
Chapter 6 

A NEVER-ENDING BRAID:

THE DEVELOPMENT OF MATHEMATICS 

Abstract: The evidence from language is brought together to discuss the nature of 

mathematics. Different conceptions of the way it develops are described, and 

the mechanisms that operate in its development are hypothesised. The Kama 

Sutra is invoked to illustrate the links between mathematics and society.
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Douglas Hofstadter (1979) referred to mathematical thought as The

Eternal Golden Braid. This book wove together mathematics in the 
form of the work of Kurt Gödel, graphic art as drawn by M. C. Escher, 
and music as epitomised in the Bach symphonies. The dominant 
theme of self-reference was played out through each of these human 
creations in such a way that the works that I knew (the mathematics 
and the graphic art) enlightened me on the work that I did not really 
understand (Bach’s music). I had the feeling that it would be possible 
for any reader who knew well any two of the fields, to similarly reach 
an appreciation of the third. 

Three different worlds dealt with the same theme differently but in 
depth, creating an image of a braid with the three strands weaving 
together and gaining strength from the existence of each other. They 
could never be the same, nor could one of them ever be encompassed 
by any other. Each creation had its own aspects that could not be 
adequately represented in the other: the abstract austerity of Gödel’s 
mathematics, the emotional intensity of Bach’s music, the aesthetic 
playfulness of Escher’s etchings. 

Hofstadter did not suggest the three pieces of work had the same 
origin, nor could I conceive how they might ever be completely 
amalgamated by some wider, more general activity. It reminded me of 
Hermann Hess’ (2002) book The Glass Bead Game, and the imaginary 
“performance” of the maestro as he wove together literature, language, 
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music, mathematics, art, dance, and other forms of cultural expression 
in a symphony of words, a picture of equations, and a poem of forms. 

The idea of human creativity bringing together different forms  
in ever new combinations is a model that could be adopted for 
mathematics itself. Such a model is quite different from the commonly 
accepted idea that mathematics is one ever expanding stream, fed by 
tributaries that get encompassed by the main current in broader 
generalisation, higher levels of abstraction, or reorganisation of the 
components of mathematics. 

But isn’t it true that the mathematical stream is fed by its 
tributaries? When the mathematical community becomes aware of a 
new idea, it is accommodated into mathematics for the benefit of all. 
For example, when a mathematician became interested in the kolam

patterns drawn by Indian women on their doorsteps (Ascher, 2002), 
and realised that the system represented there was not only 
mathematical but also contained some new mathematical ideas, he did 
not turn away from mathematics and work with the women to develop 
kolam further. He reinterpreted what he had seen using mathematical 
notation and wrote about it in a mathematical journal of an appro-
priate existing mathematical field (Siromoney, 1986; Siromoney & 
Sironmoney, 1987). In this case it was the mathematical aspects  
of computer science. The scientist was interested in the structure of 
“languages” used to describe drawings. He had worked with strings  
of symbols and how they could be used as a “language” for pictures. 
Watching women making kolam patterns he realised that another 
method for developing a language could be to create an array of 
symbols, as the women built an array first, before drawing their 
patterns. This was a new mathematical idea generated by the traditional 
craft.

Put another way, if there are other mathematical worlds as 
indicated by the evidence from language, why have they not been 
developed? Where are these other mathematical worlds? Could it be 
the case that mathematics as we know it is, in fact, universal; that it 
can express every abstract structure or system in our world? Perhaps 
the absence of other mathematical worlds implies that nothing useful 
could come of them that cannot be done equally well in mathematics 
as we know it? 
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I want to use the image of a braid to try to answer some of these 
questions, so let us look at another example to get a feel for this 
mathematical braid. 

1. PACIFIC NAVIGATION: IS IT MATHEMATICS? 

In Part I there is a short description of the navigation techniques of 
Pacific navigators, the way they used paths rather than positions, and 
the orientation system called etak. Another technique used by skilled 
navigators was the analysis of swells in the ocean. 

One of the features of the mid-Pacific is that it is a relatively 
predictable environment. While there are storms and weather changes, 
many of these are seasonal, and most of the weather is fine. Thus the 
trade winds are both steady in force and direction, and navigators can 
use them for orientation. Similarly, the reliable fine weather means 
that clouds form over islands, and can be seen from a distance when 
the land is over the horizon, making a much bigger “target” for a 
navigator to aim at. These constant environmental features are also 
reflected in the ocean swells. Even swells caused by storms are 
constant over several days. 

The reliability of ocean swells can be useful information for a sea-
farer. Swells are affected by the presence of islands, since swells change 
direction as they pass by. Surfers know this, the effect of land on swell 
direction is why good surfing is to be found off promontories: the swell 
bends as it rounds the promontory, creating a wave on which the break 
starts at one end and then runs along the length of the wave. 

Thus the swells under your boat carry a lot of information if only 
you can read it: information about islands that are over the horizon; 
information about weather patterns; information about wind direction 
and strength. Pacific navigators used this information in quite 
systematic ways. The ancient navigation schools created models out of 
sticks and shells to teach their new navigators about swells, and every 
navigator learned what swells they could expect in different seasons, 
and how the swells would change, as they traversed each journey in 
their repertoire. 

