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DETECTING S T E G A N O G R A P H Y USING 
MULTI-CLASS CLASSIFICATION 

Benjamin Rodriguez and Gilbert Peterson 

Abstract When a digital forensics investigator suspects that steganography has 
been used to hide data in an image, he must not only determine that 
the image contains embedded information but also identify the method 
used for embedding. The determination of the embedding method -
or stego fingerprint - is critical to extracting the hidden information. 
This paper focuses on identifying stego fingerprints in JPEG images. 
The steganography tools targeted are F5, JSteg, Model-Based Embed­
ding, OutGuess and StegHide. Each of these tools embeds data in a 
dramatically diff"erent way and, therefore, presents a diff"erent challenge 
to extracting the hidden information. The embedding methods are dis­
tinguished using features developed from sets of stego images that are 
used to train a multi-class support vector machine (SVM) classifier. For 
new images, the image features are calculated and evaluated based on 
their associated label to the most similar class, i.e., clean or embedding 
method feature space. The SVM results demonstrate that, in the worst 
case, embedding methods can be distinguished with 87% reliability. 
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!• Introduction 
Steganography is a data hiding and transmission technique that at­

tempts to conceal and prevent the detection of the true content of a 
message. The steganographic process uses a cover object - often an im­
age - to conceal the message ("stego data"). An embedding algorithm 
combines a cover image and the stego data to produce a stego image, 
which is an image that contains the hidden message. Steganalysis, the 
process of breaking steganography, involves examining a set of cover ob­
jects to determine if steganography was used, identifying the fingerprint 
of the embedding algorithm, and then extracting the embedded content. 
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Several methods are available for detecting hidden information in im­
ages, but the embedding algorithm must be known for any of these meth­
ods to be effective. Unfortunately, such steganography fingerprinting is 
a major challenge as there are more than 250 steganography programs 
available [16]. To address this issue, it is necessary to develop detection 
methods that use a combination of features to identify the class or type 
of embedding method. 

This paper presents a multi-class classification method that focuses on 
classifying unseen instances to their specific embedding method (class). 
The method categorizes JPEG stego images based on feature classifica­
tion in which instances are associated with exactly one element of the 
label set. The multilevel energy band features presented in this paper 
are used with the multi-class support vector machine (SVM) classifica­
tion technique. The features are generated from higher order statistics 
of the multilevel energy bands of the discrete cosine transform (DCT). 

The test results are based on an image database of 1,000 high-quality 
JPEG images taken with a Nikon Coolpix 5. The stego images were 
created using five steganography tools (F5, JSteg, Model-Based Embed­
ding, OutGuess and StegHide). Each of these tools embeds data using a 
different technique, with the exception of OutGuess and StegHide that 
embed similarly but use different randomization techniques. The re­
sults demonstrate that, in the worst case, embedding methods can be 
distinguished with 87% reliability. 

The next section discusses embedding methods and multi-class classi­
fiers. Section 3 describes the multilevel energy feature generation tech­
nique. This is followed by a description of the multi-class SVM clas­
sification method in Section 4. Section 5 presents the results of the 
SVM classifier using multilevel energy features. This paper ends with 
concluding remarks and a discussion of future work. 

2. Related Work 

Each embedding method leaves a fingerprint on the stego image repre­
sentative of the algorithm used to create the image. Our approach is to 
use multi-class classifiers to detect specific classes of embedding methods 
using stego fingerprints. This section discusses the main JPEG image 
data embedding methods used by steganography tools and the primary 
multi-class classification methods. 

2.1 Embedding Methods 
Digital images are often used to hide stego data because numerous 

redundant portions within the images can be altered without affecting 
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the quality as observed by the human eye [16]. This paper examines 
five prominent tools for embedding data in JPEG images: F5, JSteg, 
Model-Based Embedding, OutGuess and StegHide. 

