
Chapter 8 

LEARNING MATHEMATICS 

Abstract: The conclusions of the book are examined for their implications for mathe-

matics education, and an argument is made for attention to be paid to the 

communicative aspects of mathematics during its development in schools. This 

includes more exploration at all levels of education, and the importance of 

informing students of the nature of mathematics. Some notes on assessment are 

made.
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1. CONCLUSIONS THROUGH EDUCATIONAL 

EYES

Learning mathematics has been an enigma for many thousands of 
years. On the one hand it seems so straight forward. Counting things 
feels natural, and young children often find numbers playful, reciting 
them as songs, for example. We all have adequate spatial intuitions. 
We find our way around our familiar environment without apparent 
effort. Those living in a city easily make complex routing decisions, 
and those living in the country develop a directional sense that is 
reliable and automatic. In many activities we perform mathematical 
tasks with ease: we intuitively estimate the trajectory of balls in many 
sports; weavers and sewers and designers manipulate patterns and 
shapes in sophisticated ways; people build model or real houses and 
boats that are robust and balanced; and the ever present money 
transactions in modern life are routinely handled with efficiency. 

On the other hand, mathematics classrooms have been places of 
fear and puzzlement for many, probably since they first appeared in 
China around 1000BC (Swetz, 1974). They have received bad press 
throughout literature, and Math Phobia has now become a buzz-word 

communication mathematics teaching, meta-mathematics, explorations in mathe-

matics
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(Burns, 1998; Clawson, 1991; Tobias, 1995). Many people experience 
the mathematics classroom as a place of pleasure and wonder, but 
even this positive aspect is often turned by society into a negative one. 
Those for whom formal mathematics education is easy and a pleasure 
are routinely transformed into oddities or nerds. 

The enigma of learning mathematics, and the best teaching methods 
for it, have been discussed explicitly since at least Greek times when 
Socrates put forward his method. What light can we shed on this 
enigma by reflecting on language and mathematics? What are the 
implications for education of the conclusions of Parts I and II? After 
looking through educational eyes at the conclusions already reached 
about mathematics, this chapter discusses what our reflections tell 
us about the nature of mathematics learning in general. I suggest a 
conclusion about the role of abstraction that is at odds with general 
thinking, and make some comments about the role of mathematical 
play and creativity. We finish by examining implications that can be 
drawn for formal classroom teaching.

The second chapter in this section discusses two particular 
language contexts. I argue that multilingual environments are a rich 
source of learning rather than ones filled with problems, and then I 
discuss the particular situation of indigenous education. Indigenous 
groups are faced with an interesting dilemma. They learn mathematics 
in a distinct cultural-linguistic context—how can they study an 
international subject while retaining the integrity of a minority world 
view?

In order to keep focussed on the conclusions that have been 
generated from the evidence from language, I summarise the five 
main conclusions. 

The most important conclusion is that mathematics and language 
develop together. Historically this has been so, with each of these two 
areas of human activity affecting the other. It continues to be so, as 
new language and mathematics is generated in new areas of human 
interest: computer environments; space exploration; biological mode-
lling; the mathematics of finance. The co-development of mathematics 
and language happens at both a macro- and a micro-level. At a macro-
level they both respond to social and political demands. At the micro-
level, the vocabulary and syntax of mathematical discourse responds 
to that of the language being spoken (and the world view represented  
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therein), as well as to the mathematical needs. The discourse may then 
affect the direction of mathematical development. 

The educational perspective on this conclusion concerns the 
development of mathematical ideas in an individual. To what extent is 
the historical link with language also present in personal mathematical 
development? At first there does not seem to be a necessary 
connection between the two, but two threads of argument suggest 
otherwise. The evidence strongly suggests that mathematics as it has 
evolved does have strong ties with particular language characteristics, 
and that these need to be established for an individual in some way or 
other if this mathematics is to be easily understood. Also, the evidence 
about the difference between mathematical discourse and everyday 
language means that, even if your language is consonant with NUC-
mathematics, there are still changes in your language that need to be 
made to correctly understand, communicate, and use mathematical 
ideas.

A second conclusion, related to the first, is the idea that mathe-
matics arises after, not before, human activity, in response to human 
thinking and communicating about quantity, relationships, and space 
within particular socio-cultural environments. An educational perspec-
tive asks whether (or in what way) socio-cultural context (including 
language) might be important for understanding a mathematical 
concept. For example, does the gambling origins of probability theory 
mean that an understanding of gambling is necessary (or helpful) for 
statistical education? Will a child who has only experienced proba-
bility in the more Bayesian environment of predicting the outcome of 
a sporting event, have difficulty conceptualising long-run Frequentist 
ideas? My view is that these are likely to be important considerations 
in mathematical learning. 