However, the first problem is to be able to detect the swells.  
It is reported (Gladwin, 1970, p. 170–4; Kyselka, 1987; Lewis, 1975,  
p. 90–3; Thomas, 1987) that Pacific navigators could feel the swells
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coming from four different directions simultaneously—the most famous 
contemporary navigator Mau could detect five (Kyselka, 1987, p. 98). 
That is, the navigators could feel the way the boat moved (even from 
inside the cabin at night) and thereby distinguish the movement of 
swells coming from several directions at the same time. The problem of 
discriminating component waves from the total wave movement is 
easily describable using the language of mathematics, and is a familiar 
problem when the waves are all from the same direction—this is the 
field known as Fourier or Harmonic Analysis. There has been little 
work done on the problem of multi-directional wave analysis, but 
mathematicians have no difficulty discussing it and accepting it as a 
problem in mathematics. They can generalise from the one-dimensional 
problem to that of waves coming from several directions, concept-
ualising the difficulties of analysis, and identifying possible ways to get 
the solutions. The problem of two waves coming at right angles to each 
other can be solved computationally, using computers to get approxi-
mations. But the problem has not been solved for waves coming from 
four different directions, and no instruments have been developed that 
will quickly resolve a wave movement into four directional com-
ponents.

Now let us imagine again. Think of all the mathematical and 
technological effort that went into the development of navigation: star, 
moon and sun position charts; sighting equipment; the accurate 
timepieces needed to make use of these sightings to determine latitude 
and longitude; and modern GPS (Global Positioning System) equip-
ment. Imagine that all (even a good fraction of) that money and effort 
had been put into analysis of wave motion and developing technology 
to sense swells in the ocean. Perhaps, if this had happened, ships 
would now be equipped with such sensors, and would have computer 
systems that could resolve the information and detect changes in the 
size and directions of the swells under their hulls. 

If such things had been developed, then captains would have 
another piece of navigation equipment—a piece that would be able to 
warn them of small islands, or icebergs, in their vicinity before they 
became visible to lookouts or radar. And if the Titanic had had such a 
piece of technology, then alarm bells might have been automatically 
triggered all over the ship well before she ripped her bottom out with 
such tragic results on an iceberg no-one had seen. Perhaps the lawyers 
of Star Line should start looking for who was responsible for shaping 
the course of mathematical development? 
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This story of unrealised mathematical development, however far-
fetched, illustrates what might have happened if mathematicians had 
become interested in the systems of Pacific navigators. We can imagine 
that harmonic analysis would be much further advanced than it is. This 
is what happens. Mathematics absorbs good ideas, techniques, even 
symbol systems, and makes them part of the mainstream of the subject. 
The worth of the ideas are judged on mathematical grounds. But this is 
not a braid with independent strands woven together but retaining their 
individuality, this is a river with tributaries flowing in. However, we 
can reverse the situation. 

There is another story, a real story, about Pacific navigation.  
In Hawaii there is a Polynesian Voyaging Society (<http://pvs.kcc.ha-
waii.edu/welcome.html>) that was established in 1973. There is another 
one in Tahiti. Many countries have established schools and courses in 
these navigation techniques. Ocean-going canoes are being built, both 
authentic replicas and modern versions, and are being sailed across the 
Pacific to take part in national celebrations, competitions, cultural ex-
changes, and on research voyages. Thor Heyerdahl’s re-creation of a 
voyage from South America was the first that became well-known 
(Heyerdahl, 1958)—is it because he was a European, or is it just 
because he knew how to manipulate the media? 

In these schools, on these boats, and as part of the curriculum for 
these courses, there is often mention of modern navigation techniques, 
use of modern equipment, and training in mathematical ideas. However 
these are used to enhance the development and activity of navigation 
derived from the original techniques. Ideas are co-opted, techniques are 
absorbed, mathematical systems are adapted to the necessities of Pacific 
navigation, and are judged useful or not according to its criteria. If this 
sounds like what is written two paragraphs back from the point of view 
of mathematics, then good. The parallel is exact. 

It may be argued that what happens in Pacific navigation schools  
is not mathematics, it is navigation. Navigation uses mathematics,  
just like many applied sciences. A picture of a braid woven together 
with independent strands of its applications is easy to accept. If a 
collection of applied mathematics strands is all that is meant by the 
braid, then the history of mainstream mathematical development is not 
challenged. But the braid being argued for here is a braid of mathe-
matical strands. 
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Remember, in the introduction, the difficulty with the word 
‘mathematics’ was noted. Every time this word is used it conjures up 
connotations, based on personal experience, of school mathematics, 
university mathematics, mathematics as we know it now. We have 
been calling this NUC-mathematics. When producing an argument 
that involves a broadening of the concept of mathematics, there is a 
problem with how to express it. We need to escape the mindlock. 

Let us return to the widened idea of mathematics, that of a  
QRS-system—a system developed to give meaning to the quanti-
tative, relational, or spatial aspects of our world. Let us put some 
further requirements on a QRS-system, requirements that are usually 
associated with NUC-mathematics: reproducibility, levels of abstra-
ction, generalisability, and symbolisation. Now look again at Pacific 
navigation.