The JPEG image format is currently the most prevalent image storage 
format [16]. The vast number of JPEG images available on the Internet 
makes them ideal cover images for hiding secret data. A JPEG embed­
ding process embeds the data in discrete cosine transform (DCT) coeffi­
cients. First, the DCT coefficients of an image are computed; the coef­
ficients of an 8x8 block of image pixels f{x^y) are denoted by F{u,v). 
The coefficients are divided by the quantization matrix, which quantizes 
the coefficients for compression. After this process, most JPEG embed­
ding methods use the least significant bits (LSBs) of the quantized DCT 
coefficients. Redundant bits are used to embed the hidden message so 
that the embedding has no effect on the binary encoder. While the 
embedding does not affect the compression process, modifying a single 
DCT coefficient affects all 64 pixels in the 8x8 image block. 

F5 [18] was developed as a challenge to the steganalysis community. 
This method exploits the JPEG compression algorithm by decrement­
ing the absolute values of the DCT coefficients in a process known as 
matrix encoding. An estimated embedding capacity is computed based 
on the total number of DCT coefficients. A recursive algorithm is then 
used to match the bits of the message in a hash function to determine 
the encoding, stopping when one of the coefficients is reduced to zero. 
An F5 embedding is identifiable by the unnatural coefficient histograms 
produced by the embedding technique. 

Model-Based Embedding [14] fits the coefficient histogram into an ex­
ponential model using maximum likelihood. This method addresses the 
limitations of other embedding methods; it can successfully hide large 
messages so that they are undetectable by certain statistical analyses 
and it can achieve maximum capacity. Model-Based Embedding is ac­
complished by identifying the ideal embedding structure based on the 
statistical model of the DCT coefficients of the original cover image, and 
ensuring that the statistical model is retained after the embedding. Al­
though the embedding technique is similar to that used by F5, it does 
not produce unnatural histogram frequencies for adjacent DCT coef­
ficients. This embedding technique is identified by combining several 
higher-order statistics. 

The JSteg tool encodes messages in JPEG images by manipulating the 
LSBs of the quantified DCT coefficients. The message is formatted so 
that the first five bits of the frequency band coefficient indicate the length 
of the band (size of the embedded message), which is also referred to as 
the capacity of the block. The next set of bits indicates the bit length 
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of the actual message. This message length indication scheme avoids 
generating large numbers of zeros that occur when short messages are 
embedded using a fixed bit length to indicate message size [10]. This type 
of embedding does not spread the encoded bits among the 14 coefficients; 
therefore, it can be identified using a first-order statistic (e.g., mean). 

OutGuess [13] was designed to evade detection by statistical steganal-
ysis techniques such as the chi-square statistical attack. The embed­
ding technique modifies the LSBs of the DCT coefficients by statisti­
cally checking the original image DCT heuristics against the embedded 
image; it then manipulates nearby DCT blocks to maintain the original 
DCT histogram. The coefficients {F{u,v) ^ [0,1]) are selected using 
a pseudo-random number generator. The statistical correction method 
embeds hidden data within the coefficient LSBs while offsetting nearby 
LSB coefficients with minor bit changes to preserve the chi-square statis­
tic. 

StegHide [8] hides data in multiple types of image and audio files. In 
the case of JPEG images, the color representation sample frequencies 
are not changed, which makes this method robust to first-order statisti­
cal attacks. This robustness is the direct result of embedding stego data 
within the LSBs of DCT coefficients that have large variations with ad­
jacent coefficients. However, this embedding technique can be detected 
using a higher-order statistic (e.g., energy). 

Proper identification of the embedding technique is crucial to any 
attempt at extracting the hidden information. The five tools considered 
in this paper embed data into the quantized DCT coefficients of a JPEG 
image. Each DCT encoding introduces certain statistical irregularities 
that constitute a signature. The fundamental problem is to classify the 
signatures left by the tools. 

2.2 Multi-Class Classification Methods 
More than 250 tools are available for performing steganography on 

digital images [16]. Because of this, multi-class classification is an attrac­
tive technique for identifying the potential signatures of steganography 
embedding algorithms. This section describes two promising multi-class 
classification techniques. 

In many multi-class classification methods, two-class classifiers are 
combined using the posterior probabilities of their outputs. The multi-
class learning algorithm must create hyperplane boundaries in kernel 
space where each hyperplane depends on the margin of separation ob­
tained at the support vector nodes. This is achieved by combining the 
two-class classification methods using voting and combinations of ap-
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proximate posterior probabilities, where the use of posterior probabih-
ties enhances the solution by eliminating ties [12]. Another approach is 
to use combinations of binary classification methods with a naive Bayes 
classifier, which generalizes to multiple classes [17]. 

