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Immunoinformatics is an emerging subdiscipline of bioinformatics. It utilizes 
mathematics, information science, computer engineering, genomics, proteomics, and 
immunological methods to bridge immunology and informatics (Petrovsky, 
Schönbach, and Brusic 2003; Brusic and Petrovsky 2003). Similar to bioinformatics 
which became a driving force in genome research, immunoinformatics enables data-
driven research strategies (Van Regenmortel 2006; Moise and De Groot 2006; 
Korber, LaBute, and Yusim 2006) and systems approaches (Kitano and Oda 2006;  
Gilchrist, Thorsson, Li, Rust, Korb, Kennedy, Hai, Bolouri, and Aderem 2006) that 
aim at understanding the networks regulating the immune system. Considering the 
breadth of topics the volume  was composed to provide a cross 
section of research ranging from data integration, epitope predictions to systems-
level applications. In ten chapters experts introduce and discuss research strategies 
for immunologists and bioinformaticians who wish to explore existing and new 
approaches to gain insight into the workings of the immune system. 

Data analysis and formulation of new hypotheses concerning the immune system 
is aided by standardized, integrated databases and tools. In Chapter 1 Lefranc 
reviews a powerful resource, the international ImMunoGeneTics information 
system® (http://imgt.cines.fr) IMGT®. Since its beginning in 1989, IMGT® has 
become an indispensible reference in immunogenetics and immunoinformatics with 
more than 140,000 accesses per month. The Web resource provides not only 
standardized data of nucleotide and protein sequences, oligonucleotide primers, gene 
maps, genetic polymorphisms, specificities, 2D and 3D structures but also analysis 
tools for immunoglobulins, T-cell receptors, major histocompatibility complex 
(MHC) molecules, and related proteins of the immune system.  

In Chapter 2 Kaas, Duprat, Tourneur, and Lefranc present IMGT® 3D structures 
and tools that can improve our understanding of the mechanisms governing T-cell-
receptor–peptide–MHC recognition. Details of structural analyses and predictions, 
including docking techniques to predict potential T-cell epitopes, are discussed by 
Ranganathan, Tong, and Tan in Chapter 3. Hattotuwagama, Doytchinova, Guan, and 
Flower are taking structural immunoinformatics of peptide-MHC class I and class II 
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allele complexes to the next level of high-throughput Quantitative Structure-Activity 
Relationship (QSAR) technologies. The authors discuss in Chapter 4 2D and 3D 
QSAR methods for the quantitative prediction of peptide-MHC affinity. The latter is 
an important factor that influences immunogenicity and therefore the identification 
of T-cell epitopes. 

While structural informatics and epitope mapping methods have enhanced 
vaccine design, the use of computational methods is less prominent in research that 
aims to counter unfavorable immune responses in transplantation, autoimmunity and 
allergies. Lee and Brusic give in Chapter 5 an overview of allergy informatics. In the 
first part, the authors discuss various specialized databases and point out the absence 
of an integrated database similar to IMGT, that contains a comparable superset of all 
allergens. In the second part we are introduced to a number of powerful allergenicity 
prediction methods. However, the current lack of a suffciently large standardized 
dataset for training and testing reduces the applicability of the prediction methods. 
Next, De Groot, Knopf, Rivera, and Martin describe in Chapter 6 an intriguing 
combination of recombinant protein expression and epitope mapping to eliminate 
antitherapeutic antibody and autoimmune reactions associated with therapeutic 
proteins. The approach promises to increase the number protein therapeutics and 
their safety.  

The previous chapters cover individual molecules and a limited number of 
interactions involved in immune response with little consideration of their regulation, 
molecular pathways, and functions in cells, organs, or whole organism context. To 
understand the mechanism of a favorable or unfavorable immune response we need 
to examine, for example, the networks that regulate immune cell phenotypes or 
natural lymphocyte homeostasis.  

The next four chapters introduce strategies suitable to investigate the immune 
system on a network level. Kellam and Kwan discuss in Chapter 7 host-pathogen 
interactions focusing on gene expression programs in dendritic cells and plasticity of 
pathogen-sensing functional states. The next two chapters describe mathematical or 
computer models of the immune response to HIV infection. In Chapter 8, Bernaschi 
and Castiglione apply mathematical modeling almost to the level of a virtual patient. 
Using the modeler called C-ImmSim (http://www.iac.rm.cnr.it/~filippo/C-
ImmSim.html) they make predictions on population dynamics, phenotype and 
specificity of lymphocytes (anergic, proliferating, etc.), viremia and proviral HIV, 
concentration of anti-HIV antibodies and strenght of cytotoxic response during 
progression toward AIDS. Another interesting application is the modeling of 
immune response behavior during an opportunistic infection with M. tuberculosis.  

Da Silva characterizes in Chapter 9 the adaptation of HIV to immune surveillance 
at the molecular-genetic level considering both the dynamics of the humoral 
response to HIV and the viral fitness. The simulations elegantly demonstrate 
relationships between coreceptor selection, antibody selection, and viral adaptation. 

Foreword

Finally, Gondo presents in Chapter 10 a sophisticated experimental and 
computational system with mouse as bona fide “simulator” (http://www.gsc. 
riken.go.jp/Mouse/). The ethylnitrosourea  (ENU) mutagenesis-based system is one 
large-scale effort that will bring us closer to understanding how genome sequences 
affect immune response and immune cell behavior.  
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Chapter 1 
IMGT-ONTOLOGY, IMGT® Databases, Tools,  
and Web Resources for Immunoinformatics  
 

Marie-Paule Lefranc  

Abstract. IMGT®, the international ImMunoGeneTics information system®, was created in 1989 
as a high-quality integrated knowledge resource specialized in immunoglobulins (IG), T cell 
receptors (TR), major histocompatibility complexes (MHC) of human and other vertebrates, and 
related proteins of the immune system (RPI) which belong to the immunoglobulin superfamily 
(IgSF) and to the MHC superfamily (MhcSF). IMGT® is the international reference in immuno-
genetics and immunoinformatics. IMGT® combines sequence databases (IMGT/LIGM-DB, 
IMGT/PRIMER-DB, IMGT/PROTEIN-DB, IMGT/MHC-DB), a genome database (IMGT/ 
GENE-DB), and a three-dimensional (3D) structure database (IMGT/ 3Dstructure-DB) with 
interactive analysis tools (IMGT/V-QUEST, IMGT/JunctionAnalysis) and Web resources com-
prising 8000 HTML pages (IMGT Repertoire). The accuracy and consistency of IMGT data are 
based on IMGT-ONTOLOGY, available for biologists and IMGT users in the IMGT Scientific 
chart and for computer scientists in IMGT-ML, in XML format. IMGT® components (databases, 
tools, and Web resources) have been developed according to three main biological approaches: 
the genomic approach that is gene centered, the genetic approach that refers to genes in relation 
to their polymorphisms, expression, specificity, and evolution, and the structural approach that 
analyses 3D structures in relation to protein function and recognition sites. We are implementing 
Web services for the IMGT databases and tools. This is the first step toward IMGT-
Choreography that will trigger and coordinate dynamic interactions between IMGT Web services 
in order to process complex significant biological and clinical requests. IMGT® is widely used in 
fundamental  and medical research (repertoire analysis of the IG antibody sites and of the TR 
recognition sites in autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, 
myelomas), veterinary research situations (IG and TR repertoires in farm and wildlife species), 
genome diversity and genome evolution studies of the adaptive immune responses, biotechnol-
ogy related to antibody engineering (single chain Fragment variable (scFv), phage displays, 
combinatorial libraries, chimeric, humanized, and human antibodies), diagnostics (clonalities, 
detection and follow-up of residual diseases), and therapeutical approaches (graft, immunother-
apy, vaccinology). IMGT® is freely available at http://imgt.cines.fr. 

1.1 Introduction 

Genome and proteome analysis interpretation represents the current great challenge, 
as a huge quantity of data is produced by many scientific fields, including fundamental, 
clinical, veterinary, and pharmaceutical research. In particular, the number of sequences 
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and related data published in the immunogenetics fields is growing exponentially. 
The number of potential protein forms of the antigen receptors, immunoglobulins 
(IG), and T cell receptors (TR) is almost unlimited. The potential repertoire of each 
individual is estimated to comprise about 1012 different IG (or antibodies) and 1012 
different TR, and the limiting factor is only the number of B and T cells that an 
organism is genetically programmed to produce. This huge diversity is inherent to 
the particularly complex and unique molecular synthesis and genetics of the antigen 
receptor chains. This includes biological mechanisms such as DNA molecular rear-
rangements in multiple loci (three for IG and four for TR in humans) located on 
different chromosomes (four in humans), nucleotide deletions and insertions at the 
rearrangement junctions (or N-diversity), and somatic hypermutations in the IG loci 
(Lefranc and Lefranc 2001a; Lefranc and Lefranc 2001b). 

IMGT® (http://imgt.cines.fr), the international ImMunoGeneTics information 
system® (Lefranc, Giudicelli, Kaas, Duprat, Jabado-Michaloud, Scaviner, Ginestoux, 
Clément, Chaume, and Lefranc 2005a), was created in 1989, by the Laboratoire 
d’ImmunoGénétique Moléculaire (LIGM) (Université Montpellier II and CNRS) at 
Montpellier, France, in order to standardize and manage the complexity of the im-
munogenetics data. IMGT® is the international reference in immunogenetics and 
immunoinformatics, and represents a high-quality integrated knowledge resource, 
specialized in the IG, TR, major histocompatibility complex (MHC) of human and 
other vertebrates, and related proteins of the immune systems (RPI) of any species 
which belong to the immunoglobulin superfamily (IgSF) and to the MHC super-
family (MhcSF). As such, IMGT® provides a common access to standardized data 
from genome, proteome, genetics, and three-dimensional (3D) structures. 

1.2 The IMGT® Information System 

The IMGT® information system consists of databases, tools, and Web resources 
(Lefranc, Clément, Kaas, Duprat, Chastellan, Coelho, Combres, Ginestoux, Giudi-
celli, Chaume, and Lefranc 2004a; Lefranc, Giudicelli, Ginestoux, Bosc, Folch, 
Guiraudou, Jabado-Michaloud, Magris, Scaviner, Thouvenin, Combres, Girod, 
Jeanjean, Protat, Monod, Duprat, Kaas, Pommié, Chaume, and Lefranc 2004b; 
Lefranc et al. 2005a). Databases and tools are summarized in Fig. 1. 

Databases include several sequence databases (IMGT/LIGM-DB, IMGT/MHC-DB, 
IMGT/PRIMER-DB, IMGT/PROTEIN-DB), a genome database (IMGT/ GENE-DB), 
and a 3D structure database (IMGT/3Dstructure-DB). Interactive tools are provided 
for nucleotide and amino acid sequence analysis (IMGT/V-QUEST, 
IMGT/JunctionAnalysis, IMGT/Allele-Align, IMGT/PhyloGene, IMGT/Domain-
Display), genome analysis (IMGT/LocusView, IMGT/ GeneView, IMGT/Gene-
Search, IMGT/CloneSearch, IMGT/GeneInfo, IMGT/GeneFrequency), and 3D 
structure analysis (IMGT/StructuralQuery, IMGT/DomainGapAlign, IMGT/Collier-
de-Perles, IMGT/DomainSuperimpose). Web resources (IMGT Marie-Paule page) 
comprise 8000 HTML pages of synthesis [IMGT Repertoire (for IG and TR, MHC, 
RPI)], of knowledge [IMGT Scientific chart, IMGT Education] (Aide-mémoire, Tuto-
rials, Questions and answers), IMGT Lexique, The IMGT Medical page, The IMGT  

Lefranc 
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Fig. 1. IMGT®, the international ImMunoGeneTics information system® (http://imgt.cines.fr) 
databases and tools. The IMGT Repertoire and other IMGT Web resources are not shown. 
Examples of interactions between the databases (cylinders) and tools (rectangles) in the 

e represented respectively by continuous, dotted 
and broken lines. (A color version of this figure appears between pages 76 and 77.)
genomic, genetic and structural approaches ar
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Veterinary page, The IMGT Biotechnology page, IMGT Index], and external 
links [IMGT Bloc-notes (The IMGT Immunoinformatics page, Interesting links), and 
Other accesses (SRS, BLAST)]. Despite the heterogeneity of these different compo-
nents, all data in the IMGT® information system are expertly annotated. The accu-
racy, the consistency, and the integration of the IMGT® data, as well as the coher-
ence between the different IMGT® components (databases, tools, and Web 
resources) are based on IMGT-ONTOLOGY (Giudicelli and Lefranc 1999), the first 
ontology in the domain, which provides a semantic specification of the terms to be 
used in immunogenetics and immunoinformatics, and thus allows the management of 
immunogenetic knowledge for all vertebrate species. IMGT-ONTOLOGY comprises 
seven main concepts: IDENTIFICATION, CLASSIFICATION, DESCRIPTION, 
NUMEROTATION, LOCALIZATION, ORIENTATION, and OBTENTION (Giu-
dicelli and Lefranc 1999; Lefranc et al. 2004a; Lefranc et al. 2004b; Lefranc et al. 
2005a). Standardized keywords, standardized IG and TR gene nomenclature, stan-
dardized labels, the IMGT unique numbering, annotation rules, and standardized 
origin/methodology were defined, respectively, based on these seven main concepts. 

IMGT-ONTOLOGY concepts are available for biologists and IMGT® users in 
the IMGT Scientific chart and formalized for computer scientists in IMGT-ML using 
XML (Extensible Markup Language) Schema. The IMGT Scientific chart (Lefranc, 
Giudicelli, Ginestoux, Bodmer, Müller, Bontrop, Lemaitre, Malik, Barbié, and 
Chaume 1999) comprises controlled vocabulary and annotation rules for data and 
knowledge management of the IG, TR, and MHC of vertebrate species, and of the 
RPI of any species, that belong to IgSF and MhcSF. All IMGT® data are expertly 
annotated according to the IMGT Scientific chart rules. The IMGT Scientific chart is 
available as a section of the IMGT Web resources (IMGT Marie-Paule page). These 
HTML pages are devoted to biologists, IMGT users, and IMGT annotators. Exam-
ples of IMGT expert data concepts, derived from the IMGT Scientific chart rules, 
correspond to section titles and subtitles in IMGT Repertoire (Lefranc et al. 2004a; 
Lefranc et al. 2004b). 

IMGT-ML (Chaume, Giudicelli, and Lefranc 2001; Chaume, Giudicelli, Combres, 
and Lefranc 2003; Chaume, Giudicelli, Combres, Ginestoux, and Lefranc 2005) is the 
formalization of IMGT-ONTOLOGY using XML Schema for interoperability with other 
information systems. IMGT® components (databases, tools, and IMGT Repertoire Web 
resources) have been developed according to three main biological approaches. The 
IMGT® genomic approach is gene-centered focusing on the study of the genes within 
their loci and on the chromosomes. The IMGT® genetic approach refers to the study of 
the genes in relation to sequence polymorphisms and mutations and their expression, 
specificity, and evolution. The IMGT® structural approach refers to the study of 2D and 
3D structures of the IG, TR, MHC, and RPI, and to the antigen or ligand binding charac-
teristics in relation to protein functions, polymorphisms, and evolution. IMGT-
Choreography, based on the Web service architecture paradigm, will enable significant 
biological and clinical requests addressing the entire IMGT® information system. 

Lefranc 



IMGT-ONTOLOGY, IMGT® Databases, Tools and Web Resources 5
 
1.3 IMGT-ONTOLOGY Concepts and IMGT® Components  
for Genomics 

1.3.1 IMGT® Genome Database 

The IMGT® genomic approach refers to the study of the genes within their loci and 
on the chromosomes. Genomic data are managed in IMGT/GENE-DB, which is the 
comprehensive IMGT® genome database, created by LIGM, Montpellier, France, on 
the Web since January 2003 (Giudicelli, Chaume, and Lefranc 2005).  

In March 2007, IMGT/GENE-DB contained 1512 genes and 2461 alleles (673 IG 
and TR genes and 1215 alleles from Homo sapiens, and 839 IG and TR genes and 
1,246 alleles from Mus musculus, Mus cookii, Mus pahari, Mus spretus, Mus saxi-
cola, Mus minutoïdes). All human and mouse IG and TR genes are available in 
IMGT/GENE-DB. Based on the IMGT® CLASSIFICATION concept, all the human 
IMGT® gene names (Lefranc and Lefranc 2001a; Lefranc and Lefranc 2001b; 
Lefranc 2000a; Lefranc 2000b; Lefranc 2000c; Lefranc 2000d) were approved by the 
HUman Genome Organisation (HUGO) Nomenclature Committee HGNC in 1999 
(Wain, Bruford, Lovering, Lush, Wright, and Povey 2002), and entered in 
IMGT/GENE-DB (Giudicelli et al. 2005), Genome DataBase GDB, Canada  
(Letovsky, Cottingham, Porter, and Li 1998), LocusLink at NCBI, USA (Pruitt and 
Maglott 2001), and GeneCards (Safran, Chalifa-Caspi, Shmueli, Olender, Lapidot, 
Rosen, Shmoish, Peter, Glusman, Feldmesser, Adato, Peter, Khen, Atarot, Groner, 
and Lancet 2003). Reciprocal links exist between IMGT/GENE-DB and the general-
ist nomenclature (HGNC) and genome databases (GDB, Entrez Gene at NCBI, and 
GeneCards). The mouse IG and TR gene names (Martinez and Lefranc 1998; Bosc 
and Lefranc 2000; Bosc, Contet, and Lefranc 2001; Martinez, Folch, and Lefranc 
2001; Bosc and Lefranc 2003) with IMGT reference sequences were provided by 
IMGT® to HGNC and to the Mouse Genome Database MGD (Blake, Richardson, 
Bult, Kadin, Eppig, and Mouse Genome Database Group 2003) in July 2002. Que-
ries in IMGT/GENE-DB can be performed according to IG and TR gene classifica-
tion criteria, and IMGT reference sequences have been defined for each allele of 
each gene based on one or, whenever possible, several of the following criteria: 
germline sequence, first sequence published, longest sequence, mapped sequence 
(Lefranc et al. 1999). IMGT/GENE-DB interacts dynamically with IMGT/LIGM-DB 
(Giudicelli, Ginestoux, Folch, Jabado-Michaloud, Chaume, and Lefranc 2006) to 
download and display gene-related sequence data. This is the first example of an 
interaction between IMGT® databases using the CLASSIFICATION concept. 

1.3.2 IMGT® Genome Analysis Tools  

The IMGT® genome analysis on-line tools comprise IMGT/LocusView, 
IMGT/GeneView, IMGT/GeneSearch, IMGT/CloneSearch, IMGT/GeneInfo, and 
IMGT/GeneFrequency. IMGT/LocusView and IMGT/GeneView manage the locus 
organization and the gene location and provide display of physical maps for the human 
IG, TR, and MHC loci and for the mouse TRA/TRD locus. IMGT/LocusView allows 
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users to view genes at their loci and then zoom in on a selected area. IMGT/GeneView 
allows users to directly view a given gene at a locus. IMGT/GeneSearch and 
IMGT/CloneSearch allow retrieval of information concerning genes and clones, re-
spectively, analysed in IMGT/LocusView. IMGT/GeneSearch allows searching for 
genes at a locus, based on IMGT gene names, functionality, or chromosomal localiza-
tion. IMGT/CloneSearch provides information on the clones that were used to build the 
locus contigs displayed in IMGT/LocusView (accession numbers are from IMGT/ 
LIGM-DB, gene names from IMGT/GENE-DB, and clone position and orientation, 
and overlapping clones from IMGT/LocusView). IMGT/GeneInfo provides informa-
tion on potential human and mouse TR rearrangements (Baum, Hierle, Pascal, Bel-
lahcene, Chaume, Lefranc, Jouvin-Marche, Marche, and Demongeot 2006). 
IMGT/GeneFrequency is an IMGT interactive tool that dynamically computes histo-
grams which represent the contribution of individual V, D, and J genes in sets of ex-
pressed IG and TR rearranged V-(D)-J sequences in IMGT/LIGM-DB. 
IMGT/GeneFrequency results are obtained by querying IMGT/LIGM-DB for se-
quences which are selected, for example, on the specificity criteria. 

1.3.3 IMGT® Genome Web Resources 

The IMGT® genomic Web resources are compiled in the IMGT Repertoire “Locus 
and genes” section that includes Chromosomal localizations, Locus representations, 
Locus description, Gene exon/intron organization, Gene exon/intron splicing sites, 
Gene tables, Potential germline repertoires, the complete lists of human and mouse 
IG and TR genes, and the correspondences between nomenclatures (Lefranc and 
Lefranc 2001a; Lefranc and Lefranc 2001b). The IMGT Repertoire “Probes and 
RFLP” section provides data on probes used in Southern analysis and on gene inser-
tion/deletion polymorphisms (Osipova, Posukh, Wiebe, Miyazaki, Matsumoto, 

1.4 IMGT-ONTOLOGY Concepts and IMGT® Components  
for Genetics 

1.4.1 IMGT® Sequence Databases 

The IMGT® genetic approach refers to the study of genes in relation to their polymor-
phisms, mutations, expression, specificity, and evolution. The IMGT® genetics  
approach heavily relies on the DESCRIPTION concept (and particularly on the  
V-REGION, D-REGION, J-REGION, and C-REGION core concepts for the IG and 
TR), on the CLASSIFICATION concept (gene and allele concepts), and on the 
NUMEROTATION concept (IMGT unique numbering) (Lefranc 1997; Lefranc 1999; 
Ruiz and Lefranc 2002; Duprat and Lefranc 2003; Lefranc, Pommié, Ruiz, Giudicelli, 
Foulquier, Truong, Thouvenin-Contet, and Lefranc 2003; Lefranc, Pommié, Kaas, 

Lefranc 
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Duprat, Bosc, Guiraudou, Jean, Ruiz, Da Piedade, Rouard, Foulquier, Thouvenin, and 
Lefranc 2005b; Lefranc, Duprat, Kaas, Tranne, Thiriot, and Lefranc 2005c). 

1.4.1.1 IMGT/LIGM-DB 

IMGT/LIGM-DB is the comprehensive IMGT® database of IG and TR nucleotide 
sequences from human and other vertebrate species, with translation for fully anno-
tated sequences, created in 1989 by LIGM, Montpellier, France, and available on the 
Web since July 1995 (Lefranc, Giudicelli, Busin, Malik, Mougenot, Déhais, and 
Chaume 1995; Giudicelli et al. 2006). In March 2007, IMGT/LIGM-DB contained 
107,737 sequences of 150 vertebrate species. The unique source of data for 
IMGT/LIGM-DB is EMBL (Kulikova, Aldebert, Althorpe, Baker, Bates, Browne, 
van den Broek, Cochrane, Duggan, Eberhardt, Faruque, Garcia-Pastor, Harte, Kanz, 
Leinonen, Lin, Lombard, Lopez, Mancuso, McHale, Nardone, Silventoinen, Stoehr, 
Stoesser, Tuli, Tzouvara, Vaughan, Wu, Zhu, and Apweiler 2004) which shares data 
with the other two generalist databases GenBank and DNA Data Bank of Japan 
(DDBJ). Based on expert analysis, specific detailed annotations are added to IMGT® 
flat files. The Web interface allows searches according to specific immunogenetic 
criteria and is easy to use without any programming language knowledge. Selection 

is displayed at the top of the resulting sequences pages, so the users can check their 
own queries. Users have the possibility to modify their request or consult the results 
with a choice of nine possibilities (Lefranc 2003; Lefranc et al. 2004b). 
IMGT/LIGM-DB gene and allele name assignment and sequence annotations are 
performed according to the IMGT Scientific chart rules. These annotations allow 
retrieval of data from IMGT/LIGM-DB for queries in other IMGT® databases or 
tools. As an example, the IMGT/LIGM-DB accession numbers of the cDNA ex-
pressed sequences for each human and mouse IG and TR gene are available, with 
direct links to IMGT/LIGM-DB, in the IMGT/GENE-DB entries. IMGT/LIGM-DB 
data are also distributed by anonymous FTP servers at CINES (ftp://ftp.cines.fr/ 
IMGT/) and EBI (ftp://ftp.ebi.ac.uk/pub/databases/imgt/) and from many Sequence 
Retrieval System (SRS) sites (EBI Hinxton UK, Institut Pasteur Paris, DKFZ Hei-
delberg Germany, Columbia University New York USA, IUBio Indiana University 
USA, DDBJ Japan, etc.). IMGT/LIGM-DB can be searched by BLAST or FASTA 
on different servers (EBI Hinxton UK, Institut Pasteur Paris). 

1.4.1.2 IMGT/Automat for IMGT/LIGM-DB Annotations 

IMGT/Automat (Giudicelli, Protat, and Lefranc 2003) is an integrated internal IMGT® 
Java tool which automatically performs the annotation of rearranged cDNA sequences 
that represent half of the IMGT/LIGM-DB content. The annotation procedure includes 
the IDENTIFICATION of the sequences, the CLASSIFICATION of the IG and TR 
genes and alleles, and the DESCRIPTION of all IG and TR specific and constitutive 
motifs within the nucleotide sequences. Accuracy and reliability of the annotation are 
mainly estimated by the program itself with the evaluation of the alignment scores, the 
deduced sequence functionality, and the coherence of the characterized and delimited 
IG and TR motifs. So far 9890 human and mouse IG and TR cDNA sequences have 
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been automatically annotated by the IMGT/Automat tool, with annotations being as 
reliable and accurate as those provided by a human annotator. 

1.4.1.3 Other IMGT® IG and TR Sequence Databases 

IMGT/PRIMER-DB (Folch, Bertrand, Lemaitre, and Lefranc 2004) is the 
IMGT® oligonucleotide primer database for IG and TR, created by LIGM, Mont-
pellier in collaboration with EUROGENTEC S.A., Belgium, on the Web since 
February 2002 (http://www3.oup.co.uk/nar/database/summary/505). In March 
2007, IMGT/PRIMER-DB contained 1864 entries and provides standardized 
information on oligonucleotides (or Primers) and combinations of primers (Sets, 
Couples) for IG and TR. These primers are useful for combinatorial library con-
structions, scFv, phage display, or microarray technologies. The IMGT Primer 
cards are linked to the IMGT/LIGM-DB flat files, and to the IMGT Repertoire 
(IMGT Colliers de Perles and Alignments of alleles of the IMGT/LIGM-DB 
reference sequence used for the primer description). IMGT/PROTEIN-DB is a 
new IMGT® database related to immunoglobulin and T-cell receptor amino acid 
sequences. The database will be available on the IMGT® Web site in 2007. 

1.4.1.4 IMGT® MHC Sequence Databases 

IMGT/MHC-DB comprises databases hosted at EBI and includes a database of  
human MHC allele sequences, IMGT/MHC-HLA (or IMGT/HLA), developed by 
Cancer Research, UK and maintained by the Anthony Nolan Research Institute 
ANRI, London, UK, on the Web since December 1998, and a database of MHC 
sequences from nonhuman primates IMGT/MHC-NHP, curated by the Biomedical 
Primate Research Centre BPRC, The Netherlands, on the Web since April 2002 
(Robinson, Waller, Parham, de Groot, Bontrop, Kennedy, Stoehr, and Marsh 2003). 

1.4.2 IMGT® Sequence Analysis Tools 

The IMGT® tools for the genetics approach comprise IMGT/V-QUEST (Lefranc 
2003; Giudicelli, Chaume, and Lefranc 2004), for the identification of the V, D, and 
J genes and of their mutations, IMGT/JunctionAnalysis (Yousfi Monod, Giudicelli, 
Chaume, and Lefranc 2004) for the analysis of the V-J and V-D-J junctions which 
confer the antigen receptor specificity, IMGT/Allele-Align for the detection of 
polymorphisms, IMGT/Phylogene (Elemento and Lefranc 2003) for gene evolution 
analyses, and IMGT/DomainDisplay for amino acid sequences. 

1.4.2.1 IMGT/V-QUEST 

IMGT/V-QUEST (V-QUEry and STandardization) is an integrated software for IG 
and TR (Lefranc 2003, Giudicelli et al. 2004), used for the identification of the V, D, 
and J genes and of their mutations. This tool is easy to use for the analysis of input 
IG or TR germline or rearranged variable nucleotide sequences. IMGT/V-QUEST 
results comprise the identification of the V, D, and J genes and alleles and the nucleotide 

Lefranc 
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alignments by comparison with sequences from the IMGT reference directory, the 
FR-IMGT and CDR-IMGT delimitations based on the IMGT unique numbering, the 
translation of the input sequences, the display of nucleotide and amino acid muta-
tions compared to the closest IMGT reference sequences, the identification of the 
JUNCTION and results from IMGT/JunctionAnalysis (default option), and the  
V-REGION IMGT Colliers de Perles. IMGT/V-QUEST provides a synthetic view of 
the results when several sequences (up to 50) are analysed in the same run. 

1.4.2.2 IMGT/JunctionAnalysis 

IMGT/JunctionAnalysis (Yousfi Monod et al. 2004) is a tool, complementary to 
IMGT/V-QUEST, which provides a thorough analysis of the V-J and V-D-J junc-
tions which confer the antigen receptor specificity to IG and TR rearranged genes. 
IMGT/JunctionAnalysis identifies the D-GENEs and alleles involved in the IGH, 
TRB, and TRD V-D-J rearrangements by comparison with the IMGT reference  
directory, and delimits precisely the P, N, and D regions. Several hundred junction 
sequences can be analysed simultaneously. 

1.4.2.3 IMGT/Allele-Align 

IMGT/Allele-Align is used for the detection of polymorphisms. It allows the com-
parison of two alleles highlighting the nucleotide and amino acid differences. 

1.4.2.4 IMGT/PhyloGene  

IMGT/PhyloGene (Elemento and Lefranc 2003) is an easy tool for phylogenetic 
analysis of IG and TR variable region (V-REGION) and constant domain  
(C-DOMAIN) sequences. This tool is particularly useful in developmental and com-
parative immunology. The users can analyse their own sequences by comparison 
with the IMGT standardized reference sequences for human and mouse IG and TR. 

1.4.2.5 IMGT/DomainDisplay  

IMGT/DomainDisplay provides a display of amino acid sequences per domain (V, 
C, or G type domain) for IG, TR, MHC and for RPI (that include IgSF proteins other 
than IG and TR, and MhcSF proteins other than MHC), based on the IMGT unique 
numbering (Lefranc et al. 2003; Lefranc et al. 2005b; Lefranc et al. 2005c).  

1.4.3 IMGT® Genetics Web Resources 

The IMGT® genetic Web resources are compiled in the IMGT Repertoire “Proteins 
and alleles” section which includes Protein displays, Alignments of alleles, Tables of 
alleles, Allotypes, and Isotypes (Osipova et al. 1999; Dard et al. 2001; Lefranc and 
Lefranc 2004). 
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1.5 IMGT-ONTOLOGY Concepts and IMGT® Components  
for 2D and 3D Structures 

1.5.1 IMGT® Structural Database 

The IMGT® structural approach refers to the study of the 2D and 3D structures of the 
IG, TR, MHC, and RPI, and to the antigen or ligand binding characteristics in rela-
tion to the protein functions, polymorphisms, and evolution. The structural approach 
relies on the CLASSIFICATION concept (IMGT gene and allele names), 
DESCRIPTION concept (receptor and chain description, domain delimitations), and 
NUMEROTATION concept (amino acid positions according to the IMGT unique 
numbering) (Lefranc et al. 2003; Lefranc et al. 2005b; Lefranc et al. 2005c). Struc-
tural and functional domains of the IG and TR chains comprise  the variable domain 
or V-DOMAIN (nine-strand β-sandwich) that corresponds to the  V-J-REGION or 
V-D-J-REGION and is encoded by two or three genes (Lefranc and Lefranc 2001a; 
Lefranc and Lefranc 2001b; Lefranc et al. 2003), the constant domain or  
C-DOMAIN (seven-strand β-sandwich) (Lefranc et al. 2005b), and, for the MHC 
chains, the groove domain or G-DOMAIN (four β-strand and one α-helix) (Lefranc 
et al. 2005c). The IMGT unique numbering has been extended to the V-LIKE-
DOMAINs (Lefranc et al. 2003) and C-LIKE-DOMAINs (Lefranc et al. 2005b) of 
IgSF proteins other than IG and TR, and to the G-LIKE-DOMAINs (Lefranc et al. 
2005c) of MhcSF proteins other than MHC. 

Structural data are compiled and annotated in IMGT/3Dstructure-DB. 
IMGT/3Dstructure-DB is the IMGT® 3D structure database for IG, TR, MHC, and 
RPI, created by LIGM, on the Web since November 2001 (Kaas, Ruiz, and Lefranc 
2004). In March 2007, IMGT/3Dstructure-DB contained 1221 atomic coordinate 
files. IMGT/3Dstructure-DB comprises IG, TR, MHC, and RPI with known 3D 
structures. Coordinate files extracted from the Protein Data Bank PDB (Berman, 
Westbrook, Feng, Gilliland, Bhat, Weissig, Shindyalov, and Bourne 2000) (http:// 
www.rcsb.org/pdb/) are renumbered according to the standardized IMGT unique 
numbering (Lefranc et al. 2003; Lefranc et al. 2005b; Lefranc et al. 2005c). The 
IMGT/3Dstructure-DB cards provide IMGT annotations (assignment of IMGT genes 
and alleles, IMGT chain and domain labels, IMGT Colliers de Perles for V, C, and G 
type domains (Ruiz and Lefranc 2002; Kaas and Lefranc 2005; Kaas and Lefranc 
2007), downloadable renumbered IMGT/3Dstructure-DB flat files, visualization 
tools, and external links. The IMGT/3Dstructure-DB residue cards provide detailed 
information on the inter- and intra-domain contacts of each residue position. An 
IMGT/3Dstructure-DB card provides receptor and chain description, IMGT gene and 
allele names, domain delimitations, and amino acid positions according to the IMGT 
unique numbering. Standardized IMGT pMHC contact sites have been defined for 
peptide/MHC complexes (Kaas and Lefranc 2005). 

Lefranc 
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1.5.2 IMGT® Structure Analysis Tools 

Several on-line IMGT® structure analysis tools are available for the analysis of 2D 
and 3D structures, and particularly for the comparison of V, C, and G domains. The 
IMGT/StructuralQuery tool (Kaas et al. 2004) analyses the interactions of the resi-
dues of the antigen receptors (IG and TR), MHC, RPI, antigens and ligands. The 
contacts are described per domain (intra- and inter-domain contacts) and annotated in 
term of IMGT labels (chains, domains), positions (IMGT unique numbering) with 
backbone or side-chain implication. IMGT/StructuralQuery allows users to retrieve 
the IMGT/3Dstructure-DB entries, based on specific structural characteristics: φ (phi) 
and ψ (psi) angles, accessible surface area (ASA), amino acid type, distance in  
angstroms between amino acids, CDR-IMGT lengths. IMGT/StructuralQuery is 
currently available for the V-DOMAINs. IMGT/DomainGapAlign aligns users’ 
amino acid sequences against the closest reference sequences from the IMGT  
domain sequence directory. IMGT/DomainGapAlign also provides the IMGT gaps 
and thus allows users to graphically represent their domain sequences with the 
IMGT/Collier-de-Perles tool. IMGT/DomainSuperimpose allows superimposing two 
3D structures of domains from IMGT/3Dstructure-DB. 

1.5.3 IMGT® Structural Web Resources 

The IMGT® structural Web resources are compiled in the IMGT Repertoire “2D and 
3D structures” section which includes 2D representations or IMGT Colliers de Perles 
(Lefranc et al. 2003; Lefranc et al. 2005b; Lefranc et al. 2005c; Ruiz and Lefranc 
2002; Kaas and Lefranc 2007), 3D representations, FR-IMGT and CDR-IMGT 
lengths, and amino acid physico-chemical characteristic profiles (Pommié, Sabatier, 
Lefranc, and Lefranc 2004). 

In order to appropriately analyse the amino acid resemblances and differences 
between IG, TR, MHC, and RPI chains, 11 IMGT classes were defined for the 
“chemical characteristics” amino acid properties and used to set up IMGT Colliers 
de Perles reference profiles (Pommié et al. 2004). The IMGT Colliers de Perles ref-
erence profiles allow one to easily compare amino acid properties at each position 
whatever the domain, the chain, the receptor, or the species. The IG and TR variable 
and constant domains represent a privileged situation for the analysis of amino acid 
properties in relation to 3D structures, by the conservation of their 3D structure de-
spite divergent amino acid sequences, and by the considerable amount of genomic 
(IMGT Repertoire), structural (IMGT/3Dstructure-DB), and functional data avail-
able. These data are not only useful to study mutations and allele polymorphisms, but 
are also needed to establish correlations between amino acids in the protein se-
quences and 3D structures and to determine amino acids potentially involved in the 
immunogenicity. 
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1.6 IMGT-Choreography  

The goal of IMGT-Choreography is to orchestrate dynamic procedure calls between 
IMGT® databases querying and analysis tools, using IMGT’s biological approaches 
(Lefranc et al. 2004a). Major existing or potential “conversation nodes” can be iden-
tified between IMGT® tools, by an analysis of their profiles (IMGT tool diamonds; 
Lefranc et al. 2004a). IMGT-Choreography is based on the Web service architecture 
paradigm (see W3C; http://www.w3.org/). Conversations between Web services are 
expressed using the sole IMGT-ML language both for queries and for result fetches. 

1.6.1 IMGT Tool Diamonds  

In order to enhance the interoperability between the IMGT® components, IMGT® 
tools were analysed for input and output parameters, performed tasks, and accompa-
nying databases (IMGT reference directories). Graphical diamond-shaped represen-
tations, designated as “IMGT tool diamonds” (Lefranc et al. 2004a), were developed 
to obtain tool profiles and to compare the state of the art of each tool in relation to 
the IMGT ontological concepts. Each IMGT tool diamond is composed of modules 
that correspond to different IMGT-ONTOLOGY concepts and each module com-
prises four facets: input parameters, task, IMGT reference directory, and output 
parameters (Lefranc et al. 2004a). 

1.6.2 IMGT-ML 

IMGT-ML (Chaume et al. 2001; Chaume et al. 2003) (available at IMGT In-
dex>IMGT-ML, http://imgt.cines.fr) represents the specification of the main IMGT-
ONTOLOGY concepts (Giudicelli and Lefranc 1999), formalized through a markup 
language defined in-house, based on Extensible Markup Language (XML) 
(http://www.w3.org/XML/) and constrained through XML Schema (http:// 
www.w3.org/XML/Schema). Messages that are exchanged between service provid-
ers and consumers are encoded using valid IMGT-ML streams. IMGT-ML can be 
seen as a kind of Rosetta stone since it extends the ease of interconnection between 
IMGT Web services and is the unique language used for both services inputs and 
outputs.  This ensures semantic consistency between exchanged messages as IMGT-
ML is an XML schema formalization of the IMGT-ONTOLOGY concepts (Chaume 
et al. 2003). 

1.6.3 IMGT® Web Services 

Web services have been chosen as the means to create dynamic interactions between 
IMGT® databases and tools. Clients and providers for these services can be  
written using any SOAP-capable programming language such as SOAP::lite 
(http://www.soaplite.com/), development library for Perl or webMethods Glue for 
JAVA, thus facilitating the conversion of legacy applications to services. IMGT Web 
services are developed using the JAVA programming language and deployed using the 
Apache Axis (http://ws.apache.org/axis/) Web services development framework.  

Lefranc 
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The IMGT/LIGM-DB Web service is the first Web service currently developed 
and implemented with Axis (Lefranc et al. 2004a). It includes the “queryKnowledge” 
and “querySeqData” services. The queryKnowledge service provides the lists of 
instances for the IMGT-ONTOLOGY concepts, for example the list of chain types, 
functionalities, specificities defined in the IDENTIFICATION concept, the lists of 
groups and subgroups defined in the CLASSIFICATION concept, or the list of labels 
defined in the DESCRIPTION concept. The querySeqData service allows the 
retrieval of any sequence-related data that are identified, classified, and described in 
IMGT/LIGM-DB according to the IMGT concepts. The querySeqData input has the 
form of an incomplete IMGT-ML data entry in which the given values are used as 
criteria to query IMGT/LIGM-DB. The result is a list of data entries, in IMGT-ML 
format, sharing these given values. Other Web services are developed to automati-
cally query IMGT® databases and tools. 

1.6.4 Perspectives 

Composition and chaining of IMGT® Web services through IMGT-Choreography 
will enable processing of complex significant biological and clinical requests involv-
ing every part of the IMGT® information system. IMGT-Choreography has for goal 
to combine and join the IMGT® database queries and analysis tools.  

In order to keep only significant approaches, a rigorous analysis of the scientific 
standards of the biologist research (Giudicelli and Lefranc 1999; Lefranc and 
Lefranc 2001a; Lefranc and Lefranc 2001b; Osipova et al. 1999; Dard et al. 2001; 
Chardes, Chapal, Bresson, Bes, Giudicelli, Lefranc, and Peraldi-Roux  2002;; Chas-
sagne, Laffly, Drouet, Herodin, Lefranc, and Thullier 2004; Bertrand, Duprat, 
Lefranc, Marti, and Coste 2004) and of the clinician’s needs (Ghia, Stamatopoulos, 
Belessi, Moreno, Stella, Giuda, Michel, Crespo, Laoutaris, Montserrat, Anag-
nostopoulos, Dighiero, Fassas, Caligaris-Cappio, and Davi 2005; Stamatopoulos, 
Belessi, Papadaki, Kalagiakou, Stavroyianni, Douka, Afendaki, Saloum, Parasi, 
Anagnostou, Laoutaris, Fassas, and Anagnostopoulos 2004) has been undertaken in 
parallel with the modelling of interactions between the IMGT® components (data-
bases, tools, and Web resources). To increase interoperability with other biological 
information systems and ontologies, IMGT-ONTOLOGY is currently being imple-
mented with Protégé (http://protege.stanford.edu/) (Noy, Fergerson, and Musen 2000).  

1.7 Conclusions  

Since July 1995, IMGT® has been available on the Web at the IMGT® Home page 
http://imgt.cines.fr (Montpellier, France). IMGT® has an exceptional response with 
more than 140,000 requests a month. IMGT® is the international reference in immu-
nogenetics and immunoinformatics and provides a common access to standardized 
data which include nucleotide and protein sequences, oligonucleotide primers, gene 
maps, genetic polymorphisms, specificities, 2D and 3D structures, based on IMGT-
ONTOLOGY. Although the IMGT® genome, sequence, and 3D structure databases, 
IMGT® analysis tools, and IMGT Repertoire Web resources, were initially imple-
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mented for the IG, TR, and MHC of human and other vertebrates, data and knowl-
edge management standardization has now been extended to the IgSF proteins other 
than IG or TR (Williams and Barclay 1988) and to the MhcSF proteins other than 
MHC (Maenaka and Jones 1999), of any species (IMGT Repertoire (RPI)). Thus, 
standardization in IMGT® contributed to data enhancement of the system and new 
expertised data concepts were readily incorporated. 

The IMGT® information is of much value to clinicians and biological scientists in 
general. IMGT® databases and tools are extensively queried and used by scientists, 
from both academic and industrial laboratories, who are equally distributed between 
the United States, Europe, and the rest of the world. IMGT® is used in very diverse 
domains: (i) fundamental research and medical research (repertoire analysis of the IG 
antibody sites and of the TR recognition sites in normal and pathological situations 
such as autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, mye-
lomas), (ii) veterinary research (IG and TR repertoires in farm and wildlife species), 
(iii) genome diversity and genome evolution studies of the adaptive immune responses, 
(iv) structural evolution of the IgSF and MhcSF proteins, (v) biotechnology related to 
antibody engineering (single chain Fragment variable (scFv), phage displays, combina-
torial libraries, chimeric, humanized, and human antibodies), (vi) diagnostics (clonali-
ties, detection and follow-up of residual diseases), and (vii) therapeutical approaches 
(grafts, immunotherapy, vaccinology). By its high quality and its data distribution 
based on IMGT-ONTOLOGY, IMGT® has an important role to play in the develop-
ment of immunogenetics Web services. The design of IMGT-Choreography and the 
creation of dynamic interactions between the IMGT® databases and tools, using Web 
services and IMGT-ML, represent novel and major developments of IMGT®, the inter-
national reference in immunogenetics and immunoinformatics. 

1.8 Citing IMGT®  

Users are requested to cite this article, and to quote the IMGT® home page URL, 
http://imgt.cines.fr.  Individual IMGT® databases, tools, and Web resources should 
also be quoted where relevant: IMGT/GENE-DB (Giudicelli et al. 2005), 
IMGT/GeneInfo (Baum et al. 2006), IMGT/LIGM-DB (Giudicelli et al. 2006), 
IMGT/MHC-DB (Robinson et al. 2003), IMGT/PRIMER-DB (Folch et al. 2004), 
IMGT/V-QUEST (Giudicelli et al. 2004), IMGT/JunctionAnalysis (Yousfi Monod et 
al. 2004), IMGT/PhyloGene (Elemento and Lefranc 2003), IMGT/3Dstructure-DB 
(Kaas et al. 2004), IMGT/StructuralQuery (Kaas et al. 2004), and IMGT/Collier-de-
Perles (Kaas and Lefranc 2005; Kaas and Lefranc 2007). 
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Abstract. One of the key elements in the adaptive immune response is the presentation of 
peptides by the major histocompatibility complex (MHC) to the T cell receptors (TR) at the 
surface of T cells. The characterization of the TR/peptide/MHC trimolecular complexes 
(TR/pMHC) is crucial to the fields of immunology, vaccination, and immunotherapy. In order 
to facilitate data comparison and cross-referencing between experiments from different laboratories 
whatever the receptor, the chain type, the domain, or the species, IMGT®, the international 

tion of the TR/pMHC is made according to the IMGT Scientific chart rules that are 
based on the IMGT-ONTOLOGY concepts. IMGT/3Dstructure-DB provides the standardized 
IMGT gene and allele names (CLASSIFICATION), the standardized IMGT labels 
(DESCRIPTION), and the IMGT unique numbering (NUMEROTATION). As the IMGT 
structural unit is the domain, amino acids at conserved positions always have the same number 
in the IMGT® databases, tools, and Web resources. For the TR α and β chains, the amino acids 
in contact with the peptide/MHC (pMHC) are defined according to the IMGT unique number-
ing for V-DOMAIN. The MHC chain cleft that binds the peptide is formed by two groove 
domains (G-DOMAIN), each one comprising four antiparallel β strands and one α helix. The 
IMGT unique numbering for G-DOMAIN applies both to the first two domains (G-ALPHA1 
and G-ALPHA2) of the MHC class I α chain, and to the first domain (G-ALPHA and  
G-BETA) of the MHC class II α chain and β chain, respectively. Based on the IMGT unique 
numbering, we defined 11 contact sites for the analysis of the pMHC contacts. The TR/pMHC 
contact description, based on the IMGT numbering, can be queried in the IMGT/Stuc-
turalQuery tool, at http://imgt.cines.fr. 

