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Parametric Lorenz Curves:
Models and Applications

José Marı́a Sarabia†

Abstract

The Lorenz curve (LC) is an important instrument for analyzing the size of distribu-
tion of income or wealth and inequality. Finding an appropriate functional form is
an important practical and theoretical problem. In this chapter we study parametric
models for the LC and some important applications.

The basic properties that a function should satisfy in order to be a genuine LC
are discussed. Next, we study the different ways for generating parametric families
of LCs, as well as some of their basic properties, including their relationship with
the underlying income distribution function. The basic parametric models proposed
in the literature are studied, including the Pareto, lognormal and other important
families of LCs.

Some general strategies to obtain extensions and generalizations of the basic
parametric models are presented. One of the main applications of LCs is the study
of inequality. We begin studying different measures of inequality together with their
expressions in terms of the LC. These measures include the Gini index and some
of their generalizations proposed by Kakwani (1980) and Yitzhaki (1983). Their
corresponding expressions for the proposed parametric families of LCs will be ob-
tained. The Lorenz ordering is also studied. The Lorenz ordering is a partial or-
der that allows the comparison of two distributions when its corresponding LCs do
not intersect. Some basic properties of this order are studied, including the effect
of transformations, its relations with other partial orderings and their application
to important parametric income distributions. The recent proposal of multivariate
versions of the LC are studied. Finally, some applications of the Lorenz curve are
presented.
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1 Introduction

The merits of parametric methods as opposed to non-parametric methods for the
construction of indices and inequality measures for income distributions have been
pointed out by Slottje (1990) and Ryu and Slottje (1996, 1999). These authors con-
clude, among other things, that the indices should be constructed using the para-
metric method and then the results checked using a non-parametric method. In this
regard, the Lorenz curve (LC) is an essential instrument for analyzing the size dis-
tribution of income, wealth and inequality and the problem of finding an appropriate
functional form is both an important practical and theoretical problem.

Some recent advances have contributed to the current development of this re-
search instrument. New ways to specify the Lorenz curve have been developed and
studied (see Section 4). On the other hand, the Lorenz ordering has been charac-
terized in important families of income distributions (see Kleiber and Kotz (2003)
and Section 6). The interest in and development of multivariate inequality measures
as well as the multivariate versions of the Lorenz curve (see Section 8) have led to
an increase in the amount of research devoted to this area. In this chapter we study
parametric models for the LC and some important applications.

The contents of this chapter are as follows. In Section 2 we study basic proper-
ties of the LC, including their relationship with the underlying income distribution
function. Section 3 reviews the LC of some important income models, including
the following distributions: classical Pareto, lognormal, Singh-Maddala and Dagum
type I. There exists a variety of approaches for the construction of parametric fam-
ilies of LC’s. In Section 4 we study the different ways of generating parametric
families of LC and some general strategies to obtain extensions and generalizations
of the basic parametric models. One of the main applications of the LC’s is the study
of inequality. Inequality indices derived from the Lorenz curve and other classical
inequality measures are studied in Section 5. The Lorenz ordering is a partial order
that allows us to compare two distributions when their corresponding LC’s do not
intersect. Properties of this order, and their application to important parametric in-
come distributions are studied in Section 6. Section 7 presents some variations of the
LC. The recent proposal of multivariate versions of the LC are studied in Section 8.
Finally, some applications of the Lorenz curve are presented in Section 9.

2 The Lorenz Curve. Basic Properties

The Lorenz curve is defined by points (p,L(p)), where p represents the cumula-
tive proportion of income-receiving units, and L(p) the cumulative proportion of
incomes, when the incomes are arranged in ascending order of magnitude.

In the empirical case, if we denote the ordered individual incomes in the popula-
tion by x1:n ≤ x2:n ≤ ·· · ≤ xn:n, then for i = 1,2, . . . ,n
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L(
i
n
) =

∑i
j=1 x j:n

∑n
j=1 x j:n

. (9.1)

The points ( i
n ,L( i

n )) are then linearly interpolated to complete the corresponding
Lorenz curve.

Now, our next step is to extend (9.1) to the continuous case. If n is large the
distribution of incomes within the population can be approximated by a continuous
distribution function F(x), with density f (x) related by F(x) =

∫ x
0 f (y)dy. The inter-

pretation here is similar to the previous one: for each positive x, F(x) represents or
approximates the proportion of individuals in the population whose income is less
than or equal to x. Now, we consider the k-moment distribution of the population
F(k)(x) defined by

F(k)(x) =
∫ x

0 ykdF(y)∫ ∞
0 ydF(y)

, k = 1,2, . . . (9.2)

where the denominator is assumed to be finite. If we set k = 1 in (9.2), then for each
x, F(1)(x) represents the proportion of the total incomes which accrues to individ-
uals with incomes less than or equal to x. The Lorenz curve corresponding to the
distribution F can be described as the set of points,

(F(x),F(1)(x)) (9.3)

defined in the unit square, where x ranges from 0 to ∞ completed if necessary by
linear interpolation.

An expression for the Lorenz curve can be constructed using the parametric rep-
resentation (9.3). We may write

L(p) = F(1)(F
−1(p)). (9.4)

To use formula (9.4) we obviously need closed form expressions for F(1) and F−1.
Let L be the class of all non-negative random variables with positive finite ex-

pectations. For a random variable X in L with cumulative distribution function FX
we define its inverse distribution function by

F−1
X (y) = inf{x : FX (x) ≥ y} (9.5)

Note that the mathematical expectation of X is µX =
∫ 1

0 F−1
X (y)dy. According to

Gastwirth (1971) we have the following definition.

