor roles) in
Org2. We consider a relationship between actors to be broken if those actors
reside in different
organizations.
Now we can define
the penalty 9anization

function P of
solution S, P(S), as
the sum of weights
of broken
relationships in i i ~o~,,~.

Orgl and Org2 in Figure 3. Penalties in Organization Splitting
solution S. As an
example, see Figure 3: in solution $1, the relationships A28-A31 and A27-A31
have been broken, therefore P(S1) = 2+8 =10; in solution $2 only the relationship
A31-A33 has been been broken, therefore P(S2) = 4.
Now we use the HICLEC-criterion: we consider the split better iff the penalty of
the splitting-solution is lower. The optimal organization therefore would be the
one with the minimum penalty, given that a split has to occur anyhow (the one-
organization alternative doesn't count). This restating of the problem is known in
graph-theory as the min-cutproblem and a min-cut algorithm exists to solve that
[24]. For each weight-distribution (like TI=91, TI=55), the optimal solution (so
with the minimal penalty) could be calculated, also using Gomory-Hu trees [25].
Finally it must be possible to state in advance that certain actors should stay with
Orgl or Org2 and to enforce that as a boundary constraint for further
optimizations.

2.4 Structure of the expert-meeting

In the expert-meeting the following steps should be executed.
1. After an explanation of the Construction Model for the area of splitting, as the

first step the experts should formulate the gut-feeling alternative. No calculated
or other alternative is presented at beforehand, to prevent influencing the experts.

2. Then the gut-feeling alternative should be tested by both situation-specific and
general criteria.

Towards Evidence Based Splitting of Organizations 335

3. After explanation of the calculated organization-alternatives, the experts should
express their preference and test the alternatives against the same criteria as the
gut-feeling alternative.

4. Finally the experts were asked to answer questions on the way of working.

3 The intervention: case Ri jkswaters taa t - Deltares

Rijkswaterstaat (RWS), the Directorate-General for Public Works and Water
Management is the executive branch of the Ministry of Transport, Public Works and
Water Management (V&W). Under the command of a departmental Minister and
State Secretary, it constructs, manages, develops and maintains the Netherlands'
main infrastructure networks. RWS aims to prevent flooding, ensure adequate good
quality water, ensure safe & unimpeded movement on roads and waterways and
generate reliable information in a user friendly format. RWS has an annual
expenditure of approximately t~ 4 billion, number of staff approximately 10,500, 17
departments and 160 offices in the Netherlands.

From mid-2007, the Netherlands will gain an institute for applied research and
specialist consultancy named Deltares (Dlt) [26]. Its goal is to improve the
habitability of vulnerable delta areas, contributing to the sustainable management,
use and design of low-lying, densely-populated deltas. Deltares wants to be in the
international top flight in the field of water and the subsurface. It will use an
integrated approach to develop innovative solutions. Deltares brings together Dutch
knowledge, experience and specialists in the area of water and the subsurface. The
Deltares workforce will be 700 to 800 FTEs in the initial stages. Turnover is
projected at C 80 million a year.

Deltares will bring together WL I Delft Hydraulics, GeoDelft, parts of TNO Built
Environment and Geosciences and parts of specialist services of RWS. At the time of
this case-study, it had to be decided and validated which responsibilities of RWS
exactly had to be split off from RWS and added to Deltares.

To guide us in the choice for an area for our case study (which area, which size,
when, who to involve) we had to balance the following considerations:
• what is the "right size" of the area for the case study; the good choice here would

make it sufficiently interesting and relevant for the RWS-/Dlt-policy makers and
at the same time feasible in time;

• political visibility: to what extent and in which phase did we want what attention
from what stakeholders to this case study; e.g. the right moment could enable a
fruitful discussion between management and Works Council about a major BPO
or IT-outsourcing proposal;

• availability of material; during the case study we would have to use existing
DEMO CM-models of Rijkswaterstaat, tested by subject matter experts, and also
existing situational principles, process requirements and result requirements.
Waterquantity has been chosen as area of our case-study. This RWS-area is

responsible for the hydrological and morphological state of the Dutch national
waters. This covers a wide range of activities, varying from a/o modelling hydrology

336 Martin Op 't Land

and morphology, measuring and reporting water heights, controlling dikes, operating
sluices/locks, via the Storm Surge Warning Service to integral consulting on all this.

For the area Waterquantity, a DEMO Construction Model validated by subject
matter experts was available. The model emerged from an application consolidation
project, in which it was used to structure the current application portfolio, seeking for
rationalization-opportunities. The model contained 43 (elementary) actors, 59
transactions and 69 information links.

As boundary constraints for graph-construction RWS-experts in advance chose:
• RWS-BED: all operations of construction works (like sluices, locks and storm

surge barriers) should remain with RWS;
• DLT-MOD: all modelling of hydrology and morphology of national waters

should go to Deltares.
We chose quite distributed values as parameters for the graph-construction,

namely TI=91, TI=55 and TI=19. This delivered three calculated splitting-
alternatives, named by us o~ (small RWS), ~3 (intermediate) and "/(small Deltares).
Alternative ~ (small RWS) only consisted of RWS-BED and alternative y (small
Deltares) only consisted of DLT-MOD. Alternative [3 brings all modelling, all
consulting services and the SLA-management for hydrology and morphology to
Deltares. Both the alternatives c~ and 7 are trivial, because they simply reflect the
boundary constraint. The alternatives c~ and ~' appear as min-cut alternatives for all
values of TI (19, 55 and 91). Alternative ~ only appears for TI--91, as second choice
(penalty P = 11); the first choices for TI=91 were ~ and y (both P=4). The
participants of the expert-meeting were asked to express and underpin their
preference for organization-alternative c~, [~ or 7, of course without knowing the
value of the TI-parameters underlying those alternatives.

RWS introduced 9 strategic principles and 16 business principles, Deltares
introduced 5 principles. Two examples of situation-specific criteria are:
• DR01 = better focus of RWS on networkmanagement (its core-business);
• DR05 = Deltares should he an authoritative knowledge-institution in Europe.

For the expert-meeting we invited 4- 20 persons, representing 4 groups:
1. subject matter experts, like RWS-management and business staff;
2. subject matter and ontology experts from Enterprise Architecture RWS (EAR);
3. ontology-experts and
4. organization scientists.

This variation in expertise should enable us to perform several analyses like:
• to what extent is it possible to propose meaningful organization-alternatives, only

possessing ontology-knowledge;
• how much do the evaluations of subject-matter experts differ, depending if they

have ontology knowledge or not;
• to what extent do organization scicentists share the opinion of the group - they

don't share the ontology-view or the subject matter knowledge, but they have
experience with organization design, so with the underlying professional
principles and organization-construction rules.

To enable these analyses we used a Group Decision Support Room, in which all
argumentation, comments and scores could be systematically collected and
subdivided by group. Also it should enable us to direct the facilitation of discussions.

Towards Evidence Based Splitting of Organizations 337

The duration of the expert-meeting had to be limited to 4 hours, in which a
complete scoring of all actors and organization-alternatives on all (42) criteria was
not considered feasible. Therefore in the meeting-planning steps were added to select
the top 7 from the 42 criteria and to select 8 more or less representative actors.

4 Results of the intervention

On January 29, 2007 08:30-12:30, the expert-meeting on splitting RWS-parts
concerning Waterquantity to Deltares has been held, supported by the GDS-system
MeetingWorks, which collected all contributions of participants electronically.

The longlist of (42) criteria had been sent before the meeting to the experts to
comment on that; comments were received neither before nor during the workshop
and no new criteria appeared. In the step to select the shortlist (top-7) criteria from
the professional principles and organization-construction rules only C07 (keep actors
together when ... the risk to fail (in banking sector: operational risk) of a split is
unacceptable high) got selected; all other shortlist-criteria were situation-specific.

In the testing of the gut-feeling organization-alternative 8 out of actors were
selected: 2 for which all agreed to keep the actors at RWS, 2 for which all agreed to
move the actors to Deltares and 4 from a middle group on which opinions differed.

Due to time constraints the step "test calculated organization-splits on shortlist-
criteria" could not be executed.

In drafting the gut-feeling organization-alternative everyone agreed on the
boundary constraints RWS-BED and Dlt-MOD. Most participants agreed that
Advice-roles belong to Deltares and that Data-gathering should remain at RWS. On
information supply the opinions differed; a small minority positioned suppliers of
information and drafters of information strategy in Deltares. Controlfunctions
(morphological and hydrological) were mainly placed in RWS, though a small
minority put its quality control in Deltares: "don't test your own meat" (separation of
functions). Also a new actor role was discovered "establisher required Delta-
knowledge".

In the comments given several characteristics of RWS and Dlt emerged, which
we consider the basis for additions to enterprise-specific principles. For RWS as
catchwords were mentioned control, directing, coordination demand-side, executore
of policy and steering, control data. For Deltares as catchwords were mentioned
specialized consultancy, execution, knowledge-supplier, trusted advisor, models and
model data, specialized statistical analyses, strategic knowledge function, should
know state of affair watersystems.

Let's now turn to the choices for the calculated organization-alternative. The
calculated organization-alternative [3 was preferred and got report-mark 6.2 with a
variance 36% (see Table 3). Because this alternative only appeared with TI=91, our
hypothesis transaction-relations are more important than information-relations,
when deciding about organization-splits could not be falsified.

338 Martin Op 't Land

Table 3. "Give an over-all report mark (scale 1 to 10) to the organization-alternative"

Organization-alternative Average rating Variance
cx "small RWS" (TI=19, 55 or 91) 2.2 32%
[~ "intermediate" (TI=91) 6.2 36%
y "small Deltares" (TI=19, 55 or 91) 5.4 55%

How close was the gut-feeling alternative to the calculated organization-
alternative [3? Four actors were differently positioned, which could be explained
mainly by separation of functions. We then recalculated graphs to see if different TI-
weights could generate the gut-feeling alternative. The answer is no, for only one out
of four actors this made a difference; the other three actors could not "switch
organization" for any TI-weight.

From the prepared professional principles and organizational construction rules,
we noticed the use of two of them. The term "need to know" as in "Deltares needs to
know the state of the water systems" we saw as C 10 "keep actors together when ...
an information-relationship exists between those actors". And sometimes specific
expertise was mentioned, which pointed to C08 "keep actors together when ... they
need comparable competences".

Some criteria arose which might have a more general value, e.g. "best fit with
purposes of organization", "separation of functions", "keep responsibility with the
one who is doing the job" and "establishing information needs always by the
demand-side". On "establishing information strategy always by the demand-side"
discussion arose; some argued that information strategy deals with how information
will be supplied, and subject matter expertise of the supplier should play an
important role in that, e.g. in the choice of means for monitoring and data collection.

The participants appreciated the way of working in this expert-meeting. The
offering of the calculated (ct-, [3-, 7-) alternatives helped to get more clarity on the
motives of the preferred organization-split. Also the contribution of non subject
matter experts was valued e.g. their comparison of the RWS-Dlt-relationship with
the relationship between an airline and the National Airspace Laboratory (NLR).