Several multi-class SVM classifiers employ a winner-take-all approach, 
assigning the class labeling based on a majority vote for the class [7]. The 
winner-take-all approach uses multiple two-class SVM prototypes per 
class, separating one class identity from the others. The method com­
bines multiple sets of support vectors to create a large decision bound­
ary separating the desired classes. This is achieved using a constrained 
quadratic search to find locally-optimal solutions for non-convex objec­
tive functions. In this way, the winner-take-all strategy creates a set of 
hnear functions, each of which provides an ordering of the classes for a 
sample, where the "winner" is the first class in the ordering. 

Our approach uses a majority-vote-wins strategy. However, in order to 
perform classification, a suitable set of features is required. The following 
section describes the features used to perform steganalysis via multi-class 
classification. 

3. Features 
This section describes the DCT multilevel energy bands method for 

calculating the transform domain features from a JPEG image. The 
features are obtained by computing the DCT energy bands for each 
block of 8x8 coefficients. 

The transform domain features presented in Figure 1 focus on the en­
ergy bands of the DCT coefficients. Figure 1(b) shows the representation 
of the energy bands after the DCT. The DCT used in JPEG compres­
sion does not generate the multilevel energy bands produced by wavelet 
decomposition. Moreover, the multilevel energy band representation in 
Figure 1(b) does not allow for the energy levels to be extracted based on 
the edges of the original image as shown in Figure 1(c). Instead, the DCT 
output is rearranged in a wavelet decomposition structure to show the 
energy bands. This structure is created using 8x8 pixel blocks, which are 
the same as those used during JPEG compression. For each 8x8 block, 
the DCT energy band decomposition of vertical, diagonal and horizontal 
edges are formed via zigzag (Figure 1(d)) and Peano scans (Figure 1(e). 
Rearranging the coefficients of the DCT splits the frequency spectrum 
into uniformly spaced bands containing vertical, horizontal and diag­
onal edges. The ideal representation of the energy bands is shown in 
Figure 1(f). 
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(d) (e) (f) 

Figure 1. D C T multilevel energy bands: (a) Input image; (b) Energy band represen­
tation; (c) Extracted edges; (d) Vector with zigzag; (e) Peano scan matrix; (f) Levell 
representation. 

The structure presented captures the energy better than the normal 
DCT, and at least as well as wavelet decompositions used in image pro­
cessing. The transformed coefficients are matched to higher level lin­
ear predicted neighboring coefficients, which result in an unstructured 
(non-Gaussian) distribution. Higher-order statistics are appropriate for 
measuring the coefficients for non-Gaussian processes. 

The features are calculated using a mask, which, for a coefficient c, 
calculates the difference between c and its neighbors g, as shown in 
Figure 2. Similar methods have been used in pattern recognition [2] and 
steganography detection [1, 11] with wavelets. Higher-order statistics 
and predicted log errors are calculated across all of the mask values in 
order to create additional features. 

Our classification methodology uses the features calculated from the 
DCT multilevel energy bands of JPEG images to separate the various 
embedding algorithms. This approach differs from other feature genera­
tion schemes (e.g., [1, 11]) that use different coefficients or wavelets. The 
most similar work to ours is that of Pridrich [6], which uses features that 
are specifically designed to distinguish classes of embedding algorithms, 
e.g., features that can distinguish an F5 embedding from an OutGuess 
embedding. Our features are developed for JPEG images, which makes 
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Figure 2. Target coefRcients. 

them applicable to the more general problem of anomaly detection as 
well. 

4. SVM Multi-Class Classification 

Multi-class classifiers are built on a winner-take-all set of class labels, 
each label representing one of the available classes. We employ a multi-
class support vector machine (SVM) classifier, which separates classes 
by creating a hypersurface that maximizes the margins between all the 
classes. 

SVMs have traditionally been applied to two-class or binary classi­
fication problems [15]. However, SVMs can be apphed to multi-class 
classification. The techniques include: (i) the one-versus-all approach, 
which uses binary classifiers to encode and train the output labels; (ii) 
the one-versus-one approach, which uses a multi-class rule based on the 
majority-vote-wins approach; and (iii) training two-class classifiers and 
using voting and combinations of approximate posterior probabilities. 
Another approach to multi-class SVM classification is to train multi-
class kernel-based predictors that use a compact quadratic optimization 
solution [5]. Our approach to SVM multi-class classification uses a one-
versus-one majority-vote-wins strategy. 

