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PRELUDE: MAORI MATHEMATICS 

VOCABULARY

Abstract: The Maori language was adapted for mathematical discourse during the 1980s. 

Several issues arose from this intensive time of specific language development. 

The story of this development, with examples of difficulties is outlined. 

Keywords: bilingual mathematics, Maori language, mathematical discourse

1987. New Zealand. A warm, stuffy room in an old school 
building. A group of mathematics teachers have been working for a 
week discussing mathematics education for the indigenous Maori 
people. They have been developing mathematical vocabulary in the 
Maori language, and this evening they are working on statistical 
terms. They are trying to explain the difference between continuous 
and discrete data to a Maori elder. Examples are given: heights and 
shoe sizes; temperatures and football scores; time and money. The 
concept is grasped easily enough, but the elder must put forward 
suggestions for Maori vocabulary for use in mathematics classes. He 
will not transliterate to produce Maori sounding versions of the 
English words: for example, he might have tried konitinu for 
continuous or tihikiriti for discrete. He does try existing words for 
some of the examples that are given: ikeike (height), and tae (score)—
but these terms are not representative enough for the mathematicians 
in the room, and are rejected. Then he begins to try metaphors. At 
each attempt a short discussion amongst those mathematics teachers 
who know the Maori language quickly reaches consensus that the 
metaphor suggested will not do. Then he suggests rere and arawhata.
Those of us in the room with only a little Maori understand the 
common meanings of these words as ‘flying’ and ‘ladder’. It does not 
seem good enough for us. But the eyes of the good Maori speakers 
light up. They know that these words as a pair refer to the way a 
stream flows, either smoothly without a break, or in a series of little 
waterfalls over rocks. This mirrors the way that continuous data is 
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information taken from a smooth stream of possible measurements, 
and discrete data is information that can only have particular values. 
Yes. New technical vocabulary is born. 

Although I became aware of the importance of language in 
mathematics education while working in Swaziland in the late 1970s, 
my first serious involvement in this area was as part of this group of 
teachers developing vocabulary and grammar so that mathematics 
could be taught in the Maori language to the end of secondary 
education.

Maori is a Polynesian language brought to New Zealand by the first 
settlers over 1000 years ago. It was an oral language, and was not 
written down until European traders and missionaries came to New 
Zealand around 1800. As happened in other places in the world, 
significant European settlement signalled the start of a decline in the 
use of the indigenous language through familiar colonial processes. 
However, in the 1970s, a Maori cultural renaissance began. As part of 
this, bilingual primary schools were established, although mathematics 
and science were still mainly taught in English (Nathan, Trinick, Tobin, 
& Barton, 1993). Bilingual secondary schools developed during the 
1980s, but Maori children remained alienated from mathematics and 
science. One response was the call for mathematics and science 
instruction in Maori (Fairhall, 1993; Ohia, 1993), and a small group 
was gathered together by the Department of Education to develop 
Maori mathematical language for this purpose (Barton, Fairhall & 
Trinick, 1995a). The group included teachers, mathematicians, mathe-
matics educators, linguists, Maori elders, and Maori language experts. 
It worked under strict guidelines laid down by the Maori Language 
Commission, (these guidelines included a ban on the use of trans-
literations), and an imperative to ensure that any new language retained 
Maori grammatical structures. 

This was a very exciting time for those involved. It felt as though 
we were in a crucible of language development, and we were all 
challenged both linguistically and mathematically. Linguistically the 
challenge was to produce vocabulary and grammar that had new uses 
(as far as Maori was concerned) but that was recognisably Maori in its 
structure, denotations, and connotations. There was a lot of use of 
metaphor, for example using kauwhata for a graphical framework or 
set of axes. Kauwhata refers to a rectilinear frame used for drying 
fish. Another vocabulary creation technique was to use standard 
Maori grammatical constructions, for example using standard suffixes 
for nominalising verbs, thus pa (to be related to, or concerning) is 
transformed to a noun, panga, with the meaning function. There was 
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also an opportunity to resurrect old Maori words that had gone out of 
use with new (but related) technical meanings. The word wariu for 
‘value’ had been used for many years, but was rejected as a trans-
literation. It was replaced by an old word, uara, that had fallen out of 
use, but meant the value or standing of someone. 

Mathematically, those of us with expertise in the subject were 
challenged to accurately explain the meanings and functions of many 
mathematical terms and concepts. This proved more difficult than 
might be expected, particularly for the very basic concepts. For 
example, words like ‘number’ and ‘graph’ have meanings that shift in 
different contexts and at different stages of development of mathe-
matical understanding. We were prompted to construct a genealogy of 
mathematical terminology that showed which words were base words 
in mathematical discourse and how other words could or should be 
derived from them. For example, ‘multiple’ is a child of ‘number’ and 
‘multiply’. This genealogical tree was not always obvious, nor is it 
unique.

The whole process was characterised by a cycle of collecting the 
terms being used in existing bilingual and immersion classrooms, 
taking the words and phrases back to Maori communities for their 
comment, writing up the results, and presenting this material to the 
Maori Language Commission for their decisions and ratification. The 
cycle was repeated three times over fifteen years, and the process and 
the resulting vocabulary and grammar have been published in a series 
of papers and dictionaries (Barton, Fairhall & Trinick, 1995a, 1995b, 
1998; NZ Ministry of Education, 1991, 1994, 1995). It happened that 
the ‘flowing’ and ‘waterfall’ metaphors described above as words for 
‘discrete’ and ‘continuous’ were eventually rejected in this process 
and replaced by words based on the Maori word motumotu—which
means divided into isolated parts as islands are upon the sea. 

So, was the Maori language successfully adapted to the teaching of 
mathematics? The answer is yes, ... and no. There is evidence that 
those taught mathematics in Maori are doing well (Aspin, 1995). 
Some students have been taught mathematics in Maori up to Year 13 
(the final year of secondary school), but difficulties continue to exist 
in finding suitably qualified teachers (that is, those who are fluent in 
both Maori and mathematics), especially at senior levels. 

However, those of us involved in the Maori mathematics language 
development had become increasingly uncomfortable with some 
aspects of our work. Somehow the mathematical discourse that had 
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phenomenon: mathematics education seemed to be a vehicle that led 
to the subtle corruption of the ethos of the Maori language (Barton, 
Fairhall & Trinick, 1998). 

An example of grammatical corruption had happened during the 
vocabulary development process. It had been difficult to translate the 
concepts of positive and negative numbers. At the first meeting with 
the Maori Language Commission a discussion had resulted in a very 
rare agreement on the part of the Commission to alter the grammar of 
the language and use the direction-indicating adverbs ake (up) and iho
(down) as adjectives for the noun tau (number). Ake and iho should 
only modify verbs, as in heke iho (fall down). But the adjectival uses 
tau ake (literally ‘upwards number’ for positive number) and tau iho
(literally ‘downwards number’ for negative number) were to be per-
mitted. Four years later, at the second meeting with the Commission, 
one member demanded that this decision be rescinded. She had heard 
some children in a school playground extend this grammatical misuse 
to their everyday discourse. A child had been heard to say “korero
ake” (literally ‘upwards talk’) to refer to praise. Ake should not be 
used in this way as an adjective in correct Maori language. Under her 
angry imperative, an alternative formulation for positive and negative 
numbers was immediately found. 

Our feeling that we had more fundamentally permanently changed 
the nature of the language was finally confirmed several years later. 
The example that epitomised the problem was that of the grammatical 
role of numbers. Classroom discourse that had developed during the 
1980s used numbers grammatically very much as they are used in 
English. However, in Maori as it was spoken before European contact, 
numbers were verbal in their grammatical role (Trinick, 1999; 
Harlow, 2001; Waite, 1990). 

What does “numbers were verbal in their grammatical role” mean? 
We are not familiar with numbers as verbs. A number does not seem 
to be an action. However it can be. In English there are verbal forms 
for the numbers 1 to 4: I can single someone out. I can double my bet. 
I can triple my earnings—well actually I can’t, but someone else 
might be able to. A new school may even quadruple its enrolment 
over a few years. However, these forms are not the basis of our 
understanding of number. In everyday talk, numbers are usually used 
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developed did not feel completely right, but we were unable to put our 
finger on why. We came to talk about this as the “Trojan Horse” 



In Maori, prior to European contact, numbers in everyday talk 
were like actions. The grammatical construction used would have 
been like saying that “the bottles are three-ing on the table”, or that 
“my fingers five”. Just as the bottles are standing on the table, or my 
fingers wiggle. 

Our awareness of this old Maori grammar of number suddenly 
sharpened when we tried to negate sentences that used numbers. The 
construction that ‘sounded right’ was not the same as the construction 
that should logically follow from the classroom mathematics 
discourse.

Let us look at this in detail. To negate a verb in Maori the word 
kaore is used: 

We are going to the house. = E haere tatou ki te whare. 

We are not going to the house, we 
are returning.

= Kaore tatou e haere kit e whare, e 

hoki mai ke. 

Unlike English, where negating both verbs and adjectives requires 
the word ‘not’, in Maori to negate an adjective a different word is 
used, ehara:

This is a big house. = He whare nui tenei. 

This is not a big house, it is a 
small house.

= Ehara tenei I te whare nui, he 

whare iti ke. 

In Maori, negating number uses the verbal form, kaore:

There are four hills. = E wha nga puke. 

There are not four hills, there are 
three.

= Kaore e wha nga puke, e toru ke. 

Here was evidence that the classroom discourse that had been 
developed was against the original ethos of the Maori language. 
Numbers had been changed to become adjectival. While constructing 
the dictionaries and glossaries of mathematics vocabulary, the verbal 
nature of numbers was ignored, and a classroom discourse that 
treated numbers as they are in English was perpetuated. Thus the 
mathematics vocabulary process contributed to changes in Maori 
language use. 

This experience led me to contemplate whether this had happened 
in other languages. I was interested in this example of the colonisation 
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like adjectives. There are three bottles on the table. I have five fingers. 
Just as there might be green bottles on the table, and I have long 
fingers. (Technically, however, numbers are not adjectives. They are 
generally considered to have their own grammatical form). 



Maori usage of number. Would mathematics have developed diffe-
rently if it had developed through languages in which numbers were 
verbal? More generally, I became curious about the way that mathe-
matical ideas are presented differently in other languages. 

So began a search for other examples, and an investigation into the 
mathematical consequences and the implications for mathematics 
education. I soon discovered that this material was not ‘lost’. Many 
other people—linguists, anthropologists, mathematics educators, ethno-
mathematicians—had recorded and discussed unexpected ways of 
expressing mathematical thinking in many different languages. 
However these examples had not previously been considered from a 
mathematical point of view, and only briefly had educational conse-
quences been considered (E.g. Pinxten, van Dooren, & Harvey, 1983, 
Chpt. 5). I quickly came to believe that there were important mathe-
matical ideas to be found, and I began to change some of my views 
about mathematics itself. In addition, some of my thinking about 
mathematics education was being turned around. This book is the 
result.

Prelude6

process, and I was concerned about the consequences for bilingual 
or multilingual mathematics education. But also, as a mathematician, 
I was curious about the mathematical concepts inherent in the original  



INTRODUCTION

Abstract: An outline of the structure of the book is presented, making the argument that 

the language we use for everyday mathematical ideas presents us with valuable 

evidence and insights into the nature of mathematics.

Keywords: mathematical discourse, nature of mathematics

I begin the book by looking at the way people speaking different 
languages talk about mathematical ideas in their everyday conversation. 
I end up questioning some common beliefs about mathematics, its 
history, and its pedagogy. 

The way we (English speakers) use numbers, the way we give 
directions, the way we express relationships, are all so commonplace 
that it is hard to imagine any other way of expressing these ideas.  
We take for granted the structures of the following sentences: 

There are four people in the room.

The book costs forty-five dollars.

Two and three are five.

Turn left.

Go straight on.

The sun rises in the east.

A dog is a mammal.

He is not my father.

I will either go shopping or read my book this afternoon.

But apparently simple English language statements turn out to be 
expressed quite differently in some other languages—so differently 
that it is often difficult to write in one language the equivalent of what 
is being said in another. Even when quantity is expressed in the 
simplest way—when we count—it is done in fundamentally different 
ways in different languages, as has been illustrated in the Preface. We 
are not talking about just different vocabulary. Nor is it a matter of 
differences in the underlying base of the number system, that is, 
whether it is a decimal system or one based on five or twenty. The 



variety occurs in the way languages express numbers, the grammar of 
mathematical discourse. 

The first part of this book explores these differences. In order to 
further explore how other languages construct mathematical talk, I 
investigated languages as different as possible from my own first 
language of English. Distant languages are most likely to have 
unfamiliar structures. Unfamiliar structures are good clues in a search 
for different mathematical conceptions. Therefore most of the examples 
described are from indigenous languages rather than Indo-European 
languages: the Polynesian languages Maori, Hawaiian, and Tahitian; 
the Euskera language of the Basque people; Kankana-ey from the 
Cordillera region of The Philippines; Dhivehi from the Maldives; 
Kpelle from Liberia, and First Nation languages from North America. 

The first part also includes some mathematical flights of fancy 
arising from the way various languages discuss numbers and shapes. 
The imaginings illustrate the possibility of different mathematical 
worlds. However the main point of this section is to lay down the 
evidence of language difference with respect to mathematical talk.  
I demonstrate the congruence between mathematics as we know it and 
the English language. Other languages are not so congruent. 

Part II discusses what all this means for mathematics. Does it mean 
that mathematics as an academic discipline with very powerful 
practical applications is somehow different in different parts of the 
world? A bridge designed using mathematical theory surely stands (or 
falls) in the same way independently of the country it is built in, or of 
the language of the person who solved the equations of its design? 
Surely 1 + 1 = 2 in Alaska, Nigeria, Tahiti, and Singapore? I argue for 
alternative answers to conventional questions about mathematics—
where it comes from, how it develops, what it does, what it means.  
I challenge the idea that mathematics is the same for everyone, that it 
is an expression of universal human thought—and explain the 
questions about the bridge and 1 + 1 posed incredulously above.

Another issue concerns the relationship between language and 
mathematical thought. Does the language we speak limit what we can 
say, do, and think mathematically? If this is so, we can infer serious 
consequences for mathematics if one language comes to dominate 
mathematical discourse, as English is doing within the international 
research arena. The question is wrongly posed. We probably do not 
need to focus on the limitations created by languages—languages are 
sufficiently creative as living structures to describe whatever we want 
to describe—but we should continue to explore the mathematical 
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creativity embedded in other languages. New mathematical ideas (or 
old ideas given new roles) lie hidden in minority languages. 

The third part of the book briefly discusses the consequences for 
the way we learn and teach mathematics. Can these linguistic insights 
into mathematics tell us anything about how we gain mathematical 
understanding? I make two fundamental suggestions. We should do 
more abstract activity, both in the early stages of learning mathe-
matics, and when students are having difficulty. However, in saying 
this, the nature of useful abstract activity needs to be reconsidered. 
The second major suggestion is that undirected mathematical play is a 
good thing at all levels of education from early childhood to graduate 
level.

Does a better awareness of the links between mathematics and 
language lead us to practical strategies in mathematics classrooms? 
Educators have known for some time about the importance of talking, 
and the need for formal language development within the mathematics 
curriculum. And yet mathematics teachers do not universally use 
language activities. We re-examine the argument for these roles for 
language, and give some examples. In addition a plea is made for the 
importance of teaching about the nature of mathematics. 

What about classrooms where more than one language is spoken, 
and what do the conclusions of Part I mean for students who learn 
mathematics in an unfamiliar language? Much writing on multilingual 
classrooms characterises such environments as full of problems. 
Without denying the complexity of the situation, the ideas in this book 
suggest that these classes have, rather, an abundance of resources. The 
question is how teachers can best utilise the linguistic potential 
therein.

Finally, having started with evidence collected from many lang-
uages of indigenous groups around the world, I end with a consi-
deration of the particular issues faced by these groups with respect to 
mathematics education. A proper understanding of the link between 
language and mathematics may be the key to finally throwing off 
the shadow of imperialism and colonisation that continues to haunt 
education for indigenous groups in a modern world of international 
languages and global curricula. 

For some time now, I have felt that many debates in mathematics 
education have been dominated by ideologies and theories, rather than 
comprehensively argued positions. These have sometimes reached 
ridiculous levels, such as the Math Wars in America where a professor 
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went on a hunger strike, and people leapt into political action and 
lobbied with little regard for critical argument or evidence. I think that 
on a matter as important and deep-seated as this, there should be 
evidence of a more permanent kind that can clarify some of the 
debate. This book can be read as an attempt to interpret the evidence 
from language with respect to mathematics and mathematics education. 
The evidence presented here seems to me to support a weakly 
relativist philosophical position in that mathematics might have been 
created otherwise, and a social constructivist mathematics education 
position in that we develop mathematics in conjunction with our 
language. However readers would be mistaken to think that arguing 
these positions is what the book is about. The evidence is presented 
and interpreted. 

Before we start, a short statement about what I mean by mathe-
matics, and a few caveats. Mathematics is a tricky word, loaded, for 
the many non-mathematicians amongst us, with thoughts of school-
teachers and textbooks and homework exercises. For mathematicians 
the meaning is richer, although there is considerable disagreement over 
its exact reference (Davis & Hersch, 1981). The problem for this book 
is that I wish to talk about mathematical things in general, and in 
contexts in which formal mathematics has no part. For example, as far 
as I am aware, in pre-European Maori culture, there was no area of 
knowledge or discourse equivalent to mathematics as understood 
today. How then can I talk about aspects of that culture being 
mathematical? The problem is circumvented in this book by mentally 
replacing the words ‘mathematics’ (or ‘mathematical’) with the phrase 
“(concerning) a system for dealing with quantitative, relational, or 
spatial aspects of human experience”, or “QRS-system” for short. 
Thus any system that helps us deal with quantity or measurement, or 
the relationships between things or ideas, or space, shapes or patterns, 
can be regarded as mathematics. My translation allows the word 
‘mathematical’ to be used much more widely than just to refer to 
things in mathematics texts or journals. If I want to talk about the 
smaller, formal, conventional world of academic mathematics as it is 
exemplified in schools and universities all over the world, then I will 
use the words “near-universal, conventional mathematics”, or “NUC-
mathematics” to refer to it. As an aside, I am told by sailing friends 
that NUC means “not under control” and refers to ships that have been 
abandoned at sea. Elements of this idea in NUC-mathematics will be 
illuminated in the following pages. 

10 Introduction 



The caveats. Although I have taken the advice of many linguists,  
I do not claim to be a linguist myself. Nor do I claim fluency in any 
language other than English, despite a little Maori and a smattering of 
Spanish. I have used at least one first-language speaker of each 
language amongst my informants. Therefore the linguistic evidence is 
viewed from outside the discipline of linguistics, and from outside 
each of the languages used in the examples. This book, however, is 
about mathematics, so the languages are examined not so much for 
their linguistic characteristics, but for their mathematical ones. 

A second caveat is that this work is written in English. To the 
extent that mathematical ideas differ between languages, the reflexive 
principle means that the ideas in this book would be different if they 
were written in another language. The discussion of other languages is 
from my point of view as an English speaker. If Euskera was my 
natural language, for example, then all the linguistic features quoted 
here would be seen in another way. 

The third caveat is about coverage. I am mostly concerned about 
spoken language. Also there is no comprehensive coverage of all 
language families. Readers will note the lack of examples from Arabic 
and Asian languages, in particular Mandarin. Writing this book leaves 
me with a curiosity about those languages. I am certain that the 
written form is also important in mathematics, for example, it is 
significant that written Mandarin is iconographic while written 
English (and the other languages of my examples) is symbolic. 
Despite the importance of this issue, I will just acknowledge it and 
move on, leaving the fundamental influence of written language on 
mathematics for another time. 
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PART I 

SPEAKING MATHEMATICS DIFFERENTLY 



Chapter 1 

SPACE: POINTS OF REFERENCE 

Abstract: The way in which we talk about positions and locations is explored through 

several languages. The different way of talking in the Tahitian language is extrapolated 

into a geometrical system. The chapter concludes with a discussion of possible 

social origins of geometry as it is usually taught.

Keywords: geometry, space, coordinate systems, Tahitian, Navajo

The quest to find new mathematical ideas in other languages took 
me first to Tahiti. The Maori and Tahitian languages are very close 
and Tahitian is still the first language of most Tahitians (unlike 
Maori). I was interested to find out whether the verbal grammatical 
role of number that we had found in Maori (see Preface) was the same 
in Tahitian. 

In fact the verbal nature of numbers is well-preserved in Tahitian. 
In other words, the Tahitian language is linguistically more conser-
vative, meaning that it has changed less under the influence of contact 
with other languages. It has been suggested that Tahitian has better 
retained its original syntax because King Pomare II had helped with 
the first translation (of the Bible), that is, a native speaker was 
involved. The first Maori translation, on the other hand, was a com-
pilation of translations by various English missionaries. Foreign 
translators are likely to miss grammatical differences that are not part 
of their own linguistic landscape. An alternative explanation is that 
Tahitian language has undergone less change compared with Maori 
because the colonial policies of the French in Tahiti were more 
separatist than the assimilation policies of the English in New Zealand 
(Baude, 2003). 

As an example of the difference between Maori and Tahitian, 
numbers are used with all the verbal particles in Tahitian. In both 
these languages, verbs are preceded by particles that indicate the tense 
or state of the action: i (indefinite past), kua (perfect or completed), e
(imperfect or continuous, or indefinite), ka (inceptive or beginning),  
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a (future), and kia (intentional). In Maori, e, ka, and kia are all used 
with numbers, although e is by far the most common. There is some 
argument about other particles despite recent grammars giving exam-
ples (Biggs, 1969; Harlow, 2001; Trinick, 1999, p. 106-11). In Tahi-
tian, e, ka, kia and kua (in Tahitian the ‘k’ is replaced with a glottal 
stop) are all in standard usage (Académie Tahitienne, 1986). 

But while investigating Tahitian another feature of Polynesian 
languages struck my mathematical imagination: the way in which 
location is described. There was a feature of the way one might talk 
about the position of something that was quite unusual to my English-
language experience. A Tahitian speaker tends to use both himself (or 
herself) and the person being spoken to as reference points. 

Before we explore this further, let us look at how location is 
described from a purely linguistic point of view, and then look at it 
from a mathematical point of view. Finally we will bring these two 
modes together, and explore the implications of this Tahitian language 
feature.

1. WAYS OF LOCATING: LINGUISTIC FEATURES 

So, how do we talk about location? The language we use depends 
on the situation. In English, in small scale situations such as descri-
bing people seated around a table, we tend to use phrases like “John is 
opposite Peter”, or “John is a little way to the left”, or “John is sitting 
two along from Peter”. As the scale gets larger, for example when 
travelling by car, then we use the north, south, east, west compass 
points, “he lives ten kilometres north of the city”. We also sometimes 
use another kind of reference, the position of something along a path, 
for example, “the house is on the road to the beach”, or “the town is 
down-river from here”. The use of these different methods of location 
in navigation is discussed later. 

Focus on the directional aspect of location for a moment. Different 
languages, and different cultural groups, use the various methods in 
situations that are unlike English usage, and some languages have 
other systems that are not used in English. Australian Aboriginal 
people, for example, use the north/south/east/west system in very local 
situations, such as describing the position of people in a room, or 
where a picture might be placed on a wall (Harris, 1991). At very 
young ages, even before they can speak, Aboriginal children are aware 
of these directions whether they are inside or outside, in familiar 
surroundings or not. 
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Chapter 1 17

Many Oceanic languages use a geographic direction-reference 
system (Senft, 1997). This is a response to the dominance of some 
particular geographic features. For example, if you live on an island, 
then inland and seaward have universal application in a way that they 
do not have in the interior of Mongolia. Rivers may provide another 
universally applicable reference, and, if you travel by foot, then uphill
and downhill become significant when describing the location of 
destinations. For example, in the Solomon Islands language Longgu 
(Hill, 1997), there are two axes of orientation, one is East/West 
(derived from the rising and setting of the sun), and the other is inland 
and seawards (since most Longgu speakers are coastal dwellers). In 
this language, as in others, the geographical references are sometimes 
used on very small scales, such as describing the position of two 
stones relative to each other on the table. They can also be used in 
vertical locations, such as describing the position of lizards on a wall. 

Knowing the direction of something is not usually sufficient to 
place its location; its distance is also needed. There are many different 
ways of expressing distance, for example the formalised measures 
(metres or inches), localised units (arms-length or a street block), 
using time, (a day’s walk or five minutes’ drive), or volume (a fuel-
tank’s distance). 

The direction and distance of an object is still not enough to 
identify its position. We also need to say from where the direction and 
distance applies. For example, the reference point could be the speaker 
(“John is sitting on my left”), or it could be the person who is being 
spoken to (“John lives just round the corner from you”), or it could be 
another person or object known to both the speaker and the listener 
(“Granada is four hours drive south of Madrid ”). Most languages use 
all three types of reference, although, as for directions, the area of 
application of the different forms are not always the same. 

Polynesian languages, including Maori and Tahitian, have 
grammatical forms that make distinctions that are not present in 
English. In English we refer to this tree, to indicate that the tree is near 
to me, the speaker, or that tree, to indicate that the tree is at a distance 
from me, the speaker. In Maori and Tahitian, we can refer to this tree 
(tenei rakau), or that tree near to you, the listener (tena rakau), or that 
tree distant from us both (tera rakau). In general, reference is much 
less egocentric in Polynesian languages compared with English, and 
takes much more account of the point of view of the listener as well as 
the speaker. This occurs to the extent that acknowledgement of the 
social status of the listener relative to the speaker is also considered. 
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2. WAYS OF LOCATING: MATHEMATICAL 

SYSTEMS

Now let us leave language aside for a moment, and turn to mathe-
matics. The position of an object in two dimensions (that is, on a 
surface) is generally defined using the Cartesian coordinate system, so 
named after Rene Descartes (1596 -1650), the French philosopher and 
mathematician who first used it in an algebraic way. (Coordinate 
systems of this kind were known earlier than this: Archimedes and 
Apollonius both used versions of this system in 200BC). From a 
single origin, two reference lines, or axes, are drawn at right angles. 
The position of a point is determined by two measurements: the first 
measurement is the distance along the horizontal line, and the second 
is the distance along the vertical one. The distance is positive if it is to 
the right or upwards, and negative if it is to the left or downwards (see 
Fig. 1-1). 

Figure 1-1. Cartesian Coordinate System 

The second common way that position is determined, the Polar 
coordinate system, also uses a single origin, but only one reference 
line. The development of this system is usually attributed to Newton 
and Bernoulli, but some version of it is present in the work of Kepler. 

The position of a point in this system is also determined by two 
measurements: one is the distance of the point from the origin, the 
other is the angle between the reference line and the line joining the 
point and the origin. The angle is positive if it is in an anticlockwise 
direction, and negative if it is clockwise. (In Fig. 1-2 the angles are 
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measured in degrees, however mathematicians usually measure angles 
using radians). 

Figure 1-2. Polar Coordinate System 

Another version of the Polar coordinate system is the bearings that 
are used in navigation and surveying. Here the vertical reference line 
represents north, and the angle measured in a clockwise direction is 
positive. Sometimes the compass points north, south, east and west 
(and intermediate ones such as nor-nor-east) are used (see Fig. 1-3). 

Figure 1-3. Bearings Coordinate System 

3. LINKING THE LINGUISTIC AND MATHEMATICAL 

SYSTEMS

The Polar coordinate system corresponds to how we usually talk 
about position in English: we start from an origin, usually ourselves, 
and then describe how far away the object is, and its direction. 
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We also use, in common speech, a method of locating that is like 
the Cartesian coordinate system. This happens when we are describing 
the position on a grid—as in a city system of roads at right angles: 
“Go three blocks east and then two blocks north, the shop is on the 
corner”. The reference directions may be more local, “go three blocks 
straight on, turn left and go a further two blocks”, but the idea is the 
same. This might also occur when describing a book that is in a big 
bookshelf: “it is on the third shelf about half way along”. We are also 
familiar with grid systems from finding streets on maps where 
numbers or letters are used to refer to particular squares in which the 
street is to be found. It could be argued that locating a passage in a 
book or newspaper is also Cartesian: “about half way down page 37” 
is a phrase incorporating two measurements of length. 

The method of talking about the position of an object as a place on 
a path also has a mathematical correspondence in the idea of points on 
a curve, and is expressed as a function. This idea is discussed below in 
Part II, in the section on Metaphors. 

We saw above that in everyday speech we conceive of each of the 
three necessary features of location (direction, distance, reference 
point) in more than one way, depending on what we are referring to, 
and on the language we are using. However, in standard school 
mathematics, there are only two representations: the Polar system or 
the Cartesian system. In the Polar system, direction is represented by a 
rotation from a reference line, distance is a standard linear measure, 
and the origin is a single point determined by the drawer of the graph. 
In the Cartesian system there are two linear distances at right angles, 
measured from one origin. 

Are there other mathematical options? In everyday language, 
direction can be represented by local referents such us up, down, left, 
right, or by using several axes (east/west and inland/seaward). There 
are indeed mathematical equivalents of these alternative descriptions. 
For example, the development of the computer software LOGO, or 
Turtle Geometry, by Seymour Papert (1980) includes the four local 
commands (up, down, left, right) as possible movements of an object. 

Formal mathematics also recognises the different ways of measuring 
distance. In advanced mathematics, distance is seen as an example of a 
‘metric’ in the field of topology, and a metric can be defined in many 
different ways. There are mathematical applications in which a metric 
is defined using time, energy consumed, or the number of generations 
between species on the evolutionary ladder. 

In order to explore further whether there are alternatives in mathematics 
that go beyond the way we describe measures or reference points, let us 
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return to Tahitian and Maori, and the location systems implied by 
those languages. 

The way that Tahitian and Maori can discusses location using both 
the speaker and the listener, is like using two origins, not one. This 
does have mathematical equivalents. Mathematically, if we have two 
origins, then the position of a point can be determined by two angles, 
one at each of the origins (see Fig. 1-4). 

Figure 1-4. Double-Angle Coordinate System 

Alternatively, still using two origins, the position of a point can be 
determined by the distance from each of the origins (see Fig. 1-5). 

These systems are known within mathematics. In 1671 Newton, in 
his book Method of Fluxions, described ten different types of 
coordinate systems, including these ones. The systems described 
above have been used as practical methods in surveying for a long 
time. The word ‘trigonometry’ means ‘measuring using a triangle’ and 
is based on three points (such as two known reference points and the 
point of interest) making a triangle. Egyptians in the Nile valley and 
Babylonians in the Mesopotamian valley used triangles to survey land 
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three or four thousand years ago. Modern global positioning technology 
uses the same idea. However, there is very little material about these 
systems as the basis of a mathematical approach to the study of space 
in general, and nothing in elementary texts. Why is this? Why are 
Cartesian and Polar coordinates preferred over coordinate systems 
using two angles and two origins? 

Figure 1-5. Double-Length Coordinate System 

One answer to this question might be that such systems do not 
prove very useful—however, even if the surveying and positioning 
applications are not regarded as particularly useful, practicality is not 
the major criterion of merit in mathematics. Many mathematical 
studies throughout history have proceeded without useful applications 
in mind, but simply for the interest (and beauty) of the system itself, 
or as a result of questions posed by considering the mathematics 
alone. (Note, however, that virtually all mathematical developments 
were generated originally by some practical question, or through 
reflection upon aspects of real experience). 

Another reason for focusing on single-origin systems might be that 
double-origin ones are not as mathematically rich. Perhaps this is true, 
however both double-origin systems generate beautiful curves with 
very simple equations (see Fig. 1-6). For example circles, which 
require second order terms (i.e. x2) in the Cartesian system and 
trigonometric functions (i.e. sine) in the Polar system, are elementary 
first order equations in both double-origin systems. For example, in 
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the Double-Angle system a circle is given by  = 2  where and
refer to the angles from the two origins. 

Figure 1-6. Basic Curves of Double-Angle Geometry 

When John Mason and I analysed these curves from a Cartesian 
perspective it turned out to be a trickier task than we had anticipated, 
and an interesting exercise in the careful use of trigonometric 
functions. In particular, it required analysing the intervals on which 
two trigonometric functions give the same positive value—which is 
more complicated than first imagined. We also discovered that letting 

and  be angles greater than a full turn gave rise to beautiful 
“Sunset” diagrams (see Fig. 1-7). 
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If usefulness and mathematical richness do not fully explain the 
absence of double-origin systems in school mathematics, could part of 
the explanation be that those who developed mathematics had a 
predisposition to a single-origin point of view, a predisposition that 
was part of their language or culture? This hypothesis exemplifies the 
idea of this book: part of the reason that mathematics is like it is, is 
because its development has been influenced by the preferred ways of 
thinking and expressing thoughts of those involved. In particular, the 
languages of those who developed mathematical ideas helped to shape 
the mathematics that emerged. Mathematics could have taken many 
forms, the forms and preferences of NUC-mathematics (the near-
universal, conventional mathematics of our schools) were not inevi-
table; they are the result of a particular historical trajectory that 
includes many social influences, including language. 

Figure 1-7. Sunset Diagram 

It is worth noting that the idea of a single origin can be found in 
other areas of intellectual thought that developed in the same linguistic 
and cultural milieu as mathematics. Descartes, according to Bertrand 
Russell (1946, p. 580), was the founder of modern philosophy as well 
as being responsible for the adoption of the Cartesian system in 
mathematics. The egocentric or subjective foundation of Descartes’ 
philosophy, “Cogito ergo sum” (“I think therefore I am”), affected all 
philosophy derived from him. That is, philosophy followed a path in 
which everything, even one’s own body, can be doubted, but not 
oneself. When I see something, according to Descartes, my own 
existence follows with certainty, but not the existence of the thing. 
Philosophy starts from one origin: oneself. 
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As in mathematics, there are alternatives to single-origin thinking 
in Philosophy. For example, Chinese philosophy includes the theory 
of Yin and Yang attributed to Fu Shi in the third or fourth millennium 
BC. Yin and Yang are the two opposing principles that embody the 
idea of universal change in their constant interaction. This has simi-
larities with the logic of dialectics developed by Hegel (1770-1831), 
nearly two hundred years after Descartes. Both the theory of Yin and 
Yang, and dialectics, involve constant change, an issue that arises in 
the following chapter. More comments about the relation between 
mathematical and philosophical thought will be made then. In the 
meantime, it should be remembered that there is a logical error in 
Descartes’ philosophy. As pointed out by Russell (1946, p. 589), this 
is linguistic in nature: 

“I think” is his ultimate premise. Here the word “I” is really illegitimate; 

he ought to state his ultimate premise in the form “there are thoughts.” 

The word “I” is grammatically convenient, but does not describe the 

datum.

Another area of Western thought that has been affected by a single 
origin is that of anthropology. The anthropological concept of culture 
that dominated early work in the field, was one in which cultures were 
bounded, static, observable, fictional entities (Strauss, 2000, p. 88). One 
consequence was that early anthropological orientations were ethno-
centric, defining other cultures in terms of (usually) Western culture. 
Thus other cultures were seen against a given background idea of 
culture—this is known as alterity (Corbey & Leerssen, 1991). This 
was one of the principal ways by which indigenous peoples “were 
objectified, dehumanized and designated as alterior” (McConaghy, 
2000, p. 97). More relativistic, dynamic, and interactional models of 
culture now characterize the subject (Moore, 1997). 

The suggestion that the fundamental ideas of mathematics, 
philosophy and anthropology are related to linguistic forms seems 
ambitious. Could just a small difference in predisposition when 
describing location in two different languages be relevant to a critique 
of the NUC-mathematical world? Let us suspend judgment a little. 

