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SPACE: STATIC AND DYNAMIC WORLD 

VIEWS

Abstract: The way in which we talk about geometrical objects is explored through several 

languages. The different way of talking in the Navajo language is extrapolated 

into a geometrical system. Different ways of navigation are then analysed and 

the chapter concludes with a discussion of philosophical links with the 

development of mathematics.
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The search for evidence of different ways of talking mathe-
matically was hardly systematic. It was necessary to gather infor-
mation about languages that had not been part of the development of 
NUC-mathematics. The information needed was how these languages 
express mathematical ideas. What discourse is used to talk about the 
quantitative, relational, or spatial aspects of peoples’ experiences in 
their general, everyday language, both spoken and written? 

The problem of how to access these languages was left largely to 
chance. After Maori and Tahitian, the languages Euskera, Dhivehi, 
and Kankana-ey were chosen because I happened to have contact with 
speakers of these languages who were also mathematicians. Some 
other languages, including African and First Nation American ones, 
provided examples in existing literature. 

There were two relevant books that contained information of the 
type I was looking for. In the 1960s Gay and Cole (1967) had written 
about the Kpelle people of Liberia, in particular describing their 
language of logic and the effect it had on their understanding of 
logical relations. In the 1980s Pinxten, van Dooren, Harvey, and 
Soberon (Pinxten, van Dooren, & Soberon, 1987) had built on an 
earlier anthropological study (Pinxten, van Dooren, & Harvey, 1983), 
and written about the geometrical language of the Navajo. This latter 
work tied in with the verbal numbers of Polynesian languages since, 

paradoxes

geometry, space, coordinate systems, Tahitian, Navajo, Pacific   navigation,  Zeno’s
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in Navajo, what we know as geometrical objects (circles, squares, 
lines, spheres) are expressed verbally. 

1. WHAT ARE VERBAL SHAPES? 

Verbal shapes? Let us think about this first in English. Shape is 
expressed in many ways. Consider the geometric idea of a square. In 
everyday language shapes are usually characteristics of something: a 
square piece of paper, a square table. But I can ask someone “to fold a 
piece of paper into a square”, in the same way as I might ask them to 
fold it into a bird. The squareness is expressed like an object. Or I 
could ask them “to square the piece of paper” in the same way as I 
might ask them to screw it up. The squareness is expressed as an 
action.

Try another shape. We can say that a shape is a triangle (which 
makes the idea of a triangle into a thing), or that a shape is triangular 
(which makes this idea a characteristic of a thing), or that something 
is triangulating (which makes the idea into an action). Notice that the 
form of the word for the adjective and verb are clearly derived from 
the noun. 

These three ways of speaking about a shape work for a square, a 
triangle, a circle (we could have a circular piece of paper, we could 
ask people to sit in a circle, the birds might circle the treetops), and for 
a line (planes may fly in a linear formation, we are asked to stand in a 
line, people line up at a ticket office). But in mathematical discourse, 
and especially with more complicated mathematical shapes, a shape is 
usually described as an object or as a characteristic. We can draw a 
pentagon, and something may be pentagonal, but it sounds clumsy to 
ask someone to “pentagonalise a piece of paper”. Notice that in all 
these examples, the adjectives are either the same as, or derived from, 
the noun: square—square, circle—circular, line—linear, pentagon—
pentagonal. The noun form is privileged in English; it seems to be the 
base concept in everyday language and in mathematical discourse. 
The derivations of these words are given in dictionaries as from 
nouns. It is, of course, possible to use any form, and even to construct 
odd but understandable forms (“decagonal”), however noun forms are 
more common, and sound better. 

In Navajo the opposite is the case: 

A basic characteristic of the Navajo world view … is the fundamentally 

dynamic or active nature of the world and everything in it. … [This is a] 
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basic perspectival difference from Western thought and language. (Pinxten, 

van Dooren, & Harvey, 1983, p. 15). 

… a cosmos composed of processes and events, as opposed to a cosmos 

composed of things and facts. (Witherspoon, 1977, p. 49). 

