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Foreword

Jean-Jacques Rousseau wrote in the Preface to his famous Discourse on Inequality
that “I consider the subject of the following discourse as one of the most interesting
questions philosophy can propose, and unhappily for us, one of the most thorny that
philosophers can have to solve. For how shall we know the source of inequality
between men, if we do not begin by knowing mankind?” (Rousseau, 1754). This
citation of Rousseau appears in an article in Spanish where Dagum (2001), in the
memory of whom this book is published, also cites Socrates who said that the only
useful knowledge is that which makes us better and Seneca who wrote that knowing
what a straight line is, is not important if we do not know what rectitude is.

These references are indeed a good illustration of Dagum’s vast knowledge,
which was clearly not limited to the field of Economics. For Camilo the first part
of Rousseau’s citation certainly justified his interest in the field of inequality which
was at the centre of his scientific preoccupations. It should however be stressed that
for Camilo the second part of the citation represented a “solid argument in favor
of giving macroeconomic foundations to microeconomic behavior” (Dagum, 2001).
More precisely, “individualism and methodological holism complete each other in
contributing to the explanation of individual and social behavior” (Dagum, 2001).

These excerpts from Camilo’s fascinating article are the best proof that, no mat-
ter how important his contributions to the measurement of income inequality were,
his concerns went much beyond this topic. Nevertheless we have to acknowledge
that, even at the technical level of measurement, Dagum’s contributions to the study
of inequality are considerable. In the Foreword to a special issue of the Journal of
Economic Inequality published in memory of Camilo, the editors Achille Lemmi
and Gianni Betti stressed that Dagum’s contribution to the economic-econometric
modeling of personal income and wealth distributions was of great importance.
The three-parameter model which bears his name “still represents one of the most
complete formalizations with regard to economic theory, stochastic derivation and
possibilities for use in empirical analysis. Every parameter has a precise economic
interpretation and the model fits a very complete series of formal-logic properties.”
(Lemmi and Betti, 2007).

The present volume entitled Modeling Income Distributions and Lorenz Curves
contains a very nice collection of classical papers in the field of income distribution
modeling (among which is Camilo’s famous article), important surveys on the main
themes of this book and original contributions to a field in which research remains
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viii Foreword

very much alive. Duangkamon Chotikapanich, the editor of this volume, has done a
superb job in convincing so many well-known researchers in this field to contribute
a chapter. This is indeed a clear testimony of the respect so many economists and
statisticians have for Camilo Dagum.

Jacques Silber
Editor of the Springer Book Series
on Economic Studies in Inequality,

Social Exclusion and Well-Being

References

Dagum, C. (2001) Desigualdad del Rdito y Bienestar Social, Descomposicin, Dis-
tancia Direccional y Distancia Mtrica Entre Distribuciones, Estudios de Econo-
mia Aplicada, 17(1), 5–52.

Lemmi, A. and G. Betti (2007) Guest Editors’ Introduction, Journal of Economic
Inequality, 5(3), forthcoming.

Rousseau, J.-J. (1754) Discourse on Inequality, Public domain, translated by
G. D. H. Cole.



Introduction

This volume is a collection of papers, drawn together to honour the memory of
Camilo Dagum and his outstanding contributions to the study of personal income
distribution and inequality measures. It is part of the book series “Economic Studies
in Inequality, Social Exclusion and Well-Being” edited by Jacques Silber. One of
Professor Dagum’s significant contributions to this area is his 1977 paper, reprinted
here, which introduces a new model for income distribution. This new model is
widely used in empirical work and is also known as the Dagum model. To honour
this contribution the focus of the book is on modeling income distributions and
Lorenz curves.

The volume is organized in three parts. Part One is a collection of five influential
papers that have had a significant impact on this area. Part Two contains four survey
papers on Lorenz functions, and generalizations and extensions of some income
distributions, while in Part Three there are eight papers on current research and
development written by well-known scholars who have worked extensively in the
area.

Part One begins with the 1977 paper by Dagum (1977) on a new model for the
size distribution of incomes that satisfies a set of important assumptions. In this pa-
per Dagum established empirical foundations in the form of properties for a prob-
ability function to describe the size distribution of income. Given the established
properties he proposed a model to represent the distribution of income. This model
later became known as the Dagum distribution and is now widely used in empirical
studies as one of the models that well represents income distributions.

The second chapter in Part One is a reprint of the paper on the model for income
distribution proposed by Singh and Maddala (1976). The model is a three parameter
income distribution derived from a generalization of the Pareto and the Weibull
distributions and is based on the concept of failure rate. This model is also used
widely in empirical studies as an income distribution model that fits the data from
various countries very well.

Chapter 3 is a reprint of the paper by McDonald (1984) on using two generalized
beta distributions as a model for the size distribution of incomes. These two gen-
eralized beta distributions are four parameter distributions and they were shown to
include the beta of the first kind, the beta of the second kind, the Singh-Maddala,
the lognormal, gamma, Weibull, Fisk and exponential distributions as special cases.

ix



x Introduction

The fourth chapter is on the Lorenz curve. It is a reprint of the paper by
Kakwani and Podder (1976) on a new coordinate system and the efficient estimation
of the Lorenz curve using grouped data. The new coordinate system is an innovative
representation of the Lorenz curve which proves to fit the data very well.

The final paper in Part One is a reprint of Paap and van Dijk (1998). They study
the distributions of real GDP per capita for a combined 120 countries over the period
1960 to 1989. These distributions appear to be bimodal. In this paper a mixture of
Weibull and truncated normal densities is used to model the bimodal distributions.

Part Two of the volume starts with Chapter 6, a survey paper written by Christain
Kleiber entitled “A Guide to the Dagum Distributions”. This paper introduces the
Dagum distributions and their interrelations with other statistical distributions. It
provides the basic statistical properties and inferential aspects of the Dagum distri-
butions and a survey of their applications in economics.

Chapter 7 written by Barry Arnold provides a survey paper on the classical Pareto
model and a hierarchy of generalized Pareto models. The properties of these models
are introduced and the related distributions and inferential issues are discussed. The
paper concludes by introducing the multivariate Pareto distribution.

Chapter 8 is another survey paper, this time written by James B. McDonald on
the use of the generalized beta distribution for income distributions. It derives some
inequality measures, the Gini, Pietra and Theil indices, as functions of the distribu-
tional parameters. It explores the use of numerical methods to calculate inequality
measures for the case of the generalized beta distribution.

Jose M. Sarabia contributes Chapter 9 on “Parametric Lorenz Curves: Models
and Applications”. This chapter includes the basic properties for a function to rep-
resent a Lorenz curve and the Lorenz specifications corresponding to different clas-
sical income distributions. A general method for obtaining a hierarchical family of
Lorenz curves is introduced. Sarabia also derives the Lorenz ordering conditions for
a large number of well-known income distributions and also introduces the concept
of the multivariate Lorenz curve which is an extension of the Lorenz curve to higher
dimensions.

Part Three starts with Chapter 10 written by Hang K. Ryu on “Maximum Entropy
Estimation of Income Distribution from Bonferroni Indices”. This paper proposes
using the Bonferroni Index (BI) to measure inequality in the distribution of income.
The BI is defined using the ratio of the area between the Lorenz curve and the
horizontal axis to the area between the 45 degree line and the horizontal axis. Based
on this definition, more weight is given to the lower income groups and less weight
to the upper income groups. The paper proceeds to compare the performance of the
BI and the Gini coefficient by comparing the underlying distributions derived from
them using the maximum entropy method with the empirical distributions from the
income deciles of 113 countries.

Chapter 11 is written by William J. Reed on “A New Four- and Five-Parameter
Models for Income Distributions”. This paper introduces two new models to repre-
sent income distributions. They are the normal-Laplace distribution (NL) with four
parameters and the generalized normal-Laplace distribution (GLN) with five pa-
rameters. The properties and the maximum likelihood estimation method for these
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two models are discussed. These two functional forms are fitted to nine empiri-
cal income distributions and the performances are compared to the four and five
generalized beta distributions. It was found that both NL and GLN outperform the
generalized beta.

Gianni Betti, Antonella D’Agustino, and Achille Lemmi provide Chapter 12 on
“Fuzzy Monetary Poverty Measures under a Dagum Income Distributive Hypoth-
esis”. This paper derives the Integrated Fuzzy Relative poverty measure under the
assumption that income follows the Dagum distribution. The authors apply their
approach to Italian data obtained from the EU-SILC survey conducted in 2004.

Chapter 13 by Frank A. Cowell and Maria-Pia Victoria-Feser is on “Modelling
Lorenz Curves: Robust and Semi-Parametric Issues”. This paper considers the semi-
parametric Lorenz curve and the estimation problem associated with contaminated
data that normally occurs in the upper tail of the distribution. The semi-parametric
Lorenz curve considers fitting a parametric distribution to the data on incomes above
a certain level and the incomes below that level are treated non-parametrically us-
ing the empirical distribution function. The paper uses a Pareto distribution for the
parametric distribution fitted to the upper tail. This approach is demonstrated and
applied to UK household disposable incomes for 1981 with 7470 observations.

Chapter 14 by J. M. Henle, N. J. Horton and S. J. Jakus is on “Modelling Inequal-
ity with a Single Parameter”. In this paper a new single parameter model is proposed
for the Lorenz curve. This new functional form is tested using decile share data on
income for 89 countries from the Luxembourg Income Study. This new specifica-
tion for the Lorenz curve can also be used to represent a dynamic model for income
growth.

Chapter 15 on “Lorenz Curves and Generalised Entropy Inequality Measures” is
written by Nicholas Rohde. The paper establishes the general relationship between
the Theil T inequality measure and the Lorenz curve. Analytical expressions for the
Theil index are also derived from three parametric Lorenz curves. The empirical va-
lidity of the relationship between the Theil index and the Lorenz curve is examined
using a simulation experiment.

Chapter 16 is the penultimate chapter by Duangkamon Chotikapanich and Bill
Griffiths on “Estimating Income Distributions Using a Mixture of Gamma Densi-
ties”. A Bayesian inference procedure to estimate a gamma mixture with two and
three components is introduced. The predictive density and distribution function of
income are described. The flexibility of the mixture is illustrated using a sample of
Canadian income data. The paper obtains the posterior density for the Lorenz curve
ordinates and the Gini coefficient.

The last chapter, Chapter 17, is written by Quentin Wodon and Shlomo Yitzhaki
on “Inequality in Multidimensional Indicators of Well-Being: Methodology and Ap-
plication to the Human Development Index”. This paper introduces the Human De-
velopment Index which, in general, is a weighted average of three well-being indices
involving life expectancy, educational attainment, and per capita GDP. The weight-
ing schemes used are arbitrary and normally depend on the purpose of the analysis.
The paper investigates the extent to which the Human Development Index is sensi-
tive to a change in the weights.
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I wish to thank Jacques Silber for his kind invitation to edit this volume. I would
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ting this book into publishable form.
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CHAPTER 1

A New Model of Personal
Income Distribution:

Specification and Estimation†

Camilo Dagum ‡

Abstract

The research deduces a new model of income distribution by size from a set of ele-
mentary assumptions. Its main properties are analyzed and five methods of param-
eter estimation are proposed. The mathematical form of the Lorenz curve and the
Gini concentration ratio associated with the specified model are also deduced. The
model is fitted to the observed income distributions of four very dissimilar countries:
Argentina, Canada, Sri Lanka and the USA. The fits obtained for the USA in 1960
and in 1969 are compared with those obtained using the lognormal, the gamma and
the Singh-Maddala models, working with the sum of squares of deviations and the
bounds for the Gini concentration ratio proposed by Gastwirth. In conclusion, the
specified model fared better than the others for almost all of the fourteen properties
introduced in this paper.

1 Introduction

Since Pareto (1895, 1896, 1897) started the exploration of the field of income distri-
bution and proposed his celebrated models (the first, second and third Pareto laws) a

† Reprint of Dagum, C. (1977), A New Model of Personal Income Distribution: Specification
and Estimation, Economie Appliquee, 30, 413-437. With permission from the editor (Rolande
Borrelly).
‡ A Canada Council research grant is gratefully acknowledged. For the parameter estimation of
the model specified in this research a nonlinear program written by Professor L. G. Birta for the
University of Ottawa was used. I wish to express my thanks to Professor Birta and to my research
assistants Leslie Gunapatne and Philip Bonardelli.
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4 Camilo Dagum

variety of probability functions have been suggested as suitable in describing the dis-
tribution of income by size (personal income distribution). These functional forms
can, in a first approximation, be grouped in the following three main categories:

i) Functional forms proposed to describe the generation of an income distribution,
by means of a stochastic process. In this category are included the contribu-
tions made by Champernowne (1953), Fisk (1961), Gibrat (1931), Mandelbrot
(1960, 1963) and Rutherford (1955).

ii) Functional forms proposed solely by their practical bearing upon the encoun-
tered empirical distributions, that is, on the grounds of presenting a satisfactory
goodness of fit. In this category are included the Gamma model proposed by
Ammon (1895), March (1898) and Salem and Mount (1974); the Beta model
proposed by Thurow (1970) and by Kakwani and Podder (1976), after per-
forming an ingenious 45◦ rotation of the coordinates; the Pearson Type V
distribution proposed by Vinci (1921); the generalized Gamma distribution
deduced by Amoroso (1924-1925), which contains, as particular cases, the
Gamma and Pearson Type V distributions; the hyperbolic distribution proposed
by Champernowne (1952); the Weibull distribution proposed by Bartels and
van Metelen (1975); and the log t (where t is the Student distribution) studied
by Kloek and van Dijk (1976). The models proposed by Amoroso and Vinci
partly overlap with those belonging to the first category for they are deduced
from considerations of probability. An outstanding synthesis is achieved by
D’Addario (1949) who specified a differential equation which contains as par-
ticular cases among others, the Pareto, the lognormal, the Amoroso (hence the
Gamma and the Pearson Type V) models.

iii) Specification of differential equations that purport to capture the characteristics
of regularity and permanence observed in the empirical distributions of income.
The functional form is the solution of the corresponding differential equation.
In this category are included the models proposed by Pareto (1896), Singh and
Maddala (1976) and Dagum (1975).