After the exploration of location inspired by the forms of 
Polynesian languages, I was encouraged, and curious, to pursue other 
possible linguistic influences in NUC-mathematics. So continued the 
search for more evidence to justify the emerging hypotheses that 
mathematics has been affected by the language of its development, 
and that therefore mathematics could have developed in a way other  
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than it did. In addition, it is possible that there is significant mathe-
matical potential hidden in the way other languages represent mathe-
matical ideas. 
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SPACE: STATIC AND DYNAMIC WORLD 

VIEWS

Abstract: The way in which we talk about geometrical objects is explored through several 

languages. The different way of talking in the Navajo language is extrapolated 

into a geometrical system. Different ways of navigation are then analysed and 

the chapter concludes with a discussion of philosophical links with the 

development of mathematics.

Keywords:

The search for evidence of different ways of talking mathe-
matically was hardly systematic. It was necessary to gather infor-
mation about languages that had not been part of the development of 
NUC-mathematics. The information needed was how these languages 
express mathematical ideas. What discourse is used to talk about the 
quantitative, relational, or spatial aspects of peoples’ experiences in 
their general, everyday language, both spoken and written? 

The problem of how to access these languages was left largely to 
chance. After Maori and Tahitian, the languages Euskera, Dhivehi, 
and Kankana-ey were chosen because I happened to have contact with 
speakers of these languages who were also mathematicians. Some 
other languages, including African and First Nation American ones, 
provided examples in existing literature. 

There were two relevant books that contained information of the 
type I was looking for. In the 1960s Gay and Cole (1967) had written 
about the Kpelle people of Liberia, in particular describing their 
language of logic and the effect it had on their understanding of 
logical relations. In the 1980s Pinxten, van Dooren, Harvey, and 
Soberon (Pinxten, van Dooren, & Soberon, 1987) had built on an 
earlier anthropological study (Pinxten, van Dooren, & Harvey, 1983), 
and written about the geometrical language of the Navajo. This latter 
work tied in with the verbal numbers of Polynesian languages since, 

paradoxes

geometry, space, coordinate systems, Tahitian, Navajo, Pacific   navigation,  Zeno’s
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in Navajo, what we know as geometrical objects (circles, squares, 
lines, spheres) are expressed verbally. 

1. WHAT ARE VERBAL SHAPES? 

Verbal shapes? Let us think about this first in English. Shape is 
expressed in many ways. Consider the geometric idea of a square. In 
everyday language shapes are usually characteristics of something: a 
square piece of paper, a square table. But I can ask someone “to fold a 
piece of paper into a square”, in the same way as I might ask them to 
fold it into a bird. The squareness is expressed like an object. Or I 
could ask them “to square the piece of paper” in the same way as I 
might ask them to screw it up. The squareness is expressed as an 
action.

Try another shape. We can say that a shape is a triangle (which 
makes the idea of a triangle into a thing), or that a shape is triangular 
(which makes this idea a characteristic of a thing), or that something 
is triangulating (which makes the idea into an action). Notice that the 
form of the word for the adjective and verb are clearly derived from 
the noun. 

These three ways of speaking about a shape work for a square, a 
triangle, a circle (we could have a circular piece of paper, we could 
ask people to sit in a circle, the birds might circle the treetops), and for 
a line (planes may fly in a linear formation, we are asked to stand in a 
line, people line up at a ticket office). But in mathematical discourse, 
and especially with more complicated mathematical shapes, a shape is 
usually described as an object or as a characteristic. We can draw a 
pentagon, and something may be pentagonal, but it sounds clumsy to 
ask someone to “pentagonalise a piece of paper”. Notice that in all 
these examples, the adjectives are either the same as, or derived from, 
the noun: square—square, circle—circular, line—linear, pentagon—
pentagonal. The noun form is privileged in English; it seems to be the 
base concept in everyday language and in mathematical discourse. 
The derivations of these words are given in dictionaries as from 
nouns. It is, of course, possible to use any form, and even to construct 
odd but understandable forms (“decagonal”), however noun forms are 
more common, and sound better. 

In Navajo the opposite is the case: 

A basic characteristic of the Navajo world view … is the fundamentally 

dynamic or active nature of the world and everything in it. … [This is a] 
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basic perspectival difference from Western thought and language. (Pinxten, 

van Dooren, & Harvey, 1983, p. 15). 

… a cosmos composed of processes and events, as opposed to a cosmos 

composed of things and facts. (Witherspoon, 1977, p. 49). 

In the grammar of the language, this feature is expressed through 
verbs. This does not mean that the verbs can be considered as spatial 
terms themselves, rather the grammar of the language is such that a 
particular verb can only be used with a certain group of objects that 
have a particular spatial characteristic. So the geometrical reference is 
carried in the verb, rather than in the noun. For example, the idea of 
planeness (a flat expanse in two dimensions) is associated with the 
verb sikaad: tó sikaad = a layer of water spreading out; diih dikon tsin 
sikaad = a wooden floor spreading out (Pinxten, van Dooren, & 
Harvey, 1983, p. 93). It is not possible to use this verb to describe 
land, on the other hand, because land has a certain thickness, even 
though it does spread out. 

The mathematician in me is intrigued by the idea of verbal 
expression of shapes. Could this make a difference mathematically? 
Does the way we think about the idea of triangularity affect what we 
understand about it? It was interesting to play the mind-game of what 
the study of shape might be like if it had developed verbally. How 
might geometry be different? 

Let me be clear that this is my mind-game, not a Navajo mind-
game. The way I am using the idea of “circle as an action” is my 
conception of that idea, not a Navajo one. For example, the idea of 
circular may be used to describe an object with a circular shape or 
outline. In Navajo this would be indicated by a verb, in English by an 
adjective. But I have taken the idea of circular as only an action: I am 
playing a mind-game where a circle is something you do, and I am 
using the verbal function of action from English, not from Navajo. 

Imagine, then, that circularity is an action, not an object, thus we 
must talk about circling, not a circle. Working mathematically, it is 
necessary to make this idea more formal, that is, to explore the details 
of what makes the action exactly circular, and to distinguish it from 
actions that are not circular. I need to be able to define circling, to 
categorise different circlings, to describe the characteristics of 
circling, to know how circling is related to other shape-actions, and to 
understand how it changes.
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2. BIRDS AND ORBITS 

If a circle is an action, then it is necessary to imagine movement 
and not a static picture. One way to do this is to make yourself into the 
actor. Think of yourself as a bird circling a tree. For the moment, let 
us say that you are flying at a constant speed. Now, what is it about 
the way that you are flying that means you are flying in a circle 
(circling) and not a square (squaring) or an ellipse (ellipsing)? It is the 
fact that you are turning at a constant rate all the time. To be squaring, 
for example, you would fly straight, and then turn suddenly at the 
corners. So the defining feature of circling is what is called constant 
angular velocity. 

What would be different if you were turning more quickly (but still 
at a constant rate)? You would be circling more tightly. Assuming 
constant speed, differently sized circlings are characterised by 
different angular velocities (that is, the rate at which you are turning). 

If, on the other hand, we kept the angular velocity constant, we 
could then change the size of our circling by changing our speed: a 
greater speed would result in wider circling, a slower speed would 
make it tighter. 

Figure 2-1. Flying in smaller circles 

Constant speed, constant rate of turn. 

If the speed of both birds is the same, 

then the bird is turning more quickly in the smaller circling. 

If the rate of turn of both birds is the same, 

then the bird is flying more slowly in the smaller circling 
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That takes care of the size of the circling. What other characteristics 
of circling might we be interested in? Perhaps the length of time it 
takes to get back to where you started. Perhaps the way it is oriented 
to the ground; are you circling in a horizontal plane or is your circling 
tipping (like the fairground ride I know as an Octopus)? Or are you 
circling in a vertical plane like a Ferris Wheel? 

In this geometry, how does circling relate to other shape-actions? 
Again let us imagine that we are a bird, flying at a constant speed and 
turning at a constant rate so that we are circling. Let us gradually 
change one of these variables: instead of turning at a constant rate, let 
us steadily increase the rate of turn, making us turn tighter and tighter. 
What does our path look like now? We would be spiralling inward. 
And if we steadily decreased the rate of turn as we are flying at 
constant speed, we would then be spiralling outward. 

This means that circling is actually a special case of spiraling. 
What happens if we are not turning at all, if the rate of turn is zero? 

Then, of course, we are flying along in a straight line (lining), thus 
lining is a special case of circling (rate of turn is also constant—but it 
is zero). Similarly, if we turn at an infinitely fast rate we will simply 
be staying at the same spot. 

The same effect can be obtained from changing the speed, but 
keeping the rate of turn constant. If you fly at a faster constant speed, 
then the circle will be bigger—at infinite speeds you will fly in a 
straight line. If you fly at a slower constant speed, then the same rate 
of turn will make you fly in a smaller circle—and if you stop, of 
course, you will just turn on one point. So pointing (the action of 
being in one place) is a special case of circling. 

Figure 2-2. Flying in points and lines 

A slower and slower rate of turn make 

larger and larger circles. When the rate of 

turn is zero, you will fly in a straight line. 

As the rate of turn gets larger then the circle 

gets smaller until it becomes a point.
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In coordinate geometry, a circle is a special case of a family of 
curves known as conic sections that also include parabolas and 
ellipses. How would you fly in order to describe these shapes? Think 
about runners sprinting around a sports arena. This is not an ellipse, 
but it is similar, and will do while we think about what is happening to 
them. They are running at more or less constant speed, not turning at 
all as they go along the straights, and then leaning into the corners at 
each end. So the rate of turn is changing during the circuit: from zero, 
to turning, to zero again, to turning again. So it would be for an 
ellipse. In this shape there are no straights, so the rate of turn would 
never reduce to zero, but it would decrease, increase, decrease and 
increase again, all in a steady fashion. 

Ellipsing can also be done by turning steadily, but changing your 
speed. Fly with a constant rate of turn, and then steadily increase your 
flying speed, then decrease it, then speed it up again, and decrease it 
again. The effect will be to elongate circling into ellipsing. 

There is a situation that exemplifies ellipsing: that of planets 
orbiting around the sun. Think of yourself as the planet. What is 
happening? In fact it is a combination of the two situations we have 
been describing, since both the flying speed and the rate of turn are 
changing. As you approach the sun, the pull of gravity speeds you up 
and turns you towards that burning orb. But (fortunately) you are 
travelling too fast to become an Icarus, and you fly by. Now the sun is 
close and the pull of gravity is strongest, and you are forced to turn 
quite strongly in the direction of the sun. But your speed is such that 
you go right around the sun, and head back from whence you came. 
But now you are moving away from the sun, and again it starts to pull 
you back, slowing you down. But as you get well past it the pull 
gradually decreases. Nevertheless it is enough to slow you down, 
slower and slower, and to turn you around again. You are a long way 
away, turning slowly, and your speed is quite low. So low that that 
distant pull of the sun is enough to pull you back again for another 
approach. Uh-oh, here we go again. 

The mathematics of this situation is well-known in conventional 
terms. But it is interesting to compare what is done in astronomy, 
and what might be done if the mathematician was on the planet (of 
course this is exactly the situation for artificial satellites that are 
thrown up into orbit around earth or the moon). What do astronomers 
do, when they think they have found a new heavenly body? They take 
observations of its position (with reference to the earth, sun, or centre 
of gravity of the solar system, and also using a reference plane). When 
they have enough observations over a great enough period of time, 
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then they use these positions to fit an ellipse. If they have enough 
positions (theoretically three are enough to determine an ellipse, but in 
practice more are used to minimise the effect of measurement error), 
then the ellipse can be mapped accurately, and it is then checked 
against a data-base of ellipses of known heavenly bodies kept on a big 
computer in Harvard. New ellipse? Bingo. New heavenly body. 

Now, in Action Geometry we have used speed and rate of turn as 
the basic elements, not position. If the mathematician was on the 
planet, then rather than determine position relative to some reference 
point as the basis for calculations, they might rather use the speed and 
rate of turn as the basis for predicting where they were going. 

What about other shapes. Can a square be an action? There are all 
those sharp corners. It is here that we see more clearly the differences 
in the items of interest between Action Geometry and conventional 
(Static) Geometry. If you are travelling in a square, then you must 
either stop and turn, or turn infinitely quickly, at the corners. The 
way you trace the shape becomes a combination of flying speed and 
turning speed. Also, the time taken on each side is important (if a 
constant flying speed is assumed). Of course it is possible to describe 
any shape at all using either Action Geometry or Static Geometry. 
Notice, however, that shapes without sharp corners are more easily 
described in Action Geometry. Action geometry would privilege such 
smoothly curved shapes, but would have a difficult time describing 
the constructions of Euclidean geometry. 

Seymour Pappert’s computer environment LOGO (often known as 
Turtle Geometry) appears to be a mix of Static and Action geometry 
(Abelson & diSessa, 1980). In this environment the screen becomes a 
field on which the icon (originally represented as a turtle) can be made 
to move. The original version enabled the user to move forward or 
back a given length, or to turn a given angle. This uses the idea of 
movement as its base, but still characterises movement as going from 
one point to another. A true Action geometry environment would 
allow the user to adjust speed and rate of turn along a continuous path, 
not iterate a number of small positional movements to make a path. 

3. EUROPEAN AND PACIFIC NAVIGATION 

A parallel exists between the two geometries being described and 
two ways of conceptualising navigation. The different conceptual 
systems possible for navigation first came to my attention when I read 
about the navigation techniques of Pacific peoples (Gladwin, 1970; 
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Hutchins, 1983; Irwin, 1997; Kyselka, 1987; Lewis, 1975; Thomas, 
1987; Turnbull, 1991). The basis of their navigation is to determine 
where they are on their journey, not their exact position. 

Consider traditional navigation as it developed through European 
navigators. From the early art of “way-finding” (Collinder, 1954), a 
system evolved that required a number of sightings of the sun or 
stars, and measurements of time, so that position could be accurately 
located on a map. The history of this development, and the techno-
logical effort and expenditure that went into it, is described in Sobel’s 
book Longitude (1995). One way of thinking about this is to imagine 
that a grid has been constructed upon the world and the position of 
places of interest are known with respect to this grid. Thus if you can 
locate your position on the grid, then you know your position in 
relation to the places you came from or are going to. This system is 
now developed to such an extent that using satellite GPS (Global 
Positioning Systems), a hand-held computer will give you a read-out 
of your position to within a metre. I have friends who, in thick fog, 
sailed out of a narrow gap between two rocky outcrops using only 
such equipment and their charts. If you use this system then your aim 
is to be constantly aware of your position, and of how far you are 
from known critical points. 

Notice that this system relies on a reference system that has been 
created by humans. The original references were features of the real 
world (headlands, islands, reefs), but the latitude and longitude grid 
that has developed from these is artificial. 

Now consider traditional Pacific navigation. The experienced 
navigators have the equivalent of charts in their minds, but these are 
not position charts, they are a set of features and signs that indicate 
the path that they will travel. This path is not always a straight line, 
rather it goes from landmark—or, rather, sea-mark—to sea-mark. For 
example they are likely to know more about the direction of their 
destination and how long it will take to get there, than how far away 
they are from it. In a well-documented experiment a navigator did two 
return journeys from Hawaii to Tahiti in a replica Polynesian double 
canoe, and travelled along the same dog-leg shaped path each time 
(Kyselka, 1987). Indeed, on one occasion, the following tracking ship 
with modern navigation aids, lost all power and had to reply on the 
canoe to reach its destination. Sea-paths do not, however, always 
cover the same ground: they depend on weather, seasons and sea 
conditions.

Such a means of travel is, of course, very common for people 
travelling by land. If I drive from my city to another three hours away, 
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there is no need for a map. There are many signs to tell me that I am 
on the right path, and as I become familiar with the journey. I will 
note landmarks and sights along the way, and I will have my favourite 
stopping places, from where I will know how long it is until I reach 
my destination. At any point I may not even know in which direction 
my destination lies, but, nevertheless, I am confident that I am “on 
track”. In this system it is important to know, first, that you are on the 
right path, and secondly, how long it will take to reach other critical 
places on the path. 

The difference between what we can call Position Navigation and 
Path Navigation can be illustrated by two ways in which movement is 
characterised. In the televised animations that accompany America’s 
Cup yacht race coverage, the speed of the yachts is visually 
represented by a trail of dots behind each boat. These dots are created 
for the animation from the highly accurate GPS equipment on board 
by recording the position at regular time intervals. If the dots are close 
together, that means that the boat is going slowly, if they are 
spreading out, then the boat is increasing speed, and so on. Speed 
represented by position. 

Compare this with the idea of etak (Akimichi, 1985; Gladwin, 
1970, Chpt. 5; Gunn, 1970), one of the conceptual formulations of 
travel of the Pacific navigators. When a canoe is moving along its 
path, then we can imagine that there is an island ahead that we need to 
pass by (let us say to the right of it). As we pass by, this island will 
appear to move from nearly directly in front, to ahead but on the left, 
to abeam on the left, to behind and to the side, to nearly directly 
behind. It is as if the island moves while the boat stays still. This idea 
is etak, and Pacific navigators use it to describe islands or features that 
cannot be seen (perhaps because they are over the horizon) as 
indicators of how well they are travelling down their path. Motion is 
thus represented by changing bearings of sea-marks. 

What is the correspondence between Position Navigation and Path 
Navigation and Static and Action geometries? Position navigation 
focuses on reference points and distances, using them to find the 
bearing that must be travelled. Path navigation focuses on pathways 
and speed, using them to find the direction of the next sea-mark. The 
first has static references, the second has active ones. 

The examples of planetary orbits and navigation illustrate different 
ways of conceptualising space. One way uses the basic idea of static 
position with reference to an origin. Another way has movement 
through the space as the base idea. Each way of seeing makes some 
things easy and other things complicated. In the study of space that is 
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part of NUC-mathematics, objects and position are treated first, and 
movement (speed and turn) is a more complicated idea that is treated 
later. This section has tried to illustrate that it is possible to begin a 
study of space using movement, and then think about position at a 
later time. 

Note that there is nothing that has been mentioned about Action 
geometry that cannot be described in terms of conventional Static 
geometry. The reverse is also true. We can do Static geometry in 
terms of Action geometry, or vice versa. (Note that describing the 
orthocentre of a triangle would be complicated in Action geometry 
and easy in Static geometry, and the opposite is true for describing a 
changing spiral). The point is that we do not do this, or, we tend not 
to, certainly not at first. This is because some things are easier, or 
more natural, than others, depending on which geometry you are 
using. This is not an unusual idea. In conventional geometry we have 
several systems, for example the Cartesian coordinates and Polar 
coordinates mentioned above, and we use the system that is easiest for 
what we are trying to do: the Cartesian systems for straight lines and 
some curves, the Polar system for circles and other curves. However it 
should not surprise us that the systems that are in common use are not 
all the systems available. 

4. LINKING THE LINGUISTIC  

AND MATHEMATICAL SYSTEMS 

We are predisposed to see space using particular basic ideas. It is 
suggested that part of the reason that NUC-mathematics is the way it 
is results from the linguistic and cultural orientation of those who 
developed it. Western thought is culturally and linguistically pre-
disposed to reference and position, whereas, for example, the Navajo 
one is predisposed to action and movement. Let us again use the word 
privilege to describe what is happening: languages, as the expression 
of cultures, privilege different ways of thinking about shapes and 
space.

The investigation starting from the dynamic Navajo world view 
has given us something more substantial than the flight of imagination 
based on differences in the few words in Tahitian used to describe 
the position of an object. Now we are talking about a whole way
of understanding shape and the potential geometrical world that that
creates: a world with different base concepts, with different foci of



Chapter 2 37

cations.
At the end of the previous chapter, we noted that the Chinese 

philosophy of Yin and Yang, and the logic of dialectics, each provided 
philosophies with more than one origin in contrast to Descartes ego-
centric theories. It was suggested that there might be parallels with 
graphical representation being developed through a single-origin 
model based on Descartes ideas, with double-origin models being 
relatively ignored in Western mathematics. 

The parallel can be extended to the idea of Static and Dynamic 
geometries. The idea of constant change is at the heart both of the 
theory of Yin and Yang, and of dialectics. Western philosophy, on the 
other hand, developed through the Greeks. Rotman (1987, p. 62) 
writes:

[The Greeks were] logically persuaded that change and plurality, 

however much they seem real to us, must be illusions. … Parmenides, 

and more famously his disciple Zeno, gave many arguments defending 

his unitary static cosmos. Those that survive are principally in the form 

of paradoxes which forced their interlocutors into accepting that the ideas 

of motion and plurality were inherently contradictory and incoherent, and 

were therefore, by a reductio ad absurdum argument, not real. 

Zeno’s celebrated paradoxes … had a profound affect on the structure of 

Greek thought—on its mathematics no less than its theology and 

cosmology. … 

… In terms of definition, [the Greeks] denied any role to motion. All 

their objects of Greek mathematical thought such as numbers, ratios, 

points, figures, and so on, were characterized as wholly static fixed 

entities so that, for example, the figure of a circle was defined as the 

locus of points equidistant from some given point and not as the path of a 

moving point.

… The Zeno-Parmenides interdiction of motion … engendered within 

Greek mathematics … an attachment to visually concrete icons which 

influenced mathematics from the time of Euclid to the Renaissance (and 

beyond: a version of Parmenidean stasis is central to the dominant 

present-day conception of mathematics in which mathematicians are 

supposed to apprehend eternal truths about entities –‘structures’ – in an 

unchanging, timeless, static, extra-human world). 

Of course Parmenides’ and Zeno’s paradoxes can be rewritten to 
make the opposite conclusion. Consider the paradox of the arrow: 

attention, with different relations and contexts, with different appli-
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If everything when it occupies an equal space is at rest, and if that which 

is in locomotion is always occupying such a space at any moment, the 

flying arrow is therefore motionless. (Aristotle Physics VI:9, 239b5). 

That is, time is made up of indivisible moments, in each of which 
the arrow occupies a space that is just the size of itself. Hence it is 
motionless. But let us pretend that we are in a world based on motion, 
then the argument might go like this: 

Arrows move from bow to target, and in any time interval, no matter how 

small, they traverse a length. Since they are always traversing, arrows 

never occupy any position. 

The conclusion of the paradox is that the arrow never occupies 
space.

What is interesting is that the resolution of the paradox (in modern 
terms, the way we define instantaneous velocity), is to calculate the 
speed over a small distance, and to define as instantaneous what 
happens as these distances get smaller and smaller—although they 
never actually become a single point. This resolution never gives up 
the idea of point: position is the basic tool we have to define our 
world. The paradox could, however, be resolved by defining position 
as the path traversed by the head of the arrow as the time interval 
gets shorter and shorter, without ever requiring time to be reduced 
to an instant. This is equally as satisfactory (or unsatisfactory) as the 
conventional resolution. 

The other area of Western thought identified as being initially 
dominated by a single origin perspective was that of anthropology. As 
with philosophy, the modern concepts of culture are dynamic and take 
account of cultural development. For example, Welsch’s (1999, 

The basic task is not to be conceived as an understanding of foreign 

cultures, but as an interaction with foreignness. Understanding may be 

helpful, but is never sufficient alone, it has to enhance progress in 

interaction.

The questioning of egocentricity and stasis in Western thought is 
taking place in philosophy and anthropology. This book is doing it in 
mathematics.

In Part II of this book we look more closely at how mathematical 
worlds might be created by language, and the consequences of this. 
But before that we turn to other aspects of mathematical systems. 
Are the examples of different ways of talking about quantity and 

p. 202) transculturalism in which: 
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relationships, similar to those we have described about space? 
Numbers, it turns out in the next chapter, might seem like the simplest 
idea, but in fact they have caused an awful lot of trouble. And, in 
Chapter 4, we look at examples from other languages of people 
making sense of relationships of various kinds. How are categorisations 
made, how do we explain human relationships, and how do we create 
logical arguments using these relationships?



Chapter 3 

QUANTITY: TRAPPING NUMBERS

IN GRAMMATICAL NETS 

Abstract: The grammar of numbers is explored through consideration of Maori, Kankana-ey, 

and Maldivian languages. This is used to discuss the ways in which we refer 

to numbers in English, and how that hides important mathematical ideas. The 

mathematical benefits or drawbacks of different languages are considered.

Keywords: Maori, Kankana-ey, Dhivehi, grammar of numbers

Chapters 1 and 2 have dealt with the way two spatial topics are 
described in different languages: defining position and finding your 
way. In this chapter we return to the topic of quantity in QRS-systems. 
(Remember that this is my code for a system for dealing with the 
quantitative, relational or spatial aspects of human life). Quantity 
involves number and measurement. The relationship between them is 
discussed later in Chapter 6. Initially, I want to look at numbers only, 
focussing on their grammar. The different bases of number systems 
have long been investigated and are not reviewed here (see, for 
example, Menninger, 1969; Lean, 1995). 

My quest for other ways of talking about numbers began, it will be 
remembered, by the realisation that the Maori (and Tahitian) langu-
ages treated numbers in a way that was unusual for an English 
speaker. Before we examine this in detail, let us first think about the 
grammatical roles played by numbers in English, both in general 
discourse, and also when discussing mathematics. 

Numbers are regarded, in English, to have their own grammatical 
category. However, in general, everyday discourse, they act more like 
adjectives than anything else: they seem to describe a characteristic. 
I could ask you to give me three pens, just as I might ask you to give 
me green pens. Threeness is a characteristic of the group of pens you 
are giving me, as is the fact that they are green. 
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In mathematical talk, numbers shift their grammatical nature. We 
discuss numbers as objects in themselves. We can say that five is a 
prime number, in the same way that we might say that a whale is a 
sea-going mammal. Numbers themselves have characteristics, for 
example primeness, or evenness, or divisibility. A number is often, 
grammatically, used as a noun. 

quite natural in English, we are not even aware of the different 
grammatical uses of number words, and we move between them quite 
easily depending on what we are trying to say. 

This is not the case with all languages. 

1. EMERGING NUMBERS: POLYNESIAN 

LANGUAGES

During the development of a Maori mathematical vocabulary, it 
was realised that numbers in old Maori (before European contact) 
were verbal in their grammar. There are still traces of the verbal use in 
modern Maori. The way that they are usually used in modern Maori is 
becoming increasingly like the way they are used in English. There is 
debate about whether this constitutes corruption or is evidence of a 
modern, living language. More on that later, let us first briefly review 
the verbal evidence. 

In modern Maori grammars, as in English, numbers are regarded as 
having their own grammatical category. However, for the reasons 
outlined in the Introduction (the way a number statement is negated) 
and at the beginning of Chapter 1 (the use of particles with number 
words), this category is verbal in nature compared with the more 
adjectival English use. 

A recent Grammar of the Maori language (Harlow, 2001) 
describes the verbal nature of numbers in Maori, focusing on their use 
with verbal particles. E, ka, kua and i are all tense markers, and kia 
indicates a wish or a command. All are used with numbers. Two 
examples are below. I have added my more verbal translation: 

Sometimes numbers are used in their adjectival sense and in their
nominal sense in the same sentence. “Three fives are fifteen.” The 
three is adjectival, the five and fifteen are nominal—the five is even

three hugs or three kisses). The important point is that all of this feels 
made into a plural (there are three of them, just like you can have 
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There are two houses in this street 

(Maori translation): E rua nga whare kei roto I tenei rori 

(My translation): Two-ing are the houses in the street 
(Given translation): The houses that are in the street are two in number 

Give me five pens 

(Maori translation): Homai kia rima nga pene 

(My translation): Give me let them be fiv-ing the pens 
(Given translation): Give me, let the pens be five in number 

Notice how the Grammar writer has tried to maintain the English 
grammatical role for the number words, but in doing so has distorted 
the way the sentence is constructed in Maori. It is actually consistent 
to think of the numbers as pure verbs. 

Second language Maori speakers usually use the particle e in front 
of numbers, but often otherwise treat numbers as they are treated in 
English. In the mathematics classroom this is particularly true. When 
this happens the e makes no sense except that “it sounds right”. 

In order to make a number into a noun, it must be preceded by an 
article: te (the singular), nga (the plural), or he (a). So, to translate a 
mathematical sentence: 

Five is a prime number 

(Maori translation): He tau toitu te rima 

(My translation): A prime number (is) the five 

Thus, for Maori, having a mathematical discourse involves changing 
the grammar. In English the adjectival and the nominal use of ‘three’ do 
not involve a change to the word or its accompanying words—it is only 
a matter of word order. In Maori the change involves changing verbal 
particles (for example, kia) to an article (for example, te). This makes it 
sound strange to a native speaker. 

2. NUMBERS TRAPPED AS ADJECTIVES: 

KANKANA-EY

The situation is more difficult for some other languages, where a 
conventional school-level mathematical discourse forces even greater 
alterations of accepted grammar. We will now look at the language 
Kankana-ey, spoken around Sagada in the mountainous regions of the 
northern Philippines. 
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Kankana-ey is a language that uses an unusual feature when 
putting an adjective with a noun. In linguistics this is called a ligature. 
This is a small word, in this case ay, that is put between an adjective 
and a noun. Thus you would say (the adjective comes first in 
Kankana-ey as in English):

tall children = anandu ay ungung-a 

wide rice terrace = nalawa ay payew 

white stone = puraw ay bato 

This construction is also used with numbers: 

four children = epat ay ungung-a 

Compare the two sentences: 

Do you have a raw banana? = Ay wada nan maata ay baat? 

Do you have five bananas? = Ay wada nan lima ay baat 

Thus, as far as the language is concerned, a number is grammatically 
fixed as a characteristic of something, like its colour or its dimensions. 
In fact the descriptive role of numbers is even stronger than that of 
some other adjectives. For example, when it is the existence of the 
characteristic that is being emphasised, then the structure changes for all 
characteristics except numbers, which is the only one that keeps the 
ligature:

The children are tall. = Anandu nan ungung-a. 

The stone is white. = Nan bato et puraw. 

There are four children. = Wada nan epat ay ungung-a. 

It is possible, as in English, to construct sentences where the things 
being counted are suppressed but understood to be present. This 
grammatical feature is called ellipsis. For example the noun ‘people’ 
can be dropped in the sentence: 

There are six people in the house, 
five are women

=
Wada nan enem ay ipogaw sinan 

abong, babbai nan lima. 

Also it is possible to give just a number as an answer to a “How 
many?” question: 

How many birds are in the tree? 
Five.

=
Kaat nan kuyat nan wada id kaiw? 

Lima

So far, the examples given are the same for English. Now consider: 
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Five pigs are too many. = Adu unay nan lima ay boteg. 

 Plenty too much are five pigs. 
Five is too many = Adu unay nan lima. 

 Plenty too much are five. 

Using numbers on their own can only happen when the object can 
be added to the sentence without change, as if it was always there in 
parentheses. Here is the difference: in English we can use numbers on 
their own by changing the grammar. Notice that in the example above 
the verb ‘are’ changes to ‘is’ when the noun is dropped. The effect of 
this is to make the number into a single object, as opposed to a 
characteristic.

The use of a ligature, ay, makes it more difficult than in English for 
the number word to act like a noun. It is trapped in its descriptive 
function. In schools in Sagada where Kankana-ey is used, there is 
noun-like usage of the number words in mathematical sentences: 

Take away two from three. = Kaanem nan dua isnan tulu. 

Remove the toy from the jar. = Kaanem nan ay-ayam isnan gusi. 

Two is small compared to ten. = Ban-ban-eg nan dua no nan simpoo. 

The stone is small compared to 
the tree.

= Ban-ban-eg nan bato no nan kaiw. 

Five is smaller than eight. = Nan lima kitkittoy nu sin wao. 

Willy is shorter than Peter. = Si Willy et ap-aptik nu si Peter. 

However this usage sounds very odd to a native speaker of 
Kankana-ey, whereas the structure sounds fine to an English-speaker. 
Kankana-ey is poorly suited to the mathematical use of number. 

So numbers in Kankana-ey are trapped in their descriptive, 
adjectival function. Numbers in Polynesian languages are trapped in 
their active, verbal function. Although mathematical discourse, and 
the use of numbers as objects, is possible in both languages, strange 
sounding distortions are necessary to make it happen. 

As an aside, even English and French are slightly different in their 
grammar of number. The evidence is their expression of fractions. In 
English you can say “one and a half hours” or “one hour and a half ”, 
although the latter form is unusual. In French, only the second form is 
possible (“une heure et demie”). This form actually implies “one hour 
and a half hour”. In French the mathematical phrase “une et demie” is 
understood as two numbers added together (1 + ½), as opposed to the 
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English “one and a half” meaning a single number, namely 1½. I am 

told that in Français Québécois 1½ can be said as a single number. 
We have seen that some languages have verbal grammatical forms 

for number, and some have adjectival forms. The most common 
mathematical use is as a noun, and English allows this more easily 
than most languages. It is interesting to note that some American First 
Nation languages have a noun-like usage of number in their everyday 
discourse. Denny (1986) has written on the Ojibway language (which 
also has verbal numbers) and the Aivilingmiut language which has 
noun-like grammatical structures for numbers: 

one atausiq This has no suffix and is a singular noun. 
two marruuk This has the dual noun suffix –uk. 
three pingasut This has the plural noun suffix –t. 

It translates as “a group of three”. 
pingasuit This has the adjectival suffix –uit. 

It translates as “three groups”. 

Hence pingasut tuktuit (three caribou) is actually literally translated 
as a three-group of caribou, or a caribou group-of-three. And pingasuit
tuktuit is three groups of caribou. 

We can imagine that a mathematical discourse involving abstract 
sets, might be grammatically straightforward in this language. 

3. FUNCTIONING NUMBERS: DHIVEHI 

What about Dhivehi, the language of The Maldives? In this lang-
uage numbers are adjectives or nouns. We know they can be nouns 
because in Dhivehi nouns are declined, that is, the form of a 
noun changes when it performs different functions. The suffix on a 
noun indicates the case. Numbers use the suffix forms for indefinite, 
non-human nouns (see Table 3-1). Note that the base word for fifteen, 
fanara, is both “the fifteen” and also the form that can be used in the 
descriptive, adjectival sense: fanara foiy (fifteen books). 

Dhivehi seems to be like English where number words can be used 
in a descriptive, adjectival way (as is most common in everyday talk), 
or as an object in a nominal way (as is most common in mathematics). 
However it is not quite as simple as that. We need to look more 
closely at what happens to numbers in English discourse. 
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Table 3-1. The Word for Fifteen in Dhivehi 
Case Object Word Number Word Example 
Direct fotek

(a) book 

fanara

(a) fifteen 

Tinek ehkuran fanara ehvarey 

ashaaraya.
Three and fifteen are eighteen. 

Dative fotek-aa
to a book 

fanarayak
to a fifteen 

Hayek fanarayak ehkuray 

Add six to fifteen.
Tinek ehkuran baara ya ehvarey 

fanarayak.
Three and twelve are equal to
fifteen.

Generative fotek-ge
of a book 

fanaraige
of a fifteen 

Thireehakee fanaraige gunaeh.
Thirty is a multiple of fifteen.

Instrumental foteku-n
from a book 
by a book 

fanarayakun
from a fifteen 
by a fifteen 

Tinek fanarayakun kendeema 

ehvarey baara ya.

Three subtracted from fifteen

equals twelve. 
Saalhees faheh fanarayakun

gehleema ehvarey tinakaa.
Forty-five divided by fifteen
equals three. 

Locative foteku-ga
in a book 

fanaraiga
in a fifteen 

Fanaraiga innanee tin fahek.
There are three fives in fifteen.

The position of the number word before the noun, like a colour 
or other descriptive word, makes numbers feel like adjectives: red 
trousers, denim trousers, five trousers. But when we use these in a 
sentence, we can get differences. Many sentences containing number 
words are constructed more like noun sentences. Compare the answers 
to the questions in Table 3-2 and the possible ways they could be 
answered.