In the grammar of the language, this feature is expressed through 
verbs. This does not mean that the verbs can be considered as spatial 
terms themselves, rather the grammar of the language is such that a 
particular verb can only be used with a certain group of objects that 
have a particular spatial characteristic. So the geometrical reference is 
carried in the verb, rather than in the noun. For example, the idea of 
planeness (a flat expanse in two dimensions) is associated with the 
verb sikaad: tó sikaad = a layer of water spreading out; diih dikon tsin 
sikaad = a wooden floor spreading out (Pinxten, van Dooren, & 
Harvey, 1983, p. 93). It is not possible to use this verb to describe 
land, on the other hand, because land has a certain thickness, even 
though it does spread out. 

The mathematician in me is intrigued by the idea of verbal 
expression of shapes. Could this make a difference mathematically? 
Does the way we think about the idea of triangularity affect what we 
understand about it? It was interesting to play the mind-game of what 
the study of shape might be like if it had developed verbally. How 
might geometry be different? 

Let me be clear that this is my mind-game, not a Navajo mind-
game. The way I am using the idea of “circle as an action” is my 
conception of that idea, not a Navajo one. For example, the idea of 
circular may be used to describe an object with a circular shape or 
outline. In Navajo this would be indicated by a verb, in English by an 
adjective. But I have taken the idea of circular as only an action: I am 
playing a mind-game where a circle is something you do, and I am 
using the verbal function of action from English, not from Navajo. 

Imagine, then, that circularity is an action, not an object, thus we 
must talk about circling, not a circle. Working mathematically, it is 
necessary to make this idea more formal, that is, to explore the details 
of what makes the action exactly circular, and to distinguish it from 
actions that are not circular. I need to be able to define circling, to 
categorise different circlings, to describe the characteristics of 
circling, to know how circling is related to other shape-actions, and to 
understand how it changes.
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2. BIRDS AND ORBITS 

If a circle is an action, then it is necessary to imagine movement 
and not a static picture. One way to do this is to make yourself into the 
actor. Think of yourself as a bird circling a tree. For the moment, let 
us say that you are flying at a constant speed. Now, what is it about 
the way that you are flying that means you are flying in a circle 
(circling) and not a square (squaring) or an ellipse (ellipsing)? It is the 
fact that you are turning at a constant rate all the time. To be squaring, 
for example, you would fly straight, and then turn suddenly at the 
corners. So the defining feature of circling is what is called constant 
angular velocity. 

What would be different if you were turning more quickly (but still 
at a constant rate)? You would be circling more tightly. Assuming 
constant speed, differently sized circlings are characterised by 
different angular velocities (that is, the rate at which you are turning). 

If, on the other hand, we kept the angular velocity constant, we 
could then change the size of our circling by changing our speed: a 
greater speed would result in wider circling, a slower speed would 
make it tighter. 

Figure 2-1. Flying in smaller circles 

Constant speed, constant rate of turn. 

If the speed of both birds is the same, 

then the bird is turning more quickly in the smaller circling. 

If the rate of turn of both birds is the same, 

then the bird is flying more slowly in the smaller circling 
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That takes care of the size of the circling. What other characteristics 
of circling might we be interested in? Perhaps the length of time it 
takes to get back to where you started. Perhaps the way it is oriented 
to the ground; are you circling in a horizontal plane or is your circling 
tipping (like the fairground ride I know as an Octopus)? Or are you 
circling in a vertical plane like a Ferris Wheel? 

In this geometry, how does circling relate to other shape-actions? 
Again let us imagine that we are a bird, flying at a constant speed and 
turning at a constant rate so that we are circling. Let us gradually 
change one of these variables: instead of turning at a constant rate, let 
us steadily increase the rate of turn, making us turn tighter and tighter. 
What does our path look like now? We would be spiralling inward. 
And if we steadily decreased the rate of turn as we are flying at 
constant speed, we would then be spiralling outward. 

This means that circling is actually a special case of spiraling. 
What happens if we are not turning at all, if the rate of turn is zero? 