A third conclusion of Parts I and II is that mathematics could be 
different. A corollary of this is that there are still many undeveloped 
mathematical ideas. This statement does not only refer to advanced 
level research mathematics. There are still undeveloped ideas in pre-
formalised mathematics, elementary mathematics, and at every sub-
sequent level. 

The educational perspective on this conclusion is that mathematics 
is far from a complete and established set of concepts and relation-
ships that can be presented to anyone learning the subject. Nor is 
mathematics a body of ideas that all children will come to discover 
in a natural way, even if they are given appropriate activities. At every 
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level there are alternatives to be acknowledged and the possibility 
of exploring them. The depth of this conclusion cannot be over-
emphasised. It is not just a question of different techniques of 
multiplication—it is a question of what operations are possible and 
sensible at all, or, at an even more basic level, the possible different 
conceptions of quantity that can exist in a formal way. The conclusion 
means not only that a mathematics classroom should be open to 
unconventional mathematics, but also that it must exhibit unconven-
tional ideas, particularly if we wish students to understand what  
the human activity we call mathematics is all about. A further impli 
cation is that conventional mathematics must be explained as just  
that—conventional.

A fourth conclusion is that mathematics is created by communi-
cating, that is, mathematics arises within the communication. I am not 
just saying that mathematics arises because of the need to commu-
nicate, nor just that mathematics is recorded by communication 
(writing it down as a journal article, for example). Mathematics is 
created in the act of communication—even the mathematics that is 
reportedly created in intuitive flashes of an individual when they are 
alone. The ideas of such flashes do not become mathematics until 
they are formalised and related to other ideas—until they become part 
of a system. 

An educational perspective asks whether this implies that mathe-
matics is learned through communication. This perspective also 
focuses on the nature of the communication, and the role played by 
different people in it. More critical, however, is the idea that mathe-
matical knowledge is therefore never finished, never completed. 
Whatever understanding a learner reaches is always an understanding 
of the communication that has just happened—further communication 
will generate further mathematical understanding. 

The most fundamental conclusion of this book is that each lang-
uage contains its own mathematical world. The worlds may be imp-
licit, of small scope, and/or undeveloped, but these worlds exist—they 
are not just rudimentary versions of conventional mathematics, nor are 
they simple, unformalised mathematics. These worlds represent sys-
tems of meaning concerned with quantity, relationships, or space, and 
are, in some sense, incommensurable with NUC-mathematics. 

An educational theorist, faced with this conclusion, is likely to ask 
for justification that one world is the subject of curricular attention  
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while another is not. They are unlikely to accept as a sole answer that 
one world is more extensive, or more developed. Rather they will 
want to know about the relationship between this world and the 
particular learners for whom the curriculum applies. They will 
evaluate the justification on educational criteria (for example the 
overall aims of education) as much as on mathematical grounds. And 
they will ask whether one world needs to be exclusive of others.  This 
issue is especially important for indigenous mathematics education. 

A more direct educational issue relating to mathematical worlds is 
the psychological question of the extent to which an individual is 
wedded to one world view, and whether (or how) this will affect their 
understanding of another world view. This question has long been 
asked by mathematics educators as they search for answers to the 
differential performance of particular groups in various educational 
environments. It will be obvious to the reader that my view is that 
learners are more affected by their world view than is commonly 
acknowledged.

There are three further issues related to mathematical language that 
can be viewed from an educational perspective. Mathematical 
language change is in the direction of more similarity. In other words, 
different languages are evolving to express QRS ideas in ways that are 
more and more the same. Is this good for education because it means 
that there is more uniformity and less need to accommodate 
differences, or is it detrimental for education because it means that 
variety and versatility are being lost? 

Mathematical language (not just mathematics) evolves from the 
physical and social environment. To what extent does the everyday 
meaning and environmental origin of mathematical vocabulary and 
discourse interfere with or enhance mathematical meaning? Teachers 
need to take into account the conditions under which the everyday 
meaning of a mathematical word can contribute to the development of 
mathematical understanding. 

Finally, mathematical language is more consonant with some 
languages, and less consonant with others. In what ways is this a 
problem (for example, speakers of less consonant languages might 
find mathematical constructions difficult), and in what ways is this an 
advantage (for example, a wide difference between natural language 
and mathematical discourse may emphasise the particular nature of 
mathematical discourse and reduce the interferences mentioned in the 
previous paragraph). 