Table 3-2. Number Questions in English (XX indicates an unacceptable form) 
Noun
Question

Number
Question

Adjective
Question

Verb
Question

What is in the 
room?

How many cats 
are in the room? 

What are the cats 
in the room like? 

What are the cats 
in the room doing? 

Cats. Four. Red. Sleeping. 
There are cats 
in the room. 

There are four 
cats in the room. 

There are red cats 
in the room. 

There are sleeping 
cats in the room. 

There are cats. There are four. XX There are red. XX There are 
sleeping.

The cats are in 
the room. 

XX The cats in 
the room are four. 

The cats in the 
room are red. 

The cats in the 
room are sleeping. 

They are cats. XX They are four. They are red. They are sleeping. 
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The similarity with nouns in the third format is because we are 
permitted to drop the noun, although it is implied. “There are four 
(cats)”. We cannot do this with other adjectives so easily. The final 
two formats show that using numbers in a sense that answers the 
implied question “How many?” requires us to use constructions that 
are different from adjectives, verbs, and nouns: 

The trees on the hills are oaks.  No, they are pines. 
The trees on the hill are green.  No they are grey. 

The trees on the hill are waving in the wind.  No, they are still. 
There are three trees on the hill.  No, there are four. 

Numbers, in English, have their own grammar that is unlike the 
grammar of adjectives, verbs or nouns. In various situations their 
grammar is like the grammar of these other types of words, and this 
happens in both everyday discourse where they tend to be adjective-
like, and in mathematical discourse where they are like nouns: 

There are four birds sitting in a tree. Adjective-like.
There are three boxes of ten bottles, making 
thirty bottles in all. 

Adjective-like.

Add these three pens to those six, and there 
are nine altogether. 

Adjective-like (with ‘pens’ 
implied).

Five is a prime number. (Cf. Green is a warm 
colour).

Noun-like.

Five is a factor of fifteen. (Cf. Green is the 
complement of red). 

Noun-like.

Three times six is eighteen. (Cf. Yellow and 
blue make green. 

Noun-like.

Three sixes are eighteen. Adjective- and noun-like. 

Now in Dhivehi, numbers can be used as adjectives or nouns, so it 
seems as though this will be well-suited to all the everyday and 
mathematical constructions above. However in Dhivehi the numbers 
have the different noun forms. This means not that they are like nouns, 
but that they are nouns, and this seriously affects some of the mathe-
matical features of numbers. 

First of all consider the difference in English, between “three fives” 
and “five threes”. This is short for saying “three groups of five” and 
“five groups of three”. We know that the total number of objects in these 
two agglomerations are equal (15), but the way they are structured 
are different. This is easier to see if we are talking about something 
in particular: a three-story apartment block with five apartments on 
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each floor is a very different building from a five-story apartment 
block with three apartments on each floor—although they are both 
buildings containing fifteen apartments. 

In English we can express the multiplication of numbers in several 
ways:

3 × 5  5 × 3 
Three fives.  Five threes. 

Three multiplied by five.  Five multiplied by three. 
Three times five.  Five times three. 

In the first of these the number words differ, depending on which 
way round you say it. The plural form of ‘fives’ (that only occurs in 
mathematical talk, not in everyday talk) indicates that this is a ‘group 
of five’ and there are three of them, and vice versa. In the second 
example, the word ‘by’ indicates that the role of the three is different 
from the role of the five, despite the form of the words being the same. 
One number is the instrument of the multiplication of the other. The 
third example is actually similar, but does not look like it. The ‘times’ 

occurrences of five”. In this form the ‘of ’ indicates the different role 
played by each number, but it is suppressed in the conventional form. 

In Dhivehi the number words change in the first and second cases 
because the different role played by the two numbers is embedded in 
the structure of the word. There is no equivalent to “three times five” 
in Dhivehi. 

3 × 5  5 × 3 
Tin fahek  Fas tinek 

Tinek fahekun gunakururma  Fahek tinekun gunakuruma 

An alternative way of saying “three fives” or “five three” uses two 
old words: 

Tin fansa  Fas thirikhu 

It seems as though these old forms of five (fansa) and three 
(thirikhu) mean something like “groups of five”. They have been 
replaced in modern Dhivehi by fahek and tinek. But these are 
interesting also, because there is a choice between the definite and the 
indefinite forms. “The five” would be fas, which is never used in 
the nominal sense (only in the adjectival one), fahek means, literally, 

here refers to ‘occasions of’. “Three occasions of five” or “three 
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“a five”, that is, an example of five. Now to create an example of five, 
to illustrate it, there must be five somethings. So this form of the noun 
is a version of the implied context that was referred to above in 
relation to Kankana-ey: its origins at least are in situations where it is 
possible to add a noun afterwards: “There are six people in the house, 
five (people) are women.” Perhaps this is why, when I asked my 
informant (a first language Dhivehi speaker) to translate “fifteen is a 
multiple of five”, she responded that she was not sure about it. She 
had had no trouble with all the arithmetic phrases like “Three plus five 
is eight” in which additional nouns could more easily be added: 
“Three birds plus five birds are eight birds”. And when I asked for her 
to translate a sentence that talked about an occurrence of the number 
five in an equation, “the five tells you the intercept on the axis”, she 
responded that it was difficult. 

4. CONGRUENCE OF LANGUAGE WITH 

MATHEMATICS 

So what? Well this is an example of the difference between 
everyday language and mathematical language. The symbol form  
of multiplication (3 × 5) is not the same as the spoken form. The 
symbol form of multiplication refers only to number, the spoken 
form also refers to structure. Some people express this as saying 
that mathematics is about ‘pure number’. If ‘pure’ number is being 
meant, then 3 × 5 is equal to 5 × 3, i.e. 15. The mathematical term for 
this reversible feature is commutativity, and it is an important feature 
of multiplication (and addition) of numbers. 

Note that commutativity does not apply to subtraction or division 
(3 – 5  5 – 3 and 3/5  5/3). In English, for those operations, we 
retain the prepositions that indicate the role of each number. This is 
most noticeable when we issue commands. We say “multiply 3 by 5” 
“add 3 to 5” (roles retained), but also “multiply 3 and 5” “add 3 and 5” 
(roles lost). For subtraction and division we can only say “subtract 3 
from 5” or “divide 3 by 5” (role retained). 

So what emerges is that, in this example, English is more aligned 
to the way things are expressed in mathematics. English, with its own 
grammar of number, allows us to express the operations of multipli-
cation and addition in the way that they are intended to be understood 
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mathematically; Dhivehi, with numbers fixed as nouns, does not—or, 
it does not allow it quite so easily. 

This is a good opportunity to note something further about the use 
of numbers in mathematics that is different from our use of numbers 
in everyday language. The mathematical use of numbers is strictly 
defined and highly conventional. We have given the example 
of multiplication, where the symbols 3 × 5 refer to the total (pure) 
number being represented and not the structure of the groupings. 
In mathematical language this is “three times five”, and is 
commutative. We have already noted that this is different from any 
everyday use where actual objects are being discussed, where the 
structure is part of what is being communicated: 3 floors of 5 
apartments; 3 × 5, a piece of timber may be described as 3 by 5 
(often written 3 × 5) when what is being referred to is the shape and 
dimensions of the cross-section. Thus we say that mathematics is 
removed from reality, it represents the ideal.

Beware! Many have interpreted the use of the word “ideal” in this 
context as meaning that mathematics represents perfection, the 
ultimate in abstract thought. That is not what I mean, and nor do I 
think it is true. I mean that mathematics represents things that are 
ideas, they come from ideas, they are ideal. But there are many 
possible ideas, and perfection does not seem like an appropriate word 
to use for ideas. Ideas are just ideas.

For example, there is another use of “3 × 5” which is quite diff-
erent from how we usually understand multiplication: this is when it is 
used to indicate the dimensions of a matrix. A matrix is an array of 
numbers, and, for most purposes, it is very important to distinguish 
between a 3 × 5 matrix and a 5 × 3 one (see Fig. 3-1). 

2 7 4

0 1 5

0 1 2

2 3 4

1 3 6 5 3

2 0 1 1 2

1 4 0 6 3

3 3 4 0 1
3 5

Figure 3-1. Matrices of Different Order 
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Here the structure is important. When “3 × 5” is read in this 
context, you should say “three by five”—the preposition is retained 
and the meaning is “three rows of five entries”. This highlights the 
conventional use of symbols and words in mathematics: the meaning 
is precise, and natural language is co-opted to express this as best as 
possible. English is generally quite adaptable to this purpose. 

What is the point here? Well, compared with Kankana-ey, Maori, 
or Dhivehi, English allows the movement of the use of numbers from 
everyday conversation mode to the mathematical mode quite easily. 
The grammatical structure of numbers allows them to be used in 
conjunction with a noun to describe how many, to be used as objects 
that can be talked about in isolation, and to be used in mathematical 
senses that are neither of these. This is not true in the other languages 
for different reasons: in Kankana-ey numbers are more fixed in their 
descriptive, adjectival mode; in Maori and Tahitian numbers are more 
fixed in their active, verbal mode; in Dhivehi the numbers are more 
fixed in their object, nominal mode. 

It should be emphasised again that these are not immovable 
features of these languages. In English there are constructions or 
word-forms that force an adjectival use, or a verbal use, and so rob 
numbers of their mathematical features. In the other languages, the 
mathematical senses of numbers can be expressed, although it may 
sound a little odd. What is being noted is a privileging of English with 
respect to the mathematical use of numbers. It is easier, it is closer to 
NUC-mathematical discourse. 

An English-speaker can more easily mathematise quantity into 
NUC-mathematics. There is no strangeness in the way of talking, so 
that mathematics-speak, where numbers are concepts to be played 
with, is natural: there is a congruence between this language and 
mathematics. Apart from the possible educational benefit of such 
congruence (and this is discussed in Part III), it is interesting to ask the 
question “Why does the congruence exist?” One possible answer is 
that it is simply chance, that English just happens to be more in line 
with mathematical talk, and therefore if you are an English speaker 
then mathematical talk will flow naturally. Alternatively, either mathe-
matical ideas have developed the way they have because mathematics 
developed (and increasingly develops) through English (or Indo-
European languages), or, alternatively, that English has developed 
in the way that it has because it evolved in close contact with 
mathematics.
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I do not believe that it is coincidence that Indo-European languages 
just happened to be more consonant with mathematics than other 
languages. Given that mathematics as we know it today has the major 
parts of its history within an Indo-European environment, this congru-
ence seems to be good evidence that mathematics is a human creation 
that is influenced by, and influences, other aspects of human creativity 
in the same environment. Mathematics and language evolved together. 
They have affected one another in the past, and they are influencing 
each other in the present. 

This first part of the book has presented evidence from different 
languages of different mathematical conceptions that could lead to 
different mathematical systems of various kinds. It has also presented 
evidence that mathematics and language develop together. But deve-
loping mathematics is more complicated, of course, than just creating 
mathematical worlds through language. I do not mean to suggest that 
language comes first, and that it determines a mathematical world 
completely. What other factors shape a mathematical world, or, what 
else has made mathematics the way it is? How much is mathematics 
determined by the nature of the human mind? By accidents of history? 
By the needs of society? By already existing mathematics? 

We are concerned about what the evidence from language tells us 
about the relationship between mathematics and human culture and 
the philosophical status of mathematics. Is it the same everywhere for 
everyone? What role does mathematics play in our society? How does 
it grow and what influences the directions of its development? More 
importantly, where might it be headed in the future? 

The second part of the book addresses some of these questions 
while remaining mostly focused on language and mathematics. On the 
way, I will explain why mathematicians should be sued for the sinking 
of the Titanic, how mathematics can enhance your sex life, and why it 
is not your fault that you had problems adding fractions. 



PART II 

LANGUAGE AND MATHEMATICS 
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THE EVIDENCE FROM LANGUAGE 

Abstract: The evidence from language in the preceding chapters is used to question 

common assumptions about mathematics. The links between mathematics and 

English language are explored through examples of the use of the words ‘open’ 

and ‘normal’. The chapter concludes with a summary of the evidence presented 

so far.

Keywords: language and mathematics, open sets, normal distribution, abstraction, genera-

lisation

In the first part of the book I presented some evidence from 
different languages together with some mind-games, and suggested 
that mathematics did not need to develop as it has done. We do not 
generally consider mathematics as one of several options. I must now, 
therefore, augment Part I by providing a coherent picture of mathe-
matics that both explains how this can be so, and also fits with our 
experiences and perceptions of the subject. 

Part II fills out the picture of mathematics, giving just such an 
account of how it originated, how it develops, and what it means. 
Chapter 5 starts with two examples of a different kind of evidence 
from language, and then reviews the implications of all the langu- 
age evidence. In Chapters 6 and 7 the origins and development of 
mathematics are discussed respectively, and finally I address some 
philosophical issues. Part III examines educational implications. 

1. TWO WORD STORIES: NORMAL AND OPEN 

The first story concerns the word normal. This word first appe-
ared in the English language in the 16th or 17th centuries, with a  
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mathematical meaning. It occurs, for example, in The English Euclide,
a translation into English of Euclid’s text written in 1696. In that 
document it meant right, as in right-angled, or rectangular.

The origin of the word is Latin, starting with the word norma,
which was the name for a carpenter’s square, the pattern that a 
carpenter used for making exact, right-angled corners, or checking that 
posts were upright. Today a norma is called a set-square, and used in 
schools and graphic design as well as on building sites. From norma
came the word normalis, meaning “made according to a carpenter’s 
square” and, eventually, by the 15th century, in late Latin, this word 
had come to mean “in conformity with the rule”. 

But this is not the end of the story. Someone who is normal is not 
just someone who conforms with the rules, they are someone like us—
well, like me anyway. A normal programme is not the one that follows 
the rules, it is the one that occurs most frequently. “Most frequently” 
sounds like probability and statistics—and it is. 

Through the 17th and 18th centuries the subject of probability 
emerged, originating in the interest in gambling in France by the 
mathematician Blaise Pascal (Hacking, 1975). Indeed, the word 
probability did not occur until 1657. Our word normal was still in use 
mainly as a mathematical term, but also, for example, in the French 
école normale, meaning “by the rule”. The école normale were 
schools set up under the Republican foundation in 1794. Then, as late 
as 1892, normal got a new mathematical meaning. It was the name 
given to the probability distribution that occurs in nature, the Bell 
Curve as it is sometimes known (see Fig. 4-1). 

Figure 4-1. The Normal Curve 
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It was discovered that this distribution modelled what happened  
for many aspects of human and animal populations: height, weight, 
performance in mathematics tests, performance in intelligence tests. 
There seemed to be a general rule governing such data. The mathe-
matical model was therefore named a normal distribution, and became 
a way of categorising. You could now find out whether you were 
close to the “norm”, that is, average height. Young parents are familiar 
with the consequences. There are charts of baby weight against age, 
and lines drawn on the chart to indicate the percentiles (see Fig. 4-2). 

Figure 4-2. Baby Weight & Length Chart 

(Reproduced with permission from the New Zealand Ministry of Health WellChild Tamariki 

Ora Health Book, Wellington: Ministry of Health, p. 70) 

If your baby comes between these lines, then all is well with the 
world, grandparents are content, parents don’t lie awake worrying 
about whether they’re guilty of mal-nourishing or overfeeding their 
babies, and the social gathering at the playground is a proud display 
of ... of a normal baby. 

That’s right. Prior to 1926, when the word normal was first used  
to describe a population, there was no  such thing as being normal. 
Babies just were. Some babies were different from others. Some people 
were different from others. A few people were a little odd, a little  
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idiosyncratic sometimes, but that was accepted as how the world was. 
Only in the last 100 years has the concept of normality come to play a 
major role in how we talk and think about ourselves. As a result of 
being at the extreme end of the normal distribution, many healthy 
people have felt guilty about themselves, been put on medication, or 
been locked up in mental institutions. The sad part about all this is 
that the mathematics says there will always be some people at the 
extreme ends of any measurement that is made. Healthy people. Normal 
people. This is an example of mathematics affecting language and 
thought.

The second story is about the word open.
As a member of a research project I once attended an international 

conference of mathematical researchers in the field of topology. 
Topology is that part of mathematics that deals with the mathe-
matical structure of concepts like nearness and continuity. Topologists 
concern themselves with what it means to say that one number is 
‘next to’ another, for example. Or whether it is possible to have a small 
finite area that has a boundary that is infinitely long? (The answer  
is yes!) 

Our team was investigating whether the languages that topologists 
speak affect the way they understand their very abstract subject 
(Barton, Lichtenberk, & Reilly, 2005; Barton & Reilly, 1999). 
Breakfast. I sit at a table with three topologists from three different 
countries. I ask how the name ‘Open Set’ came into existence. It does 
not matter, for this story, what an open set is, except to say that it is 
an absolutely fundamental concept in topology—one of the concepts 
on which everything else is built. After a short argument about who 
first used the term, I changed the question to which of the many 
meanings of the word ‘open’ was being used here. 

“Ah,” says the first topologist, “that is easy. Actually any word 
could have been used, so long as it had an opposite, since it is the 
relationship between an open set and a closed set that is what is 
important. Open/closed. Yin/yang. Black/white. It could have been 
any of these. It is the sense of complementarity that is being 
expressed.”

“What?” queried the second. “I don’t think so. The meaning of 
open in this context is the one used of an international border: 
anything can pass through, there is no well-defined restriction on what 
makes the border.” 
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“Oh,” mutters the third quietly (he was the junior member of the 
group), “I always thought that what was meant was the idea of without 
any boundary at all—like we refer to an open field, the open sea, or an 
open question.” 

Fortunately, not being a topologist, my view was neither expected 
nor important. Which was just as well, because I had imagined that the 
sense of open being referred to was that of a door. It can be open or 
shut, it depends what you want to do with it. 

Why did the four of us hold four different views—was it language 
background, prior experiences, or the way we were taught? Is one 
right and the other three wrong? For the three who are research 
topologists, does it make a difference to the mathematics they do with 
open sets that they think about the meaning of open in different ways? 

These three topologists each had a different understanding of the 
word naming the fundamental building block of their research field. It 
is difficult to imagine that this does not affect the way they research 
this highly conceptual area of mathematics. This story is an example 
of the potential for language to affect mathematics. 

2. REVIEWING THE EVIDENCE 

These stories do not prove anything, however they are further parts 
of the picture of the relationship between everyday language and 
mathematics. A picture of close ties between the two, of each affecting 
the development of the other, both in the past, and in the present.

Let us be clear about what this part of the book is trying to do, and 
what it is not trying to do. I am trying to paint a consistent picture of 
mathematics (its nature, its development, how it is connected to 
human thought) that fits with the evidence from language. What I am 
not trying to do is argue that all other views are wrong—although I 
will point out, in places, where the evidence from language contradicts 
some other conceptions of mathematics and its history. 

For example, you will not find a denunciation of the Platonist 
conception of mathematics as an ideal world to be uncovered, nor of 
the formalist idea that mathematics is simply the setting up of rules 
and exploring their consequences. I just raise some questions about 
them. Nor will you find a challenge to the history of mathematics that 
sees the subject as a single river of development fed by tributaries of  
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contributions from different mathematicians. Rather, I show that an 
alternative view of a braid of many fibres will also fit the evidence. 

There is not room in this book (nor do I have the ability) to disband 
all other philosophical positions, nor to survey all the writing on the 
historiography and social influences on mathematics. Rather the book 
argues that there are some interesting things about the way different 
people talk mathematically, and that this suggests a picture of mathema-
tics that is somewhat different from many accepted views. But this 
picture is consistent, and does “make sense” on the evidence 
available.

Now, let’s summarise the evidence, as opposed to recounting 
anecdotes and flirting with the imagination. 

First of all, everyday mathematical talk, that is, general language 
used to discuss quantity, relationships and space, can be quite different 
in different languages. For example, with respect to the grammar of 
quantity, the Polynesian verbal use of numbers, the Kankana-ey 
adjectival use, and the Dhivehi nominal use are significantly different 
from the English or Spanish use, a way of speaking that can move 
between adjectival-like and nominal-like. 

Not only are there differences between different languages, but 
also everyday mathematical talk is changing within each language. 
For example, the modern Maori grammar of numbers is different from 
the Maori grammar of numbers before European contact. What causes 
the change is not clear, and there are likely to be many complex, 
interacting influences. (Although, in this case, there is evidence that 
the involvement in language development by those from another 
language background may have been significant. For example the 
involvement of missionaries in creating a written form, and the 
involvement of mathematicians taught in English in establishing a 
Maori mathematical discourse). 

The third point is that the direction of change is towards more 
similarity. For example, as Dhivehi and Euskera are used in  
more technical mathematical areas, and as they are used in fields  
where English or French or Spanish are international mediums of 
communication, so Dhivehi and Euskera move towards grammatical 
forms, for example the grammar of numbers, that mirror those of the 
international language. 

Note that these languages were not chosen for discussion because
the grammar of number was different. It is not true that other non-
Indo-European languages were studied, found to be similar to English,  
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and then left out of this book. Each language I encountered had some 
feature of interest. This suggests that different and changing mathe-
matical grammars are likely to be widespread phenomena. 

The examples from the language of space gave evidence that 
there are linguistically related preferences, or predispositions, to  
see location and shapes in ways that are conceptually different. 
Furthermore, these concepts can give rise to formal systems that are 
different from NUC-mathematics, but perform some of the same 
functions. If it is true that geometry built up from the way humans 
conceived of the space and shapes around them, then it has been 
shown that geometry could have at least started differently, using 
different basic concepts, and that other graphical representations 
could have become more familiar. 

The examples about the language of number similarly show that 
the way we describe quantity in NUC-mathematics is not universally 
familiar, but mirrors that of English and other Indo-European 
languages—the main languages of mathematical development. 

The examples from the language of relationships confirm that 
categorisation and argumentation do not have universally applicable 
characteristics. In these examples, unlike those of the alternative 
geometries, it is not necessarily possible to map one system onto the 
other. The implication is that categorisation and argumentation are 
context dependent, and are, in our everyday world, to be judged on 
their utility within that context. The question for NUC-mathematics is 
whether it wishes to remain a context only ruled by one form of 
argumentation, or whether, as a discipline, it can become open to 
QRS-system investigations ruled by other forms of logic and 
categorisation?

Another aspect of the evidence is that mathematical processes like 
formalising, generalising, abstracting, or symbolising are all represented 
within the examples described. However, since it is everyday language 
we are talking about, many of the QRS-systems and their mathematical 
processes are embedded in particular activities, like navigating, 
weaving, land measurement, or resource allocation. (The study of the 
mathematical aspects of these systems is known as ethnomathematics 
(Ascher, 1991; Barton, 1996; Contreras, Morales, & Ramirez, 1998; 
Monteiro, 2002; Powell & Frankenstein, 1997)). We have seen that at 
least some of these concepts and systems can be extrapolated in a 
formal mathematical way to resemble elementary NUC-mathematics. 
The example of Action Geometry re-maps the relationship between  
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some geometric objects, and appears to deal more easily with some 
geometric features and less easily with others. 

A final note on this review of the evidence in Part I. After 
investigating mathematical talk in other languages I am left with 
questions about where the different conceptions came from? Are they 
linguistic accidents, or do they reflect different physical environments 
or social activities? Let us move on, then, to discuss the origins of 
mathematics.
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I will now argue for the major role that language plays in the 
generation of mathematics. The chapter starts by considering some 
recent writing that addresses the relationship of the human mind and 
mathematics. Then it is shown, first, that there could have been  
other choices made in the way mathematics has grown, second, that 
these choices are strongly affected by socio-cultural influences, and 
third, that we create mathematical systems by communicating about 
them. Hence language is one of the most vital influences on our subject. 
Finally you will read a description of how this influence occurs. 

1. GOSSIP & MATHEMATICAL TALK 

Where does mathematics come from? Is it there, a part of the pre-
existing universe, residing in an ideal Platonic world, waiting for us to 
discover it and come to know it? Or does it grow from human minds 
reacting to their environment? Or is it both? 

Mathematics is just gossip, according to Devlin (2001). He 
suggests that the human faculty for doing mathematics is the same  
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faculty we use for gossiping. Devlin continues: “the main activity that 
prepared the human brain for being able to do mathematics was 
nothing to do with the physical world” (2001, p. 7), rather, it was the 
human need to keep track of interpersonal relationships. Thus 
mathematics is gossip, but gossip about abstract relations. I once 
tested this hypothesis, making a tape of two mathematicians (Mike 
Newman from Australian National University and George Harras 
from the University of Queensland) discussing their research. I 
subjected the transcript to a Barton-Devlin transformation: the nine 
words that referred to mathematical objects or actions were swapped 
for nine other words referring to the game of rugby—New Zealand’s 
national game. When the transformed version is read out the 
conversation is good enough to sound like it makes sense, although a 
careful examination of the text might lead you to wonder what it really 
meant (see Table 5-1). 

Table 5-1. The Barton-Devlin Transformation 
Mathematicians’ Gossip Original Mathematicians’ Gossip Transformed 

U(3,3)
Semigroup
T-system
Generating pair 
Presentation
Elements
Automorphism
Free-group
Equivalence class 

Wellington team 
Second round 
Attacking
Throw-in option 
Backline move 
Players
Player position 
Lineout
Consequence

M Now, on the U(3,3) you’ve got the 
semigroup result which answers 
something? There’s a sense in 
which I’d like to look at U(3,3) 
from the, sort of, T-system point 
of view. 

G OK, I think that’s a good idea 
because it is small enough. 

M

M Now, on the Wellington team 

sort of, attacking point of view. 

G OK, I think that’s a good idea 
because it is small enough. 

M Exactly. The Wellington team is 

cult to work out. 

Mumbling, Metaphors, & Mindlocks: The Origins of Mathematics 

you’ve got the second round result
which answers something? There’s 

at the Wellington team from the, 
a sense in which I’d like to look

usly got somewhere further, just
very small. I mean, we’ve obvio-

how many different, essentially
different throw-in options has it
got? That shouldn’t be too diffi-

Exactly. U(3,3) is very small.

different, essentially different

work out. 

generating pairs has it got? That 

some here further, just how many
I mean, we’ve obviously got

shouldn’t be too difficult to 
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Mathematicians’ Gossip Original Mathematicians’ Gossip Transformed 

G I, I can tell you that I believe I 
have more than half a dozen. OK, 
I’ve got… 

M Presentations? Or generating pairs? 

G The presentations come from what 
Eamonn’s programme suggests are 
distinct generating sequences. OK. 

M Ah, yes, but all your generating 
sequences are either 3-3 or 3-7 
aren’t they? Orders of two elements. 
I believe there are two there. 

G You believe the two generating 
sequences might all be in the one 
T-system?

M That needs checking 

G I mean, they are distinct in the 
sense… well, I don’t understand 
what distinguishes T-systems. 

M Well automorphisms and automor-
phisms of the free-group. 

G I see, so the formal… 

M I mean, the formal definition of a 
T-system is that it is the equi-
valence class of generating pairs, 
in this case generated by the action 
on generating pairs on the auto-
morphism group or the automor-
phism group of the free-group. 
There might only be one of those 
because the 3-3 and the 3-7 might 
in fact be got from one another by 
an automorphism of the free-group. 
I mean that was your technique for 
changing from something where 
you………….

G Sure, sure. Yeah. I understand 
what you’re saying. I mean, I also 
have other generating sets but they 
have not solved the problem. 

G I, I can tell you that I believe I 
have more than half a dozen. OK, 
I’ve got 

M Backline moves? Or throw-in 
options?

G The backline moves come from 
what Eamonn’s programme 
suggests are distinct throw-in 
options. OK. 

M Ah, yes, but all your throw-in 
options are either 3-3 or 3-7 aren’t 
they? Orders of two players. I 
believe there are two there. 

G You believe the two throw-in 
options might all be in the one 
attacking plan? 

M That needs checking 

G I mean, they are distinct in the 
sense… well, I don’t understand 

M Well player positions and player 
positions in the lineout. 

G I see, so the formal… 

M I mean, the formal definition of 
an attacking plan is that it is the 
consequence of throw-in options, 
in this case generated by the 
action of throw-in options on the 
player positions or the player posi-
tions in the lineout. There might 
only be one of those because the 
3-3 and the 3-7 might in fact be 
got from one another by swap-
ping players in the lineout. I 
mean that was your technique for 
changing from something where 
you………….

G Sure, sure.  Yeah. I understand  what
you’re saying. I mean, I also have
other throw-in options but  they 
have not solved the problem.

what distinguishes attacking plans. 
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This does not prove Devlin’s contention, nor does it illustrate 
what he really meant, but it does demonstrate that, as far as verbal 
communication goes, there is not a lot of difference between mathe-
matical and everyday conversation. The difference is mainly technical 
vocabulary, meaning that the structure of communicating mathematics 
is the same as the structure of gossip. 

Is this where mathematics comes from? Shanker’s (1987) 
interpretation of Wittgenstein is that mathematics is indeed created in 
our mathematical talk. Under this interpretation, each time we use a 
mathematical term the concept or relationship is being remade. 

For example, when a school pupil first hears and uses the word 
prime then it may have a limited meaning such as “one of the numbers 
2, 3, 5, 7, and some others”. As the child continues to use the word the 
meaning will change to “a number generated in Eratosthenes Sieve”, 

later understanding might be “a positive integer with no factors other 

correct definition. After understanding Euclid’s proof the student will 
add to their concept the idea of an infinitude of primes, and later the 
possibility of infinite twin primes. 

That description is not just the process of an individual coming to 
understand a pre-known mathematical concept. It reflects the situation 
of the community of mathematicians as more and more is known 
about the concept. Do prime numbers fit with Goldbach’s Conjecture 
(that every even number integer greater than 2 is the sum of two 
primes—one of the oldest unproven conjectures in mathematics)? 
Every time some further progress is made on this question, then 
essentially we are adding to the concept of prime, that is, what a prime 
IS. According to this line of thinking, it makes no sense to assert that a 
prime either does or does not satisfy Goldbach’s Conjecture until the 
conjecture is proven one way or the other. And once Goldbach’s 
Conjecture is decided, there are many more conjectures about primes 
waiting to be resolved, and even more waiting to be formed. That is 
mathematics. So the process of forming the concept of prime never 
finishes. In other words, mathematics is in constant generation 
through mathematicians’ talk. (‘Talk’ in this sense includes writing, of 
course. Perhaps we should say ‘communication’). 

Devlin’s idea that mathematics is generated in each of us through 
our ability to gossip, and Shanker’s version of Wittgenstein that  
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than one and itself ”. But the idea of prime is not just its formally 
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mathematics is constantly generated during mathematical communi-
cation, are both ideas that fit with the evidence from language. The 
Realist version of mathematics, that there is a Platonic world we 
come to know, or even the quasi-empiricist one that we experience 
mathematics, do not fit so well with the observations that numbers and 
shapes are conceived as actions in one culture and as things in a 
different cultures. If mathematics is generated with language, then 
such differences are to be expected. 

Similarly, a formalist conception, that mathematics results inevi-
tably from the establishment of a set of rules, does not easily accept 
the consequences of different forms of argumentation and logic. 

Let us go back to Devlin’s idea that the human genetic disposition 
for language is exactly what was required for humans to do and 
develop mathematics: “thinking mathematically is just a specialised 
form of using our language facility” (2001, p. 4). This statement 
coincides with our evidence from language. The language facility is 
extraordinarily varied, however, and so the possible specialised usages 
of it to talk about quantity or relationships or space are also varied. 
This is another way of saying that, if mathematics is generated 
through our language facility, then it is culturally shaped in the same 
way as language. 

But if mathematics arises from language, then we must consider 
mathematics in the same way we consider language. Different concepts 
are expressed in different languages, and some concepts are extremely 
difficult, some say impossible, to translate between languages. The 
implication is that different quantitative, relational, and spatial concepts 
may also not be easily transformed into each other. The language 
investigations reported in Part I confirm this. 

Sometimes Devlin seems to abandon the implications of his main 
hypothesis: for example suggesting that “our capacity for mathe-
matical thought evolved” (2001, p. 7), when it was mathematics that 
evolved (just as language has evolved) not our capacity for it; or 
describing mathematics as tracing a single, almost inevitable, evo-
lutionary path, when the path is not inevitable if it is linked to the 
development of language. But Devlin is not the only person to hesitate 
at the brink of the consequences of describing social, linguistic, and 
cultural origins of mathematics. 
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2. COGNITIVE SCIENCE CONTRIBUTIONS 

Dehaene (1997) discusses the origins of arithmetic in our minds, 
making an approach from cognitive science. Actually, Dehaene’s 
work does not discuss how the mind creates mathematics, as Devlin 
notes (2001, p. 21), but rather how mathematics exists in the mind. 
However it does contain some evidence about language that is 
relevant to our discussion. 

He describes elementary “number sense” in very young children, 
prior to language. Young children recognise two objects as different 
from one object, and look around for the second if one is taken away. 
Young children also recognise subtle features—their mother’s faces as 
opposed to their aunt’s, for example—so we should not be surprised 
that they detect the presence or absence of objects. The question is 
whether this represents number. People seem confused between the 
cognitive, perceptive ability (that I would call quantity), and the 
mathematical concept developed as part of the system of mathematics 
(that I would call number).

It is in the communication of the experience of quantity that the 
concept of number is formed, and this occurs with the development of 
language.

Dehaene’s book presents the evidence for this, although he only 
talks about English. He claims that there are two keys to humans’ 
understanding of number beyond three: counting and using symbols. 
He describes how a three year old can count, say, six objects, but 
when asked immediately afterwards how many toys she or he has, 
may reply with any number. My explanation from a language point of 
view is not that the child is confusing the process of counting with the 
abstract concept of number. Rather, the process of counting is a 
language learning “game” where a sequence of words is learned in 
conjunction with one-to-one association. The child, however, does not 
have a concept of number because that concept is the answer to the 
question “How many?”—it is a different kind of thing than counting. 
The child is in the process of learning the correct communicative 
response to that particular question, he or she knows that the answer is 
a number word, but has not got the number concept by which the 
correct number word is identified. 

The next piece of evidence given by Dehaene clearly demonstrates 
such reasoning. Children younger than three understand how to use 
number words in English in a descriptive way that is different from 
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how adjectives are used. [.. also check in Dehaene not just Devlin] 
They know to say “three little sheep” and not “little three sheep”, for 
example. They know that numbers refer to groups of objects and not 
to characteristics of them like colour or texture. Now, we know that 
different languages use number words in different ways. Polynesian 
languages use numbers verbally in everyday use, and the Aivilingmiut 
Inuit language uses numbers as nouns in everyday use. It is reasonable 
to assume that young children from these cultures can also use number 
words correctly in their language. There is nothing universal about the 
adjectival use of numbers. This must be a learned behaviour. So the 
way that quantity is expressed, is learned, not innate or determined by 
our genes. It is the expression of the quantity sense, as a number 
system, that constitutes mathematics. 

There is considerably more about arithmetic and language in 
Dehaene’s book, including wonderful experiments that show the exact 
nature of this link, and, in Devlin’s book, this is extended to other 
mathematical activity like logical reasoning. Between them they 
present considerable evidence that doing mathematics is language-
based. For example, Devlin attributes to number-word characteristics 
of the Mandarin language the advantage of Chinese children over 
European ones in elementary arithmetic. (Yet Devlin explicitly denies 
the language-dependence of doing mathematics (2001, p. 70)).

Cognitive science is now able to map brain activity corresponding 
to human tasks. Evidence from MRI scans tells us that, when counting 
or performing simple arithmetic, there is more activity in the left 
parietal lobe of the brain, whereas language activities activate the 
frontal regions more. (Note that all mental activities distribute over 
large portions of the brain and some areas can replace others: there is 
no “language part” or “counting part”). 