Then, of course, we are flying along in a straight line (lining), thus 
lining is a special case of circling (rate of turn is also constant—but it 
is zero). Similarly, if we turn at an infinitely fast rate we will simply 
be staying at the same spot. 

The same effect can be obtained from changing the speed, but 
keeping the rate of turn constant. If you fly at a faster constant speed, 
then the circle will be bigger—at infinite speeds you will fly in a 
straight line. If you fly at a slower constant speed, then the same rate 
of turn will make you fly in a smaller circle—and if you stop, of 
course, you will just turn on one point. So pointing (the action of 
being in one place) is a special case of circling. 

Figure 2-2. Flying in points and lines 

A slower and slower rate of turn make 

larger and larger circles. When the rate of 

turn is zero, you will fly in a straight line. 

As the rate of turn gets larger then the circle 

gets smaller until it becomes a point.
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In coordinate geometry, a circle is a special case of a family of 
curves known as conic sections that also include parabolas and 
ellipses. How would you fly in order to describe these shapes? Think 
about runners sprinting around a sports arena. This is not an ellipse, 
but it is similar, and will do while we think about what is happening to 
them. They are running at more or less constant speed, not turning at 
all as they go along the straights, and then leaning into the corners at 
each end. So the rate of turn is changing during the circuit: from zero, 
to turning, to zero again, to turning again. So it would be for an 
ellipse. In this shape there are no straights, so the rate of turn would 
never reduce to zero, but it would decrease, increase, decrease and 
increase again, all in a steady fashion. 

Ellipsing can also be done by turning steadily, but changing your 
speed. Fly with a constant rate of turn, and then steadily increase your 
flying speed, then decrease it, then speed it up again, and decrease it 
again. The effect will be to elongate circling into ellipsing. 

There is a situation that exemplifies ellipsing: that of planets 
orbiting around the sun. Think of yourself as the planet. What is 
happening? In fact it is a combination of the two situations we have 
been describing, since both the flying speed and the rate of turn are 
changing. As you approach the sun, the pull of gravity speeds you up 
and turns you towards that burning orb. But (fortunately) you are 
travelling too fast to become an Icarus, and you fly by. Now the sun is 
close and the pull of gravity is strongest, and you are forced to turn 
quite strongly in the direction of the sun. But your speed is such that 
you go right around the sun, and head back from whence you came. 
But now you are moving away from the sun, and again it starts to pull 
you back, slowing you down. But as you get well past it the pull 
gradually decreases. Nevertheless it is enough to slow you down, 
slower and slower, and to turn you around again. You are a long way 
away, turning slowly, and your speed is quite low. So low that that 
distant pull of the sun is enough to pull you back again for another 
approach. Uh-oh, here we go again. 

The mathematics of this situation is well-known in conventional 
terms. But it is interesting to compare what is done in astronomy, 
and what might be done if the mathematician was on the planet (of 
course this is exactly the situation for artificial satellites that are 
thrown up into orbit around earth or the moon). What do astronomers 
do, when they think they have found a new heavenly body? They take 
observations of its position (with reference to the earth, sun, or centre 
of gravity of the solar system, and also using a reference plane). When 
they have enough observations over a great enough period of time, 
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then they use these positions to fit an ellipse. If they have enough 
positions (theoretically three are enough to determine an ellipse, but in 
practice more are used to minimise the effect of measurement error), 
then the ellipse can be mapped accurately, and it is then checked 
against a data-base of ellipses of known heavenly bodies kept on a big 
computer in Harvard. New ellipse? Bingo. New heavenly body. 

Now, in Action Geometry we have used speed and rate of turn as 
the basic elements, not position. If the mathematician was on the 
planet, then rather than determine position relative to some reference 
point as the basis for calculations, they might rather use the speed and 
rate of turn as the basis for predicting where they were going. 