                                                         Learning Mathematics 146

This summary of the main conclusions and what they mean from 
an educational point of view sets the scene for a look at mathematical 
learning, mathematical teaching, and mathematics education in the 
particular contexts of multilingual and indigenous peoples’ education. 

2. BECOMING A BETTER GOSSIP 

I take the hand of my three-year-old granddaughter as we jump 
down the cobbled steps in the narrow street of the old town. Jump-
“one”. Jump-“two”. She knows this game, and we count for a while. 
Then I start again: jump-“two”. Silence. Jump-“four”. “You missed 
three, Pa-Bill.” “I don’t like three,” I say. The inevitable “why” and I 
make it clear that it is part of the game: “let’s pretend”, I say, and that 
is enough, she knows how to pretend. Soon we have a rhythm: jump-
“two”, “you missed one”; jump-“four”, “you missed three”; jump-
“six”, “you missed five”; and so on. She did not, as it happened, 
demand to take the lead with her own sequence, but I would not have 
been surprised. Young children can play games better than most, and 
can generate complex games at the drop of a hat, remembering and 
changing rules as they go along. 

For the two of us, what had been the counting numbers became just 
a sequence of words that were part of a game. We were not counting 
any more, since 2, 4, 6, … is not how we record single jumps, we 
were game-playing. We were at the very beginnings of talking about 
relations between numbers as abstract objects, as opposed to their 
practical application as recording the act of counting. 

Young children also understand relationships between people, and 
can articulate them, often embarrassingly. It is said that a two-year-old 
is the best guru you can have. Watch one go around a room full of 
adults and systematically elicit reactions from every one. Sibling 
rivalries and playground positioning are more evidence. This is not to 
say that their awareness is conscious or their actions deliberate—but 
at some level young children understand complex human relation-
ships. Why not mathematical ones? 

It is noted in Part II that Keith Devlin describes mathematics  
as the same sort of activity as gossip. That is, mathematics is talk 
about relationships, but at a higher level of abstraction: it is about 
relationships between mathematical ideas, not between people. The 
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important thing he notes is that it is the same kind of talk (Devlin, 
2001, p. 244): 

… [A] mathematician is someone for whom mathematics is a soap opera. 

… I am not referring to the mathematical community but to mathematics 

itself. The ‘characters’ in the mathematical soap opera are not people but 

mathematical objects … . The facts and relationships .. are not births and 

deaths, marriages and love affairs, but mathematical facts and relation-

ships. … The secret of all those people who seem to be “good at maths” 

[is] not that they have different brains. It’s just that they have found a 

way to use a standard issue brain in a slightly different way. 

Given that mathematics is created in communication, that mathe-
matics happens in the act of gossiping, then the trick to doing 
mathematics is to do what everyone has no difficulty doing, but do it 
with abstract ideas. There is good evidence that young children do 
know about relationships and act on that knowledge. There is also 
good evidence that they can play with relationships in an abstract 
way: they play games with rules all the time, and they both articulate 
and manipulate rules explicitly. Furthermore they can play games with 
rules about mathematical ideas also. Children do not need to have 3 
follow 2, they do not need to have the ‘correct’ number of objects to 
refer to. They can suspend their dependence on reality if that is part of 
the game. All young children can do mathematics in this very real 
sense. All older people can too. 

A relevant question to be asked is how this ability can be nurtured. 
How can I go about increasing my ability to think and act mathe-
matically? A likely answer is to practice ‘gossiping’ with abstractions 
as often as possible, or, if I am responsible for young children, to play 
such abstract games whenever the opportunity arises. We need to 
establish a wide base of real experiences from which to abstract, and 

until there have been a lot of abstraction experiences. 
In the light of this conclusion it is interesting to note that a 

common educational response for children who are having difficulty 
with school mathematics is to give them more concrete problems, to 
reduce the abstraction by giving problems for which they can refer to 
real world situations. This strategy does increase the base of real 
experience, but it does nothing about increasing the base of abstract 
activity that is also needed to appreciate formal mathematics. In many 

we should develop a large background of gossiping about abstrac-
tions. Advanced mathematical development is unlikely to happen 
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cases sufficient real experience is already present, and so a better 
strategy would be to undertake abstract activity in an appropriate 
way—that is, at a level of game-playing rather than within formal 
mathematics.