The results of the scoring of the gut-feeling alternative were consistent with the
scoring of the selected actors on the shortlist-criteria. We further noticed that subject
matter experts scored outspokenly and homogeneously (low variance). Also we
noticed that the method experts more often abstained from voting, explaining that
more subject matter insight was required.

A method-expert suggested to better order the list of criteria, e.g. to add the
categories function-/product-requirements, performance-indicators (like lead time or
MTBF) and some organization-construction rules (like technical coherence and
failure sensibility).

In preparing the next time workshop the following improvements could be made:
= make the criteria SMART in a small group before the expert-meeting;
• test the DEMO Construction Model in a smaller group, especially on the places

where discussions on organization-splits can be expected; for this "borderline"
actors, put effort in more precisely defining the (direct object of the) transaction-
result; e.g. is A027 Supplier statistics the supplier of standard statistics or of
specialized statistics? is A024 SLA Manager information supply serving the
demand-side or the supply-side or both?

Towards Evidence Based Splitting of Organizations 339

During the next time workshop the following improvements could be made:
• start with an explanation on the strategic directions of RWS and Deltares;
• then explain consequences for making an organizational split, e.g. "cooperation

and allying over the split remain necessary", "introduce SLA's on the split";
• let the splitting of the organization be done top-down, so first at the level o f

aggregated actors; where the scores on aggregated actors are not unambiguous,
drill down to the level of elementary actors; use the time thus saved for more
interaction and discussion;

• the question "should this actor go to Deltares or stay with RWS?" is too binary;
indeed an actor role can next to sequentially and concurrently also be fulfilled
collectively [8:125], so introduce the option of collective fulfilment of roles;

• during the workshop let the participants first score the actors with business roles,
then the actors with informational roles; then participants will be better aware of
their assumptions and score more consistently.

5 C o n c l u s i o n s a n d f u r t h e r r e s e a r c h

5.1 Conclusions on the level of this case

The half-day expert-meeting was considered productive and effective by the
participants. Vagueness in criteria and strategic starting points of Rijkwaterstaat and
Deltares were revealed and discussed. The use of actors from the DEMO
Construction Model as organizational building blocks - which was new for about
50% of the experts - was generally clearly understood and appreciated. The
discussion got an objective basis, responsibilities and dependencies became clear and
also new actors were discovered. The pre-calculated organization-alternatives
(graphs) made the discussions on the organization-split more directed. E.g. the roles
of RWS and Deltares and the underlying situational principles became articulated
more clearly than reached by the gut-feeling exercise.

The (non-trivial) calculated organization-alternative 13 came close to the gut-
feeling alternative. The rain-cut algorithm delivered 3 organization-alternatives, of
which 2 were the trivial ones, namely the smallest ones fulfilling the minimum
boundary constraints of actor-roles remaining in an organization. The deviation of
the ~3-alternative to the gut-feeling alternative could be explained almost fully by the
criterion separation of functions.

What can we say about our hypothesis "transaction-relations are more important
than information-relations when deciding about organization-splits" (section 2)? The
(non-trivial) calculated organization-alternative [3 appeared only when giving
transaction-relationships a far higher weight than information-relationships (TI=91
and TI=90). As soon as information links were assigned a higher weight (TI>92),
then only the trivial organization-alternatives appeared. This case-study therefore
was not able to falsify our hypothesis.

No calculation of organization-alternatives with whatever uniform weights for
transaction- and information-relationships could exactly produce the gut-feeling
alternative. Therefore a completely calculable advise on organization-splitting, based

340 Martin Op 't Land

on the strength of transaction- and information-relationships, which also is
recognized by experts as good, has been proven to be impossible.

On the value and the power of discernment of the general criteria (general
principles and construction roles), no conclusion can be drawn from this case-study.
Because of time-constraints, the expert-group had to select the criteria which they
felt to be most important. From the general criteria only one out of 18 was selected
and its score did not noticeably differ from the scores on the other (situation-specific)
criteria in positioning an actor on either side of the gut-feeling organization-split.

5.2 Conclusion on the level of the action research

Situational Method Engineering [27] is characterized by (1) definition of
reusable method chunks by reengineering existing methods and models as well as by
capturing new ideas, experience and best practices; (2) engineering of new situation-
specific methods by assembling method chunks stored in the repository. From
existing method chunks [10] [11] we reused (a) the use of actors from a DEMO
Construction Model as organization building blocks (b) the use of a Group Decision
Support Mechanism. We added to this in section 2 (c) the use of general principles
and construction rules, (d) the operationalizion of the HICLEC-criterion on
transaction and information links and (e) the use of the min-cut algorithm from graph
theory. Sitation-specific in the method applied is a/o the goal of organization-
splitting, which caused us not to ask for optimal multi-clusters, but to request a
binary choice ("stays with organization X" versus "goes to organization Y").

We have discovered that theoretically underpinned organization-alternatives can
be calculated, which look plausible in the real-life situation. That calculated
alternative need not be the best; many criteria can play a role, which are not part of
the starting point, the DEMO Construction Model. The calculated alternatives,
represented in graphs, at least then give the insight which penalties are paid in terms
of broken or hampered transaction- or information-relationships. These penalties can
then be explicitly weighed against the other criteria. Summarizing: if someone wants
to deviate from the calculated alternative, he now will be aware of the penalties of
that deviation, which enables him to make conscious trade-offs.

5.3 Future research directions

To validate the hypothesis "transaction-relations are more important than
information-relations when deciding about organization-splits", replication of this
research is necessary with variation in organization types and sectors.

To test the value and the power of discernment of the general criteria (general
principles and construction rules), these criteria have to be used again in future case-
studies in a way which guarantuees scores on all criteria. At the same time the
research design for those case-studies have to stay open for discovering new general
criteria.

Another interesting question is what would happen when we apply other criteria
and other algorithms to the graphs instead of the rain-cut algorithm. E.g. in social
networks the criterion of "betweenness" appeared to be successful in predicting the

Towards Evidence Based Splitting of Organizations 341

structure of communities [28]; could this also be applied to the question of
organization-splitting? And now we have also restricted ourselves to a binary choice
("should this actor stay with organization X or move to organization Y"), resulting in
two clusters. We might broaden the question to an open choice ("what actors have
close transaction- / information-relationships"), resulting in multi-clusters, which
then could be translated to departments or separate legal entities.

Acknowledgements

We want to acknowledge Richard Jorissen, acting managing director
Rijkswaterstaat / National Institute for Coastal and Marine Management
(RWS/RIKZ), and Hero Prins, corporate change-manager Deltares, for their
sponsorship of the expert-meeting. Karin Middeljans and Kees Buursink generously
made available all relevant materials of the Enterprise Architecture Rijkswaterstaat
(EAR) team. And Wire Vree, Hans Mulder, Bart Kusse and Martijn Faay supported
us greatly in preparing the expert-meeting and analyzing its results.

References

1 Hackett, BPO-outlook for finance and accounting 2006-2008 (The Hackett Group, 2006)
2 A. Umar, IT infrastructure to enable next generation enterprises. Information Systems

Frontiers 7(3), 217-256 (2005).
3 Thomas L Friedman, The World is Flat." A Brief History of the Twenty-first Century

(Farrar, Straus and Giroux, 2005).
4 Martin Op 't Land, Bert Arnold, Ariane Engels, FPS: another way of looking at

components and architecture in the financial world. Congress paper for the Dutch
National Architecture Congress 2000 (LA C2000).
www.serc.nl/lac/LAC-2001/lac-2000/3-realisatie/fps.doc

5 Carolien van Straten, Disaggregating thefirm by means of Business Process Outsourcing.
Master thesis Erasmus University Rotterdam, 2002.

/ / www.strate~ie-vsb.nl pdg 8.pdf
6 Lance Travis and Jim Shepherd, Shared Services, Cost Savings, Compliance Relief and

Prelude to Outsourcing (AMR-research, 2005).
7 Martin Op 't Land (2006) Applying Architecture and Ontology to the Splitting and

Allying of Enterprises; Problem Definition and Research Approach. Proceedings of the
OTM Workshops Montpellier France 2006, (R. Meersman, Z. Tari, P. Herrero et al.,
Eds.), LNCS, Springer Berlin Heidelberg. http://dx.doi.or~/l 0.1007/11915072 46

8 J.L.G. Dietz, Enterprise Ontology - theory and methodology (Springer, 2006).
9 DEMO (=Design & Engineering Methodology for Organizations)-website, www.demo.nl
10 J.B.F. Mulder, Rapid Enterprise Design (Dissertation Delft University of Technology,

2006).
11 Martin Op 't Land, Bert Arnold, Jan Dietz, Effects of An Architectural Approach to the

Implementation of Shared Service Centers. Financecom05 Regensburg, Germany (2005).
http://www.iw.uni-karlsrnhe.de/financecomO5/contributions/opt-land-paper.pdf

12 W.P. Stevens, G.J. Myers and L.L. Constantine, Structured design. IBMSystems Journal
I3(2) pp. 115-139 (1975).

342 Martin Op 't Land

13 K.E. Weick, Management of Organizational Change Among Loosely Coupled Elements.
In: Goodman PS Associates (Eds) Change in Organizations, Jossey-Bass, San Francisco,
CA, pp 375-408. (1982)

14 CIAO! program (2004) Research program on Cooperation & Interoperability -
Architecture & Ontology. www.ciao.tudelft.nl.

15 xAF (2003) Extensible Architecture Framework version 1.1 (formal edition); report of the
NAF-workinggroup xAF. Seehttp://www.naf.nl/content/bestanden/xaf-l.1 fe.pdf

16 D. Avison, F. Lau, M. Myers, P.A. Nielsen PA, Action research. Communications o f the
ACM42:94-97 (1999).

17 Allen S Lee, A Scientific Methodology for MIS Case Studies. MIS Quarterly 13(1) pp.
33-50 (1989).

18 D.L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules.
Communications o f the A C M 15(12) (1972).

19 Erwin van der Graaf Architectuurprincipes voor de afbakening van outsourcebare kavels
(2006). htro://www.architecture-institute.nl/master-lab/pdf/ErwinVanDerGraaf.pdf.

20 Pierre van Amelsvoort, De moderne sociotechnisehe benadering - een overzicht van de
socio-technische theorie (ST-Groep, Vlijmen, 1999).