2.1 Introduction 

T cells are implicated in the specific immune response against a stress of viral, bacte-
rial, fungal, or tumoral origin. They identify antigenic peptides presented by the major 
histocompatibility complex (MHC) cell surface glycoproteins. The recognition is 

ImMunoGeneTics information system  (http://imgt.cines.fr), has developed IMGT-
ONTOLOGY, the first ontology in immunogenetics and immunoinformatics. In IMGT/ 
3Dstructure-DB, the IMGT three-dimensional structure database, the molecular characteriza-
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carried out by the T cell receptor complex (TcR), a multisubunit transmembrane sur-
face complex made up of a T cell receptor (TR) and of the CD3 chains, that is associ-
ated, in the immunological synapse, to the CD4 or CD8 coreceptors, to the CD28 and 
CTLA-4 costimulatory proteins, to the CD2 adhesion molecule, and to intracellular 
kinases (Lefranc and Lefranc 2001). The TR directly binds the peptide/MHC complex 
(pMHC), and activates the T cell through interactions with the CD3 and other compo-
nents of the TcR (Vasmatzis, Cornette, Sezerman, and DeLisi 1996a; Sim, Zerva, 
Greene, and Gascoigne 1996; Kjer-Nielsen, Clements, Purcell, Brooks, Whisstock, 
Burrows, McCluskey, and Rossjohn 2003). Three-dimensional (3D) structures of the 
TR, pMHC, and TR/pMHC complexes provide an atomic description of their interac-
tions (Kaas, Ruiz, and Lefranc 2004; Kaas and Lefranc 2005).  

Since 1989, IMGT®, the international ImMunoGeneTics information system® 
(Lefranc, Giudicelli, Kaas, Duprat, Jabado-Michaloud, Scaviner, Ginestoux,  
Clément, Chaume, and Lefranc 2005c), http://imgt.cines.fr, has offered standardized 
genetic and structural data on immunoglobulins (IG), TR, and MHC, and on related 
proteins of the immune system (RPI) that belong to the immunoglobulin superfamily 
(IgSF) and to the MHC superfamily (MhcSF). In order to facilitate data comparison 
and cross-referencing between experiments from different laboratories whatever the 
receptor, the chain type, the domain, or the species, IMGT® has developed IMGT-
ONTOLOGY (Giudicelli and Lefranc 1999), the first ontology in immunogenetics 
and immunoinformatics. 

Based on the IMGT-ONTOLOGY concepts, the IMGT Scientific chart  
provides the controlled vocabulary and the annotation rules necessary for the iden-
tification, the description, the classification, and the numbering of the IG, TR, 
MHC, and RPI (Lefranc 2004a; Lefranc, Giudicelli, Ginestoux, Bosc, Folch, 
Guiraudou, Jabado-Michaloud, Magris, Scaviner, Thouvenin, Combres, Girod, 
Jeanjean, Protat, Monod, Duprat, Kaas, Pommié, Chaume, and Lefranc 2004b; 
Lefranc, Clément, Kaas, Duprat, Chastellan, Coelho, Combres, Ginestoux, Giudi-
celli, Chaume, and Lefranc 2005a). The IDENTIFICATION concept refers to the 
IMGT standardized keywords that are essential for the sequence and 3D structure 
assignments. The DESCRIPTION concept provides the IMGT standardized labels 
used to describe structural and functional regions that compose IG, TR, MHC, and 
RPI sequences and 3D structures. Standardized labels have also been defined to 
characterize the three-dimensional assembly of domains and chains. The 
CLASSIFICATION concept provides immunologists and geneticists with a stan-
dardized nomenclature per locus and per species. The human IG and TR gene 
nomenclature elaborated by IMGT was approved by the Human Genome Organisa-
tion (HUGO) Nomenclature Committee, HGNC (Wain, Bruford, Lovering, Lush, 
Wright, and Povey 2002), in 1999. The mouse IG and TR gene names with IMGT 
reference sequences were provided by IMGT to HGNC and to the Mouse Genome 
Database (MGD; Blake, Richardson, Bult, Kadin, and Eppig 2003) in July 2002. 
The NUMEROTATION concept provides the IMGT unique numbering for the IG 
and TR V-DOMAIN and the V-LIKE-DOMAIN of the IgSF proteins other than IG 
or TR (Lefranc, Pommié, Ruiz, Giudicelli, Foulquier, Truong, Thouvenin-Contet, 
and Lefranc 2003b), and for the IG and TR C-DOMAIN and the C-LIKE-DOMAIN 
of the IgSF proteins other than IG or TR (Lefranc, Pommié, Kaas, Duprat, Bosc, 
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Guiraudou, Jean, Ruiz, Da Piedade, Rouard, Foulquier, Thouvenin, and Lefranc 
2005d). An IMGT unique numbering has also been set up for the MHC G-
DOMAIN and the G-LIKE-DOMAIN of the MhcSF proteins other than MHC 
(Lefranc, Duprat, Kaas, Tranne, Thiriot, and Lefranc 2005b). 

The IMGT standardization has allowed the construction of a unique frame for the 
comparison of the TR, peptide, and MHC interactions in the different resources 
provided by the IMGT® information system. IMGT/3Dstructure-DB (Kaas et al. 
2004), the IMGT structural database, is used with the IMGT sequence databases, 
IMGT/LIGM-DB (Lefranc 2003a; Giudicelli, Ginestoux, Folch, Jabado-Michaloud, 
Chaume, and Lefranc 2006) and IMGT/MHC-DB (Robinson, Waller, Parham,  
de Groot, Bontrop, Kennedy, Stoehr, and Marsh 2003); the IMGT gene database, 
IMGT/GENE-DB (Giudicelli, Chaume, and Lefranc 2005); the IMGT tools for se-
quence analysis, IMGT/V-QUEST (Giudicelli, Chaume, and Lefranc 2004), 
IMGT/JunctionAnalysis (Yousfi Monod, Giudicelli, Chaume, and Lefranc 2004); 
and the IMGT tool for 3D structure analysis, IMGT/StructuralQuery (Kaas et al. 
2004), to explore the TR and MHC conserved structural features. In this paper, we 
describe the IMGT standardized rules that have been set up for the molecular charac-
terization of the TR/pMHC complexes. Coordinate files are from IMGT/3Dstructure-
DB (Kaas et al. 2004), http://imgt.cines.fr, with original crystallographic data from 
the Protein Data Bank, PDB (Berman, Westbrook, Feng, Gilliland, Bhat, Weissig, 
Shindyalov, and Bourne  2000). Eleven IMGT pMHC contact sites were defined (C1 
to C11) which can be used to compare pMHC interactions (Kaas and Lefranc 2005). 

2.2 T Cell Receptor/Peptide/MHC 3D Structures  
and IMGT Standardization  

IMGT/3Dstructure-DB (Table 1) contains 18 TR/pMHC structures: 14 (12 TR/ 
pMHC-I and 2 TR/pMHC-II) with complete extracellular regions of the α-β TR (TR-
ALPHA_BETA) and 4 structures with an Fv variable fragment (FV-ALPHA_BETA). 
The α-β TR chains, TR-ALPHA and TR-BETA, are described with standardized 
IMGT labels in Fig. 1.  

The references for the 18 TR/pMHC 3D structures are: 1ao7 (Garboczi, Ghosh, 
Utz, Fan, Biddison, and Wiley 1996), 1qrn, 1qse, 1qsf (Ding, Baker, Garboczi,  
Biddison and Wiley 1999), 1bd2 (Ding, Smith, Garboczi, Utz, Biddison, and Wiley 
1998), 1oga (Stewart-Jones, McMichael, Bell, Stuart, and Jones 2003), 1mi5 
(Kjer-Nielsen et al. 2003), 1lp9 (Buslepp, Wang, Biddison, Appella, and Collins 
2003), 1g6r (Degano, Garcia, Apostolopoulos, Rudolph, Teyton, and Wilson 2000), 
1jtr, 1mwa (Luz, Huang, Garcia, Rudolph, Apostolopoulos, Teyton, and Wilson 
2002), 2ckb (Garcia, Degano, Pease, Huang, Peterson, Teyton, and Wilson 1998), 
1fo0 (Reiser, Darnault, Guimezanes, Gregoire, Mosser, Schmitt-Verhulst, Fontecilla-
Camps, Malissen, Housset, and Mazza 2000), 1nam (Reiser, Darnault, Gregoire, 
Mosser, Mazza, Kearney, van der Merwe, Fontecilla-Camps, Housset, and Malissen 
2003), 1kj2 (Reiser, Gregoire, Darnault, Mosser, Guimezanes, Schmitt-Verhulst,  
Fontecilla-Camps, Mazza, Malissen, and Housset 2002), 1fyt (Hennecke, Carfi, and 
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Wiley 2000), 1j8h (Hennecke and Wiley 2002), 1d9k (Reinherz, Tan, Tang, Kern, Liu, 
Xiong, Hussey, Smolyar, Hare, Zhang, Joachimiak, Chang, Wagner, and Wang 1999). 

Table 1. TR/peptide/MHC complexes in IMGT/3Dstructure-DB (Kaas et al. 2004), 
http://imgt.cines.fr. Sp, species; Hs, Homo sapiens; Mm, Mus musculus; L, length in amino 
acids. Fourteen 3D structures (12 TR/pMHC-I and 2 TR/pMHC-II) correspond to TR  
receptors (TR-ALPHA_BETA). Four 3D structures (1d9k, 1fo0, 1kj2, and 1nam) correspond 
to an Fv variable fragment (FV-ALPHA_BETA). Gene and allele names are according to 
IMGT/GENE-DB (Giudicelli  et al. 2005) for human and mouse TR, to IMGT/HLA-DB 
(Robinson et al. 2003) for human MHC, and to IMGT for mouse MHC. Amino acid  
sequences of the TR V-DOMAINs and MHC G-DOMAINs are reported in Figs. 3 and 4, 
respectively. H2-K1*01 encodes H2-K1b, H2-AB*02 and H2-AA*02 encode I-Abk and I-Aak, 
respectively. Lengths of the CDR-IMGT are according to Lefranc et al. (2003b). 

  (A) TR/pMHC-I  

 T cell receptor Peptide MHC 
3D Name Sp. V-DOMAIN 

genes 
CDR-
IMGT 

Sequence L Gene and 
allele 

1ao7 A6 Hs TRAV12-2-TRAJ24 [6.6.11] LLFGYPVYV 9 HLA-
A*0201 

   TRBV6-5-TRBD2- 
TRBJ2-7 

[5.6.14]    

1qrn A6    LLFGYAVYV 9  
1qse A6    LLFGYPRYV 9  
1qsf A6    LLFGYPVAV 9  
1bd2 B7 Hs TRAV29/DV5-

TRAJ54 
[6.6.10] LLFGYPVYV 9 HLA-

A*0201 

       
  TRBV6-5-

(TRBD2)-TRBJ2-7 
[5.6.13]    

1oga JM22 Hs TRAV27-TRAJ42 [5.6.10] GILGFVFTL 9 HLA-
A*0201 

   TRBV19-(TRBD2)-
TRBJ2-7 

[5.6.11]    

1mi5 LC13 Hs TRAV26-2-TRAJ52 [7.4.14] FLRGRAYGL 9 HLA-
B*0801 

   TRBV7-8-
(TRBD2)-TRBJ2-7 

[5.6.11]    

1lp9 12.2 Mm TRAV12D-2-
TRAJ50 

[6.6.13] ALWGFFPVL 9 HLA-
A*0201 

   TRBV13-3-
(TRBD2)-TRBJ2-7 

[5.6.11]    

1g6r 2C Mm TRAV9-4-TRAJ35 [6.7.10] SIYRYYGL 8 H2-K1*01 
   TRBV13-2-

(TRBD2)-TRBJ2-4 
[5.6.9]    

1jtr 2C    EQYKFYSV 8  
2dkb 2C    EQYKFYSV 8  
1mwa 2C    EQYKFYSV 8  
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1fo0 BM3.3 Mm TRAV16-TRAJ32 [7.7.14] INFDFNTI 8 H2-K1*01 
   TRBV1-TRBD1-

TRBJ1-3 
[6.6.12]    

1nam BM3.3    RGYVYQGL 8 
H2-K1*01 1kj2 KB5-

C20 
Mm TRAV14-1-TRAJ15 [6.6.11] KVITFIDL 8 

   TRBV1-TRBD2-
TRBJ2-3 

[6.6.16]    

 
 

       

 (B) TR/pMHC-II  

T cell receptor  Peptide MHC 
3D Name 

 
Sp. V-DOMAIN 

genes 
CDR-
IMGT 

Sequence L Gene and 
allele 

1fyt HA1.7 
 

Hs TRAV8-4-TRAJ48 [6.7.13] PKYVKQNT 
LKLAT 

13 HLA-DR 
A *0101 

  
 

Hs TRBV28-TRBD1-
TRBJ1-2 

[5.6.12]   HLA-DR 
B1*0101 

1j8h HA1.7 
 

   PKYVKQNTL 
KLAT 

13 HLA-DR 
A*0101 

       HLA-DR 
B1*0401 

1d9k D10 Mm TRAV14D-2-TRAJ4 [6.6.10] GNSHRGAIE
WEGIESG 

16 H2-AA 
*02 

        
 

 
 

TRBV13-2-TRBD2-
TRBJ2-1  

[5.6.11]    H2-AB 
*02   

Each complete TR chain comprises an extracellular region made up of a vari-
able domain and a constant domain (V-ALPHA and C-ALPHA for the α chain, 
V-BETA and C-BETA for the β chain) (Fig. 1), a connecting region, a trans-
membrane region, and a very short intracytoplasmic region. The MHC-I is 
formed by the association of a heavy chain (I-ALPHA) and a light chain (β-2-
microglobulin B2M, Fig. 1). The MHC-II is a heterodimer formed by the asso-
ciation of an α chain (II-ALPHA) and a β chain (II-BETA). The I-ALPHA chain 
of the MHC-I, and the II-ALPHA and II-BETA chains of the MHC-II comprise 
an extracellular region made of three domains for the MHC-I and of two domains 
for the MHC-II, a connecting region, a transmembrane region, and an intracyto-
plasmic region. The I-ALPHA chain comprises two groove domains (G-
DOMAIN), G-ALPHA1 [D1] and G-ALPHA2 [D2], and a C-LIKE domain [D3]. 
The B2M corresponds to a single C-LIKE domain. The II-ALPHA chain and the 
II-BETA chain each comprise two domains, G-ALPHA [D1] and C-LIKE [D2], 

 

 T cell receptor Peptide MHC 
3D Name Sp. V-DOMAIN 

genes 
CDR-
IMGT 

Sequence L Gene and 
allele 
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Fig. 1. T cell receptor/peptide/MHC complexes with MHC class I (TR/pMHC-I) and MHC 
class II (TR/pMHC-II). [D1], [D2] and [D3] indicate the domains. (A) 3D structures of 
TR/pMHC-I (1oga) and TR/pMHC-II (1j8h). (B) Schematic representation of TR/pMHC-I 
and TR/pMHC-II. The TR (TR-ALPHA and TR-BETA) chains, the MHC-I (I-ALPHA β-
2-microglobulin B2M) chains and the MHC-II (II-ALPHA and II-BETA) chains are shown 
with the extracellular domains (V-ALPHA and C-ALPHA for the TR-ALPHA chain; V-
BETA and C-BETA for the TR-BETA chain; G-ALPHA1, G-ALPHA2 and C-LIKE for the I-
ALPHA chain; C-LIKE for B2M; G-ALPHA and C-LIKE for the II-ALPHA chain; II-BETA 
and C-LIKE for the II-BETA chain), and the connecting, transmembrane and cytoplasmic 
regions. Arrows indicate the peptide localization in the G-DOMAIN groove. The MHC G-
DOMAINs and TR V-DOMAINs are likely to be in a diagonal rather than in a vertical posi-
tion relative to the cell surface (Wang, Meijers, Xiong, Liu, Sakihama, Zhang, Joachimiak
and Reinherz 2001; Wang and Reinherz 2002). 
 
 
 
 
 

 and 

 

and G-BETA [D1] and C-LIKE [D2]. Only the extracellular region that corre-
sponds to these domains has been crystallized (Fig. 1). The TR V-DOMAINs and 
MHC G-DOMAINs that are directly involved in TR/pMHC interactions are de-
scribed in the next sections. 
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2.2.1 TR V-DOMAINs 

The V-DOMAINs have an immunoglobulin fold, that is an antiparallel β sheet 
sandwich structure with nine strands (Lefranc et al. 2003b; Lesk and Chothia 1982), 
the A, B, E, and D strands being on one sheet, and the G, F, C, C’, and C” strands on 
the other sheet. These strands are indicated in the IMGT Colliers de Perles (Fig. 2) 
and in the IMGT Protein displays (Fig. 3). 

IMGT Colliers de Perles are IMGT 2D graphical representations based on the 
IMGT unique numbering. The IMGT Colliers de Perles of TR V-DOMAINs are 
based on the IMGT unique numbering for V-DOMAIN and V-LIKE-DOMAIN 
(Lefranc et al. 2003b) and can be displayed on one layer or on two layers. IMGT 
Colliers de Perles of the V-ALPHA and V-BETA domains from 1ao7 (Garboczi  
et al. 1996) are shown as examples in Fig. 2. The IMGT Protein display (Fig. 3) 
shows the amino acid sequences of the different V-ALPHA and V-BETA domains 
found in TR/pMHC (Table 1).  

The V-ALPHA and V-BETA domains share main conserved characteristics of 
the V-DOMAIN which are the disulfide bridge between cysteine 23 (1st-CYS) and 
cysteine 104 (2nd-CYS), and the other hydrophobic core residues tryptophan 41 
(CONSERVED-TRP) and leucine (or hydrophobic) 89 (Lefranc et al. 2003b) (Figs. 
2 and 3). The A strand comprises positions 1 to 15, B strand positions 16 to 26, C 
strand positions 39 to 46, C’ strand positions 47 to 55, C” strand positions 66 to 74, 
D strand positions 75 to 84, E strand positions 85 to 96, F strand positions 97 to 104, 
and G strand positions 118 to 128 (Lefranc et al. 2003b). Compared to the general V-
DOMAIN 3D structure, the V-ALPHA domains have shorter C” and D strands at the 
C” D turn. 

The three hypervariable loops or complementarity determining regions (CDR) of 
each V-DOMAIN are involved in the pMHC recognition. The CDR1-IMGT com-
prises positions 27 to 38, the CDR2-IMGT positions 56 to 65, and the CDR3-IMGT 
positions 105 to 117 (Lefranc et al. 2003b). The CDR3-IMGT corresponds to the 
junction resulting from the V-J and V-D-J rearrangement, and is more variable in 
sequence and length than the CDR1-IMGT and CDR2-IMGT that are encoded by the 
V-REGION only (Lefranc and Lefranc 2001). Lengths of the CDR-IMGT are shown 
separated by dots between brackets (Lefranc et al. 2003b). Lengths of the CDR-
IMGT from available TR/pMHC 3D structures are reported in Table 1, together with 
the names of the V, D, and J genes (Lefranc and Lefranc 2001). 

For example, 1ao7 [6.6.11] V-ALPHA means that in the V-ALPHA domain of 
1ao7, CDR1-IMGT has a length of 6 amino acids, CDR2-IMGT a length of amino 
acids, and CDR3-IMGT a length of 11 amino acids. The V-ALPHA CDR3-IMGT 
results from the TRAV12-2–TRAJ24 rearrangement (Table 1, Fig. 3). In the same 
way, 1ao7 [5.6.14] V-BETA means that in the V-BETA domain of 1ao7, CDR1-
IMGT, CDR2-IMGT, and CDR3-IMGT have a length of 5, 6, and 14 amino acids, 
respectively (Lefranc et al. 2003b). The V-BETA CDR3-IMGT results from the 
TRBV6-5–TRBD2–TRBJ2-7 rearrangement (Table 1, Fig. 3). 
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Fig. 2. IMGT Colliers de Perles of the V-ALPHA and V-BETA domains from 1ao7 (IMGT/ 
3Dstructure-DB, http://imgt.cines.fr) (A) on one layer (B) on two layers. Amino acids are 
shown in the one-letter abbreviation. Hydrophobic amino acids (hydropathy index with posi-
tive value) and tryptophan (W) found at a given position in more than 50% of analysed IG and 
TR sequences are shown. The CDR-IMGTs are limited by amino acids shown in squares, 
which belong to the neighbouring FR-IMGT and represent anchor positions. Hatched circles 
correspond to missing positions according to the IMGT unique numbering (Lefranc et al. 
2003b). Arrows indicate the direction of the βsheets. 
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Fig. 3. Protein display of the TR V-ALPHA and V-BETA domains found in the TR/pMHC 
complexes in IMGT/3Dstructure-DB (Kaas et al. 2004), http://imgt.cines.fr. Amino acid se-
quences and gaps (shown by dots) are according to the IMGT unique numbering for V-
DOMAIN (Lefranc et al. 2003b). The three additional positions in the CDR3-IMGT are 111.1, 
112.2 and 112.1. Potential N-glycosylation sites are underlined. Assignments of the V, D and J 
genes are shown in Table 1. 
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2.2.2 MHC G-DOMAINs 

The four G-DOMAINs, G-ALPHA1 and G-ALPHA2 of the MHC-I, and G-ALPHA 
and G-BETA of the MHC-II (Figs. 1, 4, and 5), have a similar groove 3D structure 
that consists of one sheet of four antiparallel β strands (“floor” of the groove or plat-
form) and one long helical region (“wall” of the groove) (Lefranc et al. 2005b). For 
each G-DOMAIN (Figs. 4 and 5), the A strand comprises positions 1 to 14, B strand 
positions 18 to 28, C strand positions 31 to 38, and D strand positions 42 to 49 
(Lefranc et al. 2005b). The helix (positions 50 to 92) seats on the β sheet and its axis 
forms an angle of about 40 degrees with the β strands. The helix is split into two 
parts separated by a kink, positions 58 of G-ALPHA1, 61 of G-ALPHA2, 63 of G-
ALPHA, and 62 of G-BETA being the “highest” points on the floor groove. The G-
ALPHA2 and G-BETA domains have a disulfide bridge between positions 11 and 
74. The G-ALPHA1 and G-ALPHA domains have a conserved N-glycosylation site 
at position 86 (N-X-S/T, where N is asparagine, X any amino acid except proline, S 
is serine, and T is threonine), except for HLA-DMB and H2-DMB1. Asparagine 15 
of the G-BETA domains also belongs to a conserved N-glycosylation site (Lefranc  
et al. 2005b). 

2.3 TR/pMHC Contact Analysis 

2.3.1 Peptide/MHC 

The 3D structure of the MHC main chain is well conserved and the peptide bind-
ing groove specificity is due to side chain physicochemical characteristics (Reinherz 
et al. 1999). Both MHC-I and MHC-II grooves have pockets where side chains 
of bound peptides may anchor (Falk, Rotzschke, Stevanovic, Jung, and Rammen-
see 1991), the specificity of a peptide to a given MHC being controlled by the 
physicochemical properties of the pockets. Conversely, comparisons of peptide 
sequence alignments and pMHC 3D structures have revealed that some anchored 
peptide positions with conserved properties were needed to bind a peculiar MHC 
allele. Several databases, SYFPEITHI (Rammensee, Bachmann, Emmerich, 
Bachor, and Stevanovie 1999), JenPep (Blythe, Doytchinova, and Flower 2002), 
and MHCpep (Brusic, Rudy, and Harrison 1998), provide peptide sequences 
associated with MHC alleles together with anchor positions and experimental 
data on affinity. These observations have extensively been used in peptide/MHC 
binding prediction (Singh and Raghava  2003; Adams and Koziol 1995; Vasmat-
zis, Zhang, Cornette, and DeLisi 1996b). A list of prediction programs and serv-
ers is available at “The IMGT Immunoinformatics page” (http://imgt.cines.fr). 
Nevertheless, exceptions have been found (Mandelboim, Bar-Haim, Vadai, Frid-
kin, and Eisenbach 1997; Apostolopoulos, Yu, Corper, Teyton, Pieters, 
McKenzie, and Wilson 2002; Scott, Peterson, Teyton, and Wilson 1998) and it 
was noted that while only 30% of peptides with the expected pattern really bind, 
peptides without the expected pattern also bind (Gulukota, Sidney, Sette, and 
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Fig. 4. Protein display of the G-DOMAINs found in the TR/pMHC complexes in 
IMGT/3Dstructure-DB (Kaas et al. 2004), http://imgt.cines.fr. Amino acid sequences and gaps 
(shown by dots) are according to the IMGT unique numbering for G-DOMAIN (Lefranc et al. 
2005b). Amino acids resulting from the splicing with the preceding exon are shown within 
parentheses. Potential N-glycosylation sites are underlined. Positions 61A, 61B and 72A are 
characteristic of the G-ALPHA2 and G-BETA domains. The corresponding gaps in G-
ALPHA1 and G-ALPHA shown in this IMGT Protein display are not reported in the IMGT 
Colliers de Perles as these gaps are shared by those two domains. H2-K1*01 encodes H2-K1b, 
H2-AB*02 and H2-AA*02 encode I-Abk and I-Aak, respectively. 
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Fig. 5. IMGT Colliers de Perles of MHC G-DOMAINs. (A) MHC-I G-ALPHA1 and G-
ALPHA2 domains from 1ao7 (B) MHC-II G-ALPHA and G-BETA domains from 1j8h 
(IMGT/3Dstructure-DB (Kaas et al. 2004), http://imgt.cines). Amino acids positions are ac-
cording to the IMGT unique numbering for G-DOMAIN (Lefranc et al. 2005b). Positions 61A, 
61B and 72A are characteristic of the G-ALPHA2 and G-BETA domains (and are not reported 
in the G-ALPHA1 and G-ALPHA IMGT Colliers de Perles). 
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DeLisi 1997). Peptide/MHC binding prediction and epitope prediction remain a 
big challenge. In order to compare data from different MHC sequences and 3D 
structures, the IMGT unique numbering for G-DOMAIN has been set up 
(Lefranc et al. 2005b) (Figs. 4 and 5). This has allowed to graphically represent, 
in the IMGT Colliers de Perles for G-DOMAIN (Fig. 5), the MHC amino acid 
positions that have contacts with the peptide side chains. Eleven IMGT pMHC 
contact sites were defined (C1 to C11, in Figs. 6–8) which can be used to com-
pare pMHC interactions (Kaas and Lefranc 2005). Examples of contact sites for 
an MHC-I binding an 8-mer peptide (1jtr), for an MHC-I binding a 9-mer pep-
tide (1ao7), and for an MHC-II binding the nine amino acids of a peptide (1j8h) 
are shown in Figs. 6, 7, and 8, respectively.  

In contrast to previous attempts to define pockets (Zhang, Anderson, and De-
Lisi 1998), structural data for defining the IMGT pMHC contact sites take into 
account the length of the peptides and are considered independently of the MHC 
class and sequence polymorphisms. The interactions between the peptide amino 
acid side chains and MHC amino acids were computed using an interaction scor-
ing scheme based on true mean energy ratio (Kaas and Lefranc 2005). All direct 
contacts (defined with a cutoff equal to the sum of the atom van der Waals radii 
and of the diameter of a water molecule) and water-mediated hydrogen bonds 
were taken into account for the definition of the IMGT pMHC contact sites 
(Kaas and Lefranc 2005). The analysis was carried out for the pMHC available 
in IMGT/3Dstructure-DB (Kaas et al. 2004), http://imgt.cines.fr. One hundred 
fourteen 3D structures with peptides of 8, 9, and 10 amino acids bound to MHC-I 
and forty-four 3D structures of pMHC-II were identified. The contact analysis 
was performed for the peptide amino acid side chains of the 9 amino acids lo-
cated in the groove. Results for MHC-I with 8-amino acid peptides (30 pMHC-I 
3D structures), MHC-I with 9-amino acid peptides (74 pMHC-I 3D structures), 
and MHC-II for the 9 amino acids located in the groove (44 pMHC-II 3D struc-
tures) are reported in Table 2 (the results for the 10 pMHC-I with 10-amino acid 
peptides are not shown). These “IMGT reference pMHC contact sites” are also 
available as IMGT Colliers de Perles. They will be updated as the number of 3D 
structures increases. IMGT Colliers de Perles for IMGT pMHC contact sites are 
provided for each individual pMHC and TR/pMHC entry in IMGT/3Dstructure-
DB. They allow easy identification of the amino acid contacts between the MHC 
and the peptide amino acid side chains and comparison of them with the “IMGT 
reference pMHC contact sites”. 

C1 to C11 refer to the 11 IMGT pMHC contact sites (Kaas and Lefranc 
2005). 1 to 9 refer to the numbering of the peptide amino acids in the groove. 
The peptide binding mode to MHC-I is characterized by the N and C peptide 
ends docked deeply with C1 and C11 contact sites that correspond to the two 
conserved pockets A and F, and by the peptide length that mechanically con-
strains the peptide conformation in the groove. There are no C2, C7, and C8 
contact sites for MHC-I with 8-amino acid peptides and no C2 and C7 contact 
sites for MHC-I with 9-amino acid peptides. In contrast, for MHC-II, C2 is pre-
sent but there are no C7 and C8. Whereas C1 and C11 correspond to the  
conserved pockets A and F, respectively, the correspondence between the other  
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Fig. 6. IMGT pMHC contact sites of mouse H2-K1 MHC-I and a 8-amino acid peptide (1jtr). 
(A) 3D structure of the mouse H2-K1*01 groove. (B) IMGT pMHC contact sites IMGT Col-
liers de Perles. Both views are from above the cleft with G-ALPHA1 on top and G-ALPHA2 
on bottom. In the box, C1 to C11 refer to contact sites (Kaas and Lefranc 2005), 1 to 8 refer to 
the numbering of the peptide amino acids P1 to P8. There are no C2, C7 and C8 in MHC-I 3D 
structures with 8-amino acid peptides. There is no C5 in this 3D structure as P4 does not 
contact MHC amino acids (4K is shown between parentheses in the box). (A color version of 

  

 

 

this figure appears between pages 76 and 77.)
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Fig. 7. IMGT pMHC contact sites of human HLA-A*0201 MHC-I and a 9-amino acid peptide 
(1ao7). (A) 3D structure of the human HLA-A*0201 groove. (B) IMGT pMHC contact sites 
IMGT Colliers de Perles. Both views are from above the cleft with G-ALPHA1 on top and G-
ALPHA2 on bottom. In the box, C1 to C11 refer to contact sites (Kaas and Lefranc 2005). 1 to 
9 refer to the numbering of the peptide amino acids P1 to P9. There are no C2 and C7 in 
MHC-I 3D structures with 9-amino acid peptides. There is no C5 in this 3D structure as P4 
does not contact MHC amino acids (4G is shown between parentheses in the box). (A color  

   

version of this figure appears between pages 76 and 77.)



34 Kaas et al. 

Fig. 8. IMGT pMHC contact sites of the human HLA-DRA*0101 and HLA-DRB1*0401 
MHC-II and the peptide side chains (9-amino acids located in the groove). (A) 3D structure of 
the human HLA-DRA*0101 and HLA-DRB1*0401 groove (1j8h). (B) IMGT pMHC contact 
sites IMGT Colliers de Perles. Both views are from above the cleft with G-ALPHA on top and 
G-BETA on bottom. In the box, C1 to C11 refer to contact sites. 1 to 9 refer to the numbering 
of the peptide amino acids 1 to 9 located in the groove. There is no C5 and C7 in MHC-I 3D 
structures with 9-amino acid peptides. There is no C5 in this 3D structure as 5 does not con-
tact MHC amino acids (5N is shown between parentheses in the box). (A color version of this  
figure appears between pages 76 and 77.)
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contact sites and the previously defined pockets is more approximative. For 
MHC-I with a peptide of 8-amino acids, C3, C4, C6, and C9 correspond roughly 
to the B, D, C, and E pockets, and for MHC-I with a peptide of 9-amino acids C3, 
C4, and C9 correspond to the B, D, and E pockets. 

Table 2. IMGT reference pMHC contact sites. (A) MHC-I. Results for 104 pMHC-I 3D struc-
tures (30 with 8-amino acid peptides and 74 with 9-amino acid peptides). (B) MHC-II. Results 
from 44 pMHC-II 3D structures with 9 amino acids in the groove. 

(A) MHC-I  
8-amino acid peptides  
  G-ALPHA1 G-ALPHA2 
C1   1 59 62 63 66  73 77 81    
C3   2 7 24 45        9     
C4   3               9 24 63 66 67 70       
C5   4                            
C6   5 7 9 22 70 74   7 9 24 26 
C9   6               59 61A 63 66       
C10  7 77 73 76                     
C11  8 77 80 81 84     5 26 33 34 55 59 
9-amino acid peptides  
  G-ALPHA1 G-ALPHA2 
C1   1 5 59 62 63 66 73 77 81       
C3   2 7 9 22 24 34 45 63 66 67 70                 
C4   3                      7 9 24 66 67 70 
C5   4 65 66 66 
C6   5 70 73 74 7 26 66 67 
C8 6 66 69 70 73 74 7 24 62 66 
C9   7                      7 24 59 61A 63 66 
C10   8 72 73 76 80 58 
C11  9 77 80 81 84 5 26 33 34 55 59 
(B) MHC-II  
  G-ALPHA G-BETA 
C1   1 26 33 34 47 60 61 62 77 80 81 82 84 85  
C2   2                     72A 73 76             
C3   3 7 24 62 63 66 67 69                     
C4   4 7 9 11 22 24 66 67 70 73 74   
C5   5                     66 
C6   6 9 69 70 73 74            7 26 
C9 7                     24 26 45 59 63 66 
C10 8 73 76                     
C11 9 77 80 81 84        5 33 55            
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2.3.2 TR/pMHC 

The analysis of the pairwise contacts that occur at the TR/MHC and TR/peptide inter-
faces was carried out using the IMGT unique numbering for V-DOMAINs (Lefranc  
et al. 2003b) for the TR, and the IMGT unique numbering for G-DOMAINs for the 
MHC (Lefranc et al. 2005b). Table 3 shows the interactions of the TR V-ALPHA and 
TR V-BETA with MHC-I and the peptide, in nine TR/pMHC-I 3D structures. Table 4 
shows the interactions of the TR V-ALPHA and TR V-BETA with MHC-II and the 
peptide, in two TR/pMHC-II 3D structures. The results show that positions implicated 
in the binding are well conserved but not the pairwise interactions. The MHC contact 
positions belong to the G-DOMAIN helices. The TR positions that are involved in the 
contacts belong mostly to the CDR-IMGT and to anchor positions (shown by squares 
in Fig. 2). The FR-IMGT positions involved in the contacts are positions 84 and 84A 
that are located at the DE turn (designated as “hypervariable 4” or HV4). The contact 
analysis confirms that the V-ALPHA CDR2-IMGT seats on top of the G-ALPHA2 
(MHC-I) or G-BETA (MHC-II) helices and that the V-BETA CDR2-IMGT seats on 
top of the G-ALPHA1 (MHC-I) or G-ALPHA (MHC-II) helices (Tables 3 and 4). This 
agrees with data (Sim et al. 1996) which showed that most of the TR/MHC specificity 
comes from the CDR1 and CDR2 because mutations in these CDRs are able to change 
specificity between MHC-I and MHC-II. V-ALPHA and V-BETA CDR3-IMGT usu-
ally follow the same G-DOMAIN contact preference as the CDR2-IMGT but they can 
also have contacts with the other G-DOMAINs. For example, in the 1oga 3D structure, 
position 66 of G-ALPHA2 is contacted by the V-ALPHA CDR3-IMGT but also by the 
V-BETA CDR3-IMGT.  

The diagonal orientation of the TR/pMHC complex puts the TR in a globally con-
served position for a peptide “read-out” (Buslepp et al. 2003). V-ALPHA is on top of 
the peptide N terminus while V-BETA is on top of the peptide C terminus. TR posi-
tions implicated in the peptide recognition are in CDR3-IMGT and generally to a lesser 
extent in V-ALPHA CDR1-IMGT (Tables 3 and 4). Nearly every 3D structure shows 
different CDR3 conformations and binding mode. In the JM22/peptide/HLA-A  
complex (1oga) (Stewart-Jones et al. 2003), the V-BETA CDR3-IMGT extensively 
contacts the peptide and G-ALPHA2 through hydrogen bonds (Table 3), by inserting 
itself between the peptide and the G-ALPHA2. In contrast, the 2C/peptide/H2-
K1complex (1jtr) (Degano et al. 2000) has comparatively fewer contacts between the 
V-BETA CDR3-IMGT and the peptide and the MHC; however the V-BETA CDR1-
IMGT has more contacts and hydrogen bonds with the peptide and G-ALPHA2.  

The TR LC13 and 2C were crystallized both alone and in complex with a pMHC. 
The structural superimposition of both V-DOMAIN scaffold α carbons reveals large 
movements of the CDR3 and of the CDR1, respectively. The V-ALPHA domains of 
LC13, in the 1mi5 and 1kgc 3D structures, have 3.5 Å root mean square (RMS) between 
their CDR3. The V-ALPHA domains of 2C, in the 2ckb and 1tcr 3D structures, have 2.3 
Å RMS between their CDR1. The TR A6 was crystallized in complex with the same 
MHC but with different peptides. In these structures, the V-BETA CDR3 adopt different 
conformations to adapt to the different peptides (Rudolph, Luz, and Wilson 2002). The 
CDR3 conformational change does not increase the binding surface but gives a better 
shape complementarity to the interface (Lawrence and Colman 1993). 
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Table 3. TR V-ALPHA and V-BETA CDR interactions with pMHC-I. TR positions in bold 
indicate hydrogen bonds. 3D structures are from IMGT/3Dstructure-DB (Kaas et al. 2004), 
http://imgt.cines.fr. Lengths of the CDR-IMGT are shown within brackets. Amino acids are 
shown in the one-letter code. Sequences of the peptides are reported in Table 1, sequences of 
the TR V-ALPHA and V-BETA domains in Fig. 3 and sequences of the MHC-I G-ALPHA1 
and G-ALPHA2 in Fig. 4. (A) V-ALPHA CDR-IMGT interactions. (B) V-BETA CDR-IMGT 
interactions. (C) V-ALPHA and V-BETA FR-IMGT interactions. 

(A) V-ALPHA CDR-IMGT interactions 
V-ALPHA CDR1-IMGT   
PDB CDR1   G-ALPHA1   Peptide   G-ALPHA2   
1ao7 [6.] 27D 58E       
 28R 58E   77W 80R   
 29G   1L 77W   

 38S  5Y
1bd2 [6.]  28S   1L 76E 77W   
 29M 58E 59Y 62G 63E 66K 1L 77W   
 37D 66K 4G 5Y 66Q 73T   
 38Y   5Y 66Q   
1oga [5.] 37S     65E 66Q   
1mi5 [7.] 29S 62R       
 30G     69A   
 36T   4G 66Q 70Y 73T   
 38Y   7Y 61AA 62R 63V 64A 65E 66Q   
1lp9 [6.] 28T     76E   
 29Y     69A 72AG 73T 76E 77W   
 36S     69A   
 38F     65E 66Q 69A   
1g6r [6.] 27Y 62R       
 28S 58E 62R       
 29A 62R       
 36T     76E   
 38Y   3Y 4R 66R   
1jtr [6.] 27Y 62R       
 28S 58E 59Y 62R       
 29A 62R 1E 77W   
 36T   1E  
 38Y   3Y 4K 66R   
1fo0 [7.] 28Q  58E 62R        
 29D  62R        
 30S      73T    
 36S      69A    
 38F      66R    
1kj2 [6.] 27D  58E 62R        
 29T  62R  1K  77W    
 37N   73T 
     (continued)

 37Q 66K 1L 2L 3F 4G 5Y 70Y 73T   
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Table 3. (continued) V-ALPHA CDR2-IMGT    

PDB CDR2   G-ALPHA1   Peptide   G-ALPHA2   
1ao7 [.6.] 57Y     65E 66Q 69A    
 58S    69A    
 63N      76E    
1bd2 [.6.] 57S      65E 66Q 69A    
 58S      69A 70Y 73T    
 59I      68R 69A 72E 72AG    
1oga [.6.] 57V      62H 65E    
1mi5 [.4.] 56G      62R    
 57L      65E 66Q 69A    
 58T      65E    
 64S      65E    
1lp9 [.6.] 57F      61AA 62H 65E 66Q    
 58T      62H 65E    
 64K      65E    
1g6r [.7.] 57Y      66R 69A    
 58S      69A 72AG 73T 76E    
1jtr [.7.] 57Y      65E 66R 69A    
 58S      69A 76E    
1fo0 [.7.] 59Y      62G 65E 66R 69A    
 62K      65E    
1kj2 [.6.] 57R      69A 72E    
 58 S      76 E    
 59V      72E 72AG 76E         
V-ALPHA CDR3-IMGT   
PDB CDR3   G-ALPHA1   Peptide   G-ALPHA2   
1ao7 [.11] 108T  65R 66K  4G 5Y      
 109D  62G 65R 66K  4G 5Y      
 110S  4G 5Y 6P  
 113W  65R 68K 69A 72Q        
 114G  65R        
1bd2 [.10] 107M  5Y  
 108E  58E 62G 65R 66K        
 109G  65R 66K  4G 5Y      
 113A  4G 5Y  
 114Q  65R 69A        
 115K  65R        
1oga [.10] 107A      66Q    
 108G    5F  66Q    
 109S    4G 5F  66Q    
 113Q  66K  4G 5F      
 114G  4G 5F   
1mi5 [.14] 108L    6A 7Y  66Q    
 109A  62R        
 110G  62R 66I        
 111G  65Q 66I 69T  4G      
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PDB CDR3   G-ALPHA1   Peptide   G-ALPHA2   

 112S  69T  6A
 113Y 69T 72Q  6A     
1lp9 [.13] 107F    5F  66Q    
 109A    3W 4G 5F  66Q    
 110S    2L 3W 4G  66Q 69A 70Y 73T    
 111S  63E 66K  2L 4G  73T 77W    
 112S  66K  4G 5F      
 113F  65R 66K 69A  4G 6F   
 114S  4G 5F 6F       
1g6r [.10] 107S  4R  
 108G  4R  
 109F  62R 65Q 66K  4R      
 113A  4R  
 114S  4R  
1jtr [.10] 107S  4K  
 108G    4K      
 109F  62R 65Q 66K 69G 4K      
 113A  4K  
 114S  4K  
1fo0 [.14] 110Y  65Q        
 111G  65Q        
 112.1G  65Q        
1kj2 [.11] 108Y  62R        
 109Q  63E 66K  1K 2V 3I 4T  70Y 73T    
 110G  66K  4T      
 114R  65Q 68K 69G 72Q        
     
(B) V-BETA CDR-IMGT interactions 
V-BETA CDR1-IMGT  
PDB CDR1   G-ALPHA1   Peptide   G-ALPHA2   
1ao7 [5.] 37E  8Y  
1oga [5.] 37D    8T  58K    
1mi5 [5.] 37V  76E 80N        
 38S  76E    
1lp9 [5.] 37D  72Q 76V        
 38Y  69A 73T  6F      
1g6r [5.] 28N    6Y  58K    
 29H    6Y  61Q 61AA    
 37N    6Y 7G 8L  58K    
 38N  6Y  
1jtr [5.] 27N      61Q    
 28N    6Y  58K 61Q    
 29H    6Y  58K 61AA     
 37N    6Y 7S 8V  58K     
 38N  6Y  

(continued)

 112.1T 62R 65Q 66I 69T
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Table 3. (continued) V-BETA CDR1-IMGT   
     
PDB CDR1   G-ALPHA1   Peptide   G-ALPHA2   

 38W  76V  7T      
1kj2 [6.] 29Q      58K 59W 61Q 61AA    
 36Y      61AA    
 3 P  7D  
 38W  69G 72Q        
     
V-BETA CDR2-IMGT  
PDB CDR2   G-ALPHA1   Peptide   G-ALPHA2   
1bd2 [.6.] 65I  72Q        
1oga [.6.] 57Q  69A  4G 5F 6V      
 58I  69A 72Q 73T 76V  6V 8T      
 63V  72Q 76V        
 64N  72Q 75R    
 65D  65R 68K 69A 72Q        
1mi5 [.6.] 57Q  72Q 75R 76E        
 58N  79R        
 63E  79R        
1lp9 [.6.] 57Y  65R 68K 69A 72Q        
 58V  72Q        
 65S  68K        
1g6r [.6.] 57Y  69G 70N 72Q 73S 76V       
 58G  76V        
 63A  76V 79R        
 64G  79R        
 65S  76V        
1jtr [.6.] 57Y  69G 72Q 73S 76V  7S   
 58G  76V    
 63A  76V 79R 80T    
 64G  79R    
 65S  72Q 76V 79R    
1fo0 [.6.] 57R  76V 79R 80T    
 58S  76V 79R    
 63P  79R    
1kj2 [.6.] 57R 72Q 73S 76V 7D  
 58S 72Q   
 6 D Q   
 
 
 
 
 
     

5  72

7  

1fo0 [6.] 292 261
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PDB CDR3   G-ALPHA1   Peptide   G-ALPHA2   
1ao7 [.14] 107R  5Y  
 109G  6P  
 110L  69A 72Q 73T  6P 7V  8Y      
  111A    7V 8Y  61AA    
 112G    5Y 7V  61AA 62H 63V 66Q    
 112.1G    5Y 7V  61AA    
 113R    5Y  61A 61AA 62H 66Q    
 114P    5Y  66Q    
1bd2 [.13] 108Y  8Y  
 109P  6P 7V   
 110G  6P 7V 8Y  
 111G    7V 8Y  61AA    
 112G    7V  61AA    
 114Y    5Y 7V  61AA 63V 66Q    
1oga [.11] 108S      61AA    
 109R    5F 6V 7F  61AA 62H 63V 66Q    
 110S    5F 6V  66Q    
 113S    5F  66Q    
 114Y      61A 61AA 62H    
1mi5 [.11] 108L  76E    58K    
 109G  76E        
 110Q  69T 72Q 73T 76E  5R 6A      
 113A  6A 7Y  
 114Y  76E  7Y 8G  58K 59W 61AA    
1lp9 [.11] 109W    5F 6F 7P 8V  58K 59W 61AA 63V    
 110V    5F  61AA    
 113S  5F  
 114Y    5F  61A 61AA 62H 66Q    
1g6r [.9] 107G  6Y  
 108G    6Y  61AA 63E    
 109G    4R 6Y  61AA 66R    
 114G    4R  66R    
 115T      61AA    
1jtr [.9] 107G  6Y  
 108G    6Y  63E 66R    
 109G    4K 6Y  66R    
 115T      61A    
1fo0 [.12] 108A      58K    
 109D    6N 7T  58K 59W    
 110R  69G 70N 72Q 73S  4D 5F 6N      
 112V    4D 5F 6N  66R    
 113G  6N  
 114N    6N  61AA    
1kj2 [.16] 108A    6I  66R    
 109A    4T 6I  66R    
 110P  4T  

(continued)



42 Kaas et al. 
 

Table 3. (continued) V-BETA CDR3-IMGT   

PDB CDR3   G-ALPHA1   Peptide   G-ALPHA2   

 112S      61Q 61AA    
 114E      69A    
     
(C) V-ALPHA and V-BETA FR-IMGT interactions 
V-ALPHA FR-IMGT  
PDB Position   G-ALPHA1   Peptide   G-ALPHA2   
1ao7 2K  58E        
 26S  58E        
 82K      73T 76E    
1bd2 2Q  58E 65R        
 82K      72AG 73T    
1oga 84R      65E    
1mi5 40H  7Y  
 52Y      62R    
 55H    7Y  61AA 62R    
 66V      62R    
1lp9 82K      65E    
1g6r 2Q  4R  
 55K      65E    
1kj2 82K       76E    
     
V-BETA FR-IMGT  
PDB Position   G-ALPHA1   Peptide   G-ALPHA2   
1bd2 55Y  65R        
 67D  68K        
1oga 67Q  65R        
1mi5 55Y  72Q 76E        
 66L  72Q 75R        
1lp9 55Y  65R        
 67E  65R 68K        
1g6r 67E  72Q        
 84Q      58K    
1jtr 67E  72Q        
 84Q      58K    

 

 112.1A    

 

61AA    
 11   

 
6  6

 11      61D 
1.1   W

6R
2 5G E 66  69R A

4T
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Table 4. V-ALPHA and V-BETA CDR interactions with MHC-II. TR positions in bold indi-
cate hydrogen bonds. Three dimensional (3D) structures are from IMGT/3Dstructure-DB 
(Kaas et al. 2004), http://imgt.cines.fr. Lengths of the CDR-IMGT are shown within brackets. 
Amino acids are shown in the one-letter code. Sequences of the peptides are reported in  
Table 1, sequences of the TR V-ALPHA and V-BETA domains in Fig. 3, and sequences of the 
MHC-II G-ALPHA and G-BETA in Fig. 4. (A) V-ALPHA CDR-IMGT interactions. (B) V-
BETA CDR-IMGT interactions. (C) V-ALPHA and V-BETA FR-IMGT interactions. 