The models most frequently applied are the Pareto, the lognormal and the Gamma.
According to its goodness of fit, functional simplicity and the economic interpre-
tation of its parameters, the Pareto model continues to be the best one to describe
high income groups. It has the strong limitation, however, of only being useful in
describing the upper tail of the distribution.

The lognormal and the Gamma fit the whole range of income distributions but
are quite poor in describing both the upper and lower tails of the actual distributions,
which happen to be the most relevant pieces of information in any measure of in-
come inequality and in the elaboration of an income distribution policy. Empirical
evidence favors the Gamma over the lognormal distribution, judging by goodness
of fit criterion, as shown by Salem and Mount (1974) for the USA and Bartels and
van Metelen (1975) for the Netherlands. The model deduced by Singh and Maddala
(1976) outperforms both the lognormal and the Gamma distributions, as far as the
goodness of fit is concerned.
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The purpose of this research is to provide empirical foundations for and the
derivation of a probability function as a general model to describe the personal dis-
tribution of income.

The plan of the paper is as follows: section 2 analyses a set of “ideal” proper-
ties to guide the identification of the best possible model among the large set of
competing models which describe the size distribution of income. The third section
derives a new model from a set of assumptions characterizing the observed regulari-
ties in the income distributions from both developed and developing countries. This
section also includes the mathematical formulae deduced for the mean, the mode,
the median, the moments of order r, the Lorenz curve and the Gini concentration
ratio. Section 4 analyses the identification of intersecting Lorenz curves from their
corresponding Gini ratios. The next section proves the convergence of the model
specified in section 3 to the Pareto distribution. Section 6 presents five methods of
parameter estimation. The following section fits the specified model to the income
distributions of Canada, Argentina, Sri Lanka and the USA. Finally, section 8 con-
cludes this study.

2 Set of Properties to Motivate the Identification
of a Mathematical Model of Income Distribution

Although Ammon (1895), March (1898) and Amoroso (1924-1925) postulated and
applied the Gamma function to describe the distribution of income and although
McAlister (1879) is recognized as the first one to specify and provide the founda-
tions for a theory of the lognormal distribution, it was Gibrat’s pioneer contribution
in 1931 that brought to the fore the lognormal as a model of unimodal income distri-
bution. This preference for the lognormal remained virtually undisputed for nearly
four decades. In 1970 Thurow postulated the Beta distribution; in 1974, Salem and
Mount revived the Gamma distribution; in 1975 Bartels and van Metelen applied
the lognormal, Gamma and the Weibull distributions, and C. Dagum postulated the
three-parameter log-logistic model; in 1976 Singh and Maddala identified a new
model which can be considered as a member of the logistic family, and finally, in
this paper a new model is identifies which is a further generalization of the one
proposed by Dagum (1973, 1975). Hence, in the decade of the seventies we have
witnessed in this field the specification of several competing models.

The final choice of a particular model may be governed by its capacity to ac-
count fairly well to a set of economic, econometric, stochastic and mathematical
properties. Aitchison and Brown (1957, p. 108) and Metcalf (1972, pp. 16-17) state
four properties as a guide to identify the most representative model of the unknown
stochastic process that generates an income distribution in a given time and space
and for a given class of income and for any given unit of income receivers. Their
four properties are included in a larger set proposed to guide the search and the
identification of a functional form as a model of personal income distribution. This
set takes into account: i) the undisputed acceptability of the Pareto distribution as
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the model of high income groups; ii) the properties and shortcomings of the dif-
ferent distributions already specified; iii) the existence of an explicit and tractable
mathematical solution for the Lorenz curve and the Gini concentration ratio; and
iv) whether the underlying stochastic process that generated the income distribution
was specified, or whether the model follows a strictly pragmatic approach, that is,
the fact that it fits the data is the main reason for its choice. The tentative set of
properties are:

2.1 The extent to which the mathematical form of the
distribution function can be derived from an elementary set
of logico-empirical postulates or assumptions

In agreement with Morgenstern (1963, p. 93), the word “elementary” must in this
connection be used in both its meanings: as simple from a technical point of view
and as fundamental from the point of view of model-building. The requirement of
a logico-empirical set of postulates underlying the model-building is an elementary
tenet in the philosophy and methodology of sciences. It is also an elementary tenet
in Pareto’s contribution to income distribution. His model is a far reaching elemen-
tary outcome of a set of postulates that represent the theoretical counterpart of the
empirical observations for several countries, regions and towns, in different periods
of time.

2.2 Parsimony

The mathematical form of all proposed models contains unknown parameters whose
values must be estimated from the data. This important practical and theoretical
property requires that we make use of the smallest possible number of parameters
for adequate and meaningful representation. However, all biparametric models of
income distribution have failed to be empirically corroborated. The Pareto distri-
bution is the only biparametric model that systematically stands the test of reality
provided that it is restricted to the high income groups (right tail of the distribu-
tion). Of course, three- and four-parameter models imply a loss in simplicity, but
an accurate description of empirical distributions with an associated measure of in-
come inequality requires the specification of a model which must be a function of
more than two parameters. As Metcalf (1972, p. 17) observed, “since it is argued
above that a two-parameter function is too simple to reflect the impact of economic
fluctuations on the size distribution, a convenient three- (or possible four-) parame-
ter function will be sought”.
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2.3 Economic interpretation of the parameters

This property requires that all the parameters of the specified model should have
a well-defined economic meaning. Two parameters which are encountered often
are the scale and the inequality parameters. The first one is related to the unit of
measurement of income and the second is of dimension zero and is related to the
inequality of the income distribution.

2.4 Goodness of fit

This is the problem of testing the agreement between the model being identified
and the actual observations. An ideal model should provide a good fit of the whole
range of the distribution because all observations are relevant for: i) an accurate
measurement of income inequality; ii) the supporting of a given social and income
policy and iii) determining the taxation structure.

2.5 Simple and efficient method of parameter estimation

Given the modern computer facilities and the available methods of numerical anal-
ysis, it is always feasible to obtain the maximum likelihood estimators. However, a
simple and efficient method of parameter estimation is always an advantage from
the point of view of computer cost and the acceptance of the model in applied eco-
nomics.

2.6 Model flexibility I

The model should be able to account for changes in the shape of the distribution
through changes in parameter values. The fulfilment of this property contributes to
support the claim of the universality of a given model’s ability to describe income
distributions of different countries, regions, socioeconomic groups and in different
periods of time, as well as from different sources of income (wages and salaries,
proprietor’s income and property income).

2.7 Model flexibility II

The model should be able to account for negative and nil income through changes
in the values of some of its parameters. The existence of negative and nil income
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strongly restricts the descriptive power of almost all specified models. Among the
exceptions are the three- and four-parameter lognormal and the log-logistic models.
Several models, such as the Gamma function, are unable to deal with negative in-
comes without a tour de force that sacrifices the descriptive accuracy of the actual
distribution. A case in point is Salem and Mount’s (1974) approach in fitting the
Gamma function to the income distribution of the USA in 1970. In Table I, noted
(p. 1122), they state: “The first two groups are combined in 1970 to overcome the
problem of having a negative mean income in the first group”. Afterward, when they
try to explain the poor estimate of the concentration ratio for 1970, while using the
best method of estimation, they say (p. 1122): “One reason for the low estimate us-
ing Method B is that the arithmetic mean of the first income group is - $201. The ge-
ometric mean, however, is estimated using $500 for the first group (. . . ). In fact, the
geometric mean cannot be defined with negative incomes in the sample, and, con-
sequently, the two gamma parameters should be estimated from a sample truncated
at zero, and families with negative incomes could be considered separately”. The
mathematical contradiction of this “pragmatic” approach becomes evident when we
observe that the arithmetic mean is greater than the geometric mean, when both are
defined and the random variable is not constant. Hence, the problem calls for a re-
specification of the Gamma model, as, for example, the generalized Gamma model
specified by L.A. Amoroso (1924-1925), or the specification of a new model that
can deal with negative incomes, while retaining its descriptive power for all income
groups.

2.8 Model flexibility III

The model should be able to deal with a positive, and not predetermined, minimum
income without truncating the distribution, i.e. to describe the actual distribution
with income range equal to the closed-open infinite interval [x0,∞] where x0 > 0 and
generally unknown. This is the case of regions with a minimum guaranteed income.
This also could refer to the case when the population considered is the employed
labour force and not the household population. This approach is found when the
actual income distribution is integrated with the system of national accounts and is
obtained as the income generated by the productive process of the economy (see
Conade-Cepal, 1965, t. I, p. 7).

2.9 Model flexibility to deal with both unimodal and strictly
decreasing (non-modal) income distributions

This is an important practical property that allows us to retain the model to describe
non-modal sub-populations of income units.
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2.10 Minimization of biased assumptions when dealing
with the method of parameter estimation

One important source of bias is the assumption of equi-distribution within each
interval of income required in the fitting of density functions. This source of bias
is overcome by the cumulative distribution function approach corresponding to the
model specified by Pareto (1895), Dagum (1975) and Singh and Maddala (1976).

2.11 Derivation of the explicit mathematical form of the Lorenz
curve from the model of income distribution, and conversely

Several models do not have the Lorenz curve explicit solution. This is possible be-
cause either the solution does not exist or it is not yet known. Hence, when it comes
to the use of the Lorenz curve associated with a given income distribution function,
the work is done numerically and not analytically. This dichotomy is due to the
mathematical limitations or shortcomings of the specified model.

2.12 Explicit mathematical solution for the Gini concentration
ratio

“Gini concentration ratio is perhaps the most useful – and certainly the most widely
used – measure of changes in inequality” (Budd, 1970, p. 247). The existence of
a mathematical solution for the Gini ratio allows its direct computation and the
verification of whether or not it lies within the interval derived by Gastwirth (1972)
and proposed as a goodness of fit test.

2.13 The Gini concentration ratio associated with the model
of income distribution should be able to account
for intersecting Lorenz curves

Surprisingly enough, the literature on income distribution had agreed that the Gini
ratio was unable to account for intersecting Lorenz curves. In fact, soon after Budd
(1970, p. 247) states that the Gini concentration ratio is perhaps the most useful
measure of changes in inequality, he adds “it does, as we know, produce an ambiguous
measure of changes in inequality”. Actually, the ambiguous measure of changes in
inequality is a consequence of the mathematical limitations of the income distribution
model being identified rather than a limitation of the Gini measure (see Dagum,
1977b). Whenever the specified model contains a single inequality parameter, as the
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lognormal and the Gamma, the Gini ratio will be a monotonic function of it,
hence it will not be able to detect intersecting Lorenz curves. Amoroso (1924-1925,
pp. 137-138), in his classical contribution, missed this important characteristic when
he deduced the same value of the Gini ratio for different numerical combinations of
his generalized Gamma function. Instead of making the right interpretation stat-
ing the existence of the intersecting Lorenz curves, he dismissed the Gini ratio as
useless!1

2.14 Stochastic convergence of the model to the Pareto distribution
for high levels of income

That is, the model should fulfil the weak form of the Pareto law (Mandelbrot, 1960,
p. 81). This important stochastic property is strengthened by the undisputed ac-
ceptability of the Pareto distribution as the model of high income groups. If the
specified model possesses this important stochastic property, then it will demand a
further investigation to determine if it does, or does not belong to the class of stable
Pareto-Lévy distributions (Mandelbrot, 1960; Lévy, 1925, ch. VI).

3 Model Specification

The characteristics of regularity and permanence of the actual or empirical income
distributions in both developed and developing countries can be represented by the
following set of assumptions:

A.1: Empirical income distributions are, in general, unimodal and positively
skewed.

A.2: There exists a finite percentage of economic units with nil or negative in-
come. If the economic units are composed of unattached individuals, this percent-
age corresponds to those unemployed unattached individuals without any source
of income (social insurance, etc.) and proprietors with net losses. If the economic
units are families with two or more members, they receive the same interpretation
as unattached individuals, however this is the income of all members of the family
units.

A.3: The income range is the closed-open interval [x0,∞], where x0 > 0, when the
population of economic units is integrated with the employed members of the labour
force. That is, the income distribution starts from the right of the origin, since it is
composed of economic units with positive income. This assumption corresponds
to property 2.8 introduced in the preceding section and is related to the generation
of the income distribution statistics of the productive process of the economy from
an integrated system of national accounts. It is also the case of the population of

1 “E ciò chiarisce ancora una volta come il rappoto di concentrazione non serva a misurare la
concentrazione dei redditieri” (Amoroso, 1924-1925, p. 138).
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economic units obtained after elimination of its members with zero or negative in-
come. That is the approach followed by Figueroa (1974, p. 83).

A.4: The income elasticity of the cumulative distribution function F(x), with re-
spect to the origin α of F(x), α < 1, is a monotonic decreasing function of F(x).
This elasticity converges to a finite and positive value βδ when income x tends to
zero; and it converges to zero when income x tends to infinity. That is, for a given
constant proportional rate of growth of income, there corresponds a decreasing pro-
portional rate of growth of the cumulative distribution function F(x), which depends
of the size of F(x) itself.

The mathematical representation of the set of assumptions A.1-A.4 is as fol-
lows:2

d log[F(x)−α]
d logx

= βδ

[
1−

(
F −α
1−α

)1/β
]

, (1.1)

x > 0 if 0 ≤ α < 1 and x > x0 > 0, where F(x0) = 0, if α < 0,
subject to:

β > 0,α < 1, and βδ > 1. (1.2)

The solution of (1.1) is:

F(x) = α +
1−α

(1+λx−δ )β , λ > 0, (1.3)

where λ is strictly positive because it is the antilog of the constant of integration.
It can be verified that:

i) A.1 implies βδ > 1; that is, the distribution is unimodal. If 0 < βδ ≤ 1, then the
distribution is non-modal. This situation can occur when the model describes
that part of the actual distribution to the right of the model (the Pareto case) or
the case in which the actual distribution is non-modal, as could be the case of a
poor and overpopulated country.

ii) A.2 implies 0 ≤ α < 1, where α can receive the interpretation of a pure rate
of unemployment for the economic units considered, in the sense that its dom-
inant part is constituted by those unemployed economic units without social
insurance. Hence, x0 = 0.

iii) A.3 implies α < 0. Hence, x0 is the solution of F(x0) = 0. Therefore, the model
is defined for all x ≥ x0 > 0.

iv) A.4 implies the differential equation (1.1).