21 Jay R Galbraith, Het ontwerpen van complexe organisaties (Samson Uitgeverij Alphen
aan den Rijn - Brussel, 1976).

22 Martin Op 't Land, Organization science and systems theory on the splitting of enterprises
(unpublished, 2006).

23 Wikipedia on Conjoint Analysis, http://en.wikipedia.org/wiki/Conioint analysis
24 L.R. Ford Jr. and D.R. Fulkerson, Maximal Flow Through a Network, Canadian Journal

o f Mathematics 8:399-404 (1956).
25 R.E. Gomory and T.C. Hu, Multi-Terminal Network Flows. J.. S lAM 9 pp. 551-570

(1961)
26 Deltares-website, http:!/www.deltares.eu.
27 Situational Method Engineering website, htrp://matis.unige.ch/research/SME
28 Michelle Girvan and M.Ed. Newman, Community structure in social and biological

networks. Proc Natl Acad Sci U S A 99(12), pp. 7821--7826 (2002)
http://www.santafe.edu/research/publications/workin ffpap ers/O 1 - 12-077.pdf

A Formal Framework for Modeling and
Analysis of Organizations

Viara Popova and Alexei Sharpanskykh
Vrije Universiteit Amsterdam, Department of Artificial Intelligence,

De Boelelaan 1081 a, 1081 HV Amsterdam, The Netherlands
{popova, sharp } @cs.vu.nl

Abstract. This paper introduces a formal framework for modeling and
analysis of organizations. It allows representing a great variety of
organizational concepts and relations that are structured into a number of
dedicated perspectives (or views), similar to the ones defined in GERAM [3].
In contrast to many existing enterprise architectures the proposed framework
has formal foundations based on the order-sorted predicate logic. This formal
basis enables different types of analysis of organizational specifications both
of particular views and across different views. Furthermore, the framework
provides support for real time management of organizational processes. The
framework has been applied in a number of case studies, one of which is
discussed in this paper.

1 I n t r o d u c t i o n

Nowadays, many organizations employ automated management systems, based on a
great variety of enterprise architectures [3] (e.g., CIMOSA, ARIS, Zachman, PERA,
GRAI/GIM, TOVE). Based on the analysis of a large number of the existing
architectures, the IFIP/IFAC Task Force has developed the Generalized Enterprise
Reference Architecture and Methodology (GERAM) [3], which forms a basis for
comparison of the existing architectures and serves as a template for the development
of new architectures. GERAM identifies the essential characteristics for methods,
models and tools required to build and to maintain the integrated enterprise at
different phases of its life-cycle. Moreover, to reduce the complexity of enterprise
modeling GERAM identifies a number of particular views on enterprises (e.g.,
function, information, resource, organization) and defines a standard vocabulary of
concepts that may be used in the context of these views. The existing architectures
conform to the recommendations of GERAM to a variable degree [3]. Although
many architectures include a rich ontological basis for creating models o f different
views, most o f them provide only a limited support for automated analysis of these
models, addressed in the category Enterprise Engineering Tools of GERAM,

Please use the followingJormat when citing this chapter:

Popova, V., Sharpanskykh, A., 2007, in IFIP International Federation for lnlbrmation Processing, Volume 244,
Situational Method Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Bri~kkemper, S., Henderson-Sellers B.,
(Boston Springer), pp. 343-358.

344 Viara Popova and Alexei Sharpanskykh

primarily due to the lack of formal foundations in these frameworks. Formal analysis
is particularly useful for checking the correctness of enterprise models, for inspecting
and improving efficiency and effectiveness of the enterprise operation by identifying
inconsistencies and performance bottlenecks, as well as for controlling the actual
execution of organizational scenarios and evaluating organizational performance.
Moreover, analysis methods (e.g. simulation) may be used to investigate and predict
organizational behavior and performance under different conditions.

Within several frameworks analysis methods limited to particular views have
been developed (e.g., process-oriented modeling techniques for the function view [1,
2, 3, 10], ABC-based techniques for the performance view [26]). However, since
different modeling views are related to each other, this should also be reflected in the
analysis methods. Analysis performed across different views allows investigating a
combined influence of factors from different views on the organizational behavior,
thus, the designer is provided with more rigorous and manifold analysis possibilities
than by using analysis techniques dedicated to a particular view only. The need for
such analysis techniques is identified in [12]. A uniform formal basis (syntax and
semantics) underlying different views facilitates the development of cross-view
analysis methods. In [12] an integrated framework for process and performance
modeling is described that incorporates accounting/business parameters into a formal
process modeling approach based on Petri-nets. However, key aspects as authority
and power relations, organizational and individual goals, individual behavior are not
considered. Another formal framework for business process modeling is described in
[14] focusing on the formal goal-oriented modeling using the situation calculus.
Modeling and analysis of processes and other organizational concepts are not
properly addressed in this framework. A formal framework for verifying models
specified in Unified Enterprise Modeling Language (UEML) is proposed in [9]. It
identifies a general idea to use conceptual graphs for verifying enterprise models;
however, neither technical nor experimental results are provided to support this idea.

Since individuals often exert a significant influence on the organizational
dynamics, also aspects related to human behavior should be explicitly considered in
enterprise architectures. In particular, by modeling motivational and intentional
aspects of humans, an organization can flexibly (re)organize the work of its
employees to improve the productivity. The extensive theoretical basis on modeling
humans in organizational context developed in social science (e.g., theory of needs
[17], expectancy theory [27]) is largely ignored in the existing architectures.

To address the issues and shortcomings identified above, this paper proposes a
formal framework for organizational modeling and analysis that:

(1) has a high expressivity to represent static and dynamic aspects of different
views on organizations, similar to the ones defined in GERAM;

(2) allows the representation and analysis of organization models at different
levels of abstraction in order to handle complexity and increase scalability;

(3) enables formal verification and validation of models of different views;
(4) enables simulation for experimenting and testing hypothesis on the

organizational behaviour under different circumstances;
(5) proposes manifold computational analysis methods across multiple views;
(6) incorporates agent-based models of individuals based on social theories;
(7) supports and controls the execution of organizational scenarios and the

evaluation of organizational performance.

A Formal Framework for Modeling and Analysis of Organizations 345

The framework addresses design, implementation and operation life-cycle phases
of GERAM to a greater extent than identification, concept and requirements phases.

The framework proposes a wide spectrum of means for modeling and analysis of
structures and dynamics of organizations of different types. In particular, the
framework allows modeling mechanistic organizations that represent systems of
hierarchically linked job positions with clear responsibilities that operate in a
relatively stable (possibly complex) environment. At the same time the framework
proposes modeling and analysis means for organic organizations characterized by
highly dynamic, constantly changing, organic structure with non-linear behavior.
Although the structure and behavioral rules for organic organizations can be hardly
identified and formalized, nevertheless by performing agent-based simulations with
changing characteristics of proactive agents useful insights into functioning of such
organizations can be gained. Furthermore, the framework supports reuse of parts of
models constructed within particular organizational views.

The focus of this paper is on the general framework design and analysis methods
involving concepts and relation of more than one view, thus, integrating the four
views in a coherent and consistent modeling framework. The separate views with
their analysis techniques are presented in details elsewhere [6, 18, 19, 20, 21, 23, 24].

The paper is organized as follows. Section 2 describes the formal foundations of
the proposed framework. The case study used for the illustration of the framework is
introduced in Section 3. Section 4 gives a brief overview of the four modeling views.
The issues of design of organization models using the framework are discussed in
Section 5. The methods for the organizational analysis using the framework are
described in Section 6. Finally, Section 7 concludes the paper.

2 Formal Foundations of the Proposed Framework

In line with GERAM, the proposed framework introduces four interrelated views:
performance-oriented, process-oriented, organization-oriented, and agent-oriented.
The first-order sorted predicate logic [16] serves as a formal basis for defining
dedicated modeling languages for each view. These languages provide high
expressivity for conceptualizing a variety of concepts and relations and allow
expressing both quantitative and qualitative aspects of different views.

To express temporal relations in specifications of the views, the dedicated
languages of the views are embedded into the Temporal Trace Language (TTL) [4, 6,
25], which is a variant of the order-sorted predicate logic. In TTL the organizational
dynamics are represented by a trace, i.e. a temporally ordered sequence of states.
Each state is characterized by a unique time point and a set of state properties that
hold (i.e., are true). State properties are specified using the dedicated language(s) of
the view(s). Temporal (or dynamic) properties are defined in TTL as transition
relations between state properties. For the description of the formal syntax and
semantics, and examples of use of TTL we refer to [25].

Both specifications in the dedicated languages of the views and in TTL are
suitable for performing computations. In particular, in [25] it is shown that any TTL
formula can be automatically translated into executable format that can be
implemented in most commonly used programming languages.

346 Viara Popova and Alexei Sharpanskykh

Within every view a set of structural and behavioral constraints imposed on the
specifications of the view can be identified. Formally, this set is represented by a
logical theory that consists of formulae constructed in the standard predicate logic
way [16] from the terms of the dedicated language of the view (and of TTL if
temporal relations are required). Since the views are related to each other by sets of
common concepts, also these concepts can be used in the constraints expressions. A
specification of the view is correct if the corresponding theory is satisfied by this
specification, i.e., all sentences in theory are true in the logical structure(s)
corresponding to the specification. The constraints are divided in two groups: (1)
generic constraints need to be satisfied by any specification of the view; (2) domain-
specific constraints are dictated by the application domain and may be changed by
the designer. Two types of generic constraints are considered: (1) structural integrity
and consistency constraints based on the rules of the specification composition; (2)
constraints imposed by the physical world. Domain-specific constraints can be
imposed by the organization, external parties or the physical world of the specific
application domain. The algorithms for the verification of the correctness of
specifications of every view w.r.t, different types of constraints have been developed
and implemented, and will be discussed in Section 6.

3 Introduction to the Case Study

The proposed approach was applied for modeling and analysis of an organization
from the security domain within the project CIM (Cybernetic Incident Management,
see http://www.almende.com/cim/). The main purpose of the organization is to deliver
security services to different types of customers. The organization has well-defined
multi-level structure that comprises several areas divided into locations with
predefinedjob descriptions for employees (approx. 230.000 persons).

The examples in this paper are related to the planning of assignment of security
officers to locations. The planning process consists of forward (long-term) planning
and short-term planning. Forward planning is the process of creation, analysis and
optimization of forward plans for the allocation of security officers based on custom-
mer contracts. It is performed by forward planners from the forward planning group.
During the short-term planning, plans for the allocation of security officers in a cer-
tain area for a short term (a week) are created and updated based on a forward plan
and up-to-date information about the security officers. Based on short term plans,
daily plans are created. Short-term planning is performed by area planning teams.

4 M o d e l i n g V i e w s

In this section, the views of the proposed framework will be presented. Three of
them, process-oriented, performance-oriented and organization-oriented, have
prescriptive character and define the desired behavior of the organization. The fourth
view, agent-oriented, describes and integrates agents into the framework.

A Formal Framework for Modeling and Analysis of Organizations 347

4.1 Process-oriented View

The process-oriented view of the framework contains information about the
organizational functions, how they are related, ordered and synchronized and the
resources they use and produce. The main concepts are: task, process, resource type
and resource which, together with the relations between them, are specified in the
formal language LpR. A task represents a function performed in the organization and
is characterized by name, maximal and minimal duration. Tasks can range from very
general to very specific. General tasks can be decomposed into more specific ones
using AND- and OR-relations thus forming hierarchies.