What about other shapes. Can a square be an action? There are all 
those sharp corners. It is here that we see more clearly the differences 
in the items of interest between Action Geometry and conventional 
(Static) Geometry. If you are travelling in a square, then you must 
either stop and turn, or turn infinitely quickly, at the corners. The 
way you trace the shape becomes a combination of flying speed and 
turning speed. Also, the time taken on each side is important (if a 
constant flying speed is assumed). Of course it is possible to describe 
any shape at all using either Action Geometry or Static Geometry. 
Notice, however, that shapes without sharp corners are more easily 
described in Action Geometry. Action geometry would privilege such 
smoothly curved shapes, but would have a difficult time describing 
the constructions of Euclidean geometry. 

Seymour Pappert’s computer environment LOGO (often known as 
Turtle Geometry) appears to be a mix of Static and Action geometry 
(Abelson & diSessa, 1980). In this environment the screen becomes a 
field on which the icon (originally represented as a turtle) can be made 
to move. The original version enabled the user to move forward or 
back a given length, or to turn a given angle. This uses the idea of 
movement as its base, but still characterises movement as going from 
one point to another. A true Action geometry environment would 
allow the user to adjust speed and rate of turn along a continuous path, 
not iterate a number of small positional movements to make a path. 

3. EUROPEAN AND PACIFIC NAVIGATION 

A parallel exists between the two geometries being described and 
two ways of conceptualising navigation. The different conceptual 
systems possible for navigation first came to my attention when I read 
about the navigation techniques of Pacific peoples (Gladwin, 1970; 
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Hutchins, 1983; Irwin, 1997; Kyselka, 1987; Lewis, 1975; Thomas, 
1987; Turnbull, 1991). The basis of their navigation is to determine 
where they are on their journey, not their exact position. 

Consider traditional navigation as it developed through European 
navigators. From the early art of “way-finding” (Collinder, 1954), a 
system evolved that required a number of sightings of the sun or 
stars, and measurements of time, so that position could be accurately 
located on a map. The history of this development, and the techno-
logical effort and expenditure that went into it, is described in Sobel’s 
book Longitude (1995). One way of thinking about this is to imagine 
that a grid has been constructed upon the world and the position of 
places of interest are known with respect to this grid. Thus if you can 
locate your position on the grid, then you know your position in 
relation to the places you came from or are going to. This system is 
now developed to such an extent that using satellite GPS (Global 
Positioning Systems), a hand-held computer will give you a read-out 
of your position to within a metre. I have friends who, in thick fog, 
sailed out of a narrow gap between two rocky outcrops using only 
such equipment and their charts. If you use this system then your aim 
is to be constantly aware of your position, and of how far you are 
from known critical points. 

Notice that this system relies on a reference system that has been 
created by humans. The original references were features of the real 
world (headlands, islands, reefs), but the latitude and longitude grid 
that has developed from these is artificial. 

Now consider traditional Pacific navigation. The experienced 
navigators have the equivalent of charts in their minds, but these are 
not position charts, they are a set of features and signs that indicate 
the path that they will travel. This path is not always a straight line, 
rather it goes from landmark—or, rather, sea-mark—to sea-mark. For 
example they are likely to know more about the direction of their 
destination and how long it will take to get there, than how far away 
they are from it. In a well-documented experiment a navigator did two 
return journeys from Hawaii to Tahiti in a replica Polynesian double 
canoe, and travelled along the same dog-leg shaped path each time 
(Kyselka, 1987). Indeed, on one occasion, the following tracking ship 
with modern navigation aids, lost all power and had to reply on the 
canoe to reach its destination. Sea-paths do not, however, always 
cover the same ground: they depend on weather, seasons and sea 
conditions.

Such a means of travel is, of course, very common for people 
travelling by land. If I drive from my city to another three hours away, 
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there is no need for a map. There are many signs to tell me that I am 
on the right path, and as I become familiar with the journey. I will 
note landmarks and sights along the way, and I will have my favourite 
stopping places, from where I will know how long it is until I reach 
my destination. At any point I may not even know in which direction 
my destination lies, but, nevertheless, I am confident that I am “on 
track”. In this system it is important to know, first, that you are on the 
right path, and secondly, how long it will take to reach other critical 
places on the path. 