Definition 9.1. Let X ∈ L with cumulative distribution function FX and inverse
distribution function F−1

X . The Lorenz curve LX corresponding to X is defined by

LX (p) =
1

µX

∫ p

0
F−1

X (y)dy, 0 ≤ p ≤ 1. (9.6)
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This definition contains the definition provided by (9.1) in the case of a finite popu-
lation and (9.2) in the continuous case. In formula (9.6) F−1

X is piecewise continuous
and the integrals can be assumed to be ordinary Riemann integrals.

From definition (9.6) we can show that a Lorenz curve will be a continuous, non-
decreasing convex function that is differentiable almost everywhere in [0,1] and
L(0) = 0 and L(1) = 1. These are properties that we expect to characterize an LC.
A formal characterization of a Lorenz curve attributed to Gaffney and Anstin by
Pakes (1981) is the following.

Theorem 9.1. Suppose L(p) is defined and continuous on [0,1] with second deriva-
tive L′′(p). The function L(p) is a Lorenz curve if and only if

L(0) = 0, L(1) = 1, L′(0+) ≥ 0, L′′(p) ≥ 0 in (0,1). (9.7)

The Lorenz curve determines the distribution of X up to a scale factor transfor-
mation. This is true since F−1

X (x) = µX L′(x) almost everywhere and F−1
X will de-

termine FX . Concerning the probability density function fX (x) associated with a
Lorenz curve L(p), we have the following result (Arnold, 1987).

Theorem 9.2. If L′′(p) exists and is positive everywhere in an interval (x1,x2), then
FX has a finite positive density in the interval (µL′(x+

1 ),µL′(x−2 )) which is given by

fX (x) =
1

µL′′(FX (x))
. (9.8)

As an illustration of these results, we consider Chotikapanich’s LC defined in (9.28).
The cumulative distribution function corresponding to this LC model is

F(x;k,µ) =
1
k

log
(

x
ckµ

)
, ckµ ≤ x ≤ ckµek,

where ck = k/(ek −1) and F(x;k,µ) = 0 if x ≤ ckµ and F(x;k,µ) = 1 if x ≥ ckµek.
Note that the cdf depends on k and a new scale parameter µ which represent the
population mean.

From a geometric viewpoint it is natural to enquire whether an LC exhibits sym-
metry. A Lorenz curve is symmetric if

L[1−L(p)] = 1− p, 0 ≤ p ≤ 1. (9.9)

If a random variable X has mean µ and density fX (x), its LC is symmetric if and
only if

fX (µ2/x)
fX (x)

=
(

x
µ

)3

,

for every x with fX (x) > 0.
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3 Lorenz Curves of Some Classical Income Distributions

In this section we review the LC corresponding to some important models of in-
come distributions. We begin with models corresponding to income distributions
with closed expressions for the inverse cdf which can be integrated so that and then
Gastwirth’s formula can be used. The first example corresponds to the classical
Pareto distribution (see Arnold (1983)) with cumulative distribution function

FX (x) = 1−
( x

σ

)−α
, x ≥ σ (9.10)

where σ > 0 is a scale parameter and α > 0 a shape parameter. For the Pareto
distribution the quantile function is,

F−1
X (y) = σ(1− y)−1/α , 0 < y < 1

and the mean µX = ασ/(α −1) if α > 1. Using (9.6) we obtain

LX (p) =
α −1
ασ

∫ p

0
σ(1− y)−1/α dy = 1− (1− p)1−1/α , 0 < p < 1 (9.11)

provided α > 1.
The Singh-Maddala distribution is one of the most popular distributions used in

practice to fit income and wealth data (Kleiber and Kotz, 2003). This distribution
was obtained by Singh and Maddala (1976) by considering the hazard rate of in-
come. Let X be a random variable with Singh-Maddala distribution with cdf,

FX (x) = 1− 1
[1+(x/σ)a]q

, x > 0 (9.12)

where a,q,σ > 0. Definition (9.12) corresponds to the Pareto IV distribution, in the
Arnold (1983) Pareto hierarchy. If q > 1/a then using expression (9.6) the Lorenz
curve of (9.12) is,

LX (p) =
1

µX

∫ p

0
σ [(1− y)−1/q −1]1/ady

=
σq
µX

∫ z

0
t1/a(1− t)q−1/a−1dt

= Iz(1+1/a,q−1/a), 0 ≤ p ≤ 1

where z = 1− (1− p)1/q and Ix(a,b) denotes the incomplete beta function ratio
defined as (0 < x < 1)

Ix(a,b) =
∫ x

0 ta−1(1− t)b−1dt∫ 1
0 ta−1(1− t)b−1dt

. (9.13)
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Another important income distribution is the Dagum type I distribution (Dagum,
1977) with cdf

F(x) = [1+(x/σ)−a]−q, x > 0 (9.14)

where a,q,σ > 0. This distribution is related with the Singh-Maddala distribution
by the inverse transformation 1/X . Since the quantile function is available in closed
form, the LC can be written as (Dagum, 1977),

L(p) = Iz(q+1/a,1−1/a), 0 ≤ p ≤ 1 (9.15)

where z = p1/q, a > 1 and Ix(a,b) is defined in (9.13). The Gini index is given by,

G =
Γ (q)Γ (2q+1/a)
Γ (2q)Γ (q+1/a)

−1.