A workflow is defined by a set of (partially) temporally ordered processes. Each
process is defined using a task as a template and inherits all characteristics of the
task. Decisions are also treated as processes associated with decision variables taking
as values the possible decision outcomes. The (partial) order of execution of
processes in the workflow is defined by sequencing, branching, cycle and
synchronization relations specified by the designer. Part of the workflow describing
the short-term planning process in the organization from the case study is given in
Fig. 1 seen at two different levels of abstraction.

i • provide_correct data_chang e_forms_to_planne rs

I
" ~ L 7 y L ~,o~termp,a. ~ I ~ I

i ~ p I ~ f No I
data change ~ . ~ (% d l i ~ d create and inf dNly_plan I

(a)

0 t o 0 a , y da, o..n°
plannin~ data in data -

' I forms I ~ L~ - i I g- ab°uLdaily-plan [

(b)

Fig.1 Part of the workflow describing the short-term planning process for the case
study

Tasks use/consume/produce resources of different types. Resource types describe
tools, supplies, components, data or other material or digital artifacts and are charac-
terized by name, category (discrete, continuous), measurement unit, expiration_du-
ration (the length of the time interval when a resource type can be used). Resources
are instances of resource types and inherit their characteristics, having, in addition,
name and amount. Some resources can be shared, or used simultaneously, by a set of
processes (e.g., storage facilities, transportation vehicles). Alternative sets of
processes sharing a resource can be defined.

348 Viara Popova and Alexei Sharpanskykh

Using the language, generic and domain-specific constraints can be defined.
Generic constraints include structural constraints on the correctness of the workflow,
task and resource hierarchies and constraints from the physical world. An example of
a structural generic constraint is: "For every and-decomposition of a task, the
minimal duration of the task is at least the maximal of all minimal durations of its
subtasks". An example of a physical world generic constraint is: "For every process
that uses certain amount of a resource as input, without consuming it, either at least
that amount of resource of this type is available or can be shared with another
process at every time point during process execution". Domain-specific constraints
can be added by the designer using templates.

LpR has some similarities with and distinctions from other process modeling
languages [1, 2, 10]. In particular, it realizes the most commonly used workflow
patterns identified in [2] extended with time parameters (e.g., sequence and parallel
execution, synchronization, loops). In comparison with other approaches [1, 3], t.pR
provides a more extensive means for resource modeling (e.g. shared resources).
More details on the process-oriented modeling using I-pR can be found in [21].

4.2 Performance-oriented View

Central notions in the performance-oriented view are goal and performance indicator
(PI). A PI is a quantitative or qualitative indicator that reflects the state/progress of
the company, unit or individual. The characteristics of a PI include, among others:
t y p e - continuous, discrete; u n i t of measurement; t i m e _ f r a m e - the length of the
time interval for which it will be evaluated; s c a l e of measurement; s o u r c e - the
internal or external source used to extract the PI: company policies, mission
statements, business plan, job descriptions, laws, domain knowledge, etc.; o w n e r -

the performance of which role or agent does it measure/describe; h a r d n e s s - soft or
hard, where soft means not directly measurable, qualitative, e.g. customer's
satisfaction, company's reputation, employees' motivation, and hard means
measurable, quantitative, e.g., number of customers, time to produce a plan. For the
case study, 33 PIs were identified examples of which are given below:

PI name: PI5;
Definition: average correctness of plans
Type: discrete," Time frame: month;
Scale: very_low-low-med-high-very_high;
Source: mission statement, job descriptions;
Owner: forward/daily planning departments
Hardness: soft," ...

PI name: PI27;
Definition: time to create new short-term plan
Type: continuous; Time frame: month
Scale: REAL,' Unit: hour;
Source: job descriptions
Owner: daily planning departments
Hardness: hard;...

PIs can be related through various relationships. The following are considered in
the framework: (strongly) positive/negative causal influence of one PI on another,
positive/negative correlation between two PIs, aggregation - two PIs express the
same measure at different aggregation levels. Such relationships can be identified
using e.g. company documents, domain knowledge, inference from known relations,
statistical or data mining techniques, knowledge from other structures of the
framework. Using these relations, a graph structure of PIs can be built.

Based on PIs, PI expressions can be defined as mathematical statements over PIs
that can be evaluated to a numerical, qualitative or Boolean value. They are used to
define goal patterns. The t y p e of a goal pattern indicates the way its property is

A Formal Framework for Modeling and Analysis of Organizations 349

checked: a c h i e v e d (c e a s e d) - t r u e (false) for a specific time point; m a i n t a i n e d

(a v o i d e d) - t r u e (false) for a given time interval; o p t i m i z e d - i f the value of the PI
expression has increased, decreased or approached a target value for a given interval.

Goals are objectives that describe a desired state or development and are defined
by adding to goal patterns information such as desirability and priority. The
characteristics of a goal include, among others: p r i o r i t y ; e v a l u a t i o n t y p e -

achievement goal (based on achieved/ceased pattern - evaluated for a time point) or
development goal (based on maintained/avoided/optimized pattern - evaluated for a
time interval); h o r i z o n - for which time point/interval should the goal be satisfied;
h a r d n e s s - hard (satisfaction can be established) or soft (satisfaction cannot be clearly
established, instead degrees of s a t i s f i c i n g are defined); n e g o t i a b i l i t y . Examples of
goals identified for the case study are given below:

Goal name: G3.2
Definition: It is required to maintain high
efficiency of allocation of security officers
Priority: high; Horizon: long-term
Evaluation type: development goal
Perspective: management, customer
Hardness: soft," Negotiability: negotiable

Goal name: G3.1.1. l
Definition: It is required to achieve that the
time to update a short-term plan given
operational data is at most 48 hours
Priority: high; Horizon: short-term
Evaluation type: achievement goal
Perspective: management
Hardness: hard, Negotiability: negotiable

A goal can be refined into sub-goals forming a hierarchy. Information about the
satisfaction of lower-level goals can be propagated to determine the satisfaction of
high-level goals. A goal can be refined into one or more alternative goal lists of
AND-type or balanced-type (more fine-tuned ways of decomposition - inspired by
the weighted average function) [19]. For each type, propagation rules are defined.
Fig. 2 shows a part of the goals hierarchy built for the case study.

+ + + + I ~

+ + + +

re f inement l i n k

s o f t goa

h a r d goa

a n d - l i s t r e l a t i o r

b a l a n c e d l i s t r e l a t i o n

s a t i s f i c e s r e l a t i o n

Fig. 2 A part of the goal hierarchy for the case study

Using the concepts and relations of the performance-oriented view, constraints
can be formulated. An example of a generic structural constraint is: "I f two PIs are
related by an aggregation relation then they should have the same type and
measurement unit."

Modeling goals is supported to a various degree by a number of existing
frameworks in enterprise modeling; however the concept of a PI has been largely

350 Viara Popova and Alexei Sharpanskykh

ignored. Our approach [19, 20] differs in explicitly representing PIs and the link
between a goal and the PI that will measure its satisfaction. Besides the relationships
between PIs can be represented and used for reasoning at the design phase.

4.3 Organization-oriented View

In the organization-oriented view organizations are modeled as composite roles that
can be refined iteratively into a number of (interacting) composite or simple roles,
representing as many aggregation levels as needed. The refined role structures
correspond to different types of organization constructs (e.g., groups, units,
departments). Yet many of the existing modeling frameworks are able to represent
only two or three levels of abstraction: the level of a role, the level of a group
composed of roles, and the overall organization level, as in [13]. The organization-
oriented view provides means to structure and organize roles by defining interaction
and power relations on them. First, interaction relations are discussed.

One of the aims of an organizational structure is to facilitate the interaction
between the roles that are involved into the execution of the same or related task(s).
Therefore, patterns of role interactions are usually reflected in an organization
structure. Each role has an input and an output interface, which facilitate in the
interaction (in particular, communication) with other roles and the environment. Role
interfaces are described in terms of interaction (input and output) ontologies: a
signature specified in order-sorted logic. Generally speaking, an input ontology
determines what types of information are allowed to be transferred to the input of a
role (or of the environment), and an output ontology predefines what kinds of
information can be generated at the output of a role (or of the environment). In
particular, to specify a special type of interaction - a speech act s_act (e.g., inform,
request, ask) with the content message the ontologies of both role-source rl and role-
destination r2 should include the predicate comrnunicate__from_to(rl:ROkE, r2:RO/E.
s_act:SPEECH_ACT, message:STRING). Roles that are allowed to interact are connected
by an interaction link that indicates the direction of the interaction (see Fig. 3).

The representation of the environment may vary in different organizational
specifications. In particular, in some cases it can be defined by a set of objects with
certain properties and states and by causal relations between objects. While in other
cases the dynamics of the environment is described by (high-level) processes and
trends (e.g. changes of the market situation, natural environmental oscillations).

Since roles may have composite structure, interaction processes can be modeled
at different levels of abstraction. Interaction relations between roles can also be
depicted in a modular way; thus, scalability of graphical representation is achieved.
Moreover, interaction relations specified at the generalized level, represent temp-
lates that can be instantiated for a particular case. An instantiated model is obtained
from a template by unfolding generic relations between roles and by creating new
role instances. For example, the documents of the organization from the case study
define standard patterns of interaction between the forward planner and the daily
planner roles that can be modeled at the generalized (template) level. However, for a
more detailed analysis of the organizational dynamics, a more specific representation
defining interaction relations between particular role instances of the forward planner
and the daily planner roles (e.g., from different planning teams) is needed (see Fig.
3). For a more detailed description of the modeling of interaction relations at
different levels of abstraction and generalization we refer to [6].

A Formal Framework for Modeling and Analysis of Organizations 351

Besides interaction relations, also power relations on roles constitute a part of the
formal organizational structure. Formal organizational power (authority) establishes
and regulates normative superior-subordinate relationships between roles. Authority
relations are defined w.r.t, tasks. In the context of the running example the relation
is_subordinate_of_for(Daily_PlannerA, Team_Leader1, daily_planning) means that role
Daily_PlannerA is a s u b o r d i n a t e o f r o l e Team_Leader1 w. r . t , the task daily_planning.

Roles have rights and responsibilities related to different aspects of tasks (e.g.,
execution, monitoring, consulting, and making technological and/or managerial deci-
sions). For example, is_responsible_for(Daily_PlannerB, execution, inform_about_daily_plan)
expresses execution responsibility of role Daily_PlannerB for task inform_about_daily_plan.

A number of generic constraints have been identified in this view. For example,
"to assign responsibility for some aspect of a task, a role should have the
responsibility to make managerial decisions and be the superior of a role, to which
the responsibility is assigned".

Template . :
- . -

Instantiated model i : ~ ~ ~ ~
/

O Role

Role instance

1, Interaction relation

O Input interface

• Output interface

.............. Role generalization
relation

Fig. 3 The graphical representation of interaction relations between the roles Forward Planner
(FP) and Daily Planner (DP) (the template) and their instances (the instantiated model)

Roles with managerial rights may under certain conditions authorize and/or make
other roles responsible for certain aspects of task execution. In many modem
organizations rewards and sanctions form a part of authority relation, thus, they are
explicitly defined by appropriate language constructs. Specific conditions (e.g.,
temporal, situational) under which authority relations may be created/maintained/
dissolved are defined by executable rules expressed by TTL formulae. For more
details on specifying authority relations in organizations of different types see [23].

4.4 Agent-oriented View

To create realistic organization models, in addition to formal (explicitly identified,
documented) aspects, also informal aspects of human behavior in the organizational
context should be considered. The computational organization theory [7] has a long
tradition of modeling human organizations using the agent paradigm, also used in the
proposed framework. Models of agents defined in the agent-oriented view are based
on psychological and social theories receiving the most empirical support [17, 27].