The difference between what we can call Position Navigation and 
Path Navigation can be illustrated by two ways in which movement is 
characterised. In the televised animations that accompany America’s 
Cup yacht race coverage, the speed of the yachts is visually 
represented by a trail of dots behind each boat. These dots are created 
for the animation from the highly accurate GPS equipment on board 
by recording the position at regular time intervals. If the dots are close 
together, that means that the boat is going slowly, if they are 
spreading out, then the boat is increasing speed, and so on. Speed 
represented by position. 

Compare this with the idea of etak (Akimichi, 1985; Gladwin, 
1970, Chpt. 5; Gunn, 1970), one of the conceptual formulations of 
travel of the Pacific navigators. When a canoe is moving along its 
path, then we can imagine that there is an island ahead that we need to 
pass by (let us say to the right of it). As we pass by, this island will 
appear to move from nearly directly in front, to ahead but on the left, 
to abeam on the left, to behind and to the side, to nearly directly 
behind. It is as if the island moves while the boat stays still. This idea 
is etak, and Pacific navigators use it to describe islands or features that 
cannot be seen (perhaps because they are over the horizon) as 
indicators of how well they are travelling down their path. Motion is 
thus represented by changing bearings of sea-marks. 

What is the correspondence between Position Navigation and Path 
Navigation and Static and Action geometries? Position navigation 
focuses on reference points and distances, using them to find the 
bearing that must be travelled. Path navigation focuses on pathways 
and speed, using them to find the direction of the next sea-mark. The 
first has static references, the second has active ones. 

The examples of planetary orbits and navigation illustrate different 
ways of conceptualising space. One way uses the basic idea of static 
position with reference to an origin. Another way has movement 
through the space as the base idea. Each way of seeing makes some 
things easy and other things complicated. In the study of space that is 
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part of NUC-mathematics, objects and position are treated first, and 
movement (speed and turn) is a more complicated idea that is treated 
later. This section has tried to illustrate that it is possible to begin a 
study of space using movement, and then think about position at a 
later time. 

Note that there is nothing that has been mentioned about Action 
geometry that cannot be described in terms of conventional Static 
geometry. The reverse is also true. We can do Static geometry in 
terms of Action geometry, or vice versa. (Note that describing the 
orthocentre of a triangle would be complicated in Action geometry 
and easy in Static geometry, and the opposite is true for describing a 
changing spiral). The point is that we do not do this, or, we tend not 
to, certainly not at first. This is because some things are easier, or 
more natural, than others, depending on which geometry you are 
using. This is not an unusual idea. In conventional geometry we have 
several systems, for example the Cartesian coordinates and Polar 
coordinates mentioned above, and we use the system that is easiest for 
what we are trying to do: the Cartesian systems for straight lines and 
some curves, the Polar system for circles and other curves. However it 
should not surprise us that the systems that are in common use are not 
all the systems available. 

4. LINKING THE LINGUISTIC  

AND MATHEMATICAL SYSTEMS 

We are predisposed to see space using particular basic ideas. It is 
suggested that part of the reason that NUC-mathematics is the way it 
is results from the linguistic and cultural orientation of those who 
developed it. Western thought is culturally and linguistically pre-
disposed to reference and position, whereas, for example, the Navajo 
one is predisposed to action and movement. Let us again use the word 
privilege to describe what is happening: languages, as the expression 
of cultures, privilege different ways of thinking about shapes and 
space.

The investigation starting from the dynamic Navajo world view 
has given us something more substantial than the flight of imagination 
based on differences in the few words in Tahitian used to describe 
the position of an object. Now we are talking about a whole way
of understanding shape and the potential geometrical world that that
creates: a world with different base concepts, with different foci of
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cations.
At the end of the previous chapter, we noted that the Chinese 

philosophy of Yin and Yang, and the logic of dialectics, each provided 
philosophies with more than one origin in contrast to Descartes ego-
centric theories. It was suggested that there might be parallels with 
graphical representation being developed through a single-origin 
model based on Descartes ideas, with double-origin models being 
relatively ignored in Western mathematics. 