Whenever 0 < α < 1 and given that the cumulative distribution function (c.d.f)
(1.3) is monotonically increasing, the classical decomposition holds, i.e.:

F(x) = αF1(x)+(1−α)F2(x) (1.4)

2 For mathematical convenience, as can be seen in (1.3), the right hand coefficient in (1.1) is written
as the product of two parameters.
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where F1(0) = 1, F1(x) = 0, for all x �= 0; F2(x) = 0 for all x ≤ 0 and F2(x) is
a continuous and differentiable function for all x > 0. Its corresponding density
function is:

f (x) =

⎡⎣α, when x = 0
(1−α)βλδx−δ−1(1+λx−δ )−β−1, for all x > 0, and
0, for all x < 0

(1.5)

Unlike the lognormal and Gamma functions, the present model has an explicit
mathematical solution for its c.d.f, which is given in (1.3). It also yields an explicit
mathematical solution for both the mode of the density function (the point of in-
flexion of the c.d.f) when βδ > 1, and the p-th percentile for all p > α , hence the
median, i.e. p = 0.50. It can be shown that the mode xM is:

xM = λ 1/δ
(

βδ −1
δ +1

)1/δ
, βδ > 1, (1.6)

the median xm:

xm =

[
λ 1/δ

[( 1−α
0.5−α

)1/β −1
]−1/δ

, α < 0.5
0, 0.5 ≤ α < 1

(1.7)

and, in general, the p-th percentile xp:

xp = λ 1/δ

[(
1−α
p−α

)1/β
−1

]−1/δ

, p > α. (1.7′)

Finally, when α < 0, the root of the equation F(x) = 0 is:

x0 = λ 1/δ

[(
α −1

α

)1/β
−1

]−1/δ

(1.8)

It can be shown (Dagum, 1977a) that the r-th moment about the origin is, for all
positive integers r < δ .

E(Xr) = (1−α)βλ r/δ B
(

1− r
δ

, β +
r
δ

)
, when 0 ≤ α < 1, (1.9)

and

E(Xr) = (1−α)βλ r/δ B

(
λ

λ + xδ
0

;1− r
δ

,β +
r
δ

)
, when α < 0, (1.10)

where B
(
t0; 1- r

δ ,β + r
δ
)

is the incomplete Beta function defined as:
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B
(

t0;1− r
δ

,β +
r
δ

)
=

∫ t0

0
t−r/δ (1− t)β−1+r/δ dt, 0 ≤ t0 < 1. (1.11)

The ratio between the incomplete and the complete Beta function is tabulated in
Pearson (1934) for several combinations of its parameters.

From (1.9), when 0 ≤ α < 1, and from (1.10), when α < 0, we can deduce the
mean income and its variance, and it can also be shown that the coefficients of
skewness and excess are functions of α,β and δ but not of λ . This conclusion is co-
herent with the economic interpretation of the parameters of the present model; that
is with the set of assumptions A.1-A.4 introduced above and with its corresponding
mathematical solution (1.3). In other words:

i) λ is a scale parameter. Moreover, λ−1/δ has the same dimension as income x.
Changes in the monetary unit will, ceteris paribus, change the parameter λ and will
leave invariant the remaining three parameters;

ii) α,β and δ are dimensionless parameters. α is an inequality parameter and
β and δ can be called equality parameters because the Gini ratio is an increasing
function of the former and a decreasing function of the latter.

It can be shown (Dagum, 1977a) that the Lorenz curve associated with the model
(1.3) is:

L(y) =
B
(
y1/β ;β + 1

δ ,1− 1
δ
)

B
(
β + 1

δ ,1− 1
δ
) , βδ > 1, 0 ≤ α < 1, (1.12)

where

y =
F(x)−α

1−α
, y ∈ [0,1]. (1.13)

and its corresponding Gini concentration ratio is:

G = (2α −1)+(1−α)
Γ (β )Γ

(
2β + 1

δ
)

Γ (2β )Γ
(
β + 1

δ
) (1.14)

where Γ (·) is the complete Gamma function.
The economic interpretation of the parameters α,β and δ , that enter into the

measure of income inequality, can also be derived from the Gini ratio (1.14), given
that:

∂G
∂α

> 0,
∂G
∂β

< 0, and
∂G
∂δ

< 0, β > 0 and βδ > 1. (1.15)

For β = 1 it can be shown (Dagum, 1977b) that:

L(y) =
δ
Π

sin
Π
δ

B
(

y;1+
1
δ

,1− 1
δ

)
, δ > 1 (1.16)

and
G = α +

1−α
δ

, 0 ≤ α < 1 and δ > 1 (1.17)

which can also be deduced from (1.12) and (1.14).
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The mathematical forms of the Lorenz curve and the Gini ratio, when α < 0,
are deduced in Dagum (1977c). The economic interpretation of the parameters α , λ
and δ , when β = 1, are the same as in the four-parameter model.

4 Intersecting Lorenz Curves

This topic was already introduced as property 2.13 to guide the identification of a de-
scriptive model of income distribution. The Gini concentration ratio (1.14) deduced
from the c.d.f. (1.3) can account for the existence of intersecting Lorenz curves, ei-
ther with equal or different Gini ratios. This is the case where both tails (the upper
and lower income groups) lose relative to the middle of the distribution.

Given two actual income distributions fitted with model (1.3), their correspond-
ing Gini ratios are, applying (1.14):

G1 = G(α1, β1, δ1) and G2 = G(α2, β2, δ2) (1.18)

and the Lorenz curves are, applying (1.12) and (1.13):

L1 = L(y; α1, β1, δ1) and L2 = L(y; α2, β2, δ2) (1.19)

Since d2L
dy2 > 0 for all y ∈ (0,1) which implies strict convexity, the Lorenz curve

deduced in (1.12) is well-behaved. The zeros of the equation L1 = L2,y ∈ (0,1),
will locate the point or points of intersection. In particular, if G1 = G2,β1 = β2,
0 < α1 < α2 and δ1 > δ2, the Lorenz curve L1(y; .) does not intersect L2(y; .) and
is completely to the left of L2 (Fig. 1.1); but, if δ1 = δ2, then L1 intersects L2 from
above (Fig. 1.2).

The three-parameter model specified in Dagum (1975) can also account for in-
tersecting Lorenz curves, as can be deduced from (1.16) and (1.17).

5 Convergence to the Pareto Distribution

Property 2.14 motivates the introduction of this section. In a stimulating contribu-
tion, Mandelbrot (1960) developed the concepts of the strong and weak Pareto laws.

Let P(x) = P(X > x|0 < x∗ ≤ x) be the cumulative frequency of income earner
units with income X greater than a positive income x (x is assumed to be a continu-
ous variable). The strong Pareto law states that:

P(x) =

{
(x/x∗)−θ x ≥ x∗,
1 x < x∗.

(1.20)
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Fig. 1.1: α1 < α2,β1 = β2 and δ1 > δ2.

Fig. 1.2: α1 < α2,β1 = β2 and δ1 < δ2.

The weak Pareto law (Mandelbrot, 1960, p. 80) states that “P(x) behaves like
(x/x∗)−θ ,as x → ∞”. Symbolically,

P(x) ∼ (x/x∗)−θ . (1.21)

Therefore,
P(x)

(x/x∗)−θ → 1, as x → ∞ (1.22)
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or
P(x) = (x/x∗)−θ +o(x/x∗)−θ , as x → ∞, (1.23)

where the little o stands for smaller order of magnitude.
The model specified in (1.3) possesses this important property of the weak Pareto

law, that is, (1.3) converges in distribution to the Pareto model (1.20) for x suffi-
ciently large. In fact, from (1.3) and the definition of P(x) we deduce:

P(x) = 1−F(x) = (1−α)
∞

∑
r=1

(−1)r−1
(

β + r−1
r

)
λ rx−rδ , (1.24)

λ (β + r) < (r +1)xδ ,

where (−1)r
(−β

r

)
=

(
β + r−1

r

)
is the negative binomial coefficient, and

λ (β + r) < (r + 1)xδ is the condition of convergence of the series expansion in
(1.24).

For sufficiently large values of x and performing the substitution

(1−α)βλ = x∗δ (1.25)

we obtain (1.21). That is, model (1.3) converges in the weak sense to the Pareto
distribution. This convergence for Canada and the USA is sufficiently close (with
an absolute error less than ε = 0.01) for incomes as low as twice the mean income.

This important convergence property of model (1.3) is enhanced by its power to
describe with similar accuracy the remaining part of actual income distributions, that
is the lower and the middle range of income. This statement is substantiated in the
applications (section 7), where model (1.3) is fitted to actual income distributions of
developed as well as developing countries.

6 Methods of Parameter Estimation

All models of income distribution besides being non-linear belong to the class of
transcendent functions. The Pareto model is the only one that can be linearized after
performing a log transformation. Hence, the least squares (LS) and the maximum
likelihood (ML) methods of parameter estimation require the solution of a system of
non-linear (transcendent) equations. Although this is not a handicap today for most
specified models, simpler methods of estimation have been developed. Herewith we
propose five methods to estimate the parameters of model (1.3). They are: i) iterative
method I; ii) iterative method II; iii) iterative method III; iv) unconstrained function
minimization; and v) the method of maximum likelihood.

i) Iterative method I: After appropriate transformation of (1.3), it can be shown
that:
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log

[(
1−α

F(x)−α

)1/β
−1

]
= logλ −δ logx (1.26)

and

logF(x) = −β log(1+λx−δ )+
∞

∑
k=1

αk 1−Fk

kFk . (1.27)

(1.27) can be approximated by the following linear form in α and β :

logF(x) .= α
1−F(x)

F(x)
−β log(1+λx−δ ). (1.28)

To estimate the parameter vector (α,β ,λ ,δ ) in (1.3), start with an initial value
of α and β and estimate λ and δ by LS using (1.26). These estimates of λ and δ
enter in (1.28) and then estimate α and β . These new estimates of α and β enter in
(1.26) and then obtain a second estimate of λ and δ . The iteration continues until
convergence is attained.

ii) Iterative method II: This method avoids the approximation (1.28) using three
steps to complete the estimate of the four parameters. The iteration starts with an
initial value of α and β and estimates λ and δ using (1.26). Given these estimates
of λ and δ , and an initial value of β estimate α using transformation:

F(x)(1+λx−δ )β −1 = α[(1+λx−δ )β −1] (1.29)

Finally, with the estimates of α , λ and δ as initial values, estimate β using the
transformation:

log
1−α

F(x)−α
= β log(1+λx−δ ) (1.30)

The estimated values of α and β are now used to obtain a second estimate of λ and δ ,
and the iteration continues until convergence is reached.

iii) Iterative method III: This is a simple and efficient non-linear method of esti-
mation. It converges to the least squares estimate of the model.

Let α , β , λ , δ be the least squares estimates of (1.3), and let:

Ψ(α,β ,λ ,δ ) = ∑ [F(x)−α − (1−α)(1+λx−δ )−β ]2 (1.31)

be the sum of the squares of the deviations of the actual from the fitted values.
Let (α0,β0,λ0,δ0) be approximations to (α,β ,λ ,δ ) taken as initial estimates. The
Taylor series expansion of Ψ(α,β ,λ ,δ ) about the origin (α0,β0,λ0,δ0), using vec-
tor notations and symbolic operators, is

Ψ(α,β ,λ ,δ ) =
∞

∑
r=0

[
(µ −µ0)′

d
dµ

]r

Ψ(µ0) (1.32)

where
(µ −µ0)

′ = (α −α0,β −β0,λ −λ0,δ −δ0) (1.33)
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is a row vector of deviations of the least squares estimates from their approximated
values, and

d
dµ

=
(

∂
∂α

∂
∂β

∂
∂λ

∂
∂δ

)′
, (1.34)

symbolically multiplied by Ψ(µ0) = Ψ(α0,β0,λ0,δ0), is the transpose of the col-
umn vector of first order derivatives evaluated at µ0. For brevity the vector of partial
derivatives evaluated at µ0 may be written

dΨ(µ0)
dµ

= (Ψα(µ0) Ψβ (µ0) Ψλ (µ0) Ψδ (µ0))′. (1.35)

To minimize Ψ(µ), differentiate with respect to the vector µ and equate to zero,
thus obtaining a system of four linear equations. These may be expressed in matrix
form as follows, after neglecting the terms with third and higher order derivatives of
Ψ(µ):⎡⎢⎢⎣

Ψαα(µ0) Ψαβ (µ0) Ψαλ (µ0) Ψαδ (µ0)
Ψββ (µ0) Ψβλ (µ0) Ψβδ (µ0)

Ψλλ (µ0) Ψλδ (µ0)
Ψδδ (µ0)

⎤⎥⎥⎦
⎡⎢⎢⎣

α −α0
β −β0
λ −λ0
δ −δ0

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
Ψα(µ0)
Ψβ (µ0)
Ψλ (µ0)
Ψδ (µ0)

⎤⎥⎥⎦
(1.36)

or, more compactly, as
H(µ −µ0) = −A. (1.37)

where H is the symmetric matrix of second order derivatives of Ψ(µ) evaluated
at µ0.

Hence, the approximate solution of µ given the initial vector µ0 is:

µ = µ0 −H−1A (1.38)

The process is repeated with the solution µ in (1.38) taken as µ0 until convergence
is attained.

iv) Unconstrained function minimization: This method estimates the parameter
vector µ = (α,β ,λ ,δ ) by iterative algorithm (Birta, 1976) that searches the min-
imization of the sum of the squares of the deviations of the actual from the fitted
values, i.e. the minimization of Ψ(α,β ,λ ,δ ).

v) The method of maximum likelihood (ML): Let F(x) in (1.3) be an unbiased
predictor (Wold, 1961, 1963) of the sample realization η(x).

Hence,
η(x) = F(x)+ ε (1.39)

where ε is a purely random variable. Assuming that ε is normally distributed3, i.e.:

ε d=N(0,σ2) (1.40)

3 The symbol
d= means “equal in distribution”.
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the log of the likelihood equation is

logL = − n
2 log2π − n

2 logσ2 − 1
2σ2

∑
(
η(x)−α − (1−α)(1+λx−δ )−β )2 (1.41)

The ML estimator µ̂ of µ is obtained by solving the likelihood equation d logL
dµ =0,

where µ = (α,β ,λ ,δ ).
The asymptotic variance-covariance matrix is deduced from the Cramér-Rao in-

equality (Cramér, 1946; Rao, 1973), which gives the lower bound for the estimators’
variances. Denoting by I(µ) the information matrix, we obtain:

I(µ) = −E
(

d2 logL
dµ2

)
(1.42)

where the partial derivatives are evaluated at µ̂ . The inverse of (1.42) is the asymp-
totic covariance matrix of the estimators.