More light is shed on this by an experiment Dehaene and 
colleagues performed that involved monitoring the brain during some 
arithmetic activity. Part of the activity involved approximation tasks, 
and part required exact answers. The former activated the parietal 
lobes more, the exact answers activated the frontal lobes more. The 
left parietal lobe is also associated with finger movement, and my 
explanation is that that part of the brain is important for quantity 
sense, things like estimating size and counting. Converting this 
information into a system that can deal with quantity (that is, doing 
arithmetic) requires the same region that is associated with language. 
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A comparison might be the sense of touch. It is one thing to feel 
the texture of something, to have, and register, the experience of it. It 
is quite another thing to communicate this feeling, to compare it with 
the texture of other things, to categorise the way different things feel. 
This is the difference that I want to emphasise between the quantity 
sense on one hand, and arithmetic as a system that is part of 
mathematics on the other. 

Before moving past cognitive science, let us consider some of the 
cases that Brian Butterworth describes in his book The Mathematical 

Brain (1999). He describes a woman who had a stroke that destroyed 
her “numerical” ability, but who retained her reasoning and language 
abilities. It was her quantity sense that was lost: she could not count or 
estimate the number of objects beyond four, she could not recite the 
number words beyond four. Another woman had a damaged left 
parietal lobe and also could not count, nor did numbers have any 
meaning. She could learn arithmetic facts as language, but she could 
not use them. Again it is not arithmetic that was lost, but the quantity 
sense. Arithmetic is the system that allows us to use the quantity 
sense. However, without that sense, arithmetic is meaningless. The 
other examples of intelligent people who have no “number sense” can 
similarly be re-understood as having a difficulty not with number or 
arithmetic, but with their sense of quantity. 

A further set of examples describes people who can read number 
symbols, but not number words, or vice versa. This is a separate issue 
concerning symbolic representation, not quantity sense or arithmetic 
systems, but it highlights the interrelationships of different faculties 
that go together to make mathematical activity possible. The same 
thinking can be used to explain the New Scientist (19th February, 
2005, p. 18) report about brain-damaged patients who could no longer 
speak, and who could not distinguish between “the boy chased the 
girl” and “the girl chased the boy”, but could nevertheless distinguish 
between 7 – 2 and 2 – 7. 

The three books discussed each deal with cognition and arithmetic, 
or, in Devlin’s case, wider mathematics. Devlin and Dehaene both 
provide more evidence and argument for a close connection with 
language in the formation of mathematics. The evidence from 
cognitive science does not necessarily deny this when a distinction is 
made between the experience of quantity and the mathematical system 
that formalises that experience (number and arithmetic). Symbols, one 
way of recording this system, is another matter again. 
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3. FRACTION SYSTEMS 

I now illustrate a key aspect of the formalisation of the experience 
of quantity through language, that is, the role of human agency in the 
process. If we are to argue that mathematics is a human creation, then 
we must show that in the origins of mathematics humans had the 
opportunity to create it differently that they did. 

This can be shown through the formalisation we know as fractions, 
the bête noir of many a child (or adult). Here is a fictional story, a 
story, perhaps, that will remind you of your own mathematics class-
room experiences. 

A Story of Four Parts 

A teacher of a class of young children sets the following 
problem:

1

4

3

8

Like a good modern teacher, she asks the children to work in 
groups of four, talking to each other about what they are doing. 
Relative quietness for a while, some gentle discussion, and then, 
slowly rising in intensity, one group start arguing, each of the four 
students trying to convince the others in the group about something. 
The teacher is confident that she has taught the addition of fractions 
well, and that at least one of the group knows how to do it, but 
eventually it becomes clear that none of the children are giving way 
on their point of view. So she stops the class and invites the 
students to come to the board and for each of them to write down 
what they think is the right answer. The result is the following: 

Johnny                                         Mere

1

4

3

8

4

12

1

4

3

8

5

16

Tom                                             Phillipa

1

4

3

8

3

32

1

4

3

8

5

8
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The teacher is a little bemused, but thinks she sees the problems, 
so she invites the students to go back to the board and show their 
working. They are all happy to oblige. This is what Johnny wrote: 

1

4

3

8

1 3

4 8

4

12

The teacher can see that Johnny has certainly done something 
that is reasonable, even if it is wrong. In order to try to get him to 
see this she draws two circles, one cut into eighths and one into 

twelfths, and asks him to shade in both 
3

8
 and the result of the sum, 

4

12
. It is clear that 

4

12
 is smaller than 

3

8
.

 “How can you add something to 
3

8
 and get something smaller?” 

asks the teacher. “That is exactly what I want to know,” Johnny 
responds, “because yesterday you gave us a test. There were two 
parts, A and B. In part A there were four questions, and I got one 
right. My Mum and Dad were disappointed in me because I only 
got a quarter of them right. But in Part B, I got three out of eight 
questions right. I did much better, and you said that all questions 
were worth one mark. So how come when I add my test marks 
together, one quarter plus three eighths, I get less? I’ve done the 
addition correctly, altogether I got four questions right out of 
twelve questions in total.” 

Johnny, it was apparent, certainly could add! (Kline, 1973). The 
teacher was bemused by this unexpected justification. “Well I’m 
afraid that that is not how we do fractions,” she said, “test marks 
aren’t real fractions. Let’s look at Mere’s working,” she added 
hurriedly, to give herself time to regain her composure. Johnny 

3/8
4/12
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subsided muttering about “real fractions”, and the teacher felt 
unsatisfied with the answer she had given. However, she was sure 
about Mere’s mistake. Here is what Mere had written: 

1

4

3

8

2

8

3

8

2 3

8 8

5

16

“Very good, Mere,” the teacher started, “you know that when 
adding fractions you need to write the fractions with the same 
denominator. Yes, one quarter is the same as two eighths. And now 
you add. But why did you add both the top line and the bottom 
line?” Mere sensed she had done something wrong, but was unclear 
what or why. All she could respond with was “Because it gave me 
the right answer.” Again the teacher resorted to circles, and Mere’s 

drawing showed that 
5

16
 was even smaller than 

4

12
. “But it is the 

right answer,” insisted Mere. “I know this sum. My Dad is one 
quarter Maori, and my Mum is three eighths Maori. I am their 
child, and I am five sixteenths Maori.” Her tone challenged the 
teacher to disagree, but the teacher knew better. Not only was she 
sure that this descendent of a Maori chief would have her 

genealogical facts right, she quickly realised that 
5

16
 was indeed the 

average of 
1

4
 and 

3

8
, the calculation that was required to work out 

Mere’s Maori descent. The teacher was beginning to see the 
problem now. “Well,” she said, “you’re right when it comes to 
adding genealogies, but that is not how mathematicians agree to 
add fractions. When you get to a higher class you will see that 
adding genealogies is really taking the average of two fractions, not 
adding fractions, although it seems as though that is what you 
should do.” Mere, mollified but still mystified, also subsided and 
the teacher went on to Tom. This is what he had written: 

1

4

3

8

1

4

3

8

1 3

4 8

3

32

Well that, at least, was pretty clear. Tom had multiplied 
(correctly) when he should have added. Surely she would not have 

to resort to showing that 
3

32
 was an even smaller section of the 

circle and could not possibly be the result of adding two larger 
pieces together. But, wary now, and remembering that he had 
argued just as vociferously as Johnny and Mere, she gave him a 
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chance to explain himself. “I am only doing what you told me,” 
Tom piped up. “You always said to us that the word ‘and’ means 
addition. I was watching my older sister do her maths last night, 
and she was working with probabilities. Exactly this sum came up 
in a problem. It was this. ‘A boy enters the cafeteria. He knows that 
the probability of getting the meal he wants is one quarter, and the 
probability of sitting next to his friend is three eighths. What is the 
probability that he gets the meal he wants AND sits next to his 
friend.’ My sister said we had to multiply to get the answer, so 
that’s what I did. I know the answer is right because we checked it 
in the back of the book. It also makes sense because the chance that 
both things will happen is going to be very small.” 

The teacher starting wondering about the effect of all this on the 
class who had a test coming up and needed to get the method for 
adding fractions correct if New Zealand was to hold its head high in 
the international league tables. But she finally addressed the real 
issue. “Well, you have surprised me, Johnny, Mere, and Tom. Each 
of you have given me a situation in which your method of adding 
fractions is the right one. And they are all different. But they are 
correct ways of combining fractions only in that situation. The 
thing is, the situations you have chosen are not the one that is most 
common in mathematics, and the one that mathematicians call 
“addition”. There is another situation that gives us another way to 
combine fractions, and that is the one that we have to learn.” She 
turned to Phillipa, “Show us …”. But then she noticed that Phillipa 
was quietly crying, tears dropping onto her exercise book. Now 
Phillipa was her star pupil, she was the one that the teacher knew 
would get the sum right, and who had been expected to demonstrate 
to the others in her group the correct method. Indeed, her working 
showed exactly that: 

1

4

3

8

2

8

3

8

2 3

8

5

8

Phillipa refused to move. “I’m the only one who got it wrong,” 
she sobbed. “I thought I had learned the correct method, but when I 
look at it, it makes no sense. I can understand writing one quarter as 
two eighths, but there is no reason to add only the top numbers and 
not the bottom ones. That doesn’t seem right. Why would you do 
that? All the others have got a reason for what they did, and I 
don’t.” Phillipa had learned the method the teacher had taught the 
class, but had no example to illustrate it, and no rationale for her 
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technique. She was bright enough to understand the methods the 
others had used, and they made sense for her. Her own method 
made no sense, and no matter what the teacher said, Phillipa was 
too deeply embarrassed to be comforted. The teacher decided to 
leave for another day the explanation about the eights being the 
name of the fraction, or, cutting up pizzas into eighths and adding 
the pieces. She felt the wave of relief as the bell rang, and went off 
to rethink what it was that she was doing in mathematics. 

What can we say about this story, or, rather, what can this story say 
to us about where mathematics comes from? First of all let us put 
aside the educational implications of this. What is it that the teacher 
might rethink? This will be discussed further in Part III of this book, 
but briefly, she may think again about how mathematics is presented 
to her children, she may be more careful about using the words “right” 
and “wrong”, preferring rather to mention conventions more often, or 
to explain the context of mathematical concepts. 

Second, let us note again the importance of language in this story. 
“And” is loosely associated with addition, just as “times” and “by” are 
loosely associated with multiplication. But these are only loose asso-
ciations, and the word “and” is used in four different mathematical 
senses here. Everyday communication is not the same as mathematical 
communication, where there are conventions about the meanings of 
conjunctions and prepositions as well as technical terms and symbols. 
These conventions need to established anew when languages like 
Dhivehi, Euskera or Maori are being developed for mathematics 
classroom discourse if they have never been used in this technical 
way before. It is not an easy matter to translate “by” in the following 
sentences:

Increase 12 by 3 
Increase 12 by three times 
Increase 12 by an amount of 3 
Increase 12 by a factor of 3 

But what about mathematics? What does the story tell us about 
where mathematics comes from? The four ways of “adding” (that is, 
combining) fractions are all valid in their contexts. If we look at this 
from the point of view of formal mathematics, there is an explanation 
for what is going on, even a name for the mathematical result in each 
case: respectively weighted average, arithmetic average, union of 
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probabilities, and sum. Only the last is the result of “addition” in the 
arithmetic sense equivalent to adding 3 + 8. However this is a post hoc

explanation. What we want to know is how formal mathematics came 
to be like that? How is it that the mathematics we learn in school 
privileges one of these four ways (contexts) for combining fractions 
and not the others? For many people, combining probabilities, or 
combining genealogies, or combining test scores, is at least as 
frequent an out-of-school activity as combining pieces of pizza or its 
equivalent.

The point is that we choose what to make into a system. We 
experience aspects of our quantitative (relational or spatial) world and 
then create systems to handle them, to explain them, to communicate 
them. This is where mathematics comes from. Which ones do we 
choose, and how do we create the systems to deal with them? The 
answers to these questions are complex, of course, but the evidence 
seems to indicate that we choose the features that are important 
socially and culturally, and that we create mathematical systems by 
communicating about them. Language plays a key role in both of 
these. The evidence does not lead us to believe that the features of our 
world had a prior order of importance that human minds are forced to 
follow, nor does it support the idea that the systems were forced to 
take the form that they actually have. 

It is also true that mathematical reasons contribute to the choices 
made when creating new mathematics—but this comes into play once 
some mathematics is established, and so is more appropriately 
considered in the development, rather than the origins, of the subject. 

4. HISTORICAL EVIDENCE 

We find further evidence of choices in the formation of mathe-
matics in the history of the subject. Here are two examples, one is a 
famously documented episode from the 17th century, the other is 
current history-in-the-making.

An important episode in the development of analysis occurred in 
the first half of the 19th century as mathematicians were trying to make 
analysis rigorous. A Frenchman called Cauchy developed a particular 
concept of what ‘continuous’ meant mathematically. That is, he 
described what he thought were the mathematical characteristics of a 
curve that had no gaps in it, no matter how tiny. With this description 
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he developed some theorems. A German called Weierstrauss, 
developed another idea of continuous based on always being able to 
find a point on the curve that was within a specified distance (no 
matter how small) of another point. There developed a long argument 
between these eminent mathematicians and their supporters, because, 
if you used the Weierstrauss system, then it was easy to see that 
Cauchy’s theorems were mistaken. But for thirty years Cauchy 
refused to acknowledge his mistake. 

Two important commentaries on this debate by Lakatos (1978, 
Chpt. 3) and Robinson (1966) describe it in a different light (see 
Barton, 1996, Section 5.4, for further discussion of this example). 
They see the ‘argument’ as two groups talking past each other because 
they held two different conceptions of the continuum (that is, the line 
containing all numbers). Cauchy’s work was true for those who held 
his view of the number line, Weierstrauss’ work was true for those 
who subscribed to his description. It happened that one of these 
(Weierstrauss’) came to be more accepted, and modern analysis is 
based on that view. But there is a minor branch of mathematics (non-
standard analysis) which (it is claimed by its originator, Robinson) 
arises from the Cauchy conception. A choice was made for what 
mainstream mathematics has become—it could have been otherwise. 

The second example is a contemporary one. Statisticians argue 
about two competing definitions of the concept of probability. The 
very existence of this debate effectively demonstrates that the 
mathematical creation of a concept is quite subjective. Probability is 
assumed to be understood by everyone in general discourse, although 
any mathematics teacher will know that it is an extraordinarily 
difficult topic to teach effectively. Probability, as a mathematical idea, 
has origins in the 17th century. The original idea, now known as the 
Frequentist view, is based on what happens in the long-run. That is, if 
the same event happens over and over, the proportion of times the 
desired event occurs is its probability. Tossing a coin, or throwing 
dice exemplify this state of events: after many tosses a fair coin will 
come down heads 50% of the time, and you will throw a number less 
than three on a die one third of the time. Many pupils have tossed 
hundreds of coins or dice in their mathematics lessons to get this idea. 

But there is another view called Bayesian probability. In this 
conception probability is seen as the prior knowledge we have about a 
one-off situation, and this prior knowledge may change before the 
event occurs. A cricket match is a good example: from experience and 
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past history we make some estimates of what is likely to happen, but 
as the game draws closer and we see what the pitch is like, or who is 
injured, we may revise our estimate for this particular match. With the 
help of TV graphics, we even analyse the progress of the game and 
keep revising our estimate until the result is known.

When a statistician is faced with a problem that involves 
probability, the way he or she works depends on which conception of 
probability is used, and, in many cases, the ‘best’ decision differs in 
each case (see Berger, 1980, for several examples). Most working 
statisticians can use whichever approach they think is most approp-
riate, but there remains a debate (Meyer & Collier, 1970) about which 
is the proper meaning of probability. If one of these conceptions, or a 
development of it, comes to dominate the whole field of theoretical 
statistics (and some university statistics departments are already 
dominated by one approach), then a choice will have been made 
between two different mathematical constructions of one human 
experience.

Another example of choice will be familiar to those who were in 
school in UK, USA, New Zealand or Australia during the 1970s when 
the geometry syllabus changed from a Euclidean approach to one 
based on transformations. 

5. SOCIAL INFLUENCE ON CHOICE 

So, the evidence from other languages, from the structures of 
mathematics, and from the historical development of the subject gives 
us examples of choices being made as mathematics is created. I now 
argue that the factors that determine those choices are primarily social 
and cultural. What is the evidence? 

One of the key pieces of corroborating evidence is that NUC-
mathematics has a correspondence with those languages (mainly Indo-
European) in which it was developed. Therefore either the languages 
(and hence cultures) of its development affected mathematics, or 
mathematics affected those languages, or a bit of both. 

Many others have written about the formation of new branches of 
mathematics emerging from social influences. For example, the 
requirements of war have led to mathematical developments, from the 
inventions of Archimedes to the present day laser-guided systems. It is 
no accident that much funding for science and mathematics research 
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has been controlled by the American Military institutions. Well-
documented are the ways in which economic change has led to new 
mathematical problems (for example, Swetz, 1987); the evolution of 
mathematicians early work from their origins as astronomers and land 
measurers (for the purposes of calculating taxes) (for example, Swetz, 
1974); and even social fashions leading to new mathematical fields, 
for example gambling in 17th century France (David, 1962). More 
importantly, the very way in which mathematics takes place has social 
origins. Mathematical proof in its present form has evolved through 
origins in Greek argumentation (Lizcano, 1993; Fang & Takyama, 
1975), and much has been written about alternative forms of 
mathematical argumentation emerging from the environments of the 
Arab, Indian, and Chinese worlds (Berrgren, 1986, 1990; Joseph, 
1992, 1994; Khare, 1988; Tambiah, 1990). 

Devlin (2001, p. 244ff) describes how language is involved in the 
creation of mathematics. He argues that the abstraction ability that 
enables us to gossip (that is, our language facility) is exactly what is 
required to create the ‘mathematical houses’ in which mathematicians 
mentally reside. The processes and structures of language are the 
same as those needed for building the houses of mathematical 
systematisation.

Devlin talks about (2001, p. 118ff) “levels” of abstraction as part of 
the language facility used when creating mathematics. For example, 
the third level of abstraction corresponds to objects of thought that 
may be real objects heard about but never encountered, or imaginary 
variants or combinations of real objects, like a unicorn as a horse with 
a single horn. Level four abstraction is where mathematics takes place 
and the objects of abstraction “have no simple or direct link to the real 
world” other than that they are abstracted from it. Devlin is not 
postulating that these levels exist, he just finds them useful as a way of 
thinking—I do too. 

The question that Devlin does not approach, but which interests me 
about this model, concerns the choices that are necessary during the 
abstraction. Devlin claims that it is the patterns, particularly the 
structural patterns that are of interest. However our language evidence 
tells us that there is more than one structural pattern in any reasonably 
complex real world situation. The claim being made in this book is 
that humans select (often unconsciously) which pattern to abstract 
using many criteria, and not all (not even most) of the criteria used are 
mathematical. That is, we do not consciously choose what to abstract 
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by evaluating what is most general, or most useful, or most like 
existing mathematical structures (although all those may come into 
play), but the socio-cultural environment in which we live has a hand 
in making the choices for us. We are affected in these choices by the 
sorts of questions being asked around us, the things we have been 
doing recently, the way our language highlights some things and not 
others, the subjects of interest to our immediate community, or the 
tools or symbol systems we already have at our disposal. 

6. THE ROLE OF COMMUNICATION 

We have provided evidence that there are choices in the creation 
of mathematics, and we can see social and cultural factors affecting 
those choices. What about the evidence for concluding that we create 
mathematical systems by communicating about them, and hence that 
language is a vital influence? 

The main evidence that mathematics is created from communi-
cation lies in the correspondence between mathematics and language: 
features of mathematical systems coincide with features of communi-
cation. For example, we are familiar with the different bases of number 
words in different languages. This topic has been studied extensively 
since linguistic anthropology began, and many collections of number 
words exist (for example, Lean, 1995; Menninger, 1969). Indeed, 
conclusions about the origins and migrations of people have been 
made through the linguistic links of number words and their bases 
(Lean, 1995; Owens, 2001). 

Our number system is base ten, as is our language. Or is it? What 
about eleven and twelve, and words like dozen and score? Remember 
that the English monetary system used to be pounds, shillings and 
pence: twelve pence in a shilling, twenty shillings in a pound. Other 
Indo-European languages also have examples of other bases: French 
quatre-vingt = four twenty = 80. Dhivehi has an older base twelve 
system that has nearly disappeared in favour of the modern base ten 
system: dolas = 12; dolas ekek = 13; dolas dek = 14; …, fassihi = 24; 
fassihi ekek = 25; and so on. In ancient Babylonian times there was a 
strong base 60 system, and from it we have the number of minutes in 
an hour, and the number of degrees in a circle (6 x 60 = 360). 

This does not mean that language determined mathematics, it 
seems more like mathematics affected language. Surely the old 
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English monetary system gave us the special words for base 12 or 
base 20? This conclusion is likely since the Sanskrit origins of 
Indo-European languages are more purely base ten, and German and 
English have special words for eleven and twelve when Sanskrit does 
not. Did ancient mathematicians measuring stars and angles generate 
the base sixty system in Babylonia? In 2003 the History of Mathe-
matics web discussion group had a long debate about whether this 
was the case. Such mathematics to language movement is happening 
now, where the base ten measuring system generates words like 
micro- (a micro-metre is 0.000 001metres) and mega- (a megaton is  
1 000 000 tons), words now used in everyday language separately 
from their original measurement system connotations: micro-computer 
and mega-burger. 

What is more likely (based on language evidence) is that 
mathematics and language developed together. Against the micro- and 
mega- examples, we should look more closely at base ten. It seems 
likely that base ten number systems (which do dominate world 
languages) arose from the number of fingers humans happen to have. 
They were (they still are) our first and most used counting tools. But 
mathematically, ten is not such a good number to have as the base of 
your counting system. Twelve would be much more sensible as it has 
more factors: 1, 2, 3, 4, 6 and 12 all divide exactly into twelve, 
whereas ten can only be divided by 1, 2, 5 and 10. This means that 
more fractions can be expressed easily in a base twelve system. For 
example, the very common fraction one third has a decimal (base ten) 
representation with an infinite number of digits. Very inconvenient. If 
we had a base twelve system, the less common one fifth would be an 
infinite series of numbers after the point, and halves, thirds, quarters 
and sixths would all be single digit numbers after the point. So why is 
the dominant number system in mathematics base ten? The case that 
language as an expression of social practice determined the 
mathematical system seems very clear here. 

There are other examples. We most commonly think of angles as 
measured in degrees, where there are 360° in a full turn, or 90° in a 
right angle. Clearly the right angle has always been very important in 
our world, and we can imagine that there must always have been 
words for things that are exactly upright or square—remember the 
origins of the word normal. The base ten number system (derived 
from our fingers) combined with the idea of a right angle (derived 
from upright objects in our environment), gives an angle measurement 



84

system where there are 100 units in a right angle. This unit is called a 
grad and is still in common use amongst surveyors in some countries. 
Most calculators can be switched into three modes for angle: degrees, 
radians, and grads (D, R, and G). The unit grad, of course, is related to 
our words gradient (meaning slope), and gradual (meaning gently, 
originally, a gentle slope), with origins in the French grade = step. 

If base ten systems are natural, why are angles not commonly 
measured in grads? Why are degrees used instead? 

We have established that features of NUC-mathematics coincide 
with features of language. But not all languages have the same fea-
tures, although the ones that were mainly used during the development 
of mathematics do have those features strongly. Remember that it is 
not just the surface features of mathematics that coincide with the 
particular languages of its development. For example, the objectifi-
cation of number and shape, and the language of rational argumen-
tation originating in Greek philosophy are both language-specific 
attributes.

Another piece of evidence from language that supports the hypo-
thesis that mathematics develops through communication is that the 
meanings of most fundamental words in mathematics are not the same 
now as they have been in the past. The exact meanings of ‘number’, 
‘geometry’, ‘proof ’, ‘angle’, ‘multiplication’, and most other mathe-
matical terms have changed and will probably change again. Let us 
look at the changes in the first three of these.

Number, in Greek times, was associated with lengths of lines, and 
it even changed within the span of Greek mathematical thought 
(Klein, 1968). Numbers were related to the geometric measurement of 
length. Originally it was thought that if you had any two lengths then 
you could always find a smaller length that would divide into both of 
them exactly (see Fig. 5-1). For example two lengths of 24 units and 
56 units can both be divided into smaller lengths of 8 units. It was 
believed that this was always possible, although the smaller unit might 
be a very, very tiny length. For example two lengths of one quarter of 
a unit and one fifth of a unit can be divided into smaller lengths of one 
twentieth of a unit. 

Figure 5-1. Dividing Two Lengths 
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Then the Greeks discovered that if you draw a square, say with 
sides of length one unit, and then you draw the diagonal of that 
square, then there was no small length that would divide exactly into 
both the diagonal and the side (Lasserre, 1964). There was a crisis in 
Greek philosophy as a result. It is said that, when this was first 
discovered, it was kept secret for some time because the result was so 
disastrous. This was the first irrational number, that is, a number that 
cannot be represented by a fraction. All numbers had previously been 
thought to be expressible as ratios of two numbers (that is, fractions). 
They were rational. Now here was a number that could not be written 
as a ratio. The Greeks thought that they were going mad—and there is 
the origin of the everyday meaning of irrational: the human condition 
of being without sense or reason. One is irrational if one does not 
agree to obvious, logical conclusions—just as these numbers did not 
obey the reasoned, logical philosophies of the Greeks of that time. 

Nowadays irrational numbers are accepted as part of our number 
world, we know there are even more of them than there are rational 
numbers. We accept irrationals as part of the meaning of the word 
number. Together, these two groups of numbers are known as the Real

Numbers.
Next, mathematicians, in response to the needs of algebraic 

calculations, devised negative numbers. But many European 
mathematicians would not accept negative numbers as proper numbers 
(Kline, 1980), a situation that went on for a couple of hundred years. 
We now take them as normal. After that came complex numbers—
numbers that include the square root of –1. These were first 
considered by Cardano (in 1545), but not as numbers so much as a 
convenient fiction that allowed the solution of some cubic equations. 

took until 1833 when Hamilton described in detail the number system 
implied by these numbers before complex numbers were accepted as 
part of what is meant by the word number. Then it was found that 
there were still some ‘numbers’ missing from this collection. They are 
the transcendental numbers—and there are more of them than all the 
other kinds of numbers! Described by Leibnitz (in 1674) and Euler (in 
1733), transcendental numbers are numbers that cannot be the solution 
to a polynomial equation. In 1844 Liouville was the first to prove a 
number was transcendental, and it is now known that  and e are both 
of this kind. 

, but again it 1Euler, (in 1777) introduced the notation i to stand for 
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But the development of the meaning of the word number is not just 
a matter of adding new types of numbers. In 1958 Dedekind redefined 
what is meant by the real numbers. He made the concept more 
rigorous by describing it as a collection of sets of rational numbers, 
hence, it might be said, returning sanity (rationality) to the idea of 
number. It is unlikely that we have the end of this story yet. 

What about the changing meanings of the word geometry? Let us 
focus on its meaning in Europe only (Eves, 1969). Geometry was 
originally the mathematical study of land measurement (hence geo- 
land, -metry measurement). In France surveyors are still called 
geometers. The Greeks then developed their more abstract study of 
lines and angles into a method, by which one started with axioms and 
then deduced a system of results. Geometry became this method, 
although it was still seated in the human 3-dimensional conception of 
space. Descartes, Bernoulli, and others, in the 17th century developed 
coordinate systems that allowed geometrical figures and algebra to be 
linked. Space came to be regarded as a set of points. And in the 18th

century Monge, Poncelet and others developed projective geometry as 
the study of representing 3-dimensional objects in two dimensions. 
Monge, and later Gauss and then Bernoulli developed differential 
geometry which used the (then new) ideas of the calculus to inves-
tigate the properties of curves and surfaces and how they are related to 
the total geometric structure. These geometries moved, in various 
ways, away from the Greek meaning of geometry, but the link with 
our conception of space remained until the 19th century when Gauss, 
Bolyai, Lobachevsky, then Klein and others, first doubted, then 
proved, that one of the basic Greek postulates that had been taken as 
self-evident could be denied and a consistent geometric system would 
still result. Non-Euclidean geometries broke open the understanding 
that “had for two millennia been bound by the prejudice of tradition 
to the firm belief that Euclid’s system was most certainly the only 
way geometrically to describe physical space” (Eves, 1969, p. 185). 
The breakthrough allowed geometry to metamorphise once again  
in the 19th century. Through the development and generalisations of 
topology, geometry became the study of abstract spaces, where a 
space is simply a set of objects. What was a study of physical space is 
now so abstract that “the boundary lines between geometry and other 
areas of mathematics have become very blurred … . It is essentially 
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only the terminology and the mode of thinking involved that makes 
the subject ‘geometric’ ” (Eves, 1969, p. 191). 

maticians decided to accept the proof of the Four Colour Theorem 
(Appel & Haken, 1977; Appel, Haken & Koch, 1977), and it was not 
done without a fight, then the idea of proof changed. The long-held 
concept that a proof was a series of steps that could be checked one 
after the other by another mathematician had to go. Why? This 
theorem is the one that says that any map can be coloured using just 
four colours without two regions of the same colour sharing a 
common boundary. The way it was proved was to try it out on all 
possible maps. The problem is that there are quite a few of them. In 
fact a football stadium of mathematicians working for the known 
history of mathematics so far would still not have completed the task 
(Gardner, 1966). So how was it done? Once a way of determining all 
possible maps was found, the rest was routine. A little complicated 
perhaps, but routine enough to be programmed onto a computer, and 
the computer only took a matter of hours to sort it through. The 
computer reported that no map was found needing more than four 
colours, ergo, theorem proved—or is it? Is agreement amongst the 
mathematicians of the correctness of the computer programme the 
same thing as agreement amongst mathematicians of each step of a 
proof?

So even the idea of proof changes. As mathematicians discuss with 
each other, express their mathematical ideas, the very meanings of the 
words they use have to change. This is just another way of saying that 
the mathematics emerges from its communication.

Let it be acknowledged that this is not quite the same as saying 
that the communication makes the mathematics. Perhaps all that 
happened is that the first time a mathematical idea got talked about the 
participants to the conversation did not get it all right, and that 
subsequent conversations are needed to sort it out properly—this is the 
change we are seeing.

The evidence of changing mathematical meanings is, however, 
consistent with an interpretation that mathematical communication 
creates new conceptions, or reveals new ideas needing systematisation. 
Devlin describes his mathematical activity as like building a house 
(2001, p. 120ff). Then he says: 

And proof ? One example will suffice. The moment that mathe-
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Notice that, once the house has been built and the instructions and plans 

have been stored away, there is no more need for language. I simply live

in the house. Language is required only if some problem sends me back 

to the plans, or if I want to remodel or purchase a new item. And, of 

course, I need language if I want to describe to someone else how I built 

the house or why I arranged the furniture the way I did. 

In the light of other evidence, this becomes a lovely, if implicit, 
statement of the use of language in mathematical creation.

Where does mathematics come from? The evidence from language 
points to the conclusion that mathematics arises after, not before, 
human activity. The development of mathematical language is 
consistent with the idea that mathematical concepts, objects, and 
relationships arise through language, and within particular socio-
cultural environments, in response to human thinking about quantity, 
relationships, and space. 

What we want to know now is how mathematical words come to 
mean just what they do? If other meanings were possible, or other 
mathematical structures could have existed, what was it that made 
mathematics as it is? 

7. METAPHORS 

This section is about the origins of mathematics. It is necessary, 
therefore, that we take a look at a book with the title Where

Mathematics Comes From (Lakoff & Núñez, 2000). Actually, first we 
need to see where the book itself comes from before we can use it to 
shed light on how a language might create a mathematical world. 

Works by a group of cognitive linguists centred around George 
Lakoff have put forward a possible answer. They suggest that a set of 
metaphors develops in a language and becomes deeply embedded 
within that language. Furthermore some metaphors are more dominant 
than others in any one language. Lakoff has, for over twenty years, 
been writing about these metaphors (Lakoff & Johnson, 1980; Lakoff, 
1987; Lakoff & Johnson, 1999; Lakoff & Núñez, 2000), and their use 
in deep and unconscious ways. The intriguingly entitled Women, Fire, 

and Dangerous Things is not a risky discourse on gender issues, but 
an analysis of how words are linked to meaning. 
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Lakoff looks at classical theories of meaning in which an object is 
linked to a word if it has the necessary characteristics. For example, 
the word table can be linked to a particular object if that object has all 
the table characteristics: flat surface, used for putting things on, legs 
to raise it off the floor, and so on. Thus the meaning of the word table

is the set of table-characteristics. Lakoff then shows that this is not, 
actually, how we do ascribe meaning to a word. We do not simply 
look at an object and decide whether it has particular ‘table’ chara-
cteristics, and if it does then we call it a table. Meaning is a much 
more loose kind of reference, a network of connections. It is not true 
that objects are either tables or not-tables, depending on their chara-
cteristics. Some things can be more table-like than others, just as some 
things are more useful than others. Some things may be used as tables 
and referred to as tables temporarily when they are actually chairs or 
(heaven forbid) pianos. Some things may be described as a table by 
one person but not by another, although the characteristics of the 
object are not in question. Our conceptual categories are relational, 
blurred, and linked in chains of association. Lakoff talks about para-
digms of tables, objects that epitomise the meaning of the word table

and are used as reference points for less table-like objects. 
An interesting parallel exists between the nature of categorisation 

that Lakoff has described in linguistic concepts, and a branch of set 
theory dealing with what are called Fuzzy Sets (Klir, St. Clair, & 
Bo Yuan, 1997). Fuzzy set theory allows ‘partial’ membership of sets: 
membership is described by a number between 0 (not a member) and 
1 (a full member). If an object has a membership of 0.2, then it is a 
little bit a member of the set, if it has a membership of 0.9 then it is 
nearly completely a member. Similarly, Fuzzy logic allows things to 
be partially true. This branch of mathematics turns out to have very 
useful applications in the design of computer chips that are used in 
many household appliances like washing machines. Years after this 
theory was first developed, there are still many mathematicians who 
reject Fuzzy Set theory as not mathematics, or, if they admit it, then 
they regard it as insignificant mathematics. They do not seem to be 
able to step outside the conceptual boundary erected by classical 
categories. Lakoff has a theory that may explain such behaviour. 

Now we come to the metaphors. Lakoff is interested in why 
Western linguists adopted classical theories of meaning when the 
theories do not describe how we actually use words? Where did this 
theory come from? His suggestion is that our thinking responds to 
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very basic experiences that we have as human beings inhabiting our 
particular world. As he puts it, we have embodied minds, and our 
experiences provide us with the basic tools for thinking. Experiences 
like putting things in containers, travelling from one place to another, 
seeing things falling down to the ground, are so common and so 
fundamental in our world that they enter our minds as paradigms  
whether we are aware of it or not. He calls these metaphors, 
grounding metaphors for creating abstract thought, and linking

metaphors for making connections between abstract conceptions. Note 
that these ideas of metaphors are not the same as the grammatical one. 
Grammatical metaphors refer to correspondences between experience 
and language, rather than correspondences in language between 
experiences.