The parallel can be extended to the idea of Static and Dynamic 
geometries. The idea of constant change is at the heart both of the 
theory of Yin and Yang, and of dialectics. Western philosophy, on the 
other hand, developed through the Greeks. Rotman (1987, p. 62) 
writes:

[The Greeks were] logically persuaded that change and plurality, 

however much they seem real to us, must be illusions. … Parmenides, 

and more famously his disciple Zeno, gave many arguments defending 

his unitary static cosmos. Those that survive are principally in the form 

of paradoxes which forced their interlocutors into accepting that the ideas 

of motion and plurality were inherently contradictory and incoherent, and 

were therefore, by a reductio ad absurdum argument, not real. 

Zeno’s celebrated paradoxes … had a profound affect on the structure of 

Greek thought—on its mathematics no less than its theology and 

cosmology. … 

… In terms of definition, [the Greeks] denied any role to motion. All 

their objects of Greek mathematical thought such as numbers, ratios, 

points, figures, and so on, were characterized as wholly static fixed 

entities so that, for example, the figure of a circle was defined as the 

locus of points equidistant from some given point and not as the path of a 

moving point.

… The Zeno-Parmenides interdiction of motion … engendered within 

Greek mathematics … an attachment to visually concrete icons which 

influenced mathematics from the time of Euclid to the Renaissance (and 

beyond: a version of Parmenidean stasis is central to the dominant 

present-day conception of mathematics in which mathematicians are 

supposed to apprehend eternal truths about entities –‘structures’ – in an 

unchanging, timeless, static, extra-human world). 

Of course Parmenides’ and Zeno’s paradoxes can be rewritten to 
make the opposite conclusion. Consider the paradox of the arrow: 

attention, with different relations and contexts, with different appli-
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If everything when it occupies an equal space is at rest, and if that which 

is in locomotion is always occupying such a space at any moment, the 

flying arrow is therefore motionless. (Aristotle Physics VI:9, 239b5). 

That is, time is made up of indivisible moments, in each of which 
the arrow occupies a space that is just the size of itself. Hence it is 
motionless. But let us pretend that we are in a world based on motion, 
then the argument might go like this: 

Arrows move from bow to target, and in any time interval, no matter how 

small, they traverse a length. Since they are always traversing, arrows 

never occupy any position. 

The conclusion of the paradox is that the arrow never occupies 
space.

What is interesting is that the resolution of the paradox (in modern 
terms, the way we define instantaneous velocity), is to calculate the 
speed over a small distance, and to define as instantaneous what 
happens as these distances get smaller and smaller—although they 
never actually become a single point. This resolution never gives up 
the idea of point: position is the basic tool we have to define our 
world. The paradox could, however, be resolved by defining position 
as the path traversed by the head of the arrow as the time interval 
gets shorter and shorter, without ever requiring time to be reduced 
to an instant. This is equally as satisfactory (or unsatisfactory) as the 
conventional resolution. 

The other area of Western thought identified as being initially 
dominated by a single origin perspective was that of anthropology. As 
with philosophy, the modern concepts of culture are dynamic and take 
account of cultural development. For example, Welsch’s (1999, 

The basic task is not to be conceived as an understanding of foreign 

cultures, but as an interaction with foreignness. Understanding may be 

helpful, but is never sufficient alone, it has to enhance progress in 

interaction.

The questioning of egocentricity and stasis in Western thought is 
taking place in philosophy and anthropology. This book is doing it in 
mathematics.

In Part II of this book we look more closely at how mathematical 
worlds might be created by language, and the consequences of this. 
But before that we turn to other aspects of mathematical systems. 
Are the examples of different ways of talking about quantity and 

p. 202) transculturalism in which: 
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relationships, similar to those we have described about space? 
Numbers, it turns out in the next chapter, might seem like the simplest 
idea, but in fact they have caused an awful lot of trouble. And, in 
Chapter 4, we look at examples from other languages of people 
making sense of relationships of various kinds. How are categorisations 
made, how do we explain human relationships, and how do we create 
logical arguments using these relationships?