Under general conditions of stochastic regularity, the likelihood equation d logL
dµ =

0 has a solution µ̂ which converges in probability to the population vector µ , as the
sample size tends to infinity. This solution is an asymptotically normal and asymp-
totically efficient estimate of µ . That is:

µ̂ d−→ N(µ, I−1(µ)), (1.43)

hence,
(µ̂ −µ)′I(µ)(µ̂ −µ) → χ2(4) (1.44)

and from the unbiased predictor assumption, (1.40), (1.44) and the Cochran theo-
rem, the following is deduced:

(µ̂ −µ)′I(µ)(µ̂ −µ)
4σ̂2/σ2 = F(4,n−4). (1.45)

The F statistic in (1.45) is only a function of the unknown vector µ , for the popu-
lation variance σ2 vanishes, given that I(µ) contains the same factor in the denom-
inator. Given a level of significance, (1.45) may be employed to build confidence
regions for the vector µ or a subset of its components. The most important subset
in the one formed with the parameters of dimension zero (α,β ,δ ) which determine
the Gini concentration ratio.

7 Empirical Results. Four Country Study: Argentina, Canada,
Sri Lanka and the USA

The parameters are estimated in all cases by minimizing the sum of squared residu-
als (1.31) using the search procedure of method iv.
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Table 1.1 shows the estimated parameters of model (1.3) corresponding to
the distribution of family income in Canada, in 1973 (Statistics Canada, 1975),
Argentina, in 1959 (Conade-Cepal, 1965), Sri Lanka in 1973 (Central Bank of
Ceylon, 1974) and the USA in 1960, 1965, 1969 and 1970 (US Bureau of the
Census, 1961-1971). The sum of squared deviations of the observed frequencies
of income earners by interval of income from their corresponding predicted proba-
bilities are denoted by

∑u2 = ∑( f (x)− f̂ (x))2 (1.46)

and, for the cumulative distribution function,

∑ε2 = ∑(F(x)− F̂(x))2. (1.47)

The sums of squared deviations reported in Table 1.1 show an exceptional goodness
of fit for all cases studied. The last column in Table 1.1 reports the Gini concentra-
tion ratio applying the formula deduced from model (1.3) and presented in (1.14)
for all but Argentina (1959) and Sri Lanka (1973), for which the estimated α’s are
negative. In these latter cases the negative values of α were taken into consideration
to estimate the Gini ratio.

Table 1.1:

Estimated parameters No. of
Country ∑u2 inter Gini
and Year1 α β λ δ vals2 ratio

Argentina 1959 -0.0033 20.307 2.24 2.1622 0.00097 20 0.380
Canada 1973 0.0028 0.427 84643.0 4.0739 0.00022 29 0.327
USA 1960 0.0209 0.381 6513.9 4.1095 0.00066 9 0.352
USA 1965 0.0006 0.343 20789.6 4.1923 0.00027 16 0.348
USA 1969 0.0000 0.348 117785.4 4.3734 0.00013 9 0.335
USA 1970 0.0000 0.374 55847.8 4.0435 0.00007 10 0.346
USA 1970 0.0000 0.369 65147.2 4.0969 0.00011 16 0.347
Sri Lanka 1973 -0.0330 0.409 191.68 3.0372 0.00133 26 0.410
1 The scale parameter corresponds to income measured in 10−4 of the Argentinian pesos, in 10−2

of Sri Lanka rupees, in 10−3 of the Canadian dollars and in 10−3 of the USA dollars.
2 Excluding the open-ended interval.

Table 1.2 presents the bounds for the Gini concentration ratio estimated by Salem
and Mount (1974, p. 1122) for the USA in 1969 and 1970. These bounds were de-
rived by Gastwirth (1972) and proposed as a goodness of fit test. It is indeed a
very demanding test. Table 1.2 also reports the Gini ratio estimated by: i) Salem
and Mount (1974) from the Gamma function using their best method of estimation
(method B); ii) Singh and Maddala (1976) using the model specified by these au-
thors; and iii) the model (1.3) in this paper applying formula (1.14). The estimates
of the Gini ratio in 1970 (with 17 intervals) fall within the bounds for the Singh-
Maddala (S-M) model and the present model (1.3).
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Table 1.2: Estimated Values of and Bounds for the Gini Concentration Ratio USA Family Income

Year No. of Bounds Gini Concentration Ratio
intervals Lower Upper Gamma S-M Present

1969 10 0.326 0.356 0.355 0.335
1970 10 0.337 0.372 0.352 0.346
1970 17 0.347 0.356 0.325 0.348 0.347

Table 1.3: Sum of Squared Deviations

Model Year
1960 1969

Lognormal 0.01187 0.00752
Gamma 0.00391 0.00238
Singh-Maddala 0.00261 0.00156
Present model 0.00066 0.00013

Table 1.4: Observed and Estimated Values of the Median and Mean (in current values)

Median Income Mean Income
Country Observed Estimated % Observed Estimated %
and Year from (3.7) of from (3.9) of

dif. and (3.10) dif.

Argentina 1959 69,250 68,830 0.61 112,821
Canada 1973 11,533 11,455 0.68 12,716 12,757 0.32
Sri Lanka 1973 360 356 1.11 455 449 1.27
USA 1960 5,620 5,592 0.50 6,227 6,217 0.16
USA 1965 6,957 6,840 1.68 7,704 7,642 0.81
USA 1969 9,433 9,466 0.16 10,577 10,433 1.36
USA 1970
(10 intervals) 9,867 9,846 0.18 11,106 11,068 0.35
USA 1970
(16 intervals) 9,867 9,853 0.03 11,106 11,038 0.61

Table 1.3 reports the sum of squared deviations of the observed frequencies
from their corresponding predicted probabilities, for the lognormal, Gamma, Singh-
Maddala and the present model in years 1960 and 1969.

Finally, Table 1.4 shows the median and mean incomes as reported by the of-
ficial statistics of each country (observed values) and estimated from the present
model using formula (1.7) for the median and (1.9) or (1.10) for the mean income –
depending on whether α is nonnegative or negative – after setting r=1. The estimated
values of the parameters entering (1.7), (1.9) and (1.10) are reported in Table 1.1.
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8 Conclusion

The presently large quantity of competing models specified to describe actual in-
come distributions calls for the statement of a set of properties to guide the identifi-
cation of the model to be adopted. This is done in section 2, by the proposition of a
set of fourteen properties.

Section 3 derives a four-parameter model of income distribution from an ele-
mentary set of logico-empirical assumptions, hence it satisfies property 2.1. Al-
though the number of unknown parameters is reasonable it is not as parsimonious as
the two-parameter models. Other four-parameter models are Champernowne (1952)
and Fisk (1961). The model specified by Amoroso (1924-1925) is five-parameter
and those of Singh-Maddala, the displaced lognormal and the log-logistic (Dagum,
1975) are three-parameter models. Property 2.3 is fully accomplished by the present
model since there is clear-cut economic interpretation of its four parameters.

The exceptional goodness of fit reported in section 7 for four very dissimilar
countries (Argentina, Canada, Sri Lanka and the USA) stresses the fulfillment of
property 2.4. Earlier, Singh and Maddala found that their model gives a better fit
than the lognormal and the gamma. Table 1.3 shows that the present model gives a
better fit than the Singh-Maddala. Moreover, it fits remarkably well over the whole
income range, a possibility that was dismissed repeatedly in the literature by sev-
eral researchers. Among them, Mandelbrot (1960, p. 82) stated, “The above reasons
make it unlikely that (. . . ) a single empirical formula could ever represent all the
data”; Fisk (1961, p. 178) also stated that the “search for a single simple distribu-
tion function to describe the total distribution of incomes may prove fruitless”; and
Budd (1970, p. 250) reiterated the past literature when he stated, “we know that
it is virtually impossible to describe empirical distributions accurately by just one
function”.

Section 6 deals with five methods of parameter estimation. One of them provides
the maximum likelihood estimators. The first three are simple iterative methods as
required by property 2.5, even though they are not as simple as those methods of
estimation available for the two-parameter models.

Properties 2.6 to 2.9 require flexibility of the specified model to account for:
i) changes in the distribution; ii) nil and negative income; iii) income range starting
from a positive, and not pre-determined, minimum income; and iv) unimodal and
strictly decreasing density functions. The proposed model can account very well for
these four properties as can be verified by the content of its set of logico-empirical
assumptions in section 3 and its empirical results in section 7.

The possibility of working with the cumulative distribution function eliminates
the source of bias which is present when using the density function, since one has to
face the problem of selecting the representative point of each interval. For the c.d.f.
the point is well determined, viz. it is the right end of each interval, and this also
overcomes the problem created by the possible existence of negative mean income
in the first interval. Therefore, property 2.10 is also fulfilled.
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Properties 2.11 to 2.13 are also fulfilled, since section 3 presented the deduced
Lorenz curve and Gini concentration ratio. Moreover, the parameters that enter in
the latter can account for intersecting Lorenz curves.

Finally, section 5 proves the convergence of the present model to the Pareto dis-
tribution for high levels of income, hence it fulfils the weak form of the Pareto law.
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Kakwani, N. C. and N. Podder (1976) Efficient Estimation of the Lorenz Curve

and Associated Inequality Measures from Grouped Observations, Econometrica,
44(1), 137–149.

Kloek, T. and H. K. van Dijk (1976) Efficient Estimation of Income Distribution Pa-
rameters, Report 7616/E, Econometric Institute, Erasmus University, Rotterdam,
15 pages.
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Société statistique de Paris, pp. 193–206.
McAlister, D. (1879) The Law of the Geometric Mean, Proceedings of the Royal

Society, vol. 29, pp. 367.
Metcalf, E. C. (1972) An Econometric Model of the Income Distribution, Markham

Publishing Company, Chicago.
Morgenstern, O. (1963) On the Accuracy of Economic Observations, 2nd ed.,

Princeton University Press, Princeton.
Pareto, V. (1895) La Legge della Domanda, Giornale degli Economisti, pp. 59–68,

Gennaio.
Pareto, V. (1896) Ecrits sur la Courbe de la Répartition de la Richesse, Euvres
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CHAPTER 2

A Function for Size
Distribution of Incomes†

S. K. Singh and G. S. Maddala ‡

Abstract

The paper derives a function that describes the size distribution of incomes. The two
functions most often used are the Pareto and the lognormal. The Pareto function fits
the data fairly well towards the higher levels but the fit is poor towards the low in-
come levels. The lognormal fits the lower income levels better but its fit towards the
upper end is far from satisfactory. There have been other distributions suggested by
Champernowne, Rutherford, and others, but even these do not result in any consid-
erable improvement. The present paper derives a distribution that is a generalization
of the Pareto distribution and the Weibull distribution used in analyses of equipment
failures. The distribution fits actual data remarkably well compared with the Pareto
and the lognormal.

1 Introduction

The derivation of a function that describes the size distribution of incomes and var-
ious other distributions that show similar shapes is the purpose of this paper. The
two functions most often used are the Pareto function and the lognormal. The Pareto
function fits the data fairly well toward the higher levels but the fit is poor toward the
lower income levels. If one considers the entire range of income, perhaps the fit may
be better for the lognormal but the fit toward the upper end is far from satisfactory
(Cramer, 1971).

† Reprint of Singh, S.K. and Maddala, G. S. (1976) A Function for the Size Distribution of Incomes,
Econometrica, 44, 963-970. © The Econometric Society, 1976.
‡ This research is part of an ongoing study on income distributions at the Development Research
Center of the World Bank. Any opinions expressed are those of the authors and not of the Bank.
The authors would like to thank the referees for helpful comments on an earlier draft.

27



28 S. K. Singh and G. S. Maddala

Earlier, some efforts have been made by Champernowne (1953), Rutherford
(1955), Mandelbrot (1960), Fisk (1961) to derive functional forms to describe the
size distribution of incomes, based on reasoning about processes of income gener-
ation. The present paper derives a function based on the concept of hazard rate or
failure rate which has been widely used for deriving distributions in reliability the-
ory and for the analysis of the distribution of life times (see Barlow and Proschan
(1965) and Lotka (1956)). The function derived here was also suggested by Burr
(1942) though with a different purpose and reasoning. Also, there is a discussion of
hazard rates in Gastwirth (1972), though again with a different purpose.

The plan of the paper is as follows: In Section 2 we present a derivation of
the function through a discussion of failure rates. Section 3 presents an alternative
derivation of the same function. Section 4 presents an empirical illustration, and the
final section gives the conclusions.

2 The Genesis of the Function and Characterization
through Failure Rate

If the life time of a person is distributed over the random variable x with prob-
ability density function f (x), the probability of surviving at least up to time x is
R(x) =

∫ ∞
x f (x)dx = 1−F(x). The probability of death in a small interval of time

dx is f (x). After one has survived up to age x, the instantaneous death rate at age x,
or the force of mortality, is r(x) = f (x)/(1−F(x)). This ratio is variously known
as the failure rate or the hazard rate and considerable work has been done to study
the characterization of distribution functions from this point of view. Distributions
are characterized as IFR (increasing failure rate) or DFR (decreasing failure rate
distribution) depending upon whether f (x)/(1−F) rises or decreases with x. Gen-
erally speaking, one would not expect decreasing failure rate since time is most
often the random variable and one does not expect a priori in most of the situations
any particular kind of benefit to accrue with time to reduce the failure rate. Most
of the distributions used - exponential, gamma function, normal - give IFR. Log-
normal gives an increasing section of failure rate, followed by a decreasing section.
This property, which appears questionable (see Barlow and Proschan (1965) and
Jorgenson et al. (1967)) for other situations, is perhaps precisely the reason why it
fits, to some extent, the income distribution.