Figure 3 shows a multi-class SVM with support vectors (encapsulated 
in circles) and inter-class decision boundaries. SVM classification is per­
formed by placing the classifying hyperplane, which separates the classes, 
in the center of the margin of separation. The margin of separation is 
calculated by locating the training points, .TJ, that are closest to the op­
posing class and result in the largest margins of separation. Under this 
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(a) (b) 

Figure 3. Multi-class SVM: (a) SVM without hyperplane; (b) SVM with hyperplane. 

condition, the decision surface is referred to as the maximally separating 
hyperplane [3] (Figure 3(a)). The result shown in Figure 3(b), which is 
used to perform multi-class steganalysis, was obtained using the maxi­
mization of the margins of separation as the classification mechanism. 
This produces fewer false positives for each of the classes, but increases 
the number of anomalies when the data is unknown. 

Our classification problem involves several aspects such as the amount 
of stego, the embedding method and the compression scahng factor. This 
leads to a complex multi-class classifier. In order to generate a multi-
class classifier, a set of binary classifiers g^,...,g^^ is first constructed; 
next, each binary classifier is trained to separate one class from the rest; 
then, the classifiers are combined using a majority-vote-wins policy [3]. 
In the case of SVM, multi-class generalization involves a set of discrimi­
nant functions designed according to the maximal output. The majority 
voting strategy is used to implement the multi-class classifier [4]; 

f{x) = axg max g^x) (1) 
j = l , . . . , M 

where g^{x) = Y^yioP^K{x,Xi) + V. The classification iji provides the 
sign of the coefficients of Xi. The weight values a^ are proportional to 
the number of times the misclassification of xi causes the weights to 
be updated. K[x,Xi) is a radial basis kernel (RBF), and b^ is the bias 
vector. Each g^{x) value is a classifier's assignment for a sample, which 
may also be used to decide when a classification is too close to call and 
should be rejected. 

The kernel function is used to transform input data sets in the fea­
ture space (which are not linearly separable) to the kernel feature space 
where the classification is performed. In general, the kernel function is 
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explicitly specified (it implicitly defines the feature space). By defin­
ing the kernel function, the complexity of non-linear class separation 
is avoided not only when computing the inner product, but also when 
designing the learning machine. In this work, the training vectors Xi 
are mapped into a higher-dimensional space by the mapping function 
</). The kernel function used is a Gaussian radial basis kernel function 
< (t>{x)<p{xi) > = K{x,Xi) = el^-^'l'/'^'[9]. 

To understand our approach, assume that the difference between the 
two largest g^{x) values is used as the measure of confidence in the 
classification of x. If the measure falls short of a threshold, the classifier 
rejects the pattern and does not assign it to a class (which produces an 
anomaly). The consequence is that a lower error rate is produced for 
the remaining patterns. 

5. Results 
This section presents the results based on testing data sets from the 

five tools (F5, JSteg, Model-Based Embedding, OutGuess, StegHide), 
and a clean data set. The experiments used a mixture of 1,000 (512x512 
color JPEG) files comprising clean images and images created using the 
six embedding techniques described in Section 2.1. A total of 4,000 char­
acters - equivalent to about one page of text ^ was embedded within each 
image file. The percentage of altered coefficients varied with the embed­
ding method. The numbers of features used to represent the images 
were reduced from 120 to 40 features by eliminating features with sim­
ilar correlations. The results in Table 1 were generated using five-fold 
cross validation where 80% of the data was used for training and 20% 
for testing; the test was conducted five times. 

Table 1 shows the confusion matrix for the classification of the clean 
image set and five embedding method sets (F5, JSteg (JS), Model-Based 
Embedding (MB), OutGuess (OG) and StegHide (SH)). The matrix 
shows that the clean set is clearly separable from the remaining fea­
ture sets (Clean column and Clean row). In this multi-class classifica­
tion, OutGuess and StegHide have the largest number of exemplars that 
are misclassified as each other. While these two methods are immune 
to statistical methods such as the chi-square test, they are vulnerable 
to higher-order statistics and transforms. These statistics, e.g., inertia, 
"compress" the energy bands of the DCT when the coefficients have not 
been modified and "expand" the energy bands when coefficients have 
been modified. 