Another group of income distributions corresponds to families where all of the
kth moment distributions and the original distribution belong to the same family so
that formulas (9.3) or (9.4) can be applied. Consider a lognormal distribution, for
which the cumulative distribution function is given by

F(x) = Φ(
logx−µ

σ
), x > 0 (9.16)

where Φ denotes the cdf of the standard normal distribution. This distribution will
be denoted by X ∼ L N (µ,σ2). The inverse of the cdf is F−1(x) = exp[µ +
σΦ−1(x)] and the cdf of the kth moment distributions is again lognormal and is
given by Aitchison and Brown (1957),

X(k) ∼ L N (µ + kσ2,σ2), k = 1,2, . . . (9.17)

In particular X(1) ∼ L N (µ + σ2,σ2). Now, by introducing F−1 and F(1)(x) in
formula (9.4) we obtain the LC corresponding to the lognormal distribution which
is given by

L(p) = Φ(Φ−1(p)−σ), 0 < p < 1. (9.18)

The gamma distribution is another popular distribution used in analysis of income
and wealth data. The pdf of a gamma distribution is

f (x) =
xα−1e−x/σ

σαΓ (α)
, x > 0 (9.19)

where σ > 0 is a scale and α > 0 a shape parameter. A random variable with
pdf (9.19) will be denoted as X ∼ G (α,σ). The gamma distribution includes as
particular cases the exponential (α = 1) and the chi-square distribution (α = n/2,
n = 1,2, . . . ). The cdf of the gamma distribution can be written as

F(x) =
γ(α,x/σ)

Γ (α)
, x > 0 (9.20)
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where γ(a,x) denotes the incomplete gamma function defined as,

γ(a,x) =
∫ x

0
ta−1e−tdt (9.21)

with a,x > 0. The kth moment distribution is distributed again as a gamma distri-
bution, that is, X(k) ∼ G (α + k,σ) and thus the Lorenz curve can be expressed in a
parametric fashion using (9.3) and (9.20). We thus have that

(p,L(p)) = (
γ(α,x/σ)

Γ (α)
,

γ(α +1,x/σ)
Γ (α +1)

), x > 0. (9.22)

Sarabia and Castillo (2005) have obtained expressions for the LC and the Gini index
for a general class of max-stable income distributions.

In order to complete this section we include the LC corresponding to a discrete
random variable. Let X be a geometric distribution with probability mass function
Pr(X = k) = pqk−1, k = 1,2, . . . with 0 < p < 1 and q = 1− p. Using formula (9.6),
the LC is (Gastwirth, 1971)

L(u) = 1− kqk−1 +(k−1)qk + kp[u− (1−qk−1)],

if 1−qk−1 ≤ u ≤ 1−qk, k = 1,2, . . . The Gini index is given by (Dorfman, 1979):
G = (1− p)/(2− p).

Table 9.1 summarized the Lorenz curves and the Gini index of some important
income distributions.

Table 9.1: Lorenz curves and Gini indices of Classical Income Distributions.

Distribution Lorenz Curve Gini Index

Uniform U [a,b] L(p) = 2ap+(b−a)p2

a+b G = b−a
3(a+b)

Exponential1 L(p) = p+(1+ µ
σ )−1(1− p) log(1− p) G = σ

2(µ+σ)

Classical Pareto L(p) = 1− (1− p)1−1/α G = 1
2α−1

Singh-Maddala L(p) = Iz(1+1/a,q−1/a) G = 1− Γ (q)Γ (2q−1/a)
Γ (q−1/a)Γ (2q)

where z = 1− (1− p)1/q

Dagum L(p) = Iz(q+1/a,1−1/a) G = Γ (q)Γ (2q+1/a)
Γ (2q)Γ (q+1/a) −1

where z = p1/q

Lognormal L(p) = Φ(Φ−1(p)−σ) G = 2Φ( σ√
2
)−1

Classical Gamma (p,L(p)) = ( γ(α,x/σ)
Γ (α) , γ(α+1,x/σ)

Γ (α+1) ) G = Γ (α+1/2)√
πΓ (α+1)

1Exponential distribution with cdf F(x) = 1− e−(x−µ)/σ if x > µ , with µ,σ > 0.
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4 Models of Parametric Lorenz Curves

There exists a variety of approaches for the construction of parametric families of
LC’s. The first obvious approach consists of starting from an appropriate parametric
family of income distribution functions and obtaining the corresponding LC by ana-
lytically using representations (9.4) or (9.6), as we have seen in the previous Section.
A second approach consists of selecting parametric families of simple curves satis-
fying the required conditions for Lorenz curves given in Theorem 9.1. This method
usually leads to complicated distribution functions, but may be flexible enough for
fitting empirical Lorenz curves.

Several parametric models have been proposed in using the second approach.
The pioneer model was established by Kakwani and Podder (1973), who proposed
the functional form,

L(p) = pα e−β (1−p), 0 ≤ p ≤ 1, (9.23)

with β > 0 and α ≥ 1 (see also Rao and Tam (1987)). An alternative parameter-
ization of this model was provided by Gupta (1984). Kakwani and Podder (1976)
also proposed a new parametric model based on a geometric motivation. This model
expresses a point of the LC as (x,y), where y is the length of the ordinate from LC
on the egalitarian line and x is the distance of the ordinate from the origin along the
egalitarian line. This model was completed by Rasche et al. (1980) who proposed
the family of curves

L(p) = [1− (1− p)α ]β , 0 ≤ p ≤ 1 (9.24)

where 0 < α ≤ 1 and β ≥ 1. If β = 1 we obtain the LC (9.11) corresponding to the
classical Pareto distribution, and if α = 1/β a symmetric LC is obtained according
to definition (9.9).