An agent is defined as an autonomous entity able to interact (e.g., by
observations and actions) with other agents and the environment. Agents are
characterized by a set of capabilities (i.e., knowledge and skills) and personal traits.
Knowledge of an agent comprises facts and procedures, of which the agent has

352 Viara Popova and Alexei Sharpanskykh

confident understanding. Skills describe developed abilities of agents to use
effectively and readily their knowledge for the performance of tasks. In the literature
four types of skills relevant in the organizational context are distinguished: technical,
interpersonal, problem-solving/decision-making and managerial skills. Every skill of
an agent is associated with a performance indicator. Furthermore, for each skill a
numerical value of the skill development that changes over time is defined.

Personal traits are divided into five broad categories discovered in psychology
[22]: openness to experience, conscientiousness, extroversion, agreeableness, and
neuroticism. Using sets of capabilities and traits, several characteristic types of
agents (e.g. "self-confident professional", "intrinsically motivated novice", "sub-
missive employee") are defined that are relevant in different organizational settings.

An agent can be allocated to an organizational role if s/he possesses the
necessary capabilities and traits defined as requirements for the role. In the case
study, the role Daily_Planner requires the agent to have knowledge and technical skills
related to daily planning, as well as some interpersonal skills. The company also
defined requirements on personal traits related to conscientiousness (self-discipline,
responsibility, aim for achievement) and agreeableness (cooperative work style).

To model the dynamics of an agent situated in the organizational context, the
agent's intentional and motivational aspects are considered in the agent-oriented
view. Each agent has a set of needs that s/he strives to satisfy. At present, a widely
accepted categorization of needs in social science is: (1) extrinsic needs associated
with biological comfort and material rewards; (2) social interaction needs - the desire
for social approval, affiliation and companionship; (3) intrinsic needs that concern
the desire for self-development, self-actualization, mastery and challenge. The level
of satisfaction and importance of different types of individual needs change with
time causing change in priorities of individual goals related to these needs. The
highest motivation is demonstrated by an agent w.r.t, actions (e.g., the execution of
organizational tasks) that (significantly) contribute to the satisfaction of his/her
primary goals. An organization that recognizes primary goals of its agents often can
arrange their work and provide incentives so that the agents are constantly stimulated
to adopt the behavior that also ensures the satisfaction of organizational goals.

For reasoning about the agent motivation and work behavior, Vroom's version of
the expectancy theory [27] is used which establishes causal dependencies between a
number of individual, organizational and environmental parameters and the agent's
motivation to perform certain action (e.g., process). The expectancy theory is one of
the few organization theories that can be made operational and used for simulation.

5 Design Issues

The general approaches to organization design differ w.r.t, the presence and
involvement of the concerned agents. The design can be performed without having in
mind specific agents - the necessary agent profiles are composed at the later design
stages based on the considered/designed tasks. Organizational design can also be
performed w.r.t, a (partially) known set of agents who will take roles in the organi-
zation. Thus agents' skills and traits can be taken into account. Sometimes the agents
are not only known but they have some degree of power to steer the design process.

A Formal Framework for Modeling and Analysis of Organizations 353

The design process often starts with the identification of one or more high-level
goals which play the role of the driving force behind the design process. These goals
(initially still informally defined) should answer the question: why should the
organization exist and what purpose will it serve? Such goals can be identified by the
designer or emerge through communication and/or negotiation between the involved
agents. In the second case the resulting organizational goals reflect to some extent
the individual goals of the participating agents. In this way some possible future
conflicts between individual and organizational goals are prevented early. If conflicts
do appear, they can be dealt with through negotiation and redesign at the later stages.

The higher-level goals are often more abstract and, through refinement, more
specific, easier to evaluate, goals are formulated. Also, often the higher-level goals
are long-term, strategic goals while their sub-goals are shorter-term tactical or
operational goals. The leaves of the hierarchies should be goals formulated so that
the corresponding PIs can clearly be associated to the processes in the workflow. In
this way the satisfaction of every goal in the hierarchies can be evaluated.

Also at the earlier stage of the design process one or more general tasks are
identified giving an answer to the question: what should the organization do? For
identifying these tasks sometimes only the defined goals are considered. However
when the involved agents are (partially) known, the definition of tasks can be based
on the available skills and experience as well. These tasks are later refined to task
hierarchies. For the tasks, the used / produced resource types are identified which can
also form hierarchies. Based on the tasks, processes are defined and organized into
workflows that can represent different levels of abstraction. The level of elaboration
of these structures can depend on the type of the organization. In mechanistic
organizations [22] the procedures are prescribed to a great degree of detail which
should result in more elaborate structures refined to simple tasks and processes. In
organic organizations (e.g., adhocracies) the procedures are described at a higher
level of abstraction leaving more freedom to the agents to choose how to perform
them which should result in less deep task hierarchies and less elaborate workflows.

The design process can follow different paths through the views and concepts but
several general guidelines can be formulated. When an informally defined goal is
being formalized and made more precise this should be reflected on the PI structure -
often this means that a new PI is defined or an existing one is revised. A change in
the goal hierarchy should also be reflected on the task hierarchy by identifying new
or existing tasks that can realize the new or revised goals. A change in the task
hierarchy often brings changes to the current workflow design. Adding or revising
processes in the workflow might give rise to new Pls that need to be monitored.
When a PI is proposed it should be decided on its level of importance in order to find
out if a new goal should be formulated based on it. The definition of roles is based
on the currently defined tasks and processes. Fig.4 shows the main dependencies
between concepts and structures in the framework which guide the design process.

Power and authority relations between the defined roles are usually assigned at
the later stages of the design process. However different general schemes can be
predefined and committed to by the designer at the earlier stages as well leaving the
details for later. Such schemes reflect different types of organizations identified in
organization theory such as: hierarchical, flat or team-based organizations which
differ in the way the power is distributed, granted or accepted by the roles (agents).

354 Viara Popova and Alexei Sharpanskykh

Cog ~:
hierarchies

I
PI
structure

Performance-
oriented view

Task
hierarchies

% ,,
hierarehies

R e

Workllow

Process-
oriented view

Roles
set

Organization-
oriented view

Agents
) set

Agent-
oriented view

Fig. 4 Dependencies between the structures of the four views

The choice of scheme should be driven by an analysis of the environment in
which the organization should operate. For example a relatively stable environment
tolerates a well-defined hierarchical structure which can help the organization to
operate more efficiently. A changing environment can be addressed by designing a
lighter, more flexible and dynamic structure that can easily adapt to the changes.
Obviously the environment in which the organization will be situated plays an
important role not only in defining power and authority relations. It needs to be taken
into account at every step of the design process and in every view of the framework.

Sometimes instead of designing an organization from scratch, a specification of
an existing one needs to be created. Here a wide range of internal or external
documents are used, e.g., company policies, job descriptions, mission statement,
business plans, procedure descriptions, laws. However even the richest
documentation leaves some information unspecified thus it is essential to involve
domain experts and managers. In organizational redesign, the issue of maintaining
the consistency and correspondence between the structures of different views
becomes more complex and the tools for automatic analysis become indispensable.

The framework allows reuse in a number of ways. Libraries of commonly
appearing parts of structures (goals and tasks hierarchies, PI-structures, workflow
graphs, etc.) can be stored and reused for organizations in the same domain. The
research in identifying and classifying important PIs for different domains [e.g. 8,
15] can easily be applied here. Reuse can also be supported by predefined templates
for various aspects of different types of organizations (mechanistic, organic, etc.).
For example templates for domain-specific constraints can be provided for each view
to be customized by the designer. The used tool allows defining parameterized temp-
lates (macros) for TTL formulae that can be instantiated in different ways which can
also be used as support for designers not skilled in logics. For more details see [21].

6 Analysis Methods

The formal foundations of the proposed framework enable three types of automated
analysis. The first type focuses on the verification of specifications of every view
(i.e., establishing the correctness w.r.t, a set of constraints). The second type

A Formal Framework for Modeling and Analysis of Organizations 355

addresses the validation of (combined) correct specifications of different views by
simulation. Finally~ the third type focuses on the analysis of actual executions of
organizational scenarios based on (combined) specifications from different views.
The three types of analysis are discussed in this order in the rest of this Section.

The verification of the consistency of a PI structure is performed by checking
constraints based on the inference rules described in [20]. The inference rules allow
generating all correct causality relations between PIs that should hold in the PI
structure. Since goal and PI structures are closely related, it is important to guarantee
consistency and correspondence of these structures to each other. For this a dedicated
consistency check can be performed, based on the constraints described in [19]. For
organizations that do not allow conflicts between goals, a number of dedicated
techniques for the identification and the resolution of conflicts are proposed in [l 9].

In the process-oriented view constraints are defined for the three types of struc-
tures: workflow, task and resource hierarchies [21] that should be satisfied by speci-
fications. The verification of the correctness of a specification is performed during or
at the end of the design process, depending on the type of constraint. Some domain-
specific constraints might not (yet) be satisfied for incomplete specifications. The
designer can choose when they should be checked. The syntactical check of a speci-
fication and the verification of generic constraints are performed at each design step.

Note that workflow specifications can be represented and analyzed at different
levels of abstraction. In general, the verification of higher-level specifications is
computationally cheaper than that of more detailed lower-level specifications.
Furthermore, a correct high level workflow specification can be refined to a lower
level by using the correct hierarchy of tasks, on which the processes of the workflow
are based. In such a case the correctness verification of the obtained workflow is
guaranteed without additional verification. The verification of interaction relations in
composite (multi-level, hierarchical) organizational structures is addressed in [6].

The algorithms developed for the verification of constraints of different types in
the proposed framework are more efficient than general-purpose methods for
verifying specifications (e.g., model checking [11]).

As shown in [18], correct organizational specifications can be used to guide and
to control the actual execution of processes in organizations. The execution data
recorded by an enterprise information system and structured in the form of a trace
can be checked for conformity to a formal organization (i.e., specifications and
constraints defined in particular views). To this end, the relations and constraints
specified for particular views are translated into properties expressed in the execution
language used for the formalization of the trace [18]. They are checked in real time
on the trace. Depending on the type of event that (should) occur(s) in the trace at a
certain time point, only a subset of relevant properties is checked at this time point.
Moreover, the designer may specify additional properties to be checked in real time.

A trace can also be analyzed after the execution of an organizational scenario is
completed. For this type of analysis, next to the properties obtained from the formal
organization, the designer may specify in TTL and check other properties. The traces
are used to evaluate the PIs associated with the executed processes. These PIs are
related to the leaves of the goals hierarchy, thus the satisfaction of these goals can be
evaluated. The satisfaction values are propagated upwards to establish the satisfac-
tion of higher-level goals determining the overall organizational performance [18].

Based on correct (combined) specifications of the views, simulation can be
performed, in which different types of agents, defined using the concepts from the

356 Viara Popova and Alexei Sharpanskykh

agent-oriented view, are allocated to the organizational roles. By considering
different simulation scenarios of organizational behavior, the validation of
organizational specifications can be performed (i.e., checking if the model behaves
as expected, corresponds to reality) using the dedicated tool [4, 5].