When we change the random variable from time to income, a priori plausibility
on theoretical reasoning for DFR after a point is obvious. While aging, as such,
may not confer any advantage for living longer or the reduction of the hazard rate,
income may help in earning more. The ability to make more money might increase
with one’s income. The various reasons are just a bit too obvious to be enumerated
here. Therefore, it is appealing to consider distributions which are DFR at least
after a point for income distribution. While Pareto is a DFR throughout the range,
lognormal becomes a DFR only beyond a point.
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For certain situations, it is perhaps more instructive to consider the hazard rate in
terms of a transform of x rather than x itself. Consider the transform z = logx. We
may then try to find out the hazard rate with respect to this transform of x : r ∗ (z) =
(dF/dz)/(1−F).

The Pareto diagram in (log(1−F), logx) plane can be interpreted from this point
of view. The first derivative of the Pareto transform is the hazard rate with respect
to z.

A probability density function is defined to be IFR (increasing failure rate) if
(dr(x))/dx ≥ 0. It is called DFR (decreasing failure rate) if (dr(x))/dx ≤ 0.

Similarly, a probability density function is defined to be IPFR (increasing propor-
tionate failure rate) if (dr ∗ (z))/dz ≥ 0 and DPFR (decreasing proportionate failure
rate) if (dr ∗ (z))/dz ≤ 0.

It can be easily checked that the Pareto distribution is monotone DFR for r(x)
though r∗ (z) is constant. Lognormal has an r(x) which has an IFR section followed
by a DFR section. However, what is interesting is that r∗(z) is monotone increasing.
This is the reason why the lognormal does not fit well at the high income level. As
an empirical regularity, r ∗ (z) approaching constancy for high incomes appears to
be fairly well accepted.

The intuitive economic meaning of r ∗ (z) is clear. At any income, it measures
the odds against advancing further to higher incomes in a proportionate sense. It is
a variable that should be allowed considerable flexibility because one would be in-
terested in finding out its precise shape at varying levels of income. The restrictions
imposed both by the shape of the Pareto function and the lognormal are rather se-
vere. In the interpretation given above, lognormal asserts that it is easiest for one to
improve one’s relative position at low income groups, and the odds go on increasing
monotonically tending to infinity as one’s income increases. The Pareto distribution
implies a constant value of the odds in the r ∗ (z) sense throughout at all income
ranges.

A good starting point for deriving the distribution function is then the following:
We accept the behaviour of r ∗ (z) toward the upper end of the income, i.e., asymp-
totic constancy on the basis of accumulated findings and received opinion. However,
one must provide for lower r ∗ (z) at the lower income levels. This would mean al-
lowing r ∗ (z) to rise with z and let it reach an asymptote. This can be done again
variously. Should r ∗ (z) rise throughout with decreasing rate? Or should it rise first
with z at an increasing rate, then a decreasing rate, and then asymptotically reach
constancy? We will make the latter assumption.

For purposes of exposition, it is easier to take the negative of the Pareto trans-
form, which is henceforth called y : y =− log(1−F)), z = logx, and y = f (z); y′ > 0,
y′′ > 0.

We advance the following assumption:

y′′ = a · y′(α − y′), (2.1)

a being constant. We solve this differential equation to get the distribution func-
tion. The composite assumption consists of three parts: (A-1) r ∗ (z) reaches
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asymptotically a constant value a. (A-2) It first increases with an increasing rate,
and then with a decreasing rate. (A-3) The rate of increase of r ∗ (z) is zero when
the value of r ∗ (z) is zero. Rearranging (2.1) we get

y′′

y′
+

y′′

α − y
= aα. (2.2)

Integrating, we get

logy′ − log(α − y′) = aαz+ c1 (2.3)

where c1, is a constant of integration. This can be written as

y′

α − y′
= eaαz+c1

or

y′ =
αeaαz+c1

1+ eaαz+c1
. (2.4)

We note that y′,which is the proportional failure rate, is the three-parameter logistic.
Integrating (2.4) again we get

logy =
1
a

log(1+ eaαz+c1)+ c2 (2.5)

where c2, is another constant of integration. After we substitute − log(1−F) for y
and logx for z in (2.5) we get, with some algebra,

log(1−F) = c− 1
a

log(b+ xaα), (2.6)

where c = (−c2 − c1)/α and b = 1/ec1 . Equation (2.6) gives the distribution func-
tion

F = 1− c
(b+ xaα)1/a . (2.7)

The function in (2.7) has four constants. But since F = 0 for x = 0 we get c = b1/a.
Thus the three-parameter function is

F = 1− b1/a

(b+ xaα)1/a (2.8)

or

F = 1− 1
(1+a1xa2)a3

, (2.9)

where a1 = 1/b, a2 = aα , and a3 = 1/a. Note that F = 0 for x = 0 and, as x → ∞,
F → 1.
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In summary, F as in (2.9) is characterized by a PFR which is a logistic with
respect to “income power”, or z. Also, given that characterization, F as derived in
(2.9) is unique. In upper income tail, the PFR is the same as for Pareto; at lower
incomes it differs.

3 An Alternative Approach

An alternative derivation of the function derived in the previous section can be given
in terms of models of decay. Let F(x) be a certain mass at point x (0 ≤ x ≤∞) which
decays to zero as x → ∞. dF/dx is the rate of decay. We standardize the initial mass
to be one. If dF/dx depends only on the left-out mass (1−F) then the process is
said to be ”memoryless”. For the Poisson process, dF/dx = a(1−F). The Pareto
process can also be interpreted as memoryless since it implies

dF/dx = a(1−F)(1+1/a). (2.10)

A process that introduces memory would be the so-called Weibull process which
leads to the Weibull distribution. This implies

dF/dx = axb(1−F). (2.11)

A generalization that combines elements of both (2.10) and (2.11) would be to
start with the equation

dF/dx = axb(1−F)c. (2.12)

It can be readily verified that the solution to (2.12) gives equation (2.9) where
(now, in terms of the parameters in (2.12))

a1 = (c−1)(a/(b+1)), a2 = b+1, and a3 = 1/(c−1).

The above derivation suggests the relationship between the Pareto, Weibull, and
the distribution suggested here. One might wonder what the relationship is between
this distribution and that suggested by Champernowne and Fisk. The distribution
considered by Fisk (1961) is given by

dF
dφ

=
eφ

(1+ eφ )2 where eφ =
(

x
x0

)α
.

It can be easily verified that

dF
dx

=
a1a2xa2−1

(1+a1xa2)2 where a1 =
(

1
x0

)α
and a2 = α.

Thus, putting a3 = 1 we get the function suggested by Fisk.
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4 Empirical Results

Salem and Mount (1974) used the method of maximum likelihood because, for the
gamma density they considered, the estimating equations involve only the arith-
metic and geometric means. For the present distribution, it is not possible to get any
such simple expressions. The estimation of the Pareto distribution is customarily
done by regressing log(1−F) on logx. Fisk (1961) estimates the sech2 distribution
by regressing logF/(1−F) on logx. For the distribution suggested here we have
log(1−F) = −a3 log(1+a1xa2).

Hence, following the customary procedures we estimated the parameters by us-
ing a nonlinear least squares method and minimizing

∑ [log(1−F)+a3 log(1+a1xa2)]2.

The data used were from US Bureau of the Census (1960-1972) and the program
was the nonlinear regression program from the Harvard computing center that uses
the Davidon-Fletcher-Powell algorithm. The estimated parameters are shown in
Table 2.1. The fit, as judged by the R2’s, was very good (they were all uniformly
high around .99). But since this may not be an adequate evidence, we used some
other checks with the results.

Salem and Mount (1974) have given the details of the observed and predicted
probabilities for two years, 1960 and 1968, for the lognormal and the gamma. For
comparison we plot the predicted probabilities from the present function in the same
diagram that Salem and Mount (1974, Fig. 3) used. This is shown in Fig. 2.1. Also,
the sum of squared deviations between the predicted and observed probabilities were
as follows:

Year Lognormal Gamma Present Function

1960 .01187 .00391 .00261
1969 .00752 .00238 .00156

Another check on the fit is to use the procedure suggested by Gastwirth and
Smith (1972) which consists of computing bounds on the Lorenz concentration ra-
tio and computing the implied value of this ratio from the estimated values of the
parameters. For the years 1967 through 1970, we estimated these values by numeri-
cal integration using the estimated values of the parameters. The results are reported
in Table 2.2. As can be easily seen, the estimates of the Lorenz ratio fall within the
bounds.
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Table 2.1:

Year a1 a2 a3

1972 .3070 2.064 2.538
1971 .3125 2.139 2.544
1970 .3102 2.121 2.546
1969 .3101 2.131 2.611
1968 .3071 2.111 2.712
1967 .3120 2.012 2.552
1966 .3109 2.197 2.558
1965 .3082 2.127 2.624
1964 .3184 2.080 2.550
1963 .3084 2.051 2.597
1962 .3079 2.063 5.609
1961 .2735 1.972 3.009
1960 .2931 1.992 2.803

Fig. 2.1: Observed and predicted probabilities of United States families in ten income classes: 1960
and 1969.
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Table 2.2:

Year Bounds Reported by Salem and Mount Estimates Obtained
Lower Higher by the Fitted Function

1967 3,504 3,556 3,517
1968 3,391 3,457 3,402
1969 3,421 3,506 3,429
1970 3,466 3,565 3,484

5 Conclusions

The paper derives a function to describe the size distribution of incomes based on
an analysis of hazard rates or failure rates. The distribution is a generalization of the
Pareto and the Weibull distribution studied extensively in the analysis of equipment
failures. The sech2 distribution suggested by Fisk can also be considered as a special
case of the distribution suggested here. The distribution has been fitted to United
States income data and has been found to fit remarkably well. Earlier, Salem and
Mount found that the gamma distribution gives a better fit than the lognormal. We
find that the function suggested in the paper gives a better fit than the gamma.

References

Aitchison, J. and J. A. C. Brown (1957) The Lognormal Distribution with Special
Reference to its Uses in Enonomics, Cambridge University Press, Cambridge.

Atkinson, A. B. (1970) On the Measurement of Inequality, Journal of Economic
Theory, 2, 244–263.

Barlow, R. E. and F. Proschan (1965) Mathematical Theory of Reliability, Wiley,
New York.

Burr, I. W. (1942) Cumulative Frequency Functions, Annals of Mathematical Statis-
tics, 13, 215–235.

Champernowne, D. G. (1953) A Model of Income Distribution, Economic Journal,
63(2), 318–351.

Cramer, J. S. (1971) Empirical Econometrics, North Holland, Amsterdam.
Fisk, P. R. (1961) The Graduation of Income Distributions, Econometrica, 29(2),

171–185.
Gastwirth, J. L. (1972) The Estimation of the Lorenz Curve and Gini Index, Review

of Economics and Statistics, 54, 306–316.
Gastwirth, J. L. and J. T. Smith (1972) A New Goodness-of-Fit-Test, ASA Proceed-

ings of the Business and Economic Statistics Section, pp. 320–322.
Jorgenson, D. J., J. J. McCall and R. Radner (1967) Optimal Replacement Policy,

North Holland, Amsterdam.



A Function for Size Distribution of Incomes 35

Lotka, A. J. (1956) Elements of Mathematical Biology, Dover, New York.
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CHAPTER 3

Some Generalized Functions
for the Size Distribution

of Income†

James B. McDonald ‡

Abstract

Many distributions have been used as descriptive models for the size distribution
of income. This paper considers two generalized beta distributions which include
many of these models as special or limiting cases. These generalized distributions
have not been used as models for the distribution of income and provide a unified
method of comparing many models previously considered.

Expressions are reported which facilitate parameter estimation and the analysis
of associated means, variances, and various measures of inequality.

The distributions considered are fit to US family income and their relative per-
formance is compared.

1 Introduction

Many distributions have been considered as descriptive models for the distri-
bution of income. These include, among others, the lognormal, gamma, beta,
Singh-Maddala, Pareto, and Weibull distributions. In many applications, the Singh-
Maddala distribution provides a better fit than the gamma which performs much
better than the lognormal (McDonald and Ransom (1979); Salem and Mount (1974);
Singh and Maddala (1976)). Thurow (1970) adopted the beta distribution as a model
for the distribution of income, and this model includes the gamma as a limiting case;

† Reprint of McDonald, J.B. (1984), Some Generalized Functions for the Size Distribution of
Income, Econometrica, 52, 647-663. © The Econometric Society, 1984.
‡ The author appreciates comments and helpful suggestions from Alan Harrison. Dwight Israelsen,
and the referees. The author appreciates the assistance of Jeff Green with the computer program-
ming.
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hence, the beta will provide at least as good a fit as the gamma. The Singh-Maddala
distribution includes the Weibull and Fisk distributions as special cases.

Recently the generalized gamma has been used by Atoda et al. (1980); Esteban
(1981); Kloek and van Dijk (1978); Taille (1981). Esteban (1981) demonstrates that
the generalized gamma has similar tail behavior or includes the lognormal, Weibull,
gamma, exponential, normal, and Pareto distributions as special or limiting cases.
However, the beta, Singh-Maddala, and Fisk distributions are not included as mem-
bers of this class of distributions.

In this paper two generalized beta distributions are considered. One of these in-
cludes the Singh-Maddala and the generalized gamma as special or limiting cases.
This distribution provides a useful extension which facilitates a comparison of al-
ternative models within the framework of a generalized model. The second includes
the beta used by Thurow and the generalized gamma as special cases.

Section 2 includes a discussion of the generalized beta distributions and the re-
lationships between these distributions and other widely used models for income
distribution. Formulas describing associated population characteristics which are
useful in the estimation and analysis of empirical data are also reported. Section 3
illustrates some applications of these results.