For example, one grounding metaphor is the Container Metaphor. 
We put things in containers, they are either in or out. This is a 
fundamental and oft-repeated process in many, many contexts—and it 
has come to be a dominant metaphor in our thinking. Hence we have 
classical theories of meaning where meaning corresponds to putting 
things in a class (this object is a table, it is in the collection of objects 
to which we ascribe the word table) or leaving them out (this object is 
not a table). Lakoff suggests that the classical ‘container’ model of 
meaning is deeply embedded in English (and other Indo-European 
languages) so that we talk as if that is how categories are determined, 

Another grounding metaphor is the Path Metaphor. We make 
journeys from one place to another, starting somewhere, moving along 
a path, and arriving somewhere else. An arrow does the same thing. 
This simple action sequence is repeated many times in human 
experience. Another of the insights Lakoff (and co-writer Johnson) 
makes (1999) is that different cultures, different philosophical 
traditions, different languages, privilege different metaphors. Thus the 
Container Metaphor is strong in Western thought, the Path Metaphor 
amongst the Hopi American First Nation people (Whorf, 1956). This 
idea can be used to explain why Navajo conceive of shapes as actions: 
their spatial concepts are dominated by the path metaphor, and the 
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able lengths to keep the model intact, discussing conditions for the 
application of characteristics of tables, or prioritising these chara-
cteristics, for example. The metaphor is extremely strong and we are
loathe to give it up. 
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ways in which one might travel a path, rather than shapes as groups of 
things that can be put into sets (squares, circles, lines). 

Let us keep thinking about mathematics. Lakoff does this, with 
Rafael Núñez, in Where Mathematics Comes From (Lakoff & Núñez, 

matical thinking, citing most aspects of mathematics from the addition 
process to grand conceptual insights as all being examples of base 
metaphors. In the words of a reviewer (Madden, 2001, p. 1185): 
“After a while, the notion of metaphor seems to become a catchall. … 
[it] begins to lose its meaning.” I like the metaphor idea to explain the 
broad orientations to mathematics, rather than its detail. 

The same reviewer has two other criticisms of interest in our dis-
cussion about the origin of mathematics (Madden, 2001, p. 1184-6). 
One is that Lakoff and Núñez do not talk about how “metaphors 
function in the mathematical activities of actual people. … How exactly 
do people use metaphors when they are learning new [mathematical] 
material, solving problems, proving theorems, and communicating 
with one another?” The other criticism is expressed as “If my

mathematics depends on the metaphors that happen to be in my head, 
and your mathematics depends on the metaphors in yours, then how is 
it that we can share mathematical ideas? And why is it that we agree 
so much?” 

A response to these questions lies in one of the conclusions reached 
from the evidence of language: mathematics emerges from communi-
cation. During communication people use natural language full of 
grounding metaphors based on common embodied experience. We 
have seen how, at least in everyday mathematical discourse, languages 
hold these grounding metaphors in their vocabulary, grammar, and 
discourse. As noted by Devlin, as the abstract mathematical ideas 
are communicated, discussed, argued, agreed upon, then this natural 
language facility is all that is needed, although it slowly develops 
from natural language into the particular structures and meanings  
of mathematical discourse—but the grounding metaphors remain 
throughout this process. Thus the metaphors enter mathematics 
through the communication that is a necessary part of mathematical 
creation, and we share mathematical ideas because they are developed 
through natural language into mathematical discourse. Now we can 

Lakoff and Nùñez apply metaphors to every detail of our mathe-
strong explanatory potential. However, in the book about mathematics, 

2000). The idea of metaphors that guide our thinking is presented
with strong evidence and solid argument. It is an attractive idea with



92

see why we agree so much: because natural language and mathe-
matical language contain the same grounding metaphors. 

The idea of grounding metaphors guiding the creation of abstract 
domains of thought can be clearly seen in mathematics. I chose to 
describe the Container metaphor and Path metaphor because they have 
a special place in the foundations of mathematics. 

Lakoff’s idea is that these metaphors are so embedded in the 
languages we speak that they become unconscious. Another way of 
describing this insight is to say that, whatever we are talking about, we 
are talking through metaphors. The Fields Medallist (mathematicians’ 
equivalent of the Nobel Prize) Rene Thom has expressed the same 
idea (1992): 

I think it is, more or less, philosophically an illusion to distinguish 

between reality and metaphor. In fact, analogy is, to some extent, a deep 

phenomenon of our thinking and if we want to understand what analogy 

is, then we are led to very fundamental philosophical problems. 

The Container metaphor is a deep part of Indo-European languages. 
What is the equivalent of the Container metaphor in mathematics? Set 
theory. A set is a mathematical structure represented by a collection of 
objects: they may be points (the collection of all points that are 2cm 
from a certain point will be a circle around that point), or numbers (for 
example the infinite set of even numbers), or even collections of 
things that you do, for example the collection of all the ways you can 
turn or reflect an equilateral triangle so that it remains looking the 
same. (You could rotate it about its centre by 120°, or 240°, or a 
complete turn; you could reflect it about any line through its centre 
and one of the corners. The collection of these six actions is a set). 

Mathematicians use sets to build up mathematics. Starting from 
just the idea of a collection of objects, one can describe much of 
mathematics. During the early part of the 20th century, mathematicians 
gave themselves the task of setting mathematics on a firm foundation 
building it up from very basic ideas. And when it was achieved (or 
appeared to be achieved, it was later proved that the task was actually 
impossible), it was achieved with sets. Given that sets are the mathe-
matical form of the Container metaphor, and that the foundations of 
mathematics were carried out mainly in Europe, it should be no 
surprise that set theory was the basic tool for describing these 
foundations.
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Could it have been otherwise? What other foundations might there 
be? Certainly many mathematicians accept that there could be others, 
and that mathematics may never be completely understood in terms of 
any attempted foundations. Hermann Weyl has said (1944): 

The question of the ultimate foundations and the ultimate meaning of 

mathematics remains open: we do not know in what direction it will find 

its final solution or even whether a final objective answer can be 

expected at all. ‘Mathematizing’ may well be a creative activity of man, 

like language or music, of primary originality, whose historical decisions 

defy complete objective rationalisation. 

One other foundation has been seriously attempted: the Category 
Theory of Saunders Mac Lane (1998), a theory which uses functions. 
Now functions are the equivalent of the Path metaphor in mathe-
matics. The basic idea of a function is that you start with one object, 
and then transform it into another object. So, for example, start with 
a number, double it and add one, and you get another number. 2 goes 
to 5, 9 goes to 19, 103 goes to 207, and so on. This is written mathe-
matically as: 

Usually, definitions of functions are made with reference to sets. 
However Mac Lane developed functions as the foundation of mathe-
matics, that is, everything else is built up from the idea of functions: 
numbers, sets, geometric shapes, everything. Nor did he consider this 
to be the only alternative (1981, p. 469): 

The set-theoretic approach is by no means the only possible foundation 

for mathematics. Another approach is to formulate axioms on the 

composition of functions. This ... probably gives better insight into the 

conceptual form of mathematics than does set theory. There may well be 

other possible systematic foundations different from set-theoretic or 

categorical ones. 

Let us combine the thoughts of Weyl and Mac Lane, with the 
grounding metaphors of Lakoff, and with our conclusions about 
mathematics and language. The strong suggestion emerges that if 
mathematics had developed through a language where the path 
metaphor was dominant, then the mathematics that would have 
emerged may have been dominated by functions, or some equivalent 
concept, rather than by sets. We have every reason to believe that this 

f : x 2x 1 

Read as: “the function f takes x onto 2x + 1” 
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mathematics would have been just as powerful, and just as widely and 
effectively applicable: but it would have been different. The historical 
possibility of fundamentally different but equivalently sophisticated 
mathematics is the key conclusion of this book. 

Remember the earlier analysis of Zeno’s Arrow Paradox at the end 
of Chapter 2? The two contrasting formulations can now be inter-
preted as based on the Container and Path grounding metaphors 
respectively.

8. MINDLOCKS

The language we speak affects the way we do mathematics, and the 
mathematics we do affects our language. There are two sides to this 
coin: a restricting one and an enabling one.

Mathematics is essentially a creative activity where anything seems 
possible, and where communication internationally between speakers 
of many languages reaches agreement on most fundamental questions. 
Thus many mathematicians reject the idea that they are, consciously 
or unconsciously, restricted or limited by anything, let alone the 
language they speak. 

It is our experience that we can communicate the things that we 
think. Language enables us to communicate, it is endlessly creative, 
and it can adapt to new ideas. We sense that, if we did learn something 
new from someone who spoke a different language, then we would be 
able to express it more or less intact in our own language. 

I believe this to be true—with some reservations. The first reser-
vation is that I do not know whether I am not having some thoughts 
that I might otherwise have if I spoke another language. Second, my 
experience with other languages tells me that often there is something, 
some nuance, lost in the translation: ask anyone who speaks more than 
one language well whether there are ideas expressed in one language 
not fully translatable into another. And finally, some thoughts can be 
expressed in many ways, and I feel that the way that a thought does 
get expressed has an influence on where that thought is taken, how it 
is developed, or what other thoughts might follow on. What we have 
been discovering is that all of these reservations apply to mathematics. 
This “Queen of the Sciences” (a name attributed to Gauss) is not 
above such influences, nor does she rule them.

The pathways in our thinking shaped by the language we speak I 
call mindlocks. We are not normally aware of mindlocks because they  
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are part of the very structure of our language and thought. It is 
possible to break out of them, but doing so requires an awareness that 
a mindlock is operating, and a conscious attempt to overcome it. 
Languages in general are rich enough, and flexible enough, to open 
mindlocks once they are identified: the problem is identifying them. 

A good example of a mindlock is present in the above paragraph: 
“language and thought”. In English we make a distinction between 
thought and language, but such a dichotomy may not always be a 
useful way of talking/thinking (Lee, 1996, pp. 72-79). Language and 
thought are so closely interconnected that making statements like: 
“thought comes before language” or “thought is dependent upon 
language” may not make much sense. Perhaps it would be better if we 
regarded them as different aspects of one human function. But how 
can I express this? Using the phrase “language and thought” preserves 
the distinction; using a term like “linguistic thinking” suggests that 
there can be non-linguistic thinking” (such as visual thinking); and a 
new compound word like “thanguage” or “langought” is likely to be 
so strange as to be disconcerting for a reader. However, having 
identified the mindlock, it is now possible to continue, being aware of 
this dichotomy that is preserved in English, but which is being called 
into question.

I do not intend to get into an argument here as to whether there is 
such a thing as visual thinking—the point is that such an argument is 
partly created by the way we separate language and thought in our 
speaking. The way English works encourages us to have such a 
question, on the one hand, but, on the other, English mitigates against 
consideration of the implications of thought and language being two 
sides of the same coin. This exemplifies the restricting and enabling 
function of mindlocks. 

Mindlocks can be embedded in the vocabulary and in the 
categories that we use, as in the above example, or as a result of the 
grammar and syntax of the language, like the verbal numbers found in 
Polynesian languages. But the most difficult mindlocks to become 
aware of are those which are part of the ethos or world view presented 
by a language. Within mathematics, an example is the idea of rational 
argument or mathematical proof. The very word rational links this 
concept to the Greek origins of argument, the classical Trivium of 
Grammar, Rhetoric, and Logic. Asian or Indian forms of proof based 
on exemplification are not rational and thus tend to be excluded by 
English speakers as not being sensible or reasonable since that is what 
the word rational has come to mean. 
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Maps present a good example of an embedded world view. The 
predominant north/south orientation of maps has come to be fixed in 
our language. We go “up north” and “down south”, and “over to the 
west or east”. In Milton Keynes in England all the main north-south 
roads are labelled V (for vertical) and the east-west ones are H (for 
horizontal). We hold maps with north upwards on the page, or ahead 
of us if flat. The tourist map of New Zealand that shows the world 
with south at the top, (and hence New Zealand on top of the world 
instead of at the bottom) is described as upside down. We look at 
maps with north ahead of us even if we are ourselves facing south. 
We might travel down (south) to a ski-field from a more northerly 
location although, being in the mountains, it is considerably higher 
(more elevated). These ways of talking reinforce the assertion that 
orientation is only a convention. Our conventional orientation is rarely 
questioned, although it is far from universal. In the old Arab world 
maps were conventionally drawn with south at the top of the page 
(Bagrow, 1985, pp. 57-58). In New Zealand, the Maori vision of the 
North Island is a fish with its tail at the north end, and mouth at 
Wellington: hence, in Maori, “Haere ki runga a Te Upoko o Te Ika”,
or “Go up to the head of the fish”, means to travel southwards. 

Is everything we say a mindlock? Well, it could be. Every part  
of our language contributes to those mindlocks that infuse the lang-
uage. Our vocabulary, our grammar, our syntax, our discourse, our 
grounding metaphors. However such thinking can make the whole 
discussion very negative and limiting. We have to use some kind of 
language, so it is just as sensible to say that language enables us to 
think or to communicate any thoughts at all, as it is to say that 
language restricts us from thinking in certain ways. When I first 
thought of the word mindlock, I was thinking about locks in canals: 
those narrow channels that help control rivers and that provide means 
for boats to reach higher levels. These locks represent a means for 
higher thinking, but they are also fixed in one place and control the 
flow of traffic. 

At the end of Part I we discussed the idea of mathematical world 
views. These can be regarded as a system of mindlocks. Languages 
that are different from Indo-European ones have been examined for 
the ways they express ideas of quantity, space, and relationships. We 
have identified some structures and patterns that differ from the 
structures and patterns of the Indo-European languages. The latter, 
however, have been developed into the academic field we know as 
mathematics. I draw the conclusion that mathematics might have been 
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otherwise, that it could have been caught up in a different set of 
mindlocks.

In the next section the development of mathematics, rather than its 
origins, is discussed. Again the role of language mindlocks will 
emerge, and a couple of worrying consequences of the link between 
mathematics and language will be discussed. 
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A NEVER-ENDING BRAID:

THE DEVELOPMENT OF MATHEMATICS 

Abstract: The evidence from language is brought together to discuss the nature of 

mathematics. Different conceptions of the way it develops are described, and 

the mechanisms that operate in its development are hypothesised. The Kama 

Sutra is invoked to illustrate the links between mathematics and society.

Keywords: philosophy of mathematics, history of mathematics, nature of mathematics

Douglas Hofstadter (1979) referred to mathematical thought as The

Eternal Golden Braid. This book wove together mathematics in the 
form of the work of Kurt Gödel, graphic art as drawn by M. C. Escher, 
and music as epitomised in the Bach symphonies. The dominant 
theme of self-reference was played out through each of these human 
creations in such a way that the works that I knew (the mathematics 
and the graphic art) enlightened me on the work that I did not really 
understand (Bach’s music). I had the feeling that it would be possible 
for any reader who knew well any two of the fields, to similarly reach 
an appreciation of the third. 

Three different worlds dealt with the same theme differently but in 
depth, creating an image of a braid with the three strands weaving 
together and gaining strength from the existence of each other. They 
could never be the same, nor could one of them ever be encompassed 
by any other. Each creation had its own aspects that could not be 
adequately represented in the other: the abstract austerity of Gödel’s 
mathematics, the emotional intensity of Bach’s music, the aesthetic 
playfulness of Escher’s etchings. 

Hofstadter did not suggest the three pieces of work had the same 
origin, nor could I conceive how they might ever be completely 
amalgamated by some wider, more general activity. It reminded me of 
Hermann Hess’ (2002) book The Glass Bead Game, and the imaginary 
“performance” of the maestro as he wove together literature, language, 
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music, mathematics, art, dance, and other forms of cultural expression 
in a symphony of words, a picture of equations, and a poem of forms. 

The idea of human creativity bringing together different forms  
in ever new combinations is a model that could be adopted for 
mathematics itself. Such a model is quite different from the commonly 
accepted idea that mathematics is one ever expanding stream, fed by 
tributaries that get encompassed by the main current in broader 
generalisation, higher levels of abstraction, or reorganisation of the 
components of mathematics. 

But isn’t it true that the mathematical stream is fed by its 
tributaries? When the mathematical community becomes aware of a 
new idea, it is accommodated into mathematics for the benefit of all. 
For example, when a mathematician became interested in the kolam

patterns drawn by Indian women on their doorsteps (Ascher, 2002), 
and realised that the system represented there was not only 
mathematical but also contained some new mathematical ideas, he did 
not turn away from mathematics and work with the women to develop 
kolam further. He reinterpreted what he had seen using mathematical 
notation and wrote about it in a mathematical journal of an appro-
priate existing mathematical field (Siromoney, 1986; Siromoney & 
Sironmoney, 1987). In this case it was the mathematical aspects  
of computer science. The scientist was interested in the structure of 
“languages” used to describe drawings. He had worked with strings  
of symbols and how they could be used as a “language” for pictures. 
Watching women making kolam patterns he realised that another 
method for developing a language could be to create an array of 
symbols, as the women built an array first, before drawing their 
patterns. This was a new mathematical idea generated by the traditional 
craft.

Put another way, if there are other mathematical worlds as 
indicated by the evidence from language, why have they not been 
developed? Where are these other mathematical worlds? Could it be 
the case that mathematics as we know it is, in fact, universal; that it 
can express every abstract structure or system in our world? Perhaps 
the absence of other mathematical worlds implies that nothing useful 
could come of them that cannot be done equally well in mathematics 
as we know it? 



Chapter 6 101

I want to use the image of a braid to try to answer some of these 
questions, so let us look at another example to get a feel for this 
mathematical braid. 

1. PACIFIC NAVIGATION: IS IT MATHEMATICS? 

In Part I there is a short description of the navigation techniques of 
Pacific navigators, the way they used paths rather than positions, and 
the orientation system called etak. Another technique used by skilled 
navigators was the analysis of swells in the ocean. 

One of the features of the mid-Pacific is that it is a relatively 
predictable environment. While there are storms and weather changes, 
many of these are seasonal, and most of the weather is fine. Thus the 
trade winds are both steady in force and direction, and navigators can 
use them for orientation. Similarly, the reliable fine weather means 
that clouds form over islands, and can be seen from a distance when 
the land is over the horizon, making a much bigger “target” for a 
navigator to aim at. These constant environmental features are also 
reflected in the ocean swells. Even swells caused by storms are 
constant over several days. 

The reliability of ocean swells can be useful information for a sea-
farer. Swells are affected by the presence of islands, since swells change 
direction as they pass by. Surfers know this, the effect of land on swell 
direction is why good surfing is to be found off promontories: the swell 
bends as it rounds the promontory, creating a wave on which the break 
starts at one end and then runs along the length of the wave. 

Thus the swells under your boat carry a lot of information if only 
you can read it: information about islands that are over the horizon; 
information about weather patterns; information about wind direction 
and strength. Pacific navigators used this information in quite 
systematic ways. The ancient navigation schools created models out of 
sticks and shells to teach their new navigators about swells, and every 
navigator learned what swells they could expect in different seasons, 
and how the swells would change, as they traversed each journey in 
their repertoire. 

However, the first problem is to be able to detect the swells.  
It is reported (Gladwin, 1970, p. 170–4; Kyselka, 1987; Lewis, 1975,  
p. 90–3; Thomas, 1987) that Pacific navigators could feel the swells
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coming from four different directions simultaneously—the most famous 
contemporary navigator Mau could detect five (Kyselka, 1987, p. 98). 
That is, the navigators could feel the way the boat moved (even from 
inside the cabin at night) and thereby distinguish the movement of 
swells coming from several directions at the same time. The problem of 
discriminating component waves from the total wave movement is 
easily describable using the language of mathematics, and is a familiar 
problem when the waves are all from the same direction—this is the 
field known as Fourier or Harmonic Analysis. There has been little 
work done on the problem of multi-directional wave analysis, but 
mathematicians have no difficulty discussing it and accepting it as a 
problem in mathematics. They can generalise from the one-dimensional 
problem to that of waves coming from several directions, concept-
ualising the difficulties of analysis, and identifying possible ways to get 
the solutions. The problem of two waves coming at right angles to each 
other can be solved computationally, using computers to get approxi-
mations. But the problem has not been solved for waves coming from 
four different directions, and no instruments have been developed that 
will quickly resolve a wave movement into four directional com-
ponents.

Now let us imagine again. Think of all the mathematical and 
technological effort that went into the development of navigation: star, 
moon and sun position charts; sighting equipment; the accurate 
timepieces needed to make use of these sightings to determine latitude 
and longitude; and modern GPS (Global Positioning System) equip-
ment. Imagine that all (even a good fraction of) that money and effort 
had been put into analysis of wave motion and developing technology 
to sense swells in the ocean. Perhaps, if this had happened, ships 
would now be equipped with such sensors, and would have computer 
systems that could resolve the information and detect changes in the 
size and directions of the swells under their hulls. 

If such things had been developed, then captains would have 
another piece of navigation equipment—a piece that would be able to 
warn them of small islands, or icebergs, in their vicinity before they 
became visible to lookouts or radar. And if the Titanic had had such a 
piece of technology, then alarm bells might have been automatically 
triggered all over the ship well before she ripped her bottom out with 
such tragic results on an iceberg no-one had seen. Perhaps the lawyers 
of Star Line should start looking for who was responsible for shaping 
the course of mathematical development? 
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This story of unrealised mathematical development, however far-
fetched, illustrates what might have happened if mathematicians had 
become interested in the systems of Pacific navigators. We can imagine 
that harmonic analysis would be much further advanced than it is. This 
is what happens. Mathematics absorbs good ideas, techniques, even 
symbol systems, and makes them part of the mainstream of the subject. 
The worth of the ideas are judged on mathematical grounds. But this is 
not a braid with independent strands woven together but retaining their 
individuality, this is a river with tributaries flowing in. However, we 
can reverse the situation. 

There is another story, a real story, about Pacific navigation.  
In Hawaii there is a Polynesian Voyaging Society (<http://pvs.kcc.ha-
waii.edu/welcome.html>) that was established in 1973. There is another 
one in Tahiti. Many countries have established schools and courses in 
these navigation techniques. Ocean-going canoes are being built, both 
authentic replicas and modern versions, and are being sailed across the 
Pacific to take part in national celebrations, competitions, cultural ex-
changes, and on research voyages. Thor Heyerdahl’s re-creation of a 
voyage from South America was the first that became well-known 
(Heyerdahl, 1958)—is it because he was a European, or is it just 
because he knew how to manipulate the media? 

In these schools, on these boats, and as part of the curriculum for 
these courses, there is often mention of modern navigation techniques, 
use of modern equipment, and training in mathematical ideas. However 
these are used to enhance the development and activity of navigation 
derived from the original techniques. Ideas are co-opted, techniques are 
absorbed, mathematical systems are adapted to the necessities of Pacific 
navigation, and are judged useful or not according to its criteria. If this 
sounds like what is written two paragraphs back from the point of view 
of mathematics, then good. The parallel is exact. 

It may be argued that what happens in Pacific navigation schools  
is not mathematics, it is navigation. Navigation uses mathematics,  
just like many applied sciences. A picture of a braid woven together 
with independent strands of its applications is easy to accept. If a 
collection of applied mathematics strands is all that is meant by the 
braid, then the history of mainstream mathematical development is not 
challenged. But the braid being argued for here is a braid of mathe-
matical strands. 
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Remember, in the introduction, the difficulty with the word 
‘mathematics’ was noted. Every time this word is used it conjures up 
connotations, based on personal experience, of school mathematics, 
university mathematics, mathematics as we know it now. We have 
been calling this NUC-mathematics. When producing an argument 
that involves a broadening of the concept of mathematics, there is a 
problem with how to express it. We need to escape the mindlock. 

Let us return to the widened idea of mathematics, that of a  
QRS-system—a system developed to give meaning to the quanti-
tative, relational, or spatial aspects of our world. Let us put some 
further requirements on a QRS-system, requirements that are usually 
associated with NUC-mathematics: reproducibility, levels of abstra-
ction, generalisability, and symbolisation. Now look again at Pacific 
navigation.

David Turnbull (1991, p. 23), when considering Micronesian 
navigation, asks the question: “What is a navigation system”? Some 
characteristics mentioned are: it should be symbolic (and therefore 
transmittable); it should be manipulable (and therefore adaptable); it 
should be generalised (and therefore non-localised); and it should be 
open (and therefore innovating). Gladwin (1970) describes the system 
of navigation on Puluwat atoll. His (and others’) descriptions were 
further analysed by Hutchins (1983) in a way that made it clear that 
Turnbull’s characteristics are met. To quote Hutchins (1993, p. 223) 
“The Micronesian technique is elegant and effective. It is organised in 
a way that allows the navigator to solve in his head, problems that a 
Western navigator would not attempt without substantial technol-
ogical support”. 

Pacific navigation is not mathematics. Pacific navigation is not itself 
a QRS-system. But Pacific navigation does contain a QRS-system. 
Pacific navigation contains its own mathematics, a mathematics that is 
different in some fundamental ways from NUC-mathematics. For 
example, its criteria of accuracy are different (path accuracy is different 
from positional accuracy or distance), and its abstractions are different 
(path form is more important than map scale, and any scales may be 
time-based rather than length-based). We can discuss one set of criteria 
in terms of the other. We can transform the maps from one system to 
the other. That does not make them the same thing, nor can we assume 
that all features of the system are transformed intact. 
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The strand in the mathematical braid that carries the Pacific 
navigation QRS-system is smaller than that of NUC-mathematics. It is 
also wrapped inside a ‘Pacific navigation’ covering, but it is a 
mathematical braid nevertheless. The mathematics of standard,  
positional navigation remains as a fibre in the mainstream mathematical  
strand.

The picture of our mathematical braid is now one of a thick strand 
of NUC-mathematics woven with many smaller, braids that are 
disguised with other names. We have found a way of distinguishing 
different mathematics, no matter how limited in their application. 
Now let us look again at the main strand of NUC-mathematics. Is it 
what it seems? 

2. A RIVER OR A BRAID? 

When travelling to countries where you speak only a little of the 
language, or when talking to visitors who only speak a little of your 
language, a common response is to restrict the conversation to those 
things that are easily discussed, but about which there is likely to be 
common interest and agreement. As new grandparents spending six 
months in Spain, my wife and I became very competent at asking others, 
in Spanish, about their families: brothers and sisters, parents, children. If 
we were lucky and the people we met also had grandchildren, then we 
could hold a conversation that made us feel we could really speak 
Spanish, instead of the reality that we just had a minor facility in a couple 
of restricted areas. Always such conversations felt good, and left us 
smiling, and it wasn’t just the remembered antics of Zephyr and 
Veronica. It was the joy of communication and shared common feeling. 

Mathematics is a bit like this. That is to say, one of the mechanisms 
of mathematics is to focus on common features. It is natural that, 
when mathematicians talk, there is a tendency to talk about ideas that 
they have in common—we all do this, in every conversation. Even 
arguments depend on agreement on the topic and usually on the means 
of persuasion, although it does not always seem like it.

Some arguments do result from people talking past each other. 
These arguments are often unresolved, and usually lead to a feeling 
of dissatisfaction. Talking past each other can be cultural in origin.  
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My introduction to the phrase was in the title of a book for teachers 
(Metge, 1978) about cultural protocols and the misunderstandings 
they produce in classroom interactions. The result is alienation and 
isolation.

Since mathematics is formed and developed through communication, 
a consequence is that those parts of mathematics that get developed are 
those about which there is agreement. The areas of disagreement get 
dropped, or are only developed with difficulty. When research mathe-
maticians come together in international communities, there are 
inevitably some difficulties of communication. Agreed symbolisms and 
definitions of mathematics make communication easier—but within a 
restricted domain. Here is the key point: that domain is restricted by the 
very agreements that make the communication possible. Where a 
definition is not agreed, or the nature of a named concept is different for 
different mathematicians, then we encounter talking past each other. 
Three examples of this have already been mentioned: non-standard 
analysis, the mathematics developed from Cauchy’s concept of the 
continuum; the divergent paths of statistical analysis deriving from the 
two conceptions of probability; and Category Theory, the foundations of 
mathematics being written using functions, not sets. 

What happens, however, is that these differences are, in some way, 
made invisible. There are several reasons for this, and several ways 
that it can happen. But the end result is the preservation of the sense 
that all mathematics is proceeding together in one large stream, a 
stream of different interests, but one stream nevertheless, with the 
happy family of mathematicians floating together along it. This may 
be what mathematicians feel, but below the surface, mathematics is 
made up of quite different ideas being developed, often interacting, 
and knowing of each other’s existence, but conceptually different in 
important ways. Hence, the metaphor of a braid of many strands and 
fibres, is more appropriate than that of a river with tributaries. 

One more important issue. The researchers in the international 
community of mathematicians are increasingly using only one language 
to communicate: English. It was noted above that mathematical com- 
munication is restricted by the agreements that make communication 
possible. One of those agreements is to use English. So mathematics is 
becoming increasingly restricted to the ideas that can be expressed in 
English, and mathematical development will increasingly be directed 
down paths that are privileged by English. This is not a new idea.  
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In the first half of last century, the linguist Benjamin Whorf wrote 
(1956, p. 244): 

... but to restrict thinking to the patterns merely of English, and especially 

to those patterns which represent the acme of plainness in English, is to 

lose a power of thought which, once lost, can never be regained. It is the 

“plainest” English which contains the greatest number of unconscious 

assumptions about nature. ... Western culture has made, through lang-

uage, a provisional analysis of reality and, without correctives, holds 

resolutely to that analysis as final. 

If we have a thought or understand a concept, it can be expressed 
in English or any other language. All languages are endlessly 
creative and adaptable, and once aware of mis-communication or 
nuances in ideas that are not expressed in a particular language, then 
it is possible to find a way to express what was missed. The point is 
that there are some thoughts that are unlikely to occur at all if only 
one language is used. 

Perhaps this is more clearly seen in another development, the 
communication of mathematics over the web. There are many 
mathematical systems on the web: Matlab, Maple, Mathematica, for 
example. Mathematicians routinely use these systems to generate and 
explore hypotheses, to test ideas, and to communicate with each other. 
A recent development is the building of a mathematical language from 
very basic concepts, basic enough that all the different mathematical 
systems can be written using these concepts (Borwein, 1999). Once 
that has been achieved, all the systems can be linked together, and can 
communicate with each other. This basic language is intended to 
become the language of mathematics. Given what we have said, the 
danger is apparent. Only mathematical ideas that can be expressed 
in this language are likely to be developed—or, at the very least, 
mathematical ideas expressable in this language will be strongly 
privileged. Do the writers of the mathematical web language really 
believe that they can write a universal language that will accom-
modate all future mathematical ideas? 

In the mathematics braid some strands are bigger than others, 
some strands merge with each other or split apart, some strands are 
disguised within non-mathematical coverings. But if we regard 
mathematics as QRS-systems, I argue that mathematics consists of 
parallel systems, not one consistent body. Ethnomathematics can be 
regarded as the study of the different fibres of mathematical knowledge. 
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Such an image calls into question the universal origin of mathe-
matics. There is no reason to assume that, at the beginning of the braid, 
there was only one strand. Indeed, if we look at the current situation 
where there is a tendency towards convergence of ideas, the more likely 
scenario is that mathematics had multiple origins. Joseph’s diagrams 
(1992, Figs. 1.1–1.4) of the very early development of mathematics 
expose the paucity of what he calls a Eurocentric model of the history 
of mathematics. His final picture details the plaiting of the mathematical 
braid in the early millennia of mathematical thought. An argument of 
this book is that increased communication amongst mathematicians 
leads not to a single stream, but to more complex plaiting of many 
braids.

I believe that it is important, for mathematics, for human develop-
ment, and for mathematics education, that we start to focus on 
differences between strands as much as points of similarity. If mathe-
matics is to continue to blossom, and to express all the things that 
human thought can achieve, then we must resist any convergence of 
what is investigated. To do that we need to understand more about 
how the restrictions occur. That is the next topic. 

3. SNAPPING TO GRID AND OTHER 

MECHANISMS

Take a trip, if you will, to Hawai’i, renowned for its tourist hotels, 
beaches, pineapples, and big surf. Hawai’i was—still is—a centre of 
traditional Pacific navigation and sea-faring. Of course, for a sea-farer, 
winds are critical, and the trade winds, being so constant, are a good 
source of information and direction. Thus words associated with 
winds are going to be important. One such word is the word for 
leeward. In Hawaiian this is lalo. Given the north-east trade winds, 
this would be used for the south-eastern side of the islands. 

Now, Hawaiian is a Polynesian language, and there are some 
simple transformations that generally apply to this family of languages 
when you move from one to the other. To move from Hawaiian to 
Maori, the ‘l’ becomes a ‘r’. Thus lalo becomes raro. In Maori, raro

means ‘under’ or ‘north’, particularly when associated with the wind.  
I cannot find any Maori word for leeward. Is there a relationship  
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between the Hawaiian lalo (leeward) and the Maori word raro

(north)?
In New Zealand, could the word raro have originally meant 

leeward? New Zealand is far enough into the southerly ocean that the 
dominant wind is the cold southerly or south-westerly. Thus leeward 
would be in the north or north-east. Or, perhaps, raro just had the 
other meaning of under. As noted before, the North Island of New 
Zealand is Te Ika a Maui (The Fish of Maui) and its head is at the 
bottom where Wellington now sits. That is why this region is known 
as Te Upoko o te Ika—The Head of the Fish. When you travel to the 
tail of the fish, that is the north-northwest part of the country, you go 
down. Under. Raro.

Whichever of these explanations is correct, raro meant either 
north-northeast or north-northwest, but referred to important charac-
teristics of the geography of the country, not to due north. 

When the Europeans arrived with their NSEW compass as a 
dominant reference, it seems likely that the word for the direction 
closest to north got adapted to due north. At this point one reference 
system transfers to another, and the language changes in response to a 
shift in spatial system. In contemporary dictionaries, raro means 
north. The phrase “snap-to-grid” is familiar to those who have tried to 
draw pictures in their Word documents on a computer. The lines 
automatically adjust to an invisible grid on the page, moving slightly 
from where you place them so that they join up exactly. 

I wonder if the early attempts to create Maori word-lists also 
contain an example of this effect. Trinick (1999) reports that: 

In 1793, Lieutenant-Governor King of New South Wales, Australia 

visited the northern part of the North Island [of New Zealand] and 

collected information relating to the country and Maori. The information 

collected was published in Collin’s History of New South Wales in 1804. 

The Maori numerals (pp 562) are misspelt but recognisable; 

1: Ta-hie (Tahi) 2: Du-o (Rua) 3: Too-roo(Toru) .......... 

The accepted Maori words are in brackets. It is curious that the 
only sound that is clearly wrong is the ‘o’ on ‘duo’ (the Maori ‘r’ 
sound is very like a ‘d’). Could this be an unconscious slip because 
Italian (and Latin, which, presumably the educated Governor would 
have known) have the word ‘duo’ for two? 

“Snapping-to-grid” is one of the Universalising mechanisms by 
which mathematical development hides its differences or unifies itself. 
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Universalising mechanisms is the name I give to the ways in which 
mathematics normalises or links new ideas to the conventional main-
stream, whatever their origins, (for further discussion see Barton, 
1996, Section 4.3). If unification is successfully achieved, then there is 
no challenge to the rationality or correctness of existing mathematics. 
Rather, it enhances the subject by showing it to be, yet again, robust 
enough to accommodate new ideas, or even more richly intertwined. 

During this process radical change may occur. Mathematical terms 
and concepts are continuously created, or may be re-created in the 
form of the old, but with new substance. Thus there is the appearance 
of old terms encompassing the new situations, when, in fact, new 
concepts are involved. 

“Snapping-to-Grid” is a Universalising mechanism that is like 
colonisation. It transforms new ideas into existing terminology, 
thereby stripping them of their distinctive aspects, and, in particular, 
removing cultural characteristics. The ideas are acknowledged to be 
mathematics, but are not acknowledged to be mathematically new. 
The most common example is the way counting terminology in 
different cultures is transformed into direct equivalents of one, two, 
three, four, ... in the cardinal mathematical sense. The words may 
never have been used in this sense, as an example in addition to those 
in Chapter 3, in Burmese, the vast array of number classifiers 
(Burling, 1965) for use in different situations reduce to a single set for 
mathematical discourse. 