David Turnbull (1991, p. 23), when considering Micronesian 
navigation, asks the question: “What is a navigation system”? Some 
characteristics mentioned are: it should be symbolic (and therefore 
transmittable); it should be manipulable (and therefore adaptable); it 
should be generalised (and therefore non-localised); and it should be 
open (and therefore innovating). Gladwin (1970) describes the system 
of navigation on Puluwat atoll. His (and others’) descriptions were 
further analysed by Hutchins (1983) in a way that made it clear that 
Turnbull’s characteristics are met. To quote Hutchins (1993, p. 223) 
“The Micronesian technique is elegant and effective. It is organised in 
a way that allows the navigator to solve in his head, problems that a 
Western navigator would not attempt without substantial technol-
ogical support”. 

Pacific navigation is not mathematics. Pacific navigation is not itself 
a QRS-system. But Pacific navigation does contain a QRS-system. 
Pacific navigation contains its own mathematics, a mathematics that is 
different in some fundamental ways from NUC-mathematics. For 
example, its criteria of accuracy are different (path accuracy is different 
from positional accuracy or distance), and its abstractions are different 
(path form is more important than map scale, and any scales may be 
time-based rather than length-based). We can discuss one set of criteria 
in terms of the other. We can transform the maps from one system to 
the other. That does not make them the same thing, nor can we assume 
that all features of the system are transformed intact. 
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The strand in the mathematical braid that carries the Pacific 
navigation QRS-system is smaller than that of NUC-mathematics. It is 
also wrapped inside a ‘Pacific navigation’ covering, but it is a 
mathematical braid nevertheless. The mathematics of standard,  
positional navigation remains as a fibre in the mainstream mathematical  
strand.

The picture of our mathematical braid is now one of a thick strand 
of NUC-mathematics woven with many smaller, braids that are 
disguised with other names. We have found a way of distinguishing 
different mathematics, no matter how limited in their application. 
Now let us look again at the main strand of NUC-mathematics. Is it 
what it seems? 

2. A RIVER OR A BRAID? 

When travelling to countries where you speak only a little of the 
language, or when talking to visitors who only speak a little of your 
language, a common response is to restrict the conversation to those 
things that are easily discussed, but about which there is likely to be 
common interest and agreement. As new grandparents spending six 
months in Spain, my wife and I became very competent at asking others, 
in Spanish, about their families: brothers and sisters, parents, children. If 
we were lucky and the people we met also had grandchildren, then we 
could hold a conversation that made us feel we could really speak 
Spanish, instead of the reality that we just had a minor facility in a couple 
of restricted areas. Always such conversations felt good, and left us 
smiling, and it wasn’t just the remembered antics of Zephyr and 
Veronica. It was the joy of communication and shared common feeling. 

Mathematics is a bit like this. That is to say, one of the mechanisms 
of mathematics is to focus on common features. It is natural that, 
when mathematicians talk, there is a tendency to talk about ideas that 
they have in common—we all do this, in every conversation. Even 
arguments depend on agreement on the topic and usually on the means 
of persuasion, although it does not always seem like it.

Some arguments do result from people talking past each other. 
These arguments are often unresolved, and usually lead to a feeling 
of dissatisfaction. Talking past each other can be cultural in origin.  
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My introduction to the phrase was in the title of a book for teachers 
(Metge, 1978) about cultural protocols and the misunderstandings 
they produce in classroom interactions. The result is alienation and 
isolation.

Since mathematics is formed and developed through communication, 
a consequence is that those parts of mathematics that get developed are 
those about which there is agreement. The areas of disagreement get 
dropped, or are only developed with difficulty. When research mathe-
maticians come together in international communities, there are 
inevitably some difficulties of communication. Agreed symbolisms and 
definitions of mathematics make communication easier—but within a 
restricted domain. Here is the key point: that domain is restricted by the 
very agreements that make the communication possible. Where a 
definition is not agreed, or the nature of a named concept is different for 
different mathematicians, then we encounter talking past each other. 
Three examples of this have already been mentioned: non-standard 
analysis, the mathematics developed from Cauchy’s concept of the 
continuum; the divergent paths of statistical analysis deriving from the 
two conceptions of probability; and Category Theory, the foundations of 
mathematics being written using functions, not sets. 

What happens, however, is that these differences are, in some way, 
made invisible. There are several reasons for this, and several ways 
that it can happen. But the end result is the preservation of the sense 
that all mathematics is proceeding together in one large stream, a 
stream of different interests, but one stream nevertheless, with the 
happy family of mathematicians floating together along it. This may 
be what mathematicians feel, but below the surface, mathematics is 
made up of quite different ideas being developed, often interacting, 
and knowing of each other’s existence, but conceptually different in 
important ways. Hence, the metaphor of a braid of many strands and 
fibres, is more appropriate than that of a river with tributaries. 

One more important issue. The researchers in the international 
community of mathematicians are increasingly using only one language 
to communicate: English. It was noted above that mathematical com- 
munication is restricted by the agreements that make communication 
possible. One of those agreements is to use English. So mathematics is 
becoming increasingly restricted to the ideas that can be expressed in 
English, and mathematical development will increasingly be directed 
down paths that are privileged by English. This is not a new idea.  
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In the first half of last century, the linguist Benjamin Whorf wrote 
(1956, p. 244): 

... but to restrict thinking to the patterns merely of English, and especially 

to those patterns which represent the acme of plainness in English, is to 

lose a power of thought which, once lost, can never be regained. It is the 

“plainest” English which contains the greatest number of unconscious 

assumptions about nature. ... Western culture has made, through lang-

uage, a provisional analysis of reality and, without correctives, holds 

resolutely to that analysis as final. 