A reflection on young children’s development of the ability to 
gossip about abstract things is suggested by Oliver Sacks’ (1991) 
book about sign language. Sacks presents the evidence that the 
groundwork for the ability to understand language as a concept is laid 
down before age eight. In other words, if a child has not experienced 
language by this age, if, say, they have been isolated from speaking 
human contact, then they will never really ‘get it’. Even if they sub-
sequently join a language community, they may learn to commu-
nicate, but will never properly develop linguistic skills. To the extent 
that mathematics is like language as a cognitive function, we can infer 
that the same is true: if there is no experiential base of abstract gossip 
before some early age, perhaps it will never fully develop. Could this 
be the key to Math Phobia (Burns, 1998; Clawson, 1991; Tobias, 1995) 
or the widespread phenomenon of people who say they never under-
stood mathematics beyond routine and real world based arithmetic 
and geometric activities? 

Another feature of children’s mathematical gossip (that is, 
children’s abstract play) is that they are explicitly aware that this is a 
game, that there are rules, and that the relationships are under their 
control. This feature sometimes disappears in a formal mathematics 
classroom. Mathematics is not an inevitable body of knowledge. 
Understanding it and doing it requires a consciousness of the ‘rules’ 
and the awareness that they are rules or conventions. Such awareness 
is particularly needed at the early stages where we often act as if there 
is nothing to be surprised about. The examples of fractions and 
multiplication are cases in point. In the real world multiplication is 
never commutative—it is only the abstraction of multiplication that is 
commutative. Often the numbers do not even represent the same kind 
of thing: 5 packets of biscuits at $3.80 each cost $19.00. Two of these 
numbers represent money, the other represents a counting number. 
We expect children to multiply in this situation, and to understand that 
multiplication is commutative. They need to know that this is the 
game.

Formal mathematics language is subtly different from everyday 
gossip. Think about the codes that develop amongst small com-
munities of gossipers: phrases that take on special meanings so that an 
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outsider might not get the full meaning of a statement. Mathematics 
has its own codes. The unexplained introduction of the codes of 
mathematics (that is, mathematics that is already formalised) may 
cause confusion. For example, at the elementary level, if a child is 
familiar with numbers describing “how many” and then, without 
apparent change of discourse, they hear numbers talked about as 
objects that can be manipulated independently of things being 
counted, it is no wonder that they become confused at what is going 
on.

Having a language that is in congruence with mathematics may be 
a two-edged sword educationally. On the one hand, it seems that there 
will be no cognitive disruption for students approaching mathematics. 
The way they have used numbers in everyday conversation will 
slowly evolve into the mathematical use of numbers, and no troubles 
will result. On the other hand, perhaps the way that concepts change 
without being noted or explained causes some of the problems 
experienced by young children? Is this the cause of widespread claims 
that people do not have a mathematical mind? 

Reasons for concluding that such difficulties exist can be found in 
the history of mathematics. Rotman (1987, p. 8) records the difficulty 
mathematicians had with transforming the idea of nothing into a 
number. How can nothing be something? Nothing is the absence of 
something, even the absence of number—it cannot be a number itself. 
Are such difficulties replicated in some mathematics learners today, or 
does their common experience of zero appearing on a calculator 
overcome this particular language shift? 

Mathematics as abstract gossip—the idea has led us to think that 
children should have more abstraction, not less, and that being aware 
of the rules of the game is an essential feature. What other implications 
can we draw for mathematics learning? 

3. FROM 1 TO 100: PLAYING & EXPLORING 

It is a curious feature of mathematics education that we expect and 
encourage exploratory and playful mathematical activity in very 
young children, and in advanced research mathematicians, but in 
between we sit students down to do exercises and listen to teachers 
or lecturers explain how it is. There are now secondary school 
classrooms where exploratory activity is encouraged, but as soon as 
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the spectre of national examinations or international testing surveys 
looms close, mathematical activity reverts to closed exercises and 
transmission teaching. 

I acknowledge some reasons for this: bureaucratic pressures to 
cover a defined syllabus; policy pressures to report in a particular 
way; pragmatic pressures to help students respond to the types of tests 
they will face; and teachers simply doing what they know best. 
However, from the point of view of learning to do mathematics well 
and effectively, and in order to experience the joy and beauty of 
mathematics, the removal of exploratory and playful opportunities 
from learning activity at secondary and tertiary levels is a very strange 
thing to do. 

First of all, mathematical exploration and play is always possible, 
at any level. Within the environment of existing mathematics there are 
(have always been) educational resources full of wonderful open 
questions. However there is something more. We concluded above 
that mathematics could have been different. This conclusion does 
not just apply to research mathematics—it applies from the very first 
experiences with numbers and shapes, to beginning algebra, to 
practical and theoretical statistics, and to any branch of advanced 
mathematics. We can always do mathematical exploration outside the 
confines of NUC-mathematics. It is nearly always possible to change 
some basic assumption of mathematics, and to genuinely explore or 
play in a new environment. The Double Origin and Active Geometries 
discussed in Part I are examples. 