(A) V-ALPHA CDR-IMGT interactions 
V-ALPHA CDR1-IMGT   
PDB Position  G-ALPHA  Peptide   G-BETA   
1j8h [6.] 28S    2K  76H    
 29V    2K 4V  76H    
 36P    4V  72AT 76H    
 38Y      72AT    
1d9k [6.] 27D  3S  
 28S      72AT 76H    
 29T    3S 4H 5R  72AT 76H    
 36F    5R  72AT    
 37D    5R 8I  66R 69A 72AT    
 38Y      66R    
     
V-ALPHA CDR2-IMGT   
PDB Position  G-ALPHA  Peptide   G-BETA   
1j8h [.7.] 57T      65E    
 58S      69A 72AT    
 59A      65E    
1d9k [.6.] 57S      65E 66R 69A    
 58L      69A 72D 72AT    
 59V      65E 66R 68R 69A    
 63S      65E    
     
V-ALPHA CDR3-IMGT   
PDB Position  G-ALPHA  Peptide   G-BETA   
1j8h [.13] 108E  63E  2K 4V      
 110P    7N  66Q    
 111F    7N 9L  62D 63L 66Q    
 114E  66G 69A 70N  5K      
1d9k [.10] 107T      66R    
 108G    5R 8I  66R    
 109S  69Q  8I  66R    
 113F  69Q 73T  8I 9E 10W 11E  63Y 66R    
 114N  69Q    66R    
 115K  65Q        
 
 
     

(continued)
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Table 4. (continued) 

PDB Position  G-ALPHA  Peptide   G-BETA   
1j8h [5.] 27M  10K  
 28D  76A  10K      
 29H  10K  
 37E  72A 73V 76A  10K      
 38N  69A        
1d9k [5.] 37N  76H        
 38N  69Q        
     
V-BETA CDR2-IMGT     
PDB Position  G-ALPHA  Peptide   G-BETA   
1j8h [.6.] 57Y  65Q 66G 68L 69A 72A        
 58D  68L 72A 75K        
 65M  43K 68L        
1d9k [.6.] 57Y  65Q 66G 68L 69Q 72A        
     
V-BETA CDR3-IMGT    
PDB Position  G-ALPHA  Peptide   G-BETA   
1j8h [.12] 108S  73V  10K   
 109T  69A 70N 73V  5K 7N 8T   
 110G  73V  8T 9L 10K      
 112L    10K  58Y    
 113P      61AQ 62D 63L    
1d9k [.11] 108G  11E  
 109Q    11E  58Y 63Y    
 110G    10W 11E  63Y 66R    
 113R      61K 62Q 63Y 65E 66R    
 114A      66R    
     
(C) V-ALPHA and V-BETA FR-IMGT interactions 
V-ALPHA FR-IMGT   
PDB Position  G-ALPHA  Peptide   G-BETA   
1j8h 55K      62D    
1d9k 82K      72D 
     
V-BETA FR-IMGT   
PDB Position  G-ALPHA  Peptide   G-BETA   
1j8h 55F  65Q    
 66K  43K        
 67E  43K 65Q        
 84K  72A 76A  10K      
1d9k 55Y  65Q        
 66T  43K        
 67E  43K 65Q 68L        
 68K  65Q        

 

(B) V-BETA CDR-IMGT interactions 
V-BETA CDR1-IMGT   
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2.4 Conclusions 

With only 18 TR/pMHC 3D structures, the atomic details of TR/pMHC interactions 
already show a great deal of variability. IMGT standardization is a step toward a 
better understanding of the mechanisms ruling TR/pMHC recognition. It will help 
comparing new experimentally resolved 3D structures with published data. However, 
the TR/pMHC interactions are far from being unravelled and the study of the 
TR/pMHC interactions with the other proteins of the immunological synapse will be 
crucial. For example, the interaction between an MHC and the CD4 considerably 
enhances the pMHC/TR sensibility (Irvine, Purbhoo, Krosgaard, and Davis 2002; 
Davis 2002). The understanding of the T cell triggering early events is subject to 
active studies.  

Although the TR/pMHC binding represents a necessary step for the TR recogni-
tion, many factors, the TR affinity for the pMHC, the relocation of surface proteins 
such as CD4 or CD8 in the immunological synapse are necessary for generating the 
T cell activation signal. Each of these steps needs to be described and characterized 
so that data from different experiments can be integrated. IMGT standardization will 
be further extended on the IMGT Web site at http://imgt.cines.fr as new parameters 
become available. 

2.5 Citing IMGT/3Dstructure-DB 

Users are requested to cite IMGT/3Dstructure-DB (Kaas et al. 2004) and this article, 
and to quote the IMGT home page URL, http://imgt.cines.fr. 
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Abstract. Normal adaptive immune responses operate under major histocompatibility 
complex (MHC) restriction by binding to specific short antigenic peptides. Sequence-
structure-function information is critical in facilitating the understanding of principles 
governing MHC-specific peptide recognition and binding. Three-dimensional structures of 
bound peptide ligands to MHC receptors are today characterized in great number using X-ray 
crystallography, offering a rich source of information for structural analysis. By utilizing 
information derived from available experimental structures, it is possible to predict binders for 
alleles that have not been studied extensively and offers an alternative to sequence-based 
approaches that require a large dataset for training. This chapter will introduce the use of 
structural descriptors, as well as comparative modeling and docking techniques for predicting 
whether a peptide sequence can bind to a specific MHC allele. 

3.1 Introduction 

In recent years, an increasing number of protein structures have been 
experimentally determined and deposited in the Protein Data Bank (PDB; Bernstein, 
Koetzle, Williams, Meyer, Brice, Rodgers, Kennard, Shimanouchi, and Tasumi 
1977), providing a wealth of information for structural analysis and prediction. 
Together with the development of new structural modeling and docking techniques, 
the use of structure-based approaches to predict potential T-cell epitopes is 
increasingly successful, often producing modeled structures accurate to within 2.00Å 

 

The binding of peptide ligands to MHC molecules plays a key role in the activation 
of normal adaptive immune responses and an intricate theoretical problem that 
remains unsolved. For an MHC molecule to recognize antigenic peptides, geometric 
and electrostatic complementarity between the receptor and ligand is essential for the 
formation of chemical bonds between their functional groups, which in turn 
determines the stability of the complex. In this context, the introduction of structural 
information can greatly facilitate our understanding of how well a peptide ligand can 
associate with an MHC molecule.  



 
root-mean-square deviation RMSD (Tong, Tan, and Ranganathan 2004) from the 
experimental crystal structure. This chapter introduces the use of three-dimensional 
experimental and modeled structures for peptide-MHC (pMHC) prediction. First, we 
provide a brief description of the structural characteristics of pMHC complex 
followed by an introduction on the use of structural descriptors to characterize 
pMHC interfaces. Following this, we introduce the use of protein structure prediction 
techniques to generate models of pMHC complexes. Finally, we cover some 
available pMHC structural resources from the Internet. 

3.2 Structural Features of MHC Peptides 

Two main classes of MHC molecules, class I and class II, are identified that are 
responsible for presenting epitopes to cytotoxic T cells (Tc) and helper T cells (Th), 
respectively. Each class has different binding characteristics: (i) class I ligands with a 
typical length of between 8 and 12 amino acids are enclosed within the MHC 
binding groove with both termini tethered toward the base of the binding groove and 
the center loop bulges out to interact with Tc (Fig. 1A); (ii) class ΙΙ ligands (Fig. 1B) 
are more variable with both termini extending out of the groove thus permitting Th to 
bind to ligands of a longer length (between 9 and 25 amino acids). 

 
Fig. 1. (A) Class I MHC-peptide complex. (B) Class II MHC-peptide complex. 
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3.3 MHC-Peptide Interaction Parameters 

The forces involved in protein-protein interactions are non-covalent and therefore 
reversible, and are generally effective over short distances. These include: (i) van der 
Waals (attractive and repulsive) interaction, (ii) electrostatic interactions (including 
hydrogen bonds), and (iii) hydrophobic interactions. It is a balance of these 
interactions against interactions with solvent that determines the stability of a 
protein. Some interaction parameters have been identified as being significant for the 
characterization of pMHC interface (Kangueane, Sakharkar, Kolatkar, and Ren 
2001; Tong, Kong, Tan, and Ranganathan 2006) and can be calculated from the 
three-dimensional coordinates of a complex. 

3.3.1 Interface Area between Peptide and MHC 

The hydrophobic effect is considered to be one of the most significant forces that 
drive protein folding. A linear correlation exists between the hydrophobic free 
energy of transfer from polar to hydrophobic environment and the change in solvent 
accessible surface area (ΔASA) upon complexation (Chothia and Janin 1975). Thus, 
knowledge of the surface area of a complex interface in direct contact with solvent 
may provide an indication of the binding strength. The accessible surface area can be 
measured by tracing out the maximum permitted van der Waals contact that is 
covered by the center of a water molecule as it rolls over the surface of the protein. 
Interface area for class I pMHC complexes was defined as the mean ΔASA on 
complexation when going from a monomeric MHC molecule to a dimeric pMHC 
complex state and calculated as half the sum of the total ΔASA for both molecules 
for each type of complex. The mean ΔASA for class I pMHC complexes is 903.30 ± 
260.90 Å2. Similarly, the interface area for class II pMHC complexes was defined as 
the ΔASA when going from a dimeric MHC molecule to a trimeric state. The 
corresponding ΔASA in class II complexes is 894.40 ± 364.00 Å2.  

3.3.2 Intermolecular Hydrogen Bonds 

Hydrogen bonds are major contributors to the selectivity and stability of protein-
protein complexes. It involves three atoms, a donor electronegative atom to which 
the hydrogen is bound, and an acceptor electronegative atom in close proximity. 
The typical observed hydrogen bond distance is approximately 2.60 to 3.10 Å 
(1.00 to 1.20 Å between donor and hydrogen and 1.60 to 2.00 Å between acceptor 
and hydrogen). For such bonding to be significant, both electronegative atoms 
must be derived from the group: F, N, and O (Morrison and Boyd 1992). Only 
hydrogen bonded to any of these three elements is sufficiently positive, and only 
these elements are sufficiently negative for the required attraction to exist due to 
the high concentration of negative charge on their small atoms. Hydrogen bonds 
are directional and can control and restrict the geometry of the interactions 
between side-chains. In general, the strength of hydrogen bonds increases with 
decreasing bond length. 



 
3.3.3 Complementarity between Surfaces 

3.3.3.1 Gap Index 

One essential feature in receptor-ligand binding is the electrostatic and geometric 
complementarity observed between associating molecules. Here, we introduce the 
use of gap index (Jones and Thornton 1996) as a means to evaluate complementarity 
of interacting interfaces:  

 

Gap index (Å) =
 gap volume between pMHC (Å3)        (1) 

 
      interface ASA (Å2) (per complex) 

 
The mean gap indices for class I and class II pMHC complexes are 0.95 ± 0.24 Å 

and 1.12 ± 0.20 Å, respectively (Kangueane et al. 2001). The results indicate that the 
interacting surfaces in pMHC complexes are significantly complementary. On an 
average, the gap index is higher in class II complexes than in class I complexes. This 
implies that the interface area of class I complexes is greater than its corresponding 
gap volume. On the contrary, the mean gap volume is greater than the interface area 
in class II complexes. Not much difference can be identified in the gap index 
between complexes of different alleles in both class I and class II complexes. 

3.3.3.2 Gap Volume 

The gap volume between the MHC and the peptide in each complex can be computed 
using the SURFNET program (Laskowski 1991), which provides an estimate of the 
volume enclosed by the two interacting molecular subunits. The algorithm places a 
series of spheres (maximum radius 5.00 Å) midway between the surfaces of each pair 
of subunit atoms, such that its surface is in contact with the surfaces of the atoms in the 
pair. The size of each sphere is reduced accordingly whenever it is intercepted by other 
atoms and subsequently discarded if it falls below a minimum allowed radius (1.00 Å). 
The sizes of all the remaining allowable gap-spheres are subsequently used to compute 
the gap volume between the two subunits.

3.4 Structural Prediction Techniques 

3.4.1 Homology Modeling 

The use of known homologous protein structure(s) to predict the unknown structure 
of a related amino acid sequence represents one of the most reliable strategies for 
model building of proteins (Swindells and Thornton 1991), often producing model 
structures with accuracy to within 2.00 Å RMSD from the actual crystal structure. 
Homology modeling involves a series of steps, with each step depending on the 
success of the preceding one. A comprehensive coverage of the homology modeling 
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procedure is described in an earlier study (Sali and Blundell 1993). A brief outline of 
the comparative modeling process is as follows: 

i. Searching for a suitable template structure from the PDB using the target 
sequence as a query. The template structure is a sequence with known 
structure that is significantly similar to the target sequence. 

ii. Align the target sequence with the template sequence to maximize the 
structural similarity using either a local-similarity dynamic programming 
approach (Smith and Waterman 1981) or a global-similarity approach 
(Needleman and Wunsch 1970).  

iii. Substitute amino acid side chains in the template with the corresponding 
ones from the target sequence. 

iv. Model weakly conserved regions such as insertions/deletions and loops 
between the target and template sequences. 

v. Perform energy minimization to improve the stereochemistry of the 
modeled structure. 

 
Generally, modeled structures are as close to the target structure as their 

templates (Sanchez and Sali 1997). This is a nontrivial achievement due to the 
existence of many residue substitutions, deletions, and insertions between the target 
and template sequences that must be taken into account during comparative 
modeling. When several templates are selected for modeling, it is possible to 
generate a model that is significantly closer to the target structure than any of the 
templates as the model tends to inherit the most conserved regions from each 
template (Sanchez and Sali 1997).   

3.4.2 Docking Algorithm 

Computer-simulated ligand binding or docking is a powerful technique for 
investigating intermolecular interactions. In general, the purpose of docking 
simulation is twofold: (i) to find the most probable translational, rotational, and 
conformational juxtaposition of a given ligand-receptor pair and (ii) to evaluate the 
relative goodness-of-fit or how well a ligand can bind to the receptor.  Here, we 
introduce a highly accurate docking protocol for the modeling of bound peptide 
ligands to the MHC receptor. The methodology presented here is applicable to the 
design of both subtype-specific vaccines as well as promiscuous peptide epitopes. 

3.4.3 The Peptide Docking Procedure 

Beginning with the sequence of the ligand for which the structure is to be generated 
(herein referred to as the target peptide), and the availability of the target MHC 
receptor structure, our docking protocol consists of three essential steps: (i) rigid 
docking of residues at the ends of binding groove; (ii) loop closure of central 
residues by satisfaction of spatial constraints; (iii) followed by ab initio refinements 
of backbone and ligand interacting side chain. The general flow of the docking 
protocol is illustrated in Fig. 2. 



 

 
Fig. 2. Flowchart of the docking procedure used in this work. 

3.4.3.1 Rigid Docking of Residues at the Ends of Binding Groove 

The main problem in docking simulation is to enumerate the number of combinations 
for two molecules within an enclosed sampling space. There are six degrees of global-
rotational and translational freedom of one molecule relative to the other, as well as 
one internal dihedral rotation per rotational bond. A full search on the conformational 
space increases exponentially with increasing molecule size and sampling space. As 
such, a key challenge in pMHC docking simulation is to minimize the conformational 
search space of ligand within the large sampling space enclosed by the MHC binding 
groove. A possible approach is to identify suitable base or anchor fragments (herein 
referred to as probes) for initiating docking simulations. A probe must satisfy two 
criteria: (i) the anchor must have sufficient contact with the receptor and (ii) the 
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structure of the anchor must be highly conserved. Peptide fragments at the end of 
MHC binding groove with mean backbone Cα RMSD within 0.15 ± 0.14 Å (Tong 

A fast soft-interaction energy function (Fernández-Recio, Totrov, and Abagyan 
2002) is adopted to model each probe to the receptor. This is performed using an 
Internal Coordinate Mechanics (ICM; Abagyan and Totrov 1999) global 
optimization algorithm; with flexible ligand interface side chains and a grid map 
representation of the receptor energy localized to small cubic regions of 1.00-Å 
radius from the backbone of each probe. Each probe performs a random walk within 
their respective grid map. At each random step, the side-chain torsions were changed 
using a Biased Monte Carlo procedure, which begins by pseudo-randomly selecting 
a set of torsion angles in the probe and subsequently finding the local energy 
minimum about those angles. New conformations are adopted upon satisfaction of 
the Metropolis criteria with probability min(1, exp[-∆G/RT]), where R is the 
universal gas constant and T is the absolute temperature of the simulation. Loose 
restraints were imposed on the positional variables of the ligand molecule to keep it 
close to the starting conformation. The stimulation temperature was set to 300 K. 
The optimal energy function used during stimulations consisted of the internal 
energy of the probe and the intermolecular energy based on the same optimized 
potential maps used in the docking step: 

 
E = EHvw + ECvw + 2.16E       + 2.53Ehb + 4.35Ehp + 0.20Esolv  (2) 

 
The internal energy included internal van der Waals interactions, hydrogen 

bonding and torsion energy calculated with ECEPP/3 parameters, and the Coulomb 
electrostatic energy with a distance-dependent dielectric constant (e=4r). The 
configurational entropy of sidechains and the surface-based solvation energy were 
included in the final energy to select the best-refined solutions. 

3.4.3.2 Loop Closure of Center Residues 

In this stage, an initial conformation of the central loop is generated by satisfaction 
of spatial constraints (Sali and Blundell 1993) based on the allowed subspace for 
backbone dihedrals in accordance with the conformations of peptides docked into the 
ends of the binding groove. This is performed in three steps: (i) Distance and 
dihedral angle restraints on the entire peptide sequence are derived from its 
alignment with the sequences of probes docked into the binding groove. (ii) The 
restraints on spatial features of the unknown center residues are derived by 
extrapolation from the known 3D structures of probes in the alignment, expressed as 
probability density functions. Stereochemical restraints include bond distances, bond 
angles, planarity of peptide groups and side-chain rings, chiralities of Cα atoms and 
sidechains, van der Waals contact distances and the bond lengths, bond angles, and 
dihedral angles of cysteine disulfide bridges. (iii) Spatial restraints on the unknown 
center residues are satisfied by optimization of the molecular probability density 
function using variable target function technique that applies the conjugate gradients 
algorithm to positions of all nonhydrogen atoms. 

et al. 2004) are ideal for such purpose. 



 
3.4.3.3 Refinements of Ligand Backbone and Interacting Side Chain 

To improve the accuracy of the initial model, partial refinement was performed for 
both the ligand backbone and side chain, using ICM Biased Monte Carlo procedure 
(Abagyan and Maxim 1999). Initial stages of refinements attempt to overcome the 
penalty derived from the initial rigid docking of terminal residues by introducing 
partial flexibility to the ligand backbone. Restraints were imposed upon the 
positional variables of the Cα atoms of probes to keep it close to the starting 
conformation. The energy function adopted for this refinement step is: 

 
E = Evw + Ehbonds + Etorsions + Eelectr + Esolv + Eentropy   (3) 

 
Refinements of ligand and receptor side-chain torsions in the vicinity of 4.00 Å 

from the receptor were performed upon the final backbone structure. 

3.5 Application of Docking Protocol 

We will now illustrate the application of our protocol for the discrimination of 
binders/nonbinders from MHC class II alleles. Concretely, we discuss the docking of 
a 15-residue peptide ERVICPISSVPGNLA into the binding groove of associated and 
nonassociated MHC class II alleles DRB1*0402 and DRB1*0406 respectively 
(Tong, Bramson, Kanduc, Sinha, and Ranganathan 2006).  

The core residues of each 15-residue peptide were generated using a sliding 
window (size 9) to eliminate any bias in selecting core peptides based on sequence 
patterns before the start of docking simulations. Docking of core peptide residues is 
performed using the docking procedure earlier described followed by ab initio 
modeling of flanking residues. Our models present the best fit of each peptide into 
the binding cleft of each disease-associated and non-disease-associated allele based 
on the following criteria: (i) pattern of hydrogen bonding to the MHC molecule,

clashes or repulsive contacts.  
In this example, pMHC residues were considered to be in contact if at least one 

pair of their nonhydrogen (“heavy”) atoms was found to be within 4.00-Å radius 
(Fischer and Marquesee 2000). Intrapeptide interactions and intra-MHC interactions 
were not considered as they have minor influence on backbone structure. Any atom 
in the peptide and any atom in the MHC were considered to be experiencing atomic 
clash if their separation is below 2.00 Å (Samudrala and Moult 1997) for non-
hydrogen atoms and below 1.60 Å for atoms participating in hydrogen bonds 
(Samanta, Bahadur, and Chakrabarti 2002; Wallace, Laskowski, and Thornton 
1995). Out of seven possible combinations of core peptide residues for the peptide, 
only one conformation successfully docked into the binding cleft of DRB1*0402 
without any atomic clashes or repulsive interactions. In contrast, atomic clashes are 
experienced in nonassociated allele DRB1*0406 (Fig. 3). 

(ii) pattern of hydrophobic burial of peptide side chains, and (iii) the absence of atomic 
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Fig. 3. Comparison of Dsg3 963-977 (ERVICPISSVPGNLA) peptide within the 
binding grooves of associated and non-associated alleles at 4.00Å. (A) Strongly 
associated allele *0402. No atomic clash is detected in the modeled peptide-MHC 
complex. (B) Non-associated allele *0406. Buried peptide residues are shaded grey 
(in increasing density) and regions of atomic clash occurring between peptide and 
pocket residues are circled in black. 

3.6 Available Resources 

A comprehensive dataset to facilitate the sequence-structure-function mapping in 
peptide binding by MHC receptors is essential for structural analysis and 
development of predictive algorithms in computational immunology. Listed in Table 1 
below are some pMHC structural databases that are freely available for use or 
download. 

 

 
 



 
Table 1. Some existing pMHC structure databases freely available for use or download. 

Name Description URL 
PDB Worldwide repository for the processing and 

distribution of 3D structure data of large 
molecules of proteins and nucleic acids. 

http://www.rcsb.org/pdb/ 

MPID A manually curated database on pMHC 
interactions containing computed interaction 
parameters relevant to each complex.  

http://surya.bic.nus.edu.sg/
mpid 

MPID-T A manually curated database containing 
computed atomic interaction information on 
TCR-pMHC and pMHC complexes obtained 
from PDB. 

http://surya.bic.nus.edu.sg/
mpidt 

FIMM Database containing HLA 3D experimental 
structures obtained from PDB and models 
generated by homology modeling. 

http://sdmc.lit.org.sg:8080/
fimm/ 

IMGT/3D
structure-
DB 

Database containing annotated information 
on the sequences, 2D structures and 3D 
structures of TR and pMHC from human and 
other vertebrate species according to the 
IMGT Scientific chart. 

http://imgt3d.igh.cnrs.fr/ 

3.7 Conclusions 

In order to fully understand the phenomenon of pMHC interactions, it is necessary to 
introduce structural information. To date, structure-based techniques are poorly 
developed and are lagging far behind sequence-based prediction techniques due to 
higher complexity in development and computational costs. Despite their slow 
progress, structure-based techniques are highly promising as a predictive tool for 
vaccine design for its strength in predicting potential T-cell epitopes for MHC 
subtypes where insufficient data are available for training sequence-based 
procedures.  
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Abstract. Quantitative Structure-Activity Relationship (QSAR) analysis is a cornerstone of 
modern informatics. Predictive computational models of peptide-Major Histocompatibility 
Complex (MHC) binding affinity based on QSAR technology have now become important 
components of modern computational immunovaccinology. Historically, such approaches 
were built around semiqualitative, classification methods, but these are now giving way to 
quantitative regression methods. We review two methods – a 2D-QSAR Additive-Partial 
Least Squares (PLS) and a 3D-QSAR Comparative Molecular Similarity Index Analysis 
(CoMISA) method – which can identify the sequence dependence of peptide binding speci-
ficity for various class I MHC alleles from the reported binding affinities (IC50) of peptide 
sets. The Iterative Self-Consistent (ISC) PLS-based Additive Method is a recently devel-
oped extension to the Additive method for the affinity prediction of class II peptides. The 
QSAR methods presented here have established themselves as immunoinformatic tech-
niques complementary to existing methodology, useful in the quantitative prediction of 
binding affinity: current methods for the in silico identification of T-cell epitopes (which 
form the basis of many vaccines, diagnostics and reagents) rely on the accurate computa-
tional prediction of peptide-MHC affinity.  
 We review a variety of human and mouse class I and class II allele models. Studied alleles 
comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-
A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-Kk, 
H2-Kb, and H2-Db HLA-DRB1*0101, HLA-DRB1*0401, and HLA-DRB1*0701, I-Ab,  
I-Ad, I-Ak, I-As, I-Ed, and I-Ek.  
 In terms of reliability the resulting models represent an advance on existing methods. 
The peptides used in this study are available from the AntiJen database (http://www.jenner. 
ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular 
modeling software package. The resulting models, which can be used for accurate T-cell 
epitope prediction, are freely available online at: http://www.jenner.ac.uk/ MHCPred. 
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4.1 Introduction 

Quantitative Structure-Activity Relationship (QSAR) analysis, as a predictive tool of 
wide applicability, is one of the main cornerstones of modern cheminformatics and, 
increasingly, bioinformatics. Immunoinformatics, a newly emergent subdiscipline of 
bioinformatics, which addresses informatic problems within immunology, uses 
QSAR technology to tackle the crucial issue of epitope prediction. As high-
throughput biology reveals the genomic sequences of pathogenic bacteria, viruses, 
and parasites, such prediction will become increasingly important in the post-
genomic discovery of novel vaccines, reagents, and diagnostics. In order to better 
understand the sequence dependence of peptide-MHC (Major Histocompatibility 
Complex) binding of the mouse MHC, we have now used our approach to explore 
the amino acid preferences of various human and mouse alleles. 
 The products of MHC play a fundamental role in regulating immune responses. 
T cells recognize peptide fragments complexed with MHC molecules as antigens, a 
process requiring antigen degradation through complex proteolytic digestion prior 
to complexation. The biological role of MHC proteins is thus to bind peptides and 
“present” these at the cell surface for inspection by T-cell antigen receptors 
(TCRs). The MHC genes are grouped into two classes on the basis of their chemi-
cal structure and biological properties. The two types of MHC protein have related 
secondary and tertiary structure but with important functional differences. Class I 
molecules are composed of a heavy chain complexed to β2-microglobulin, while 
class II molecules consist of two chains (α and β) of similar size. Both classes of 
MHC molecule have similar 3D structures composed of two domains. The MHC 
peptide-binding site consists of a β-sheet, forming the base, flanked by two  
α-helices, which together form a narrow cleft or groove accommodating bound 
peptides. The principal differences between the two classes are the dimensions of 
the peptide-binding groove, which is constrained to bind 8- to 11-amino acid pep-
tides in class I, but is open at both ends in class II, allowing much larger peptides 
of varying length to be bound.  
 Class II MHC molecules are non-covalently bonded heterodimers, called HLA-
DP, HLA-DQ, and HLA-DR in humans and I-A and I-E in mice. Peptides binding to 
class II MHC molecules are usually 10-25 residues long, with lengths of 13-16 
amino acids being the most frequently observed (Rudensky, Preston-Hurlburt, Hong, 
Buus, and Tschinke 1991; Hunt, Michel, Dickinson, Shabanowitz, Cox, Sakaguchi, 
and Appella 1992; Chicz, Urban, Lane, Gorga, Stern, Vignali, and Strominger 1992; 
Chicz, Urban, Gorga, Vignali, Lane, and Strominger 1993). From X-ray crystallo-
graphic data of MHC class II and TCR-peptide-MHC class II complexes (Dessen, 
Lawrence, Cupo, Zaller, and Wiley 1997; Hennecke and Wiley 2002), it is clear that 
9 amino acids are bound in an extended conformation within the class II binding site. 
They are not anchored at their amino and carboxyl termini, but stretch along the 
binding groove, with residues accommodated by binding pockets along the cleft. 
Previous interpretations, reported in the literature, suggest that class II peptides have 
a small number of anchor residues upon which binding depends. These anchors are 
residues of an appropriate type, which must sit at particular spacings along the pep-
tide in order for allele-restricted binding to occur; residues at other peptide positions 
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are less constrained. The side chain at peptide position P1 binds into a deep pocket 
while four shallow pockets bind side chains at peptide positions 4, 6, 7, and 9. The 
side chains at positions 2, 3, 5, and 8 point toward the T-cell receptor. 
 We have recently developed an immunoinformatic technique for the prediction of 
peptide-MHC affinities, known as the Additive Method, a 2D-QSAR technique 
which is based on the Free-Wilson principle (Kubinyi and Kehrhahn 1976), whereby 
the presence or absence of groups is correlated with biological activity. For a pep-
tide, the binding affinity is thus represented as the sum of amino acid contributions at 
each position. We have extended the classical Free-Wilson model with terms which 
account for interactions between amino acid side chains. An Iterative Self-Consistent 
(ISC) Partial Least Squares (PLS)-based extension (Doytchinova and Flower 2003) 
of the Additive Method (Doytchinova, Blythe, and Flower 2002c; Guan, Doytchinova, 
Zygouri, and Flower 2003a) has also been developed for prediction of class II pep-
tide-binding affinity and applied to human class II alleles. We now address binding 
to class II human and mouse alleles for peptides of up to 25 amino acids in length. 
The ISC additive method assumes that the binding affinity of a large peptide is prin-
cipally derived from the interaction, with an MHC molecule, of a continuous subse-
quence of amino acids within it. The ISC is able to factor out the contribution of 
individual amino acids within the subsequence, which is initially identified in an 
iterative manner. Using literature data, we have applied the Additive Method to 
peptides binding to several human class I (Doytchinova et al. 2002c; Guan et al. 
2003a; Hattotuwagama, Guan, Doytchinova, Zygouri, and Flower 2004) and class II 
alleles (Doytchinova and Flower 2003). 
 Three-dimensional QSARs are a technique of significant value in identifying 
correlations between ligand structure and binding affinity. This value is often en-
hanced greatly when analysed in the context of high-resolution ligand-receptor struc-
tures. In such cases, enthalpic changes – van der Waals and electrostatic interactions 
– and entropic changes – conformational and solvent-mediated interactions – in 
ligand binding can be compared with structural changes in both ligand and macro-
molecule, providing insight into the binding mechanism (Klebe, Abraham, and 

ham 1999). Although there are many molecular descrip-
tors that account for free energy changes, 3D-QSAR techniques which use 
multivariate statistics to relate molecular descriptors in the space around the ligands, 
to binding affinities, have become preeminent because of their robustness and inter-
pretability (Bohm, Sturzebecher, and Klebe 1999). In the case of CoMSIA (Compara-
tive Molecular Similarity Index Analysis), a Gaussian-type functional form is used 
so that no arbitrary definition of cutoff threshold is required and interactions can be 
calculated at all grid points. The obtained values are evaluated using PLS analysis 
(Stahle and Wold 1988). CoMSIA allows each physicochemical descriptor to be 
visualized in 3D using a map, which denotes binding positions that are either  
“favored” or “disfavored”. 

Recently, CoMSIA has been used to produce predictive models for peptide bind-
ing to human MHCs: HLA-A*0201 (Doytchinova and Flower 2002a) and the HLA-
A2 and HLA-A3 supertypes (Doytchinova and Flower 2002b; Guan, Doytchinova, 
and Flower 2003b). We show how CoMSIA has been applied to certain class I MHC 
alleles. These models were used both to evaluate physicochemical requirements for 

Mietzner 1994; Klebe and Abra
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binding, and to explore and define preferred amino acids within each pocket. The 
explanatory power of such a 3D-QSAR method is considerable, not only in its direct 
prediction accuracy but also in its ability to map advantageous and disadvantageous 
interaction potentials onto the structures of the peptides being studied. The data are 
highly complementary to the detailed information obtained from crystal structures of 
individual peptide-MHC complexes.  

4.2 Methodology 

4.2.1 Peptide Database  

The information and data based on the peptide sequences and their binding affinities 
were obtained from the AntiJen database, a development of JenPep (Blythe, 
Doytchinova, and Flower 2002; McSparron, Blythe, Zygouri, Doytchinova and 
Flower 2003) [URL: http://www.jenner.ac.uk/AntiJen]. Compilations of quantitative 
affinity measures for peptides binding to class I and class II MHCs were carried out 
with known binding affinities (IC50). These include human class I (HLA-A*0101, 
HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-
A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501), mouse class I 
(H2-Kk, H2-Kb, and H2-Db), human class II (HLA-DRB1*0101, HLA-DRB1*0401, 
and HLA-DRB1*0701), and mouse class II (I-Ab, I-Ad, I-Ak, I-As, I-Ed and I-Ek). For 
class I, only nonameric peptides were included, with the exception of H2-Kb and  
H2-Kk, where octameric peptides were also examined. For each set of class II alleles, 
peptide lengths of 10 to 25 were obtained from the AntiJen database. Several QSAR 
methodologies have been applied to both the class I and class II alleles and their 
procedures are described as follows. All QSAR and molecular modeling calculations 
were carried out on a Silicon Graphics octane workstation using the SYBYL 6.9 
molecular modeling package (Tripos Inc., USA). 

4.2.2 Additive Method – Class I and Class II Alleles 

Extracted IC50 values were first converted to log[1/IC50] values (or -log10[IC50] 
or pIC50) and used as the dependent variables in a QSAR regression. pIC50 can be 
related to changes in the free energy of binding: ΔGbind = - RT ln IC50. The 
values were predicted from a combination of the contributions (p) of individual 
amino acids at each position of the peptide and used as the dependent variables 
in a QSAR. The binding affinities were originally assessed by a competition 
assay based on the inhibition of binding of the radiolabeled standard peptide to 
detergent-solubilized MHC molecule (Ruppert, Sidney, Celis, Kubo, Grey, and 
Sette 1993; Sette, Sidney, del Guercio, Southwood, Ruppert, Dalberg, Grey, and 
Kubo 1994a). 

We developed a program to transform the nine-amino-acid (aa) peptide  
sequences into a matrix with elements 1 and 0. An element is 1 when a certain 
amino acid at a certain position or a certain interaction between two side chains 
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exists and 0 when they are absent. For example, 180 columns account for the 
amino acid contributions (20 aa × 9 positions) while 3200 columns account for the 
adjacent side chains, or 1-2 interactions (20 × 20 × 8). As these two models were 
roughly equivalent in terms of statistical quality, we applied the principle of  
Occam’s razor and selected the simplest case, with the amino acids only model, for 
discussion in this study. 

The matrix was assessed using PLS (Sette et al. 1994a), an extension of Multiple 
Linear Regression (MLR). The method works by producing an equation or QSAR, 
which relates one or more dependent variables to the values of descriptors and uses 
them as predictors of the dependent variables (or biological activity) (Wold 1995). 
The IC50 values (the dependent variable y) were represented as negative logarithms 
(pIC50). The predictive ability of the model was validated using “Leave-One-Out” 
Cross-Validation (LOO-CV) method. 

4.2.3 Cross-Validation Using the “Leave-One-Out” (LOO-CV) Method 

Cross-Validation (CV) is a reliable technique for testing the predictivity of models. 
With QSAR analysis in general and PLS methods in particular, CV is a standard 
approach to validation. CV works by dividing the dataset into a set of groups, devel-
oping several parallel models from the reduced data with one or more of the groups 
excluded, and then predicting the activities of the excluded peptides. When the num-
ber of excluded groups is the same as the number in the set, the technique is called 
Leave-One-Out Cross-Validation (LOO-CV). The predictive power of the model is 
assessed using the following parameters: cross-validated coefficient (q2) and the 
Standard Error of Prediction (SEP), which are defined in Eqs. (1) and (2). 
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where pIC50 (pred) is a predicted value, pIC50 (exp) is an actual or experimental value, 
and the summations are over the same set of pIC50 values. PRESS is the PRedictive 
Error Sum of Squares and SSQ is the Sum of Squares of pIC50 (exp) corrected for the 
mean. 
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where p is the number of the peptides omitted from the dataset. The optimal number 
of components (NC) resulting from the LOO-CV is then used in the non-cross-
validated model which was assessed using standard MLR validation terms, explained 
by variance r2 and Standard Error of Estimate (SEE), defined in Eqs. (3) and (4). 
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        (3) 

     (4) 

 
where n is the number of peptides and c is the number of components. In the present 
case, a component in PLS is an independent trend relating measured biological activ-
ity to the underlying pattern of amino acids within a set of peptide sequences. In-
creasing the number of components improves the fit between target and explanatory 
properties; the optimal number of components corresponds to the best q2. Both SEP 
and SEE are standard errors of prediction or estimation and assess the distribution 

4.2.4 Iterative Self-Consistent Algorithm – Class II Alleles 

An ISC-PLS-based additive method was applied to the set of class II alleles. The ISC 
PLS-based algorithm (Doytchinova and Flower 2003) works by generating a set of 
nonameric subsequences extracted from the parent peptide. Values for pIC50 corre-
sponding to this set of peptides were predicted using PLS and compared to the ex-
perimental pIC50 value for each parent peptide. The best predicted nonamer was 
selected for each peptide, i.e., those with the lowest residual between the experimen-
tal and predicted pIC50. LOO-CV was then employed to extract the optimal number 
of components, which was then used to generate the non-cross-validated model. 
Each new model is built from the chosen set of optimally scored nonamers. The 
method works by comparing the new set of peptide sequences with the old set and if 
the new set is different, the next iteration is begun. The process is repeated until the 
set of extracted nonameric peptide sequences identified by the procedure have con-
verged. The resulting coefficients of the final non-cross-validated model describe the 
quantitative contributions of each amino acid at each of the nine positions. An exam-
ple coefficient matrix for the I-Ab allele is shown in Table 1. 

4.2.5 Comparative Molecular Similarity Index Analysis (CoMSIA) 

4.2.5.1 Molecular Modeling 

Wherever possible an X-ray crystallographic structure for the nonameric/octameric 
peptide binding to the various class I alleles was chosen as a starting conformation. 
Using the crystallographic peptide as a template, all the studied peptides were built, 
and then subjected to an initial geometry optimization using the Tripos molecular 
force field and charges derived using the MOPAC AM1 Hamiltonian semiempirical 
method (Dewar, Zoebisch, Healy, and Stewart 1985). Molecular alignment was 
based on the backbone atoms of the peptides, which was defined as an aggregate 
during optimization. 
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Table 1. Additive model* for the binding affinity prediction to the I-Ab allele.  

 P1 P2 P3 P4 P5 P6 P7 P8 P9 
A -0.016 -0.008 0.265 -0.115 0.066 -0.442 0.050 0.447 -0.034 
C 0.000 0.083 0.037 -0.051 0.090 0.050 0.216 0.079 -0.139 
D -0.065 0.000 -0.067 0.000 0.000 0.107 -0.077 -0.041 -0.203 
E -0.028 -0.129 0.000 0.000 0.000 0.000 0.000 -0.048 0.000 
F 0.000 0.000 0.000 -0.283 0.000 0.000 0.000 0.000 0.000 
G -0.286 -0.039 0.050 -0.011 0.000 0.000 -0.003 0.000 -0.067 
H -0.003 -0.013 0.000 0.000 0.000 0.000 0.000 0.213 0.000 
I -0.043 0.090 -0.364 -0.090 0.000 -0.244 -0.351 0.000 -0.069 
K 0.094 0.000 0.000 0.000 -0.069 0.000 0.000 0.000 0.000 
L 0.000 -0.215 -0.110 0.094 -0.162 0.000 -0.003 -0.242 0.066 
M 0.008 -0.067 0.000 0.258 0.223 0.154 0.017 -0.027 0.082 
N 0.000 0.298 0.000 0.042 -0.003 -0.069 0.064 -0.097 -0.455 
P 0.100 0.000 0.032 0.090 0.030 0.201 0.080 0.000 0.280 
Q -0.013 0.000 -0.235 0.000 0.000 0.000 0.000 -0.067 -0.051 
R 0.164 -0.286 0.066 0.122 -0.233 0.120 0.213 -0.229 0.216 
S -0.051 0.090 0.161 0.036 -0.078 0.041 -0.125 0.000 0.213 
T 0.054 0.151 0.079 -0.060 0.233 0.000 -0.079 0.012 0.161 
V -0.069 -0.048 0.000 0.064 0.000 0.000 0.000 0.000 0.000 
W 0.000 0.000 -0.029 0.000 -0.097 -0.003 0.000 0.000 0.000 
Y 0.155 0.092 0.116 -0.097 0.000 0.085 0.000 0.000 0.000 

*Constant = 6.044; 0.000 represents positions where amino acids are absent. 

4.2.5.2 CoMSIA Method 

Five physicochemical descriptors (Steric, Electrostatic, Hydrophobic, Hydrogen 
Bond Donor and Acceptor) were evaluated using a probe atom placed within a 3D 
grid. The atom had a radius of 1 Å and charge, hydrophobic interaction, hydrogen 
bond donor and acceptor properties all equal to +1. The grid was extended beyond 
the molecular dimensions by 4.0 Å in the X, Y, and Z directions. The spacing be-
tween probe points within the grid was set at 2.0 Å and was increased in steps of 0.5 
Å. CoMSIA analysis for each allele was carried out using PLS (Young 2001) and 
models were then validated via the LOO-CV method as previously described. 

4.2.5.3 CoMSIA Maps 

The results of the non-cross-validated CoMSIA models were displayed as contour 
maps, with each physicochemical descriptor highlighted in different colors, reflect-
ing favorable or disfavorable changes in the peptide structure and its influence on 
MHC binding. These maps were created using the standard deviation coefficient 
option based on actual values. The CoMSIA steric bulk map is shown using green 
(more bulk is favored) and yellow (less bulk is disfavored) contours. The electro-
static potential map is shown with blue (negative potential is disfavored) and red 
(negative potential is favored) contours. CoMSIA hydrophobic interaction fields are 
colored yellow (where hydrophobic interaction enhances affinity) and white (where 
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hydrophilic interactions enhance affinity). The hydrogen-bond donor map is shown 
in cyan (donors on the ligand are preferred) and purple (donors are disfavored)  
contours. Finally, in the hydrogen-bond acceptor map favored areas are in magenta 
and disfavored in yellow. 

4.3 Results 

The Additive, ISC-PLS, and CoMSIA models were generated for 23 human and 
mouse class I and class II alleles. 

4.3.1 Additive Method – Class I Alleles 

The generated models (n=30-335), as shown in Table 2, have an acceptable level of 
predictive power: LOO-CV statistical terms, SEP and q2, ranged between 0.565 and 
0.907, and 0.317 and 0.531 respectively. The non-cross-validated statistical terms 
NC, SEE, and r2 ranged between 2 and 9, 0.085 and 0.456, and 0.731 and 0.997, 
respectively. An extended motif, as defined by the class I models, is summarized in 
Table 3. It shows anchor and nonanchor residues relating to strong and weak binding 
residues. For simplicity, the quantitative contributions of amino acids at each posi-
tion for the class I mouse alleles are shown in Fig. 1. 

Table 2. Class I Additive-PLS Method results. 

LOO Non-cross Validation  Epitope na SEPb q2 c NCd SEEe r2 
A*0101 95 0.907 0.420 4 0.146 0.997 
A*0201 335 0.694 0.377 6 0.456 0.731 
A*0202 69 0.606 0.317 9 0.193 0.943 
A*0203 62 0.841 0.327 6 0.197 0.963 
A*0206 57 0.576 0.475 6 0.085 0.989 
A*0301 72 0.680 0.436 6 0.181 0.959 
A*1101 62 0.572 0.458 2 0.321 0.829 
A*3101 30 0.710 0.482 3 0.325 0.892 
A*6801 38 0.594 0.531 4 0.175 0.959 
A*6802 46 0.647 0.500 7 0.119 0.983 

Human 

B*3501 52 0.710 0.435 6 0.118 0.984 
H2-Kk 154 0.565 0.456 6 0.198 0.933 
H2-Kb 62 0.894 0.454 6 0.128 0.989 Mouse 
H2-Db 65 0.837 0.493 5 0.268 0.948 

a Number of epitopes; b Standard Error of Prediction; c from Leave-One-Out Cross-Validation; 
d Number of components; e Standard Error of Estimate. 
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Table 3. Class I Additive-PLS Method: nonanchor residues related with strong and weak 
binding for amino acids only.  

Allele P1 P2 P3 P4 P5 P6 P7 P8 P9 
Favored binding* 
A*0101 Y T D H Y P N V AY 

A*0201 FY LM FLM 
WY T FY I HP PQ V 

A*0202 K L V M K MP FN FY LV 
A*0203 DKW LM ANSV PT LRT I QV T L 
A*0206 AK I L L L F F T V 
A*0301 G IT F RT Y G IF M K 
A*1101 S V M N V S F L K 
A*3101 M L G P R R P E R 
A*6801 Q A F F M L A L R 
A*6802 F V IM CG P I PV R V 
B*3501 F P I H T F L AK M 
H2-Db AQF QS ILP CT N Q DE Y L 
H2-Kb KS GISY RFY A F AG GPQ V  

H2-Kk F ADEP 
GLSTV L P P F RLFW ANILM 

FSTWV 
 

Disfavored binding* 
A*0101 F N K G D K A E D 
A*0201 T T CEHS AFI R R GNQ DI S 
A*0202 GI AV C N N QS ST DE AR 
A*0203 DLR TV DFM ADLN SW D FLT DLQ A 
A*0206 G M N E PY P V R A 
A*0301 L N L E S K H E AQ 
A*1101 L L A C R R L A Y 
A*3101 Q A F T S F A R K 
A*6801 A N G V V G R S Y 
A*6802 K M STV S V G FQ D L 
B*3501 T A QK S E V QS T TW 
H2-Db LV E GS AIF G P GIMV CG Y 
H2-Kb DLY DQL EHS GI LS FSV IFY M  

H2-Kk A NHIK 
FWY KS S K G DK RDYQ 

GHKP  

* A cut-off value of > +/- 0.3 is applied, with residues outside the limit in italics. 
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(Continued)Fig. 1. 



In Silico QSAR-Based Predictions of MHC Epitopes 73
 

 
(Continued)Fig. 1. 
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Fig. 1. Relative contributions of positionwise amino acids at each binding position 1 to 9 for 
the H2-Db(black bars), H2-Kb (white bars) and H2-Kk (striped bars) alleles. The contribution 
made by different individual amino acids at each position of the 9mer H2-Db, H2-Kb and  
H2-Kk binding peptide. The contribution is equivalent to a positionwise amino acid regression 
coefficient obtained by PLS regression (as described in the text). 

4.3.2 Iterative Self-Consistent (ISC) Algorithm – Class II Alleles 

The generated models (n=44-185), as shown in Table 4, have an acceptable level of 
predictivity: LOO-CV statistical terms, SEP and q2, ranged between 0.418 and 0.816 
and 0.649 and 0.925, respectively. The non-cross-validated statistical terms NC, 
SEE, and r2 ranged between 4 and 8, 0.051 and 0.180, and 0.967-0.999, respectively. 
Convergence ranged between the 4th and 17th iteration. An extended motif, as defined 
by the class I models, is summarized in Table 5 showing anchor and nonanchor resi-
dues related to strong and weak binding residues. 
 