2 The Models

The generalized gamma (GG) and generalized beta of the first and second kind (GB
1, GB2) are defined by

f (y;a,β , p) =
ayap−1e−(y/β )a

β apΓ (p)
, 0 ≤ y, (3.1)

g(y;a,b, p,q) =
ayap−1(1− (y/b)a)q−1

bapB(p,q)
, 0 ≤ y ≤ b, (3.2)

h(y;a,b, p,q) =
ayap−1

bapB(p,q)(1+(y/b)a)p+q , 0 ≤ y

= 0 otherwise.
(3.3)

These distributions can be shown to include the beta of the first kind (B1) con-
sidered by Thurow, the beta of the second kind (B2), the Singh-Maddala (SM),
the lognormal (LN), gamma (GA), Weibull (W), Fisk or Sech2, and exponential
(Exp) distributions as special or limiting cases. These relationships are depicted in
Figure 3.1. The special cases of the generalized gamma distribution are carefully
developed in the paper by Esteban (1981). Esteban characterizes density functions
f (y) in terms of an elasticity −y f ′(y)/ f (y) and demonstrates that

η f (y) = −yd(ln f (y))/dy = 1−ap+a(y/β )a (3.4)
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Fig. 3.1: Distribution trees.

uniquely characterizes the generalized gamma in equation (3.1). The corresponding
elasticities for (3.2) and (3.3) are given by

ηg(y) = 1−ap+
a(q−1)(y/b)a

(1− (y/b)a)
(3.5)

and

ηh(y) = 1−ap+a(p+q)
(y/b)a

1+(y/b)a .4 (3.6)

From Figure 3.1, we observe that both of the generalized beta distributions in-
clude the generalized gamma as a limiting case:

f (y;a,β , p) = lim
q→∞

g(y; a, β (p+q)1/a, p, q)

= lim
q→∞

h(y; a, β (q)1/a, p, q)
. (3.7)

The details associated with these results are included in the Appendix. The gen-
eralized beta of the second kind is a particularly useful family of distributions and
includes the generalized gamma, beta of the second kind, the Singh-Maddala, and
all of the previously mentioned associated special cases as members. The distribu-
tions of the F statistic (variance ratio) are also a special case of the generalized beta
of the second kind.5

4 A referee pointed out that the monotonicity of (3.4), (3.5), and (3.6)) implies that associated
graphs showing the relationship of the natural logarithm of the density function and lny must be
concave.
5 The author has found that some of these distributions are known by different names in other
disciplines. For example, Arnold (1980) refers to a GB2 with a non-zero threshold as a Feller-
Pareto distribution. The Singh-Maddala function is a member of the Burr family (type 12) and has
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Given an arbitrary estimation criterion, the higher a distribution is on a branch in
Figure 3.1, the better it will perform as measured by the same criterion, e.g., least
squares estimators of the generalized beta distribution of the first kind will have a
sum of squared errors at least as small as the corresponding sum of squared errors
for the lognormal distribution. However, no such conclusions can be drawn about
the relative performance of distributions on different branches, e.g., the generalized
gamma and Singh-Maddala distributions. If estimation is based upon one criterion
such as maximum likelihood, distributions higher on a branch in Figure 3.1 will not
necessarily perform better when compared according to another criterion such as
sum of squared errors.

Expressions for the moments, distribution functions, and several measures of
inequality corresponding to (3.1), (3.2), and (3.3) can be expressed in terms of

I(x,h) =
∫ x

0
yh f (y)dy, (3.8)

I∗(i, j) =
∫ ∞

0
xi f (x)

∫ x

0
y j f (y)dydx. (3.9)

The associated moments, conditional on their existence, and the distribution func-
tion are defined by

E(yh) = lim
x→∞

I(x, h), (3.10)

F(y) = I(y,0), (3.11)

respectively. The relative mean deviation of Pietra (P) and Gini (G) measures 6 of
inequality can be expressed in terms of (3.8) and (3.9) by

P = E(|y−µ|)/2µ = I(µ,0)− I(µ,1)/µ (3.12)

and
G = E(|y− x|)/2µ = (1/µ)(I∗(1,0)− I∗(0,1)) (3.13)

where µ = E(y). Expressions for I(x,h) and I∗(i, j) corresponding to (3.1), (3.2),
and (3.3) are derived in the Appendix. In each case, these expressions are functions
of the parameters defining the distribution function under consideration (a,b,β , p,q).
Table 3.1 includes expressions for the distribution function, moments, and Gini co-
efficients for each of the distributions discussed. These expressions are functions of
the parameters in the respective models and are useful in estimation and analysis of

also been referred to as a Beta-P distribution (Cronin (1979); Johnson and Kotz (1970)). Another
special case of the generalized beta of the second kind encountered in other areas of application
corresponds to q = 1 and is known as a three-parameter kappa distribution, Beta-k or Burr distribu-
tion of the third type (Tadikamalla, 1980). If p and a are both equal to one, then the corresponding
distribution has been referred to as the Lomax distribution. The power and uniform distributions,
among others, are special cases of the generalized beta of the first kind and B1.
6 Gastwirth (1972) discusses some issues associated with nonparametric estimation of the Pietra
index or relative mean deviation and Gini coefficient and their interpretation and historical back-
ground. McDonald and Ransom (1981) discuss some related inferential issues. Also see Kendall
and Stuart (1961).
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population characteristics. The expressions for the distribution function facilitate pa-
rameter estimation based upon data in a grouped format. Given parameter estimates,
these results can then be used to estimate corresponding population characteristics
of interest as well as providing indirect checks on the validity of the parameter es-
timates. This point will be illustrated by means of an example in the next section.
The estimated population characteristics depend upon the estimation technique and
the assumed distribution function. This point is covered in more detail in McDonald
and Ransom (1979).

3 Applications

Estimation of the models discussed in Section 2 involves nonlinear techniques. Nu-
merous estimation problems can arise in nonlinear estimation which will yield ques-
tionable results. An indirect check of the validity of the parameter estimates obtained
from a nonlinear optimization routine is provided by comparing estimated popu-
lation characteristics such as the mean with independently obtained results where
available. The expressions in Table 3.1 facilitate such a comparison, and Section 3.1
provides an example of this. The relative performance of alternative models for the
distribution of income is compared in Section 3.2.

3.1 Analysis of Parameter Estimates

Thurow’s (1970) widely cited paper provides an example of estimation problems
and an application of expressions in Table 3.1 in the detection of questionable re-
sults. The underlying distribution of income is assumed to be modeled by a beta
density function.

g(y; a = 1, b, p, q) =
yp−1(b− y)q−1

B(p,q)bp+q , 0 < y < b, p, q > 0, (3.14)

which corresponds to (3.2) with a = 1. Thurow assumed that the maximum income
(b) was equal to $15,000 and obtained separate estimates of p and q for the dis-
tribution of income (1959 dollars) of families and unrelated individuals for whites
and nonwhites for the period 1949-1966. Income characteristics associated with the
estimated parameter values for (p,q,b) are inferred and their relationship with hy-
pothesized explanatory variables considered. Thurow’s results raise questions as to
whether economic growth is associated with a more egalitarian distribution as well
as suggesting that inflation may lead to a more equal distribution of income for
whites. The accuracy of the estimated (p,q)’s is a critical element in the validity
of the analysis of the estimated relationship between the hypothesized explanatory
variables and the distribution of income. Thurow’s estimates of (p, q) were not
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reported in his paper, but were provided on request and are given in Table 3.27 The
mean and Gini coefficient associated with the beta function (B1) in Table 3.1 are
given by

E(y) =
bp

p+q
, (3.15)

G =
Γ (p+q)Γ (p+ 1

2 )Γ (q+ 1
2 )

Γ (p+q+ 1
2 )Γ (p+1)Γ (q)Γ ( 1

2 )
. (3.16)

The mean income level and Gini coefficients implied by Thurow’s estimates can be
readily obtained from equations (3.15) and (3.16) and are reported in Table 3.2.

The corresponding estimates reported in census publications are also given in
this table to provide a useful comparison.

An analysis of the entries in Table 3.2 suggests that the distribution of income for
whites is more egalitarian with a higher mean than for nonwhites. This qualitative
result is consistent with Thurow’s estimates as well as those reported in the current
population reports; however, other implications of these two sets of estimates are
not. For example, all of the associated estimated density functions are either “∪ ”
shaped (p < 1,q < 1) or “ι” shaped (p < 1,q > 1) rather than “∩ ” shaped. The
agreement between the implied and census estimates of the mean is much closer
than for the Gini coefficients. The magnitude and inter-temporal behavior (reduc-
tions in excess of 30 per cent) of the associated Gini coefficients implied by the
estimated parameters (p,q) for the period under consideration are inconsistent with
the census estimates and provide additional evidence of an estimation problem.

Thus there is relatively close agreement between the two estimates of mean in-
come, but very poor agreement between the measures of inequality. The estimation
procedure appears to have roughly preserved the mean characteristic, but implic-
itly modeled intra and/or inter-group variation incorrectly. The results could also
have been partially due to the conjunction of the nature of the income groups and
treatment of the maximum income.

The next section includes examples in which estimated distributions of the form
considered by Thurow provide relatively accurate estimates of population charac-
teristics. The parameters p, q, and b are estimated. The corresponding densities
are “∩ ” shaped and the associated estimates of the mean and Gini coefficient are
very close to those reported by the census publications. The large values of b and
q merely correspond to the estimated beta density (B1) being closely approximated
by its limiting form, the gamma.

7 The author appreciates Professor Thurow’s assistance in providing these estimates and sugges-
tions, but has been unable to replicate the results.



Some Generalized Functions for the Size Distribution of Income 45

Ta
bl

e
3.

2:
T

hu
ro

w
’s

es
tim

at
es

of
p,

q∗

W
hi

te
s

N
on

w
hi

te
s

Y
ea

r
p

q
m

ea
n∗

∗
G

in
i∗
∗

p
q

m
ea

n∗
∗

G
in

i∗
∗

19
49

.2
58

.6
66

4.
18

8
(4

.0
52

)
.6

15
(.4

04
)

.1
60

.9
30

2.
20

2
(2

.0
44

)
.7

52
(.4

43
)

19
50

.2
79

.6
87

4.
33

2
(4

.2
94

)
.6

00
(.4

07
)

.1
72

.9
30

2.
34

1
(2

.2
45

)
.7

38
(.4

38
)

19
51

.2
69

.6
25

4.
51

3
(4

.4
41

)
.5

96
(.3

87
)

.1
82

.9
08

2.
50

5
(2

.3
34

)
.7

25
(.4

33
)

19
52

.2
98

.6
49

4.
72

0
(4

.5
79

)
.5

76
(.3

98
)

.2
05

.9
21

2.
73

1
(2

.5
18

)
.7

02
(.4

07
)

19
53

.3
27

.6
67

4.
93

5
(4

.7
98

)
.5

56
(.3

95
)

.2
28

.9
20

2.
97

9
(2

.6
38

)
.6

79
(.4

28
)

19
54

.3
34

.6
97

4.
85

9
(4

.7
41

)
.5

57
(.4

01
)

.2
17

.9
29

2.
84

(2
.5

79
)

.6
91

(.4
56

)
19

55
.3

68
.7

18
5.

08
3

(5
.0

34
)

.5
36

(.3
97

)
.2

25
.9

13
2.

96
6

(2
.6

79
)

.6
81

(.4
31

)
19

56
.4

11
.7

31
5.

39
8

(5
.3

11
)

.5
11

(.3
91

)
.2

49
.9

78
3.

04
4

(2
.8

75
)

.6
66

(.4
27

)
19

57
.4

06
.7

28
5.

37
0

(5
.2

29
)

.5
13

(.3
85

)
.2

69
1.

02
5

3.
11

8
(2

.8
60

)
.6

52
(.4

35
)

19
58

.4
11

.7
50

5.
31

0
(5

.2
91

)
.5

14
(.3

88
)

.2
76

1.
07

5
3.

06
4

(2
.8

93
)

.6
51

(.4
48

)
19

59
.4

60
.7

65
5.

63
3

(5
.5

71
)

.4
88

(.3
96

)
.2

86
1.

05
1

3.
20

9
(2

.9
77

)
.6

41
(.4

52
)

19
60

.5
04

.8
15

5.
73

2
(5

.6
46

)
.4

73
(.3

98
)

.3
30

1.
06

1
3.

55
9

(3
.2

76
)

.6
08

(.4
59

)
19

61
.6

22
.9

79
5.

82
8

(5
.8

17
)

.4
43

(.4
08

)
.3

46
1.

17
3

3.
41

7
(3

.2
68

)
.6

07
(.4

62
)

19
62

.6
63

.9
71

6.
08

6
(5

.9
87

)
.4

26
(.3

95
)

.3
38

1.
10

7
3.

50
9

(3
.2

78
)

.6
07

(.4
43

)
19

63
.7

12
.9

85
6.

29
4

(6
.1

67
)

.4
11

(.3
96

)
.3

56
1.

07
3

3.
73

7
(3

.5
13

)
.5

91
(.4

40
)

19
64

.7
85

1.
01

7
6.

53
4

(6
.3

33
)

.3
91

(.4
00

)
.4

06
1.

09
5

4.
05

7
(3

.7
88

)
.5

62
(.4

44
)

19
65

.8
42

1.
02

9
6.

75
0

(6
.5

52
)

.3
76

(.3
93

)
.4

52
1.

12
4

4.
30

2
(3

.8
59

)
.5

38
(.4

27
)

19
66

.9
55

1.
04

4
6.

16
6

(6
.9

12
)

.3
48

(.3
90

)
.5

14
1.

10
4

4.
75

6
(4

.1
92

)
.5

04
(.4

26
)

∗
T

hu
ro

w
di

d
no

te
st

im
at

e
th

e
pa

ra
m

et
er

b,
bu

tr
at

he
ra

ss
um

ed
it

to
be

15
($

15
,0

00
)a

nd
in

cl
ud

ed
an

y
hi

gh
er

In
co

m
es

in
th

e
gr

ou
p

w
ith

an
up

pe
rb

ou
nd

of
$1

5,
00

0.
T

he
m

ea
n

an
d

G
in

ic
oe

ffi
ci

en
ts

w
er

e
ev

al
ua

te
d

us
in

g
eq

ua
tio

ns
(1

5)
an

d
(1

6)
.

∗∗
T

he
nu

m
be

rs
in

pa
re

nt
he

se
s

ar
e

th
e

co
rr

es
po

nd
in

g
ce

ns
us

es
tim

at
es

re
po

rt
ed

in
cu

rr
en

tp
op

ul
at

io
n

re
po

rt
s

(P
60

).
T

he
no

m
in

al
fig

ur
es

fo
rm

ea
n

In
co

m
e

w
er

e
ad

ju
st

ed
by

th
e

C
PI

to
ob

ta
in

th
e

fig
ur

es
in

I9
59

do
lla

rs
.