If we have a thought or understand a concept, it can be expressed 
in English or any other language. All languages are endlessly 
creative and adaptable, and once aware of mis-communication or 
nuances in ideas that are not expressed in a particular language, then 
it is possible to find a way to express what was missed. The point is 
that there are some thoughts that are unlikely to occur at all if only 
one language is used. 

Perhaps this is more clearly seen in another development, the 
communication of mathematics over the web. There are many 
mathematical systems on the web: Matlab, Maple, Mathematica, for 
example. Mathematicians routinely use these systems to generate and 
explore hypotheses, to test ideas, and to communicate with each other. 
A recent development is the building of a mathematical language from 
very basic concepts, basic enough that all the different mathematical 
systems can be written using these concepts (Borwein, 1999). Once 
that has been achieved, all the systems can be linked together, and can 
communicate with each other. This basic language is intended to 
become the language of mathematics. Given what we have said, the 
danger is apparent. Only mathematical ideas that can be expressed 
in this language are likely to be developed—or, at the very least, 
mathematical ideas expressable in this language will be strongly 
privileged. Do the writers of the mathematical web language really 
believe that they can write a universal language that will accom-
modate all future mathematical ideas? 

In the mathematics braid some strands are bigger than others, 
some strands merge with each other or split apart, some strands are 
disguised within non-mathematical coverings. But if we regard 
mathematics as QRS-systems, I argue that mathematics consists of 
parallel systems, not one consistent body. Ethnomathematics can be 
regarded as the study of the different fibres of mathematical knowledge. 
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Such an image calls into question the universal origin of mathe-
matics. There is no reason to assume that, at the beginning of the braid, 
there was only one strand. Indeed, if we look at the current situation 
where there is a tendency towards convergence of ideas, the more likely 
scenario is that mathematics had multiple origins. Joseph’s diagrams 
(1992, Figs. 1.1–1.4) of the very early development of mathematics 
expose the paucity of what he calls a Eurocentric model of the history 
of mathematics. His final picture details the plaiting of the mathematical 
braid in the early millennia of mathematical thought. An argument of 
this book is that increased communication amongst mathematicians 
leads not to a single stream, but to more complex plaiting of many 
braids.

I believe that it is important, for mathematics, for human develop-
ment, and for mathematics education, that we start to focus on 
differences between strands as much as points of similarity. If mathe-
matics is to continue to blossom, and to express all the things that 
human thought can achieve, then we must resist any convergence of 
what is investigated. To do that we need to understand more about 
how the restrictions occur. That is the next topic. 

3. SNAPPING TO GRID AND OTHER 

MECHANISMS

Take a trip, if you will, to Hawai’i, renowned for its tourist hotels, 
beaches, pineapples, and big surf. Hawai’i was—still is—a centre of 
traditional Pacific navigation and sea-faring. Of course, for a sea-farer, 
winds are critical, and the trade winds, being so constant, are a good 
source of information and direction. Thus words associated with 
winds are going to be important. One such word is the word for 
leeward. In Hawaiian this is lalo. Given the north-east trade winds, 
this would be used for the south-eastern side of the islands. 

Now, Hawaiian is a Polynesian language, and there are some 
simple transformations that generally apply to this family of languages 
when you move from one to the other. To move from Hawaiian to 
Maori, the ‘l’ becomes a ‘r’. Thus lalo becomes raro. In Maori, raro

means ‘under’ or ‘north’, particularly when associated with the wind.  
I cannot find any Maori word for leeward. Is there a relationship  
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between the Hawaiian lalo (leeward) and the Maori word raro

(north)?
In New Zealand, could the word raro have originally meant 

leeward? New Zealand is far enough into the southerly ocean that the 
dominant wind is the cold southerly or south-westerly. Thus leeward 
would be in the north or north-east. Or, perhaps, raro just had the 
other meaning of under. As noted before, the North Island of New 
Zealand is Te Ika a Maui (The Fish of Maui) and its head is at the 
bottom where Wellington now sits. That is why this region is known 
as Te Upoko o te Ika—The Head of the Fish. When you travel to the 
tail of the fish, that is the north-northwest part of the country, you go 
down. Under. Raro.

Whichever of these explanations is correct, raro meant either 
north-northeast or north-northwest, but referred to important charac-
teristics of the geography of the country, not to due north. 

When the Europeans arrived with their NSEW compass as a 
dominant reference, it seems likely that the word for the direction 
closest to north got adapted to due north. At this point one reference 
system transfers to another, and the language changes in response to a 
shift in spatial system. In contemporary dictionaries, raro means 
north. The phrase “snap-to-grid” is familiar to those who have tried to 
draw pictures in their Word documents on a computer. The lines 
automatically adjust to an invisible grid on the page, moving slightly 
from where you place them so that they join up exactly. 