 
 

 
 
 



In Silico QSAR-Based Predictions of MHC Epitopes 75
 
Table 4. Class II ISC Method results. 

LOO Non-cross Validation  Epitope na No. of 
iterations SEPb q2 c NCd SEEe r2 

DRB1*0101 90 13 0.567 0.808 8 0.075 0.994 
DRB1*0401 185 7 0.701 0.716 4 0.174 0.967 Human 
DRB1*0701 84 11 0.562 0.649 7 0.051 0.999 

I-Ab 44 7 0.459 0.850 6 0.089 0.994 
I-Ad 145 14 0.534 0.898 6 0.136 0.993 
I-Ak 55 4 0.816 0.790 6 0.180 0.990 
I-As 81 17 0.588 0.783 6 0.177 0.980 
I-Ed 69 8 0.557 0.732 6 0.096 0.992 

Mouse 

I-Ek 52 8 0.418 0.925 6 0.106 0.995 
a Number of epitopes; b Standard Error of Prediction; c Obtained after Leave-One-Out Cross-
Validation; d Number of components; e Standard Error of Estimate. 

Table 5. Class II ISC-Additive Method: nonanchor residues related with strong and  
weak binding for amino acids only.  

Allele P1 P2 P3 P4 P5 P6 P7 P8 P9 
Favored binding* 
DRB1*0101 YF IY T P L A N P S 
DRB1*0401 VW VY L A A S PV L N 
DRB1*0701 Y P V L T A V N SV 

I-Ab P K A L LT M R A M 

I-Ad CTW AGM T CMSW QLV L AIY GIL AC 
FT 

I-Ak T T G C GS F EY Q C 
I-As F C NL F A I I G H 
I-Ed M Q W W S A W R C 
I-Ek I A Y R R Q L T A 

         
Disfavored binding* 
DRB1*0101 F N K G D K A E D 
DRB1*0401 T T CEHS AFI R R GNQ DI S 
DRB1*0701 GI AV C N N QS ST DE AR 

I-Ab DLR TV DFM ADLN SW D FLT DLQ A 
I-Ad G M N E PY P V R A 
I-Ak L N L E S K H E AQ 
I-As L L A C R R L A Y 
I-Ed Q A F T S F A R K 
I-Ek A N G V V G R S Y 

* A cut-off value of > +/- 0.4 is applied to favored and disfavored binding amino acids, with 
residues outside the limit in italics. 
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4.3.3 Comparative Molecular Similarity Index Analysis (CoMSIA) 

For each of the 12 alleles, all peptides were built and aligned in three dimensions 
(Fig. 2), their geometry was optimized, and AM1 (Dewar et al. 1985) calculations 
performed within SYBYL 6.9. The peptides were placed within individual 3D grids 
(Fig. 3). The final settings for the three models are shown in Table 6. The generated 
models (n=30-236) have an acceptable level of predictivity: LOO-CV statistical 
terms, SEP and q2, ranged between 0.443 and 0.889 and 0.385 and 0.700, respec-
tively. The non-cross-validated statistical terms NC, SEE, and r2 ranged between 4 
and 12, 0.071 and 0.411, and 0.867 and 0.991, respectively. 
 To generate CoMSIA coefficient contour maps for each allele, which describes 
the relationship between the binding affinity and each physicochemical descriptor, 
three non-cross-validated “all fields” models were created based on the five phys-
icochemical descriptors (steric, electrostatic, hydrophobic, hydrogen bond donor 
and acceptor). The descriptors involved in the interaction between the peptide and 
the MHC molecules are presented in the coefficient contour maps as shown in  
Fig. 4 for the H2-Db

 allele. For simplicity, the interaction between only one peptide 
and its respective contour map is shown with the N-terminus to the left and the  
C-terminus to the right. Table 7 shows a summary of the position specificities 
between the physicochemical descriptors and peptide positions for the A2 super-
motif and class I mouse alleles.  
 

 

Fig. 2. Superimposed alignment of peptide molecules for the H2-D

b

 allele.   
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Fig. 3. Superimposed H2-Db peptide molecules placed within 3D grid lattice.  

Table 6. Class I Additive-PLS Method results for CoMSIA method. 

a Number of epitopes; b Standard Error of Prediction; c Obtained after Leave-One-Out Cross-
Validation; d Number of components; e Standard Error of Estimate; f Grid steps of 0.5Å. 
 

 

LOO Non-cross Validation Grid dimensions (Å)   
Epitope 

 
n SEP q2 NC SEE r2 Size Spacing 

A*0201 236 0.443 0.683 7 0.260 0.891 22x15x15 2.0 
A*0202 63 0.509 0.534 8 0.190 0.935 22x15x15 3.0 
A*0203 60 0.595 0.621 6 0.179 0.966 22x15x15 3.0 
A*0206 54 0.505 0.523 12 0.071 0.991 22x15x15 2.0 
A*0301 69 0.629 0.486 6 0.177 0.959 22x15x15 2.0 
A*1101 59 0.588 0.496 8 0.141 0.972 22x15x15 2.0 
A*3101 30 0.551 0.700 4 0.282 0.921 22x15x15 1.5 
A*6801 39 0.674 0.430 5 0.119 0.950 22x15x15 2.0 

H
um

an
 

A*6802 45 0.652 0.385 4 0.197 0.944 22x15x15 2.0 
H2-Kk 154 0.525 0.611 6 0.248 0.913 18x13x12 2.0 
H2-Kb 62 0.889 0.490 6 0.244 0.962 19x13x11 2.0 

M
ou

se

H2-Db 65 0.783 0.518 4 0.411 0.867 18x14x11 2.0 
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Table 7. Summary of CoMSIA position specificities* for the A2 supermotif (Doytchinova  
et al. 2002b) (Class I HLA-A*0201A*0202A*0203A*0206 and A*6802) and Class I Mouse 
(H2-Kb, H2-Kk and H2-Db).  

Position of side 
chain 

Steric  
bulk 

Electron  
density 

Hydrop-
hobicity 

H-Bond 
donor 

H-Bond 
acceptor 

A2 Supermotif (Class I HLA-A*0201A*0202A*0203A*0206 and A*6802) 

P1: pocket A  F - Aromatic amino 
acids preferred. F   

P2: pocket B F  F  D 
P3: pocket D    D D 

P4: exposed to 
solvent and T-cell D D - Aliphatic amino 

acids preferred.  F  

P5  D - Aliphatic amino 
acids preferred.    

P6: pocket C F  F  D 

P7: pocket E D. D - Aliphatic amino 
acids preferred.   D 

P8: exposed to 
solvent and T-cell D D - Aliphatic amino 

acids preferred. D F F 

P9: pocket F F  F   
Class I mouse (H2-Kb, H2-Kk and H2-Db). 

P1: pocket A F D D F F 
P2: pocket B D D F  F 
P3: pocket D F  F F  

P4: exposed to 
solvent and T-cell   D F F 

P5   F  F 
P6: pocket C F     
P7: pocket E  D D   

P8: exposed to 
solvent and T-cell F F F F F 

P9: pocket F      
* F, favored; D, disfavored. 

4.4 Discussion 

Herein we report the development of quantitative, systematic models, based on lit-
erature IC50 values, for human class I (HLA-A*0101, HLA-A*0201, HLA-A*0202, 
HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-
A*6801, HLA-A*6802, HLA-B*3501), mouse class I (H2-Kk, H2-Kb, and H2-Db), 
human class II (HLA-DRB1*0101, HLA-DRB1*0401, and HLA-DRB1*0701), and 
mouse class II (I-Ab, I-Ad, I-Ak, I-As, I-Ed, and I-Ek). 
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Fig. 4. H2-Db allele: Steric bulk maps (A), electrostatic potentials maps (B), hydrophobic 
interaction maps (C), H-bond donor maps (D), H-bond acceptor maps (E). (A color version 

4.4.1 Additive Method – Class I Alleles 

The 2D-QSAR additive method has been applied to the peptide binding specificities 
of the A3 superfamily human class I alleles: A*1101, A*0301, A*3101, and 
A*6801. Sequence analysis showed that only 11 of the residues inside the binding 
pockets are polymorphic. A good, if incomplete, consensus was found in the prefer-
ences at the primary anchor positions 2 and 9. Thr and short hydrophobic residues 
such as Ala and Ile were favored at P2 and nearly all the peptides bound to A3 alleles 
had positively charged residues Arg or Lys at the C-terminus. The amino acids in-
volved in peptide binding are similar in HLA-A2 and the A3 family. Pocket B inter-
acts with the side chain of the residue at position 2, which was one of the anchor 
positions in nearly all the MHC class I alleles. Most of the amino acids in pocket B 
are conserved in the A2 and A3 families; both families accept hydrophobic residues. 
The amino acid at sequence position 9 of the MHC protein is important in peptide 
binding in the two families. Alleles (A*3101, A*0301, and A*0201) with small to 
medium-sized residues (Phe9 or Thr9) were able to accept residues with long side 
chains such as Leu. On the other hand, only small residues such as Ala and Val could 
bind to A*6801, A*1101, and A*0206, all of which had the larger residue Tyr9. The 

  

of this figure appears between pages 76 and 77.)
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five residues that directly interacted with the peptide in the F pocket are identical in 
both the A3 family and HLA-B27 (Leu81, Asp116, Tyr123, Thr143, and Trp147). 
Arg and Lys bound to pocket F and interacted with negatively charged residues 
Asp116 or Asp77 in both the A3 family and HLA-B27. B27 had been shown to 
accept hydrophobic residues such as Leu, Ala, and Tyr because of their interaction 
with Leu81, Tyr123, Thr143, and Trp147 in the binding pocket (Jardetzky, Lane, 
Robinson, Madden, and Wiley 1991). In the present study, the specificity at position 
9 was restricted to Arg and Lys only; both Ala and Tyr had deleterious effects on 
peptide binding. This suggests a possible difference in the conformation of the bind-
ing pocket in spite of sequence similarity. Also, this may be the result of a change in 
conformation after the binding of other amino acids in the peptide. A peptide-binding 
motif for the HLA-A3 superfamily has been defined previously (Sidney, Grey, 
Southwood, Celis, Wentworth, del Guercol, Kubo, Chestnut, and Sette 1996;  
Rammensee, Friede, and Stevanovic 1995). Some useful similarities can be found on 
comparing the present motif with those defined by the above two groups. The amino 
acid preferences for the primary anchor residues are similar. All the motifs show 
preference for Arg and Lys at position 9 and have a preference for various hydro-
phobic residues at position 2, such as Ile and Thr. The preferences for secondary 
anchor residue positions 3 and 7 in the three motifs are hydrophobic amino acids 
such as Phe. 

The amino acid contributions to the affinity of peptides binding to the A2 family: 
A*0201, A*0202, A*0203, A*0206, and A*6802 alleles using the Additive-PLS 
Method have also been analysed quantitatively. Certain discrepancies between 
A*6802 and A*02 molecules concerning the amino acid preferences at P1–P9 were 
seen in the present study. These discrepancies throw doubt on whether the A*6802 
allele belongs to the A2 supertype. The sequence comparison showed that there are 
only one or two differences in the residues forming the six pockets of A*0201, 
A*0202, A*0203, and A*0206 molecules. The number of these differences between 
A*6802 and A*02 molecules is seven residues. Five of them concern pockets A, B, 
and C and are so substantial that they alter the amino acid preferences at the primary 
anchor P2 and the secondary anchors P1 and P6. The preferred Val and Thr for P2 
brings the A*6802 allele closer to the A3 supertype (Sidney et al. 1996) rather than 
to the A2 one. But the A3 supermotif requires positively charged residues, such as 
Arg and Lys, at the C-terminus (Sidney et al. 1996), which is not true in the case of 
A*6802. Obviously, A*6802 is an intermediate allele standing between A2 and A3 
supertypes: in anchor position 2 it is closer to A3 and in anchor position 9 it is nearer 
to A2. Residues identified as preferred for two or more A*02 molecules, without 
being deleterious for any molecule, are considered as preferred. Residues identified 
as deleterious for two or more molecules are considered as deleterious in the com-
mon motif. The expansion concerns all positions and especially the anchor P2.  

The Additive-PLS results for the mouse alleles are in good agreement with pre-
vious studies of the preferred primary anchor positions: 5 and 9 (nonamers); 2, 5, and 
8 (octamers – H2-Kk and H2-Kb, respectively). All three models also agree with 
previous analyses of the preferred residue type at the anchor positions. For H2-Db: 
Asn at position 5 and Leu at position 9; for H2-Kb: Phe at position 5 and Val at  
position 8; and for H2-Kk: Glu, Pro, Gly (best three favored residues) at position 2 
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and Ile, Val, Phe (best three favored residues) at position 8. The nonameric and  
octameric alleles show both similarities and differences in amino acids preferred at 
various binding positions. Preferences for primary anchors show certain similarities: 
all models exhibit some preference for small amino acids (H2-Db (Asn), H2-Kb 
(Val). and H2-Kk (Pro, Ala)), while C-terminal amino acids are strongly hydropho-
bic: H2-Db (Leu), H2-Kb (Val), and H2-Kk (Ile, Val). The most noticeable difference 
between the nonameric and octameric alleles is at position 5, where H2-Db exhibits a 
preference for polar Asn, while H2-Kb shows a preference for Phe (aromatic hydro-
phobic residue) and H2-Kk for Pro (small amino acid residue). 

As well as refining and confirming our understanding of sequence dependence at 
anchor positions, our results throw new light on all other positions within the  
peptide. Although this study supports the importance of both primary and secondary 
anchor residues, it is clear that other positions also play a key role in peptide-binding 
(Hudrisier, Mazarguil, Laval, Oldstone, and Gairin 1996). Table 3 shows a summary 
of residues associated with both favored and disfavored binding to all three alleles. 
Looking at Table 3, for weak binding peptides, hydrophobic residues are present at 
position 1 (Phe) and position 3 (Leu, Ile, Tyr, Phe) in abundance, and there is a prob-
able electrostatic repulsion of both negatively charged polar side chains (Asp and 
Glu) and positively charged polar side chains (Lys, Arg, and His).  

Each class I mouse MHC allele binds a mixture of structurally diverse peptides, 
typically 8-10 amino acids in length, with each allele exhibiting defined peptide 
specificity. From our work (Doytchinova and Flower 2002a; Doytchinova and 
Flower 2002b; Doytchinova et al. 2002c; Doytchinova and Flower 2003; Guan et al. 
2003a; Guan et al. 2003b; Hattotuwagama et al. 2004), previous peptide binding 
experiments, and X-ray crystallographic studies of human class I MHC molecules, it 
is clear that the molecule binds short peptides, most of which are nonamers  
(Bjorkman, Saper, Samraoui, Bennett, Strominger, and Wiley 1987). Topologically  
position 1 corresponds to pocket A of the cleft of the peptide-binding site on  
HLA-A*0201 (Saper, Bjorkman, and Wiley 1991). Anchor residues at position 2 and 
at the C-terminus (position 9) are seen to be of primary importance for binding, 
where pocket B interacts with the side chain of the residue at position 2. The struc-
ture of pocket A is mainly polar residues and consists of a network of hydrogen 
bonding residues. A hydrophobic ridge cuts through the binding cleft forcing the 
peptide to arch between position 5 and the carboxyl-terminal residue (position 9) 
which are anchored into the D and F pockets in the floor of the cleft (Fremont,  
Matsumura, Stura, Peterson, and Wilson 1992). Equivalent data for mice show clear 
differences and significant similarities. The crystal structure of several mouse class I 
molecules has revealed that the peptide binding cleft is also closed at both ends, that 
the length of the cleft is similar for all class I molecules (Fremont, Stura, Matsumara, 
Peterson, and Wilson 1995; Zhang, Young, Imarai, Nathenson, and Sacchettini 1992; 
Young, Zhang, Sacchettini, and Nathenson 1994; Smith, Reid, Harlos, McMichael, 
Stuart, Bell, and Jones 1996a; Smith, Reid, Stuart, McMichael, Jones, and Bell 
1996b), and that the carboxyl-terminal peptide position is an anchor residue deeply 
buried in the F pocket. Analysis of the structure and binding results of the H2-Kb and 
H2-Kk octameric complex reveals that there is a strong preference for an aromatic 
and hydrophobic residues Tyr and Phe (H2-Kb) and Leu (H2-Kk) at positions 3 and 5 
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and for a strong hydrophobic residue Val (H2-Kb) and Ile, Val, and Phe (H2-Kk) at 
position 8, which is in accordance with the studies of Falk (Falk, Rötzschke,  
Stevanovic, Jung, and Rammensee 1991). It is found that in H2-Kb the B pocket is 
large enough to accommodate a bulky Ile residue at position 2, which is in accor-
dance with the crystal structure of the antigenic peptide from the ovalbumin complex 
OVA-8 (SIINFEKL). In H2-Kb and H2-Kk alleles, the results showed that Tyr, Phe, 
and Leu are all favored in position 3 (Fremont et al. 1992), which is situated in part 
of pocket D and would significantly deepen the depth and volume of the D pocket 
and is complementary to the pocket. The anchor carboxyl-terminal (position 8) pre-
fers hydrophobic residues, which fall into pocket F. Such results show that the pep-
tide binding cleft is closed at both ends, that the cleft has the same length in all class 
I molecules, that the carboxyl-terminal peptide position is deeply buried in the F 
pocket, and that there is little restriction on amino acids bound by pocket A 
(Doytchinova et al. 2002c; Doytchinova and Flower 2003; Guan et al. 2003a;  
Hattotuwagama et al. 2004; Saper et al. 1991). Our study has identified favored and 
disfavored regions which are consistent with both the properties of peptide positions 
and those of pockets, designated by A to F, within the MHC binding groove. It is 
well known that each class I mouse MHC allele binds a mixture of structurally di-
verse peptides, typically 8-10 amino acids in length, and that each allele possesses 
defined peptide specificity. The crystal structure of several mouse class I molecules 
(Fremont et al. 1995; Zhang et al. 1992; Young et al. 1994; Smith et al. 1996a; Smith 
et al. 1996b) has helped to rationalize observed peptide binding.  

4.4.2 Comparative Molecular Similarity Index Analysis (CoMSIA) 

The motif of HLA-A3 superfamily includes main anchor positions 2 and 9 (Zhang, 
Gavioli, Klein, and Masucci 1993). Peptides bound to members of the A3 family 
usually had a positively charged residue—arginine or lysine—at the C-terminus, and 
a variety of hydrophobic residues at position 2. It was found that steric bulk was 
favored at position 2 for A*0301 and A*3101 but disfavored in A*1101 and A*6801 
models. The study of crystal structures of MHC molecules showed that the residue at 
peptide position 2 bound in pocket B (Saper et al. 1991; Madden, Gorga, Strominger, 
and Wiley 1991). There are different residues lining pocket B in the different MHC-
A3 molecules: Tyr9 in A*1101 and A*6801, Phe9 in A*0301, and Thr9 A*3101 
(Schönbach, Koh, Sheng, Wong, and Brusic 2000). This means more space in pocket 
B for A*0301 and A*3101, allowing them to accommodate larger side chains. Elec-
trostatic potential, hydrophobicity, and hydrogen bond acceptance maps were very 
varied at this position. This was in good agreement with the broad spectrum of amino 
acids observed at this position, from the bulky hydrophobic Leu to the small polar 
Thr. The most important property for the amino acid at position 9 was hydrogen-
bond donor ability. It was favored by A*6801 and A*3101, and was disfavoured by 
A*1101. For A*0301 were found areas of favored and disfavored hydrogen bond 
donor groups at this position. In some cases, the change of Lys to the larger residue 
Arg could affect the expression of the molecule (Zhang et al. 1993). Results from the 
present study suggested the interaction between the residue at peptide position 9 and 
the MHC molecule may play an important role. The side chain of larger basic residue 
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Arg could extend to the bottom of pocket F of A*6801 and A*3101, forming  
complex stabilizing hydrogen bonds with residues at the bottom of the pocket. 
Among the secondary anchors, positions 1, 3, 5, 6, and 7 were of great importance. 
The common favored property for position 1 was hydrogen-bond donor/acceptor 
ability. Hydrogen-bond donor groups with negative electrostatic potential were pre-
ferred at position 3 for three of the alleles. Sidney and co-workers (Sidney et al. 
1996) found that peptides with an aromatic residue, like Tyr, Phe, and Trp, had a 31-
fold increase in binding affinity to A*0301. Bulky side chains with negative electro-
static potential were preferred at position 5. Hydrogen-bond donors and acceptors 
were disfavored here. Hydrophilic amino acids capable of forming hydrogen bonds 
were well accommodated at position 6. The only common favored property for posi-
tion 7 was hydrophobicity. Positions 4 and 8 face the T-cell receptor (Silver, Guo, 
Strominger, and Wiley 1992), but can still contribute to the affinity. Hydrogen-bond 
donor ability was important for position 4. Steric bulk and negative electrostatic 
potential were favored at position 8. 
 Looking at the CoMSIA results for the mouse alleles, we see that with the H2-Db 

allele, steric bulk is favored with the side chains of positions 3 and 6 falling into 
pockets D and C, respectively. For the electrostatic potential field, the alkyl side 
chain of position 1 falls into pocket A which consists of Val and Ser residues (Saper 
et al. 1991). At position 2, where the side chain falls into pocket B, electrostatic 
potential interaction is favored (Saper et al. 1991). In the remaining positions there 
are no favorable electrostatic potential interactions. There is a strongly favored hy-
drophobic interaction at position 8 where the side chain is solvent exposed and con-
tacts the T-cell. The major favored interactions of the hydrogen bond donor fields are 
found at position 1 and across the peptide backbone between positions 3 and 4. The 
hydrogen bond acceptor map shows position 2 to be favored and, to a lesser extent, 
at positions 5 and 7. 
 For the H2-Kb allele, steric bulk is favored at positions 1, 3, 4, and 5. The side 
chain at position 1 makes a weak electrostatic interaction; while at position 2 the 
electrostatic potential map indicates that aromatic-type residues, such as Tyr or Phe, 
are well tolerated. This is in good agreement with experimental data (Ruppert et al. 
1993; Parker, Bednarek, and Coligan 1994). There is no major interaction between 
side chains at position 3 and pocket D indicated by our model, and in the remaining 
positions there are no clear favorable electrostatic interactions. The hydrophobic 
interaction field identifies a favorable interaction at positions 3 and 5. Pocket D is a 
hydrophobic cavity and amino acids such as Tyr and Ile are well tolerated here 
which would significantly deepen the depth and volume of pocket D (Fremont et al. 
1992). The major favored interactions of the hydrogen bond donor fields are found at 
positions 1, 3, and 4 (pockets A, D and the “flag” pocket, respectively) (Saper et al. 
1991), with a major disfavored interaction found at position 6 (pocket C). The  
hydrogen bond acceptor map has favoured interactions at positions 1 and 4, pocket A 
and the “flag” pocket, respectively, but major disfavored interactions between the 
side chain positions 3 and 5. 

For the H2-Kk allele, steric bulk field is favored at positions 1, 7, and 8. There is 
no favorable electrostatic interaction at position 1, while at position 2 electrostatic 
potential is favored. Position 3 falls into pocket D but makes little interaction with 
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the H2-Kk allele. In the remaining positions there seem to be no discernibly favored 
interactions. Hydrophobic interaction shows a major disfavored interaction at posi-
tion 2 covering the whole side chain. The only favored interaction in the hydrogen 
bond donor map in the H2-Kk allele lies between positions 7 and 8. The main disfa-
vored interaction is found at position 2. Within the hydrogen bond acceptor map, 
there is a strong disfavored interaction between the side chains at positions 2 and 3.  

4.4.3 Iterative Self-Consistent (ISC) Algorithm – Class II Alleles 

We have examined a recently developed bioinformatics method: the Iterative Self-
Consistent (ISC) Partial Least Squares (PLS)-based Additive Method, which was 
applied to the prediction of class II Major Histocompatibility Complex (MHC)-
peptide binding affinity. We have shown previously that ISC is a reliable, quantita-
tive method for binding affinity prediction (Doytchinova and Flower 2003) develop-
ing a series of quantitative, systematic models, based on literature IC50 values. 
 Experimental studies of T-cell epitope analogue binding and data from X-ray 
crystallography, show that peptides bind to MHC molecules through the interaction 
of side chains of certain peptide residues with pockets situated in the MHC class II 
peptide-binding site: these side-chains extend into discrete pockets within the bind-
ing groove (Hennecke and Wiley 2002; Fremont, Monnaie, Nelson, Hendrickson, 
and Unanue 1998; Corper, Stratmann, Apostolopoulos, Scott, Garcia, Kang, Wilson, 
and Teyton 2000). Peptide side chains form favorable interactions with MHC side 
chains within these pockets (Corper et al. 2000); the most critical determinant of 
binding, other than the presence of appropriate types of side chain, is their relative 
spacing. It has been suggested before that different MHC class II molecules can bind 
the same peptide in several, alternative binding registers, whereby the peptide moves 
sideways in the binding groove with side chains being bound by different pockets 
(McFarland, Sant, Lybrand, and Beeson 1999; Li, Li, Martin, and Mariuzza 2000; 
Vidal, Daniel, Vidavsky, Nelson, and Allen 2000). Reviewing this concept (Bank-
ovich, Girvin, Moesta, and Garcia 2004), identify two main alternative scenarios: 
binding of the same peptide in different registers by the same or different alleles. The 
more common second alternative is well demonstrated (Li et al. 2000; Vidal et al. 
2000) and results from minor polymorphic differences in the amino acid residue 
composition of the binding groove. In the DRB5 complex, the large P1 pocket  
accommodates Phe from the peptide and Ile occupies the shallow pocket at P4. How-
ever, in the DRB1 allele, the small pocket at P1 is occupied by Val shifting the  
peptide to the right, while Phe occupies a deeper pocket at P4. This also causes cer-
tain peptide side chains, which are orientated toward the TCR, to change (Li et al. 
2000). Unequivocal evidence supporting the former alternative is somewhat scarce: 
there are few, if any, proper examples of exactly the same peptide binding in differ-
ent registers to exactly the same MHC molecule.  
 Our results are consistent with the view that MHC binding motifs are a less-than-
adequate representation of the underlying mechanism of binding. As we have shown 
elsewhere (Doytchinova, Walshe, Jones, Gloster, Borrow, and Flower 2004; Flower 
2003), the whole of a peptide contributes to binding, albeit weighted differently at 
different positions. At least for class I, it is even possible to generate high-affinity 
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peptides without using canonical anchors, with extra affinity arising from other in-
teractions made by the rest of the peptide. This is also likely to be a feature of class II 
binding. For example, Liu, Dai, Crawford, Fruge, Marrack, and Kappler (2002) 
showed that for I-Ab it was possible for a peptide bearing alanines to bind to its four 
main pockets – which correspond to positions P1, P4, P6, and P9 and which usually 
bind larger peptide side chains – with compensatory interactions made by residues at 
other positions in order to maintain overall affinity. Our class II models suggest that 
the relative contributions, of particular residues, to binding are spread more evenly 
through the peptide than is generally supposed, rather than being concentrated solely 
in so-called anchor positions.  
 The ISC algorithm described above combines an iterative approach to selecting 
the best predicted binders with PLS, a robust multivariate statistical tool for model 
generation. The ISC method is universal in that it can be used for any peptide-protein 
binding interaction where the peptide length is unrestricted but the binding is limited 
to a fixed, if unknown, part of the peptide. Implementation of the method is straight-
forward, it is fast to use, and its interpretation is straightforward. The final models 
derived from these calculations will be included in an updated version of MHCPred 
(Doytchinova and Flower 2003; Guan et al. 2003a; Hattotuwagama et al. 2004; 
Guan, Doytchinova, and Flower 2003c; Guan, Doytchinova, Zygouri, and Flower 
2003d). 

4.5 Conclusions 

From our studies, we find that distinct MHC alleles, both class I and class II, exhibit 
different peptide specificities: peptides are bound with particular sequence patterns, 
leading to the development of so-called motifs (Takamiya, Schönbach, Nokihara,  
Yamaguchi, Ferrone, Kano, Egawa, and Takiguchi 1994). Motifs are usually expressed 
in terms of anchor residues: the presence of certain amino acids at particular positions 
that are thought to be essential for binding. Taking human class I allele HLA-B*3501 
as our example, previous studies have indicated the need for anchor residues at posi-
tions 2 (Pro) and 9 (hydrophobic or aromatic residues, such as Phe, Met, Leu, Ile, and 
especially Tyr). Primary anchor residues, although generally deemed to be necessary, 
are not sufficient for peptide binding, and secondary anchors, residues that are favor-
able, but not essential, for binding, may also be required; other positions show posi-
tional preferences for particular amino acids. Moreover, the presence of certain resi-
dues at specific positions of a peptide can have a negative effect on binding (Amaro, 
Houbiers, Drijfhout, Brandt, Schipper, Bavinck, Melief, and Kast 1995; Sidney, del 
Guercio, Southwood, Engelhard, Appella, Rammensee, Falk, Rötzschke, Takiguchi, 
and Kubo 1995; Smith et al. 1996b). Although motif methods are admirably simple – 
easy to implement either by eye or more systematically scanning protein sequences 
computationally – there remain many problems with the motif approach. 
 Although it is possible to score the relative contributions of primary and secondary 
anchors to produce a rough-and-ready measure of binding affinity (Amaro et al. 1995; 
Sette, Vitiello, Reherman, Fowler, Nayersina, Kast, Melief, Oseroff, Yuan, and Ruppert 
1994b), the most significant problem with the motif approach is that it is, fundamentally, 
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a deterministic method. A peptide is either a binder or is not a binder. A brief reading of 
the literature shows that motif matches produce many false positives, and are, in all prob-
ability, producing an equal number of false negatives. Indeed there are many examples 
where peptides without both dominant anchors still bind with high affinity. A more accu-
rate description of this phenomenon is to say that MHCs bind peptides with an equilib-
rium binding constant dependent on the nature of the bound peptide’s sequence. The 
driving forces behind this binding are precisely the same as those driving drug binding. 
Within the human population there are an enormous number of different, variant genes 
coding for MHC proteins, each exhibiting a different peptide-binding sequence selectiv-
ity. T-cell receptors, in their turn, also exhibit different affinities for pMHC. The com-
bined selectivity of both MHCs and TCRs determines the power of peptide recognition 
within the immune system and through this phenomenon the recognition of foreign 
pathogens. Experimentally, there are many ways to measure binding affinity. IC50 values 
are the most widely quoted binding affinity measures and are calculated from a competi-
tive binding assay (Ruppert et al. 1993). Once a peptide has bound to an MHC to be 
recognized by the immune system, the pMHC complex has to be recognized by one of 
the TCRs of the T-cell repertoire. It is generally accepted that a peptide binding to an 
MHC may be recognized, by a TCR, if it binds with a pIC50 greater than a value of 6.3. 
 There is some evidence suggesting that as the MHC binding affinity of a peptide 
rises, the greater is probability that it will be a T-cell epitope. The prediction, then, of 
MHC binding is both the best understood and, probably, the most discriminating step 
in the presentation-recognition pathway. A pragmatic solution to the as yet unsolved 
problem of what will be recognized by the TCR, and thus activate the T-cell, is to 
greatly reduce the number of possible epitopes using MHC binding prediction, and 
then test the remaining candidates using some measure of T-cell activation, such as 
T-cell killing or thymidine incorporation. 
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Abstract. Allergies are a growing health problem in developed and developing countries that result 
in increased healthcare expenditures. This problem is further compounded by increasing number of 
allergens found in genetically modified (GM) food and allergens found in unexpected sources 
(hidden allergens). The importance of allergies has prompted the use of new methods like 
genomics, proteomics, and microarray in understanding the nature of allergies. These methods have 
generated large amounts of data that have to be stored, retrieved, and analysed using bioinformatics 
approaches. Several specialized public databases have been created in response to increasing 
allergen data. These specialized databases integrate the various information found in general 
databases into a coherent set of data and provide bioinformatics tools suitable for further analysis. 
The resources provided by these databases have paved the way for the creation of specialized 
bioinformatics tools that allow for the prediction of allergenicity. These prediction tools are crucial 
in view of the new sources of allergens, namely, hidden allergens and potential allergens in the form 
of recombinant proteins in GM food. Here we review the bioinformatics resources and tools 
available for the study of allergenicity. 

5.1 Introduction 

Allergy is a condition where the immune system responds adversely to certain substances 
that are commonly considered harmless. In recent years, studies have indicated that 
allergy has become a serious problem in industrial nations, affecting a significant portion 
of the population (Jansen, Kardinaal, Huijbers, Vlieg-Boerstra, Martens, and Ockhuizen 
1994; Malone, Lawson, Smith, Arrighi, and Battista 1997; Larche 2000; Kanny, 
Moneret-Vautrin, Flabbee, Beaudouin, Morisset, and Thevenin 2001). In fact, allergies 
are now the most common cause of chronic illness in industrial countries (Larche 2000). 
Food allergies alone have been found to affect 2.4% (Jansen et al. 1994) and 3.24% 
(Kanny et al. 2001) of the Dutch and French populations, respectively. This has increased 



92 Lee and Brusic 
 
healthcare costs involved in the detection and treatment of allergies. Thirty-nine million 
people in the United States suffer from allergic rhinitis but only 12.3% seek medical 
attention. Nevertheless, this has led to $1.23 billion in healthcare costs (Malone et al. 
1997). The percentages of people who seek medical attention are likely to rise leading to 
even higher healthcare costs.  

The problem is further compounded by the fact that in addition to the natural 
sources of allergens like house dust mites and pollen, introduction of recombinant 
proteins made possible by molecular genetics into food, medicine, and other products 
is increasing the number of potential allergens in our environment. The allergenicity 
of these new recombinant proteins is unknown and this has made safety issues about 
products containing these proteins paramount. In addition to recombinant proteins, 
hidden allergens are also found in unexpected sources that people typically do not 
guard against. For example, milk proteins in processed food are a source of hidden 
potential allergens that most people would not suspect (Cantani 1999). 

In view of these safety concerns, both the FAO (Food and Agriculture 
Organization) and WHO (World Health Organization) have jointly produced a 
procedure for evaluating potential allergenicity for any novel protein (FAO/WHO 
2001; FAO/WHO 2003). This scheme involves the use of bioinformatics as an initial 
step to determine whether the protein in question has any allergenicity potential. This 
is accomplished by determining whether the primary sequence of the novel protein 
bears significant sequence similarity to another known allergen. The significance is 
measured as either a greater than 35% similarity over a window of 80 amino acids or 
a stretch of 6 to 8 identity amino acids to any known allergens. 

The increasing importance of allergy has also fueled extensive research in this 
field and generated large amounts of data. This has been reflected by the number of 
research articles appearing in the literature. Data contained in PubMed indicate that 
in the period from 1993 to 2003, the number of allergen articles per year has doubled 
to 1023 in the year 2003. The rapid growth of sequence information in  major public 
databases like GenBank (Benson, Karsch-Mizrachi, Lipman, Ostell and Wheeler 
2003) and Swiss-Prot (O’Donovan, Martin, Gattiker, Gasteiger, Bairoch, and 
Apweiler 2002) has also contributed significant amounts of allergen-related sequence 
information. There is also growth in the number of allergen 3D structures although 
the growth is not as spectacular as that of the sequence databases. 

Traditionally, bioinformatics applications have been used in the analysis of 
individual allergens (Izumi, Sugiyama, Matsuda, and Nakamura 1999; Mills, 
Hart, Lynch, Thomas, and Smith 1999; Ichikawa, Vailes, Pomes, and Chapman 
2001; Iyer, Koonin, and Aravind 2001). In this aspect, bioinformatics 
applications like sequence similarity searches (Mills et al. 1999; Ichikawa et al. 
2001), protein structure comparison (Iyer et al. 2001), sequence profile searches 
(Iyer et al. 2001), multiple sequence alignments (Iyer et al. 2001), secondary 
structure prediction (Izumi et al. 1999), protein sequence analysis (Izumi et al. 
1999), and homology modeling (Ichikawa et al. 2001) have greatly aided the 
study of allergens by providing further insights to  the workings of allergens. The 
applications of these methods are similar to those used in other fields and we  
will not go into details. Instead, we will discuss the various specific issues 
involved in the management of allergen data as well as some specific recent 
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implementations of allergen databases. In addition, we will also touch on one of 
the main bioinformatics applications of these data, namely, allergenicity 
prediction.  

5.2 Allergen Databases 

The primary databases like GenBank/EMBL/DDBJ (O’Donovan et al. 2002; Kulikova, 
Aldebert, Althorpe, Baker, Bates, Browne, van den Broek, Cochrane, Duggan, 
Eberhardt, Faruque, Garcia-Pastor, Harte, Kanz, Leinonen, Lin, Lombard, Lopez, 
Mancuso, McHale, Nardone, Silventoinen, Stoehr, Stoesser, Tuli, Tzouvara, Vaughan, 
Wu, Zhu, and Apweiler 2004; Miyazaki, Sugawara, Ikeo, Gojobori, and Tateno 2004), 
Swiss-Prot, Protein Data Bank (PDB) (Bourne, Addess, Bluhm, Chen, Deshpande, 
Feng, Fleri, Green, Merino-Ott, Townsend-Merino, Weissig, Westbrook, and Berman 
2004), and PubMed now provide large amounts of publicly available data of various 
types. Primary databases are the first-stop depositories for biological data and as such 
are more comprehensive and well maintained. GenBank/EMBL/DDBJ are the major 
providers of nucleotide sequences. Most nucleotide sequences described in research 
articles are required to be deposited in any one of these databases. As the data in these 
three databases are synchronized, they contain virtually the same data. In addition to 
the requirement by journals on the deposit of nucleotide sequences into these 
databases, the rapid advances in sequencing technology have tremendously increased 
the amount of information present in these databases. From 1982 to 2004, the amount 
of bases in GenBank has doubled every 14 months. This is also reflected in the 
translated protein sequences derived from the nucleotide sequences available as 
GenPept, TrEMBL, and DAD. Swiss-Prot, a primary protein sequence database, has 
experienced lower growth rates due to its manually curated nature. However, its size is 
still growing at a rapid rate. Release 52.3 (Apr 2007) contains 264,492 protein 
sequence entries. The manually curated nature of Swiss-Prot provides for quality and 
rich annotations that have made it popular for specialized allergen databases. The 
complexity involved in 3D protein structure determination means that there is far less 
3D structure information contained in PDB. However, the data contained in PDB, like 
the rest of the primary databases, is growing and this has placed more 3D structure 
information on allergens in the hands of researchers. PubMed is a large store of 
literature information. Sequence and 3D structure information are usually deposited 
into the previously mentioned primary databases, while the literature contains other 
types of data that are not found in these primary databases. Some of the information 
that is of interest in the field of allergens are cross-reactivity data, clinical relevance, 
and antigen epitopes. Together, these four types of primary databases serve as the 
primary data source for most if not all specialized allergen databases. 

5.2.1 Need for Specialized Databases 

Most specialized allergen databases derive their information from the primary 
databases and provide additional features dedicated to the allergen research 
community. Since primary databases are meant to be central depositories for 
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biological data, they do not provide specific subsets of the data. Although the search 
and retrieval tools of general databases allow to some extent the extraction of 
allergen data, it takes multiple steps and the results may contain records irrelevant for 
allergen research. For example, GenBank keyword searches are not sufficiently 
specific and result in large numbers of false positives (Malandain 2004).  

Specialized databases collect allergen-specific data from primary databases and 
validate the records to ensure they refer to genuine allergens. Some of the primary 
databases do not perform quality assurance of their data. GenBank only requires that 
submitters check their records prior to submission. This means that the data may be 
of low quality, requiring additional validation by the specialized databases. This is 
one of the reasons why manually curated databases with high-quality data, like 
Swiss-Prot, are popular with developers of specialized databases. 

Most primary databases cover only a certain type of biological data. For example, 
GenBank is focusing on nucleotide sequences. This presents a problem, as 
contemporary research is multifaceted and requires different types of biological data. 
This need is fulfilled by allergen databases that collect allergen-specific data from 
multiple sources and aggregate them for the benefit of the researcher. Thus, 
specialized allergen databases serve as a one-stop shop for researchers. 

A relatively large amount of allergen data that are required by researchers, such 
as information on epitopes, cross-reactivity, and clinical phenotypes, are only 
present in the literature. Although PubMed provides text search and retrieval 
functions, the information contained in the literature is unstructured, making 
automated extraction difficult. In addition, PubMed is limited to abstracts only. 
While PubMed may serve as an initial resource for locating allergen-related 
literature, expert annotation using full-text literature is often required to extract 
allergen-specific information. This is a time-consuming process but provides 
invaluable information that would otherwise be unavailable. 

The allergen information in the primary databases is also void of any form of 
classifications. Classifications are useful to researchers because they partition the 
data into meaningful subsets that can be independently analysed and used for 
deriving generalizations or improving database search functions. The most 
common form of allergen classification is based on the allergen source, for 
example, food allergen. 

Search tools of allergen databases should be better than the standard tools of 
primary databases. Often, allergen databases have search tools that use fields 
relevant to allergies. The adaptation of meaningful search fields and terms allows 
researchers to quickly and accurately extract the desired information. In addition, 
allergen databases integrate allergen-specific bioinformatics applications to aid 
researchers in the analysis of allergens. Often, primary databases do not provide 
ready-to-use tools but require researchers to use their own computational tools. This 
can be a lengthy process involving the creation of specific allergen datasets followed 
by the computation itself. In contrast, allergen databases already contain the allergen 
datasets and can easily integrate existing bioinformatics applications to provide  
user-friendly analysis tools to the research community. 
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5.2.2 Desired Features of Allergen Databases 

One of the main desired features of an allergen database is the aggregation of all publicly 
available allergen-specific information into a comprehensive resource. This aggregation 
activity should take note of the following points: 

1. The database should aim to be as comprehensive as possible. In practice, the 
creation of a one-stop resource for all allergen information is a nontrivial task. 
There are already allergen databases that cater to specific needs. Besides, it 
would require huge efforts and resources to create and maintain a comprehensive 
database that only a few groups could afford. 

2. The records contained in the database should be nonredundant and steps should 
be taken to ensure this. Redundancy is leading to over- and underrepresentation 
of data that can cause errors in the allergen analyses. This is particularly 
important if the records are used as training sets for allergenicity prediction. 
Moreover, redundancy leads to false estimates of true known allergens. Sequence 
similarity methods like BLAST (Altschul, Gish, Miller, Myers, and Lipman 
1990) can be effectively used to reduce sequence redundancy by searching for 
similar sequence records. 

3. Each source database contains different types of biological data necessitating the 
design of a common data format that can encompass all available information. 

4. The fields contained in the records should be useful for allergen researchers. 
Therefore, the design of the record format should take into account the expected 
usage. Some of the common fields required include nucleotide sequence, protein 
sequence, literature references, and 3D protein structure. 

5. As far as possible the allergen names should comply with the nomenclature 
(King, Hoffman, Lowenstein, Marsh, Platts-Mills, and Thomas 1994) set out by 
the Allergen Nomenclature subcommittee of the IUIS (International Union of 
Immunological Societies). Allergens contained in the IUIS allergen list should be 
used with its official names to prevent naming conflicts. 

6. The use of multiple source databases may lead to conflicting data. Manual 
curation would then be required to resolve these conflicts.  

7. There is a need to update the allergen database whenever there are changes or 
updates in the source databases. The propagation of information from the source 
databases to the specialized allergen databases ensures that the database is 
current. 

8. Some allergen information is only present in the literature and the lack of a 
structured form of literature data necessitates the manual extraction of this 
information. This requires large amounts of time and effort. 

9. The source databases may contain errors that have to be validated. In most cases, 
the validation has to be done manually. Again, like information extraction from 
the literature, this requires both time and effort. 

 
In view of these factors, the aggregation process should be performed as a two-step 

process. The first step would be to aggregate the information present in the source 
databases to a format that encompasses all the required and useful fields. As far as 
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possible, this should be done computationally to ensure synchronization of the data 
with the source databases. This is not always possible, especially when information is 
extracted from the literature. The second step would involve curators who manually 
validate the data and resolve any arising conflicts. The main advantage of this approach 
is that the majority of the work can be done computationally, thereby allowing the 
curators to focus on the validation. This strategy reduces the overall amount of effort 
while maintaining a high level of quality. 

Access to the allergen databases is another required feature. Different users 
have different types of access requirements and the allergen databases should aim 
to satisfy all the various needs. The wet lab biologists generally require a Web 
interface access to the individual records. Relevant search engine facilities are 
required to enable the quick location of records of interest. The records should be 
presented in a manner that is easy to interpret. Suitable data visualization methods 
should be used for data that is difficult to represent textually. An example would 
be 3D protein structure information that are usually presented in a protein 
structure viewer.  

Bioinformaticians studying allergens would need a different type of database 
access. Bioinformatics analysis typically requires large sets of data rather than 
individual records in order to extract meaningful results. Moreover the 
information contained in these records must be in a computer-readable form. 
Therefore, the format of the records is far more important to the bioinformatician 
than to the wet lab biologist. At the very least, the records have to be presented 
in some structured form. A structured record would allow for the efficient 
parsing of the information into a computer-readable form for further 
computational analysis. The extensible markup language XML is ideal for this 
purpose because most biological data have few issues being represented in this 
form. Furthermore, the provision of an XML scheme would permit rapid parsing 
and validation of the records. For efficient linking of database records to other 
resources, access to the individual records in the database should also be 
available as hyperlinks.  

An allergen database should also provide analysis tools capitalizing on the 
underlying data that it contains to service the research community. The reasons for 
this have been discussed in the previous section. 

5.2.3 Existing Allergen Databases 

An excellent review of existing databases was published in 2003 (Brusic, Millot, 
Petrovsky, Gendel, Gigonzac, and Stelman 2003). Here, we exclude the reviewed 
databases except for the IUIS list and Swiss-Prot list of allergens and highlight recent 
additions to the growing list of allergen databases (Table 1). 

Most of the databases covered in the review article are lacking one or more 
desired features of an allergen database. Only a few databases provide bioinformatics 
tools and permit the downloading of data. Furthermore, many of the databases 
described are not actively maintained and lag behind in recording new allergens or 
changes to existing allergen information. 
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Table 1. List of allergen databases and their URLs. 

Name URL 
Allallergy http://allallergy.net/ 
Allergome (Mari and Riccioli 2004) http://www.allergome.org/ 
BIFS (Gendel 1998) (Biotechnology 
Information for Food Safety)  

http://www.iit.edu/~sgendel/fa.htm 

CSL (Central Science Laboratory) 
allergen database 

http://allergen.csl.gov.uk/ 

FARRP (Food Allergen Resarch and 
Resource Program) allergen database 

http://www.allergenonline.com/ 

IUIS List http://www.allergen.org/ 
Protall http://www.ifr.bbsrc.ac.uk/protall/ 
SDAP (Ivanciuc, Schein and Braun 
2003) 

http://fermi.utmb.edu/SDAP/index.html 

Swiss-Prot allergen list http://www.expasy.org/cgi-bin/lists?allergen.txt 

5.2.3.1 IUIS 

The Allergen Nomenclature subcommittee of the IUIS maintains an official list of 
allergens and isoallergens that conforms to the allergen nomenclature. The 
nomenclature specifies that the first three characters of the allergen name, for 
example Bet v1, are derived from the genus name (Bet = Betula). The next character 
denotes the species name (v = verrucosa). The number at the end of the allergen 
name indicates the order in which the allergen was identified. Isoallergens (i.e., Bet v 
1.0101) have an additional dot followed by four additional numbers. The first two 
numbers refer to the isoallergen. The third and fourth numbers indicate the particular 
variant of the isoallergen. The list is available on the Internet (http://www.allergen. 
org/Allergen.aspx) and is updated periodically. Researchers can submit new 
allergens for inclusion into the list but the allergens must satisfy a prevalence of IgE 
reactivity of at least 5% or a minimum of five patients showing IgE reactivity. This 
ensures that the allergens contained in the list are clinically relevant. As of March 
2007, the list contained 574 allergens and 869 isoallergens. 