Exploration and play are always possible: is it always a good idea 
to do it? One reason for playing with mathematics is because 
exploration is an interesting and efficient way to exhibit the nature of 
mathematics. Mathematics could have been (still can be) different. 
There are many untapped potential ideas that can be explored, and 
may even turn out to be useful or applicable. Having mathematical 
ability includes an attitude towards mathematics that assumptions can, 
and should, be questioned, and that changing (or creating new) 
assumptions leads to new ideas. Experiencing mathematics outside the 
normal conventions is the most direct and the most powerful way of 
developing these attitudes. 

Another reason for mathematical play and exploration is that the 
ability to change mathematical contexts deliberately is part of the skill 
of doing mathematics. Not only is it necessary to be able to question 
mathematical assumptions, it is also necessary to step outside 
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conceptual conventions. Many of these conventions are unrecognised 
and language-based, thus developing mathematical ability includes 
taking every opportunity to practice “thinking outside the square”. 
Both changing assumptions within mathematics and conceptualising 
in original ways are useful habits at any level. We need to keep 
challenging established ideas at every stage in our learning. 

Questioning and challenging assumptions are not just useful habits, 
they are vital skills for a mathematician. We should therefore be 
particularly concerned that exploratory and playful activity is largely 
absent in undergraduate mathematics—this is exactly where it should 
be most in evidence. In these classes we have collected the best young 
mathematical minds a society has. Why are they deprived of a mathe-
matical activity that is both one of the most pleasurable and also one 
of the most important for their future work? The freedom of university 
study where new ideas and novel learning experiences abound is 
exactly the right environment for exploratory mathematics, but in 
mathematics at this level the approach is usually more closed and 
structured than ever before. 

Not only is mathematical play and exploration necessary to 
understand the nature of mathematics, and necessary to be able to do 
mathematics, it is also necessary for the process of learning 
mathematics. Mathematics is created in the act of communicating 
human activity directed towards making sense of quantitative, 
relational, and spatial aspects of the world. Many argue that learning 
mathematics must reproduce the historical development of 
mathematics, the ontogenetic argument (Fauvel & van Maanen, 
2001). If this is accepted then reproducing the exploratory experience 
is a vital component. However even if this argument is not accepted, 
there is still a need for these activities during learning. Mathematics is 
the abstract systematisation of experiences; it is a process as much as 
it is the result of a process. Learning mathematics cannot therefore 
just be learning about the completed system, it must also be learning 
the process—and there is no way to do that without undertaking the 
process. You cannot learn to drive a car from a book about driving. 

Communication is a key element of the process. In order for com-
munication to happen, not only do we need relevant experiences to 
communicate about, but we also need to have a reason to communi-
cate, and, just as important in this case, a need to communicate 
formally. If the communication is about pre-formalised mathematics, 
then students will not learn the process of formalising for themselves. 
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In other words, they need original mathematical experiences to 
communicate. They need to be excited enough about them to both 
want to communicate them, and challenged enough to communicate 
about them precisely. Play and exploration are the first stage of this 
process.

4. CREATING MATHEMATICS THROUGH 

TALKING 

What does the conclusion that mathematics is created in the act of 
communicating mean for a learner? What are the special requirements 
of this form of communication? 

I now need to abandon the metaphor of gossip. Mathematics is not 
gossip. Devlin only says that doing mathematics is in some ways like 
gossiping. Mainly, they are both about relationships. There are other 
ways in which mathematics is not at all like gossip. We can easily 
associate the adjective ‘idle’ to gossip, but formalised mathematics is 
far from idle. It is purposeful and directed. Gossip is rarely repro-
duced exactly: it is usually elaborated and embellished. Mathematics 
is deliberately created in such a way that it can be exactly repeated. 
Gossip thrives on ambiguity, suggestion, and nuance. Formalised 
mathematics, on the other hand, needs to be as precise and unambi-
guous as possible. 

Learning mathematics is learning to communicate in particular 
ways about relationships. Part of learning the ability to formalise 
includes understanding the reason for formalising. Only through 
communicating back and forth can the need for precision of meaning 
become evident; and it is only by passing ideas through chains of 
communication that the need for reproducibility is experienced. 
Important ideas need to be communicated, and the more important 
they are, the more accurately and consistently they need to be 
communicated. Mathematical ideas must be systematised to be com-
municated, thus mathematics is created. This is why mathematics and 
language develop together. 