In the context of the case study the behavior of different types of planners under
different organizational and environmental conditions was investigated [24]. The
simulation results in Fig.5 are related to a planner agent with initially lacking skills
but good learning abilities to improve through processes execution. In the simulation
comparable amounts of simple and complex tasks and equal arrival rates of tasks
are.used. Fig.5a shows the change of the satisfaction level of the intrinsic needs of
the agent, performing tasks under the control of a team leader. The simulation results
show that the more experience the agent gains, the less s/he appreciates the leader's
involvement. Fig.5b shows a growth of the agent satisfaction when the leader
exercises direct control only if the agent lacks experience. The simulation results
conform to the empirical evidence [27], which supports the specification's validity.

The simulation tool also provides the possibility to generate the simulation
results in the form of a trace. Traces can be used for the validation of specifications
by checking dynamic properties in the environment TTL Checker [4]. Such
properties should be specified in TTL and may be expressed using the concepts and
the relations defined in different views. A detailed explanation can be found in [4, 6].

Simulation based on a correct and valid specification can also be used for
predictions on the organization's behavior in different environmental conditions and
with different agents as well as for investigating theories from the social sciences.

I
i

L
~ Ioo

t--i~ i

i i -" i
..... i i =~i , , ,

"ii ~..~~

.

(a)

ii rj - !'\ ,,,

• ,,. " " ~

2 E ~,.-,

 o'.i i i.., ----J
~ ° ~ - ;~o~ ~ ~ ~

(b)

Fig. 5 Change of the satisfaction level of the agent's intrinsic needs (the vertical axis) over
time (the horizontal axis) in the case of constant supervision (a) and temporary supervision (b)

7 Conclusions

This paper describes a formal framework for modeling and analysis of organizations.
The framework has a rich ontological basis that comprises concepts and relations
partitioned into a number of dedicated views similar to the ones defined in GERAM.
The introduced modeling framework allows representing different types of organiza-
tions ranging from mechanistic to organic. In contrast to many existing architectures,
the proposed framework allows performing different types of automated analysis of
organizational models (e.g. by verification, validation and simulation) both of

A Formal Framework for Modeling and Analysis of Organizations 357

particular views and across different views. Moreover, the framework incorporates
agent-based models of individuals based on social theories. Organizational models of
different views can be represented and analysed at different abstraction levels, which
allows handling high complexity and increases scalability of modeling. Finally, the
framework allows model reuse that accelerates and facilitates the modeling process.

The views of the proposed framework are formalized based on intuitive, close to
the natural, predicate languages, with concepts and relations that can be represented
graphically. Currently, the graphical interface is provided for the performance-
oriented view, whereas other views are specified textually using the dedicated tools.
In the future, modeling related to other views will be also supported graphically.

The application of the proposed framework has been illustrated by an example of
an organization from the security domain. The framework was also applied in the
context of a case study in logistics (http://www.almende.com/deal/). Currently, the
framework is used for modeling and analysis of an air traffic control organization.

References

1. W. van der Aalst and K.M van Hee, Workflow Management: Models, Methods, and
Systems (MIT press, Cambridge, MA, 2002).

2. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A.P. Barros, Workflow patterns,
Distributed and Parallel Databases 14(3), 5-51 (2003).

3. P. Bemus, et al. (eds.): Handbook on Architectures of Information Systems, Springer-
Verlag, Heidelberg (1998) 209-241.

4. T. Bosse, C.M. Jonker, L. van der Meij, A. Sharpanskykh, and J. Treur, Specification and
Verification of Dynamics in Cognitive Agent Models. In: Proceedings of the 6 th Int. Conf.
on Intelligent Agent Technology, IA T'06 (1EEE Computer Society, 2006), pp. 247-254.

5. T. Bosse, C.M. Jonker, L. van der Meij, and J. Treur, LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Proc. MATES'05. LNAI 3550,
edited by T. Eymann et al. (Springer Verlag, 2005) pp. 165-178.

6. E. Broek, C. Jonker, A. Sharpanskykh, J. Treur, and P. Yolum, Formal Modeling and
Analysis of Organizations. In Coordination, Organization, Institutions and Norms in Agent
Systems I, LNAI 3913, (Springer, 2006).

7. K.M. Carley: A comparison of artificial and human organizations. Journal of Economic
Behavior & Organization, 31(2) 175-191 (1996).

8. F.T.S. Chan, Performance measurement in a supply chain, International Journal of
Advanced Manufacturing Technology 21 (7), 534-548 (2003).

9. V. Chapurlat, B. Kamsu-Foguem, and F. Prunet, A formal verification framework and
associated tools for enterprise modeling: Application to UEML, Computers in industry, 57,
153-166 (2006).

10. Y.-H. Chen-Burger, A. Tate, and D. Robertson, Enterprise Modelling: A Declarative
Approach for FBPML, European Conference of Artificial Intelligence, Knowledge
Management and Organisational Memories Workshop, 2002.

11. E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking (MIT Press, 2000).
12. N. Dalal, M. Kamath, W. Kolarik, and E. Sivaraman, Toward an integrated framework for

modeling enterprise processes, Communications of the ACM, 47(3), 83-87 (2004).
13. J. Ferber and O. Gutknecht, A meta-model for the analysis and design of organizations in

multi-agent systems. In: Proceedings of Third International Conference on Multi-Agent
Systems (ICMAS'98) (IEEE Computer Society 1998), pp. 128-135.

14. M. Koubarakis and D. Plexousakis. A formal framework for business process modeling
and design. Information Systems, 27(5), 299-319 (2002).

358 Viara Popova and Alexei Sharpanskykh

15. E. Krauth, H. Moonen, V. Popova, and M. Schut, Performance Measurement and Control
in Logistics Service Providing, Proceedings oflCEIS 2005, pp. 239-247 (2005).

16. M. Manzano, Extensions of First Order Logic (Cambridge University Press, 1996).
17. A. H. Maslow, Motivation and Personality, 2nd. ed. (New York, Harper & Row, 1970).
18. V. Popova and A. Sharpanskykh, Formal analysis of executions of organizational

scenarios based on process-oriented models. To appear in: Proc. o f 21 st European
Conference on Modeling and Simulation (ECMS'07), 2007.

19. V. Popova and A. Sharpanskykh, Formal Modelling of Goals in Agent Organizations. In
Proc. o f the AOMS Workshop (joint with IJCA12007), 74-86.

20. V. Popova and A. Sharpanskykh, Modelling Organizational Performance Indicators. In:
Proc. oflMSM'07 conference, edited by Barros, F. et al., 165-170, (2007).

21. V. Popova and A. Sharpanskykh, Process-Oriented Organization Modeling and Analysis
Based on Constraints. Technical Report 062911AI, VUA, http://hdl.handle.net/1871/10545

22. W.R. Scott, Institutions and organizations (SAGE Publications, Thousand Oaks 2001).
23. A. Sharpanskykh, Authority and its Implementation in Enterprise Information Systems,

Technical Report 070202AI, VUA.
24. A. Sharpanskykh, Modeling of Agent Behavior in the Organizational Context, Technical

Report 070323AI, VUA.
25. A. Sharpanskykh and J. Treur, Verifying Interlevel Relations within Multi-Agent Systems.

In: Proc. o f the 17th European Conf. on AI, ECAI'06 (IOS Press, 2006), pp. 290-294.
26. K.D. Tham, Representation and Reasoning About Costs Using Enterprise Models and

ABC, PhD Dissertation, University of Toronto, 1999.
27. V.H. Vroom, Work and motivation (Wiley, New York, 1964).

Modularization Constructs in Method
Engineering: Towards Common Ground?

P~ir J. A.gerfalk l, Sjaak Brinkkemper 2, Cesar Gonzalez-Perez 3, Brian
Henderson-Sellers 4, Fredrik Karlsson 5, Steven Kelly 6 and Jolita Ralyt~ 7

1 Lero - The Irish Software Engineering Research Centre, University of
Limerick, Ireland, and Uppsala University, Sweden, par.agerfalk@lero.ie
2 Institute for Information and Computing Sciences, Utrecht University,

Netherlands, S.Brinkkemp er@cs.uu.nl
3 European Software Institute, cesargon@verdewek.com

4 University of Technology, Sydney, Australia, brian@it.uts.edu.au
5 Methodology Exploration Lab, Dept. of Informatics (ESI), Orebro

University, Sweden, fredrik.karlsson@esi.oru.se
6 MetaCase, Finland, stevek@metacase.com

7 CUI, University of Geneva, Switzerland, jolita.ralyte@cui.unige.ch

Abstract. Although the Method Engineering (ME) research community has
reached considerable maturity, it has not yet been able to agree on the
granularity and definition of the configurable parts of methods. This state of
affairs is causing unnecessary confusion, especially with an ever increasing
number of people contributing to ME research. There are several competing
notions around, most significantly 'method fragments' and 'method chunks',
but also 'method components' and 'process components' are used in some
quarters and have also been widely published. Sometimes these terms are used
interchangeably, but there appears to be important semantic and pragmatic
differences. If the differences are unimportant, we should be able to come to
an agreement on what construct to promote. Alternatively, the different
constructs may serve different purposes and there is a need for them to coexist.
If this is the case, it should be possible to pinpoint exactly how they are related
and which are useful in what contexts. This panel is a step towards finding
common ground in this area, which arguably is at the very core of ME.

1 Introduction

Since its inception in the early to mid 1990s, the Method Engineer ing (ME)
research communi ty has reached considerable maturity. Nonetheless, there is still

Please use the following format when citing this chapter:

Agerfalk, P. J., Brinkkemper, S., Gonzalez-Perez, C., Henderson-Sellers, B., Karlsson, F., Kelly, S., Ralyt6, J., 2007, in
IFIP International Federation for information Processing, Volume 244, Situational Method Engineering: Fundamentals
and Experiences, eds. Ralyt6, J., Brinkkemper, S., Henderson-Sellers B., (Boston Springer), pp. 359-368.

360 P/it J. Agerfalk et al.

some ambiguity with regards to fundamental concepts and terminology. Since
situational ME is fundamentally concerned with the assembly and configuration of
information systems engineering methods, understanding the basic building blocks
of methods is arguably core to the discipline. In order to devise appropriate ME
processes and tools, we need to understand what building blocks those processes and
tools are to handle. To date, a number of different such 'modularization constructs'
have been suggested. Among the most cited are 'method fragments', 'method
chunks', 'method components' and 'process components'. Along with these
constructs come certain interpretations of related concepts such as method,
technique, notation, process, deliverable, work product, tool etc. Sometimes the
constructs are used interchangeably, but there appears to be important semantic and
pragmatic differences. If the differences are unimportant, we should be able to come
to an agreement on what construct to promote. Alternatively, the different constructs
may serve different purposes and there is a need for them to coexist. If this is the
case, it should be possible to pinpoint exactly how they are related and which are
useful in what contexts. This panel is a significant step towards finding common
ground in this area.

The remainder of this panel introduction consists of a brief description of the four
modularization constructs mentioned above, followed by a brief introduction of the
panellists. The aim of this document is to provide some background and context for
the panel. The actual discussion and its outcome will be reported elsewhere.