46 James B. McDonald

3.2 Estimation and Comparison of Alternative Distributions

The generalized gamma and generalized beta of the first and second kinds and spe-
cial cases previously discussed were fit to US family nominal income for 1970-1980.
The data were in a grouped format and the corresponding multinomial likelihood
function is given by

L(Θ) = N!
g

∏
i=1

(Pi(Θ))ni

ni!

where Pi(Θ) =
∫

Ii f (y; Θ)dy denotes the predicted fraction of the population in the
ith of g income groups defined by Ii = [yi−1,yi). The (ni/N)are the corresponding
observed relative frequencies (N = ∑ni). The estimators obtained by maximizing
the multinomial likelihood function will be asymptotically efficient relative to other
estimators based on grouped data; however, they may be less efficient than maxi-
mum likelihood estimators based on individual observations (cf. Cox and Hinckley
(1974)).8 The results of this estimation for 1970, 1975, and 1980 are reported in
Tables 3.3, 3.4, and 3.5. The reported values for the mean and Gini coefficients
were obtained by substituting the estimated parameters into the relevant expressions
given in Table 3.1.

The generalized beta of the second kind provides a better fit than the general-
ized gamma of the first kind based upon a sum of squared or absolute errors cri-
terion (SSE, SAE), chi-square (χ2), or log-likelihood criterion9. The values of the
log-likelihood functions are consistent with the logical relationships between the

8 The program GQOPT obtained from Richard Quandt was used to maximize the multinomial log-
likelihood function. A convergence criterion of 10−8 was specified. The data used are given in the
following table, and were taken from the Census Population Reports.

Endpoint
(in thousands) 1970 1975 1980

2.5 6.6 3.5 2.1
5.0 12.5 8.5 4.1
7.5 15.2 10.6 6.2
10 16.6 10.6 6.5

12.5 15.8 11.4 7.3
15 11.0 10.9 6.9
20 13.1 18.8 14.0
25 4.6 11.6 13.7
35 3.0 9.5 19.8
50 1.1 3.2 12.8
∞ 0.5 1.4 6.7

For cases in which the percentages do not add to 100, the percentages used in estimation were
obtained by transforming the reported figures by multiplying them by (100/sum of percentages).
9 The SSE, SAE, and χ2 values are obtained by evaluating

11
∑

i=1

(
ni
N − pi

(
Θ̂
))2

,
11
∑

i=1

∣∣∣ ni
N −Pi

(
Θ̂
)∣∣∣

and N
11
∑

i=1

(
ni
N −Pi

(
Θ̂
))2

/Pi

(
Θ̂
)

, respectively.
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distribution functions, i.e., the higher a distribution is on a branch in Figure 3.1, the
larger is the associated likelihood function. The other measures of goodness of fit
reported need not provide the same rankings.

It is interesting to note that the Singh-Maddala distribution function provides a
better fit to the data than any of the distribution functions except for the generalized
beta of the second kind regardless of the criterion used for comparison. It even per-
forms better than the four-parameter generalized beta of the first kind for the data set
considered. This result is of particular interest due to the relative simplicity of the
distribution function. Atoda et al. (1980) found that the estimated Singh-Maddala
distribution generally outperformed the corresponding B1 or GG for the distribu-
tion of Japanese income considered. They used a nonlinear least squares estimation
technique and adopted chi-square and SSE criteria for purposes of comparing the
distributions. For the US data considered here, the generalized gamma was gener-
ally the second best of the three-parameter models regardless of the criterion used
for 1975 and 1980.

The lognormal is, with few exceptions, worse than any of the other two-parameter
models. The lognormal overstates income in the upper tail (last group) and has a
larger estimated mean income and suggests greater dispersion than for the other
models with two or more parameters.

The likelihood ratio test provides the basis for comparing nested models. The
asymptotic distribution of 2 [lnL(ΘML)− lnL(ΘR)] is chi-square with degrees of
freedom equal to the number of independent restrictions imposed on the more gen-
eral model in order to yield the nested model. ΘML, and ΘR, respectively, denote
maximum likelihood estimators of the general and restricted model. The literature
dealing with nonnested hypotheses provides an approach for comparing distribu-
tions on different branches.

The differences between GB1 and GG are not statistically significant for any of
the three years and have almost identical characteristics. Similarly, GB1, GG, B1,
and GA have almost identical characteristics for 1975. Other differences between
the nested models appeared to be statistically significant using either a likelihood
ratio or Wald test.

The chi-square statistic provides a test of “goodness of fit” and has an asymp-
totic distribution which is chi-square with degrees of freedom equal to one less than
the difference between the number of income groups and number of parameters.
There is considerable variation in the value of chi-square across distributions, but
all must be rejected at conventional levels of significance. This result is common
in applications involving large sample sizes (Kloek and van Dijk, 1978; McDonald
and Ransom, 1979), and suggests that it might be productive to consider the impact
of sample size upon the power of such tests.

In summary, the generalized beta of the second kind provided the best relative fit
and included many other distributions as special or limiting cases. The differences
were statistically significant. The Singh-Maddala (or Burr) distribution provided a
better fit than the generalized beta of the first kind (four parameters) and all of the
two- and three-parameter models considered. The Singh-Maddala distribution func-
tion has a closed form which greatly facilitates estimation and analysis of results.
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Appendix

Derivation of I(x,h) and I∗(i, j)

The incomplete moments I(x,h) for the generalized gamma can be obtained by sub-
stituting (3.1) into (3.8) to obtain

I(x,y) =
∫ x

0

ayap+h−1

bapΓ (p)
e−(y/b)a

dy. (3.17)

Equation (3.17) can be evaluated by making the change of variable s = (y/b)a;
hence,

I(x,h) = bh
∫ (x/b)a

0

sp+h/a−1

Γ (p)
e−sds

=
bhe−(x/b)a

(x/b)ap+h

Γ (p)(p+ h
a )

1F1

[
1; (x/b)a

p+ h
a +1;

] (3.18)

(cf. McDonald and Jensen (1979); Rainville (1960)).
The

1F1

[
a;

b;y

]
is the confluent hypergeometric series and is a special case of the generalized
hypergeometric series defined by

pFq

[
a1, ...,ap; x
b1, ...,bq;

]
=

∞

∑
i=0

(a1)i...(ap)i

(b1)i...(bq)i

xi

i!

where (a)i = (a)(a+1)...(a+ i−1). (A.2) can be used to evaluate I∗(i, j).

I∗(i, j) =
∫ ∞

0
xi f (x)

∫ x

0
y j f (y)dydx =

∫ ∞

0
xi f (x)I(x, j)dx

=
b j

Γ (p)(p+ j/a)

∫ ∞

0
xi axap−1e−(x/b)a

bapΓ (p)
e−(x/b)a

xap+ j

bap+ j 1F1

[
1; (x/b)a

p+ j
a +1;

]
dx

=
a

Γ 2(p)(p+ j/a)b2ap

∫ ∞

0
x2ap+i+ j−1e−2(x/b)a

1F1

[
1; (x/b)a

p+ j/a+1;

]
dx.

(3.19)

Making the change of variable s = (x/b)a,



52 James B. McDonald

I∗(i, j) =
bi+ j

Γ 2(p)(p+ j/a)

∫ ∞

0
s2p+(i+ j)/a−1e−2s

1F1

[
1; s

p+ j
a +1;

]
ds

=
bi+ jΓ (2p+ i+ j

a )
Γ 2(p)(p+ j/a)22p+(i+ j)/a 2F1

[
1,2p+ i+ j

a ; 1
2

p+ j
a +1;

]
.

(3.20)

See Gradshteyn and Rhyzik (1965, p. 851, 7.5229).
The derivation for the generalized beta for the first kind is similar to that for the

generalized gamma except that the evaluation of I(x,h) makes use of the incomplete
beta function (Rainville, 1960) and the evaluation of I∗(i, j) makes use of an integral
reported in Gradshteyn and Rhyzik (1965, p. 850). The corresponding results can
be shown to be

I(x,h) =
bh(x/b)ap+h

B(p,q)
(

p+ h
a

) 2F1

[
p+ h

a ,1−q;
( x

b

)a

p+ h
a +1;

]
,

I∗(i, j) =
bi+ jB

(
2p+ i+ j

a ,q
)

B2(p,q)
(

p+ j
a

) 3F2

[
2p+ i+ j

a , p+ j
a ,1−q; 1

2p+q+ i+ j
a , p+ j

a +1;

]
,

(3.21)

where B(a,b) = Γ (a)Γ (b)/Γ (a+b).
The derivation of I (x,h) for the generalized beta of the second kind also makes

use of the incomplete beta function. The evaluation of the corresponding I*(i, j)
involves the integral reported in Gradshteyn and Rhyzik (1965, p. 849, #5 ). I(x,h)
and I*(i, j) are given by

I(x,h) =
bhzp+h/a

B(p,q)
(

p+ h
a

) 2F1

[
p+ h

a ,1+ h
a −q; z

p+ h
a +1;

]
(3.22)

where

z =
(x/b)a

1+(x/b)a

and

I∗(i, j) =
bi+ jB

(
2p+ i+ j

a ,q− i
a

)
B2(p,q)

(
p+ j

a

) 3F2

[
p+ j

a ,1+ j
a −q,2p+ i+ j

a ; 1
p+ j

a +1,2p+q+ j
a ;

]
.

Expressions for the moments and distributions can be easily obtained from equations
(3.10) and (3.11) using the expressions for I(x,h) in (3.18), (3.21), and (3.22).

The expressions for I∗(i, j) can be substituted into (3.13) to yield formulas for the
Gini measure of inequality. In some instances these equations have been transformed
into simpler representations reported in Table 3.1.
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Limiting behavior of the generalized beta of the first kind

The generalized beta density of the first kind is given by

g(y) =
ayap−1(1− (y/b)a)q−1

bapB(p,q)
. (3.23)

This density function approaches the generalized gamma density as q→∞ where
the scale factor changes with q as

b = β (p+q)1/a. (3.24)

Making this substitution into (3.23) for b yields

g(y) =
(

ayap−1

Γ (p)β ap

)(
Γ (p+q)

Γ (q)(p+q)p

)(
1− ya

β a(p+q)

)q−1

. (3.25)

For large values of q, the gamma function can be approximated by Stirling’s for-
mula,

Γ (x) .= e−xxx−1/2
√

2π. (3.26)

See Kendall and Stuart (1961, v. 1, p. 811).
The second bracketed expression in (3.25) can be shown to approach 1 by mak-

ing the substitution (3.26) for the gamma functions and taking the limit as q → ∞.
Similarly, the last bracketed expression in (3.25) approaches e−(y/β )a

as q → ∞.
Therefore the generalized beta in (3.23) approaches the generalized gamma (3.1) as
q → ∞.

Limiting behavior of the generalized beta of the second kind

Substituting b = q1/aβ into (3.3) and grouping terms yields

h(y) =
(

ayap−1

β apΓ (p)

)(
Γ (p+q)
Γ (q)qp

)⎡⎢⎣ 1(
1+ ya

β aq

)p+q

⎤⎥⎦ . (3.27)

Using (3.26) in the second bracketed expression in (3.27) and taking the limit of
(3.27) as q → ∞ yields the expression for the generalized gamma density given in
equation (3.1).
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CHAPTER 4

Efficient Estimation of the
Lorenz Curve and Associated

Inequality Measures from
Grouped Observations†

N. C. Kakwani and N. Podder ‡

Abstract

This paper introduces a new coordinate system for the Lorenz curve . Particular at-
tention is paid to a special case of wide empirical validity. Four alternative methods
have been used to estimate the proposed Lorenz curve from the grouped data. The
well known inequality measures are obtained as the function of the estimated pa-
rameters of the Lorenz curve. In addition the frequency distribution is derived from
the equation of the Lorenz curve. An empirical illustration is presented using the
data from the Australian Survey of Consumer Expenditure and Finances 1967-68.

1 Introduction

The Lorenz curve is widely used to represent and analyze the size distribution of
income and wealth. The curve relates the cumulative proportion of income units
to the cumulative proportion of income received when the units are arranged in
ascending order of their income.

The equation of the Lorenz curve can be derived from the density function of the
income distribution. In practice, the density function is not known, and one approach

† Reprint of Kakwani, N. C., and N. Podder (1976) Efficient Estimation of the Lorenz Curve and
Associated Inequality Measures from Grouped Observations, Econometrica, 44, 137-148. © The
Econometric Society, 1976.
‡ This research was partially supported by a grant given by the Reserve Bank of Australia. The
authors would like to thank two referees for their valuable comments.
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has been to fit some well known density function, for example, the Pareto or the
lognormal. The shortcoming of such an approach is that the usual density function
hardly gives a reasonably good fit to actual data. An alternative approach is to find
an equation of the Lorenz curve which would fit actual data reasonably well. The
Lorenz curve has a number of properties which can be effectively utilized to specify
such an equation.

The purpose of this paper is to introduce a new coordinate system for the Lorenz
curve. Particular attention is paid to a special case of wide empirical validity. Four
alternative methods have been used to estimate the proposed Lorenz curve from
the grouped observations. The well known inequality measures are obtained as the
function of the estimated parameters of the Lorenz curve. The procedure of esti-
mating the asymptotic standard errors of the inequality measures is also provided.
In addition the frequency distribution is derived from the equation of the Lorenz
curve.

A new representation of the Lorenz curve is introduced in the next section.
Section 3 provides the relationship between this representation of the Lorenz curve
and a number of conventional measures of income inequality. Section 4 describes a
number of estimation methods. The last section reports some empirical results based
on the data from the Australian Survey of Consumer Expenditure and Finances
(1967-1968).

2 A New Co-Ordinate System for the Lorenz Curve

Suppose that income X of a family is a random variable with probability distribution
function F(x). Further, if it is assumed that mean µ of the distribution exists and X
is defined only for positive values,2 the first moment distribution function of X is
then given by

F1(x) =
1
µ

∫ x

0
Xg(X)dX (4.1)

where g(X) is the density function.
The Lorenz curve is the relationship between F(x) and F1(x). The curve is shown

in Figure 4.1. The equation of the line F1 = F is called the egalitarian line, which in
the diagram, is the diagonal through the origin of the unit square.