In this process a mathematical world is created. Mathematics and 
language evolve together to create a world that is not the same as the 
real experiences from which it originated. 

Take the example of ‘membership’. The concept is a familiar one: 
we are members of a family, we are members of clubs, we hold 
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membership cards to prove the relationship. Membership means that 
we are included, that we are part of a group 

Here is a very simple problem involving family membership and 
its internal relations. Maria and Pedro Oliveras (who have since died) 
were married and their children were four sons: Carlos, Salvador, 
Garcia, and Juan. These sons are now the only members of the Oliveras 
family. One day, in a cafe, two members of the Oliveras family are 
standing at the bar. Are they brothers? Yes, they must be. 

Now here is a mathematical problem that appears parallel, but is 
not because ‘member’ has a subtly different meaning. Let S be the set 
containing the four sons of the Oliveras family: Carlos, Salvador, 
Garcia and Juan. Mathematically this is written: S = {Carlos, 
Salvador, Garcia, Juan}. Thus each son is a member of the set S, we 
write Carlos  S. A mathematical question is: will two members of 
the set S always be brothers? The answer is “No”. The reason is that, 
mathematically, the same member may be selected twice. That is “two 
members of the set S” includes the possibility of ‘Juan’ and ‘Juan’ 
being chosen. Juan is not his own brother. 

This is confusing because we do not usually apply mathematical 
membership to people. The problem clarifies a little if I change set S 
to be the collection of names {Carlos, Salvador, Garcia, Juan}. Now if 
I ask two students to each choose a name, and ask whether the people 
corresponding to those names are brothers, it is more obvious that the 
two students could choose the same name. 

It clarifies even further if I ask a parallel problem about numbers. 
Let B be the set {2, 4, 6, 8}. Let x and y be members of B and add  
x + y. Will the result always be a number between 5 and 15? No, 
because x and y can have the same value—they can both be the same 
member of the set B. For example they could both be 2. Now 2 + 2 = 
4 (which is less than 5). Or both could be 8, and 8 + 8 = 16 (which is 
more than 15). 

However this confusion of the meaning of membership and 
choosing x and y from a set is a common one. Ferrari (1999) did some 
research with a similar example using undergraduate mathematics 
students and found that even in a clearly mathematical context at an 
advanced level, the everyday meaning of membership interfered with 
their understanding of the mathematical question. 

The mathematical world is not the same as the experiential world. 
The language changes, as do the concepts. Learning to be part of that 
world involves learning how it is created, and students need to 
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experience the process of evolution. Being presented with the mathe-
matical world, its concepts and language completely formed, will not 
help anyone to learn to be part of the evolution. 

The formalisation of mathematical communication is not just a 
record of abstraction, it is also a way to enable abstraction to happen. 
Mathematics is not just gossip about abstraction, it is the formation of 
abstraction through communication. Once an abstract idea has been 
formalised it is available for further abstraction, an idea described by 
Piaget (1953), and developed for advanced mathematics as APOS 
theory by Dubinsky (1991). Once an idea has been formalised it is 
available again, layer upon layer of abstraction. For example, the 
joining of two collections is formalised as the arithmetical operation 
of addition; addition and subtraction and other operations are 
formalised as algebraic binary operations; binary operations and the 
objects they operate on are formalised as group theory; groups and 
their fundamental properties are formalised as topology; and so on and 
so on. This layering of abstraction is the real depth of mathematics, 
and is a clear example of the way mathematics and language must 
develop together. It also makes clear that learning mathematics must 
involve communicating about it. 

The mathematical learner has one further task. A mathematician 
must also be able to talk about the process of abstraction in which 
they are engaged. There needs to be a meta-level language so that 

that there are usually several directions we can take when making an 
abstraction. In order that a fuller range of choices is available, and that 
mathematical (rather than linguistic or experiential) decisions are 
made between them, the process needs to be articulated. 

5. SOME THOUGHTS ABOUT TEACHING 

MATHEMATICS 

Before we consider the act of teaching, a few words on why we 
want to teach mathematics. If mathematics is not the highest expre-
ssion of human thought (as Plato claimed), or even the science of 
what is clear by itself (as Jacobi suggested), then why should it be 
such a pervasive subject in our learning institutions? If it is, as I 
have claimed, a language dependent, context dependent, historically 

the mathematician can discuss the possibilities available for abstrac-
tion in any particular situation. The evidence from language shows 
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dependent view of the world, why is it endowed with such impor-
tance? If NUC-mathematics is not the only one possible, why does it 
have pre-eminence in curricula world-wide? 