I wonder if the early attempts to create Maori word-lists also 
contain an example of this effect. Trinick (1999) reports that: 

In 1793, Lieutenant-Governor King of New South Wales, Australia 

visited the northern part of the North Island [of New Zealand] and 

collected information relating to the country and Maori. The information 

collected was published in Collin’s History of New South Wales in 1804. 

The Maori numerals (pp 562) are misspelt but recognisable; 

1: Ta-hie (Tahi) 2: Du-o (Rua) 3: Too-roo(Toru) .......... 

The accepted Maori words are in brackets. It is curious that the 
only sound that is clearly wrong is the ‘o’ on ‘duo’ (the Maori ‘r’ 
sound is very like a ‘d’). Could this be an unconscious slip because 
Italian (and Latin, which, presumably the educated Governor would 
have known) have the word ‘duo’ for two? 

“Snapping-to-grid” is one of the Universalising mechanisms by 
which mathematical development hides its differences or unifies itself. 
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Universalising mechanisms is the name I give to the ways in which 
mathematics normalises or links new ideas to the conventional main-
stream, whatever their origins, (for further discussion see Barton, 
1996, Section 4.3). If unification is successfully achieved, then there is 
no challenge to the rationality or correctness of existing mathematics. 
Rather, it enhances the subject by showing it to be, yet again, robust 
enough to accommodate new ideas, or even more richly intertwined. 

During this process radical change may occur. Mathematical terms 
and concepts are continuously created, or may be re-created in the 
form of the old, but with new substance. Thus there is the appearance 
of old terms encompassing the new situations, when, in fact, new 
concepts are involved. 

“Snapping-to-Grid” is a Universalising mechanism that is like 
colonisation. It transforms new ideas into existing terminology, 
thereby stripping them of their distinctive aspects, and, in particular, 
removing cultural characteristics. The ideas are acknowledged to be 
mathematics, but are not acknowledged to be mathematically new. 
The most common example is the way counting terminology in 
different cultures is transformed into direct equivalents of one, two, 
three, four, ... in the cardinal mathematical sense. The words may 
never have been used in this sense, as an example in addition to those 
in Chapter 3, in Burmese, the vast array of number classifiers 
(Burling, 1965) for use in different situations reduce to a single set for 
mathematical discourse. 

The justification for such colonising is the principle that stripping 
of context is exactly what mathematics is about. Practices from other 
cultures are interesting only in so far as the ‘real’ mathematics can be 
found. What is forgotten in this justification is that mathematics has a 
context expressed through the language and symbolic conventions of 
its host culture. An effect of implying that any new ideas are merely 
reformulations of ideas already part of mathematics, is to maintain the 
source of the new ideas in an inferior position. Thus cultures that do 
not have counting words beyond 50, say, are demonstrated to be less 
mathematically sophisticated. Such notions lead to the idea of primitive 
cultures (Stigler & Baranes, 1988). 

Another Universalising mechanism is subsumption. Subsuming 
mathematical ideas does not involve translation of the idea into new 
terminology, it relegates the idea to the status of an example. Like 
colonisation, the implication is that the idea is not new; unlike coloni-
sation, the idea is not even regarded as mathematics itself, just as an 
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example. Such examples are welcomed as interesting, and educationally 
illustrative, but they are not worthwhile in a mathematical sense. 
This is ‘artefact’ mathematics. An example of this mechanism is the 
identification of certain types of artistic decoration as mathematical. For 
example, in New Zealand, the Maori kowhaiwhai (rafter patterns from 
Maori Meeting houses) are recognised as mathematical strip patterns 
exhibiting symmetric groups and used in school publications to teach 
transformation geometry.

The result of this process does not necessarily remove the mathe- 
matical idea from its cultural context. On the contrary, the retention of 
its cultural surroundings is exactly what is required when subsumption 
occurs in an educational context. But the effect is to reinforce the idea 
that a cultural context can only be an example of mathematics, it is not 
mathematics itself. Any different, deep mathematical idea behind the 
artefact is now even less likely to be examined. 

Yet complex ideas in mathematics can be found in cultural craft 
practices. The patterns formed in the weaving of Maori flax baskets 
(Pendergast, 1984, 1987) were also used to demonstrate mathematical 
groups and used in school resources (Knight, 1985). In doing this the 
conventional NUC-mathematics criteria of symmetry were used for 
classification. But the Maori names for these patterns form a different 
classification, grouping together patterns that are not easily recognised 
as similar in our eyes. However, to a weaver’s eyes, the groups make 
sense: the classification depends on how the initial strands are set up. 
One group comes from strands set up as alternating white, black, 
white, black, white, black, white, and then different patterns made 
by different weaving; in another group the strands are white, white, 
black, white, black, white, black, white, black, white, white, … (see 
Fig 6-1). 

Figure 6-1. Weaving patterns from the same strand set-up 
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The two classification systems are not compatible, but are equally 
mathematical. I once used the ‘strand set-up’ classification as a talk 
on triple weaving patterns to a group of mathematicians, and dis-
cussed how two-colour patterns could transform into each other. The 
response? “Ah,” said a colleague, “your transformation group looks 
like a structure from hyperbolic geometry”. 