Using several well-known sets of data Villaseñor and Arnold (1989) observed
that segments of ellipses frequently fit data surprisingly well. The class of elliptical
LC is given by

L(p;α,β ,δ ) =
1
2

[
(a−β p)−

√
a2 +bp+ cp2

]
(9.25)

where a = α +β +δ +1 > 0, b = −2aβ −4δ , c = β 2 −4α , α +δ ≤ 1, and δ ≥ 0.
Equation (9.25) implies that any point (pi,qi) must satisfy yi = αxi + β zi + δwi,
i = 1,2, . . . ,n, where yi = qi(1−qi), xi = p2

i −qi, zi = qi(pi −1), and wi = pi −qi.
This is a linear function of α , β and δ and the least square estimation method can be
applied. Using this fact, robust estimation methods have been proposed by Castillo
et al. (1998). This functional form provides excellent fit and the associated distri-
bution and density functions are available in closed form. In a similar geometric
context and from a proposal by Aggarwal (1984) and Aggarwal and Singh (1984),
Arnold (1986) considered a hyperbolic functional form for the LC given by
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L(p;α,β ) =
p[1+(α −1)p]

1+(α −1)+β (1− p)
, 0 ≤ p ≤ 1 (9.26)

where α,β > 0 and α −β < 1. Models (9.25) and (9.26) can be considered to be
within the class of general quadratic Lorenz curves (Villaseñor and Arnold, 1989).
The circular LC was considered by Ogwang and Rao (1996).

Arnold et al. (1987) proposed a class of LC of the form,

L(p;σ) = F(F−1(p)−σ), σ ≥ 0, (9.27)

where F(·) is any strongly unimodal cdf. For instance, if F = Φ , we obtain the LC
(9.18), corresponding to a classical lognormal distribution.

Chotikapanich (1993) proposed the uniparametric model,

L(p;k) =
ekp −1
ek −1

, 0 ≤ p ≤ 1 (9.28)

where k > 0 and where the limit case k → 0 corresponds to the egalitarian line. With
several data sets the model outperforms those of Kakwani and Podder (1976) and
Rasche et al. (1980) in terms of the Gini coefficient estimation but is not as good for
predicting expenditures shares.

Sarabia (1997) considered an alternative method for the construction of LC spec-
ifying an appropriate quantile function, and using it to generate the LC. Using the
generalized Tukey’s Lambda distribution, this author obtained a family of nested
models, which, in the most general case, is

L(p) = π1 p+π2 pα1 +(1−π1 −π2)[1− (1− p)α2 ], 0 ≤ p ≤ 1,

where 0 ≤ π1,π2 ≤ 1, α1 ≥ 1 and 0 < α2 ≤ 1. This model is a mixture of the egali-
tarian line, the power LC and the classical Pareto LC.

Another important model was considered by Basmann et al. (1990), which ex-
tend Kakwani and Podder’s model (9.23). Ryu and Slottje (1996) introduced two
flexible functional form approaches to approximate Lorenz curves, an exponen-
tial polynomial and a Bernstein polynomial expansion. Holm (1993) has based his
model on the principle of maximum entropy and Sarabia and Pascual (2002) on
linear exponential loss functions.

Recent research on the Lorenz curve (Basmann et al., 1990; Ryu and Slottje,
1996; Ogwang and Rao, 2000) has shown that some families of LCs approximate
some segments of the income distributions well but not others segments. In the next
subsection we propose some general strategies to obtain extensions and generaliza-
tions of the basic parametric models.
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4.1 A Hierarchical Family

Recently, Sarabia et al. (1999) have suggested a general method for obtaining a hi-
erarchical family of LC that unifies and synthesizes some of the previous proposals,
as well as providing good fit in the whole the range of the data. If we begin with
any Lorenz curve L0 the following curves are also Lorenz curves that generalize the
initial model L0:

L1(p;α) = pα L0(p), α ≥ 1 or 0 ≤ α < 1 and L′′′
0 (p) ≥ 0, (9.29)

L2(p;γ) = [L0(p)]γ , γ ≥ 1, (9.30)
L3(p;α,γ) = pα [L0(p)]γ , α ≥ 1 or 0 ≤ α < 1 and L′′′

0 (p) ≥ 0, (9.31)

An advantage of this method is that Lorenz ordering results are obtained. Equations
(9.29) and (9.30) are ordered with respect to their parameters α and γ and a combi-
nation of these cases yield ordering results for (9.31).

This method allows for the generation of a hierarchy of Lorenz curves starting
from an initial curve L0. A relevant family is generated from

L0(p) = L0(p;k) = 1− (1− p)k, 0 < k ≤ 1,

which is the LC (9.11) associated to the classical Pareto distribution. Since
L
′′′
0 (p;k) > 0 we can apply results in a general way. We can consider the para-

metric family of Lorenz curves,

L1(p;k,α) = pα [1− (1− p)k], α ≥ 0 (9.32)
L2(p;k,γ) = [1− (1− p)k]γ , γ ≥ 1, (9.33)

L3(p;k,α,γ) = pα [1− (1− p)k]γ , α ≥ 0, γ ≥ 1, (9.34)

which is called the Pareto hierarchy of Lorenz curves, since they originate from
the Pareto distribution. Family (9.32) coincides with the family proposed by Ortega
et al. (1991) and (9.33) with the family proposed by Rasche et al. (1980). A detailed
study of the family (9.34) can be found in Sarabia et al. (1999). The method has been
used to generate other families of Lorenz curves beginning with different choices
for L0. If we begin with the Chotikapanich LC given in (9.28), we obtain a new
family of LC, called the exponential family of LC by Sarabia et al. (2001). This
approach was also used by Sarabia and Pascual (2002). Table 9.2 summarized the
Pareto LC family.