Mathematics is important for all the usual reasons: NUC-
mathematics is the foundation of science and technology. It provides a 
suite of techniques and tools for business, engineering, medicine, 
architecture and design, navigation, astronomy, social science, and 
many other fields. It continues to enthral many great minds. Mathe-
matics does turn out to be beautiful as well as unexpectedly effective 
(Wigner, 1960; Hamming, 1980). (Both its beauty and effectiveness 
are sourced in its connections with language and the evolution of 
abstract ways of thinking based on human experience). These reasons 
would suffice for mathematics’ place in education. But another reason 
for teaching mathematics emerges from this book: mathematics helps 
us make personal sense of the world. 

Now let us turn to teaching. What are the implications of the 
conclusions from language for those who facilitate, design, or control 
mathematics learning? 

Note that all the ideas about learning detailed above have their 
parallels in teaching. If abstraction activities are needed at an early age, 
then teachers have a responsibility to provide them. Those responsible 
for young children can (and do) play many pre-mathematical games. 
They play with numbers in ways that do not involve counting; they 
draw plans of buildings and playgrounds, they draw maps of neigh-
bourhoods, and they ask questions about the numbers, plans and maps. 
They tell stories that involve classification systems, and relations such 
as inclusion and size comparisons. These are all abstract experiences in 
quantity, space and relations. 

Games can also be played with argumentation and logic. I once 
watched my brother at the zoo with my daughter (who was about 
four or five at the time). “There’s a big animal,” he said, looking at a 
rhinoceros, “it must be an elephant”. “No,” came the reply, “it’s a 
rhinoceros”. “But it’s grey, and elephants are grey,” he responded. 
“But it has a horn,” she replied. “So have elephants—they have two 
ivory tusks and this has got two horns”. “But elephants have trunks”. 
“This elephant hasn’t grown it yet”. And so it went on, he forcing her 
to justify her statements, and countering them, and continuing the 
argument with other elephant characteristics (ears that flick, tail with 
a tuft of hair, mud on its legs, the noise it makes—of course the 
rhinoceros did not make any noise so she could not deny that he had 
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got it wrong). It was not long before she turned the tables on him at 
another cage. The game of false or incomplete logic with ridiculous 
conclusions has been a family staple ever since. 

I argue above that playing and exploring are vital parts of learning 
mathematics at all levels. Teachers, therefore, have an important role 
to provide opportunities, to model such activity, and to value it within 
their courses. This applies at university level, as much as it does in 
schools.

A teaching implication of the way mathematics is created through 
communication is the need to be explicit about the difference between 
everyday and formal mathematical talk. For a teacher not only does 
this mean that they should talk about this difference, for example, 
when discussing set membership, but they should also point out places 
where our everyday language is not quite adequate for mathematical 
discourse. An example arises from the unique feature of the Dhivehi 
language referred to in Part I. 

In Dhivehi, we can refer to ‘the book’ by using the root word for 
book, fot. We can also refer to ‘a book’ meaning a particular but non-
specified book, as in the sentence ‘John was carrying a book when he 
fell into the water’. This sense of book is indicated by the suffix –aku,
thus fotaku. There is a different word if we wish to refer to any book 
at all, as in the sentence ‘John asked for a book to put on his papers so 
they would not blow away’. Here the book is a general book from the 
class of books. In Dhivehi this sense is indicated with a different 
suffix: -ek, thus fotek. The distinction is sometimes important in 
mathematics, but can be overlooked. An example occurs when 
drawing graphs of functions. 

In the graph in Fig. 8-1 the variable x and the function f(x) are 
each used in two ways, and these ways are different in the same way 
as the two different uses of ‘book’ described above. The ‘x’ in the 
expression f(x) = 2x

2 + 1 is any value of x at all—x is a variable. But 
the meaning of ‘x’ in the label P(x, f(x)) and the label on the 
horizontal axis is a particular, but unspecified, value of x. In this 
situation it is more correct to label the particular value as x1, but 
often teachers do not do this, and slip between particular and 
general uses of a variable without thinking—to the confusion of their 
students.
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Figure 8-1. Multiple Meanings for 'x' 

One more implication. The need to communicate, the need to play, 
the need to explore, and the need to learn about mathematics means 
that those charged with teaching the subject must themselves be more 
mathematically literate than ever before. If a teacher is to recognise, 
follow, and utilise the diverse mathematical thinking of children, then 
the more links, experiences, and applications on which to draw the 
better. They must know other ways of approaching the same idea; 
they must sense different directions in which the idea can be taken; 
they must be able to make use of cognitive conflicts that arise and 
new situations the children imagine. 