The allergens are classified according to the allergen source and each record contains 
the species name, allergen name, protein name, molecular weight, type of sequence, 
database accession, and literature references. Most other allergen databases require 
access to the IUIS list. Nevertheless, the list is maintained as an HTML file with an 
Excel-readable download version. The lack of a structured format (i.e., XML) makes 
parsing of the information inconvenient and error-prone.  

5.2.3.2 Swiss-Prot 

Swiss-Prot maintains a list of allergens that currently numbers 347 entries (Release 52.3 
of Apr 2007). Each allergen contains a link to the Swiss-Prot record, therefore the 
contents of each record are the same as those of the original Swiss-Prot record. The 
names of the allergens are in accordance with the nomenclature set out by IUIS. 
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5.2.3.3 SDAP 

SDAP (Structural Database of Allergenic Proteins) is a specialized allergen database 
that incorporates information obtained from the IUIS list of allergens, Swiss-Prot, 
PIR (Protein Information Resource), GenBank, GenPept, and the literature. However, 
the entries in SDAP are guided by the IUIS list of allergens and isoallergens. SDAP 
which has been static since January 2005 contains 737 allergens and isoallergens, 
829 protein sequences, and 22 IgE and IgG epitopes.  

Each record in SDAP contains the name of the allergen, the species that the 
allergen originates from, protein sequences, nucleotide sequences, Pfam (Bateman, 
Coin, Durbin, Finn, Hollich, Griffiths-Jones, Khanna, Marshall, Moxon, Sonnhammer, 
Studholme, Yeats, and Eddy 2004), protein domains, 3D protein structure, and IgE 
epitopes. The IgE epitope information was extracted from the literature. The epitope 
information makes SDAP rather unique and useful, as it is one of the few databases 
that contain this information. Records in SDAP can be searched by their names, the 
allergen source, the description, and the allergen type. In addition to the search 
facilities, there are compilations of allergens according to alphabetical order, allergens 
containing PDB structures, allergens containing 3D models, allergens containing 
epitopes, and various classes of allergens. 

Other than containing a comprehensive set of allergen data, SDAP includes 
computational tools for FASTA (Pearson 1994), sequence similarity search, allergen 
analysis, and allergenicity prediction. The FAO/WHO allergenicity test evaluates the 
allergenicity of a given protein sequence against the dataset present in SDAP. In 
addition, SDAP includes two unique data searching tools. The first is an exact 
matching tool for searching a query protein sequence against SDAP. This method is 
useful if the query protein sequence is an epitope sequence. Any SDAP allergens 
having the same subsequence as the query epitope sequence will be retrieved. The 
result may then be used as evidence for cross-reactivity between the query sequence 
and the matched SDAP allergen. If the SDAP allergen has a defined epitope, the 
search result also provides a link to it.  

However, the exact matching method is limited to detecting allergens with 
identical epitopes. This is hardly practical as the same IgE molecule may bind to two 
similar but not identical epitopes as seen in cross-reactivity. The second method 
employs a property distance function (Venkatarajan and Braun 2001) to score the 
similarity of two peptides. This is a far better solution as it takes into account the 
level of degeneracy in the epitope sequence. The property distance function employs 
five descriptors E1–E5 that were derived from 237 amino acid properties. The 
property distance (PD) function for two amino acid sequences A and B of length N 
would be: 
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where λ  is the eigenvalue of the jth E component, Ej(Ai) is the Ej value for the 
amino acid in the ith position from sequence A, and Ej(Bi) is the Ej value for the 
amino acid in the ith position from sequence B. 

For any given novel protein sequence, the PD function is used to determine the 
similarity measure of the novel protein sequence against all same length 
subsequences in SDAP. The results are then ranked and displayed together with a 
histogram to the user. The histogram aids the user in determining the significance of 
the results. If a match is detected that has a much lower similarity measure than the 
rest of the matches, the match may be significant and should be analysed further. The 
PD method has been successfully used to detect cross-reactivity among allergens on 
the basis that they share similar epitopes. Similar to other allergen databases, 
downloading of the data is not supported. This is a major problem for 
bioinformaticians who require sets of data for further analysis. 

5.2.3.4 Allergome 

Allergome (Mari and Riccioli 2004) was started in 2000 and released in February 
2003. All the records are manually curated by experts. The primary data source for 
Allergome is literature published since the early 1960s. As of February 2007, 
Allergome contains more than 9000 references categorized by topics and allergens 
(Mari, Scala, Palazzo, Ridolfi, Zennaro , and  Carabella 2007).  

Not all the allergens in Allergome are found in the IUIS list of allergens and 
records in Allergome clearly demarcate which records are in the IUIS list. Allergens 
that are not in the IUIS list are carefully checked to ensure that they are valid 
allergens prior to the addition in Allergome. 

Allergome records integrate literature data and are therefore very information-
rich. Each record may contain the allergen name, common names, biological 
functions, links to primary sequence information, links to PDB structures, sequence 
motifs, source of allergen, tissue source of allergen, route of exposure, allergen 
isoforms, prevalence of allergy, references, molecular weight, sequence homologues, 
posttranslational modifications, test of allergenicity both in vivo and in vitro, cross-
reactivity, recombinant forms of the allergen, and literature references. 

Allergome has user-friendly search facilities. A quick search using keywords 
enables users to filter the results in several ways to display, for example, only IUIS- 
listed allergens. The advanced search allows users to search specific fields using 
Boolean modifiers. Similar to the quick search, users can filter their results. In 
addition to the search facilities, Allergome provides lists of allergens sorted by 
categories. 

Download facilities are also lacking in Allergome. This is particularly dire in the 
case of Allergome because the richness of the data cannot be easily exploited for 
large-scale bioinformatics analysis. This is further compounded by the fact that 
Allergome does not contain any computational tools that could take advantage of 
these data. 

j
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5.2.4 Pitfalls of Current Allergen Databases 

Current allergen databases fulfill most of the desired features, except for the 
availability of a download feature. Although it is possible to parse HTML pages or 
Excel files to extract the information, it is rather error-prone. HTML pages are 
structured, but most of the structures are used for describing the appearance rather 
than the type of content. As a result, bioinformaticians have to re-create the allergen 
datasets from scratch rather than using existing datasets. Not only is it time 
consuming and repetitive, it also precludes the creation of a standard set of data for 
the development of new bioinformatics methods and analysis.  
The lack of a standard set of data means that developed methods and analysis results 
cannot be easily compared to one other, thus hindering the overall progress of 
development. In contrast, downloadable dataset formats like that provided by GenBank 
efficiently support bioinformaticians in developing new analysis methods. The adoption 
of such features by the allergen databases would enhance the bioinformatic tool 
development for allergen research. The allergen databases could then serve as a platform 
for the development of new methods and large-scale analysis. 

5.3 Allergenicity Prediction 

The holy grail of applying bioinformatics to allergen research is the prediction  
of allergenicity. Accurate prediction of allergenicity is likely to improve the 
allergenicity assessment of recombinant proteins, thereby lowering the allergenicity 
testing cost of recombinant proteins. Considering the spread of recombinant protein 
use in food, medications, and everyday items, the impact of predictive methods is 
expected to be huge. 

Predictive methods are often compared on the basis of their precision and recall. 
Precision is the ability of the method to correctly predict true allergens among the 
predicted allergens. Precision is usually expressed as a percentage of the correctly 
predicted allergens over all the predicted allergens. Recall, on the other hand, is the 
ability of the method to detect for allergens in the test set. Recall is expressed as the 
percentage of correct predicted allergens over all the allergens in the test set. The 
equations for precision and recall are provided below. A high precision would mean 
that any predicted allergen is likely to be a true allergen while a high recall means 
that the method is able to correctly predict a large portion of the allergens in the test 
set. In practice, a trade-off is usually required as it is not possible for one to get both 
high precision and high recall. 

fntp
tprecall

fptp
tpprecision

+
=

+
= ,                                            (2) 

where tp is true positive (a correctly predicted allergen), fp is false positive (a non-
allergen that has been wrongly predicted to be an allergen) and fn is false negative 
(an allergen wrongly predicted to be a nonallergen).  
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Allergenicity prediction has been attempted by several groups. The methods are 
explained and discussed in the next section. 

5.3.1 Sequence Similarity Searches 

Sequence similarity search methods are an obvious approach to predicting 
allergenicity. If two proteins are highly similar and one of the proteins is an allergen, 
the likelihood of the second protein being an allergen is high. Sequence similarity 
search methods are very mature and easy to implement. However, allergenicity is 
determined by the binding of epitopes. Since epitopes are in general subsequences of 
the entire protein sequence, local alignments like BLAST and FASTA (Pearson 
1994) tend to perform better. In fact, the FAO/WHO guidelines implement local 
alignment methods. Sequence similarity search methods are implemented in SDAP 
and FARRP as means to query the content. 

Even for identifying cross-reacting allergens, local alignment methods are useful 
because cross-reacting allergens are generally more than 70% identical in their 
sequences (Aalberse 2000). With a few exceptions, cross-reacting allergens share 
similar protein structures (Aalberse and van Ree 1996). The main drawback of 
sequence similarity searches is that their performance is limited to linear epitopes. 
Conformational epitopes, unlike linear epitopes, are not composed of consecutive 
amino acids. Therefore, sequence similarity search methods are not applicable to 
conformational epitopes. The similarity in 3D structure often translates to similar 
primary protein sequences. 

Another drawback of sequence similarity search is its dependence on the 
coverage of the dataset the query sequence is searched against. This makes the 
detection of novel allergens difficult and requires comprehensive and constantly 
updated allergen databases. Nevertheless, sequence similarity search methods have 
also been implemented as a last-resort method for the prediction of allergenicity 
(Stadler and Stadler 2003; Li, Issac, and Krishnan 2004). 

5.3.2 FAO/WHO Guidelines 

The FAO/WHO guidelines for allergenicity predictions involve a bioinformatics 
component. This serves as an initial screening process prior to the use of any laboratory 
test. Compared to laboratory testing, allergenicity prediction using bioinformatics 
approaches is comparatively fast and simple. Implementation of the guidelines is 
relatively simple and the computational complexity is low. However, the method due to 
its reliance on primary protein sequences similarity is only as good as the underlying 
dataset used. This means that allergen databases that contain the allergen dataset

 are in a good position to implement these guidelines as a service. In practice, only 
SDAP and Allermatch (Fiers, Kleter, Nijland, Peijnenburg, Nap, and van Ham 2004) 
implemented the guidelines.  

The FAO/WHO guidelines produce results that tend to have very high recall 
and very low precision (Hileman, Silvanovich, Goodman, Rice, Holleschak, 
Astwood, and Hefle 2002; Kleter and Peijnenburg 2002; Stadler and Stadler 2003; 
Soeria-Atmadja, Zorzet, Gustafsson, and Hammerling 2004). Consequently, the 
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method is unlikely to miss any true allergens (a required feature), but is likely to 
generate large amounts of false positives that may very well overwhelm the 
laboratory testing capabilities.  

5.3.3 Supervised Classification Approaches 

Recently, supervised classification approaches have been adopted for allergenicity 
prediction (Soeria-Atmadja et al. 2004). The study employed three different supervised 
algorithms, namely, the kNN classifier, the Bayesian linear Gaussian classifier, and the 
Bayesian quadratic Gaussian classifier. The methods were trained on a set of local 
alignments produced by FASTA. The feature vector consists of the alignment length and 
score extracted from the best alignment obtained by FASTA. Training data for the study 
included both positive and negative datasets.  

The results of the study indicate that the Bayesian linear Gaussian classifier was 
the best algorithm, being able to detect 77% of the allergens with a false positive rate 
of 10%. This was followed by the Bayesian quadratic Gaussian classifier (77% of 
allergens detected with a false positive rate of 11%) and the kNN classifier (78% of 
allergens detected with a false positive rate of 13%). The algorithms may be tuned 
for either high precision or high recall. Tuning the algorithm for high recall would be 
critical in a screening procedure as false negatives are far less desirable. By 
combining feature vectors obtained using different scoring matrices, better results 
were obtained for the Bayesian linear Gaussian classifier allowing it to detect 77% of 
the allergens with a false positive rate of 8%.  

The results obtained look promising, as they allow for much lower false 
positive rates than those possible with the FAO/WHO guidelines. However, as 
the method relies on local alignments, conformational epitopes may still present 
a challenge.  

5.3.4 Expectation Maximization 

Allergenicity predictions have also been attempted using MEME (Bailey and Elkan 
1994), a motif discovery system employing expectation maximization (Stadler and 
Stadler 2003). The study attempts to locate common motifs among allergens and then to 
utilize these motifs for allergenicity predictions. The underlying basis is that these 
identified motifs are indicators of allergenicity. 

The method employs MEME in an iterative manner. First, a dataset of 779 
non-redundant allergens was created from public databases. Then MEME was 
applied to this dataset and the most significant motif extracted and converted into 
a profile. This profile was then used to search the dataset for any matching 
allergens, which are then removed from the dataset. The remaining allergens are 
submitted to the next round of motif discovery and removal. In total, 52 motifs 
were discovered and 644 allergens in the dataset contain one or more of the 52 
motifs. Incomplete sequence information for 78 allergens is the main reason why 
135 allergens did not yield any motifs. The remaining 57 allergens are thought to 
be unique allergens. The 52 discovered motifs can be applied to any novel 
protein sequence to determine the significance of match. Typically, an E value of 
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10-8 is used as an indicator of allergenicity. Should the 52 motifs fail to match 
the protein sequence, a BLAST search is carried out against the 135 allergens 
without motifs. 

The results of a synthetic dataset indicate that the method had a very high recall 
(100%) and precision (95.5%). This contrasts with the FAO/WHO guidelines, which 
scored 98.6% for recall and 36.5% for precision. In a more true-to-life scenario, the 
method has a recall of 100% and precision of 8.6% for the entire Swiss-Prot dataset. 
The FAO/WHO guidelines, on the other hand, had 100% recall and 0.5% precision. 
Therefore, although the recall of both methods was comparable, the method 
employed here showed improved precision. 

The ability to retain the high recall while achieving higher precision (>17 times 
higher) is particularly useful in a screening procedure. A high recall is important as it 
prevents any potential allergens from slipping through. Moreover, the increased 
precision reduces the number of false positives and therefore the number of time-
consuming laboratory screenings. 

5.3.5 Wavelet Transform 

Wavelet transform (Krishnan, Li, and Issac 2004) has also been used instead of MEME 
to extract motifs from allergens for allergenicity predictions (Li et al., 2004). Wavelet 
transform is used to convert the aligned amino acid sequences into signals where 
conserved motifs may be detected on different scales.  

The study used a set of 664 allergens collected from the IUIS list of allergens, 
Swiss-Prot allergen list, BIFS, and FARRP. As the wavelet transform method requires 
a set of aligned sequences sharing a common motif, the method first clusters the 
allergen sequences into groups. Clustering into groups was achieved by computing the 
distance between every pair of allergens using ClustalW (Thompson, Higgins, and 
Gibson 1994). Allergens were then clustered into groups using the “partitioning around 
mediods” method (Kaufman and Rousseeuw 1990). Within each group of allergens, 
ClustalW or T-Coffee (Notredame, Higgins, and Heringa 2000) programs were used to 
generate multiple aligned amino acid sequences. Wavelet transform was applied to the 
multiple sequence alignment to extract conserved motifs. Then, HMM (Hidden 
Markov Model) profiles were created from these motifs using the HMMER package. 
The HMM profiles are used for searching and predicting the allergenicity of novel pro-

allergens were subjected to another round of clustering, wavelet transform, and motif 
extraction. Any remaining allergens that did not contain motifs were stored separately 
for sequence similarity search using BLAST. 

The allergenicity prediction proceeds with the novel protein sequence being 
subjected to a search using hmmpfam against all discovered motifs. Should the 
protein sequence contain any of the discovered motifs, it is predicted to be an 
allergen. If not, a BLAST search is carried out against the allergens in the dataset 
that do not contain any discovered motifs. Should the BLAST search result in a good 
match, then the protein sequence is predicted to be an allergen, otherwise the protein 
sequence is predicted to be a nonallergen. The threshold values for both the motif 
search using hmmpfam and the BLAST search were set at an E value of 0.001. 

teins. About 20% of the allergens in the dataset did not contain any of the motifs. These 
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The results of a 10-fold cross-validation test indicate that the method performs 
well with a high precision (99.77%) and reasonable recall (70.61%). The inclusion 
of the BLAST search does little to improve the precision although it does improve 
the recall (an increase of 7%). Real-life testing using the entire Swiss-Prot database 
predicted 2042 allergens of which 295 are known to be allergens (recall of 86.5%). 
The inclusion of the second-stage BLAST search increased the number of 
predicted allergens to 4768 and the number of correct allergens to 319 (recall of 
93.6%). Comparison with the expectation maximization method is difficult due to 
the differences in the release of Swiss-Prot used (135,850 proteins in this study as 
compared to 101,602 proteins in the expectation maximization study). However, 
this method clearly performs better than the FAO/WHO guidelines as far as 
precision is concerned. The FAO/WHO guidelines predicted 67% of the  
Swiss-Prot entries to be allergens. 

5.3.6 Current Status of Allergenicity Predictions 

Current allergenicity prediction methods have improved on the FAO/WHO guidelines. 
The methods have retained the high recall required in the screening procedure while 
increasing the precision of the predictive test. 

The main problem facing the development of allergenicity prediction methods 
is the lack of a standard dataset for training and testing. The lack of a standard 
dataset has made comparison between the various methods difficult and is 
hindering progress. Another problem is the lack of a good negative dataset 
comprising nonallergens. This is critical in the assessment of both the precision 
and recall measure as both measures are influenced by either the number of false 
positives or false negatives. 

5.4 Conclusion 

At present a number of specialized allergen databases offer the allergen research 
community valuable and information-rich resources. However, none of the allergen 
databases is comprehensive to the point that it is a superset of all the allergen 
databases. As such, there is still the need for the continued existence of several 
allergen databases, each providing some unique information. The biggest drawback 
of the databases is the lack of download facilities with appropriately formatted data 
suitable for the development of analysis methods and large-scale analysis. This 
problem is recurring in the allergenicity prediction methods. Although the 
predictions have improved on the FAO/WHO guidelines, they are still difficult to 
compare due to the uniqueness of each dataset used for development. 

Acknowledgements 

We wish to thank Dr. C. Schönbach for the opportunity to contribute this chapter, and our 
colleagues at the Institute of Infocomm Research for support. 



Allergen Bioinformatics 105
 
References 

Aalberse, R. C., and van Ree, R. (1996) Cross-reactive carbohydrate determinants. Monogr. 
Allergy 32:78-83.  

Aalberse, R. C. (2000) Structural biology of allergens. J. Allergy Clin. Immunol. 106:228-238. 
Altschul, S. F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local 
alignment search tool. J. Mol. Biol. 215:403-410. 

Bailey, T. L., and Elkan, C. (1994) Fitting a mixture model by expectation maximization to 
discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2:28-36. 

Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., 
Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., and Eddy, 
S.R. (2004) The Pfam protein families database. Nucleic Acids Res. 32: 
D138-D141. 

Benson, D. A.,  Karsch-Mizrachi,  I., et al. (2003) GenBank. Nucleic Acids Res. 31:23-27. 
Bourne, P. E., Addess, K. J., Bluhm, W.F., Chen, L., Deshpande, N., Feng, Z., Fleri, W., 

Green, R., Merino-Ott, J.C., Townsend-Merino, W., Weissig, H., Westbrook, J.,  and 
Berman, H.M. (2004) The distribution and query systems of the RCSB Protein Data Bank. 
Nucleic Acids Res. 32:D223-D225. 

Brusic, V., Millot, M.,  Petrovsky, N., Gendel, S.M., Gigonzac, O., and Stelman, S.J. (2003) 
Allergen databases. Allergy 58:1093-1100. 

Cantani, A. (1999) Hidden presence of cow’s milk proteins in foods. J. Invest. Allergol. Clin. 
Immunol. 9:141-145. 

FAO/WHO (2001) Allergenicity of Genetically Modified Foods. Food and Agriculture 
Organization of the United Nations, Rome, Italy, http://www.who.int/foodsafety/ 
publications/biotech/ec_jan2001/en/. 

FAO/WHO (2003) Codex Principles and Guidelines on Foods Derived from Biotechnology. 
Food and Agriculture Organization of the United Nations, Rome, Italy, http://www. 
codexalimentarius .net web/more_info.jsp?id_sta=10007.  

Fiers, M. W.,  Kleter, G.A., Nijland, Peijnenburg, Nap, and van Ham (2004) Allermatch, a 
webtool for the prediction of potential allergenicity according to current FAO/WHO 
Codex alimentarius guidelines. BMC Bioinformatics 5:133. 

Gendel, S. M. (1998) Sequence databases for assessing the potential allergenicity of proteins 
used in transgenic foods. Adv. Food Nutr. Res. 42:63-92. 

Hileman, R. E., Silvanovich, A., Goodman, R.E., Rice, E.A., Holleschak, G., Astwood, J.D., 
and Hefle, S.L. (2002) Bioinformatic methods for allergenicity assessment using a 
comprehensive allergen database. Int. Arch. Allergy Immunol. 128:280-291. 

Ichikawa, K., Vailes, L. D., Pomes, A., and Chapman, M.D. (2001) Identification of a novel 
cat allergen─cystatin. Int. Arch. Allergy Immunol. 124:55-56. 

Ivanciuc, O., Schein, C. H., and Braun, W. (2003) SDAP: Database and computational tools 
for allergenic proteins. Nucleic Acids Res. 31:359-362. 

Iyer, L. M., Koonin, E. V., and Aravind, L. (2001) Adaptations of the helix-grip fold for 
ligand binding and catalysis in the START domain superfamily. Proteins 43:134-144. 

Izumi, H., Sugiyama, M., Matsuda, T., and Nakamura, R. (1999) Structural characterization of the 
16-kDa allergen, RA17, in rice seeds. Prediction of the secondary structure and identification of 
intramolecular disulfide bridges. Biosci. Biotechnol. Biochem. 63:2059-2063. 

Jansen, J. J., Kardinaal, A. F., Huijbers, G., Vlieg-Boerstra, B.J., Martens, B.P., and 
Ockhuizen, T. (1994) Prevalence of food allergy and intolerance in the adult Dutch 
population. J. Allergy Clin. Immunol. 93:446-456. 

Kanny, G., Moneret-Vautrin, D. A., Flabbee, J., Beaudouin, E., Morisset, M., and Thevenin, F. 
(2001) Population study of food allergy in France. J. Allergy Clin. Immunol. 108: 
133-140. 



106 Lee and Brusic 
 
Kaufman, L., and Rousseeuw, P. J. (1990) Finding Groups in Data: An Introduction to 

Cluster Analysis, John Wiley & Sons, Brussels, Belgium. 
King, T. P., Hoffman, D., Lowenstein, H., Marsh, D.G., Platts-Mills, T.A., and Thomas, W. 

(1994) Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int. 
Arch. Allergy Immunol. 105:224-233. 

Kleter, G. A., and Peijnenburg, A. A. (2002) Screening of transgenic proteins expressed in 
transgenic food crops for the presence of short amino acid sequences identical to potential, 
IgE -binding linear epitopes of allergens. BMC Struct. Biol. 2:8. 

Krishnan, A., Li, K. B., and Issac, P. (2004) Rapid detection of conserved regions in protein 
sequences using wavelets. In Silico Biol. 4:0013. 

Kulikova, T., Aldebert, P., Althorpe, N., Baker, W., Bates, K., Browne, P., van den Broek, A., 
Cochrane, G., Duggan, K., Eberhardt, R., Faruque, N., Garcia-Pastor, M., Harte, N., Kanz, C., 
Leinonen, R., Lin, Q., Lombard, V., Lopez, R., Mancuso, R., McHale, M., Nardone, F., 
Silventoinen, V., Stoehr, P., Stoesser, G., Tuli, M.A., Tzouvara, K., Vaughan, R., Wu, D., 
Zhu, W., and Apweiler, R. (2004) The EMBL Nucleotide Sequence Database. Nucleic 
Acids Res. 32:D27-D30. 

Larche, M. (2000) Specific immunotherapy. Br. Med. Bull. 56:1019-1036. 
Li, K. B., Issac, P., and Krishnan, A. (2004) Predicting allergenic proteins using wavelet 

transform. Bioinformatics 20:2572-2578. 
Malandain, H. (2004) Basic immunology, allergen prediction, and bioinformatics. Allergy 

59:1011-1012. 
Malone, D. C., Lawson, K. A., Smith, D.H., Arrighi, H.M., and Battista, C. (1997) A cost 

of illness study of allergic  rhinitis in the United States. J. Allergy Clin. Immunol. 
99:22-27. 

Mari, A., and Riccioli, D. (2004) The Allergome Web site ─ A database of allergenic 
molecules. Aim, structure, and data of a Web-based resource. J. Allergy Clin. Immunol. 
113:S301.  

Mari, A., Scala, E., Palazzo, P., Ridolfi, S., Zennaro, D., and Carabella, G. (2007) 
Bioinformatics applied to allergy: Allergen databases, from collecting sequence 
information to data integration. The Allergome platform as a model. Cell. Immunol Apr 
13; [Epub ahead of print]. 

Mills, K. L., Hart, B. J., Lynch, N.R., Thomas, W.R., and Smith, W. (1999) Molecular 
characterization of the group 4 house dust mite allergen from Dermatophagoides 
pteronyssinus and its amylase homologue from Euroglyphus maynei. Int. Arch. Allergy 
Immunol. 120:100-107. 

Miyazaki, S., Sugawara, H., Ikeo, K., Gojobori, T., and Tateno, Y. (2004) DDBJ in the stream 
of various biological data. Nucleic Acids Res. 32:D31-D34. 

Notredame, C., Higgins, D. G., and Heringa, J. (2000) T-Coffee: A novel method for fast and 
accurate multiple sequence alignment. J. Mol. Biol. 302:205-217. 

O’Donovan, C., Martin, M. J., Gattiker, A., Gasteiger, E., Bairoch, A., and Apweiler, R. 
(2002) High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Brief 
Bioinform. 3:275-284. 

Pearson, W. R. (1994) Using the FASTA program to search protein and DNA sequence 
databases. Methods Mol. Biol. 24:307-331. 

Soeria-Atmadja, D., Zorzet, A., Gustafsson, M.G., and Hammerling, U. (2004) Statistical 
evaluation of local alignment features predicting allergenicity using supervised 
classification algorithms. Int. Arch. Allergy Immunol. 133:101-112. 

Stadler, M. B., and Stadler, B. M. (2003) Allergenicity prediction by protein sequence. 
FASEBJ. 17:1141-1143. 



Allergen Bioinformatics 107
 
Thompson, J. D., Higgins, D. G., and Gibson, T.J. (1994) CLUSTAL W: Improving the 

sensitivity of progressive multiple sequence alignment through sequence weighting, 
position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 
22:4673-4680. 

Venkatarajan, M. S., and Braun, W. (2001) New quantitative descriptors of amino acids based 
on multidimensional scaling of a large number of physical-chemical properties. J. Mol. 
Model. 7:445-453. 

 



Chapter 6 
Immunoinformatics Applied to Modifying  
and Improving Biological Therapeutics 

Anne S. De Groot,1,2  Paul M. Knopf,  Daniel Rivera,2 and William Martin2 
1 Brown University, Department of Medicine, Providence, RI 02912, USA   
2 EpiVax, Inc., 146, Clifford Street, Providence, RI 02903, USA, AnnieD@EpiVax.com 

Abstract. Protein therapeutics have recently emerged as a viable means of treating chronic 
diseases and are beginning to rival small-molecule drugs in market share. Although their 
promise of targeted therapy is a major medical advance, repeated administrations in many 
cases lead to development of antitherapeutic antibodies that compromise treatment. Multiple 
sources of immunogenicity are considered in this chapter with a focus on the T-cell-dependent 
immune response. Development of high-affinity antibodies depends on activation of T 
helper cells by antigen presentation. Disruption of antigen presentation in an antigen-
specific manner would be a rational solution to this problem. Here we present the powerful 
combination of recombinant protein expression and immunoinformatic and molecular 
modeling tools as a means of reducing immunogenicity by modification of T-cell epi-
topes. This approach promises to bring to the clinic safer protein therapeutics both as 
first- and second-generation products. 

6.1 Introduction  

6.1.1 Deimmunization Defined 

The number of therapeutic protein products available for use in clinical settings has 
dramatically increased in recent years. This category of biomedical products, also 
known as biological therapeutics, includes neuromuscular antagonists such as 
botulinum toxin, cytokines such as alpha interferon, growth factors, hormones, and 
monoclonal antibodies. Biological therapeutics are generally considered to be safe 
and non-toxic. The production and purification of therapeutic proteins has now be-
come extremely efficient, and a number of such products are commonly used in 
today’s standard medical practice. 
 Unfortunately, the use of these products in clinical practice is often associated 
with the development of antibodies directed against the therapeutic proteins. These 
anti-therapeutic protein antibodies may neutralize or otherwise compromise the 
clinical effect of the biologics and can also be associated with serious adverse events 
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such as autoimmunity. Examples of anti-biologic therapeutic antibodies include 
antibodies to botulinum toxin and antibodies to erythropoietin (Vuong and Jankovic 
2005; Haselbeck 2003).   
 Deimmunization, the subject of this chapter, is the process of modifying biologi-
cal therapeutics so as to diminish the development of anti-biological therapeutic 
antibodies. Until recently, reduced immunogenicity could only be achieved by care-
ful formulation of the biologic therapeutic, and in some cases, pegylation of the 
protein (see below). One of the more recent means of deimmunizing proteins is to 
apply immunoinformatics tools to identify T-cell epitopes, and then to use related 
tools to select and modify amino acids contained in those T-cell epitopes. These 
modifications, achieved using immunoinformatics tools followed by in vitro and in 
vivo confirmation, may lead to improved biological therapeutics characterized by 
significantly diminished immunogenicity profiles. 

6.1.1.1 Sources of Biologic Therapeutic Immunogenicity 

Several mechanisms for the induction of antibodies against therapeutic proteins have 
been described. These have included (1) inadvertent formulation of the biologic with 
proinflammatory contaminants or adjuvants (Haselbeck 2003); (2) formation of 
immunogenic aggregates; and (3) T-cell-dependent antibody formation. Drug manu-
facturers have developed methods for addressing the first two mechanisms, including 
improvements in the purity and formulation of recombinant protein products. The 
third mechanism for anti-therapeutic antibody formulation involves the adaptive arm 
of the cellular immune system and the presentation of epitopes derived from the 
therapeutic proteins to T cells in the context of human leukocyte antigen (HLA) 
molecules.  
 HLA class II molecules are genetically encoded on chromosome 6 and expressed 
as cell-surface proteins on antigen-presenting cells (APC). Class II HLA molecules 
are involved with the presentation of peptide epitopes derived from therapeutic  
proteins to T cells, engendering a T-cell-dependent immune response. For more 
information on HLA-epitope binding see Finkelman, Lees, and Morris (1992). 

6.1.1.2 Epitope-Directed Deimmunization 

This chapter will discuss a new immunoinformatics-driven strategy for reducing 
the immunogenicity of biological therapeutics, which is to eliminate HLA class II 
peptide epitopes by minimal amino acid replacement. This application of immu-
noinformatics to the modification of protein therapeutics is termed “epitope-
directed deimmunization”. 
 Without such epitopes, helper T-cell (TH) stimulation is avoided; induction of 
both humoral and cell-mediated adaptive immunity is significantly diminished, along 
with the potential for adverse clinical events. TH-mediated induction of immunologi-
cal memory is also compromised, reducing affinity maturation of antibodies and 
encouraging apoptosis (death) of the antigen-specific T and B lymphocytes.  
 Immunoinformatics is but one of the tools that must be applied in the process of 
epitope-directed deimmunization. Each step in this new approach to therapeutics is 
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described in this chapter, including methods for identifying the amino acids that need 
to be changed using immunoinformatics; measurement of binding of the modified 
peptide to HLA and measurement of T-cell response by ELISpot. Changes to amino 
acid sequences, however minimal, can have serious consequences on protein func-
tion. This chapter will also describe the need for careful structural modeling and 
confirmation of activity and decreased immunogenicity in vitro and in vivo. Epitope-
directed deimmunization will also be contrasted with other existing techniques such 
as pegylation. 

6.1.2 Dimensions of the Problem 

A number of therapeutic proteins have been shown to induce T-cell-dependent IgG 
antibody responses when used as biologics (Koren, Zuckerman, and Mire-Suis 2002; 
Stein 2002; Ryff and Schellekens 2002). The prevalence of antidrug antibodies 
ranges from less than 1% for drugs such as tissue plasminogen activator (Nilsson, 
Nilsson, Jansson, Boman, Soderberg, and Naslund 2002) to over 70% for drugs such 
as OKT3, a murine monoclonal antibody (Jensen, Birkeland, Rohrp, Elbirk, and 
Jorgensen 1996; Chatenoud 1993). The clinical impact of these antibodies can range 
from no effect (nonneutralizing or binding antibodies) or some loss of efficacy (neu-
tralizing antibodies) to severe reactions such as anaphylaxis. 
 Antitherapeutic antibodies can also develop to recombinant human protein or a 
humanized monoclonal antibody, products that should not, in theory, breach toler-
ance (Diamond 2003; Wadhwa, Mellstedt, Small, and Thorpe 2003). The basis for 
the development of T-cell responses to autologous proteins is not well understood. 
However, it is well known that autologous proteins, including many proteins used in 
therapy, are not devoid of immunogenic potential. T-cell responses to a number of 
autologous proteins have been associated with autoimmunity, as is clearly the case 
with diabetes (Fowell and Mason 1993; Reijonen, Novak, Kochik, Heninger, Liu, 
Kwok, and Nepom 2002) and multiple sclerosis (MS) (Forsthuber, Shive, Wienhold, 
de Graaf, Spack, Sublett, Melms, Kort, Racke, and Weissert 2001; Keech, Farris, 
Beroukas, Gordon, and McCluskey 2001). 

6.2 Components of the Immune Response to Biologicals 

6.2.1 Types of Antibodies to Biological Therapeutics  

6.2.1.1 Cross-Reactive Antibodies  

One of the most significant safety concerns related to the clinical use of thera-
peutic proteins is the formation of neutralizing antibodies that cross-react with or 
neutralize autologous counterparts. For example, cross-reactive antibodies have 
been associated with the development of aplastic anemia following treatment 
with recombinant erythropoietin (rEPO). This severe form of anemia was shown 
to be due to the development of antibodies cross-reactive with endogenous 
erythropoietin (Casadevall, Nataf, Viron, Kolta, Kiladjian, Martin-Dupont, 
Michaud, Papo, Ugo, Teyssandier, Varet, and Mayeux 2002). These cases of 
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aplastic anemia were associated with exposure to just one formulation of rEPO, 
suggesting that factors extrinsic to the protein itself were associated with the 
adverse outcome (Haselbeck 2003). Currently, evidence suggests that this  
adverse effect was associated with the development of aggregates due to the 
reformulation of the therapeutic product (Prabhakar and Muhlfelder 1997; 
Rosenberg 2003).  

6.2.1.2 Neutralizing Antibodies  

Antibodies that interfere with the function of a therapeutic product may not have as 
severe consequences for the patient as cross-reactive antibodies, but they can have a 
dramatic effect on the efficacy of the therapy. Neutralizing antibodies have been 
observed to common biological therapeutics such as insulin, factor VIII, and beta 
interferon. In some cases, where different forms of the product are available (e.g., 
insulin, factor VIII), changing treatment to an alternative has allowed for continued 
use of the therapy. In addition, as is the case with clotting factors, modifying the 
dose of the therapy regimen has been shown to induce tolerance. However, this ap-
proach is clinically intensive and success is not assured. 

6.2.1.3 Nonneutralizing Antibodies 

Nonneutralizing antibodies, which do not interfere with the function of the  
biologic, also known as binding antibodies, are the most common form of anti-
therapeutic protein antibody. In some cases, nonneutralizing antibodies to thera-
peutic compounds have been noted in patients who have never been exposed to 
the compounds, suggesting that some anti-human protein antibodies are naturally 
occurring. 

6.2.2 Factors Contributing to the Development of Antibodies 

6.2.2.1 Extrinsic Factors Contributing to Antibody Formation 

Route, dose, and formulation are among a set of extrinsic factors that can influ-
ence the immunogenicity of therapeutic proteins (Table 1) (Rosenberg 2003).  
Contamination of the product with proinflammatory or nonspecific mitogenic 
compounds such as LPS and the development of product aggregates can provide 
the critical “second signal” (Signal 2) to the T-cell that is required for induction 
of T-cell help. In addition, proteins that are denatured during formulation may be 
more immunogenic than their native counterparts (Braun, Kwee, Labow, and 
Alsenz 1997), as these products may present new T- and B-cell epitopes that 
were not present in the parent molecule, leading to the stimulation of an immune 
response (Josic, Buchacher, Kannicht, Lim, Loster, Pock, Robinson, Schwinn, 
and Stadler 1999).  In contrast, glycosylation and pegylation reduce the immu-
nogenicity of therapeutic proteins. Modification of extrinsic factors such as route, 
dose, purity, formation of aggregates, and formulation has been used to reduce 
immunogenicity. 
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Table 1. Factors associated with induction of immunogenicity.  

          
Extrinsic factors    Intrinsic factors 
          
Route (oral/subcutaneous/IM/IV)  Autologous vs. foreign 
Dose (small/large)   TH epitope content** 
Formulation (adjuvant effect) 
Aggregates (crosslinking Ab) 
Contaminants (adjuvant effect) 
Glycosylation/pegylation* 
 
*Decreases immunogenicity;  
**Theoretical – See section 6.2. 

6.2.2.2 Intrinsic Factors Contributing to Antibody Formation 

Factors that are intrinsic to the therapeutic protein itself can also potentially contrib-
ute to immune response. For example, therapeutic proteins that tend to look more 
like “self,” or with few mutations compared to wild type, are considerably less im-
munogenic than proteins that look very unique to the immune system; for example, 
mutated or fused proteins that may contain novel antigenic epitopes and/or therapeu-
tic proteins that are derived from pathogens such as streptokinase (Miller, Korn, 
Stevens, Janik, Gause, Kopp, Holmlund, Curti, Sznol, Smith, Urba, Donegan,  
Watson, and Longo 1999; Kontsek, Liptakova, and Kontsekova 1999). 

Modification of the therapeutic protein sequence from foreign (a murine mono-
clonal) to a less foreign (a humanized monoclonal) has resulted in reduced immuno-
genicity. For example, this approach reduced the immunogenicity of the Campath 

6.2.3 T-Independent and T-Dependent Immune Response  

The pathways that lead to B-cell activation, and the resultant production of anti-
bodies, can be divided into T-cell-independent (Ti) and T-cell-dependent (Td) 
categories (Table 2). Ti activation of B cells occurs when structural features of 
certain molecules, such as polymeric repeats, induce the “signals” required to 
stimulate activation of a B-cell subset. Ti activation of B cells results in a weaker 
immune response than Td activation due to a lack of affinity maturation or of de-
velopment of B-cell memory. Conversely, Td activation of B cells results in a 
robust and long-lived antibody response. Most high-affinity IgG responses to 
therapeutic antibodies are T-dependent. 

therapeutic (a monoclonal anti-CD52 antibody used to treat cancer patients). Figure 1 
illustrates the concept of “humanizing” monoclonal antibodies. 
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Fig. 1. Minimal effect of “humanization” on immunogenicity of mAbs. Administration of 
murine antibodies such as Campath 1G is associated with the development of antidrug anti-
bodies in as many as 78% of immunocompetent subjects. Minimalization of the murine com-
ponent of the antibody by substituting human constant domains (chimeric and humanized 
antibodies) may result in significant reductions in immunogenicity. However, administration 
of chimeric antibodies such as Remicade and humanized antibodies such as Campath IH to 
immunocompetent subjects has been associated with induction of antibodies in as many as 
70% and 63% of subjects, respectively. Administration of fully human antibodies can also 
induce immune responses. For example, Humira has been associated with induction of anti-
drug antibodies in 18% of subjects in some studies. 

6.2.3.1 Ti B-Cell Activation 

Activation of naïve B cells to produce specific antibodies (Abs) via the Ti mecha-
nism involves immune responses to polymeric antigens (Ags) with repeating subunit 
structures (e.g., polysaccharides) that are generally not relevant to the use of soluble, 
mono-disperse therapeutic proteins; hence, this chapter will not consider them fur-
ther. The Td mechanism is of greater concern as it generates immunological memory, 
and also promotes affinity maturation of the Abs and immunoglobulin (Ig) class 
switching. In fact, the presence of IgG class antibodies implies that a therapeutic 
protein is a T-cell-dependent (Td) antigen, 

6.2.3.2 Td B-Cell Activation 

In order to induce naïve B cells to react to a Td protein antigen and initiate an adap-
tive immune response, several events must be coordinated, usually within specialized 

between clonally expressed B-cell transmembrane antigen receptor molecules (IgM  
 

Table 2. T-independent (Ti) and T-dependent (Td) immune response. 

T independent  T dependent           
No isotype switching Isotype switching 
Low affinity  High affinity 
No or low memory T and B memory 

, i.e., isotype switching has occurred.  

regions of secondary lymphoid organs (e.g., lymph nodes, spleen). An interaction 
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or IgD) and an epitope on the protein antigen is required to initiate activation of a 
naïve B cell. B-cell epitopes are usually composed of the side chains of nonadjacent 
amino acids that have been assembled into a three-dimensional conformation on the 
protein’s surface by the folding of the native polypeptide chain. The size and com-
plexity of a protein and its phylogenetic distance from the host contribute to the 
potential of the protein to be recognized by antibody. Antibodies may also interact 
with sequential epitopes, segments of consecutive amino acids in the polypeptide 
chain of a native protein [N- or C- terminals; intrachain loops], or with an unfolded, 
denatured protein.  
 In addition to the antigen receptor Ig molecule, the B cell possesses a coreceptor 
complex that includes CD21. CD21 binds activated components of the innate-
immunity complement system. Optimal naïve B-cell activation occurs against target 
protein antigens that activate the alternative complement pathway, creating a cova-
lent complex between the protein and a cleavage product of complement component 
C3, called C3d (Carroll 2004). The interaction between the antigen receptor Ig 
(which is associated with a signal-generating transmembrane heterodimer Igα/β) and 
the CD21 coreceptor, mediated by the protein: C3d complex, generates “Signal 1” to 
the B-cell nucleus. Signal 1 must be followed by Signal 2 (T-cell response, see be-
low) for B-cell expansion to occur.  
 The next step of the process takes place inside the B cell. The target protein: 
C3d complex is internalized and then it is degraded to peptides within the endo-
cytic compartment and some of the peptides that are generated bind to Class II 
major histocompatability complex (MHC) molecules that migrate to the B-cell 
surface. B cells also express the CD40 molecule on their surface and upregulate 
expression of other adhesion molecules in anticipation of interacting with an acti-
vated CD4+ helper T-cell. 
 Naïve T cells reactive to the same protein antigen that engaged the naïve B cells 
are likewise stimulated by antigen-processing cells presenting the cognate T-cell 
epitopes in the context of MHC class II on their surface. Thus, “Signal 2” for activa-
tion of a B cell is dependent on (1) proper presentation of the protein antigen by an 
antigen-presenting cell and (2) prior activation of a T-cell. This process is described 
in the next paragraph, and then the description of B-cell activation is resumed. 
 In order for APCs to effectively engage T cells, the APC must become activated, 
or “mature.” APCs that have ingested a protein mature in response to receiving a 
signal at the cell surface, such as engagement of a Toll receptor or the delivery of 
cytokines like interleukin 2 (IL-2) to the APC. Contamination of a therapeutic prod-
uct with proinflammatory or nonspecific mitogenic compounds such as lipopolysac-
charide (LPS) could, by binding to a Toll receptor, provide this critical second signal 
required for the development of T-cell help.  
 The activation of a T-cell is also a two-step process. The first step involves  
antigen-presenting cells (APC). These cells internalize, process, and present peptide 
epitopes derived from the protein antigen, in the context of HLA molecules, to  
T cells. These T-cell epitopes are derived from therapeutic proteins in the APC or in 
the B cell as follows: the proteins are taken up into endocytic vesicles, and then 
digested in a special proteolytic compartment called MIIC. Peptides generated in this 
process then compete for binding in the binding cleft of HLA Class II molecules, 
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which are subsequently transported to the surface, where they engage T cells. T cells 
require the presentation of the MHC:peptide complex and engagement of 
CD28:CD80/CD86 (Signal 1 and 2) to become activated. 
 Returning to the case of the B cell, following ingestion of a protein therapeutic by 
a B cell, the protein is also processed as described above. HLA Class II-peptide 
complexes are then transported to the surface of the B cell, where they are exposed 
to interrogation by passing CD4+ T cells (Signal 1), causing the epitope-specific 
CD4+ to secrete selected cytokines such as gamma-interferon, IL-2, IL-4, and IL-10. 
Signal 2 is provided by the engagement of the CD40:CD154 proteins on the B cell 
and T-cell, respectively. These two signals are followed by Signal 3, the release of 
cytokines from the T cells, initiating a cascade of further immunostimulatory events. 
The cytokines cause B cells to expand and undergo phenotypic changes resulting in 
the establishment of memory B cells.  

6.2.3.3 Absence of T Help Abrogates Ab Formation 

The binding of peptide epitopes (derived from internal processing of proteins by B 
cells) to HLA Class II molecules and the recognition of the epitope-HLA complex by 
activated helper T cells are necessary components of any T-cell-dependent antibody 
response. Without Signal 2 provided by the cytokines released as a result of T-cell 
interaction, the naïve B-cell response does not mature. Without T-cell help, activa-
tion of B cells to antibody-secreting plasma cells can only occur in the presence of 
aggregates or polymeric proteins (T-cell-independent activation). Attenuation of the 
helper T-cell response to immunogenic peptides derived from therapeutic proteins 
has therefore become the focus of considerable research effort.  
 Since the T-cell epitope plays a critical role in the development of T-cell-
dependent antibody responses, it stands to reason that protein sequence modifications 
that result in the removal of potential T-cell epitopes from autologous (recombinant 
therapeutic) proteins could indeed reduce the potential for induction of an immune 
response against the protein. Loss of T-cell help removes Signal 2 for B cells ex-
pressing receptor specificity for a therapeutic protein. In theory, loss of Signal 2 due 
to epitope modification could actually induce B-cell apoptosis and/or tolerance 
(Kappler, Roehm, and Marrack 1987). 