4.2 Mixture Lorenz Curve

A possible solution for obtaining better fit consists in building more complex models
combining some of the classical models using convex linear combinations of LCs.
The proposals of Sarabia (1997) and Ogwang and Rao (2000) respond to this idea.



Parametric Lorenz Curves: Models and Applications 177

Table 9.2: The Pareto Lorenz curve family.

Lorenz Curve Gini Index

L0(p;k) = 1− (1− p)k G = 1−k
1+k

L1(p;k,α) = pα [1− (1− p)k] G = 1−2[B(α +1,1)−B(α +1,k +1))]

L2(p;k,γ) = [1− (1− p)k]γ G = 1− 2
k [B(1/k,γ +1)]

L3(p;k,α,γ) = pα [1− (1− p)k]γ G = 1−2∑∞
i=0

Γ (i−γ)
Γ (i+1)Γ (−γ) B(α +1,ki+1)

In this sense, one of the reasons that can explain the lack of fit in some LC’s is the
existence of some factor of heterogeneity in the population (for example, age, gender
or education), so the LC varies from some individuals to others. If we compose the
initial LC with the heterogeneity (described in terms of a known pdf) we obtain a
new LC called a mixture LC (Sarabia et al., 2005). If L(p;θ) denotes a LC, and we
assume that θ varies according to an absolutely continuous density function π(θ)
with support on a set Θ ⊂ R, the expression

L̃(p) =
∫

Θ
L(p;θ)π(θ)dθ

defines a genuine LC. Several mixture LC models have been proposed by Sarabia
et al. (2005). For example, if a power LC is composed with a gamma distribution,
we obtain the LC,

L(p;α,σ) =
p

(1−σ log p)α .

5 Inequality Measures Derived from the Lorenz Curve

The two best known measures of inequality which are directly related to the Lorenz
curve are the Gini and Pietra indices. Both indices can be viewed as alternative
forms of measuring the distance between the Lorenz curve and the egalitarian line.
The Gini index is defined as twice the area between the egalitarian line and the
Lorenz curve

GX = 2
∫ 1

0
[p−LX (p)]d p = 1−2

∫ 1

0
LX (p)d p. (9.35)

There are several alternative expressions of the Gini index equivalent to (9.35). One
of the most important is
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GX = 1− E(X1:2)
µ

= 1− 1
µ

∫ ∞

0
[1−FX (x)]2dx (9.36)

where X1:2 is the smaller of a sample of size 2 coming from the cdf FX . This expres-
sion is useful when we have a closed form for the cumulative distribution function
(see, for example, Cronin (1979)).

A second important inequality measure is the Pietra index, which is defined as
the maximal vertical deviation between the Lorenz curve and the egalitarian line

PX = max
0≤p≤1

{p−LX (p)} . (9.37)

If we assume that F is strictly increasing on its support, the function p− LX (p)
will be differentiable everywhere on (0,1) and its maximum will be reached when
1−F−1(x)/µ is zero, that is, when x = F(µ). The value of p−LX (p) in this point
is given by

PX = F(µ)− 1
µ

∫ F(µ)

0
[µ −F−1(y)]dy =

1
2µ

∫ ∞

0
|z−µ|dF(z),

in consequence

PX =
E|X −µ|

2µ
,

which is an alternative formula for the Pietra index. For the classical Pareto distri-
bution (9.10) the mean is µ = α/(α −1) if α > 1 and F(µ) = 1− (α/(α −1))−α

and thus the Pietra index is

PX = F(µ)−L(F(µ)) =
(α −1)α−1

αα .

There are several generalizations of the Gini index proposed in the literature.
Mehran (1976)considered the general class of linear measures of the form

I(w) =
∫ 1

0
[p−LX (p)]dw(p), (9.38)

where w(p) is some increasing function which allows value judgments about in-
equality to be incorporated. Note that I(w) is always compatible with the Lorenz
order. If we take w(p) = 2p, 0 ≤ p ≤ 1, we obtain the Gini index.

Another important generalization of the Gini index was proposed by Yitzhaki
(1983). This author proposed the generalized Gini index defined as

Gν = 1−ν(ν −1)
∫ 1

0
(1− p)ν−2LX (p)d p, (9.39)

where ν > 1. If ν = 2 we obtain the Gini index. When ν increases, higher weights
are attached to small incomes. The limit case when ν goes to infinity depends on the
lowest income, expressing the judgement introduced by Rawls, that social welfare
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depends only on the poorest society member. On the other hand, it can be proved
that (Muliere and Scarsini, 1989)

Gν = 1− E(X1:ν)
µX

,

which can also be seen as a generalization of (9.36). For the classical Pareto LC
(9.11) Yitzhaki’s index (9.39) is,

Gν =
ν −1

αν −1
, α,ν > 1.

Arnold (1983, p. 109) has proposed next generalization of the Gini index,

G̃n = 1− E(X1:n+1)
E(X1:n)

.

The Gini index corresponds to the case n = 1. The set of all such indices {G̃n : n =
1,2, . . .} determines the parent distribution up to a scale factor.