The justification for such colonising is the principle that stripping 
of context is exactly what mathematics is about. Practices from other 
cultures are interesting only in so far as the ‘real’ mathematics can be 
found. What is forgotten in this justification is that mathematics has a 
context expressed through the language and symbolic conventions of 
its host culture. An effect of implying that any new ideas are merely 
reformulations of ideas already part of mathematics, is to maintain the 
source of the new ideas in an inferior position. Thus cultures that do 
not have counting words beyond 50, say, are demonstrated to be less 
mathematically sophisticated. Such notions lead to the idea of primitive 
cultures (Stigler & Baranes, 1988). 

Another Universalising mechanism is subsumption. Subsuming 
mathematical ideas does not involve translation of the idea into new 
terminology, it relegates the idea to the status of an example. Like 
colonisation, the implication is that the idea is not new; unlike coloni-
sation, the idea is not even regarded as mathematics itself, just as an 
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example. Such examples are welcomed as interesting, and educationally 
illustrative, but they are not worthwhile in a mathematical sense. 
This is ‘artefact’ mathematics. An example of this mechanism is the 
identification of certain types of artistic decoration as mathematical. For 
example, in New Zealand, the Maori kowhaiwhai (rafter patterns from 
Maori Meeting houses) are recognised as mathematical strip patterns 
exhibiting symmetric groups and used in school publications to teach 
transformation geometry.

The result of this process does not necessarily remove the mathe- 
matical idea from its cultural context. On the contrary, the retention of 
its cultural surroundings is exactly what is required when subsumption 
occurs in an educational context. But the effect is to reinforce the idea 
that a cultural context can only be an example of mathematics, it is not 
mathematics itself. Any different, deep mathematical idea behind the 
artefact is now even less likely to be examined. 

Yet complex ideas in mathematics can be found in cultural craft 
practices. The patterns formed in the weaving of Maori flax baskets 
(Pendergast, 1984, 1987) were also used to demonstrate mathematical 
groups and used in school resources (Knight, 1985). In doing this the 
conventional NUC-mathematics criteria of symmetry were used for 
classification. But the Maori names for these patterns form a different 
classification, grouping together patterns that are not easily recognised 
as similar in our eyes. However, to a weaver’s eyes, the groups make 
sense: the classification depends on how the initial strands are set up. 
One group comes from strands set up as alternating white, black, 
white, black, white, black, white, and then different patterns made 
by different weaving; in another group the strands are white, white, 
black, white, black, white, black, white, black, white, white, … (see 
Fig 6-1). 

Figure 6-1. Weaving patterns from the same strand set-up 
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The two classification systems are not compatible, but are equally 
mathematical. I once used the ‘strand set-up’ classification as a talk 
on triple weaving patterns to a group of mathematicians, and dis-
cussed how two-colour patterns could transform into each other. The 
response? “Ah,” said a colleague, “your transformation group looks 
like a structure from hyperbolic geometry”. 

The justification for subsumption is the principle that mathematics 
provides powerful ideas for solving a variety of situations. Therefore 
the identification of a known idea in a new situation, provides another 
opportunity to apply known results. Sociologically, subsumption has 
the effect of establishing status. If one idea is accepted as an example 
of another, then the example is relegated to a lower status, and its 
originating context is deprived of the intellectual credit. 

A third Universalising mechanism I call appropriation. Appro- 
priation of new ideas acknowledges the novelty in the ideas (unlike 
snapping-to-grid or subsumption), but assumes that they form part of an 
existing mathematical structure. This is done either by regarding the 
new idea as a new category in an existing hierarchy, or by creating a 
new generalisation under which existing mathematics and the new idea 
will both fit. In this process the mathematical concepts may change, for 
example ‘logic’ now includes multi-value logic although it originally 
only referred to Aristotelian logic. The appropriation effect becomes 
clear: it is assumed that Aristotelian logic provided the foundation for 
today’s logic, when it only provided the etymological origins. The 
investigation of swells as advanced Fourier Analysis could be another 
example of this. 

The justification for appropriation is the assumption of genera- 
lisability: it is always possible to obtain a mathematical idea of greater 
generality to bring together previously unrelated concepts. Generalising 
usually involves greater abstraction, and the mechanism provides a way 
to reapply existing knowledge to new situations. The danger with this 
process is that once a generalisation has been made it is more difficult 
to perform a different generalisation. The assumption of universal 
structure mitigates against seeking other abstractions once the idea has 
been fitted into one satisfactory hierarchy. The sensation of a single 
universal structure is thereby enhanced. 
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4. REJECTION AND ISOLATION 

The three Universalising mechanisms in which mathematics draws 
in ideas from other areas are complemented by ways in which it can 
reject other ideas if they do not fit with existing mathematical 

retain mathematics as a stable and ‘true’ field, not allowing other 
forms of ‘truth’ to be called mathematics. This can be successfully 
achieved because the arbiters of mathematics are mathematicians 
themselves. Society in general cannot tell mathematicians what their 
field is like. 

The first Isolating mechanism is non-recognition, or the rejection 
of the idea as having anything to do with ‘proper’ mathematics. The 

Berrgren (1990) have both documented the rejection of much of the 
mathematics from India, China, and medieval Islam as non-rigorous. 

ideas were known for centuries before Pascal and Pythagoras. Knowl-
edge of Pascal’s Triangle is attributed to Jia Xian who lived 600  
years before Pascal (Stillwell, 1989, p. 136). Evidence of Pythagoras’ 
Theorem can be found in the Chinese text Chou Pei Suang Ching

that may date from 500 years before Pythagoras (Swetz & Kao, 1977, 
p. 14). One of the subtleties of this mechanism is the way that the 
number of new theorems is taken as the measure of mathematics 
achievement (Davis & Hersh, 1981, pp. 20–25). People who do not  
(or did not) prove theorems are therefore not mathematicians. 

The justification for non-recognition is the importance of 
convention as a basis for mathematical knowledge. How can mathe-
maticians be sure of their results if there is a variety of foun- 
dations for the acceptance of mathematics? Sociologically, it is only 
by establishing the boundaries of a discipline that those within it  

I call processes of rejection Isolating mechanisms. The effect is to 
conventions by labelling them as something other than mathematics.

people who have the power to define mathematics, for example, journal
editors, appointment committees, or curriculum designers, place the
new idea outside the borders of the field. 

much of the mathematics originating in the East. Joseph (1992) and 
An example is the attitude of many mathematicians towards

hence we have Pascal’s Triangle and Pythagoras’ Theorem when these 

The results are only accepted after they have been proven in an accept-
able (Western) manner. When they are proven, or analysed, they
carry the name of the Western mathematician who did the work: 
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can control their own activities. However, making the contrary state- 
ment: “this IS mathematics”, and exploring the possibilities which are 
thereby opened up can be interesting. For example, Marcia Ascher 
explores the set theoretic structure of inheritance patterns (Ascher, 
1991, pp. 72–76), and investigates the mathematical ideas that could 
newly illuminate a game analysis, such as the Maori game Mu Torere 
(Ascher, 1991, pp. 97–108). 

Dismissal is a second Isolating mechanism. It recognises the 
mathematical component of a new idea but makes it unworthy of 
consideration. The new idea may not be described in acceptable terms, 
in an appropriate forum, or by someone of the required status. The 
effect is to devalue the new idea. The justification for dismissal is the 

A famous example is the rejection of Ramanujan’s manuscripts 
(Hardy, 1978, Preface). These contained some of the best mathematics 
of the century, but had been previously rejected without comment by 
two notable English mathematicians of the time to whom they had 
been sent before Hardy recognised their worth. 

Another Isolating mechanism is compartmentalisation. It recognises 

A historical example is the work of Florence Nightingale. No-one 
has ever recognised as a mathematical achievement her analysis of the 
causes of high mortality in field hospitals and maternity wards. It is 
now acknowledged to be a forerunner to the development of statistics 
as a discipline (Cohen, 1984), but at that time, such a field did not 
exist. Locating it now as statistics is partly to deny her work as 
mathematics.

Universalising and Isolating mechanisms not only occur as part of 
the colonial process when mathematical ideas from two cultures 
meet—as when Western reference systems dominated Pacific ones—
but also operate internally within mathematics. 

maintenance of standards, but sociologically it can be seen as legitimi-
sation. Social systems regulate themselves in various ways, from
formal regulations to sub-conscious peer-pressure. 

the mathematical nature of the new idea, but places it outside mathe-
matics proper, into a related discipline or a new field. This mechanism
often carries inferior connotations, for example the ‘number crunching’
label attached to numerical analysis (the mathem-atics of computer 

of an area which has established itself sufficiently to now affect the 
methods) in its early years. Mathematical computing is a good example

nature of mathematics itself (Epstein & Levy, 1995). 
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A request to a group of my mathematical colleagues to give me 
examples of Universalising resulted in each of them thinking of per- 
sonal experiences where one thing they were working on or thin- 
king about was suddenly “snapped to grid” or subsumed by another 
existing mathematical idea. The results are not always negative. The 
most famous example is Vaughan Jones’ discovery of his knot 
invariants (now called the Jones polynomial). In the words of my 
colleague (Conder, Personal communication, 2006): 

He was working on aspects of subfactors of von Neumann algebras, and 

derived some equations associated with these, that turned out to look just 

like the braid relations from knot theory. Joan Birman and others helped 

him to “snap to the grid” of knot theory, and the rest is ... well ... history! 

This happens all the time, but usually not so spectacularly! [The ‘history’ 

in this case, was the Fields Medal, the mathematical equivalent of a 

Nobel Prize]. 

Lakatos (1976) talks about “monster-barring” as the way that 
mathematicians defend their proofs against counter-examples. This can 
be interpreted as a form of the Isolating mechanism non-recognition: 
the mathematician does not recognise the counter-example as relevant 
to the particular class of objects under discussion. 

What has just been described are several ways in which the 
discipline of mathematics preserves the idea that it is a universal subject 
based on a single set of principles. This description is necessary if the 
argument of this book is to be accepted: if mathematics is to be seen as 
a braid of many strands, then it is necessary to explain why it has 
seemed like a river fed by tributaries. 

I am not making a negative value-judgement, nor suggesting that 
mathematicians must start behaving differently. Rather, it is an attempt 
at a description of what happens. We need to recognise these processes 
if we are to fully understand the nature of our subject. Understanding 
what happens enables us to take another look at our field, to ask some 
other questions, and thereby consider other approaches to mathematical 
ideas that may be productive.

5. MATHEMATICS, SOCIETY & CULTURE 

My Universalising and Isolating mechanisms are not the first 
attempt to describe what is happening in mathematics that explains its 
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apparent universality. Others have written sociological accounts of 
mathematical knowledge, from Spengler, to Bloor, to Restivo (E.g. 
Spengler, 1926; Bloor, 1973, 1976, 1994; Restivo, 1983, 1992, 1993). 
Bloor, in particular, has attempted to use the anthropological theories 
of Mary Douglas to describe the Lakatos version of mathematical 
development (Bloor, 1978).

His programme has an even stronger aim than this. He seeks to 
break down the reification of mathematics as beyond sociological 
explanation (Bloor, 1973, p. 190), and to describe the mechanisms by 
which social and institutional circumstances (I would want to add 
cultural context) strongly determine the knowledge that scientists 
produce.

He focuses on mathematics and logic because this form of 
knowledge has been regarded as the most rational, a priori, and 
therefore the least likely to have sociological foundations. Bloor 
presents a number of examples of existing alternative forms of 
mathematical thought, and speculates on their social causes. For 
example (Bloor, 1976, pp. 125–9), he argues that the crises surroun-
ding the development of calculus and the use of infinitesimals arose 
solely because the mathematicians attitudes to rigour had changed. 
The decline in rigour in the sixteenth century, in recognition of the 
practical results non-rigorous methods produced, actually allowed 
the infinitesimals to appear in calculations for the first time. The 
renewed interest in rigour in the nineteenth century produced a crises 
where there was not one before—and out of that crisis arose new 
mathematics.

Bloor also examines the historical process for the way in which it 
covers up variation, and concludes that the cumulative nature of 
mathematical development needs to be challenged. In responding to 
critics of his view (1976, pp. 179–83), he again makes the point that 
marginalisation of alternative mathematics’ does not negate them, it just 
shows how a social cause creates an illusion of absolute knowledge. 

Bloor’s later work on mathematics (1983, Chpt. 5.; 1994) draws 
heavily on a Wittgensteinian analysis of the nature of mathematics to 
justify the idea that we construct conventions of meanings about 
numbers and relations as much as about words. The sociology of 
mathematics, in his view, aims to expose those conventions which 
have operated. 
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Davis (Davis, 1993, pp. 189ff ) has also written about the relation-
ship between mathematics and society. He argues that mathematics 
constitutes a way of thinking which is different from other ways, and 
that different ways of thinking need to be balanced in our society.  
For example, there has been a long literature concerning the use of 

sociology itself in which every social situation may be described by an 
equation. Catastrophe Theory, developments in Game Theory, and 
mathematical theories of politics all contribute to the mathematisation 
of social science. But it is not just the encroachment of mathematics 
into social life which is the subject of Davis’ concern. He argues that 
computerisation, for example, has fundamentally changed our modes 
of thinking (Davis & Hersh, 1986). 

For Davis, the balance of mathematical versus other types of 
thinking is to be achieved through education, hence (Davis, 1993, 

I should like to argue that mathematics instruction should, over the next 

generation, be radically changed. It should be moved up from subject-

oriented instruction to instruction in what the mathematical structures and 

processes mean in their own terms and what they mean when they form a 

basis on which civilization conducts its own affairs. .... [This requires] 

the teacher to become an interpreter and a critic of the mathematical 

processes and of the way these processes interact with knowledge as a 

database.

He sums up: 

If mathematics is a language, it is time to put an end to overconcentration 

on its grammar and to study the “literature” that mathematics has created 

and to interpret that literature. 

Davis’ makes a convincing case for this consequence of a 
sociological view of mathematics. The case is even more persuasive if 
a world view description of mathematics is correct. If there are 
alternative mathematical languages which may be enculturated in any 
education system, it is imperative that every society produces the 
means to question these ways of thought, and to make informed 
choices about how dominant they are to become. This theme is 
developed further in the next section. 

of some early attempts—including a mathematical characterisation of 
mathematics in the social sciences. Kaplan (1960) gives an account

p. 190): 
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But finally, to finish this chapter, and before we turn to the 
philosophical implications of these ideas, let us take a small diversion 
into the world of the Kama Sutra and discuss the issue of mathematics 
in society. 

We are familiar with the uses of mathematics in science, tech-
nology, economics, and industry. Mathematics as an applied science 
seems to provide the raison d’etre for the investment and effort that 
societies spend on mathematical development. Yet many mathe-
maticians claim that the real reason for studying the subject is its 
own joys (Hardy, 1941), and David Singmaster’s Chronology of 
Recreational Mathematics (2006) goes back three thousand years. The 
unique attraction for mathematics and the role it can play is best 
illustrated by the (truly) unexpurgated version of the Kama Sutra. 

There are, unfortunately, no fully unexpurgated versions of the 
Kama Sutra in English. All translations have an important chapter 
omitted. Why? Too lascivious? Well you might think so if mathematics 
was your passion. These are hot mathematics problems. Mathematics 
problems? As the introduction to the Kama Sutra? Yes, indeed. There 
exist Sanscrit manuscripts which make reference to mathematics 
problems in the Kama Sutra, problems couched in the most delicate 
language and using sexual imagery. We have examples of similar 
problems from Aryabhata (c. 800AD), Mahavira (c. 850AD), and 
Bhaskara II (c. 1150AD). 

One problem from Bhaskara II concerns a bee that falls into its 
lover’s lotus flower, which closes upon him. Upon asking her to let 
him out, she responds that he must first solve the mathematics 
problem (the translation below is George Joseph’s (1992) adaptation 
of Colebrook’s original translation): 

From a swarm of bees, a number equalling the square root of half the 

total number of bees flew out to the lotus flowers. Soon after, 8/9 of the 

total swarm went to the same place. A male bee enticed by the fragrance 

of the lotus flew into it. But when it was inside the night fell, the lotus 

closed and the bee was caught inside. To its buzz, its consort responded 

anxiously from outside. Oh my beloved! How many bees are there in the 

swarm?

Here is a problem from Mahavira’s Ganitasarasamgraha (again the 
translation is an adaptation by George Joseph (1992), this time from 
the original translation by Rangacharya): 
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One night in spring, a young lady was lovingly happy with her husband 

on the floor of a big mansion, white like the moon and situated in a 

pleasure garden with trees bent with flowers and fruits. The whole place 

was resonant with the sweet sounds of parrots, cuckoos and of bees 

which flew around intoxicated with the honey from the plentiful flowers. 

In the course of a “love quarrel” between the husband and wife, the 

lady’s necklace came undone and the pearls scattered all around. One 

third of the pearls reached the maid-servant who was sitting nearby; one 

sixth fell on the bed; one half of what remained (and one half of what 

remained thereafter and again one half of what remained thereafter and 

so on, counting six times in all) were scattered everywhere. On the 

broken necklace it was found that there were 1161 pearls left. Oh my 

love, tell me the total number of pearls on the necklace. 

Now what were these problems for? What part did problems like 
these have in a sex manual? The answer lies in the social context. At 
that time in India, the high society for whom the book was written was 
extremely well-educated in mathematics. Solving mathematical pro- 
blems was a pleasure and delight that was part of the social scene. It 
could perhaps be compared with cryptic crosswords for some people 
nowadays.

So, what happens when a couple meet together after a long hard 
day at the office? Do they leap straight into bed? No, that would 
hardly be a romantic and sensitive way to behave. First it is nece-
ssary to reconnect as people, and what better way than to engage 
together in some gentle recreational activity, like, well, like solving a 
mathematics problem together. And if the mathematics problem is 
written in a suggestive way that might lead you on to more intimate 
things, so much the better. 

We know these problems are not to be taken too seriously. The 
answers, for example, are not realistic. The answer to the Pearl 
Necklace problem is 148 608. That is a lot of pearls to count when 
there are better things to do. Joseph calls this a fantasy necklace and 
notes the fascination for very large numbers at that time—the content 
is more abstract than the erotic context suggests. 

Mathematics and its role in society? There are clearly more possi-
bilities than we ever dreamed about. 
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WHAT IS MATHEMATICS? PHILOSOPHICAL 

COMMENTS

Abstract: This chapter addresses the issues that have been raised so far from a 

philosophical point of view. An extended metaphor of Middle Earth is used to 

describe a more relativistic view of mathematics. 

Keywords: philosophy of mathematics, relativism, applications of mathematics 

1. MIDDLE EARTH 

     What about the Plato’s ideal world inhabited by mathematical 
objects? Does it exist? Yes. Is a circle real? For sure. Is there such a 
thing as a prime number? Of course there is. 

That world and the mathematical objects in it exist just like 
Tolkien’s Middle Earth. Mathematics is a created world, a world of 
the human imagination, and, like Middle Earth, we can write about it, 
film it, become part of it in our minds and emotions. Also like Middle 
Earth mathematics has been expanded upon by others apart from 
Tolkien (despite his family’s best attempts to preserve copyright), 
notably as Peter Jackson’s film crew and actors gave more substance 
to the appearances and actions of the creatures and environment that 
make up that world. Mathematics has, it is true, a longer history, and 
many more screenwriters, but it can be thought of as an academic 
Middle Earth. 

Can mathematics be compared to such a flight of imagination? 
Isn’t there something much more contingent, much more true about 
the mathematical world than there is about Middle Earth? Once we 
have the number 1 and the number 2, then no mathematical Tolkien 
could have written anything other than 1 + 1 = 2. Once we construct a 
circle and its diameter, and then draw a triangle on the diameter to a 
point on the circumference, it is not just geometric poetic licence that 
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says that the angle at the circumference will be a right angle. And it is 
not just a muse’s whisper that requires that right-angled triangle to 
have sides that obey the Pythagorean relationship. These things must 
be so. 

The mistake is to think that this situation does not exist for Middle 
Earth. If you are a hobbit of Middle Earth, and you get yourself into 
deep trouble with the Forces of Evil, then, in your moment of dire 
need, lo, the Elves will come to your aid. It cannot be otherwise. For if 
it was otherwise it would not be Middle Earth!! It would be some 
other fantasy. The elements of Middle Earth were created in just such 
a relationship. Elves help humans: that characteristic is part of what 
Elves are. It was determined by their history (as written in the book) 
2000 years before the time of Frodo and Sam and Bilbo Baggins. 
(Notice how we talk of these people as if they were real, with real 
histories, real names, real lives to be led—just as we talk of numbers 
and circles as if they were real objects that can be held, turned over, or 
combined with each other). 

In the same way, if 1 + 1 does not equal 2, then we are not talking 
about the world of mathematics, we are in some other world. The 
number objects 1 and 2 were created into just the relationship 
embodied by 1 + 1 = 2. That is what mathematics is. Circles and 
triangles and angles were also created into their relationships. 

But when Tolkien wrote Lord of the Rings, he had all the relation-
ships and consequences worked out in advance. As the mathemati-
cians write mathematics, the consequences of some of their supposed 
imaginative constructions are still being discovered, many are 
suspected but not yet proven, and still more are not yet known—or so 
the hundreds of budding mathematicians hope. 

In order to properly understand the nature of mathematics, it is 
necessary to think of Lord of the Rings the computer game. Version 1 
will closely resemble the book, and the relationships will be preserved 
intact, and the game will involve consequences of alliances, with some 
randomised luck thrown in: outcomes of individual battles; weather; 
perhaps the timing of the crumbling of the bridges in the Mines of 
Mordor. But then Version 2 will come out. A new, improved version. 
A few more subtleties. Perhaps some group of Elves will remember 
that they also had a 3000 year old pact with a group of Orcs who 
helped them in a time of need, and if, in the grand battle, this group of 
Elves come up against the Orcs then they might walk away. The 
writer of Version 2 will inject some of his or her own imagination, and 
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may create some additional history for the characters. This will not be 
anything that contradicts Tolkien’s original vision, but Tolkien did not 
have time nor space to write the complete history of Middle Earth, to 
describe each and every possible combination of relationship and 
circumstance. Plenty more can be written that is consistent with the 
copyright original. 

The Version 2 Elves are not the same as Tolkien’s Elves then? Yes 
and no. The computer game will be recognisable as Middle Earth, no 
contradictions will be involved, but the Elves will have evolved under 
new requirements. This has also happened in mathematics: Euclidean 
geometry with its circles and triangles and embedded relationships is 
now viewed as one of many possible geometries depending on the 
axioms. Non-Euclidean geometries, such as projective geometry, do 
not contradict Euclidean geometry, but evolved from it with new 
writers and new consequences as the literature of mathematics 
continued to be written. 

Eventually, there will be Middle Earth Version 3. In this multi-
dimensioned, multi-media extravaganza, Middle Earth is seen to be 
part of a greater world. Bilbo Baggins returns from his travels 
bringing new technologies and new perspectives. Middle Earth is a 
very special case of a universal fight between good and evil, tyranny 
and justice, truth and falsehood. The new technologies allow the 
Hobbits to understand more about what is right and to use this 
knowledge in their lives. The horizons for creating new beings and 
new relationships extends indefinitely, although Middle Earth remains 
intact as the literary historical origin of the edifice built upon it. 

Now that is like mathematics. The words ‘dimension’, ‘techno-
logy’, ‘special case’ and ‘new relationships’ were used in the previous 
paragraph with intent. The parallels I leave for the reader. 

The idea embodied in calling mathematics Middle Earth is not 
original. Wittgenstein seems to be saying the same thing when he says 
that a mathematical statement is a prescription or a rule (1956, I–30, 
33). That is, every mathematical statement is saying “This is how it 
should be if you want to be in a mathematical world”—just as 
Tolkein’s descriptions of Orcs can be seen as statements of what 
certain things are like in the Middle Earth. 

Middle Earth is also a braid with many origins. If we regard 
Tolkein’s novel as an allegory on good and evil, then it is one of many 
such allegories arising in many different cultures. They exist alongside 
each other, borrow from each other, can be discussed in relation to 
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each other. This is parallel to mathematics being seen as a QRS-
system alongside other QRS-systems. 

Even within Tolkein’s creation there could be many fibres, as 
copycat writers pick up his themes, or abridged versions for young 
children or radio plays emerge, or a modern writer picks up an inci-
dent in the story and creates a new work. 

Notice also that Middle Earth bears more than a passing 
resemblance to our experiential reality. We recognise the practical 
level (the characters ride horses, live in houses, and suffer the 
weather), the contextual level (things fall under gravity, landscapes  
are earth-like), and the human level (the morals, emotions, and  
physical constraints like wounds and illness are all familiar). Tolkein’s
world is consistent and speaks to us about our experience. Just like 
mathematics.

2. MATHEMATICAL WORLDS 

The evidence from language, and other reflections, have led us to 
the idea of a braid of many strands. The strand that is NUC-
mathematics has been discussed above. What about the others? These 
different strands have sometimes been referred to as different 
mathematical worlds. 

The idea that there can be several mathematical worlds is far from 
new. In Western literature, it was described by Oswald Spengler 
(1926, 1956). His grand conception was that a mathematic (singular) 
was a feature of each cultural era (like art or architecture), and that all 
such features grow, flourish and decline contemporaneously in every 
culture. Spengler focussed on the conception of number. Number,  
he claimed, is a representation of thought, of a conception of the  
world. The difference between the Classical idea and the modern 
Western idea of number, for example, is that number is regarded as 
measure-ment in the former, and as a relation in the latter. The 
important point made by Spengler is that this is not a development, 
but in each era there is a destruction of the concept of number of the 
previous era, and the generation of a new one. Eighty years after 
Spengler, the question of whether mathematics develops gradually, or 
whether old concepts die and are replaced by new concepts, is still 
being debated (Gillies, 1992). 
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Mathematical worlds are also discussed by Sal Restivo (Restivo, 
1983, 1992; Restivo, Van Bendegem, & Fischer, 1993). He believes 
that “all talk about mathematics is social talk” based on the Marxist 
view that all human activities are social activities and social products. 
Restivo notes two interpretations of the relationship between mathe-
matics and culture. The weak view is that mathematics is a social and 
cultural phenomenon, so that mathematical ideas and activities vary 
from culture to culture, and that the results of the various cultural 
mathematics together make up world mathematics. The weak view is 
adequately demonstrated by examining mathematics from different 
historical periods and cultures. The strong view challenges the idea 
that all cultural traditions in mathematics contribute to the same 
mathematics. Rather it assumes different mathematics’ and incommen-
surability between them. 

This leads Restivo to describe ‘math worlds’ (Restivo, Van 
Bendegem, & Fischer, 1993, p. 249–50). He notes that pure mathe-
matical concepts appear objective when they are communicated, hence 
mathematics is a social world of people communicating about their 
ideas—agreeing, disagreeing, arguing. Mathematics is not a world of 
triangles, symbols, rules of argument; it is a world of networks of 
people talking about ideas. The social practice generates the objects 
and the results of mathematics through naming and arguing.

Both Spengler’s and Restivo’s views are culturally based and refer 
as much to the nature of the surrounding culture as they do to the 
nature of the mathematics in the worlds being described. Can we get 
closer in to the mathematics? 

Do different mathematical worlds mean, as asked in the Intro-
duction, that mathematics as an academic discipline is somehow 
different in different parts of the world? A bridge designed using 
mathematical theory surely stands (or falls) in the same way inde-
pendently of the country it is built in, or of the language of the person 
who solved the equations of its design? Surely 1 + 1 = 2 in Alaska, 
Nigeria, Tahiti and Singapore? 

Think about the bridge for a moment. The technical part of 
building a bridge involves resolving the forces that might make it fall 
down. This is largely an empirical matter—does it fall down or not? In 
2003 the remains of a Bronze Age bridge was found in Wessex, 
England. There were no mathematicians around in England during the 
Bronze Age, according to histories of the subject, but clearly there  
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were effective bridgebuilders. There were mathematicians around in 
25BC to help build the Pont Saint-Martin, one of the oldest surviving 
bridges, but their mathematics would not have included the techniques 
that would be used today in the same circumstances. One wonders 
what mathematics was being used in 1756 by William Edwards, the 
builder of the Pontypridd Bridge. He had to reconstruct the bridge 
several times before he got the rise-to-span ratio correct: an expensive 
trial and error procedure. 

The point here is that the mathematics is how we make sense of the 
technology we need. The experiences of bridge-building, the talking 
about these experiences and what ideas explain them, the use of 
mathematical techniques that have been developed in other situations, 
lead mathematicians to develop effective ways of describing bridges 
before they are built and communicating about whether they are likely 
to stay built (that is, effective ways of designing them). A bridge 
does not stay up because of the mathematics. It stays up because it is 
built effectively. Mathematics is one way of discussing what “built 
effectively” means. 

So, yes, a bridge designed using a mathematical theory stands  
(or falls) in the same way independently of the country it is built in, 
or of the language of the person who solved the equations of its 
design. But many mathematical theories may adequately describe why 
the bridge stands or falls. The techniques of engineering mathematics 
are wonderfully detailed and can cope with a vast range of potential 
bridges—bigger and bigger as the mathematics and the materials 
develop. The mathematical theory used to design the bridge stands 
(or falls) on the success of the bridge—this statement is not the same 
as saying there is only one possible mathematical theory. 

Notice that the “correctness” of the mathematical theory is 
something of an empirical matter. If the bridge falls down then the 
builder needs to think again (like William Edwards). More accurately, 
the correctness or appropriateness of the application of the theory is an 
empirical matter. What about the pure mathematical theory itself? 
Surely it is right or wrong. 

Hence we come to 1 + 1 = 2. Surely the equation is correct in 
Alaska, Nigeria, Tahiti and Singapore? I need some help here, and I 
am calling on Wittgenstein. 
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3. WITTGENSTEINIAN MATHEMATICAL  

WORLDS

Many different writers have made commentaries on Wittgenstein’s 
writing. I prefer Shanker’s (1987) interpretation. He notes that 
Wittgenstein was concerned that mathematical philosophy should look 
at how mathematical expressions are used, and at the logic of such 
expressions, not at whether mathematical expressions refer to anything 
“real” or not. When this is done, it becomes clear that mathematical 
expressions are rules, not descriptions. Mathematics is neither a 
description of the world nor a useful science-like theory: it is a system, 
the statements of which are the rules which must be used to make 
meaning within that system. 

Grammatical analysis reveals that sometimes we use mathematical 
expressions as if they were part of familiar syntactical domains, and 
Wittgenstein believes that this is the source of traditional philosophical 
argument. For example, treating ‘15’ as a thing, and its divisors as 
discoveries to be made is a Platonist/realist domain; or treating a 
mathematical ‘group’ as an arbitrary construction which could have 
been otherwise is a constructivist domain. At different times either of 
these grammatical similarities seem more appropriate. However, we 
cannot thereby argue that one or the other is correct. Mathematical 
syntax has is its own domain to be analysed for its logical grammar 
irrespective of how, or when, it is similar to a Platonist or to a 
constructivist domain. 

Let me note again that English, the language we have come to use 
for mathematics, tends to make mathematical ideas into objects. We 
talk of mathematical objects because that is what the English language 
makes available for talking, but it is just a way of talking. Bishop 
(1988, 1990) identifies the objectifying tendency of mathematics to be 
one of the values inherent in the subject. For NUC-mathematics, this 
is because of its Indo-European linguistic roots. A non-objectifying 
mathematics is possible. 

Wittgenstein claims that mathematical statements are normative 
descriptions of how the world is seen, of what is meant by being 
intelligible. We cannot have ‘intelligible’ communities who divide by 

zero, or who calculate 24  30 as 712, or who measure differently, 
because such communities would not see numbers and counting as 
the same sort of thing or activity as we do, thus they would not be 
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intelligible. 1 + 1 = 2 is always the case because this is the standard of 
the correct use of numbers in the discourse of the mathematical world 
we inhabit. That is how we agree to count. It does not make sense to 
say that 1 + 1  2 (Shanker, 1987, p. 303). 

People in a different mathematical world will not be talking about 
the same idea if they use the symbols ‘1’, ‘+’, ‘=’, ‘2’ and do not 
accept that 1 + 1 = 2. The clash of different mathematical worlds is 
obvious when the same word is used to describe different ideas. We 
have discussed what happens when mathematicians have different 
views on continuity or probability, or different cultures have different 
views on navigation or shape. Any community or culture is free to 
make its own sense of the world. Mathematics is the name we give 
to how it chooses to express the sense of quantity, relationships, or 
space.

Rotman (1987, p. 2) makes the same point with respect to symbols, 
and similarly rejects the idea of mathematical things being prior to 
mathematical signs. It is not the case that mathematics was “there”, 
was then “discovered and named”, and then remained unchanged.

He compares mathematics with art and finance. We have “the 
natural but mistaken notion that a painting is simply a depiction and 
money a representation of some economic reality”. That is to say, we 
often treat pictures as if they showed us reality: “That picture captures 
the colour of the ocean on a stormy day”, we might say, but actually it 
just invokes in us the sense we have when viewing a stormy ocean, 
and would not do that if we had never seen a stormy ocean. The lie to 
pictures representing reality is most clearly found in those pictures of 
impossible images, Escher’s etching of the never-ending steps being a 
good example.

Similarly, we treat money as if it represented some actual 
commodity, when what it actually represents is “value”, and what that 
means changes with our actions. This is clear when we say things like: 
“Bill Gates lost half a billion dollars on the stock market this week”. 
This does not represent any actual change in things that he owns.

It is the same with mathematical signs. Rotman focuses on the role 
of zero, because it demonstrates that numbers do not represent any 
thing. If we regarded numbers as representing a reality, even the 
reality of our action of counting, then zero is a problem, since it 
represents the absence of that reality. As soon as we allow zero to be a 
number, then we must give up the idea that some thing is being 
represented—by zero, or by any other number. Numbers are seen to 
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be signs that we use. They are not things, nor do they represent any 
thing. “Numbers signify the activity of one who counts” (Rotman, 
1987, pp. 8–9). 

Both Rotman and Wittgenstein make the point that mathematical 
symbols and expressions are made and remade repeatedly. These are 
not individually created, but are public, culturally dependent forms of 
communication.

If mathematics is the way mathematicians talk, then the cultural 
influences on that talk (the language of discourse, the meanings of 
words and symbols at the time of the talk) create different mathe-
matics. If mathematics is a set of normative rules, then they could 
have been different. We accept different rules of grammar in different 
languages, and the other ways of talking about the world that those 
languages generate. 

Another mind-game. I once spent some time in Guiyang in 
Guizhou province in southern China where my wife was teaching 
English. There I met an American linguist who was studying the 
indigenous Miao language, a member of the Hmong-Mien family of 
languages. I asked him whether his American-learned linguistic theory 
was adequate to describe everything he found in the Miao language. 
He replied that yes it was, although he sometimes had to bend it a bit, 
or create new categories within that theory. 

Now the mind-game. I then asked whether he thought that a 
hypothetical Miao linguist, who had studied linguistics built up around 
Hmong-Mien languages, or Sino-Tibetan languages in general, would 
be able to use his linguistics to describe American English. The reply 
was predictable: yes, but probably that linguistics would have to be 
bent a little. What I now asked was this: after the American had 
twisted his linguistics to fit Miao, and the Miao had twisted his 
linguistics to fit American English, would the resulting two linguistic 
systems be the same? My intuition (and my friend agreed) is that the 
answer is no. Linguistics can be different. Mathematical worlds can 
similarly be different. 