6.2.3.4 Effect of Pegylation and Glycosylation 

Pegylation and glycosylation are two commonly used approaches to solving the 
immunogenicity problem. Polyethylene glycol (PEG) conjugates of protein antigens 
appear to induce antigen-specific immune tolerance either by masking B-cell epi-
topes (B-cell Signal 1, structural interference), by stabilizing the protein antigen and 
increasing the duration of exposure to the antigen (thereby inducing tolerance), or by 
directly interfering with the processing and presentation of T-cell epitopes to TH cells 
(B-cell Signal 1) (So, Ito, Koga, Watanabe, Ueda, and Imoto 1997).  
 Like pegylation, glycoslyation decreases plasma clearance of therapeutic and 
increases the half-life of the protein molecules. The primary impact of glycosylation 
is to interfere with antibody affinity (B-cell Signal 1). No information is available on 
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6.2.3.5 Deimmunization by T-Cell Epitope Modification  

While deimmunization by T-cell epitope modification is a relatively recent concept 
in the field of therapeutics, extensive evidence for the attenuating effect of epitope 
sequence modification on T-cell response exists in the context of infectious disease, 
particularly with reference to immune escape from Class I and Class II restricted 
immune response in viral infections (Vossen, Westerhout, Soderberg-Naucler, and  
Wiertz 2002). Thus, the idea that therapeutic proteins can be modified so that they 
may also “escape” immune response, thereby reducing their immunogenicity, has 
been emerging in recent years, particularly since new tools for mapping T-cell epi-
topes have become widely available. A number of research teams are actively modi-
fying therapeutic proteins by mutating their amino sequences so as to eliminate the 
formation of MHC Class II epitopes during intracellular processing. Ideally, these 
modifications would have little effect on the therapeutic activity of the protein but 
would ablate MHC Class II presentation of both “self” and “nonself” epitopes.  
 In the remaining sections of this chapter, we provide a rationale for the deimmu-
nization of therapeutic biologics by T-cell epitope modification. One retrospective 
example supporting the concept is provided, and examples of possible applications 
of the deimmunization approach to the design or redesign of therapeutic proteins are 
discussed. 

6.3 A New Concept: Deimmunization by T-Cell Epitope 
Modification 

T helper (TH) epitope content may explain differences in observed antibody re-
sponses to slightly different versions of the same recombinant human protein. For 
example, “humanizing” chimeric antibodies so that they contain fewer TH epitopes, 
as described above, is carried out by swapping “foreign” regions of the antibody for 
regions that are more like self and has been shown to reduce immunogenicity. The 
postive effect of humanization may be due at least in part to a reduction in the total 
Th epitope content of the modified sequence. “Epitope content” may also influence 
the propensity of any given protein to induce an immune response.  
 We observed, as illustrated in Fig. 2, that the immunogenicity scores of abundant 
serum proteins (those contributing almost 90% of serum protein content) were lower 
than expected. Antigenic proteins from pathogens such as influenza, tetanus and, 
allergens, in contrast, generally scored much higher. Based on this analysis, it would 
appear that some common human proteins contain significantly fewer T-cell epi-
topes, when compared to random proteins and common antigens. This preliminary 
discovery, which needs to be substantiated using in vitro assays, may change existing 
ideas about the nature of tolerance.  

the impact of glycosylation on processing and presentation of peptides derived from 
the therapeutic protein in the context of MHC to T cells.  
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Fig. 2. Inherent immunogenicity of human proteins. To perform this analysis, we used the 
EpiMatrix tool, which is a matrix-based algorithm for T-cell epitope mapping. This tool is 
standardized so that comparisons can be made across predictions for different HLA alleles. In 
this case we used the EpiMatrix prediction matrices for eight class II alleles that are represen-
tative of more than 98% of human populations. First, we measured the number of potential T 
helper epitopes that would occur in random-sequence pseudo proteins composed of amino 
acids at their naturally occurring frequencies and computed the mean “epitope score” per 1000 
assessments of 0.5, with a standard deviation of ±7.9. We then compared proteins by summing 
the total number of EpiMatrix scores for each frame (9 amino acids) that was above an ac-
cepted cutoff for immunogenicity (>1.67), and measured the difference between the scores for 
“random” proteins and test proteins.  

 This type of immunogenicity analysis can be used to evaluate and compare pro-
tein therapeutics – to other protein therapeutics and to known antigens. Potential T-
cell epitopes are not randomly distributed throughout protein sequences but instead 
tend to be clustered. These regions of unusually high binding potential are called “T-
cell epitope clusters,” “promiscuous epitopes,” or just “clusters” for short (Panina-
Bordignon, Tan, Termijtelen, Demotz, Corradin, and Lanzavecchia 1989). Epitope 
clusters range from 9 to roughly 25 amino acids in length and, considering their 
affinity to multiple alleles and across multiple frames, can contain anywhere from 4 
to 40 binding motifs. ClustiMer, which is an optional feature of EpiMatrix, measures 
and stores the MHC binding potential for 9 or 10 amino acid sequences to a number 
of human HLA and then searches for extended regions containing high concentra-
tions of these high-scoring 9-mers. 
 A protein which scores “average” or even below average on our overall immuno-
genicity scale may still be immunogenic if it contains one or more clustered regions. 
For example the well-known antigen tetanus toxin scores just +4 on the overall scale 
but also contains several local regions with very high potentials (Fig. 3).  
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Fig. 3. Predicted potential for immunogenicity of selected T-cell epitope clusters. This analy-
sis was performed as previously described; however, the target proteins in this example are 
short peptides that are known to be highly immunogenic epitopes. We used the EpiMatrix 
prediction matrices for eight class II alleles that are representative of more than 98% of human 
populations. We compared the epitopes to our random peptide standard by summing the total 
number of EpiMatrix scores for each frame (9 amino acids) that was above an accepted cutoff 
for immunogenicity (>1.67), and measured the difference between the scores for “random” 
proteins and test proteins.  

 Well-described “promiscuous epitopes” tend to score above 10 on our immuno-
genicity scale. The promiscuous tetanus toxin epitope 825–850 scores +15 and an-
other well-known epitope from tetanus (peptide 947–967) scores +17.3. Influenza 
HA peptide 307–319 scores +17.6 on the immunogenicity scale (Fig. 3). These pep-
tides are so promiscuous that they are frequently used as positive controls in T-cell 
activity assays. 
 After initial exposure to an immunogen, an expanded population of memory  
T cells is established that is able to respond more rapidly, efficiently, and in greater 
numbers on subsequent exposure. Since the presence of the epitope bound in the 
MHC cleft is the trigger for a protective immune response, epitope-driven ap-
proaches to reducing the immunogenicity of therapeutic proteins have focused on 
modifying this response by reducing the ability of peptides from therapeutic proteins 
to bind to MHC.  
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6.3.1 Available Epitope Mapping Tools  

Alteration of T-cell epitopes is known to result in reduced binding to the MHC 
and/or altered binding to the T-cell receptor (TCR). This effect has been observed 
both for Class I and Class II MHC ligands in the context of both tumor cell (Scanlan 
and Jager 2001) and pathogen (Mullbacher 1992; Hill, Jepson, Plebanski, and Gilbert 
1997) escape from immune response. Mapping, confirming, and modifying T-cell 
epitopes may reduce the immunogenicity of therapeutics. 
 Based on the hypothesis that the immunogenicity of therapeutic proteins is 
probably linked to both (1) the presence of T helper epitopes and (2) an event that 
triggers immune response (the “danger signal”), it follows that removal of T-cell 
epitopes from a protein that is intended to be used as a therapeutic may reduce the 
protein’s overall potential to stimulate T cells. In order to modify T-cell epitopes, it 
is important to first identify those epitopes that are responsible for stimulating an 
immune response and then determine their amino acid sequences. Currently, a num-
ber of epitope-mapping tools are available for discovering T-cell epitopes contained 
within protein sequences. Reviews of these tools have been published (De Groot and 
Martin 2003a). The following paragraphs provide background on mapping tools 
developed by the authors of this article.  
 Prior to the development of tools for T-cell epitope selection, the cost and  
effort required to identify T-cell epitopes from protein sequences was a significant 
barrier to the deimmunization of therapeutic proteins. Computational immunology 
(immunoinformatics) methods dramatically reduce the time and effort involved in 
screening proteins for potential epitopes, ranging from a reduction of 10- to 20- 
fold (Kast, Brandt, Sidney, Drijfhout, Kubo, Grey, Melief, and Sette 1994; 

 EpiMatrix, an algorithm developed by the Brown University TB/HIV Research 
Lab and licensed to EpiVax, ranks 9- to 10- amino-acid-long segments overlapping 
by 8 to 9 amino acids derived from any protein sequence by estimated probability of 
binding to a selected MHC molecule. The EpiMatrix method for ranking prospective 
epitopes has been published (Schafer et al. 1998; De Groot, Jesdale, Szu, and Schafer 
1997). Matrix motifs for 24 HLA Class I alleles are available for use with EpiMatrix. 
EpiVax used the pocket profile approach first described by Sturniolo and Hammer 
(Sturniolo, Bono, Ding, Raddrizzani, Tuereci, Sahin, Braxenthaler, Gallazzi, Protti, 
Sinigaglia, and Hammer 1999) to generate predictive matrices for 74 Class II alleles 
(De Groot et al. 1997) These new Class II matrices are now included in the EpiMa-
trix repertoire at EpiVax. Previous studies have demonstrated that EpiMatrix accu-
rately predicts published MHC ligands and T-cell epitopes (De Groot et al. 2001a; 
De Groot et al.1997; De Groot, Jesdale, Martin, Saint-Aubin, Sbai, Bosma, Lieber-man, 
Skowron, Mansourati, and Mayer 2003b).  
 ClustiMer, which is an optional feature of EpiMatrix, can measure and store 
the MHC binding potential for a 9- or 10- amino-acid sequence to a number of 
human HLAs. ClustiMer can therefore be used to identify clustered or “promiscuous” 

Schafer, Jesdale, George, Kouttab, and De Groot 1998) to a 95% reduction  
(De Groot, Bosma, Chinai, Frost, Jesdale, Gonzalez, Martin, and Saint-Aubin 
2001a; De Groot, Saint Aubin, Rayner, and Martin 2001b).  
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epitopes, which can be presented in the context of more than one HLA; such 
epitopes are broadly recognized in human populations. 

6.3.2 Decreasing Immunogenicity (Case Study) 

Evidence that EpiMatrix can evaluate and identify epitopes that can be modified 
to eliminate immunogenicity is provided by an analysis of SakSTAR and its 
modified (deimmunized) derivative. SakSTAR is a natural variant of staphylo-
kinase, which is used as a potent thrombolytic agent in the setting of acute myo-
cardial infarction. Administration of SakSTAR results in the generation of IgG 
antibodies, which limits the efficacy of the therapy. Warmerdam, Plaisance, 
Vanderlick, Vandervoort, Brepoels, Collen, and De Maeyer (1998) identified the 
“C3” region of SakSTAR (residues 71–87) as being highly reactive in patients 
expressing either the DRB1*0301 or DRB1*0701 alleles. EpiMatrix parsed the 
C3 region into overlapping 9-mer frames and scored each frame for MHC bind-
ing potential with respect to eight common alleles.  Peptides contained between 
residues 71 and 87 received the highest scores for the alleles (DRB1*0301 and 
DRB1*0701) using the EpiMatrix algorithm, consistent with Warmerdam and 
colleagues’ observation that this region was highly immunogenic. The EpiMatrix 
percentile ranking is shown in Table 3a. 
 Alanine substitutions to the MHC anchoring residues Y73, K74, R77, E80, and 
D82, alone or in combination, were subsequently shown to reduce or eliminate T-cell 
response. These modifications also resulted in dramatically lower EpiMatrix scores 
for the protein, below the usual cutoff for immunogenicity (i.e., the 95th percentile). 
An analysis of EpiMatrix scores for these peptides shows that Y73, K74, R77, E80, 
and D82 all function as anchoring residues in our models of either DRB1*0701, 
DRB1*0301, or both. Alanine substitutions at these positions had a neutral or nega-
tive effect on predicted binding affinity (EpiMatrix percentile ranking shown in 
Table 3b). 
 In a separate study by Collen et al. (1996) the SakSTAR variant K74A, E75A, 
R77A, E80A, D82A was shown to have “induced significantly fewer circulating 
neutralizing antibodies” in human subjects. Again, this is consistent with the theory 
that reduction of epitope content also reduces immunogenicity. 
 In summary, epitope mapping can uncover regions of therapeutic proteins in-
volved in the generation of antibody responses to such proteins. These regions can  
 
Table 3a. SakSTAR epitopes.  

Original SakSTAR epitope 
 
73 YKEFRVVEL   81  DRB1*0701 score: 99th percentile 
76        FRVVELDPS  84  DRB1*0301 score: 98th percentile 
79               VELDPSAKI 87  DRB1*0301 score: 99th percentile 
          
  



122 
 

then be targeted for modification. Modifications of these regions may potentially 
reduce the immunogenicity of therapeutic proteins, as described for the humanized 
monoclonal antibody and the staphylokinase protein examples. The next section 
describes the process of deimmunization by epitope mapping and modification of 
protein sequences. 

6.4 A Step-by-Step Approach to Deimmunization 

The approach to deimmunization of functional therapeutics described in the next 
paragraphs is a multistep process involving (1) analysis of the therapeutic protein 
for the presence of MHC binding motifs; (2) synthesis and testing of the target 
peptides for MHC Class II binding and immunogenicity in vitro; (3) development 
of “de-immunized” versions of the regions where the MHC binding motifs have 
been modified; (4) synthesis and testing of the deimmunized counterparts in vitro; 
and (5) testing of the recombinant, deimmunized protein in vivo for immunogenicity. 
Evaluation of the effect of protein modification on protein function is characterized 
by structural modeling (in silico), at step (3) following the resynthesis of the protein.  

6.4.1 Initial Screen for Class II Epitopes and Epitope Clusters 

The first step in the deimmunization analysis involves screening the target protein 
for Class II epitopes. We have used EpiMatrix matrices corresponding to eight com-
mon HLA alleles (DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, 
DRB1*0801, DRB1*1101, DRB1*1301, DRB1*1501), which are well represented 
in most human populations. EpiMatrix identifies clusters of putative epitopes re-
stricted by at least one of these eight common alleles in any given protein. For ex-
ample, EpiMatrix (Class II, eight alleles) epitope mapping of human beta-interferon 
demonstrates seven potential epitope cluster (Fig. 4). Collectively these clusters 
contain almost all of the predicted epitopes. This type of clustering of MHC binding 
motifs is typical of promiscuous epitopes (Meister, Roberts, Berzofsky, and  
De Groot 1995).  

Table 3b. SakSTAR epitopes (alanine-modified sequence)    

Alanine Substituted version 
          
73 AAEFAVVAL   81   DRB1*0701 score: 82nd percentile  
76        FAVVALAPS  84  DRB1*0301 score: 88th percentile 
79               VALAPSAKI 87  DRB1*0301 score: 90th percentile 
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Fig. 4. EpiMatrix analysis of human beta-interferon predicted epitope clusters. For this analy-
sis, the complete sequence of human beta-interferon was downloaded from Genbank (acces-
sion 1AU1_A). The sequence was parsed into 158 overlapping 9-mer frames. Each frame was 
then evaluated for its potential to bind to 8 common Class II HLAs (DRB1*0101, DRB1*0301, 
DRB1*0401, DRB1*0701, DRB1*0801, DRB1*1101, DRB1*1301, and DRB1*1501). The 
entire dataset was then scanned for frames that contain more predicted ligands than would be 
expected by chance alone. In this case any 9-mer frame that is predicted to react to 3 or more 
alleles defines a cluster. The binomial probability of observing 3 positive signals (a positive 
signal is defined as an EpiMatrix Z-score in excess of 1.64) in 8 trials is 0.0058. Contiguous 
and nearly clusters were then combined to yield the 7 clusters displayed in the graph. 

6.4.2 Modifying Epitopes 

Regions of epitope clustering are often highly immunogenic (Pevear, Luo, and  
Lipton 1988), thus the first step in deimmunizing a protein is to address the clustered 
regions defined by EpiMatrix. For example, Tables 4a and 4b show the last 20 over-
lapping frames of an analysis for human CLIP (an HLA binding portion of Invariant 
chain) and a modified version of CLIP. Putative epitopes (HLA Class II binding 
regions) located in the last cluster of epitopes are shown. Each overlapping frame in 
the entire amino acid sequence is scored against each of the eight common HLA 
alleles. The total number of epitopes in the natural and modified versions and the 
highest score per allele are shown at the bottom of each table. For example, by sub-
stituting alanine for critical residues the total number of DRB1*0101 epitopes is 
reduced from three to none and no increase in the number of putative HLA binding 
regions develops. Confirmation of in silico immunogenicity prediction is subse-
quently performed in vitro.  
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6.4.3 Confirming the Potential of Epitope Clusters in Vitro 

MHC binding assays can be used as the first screen for immunogenicity in vitro 
(Elvin, Potter, Elliott, Cerundolo, and Townsend 1993). These assays confirm the 
binding affinity of predicted epitopes for various MHC alleles and are based on 
competition between the test peptide and a known binder to recombinant soluble 
MHC molecules (Tompkins, Rota, Moore, and Jensen 1993). Since MHC binding 
is the first event involved in the stimulation of a T-cell response and is one of the 
more critical criteria determining potential immunogenicity, a peptide’s ability to 
bind to a given MHC can indicate its potential to generate a T-cell response. These 
binding assays can also be used to determine whether suggested modifications 
would disrupt the binding and presentation of predicted epitope to T cells. How-
ever, processing of the protein antigen is not measured by the binding assay. Thus, 

Table 4a. Z score indicates the potential of a 9-mer frame to bind to a given HLA allele; the 
strength of the score is indicated by the shading: top 10% ￭;top 5% ￭; top 1% ￭ . All scores in 
the top 5% are considered “hits.” *Frame 107–115 (sequence highlighted) contains four or 
more alleles scoring above 1.64 and as such is referred to as an EpiBar. EpiBars have an in-
creased likelihood of binding to multiple HLAs. 

Table 4b. Z score indicates the potential of a 9-mer frame to bind to a given HLA allele; the 
strength of the score is indicated by the shading: top 10% ￭;top 5% ￭; top 1% ￭. All scores in 
the top 5% are considered “hits.” Scores below the top 10% are omitted for simplicity. *Frame 
5 (sequence highlighted) contains high scores for 2 of the 8 alleles tested as compared to 7 of 
the 8 alleles in the parent sequence. The modified CLIP contains no EpiBars. EpiBars (frames 
with high scores across at least 4 alleles) have an increased likelihood of binding to multiple 
HLAs. 
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the assays cannot predict which peptides are actually expressed on the surface 
following natural processing of a protein antigen in vivo.  

6.4.4 Confirming the Potential of Epitope Clusters Using T Cells  
from Donors 

The only way to accurately evaluate whether a peptide epitope is processed and 
presented, or not (following modification of key amino acid residues) is to measure 
T-cell responses to the peptides, using peripheral blood T cells from exposed sub-
jects or splenocytes from exposed mice (see next section). Alternatively, blood from 
unexposed donors can be primed in vitro. T-cell lines can be developed by incubat-
ing blood samples drawn from unexposed volunteers with the candidate protein and 
selected stimulatory molecules such as GMCSF, CD80, or CD86.  

 No matter which cells are used, the first task is to establish an overall level of 
response by performing an ELISpot T-cell assay using the candidate protein as 
the antigen. Peptides representing the predicted epitopes can also be assessed at 
this time. Peptide epitopes that are observed to be associated with a strong T-cell 
response can then be modified at critical amino acid residues. Next, in an itera-
tive approach, these modified peptides can be reevaluated for both binding and 
immunogenicity. 
 The goal of these in vitro experiments is to demonstrate that the target protein 
and peptides representing the clustered epitope regions do engender immune re-
sponses from exposed donors in vitro; that the derivative clustered epitope region 
peptides account for the majority of the immunogenicity engendered by the target 
protein in vitro; and that the deimmunized proteins do not engender immune re-
sponses in vitro and in vivo.  

6.4.5 Confirming Epitope Clusters in Vivo 

Another means of evaluating the impact of epitope modifications on de novo T-cell 
response is to measure the immunogenicity of the original epitopes and the modified 
epitopes in HLA-transgenic mice, either in the context of the whole protein (the 
modifications are engineered in) or as peptides. 
 A number of transgenic mouse strains that express the most common HLA A, 
HLA B, and HLA DR molecules have been developed. These mice process and 
present epitopes in the context of human HLA. In order to compare the immuno-
genicity of wild-type and modified epitopes, immunizations are carried out with 
preparations of the peptide epitopes in adjuvant. The standard regimen is to immunize 

 While there are many assays for evaluating T-cell response, one of the most accu-
rate means of measuring the response of the individual T-cell is to perform an ELIS-
pot assay. In most cases, the number of T cells responding to a given protein is ex-
tremely few; therefore, an in vitro T-cell restimulation assay is used to increase the 
assay’s sensitivity by expanding the number of T cells present that will respond to a 
given peptide. Restimulation assays are usually performed using blood from exposed 
subjects (i.e., persons who have been treated with the therapeutic protein and/or may 
have participated in clinical trials.)  
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the mice subcutaneously or intradermally with 100 micrograms of peptides in adjuvant 

The animals are sacrificed at 42 days, and the spleno-

 One can expect to find that these assays confirm that the original epitopes (wild 
type) are more immunogenic than the modified epitopes. Measurable T-cell re-
sponses seen in mice given the wild-type epitopes, and not seen in modified peptide 
or placebo-vaccinated mice, validate the effect of the modifications.  

6.4.6 Evaluating the Effect on Protein Structure and Function 

Some amino acid substitutions may have a profound effect on the functionality of the 
protein. Several methods of assessing the effect of deimmunizing changes on the 
function target protein exist. A comparison of the sequence containing the proposed 
changes with the sequences of other similar proteins can indicate areas of variability 
that may be tolerant of change. Molecular modeling can also help elucidate the im-
pact of the proposed changes on the structure of the protein. These two approaches 
are explained in more detail in the next paragraphs.  

6.4.6.1 Evaluate by Comparison with Other Similar Proteins  

Within a particular protein, amino acid sequences that are conserved in the course 
of evolution can be presumed to be required for the proper function of the protein. 
For example, an analysis of 92 variants of cytochrome c derived from eukaryotic 
species shows that 21 of 104 residues are exactly conserved and another 14 are 
mainly restricted to amino acids that share common properties such as I, L, V or F, 
and Y. Thus, modifications of the cytochrome c protein aiming to de-immunize the 
protein should not be performed at any of these 35 residues, as they could eliminate 
monomers that are critical to the function and/or structure of the protein. This ap-
proach was recently described in a paper by Kersh, Miley, Nelson, Grakoui, 
Horvath, Donermeyer, Kappler, Allen, and Fremont (2001). 

6.4.6.2 Evaluate the Effect on Structure Using Modeling 

Structural analyses comparing wild-type and modified protein sequences can also be 
performed. In general these methods start by modeling the observed structure of the 
wild-type protein. Interactions between the individual atoms that make up the struc-
ture are measured and an overall energy value is calculated. Modified proteins are 
then overlaid on top of the wild-type structure and reiterative modeling of the protein 
is performed until a minimum energy configuration is achieved. The difference in 
overall energy between the wild-type protein and its homologue, as measured by 
calculating the root mean square (RMS) deviation of the positions of the alpha-
carbons in the protein chains, can be used as a predictor of the structural deviation 
between the two proteins. 
 Several in silico methods are available for evaluating the effect of amino acid 
substitution on protein structure. A number of computational chemistry software 
programs such as InsightII (Accelrys, Inc.), Cerius2 (Accelrys, Inc.), Sybyl (Tripos, Inc.), 

three times, at 2-week intervals. 
cytes are obtained for use in T-cell (ELISpot) assays.  
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MacroModel (Schrodinger, Inc.), and MOE (Chemical Computing Group, Inc.) are 
commercially available. Additional modeling programs are freely available on the 
Internet; though not as complete as the commercially available products, they per-

 Using any of these programs, differences in structure between wild-type and 
amino-acid-substituted protein sequences can be measured by calculating the RMS 
deviation of the positions of the alpha-carbons in the protein chains after identifying 
the lowest energy state of each sequence. A relatively low RMS deviation suggests 
that the mutations do not cause broad structural changes in the protein, while a rela-
tively large RMS difference suggests that the substitutions do affect tertiary struc-
ture. Close examination of the results permits the exact identification of the amino 
acids responsible for the greatest energy difference; thus, resubstitution and reitera-
tive analysis of the effect of substitutions on protein structure may be performed.  

6.5. When Can Deimmunization Be Useful? 

Deimmunization may be extremely useful at certain stages of protein therapeutic 
development. Three scenarios are illustrated in the next few paragraphs.  

6.5.1 Prioritizing in the Preclinical Stage of Development 

Given several similar candidates that may have all demonstrated a reasonable level 
of efficacy in preclinical evaluations, drug developers need a means for selecting the 
one or two that are most likely to succeed. One means of reducing the list of candi-
dates to evaluate is to score each therapeutic protein on a “potential immunogenicity 
scale” such as the one described in Section 2.3.3. This scale allows for comparisons 
between proteins that are known to be nonimmunogenic, such as the constant regions 
of human antibodies, and viral or bacterial proteins known to be highly immunogenic 
such as tetanus toxin, ESAT6 derived from TB, or haemagglutinin derived from 
influenza. Candidate therapeutic proteins displaying low or limited potential for 
immunogenicity may be prioritized for clinical trials using this scale. Candidate 
therapeutics displaying high potential immunogenicity might be set aside or returned 
to the developmental pipeline for reengineering. 

6.5.2 Modifying a Lead Candidate Following Immunogenicity Testing  

In some cases, a good candidate has been identified but is predicted to contain an 
unacceptable amount of immunogenic potential. In this case, regions of the thera-
peutic protein that account for at least 50% of the total potential for immunogenic-
ity contained within the candidate protein can be identified. These regions of high 
potential can then be evaluated in order to identify individual amino acids that are 

form many of the same functions. Such programs include pymol 
(http://www.pymol.org) for visualization and in silico mutagenesis of proteins,  
namd (http://www.ks.uiuc.edu) for molecular dynamics simulations, vmd (http:// 
www. ks. uiuc.edu) for more advanced visualization, and grace (http://plasma-
gate.weizmann.ac.il/Grace/) for data analysis.  



128 
 
primarily responsible for the peptide’s binding affinity with respect to multiple 
alleles. Substitutions at these key amino acids may then be considered and re-
evaluated in a reiterative manner. 
 When modifying a protein sequence, it is important to consider the effect of the 
substitutions on the function of the protein. This process may involve the analysis of 
multiple substitutions and comparative in silico and in vitro analyses of the substitu-
tions’ effects on protein function (see Structural Modeling, above).  

6.5.3 Reducing Immunogenicity Following Clinical Trials 

The final scenario involves the evaluation and deimmunization of protein therapeutics 
that have already been tested in human subjects. Blood samples from exposed subjects 
are obtained, restimulation is performed in order to activate and expand the relevant T 
memory cells, and T-cell response in ELISpot assays is measured. T-cell response to 
the native protein and to immunogenic peptides can then be contrasted with response to 
peptides that have been modified to reduce immunogenicity. The protein can then be 
modified to reduce immunogenicity while carefully preserving function. 

6.6 Conclusions 

The approach to deimmunization of functional therapeutics described in this article is 
a multistep process involving (1) analysis of the therapeutic protein for presence of 
MHC binding motifs; (2) synthesis and testing of the target peptides in the MHC 
Class II binding and immunogenicity in vitro; (3) development of “deimmunized” 
versions of these regions for which the MHC binding motifs have been modified;  
(4) synthesis and testing of the deimmunized counterparts in vitro; and (5) testing of 
the recombinant, deimmunized protein in vivo for immunogenicity and function 
following natural translation. 
 In summary, epitope-mapping tools can be used to predict Class II restricted  
T-cell epitopes contained in therapeutic protein sequences. These tools can also be 
used to accurately discriminate between immunogenic and nonimmunogenic pep-
tides. The demand for preclinical methods for evaluating the immunogenic potential 
of therapeutic proteins is expected to increase as the number of therapeutic proteins 
and monoclonal antibodies entering the preclinical pipeline increases. While more 
extensive validation is needed, this chapter provides a road map for deimmunization 
that may be worth pursuing as it may accelerate the development of improved thera-
peutic proteins. 
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Chapter 7 

Plasticity of Dendritic Cell Transcriptional Responses  
to Antigen: Functional States of Dendritic Cells 

Paul Kellam and Antonia Kwan 

Abstract. The vertebrate immune system protects the host from harmful encounters with 
pathogenic microorganisms and other dangerous components of the environment. To do this 
the immune system must gather information about the ‘nonself’ pathogens and by processing 
this information, initiate an appropriate immunological response.  The immune system 
represents an example of emergent behavior from a complex, multifactorial, adaptive system. 
To understand emergent behavior we need to know the systems components and the rules that 
govern the system. To identify the components, immunology research has catalogued and 
characterized probably all major cell types involved in the innate and adaptive immune 
response. In the postgenomic world, we are now able to further characterize global changes in 
cellular gene expression and thereby identify and infer changes in the functional state of the 
cells. Together this should allow modeling of immune system function. Dendritic cells 
orchestrate the host immune response. By identifying a pathogen and processing this 
information through a coordinated differentiation program, phenotypic changes effected in 
dentritic cells allow appropriate information to be conveyed to the adaptive arm of the immune 
system, thereby shaping downstream immunological responses. Transcriptional profiling of 
human and mouse dendritic cell responses to different antigens have demonstrated this 
functional plasticity. Understanding the regulation of these dendritic cell differentiation states 
will contribute to computational models of the immune system, and our understanding of the 
parameters that affect the immune system response to infection. 

7.1 Introduction 

The vertebrate immune system is remarkably versatile, functioning to protect 
animals from pathogenic microorganisms and environmental toxins. The immune 
system is also able to recognize and attack host cells that have become tumors. To 
help understand many of the diverse functions required to fight pathogens the 
immune system has been partitioned conceptually into a number of functionally 
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distinct components: recognition and response, innate and adaptive or effector and 
memory. While theoretically simplifying the immune system, these divisions also 
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highlight the complexity of relationships that occur. It is clear that the nonlinear 
integration of cell surface and cytokine signals from pathogen recognition, through 
innate to adaptive immune responses bestows incredible complexity and flexibility 
on and leads to the renewable recall capacity of the immune system.  

Complex, dynamic nonlinear systems commonly produce unusual, non-
intuitive properties, so-called emergent properties. Emergence in this sense applies 
where the activity of the parts does not simply sum to give the activity of the whole. 
Therefore, ultimately, mathematical models will be required to help understand 
immune function (Callard, George, and Stark 1999). Formulating such models 
requires knowledge of the systems components and the rules that govern the system. 
Some of the component details are known. For example, the vertebrate immune 
system has evolved to comprise many specialist cell types, which themselves have 
complex ontogenesis. These cell types reflect functional partitioning, with cells of 
the myeloid lineage (monocyte/macrophage, neutrophils, eosinophils, and basophils) 
functioning primarily in the innate, antigen-nonspecific immune response and cells 
of the lymphoid lineage (T cells and B cells) functioning primarily in the adaptive 
antigen-specific response. Other components are less well understood. For example, 
gene expression programs and functional gene networks that manifest as different 
immune cell phenotypes have not been defined. In this review we will discuss 
aspects of how the host immune system functions in the recognition of pathogens 
and begin to illustrate how plasticity in gene expression programs creates different 
functional states in one of the pathogen-sensing components, the dendritic cell.  

7.2 Dendritic Cells 

The recognition and initial innate response to diverse pathogens is linked to an 
effective adaptive immune response, with dendritic cells (DCs) providing the bridge 
(Hoebe, Janssen, and Beutler 2004). Bone marrow-derived DCs in their “immature” 
form are distributed at anatomical sites most likely to be breached by microbes. Here 
they continuously sample their environment. When microbial antigens are 
encountered, along with the presence of “danger signals” from locally infected cells, 
DCs undergo a complex “maturation” process resulting in their migration out of 
peripheral tissues and transit to secondary lymphoid tissues. Where mature, DCs 
present processed microbial peptides on Major Histocompatibility complex (MHC) 
molecules to T cells. Importantly, DCs express costimulatory molecules allowing 
them to interact and prime antigen naïve T cells to proliferate. DCs are therefore able 
to recognize and interpret the presence of different antigens, process the information 
facilitating their own maturation, and present the processed information to T cells to 
shape the adaptive immune response. 

7.2.1 Recognizing Pathogens 

7.2.1.1 Dendritic Cell Subsets 

At least two, probably nonexclusive mechanisms can exist for differential 
recognition of pathogens by DCs. First, distinct cell subsets specialize to recognize 
particular pathogens. Second, cells can express different receptor molecule 
repertoires that recognize specific pathogens. Evidence exists for both these 
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scenarios in DCs. Because DCs interact with all major lymphocyte types (B cells, T 
cells and natural Killer cells) and because DCs have mutually exclusive functions 
(antigen uptake compared to antigen presentation), it is perhaps not surprising that 
different DC subsets/subtypes can be found. What is not clear, however, is whether 
such subsets are the product of different ontogenesis with particular pathogen 
recognition and effector functions (specialized lineage model) or if they represent 
different functional states of a single lineage that itself can detect and respond 
differently to distinct pathogens (functional plasticity model). Recent evidence 
suggests that the simple ontogeny distinction of myeloid (derived from a common 
myeloid progenitor cell) and lymphoid (derived from a common lymphoid 
progenitor cell) DCs is not true.  

DC subsets can be identified in the mouse and humans on the basis of the 
expression of different cell surface markers (proteins and glycoproteins) (Shortman 
and Liu 2002) in support of the specialized lineage model. Myeloid DCs (mDCs) 
express the myeloid cell surface marker CD11c whereas plasmacytoid DCs (pDCs) 
(proposed to be of the lymphoid lineage and so named because of their ultrastructural 
resemblance to antibody-secreting plasma cells) express the CD45 isoform (B220) 
normally expressed on B cells. Exposure of murine bone marrow pDCs to the mouse 
virus lymphocytic choriomeningitis virus (LCMV), however, induced these pDCs to 
differentiate into authentic mDCs by undergoing profound phenotypic and functional 
changes, highlighting the functional plasticity of bone marrow pDCs (Zuniga, 
McGavern, Pruneda-Paz, Teng, and Oldstone 2004).  

The situation becomes more complicated with the evidence that pDCs can 
develop efficiently from myeloid and lymphoid committed progenitors suggesting 
the existence of a common DC progenitor (Shigematsu, Reizis, Iwasaki, Mizuno, Hu, 
Traver, Leder, Sakaguchi, and Akashi 2004). In addition, hematopoietic cell lineage 
commitment may not be an irreversible transition from progenitor to terminally 
differentiated cell, as experiments show that enforced expression of the transcription 
factor C/EBP programs them into macro-

hematopoietic cell types that are influential in the immune response, with the 
extracellular signaling context maintaining an apparently fixed phenotypic steady 
state, masking the capacity of changing to an alternative lineage phenotypic state if 
different cellular input signals were supplied (Xie et al. 2004). 

   and/or    in mature B cells efficiently re
phages (Xie, Ye, Feng, and Graf 2004). Complex cell ontogeny is certainly a feature of 
the immune system. Lineage plasticity may also be a common but hidden feature of 

α  β

7.2.1.2 Toll-like Receptors 

Regardless of whether DC subsets represent stages in a functional continuum or 
distinct functional types, the problem of recognizing diverse pathogens remains. The 
strategy of pattern recognition has evolved to deal with the problem of detecting 
microbes in the context of microbial heterogeneity and rapid evolution. Pattern 
recognition detects a limited set of conserved molecular patterns that are associated 
with microbes, often called pathogen-associated molecular patterns (PAMPs). These 
are recognized by pattern recognition receptors (PRRs) of which the Toll-like 
receptor (TLR) family is the best characterized (Akira and Takeda 2004). DCs and 
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other cell types such as epithelial cells and B cells express a range of the ten known 
human TLRs. In addition, DC subsets express different combinations of TLRs (Table 1). 
This implies a given DC population or subset will only respond to the pathogens for 
which they have the appropriate TLRs. 

TLRs differ in their ligand specificity and the signal transduction pathways they 
activate, thereby triggering antimicrobial and inflammatory responses and DC 
maturation. This comprises both conserved signaling pathways such as MyD88-
dependent activation of the NFkB pathway, and receptor-specific signaling such as 
the MyD88-independent activation of the IRF3 transcription factor by TLR4 
(Iwasaki and Medzhitov 2004). How these signals combine to influence the various 
facets of DC function is not known in detail. However, it is reasonable to assume that 
the pathogen recognition and receptor signaling logic must influence the 
transcriptional state of the DC and is therefore crucial for DC function. 

7.2.2 Differential Outcomes; TH1, TH2, and Tolerogenic T-cell Responses 

DCs are essential for activation and differentiation of naive T cells into T helper type 
1 (TH1) cells, T helper type 2 (TH2) cells, and cytotoxic T lymphocytes. They are 
also important for stimulating mature B cells to become antibody-producing plasma 
cells in the absence of T-cell help (Jego, Palucka, Blanck, Chalouni, Pascual, and 
Banchereau 2003; Poeck, Wagner, Battiany, Rothenfusser, Wellisch, Hornung, 

Table 1. TLRs expressed on human dendritic cells (adapted from Iwasaki and Medzhitov 2004)  

 Monocytes1 mDCs2 pDCs3 In vitro differenti-
ated DCs4 

TLR1 + + + + 
TLR2 + + − + 
TLR3 − + − + 
TLR4 + + − + 
TLR5 + + − +/− 
TLR6 + + + + 
TLR7 +/−5 +/− + − 
TLR8 + + − + 
TLR9 − − + − 

TLR10 − + + ? 

.

Jahrsdorfer, Giese, Endres, and Hartmann 2004), and for inducing peripheral 
tolerance to self antigens. These processes, however, normally occur in secondary 
lymphoid organs. Therefore, following antigen exposure DCs must migrate to local 
lymphoid organs where they can interact with T and B cells. This involves functional 
reprogramming of DCs including the upregulation of costimulatory and MHC 

1 human CD14 positive monocytes. 
2 human myeloid dendritic cells. 
3 human plasmacytoid dendritic cells. 
4 Dendritic cells generated in vitro from CD14+ monocytes by culture in the presence of  
GM-CSF and IL4. 
5 +/− indicates that the results of different studies do not concur. 
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Fig. 1. Signals provided by mature dendritic cells during the polarization of naive T cells.

 

migration and short DC contacts, although DCs do not resume motility (Mempel, 
Henrickson, and Von Andrian 2004). The signals for prolonged DC/T-cell interaction are 
not known but demonstrate that the function of DCs may also change within lymphoid 
tissue. During the phase of prolonged interactions, the DC is likely to be providing the 
signals required for MHC-restricted T-cell proliferation. These signals include antigenic 
peptide loaded in MHC class I or II, costimulatory signals, cytokine signals (O’Garra 
1998), and signals through the Notch/Delta/Jagged pathways (Maekawa, Tsukumo, 
Chiba, Hirai, Hayashi, Okada, Kishihara, and Yasutomo 2003; Amsen, Blander, Lee, 
Tanigaki, Honjo, and Flavell 2004). The strength, duration (Langenkamp, Messi, 
Lanzavecchia, and Sallusto 2000), and combinatorial logic of these signals provide the 
input for the T-cell to proliferate as a TH1 or TH2 polarized cell, thereby shaping the type 
of immune response to the pathogen (Fig. 1). DCs could also provide the signals for T-
cell anergy or apoptosis in the absence of T-cell proliferation. 

Elegant experiments using two-photon microscopy of labeled DCs and T cells in 
murine lymph nodes in vivo show that during the first 8 hours of antigen-matured DC 
entry into the lymph node, mobile DCs and highly mobile T cells undergo short 
encounters but with a progressive decrease in cell motility of both. During the next 12 
hours T cells form long-lasting stable conjugates with the DCs and begin to secrete 
specific cytokines. After 24 hours the T cells begin proliferating and resume rapid  

 

molecules, changes in chemokine receptor expression to allow trafficking to 
secondary lymphoid organs, and changes in cytokine and chemokine production to 
influence T and B cells. Once in the local lymphoid tissue, DC and lymphocyte 
interaction is far from simple.  
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7.3.1 Common Transcriptional Reprogramming  
of Dendritic Cells by Pathogens 

Before antigen encounter, it seems that APCs that are similar in ontogeny (such as 
macrophages and immature monocyte-derived DCs) are similar in gene expression 
profile, sharing 96% of their expressed gene networks (Chaussabel, Semnani, 
McDowell, Sacks, Sher, and Nutman 2003). Following exposure to the same 
pathogen the two cell types respond quite differently at the transcriptional level, with 
only 40% of the regulated genes being shared by both (Chaussabel et al. 2003). This 
is perhaps not too surprising as macrophages and DCs have different roles in the 
immune response. Macrophages and monocytes mainly sustain and control the local 
inflammatory process as well as phagocytosing and destroying microbes. The 
distinct functional roles of DCs, participating in the inflammatory process at the site 
of infection, while being able to transit to local lymphoid tissue to prime T cells, 
suggest a number of different functional and therefore transcriptional states for DCs.  

Time course studies of murine and human DCs exposed to whole pathogens 
and PAMPs such as lipopolysaccharide (LPS) and double-stranded RNA (dsRNA), 
show DCs have at least three distinct transcriptional states (Huang, Liu, Majewski, 
Schulte, Korn, Young, Lander, and Hacohen 2001; Granucci, Vizzardelli, Virzi, 
Rescigno, and Ricciardi-Castagnoli 2001a; Granucci, Vizzardelli, Pavelka, Feau, 
Persico, Virzi, Rescigno, Moro, and Ricciardi-Castagnoli 2001b; Kwan & Kellam, 
unpublished observations). These “core” transcriptional responses occur independent 
of the type of antigen and reflect the essential functions of a maturing DC (Fig. 2). 
 

 
Fig. 2. Gene expression programs at different transcriptional stages of dendritic cell 
maturation. The solid and dashed lines represent transient and sustained upregulation of 
different functional groups of genes. 

the subject of considerable interest in determining global gene expression programs 
using postgenomic tools such as DNA microarrays. 

7.3 Gene Expression Programs in Antigen-Presenting Cells 

Antigen presenting cells (APCs) must exhibit considerable functional plasticity to 
initiate the complex series of events that leads to these different adaptive immune 
responses being appropriate to the initial antigenic trigger. APCs have therefore been 
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and IL-1 is induced. Within a few hours the early “activated” DC progresses to a 
second “transitional” gene expression program consisting of the induction of many 
chemokines, transcription factors, and components of intracellular signaling 
pathways. Finally, by 18 hours following antigen exposure, DCs display a “mature” 
transcriptional program characterized by the induction of genes involved in apoptosis 
regulation, intercellular signaling and T-cell stimulation. These time-dependent 
classes of gene expression correspond broadly to known DC functions over time. 
Initially DCs are involved in pathogen phagocytosis. Following pathogen exposure, 
however, DCs rapidly influence the local innate immune response, producing 
cytokines that affect macrophage, natural killer cell, and neutrophil function. Finally, 
as discussed, DCs in local lymphoid tissue interact and stimulate T and B cells 
requiring the transcriptional induction of specific functions. 

7.3.2 Plasticity in Dendritic Cell Transcriptional Programs 

Given that dendritic cells can direct different outcomes at the level of T-cell 
polarization they must therefore interpret and translate different antigenic input 
stimuli to instruct these outcomes. As we have seen, two nonexclusive theories 
predict that different DC subsets produce differential outcomes to a given pathogen 
(2.1.1), or a given DC is flexible in its response. Transcriptional profiling of DCs 
exposed to different pathogens and PAMPs clearly shows the induction of different 
gene sets superimposed over the “core” DC maturation program (Huang et al. 2001; 
Granucci et al. 2001a; Granucci et al. 2001b; Kwan and Kellam, unpublished 
observations). The first study comparing bacterial, viral, and yeast exposure to DCs 
(Huang et al. 2001) showed that the bacterium, E. coli specifically induced the 
expression of 118 genes. These included the rapid activation of a potent 
inflammatory response and the later induction of T-cell stimulating genes including a 
subset of chemokines thought to attract naïve TH2 T helper cells. In contrast, 
influenza virus strongly induced antiviral genes including type 1 interferons and 
interferon-inducible chemokines, although the induction of these genes may simply 
reflect the ability of influenza to replicate in DCs (Huang et al. 2001). A related 
study comparing LPS and TNFα stimulation of DCs showed very different patterns 
of DC gene expression but importantly identified the TNFα stimulus as providing 
only a “mild alert” effect compared to LPS which stimulates full DC maturation 
(Granucci et al. 2001a). These studies highlight the importance of the stimulatory 
context of different pathogens, but clearly highlight DC transcriptional plasticity to 
diverse pathogens, although care should be taken in such studies as different LPS 
preparations can have variable effects on DCs.   

Using similar approaches we have determined that DCs can transcriptionally 
distinguish between two RNA genome viruses, human rhinovirus and influenza 
virus, which differ by the presence of a viral lipid envelope and the type of RNA 
genome. In addition, DCs can discriminate between replication-competent and 
inactivated viruses (Fig. 3). 

 

As immature DCs progress to an early activated state, gene expression is 
characterized by induction of genes involved in antigen processing and cytoskeletal 
rearrangements and downregulation of genes involved in pathogen recognition and 
phagocytosis. In addition, the transcription of proinflammatory genes such as TNFα 
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Fig. 3. Distribution of induced and repressed genes in dendritic cells responding to viruses. 

implications for understanding immune control of viral infections. Certain viruses 
such as human immunodeficiency virus (HIV) (Izmailova, Bertley, Huang, Makori, 
Miller, Young, and Aldovini 2003) and murine cytomegalovirus (Andrews, 
Andoniou, Granucci, Ricciardi-Castagnoli, and Degli-Esposti 2001) are known to 
infect DCs and prevent authentic maturation. How these viruses prevent the 
maturation program is not known but should allow the identification of crucial 
functional gene networks that are required for DC maturation. In addition, the 
differences in DC transcriptional responses to live and inactivated influenza imply 
that inactivated vaccines may not produce the complete transcriptional repertoire that 
leads to fully authentic immunization. Understanding such differences should 
improve both vaccines for infectious agents and vaccines directed against tumors. 

7.3.3 Transcriptional Plasticity Toward TH1, TH2,  
and Tolerogenic Immunity 

Most of the DC gene expression studies have so far focused on antigens that 
stimulate a TH1 response, raising the question as to whether transcriptional 
differences will define TH1, TH2, and tolerogenic DC states. Recently Ryan et al. 
described the transcriptional changes in monocyte-derived DCs to the contact 
allergen dinitrobenzenesulfonic acid (DNBS) (Ryan, Gildea, Hulette, Dearman, 
Kimber, and Gerberick 2004). Many of the core DC maturation program genes were 
upregulated consistent with observed DC maturation. Indications of DC gene 
expression differences were identified by comparing DNBS-induced genes with 
other published DC gene expression data. This suggested that Signaling Lymphocyte 
Activation Molecule (SLAM), known to be highly upregulated on DCs matured by 
LPS or dsRNA, was downregulated by DNBS. SLAM activation in T cells results in 
the production of TH1 polarizing IFN-γ and in DCs in the production of IL-12 and 
IL-8 (Bleharski, Niazi, Sieling, Cheng, and Modlin 2001). SLAM activity may 
therefore be detrimental in a TH2 polarizing environment perhaps explaining its 
down-regulation in DCs by DNBS.  

The differences between viruses that infect DCs and those that do not, either 
through lack of DC tropism or because they are inactivated, have important  
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Gene expression programs involved in the production of peripheral tolerance 

have so far only been investigated using DCs derived from a myelomonocytic tumor 
cell line, but also suggest that DC interaction with regulatory T cells can induce a 
tolerogenic gene expression program including the induction of antiapoptotic genes 
(Suciu-Foca Cortesini, Piazza, Ho, Ciubotariu, LeMaoult, Dalla-Favera, and 
Cortesini 2001). More detailed analysis of the way in which various pathogens and 
PAMPs affect transcriptional profiles leading to differential DC functions will help 
uncover the contribution of DC plasticity in shaping the immune response. 