Another two important inequality measures deserve our attention: the Atkinson
(1970) inequality measures and the generalized entropy indices. The Atkinson in-
equality indices are defined as

A(ε) = 1−
[∫ ∞

0
(x/µ)1−ε dF(x)

]1/(1−ε)

, ε > 0, (9.40)

where ε is a parameter that controls the inequality aversion. The limit cases ε → 1
and ε → ∞ are

A(1) = 1− 1
µ

exp
{∫ ∞

0
log(x)dF(x)

}
,

A(∞) = 1− F−1(0)
µ

.

The generalized entropy indices are

G(θ) =
1

θ(θ −1)

∫ ∞

0

[
(x/µ)θ −1

]
dF(x), θ �= 0,1 (9.41)

and

G(0) =
∫ ∞

0
log(µ/x)dF(x),

G(1) =
∫ ∞

0
(x/µ) log(x/µ)dF(x).

These two latter indices are known as the Theil coefficients. Indices (9.40) and
(9.41) can be written in terms of the LC using the formulas,
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A(ε) = 1−
{∫ 1

0
[L′

X (p)]1−ε d p
}1/(1−ε)

, ε > 0 (9.42)

G(θ) =
1

θ(θ −1)

∫ 1

0

{
[L′

X (p)]θ −1
}

d p, θ �= 0,1 (9.43)

These formulas allow these indices to be obtained directly from the Lorenz curve
without the necessity of knowing the underlying cumulative distribution function.
For the classical Pareto distribution with LC (9.11), using (9.43) the generalized
entropy index is given by (θ �= 0,1),

G(θ) =
1

θ(θ −1)

[(
1− 1

α

)θ α
α −θ

−1

]

where α > max{1,θ}.

6 Lorenz Order

In this section we study the Lorenz ordering and its applications to the most im-
portant income distributions, including the members of the family proposed by
McDonald (1984). Lorenz curves can be used to define an ordering in the space
of the L distributions. If two distribution functions have associated Lorenz curves
which do not intersect, they can be ordered without ambiguity in terms of wel-
fare functions which are symmetric, increasing and quasiconcave (Atkinson, 1970);
(Dasgupta et al., 1973; Shorrocks, 1983).

Definition 9.2. Let X and Y be random variables belonging to L class. The Lorenz
order ≤L on L is defined by,

X ≤L Y ⇐⇒ LX (p) ≥ LY (p), ∀p ∈ [0,1]. (9.44)

If X ≤L Y , then X exhibits less inequality than Y in the Lorenz sense. Note that the
Lorenz order is a partial order and is invariant with respect to scale transformation.
We present two relevant examples of the Lorenz order:

• Let Xi ∼ Pa(αi,σi), i = 1,2 be Pareto distributions with cdf (9.10). Then:

X1 ≤L X2 ⇐⇒ α1 ≥ α2.

• Let Xi ∼L N (µi,σi), i = 1,2 be lognormal distributions with cdf (9.16). Then:

X1 ≤L X2 ⇐⇒ σ1 ≤ σ2.

The proof of these results is direct by checking the Lorenz curve. Other stronger
definitions of stochastic orderings are useful in this context. Let X and Y be random
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variables in L with distribution functions FX and FY . Star-shaped ordering is de-
fined as follows (Arnold, 1987).

Definition 9.3. We say that X is star-shaped with respect to Y , and we write X ≤∗ Y
if F−1

X (x)/F−1
Y (x) is a non-increasing function of x.

This definition is specially useful when the quantile function is available in a closed
form. The star-shaped ordering implies the Lorenz ordering.

Theorem 9.3. Suppose that X ,Y ∈ L . If X ≤∗ Y , then X ≤L Y .

The proof of this result is as follows. Without loss of generality we may assume that
E(X) = E(Y ) = 1, since both orders are scale invariant. Then,

LX (p)−LY (p) =
∫ p

0
[F−1

X (y)−F−1
Y (y)]dy.

Now, since F−1
X (y)/F−1

Y (y) is a non-increasing function, the integrand is first posi-
tive and then negative as y ranges from 0 to 1. In consequence the integral assumes
its smallest value when p = 1. Thus, LX (p)−LY (p) ≥ LX (1)−LY (1) = 1−1 = 0,
and X ≤L Y .

This result was used by Wilfling (1996) for proving the Lorenz ordering in the
Singh-Maddala family (see below).

The next theorem established by Fellman (1976), examines the Lorenz order
between a random variable X and a transformation g(X).

Theorem 9.4. Let f : R+ → R+ be a continuous function satisfying

1. g(x) > 0 for all x > 0,
2. g(x) is non-decreasing on [0,∞) and g(x)/x is non-decreasing on (0,∞).

If g(X) ∈ L then g(X) ≤L X.

Let us now focus our attention on three important income distributions proposed
in the literature. The generalized gamma (GG) and generalized beta of the first and
second kind (GB1 and GB2) (see McDonald (1984)) are defined in terms of their
probability density functions (a, p,q,σ > 0):

fGG(x;a, p,σ) =
axap−1e−(x/σ)a

σapΓ (p)
, x ≥ 0, (9.45)

fGB1(x;a, p,q,σ) =
axap−1[1− (x/σ)a]q−1

σapB(p,q)
, 0 ≤ x ≤ b (9.46)

fGB2(x;a, p,q,σ) =
axap−1

σapB(p,q)[1+(x/σ)a]p+q , x ≥ 0 (9.47)