The justification for subsumption is the principle that mathematics 
provides powerful ideas for solving a variety of situations. Therefore 
the identification of a known idea in a new situation, provides another 
opportunity to apply known results. Sociologically, subsumption has 
the effect of establishing status. If one idea is accepted as an example 
of another, then the example is relegated to a lower status, and its 
originating context is deprived of the intellectual credit. 

A third Universalising mechanism I call appropriation. Appro- 
priation of new ideas acknowledges the novelty in the ideas (unlike 
snapping-to-grid or subsumption), but assumes that they form part of an 
existing mathematical structure. This is done either by regarding the 
new idea as a new category in an existing hierarchy, or by creating a 
new generalisation under which existing mathematics and the new idea 
will both fit. In this process the mathematical concepts may change, for 
example ‘logic’ now includes multi-value logic although it originally 
only referred to Aristotelian logic. The appropriation effect becomes 
clear: it is assumed that Aristotelian logic provided the foundation for 
today’s logic, when it only provided the etymological origins. The 
investigation of swells as advanced Fourier Analysis could be another 
example of this. 

The justification for appropriation is the assumption of genera- 
lisability: it is always possible to obtain a mathematical idea of greater 
generality to bring together previously unrelated concepts. Generalising 
usually involves greater abstraction, and the mechanism provides a way 
to reapply existing knowledge to new situations. The danger with this 
process is that once a generalisation has been made it is more difficult 
to perform a different generalisation. The assumption of universal 
structure mitigates against seeking other abstractions once the idea has 
been fitted into one satisfactory hierarchy. The sensation of a single 
universal structure is thereby enhanced. 
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4. REJECTION AND ISOLATION 

The three Universalising mechanisms in which mathematics draws 
in ideas from other areas are complemented by ways in which it can 
reject other ideas if they do not fit with existing mathematical 

retain mathematics as a stable and ‘true’ field, not allowing other 
forms of ‘truth’ to be called mathematics. This can be successfully 
achieved because the arbiters of mathematics are mathematicians 
themselves. Society in general cannot tell mathematicians what their 
field is like. 

The first Isolating mechanism is non-recognition, or the rejection 
of the idea as having anything to do with ‘proper’ mathematics. The 

Berrgren (1990) have both documented the rejection of much of the 
mathematics from India, China, and medieval Islam as non-rigorous. 

ideas were known for centuries before Pascal and Pythagoras. Knowl-
edge of Pascal’s Triangle is attributed to Jia Xian who lived 600  
years before Pascal (Stillwell, 1989, p. 136). Evidence of Pythagoras’ 
Theorem can be found in the Chinese text Chou Pei Suang Ching

that may date from 500 years before Pythagoras (Swetz & Kao, 1977, 
p. 14). One of the subtleties of this mechanism is the way that the 
number of new theorems is taken as the measure of mathematics 
achievement (Davis & Hersh, 1981, pp. 20–25). People who do not  
(or did not) prove theorems are therefore not mathematicians. 

The justification for non-recognition is the importance of 
convention as a basis for mathematical knowledge. How can mathe-
maticians be sure of their results if there is a variety of foun- 
dations for the acceptance of mathematics? Sociologically, it is only 
by establishing the boundaries of a discipline that those within it  

I call processes of rejection Isolating mechanisms. The effect is to 
conventions by labelling them as something other than mathematics.

people who have the power to define mathematics, for example, journal
editors, appointment committees, or curriculum designers, place the
new idea outside the borders of the field. 

much of the mathematics originating in the East. Joseph (1992) and 
An example is the attitude of many mathematicians towards

hence we have Pascal’s Triangle and Pythagoras’ Theorem when these 

The results are only accepted after they have been proven in an accept-
able (Western) manner. When they are proven, or analysed, they
carry the name of the Western mathematician who did the work: 
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can control their own activities. However, making the contrary state- 
ment: “this IS mathematics”, and exploring the possibilities which are 
thereby opened up can be interesting. For example, Marcia Ascher 
explores the set theoretic structure of inheritance patterns (Ascher, 
1991, pp. 72–76), and investigates the mathematical ideas that could 
newly illuminate a game analysis, such as the Maori game Mu Torere 
(Ascher, 1991, pp. 97–108). 

Dismissal is a second Isolating mechanism. It recognises the 
mathematical component of a new idea but makes it unworthy of 
consideration. The new idea may not be described in acceptable terms, 
in an appropriate forum, or by someone of the required status. The 
effect is to devalue the new idea. The justification for dismissal is the 

A famous example is the rejection of Ramanujan’s manuscripts 
(Hardy, 1978, Preface). These contained some of the best mathematics 
of the century, but had been previously rejected without comment by 
two notable English mathematicians of the time to whom they had 
been sent before Hardy recognised their worth. 

Another Isolating mechanism is compartmentalisation. It recognises 

A historical example is the work of Florence Nightingale. No-one 
has ever recognised as a mathematical achievement her analysis of the 
causes of high mortality in field hospitals and maternity wards. It is 
now acknowledged to be a forerunner to the development of statistics 
as a discipline (Cohen, 1984), but at that time, such a field did not 
exist. Locating it now as statistics is partly to deny her work as 
mathematics.