7.4 Integrating Genomics Data: A System View  
of the Immune Response 

What becomes immediately clear with genome-scale surveys of transcriptional 
programs and protein interaction maps is that focusing on single genes and gene 
families will not provide an understanding of the complexity of the integrated 
immune response. This understanding requires abstraction of models from existing 
theories and high-dimensional genomics datasets. Modeling should not be an 
anathema to biology although models are often treated with suspicion relative to 
empirical data. This arises mainly through a misunderstanding of the purpose of 
models. Biologists intuitively construct models all the time by forming hypotheses. 
Such mental and verbal models concentrate on describing and integrating selected 
aspects of their research, leaving aside certain facts as irrelevant. Good models make 
planning the next experiment possible and allow a prediction of the results. If the 
results differ from predicted, the model is adjusted. Modeling in systems biology is 
simply a formalization of this process mathematically and extending the model to 
large datasets. 

7.4.1 Models of the Immune Response 

To be able to produce such abstracted models from large genomic datasets it is 
necessary to define the structure of interactions within a network of genes and 
proteins, determine the dynamic relationships between the gene and protein 
components, and determine the integrated network behavior. Insights come through 
either data-driven or model-driven approaches to these aims. Network structures are 
beginning to be compiled either by physically mapping protein—protein interactions 
(Bouwmeester, Bauch, Ruffner, Angrand, Bergamini, Croughton, Cruciat, Eberhard, 
Gagneur, Ghidelli, Hopf, Huhse, Mangano, Michon, Schirle, Schlegl, Schwab, Stein, 
Bauer, Casari, Drewes, Gavin, Jackson, Joberty, Neubauer, Rick, Kuster, and 
Superti-Furga 2004; Gavin, Bosche, Krause, Grandi, Marzioch, Bauer, Schultz, Rick, 
Michon, Cruciat, Remor, Hofert, Brajenovic, Ruffner, Merino, Klein, Hudak, 
Dickson, Rudi, Gnau, Bauch, Bastuck, Huhse, Leutwein, Heurtier, Copley, 
Edelmann, Querfurth, Rybin, Drewes, Raida, Bouwmeester, Bork, Seraphin,  Kuster, 
Neubauer, and Superti-Furga 2002), by predicting network interactions from gene 
expression data (Zhou, Kao, and Wong 2002), and by computing networks from 
protein identification experiments using databases of known interactions (Yan, Lee, 
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Yi, Reiss, Shannon, Kwieciszewski, Coito, Li, Keller, Eng, Galitski, Goodlett, 
Aebersold, and Katze 2004). At present these networks are incomplete, dependent on 
the context of a given experiment and often lack the detail of knowledge available 
within the literature, all of which should improve with time.  

Determining the dynamic relationships between network components from 
genomics data is a vibrant area of research but suffers from many problems, both 
technical and theoretical. Problems with lack of long time courses of geneexpression 
data, lack of integration of genome-scale transcription rate data, and lack of 
integration of existing knowledge bases all hinder dynamic modeling. Even with 
better data, advances in modeling multivariate time series data consisting of a great 
excess of variables to observations (as is true from gene expression microarrays) are 
needed (Kellam, Liu, Martin, Orengo, Swift, and Tucker 2001; Bar-Joseph 2004) 

To date, the best approaches to modeling immune cell functions have used 
theoretical models that are tested against known biologically relevant parameters or 
intuitive estimates of the parameters. In immunology, such models have been 
assessed at the level of T-cell proliferation following priming by APCs (Allan, 
Callard, Stark, and Yates 2004). These models show control of CD4+ and CD8+ 
proliferation is mediated by different mechanisms. To prevent runaway T-cell 
expansion, the rate of apoptosis must progressively increase over time. Apoptosis 
mediated by cell-to-cell contacts alone is sufficient to regulate both CD4+ and CD8+ 
T-cell responses. However, if proliferation is controlled by other mechanisms such as 
cytokine signaling or by APCs then CD8+ cells must change both apoptosis and cell 
division rates over time to reduce cell numbers possibly reflecting the need to rapidly 
reduce CD8+ T-cell numbers after pathogen clearance to prevent immune pathology.  

Intracellular signaling has also benefited from a system-theoretic approach for 
modeling TNFα-mediated NFκB signaling (Cho, Shin, Lee, and Wolkenhauer 2003). 
When signaling and cell phenotype models are combined, the influence of T-cell 
stimulating signals on TH1 and TH2 polarization can be modeled (Yates, Callard, and 
Stark 2004). The model shows specific TH1 and TH2 polarization signals give rise to 
rapid but reversible induction of the transcription factors T-bet (TH1) and GATA-3 
(TH2). The model predicts that TH differentiation can be reversed at the single cell 
level, suggesting a possible therapeutic means of manipulating TH1 and TH2 
responses. Furthermore, such models would be of considerable interest in the context 
of DCs interacting with more than one T-cell, where potential T-cell interactions 
could be orchestrated and manipulated by the DC. 

7.4.2 Systems Immunology 

Despite the promise of models of immune cell function the problem remains of how 
we can assemble the parts into a more integrated understanding. This moves from 
modeling in isolation into a more systems biology framework. Theories of systems 
biology also impact on immunology both at intracellular signaling and at the cell 
phenotype and interaction level. One feature of complex biological systems is 
robustness against environmental and genetic changes. Robust systems, however, 
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complex autopilot system of a passenger airplane maintains a given flight path while 
being robust against changes in atmospheric conditions. The system is inherently 
fragile, however, to unexpected extreme events such as complete engine failure 
(Kitano 2004). The same applies to biological systems where robustness allows 
buffering against environmental changes and perhaps more importantly against small 
variations in genotype representing interindividual differences. Therefore, inter-
individual variations will not necessarily 
they are catastrophic defects, for example deficiency in the enzyme adenosine 
deaminase leading to Severe Combined Immunodeficiency (SCID) in children, or 
unless they affect the dynamics of the system, for example susceptibility to 
mycobacterial and Salmonella infections in individuals with defects in the IL-12 
receptor. Both types of events can therefore define disease (Kitano 2004)  

Systems control consists of a number of principles of which positive and negative 
feedback mechanism are well known in the immune system. Negative feedback is the 
main method of control that enables a robust response buffered against noise and 
perturbations. From this point of view, DCs sensing PAMPs might exhibit negative 
feedback control to buffer against differences in PAMP signaling intensity and strength 
allowing maintenance of a fixed  time-dependent maturation program. Positive 
feedback contributes to a robust system by amplifying  stimuli and often results in the 
phenomenon of bistability. This occurs in signal transduction/transcription settings 
when for a given range of input stimuli only a modest increase in transcription occurs, 
but for a different, higher range of input positive feedback results in a large increase in 
transcription. This in effect produces a bistable switch (Fig. 4). The modeling of TH1 
and TH2 stimulation by Yates et al. clearly  shows how the influence of bistable switch 
controls TH1 or TH2 polarization (Yates et al. 2004), making the induction of a state 
change from naïve to polarized T-cell insensitive to the absolute level of initial input 
signals provided they are above a switch threshold. 

Positive feedback bistability is therefore important for a robust immune 
response allowing both the amplification of variable input signals as will occur 
through differences in receptor affinities and signaling intensities in inter-individual 
variation. Positive feedback bistability should also allow a layer of functional 
redundancy in combinatorial signaling cascades where the absence of one 
component of a signal can be compensated for by increasing other components to 
achieve the desired switch threshold. In both cases a robust and consistent output is 
conferred from variable level inputs. The system breaks down and disease occurs 
when a switch threshold is not reached. How to investigate relative inputs and switch 
thresholds represents a considerable challenge, but it is possible that experiments and 
models of viral interaction with DCs may prove particularly informative.

also suffer from fragility as a trade-off. This may seem contradictory, but robustness 
in this sense means stability in the face of reasonable changes. For example, the 

affect the functioning of the system unless 

.
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Fig. 4. A schematic representation of bistability. Inputs below i1 result in only a small increase 
in transcription (y axis). Above i1 the system exhibits two stable states (solid line), the higher 
state being a result of positive feedback driving high-level transcription. Above i2 the system 
is insensitive to higher input signal and between i1 and i2 the system is insensitive to small 
reductions in input signal once the higher state is achieved. 

7.5 Conclusions 

Here we have shown some of the complexity and progress in determining genome-
scale views of DC function. Modeling of immune system components, especially 
models that define input and output parameters, may allow the chaining of model  
components with one providing outputs that serve as inputs for the next. Modeling 
DC gene expression programs corresponding to cytokine and cell-surface molecule 
expression may well provide a range of inputs into the models of T-cell polarization 
described (Yates et al. 2004). Understanding such integrated processes within the 
immune system should help improve therapies against infections, produce better 
vaccines against infectious agents and tumors, and provide means of intervening in 
autoimmune disease. 
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Abstract. We describe some computer models of the immune system and in particular of its 
response to the HIV infection. Then we introduce our model and show some results of simula-
tions of the AIDS disease progression. 

8.1 Introduction 

Recently the term “systems biology” started to become popular among scientists 
working in the interdisciplinary field of theoretical biology. It suggests that to under-
stand biology we should examine the structure and the dynamics of the combined 
system components rather than the isolated parts of a cell or organism (Kitano 2001). 
Along this line some general properties of biological systems as adaptation, insensi-
tivity to specific parameters, and graceful degradation have been identified. It is 
interesting to note that engineers routinely use similar concepts to describe the prop-
erties of mechanical or electric systems. 
 It is a relatively new field of science that involves the application of experi-
mental, theoretical, and modeling techniques to the study of biological organ- 
isms at all levels, from the molecular, through the cellular, up to the behavioral  
(Kitano 2001).  
 Such long-term goal, though well posed in scientific terms, appears quite ambi-
tious. On a more practical ground, the problems can be formulated in a narrower 
context. For example, in the design of drugs, the objective is to find a synthetic 
molecule that binds with high affinity a certain protein (or nucleic acid macromole-
cule) and either blocks its normal function or mimics another ligand for structures as 
the receptors in order to induce a normal physiological response. Actually, this task 
includes two distinct subproblems: the first one is to identify the molecules, the  
second one is to understand the impact of the drug on the organism. Though not 
independent, they can be addressed with different mathematical techniques and by 
different expertise. As another example, consider the question to find the best schedule 
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for the drug administration to a patient undergoing a certain therapy or, closer to our 
topic, for an immune stimulator used in immune therapies. To these ends, the 
mathematics can describe just a part of the whole system and, based on clinical data, 
can help clinicians to choose among a set of possibilities spelled out on the basis of 
their experience. 
 The present chapter aims to describe examples of the theoretical models that 
scientists employ to address the second of the aforementioned problems. As a matter 
of fact, in a number of situations, the molecular interactions can be included in very 
simple and stylized mathematical terms in equations describing the relationships 
among cells and molecules. The real value of the mathematical models is their capa-
bility to describe the complex relationships among the large number of components 
of the (immune) system. By means of perturbations of the network of mole-
cules/cells/organs, it is possible to understand many properties of the whole system. 
In other words, it is possible to answer questions like “what happens to the immune 
response if we administer this drug which is able to block the action of this mole-
cule?” or “what is the best administration dose/schedule/route for interleukin-2 in 
terms of a stimulation of the response?” or “what is the net effect of downregulating 
the expression of such receptor on the surface of the lymphocytes?” 
 In the following sections we introduce some mathematical/computer models of 
the immune response and in particular of the HIV infection. Then, we describe our 
model (C-ImmSim) and the way we use it to uncover some unknown aspects of the 
pathology and to make predictions about AIDS disease progression. 

8.2 Computational Immunology 

In the development of a mathematical model of the immune system of a vertebrate 
animal, three levels of abstraction are usually considered: the microscopic level 
which is the scale of subcellular activities (e.g., DNA synthesis and degradation, 
gene expression, alteration mechanisms of the cell cycle, absorption of vital nutri-
ents, activation and inactivation of receptors, transduction of chemical signals within 
the cell that regulate cellular activities such as duplication, motion, adhesion, or 
detachment), the mesoscopic level (that refers to the cellular level and therefore to 
the main activities of the cell population, e.g., the statistical description of the pro-
gression and activation state, cooperation/competition, aggregation properties, and 
intra/extravasation processes), and the macroscopic level (the tissue level that refers 
to the typical phenomena of continuum systems, e.g., cell migration, convection and 
diffusion of nutrients and chemical factors, mechanical responses, interactions with 
external tissues) (Preziosi 2003). 
 Besides that, the mathematical models of the immune system can be classified 
according to: (1) the mechanism of regulation of immune processes (i.e., the clonal 
selection theory versus. the idiotypic network); (2) the choice of the mathematical 
space (i.e., continuous versus. discrete time and/or space), and (3) the presence of 
stochastic (i.e., nondeterministic) components. 
 The implications of the first modeling choice are well known to biologists, 
whereas the other two require a few more words. The difference between discrete 
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and continuous models is in the choice of the numerical space chosen to represent, 
for instance, the time scale. It is pretty different to let time change continuously, and 
to consider quanta of time in which a number of events may happen simultaneously. 
The choice of the mathematical space determines the mathematical techniques one is 
able to use, the kind of solution that can be derived and, in general, the difficulty in 
carrying on a nontrivial analysis. A deterministic process is completely predictable 
provided an exact knowledge is available about the initial conditions whereas a sto-
chastic process, by definition, can be described only by means of the methods of 
statistics and probability theory. Stochastic components are often included to take 
into account that we do not have perfect knowledge either of the initial conditions or 
of the process that a system follows (or both). Therefore, stochastic models seem 
more suitable to describe biology but more difficult to analyse. 
 All existing models of the immune system derive from either the clonal selection 
theory or the idiotypic network theory. Nowadays immunologists consider these as 
two independent and perhaps complementary theories (Zorzenon dos Santos 1999).  
However, while clonal selection theory is believed to be the fundamental one in the 
present knowledge of the immune system, the idiotypic network theory is believed 
correct as far as the existence of anti-idiotypic reactions but probably not relevant in 
determining the immune response (Anachini and Mortarini 1999). 
 Both immunological theories inspired a number of continuous models (Perelson 
1988a; Perelson 1988b) whereas most of the discrete models are based on Jerne’s 
(idiotypic network) theory (Jerne 1973; Jerne 1974). On the other hand, the Celada–
Seiden model, which may include both theories, rests its foundation on the clonal 
selection theory (Celada and Seiden 1992). 
 Basically, continuous mathematical models try to represent the dynamics of cer-
tain quantities, like the number of cells or the concentration of a molecule in a com-
partment of the immune system, as a function of the birth and death rate and of other 
variables. A simple example is the so-called AB model (Segel and Perelson 1991) 
used in theoretical studies of the immune network. It describes the dynamics of the i-
th clone (i=1,…,M) of B-lympocytes (Bi(t)) and antibodies (Ai(t)) by means of the 
following two equations: 

                                               dBi /dt = m + Bi (pf(hi)- dB)                    (1) 

                                            dAi /dt = sBi f(hi) - dChiAi - dAAi                                    (2) 

 
Here m is the rate of maturation of B cells from the bone marrow, p is the division 
rate of activated lymphocytes, d characterizes the death rate, s is the secretion rate of 
antibodies, and dC is the elimination rate of antibody–antigen complexes. Idiotypic 
interactions are mediated through a field hi which is determined by the concentration 
of antibodies Aj and by the affinity Jij: 
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The activation function f(hi) determines the intensity of the stimulation of the clone i 
by the idiotypic field hi. These equations are used to study the dynamical regimes: 
oscillatory, chaotic, etc. Further details are outside the scope of the present work. 
 The main task of the immune system is to recognize the antigen by means of cell 
receptors. The binding mechanism, whose fine details are mostly unknown, is based 
on different physical-chemical effects (short-range noncovalent interactions, hydro-
gen binding, van der Waals interactions, etc.) (Perelson and Weisbuch 1997). The 
binding of a receptor with a molecule requires that they complement each other over 
a significant portion of their surface. This generalized shape is the constellation of 
features that determine the binding among molecules (Perelson and Oster 1979). 
Under the assumption that the shape can be described by K parameters, a point in a 
K-dimensional space (the shape space) specifies the generalized shape of the mo-
lecular binding region. Oster and Perelson estimated that in order to be complete the 
receptor repertoire should fulfill the following conditions: (1) each receptor should 
recognize a set of related epitopes, each of which differs slightly in shape; (2) the 
repertoire size should be on the order of 1016 or larger; (3) at least a subset of the 
repertoire should be distributed randomly throughout the shape space (Perelson and 
Weisbuch 1997). 
 Later, Farmer, Packard, and Perelson (1986) introduced the idea of using binary 
strings to represent the shape of a receptor. To determine the degree of affinity be-
tween strings it is possible to resort to different string-matching criteria. For instance, 
by using a “key–lock” analogy, two binary strings have high affinity if they “com-
plement” each other, that is, when the two strings are lined up every 0 in one corre-
sponds to a 1 in the other and conversely. 
 The following paragraph is an introduction (by no means complete) to mathe-
matical models of the immune system response and in particular to the class of mod-
els more close to our own approach that will be discussed later in this chapter. At this 
point of the discussion we just need to say that we deal with a stochastic and discrete 
description of the immune system response at the cellular scale. 

8.2.1 An Overview of Discrete Models 

A number of discrete models of the immune system working at the cellular scale 
have been proposed in the past by using a variety of different techniques and aims.  
The first aim in modeling the immune system is to reproduce the (primary and sec-
ondary) response. However, many other aspects of its behavior, like autoimmune 
diseases (Weisbuch and Atlan 1988), selection and hypermutation of antibodies 
during an immune reaction (Celada and Seiden 1996), autoimmunity and T-
lymphocyte selection in thymus (Morpurgo, Serenthà, Seiden, and Celada 1995), the 
immune response to known virus inducing cancer (Melief, Toes, Medema, Van der 
Burg, Ossendorp and Offringa 2000), the acquired HIV-related tumors (Carbone and 
Gaidano 2001; Varthakavi, Smith, Deng, Sun, and Spearman 2002), etc., have been 
studied and modeled. Moreover, it is worth pointing out that the activation of the 
immune response against some tumors has been known since the 1950s. Other stud-
ies showed that tumor cells resort to escape mechanisms that prevent the activation 
of the immune system (Anachini and Mortarini 1999). Recent extensive reviews on 
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discrete models of the immune system can be found in Perelson and Weisbuch 
(1997), Zorzenon dos Santos (1999), and Forrest and Hofmeyr (2000). 
 The discrete models of the immune system in use at this time (Zorzenon dos 
Santos 1999) can be classified, from the technical viewpoint, as Boolean networks, 
cellular automata, and lattice gases. We now describe briefly some of these models. 
Kaufman, Urbain, and Thomas (1985) proposed one of the first applications of dis-
crete automata in the study of the adaptive immune response. The original model 
(KUT model) considered five types of cells and molecules but, for the sake of sim-
plicity, we describe here a simplified version (Fig. 1). This “submodel” considers 
antibodies (Ab), helper cells (TH), lymphocytes, B cells (B), and antigens (Ag). Each 
entity is represented by a two-valued variable denoting high/low concentration. The 
rules governing the network of interdependencies/interactions among these variables 
are expressed by logical operations. The application of the rules is iterated over dis-
crete steps and the dynamics is observed. The rules are:  

    Abt+1 = Agt   AND  Bt  AND  TH t           

(4) 
    Bt+1 = TH t AND (Agt OR Bt)  

    Agt+1 = Agt AND NOT Abt  

    TH t+1 = TH t OR Agt 
 

 
Fig 1. Simplied KUT Model with antibodies (Ab), T helper cells (T), lymphocytes, (B) cells, 
and antigens (Ag). 

where AND, OR, and NOT are the standard logical operators. These rules should be read 
as follows: Abs are produced at time step t+1 by B cells if (at time t) the antigen is pre-
sent together with stimulating lymphocytes and TH cells; the B cells grow if TH cells and 
either antigens or other B cells are present; the antigen proliferates in the absence of  
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antibodies; TH cells depend on the presence of other helpers (to keep homeostasis) or of 
the antigens (implicit presentation is assumed). A network like that in the figure can  
schematically represent this simplified model and its evolution in time can be studied by 
means of computer simulations. For example, the complete KUT model has five fixed 
points in the state space composed by 25=32 points. Fixed points identify the global state 
of the immune system: naive, vaccinate, immune, paralyzed, paralyzed and sick. 

Many authors followed this simple approach. Weisbuch and Atlan proposed a model 
(WA model) (Weisbuch and Atlan 1988), based on Jerne’s theory, to study the special  
case of autoimmune diseases, like multiple sclerosis, in which the immune system 
attacks the cells of the nervous system. As in the KUT model, this model uses five 
binary variables representing killer cells (S1), activated killers (S2), suppressor cells 
(S3), helper cells (S4), and activated suppressor cells stimulated by the helpers (S5). 
The different types of cells influence each other with a strength that is 1, 0, or –1. 
The system evolves according to the following rule: at each time step, the concentra-
tion of one variable is set to unity if the sum of the interactions with the various cell 
types is positive, otherwise the concentration is set to zero.  This model shows the 
existence of only two basins of attraction over 25=32 possible states: the empty state 
where all the concentrations are zero and a state where only activated killers disap-
pear whereas the other four concentrations are unity.  

These two models have been extensively studied (Stauffer 1989; Pandey and 
Stauffer 1990; Atlan and Cohen 1989). Moreover, Pandey and Stauffer further ex-
tended the KUT model by using a probabilistic generalization of the original deter-
ministic cellular automata. Their model tried to provide a possible explanation of the 
time delay between HIV infection and the onset of AIDS (Pandey and Stauffer 1990; 
Pandey and Stauffer 1989). They represented helper cells (H), cytotoxic cells (S), 
virus (V), and interleukin (I). The interleukin molecules produced by helper cells 
induce the suppressor cells to kill the virus. The dynamics shows an oscillatory be-
havior followed by a fixed point where the immune system is totally destroyed, simi-
lar to the real onset of the AIDS. 

Dayan, Havlin, and Stauffer (1988) studied the WA model on a square lattice in order 
to take into account spatial fluctuations of cell concentrations. In their model each lattice 
point influences itself and its nearest neighbors with the same rules of the WA model. 
Interestingly, this lattice version of the WA model was found to have a different dynam-
ics compared to the original WA model as the number of fixed points is smaller. 

Chowdhury and Stauffer (Chowdhury and Stauffer 1992; Chowdhury 1998) pro-
posed a unified model of the immune system that includes, as special cases, the KUT 
and WA models.  The model describes the immune response to HIV and reproduces 
some features of experimental data. Chowdhury and Stauffer also proposed exten-
sions of the original network approach for modeling HIV and cancer (Chowdhury 
and Stauffer 1992). 

A majority rule cellular automaton was used by Agur (1991) to study the signal 
processing in a multilayered network. Chowdhury, Deshpande, and Stauffer (1994) 
proposed a model to describe the interaction between various types of immune com-
ponents considering intra- and interclonal interactions. 

The interaction among different TH cell subsets (Brass, Bancroft, Clamp, Grencis, 
and Else 1994) and the HIV interaction with T cells have been modeled as well 
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(Pandey and Stauffer 1990; Sieburg, McCutchan, Clay, Caballero, Ostlund, and 
James 1990; Mosier and Sieburg 1994; Zorzenon dos Santos and Coutinho 2001). 
Other possible approaches to study different aspects of the immune system dynamics 
in a discrete space/time framework can be found in Atlan and Cohen (1989). 

Hereafter, we introduce specific models of the HIV infection. The focus is on  
C-ImmSim that can be seen as a synthesis of a number of different approaches. 

8.3 Discrete Models of HIV Infection  

As an extension of the already mentioned work with Stauffer (Pandey and Stauffer 
1990; Pandey 1991), Pandey proposed a model that views a whole organism (e.g., a 
person) as a three-dimensional cellular automaton. The entities represented are the 
helper T cells, the killer T cells, macrophages, and virions (cells infected by HIV or 
free virus particles).  

The evolution of the automaton is determined by two sets of rules corresponding 
to different infection modes (fast replication followed by rupture of the cell and 
slower reproduction). The rules take the form of logical statements using the Boolean 
operators on the binary codes of the entities. The simulation of the model produced 
nontrivial results, but it did not show the characteristic “three-phase’’ dynamics of 
HIV (Pantaleo, Graziosi, and Fauci 1993). An interesting variation of that model 
allowed the authors to study the viral load as a function of viral growth factor and 
mutation rate (Ruskin, Pandey, and Liu 2002). 

Perelson and Nelson presented various models of HIV infection (Perelson and 
Nelson 1999) based on sets of simple ordinary differential equations (ODEs). By 
means of clinical data, the value of the parameters is estimated and a classic stability 
analysis is carried out for the different phases of the HIV infection. The authors 
described the impact of drug therapies on the HIV dynamics by means of appropriate 
changes in the equations. In a model extension, they also consider the role of macro-
phages and write the corresponding ODE. However, the model does not include  
B cells. This choice is very common (see other models below) and it may appear like 
a major omission in any description of the immune response. 

Hershberg, Louzoun, Atlan, and Solomon (2001) proposed a discrete model that 
acts in the Perelson “generalized shape space.” The mutations of HIV are represented 
by propagation of the virions in the infinite-dimensional shape space. There is nei-
ther a spatial structure nor a distinction of the immune system components. The 
status of each site of the (discrete) shape space is represented simply by the number 
of virions existing with that shape and by the number of immune system cells that 
recognize the same shape. 

The virions of any shape proliferate exponentially killing immune system cells at 
random until an immune system cell with that shape starts to proliferate and kill the 
virions in turn. In the absence of virus diffusion in shape space (i.e., if there were no 
mutations), this would stop the dynamics of the system, that is, the disease would be 
defeated. The diffusion of the virus in the shape space is responsible for the con-
tinuation of the infection. 
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The authors are able to simulate the “three-phase” dynamics of the HIV infection. 
However, their analysis is pretty qualitative and does not take into account at all the 
complexity of the real immune system. For instance, there is no distinction between 
immune cells targeted by HIV and other cells. 
 The spatial distribution of the virus infection and diffusion in the host’s body 
plays a major role in the work of Zorzenon dos Santos and Coutinho (2001). Their 
model describes the immune system cells in the lymphoid tissues that can be a target 
for HIV by means of a two-dimensional cellular automaton. Each lattice site contains 
a single cell and each time step corresponds to one week of real life. 
 The values of the parameters required to tune the system have been determined 
on the basis of experimental data. The results of the density of healthy and infected T 
cells are in good qualitative agreement with those reported by Pantaleo et al. (1993). 
However, this model does not describe how the immune system interacts with an 
antigen like HIV that mutates at an extremely high rate. Many important entities like 
the macrophages or the B cells are not included in the model. 

8.3.1 A Detailed Model of the Immune Reaction 

The model we use to study the immune response to HIV branched years ago from the 
Celada–Seiden model (Celada and Seiden 1992). In the original Celada–Seiden 
model a single lymph node (or generically a small portion of a secondary lymphoid 
organ) of a vertebrate animal is mapped onto a two-dimensional hexagonal lattice, 
with full periodic boundary conditions. The primary lymphoid organs, thymus and 
bone marrow, are modeled apart: the thymus is implicitly represented by the positive 
and negative selection of immature thymocytes before they get into the lymphatic 
system, whereas the bone marrow generates already mature B lymphocytes. Hence, 
on the lattice there are only immunocompetent lymphocytes. 
 The Celada–Seiden model belongs to the class of bit string models. Bit strings 
represent the “binding site” of cells and molecules as, for example, lymphocyte re-
ceptors (T lymphocyte receptor, B lymphocyte receptor, Major histocompatibility 
complex, antigen peptides and epitopes, immunocomplexes, etc.). The model in-
cludes the major classes of cells of the lymphoid lineage (TH, cytotoxic T lympho-
cytes or CTLs, B lymphocytes, and antibody-producing plasma cells) and some of 
the myeloid lineage (macrophages and dendritic cells). 
 The interactions among these cells define their functional behavior. With respect 
to other immune system models, the Celada–Seiden model has an additional level of 
description, representing the intracellular processes of antigen digestion and presen-
tation. Both the cytosolic and endocytic pathways are implemented. Usually, each 
time step of the simulation corresponds to 8 hours of “real life”. 

8.4 Simulation of HIV-1 Infection 

To account for the features of HIV-1, a number of additions are required to the origi-
nal Celada–Seiden model. First, the TH cells become, along with the dendritic cells 
and the macrophages, a possible target of the antigen action. From our simulations, it 
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appears that the infection of each cell type has different and specific consequences. 
For instance, if HIV-1 does not infect dendritic cells, the only effect is a reduction of 
the cytotoxic activity in recognizing new strains of the virus. 
 On the contrary, extending the infection to macrophages has a more striking 
implication since it weakens the innate response during the first phase. Moreover, it 
partially reduces the number of active antigen-presenting cells (B cells are also pre-
senting). In such a way the efficiency in stimulating the growth of helper cells and 
triggering both cytotoxic activity and humoral response is impaired. 
 We assume that the infection of a cell is a stochastic event. There is a fixed prob-
ability that an HIV-1 infects a target cell. Once inside the target cell, the virus re-
mains silent until, with a certain probability pw, it starts to transcribe its RNA ge-
nome in the host DNA. In such a way, we account for variants of the virus with a 
low value of pw, which may be interpreted either as strains having a poor adaptation 
(those having good chances to become extinct) or as strains that are activated very 
late. Newly assembled virions in productively infected cells accumulate inside the 
cell at a rate given by another parameter, pr. With the same rate pr, a part of these 
virions bud from cell membranes. Hence, if pr is high, the accumulation of virions 
inside the cells causes cell rupture and consequent release of viral content into extra-
cellular space. Finally, HIV-1 mutates in productively infected cells with a mutation 
rate given by a third parameter, pm.  
 The activation (pw), replication (pr), and mutation rate (pm) are a triplet of numbers 
between 0 and 1. The virus is represented by two binary strings (each l bitlong), one 
corresponds to the epitope (i.e., the B-cell-receptor’s binding site) and the other to the 
peptide (i.e., the MHC class I and II binding site). It is possible to specify an arbitrary 
number of epitopes and peptides. A string of l bits can assume 2l possible values. How-
ever, since the virus is represented by one epitope and one peptide, each viral strain is 
identified by 2l bits. This means that for l equal to 12 the potential number of different 
virus strains becomes equal to 16,777,216 (224). Note that if pm is equal to 1×10-2 per 
bit, the probability of having, at least, one mutation in a 24-bit string is 1–(1– pm)24 ~ 
0.22, in accordance with other studies (Perelson and Nelson 1999). 
 Recently, we started to associate a “meaning” to parts of the bit strings in order to 
specify the functional properties of the simulated virus (Castiglione, Poccia, 
D’Offizi, and Bernaschi 2004). We map the genotype to the phenotype by means of 
a simple formula that computes the values pw, pr, and pm from different, non-
overlapping, zones of the binary string that describes the epitope of the virus. Since 
the bit-mutation is completely random, it may flip any of the bits representing the 
peptide or the epitope. In either case there is a nontrivial outcome: (1) if the peptide 
is modified, the affinity with the (class I or II) MHC molecules changes. This corre-
sponds to the appearance of variants of the virus that might not undergo the cytotoxic 
activity of CD8 cells. (2) if the epitope is modified, then one of the three values of 
the triplet (pw, pr, pm) is modified. 
 By looking at the results of the simulations, one can observe the population dynam-
ics of the lymphocyte cells classified according to their specificity and state (i.e., dupli-
cating, anergic, and so on), the plasma viremia and proviral HIV, the concentration of 
anti-HIV antibodies produced, and the magnitude of cytotoxic response. An example  
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Fig. 2. We simulate the onset of an opportunistic disease by injecting a bacterium (e.g.,  
Mycobacterium tuberculosis) during the ninth year after the primal infection with HIV. While 
the HIV count is still under control by means of a continuous cytotoxic activity (plot b) and by 
a humoral response (plot d), the system that is weakened in its CD4 count (plot a) cannot cope 
with the replication rate of the newly injected bacteria (plot c). 

of output is shown in Fig. 2 that is produced by the simulation of a number of cells 
contained in 10 μl of peripheral blood (about 20,000 immune cells with a repertoire of 
4096 possible receptors fighting with an equivalent number of potential HIV strains). 
 Besides that, we can look at the HIV peptides that are expressed on the surface of 
the antigen-processing cells, to determine if the wild-type virus undergoes mutations 
able to escape MHC presentation. Likewise we can monitor any viral mutation to 
check if there is a systematic behavior of the virus that allows it to escape the im-
mune system control (Bernaschi and Castiglione 2006). 
 An interesting feature of the model is the possibility to schedule the injection of 
an arbitrary antigen at any time. For instance, at the beginning of a simulation, we  
can infect the “virtual patient” with a wild-type HIV that weakens the immune sys-
tem. Then, during the simulation, it is possible to challenge again the immune system 
by means of a fast-replicating bacterium like, for example, Mycobacterium tubercu-
losis (MTB). What we get, as depicted in Fig. 2, is the appearance of the expected 
opportunistic disease. The MTB is injected 9 (simulated) years after the primal infec-
tion with HIV. At the time of the second antigenic challenge, the HIV is still under 
control by means of a continuous anti-HIV cytotoxic activity (plot b) and by a spe-
cific humoral response (plot d). However, in the latent phase of the AIDS disease, 
the system is weakened in its CD4 count (plot a) and eventually cannot cope with the 
replication rate of the newly injected bacteria (plot c). 
 Note, however, that by injecting the same bacterium at the time the CD4 
count is not too low, the immune system is able to defeat the challenge (not 
shown), as it happens in reality for healthy immune systems. This demonstrates 
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not only that the model is sensible enough to any kind of validation test but also 
that it is ready to be used to test HAART therapy as we expect to do in the near 
future. 

8.5 Conclusions 

We presented some general concepts about mathematical modeling of the immune 
system. We focused on those models that resort to the discrete representation of time 
and space. Then we introduced the model that we currently use to study the HIV 
infection in order to show how a computational model can both reproduce what is 
known about the dynamics of a biological phenomenon and then make predictions 
about other aspects that cannot be easily measured or observed in clinical experi-
ments. In this way we tried to give an idea of how mathematical/computer modeling 
can help biologists to understand all the aspects of a disease and provide indications 
to clinicians about a possible therapy. Hopefully, a closer collaboration among 
mathematicians, computer scientists, and biologists, along with the availability of 
large clinical datasets, will enhance the understanding of diseases and suggest new 
drug discoveries and/or therapeutic regimens.  
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Abstract. The form of the neutralizing antibody response to human immunodeficiency virus 
type 1 (HIV-1) and the evolutionary response by the virus are poorly understood. In order for 
a virus particle (virion) to infect a cell, exterior envelope glycoprotein (gp120) molecules on 
the virion’s surface must interact with receptors on the cell’s surface. Antibodies that bind to 
gp120 may neutralize a virion by interfering with these interactions. Therefore, gp120 is ex-
pected to evolve in response to selection by both cell-surface receptors and antibodies. The 
rate of such adaptation and the constraints imposed by a response to one selective force on the 
response to the other are unknown. Here, I describe a simulation modeling approach to these 
problems. The population of viral genomes infecting a single patient is represented by the 
intensely studied third variable (V3) region of gp120, the main determinant of which 
chemokine coreceptor a virion uses to enter a cell, and an important target of neutralizing 
antibodies. Mutation and recombination are applied by realistically simulating the viral repli-
cation cycle. Selection by chemokine coreceptors is simulated by taking advantage of the fact 
that mean site-specific amino acid frequencies are measures of the site-specific marginal 
fitnesses of amino acids in relation to coreceptor interactions. Selection by antibodies is im-
posed by simulating the affinity maturation of B-cell lineages that produce neutralizing anti-
bodies to HIV-1 V3. These simulations make clear predictions about the functional cost  
of adaptation to antibody surveillance, which may help explain the pattern of chemokine  
coreceptor usage by HIV-1. 

9.1 Introduction 

Understanding the immunology and evolution of infectious disease is not only a 
fundamental requirement of the successful treatment and prevention of disease, it 
also provides an exceptional opportunity to study adaptive evolution at the molecu-
lar level (Frank 2002). Arguably, the main barrier to the development of an effec-
tive vaccine against infection by human immunodeficiency virus type 1 (HIV-1) is 
our lack of detailed understanding of the process by which the virus adapts to im-
mune surveillance. We lack an understanding of how viral mutation, recombination, 
cell superinfection, and protein structural and functional constraints affect HIV’s 
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adaptation to the cell-mediated and humoral branches of the immune system. We 
also lack detailed understanding of the dynamics of immune responses to HIV.  

Here, I describe a simulation approach to understanding and predicting the adap-
tation of HIV to immune surveillance at the molecular genetic level. Published esti-
mates of fundamental population genetic parameters for HIV-1 allow the realistic 
simulation of HIV intrapatient evolution in the absence of selection. Selection is 
more difficult to simulate realistically at the molecular level, however, because it 
requires knowledge of the effects of all genetic changes on replication rate within a 
given environment. For example, to simulate selection at the protein level would 
require knowledge of the fitness effect of each amino acid at each site of a protein, or 
protein region, and the effects on fitness of interactions among amino acids at differ-
ent sites. This information is not available for any protein region. However, in the 
case of selection by host cell receptors, fitness effects can be modeled easily for 
HIV-1 because the mean site-specific frequency of an amino acid is positively corre-
lated with its effect on fitness (da Silva 2006a). For the special case of immune se-
lection, in which the environment coevolves antagonistically with the virus, knowl-
edge is required of the dynamics of the immune response as well as the targeted 
protein region (epitope).  

The evolution of a viral population infecting a single patient is examined by fo-
cusing on the intensely studied third variable region (V3) of the HIV-1 exterior enve-
lope glycoprotein (gp120). I begin by providing background information on the HIV 
replication cycle and the special role of V3 in interactions with cell-surface receptors 
and neutralizing antibodies. Then I briefly review what little is known about the 
dynamics of the humoral response to HIV and the evolutionary response of the virus. 
This is followed by a description of the model, focusing on the methods used to 
estimate viral fitness. Finally, results are presented from simulations that explore the 
effects of coreceptor selection, antibody selection, and the interaction of these on 
viral adaptation.  

9.2 The HIV Replication Cycle 

HIV virus particles (virions) contain two single-stranded copies of their RNA ge-
nome, which is approximately 9.5 kilobases long and includes nine protein-coding 
genes. In order to replicate its genome a virion must infect a cell, reverse transcribe 
its genome into DNA, and integrate the DNA copy into the host’s genome. The first 
step, infection, requires that gp120, which is on the virion’s surface, interact with 
protein receptors on the cell surface. Typically, gp120 binds to a CD4 receptor mole-
cule, which causes conformational changes to gp120 that allow it to then bind to 
either of two chemokine receptors: CCR5 or CXCR (Coffin 1999). As a result of 
these interactions, the primary targets of infection are CD4+ T cells expressing either 
CCR5 or CXCR4. The second major step in the replication cycle is the reverse tran-
scription of the viral genome by the viral enzyme reverse transcriptase. Reverse 
transcription of the viral genome is error prone and lacks proofreading, resulting in 
the high mutation rate characteristic of retroviruses (~10-5 mutations per nucleotide 
per replication cycle (Mansky and Temin 1995)). Reverse transcriptase also jumps 



Simulation of HIV-1 Molecular Evolution in Response to Antibody Selection 163 
 

 

frequently from one RNA template to the other during reverse transcription, produc-
ing a DNA copy that is a recombinant of the two RNA copies of the genome. Such 
recombination has recently been reported to occur at a rate two orders of magnitude 
higher than the mutation rate (~10-3 crossovers per nucleotide per replication cycle 
(Levy, Aldrovandi, Kutsch, and Shaw 2004)). The end result is a double-stranded 
DNA copy of the viral genome that is then integrated into the host genome. This 
provirus, as the integrated viral genome is called, is eventually transcribed to RNA, 
and the RNA translated to protein, by cellular enzymes. Pairs of newly transcribed 
strands of viral RNA are packaged into virions formed by newly translated viral 
proteins, and these are budded from the host cell as free virions. The entire cycle 
takes about 2 days when an activated T-cell is infected (Perelson, Neuman, Markovitz, 
Leonard, and Ho 1996). 

9.2.1 The V3 Loop 

A virion’s interaction with cell-surface chemokine coreceptors during the infection 
process is largely determined by the V3 loop of gp120 on the virion surface (Sharon, 
Kessler, Levy, Zoller-Pazner, Gorlach, and Anglister 2003). V3 is a loop of 35 
amino acids (typically) defined by a disulfide bond between terminal cysteine resi-
dues. The amino acid sequence of V3 appears to be the primary determinant of 
which chemokine coreceptor, CCR5 or CXCR4, is used to enter a cell, or whether 
both coreceptors may be used. Hence, virions may be classified by their chemokine 
coreceptor-utilization phenotype as exclusively CCR5-utilizing (R5), exclusively 
CXCR4-utilizing (X4), or dual tropic (R5X4). This aspect of a virion’s phenotype is 
important because it determines which cells a virion may infect and because the X4 
phenotype has been linked to increased disease pathogenesis (Mosier 2000).  

V3 is also a target of neutralizing antibodies; antibodies that bind to V3 may in-
terfere with chemokine coreceptor interactions. Twenty-two monoclonal antibodies 
that target V3 and neutralize primary HIV-1 isolates have been isolated from humans 
infected with HIV-1 subtype B, the main North American and European subtype. 
These antibodies are listed in the HIV Molecular Immunology Database. These anti-
bodies recognize linear epitopes from the central region of V3, and amino acid 
changes in this region have been implicated in escape from neutralization (McKeating, 
Gow, Goudsmit, Pearl, Mulder, and Weiss 1989; McKnight, Weiss, Shotton, Takeu-
chi, Hoshino, and Clapham 1995; Yoshida, Nakamura, and Ohno 1997). Other stud-
ies suggest that polyclonal antibodies in human sera that are capable of neutralizing 
HIV-1 target conformational V3 epitopes (Gorny, Williams, Volsky, Revesz, Cohen, 
Polonis, Honnen, Kayman, Krachmarov, Pinter, and Zolla-Pazner 2002). Unfortu-
nately, these epitopes have not been described. 

9.2.2 The Neutralizing Antibody Response and the HIV-1  
Adaptive Response 

Recent studies have laid to rest any doubt that there is a strong neutralizing antibody 
response to HIV-1 and that the virus evolves in response to the resulting selection 
(Wei, Decker, Wang, Hui, Kappes, Wu, Salazar-Gonzalez, Salazar, Kilby, Saag, 
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Komarova, Nowak, Hahn, Kwong, and Shaw 2003; Richman, Wrin, Little, and 
Petropoulos 2003). However, HIV-1-specific antibodies are not detected until 20 days 
after the onset of symptoms (Wei et al. 2003). Assuming that the onset of symptoms 
coincides with peak viremia, about 6 weeks after infection, then HIV-1-specific anti-
bodies are not detected until approximately 2 to 3 months after infection. Antibodies 
capable of neutralizing HIV-1 are detected approximately 2.5 months after peak vire-
mia, or 4 months after infection (Wei et al. 2003; Richman et al. 2003). This initial 
neutralizing response is followed by a turnover of the viral population that results in 
resistant virus. A new neutralizing response is then stimulated and followed by viral 
turnover. The viral turnover may occur in as little as 2.5 to 3 months (Wei et al. 2003) 
and the interval between neutralizing antibody responses varies between 3 and 10 
months (Richman et al. 2003).  

The mode of neutralization escape by the virus appears to involve amino acid 
changes both within and outside epitopes. In addition to amino acid changes in the 
central region of V3, other changes associated with resistance involve glycosylation 
motifs within or outside V3 (Wei et al. 2003). These motifs are binding sites for 
glycans that somehow interfere with antibody binding. 

9.3 The Model 

The basic data structure of the model represents a cell that may be infected by zero or 
more proviruses, each represented by its V3 DNA sequence. A vector of such cells 
represents the population of target cells in a patient. The population sizes of target cells 
and proviruses are held constant for simplicity and to simulate the quasi-stable state 
during the 5 or so years of the asymptomatic, chronic stage of infection in untreated 
patients. Simulation flow follows the HIV replication cycle. An infected cell forms 
virions by pairing its proviruses at random. The fitness of a virion, which depends on 
its V3 amino acid sequences, determines its probability of escaping neutralization and 
integrating its genome into that of a new host cell. In reality, a virion has many gp120 
molecules on its surface, each with a V3 loop, and these molecules are potentially 
translated from any of the proviruses sharing a host cell. In the model, it is assumed 
that a virion possesses all of the possible V3 loops translated from the proviruses shar-
ing its host cell and that its fitness is equal to that of the V3 loop with the highest fit-
ness. The calculation of fitness from a V3 amino acid sequence is described below. A 
virion infects a randomly chosen cell, which may already be infected, with a probabil-
ity equal to its fitness (scaled from 0 to 1). During the reverse transcription step, cross-
overs between the two copies of the virion’s genome and mutation of the final recom-
binant DNA copy occur probabilistically at specified rates. 

9.3.1 Fitness 

Fitness is determined by the amino acid sequence of a V3 loop and consists of two 
components. The functional component of fitness reflects a V3 loop’s interaction 
with chemokine coreceptors and is the probability of infection. The neutralization 
component of fitness reflects a V3 loop’s interaction with antibodies and is the prob-
ability of escaping neutralization. Total fitness is the product of these probabilities. 

da Silva 
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9.3.1.1 The Functional Component of Fitness 

The functional component of fitness was estimated from V3 amino acid mean site-
specific relative frequencies. Site-specific frequencies were calculated for the viral 
population infecting a single patient and were then averaged across patients. These 
mean site-specific frequencies are linearly related to the site-specific marginal fitness 
effects of the amino acids, measured as relative virion infectivity, and are equivalent 
to the relative marginal fitnesses of the amino acids when scaled from 0 to 1 (da 
Silva 2006a). The marginal relative fitness of a particular V3 loop is simply the 
product of the 35 site-specific marginal relative fitnesses of its 35 amino acid sites. 

V3 amino acid site-specific frequencies were calculated from sequences associ-
ated with a patient and a chemokine coreceptor-usage phenotype in the HIV Se-
quence Database. Only sequences from subtype B, the most studied and sequenced 
HIV-1 subtype, were used. Mean site-specific frequencies vary among chemokine 
coreceptor-usage phenotypes (Fig. 1), as would be expected if these frequencies are 
measures of site-specific marginal fitnesses with respect to the interaction between 
V3 and a chemokine coreceptor. Therefore, the fitness of a particular V3 loop was 
calculated from the site-specific relative fitnesses of each phenotype and the loop 
was assigned the phenotype that gave the highest fitness. 

To explore the effect of the strength of selection by a coreceptor on viral adapta-
tion, amino acid site-specific selection coefficients were multiplied by a scaling 
constant ranging from 0 to 1. Selection coefficients were calculated by subtracting 
the relative fitness of the amino acid under consideration from that of the most fre-
quent amino acid at the same site, which is assigned a relative fitness of 1. A higher 
scaling constant corresponds to stronger selection. 
 This method of estimating fitness assumes no fitness interactions (epistasis) among 
amino acids at different sites. However, the amino acids of the V3 loop are known to 
co-vary between pairs of sites (Korber, Farber, Wolpert, and Lapedes 1993), indicating 
epistatic interactions between sites. To take this into account, the fitness of a sequence 
in which only one member of a pair of associated amino acids was present was reduced. 
Fitness was reduced by a factor equal to the ratio of the expected mean frequency of a 
covarying pair of amino acids (the product of their individual mean frequencies) to the 
observed mean frequency of the pair (which is higher). 