As Shanker points out (1987, p. 319), the possibility of different 
mathematical worlds does not mean that mathematics is arbitrary, 
and thereby opens the way for mathematical anarchy. We are free to 
construct the grammatical rules of mathematics, but the grammar comes 
before truth, it determines what makes sense. The rules therefore cannot 
be true or false. Neither predetermined meaning, nor reality, can be 
used to justify such rules.
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An example that shows that predetermined meaning does not 
justify the rules of mathematical discourse is when anomalies or 
contradictions emerge in mathematical investigations. The most 
famous of these are the paradoxes of self-reference that Bertrand 
Russell attempted to resolve, but more commonly known as the barber 
paradox: if a barber shaves all those who do not shave themselves, 
then who shaves the barber himself? Mathematicians’ attempts to 
satisfactorily define concepts such as sets to resolve the difficulty get 
tangled up in contradictions and impossibilities within their own 
frame of reference. Meanings of mathematical ideas evolve. That is to 
say, the grammar of mathematics, what is accepted as making sense, 
evolves, as we communicate more and more about mathematical 
ideas.

A final point about Wittgenstein’s mathematical worlds. What 
happens when different mathematical systems meet? Wittgenstein’s 
answer is that there are no ‘gaps’ in mathematics. Each system is 
complete at any moment. It is not waiting to be added to with new 
mathematics. Thus (Shanker, 1987, p. 329), any connection between 
two worlds is not in the same space as either of the worlds. The 
interconnections are not waiting to be discovered. We choose whether 
or not to make connections between systems, and if we do then the 
connections create a new system. 

4. MATHEMATICS AND EXPERIENCE 

We have looked at bridges (applied mathematics) and 1 + 1 = 2 
(pure mathematics). Let us say a little more about the relationship 
between the two. When do numbers apply to the real world? 

What we forget most of the time is that numbers are mathematical 
ways of talking, they are not aspects of the world. In some situations 
numbers (as they have been constructed in mathematical talk) are 
useful models of the real world, and sometimes the ways we use 
numbers mathematically do not fit at all to the quantitative aspects of 
the world we wish to talk about.

We saw this happening in the story about fractions. The “rules” for 
being sensible with numbers, including fractions, do not apply in 
every situation in which we wish to represent quantity by one number 
divided by another. It is possible to make the rules apply by putting 
alternative interpretations on the word “add” and then using the rules 
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as normal. This example highlights the relationship between the 
mathematical world and reality. I can make the mathematical world 
apply by interpreting the situation—mathematics does not just apply 
automatically. It is not real. Nor is the situation that fits the rules (in 
the fractions case adding pieces of pies) more mathematically correct 
or privileged than the other situations. 

The next example shows how we move between contexts within 
mathematics without acknowledging their differences. First, consider 
counting a large stock of books. Let us say that there are 25 cartons 
of 50 books. How many books altogether? We know that the mathe-
matical way of talking called multiplication can apply to this situation: 

multiply the two numbers together: 25  50 = 1250 books. 
 Now consider the measurement of rectangular areas. We also 

regard this as a matter of multiplying two numbers representing the 
length and breadth of the rectangle. Thus an area 25 metres by 50 

metres is calculated : 25  50 = 1250 square metres. But these are not 
numbers in the same way that 25 is the number of cartons of books. 
For area, the 25 and 50 represent measurements which have errors. 
(Mathematically we take account of this by modelling them as Real 
numbers. The number of books and cartons are Whole numbers, or 
possibly fractions in the case of the cartons). 

We only know measurements within a certain accuracy. It is 
extremely difficult to measure anything to four significant digits, let 
alone five or six. In this example, giving normal rounding off, 25 and 
50 could represent values as high as 25.4 and 54 or as low as 24.5 and 
45, respectively. Multiplying these maximum or minimum values 
gives areas of 1371.6 sq. metres and 1102.5 sq. metres, so the range of 
possible actual areas varies by over 260 sq. metres, about 20%. 

We explain away the discrepancy by a theory of errors—or in a 
mathematics textbook we just say “an area of exactly 25 metres by 50 
metres” which is nonsense. We act as if we can interpret both 
situations by the same meaning of number, and disguise the fact that 
they are fundamentally different conceptions.

Their similarity is sufficient for a large range of practical 
situations, of course, but it can lead us into trouble. If we come to 
think of multiplication as the same as these applications, then we will 
have problems when we multiply negative numbers. 
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5. RECURRENT HISTORY: BACHELARD 

We have examined mathematical objects, and seen that they are 
possible creations within a mathematical world generated by a social 
community. But what about objectivity? Is there no way of judging 
between different mathematical worlds on some objective basis? Is 
there no way to dismiss as nonsense some mathematical worlds that 
purport to make sense of our experience of quantity, relationships and 
space?

First, how do we explain that, historically, our idea of what 
constitutes rationality has changed? The French philosopher Gaston 
Bachelard, writing in the 1930s, makes an attempt. He describes a 
historically relative notion of objectivity which allows for changing 
conceptions of mathematical objects and of rationality, (see Smith, 
1982; Tiles, 1984). 

For Bachelard, mathematics allows us to create new realities using 
new structures of knowledge. Bachelard’s key idea is that objectivity 
is an ideal rather than a reality. At any one time we may think that 
we see clearly how things are, or that we know how to discover the 
truth, or that we understand what makes a proof. However these 
ideas change over time, that is, the sense of objectivity is illusory. 
Objectivity is not, however, nothing. Conceptions of mathematics at 
different times depend on changing notions of rationality, each 
successive change being regarded as being more objective than the 
last. There is a progression towards a better, and then a still better, 
understanding of the things that must be taken into account to get an 
objective view. 

A consequence of this analysis is that there are many different 
historical standpoints from which to view mathematics, each of which 
is correct at that time and each of which explains previous views. 
Each such view gains its apparent objectivity because of the wide 
agreement amongst mathematicians about the view, and because it is 
seen to arise from previous views and encompass them. This historical 
explanation allows for the development of mathematics over time, 
and for the changing, creative nature of mathematical ideas, while 
retaining the objectivity required of the discipline.

Bachelard’s idea is called recurrent history because history keeps 
being re-evaluated in the light of present knowledge: mathematicians 
look at their own practices and conceptions in the light of other prac-
tices and conceptions; modify, reinterpret, discard, or adopt particular 
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practices; and retain the knowledge of how and why this was done as 
part of their mathematical understanding. These changes are them-
selves the subject of critical reflection when further advances are 
made.

I suggest that a similar situation can exist between contemporaneous 
mathematical worlds. Mathematicians from different worlds can look at 
their own practices and conceptions in the light of the practices and 
conceptions of other worlds; modify, reinterpret, discard, or adopt 
particular practices; and retain the knowledge of how and why this was 
done as part of their mathematical understanding. In the same way that 
we do not reject as wrong historical practices and conceptions (only see 
them as consistent within their historical context and use that 
knowledge to inform the present), so too could mathematicians from 
each world acknowledge the other mathematics within their context and 
use the knowledge to reflect on their own. 

If this is true, how is it that not all mathematicians acknowledge 
that this process has gone on? Mathematicians have a consciousness 
of change, of what motivated particular thoughts, new ideas and so on, 
but they are not necessarily conscious that this is a culturally relative 
process. Most mathematicians regard their subject as universal and 
from their point of view it is. If opposing ideas arise, whether inter-
nally or from a different mathematical world, then there is eventually 
a cognitive shift to accommodate the clash of domains. When this is 
achieved the sense of universality returns. It is only when this process 
is reflected upon that we see the relativity of the past situation. 
Universality, like Bachelard’s concept of objectivity, is an (unattain-
able) ideal that guides mathematical development. It is illusory in that 
any claim to universality may be challenged by an awareness of a 
different culturally-based view; but it is real because, at any given 
time for any particular person, there is a complete explanation for the 
domain of mathematical concepts. 

Bachelard’s description of recurrent history is helpful when we 
want to describe different mathematical worlds. Particular conceptions 
of mathematics begin and end, but also live on, in the critical role 
played by the historical definition of present conceptions. The end 
occurs when a new conception encompasses the past ones and 
resolves any conflict that has arisen. Culturo-mathematical worlds are 
also temporary in the sense that they end when a new world arises out  
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of two meeting ones. However each world lives on in the critical role 
played by the conflicts of the meeting. 

Mathematical practices are quickly accommodated, and can usually 
be transported across cultural boundaries without much difficulty 
because they are very generalised, have broad areas of applicability, and 
can therefore adapt to a wide range of activities. However the interplay 
between mathematical worlds is not so visible because the resolution of 
conflicting conceptions gets played out through many practices. This 
explains why mathematical conceptions of minor cultures become 
colonised: the mathematical conception with the wider range of appli-
cability will accommodate different practices more readily. 

6. UNIVERSAL OR RELATIVE 

I will try to sum up where we have got to philosophically by 
dealing directly with the question about universality and relativity. 
Where does the evidence from language lead me? Is mathematics 
universal, or is it relative? My answer, predictably, is both. It depends 
what you mean. I can see two senses in which mathematics is 
universal, and two senses in which it is relative. 

The first universal sense arises from the fact that, if you are in a 
particular mathematical world, then it is possible to look at another 
mathematical world and see it in your terms. For example, Bishop 
(1988) identifies six pre-mathematical practices which are present in 
every culture: counting, measuring, locating, designing, playing, and 
explaining. Bishop is not saying that these activities are equivalently 
defined in every culture; he is saying that he can identify in any 
culture activities which come under each of these headings as far as he 
is concerned. This leaves open the question as to whether numbers 
exist in some real sense because everyone counts, or triangles exist 
because everyone designs; or the continuum exists because everyone 
measures. These ‘objects’ could be conceptual tools with no existence 
beyond the conceiver. This sense of universality does not imply a 
Platonist reality. 

The second sense in which mathematics is universal results from 
the fact that, if you acknowledge mathematics at all, then you must 
acknowledge conventional NUC-mathematics. For, if you don’t, then it is 
difficult to justify your use of the label ‘mathematics’. Mathematics  
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exists as a knowledge category, recognised by a very large proportion of 
humans in every culture. To call something else mathematics, is not 
making sense of the use of that word. NUC-mathematics is universal 
because it is part of the meaning of ‘mathematics’. 

These senses of universal mathematics do not mean that the subject is 
static. A person may hold a differing view of mathematics from the 
conventional one to the extent that a debate may take place through 
which mathematics may change its conventional meaning. Development 
is possible. For this to occur, however, there must be one of two 
situations. Either the unconventional viewer acknowledges that the 
conventional view has legitimacy and the onus is on them to convince 
others that a change is justified (for example, Joseph's writings on non-
European aspects of mathematics (1991)); or there may be more than one 
community of convention, mutually acknowledged by the other as having 
a right to the debate (such as the communities of standard and non-
standard analysis, or Bayesian and Frequentist statisticians). 

Now relativity. The first sense in which mathematics is relative is 
that it can change. This change is more than just an evolutionary 
building on what has gone before, it involves revolutionary change  
in the sense that fundamental ways of thinking can change (see 
Gillies, 1992, Section 2.3). Completely different mathematical con-
cepts, which are subsumable neither by existing ones, nor by some 
new, overarching generalisation, are possible. In other words, a new 
mathematical concept may arise which radically changes existing 
mathematics because it cannot be integrated into mathematics as 
presently understood in any other way. 

The second sense in which mathematics is relative is that mathe-
matics is not the only way to see the world, nor is it the only way to 
see those aspects of the world having to do with number, rela-
tionships, or space. Other people may see things that I might call 
mathematical in entirely different terms.

To summarise: if we are to ask whether there is, in fact, another 
mathematics equal in power to NUC-mathematics, then the answer is 
no. On the other hand, if we are to ask whether mathematics could 
have been different, then the answer is yes. 

Historically, the line of progress of mathematics could have been 
otherwise. We cannot know what theory of mathematics we might 
now have, nor whether this hypothetical theory would be more  
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comprehensive, more sophisticated, more applicable, or ‘better’ by 
any other criterion. It is not possible to completely rewrite history 
(Lakatos, 1978). 

The sociology of mathematics will help us identify how divergent 
ideas may have changed the path of mathematical development: to 
identify the turning points and decision points; to specify the socio-
cultural conditions which determined particular paths; and to trace 
paths as far as possible. The anthropology of mathematics will help us 
explore the existence of other paths and other mathematical worlds 
(even in embryonic form). Both of those have a historical orientation. 
An ethnomathematician’s task is to explore—in the present—the 
consequences of different worlds for mathematics: first to under-
stand where they were/are leading, and then to reflect on them mathe-
matically.

The lack of more than one contemporary, sophisticated mathe-
matics does not imply the universality of the one we know—it only 
contributes to our feeling of its truth. There is potential for divergent 
mathematical development, which I call contemporary relativity. 

7. EVIDENCE, REFLECTIONS,

& CONSEQUENCES 

We have used the evidence from the language of everyday mathe-
matical talk to reflect upon mathematics, and have come to some far-
reaching suggestions about the nature of mathematics. One of these 
conclusions is that mathematics and language evolved together. Does 
this mean that we can suggest things about language and linguistics 
from this evidence? 

Questions of whether languages evolved from a common proto-
language, and whether there are linguistically universal concepts, are 
intricately tied up with the arguments of this book. For example, if it 
is argued that mathematics develops differently in different languages, 
then it might still be possible to have a single, universal mathematics 
if there are some things that are linguistically the same, no matter 
what language you speak. Mathematics could be exactly those things 
that are universal. 

I believe that the weight of evidence presented in this book opposes 
such an idea. To the extent that we regard language as the cultural  
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expression of a world view, there appear to be quantitative, spatial, 
and relational aspects of some world views that are not essentially the 
same. We do, indeed, still talk of ‘quantitative’ aspects of each world 
view—but this is just our way of talking and making sense of the 
differences we see. 

What about whether different languages evolved from a single 
common language? If there are such different conceptions of 
mathematics embedded in languages, then this is evidence that all 
languages did not evolve from one language—or if they did then it 
was before some elementary quantitative, spatial, and relationship 
conceptions were formed. The latter possibility seems unlikely, 
therefore the mathematical evidence suggests that some languages 
must have evolved independently. 

However, I am not a linguist, and the debate about such things 
contains much more evidence than that from mathematics (Chomsky, 
1998; Pinker, 1994). 

    

Part I of this book presents some evidence to illustrate that 
mathematical ideas are represented in fundamentally different ways in 
the everyday talk of different languages. It also explored how some of 
these could evolve in different directions or into different structures in 
mathematics. The idea being put forward is that there could be 
different mathematical worlds, or that mathematics could have 
evolved in another way from the one that we know. 

Part II examines the consequences for mathematics. It describes the 
origins and evolution of mathematics from a stance which accepts the 
possibility of other mathematical worlds. Further illustrations are 
given, and evidence and supporting views of others from both the 
history, anthropology, and sociology of mathematics is presented. 
What emerges is a picture of mathematics as a plaited braid of many 
strands, that merge and split, fold back and tangle—but a braid in 
which there is no ‘one way’ unless you are looking from inside one of 
the strands. 

This picture leads to some philosophical reflections about 
mathematics, particularly to the writings of Wittgenstein as interpreted 
by Shanker, and to a way of conceiving both the universality and the 
relativity of mathematics as meaningful. 

The final section of the book looks at the consequences of this 
point of view for mathematics education. The evidence from different 
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languages makes us think again about how we might approach teaching, 
particularly to students whose language is not Indo-European, or not the 
same as our own. We must also think about what it is that we are 
teaching, and the underlying experiences and dispositions that will lead 
to high levels of creativity and application in the mathematical and 
information sciences and their applications. 

To finish this section, let us remind ourselves that what has been 
said has been said before. The idea that language and mathematical 
thought are inextricably linked is not new, nor is the recognition of 
the potential for new mathematics embedded in other languages. 
Benjamin Whorf has already been quoted. He also said (1956, p. 245): 

…an important field for working out new order systems, akin to, yet not 

identical with, present mathematics, lies in more penetrating investigation 

than has yet been made of languages remote in type from our own.



PART III 

IMPLICATIONS FOR MATHEMATICS 
EDUCATION 



Chapter 8 

LEARNING MATHEMATICS 

Abstract: The conclusions of the book are examined for their implications for mathe-

matics education, and an argument is made for attention to be paid to the 

communicative aspects of mathematics during its development in schools. This 

includes more exploration at all levels of education, and the importance of 

informing students of the nature of mathematics. Some notes on assessment are 

made.

Keywords:

1. CONCLUSIONS THROUGH EDUCATIONAL 

EYES

Learning mathematics has been an enigma for many thousands of 
years. On the one hand it seems so straight forward. Counting things 
feels natural, and young children often find numbers playful, reciting 
them as songs, for example. We all have adequate spatial intuitions. 
We find our way around our familiar environment without apparent 
effort. Those living in a city easily make complex routing decisions, 
and those living in the country develop a directional sense that is 
reliable and automatic. In many activities we perform mathematical 
tasks with ease: we intuitively estimate the trajectory of balls in many 
sports; weavers and sewers and designers manipulate patterns and 
shapes in sophisticated ways; people build model or real houses and 
boats that are robust and balanced; and the ever present money 
transactions in modern life are routinely handled with efficiency. 

On the other hand, mathematics classrooms have been places of 
fear and puzzlement for many, probably since they first appeared in 
China around 1000BC (Swetz, 1974). They have received bad press 
throughout literature, and Math Phobia has now become a buzz-word 

communication mathematics teaching, meta-mathematics, explorations in mathe-

matics
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(Burns, 1998; Clawson, 1991; Tobias, 1995). Many people experience 
the mathematics classroom as a place of pleasure and wonder, but 
even this positive aspect is often turned by society into a negative one. 
Those for whom formal mathematics education is easy and a pleasure 
are routinely transformed into oddities or nerds. 

The enigma of learning mathematics, and the best teaching methods 
for it, have been discussed explicitly since at least Greek times when 
Socrates put forward his method. What light can we shed on this 
enigma by reflecting on language and mathematics? What are the 
implications for education of the conclusions of Parts I and II? After 
looking through educational eyes at the conclusions already reached 
about mathematics, this chapter discusses what our reflections tell 
us about the nature of mathematics learning in general. I suggest a 
conclusion about the role of abstraction that is at odds with general 
thinking, and make some comments about the role of mathematical 
play and creativity. We finish by examining implications that can be 
drawn for formal classroom teaching.

The second chapter in this section discusses two particular 
language contexts. I argue that multilingual environments are a rich 
source of learning rather than ones filled with problems, and then I 
discuss the particular situation of indigenous education. Indigenous 
groups are faced with an interesting dilemma. They learn mathematics 
in a distinct cultural-linguistic context—how can they study an 
international subject while retaining the integrity of a minority world 
view?

In order to keep focussed on the conclusions that have been 
generated from the evidence from language, I summarise the five 
main conclusions. 

The most important conclusion is that mathematics and language 
develop together. Historically this has been so, with each of these two 
areas of human activity affecting the other. It continues to be so, as 
new language and mathematics is generated in new areas of human 
interest: computer environments; space exploration; biological mode-
lling; the mathematics of finance. The co-development of mathematics 
and language happens at both a macro- and a micro-level. At a macro-
level they both respond to social and political demands. At the micro-
level, the vocabulary and syntax of mathematical discourse responds 
to that of the language being spoken (and the world view represented  
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therein), as well as to the mathematical needs. The discourse may then 
affect the direction of mathematical development. 

The educational perspective on this conclusion concerns the 
development of mathematical ideas in an individual. To what extent is 
the historical link with language also present in personal mathematical 
development? At first there does not seem to be a necessary 
connection between the two, but two threads of argument suggest 
otherwise. The evidence strongly suggests that mathematics as it has 
evolved does have strong ties with particular language characteristics, 
and that these need to be established for an individual in some way or 
other if this mathematics is to be easily understood. Also, the evidence 
about the difference between mathematical discourse and everyday 
language means that, even if your language is consonant with NUC-
mathematics, there are still changes in your language that need to be 
made to correctly understand, communicate, and use mathematical 
ideas.

A second conclusion, related to the first, is the idea that mathe-
matics arises after, not before, human activity, in response to human 
thinking and communicating about quantity, relationships, and space 
within particular socio-cultural environments. An educational perspec-
tive asks whether (or in what way) socio-cultural context (including 
language) might be important for understanding a mathematical 
concept. For example, does the gambling origins of probability theory 
mean that an understanding of gambling is necessary (or helpful) for 
statistical education? Will a child who has only experienced proba-
bility in the more Bayesian environment of predicting the outcome of 
a sporting event, have difficulty conceptualising long-run Frequentist 
ideas? My view is that these are likely to be important considerations 
in mathematical learning. 

A third conclusion of Parts I and II is that mathematics could be 
different. A corollary of this is that there are still many undeveloped 
mathematical ideas. This statement does not only refer to advanced 
level research mathematics. There are still undeveloped ideas in pre-
formalised mathematics, elementary mathematics, and at every sub-
sequent level. 

The educational perspective on this conclusion is that mathematics 
is far from a complete and established set of concepts and relation-
ships that can be presented to anyone learning the subject. Nor is 
mathematics a body of ideas that all children will come to discover 
in a natural way, even if they are given appropriate activities. At every 
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level there are alternatives to be acknowledged and the possibility 
of exploring them. The depth of this conclusion cannot be over-
emphasised. It is not just a question of different techniques of 
multiplication—it is a question of what operations are possible and 
sensible at all, or, at an even more basic level, the possible different 
conceptions of quantity that can exist in a formal way. The conclusion 
means not only that a mathematics classroom should be open to 
unconventional mathematics, but also that it must exhibit unconven-
tional ideas, particularly if we wish students to understand what  
the human activity we call mathematics is all about. A further impli 
cation is that conventional mathematics must be explained as just  
that—conventional.

A fourth conclusion is that mathematics is created by communi-
cating, that is, mathematics arises within the communication. I am not 
just saying that mathematics arises because of the need to commu-
nicate, nor just that mathematics is recorded by communication 
(writing it down as a journal article, for example). Mathematics is 
created in the act of communication—even the mathematics that is 
reportedly created in intuitive flashes of an individual when they are 
alone. The ideas of such flashes do not become mathematics until 
they are formalised and related to other ideas—until they become part 
of a system. 

An educational perspective asks whether this implies that mathe-
matics is learned through communication. This perspective also 
focuses on the nature of the communication, and the role played by 
different people in it. More critical, however, is the idea that mathe-
matical knowledge is therefore never finished, never completed. 
Whatever understanding a learner reaches is always an understanding 
of the communication that has just happened—further communication 
will generate further mathematical understanding. 

The most fundamental conclusion of this book is that each lang-
uage contains its own mathematical world. The worlds may be imp-
licit, of small scope, and/or undeveloped, but these worlds exist—they 
are not just rudimentary versions of conventional mathematics, nor are 
they simple, unformalised mathematics. These worlds represent sys-
tems of meaning concerned with quantity, relationships, or space, and 
are, in some sense, incommensurable with NUC-mathematics. 

An educational theorist, faced with this conclusion, is likely to ask 
for justification that one world is the subject of curricular attention  
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while another is not. They are unlikely to accept as a sole answer that 
one world is more extensive, or more developed. Rather they will 
want to know about the relationship between this world and the 
particular learners for whom the curriculum applies. They will 
evaluate the justification on educational criteria (for example the 
overall aims of education) as much as on mathematical grounds. And 
they will ask whether one world needs to be exclusive of others.  This 
issue is especially important for indigenous mathematics education. 

A more direct educational issue relating to mathematical worlds is 
the psychological question of the extent to which an individual is 
wedded to one world view, and whether (or how) this will affect their 
understanding of another world view. This question has long been 
asked by mathematics educators as they search for answers to the 
differential performance of particular groups in various educational 
environments. It will be obvious to the reader that my view is that 
learners are more affected by their world view than is commonly 
acknowledged.

There are three further issues related to mathematical language that 
can be viewed from an educational perspective. Mathematical 
language change is in the direction of more similarity. In other words, 
different languages are evolving to express QRS ideas in ways that are 
more and more the same. Is this good for education because it means 
that there is more uniformity and less need to accommodate 
differences, or is it detrimental for education because it means that 
variety and versatility are being lost? 

Mathematical language (not just mathematics) evolves from the 
physical and social environment. To what extent does the everyday 
meaning and environmental origin of mathematical vocabulary and 
discourse interfere with or enhance mathematical meaning? Teachers 
need to take into account the conditions under which the everyday 
meaning of a mathematical word can contribute to the development of 
mathematical understanding. 

Finally, mathematical language is more consonant with some 
languages, and less consonant with others. In what ways is this a 
problem (for example, speakers of less consonant languages might 
find mathematical constructions difficult), and in what ways is this an 
advantage (for example, a wide difference between natural language 
and mathematical discourse may emphasise the particular nature of 
mathematical discourse and reduce the interferences mentioned in the 
previous paragraph). 
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This summary of the main conclusions and what they mean from 
an educational point of view sets the scene for a look at mathematical 
learning, mathematical teaching, and mathematics education in the 
particular contexts of multilingual and indigenous peoples’ education. 

2. BECOMING A BETTER GOSSIP 

I take the hand of my three-year-old granddaughter as we jump 
down the cobbled steps in the narrow street of the old town. Jump-
“one”. Jump-“two”. She knows this game, and we count for a while. 
Then I start again: jump-“two”. Silence. Jump-“four”. “You missed 
three, Pa-Bill.” “I don’t like three,” I say. The inevitable “why” and I 
make it clear that it is part of the game: “let’s pretend”, I say, and that 
is enough, she knows how to pretend. Soon we have a rhythm: jump-
“two”, “you missed one”; jump-“four”, “you missed three”; jump-
“six”, “you missed five”; and so on. She did not, as it happened, 
demand to take the lead with her own sequence, but I would not have 
been surprised. Young children can play games better than most, and 
can generate complex games at the drop of a hat, remembering and 
changing rules as they go along. 

For the two of us, what had been the counting numbers became just 
a sequence of words that were part of a game. We were not counting 
any more, since 2, 4, 6, … is not how we record single jumps, we 
were game-playing. We were at the very beginnings of talking about 
relations between numbers as abstract objects, as opposed to their 
practical application as recording the act of counting. 

Young children also understand relationships between people, and 
can articulate them, often embarrassingly. It is said that a two-year-old 
is the best guru you can have. Watch one go around a room full of 
adults and systematically elicit reactions from every one. Sibling 
rivalries and playground positioning are more evidence. This is not to 
say that their awareness is conscious or their actions deliberate—but 
at some level young children understand complex human relation-
ships. Why not mathematical ones? 

It is noted in Part II that Keith Devlin describes mathematics  
as the same sort of activity as gossip. That is, mathematics is talk 
about relationships, but at a higher level of abstraction: it is about 
relationships between mathematical ideas, not between people. The 
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important thing he notes is that it is the same kind of talk (Devlin, 
2001, p. 244): 

… [A] mathematician is someone for whom mathematics is a soap opera. 

… I am not referring to the mathematical community but to mathematics 

itself. The ‘characters’ in the mathematical soap opera are not people but 

mathematical objects … . The facts and relationships .. are not births and 

deaths, marriages and love affairs, but mathematical facts and relation-

ships. … The secret of all those people who seem to be “good at maths” 

[is] not that they have different brains. It’s just that they have found a 

way to use a standard issue brain in a slightly different way. 

Given that mathematics is created in communication, that mathe-
matics happens in the act of gossiping, then the trick to doing 
mathematics is to do what everyone has no difficulty doing, but do it 
with abstract ideas. There is good evidence that young children do 
know about relationships and act on that knowledge. There is also 
good evidence that they can play with relationships in an abstract 
way: they play games with rules all the time, and they both articulate 
and manipulate rules explicitly. Furthermore they can play games with 
rules about mathematical ideas also. Children do not need to have 3 
follow 2, they do not need to have the ‘correct’ number of objects to 
refer to. They can suspend their dependence on reality if that is part of 
the game. All young children can do mathematics in this very real 
sense. All older people can too. 

A relevant question to be asked is how this ability can be nurtured. 
How can I go about increasing my ability to think and act mathe-
matically? A likely answer is to practice ‘gossiping’ with abstractions 
as often as possible, or, if I am responsible for young children, to play 
such abstract games whenever the opportunity arises. We need to 
establish a wide base of real experiences from which to abstract, and 

until there have been a lot of abstraction experiences. 
In the light of this conclusion it is interesting to note that a 

common educational response for children who are having difficulty 
with school mathematics is to give them more concrete problems, to 
reduce the abstraction by giving problems for which they can refer to 
real world situations. This strategy does increase the base of real 
experience, but it does nothing about increasing the base of abstract 
activity that is also needed to appreciate formal mathematics. In many 

we should develop a large background of gossiping about abstrac-
tions. Advanced mathematical development is unlikely to happen 
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cases sufficient real experience is already present, and so a better 
strategy would be to undertake abstract activity in an appropriate 
way—that is, at a level of game-playing rather than within formal 
mathematics.

A reflection on young children’s development of the ability to 
gossip about abstract things is suggested by Oliver Sacks’ (1991) 
book about sign language. Sacks presents the evidence that the 
groundwork for the ability to understand language as a concept is laid 
down before age eight. In other words, if a child has not experienced 
language by this age, if, say, they have been isolated from speaking 
human contact, then they will never really ‘get it’. Even if they sub-
sequently join a language community, they may learn to commu-
nicate, but will never properly develop linguistic skills. To the extent 
that mathematics is like language as a cognitive function, we can infer 
that the same is true: if there is no experiential base of abstract gossip 
before some early age, perhaps it will never fully develop. Could this 
be the key to Math Phobia (Burns, 1998; Clawson, 1991; Tobias, 1995) 
or the widespread phenomenon of people who say they never under-
stood mathematics beyond routine and real world based arithmetic 
and geometric activities? 

Another feature of children’s mathematical gossip (that is, 
children’s abstract play) is that they are explicitly aware that this is a 
game, that there are rules, and that the relationships are under their 
control. This feature sometimes disappears in a formal mathematics 
classroom. Mathematics is not an inevitable body of knowledge. 
Understanding it and doing it requires a consciousness of the ‘rules’ 
and the awareness that they are rules or conventions. Such awareness 
is particularly needed at the early stages where we often act as if there 
is nothing to be surprised about. The examples of fractions and 
multiplication are cases in point. In the real world multiplication is 
never commutative—it is only the abstraction of multiplication that is 
commutative. Often the numbers do not even represent the same kind 
of thing: 5 packets of biscuits at $3.80 each cost $19.00. Two of these 
numbers represent money, the other represents a counting number. 
We expect children to multiply in this situation, and to understand that 
multiplication is commutative. They need to know that this is the 
game.

Formal mathematics language is subtly different from everyday 
gossip. Think about the codes that develop amongst small com-
munities of gossipers: phrases that take on special meanings so that an 
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outsider might not get the full meaning of a statement. Mathematics 
has its own codes. The unexplained introduction of the codes of 
mathematics (that is, mathematics that is already formalised) may 
cause confusion. For example, at the elementary level, if a child is 
familiar with numbers describing “how many” and then, without 
apparent change of discourse, they hear numbers talked about as 
objects that can be manipulated independently of things being 
counted, it is no wonder that they become confused at what is going 
on.

Having a language that is in congruence with mathematics may be 
a two-edged sword educationally. On the one hand, it seems that there 
will be no cognitive disruption for students approaching mathematics. 
The way they have used numbers in everyday conversation will 
slowly evolve into the mathematical use of numbers, and no troubles 
will result. On the other hand, perhaps the way that concepts change 
without being noted or explained causes some of the problems 
experienced by young children? Is this the cause of widespread claims 
that people do not have a mathematical mind? 

Reasons for concluding that such difficulties exist can be found in 
the history of mathematics. Rotman (1987, p. 8) records the difficulty 
mathematicians had with transforming the idea of nothing into a 
number. How can nothing be something? Nothing is the absence of 
something, even the absence of number—it cannot be a number itself. 
Are such difficulties replicated in some mathematics learners today, or 
does their common experience of zero appearing on a calculator 
overcome this particular language shift? 

Mathematics as abstract gossip—the idea has led us to think that 
children should have more abstraction, not less, and that being aware 
of the rules of the game is an essential feature. What other implications 
can we draw for mathematics learning? 

3. FROM 1 TO 100: PLAYING & EXPLORING 

It is a curious feature of mathematics education that we expect and 
encourage exploratory and playful mathematical activity in very 
young children, and in advanced research mathematicians, but in 
between we sit students down to do exercises and listen to teachers 
or lecturers explain how it is. There are now secondary school 
classrooms where exploratory activity is encouraged, but as soon as 
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the spectre of national examinations or international testing surveys 
looms close, mathematical activity reverts to closed exercises and 
transmission teaching. 

I acknowledge some reasons for this: bureaucratic pressures to 
cover a defined syllabus; policy pressures to report in a particular 
way; pragmatic pressures to help students respond to the types of tests 
they will face; and teachers simply doing what they know best. 
However, from the point of view of learning to do mathematics well 
and effectively, and in order to experience the joy and beauty of 
mathematics, the removal of exploratory and playful opportunities 
from learning activity at secondary and tertiary levels is a very strange 
thing to do. 

First of all, mathematical exploration and play is always possible, 
at any level. Within the environment of existing mathematics there are 
(have always been) educational resources full of wonderful open 
questions. However there is something more. We concluded above 
that mathematics could have been different. This conclusion does 
not just apply to research mathematics—it applies from the very first 
experiences with numbers and shapes, to beginning algebra, to 
practical and theoretical statistics, and to any branch of advanced 
mathematics. We can always do mathematical exploration outside the 
confines of NUC-mathematics. It is nearly always possible to change 
some basic assumption of mathematics, and to genuinely explore or 
play in a new environment. The Double Origin and Active Geometries 
discussed in Part I are examples. 

Exploration and play are always possible: is it always a good idea 
to do it? One reason for playing with mathematics is because 
exploration is an interesting and efficient way to exhibit the nature of 
mathematics. Mathematics could have been (still can be) different. 
There are many untapped potential ideas that can be explored, and 
may even turn out to be useful or applicable. Having mathematical 
ability includes an attitude towards mathematics that assumptions can, 
and should, be questioned, and that changing (or creating new) 
assumptions leads to new ideas. Experiencing mathematics outside the 
normal conventions is the most direct and the most powerful way of 
developing these attitudes. 

Another reason for mathematical play and exploration is that the 
ability to change mathematical contexts deliberately is part of the skill 
of doing mathematics. Not only is it necessary to be able to question 
mathematical assumptions, it is also necessary to step outside 
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conceptual conventions. Many of these conventions are unrecognised 
and language-based, thus developing mathematical ability includes 
taking every opportunity to practice “thinking outside the square”. 
Both changing assumptions within mathematics and conceptualising 
in original ways are useful habits at any level. We need to keep 
challenging established ideas at every stage in our learning. 

Questioning and challenging assumptions are not just useful habits, 
they are vital skills for a mathematician. We should therefore be 
particularly concerned that exploratory and playful activity is largely 
absent in undergraduate mathematics—this is exactly where it should 
be most in evidence. In these classes we have collected the best young 
mathematical minds a society has. Why are they deprived of a mathe-
matical activity that is both one of the most pleasurable and also one 
of the most important for their future work? The freedom of university 
study where new ideas and novel learning experiences abound is 
exactly the right environment for exploratory mathematics, but in 
mathematics at this level the approach is usually more closed and 
structured than ever before. 

Not only is mathematical play and exploration necessary to 
understand the nature of mathematics, and necessary to be able to do 
mathematics, it is also necessary for the process of learning 
mathematics. Mathematics is created in the act of communicating 
human activity directed towards making sense of quantitative, 
relational, and spatial aspects of the world. Many argue that learning 
mathematics must reproduce the historical development of 
mathematics, the ontogenetic argument (Fauvel & van Maanen, 
2001). If this is accepted then reproducing the exploratory experience 
is a vital component. However even if this argument is not accepted, 
there is still a need for these activities during learning. Mathematics is 
the abstract systematisation of experiences; it is a process as much as 
it is the result of a process. Learning mathematics cannot therefore 
just be learning about the completed system, it must also be learning 
the process—and there is no way to do that without undertaking the 
process. You cannot learn to drive a car from a book about driving. 