Universalising and Isolating mechanisms not only occur as part of 
the colonial process when mathematical ideas from two cultures 
meet—as when Western reference systems dominated Pacific ones—
but also operate internally within mathematics. 

maintenance of standards, but sociologically it can be seen as legitimi-
sation. Social systems regulate themselves in various ways, from
formal regulations to sub-conscious peer-pressure. 

the mathematical nature of the new idea, but places it outside mathe-
matics proper, into a related discipline or a new field. This mechanism
often carries inferior connotations, for example the ‘number crunching’
label attached to numerical analysis (the mathem-atics of computer 

of an area which has established itself sufficiently to now affect the 
methods) in its early years. Mathematical computing is a good example

nature of mathematics itself (Epstein & Levy, 1995). 
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A request to a group of my mathematical colleagues to give me 
examples of Universalising resulted in each of them thinking of per- 
sonal experiences where one thing they were working on or thin- 
king about was suddenly “snapped to grid” or subsumed by another 
existing mathematical idea. The results are not always negative. The 
most famous example is Vaughan Jones’ discovery of his knot 
invariants (now called the Jones polynomial). In the words of my 
colleague (Conder, Personal communication, 2006): 

He was working on aspects of subfactors of von Neumann algebras, and 

derived some equations associated with these, that turned out to look just 

like the braid relations from knot theory. Joan Birman and others helped 

him to “snap to the grid” of knot theory, and the rest is ... well ... history! 

This happens all the time, but usually not so spectacularly! [The ‘history’ 

in this case, was the Fields Medal, the mathematical equivalent of a 

Nobel Prize]. 

Lakatos (1976) talks about “monster-barring” as the way that 
mathematicians defend their proofs against counter-examples. This can 
be interpreted as a form of the Isolating mechanism non-recognition: 
the mathematician does not recognise the counter-example as relevant 
to the particular class of objects under discussion. 

What has just been described are several ways in which the 
discipline of mathematics preserves the idea that it is a universal subject 
based on a single set of principles. This description is necessary if the 
argument of this book is to be accepted: if mathematics is to be seen as 
a braid of many strands, then it is necessary to explain why it has 
seemed like a river fed by tributaries. 

I am not making a negative value-judgement, nor suggesting that 
mathematicians must start behaving differently. Rather, it is an attempt 
at a description of what happens. We need to recognise these processes 
if we are to fully understand the nature of our subject. Understanding 
what happens enables us to take another look at our field, to ask some 
other questions, and thereby consider other approaches to mathematical 
ideas that may be productive.

5. MATHEMATICS, SOCIETY & CULTURE 

My Universalising and Isolating mechanisms are not the first 
attempt to describe what is happening in mathematics that explains its 
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apparent universality. Others have written sociological accounts of 
mathematical knowledge, from Spengler, to Bloor, to Restivo (E.g. 
Spengler, 1926; Bloor, 1973, 1976, 1994; Restivo, 1983, 1992, 1993). 
Bloor, in particular, has attempted to use the anthropological theories 
of Mary Douglas to describe the Lakatos version of mathematical 
development (Bloor, 1978).

His programme has an even stronger aim than this. He seeks to 
break down the reification of mathematics as beyond sociological 
explanation (Bloor, 1973, p. 190), and to describe the mechanisms by 
which social and institutional circumstances (I would want to add 
cultural context) strongly determine the knowledge that scientists 
produce.

He focuses on mathematics and logic because this form of 
knowledge has been regarded as the most rational, a priori, and 
therefore the least likely to have sociological foundations. Bloor 
presents a number of examples of existing alternative forms of 
mathematical thought, and speculates on their social causes. For 
example (Bloor, 1976, pp. 125–9), he argues that the crises surroun-
ding the development of calculus and the use of infinitesimals arose 
solely because the mathematicians attitudes to rigour had changed. 
The decline in rigour in the sixteenth century, in recognition of the 
practical results non-rigorous methods produced, actually allowed 
the infinitesimals to appear in calculations for the first time. The 
renewed interest in rigour in the nineteenth century produced a crises 
where there was not one before—and out of that crisis arose new 
mathematics.

Bloor also examines the historical process for the way in which it 
covers up variation, and concludes that the cumulative nature of 
mathematical development needs to be challenged. In responding to 
critics of his view (1976, pp. 179–83), he again makes the point that 
marginalisation of alternative mathematics’ does not negate them, it just 
shows how a social cause creates an illusion of absolute knowledge. 

Bloor’s later work on mathematics (1983, Chpt. 5.; 1994) draws 
heavily on a Wittgensteinian analysis of the nature of mathematics to 
justify the idea that we construct conventions of meanings about 
numbers and relations as much as about words. The sociology of 
mathematics, in his view, aims to expose those conventions which 
have operated. 
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Davis (Davis, 1993, pp. 189ff ) has also written about the relation-
ship between mathematics and society. He argues that mathematics 
constitutes a way of thinking which is different from other ways, and 
that different ways of thinking need to be balanced in our society.  
For example, there has been a long literature concerning the use of 

sociology itself in which every social situation may be described by an 
equation. Catastrophe Theory, developments in Game Theory, and 
mathematical theories of politics all contribute to the mathematisation 
of social science. But it is not just the encroachment of mathematics 
into social life which is the subject of Davis’ concern. He argues that 
computerisation, for example, has fundamentally changed our modes 
of thinking (Davis & Hersh, 1986). 