2 Method Fragments

One of the earliest and arguably most important modularization construct in ME
is that of the method fragment. It was first proposed and elaborated by Brinkkemper
and colleagues [1-4] and has since been widely adopted in ME research. Essentially,
method fragments are standardized building blocks based on a coherent part of a
method [1]: ' ... a description of an IS engineering method, or any coherent part
thereof'. A complete method, such as 'OMT', is a method fragment and so is any
single concept used within that method, such as 'object'. A method fragment thus
resides on a certain so-called layer of granularity, of which five are possible:
method, stage, model, diagram, or concept [4]. Consequently, 'object' resides on the
concept layer while 'OMT' resides on the method layer. Furthermore, a method
fragment is either a process fragment or a product fragment. Process fragments
represent the activities, stages etc that are to be carried out and product fragments
represent deliverables, diagrams etc that are to be produced, or that are required,
during development. Method fragments are stored in a method base from which they
can be retrieved using a query language, such as the Method Engineering Language
(MEL) [5]. This way, a situational method can be constructed by combining a
number of method fragments into a situational method. To be meaningful and useful,
such a combination must follow certain assembly rules that adhere to the
construction principles in the process perspective on the one hand and in the product
perspective on the other hand. This has been explored by Brinkkemper et al. [4].

Modularization Constructs in Method Engineering: Towards Common Ground? 361

Currently the team of Brinkkemper at Utrecht University is focussing on the
methodological support for product software companies, i.e. companies that develop
and market software products for a particular market. About 10% of the total ICT
spending is spend on software products and examples of such companies are
Microsoft, SAP, Oracle, and Business Objects [6]. As these companies keep the
ownership of the software code and all auxiliary materials belonging to the software
product, these companies create and maintain a proprietary software development
method. From the start-up phase where they begin with bug tracing to a more
consolidated company with all kinds of quality engineering processes in place. The
gradual growth of the product software company calls for a more incremental growth
from simple method fragments to more complex fragments at a later stage [7, 8]. The
evolution from simple to complex processes properly supported with development
tools while keeping the historical documentation and the methodological context in
place are a significant scientific challenge for the coming years.

3 Method Chunks

The method chunk concept was proposed by Rolland and colleagues [9-13] as a
way to capture more of the situational aspects in ME and to appropriately support the
retrieval process. The concept was introduced together with a contextual ME
approach using scenarios [10] and suggests an organization of the method base in
two levels, one method knowledge level and one method recta-knowledge level [9].
The former level is represented by the method chunk body and the latter captures the
situational and intentional aspect of method chunks in the method chunk descriptor.
In [9] the method knowledge level is operationalized in a three level abstraction
model and method chunks are classified into component, pattern or framework. A
method component is a complete method description. A pattern is, for example, a set
of generic guidelines for writing test scripts. Finally, a framework is a recta-method
that guides the construction of a way-of-working within a specific method.

In the latest work [11-13] the concept of method chunk is defined as
autonomous, cohesive and coherent part of a method providing guidelines and
related concepts to support the realisation of some specific system engineering
activity (e.g. business modelling, requirements specification, design etc). In fact, the
method knowledge is captured in the method chunk body and interface. The interface
defines pre and post conditions of chunk application formalised by a couple
<situation, intention>. The situation specifies the required input product part(s)
while the intention defines the goal that the chunk helps to achieve. For example, the
interface of the method chunk supporting identification of Business Actors and Use
Cases within the RUP could be modelled as <(Business knowledge, problem
description, interview results), Identify and describe business actor(s) and use
case(s)>.

The body of the method chunk includes two kinds of knowledge: product and
process. The product knowledge defines the work products (input and output) used
by the method chunk (e.g. the definitions of the concept "actor" and "use case and
their relationships). This knowledge is generally expressed in terms of meta-models.

362 P/Jr J. Agerfalk et al.

The process knowledge captured in a method chunk provides guidelines how to
obtain target product(s) from input product(s) (e.g. the guidelines how to identify
system actors and their business use cases). The guideline can be represented as an
informal description or expressed by using different process modelling formalisms
such as NATURE context trees [14] or MAP graphs [15] depending on how rich and
complex it is. The fact that a guideline can be complex (i.e. composed of a set of
sub-guidelines) means that the corresponding method chunk can be an aggregate of a
collection of smaller chunks.

The descriptor (i.e. method meta-knowledge) of the method chunk extends the
contextual knowledge defined in the interface with a set of criteria that help to better
locate the engineering situation in which the method chunk is useful. A detailed
classification of these criteria related to the information systems development, named
Reuse Frame, is proposed in [13].

A method chunk is selected for a specific situation based on the characterization
of that situation and how relevant it is to achieve the intention of the method chunk.
Hence, the intention of a method chunk, the goal that can be achieved through
application of the way of working prescribed by the method chunk, is central.

Method chunks are retrieved from the method base through the use of meta-
knowledge. Based on the structure of the method base, where method chunks have
been clustered and described using interfaces and descriptors, it is possible to query
the method base using a query language. For example, it is possible to select a chunk
from the RUP if it has a representation in the method base. Hence, a method chunk
query language has similarities with MEL when using method fragments.

Some initial comparisons of method fragments and method chunks are to be
found in [13] and [16].

4 Method Components

First introduced by Goldkuhl and colleagues [17, 18], the method component
concept has recently been further developed by Karlsson and others [19-22]. The
basic idea is to view methods as constituted by exchangeable and reusable
components. Fundamentally, each component consists of descriptions for ways of
working (a process), notations, and concepts [17]. A process describes rules and
recommendations for and informs the method (component) user what actions to
perform and in what order. Notation means semantic, syntactic and symbolic rules
for documentation. Concepts are categories included in the process and the notation.
Concepts and notation together constitute what is sometimes referred to as a
modelling language, such as the UML. A method component can also be used
separately and independently from other components. Each method component
addresses a certain aspect of the problem at hand.

Building further on this original method component concept, Karlsson [21]
defines it as 'a self-contained part of a method expressing the transformation of one
or several artifacts into a defined target artifact and the rationale for such a
transformation.' The method component construct thus draws significantly on the
idea of method rationale - the systematic treatment of the arguments and reasons

Modularization Constructs in Method Engineering: Towards Common Ground? 363

behind a particular method [20, 23, 24, 25]. While the intention of a method chunk is
typically expressed in terms of the action that immediately satisfies the intention,
method rationale aims to direct method engineers' attention to the underlying
assumptions of those actions and promote a critical attitude towards the different
parts of a method.

A method component consists of two parts: its content and the rationale
expressing why the content is designed as it is and what it can bring about. The
content of a method component is an aggregate of method elements [21]: A method
element is a part of a method that manifests a method component 's target state or
facilitates the transformation from one defined state to another. The concept of
method element can be specialized into five categories. Firstly, there are three
interrelated parts of prescribed action, concept and notation. These categories are
complemented with artefact and actor role as two further sub-types of method
element. Artefacts act as deliverables from the transformation process as well as
input to this process. Methods are here viewed as heuristic procedures (heurithms)
and consequently specified inputs are considered to be recommended inputs.
However, a method component needs to have at least one input. Otherwise the
method component will not have any meaningful support in the method. One
exception to this is method components that initiate new activities that are later
integrated with the result from other method components. The selection of actor roles
are determined by the prescribed actions that need to be part of the transformation
process. Actor roles are played either as drivers of the prescribed actions in the
method component or as participants.

The rationale part of the method component concept consists of two parts: goals
and values. Method elements exist for reasons, which are made explicit by means of
associating method elements to the goals. These goals are anchored in values of the
method creator [18, 25]. Taken together, goals and values are often considered
important constituents of a methods underlying perspective [18] or 'philosophy'
[26]. In method engineering, method rationale is more important than the deliverable
as such. Through the method rationale it is possible to address the goals that are
essential in order to fulfil the overall goal of a specific project. Prescribed actions
and artefacts are only means to achieve something and method rationale can thus
help developers not to lose sight of that ultimate result, and also help them find
alternative ways forward.

It is important to point out that in our current understanding, method components
always reside on the 'artefact layer of granularity' and represent a non-hierarchal
concept. This is to reflect the notion that method components are the smallest
coherent parts of a method that are practically useful. This design choice is based on
two empirical observations [21]: The first, and most important, is that systems
developers' tend to focus on the artefacts (a.k.a. deliverables) when discussing
situational methods, and these are viewed as non-hierarchal patterns. Second, it has
proven difficult to balance precision and cost with hierarchal concepts in situational
method engineering.

364 P~ir J./~gerfalk et al.

5 OPFMethod/Process Components

The OPEN Process Framework [27, 28] also utilizes the concept of a method
fragment but stresses that each fragment needs to be generated from an element in a
prescribed underpinning metamodel. This metamodel has recently been upgraded
with the recent availability of the International Standard ISO/IEC 24744 'Software
Engineering Metamodel for Development Methodologies' [29]. While many of the
OPF fragments focus on 'process' there are also significant numbers for products
and producers (people and tools involved in software development). These are the
three acknowledged top-level meta-elements for methodologies leading to: process-
focussed fragments (e.g. a kind of task or technique), product-focussed fragments (a
kind of diagram, document or other work product) and producer-focussed fragments
(e.g. a role played by a member of the software development team, a testing tool) -
the last of which (producers) is not represented in other SME approaches. In the
OPF, these method fragments are defined separately and then linked together using
instances of metamodel classes such as ActionKind, representing a single usage event
that a given process fragment exerts upon a given product fragment. This class
contains an attribute, Type, that specifies what kind of action the process part is
exerting on the product part. For example, imagine a methodology that contains a
requirements validation task. This task takes a draft requirements document as input
and modifies it accordingly through the validation process, creating, as well, a
requirements defect list. Modelling this task plus the two involved products (one of
which is both an input and an output) can be easily modelled by using two actions:
one action would map the requirements validation task to the requirements
document, specifying a type 'modify', and a second action would map the same
requirements validation task to the requirements defect list, specifying the type as
'create'. The relationships between process- and product-oriented fragments are thus
clearly specified. (It must be noted that the actions are lightweight entities in the
methodology that act as mappings between heavyweight process- and product-
oriented fragments. Actions are not containers, as are chunks.).

6 The MetaEdit Experience

Research in the MetaPHOR project, object-oriented ideas in the implementation
of MetaEdit+, and experience with customers, led MetaCase largely to avoid the
question of the size or definition of 'chunks' or 'fragments'. Rather they are able to
reuse anything, from a single Property type (e.g. the 'Actor Name' field of the Actor
type in UML Use Case diagrams) through Object types (e.g. Actor) to Graph types
(e.g. Use Case Diagram) and interlinked sets of Graph types (e.g. UML).
Accompanying these central and clearly identifiable elements go various rules that
map to the 'harder' end of the process scale, generators that form the operational
semantics, along with 'softer' parts of processes and things like problem domain
semantics. Mainly, though, the focus has been on support for creating entirely new
modelling languages, and how reuse and linking of types in the metamodel allows
reuse and linking on the model level.