In a world where the mathematical background of teachers is  
a cause for concern in many countries, an increasing mathematical 
demand on teachers may not be welcome—but it cannot be ignored. 

6. NOTES ON ASSESSMENT 

First, let us remember that all the learning activities described 
above are linked to assessment. They are linked both because assess-
ment is part of the pedagogical process, and they are linked because 
most formal institutionalised learning has a summative assessment 
requirement.

Assessment can be a way in which aspects of the pedagogical 
process are valued. Mathematics is a gatekeeper well beyond its  
real status, thus those parts of mathematics that are measured become 

f(x) = 2x2 + 1 

P(x, f(x))f(x)

x



                                                         Learning Mathematics 158

part of the process for deciding on vocational and educational oppor-
tunities. Hence exactly those parts of mathematics receive focus and 
teacher input. So much is commonly understood. 

The problem is, that if the conclusions from language are true, then 
what is needed for successful mathematical activity is exceedingly 
difficult—if not impossible—to measure. How do you evaluate creating 
a base of abstract experiences? By their definition, experiences are 
many and varied, and you cannot know in advance which ones will be 
used in later, formal, mathematical, abstraction activities. How are 
playing and creativity to be measured? The very act of attempting  
to measure them will kill them as play or as creativity. How is 
communicative mathematising to be measured? This latter might be 
partially possible with one-on-one interviews and recording group 
activities, but is hardly practicable as a routine for all students. The 
Numeracy Programme developed in New Zealand in 2002 onwards 
does just this: teachers are helped to evaluate each child’s position on 
a framework of mathematical development through interviews. 
Irrespective of possible benefits, the practicality of such interviews as 
a regular part of the mathematics classroom leaves little time for other 
types of teacher/student interaction. 

We are left on the horns of a dilemma. Either these vital features 
of mathematics education are not assessed and will not be valued 
(probably leading to being neglected by teachers and students alike), 
or they are assessed badly at a high cost in terms of time, teacher 
resources, and impact on the activity itself. 

I am convinced that we need to wrestle with the first of these 
horns, not because of the resource cost of the second (if it is important 
enough, resources are usually found), but because assessment will 
ultimately kill these vital activities. 

This means that having a variety of abstraction experiences, 
indulging in mathematical creativity and play, and communicating 
mathematically all need to be given high value in some way other than 
by assessment. This can be done by individual teachers—but such a 
solution is unlikely to be universally adopted. Another strategy is to 
highlight this activity amongst mathematical practitioners (not just 
mathematicians, but also system analysts, designers, engineers, infor-
mation scientists, and so on). 

The conclusions of this book lead us to downplay assessment  
for further reasons. Two of the conclusions about mathematics are, 
first, that mathematics is in continual formation, and second that 
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mathematics is open in the sense that it could have been otherwise. 
The first means that it is never finished, the second means that there 
is always another way of perceiving, conceiving, or receiving mathe-
matical ideas. 

Given these parameters, assessment of learning mathematics as a 
whole is impossible. Assessment needs to be against something, a 
framework, a standard, another performance. But if mathematical 
learning is forever unfinished, and if it proceeds along any of a myriad 
of pathways, then there is no way of creating the basis for judgement. 
Any assessment that takes place compromises the nature of mathe-
matics.

A final note on assessment concerns the conclusion that mathe-
matics and language develop together: it is not possible to have 
mathematics without language. 

A research project aimed at investigating the situation of senior 
secondary students with Mandarin as their first language learning 
mathematics in English involved giving them the same test in English 
and Mandarin (Neville-Barton & Barton, 2004). These students had 
done all their education in China except for the last few months.  
Their English proficiency was not high. Not surprisingly, the perfor- 
mance was better in Mandarin, but a large variation emerged between 
questions. Students performed the questions with technical voca-
bulary, complex syntax, or an unfamiliar context much better in the 
Mandarin version. One question, however, was done better in the 
English version. This was a question involving the concept of 
gradient.

The teachers reported that this concept was the only one in the test 
which had been taught for the first time in English, and that the term 
does not translate easily into Mandarin. This may explain the result, 
but it begs the question: what is the true mathematical understanding 
of these students? If some parts of mathematics are understood in 
English, and others in Mandarin, then what sort of test can evaluate 
mathematics? A bilingual test is not the answer, because even within 
one language there are many ways of expressing an idea, and many 
different associations for what might appear to be the same mathe-
matical process—take, for example, the concepts of anti-differen-
tiation and integration. 

The chimera of mathematical ability, let alone the measurement 
of this ability, disappears into the mists of language, no matter how 
precise we think we are. 