9.3.1.2 The Neutralization Component of Fitness 

To calculate the neutralization component of fitness requires a model of the neutralizing 
antibody response to HIV-1 that describes how the probability of neutralization of a 
virion changes over time. In the absence of any directly applicable model, I have  
made the reasonable assumptions that antibody affinity maturation increases logistially 
(Rundell, DeCarlo, Hogenesch, and Doerschuk 1998) and that neutralization is  
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Fig. 1. HIV-1 subtype B V3 amino acids of chemokine coreceptor-usage phenotypes in order 
of decreasing site-specific frequency. Frequencies were calculated from 181 sequences from 
36 patients for R5, 43 sequences from 12 patients for R5X4, and 83 sequences from 10 pa-
tients for X4. 
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limited by antibody affinity. The well-known logistic growth equation is used to 
model affinity maturation in response to an epitope in the viral population. The affin-
ity of an antibody to an epitope is 

Nt = K / 1+ K /N0 −1( )e−rt[ ]         (1) 

where t is the number of viral generations of stimulation (maturity), K is the maxi-
mum affinity (ranging from 0 to 1), N0 is the affinity at t = 0, and r is the intrinsic 
rate of increase of affinity (rate of increase when Nt is small). Once the production of 
an antibody has been stimulated (see below), t is incremented for each viral genera-
tion in which the targeted epitope is present. The probability of neutralization of a 
virion that carries the epitope targeted by the antibody is Nt, and the probability of 
neutralization escape is 1 – Nt. The neutralization component of fitness for a virion 
then is the product of the neutralization escape probabilities associated with each 
antibody that targets epitopes contained in the virion’s V3 sequences. 

The V3 linear epitopes of known monoclonal neutralizing antibodies produced 
during HIV-1 subtype B infection of humans are shown in Table 1. Before any of 
these antibodies can affect virion fitness, their initial production must be stimulated.  
 

Table 1. Monoclonal neutralizing antibodies that target V3, generated during HIV-1 subtype 
B infection of humans, and their epitopes. 
from the HIV Molecular Immunology Database. 

           
Monoclonal antibody  V3 epitope 
          
           

412-D    RKRIHIGPGRAFYTT 
DO142-10     KRIHIGPGRAFYTT 
391/95-D     KRIHIGPGRAFY  
41148D       KRIHIGP 
311-11-D     KRIHIGP 
257-D      KRIHI 
908-D      KSITKG 
782-D      KSITKG 
838-D      KSITK 
MN215        RIHIGPGRAFYTTKN  
19b          I....G..FY.T 
419-D          IHIGPGR 
504-D          IHIGPGR 
453-D          IHIGPGR 
4117C          I.IGPGR 
418-D           HIGPGRA 
386-D           HIGPGR 
268-D           HIGPGR 
537-D             IGPGR  
447-52D              GP.R 
N70-1.9b              PGRAFY 
694/98-D               GRAF 

A period indicates any amino acid. Data are
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In the model, initial production of an antibody is stimulated by the presence of its 
epitope in the viral population at a frequency above a specified threshold. This fre-
quency threshold determines the narrowness of the antibody response. For example, 
a high threshold frequency of 0.9 corresponds to a narrow response. Once an anti-
body’s initial production is stimulated, the presence of its epitope at any frequency is 
sufficient to increase its maturity (t in Eq. (1)). If the individual frequencies of epi-
topes for two or more antibodies exceed the stimulation threshold in the same viral 
generation, then only one antibody, chosen at random, has its initial production 
stimulated. If a V3 sequence carries the epitope for an antibody whose production 
has been stimulated, then none of the epitopes from that sequence are available to 
stimulate the initial production of any other antibody. 

9.4 Simulations 

9.4.1 The Simulation Environment 

The simulation program was written in FORTRAN 90 and parallelized using the 
Message Passing Interface library. Random numbers were generated using the Scal-
able Parallel Random Number Generators Library (SPRNG). Simulation replicates 
were run in parallel on an IBM eServer 1350 Linux cluster. Details of the simulation 
methods used are given in da Silva (2006b). 

9.4.2 Adaptation to Coreceptors 

Initial simulations were carried out to demonstrate viral adaptation to chemokine 
coreceptors. To study adaptation to CCR5, the viral population was initialized with a 
suboptimal R5 V3 sequence and allowed to evolve over several hundred viral gen-
erations in the absence of antibody selection. Figure 2 shows the increase in popula-
tion mean fitness, determined entirely by the functional component of fitness, for 
various selection coefficient scaling constants. Fitness increased as the suboptimal 
sequence evolved toward the optimal sequence for the phenotype, that is, as the viral 
population adapted to the CCR5 chemokine coreceptor.  

Figure 3 compares simulated V3 sequences at the end of one simulation replicate 
with the suboptimal R5 V3 sequence of the initial population and the optimal R5 
sequence. The initial sequence differed from the optimal sequence at three sites, and 
the simulated sequences evolved to match the optimal sequence at two of these sites. 
At the third, unmatched, site the difference between the initial and optimal sequences 
involved amino acids with nearly identical site-specific frequencies, thereby impos-
ing only weak selection for amino acid replacement. 
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Fig. 2. The change in viral population mean fitness over viral generations in the absence of 
antibody selection. Populations were initialized with a suboptimal R5 V3 sequence. Plots for 
different selection coefficient scaling constants (strengths of coreceptor selection) are shown. 
Lines are means of 20 replicate simulations. The following parameter values were used: 105 
cells, 3 x 105 virions, 10-5 mutation per nucleotide per cycle, 10-3 crossover per nucleotide per 
cycle, 100 virions budded per cell, and 0.03 probability of viral genome integration. 

Simulations were also run with populations initialized with optimal, or near-
optimal, R5, X4R5, or X4 V3 sequences (Fig. 4). The optimal R5 V3 sequence has a 
fitness of one in the absence of antibody selection and does not change over the 
several hundred generations simulated. The X4R5 V3 sequence is near-optimal in 
the sense that it contains the most common amino acid for its phenotype at all sites 
but one; this was the sequence in the Swiss-Prot protein database most similar to the 
optimal sequence. The relative fitness of this near-optimal X4R5 sequence is 0.37 
because of the difference from the optimal sequence and because it violates several 
amino acid covariation patterns (See 9.3.1.1). Selection of covarying amino acids 
appears to have changed the sequence phenotype to R5, followed by evolution to the 
optimal R5 V3 sequence. The optimal X4 sequence also has a fitness of less than one 
because it violates several amino acid covariation patterns. However, selection of 
covarying amino acids, which increased population mean fitness, did not change the 
phenotype. X4 sequences attained a mean fitness of only 0.64 after 500 generations 
of selection. 
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Fig. 3. Twenty randomly chosen V3 sequences from one replicate simulation with a selection 
coefficient scaling constant of 0.25. Other parameter values are as described in Fig. 2. Periods 
indicate identity with the initial sequence. 

9.4.3 Adaptation to Antibody Surveillance 

Parameter values for the logistic growth equation (Eq. (1)), used to model affinity 
maturation, were chosen to give realistic antibody response dynamics. The affinity of 
antibody to hapten increases up to 10,000-fold (Wedemayer, Patten, Wang, Schultz, 
and Stevens 1997), but increases only up to 1000-fold for a protein immunogen 
(lysozyme) (Cauerhff, Goldbaum, and Braden 2004), and affinity increases of only 
around 100-fold have been reported in response to HIV-1 gp120 (Toran, Kremer, 
Sanchez-Pulido, de Alboran, del Real, Llorente, Valencia, de Mon, and Martinez 
1999). Therefore, it was assumed that a 1000-fold increase in affinity is the maxi-
mum in response to a protein immunogen. Setting the maximum affinity (K) to 1.0 
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Fig. 4. Changes in viral population mean fitness over viral generations in the absence of anti-
body selection for populations initialized with optimal (R5) or near-optimal (X4 and X4R5) 
V3 sequences. Lines are means of 20 replicate simulations. Simulations were run with a selec-
tion coefficient scaling factor of 0.25. Other parameter values are as described in Fig. 2. 

and the initial affinity (N0) to 10-3 allows a 1000-fold increase. The value for the 
remaining free parameter, the intrinsic rate of increase of affinity (r), was set to 0.25, 
which gives viral population turnovers at intervals of about 3 months. The threshold 
epitope frequency in the viral population at which antibody initial production is 
stimulated was set to 0.1, 0.5, and 0.9 in separate simulations. 

9.4.3.1 Effect of the Stimulation Threshold 

Figure 5 shows changes in the components of fitness over time starting with a viral 
population of optimal R5 V3 sequences and with antibody selection. With antibody 
selection, the neutralization component of fitness cycled as antibody affinity in-
creased and then new, neutralization-resistant viral variants progressively replaced 
older, sensitive variants. Increasing the antibody production stimulation threshold 
increased the period of the neutralization fitness cycles, but in every case the virus 
escaped humoral control. Note that with each increase in the neutralization compo-
nent of fitness, which corresponds to viral escape from the circulating antibody, the 
functional component of fitness decreased. This shows a clear trade-off between 
fitness components: adaptation to antibody surveillance necessarily reduced adapta-
tion to the chemokine coreceptor. The final value of the functional component of 
fitness in each simulation was about 0.6 (compared with an initial value of 1.0). 
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Fig. 5. Viral population mean fitness components plotted over viral generations for different 
antibody stimulation frequency thresholds. Lines are means of 20 replicate simulations. Simu-
lations were run with antibody affinity maturation parameters N0 = 10-3, K = 1, r = 0.25, and a 
coreceptor selection coefficient scaling factor of 0.25. Remaining parameter values are as 
described in Fig. 2. 

da Silva 



Simulation of HIV-1 Molecular Evolution in Response to Antibody Selection 173 
 

 

Therefore, adaptation to antibody surveillance under these simulation conditions re-
duced the functional component of fitness by 40%. Also note that a narrower antibody 
response (higher stimulation threshold) increased the duration of high V3 function. 

Figure 6 shows V3 sequences from one replicate simulation after 500 generations 
with an antibody production stimulation frequency threshold of 0.1. Amino acid 
replacements, mainly at two sites, produced sequences that are neutralization resis-
tant but suboptimal with regard to their interaction with CCR5. 

9.4.3.2 Effect of the Strength of Coreceptor Selection  

The effect of the strength of selection by the chemokine coreceptor was investigated 
by rerunning simulations with different coreceptor selection coefficient scaling fac-
tors (Fig.7). These simulations were run with an antibody production stimulation 
frequency threshold of 0.1 and should be compared with the corresponding plot in 
Fig. 5. A coreceptor selection coefficient scaling factor of 0.1, instead of 0.25, as was 
used previously (Fig. 5), did not alter appreciably the dynamics of the neutralization 
 

 
Fig. 6. Twenty randomly chosen V3 sequences from one replicate simulation with an antibody 
production stimulation threshold of 0.1. Other parameter values are as described in Fig. 5. 
Periods indicate identity with the initial sequence. 
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Fig. 7. Viral population mean fitness plotted over viral generations for simulations with differ-
ent coreceptor selection coefficient scaling factors. Lines are means of 20 replicate simula-
tions. The antibody production stimulation threshold is 0.1. Other parameter values are as 
described in Fig. 5. 

component of fitness, but, as expected, resulted in a final functional component of 
fitness that is higher than before, around 0.8 (compared to 0.6). Similarly, a scaling 
factor of 0.5 also did not alter appreciably the dynamics of the neutralization compo-
nent, but, as expected, resulted in a final functional component of fitness that is 
lower than before, around 0.3. Therefore, regardless of the strength of coreceptor 
selection, there was a functional cost of adaptation to antibody surveillance, but the 
magnitude of the cost depended on the strength of coreceptor selection. Weaker 
selection by a coreceptor resulted in a lower cost of adaptation to antibody surveil-
lance. 
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9.4.3.3 Effect of the Coreceptor Utilization Phenotype 

The evolutionary response of the virus to antibody selection was also investigated 
for viral populations initialized with V3 phenotypes other than R5 (Fig. 8). The simu-
lation conditions used were otherwise the same as described in Fig. 5 and with an 
antibody stimulation threshold frequency of 0.1. The dynamics of the neutralization 
component of fitness were altered very little, given that the dynamics of the functional 
component of fitness were substantially different from when the population was ini-
tialized with an optimal R5 sequence. As in previous simulations, the functional com-
ponent of fitness decreased with adaptation to antibody surveillance. For populations 
initialized with a near-optimal X4R5 V3 sequence, the final value for the functional 
component of fitness, 0.58, is near that observed for a population initialized with an 
optimal R5 V3 sequence under otherwise identical simulation conditions.  
This is because the population evolved to R5 phenotype within the first 30 
 

 
Figure 8. Viral population mean fitness plotted over viral generations for simulations initial-
ized with X4R5 or X4 phenotype V3 sequences. Lines are means of 20 replicate simulations. 
The antibody production stimulation threshold is 0.1. Other parameter values are as described 
in Fig. 5. 
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generations, as described above (Section 9.4.2). For populations initialized with an 
optimal X4 V3 sequence, the final value of the functional component of fitness was 
about 0.5. Therefore, after escaping humoral control, X4 virus remained less well 
adapted to its coreceptor than R5 virus was to its coreceptor (0.6). However, this 
difference is considerably smaller than the difference between the maximum values 
of the functional fitness components of the two phenotypes (1.0 and 0.6 for R5 and 
X4, respectively). 

9.5 Conclusions and Future Directions 

The main obstacle to simulating selection at the molecular genetic level is a lack of 
knowledge of the fitness effects of individual nucleotide and amino acid changes. 
For HIV-1 V3, this obstacle is easily surmounted because, in the context of selection 
by coreceptors, mean site-specific amino acid frequencies are measures of amino 
acid site-specific marginal relative fitnesses (da Silva 2006a). Using this approach to 
model selection by coreceptors on V3 produced plausible evolutionary dynamics.  

Selection by neutralizing antibodies may be simulated for defined epitopes by as-
suming a plausible model of affinity maturation. Affinity maturation was modeled as 
a logistic increase in affinity. This aspect of the model could be made more realistic 
by incorporating knowledge of the actual dynamics of affinity maturation for specific 
antibodies. Inclusion of changes to antibody titer may also add to the realism. This 
could be accomplished by assuming logistic growth of antibody numbers, scaled 
from zero to one, and using the product of the antibody titer and affinity maturation 
as a measure of neutralization capacity. A more difficult problem in simulating the 
neutralizing antibody response to HIV-1 may be the definition of conformational 
epitopes. The current model uses linear V3 epitopes of monoclonal antibodies known 
to neutralize primary isolates. However, it is apparent that the most potent neutraliza-
tion in vivo is by antibodies with conformational V3 epitopes (Gorny et al. 2002). 
Unfortunately, these epitopes have yet to be described. 

With the current model, a maximum of four consecutive antibody responses to 
newly emerged (or initialized) viral variants were each followed by viral escape 
before the final escape from humoral control. A cyclical pattern of antibody  
response and viral escape and final loss of humoral control is also observed in 
patients (Wei et al. 2003; Richman et al. 2003). In the model, this occurred regard-
less of the stimulation threshold for initial antibody production, the strength of 
coreceptor selection, or the coreceptor utilization phenotype of the virus. The other 
consistent result is a decrease in V3 function associated with escape from neutrali-
zation. This decrease in function corresponds to a decrease in viral infectivity. 
Such a pattern has not been reported from either in vivo or ex vivo studies of HIV. 
However, this predicted trade-off between fitness components might help explain 
the relatively low viral population size during the nonsymptomatic, chronic phase 
of infection (Coffin 1999). As was expected, the decrease in V3 function was 
greater with stronger coreceptor selection. Of more interest, however, is that after 
escape from humoral control, the fitness difference between R5 and X4 virus was 
diminished from about 60% to about 20%. This predicted reduction in the difference 
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in fitness between these viral phenotypes may allow other factors to tip the balance 
in favor of X4 virus and help explain why in about 50% of patients the viral phe-
notype switches from R5 to X4 late in infection (Mosier 2000). 
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Chapter 10 
MUTANT MOUSE:  Biosimulator  
for the Functional Annotation of Gene  
and Genome Networks 

Yoichi Gondo 
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Abstract. The advancements of genomics and genome projects led to the current paradigm 
that the blueprint of life is depicted in the genome sequences. To decipher the life system, 
deductive methods have been applied from genome sequences to genes, transcripts, proteins, 
organelles, cells, tissues, organs, organisms, and populations. As a result we encountered an 
astronomical scale of complicated molecular and cellular networks in the life system. There is 
a way, however, to directly connect the function of a single base pair (bp) in genome  
sequences to the life system by bypassing all the molecular and cellular labyrinths. 
“MUTANT” provides the ultimate tool as a bona fide biosimulator for the functional annota-
tion of gene and genome networks. Genetics, with mutations and mutants, is revealing the life 
system. Mendel deduced the concept of “gene” from a large dataset of the pea phenome. Snell 
discovered the mouse H2 locus by graft rejection that led to the identification and understand-
ing of the major histocompatibility complex. Many other mouse mutants (i.e., nu, scid, lpr, gld, 
Sl, and W) provided model systems for the functional characterization of key genes in immu-
nological networks. In this context, “reverse genetics” methods have been developed since the 
1980s to systematically produce mutant mice carrying a particular gene of interest, for exam-
ple, transgenic mice, knockout mice, and gene targeting. Recently, more versatile, large-scale, 
and high-throughput methods such as ENU mutagenesis and insertional mutagenesis are being 
used to generate mutant mice. This chapter offers a review of the history and current status of 
mouse mutagenesis and discusses the value of mouse model systems. 

10.1 Introduction  

Theoretical modeling and computer simulation are two powerful tools to elucidate 
the mechanism of complex systems. Testable modeling, parameter setting, and em-
pirical input of initial parameter values are some of the key requirements for simula-
tion. The efficacy of simulations is finally evaluated by how closely the simulation 
output reflects the complex system. The calculation power of computer hardware is 
another key factor that determines whether the results are obtained within a reason-
able period of time.  

Quantitative Genomics Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, 
Japan, gondo@gsc.riken.jp 
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  Since life is a typical complex adaptive system, a major challenge is to depict its 
composition and dynamism. Apart from the structural design of whole parts, the 
concrete working plans and protocols in time and space for life to emerge, are all 
inscribed in the genomic DNA sequences.  

10.1.1 Relevancy of Mouse as Simulator 

Given that the entire blueprint of life is depicted in the genome, an ideal life simula-
tor must reconstruct all the biology solely from three billion letters of the genomic 
DNA sequences. At the time of fertilization, the life of the mouse starts and after 

 The 4-month “calculation” period appears to be an acceptable time range be-
cause the reconstructed life is valid to start, with nothing left to be proven or evalu-
ated. Hence, it is obvious that all the life phenomena are reflected in the mouse 
model system. The key question, however, is whether the genomic function would 
be effectively and appropriately elucidated by using the mouse system as a bona fide 
simulator. 
 In this chapter we discuss recent developments in using mutant mice to directly 
decode the genomic DNA sequence toward its biological outcome in a genome-wide 
manner. This approach is particularly effective in deciphering complicated biological 
systems like neurological behavior and immunological processes at the organism 
level. 

 

 
Fig. 1. Life cycle of the mouse with respect to the genomic DNA program and its execution. A 
part of genomic DNA sequences may be artificially altered by transgenesis or gene-targeting. 
The differences may have been induced by mutagenesis or they already existed as natural 
polymorphisms. At the step of mating and fertilization, all the sufficient and necessary infor-
mation is compiled. All the biological traits are autonomously manifested during the  
20-day gestation period and the 3-month of maturation cycle. 

 

4 months it matures and is able to produce the next generation as shown in Fig. 1. 



Mutant Mouse 181 
 

 

10.2 I/O System in Mouse Genetics 

The genomic DNA sequences of the mouse genome are products shaped by the course 

finished product is considered to be INPUT of the bona fide biosimulator. There are 
several ways to alter or introduce new sequences to the genomic sequences (Fig. 1). 
In natural populations, many polymorphisms accumulated whereas some spontane-
ous mutations arose recently. Mutations can be artificially induced by genotoxic 
agents, for instance, X-ray irradiation (Muller 1927) and chemical mutagens  
(Auerbach and Robson 1946). In classical genetics, polymorphisms and mutations 
represent a major resource for research studies; however, the approach is usually 
limited to phenotype-driven analyses of a small number of loci. Even if a genetic 
alteration is vindicated, it used to be impossible to conclude what kind of genomic 
sequence change(s) is responsible for the phenotypic consequence. Eventually, in the 
1980s with the development of various positional cloning methods and genetic engi-
neering technologies it became feasible to identify the causative genomic sequence 
change(s). 

10.2.1 Reverse Genetics 

In the 1980s, new gene-driven approaches were developed to decode the genomic 
sequence function in the mouse. One method that introduces an artificially designed 
DNA fragment into the genome of the mouse (Palmiter, Brinster, Hammer,  
Trumbauer, Rosenfeld, Birnberg, and Evans 1982) enabled the generation of trans-
genic mice (Fig. 2). Another technology that disrupts or eliminates a specified part of 
genomic DNA sequences in the mouse (reviewed by Capecchi 1989) is called gene 
targeting or knockout mouse (Fig. 3). Together, these approaches are defined as 
“reverse genetics.” Both became practicable with the innovations of genetic engi-
neering as well as mouse embryonic technology. Conversely, classical genetics and 
its phenotype-driven approach is now called “forward genetics”. 

10.2.1.1 Transgenic Mouse 

As shown in Fig. 2, the transgenic mouse allows us to elucidate the gain of function 
due to a particular DNA sequence that has been designed and constructed in vitro by 
using genetic engineering technology. However, some caution must be taken when 
interpreting the outcome. For instance, the integration of the exogenous DNA dis-
rupts at least one site in genomic DNA sequences. The expression of endogenous 
genes at and around the integrated site may be affected by this disruption. In addition, 
the expression of the integrated DNA sequence often varies depending on the site 
and mode of integration. 

 
 

of evolution. To decode the function of genomic DNA sequences, the alteration of the 
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Fig. 2. System of transgenic mouse. An in vitro constructed DNA fragment is injected directly 
into the pronucleus of a fertilized egg. Occasionally the injected DNA is occasionally inte-
grated into the genomic DNA of the fertilized egg. Once integrated, it is delivered to all the 
cells as if it were a part of the authentic endogenous genome. The integrated DNA sequence is 
usually inherited stably to the offspring. If any phenotypic changes are observed in the trans-
genic mouse, it is primarily expected to be a gain of function. 

10.2.1.2 Knockout Mouse (Gene Targeting) 

The gene targeting method enabled the disruption of any part of genomic sequences 
with a marker gene in the mouse genome in a site-specific manner (Fig. 3), and the 
study of the functional loss of the endogenous genomic sequence. Occasionally the 
disruption might be lethal, thereby hampering the elucidation of the normal function 
of the sequence. 

 
Fig. 3. Knockout mouse system by gene targeting. Homologous recombination occurs even in 
somatic cells with a low frequency. A targeting vector is constructed with part of the genomic 
sequences from the gene of the interest and a marker gene: e.g., the neomycin-resistant gene. 
The targeting vector is introduced into ES cells by electroporation. Homologous recombina-
tion gives rise to the disruption of the targeted gene by the marker gene. The embryonic  
engineering allows the ES cells to become mice. 
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10.2.2 Mouse Phenotyping as Output 

Since the 1990s transgenic mice and knockout mice have been widely used to study 
particular DNA sequences at the organism level. A typical case is the p53 gene, 
officially called Trp53. Originally, Trp53 was identified as a major tumor marker 
product, but its function was not well understood until results of knockout mouse 
studies became available. Besides, Trp53 mutant lines allowed the discovery of 
novel Trp53 functions that had not been expected from the molecular knowledge of 
the gene. Several examples of the bona fide biosimulator are briefly summarized in 
the following sections. 

10.2.2.1 Trp53 Function in Adulthood 

Donehower, Harvey, Slagle, McArthur, Montgomery, Butel, and Bradley(1992) 
were the first to use knockout mice for analyzing the nature of the Trp53 tumor sup-
pressor gene. Almost all of the Trp53 homozygous knockout mice developed malig-
nant thymic lymphoma and died by the age of 30 weeks. The heterozygotes were 
also highly tumor-prone combined with the loss of heterozygosity. The current  
understanding of the Trp53 gene function is that of a gatekeeper for DNA repair. 
When genomic DNA is damaged during the cell cycle, Trp53 causes the G1 arrest. If 
the damage is repaired, the cell cycle resumes, otherwise the cell becomes apoptotic 
and dies. 

10.2.2.2 Trp53 Function in Embryogenesis 

We confirmed similar homozygous and heterozygous effects of Trp53 by using a 
different knockout system (Gondo, Nakamura, Nakao, Sasaoka, Ito, Kimura, and 
Katsuki 1994). In addition, we found that the Trp53 homozygous knockout mice 
were extremely susceptible to teratogenesis rather than tumorigenesis during em-
bryogenesis (Norimura, Nomoto, Katsuki, Gondo, and Kondo 1996). As summarized 
in Fig. 4, the frequency of abnormal development without radiation exposure was 30 
– 40%. On the other hand, it increased twofold (60–80%) after 2-Gy exposure at the 
embryonic development stage E9.5 for any genotype. The nature of abnormalities 
was, however different from genotype to genotype. Three-quarters of the abnormal 
development in wild-type homozygotes were late deaths. In contrast, almost all of 
the abnormalities seen in the knockout homozygotes were morphological anomalies 
(e.g., polydactyly, megadactyly, tail anomaly, dwarf, cleft palate, exencephaly). No 
tumors were observed in this embryogenesis study. 

10.2.2.3 Trp53 Point Mutation 

The introduction of point mutations in a gene can improve the elucidation and 
dissection of its higher functions. For example, the Cre-loxP system allows the 
construction of missense mutations. Liu, Parant, Lang, Chau, Chavez-Reyes, El-
Naggar, Multani, Chang, and Lozano (2004) used the Cre-loxP system to introduce 
in Trp53 a base substitution that causes the arginine-to-proline missense mutation  
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Fig. 4. The effect of γ-ray irradiation at E9.5 day of embryogenesis in p53 knockout mice. 
The genotypes are indicated below the chart (+, wild-type p53 allele; -, knockout p53 allele). 
The examined numbers of mice are shown above the chart. 
 
at position 172 (R172P). The homozygotes for the R172P mutation showed signs 
of cell cycle arrest but no apoptosis. The early onset of tumorigenesis was not 
observed. These results strongly vindicate the usefulness of point mutation studies 
in characterizing gene functions. 

10.3 Renaissance of Classical Genetics 

The Trp53 gene study using gene targeting demonstrated that the finer structure and 
functions of a gene are revealed by in-depth phenotyping at various tissues and de-
velopmental stages. In addition, many sets of mutant alleles are ideal for revealing 
the comprehensive function of each base pair in genomic DNA sequences. Since the 
1990s these issues have been exploited in another, N-ethyl-N-nitrosourea-based 
(ENU) mouse mutagenesis approach for large–scale functional genomics studies 
(e.g., Brown and Nolan 1998; Hrabé de Angelis and Balling 1998). ENU is a highly 
potent and extensively studied mutagen that induces point mutations during mouse 
spermatogenesis (Russell, Kelly, Hunsicker, Bangham, Maddux, and Phipps 1979; 
Russell, Hunsicker, Raymer, Steele, Stelzner, and Thompson 1982a; Russell,  
Hunsicker, Carpenter, Cornett, and Guinn 1982b; Hitotsumachi, Carpenter, and 
Russell 1985; Noveroske, Weber, and Justice 2000). 

10.3.1 Chemical Mutagenesis for Genome Wide Studies 

The concept of mouse ENU mutagenesis is to induce randomly and genomewide as 
many point mutations as possible (the method is not able to target specified DNA 
sequences). While the throughput of transgenic and gene targeting technologies is 
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low-throughput and knockout mouse methods may confer lethality, ENU mutagene-
sis results in partial loss of function at much higher levels of throughput. 

10.3.2 ENU-Based Phenotype-Driven Mouse Mutagenesis 

The primary objective of the ENU mouse mutagenesis project is to identify and 
construct mutant lines on a scale such that the whole mutant archive encompasses at 
least one mutant for any gene. Worldwide, more than ten large-scale ENU mouse 
mutagenesis projects with a genomewide coverage have been initiated. 

10.3.2.1 Phase I: Dominant Screens 

The identification of useful mutants depends on how meticulously the phenotype 
assessment is conducted. All the G1 progenies depicted in Fig. 5 are subject to vari-
ous phenotype screens. The full description of the RIKEN screening platform is 
available at the URL http://www.gsc.riken.jp/Mouse/. RIKEN started full screening 
in 2000. So far more than 20,000 (Masuya, Nakai, Motegi, Niinaya, Kida, Kaneko, 
Aritake, Suzuki, Ishii, Koorikawa, Suzuki, Inoue, Kobayashi, Toki, Wada, Kaneda, 
Ishijima, Takahashi, Minowa, Noda, Wakana, Gondo, and Shiroishi 2004) G1 mice 
have been screened. The basic screens are modified SHIRPA (SmithKline Beecham 
Pharmaceuticals, Harwell MRC Mouse Genome Centre and Mammalian Genetics 
Unit, Imperial College School of Medicine at St Mary’s, Royal London Hospital, St 
Bartholomew’s and the Royal London School of Medicine, Phenotype Assessment) 

 
Fig. 5. Overall scheme of the dominant mutant screening at RIKEN. ENU is administered to 

inbred strain DBA/2. All the F1 hybrid offspring, designated as G1, are subjected to exhaus-
tive phenotype screens. In this scheme dominant mutations are collectively identified in a 
genomewide manner. 

 

(Rogers, Fisher, Brown, Peters, Hunter, and Martin 1997) which includes morpho-
logical and behavioral screens. Other additional phenotype screenings include 
hematology, urine and serum biochemical analyses.   

male C57BL/6 inbred mice (abbreviated G0). The ENU-treated males are mated to another 
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Mutant candidates or phenodeviants are identified by comparison with control 
mice of the same genetic background. It is therefore critical to prepare a reliable and 
large-scale control phenotype dataset. Phenodeviants are mated to produce the G2 
offspring, which is called the inheritance test cross. If a candidate phenotype anom-
aly occurred due to an ENU-induced mutation, the phenotype should be observed in 
half of the G2 offspring. Only the phenodeviants that passed the inheritance test are 
registered as mutants.  

Mutants have been identified in approximately two to three percent of G1 mice 
using the basic screening platforms of RIKEN and other ENU mouse mutagenesis 
projects. Thus, the expected number of dominant mutant lines that have been newly 
generated in the past 5 years by large-scale ENU mouse mutagenesis programs is 
roughly 5000 (= 2 – 3% x 20,000 G1 x 10 projects). About the same number of mu-
tant lines have been identified and established during the 100-year history of mouse 
genetics. Transgenics and gene targeting have produced an equivalent number of 
mutants since the late 1980s. Altogether, more than 15,000 mutant lines are available 
as a resource for studying gene and genome functions. 

10.3.2.2 Phase II: Gene Identification and Recessive Screens 

Connecting the causative genomic DNA changes to the phenotype outcome demands 
the identification of the ENU-induced mutation site that is responsible for the estab-
lished lines. The classical genetics approach of backcrossing, to map the mutation in 
the mouse chromosomes or genome-based candidate approaches are combined to 
identify the site of the mutation. Currently, both mapping and positional cloning are 
utilized to locate the mutations obtained by ENU mouse mutagenesis programs.  

Another key objective of Phase II of the large-scale ENU mouse mutagenesis 
project is to systematically establish recessive mutants. While many dominant mu-
tants have been collected, many human genetic diseases are recessive. Dominant 
screens have also revealed that some genes exhibit their dominant phenotype due to 
loss of function. In such cases, other genes that would show the same phenotypes by 
gain of function can hardly be identified. The mutation rate of dominant mutations 
due to the loss of function is estimated to be about 10-3/locus/G1. This frequency is 
probably 1000-fold higher than the frequency for gain of function. In order to estab-
lish comprehensive human genetic disease models that cover most of the mouse 
genes, it is necessary to develop recessive screens. As shown in Fig. 6, recessive 
screens take much more time, space, and manpower. 

10.3.2.3 Informatics Infrastructure for ENU Mouse Mutagenesis 

Database System. Large-scale ENU mouse mutagenesis requires the construction 
and organization of an informatics infrastructure. RIKEN chose Oracle database as 
the core of the infrastructure (Gondo 2001; Masuya et al. 2004). All manipulations, 
protocols, data recordings, data analyses, annotations, etc. are stored in and retrieved 
from the database server by multiple client machines. Some examples are described 
below. 
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Fig. 6. Overall scheme of recessive mutant screening at RIKEN. G1 and G2 mice are obtained 
by the same scheme as shown in Fig. 5 for the dominant mutant screening. Recessive traits, 
however, are concealed in G1 and G2. In order to detect recessive mutations, randomly chosen 
G1 and its direct progeny of G2 are mated to reproduce G3. In some cases, females and males 
of the same G2 litter are mated to obtain G3 offspring. 

Bar-coding. More than 100 G1 mice are produced every week. They remain un-
der investigation until 78 weeks of age. As a result, at any given time approximately 
8000 G1 mice are present in our facility. G0, G2, and G3 mice and control mice are 
maintained in a specific pathogen-free (SPF) animal facility. A bar-coding system 
that facilitates the identification of each mouse is crucial for the daily husbandry 
work. 

Local-Area Network (LAN). The mice must be protected from lethal infections by 
pathogens. Consequently, physical material transfer including the use of pens and 
papers are severely limited to maintain the SPF grade. Data transfer also requires no 
or minimal writing and copying errors. To meet these requirements, the entire data 
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input is conducted only once at the original location, using a client computer. The 
data are instantaneously transferred to the Oracle database server. Even one minute 
of LAN interruption can cause serious problems in the data fidelity. Thus, a robust 
and secure LAN configuration and its maintenance are extremely critical. 

Biometrical Devices. Automated biometrical devices for phenotype screening 
have been installed at various locations. Since stand-alone-type computers usually 
control the devices it is often necessary to develop device-specific data-transfer pro-
tocols to guarantee efficient data transport to the database server. Occasionally, we 
modified and even built new biometrical devices. This type of transformation of 
biometrics will also contribute to the development of new diagnostic systems for 
human use. 

10.3.3 ENU-Based Gene-Driven Mouse Mutagenesis 

Genetics has a more than 100-year history. During the foundation era, the mouse was 
an important species that supported the establishment and advancement of genetics. 
Mouse genetics was also a driving force in the field of mutagenesis. The first report 
of artificially induced mutations was the X-ray mutagenesis study on Drosophila by 

extensive studies, mouse mutagenesis studies and mutations are not considered to be 
a high-throughput INPUT system for the biosimulator. Mutations are neither quick 
nor efficient enough to alter and operate the bona fide life program of the mouse 
genome.  

Until very recently, mutations were detected in natural populations as polymor-
phisms or randomly induced by mutagens (see Fig. 1). Mutations are rare and ran-
dom events. It used to be impossible to change the mouse genome by targeting a 
particular base pair or sequence. Even for an established mutant derived from a natu-
ral population or mutagenesis it will take a few years to identify the site of base pair 
change in the mouse genome. Currently available tools to alter a genomic DNA 
sequence are the transgenic and knockout mouse systems as described in Section 
10.2.1. The transgenic and knockout mouse systems are low-throughput. Moreover 
both methods modify only a stretch of genomic DNA sequences by insertion and 
deletion, respectively. An ideal INPUT system to alter the program of the mouse 
genome is to deliberately change any single base pair versus another. 

10.3.3.1 Mutant Mouse Library 

There are as yet no efficient methods to alter a target base pair in the mouse genome. 

ENU mouse mutagenesis to collect and establish mutant lines has started with a 
phenotype-driven approach.  

At RIKEN, we are focusing on the screening of late-onset phenotypes in G1 
population (Fig. 5). G1 mutants, carrying a late-onset phenotype (i.e., tumors or 
diabetes), may be lethal or develop sterility during disease progression.  For that 

Muller (1927). However, 4 years earlier Little and Bagg (1923) already pointed out the 
possibility of X-ray-induced mutations in the mouse. In spite of the long history and 

The second best approach is to construct a mutant mouse library that covers a suffi-
ciently large number of point mutations. As described in Section 10.3.2, the large-scale 
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reason we take sperm from all the G1 males when they are 12 weeks old and subject 
them to cryopreservation before the onset time. 
 The frozen sperm archive is considered to be the mutant mouse library. A key 
question is how many mutations are indeed preserved in this archive. We started to 
estimate the ENU-induced mutation rate per base pair in since 2001 and found 
roughly one mutation per million base pairs per gamete (Sakuraba, Sezutsu,  
Takahasi, Tsuchihashi, Ichikawa, Fujimoto, Kaneko, Nakai, Uchiyama, Goda, 
Motoi, Ikeda, Karashima, Inoue, Kaneda, Masuya, Minowa, Noguchi, Toyoda,  
Sakaki, Wakana, Noda, Shiroishi, and Gondo 2005). Recently, results of other 
groups supported our findings (Quwailid, Hugill, Dear, Vizor, Wells, Horner, Fuller, 
Weedon, McMath, Woodman, Edwards, Campbell, Rodger, Carey, Roberts, Glenister, 
Lalanne, Parkinson, Coghill, McKeone, Cox, Willan, Greenfield, Keays, Brady, 
Spurr, Gray, Hunter, Brown, and Cox 2004; Augustin, Sedlmeier, Peters, Huffstadt, 
Kochmann, Simon, Schöniger, Garke-Mayerthaler, Laufs, Mayhaus, Franke, Klose, 
Graupner, Kurzmann, Zinser, Wolf, Voelkel, Kellner, Kilian, Seelig, Koppius, 
Teubner, Korthaus, Nehls, and Wattler 2005; Michaud, Culiat, Klebig, Barker, Cain, 
Carpenter, Easter, Foster, Gardner, Guo, Houser, Hughes, Kerley, Liu, Olszewski, 
Pinn, Shaw, Shinpock, Wymore, Rinchik, and Johnson 2005). Based on this muta-
tion rate, each G1 is expected to carry 3000 ENU-induced heterozygous mutations in 
3 × 109 bp of the paternally inherited genome. So far we have archived about 10,000 
G1 (Sakuraba et al. 2005) male sperm samples at RIKEN. Worldwide there are 
more than 40,000 G1 sperm archives. Within several years the total number of G1 
sperm archives will exceed 100,000. The cumulative number of ENU-induced muta-
tions will be 

                          3,000 mutations∕G1 × 100,000 G1 = 3 × 108 mutations                 (1) 

or one mutation per 10 bp on average. This level is considered to be semisaturated. If 
the size of the target gene is 10,000 bp, 100 independent mutations in the gene would 
be available in the frozen sperm archive. This number of stored mutants should be 
more than sufficient to elucidate the molecular and biological function(s) of a gene in 
detail. 

10.3.3.2 New Point Mutation Discovery System 

If we consider for practical reasons the frozen sperm archive equivalent to the mutant 
mouse library, the next key question is how can we discover effectively ENU-
induced point mutations in target genes. The basic scheme to identify ENU-induced 
mutation in target genes is depicted in Fig. 7. First, PCR primer pairs are designed to 
amplify the sequences of the target gene. Mutations can be identified in the PCR 
products by direct sequencing. For practical reasons, it is necessary to prepare either 
genomic DNA or cDNA archives from all G1 males. If we screen the genomic se-
quences of the target genes, genomic DNA is simply isolated from any organs or 
tissues of the G1 males. However, all genomic sequence information including the 
exon and intron structure must be known to permit the design of PCR primers for the  
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Fig. 7. Overall scheme of the ENU-based gene-driven mutagenesis at RIKEN. All the G1 males 
(see Fig. 5) are subjected to sperm cryopreservation and genomic DNA extraction to construct 
“Frozen sperm archive” and “Genomic DNA archive,” respectively. To construct mutant mouse 
carrying a point mutation in the target gene, several appropriate PCR primer pairs are designed. 
The target gene is amplified and screened for any ENU-induced mutations from the genomic 
DNA archive. Once a mutation is found, the corresponding sperm sample in the frozen sperm 
archive is used for in vitro fertilization (IVF) to reconstruct the strain as live mice. 

target gene. On the other hand, if the focus is on the protein-coding sequences of the 
target genes, PCR primer design and screening are simpler and faster. Most cDNA 
sequence information is deposited in public databases. In addition, cDNA sequences 
are much more compact and shorter than genomic sequences. Nevertheless, the suc-
cess of cDNA-based screening depends on the careful selection of tissues that ex-
press the target mRNA and the sampling time. 

At RIKEN, genomic DNA was chosen to construct the mutant DNA archive 
when we started the system development in 2000. We assumed that the mouse ge-
nome project would be completed and all the mouse genomic sequences would  
become available within a few years. Indeed, 2 years later the Mouse Genome Se-
quencing Consortium (2002) published the first paper. The updated mouse genomic 
sequences are available from the Ensembl database (http://www.ensembl.org/). 

We started a feasibility study with a new mutation discovery system by using a direct 
sequencing method, when the number of G1 in the archive exceeded 2,000. Although we 
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identified mutations, the process was very labor intensive and not cost effective. Hence, 
we started to investigate other high-throughput mutation discovery systems.  

A new mutation discovery system, Temperature Gradient Capillary Electrophore-
sis (TGCE), became commercially available in 2002. The TGCE system detects the 
difference of a heteroduplex DNA fragment from the homoduplex counterpart during 
the capillary electrophoresis (Gao and Yeung 2000; Murphy, Hafez, Philips, Yarnell, 
Gutshall, and Berg 2003). The formation of heteroduplex fragments by a point muta-
tion is schematically shown in Fig. 8. 

By using the TGCE system as the primary screening method for identifying mu-
tations in the target sequences of the G1 genomic DNA archive, the ENU-based 
gene-driven mutagenesis has become practicable. At present, the mutation discovery 
rate is about 100 per year per TGCE system (Sakuraba et al. 2005). Each mutation 
corresponds to one knockout mouse line. Since it takes more than a year to character-
ize the phenotypes, the mutation discovery rate vastly exceeds the capacity of the 
biological and functional analyses of the mutant mouse lines. The size of the RIKEN 
frozen sperm archive is about 10,000 as shown above (Sakuraba et al. 2005). In this 
archive, 3 × 107 independent point mutations are preserved for the biological analy-
ses (see Eq. (1) in Section 10.3.3.1). This is a tremendous genetic resource for the 
biological annotation of the genome function. 

 

 
Fig. 8. PCR fragments amplified from G1 mutant carrying an ENU-induced mutation and the 
heteroduplex formation. (A) Design of PCR primers that amplify a target fragment of the G1 
genome. When the target region of the G1 genome carries an ENU-induced mutation (arrow), 
it appears only in the paternally inherited genome as heterozygote. (B) Heat denaturation of 
PCR products makes all the fragments single stranded. (C) Renaturation of the heat-denatured 
PCR products reconstructs the double helix structure and heteroduplex fragments that have a 
mismatch-pairing at the site of the mutation. Theoretically the molar ratio is equal between 
homoduplex and heteroduplex fragments. 
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10.3.3.3 Use of the RIKEN Gene-Driven Mutagenesis 

Future progress in mouse genetics and functional studies depends on the opening of 
ENU-based gene-driven mutagenesis systems to the public and any researchers who 
have expertise in analyzing mutant mice. At RIKEN we envision the following  
scenario: 

 
1. USER designs the PCR primers for the target gene and sends them to RIKEN. 
2. RIKEN screens the mutagenized genomic DNA archive. 
3. RIKEN reports all the identified mutations to USER. 
4. USER decides which mutation to analyse. 
5. RIKEN retrieves live mice from the corresponding frozen sperm and sends   
    the mice to USER. 
6. USER conducts biological and functional studies on the mutant mice as a bona  
    fide biosimulator. 
7. The established mutant line will be open to public in an appropriate time. 
 
Based on the above plan, we have already started cooperative feasibility studies 

for a number of genes with many collaborators. All information about the current 
target genes and their chromosomal locations are open in our website (http://www. 
gsc.riken.jp/Mouse/, then see “gene-driven mutagenesis”). As of today, 251 genes 
are listed as targets of which 176 genes or 70% are collaborative targets. For each 
collaborative gene, we ask USER to be the principal investigator of the study. Using 
this cooperative framework we have identified to date about 300 point mutations in 
more than 60 target genes. 

10.4 Conclusions 

Mouse genetics provides a versatile tool to study gene networks and whole genome 
function. Here, mutant mice are considered to be bona fide biosimulators. Previously, 
when geneticists discovered a mutant, it became their life work based on mating and 
extensive phenotype analyses. Now, transgenic and knockout mouse systems have 
made it possible to alter the mouse genome using DNA technology and embryonic 
engineering. Furthermore, ENU mouse mutagenesis projects have opened a new plat-
form for the genomewide study of mouse functional genomics. The renaissance of 
classical genetics gave rise to a large number of mutant mouse lines derived from both 
phenotype-driven and gene-driven approaches. Prior to this era, more than 5000 mutant 
mouse lines were available. Comparable numbers of transgenic and knockout mouse 
lines were generated in the past 15 years. Today, ENU mouse mutagenesis contributes 
almost 1000 new mutant lines every year. Abundant numbers of mutants as INPUT for 
the bona fide biosimulator are now available for the development and transformation of 
the reproducible high-throughput OUTPUT system as a phenometrics platform. 
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IMGT pMHC contact sites of mouse H2-K1 MHC-I and a 8-amino acid peptide 
. (B) IMGT pMHC contact sites IMGT 

e from above the cleft with G-ALPHA1 on top and G-ALPHA2 
on bottom. In the box, C1 to C11 refer to contact sites (Kaas and Lefranc 2005), 1 to 8 refer to 
the numbering of the peptide amino acids P1 to P8. There are no C2, C7 and C8 in MHC-I 3D 
structures with 8-amino acid peptides. There is no C5 in this 3D structure as P4 does not 
contact MHC amino acids (4K is shown between parentheses in the box). 

Ch. 2 Fig. 6. 
(1jtr). (A) 3D structure of the mouse H2-K1*01 groove
Colliers de Perles. Both views ar



IMGT pMHC contact sites of human HLA-A*0201 MHC-I and a 9-amino acid 
A-A*0201 groove. (B) IMGT pMHC contact 

to contact sites (Kaas and Lefranc 2005). 1 to 
9 refer to the numbering of the peptide amino acids P1 to P9. There are no C2 and C7 in 
MHC-I 3D structures with 9-amino acid peptides. There is no C5 in this 3D structure as P4 
does not contact MHC amino acids (4G is shown between parentheses in the box). 

Ch. 2 Fig. 7. 
peptide (1ao7). (A) 3D structure of the human HL
sites IMGT Colliers de Perles. Both views are from above the cleft with G-ALPHA1 on top and 
G-ALPHA2 on bottom. In the box, C1 to C11 refer 



IMGT pMHC contact sites of the human HLA-DRA*0101 and HLA-DRB1*0401 
MHC-II and the peptide side chains (9-amino acids located in the groove). (A) 3D structure of 
the human HLA-DRA*0101 and HLA-DRB1*0401 groove (1j8h). (B) IMGT pMHC contact 
sites IMGT Colliers de Perles. Both views are from above the cleft with G-ALPHA on top and 
G-BETA on bottom. In the box, C1 to C11 refer to contact sites. 1 to 9 refer to the numbering 
of the peptide amino acids 1 to 9 located in the groove. There is no C5 and C7 in MHC-I 3D 
structures with 9-amino acid peptides. There is no C5 in this 3D structure as 5 does not con-
tact MHC amino acids (5N is shown between parentheses in the box). 

Ch. 2 Fig. 8. 



 

Fig. 4. H2-Db allele: Steric bulk maps (A), electrostatic potentials maps (B), hydrophobic 
interaction maps (C), H-bond donor maps (D), H-bond acceptor maps (E). 
Ch. 4 
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