Communication is a key element of the process. In order for com-
munication to happen, not only do we need relevant experiences to 
communicate about, but we also need to have a reason to communi-
cate, and, just as important in this case, a need to communicate 
formally. If the communication is about pre-formalised mathematics, 
then students will not learn the process of formalising for themselves. 
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In other words, they need original mathematical experiences to 
communicate. They need to be excited enough about them to both 
want to communicate them, and challenged enough to communicate 
about them precisely. Play and exploration are the first stage of this 
process.

4. CREATING MATHEMATICS THROUGH 

TALKING 

What does the conclusion that mathematics is created in the act of 
communicating mean for a learner? What are the special requirements 
of this form of communication? 

I now need to abandon the metaphor of gossip. Mathematics is not 
gossip. Devlin only says that doing mathematics is in some ways like 
gossiping. Mainly, they are both about relationships. There are other 
ways in which mathematics is not at all like gossip. We can easily 
associate the adjective ‘idle’ to gossip, but formalised mathematics is 
far from idle. It is purposeful and directed. Gossip is rarely repro-
duced exactly: it is usually elaborated and embellished. Mathematics 
is deliberately created in such a way that it can be exactly repeated. 
Gossip thrives on ambiguity, suggestion, and nuance. Formalised 
mathematics, on the other hand, needs to be as precise and unambi-
guous as possible. 

Learning mathematics is learning to communicate in particular 
ways about relationships. Part of learning the ability to formalise 
includes understanding the reason for formalising. Only through 
communicating back and forth can the need for precision of meaning 
become evident; and it is only by passing ideas through chains of 
communication that the need for reproducibility is experienced. 
Important ideas need to be communicated, and the more important 
they are, the more accurately and consistently they need to be 
communicated. Mathematical ideas must be systematised to be com-
municated, thus mathematics is created. This is why mathematics and 
language develop together. 

In this process a mathematical world is created. Mathematics and 
language evolve together to create a world that is not the same as the 
real experiences from which it originated. 

Take the example of ‘membership’. The concept is a familiar one: 
we are members of a family, we are members of clubs, we hold 
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membership cards to prove the relationship. Membership means that 
we are included, that we are part of a group 

Here is a very simple problem involving family membership and 
its internal relations. Maria and Pedro Oliveras (who have since died) 
were married and their children were four sons: Carlos, Salvador, 
Garcia, and Juan. These sons are now the only members of the Oliveras 
family. One day, in a cafe, two members of the Oliveras family are 
standing at the bar. Are they brothers? Yes, they must be. 

Now here is a mathematical problem that appears parallel, but is 
not because ‘member’ has a subtly different meaning. Let S be the set 
containing the four sons of the Oliveras family: Carlos, Salvador, 
Garcia and Juan. Mathematically this is written: S = {Carlos, 
Salvador, Garcia, Juan}. Thus each son is a member of the set S, we 
write Carlos  S. A mathematical question is: will two members of 
the set S always be brothers? The answer is “No”. The reason is that, 
mathematically, the same member may be selected twice. That is “two 
members of the set S” includes the possibility of ‘Juan’ and ‘Juan’ 
being chosen. Juan is not his own brother. 

This is confusing because we do not usually apply mathematical 
membership to people. The problem clarifies a little if I change set S 
to be the collection of names {Carlos, Salvador, Garcia, Juan}. Now if 
I ask two students to each choose a name, and ask whether the people 
corresponding to those names are brothers, it is more obvious that the 
two students could choose the same name. 

It clarifies even further if I ask a parallel problem about numbers. 
Let B be the set {2, 4, 6, 8}. Let x and y be members of B and add  
x + y. Will the result always be a number between 5 and 15? No, 
because x and y can have the same value—they can both be the same 
member of the set B. For example they could both be 2. Now 2 + 2 = 
4 (which is less than 5). Or both could be 8, and 8 + 8 = 16 (which is 
more than 15). 

However this confusion of the meaning of membership and 
choosing x and y from a set is a common one. Ferrari (1999) did some 
research with a similar example using undergraduate mathematics 
students and found that even in a clearly mathematical context at an 
advanced level, the everyday meaning of membership interfered with 
their understanding of the mathematical question. 

The mathematical world is not the same as the experiential world. 
The language changes, as do the concepts. Learning to be part of that 
world involves learning how it is created, and students need to 
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experience the process of evolution. Being presented with the mathe-
matical world, its concepts and language completely formed, will not 
help anyone to learn to be part of the evolution. 

The formalisation of mathematical communication is not just a 
record of abstraction, it is also a way to enable abstraction to happen. 
Mathematics is not just gossip about abstraction, it is the formation of 
abstraction through communication. Once an abstract idea has been 
formalised it is available for further abstraction, an idea described by 
Piaget (1953), and developed for advanced mathematics as APOS 
theory by Dubinsky (1991). Once an idea has been formalised it is 
available again, layer upon layer of abstraction. For example, the 
joining of two collections is formalised as the arithmetical operation 
of addition; addition and subtraction and other operations are 
formalised as algebraic binary operations; binary operations and the 
objects they operate on are formalised as group theory; groups and 
their fundamental properties are formalised as topology; and so on and 
so on. This layering of abstraction is the real depth of mathematics, 
and is a clear example of the way mathematics and language must 
develop together. It also makes clear that learning mathematics must 
involve communicating about it. 

The mathematical learner has one further task. A mathematician 
must also be able to talk about the process of abstraction in which 
they are engaged. There needs to be a meta-level language so that 

that there are usually several directions we can take when making an 
abstraction. In order that a fuller range of choices is available, and that 
mathematical (rather than linguistic or experiential) decisions are 
made between them, the process needs to be articulated. 

5. SOME THOUGHTS ABOUT TEACHING 

MATHEMATICS 

Before we consider the act of teaching, a few words on why we 
want to teach mathematics. If mathematics is not the highest expre-
ssion of human thought (as Plato claimed), or even the science of 
what is clear by itself (as Jacobi suggested), then why should it be 
such a pervasive subject in our learning institutions? If it is, as I 
have claimed, a language dependent, context dependent, historically 

the mathematician can discuss the possibilities available for abstrac-
tion in any particular situation. The evidence from language shows 



Chapter 8                                                         155

dependent view of the world, why is it endowed with such impor-
tance? If NUC-mathematics is not the only one possible, why does it 
have pre-eminence in curricula world-wide? 

Mathematics is important for all the usual reasons: NUC-
mathematics is the foundation of science and technology. It provides a 
suite of techniques and tools for business, engineering, medicine, 
architecture and design, navigation, astronomy, social science, and 
many other fields. It continues to enthral many great minds. Mathe-
matics does turn out to be beautiful as well as unexpectedly effective 
(Wigner, 1960; Hamming, 1980). (Both its beauty and effectiveness 
are sourced in its connections with language and the evolution of 
abstract ways of thinking based on human experience). These reasons 
would suffice for mathematics’ place in education. But another reason 
for teaching mathematics emerges from this book: mathematics helps 
us make personal sense of the world. 

Now let us turn to teaching. What are the implications of the 
conclusions from language for those who facilitate, design, or control 
mathematics learning? 

Note that all the ideas about learning detailed above have their 
parallels in teaching. If abstraction activities are needed at an early age, 
then teachers have a responsibility to provide them. Those responsible 
for young children can (and do) play many pre-mathematical games. 
They play with numbers in ways that do not involve counting; they 
draw plans of buildings and playgrounds, they draw maps of neigh-
bourhoods, and they ask questions about the numbers, plans and maps. 
They tell stories that involve classification systems, and relations such 
as inclusion and size comparisons. These are all abstract experiences in 
quantity, space and relations. 

Games can also be played with argumentation and logic. I once 
watched my brother at the zoo with my daughter (who was about 
four or five at the time). “There’s a big animal,” he said, looking at a 
rhinoceros, “it must be an elephant”. “No,” came the reply, “it’s a 
rhinoceros”. “But it’s grey, and elephants are grey,” he responded. 
“But it has a horn,” she replied. “So have elephants—they have two 
ivory tusks and this has got two horns”. “But elephants have trunks”. 
“This elephant hasn’t grown it yet”. And so it went on, he forcing her 
to justify her statements, and countering them, and continuing the 
argument with other elephant characteristics (ears that flick, tail with 
a tuft of hair, mud on its legs, the noise it makes—of course the 
rhinoceros did not make any noise so she could not deny that he had 
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got it wrong). It was not long before she turned the tables on him at 
another cage. The game of false or incomplete logic with ridiculous 
conclusions has been a family staple ever since. 

I argue above that playing and exploring are vital parts of learning 
mathematics at all levels. Teachers, therefore, have an important role 
to provide opportunities, to model such activity, and to value it within 
their courses. This applies at university level, as much as it does in 
schools.

A teaching implication of the way mathematics is created through 
communication is the need to be explicit about the difference between 
everyday and formal mathematical talk. For a teacher not only does 
this mean that they should talk about this difference, for example, 
when discussing set membership, but they should also point out places 
where our everyday language is not quite adequate for mathematical 
discourse. An example arises from the unique feature of the Dhivehi 
language referred to in Part I. 

In Dhivehi, we can refer to ‘the book’ by using the root word for 
book, fot. We can also refer to ‘a book’ meaning a particular but non-
specified book, as in the sentence ‘John was carrying a book when he 
fell into the water’. This sense of book is indicated by the suffix –aku,
thus fotaku. There is a different word if we wish to refer to any book 
at all, as in the sentence ‘John asked for a book to put on his papers so 
they would not blow away’. Here the book is a general book from the 
class of books. In Dhivehi this sense is indicated with a different 
suffix: -ek, thus fotek. The distinction is sometimes important in 
mathematics, but can be overlooked. An example occurs when 
drawing graphs of functions. 

In the graph in Fig. 8-1 the variable x and the function f(x) are 
each used in two ways, and these ways are different in the same way 
as the two different uses of ‘book’ described above. The ‘x’ in the 
expression f(x) = 2x

2 + 1 is any value of x at all—x is a variable. But 
the meaning of ‘x’ in the label P(x, f(x)) and the label on the 
horizontal axis is a particular, but unspecified, value of x. In this 
situation it is more correct to label the particular value as x1, but 
often teachers do not do this, and slip between particular and 
general uses of a variable without thinking—to the confusion of their 
students.
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Figure 8-1. Multiple Meanings for 'x' 

One more implication. The need to communicate, the need to play, 
the need to explore, and the need to learn about mathematics means 
that those charged with teaching the subject must themselves be more 
mathematically literate than ever before. If a teacher is to recognise, 
follow, and utilise the diverse mathematical thinking of children, then 
the more links, experiences, and applications on which to draw the 
better. They must know other ways of approaching the same idea; 
they must sense different directions in which the idea can be taken; 
they must be able to make use of cognitive conflicts that arise and 
new situations the children imagine. 

In a world where the mathematical background of teachers is  
a cause for concern in many countries, an increasing mathematical 
demand on teachers may not be welcome—but it cannot be ignored. 

6. NOTES ON ASSESSMENT 

First, let us remember that all the learning activities described 
above are linked to assessment. They are linked both because assess-
ment is part of the pedagogical process, and they are linked because 
most formal institutionalised learning has a summative assessment 
requirement.

Assessment can be a way in which aspects of the pedagogical 
process are valued. Mathematics is a gatekeeper well beyond its  
real status, thus those parts of mathematics that are measured become 

f(x) = 2x2 + 1 

P(x, f(x))f(x)

x
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part of the process for deciding on vocational and educational oppor-
tunities. Hence exactly those parts of mathematics receive focus and 
teacher input. So much is commonly understood. 

The problem is, that if the conclusions from language are true, then 
what is needed for successful mathematical activity is exceedingly 
difficult—if not impossible—to measure. How do you evaluate creating 
a base of abstract experiences? By their definition, experiences are 
many and varied, and you cannot know in advance which ones will be 
used in later, formal, mathematical, abstraction activities. How are 
playing and creativity to be measured? The very act of attempting  
to measure them will kill them as play or as creativity. How is 
communicative mathematising to be measured? This latter might be 
partially possible with one-on-one interviews and recording group 
activities, but is hardly practicable as a routine for all students. The 
Numeracy Programme developed in New Zealand in 2002 onwards 
does just this: teachers are helped to evaluate each child’s position on 
a framework of mathematical development through interviews. 
Irrespective of possible benefits, the practicality of such interviews as 
a regular part of the mathematics classroom leaves little time for other 
types of teacher/student interaction. 

We are left on the horns of a dilemma. Either these vital features 
of mathematics education are not assessed and will not be valued 
(probably leading to being neglected by teachers and students alike), 
or they are assessed badly at a high cost in terms of time, teacher 
resources, and impact on the activity itself. 

I am convinced that we need to wrestle with the first of these 
horns, not because of the resource cost of the second (if it is important 
enough, resources are usually found), but because assessment will 
ultimately kill these vital activities. 

This means that having a variety of abstraction experiences, 
indulging in mathematical creativity and play, and communicating 
mathematically all need to be given high value in some way other than 
by assessment. This can be done by individual teachers—but such a 
solution is unlikely to be universally adopted. Another strategy is to 
highlight this activity amongst mathematical practitioners (not just 
mathematicians, but also system analysts, designers, engineers, infor-
mation scientists, and so on). 

The conclusions of this book lead us to downplay assessment  
for further reasons. Two of the conclusions about mathematics are, 
first, that mathematics is in continual formation, and second that 
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mathematics is open in the sense that it could have been otherwise. 
The first means that it is never finished, the second means that there 
is always another way of perceiving, conceiving, or receiving mathe-
matical ideas. 

Given these parameters, assessment of learning mathematics as a 
whole is impossible. Assessment needs to be against something, a 
framework, a standard, another performance. But if mathematical 
learning is forever unfinished, and if it proceeds along any of a myriad 
of pathways, then there is no way of creating the basis for judgement. 
Any assessment that takes place compromises the nature of mathe-
matics.

A final note on assessment concerns the conclusion that mathe-
matics and language develop together: it is not possible to have 
mathematics without language. 

A research project aimed at investigating the situation of senior 
secondary students with Mandarin as their first language learning 
mathematics in English involved giving them the same test in English 
and Mandarin (Neville-Barton & Barton, 2004). These students had 
done all their education in China except for the last few months.  
Their English proficiency was not high. Not surprisingly, the perfor- 
mance was better in Mandarin, but a large variation emerged between 
questions. Students performed the questions with technical voca-
bulary, complex syntax, or an unfamiliar context much better in the 
Mandarin version. One question, however, was done better in the 
English version. This was a question involving the concept of 
gradient.

The teachers reported that this concept was the only one in the test 
which had been taught for the first time in English, and that the term 
does not translate easily into Mandarin. This may explain the result, 
but it begs the question: what is the true mathematical understanding 
of these students? If some parts of mathematics are understood in 
English, and others in Mandarin, then what sort of test can evaluate 
mathematics? A bilingual test is not the answer, because even within 
one language there are many ways of expressing an idea, and many 
different associations for what might appear to be the same mathe-
matical process—take, for example, the concepts of anti-differen-
tiation and integration. 

The chimera of mathematical ability, let alone the measurement 
of this ability, disappears into the mists of language, no matter how 
precise we think we are. 
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MULTILINGUAL AND INDIGENOUS 

MATHEMATICS EDUCATION 

Abstract: The conclusions in the previous chapter are specifically considered in relation 

to multilingual environments for learning mathematics, and for the education 

of indigenous peoples. It is argued that linguistic richness of these situations, 

and the multiple mathematical perspectives they bring to the classroom are 

resources that can be effectively utilised by teachers.

Keywords:

This chapter is not a comprehensive look at the many sensitive, 
important, and controversial issues that surround mathematics 
education in multilingual classrooms or in indigenous contexts. Rather 
it is a commentary on what the conclusions reached in this book have 
to say on these matters. 

Educators have often approached mathematics education in multi-
lingual environments as a problematic situation: how can all the 
students understand; how can mathematical communication take place; 
why are minority students underachieving? Considerable research 
has addressed these issues (for example, Educational Studies in 

Mathematics: Special Issue on Multilingual Issues in Mathematical 

Classrooms, 64(2)), describing what goes on in multilingual 
mathematics classrooms (for example, Setati & Adler, 2001), 
investigating the underlying causes (for example, Moschkovich, 
2002), studying teaching practices (for example, Adler, 2001), 
reporting on intervention programmes, and examining mathematics 
cognition in different languages (for example, Miura, Okamoto, Kim, 
Chang, Steere, & Fayol, M., 1994). 

Our conclusions about mathematics from language evidence point 
to another perspective on multilingual classrooms: that of a fertile 
environment that could be the source of some highly creative and 

multilingual mathematics, bilingual mathematics, indigenous mathematics 

education
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effective mathematics teaching and learning, as well as places that 
might produce innovative mathematicians. 

1. UNTOLD RICHES 

Multilingual classrooms are linguistically rich—not only will 
more than one language be represented, but also the languages are 
often structurally diverse and well-resourced. That is to say that 
many students will have wide linguistic resources, for example, grand-
parents who carry the knowledge of elders, or other family members 
who speak other languages. The resource can usually be tapped. What 
is more, in these environments, multilingualism is the norm: students 
are adept at swapping between languages, seeing correspondences and 
differences, and using language creatively as they communicate with 
speakers of other languages. 

These students know that languages do not interfere with each 
other, neither in their learning, nor in their use. If the students are 
young, they learned these languages naturally and easily from their 
environment.

Our conclusions about mathematics and language also imply a 
mathematical richness in multilingual classrooms. Each language 
carries parallel, but often different, conceptions of quantity, space and 
relationships. These mathematical worlds will be natural to the 
students, and, (depending on their fluency in various languages), they 
will be adept at moving between them, using whichever world is 
appropriate to best represent the idea they are trying to develop. 
Students will also be able to compare these different aspects of 
mathematics, and are likely to be interested in discussing them. My 
experience in such environments is that students are keen to talk about 
different vocabulary and usage. 

When the Maori language was being developed for immersion 
teaching of mathematics, the students in my colleagues’ class took to 
the challenges enthusiastically and creatively—for example, I leave 
the reader to make the connections between their suggestions for the 
terms waewaekuri (dogleg) for a cubic curve, and mangopare

(hammerhead shark) for a rectangular hyperbola. 
Inferring from language, where there is an additive effect if two (or 

more) languages are understood above “threshold” levels (Cummins, 
1986), it is reasonable to conclude that having more than one point of 
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view from which to approach mathematising will result in better 
understanding, more creative constructions, and more opportunities to 
abstract.

The mathematical potential of a multilingual student will increase 
the more deeply embedded that person becomes in the mathematics of 
all his or her languages. There is a tendency to aim for mathematics in 
English because that is the international medium of communication 
in the subject, and research mathematicians with non-English first 
languages increasingly research, discuss, and teach their subject in 
English. But we can conclude that mathematical advantages will result 
from maintaining and practising mathematical fluency in as many 
languages as possible. 

Returning to the multilingual classroom, the issue for the teacher is 
how to make use of this potential. We must acknowledge that lower 
proficiency in one or more of their languages dulls the student’s 
richness, but does not remove it. The trick is to see the situation as 
rich. I have experienced a classroom where the teacher perceived his 
mathematics class as having serious language problems: but 90% of 
the students spoke at least two languages fluently, and over 60% 
spoke three. They just did not speak English very well, and English 
was the only language he could use. In this situation it is not the 
students who have language problems—it is the teacher! In order to 
progress, it is preferable not to identify language as the problem: the 
problem is communication, and it belongs to everyone. 

Once the issue is rephrased in this way, then it can be seen that 
monolingualising the mathematics teaching and learning into English 
is unlikely to be a good strategy, even if the ultimate aim is for 
everyone to be able to do mathematics in English (as is often 
claimed).

If the problem is communication, then the obvious strategy is to 
use all the resources at hand, not to restrict them. In the above case, 
for example, the monolingual teacher might use students’ peers to 
generate first-language mathematics discussions, or start to learn, 
and use, some mathematical terms from other languages. The family 
resources could be invoked, and texts in other languages provided. 
The opportunities to increase English understanding would increase, 
not decrease, with such activity. No adverse interference is likely to 
occur.

However there is more than this. Language diversity itself also 
offers some resources for new teaching and learning techniques. 
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Using students’ own resources is always an effective motivator, 
especially in cases where students know more than the teacher. Hence 
pedagogies that involve the language diversity of the class are likely 
to be effective. This is not just a technique for young students. 
Imagine an English-language university tutorial where the professor 
asks a student to work through a problem using their own language, 
one that is not spoken by others in the class. If all were willing to 
engage, comprehending the student’s work would be an interesting 
exercise that would focus attention on justifications (through their 
incomprehensibility), symbolisations (through the reliance on them as 
communication), and creative thinking (as students tried to fill in for 
themselves what they did not understand). 

Making mathematics learning more explicitly parallel to language 
learning provides new and effective ways of presenting material for 
all students. Language learning techniques such as split information 
tasks have been used successfully in monolingual as well as multi-
lingual situations. Much work has already been done in these areas, 
and a quick web-search will find many resources at any level. 

2. MATHEMATICAL DISCOURSE 

A particular source of linguistic richness in the mathematics 
classroom is the variety of mathematical discourse. 

The idea that mathematical language is different from everyday 
language has not been a large part of this book, although it is an 
important aspect of mathematics and language. The linguist Halliday 
(1975) first discussed mathematical discourse, and many articles since 
have described the differences between mathematical and general 
discourse in English (for example, Dale & Cuevas, 1987; Esty, 1992). 
For example, quite apart from the appearance of symbols, written 
mathematics is much more conceptually dense, there are many  
more logical connectives, and adjectives and prepositions are 
much more important than in written English. To illustrate the 
last point, consider the difference between:

The cost was reduced by $10 means… Cost - $10 = New price 
The cost was reduced to $10 means… Cost – Reduction = $10 
The cost was reduced from $10 means… $10 – Reduction = New price 
The cost was reduced $10 means… Cost - $10 = New price 
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I often wonder how students who are learners of English cope in a 
classroom when a teacher makes statements such as these. Hearing 
prepositions in spoken English is very difficult—try getting someone 
to read the sentences above, and listen for the prepositions. 

While mathematical discourse has most likely developed in res-
ponse to a need for exactness of language in mathematics, many 
expressions are, in English, far from unambiguous. For example, to 
stay with prepositions, the words into and by can each be used on their 
own to indicate multiplication or division: 

215  and 215  are both expressed as “fifteen by two” 

depending on the country you are in and the context of the 
calculation.

5 16  is described as “five into sixteen”, but the algebraic expression 

2 a b  is also read as “two into a plus b”.

There are big differences between mathematical discourse in 
different languages: the way proportion is expressed; the way an 
inference is made; the way existence or universality is indicated. 
Again, much has been written in this area (for example, for Mandarin, 
see Galligan, 2001), and the educational implications of these 
observations are significant, particularly for multilingual classrooms. 
Teachers may see such differences as cause for confusion, but the way 
in which mathematical discourse in different languages fits (or does 
not fit) with the symbolised expression of the statement is a rich 
source of mathematical discussion. Using language richness to 
highlight spoken/symbolised relationships is an effective strategy to 
alert students to areas (like proportion, inference, or quantifiers) that 
are common sources of misunderstanding. 

Those people who have tried to write equivalent mathematics 
questions in different languages for Olympiad competitions or for 
international comparative studies will know that some mathematical 
problems are easier when expressed in one language compared with 
another. Can such differences be used educationally? Certainly. The 
New Zealand national mathematics curriculum suggests that young 
children should be taught to count in Maori or another clearly base-ten 
language, rather than English. The idiosyncratic names for 11 and 12, 
and the reversal of tens and digits in naming the teens does not  
help the early development of base ten counting or writing figures 
correctly.
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A final note about mathematical discourse. Mathematics embodies 
a world that is related to the language spoken. That world is funda-
mental in the sense that it captures how we come to comprehend vital 
aspects of our experience: our idea of quantity, our conception of 
space, and the ways that we relate things to each other. Mathematics, 
therefore, is a useful environment for learning about other cultural 
views. In particular, it might be a useful environment for learning 
another language. 

This idea has been discussed in the context of Maori immersion 
education (Fairhall, 1993) where one of the aims is the rejuvenation of 
the Maori language. And that is a good point at which to transfer our 
attention to indigenous peoples’ mathematics education. 

3. MATHEMATICS EDUCATION  

FOR INDIGENOUS PEOPLES 

Socio-political context is everything. In 1994 I visited South 
Africa, then newly emerged under Mandela as a unified, apartheid-
free nation. I was still involved with the last stages of the Maori 
vocabulary development project with which this book began, and had 
recently come from teaching mathematics in Maori at a bilingual unit 
in an inner-city high school. 

At the (then) University of Durban-Westville, I was privileged  
to visit some teachers from Zululand who were on an in-service 
mathematics course. At the end of their session we chatted informally. 
Did they use SiZulu in their mathematics classrooms, I wanted to 
know? An embarrassed silence, glances at each other and around the 
room. “Yes”, one finally admitted quietly, “but we are not supposed 
to”. “But you are all first language Zulu speakers?” “Yes.” “And your 
students are all first-language Zulu speakers?” “Yes.” “And they have 
some difficulty with English?” “Yes.” It emerged that they were not 
permitted to use SiZulu at all, and that their principal would go around 
listening at the door to check that they did not use it—hence their 
reluctance to admit it. This school policy was justified by arguments 
about the ultimate learning goal being mathematics in English and the 
benefits of fluency in both a world language and a home language, 
and the educational research that showed that immersion in the target 
language was the best strategy. 
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This was curious for me. In New Zealand at that time the existence 
of fluent Maori-speaking teachers and students would have been 
welcomed by any school, and the opportunity taken to establish Maori 
language instruction with a lot of resources made available. Every 
teacher in every class in New Zealand was being encouraged to use 
whatever Maori vocabulary they could in appropriate places in their 
lesson. This behaviour was justified by arguments about the ultimate 
learning goal being mathematics in English and the benefits of fluency 
in both a world language and a home language, and by the educational 
research that showed that immersion in the target language was the 
best strategy. 

Yes, the same justification for two opposing educational policies. 
The explanation is not hard to find. New Zealand was going through a 
Maori cultural renaissance with a lot of pride being taken in our 
national language and heritage. South Africa, on the other hand, was 
newly emerged from an oppressive political regime in which one of 
the instruments of oppression was a law requiring education in the 
home language. In South Africa I was in quite a sensitive situation as 
a white male supporting home language instruction! In education, 
socio-political context is everything. 

The practical reality is that every indigenous peoples’ context  
is different: different with respect to their knowledge and use of 
languages; different with respect to their political situation in their 
own country; different with respect to their aims for education; diffe-
rent with respect to their access to resources; and more. However, 
some features of the many indigenous contexts are generally similar. 
The similarities make it possible to use our conclusions to make some 
suggestions.

Most indigenous peoples are relatively culturally homogenous and 
have some identity, often including location, within the wider society 
of the country (or countries) in which they live. In many cases the 
children are deeply immersed in their indigenous cultural world. Their 
home language and world-view are predominant in their lives, 
although they are subordinate in the wider, or national, community. 
We can assume, therefore, that an indigenous community is the envi-
ronment where a mathematical world different from NUC-mathe-
matics will be most strongly felt. 

Educationally, indigenous peoples are likely to have some communal 
aims for education that are different from those for wider society. 
However, in most such societies of my experience, an understanding 
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of NUC-mathematics and a world-language such as English are in-
cluded as desired outcomes, representing access to communication, 
further educational opportunities, employment, and development. 

How do we introduce children who have grown up in one world-
view to a different world-view? What are useful teaching approaches 
for groups of children speaking a language less consonant with NUC-
mathematics and with deeply embedded concepts of quantity, 
relationships and space at odds with the concepts of NUC-
mathematics?

One implication of what has gone before has already emerged in 
our discussion of the multi-lingual classroom. As a practical matter, in 
a linguistic environment of many speakers of one language who are at 
a similar stage of development with respect to English (or another 
world language), using the fluent language to assist the transition 
between worlds and development of new ideas is strongly indicated. A 
teacher with the same first-language as the children is in an especially 
privileged position to utilise language resources. 

But the mistake often made in mathematics classrooms is that 
teachers assume that the NUC-mathematics of the target curriculum is 
unproblematic as a subject. Understanding NUC-mathematics is not 
the same as understanding the nature of mathematics. Proficiency in 
the subject can lead to access, and is therefore a sensible educational 
aspiration, But knowing why mathematics performs this function, 
understanding its role in the lives of individuals or society, and com-
prehending the nature of the subject, is just as vital as an educational 
goal. My experience tells me that these three aspects of mathematics 
are not understood in most educational environments. 

The problem is that, especially in indigenous peoples’ education, 
not paying attention to the nature of mathematics may have devas-
tating educational effects. The relative alienation of indigenous children 
to mathematics (and science) can be explained at least partially 
because they are less likely to accept mathematics as relevant to their 
lives. If I do not know what I’m supposed to be learning, or why, then 
I am not likely to be interested in learning it. And if this thing I’m 
supposed to be learning is regarded as very important in the world, 
and if I’m failing, then yes, I’ll be even more alienated. 

Because we do not teach mathematics as culturally dependent, 
and because we do not acknowledge that NUC-mathematics 
may potentially conflict with deeply-held concepts and the means of  
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expressing them, we generate alienation and thereby under-achieve-
ment by communities of indigenous children. Individual children or 
communities often interpret reduced success as personal or group 
failure rather than systemic failure. Furthermore, because mathematics 
is related to measures of intelligence, educational ability, and social 
selection mechanisms, reduced success in mathematics impacts on 
self-esteem, future opportunities, and class divisions based on culture. 
Mathematics does this more strongly than other subjects. 

What might educationalists and teachers do to help? One sugges-
tion seems ridiculous in its simplicity, but I believe is both neglected 
and vital. We must explain what mathematics is—and we must do  
it in a way that children understand. We must not assume that 
mathematics is self-explanatory in its purpose or in its relation to 
society.

This injunction applies to all mathematics learning situations, not 
just indigenous ones. However, the consequence of not taking account 
of mathematics’ purpose and role is potentially much more disabling 
in those communities that are embedded in world-views and 
languages at odds with NUC-mathematics. 

What is the purpose and role of mathematics? The purpose is 
implied in my alternative description of mathematics: it is a system 
created by humans to help them understand their experiences of 
quantity, relationships, and space. Mathematics is an abstraction con-
tained within language and symbols that, once devised, can be both 
developed of itself or manipulated and used in relation to the world 
and ourselves in it. 

The role of mathematics is primarily to help us understand and act 
within our world. It is a tool to “construct our future” as D’Ambrosio  
explains (in a speech reported in Barton, Domite, & Poisard, 2006,  
p. 25): 

Individuals create instruments (such as mathematics) to enhance the 

possibility of survival and the transcendence of time and space. In this 

search, people attempt to explain the phenomena they encounter. These 

models and explanations are an attempt to know (and control) the future. 

D’Ambrosio offers ethnomathematics as a proposal that will 
ultimately (Barton, Domite, & Poisard, 2006, p. 25): 

…[create] a civilisation with dignity for all, free of inequity, arrogance, 

and bigotry. … The pedagogical aims are to promote creativity in helping 
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people reach their mathematical potential, and citizenship, by transmitting 

human values and responsibility within society. 

In this view, mathematics is much more that a system of equations 
to be studied for the construction of bridges or business. It is part of 
the essence of how we are to live as human beings. 

How can teachers in indigenous communities communicate the 
role and purpose of mathematics? Through the QRS systems of the 
indigenous culture, of course. By fully understanding those systems 
with which you are familiar, the awareness of other systems (and an 
interest in them) can be better generated. 

The children in indigenous cultures have the means to understand 
better than other children the nature and role of QRS systems, since 
they will have some knowledge of more than one culturally developed 
system. (I note that all children do have experience of alternative QRS 
systems, often generated in the youth subculture to which they belong, 
but that culturally developed systems are likely to be more comprehensive, 
more deeply embedded in language, and more widely known). 

There are at least two programmes that I am aware of where this 
kind of thinking is driving a mathematics education programme, 
one in Fairbanks Alaska where a team including Jerry Lipka, Evelyn 
Yanez, and Dora Andrew-Ihrke have for many years been incorpor-
ating Yup’ik systems into their mathematics education (Lipka, Yanez, 
& Andrew-Ihrke, 2006). They have evidence that their programme 
enhances the conventional mathematics performance of Yup’ik 
students. In The Maldives, Shehenaz Adam (2004) trialled a unit of 
work based on the same principles, and developed a theoretical 
framework on which some of the ideas above are based. 

The programmes that consider indigenous QRS systems as systems 
in themselves are very different from the unintegrated or casual use of 
cultural materials in a NUC-mathematics classroom. Such use may 
have small-scale pedagogical or motivational value for students, 
although my own experience leads me to be very cautious about 
taking cultural materials out of context. 

Note that the incorporation of an understanding of indigenous 
QRS-systems into a mathematics programme is being justified here 
for its efficacy in promoting the ultimate aim of understanding 
NUC-mathematics, albeit in a humanistic way. The success of such 
an approach is to be partially judged on successful learning of 
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NUC-mathematics, and partially on the ultimate use and values that 
students gain from mathematics in general. 

Finally let us return to a key conclusion of this book: mathematics 
and language develop together. Hence, indigenous students learning 
NUC-mathematics will be partially learning mathematical language in 
a way that those whose first language is English will not. It is even 
more important, therefore, that attention is paid to mathematical 
communication as a source of mathematics learning. And that is as 
good a sum-up statement as I can find. 



END WORDS 

Let us summarise. First the conclusions predominantly related to 
mathematics.

M1 Mathematics and language develop together. Historically this 
has been so, each of these two areas of human activity affect 
the other. 

M2 There are choices that get made in the origins and develop-
ment of mathematics. Mathematics could be different. A 
corollary of this is that there are still many undeveloped 
mathematical ideas. 

M3 Mathematics is created by communicating, that is, mathe-
matics is created in the act of communication about the QRS 
aspects of our world. A corollary of this is that mathematics 
is both enabled and restricted by the conventions of com-
munication.

M4 Mathematics arises after, not before, human activity, in 
response to human thinking about quantity, relationships, and 
space within particular socio-cultural environments. Thus the 
factors determining the choices made in the development of 
mathematics are primarily social and cultural. 

M5 
worlds represent systems of meaning concerned with quantity, 
relationships, or space. 

I make three further conclusions that relate to mathematical language. 

L1 Mathematical language development is in the direction of 
more similarity, that is, all languages are evolving to express 
QRS ideas in ways that are more and more the same. 

L2 Mathematical language (not just mathematics) evolves from 
the physical and social environment. 

L3 

Languages contain their own mathematical worlds. These

Mathematical language is more consonant with some lang-
uages, and less consonant with others. 
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And finally four conclusions related to mathematics education. 

E1 The key to understanding mathematics is to have a wide 

range of abstracting experiences from the everyday world on 

which to draw. 

E2 Learning mathematics, and doing mathematics, involves tal-

king mathematics: the more we talk mathematics, the better 

we will learn it and do it. 

E3 Multilingual classrooms are potentially fertile mathematical 

learning environments because of their linguistic richness. 

E4 Indigenous peoples can access better understanding of the 

nature and structures of mathematics through a thorough 

understanding of the nature and role of their own QRS 

systems.
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