and 0 otherwise. The parameter σ in (9.45), (9.46) and (9.47) is a scale parame-
ter and, due to the fact that the Lorenz ordering is invariant with respect to scale
changes, it can be assumed without loss of generality that it is equal to 1. Thus we
will represent them as X ∼ GG(a, p), X ∼ GB1(a, p,q) and X ∼ GB2(a, p,q).
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These models include an important number of income distributions pro-
posed in the literature. The generalized gamma includes the usual gamma dis-
tribution (GG(1, p) ≡ G(p)), the Weibull distribution (GG(a,1) ≡ W (a)) and
the exponential distribution (GG(1,1) ≡ E(1)). The GB2 includes the usual
beta distribution of the second kind (GB2(1, p,q) ≡ B2(p,q)), the Singh-
Maddala distribution (GB2(a,1,q) ≡ SM(a,q)), the Dagum (1977) distribution
(GB2(a, p,1) ≡ D(a, p)), the Lomax distribution (GB2(1,1,q) ≡ L(q)) and the
Fisk distribution (GB2(a,1,1) ≡ F(a)). Both of the generalized beta distributions
include the generalized gamma as a limiting case.

The next result provides the Lorenz order within the family of generalized
gamma distributions defined in (9.45) (Taillie, 1981; Wilfling, 1996).

Theorem 9.5. Let Xi ∼ GG(ai, pi), i = 1,2 be generalized gamma distributions.
Then,

X1 ≥L X2 ⇐⇒ a1 ≤ a2 and a1 p1 ≤ a2 p2.

For the GB2 family, the Lorenz ordering can be verified for certain parametric
configurations (Kleiber, 1999).

Theorem 9.6. Let Xi ∼ GB2(ai, pi,qi), i = 1,2 be GB2 distributions with finite
means. Then

1. If a1 ≤ a2, a1 p1 ≤ a2 p2 and a1q1 ≤ a2q2 then X1 ≥L X2.
2. If X1 ≥L X2 then a1 p1 ≤ a2 p2 and a1q1 ≤ a2q2.

This theorem leaves open some parameter configurations of the kind a1 ≤ a2,
p1 ≥ p2 and q1 ≥ q2, with a1 p1 ≥ a2 p2 and a1q1 ≥ a2q2. In spite of these holes, this
result allows a complete characterization of many subfamilies coming from GB2
distribution. Some important cases are the following:

• Let Xi ∼ SM(ai,qi), i = 1,2 be Singh-Maddala distributions with cdf given in
(9.12). Then (Wilfling and Krämer, 1993; Wilfling, 1996):

X1 ≥L X2 ⇐⇒ a1q1 ≤ a2q2, and a1 ≤ a2.

• Let Xi ∼ B2(pi,qi,σi), i = 1,2 be beta distributions of the second kind. Then:

X1 ≥L X2 ⇐⇒ p1 ≤ p2, and q1 ≤ q2.

• Let Xi ∼ D(ai,qi), i = 1,2 be Dagum distributions with cdf (9.14). Then
(Kleiber, 1996, 1999)

X1 ≥L X2 ⇐⇒ a1q1 ≤ a2q2, and a1 ≤ a2.

The following results (Sarabia et al., 2002) establish some additional Lorenz
orderings involving the three families of distributions (9.45)-(9.47).

Theorem 9.7. Assume that one of the following conditions holds:

1. Let X ∼ GG(ã, p̃) and Y ∼ GB2(a, p,q), with aq > 1, ã ≥ a and ãp̃ ≥ a.
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2. Let X ∼ GB1(a, p,q) and Y ∼ GB2(ã, p̃, q̃), with ãq̃ > 1, a ≥ ã, ap ≥ ãp̃ and
aq ≥ ãq̃.

3. Let X ∼ GB1(a, p,q) and Y ∼ GG(ã, p̃), with a ≥ ã, ap ≥ ãp̃.

Then: X ≤L Y

A whole range of literature is available for studying sampling theory of Lorenz
curves (Beach and Davidson (1983) and Bishop et al. (1989) among others). The
problem of making inequality comparison when Lorenz curves intersect has been
studied by Shorrocks and Foster (1987) and Davies and Hoy (1995).

7 Variations of the Lorenz Curve

The generalized Lorenz curve (GLC) introduced by Shorrocks (1983) is the most
important variation of the LC. The LC is scale invariant and is thus only an indicator
of relative inequality. However, it does not provide a complete basis for making
social welfare comparisons. The Shorrocks proposal is the generalized Lorenz curve
defined as

GLX (p) = µX ·LX (p) =
∫ p

0
F−1

X (y)dy, 0 ≤ p ≤ 1. (9.48)

Note that GLX (0) = 0 and GLX (1) = µX . A distribution with a dominating GLC
provides greater welfare according to all concave increasing social welfare func-
tions defined on individual incomes (Kakwani (1984) and Davies et al. (1998)). On
the other hand, the GLC is no longer scale-free and in consequence it determines
any distribution with finite mean. The order induced by (9.48) is the second-order
stochastic dominance

X1 ≤GL X2 ⇐⇒
∫ x

0
F1(y)dy ≤

∫ x

0
F2(y)dy, x ≥ 0,

which has been studied by Thistle (1989). This order is a new partial ordering,
and sometimes it allows a bigger percentage of curves to be ordered than in the
Lorenz ordering case. The normative interpretations for the restrictions required on
the class of social welfare function to satisfy a GLC dominance have been studied
by Shorrocks and Foster (1987) and Davies and Hoy (1994) among others.

Other variations of the LC have been proposed. The absolute Lorenz curve intro-
duced by Moyes (1987) is defined by,

ALX (p) = µX · [LX (p)− p] =
∫ p

0
[F−1

X (u)−µX ]du, 0 < p < 1.