Modularization Constructs in Method Engineering: Towards Common Ground? 365

7 About the Panellists

Prof. P/ir J. •gerfalk (panel moderator) is a Senior Researcher at Lero - The Irish
Software Engineering Research Centre and holds the Chair in Computer Science in
Intersection with Social Sciences at Uppsala University. He received his PhD in
Information Systems Development from Link6ping University and has held fulltime
positions at Orebro University, University of Limerick, and J6nk6ping International
Business School. His current research centres on open source software development,
globally distributed and flexible development methods and how IS development can
be informed by language/action theory. His work has appeared in a number of
leading IS journals and conferences and he is currently an associate editor of the
European Journal oflnformation Systems and a senior associate editor for a special
issue of Information Systems Research on Flexible and Distributed IS Development.

Prof. Sjaak Brinkkemper is professor of Organisation and Information at the
Institute of Information and Computing Sciences of the Utrecht University, the
Netherlands. Before he was a consultant at the Vanenburg Group and a Chief
Architect at Baan. Before Baan he held academic positions at the University of
Twente and the University of Nijmegen, both in the Netherlands. He holds a MSc
and a PhD in of the University of Nijmegen. He has published five books and more
than hundred papers on his research interests: software product development,
information systems methodology, meta-modelling, and method engineering.

Dr. Cesar Gonzalez-Perez has been a research project leader at the European
Software Institute until last June, where he led research efforts in the areas of method
engineering, metamodelling and conceptual modelling. Previously, he worked over 3
years at the Faculty of IT of the University of Technology, Sydney, from where he
co-edited the standardisation projects that resulted in the standard metamodels
AS4651 and ISO/IEC 24744. Cesar is also the founder and former technical director
of Neco, a company based in Spain specialising in software development support
services, which include the deployment and use of OPEN/Metis at small and mid-
sized organisations. Cesar has also worked for the University of Santiago de
Compostela in Spain as a researcher in computing and archaeology, and got his PhD
in this topic in 2000.

Dr. Fredrik Karlsson received his PhD in Information Systems Development
from Link6ping University and is currently a Senior Lecturer at 6)rebro University.
His research focuses on tailoring of systems development methods, systems
development methods as reusable assets, and CAME tools. He has developed the
CAME tool MC Sandbox that supports method configuration. At 0rebro University
he heads the Methodology Exploration Lab and is an active member of the Swedish
research network VITS. His work has appeared in, for example, European Journal of
Information Systems and Information and Software Technology.

Dr. Steven Kelly is the CTO of MetaCase and co-founder of the DSM Forum. He
has over a dozen years of experience of building metaCASE environments and
acting as a consultant on their use in Domain-Specific Modelling. He is architect and
lead developer of MetaEdit+, MetaCase's domain-specific modelling tool. Ever
present on the program committee of the OOPSLA workshops on Domain-Specific
Modelling, he co-organized the first workshop in 2001. He is author of over 20

366 P~ir J. ~gerfalk et al.

articles in both academic and industry publications, and is a member of IFIP WG 8.1
and the editorial board for the Journal of Database Management. Steven has an M.A.
(Hons.) in Mathematics and Computer Science from the University of Cambridge,
and a Ph.D. from the University of Jyv/iskyl~i.

Dr. Jolita Ralyt6 is currently a senior researcher and lecturer at the University of
Geneva, Department of Information Systems. She obtained a PhD in Computer
Science from the University of Paris 1 - Sorbonne in 2001. The research areas of Dr.
Ralyt~ include situational method engineering, requirement engineering, information
systems evolution and interoperability and distributed information systems
development. She is in charge of the International Method Engineering Task Group
within the IFIP WG 8.1 and the task group TG6 dealing with methods and method
engineering techniques supporting various systems interoperability issues within the
European NoE INTEROP. Her work has been published in various international
conferences and journals. Dr Ralyt6 has been involved in the organisation of a
number of international conferences and workshops (ME'07, OOIS'03, EMSISE'03,
Interop-ESA'05, SREP'05, SREP'07 and Doctoral Symposium at I-ESA'06) and co-
edited a special issue of SPIP with revised best papers from SREP'05.

References

1. Harmsen, F., Brinkkemper, S., and Oei, H. (1994). Situational Method Engineering for
Information System Project Approaches. In: A.A. Verrijn Smart and T.W. Olle (Eds.),
Methods and Associated Tools for the Information Systems Life Cycle. Proceedings of the
IFIP WG 8.1 Working Conference, Maastricht, Netherlands, September 1994, IFIP
Transactions A-55, North-Holland, 1994, ISBN 0-444-82074-4, pp. 169-194. Also in:
Memorandalnformatica 94-03, ISSN 0924-3755, 34 pages, January 1994.

2. Brinkkemper, S. (1996). Method engineering: Engineering of information systems
development methods and tools. Information and Software Technology, 38(4), 275-280.

3. Harmsen, A.F. (1997). Situational method engineering. Doctoral dissertation, Moret Ernst
& Young Management Consultants, Utrecht, The Netherlands.

4. Brinkkemper S., Saeki, M., and Harmsen, F. (1999). Meta-Modelling Based Assembly
Techniques for Situational Method Engineering, Information Systems, 24(3), pp. 209-228.

5. Brinkkemper S., Saeki M., and Harmsen, F. (2001). A Method Engineering Language for
the Description of Systems Development Methods (Extended Abstract). In: K.R. Dittrich,
A Geppert, and M.C. Norrie (eds.), Proceedings of the 13th International Conference
CAiSE'O1, pp. 173-179, Interlaken, Switzerland, 2001, Lecture Notes in Computer Science,
Springer Verlag. ISBN 3-540-42215-3.

6. Xu, L. and Brinkkemper, S. (2007). Concepts for Product Software. To appear in European
Journal of Information Systems.

7. Weerd, I. van de, Brinkkemper, S., Souer, J., and Versendaal, J. (2006). A Situational
Implementation Method for Web-based Content Management System-applications:
Method Engineering and Validation in Practice. Software Process: Improvement and
Practice 11(5), 521-538.

8. Weerd, I. van de, Brinkkemper, S., Versendaal J. (2007). Concepts for Incremental Method
Evolution: Empirical Exploration and Validation in Requirements Management. In
Proceedings of the 19th International Conference on Advanced Information Systems
Engineering, LNCS 4495, 469-484.

Modularization Constructs in Method Engineering: Towards Common Ground? 367

9. Rolland, C. and Prakash, N. (1996). A proposal for context-specific method engineering. In
S. Brinkkemper, K. Lyytinen & R. Welke (Eds.), Method Engineering: Principles of
method construction and tool support (Vol. 191-208): Chapman & Hall.

10.Rolland, C., Plihon, V. and Ralytr, J. (1998). Specifying the Reuse Context of Scenario
Method Chunks. Proceedings of the lOth International Conference on Advanced
Information System Engineering (CAISE'98), Pisa, Italy, June 1998. B. Pernici, C. Thanos
(Eds), LNCS 1413, Springer-Verlag, pp. 191-218.

l 1.Ralytr, J. and Rolland, C. (2001). An Approach for Method Reengineering. Proceedings of
the 20th International Conference on Conceptual Modeling (ER2001), LNCS 2224,
Springer-Verlag, pp.471-484.

12.Ralytr, J., Deneckrre, R., and Rolland, C. (2003). Towards a Generic Model for Situational
Method Engineering, In Proceedings of 15th International Conference on Advanced
Information Systems Engineering (CAiSE 2003), Klagenfurt, Austria, June 16-18, 2003,
(Eds, Eder J, et al.) Heidelberg, Germany: Springer-Verlag, pp. 95-110.

13.Mirbel, I. and Ralytr, J. (2006). Situational method engineering: combining assembly-
based and roadmap-driven approaches, Requirements Engineering, 11(1), pp. 58-78.

14. Jarke, M., Rolland, C., Sutcliffe, A., and Domges, R. (1999). The NATURE requirements
Engineering. Shaker Verlag, Aachen.

15.Rolland, C., Prakash, N., and Benjamen, A. (1999). A multi-model view of process
modelling. Requirements Engineering, 4(4), 169-187.

16.Henderson-Sellers, B., Gonzalez-Perez, C., and Ralytr, J. (2007). Situational method
engineering: chunks or fragments? CAiSEForum, Trondheim, 11-15June 2007, 89-92

17.Rrstlinger, A., and Goldkuhl, G. (1996). Generisk flexibilitet: Ph viig mot en
komponentbaserad metodsyn, In Swedish: "Generic flexibility: Towards a component-
based view of methods", Technical Report LiTH-IDA-R-96-15, Dept. of Computer and
Information Science, Linkrping University. Originally presented at V1TS Hrstseminarium
1994.

18.Goldkuhl, G., Lind, M., and Seigerroth, U. (1998). Method integration: The need for a
learning perspective, lEE Proceedings Software, 145, 113-118.

19./~gerfalk, P.J. (2003). Information Systems Actability: Understanding Information
Technology as a Tool for Business Action and Communication. Doctoral dissertation. Dept.
of Computer and Information Science, Linkrping University, 2003.

20.Wistrand, K. and Karlsson, F. (2004). Method Components: Rationale Revealed. In
Persson, A. and Stirna, J. (eds.) Proceedings of the 16th International Conference on
Advanced lnformation Systems Engineering (CAiSE 2004), Riga, Latvia, June 7-11, 2004.
Heidelberg, Springer-Verlag.

21.Karlsson, F. (2005) Method Configuration: Method and Computerized Tool Support.
Doctoral dissertation. Dept. of Computer and Information Science, Linkrping University.

22.Karlsson, F. and Wistrand, K. (2006). Combining method engineering with activity theory:
theoretical grounding of the method component concept. European Journal of Information
Systems, 15, 82-90.

23./kgerfalk, P.J. and Wistrand, K. (2003). Systems Development Method Rationale: A
Conceptual Framework for Analysis. In Camp, O., Filipe, J., Hammoudi, S. & Piattini, M.
(Eds.) Proceedings of the 5th International Conference on Enterprise Information Systems
(ICEIS 2003). Angers, France.

24.Rossi, M., Ramesh, B., Lyytinen, K., and Tolvanen, J.-P. (2004). Managing evolutionary
method engineering by method rationale. Journal of the Association for Information
Systems, 5(9), 356-39l.

25./~gerfalk, P.J. and Fitzgerald, B. (2006). Exploring the Concept of Method Rationale: A
Conceptual Tool for Method Tailoring. In Siau, K. (Ed.) Advanced Topic's in Database
Research Vol 5. Hershey, PA, Idea Group.

368 Par J. Ngerfalk et al.

26.Fitzgerald, B., Russo, N. L., and Stolterman, E. (2002). Information systems development -
methods in action. London: McGraw-Hill.

27.Henderson-Sellers, B. and Graham, I.M. (1996). OPEN: toward method convergence?
IEEE Computer, 29(4), 86-89

28.Firesmith, D.G. and Henderson-Sellers, B. (2002). The OPEN Process Framework. An
Introduction, Addison-Wesley, 330pp

29.ISO/IEC (2007). Software Engineering. Metamodel for Development Methodologies.
ISO/IEC 24744: International Standards Organization / International Electrotechnical
Commission, Geneva.

Printed in the USA