For Davis, the balance of mathematical versus other types of 
thinking is to be achieved through education, hence (Davis, 1993, 

I should like to argue that mathematics instruction should, over the next 

generation, be radically changed. It should be moved up from subject-

oriented instruction to instruction in what the mathematical structures and 

processes mean in their own terms and what they mean when they form a 

basis on which civilization conducts its own affairs. .... [This requires] 

the teacher to become an interpreter and a critic of the mathematical 

processes and of the way these processes interact with knowledge as a 

database.

He sums up: 

If mathematics is a language, it is time to put an end to overconcentration 

on its grammar and to study the “literature” that mathematics has created 

and to interpret that literature. 

Davis’ makes a convincing case for this consequence of a 
sociological view of mathematics. The case is even more persuasive if 
a world view description of mathematics is correct. If there are 
alternative mathematical languages which may be enculturated in any 
education system, it is imperative that every society produces the 
means to question these ways of thought, and to make informed 
choices about how dominant they are to become. This theme is 
developed further in the next section. 

of some early attempts—including a mathematical characterisation of 
mathematics in the social sciences. Kaplan (1960) gives an account

p. 190): 
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But finally, to finish this chapter, and before we turn to the 
philosophical implications of these ideas, let us take a small diversion 
into the world of the Kama Sutra and discuss the issue of mathematics 
in society. 

We are familiar with the uses of mathematics in science, tech-
nology, economics, and industry. Mathematics as an applied science 
seems to provide the raison d’etre for the investment and effort that 
societies spend on mathematical development. Yet many mathe-
maticians claim that the real reason for studying the subject is its 
own joys (Hardy, 1941), and David Singmaster’s Chronology of 
Recreational Mathematics (2006) goes back three thousand years. The 
unique attraction for mathematics and the role it can play is best 
illustrated by the (truly) unexpurgated version of the Kama Sutra. 

There are, unfortunately, no fully unexpurgated versions of the 
Kama Sutra in English. All translations have an important chapter 
omitted. Why? Too lascivious? Well you might think so if mathematics 
was your passion. These are hot mathematics problems. Mathematics 
problems? As the introduction to the Kama Sutra? Yes, indeed. There 
exist Sanscrit manuscripts which make reference to mathematics 
problems in the Kama Sutra, problems couched in the most delicate 
language and using sexual imagery. We have examples of similar 
problems from Aryabhata (c. 800AD), Mahavira (c. 850AD), and 
Bhaskara II (c. 1150AD). 

One problem from Bhaskara II concerns a bee that falls into its 
lover’s lotus flower, which closes upon him. Upon asking her to let 
him out, she responds that he must first solve the mathematics 
problem (the translation below is George Joseph’s (1992) adaptation 
of Colebrook’s original translation): 

From a swarm of bees, a number equalling the square root of half the 

total number of bees flew out to the lotus flowers. Soon after, 8/9 of the 

total swarm went to the same place. A male bee enticed by the fragrance 

of the lotus flew into it. But when it was inside the night fell, the lotus 

closed and the bee was caught inside. To its buzz, its consort responded 

anxiously from outside. Oh my beloved! How many bees are there in the 

swarm?

Here is a problem from Mahavira’s Ganitasarasamgraha (again the 
translation is an adaptation by George Joseph (1992), this time from 
the original translation by Rangacharya): 
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One night in spring, a young lady was lovingly happy with her husband 

on the floor of a big mansion, white like the moon and situated in a 

pleasure garden with trees bent with flowers and fruits. The whole place 

was resonant with the sweet sounds of parrots, cuckoos and of bees 

which flew around intoxicated with the honey from the plentiful flowers. 

In the course of a “love quarrel” between the husband and wife, the 

lady’s necklace came undone and the pearls scattered all around. One 

third of the pearls reached the maid-servant who was sitting nearby; one 

sixth fell on the bed; one half of what remained (and one half of what 

remained thereafter and again one half of what remained thereafter and 

so on, counting six times in all) were scattered everywhere. On the 

broken necklace it was found that there were 1161 pearls left. Oh my 

love, tell me the total number of pearls on the necklace. 

Now what were these problems for? What part did problems like 
these have in a sex manual? The answer lies in the social context. At 
that time in India, the high society for whom the book was written was 
extremely well-educated in mathematics. Solving mathematical pro- 
blems was a pleasure and delight that was part of the social scene. It 
could perhaps be compared with cryptic crosswords for some people 
nowadays.

So, what happens when a couple meet together after a long hard 
day at the office? Do they leap straight into bed? No, that would 
hardly be a romantic and sensitive way to behave. First it is nece-
ssary to reconnect as people, and what better way than to engage 
together in some gentle recreational activity, like, well, like solving a 
mathematics problem together. And if the mathematics problem is 
written in a suggestive way that might lead you on to more intimate 
things, so much the better. 

We know these problems are not to be taken too seriously. The 
answers, for example, are not realistic. The answer to the Pearl 
Necklace problem is 148 608. That is a lot of pearls to count when 
there are better things to do. Joseph calls this a fantasy necklace and 
notes the fascination for very large numbers at that time—the content 
is more abstract than the erotic context suggests. 

Mathematics and its role in society? There are clearly more possi-
bilities than we ever dreamed about. 