F5 and Model-Based Embedding also have mixed classification re­
sults. Therefore, we combined OutGuess and StegHide along with F5 
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Table 1. Confusion matrix for a six-class SVM classification. 

Pred 

Clean 
F5 
MB 
0 0 
JS 
SH 

Clean 

90.2 ±4.5 
4.2 ±1.5 
3.6 ±2.3 

0.4 ±0.01 
1.0 ±0.5 
0.6 ±0.0 

F5 

3.4 ±2.0 
83.0 ±5.4 
16.8 ±5.2 
1.4 ±1.6 
3.4 ±1.6 
1.2 ±0.7 

Actual 
MB 

4.9 ±2.2 
6.7 ±3.2 
75.1 ±9.1 
0.4 ±0.2 
2.2 ±2.0 
1.7 ±1.8 

0 0 

1.4 ±1.6 
4.8 ±1.1 
2.4 ±1.2 

52.3 ±12.2 
6.8 ±3.8 

40.0 ± 7.0 

JS 

0.1 ±0.0 
0.2 ±0.0 
0.1 ±0.0 
6.6 ±2.9 

82.2 ±5.8 
7.1 ±2.8 

SH 

0.0 ±0.0 
1.1 ±0.9 
2.0 ±1.3 

38.9 ±7.6 
4.4 ±3.0 

49.4 ±10.9 

and Model-Based Embedding to create a four-class classification (Ta­
ble 2). Unlike OutGuess and StegHide, F5 and Model-Based Embed­
ding produce DCT coefficients that are undetectable using sophisticated 
statistical measures. The features for F5 and OutGuess are not affected 
by the re-compression of the embedding. The statistical measures of 
inertia, energy and entropy show prominent features in the diagonal, 
vertical and horizontal energy bands, respectively. These findings stress 
the importance of separating the energy bands into the edge components 
and measuring each energy band with various statistics. 

Table 2. Confusion matrix for a four-class SVM classification. 

Actual 
Pred Clean F5 & MB 0 0 & SH JS 

Clean 94.8 ± 3.3 2.4 ±1.7 1.5 ±0.4 1.3 ±0.8 
F5&;MB 4.5 ±2.9 87.0 ± 7.6 6.5 ± 2.6 2.0 ±1.8 
O O & S H 3.2 ±0.9 3.6 ±2.0 90.7 ±3.8 2.5 ± 2.2 
JS 0.0 ±0.0 4.0 ±1.7 6.4 ±2.4 89.6 ±6 .7 

Because of similarities in the embedding techniques, the multi-class 
classifier was unable to identify the embedding methods in the six-class 
classification (Table 1). However, better classification results were ob­
tained by recognizing similarities in the embedding techniques and per­
forming a four-class classification (Table 2). The results in Table 2 show 
that combining OutGuess and StegHide produces a classification ac­
curacy of 90.7% (up from roughly 50%). This allows the identifica­
tion of the two embedding techniques. While the results for F5 and 
Model-Based Embedding are not as dramatic as those for OutGuess 
and StegHide, an increase in classification accuracy is achieved, which 
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enables the two techniques to be distinguished from the other embedding 
techniques. 

6- Conclusions 
It is practically impossible to extract hidden data from a stegano-

graphic image without first identifying the embedding technique. The 
multi-class SVM-based technique presented in this paper can reliably de­
termine if a JPEG image contains a hidden message and, if so, the type 
of lossy steganography that embedded the hidden data. The novel clas­
sification approach uses features constructed from DCT energy bands 
and engages a winner-take-all hierarchical classification structure. 

Our future research will focus on two problems that must be solved 
after the embedding technique is identified. The first is to identify the 
algorithm that performed the embedding; this will require an additional 
multi-class classifier that is trained to recognize specific embedding algo­
rithms. The second problem is to predict the amount of data embedded 
in an image and identify the image regions that contain the most embed­
ded data; solving this problem would, of course, be crucial to developing 
techniques for extracting hidden messages. 
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