Note that the new definition changes scale invariance with location invariance.
Zenga (1984) defined next concentration curve,

ZC(p) = 1− F−1(p)
F−1

(1) (p)
, 0 < p < 1,
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which is scale free and belongs to the unit square.

8 Multivariate Lorenz Curves

We finish this chapter about Lorenz curves with their extensions to higher dimen-
sions. Although the use of multivariate income data is becoming increasingly more
habitual, the proposals of multivariate Lorenz curves are very recent. The pioneer
work in this field is due to Taguchi (1972a,b) and Arnold (1987). A recent multi-
variate version of the LC is based on the concept of Lorenz zonoid of the population
introduced by Koshevoy (1995) and Koshevoy and Mosler (1996). Their idea is
based on a vision of the usual LC as a convex region bordered by L(p) and L̃(p),
where L̃(p) = 1−L(1− p) is the dual Lorenz curve. With this idea, the area between
these two curves is the classical Gini index.

The multivariate Lorenz curve is a generalization of this concept to d +1 space.
Consider the set L d of probability distribution functions on Rd

+ that have finite and
strictly positive expectations µ j =

∫
R+

x jdF(x), j = 1,2, . . . ,d and set

x̃ = (x̃1, . . . , x̃ j)�, x̃ j = x j
µ j

, j = 1,2, . . . ,d.

Then, X̃ is the normalization of X with expectation 1d = (1, . . . ,1)�. For F ∈L d ,
the set

LZ(F) = {z ∈ Rd+1 : z = (z0,z1, . . . ,zd) = ζ (h)}
where

ζ (h) =
(∫

Rd
+

h(x)dF(x),
∫

Rd
+

h(x)x̃dF(x)
)

for every measurable function h : Rd
+ → [0,1], is called the Lorenz zonoid. The

Lorenz zonoid is a convex compact subset of the unit hypercube in Rd+1
+ containing

the origin and the point 1d+1 in Rd+1. Now, we define a generalization of the LC.
For F ∈ L d , let us consider the set

Z(F) = {y ∈ Rd
+ : y =

∫
Rd

+

h(x)x̃dF(x), h : Rd
+ → [0,1], measurable},

which is called the F zonoid.
Note that if (z0,z1, . . . ,zd) ∈ LZ(F), then (z1, . . . ,zd) ∈ Z(F). The F zonoid is

contained in the unit cube on Rd
+ and consists of all total portion vectors held by

subpopulations. If d = 1, Z(F) is the unit interval. For a given (z1, . . . ,zd) ∈ Z(F),
we have (z0,z1, . . . ,zd) ∈ LZ(F) if and only if z0 is in the closed interval between
the smallest and the largest percentage of the population by which the portion vector
(z1, . . . ,zd) is held. This leads us to the definition of an inverse Lorenz function. The
function lF : Z(F) → R+ defined as

lF(y) = max{t ∈ R+ : (t,y) ∈ LZ(F)},
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is called the inverse Lorenz function of F . Its graph is the Lorenz surface of F . In
terms of a distribution of commodities, the function lF(y) is equal to the maximum
percentage of the population whose total portion amounts to y. The multivariate
order is defined as the set inclusion ordering of Lorenz zonoids

F ≥LZ G ⇐⇒ LZ(F) ⊇ LZ(G),

and implies the usual Lorenz ordering of all marginal distributions. Finally, the mul-
tivariate Gini index is defined as the volume of their Lorenz zonoid LZ(F)

G = vol[LZ(F)] =
E(|detQF |)

(d +1)!∏d
j=1 E(Xj)

,

where QF is the (d + 1)× (d + 1) matrix with rows (1,Xi), i = 1,2, . . . ,d + 1, and
X1, . . . ,Xd+1 are i.i.d. with cdf F .

The Lorenz zonoid order and the multivariate Gini index appear to be good
choices as suitable d-dimensional analogs of the Lorenz order and the Gini index.
However, there are some problems. Sometimes, the zonoid can have zero volume
for some non-degenerate distributions. In response to this, Mosler (2002) has pro-
vided a modified definition to rectify this problem. Several alternative definitions
for a Lorenz order among d-dimensional non-negative random vectors have been
proposed by Arnold (2007).

9 Applications of the Lorenz Curves

Application of Lorenz curves and associated concentration measures is encountered
in a broad spectrum of modern scientific fields. Many authors in very different areas
of investigation have realized the usefulness of these instruments. Atkinson (1970),
in his seminal and influential paper showed that the rules for ordering risky prospects
can be written in terms of Lorenz curves (Hadar and Russell, 1969; Hanoch and
Levy, 1969; Rothschild and Stiglitz, 1970). Perhaps the greatest number of applica-
tions can be found in the usual field of income distributions and poverty (Sen, 1976)
but also in the field of finance. In this last field, rules for ordering risky prospects
using the Gini index and for the evaluation of risky assets have been studied and
developed (Yitzhaki, 1982; Shalit and Yitzhaki, 1984).

Other applications include the use of the Lorenz/Leimkuhler concentration
curves in informetric contexts (Burrell, 2005), Lorenz curves of cumulative elec-
tricity consumption (Jacobson and Kammen, 2005), LC and Gini index to assess
yield inequality within paddocks (Sadras and Bongiovanni, 2004) or characteriza-
tion of the early growth inequality of ninety crosses of Chinese fir (Ma et al., 2006),
to mention but a few examples.
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