Let P be any point on the curve with co-ordinates (F,F1), and

π =
1√
2
(F +F1) and η =

1√
2
(F −F1); (4.2)

then η will be the length of the ordinate from P on the egalitarian line and π will
be the distance of the ordinate from the origin along the egalitarian line. Since the
Lorenz curves lie below the egalitarian line, F1 ≤ F which implies η ≥ 0. Further,

2 The income X can be negative for some families but is assumed to be always positive here because
of notational convenience.
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if income is always positive the equation (4.2) will imply η to be less than or equal
to π .

The equation of the Lorenz curve in terms of π and η can now be written as:

η = f (π) (4.3)

where π varies from zero to
√

2.

Fig. 4.1:

If g(X) is continuous, the derivatives of F(x) and F1(x) exist; dF/dx = g(x)
and dF1/dx = xg(x)/µ . Using these values in (4.2) gives the derivatives of η with
respect to π as:

dη
dπ

=
µ − x
µ + x

(4.4)

and
d2η
dπ2 = − 2

√
2µ2

g(x)(µ + x)3 < 0. (4.5)

Thus η will be maximum at x = µ .
If the Lorenz curve represented by the equation (4.3) is symmetric3, the value of

η at π and (
√

2−π) should be equal for all values of π , which implies

3 The symmetricity of the Lorenz curve is defined with respect to the diagonal drawn perpendicular
to the egalitarian line .
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f (π) = f (
√

2−π) for all π (4.6)

The curve will be skewed towards (1,1) if f (π) > f (
√

2−π) for π < 1/
√

2 and
it will be skewed towards (0,0) if f (π) < (

√
2− π) for π < 1/

√
2. For instance,

assume that the equation of the curve is

η = aπα(
√

2−π)β , a > 0, α > 0, and β > 0. (4.7)

The restriction a > 0 implies that η ≥ 0, i.e., the Lorenz curve lies below the
egalitarian line. Further, α > 0 and β > 0 mean that η assumes value zero when
π = 0 or π =

√
2. Using (4.6) it is seen that the curve is symmetric if α = β , skewed

towards (1,1) if β > α , and skewed towards (0,0) otherwise. Further restrictions on
the coefficients of (4.7) can be imposed on the basis of equations (4.4) and (4.5).
If f ′(π) stands for the first derivative of f (π) with respect to π , the equation (4.4)
implies that for X ≥ 0, [1− f ′(π)] and [1 + f ′(π)] should be of the same sign so
that their ratio is always positive. The equation (4.5) means that for all values of X ,
the second derivative f ′′(π) should be negative. For the equation (4.7), these three
quantities are obtained as

1− f ′(π) =
√

2F1 +(1−α)η
π

+
βη√
2−π

, (4.8)

1+ f ′(π) =
√

2(1−F)+(1−β )η
(
√

2−π)
+

αη
π

, (4.9)

and

f ′′(π) = −η
[

α(1−α)
π2 +

β (1−β )
(
√

2−π)2
+

2αβ
π(

√
2−π)

]
, (4.10)

where use has been made of (4.2). It is thus obvious that the sufficient conditions for
equations (4.4) and (4.5) to be satisfied are 0 < α ≤ 1 and 0 < β ≤ 1. These sufficient
conditions rule out the possibility of points of inflexion on the curve which are, of
course, not permissible in the Lorenz curve.

An alternative class of equations of the Lorenz curve which look similar to the
well known CES production function proposed by Arrow et al. (1961) is given by

η = a[δπ−ρ +(1−δ )(
√

2−π)−ρ ]−ν/ρ (4.11)

where the parameters a, δ , ρ , and ν , are all greater than zero. Rearranging the
equation (4.11) we obtain

η = aπν(
√

2−π)ν [δ (
√

2−π)ρ +(1−δ )πρ ]−ν/ρ (4.12)

which clearly shows that η assumes value zero when π = 0 and π =
√

2. The curve
is symmetric if δ = 1/2, skewed towards (1,1) if δ > 1/2, and skewed towards (0,0)
if δ < 1/2. Further, the limit of (4.12) as ρ approaches zero becomes
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η = aπδν(
√

2−π)ν(1−δ ) (4.13)

which is the same class of equations as (4.7) with α = δν and β = ν(1−δ ). Finally,
the sufficient conditions that the equations (4.4) and (4.5) are always satisfied for this
class of equations, i.e. (4.11), are 0 < δ < 1 and 0 < ν < 1.

The income density function underlying the Lorenz curve (4.3) is obtained as

g(x) =
1√
2

[
dπ
dx

+
dη
dx

]
=

1√
2

[
1+

dη
dπ

]
dπ
dx

=
√

2µ
(µ + x)

dπ
dx

(4.14)

where use has been made of equations (4.2) and (4.4).
The equation (4.4), written as

f ′(π) =
µ − x
µ + x

, (4.15)

gives the relationship between π and x. Under the sufficient conditions discussed
above, f ′′(π) < 0, which implies that f ′(π) is a monotonically decreasing function
of π and, therefore, the equation (4.16) can always be solved for π in terms of x.
Substituting the value of π for a given value of x in (4.2) gives the distribution
functions F(x) and F1(x). Differentiating (4.15) with respect to π gives

f ′′(π)
dπ
dx

=
−2µ

(µ + x)2 (4.16)

which implies that dπ/dx > 0, i.e., π increases as x increases. Using the value of π
solved from (4.15) into (4.16), we obtain the value of dπ/dx in terms of x, which
on substituting in (4.14) gives the density function g(x). Thus, the condition that
f ′′(π) < 0 is satisfied for the given equation for the Lorenz curve it is always pos-
sible to derive the income density function underlying the equation of the Lorenz
curve.

3 Inequality Measures and Their Derivation

Among all the inequality measures, the most widely used is Gini’s concentration
ratio which is equal to twice the area between the Lorenz curve and the egalitarian
line. Thus if the Lorenz curve is formulated in terms of π and η , the concentration
ratio becomes

CR = 2
∫ √

2

0
f (π)dπ (4.17)

which for the specific curve (4.7) is

CR = 2
∫ √

2

0
aπα(

√
2−π)β dπ = 2a(

√
2)1+α+β B(1+α,1+β ) (4.18)
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where B(1 + α,1 + β ) is the Beta function which has been widely tabulated (see
Pearson and Johnson (1968)).

The partial derivative of CR with respect to a, α , and β are evaluated as

∂ (CR)
∂a

=
CR
a

, (4.19)

∂ (CR)
∂α

= [log
√

2+Ψ(1+α)−Ψ(2+α +β )](CR), (4.20)

∂ (CR)
∂β

= [log
√

2+Ψ(1+β )−Ψ(2+α +β )](CR), (4.21)

where Ψ(1 +α) is the Euler’s psi function which can be numerically computed by
making use of the following relationship:4

Ψ(1+α)−Ψ(2+α +β ) =
∞

∑
k=0

(
1

(2+α +β + k)
− 1

(1+α + k)

)
. (4.22)

Using these partial derivatives, the asymptotic variance of CR can now be ob-
tained from the estimated variances and covariances of the parameter estimates â,
α̂ , and β̂ (see Kakwani and Podder (1972)).

Another important measure of inequality which is well known in the literature is
relative mean deviation. This measure is defined as

T =
1

2µ
1
N

N

∑
i=1

|xi −µ| (4.23)

where xi is the income of the ith family.
It can be shown (see Gastwirth (1972)) that T is equal to the maximum discrep-

ancy between F(x) and F1(x), which is also equal to
√

2 times the maximum value
of η . In order to obtain the maximum value of η , equation (4.3) is to be differenti-
ated with respect to π and equated to zero. Then solving for π , the maximum value
of η can be obtained from the equation of the Lorenz curve. For instance, if the
equation of the Lorenz curve is (4.7), equating its derivative to zero, we obtain

dη
dπ

= aαπα−1(
√

2−π)β −aβπα(
√

2−π)β−1 = 0 (4.24)

which gives π =
√

2α/(α +β ) and, therefore, the relative mean deviation will be

T = (
√

2)1+α+β aαα β β

(α +β )α+β . (4.25)

4 In order to find the derivatives ∂ (CR)/∂α and ∂ (CR)/∂β , we require the partial derivatives of
B(1 + α,1 + β ) with respect to α and β . Formula 4-2531 of Gradsheteyn and Ryshik (1965) is
used to evaluate the integral obtained after differentiating partially the Beta function.
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Again if the variances and covariances of â, α̂ , and β̂ are known, it is possible to
compute the asymptotic variance of T .

Elteto and Frigyes (1968) have recently proposed a set of three new inequality
measures which can be easily computed from the equation of the Lorenz curve (4.3)
by using the value of π at which η is maximum. It is thus obvious that the derivation
of Elteto and Frigyes (1968) measures are similar to the relative mean deviation.
Recently, Kondor (1971) has shown that these measures do not convey much more
information than the relative mean deviation and it is, therefore, unnecessary to
discuss their derivation here. However, the numerical values of these measures along
with their asymptotic standard errors have been computed using Australian data in
Section 5.

Further, the estimated Lorenz curve (4.3) can be used to obtain any percentile of
the distribution. To illustrate this point the estimated shares of income going to the
poorest and richest 5 and 10 per cent have been computed in Section 5.

4 The Estimation of the Lorenz Curve

The estimation of the Lorenz curve from grouped observations is considered here.
Suppose there are N families which have been grouped into (T +1) income classes,
viz., (0 to x1),(x1 to x2), ...,(xT to xT+1). Let nt , be the number of families earning
income in the interval xt−1 and xt ; then ft = nt/N is the relative frequency; ft = nt/N
is a consistent estimator of the probability φt of a family belonging to the tth income
group.5

If x∗t is the sample mean for the tth income group, then the consistent estimates
of F(xt) and F1(xt) are

pt =
t

∑
γ=1

fγ and qt =
1
Q

t

∑
γ=1

x∗γ fγ , (4.26)

respectively, where t = 1,2, ...,T and Q = ∑T+1
γ=1 x∗t fγ is the mean income of all the

families. Now using the equation (4.2), the consistent estimators of πt and ηt are
obtained as

rt =
pt +qt√

2
and yt =

pt −qt√
2

, (4.27)

respectively. (The terms rt , and yt , differ from πt , and ηt , by some random distur-
bance terms.) Then the equation of the Lorenz curve (4.7) in terms of the observa-
tions on rt , and yt can be written as

log yt = a′ +α log rt +β log(
√

2− rt)+w1t , (4.28)

5 φt =
∫ xt

xt−1
g(x)dx.
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where a′ = log a and w1t is the random disturbance which can be shown to be of
order N−1/2 in probability (see Kakwani and Podder (1972)).

In what follows, it will be useful to write the above equation in vector and matrix
notations as

Y1 = X1δ +w1, (4.29)

where Y1 is a T×1 vector of T observations on log y1,X1, is a T×3 matrix of T
observations on the right-hand side variables of (4.28), w1 is the column vector of T
observations on the disturbance term, and δ is the column vector consisting of the
three elements a′, α , and β . Then the least squares estimator of δ is

δ̂ = (X
′
1X1)−1X

′
1Y1 (4.30)

which will be referred to as Method I in subsequent discussions.
Following Kakwani and Podder (1972) it can be shown that δ̂ is a consistent

estimator of δ and its asymptotic variance-covariance matrix is given by

var(δ̂ ) = (X
′
1X1)−1X

′
1Ω11X1(X

′
1X1)−1 (4.31)

where
E(w1w

′
1) = Ω11 (4.32)

is the variance and covariance matrix of w1. However, the asymptotically more effi-
cient estimator of δ is

ˆ̂δ = (X
′
1Ω−1

11 X1)−1X
′
1Ω−1

11 Y1, (4.33)

which can also be shown to be consistent and its asymptotic variance-covariance
matrix would be

var( ˆ̂δ ) = (X
′
1Ω−1

11 X1)−1. (4.34)

This generalized least squares method will be referred to as Method II. The infor-
mation on income ranges is available for most income distributions which can be
effectively utilized to improve the precision of the estimates. To show this, we con-
sider the equation (4.4) which for the Lorenz curve (4.7) can be written as

µ − xt

µ + xt

πt(
√

2−πt)
ηt

= (
√

2−πt)α −πtβ . (4.35)

Substituting the estimates of πt , ηt , and µ , the above equation becomes

Q− xt

Q+ xt

rt(
√

2− rt)
yt

= (
√

2− rt)α − rtβ +w2t (4.36)

where w2t , is the random error which can again be shown to be of order N−1/2 in
probability.

Write (4.36) in vector and matrix notations as

Y2 = X2δ +w2, (4.37)
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where Y2 is a column vector of T observations on the dependent variable in the
equation (4.36), X2 is a T×3 matrix, the first column of which consists of T obser-
vation on the explanatory variables (

√
2− rt) and −rt , of the equation (4.36), and

w2 is the vector of stochastic disturbances.
The equations (4.29) and (4.37) can now be combined together as

Y = Xδ +w, (4.38)

where

Y =
[
Y1
Y2

]
, X =

[
X1
X2

]
, and w =

[
w1
w2

]
(4.39)

w is now the vector of 2T disturbances with zero mean and covariance matrix

Eww’ = Ω =
[

Ω11 Ω12
Ω21 Ω22

]
. (4.40)

The coefficient vector δ can now be estimated from (4.38) by the direct least
squares method which will be referred to as Method III. However, the asymptotic
more efficient estimator of δ will be

ˆ̂δ ∗ = (X
′
Ω−1X)−1X

′
Ω−1Y (4.41)

with its asymptotic variance-covariance matrix

var( ˆ̂δ ∗) = (X
′
Ω−1X)−1. (4.42)

The estimator ˆ̂δ will be referred to as Method IV.6

The above procedure of estimating the parameters by combining two stochastic
equations has been earlier used by Theil (1963) in connection with mixed estima-
tion and by Zellner (1962) in connection with seemingly unrelated regressions. It
can be demonstrated that the estimators of the coefficient vector δ obtained from
the combined equation are more efficient than those obtained from the individual
equation (4.29).

5 Some Empirical Results

Results of the estimation of the Lorenz curve and associated inequality measures are
presented in this section. The source of data used for this purpose is the Australian
Survey of Consumer Finances and Expenditures, 1967-68, carried out by the Mac-
quarie University and the University of Queensland. The nature of the Survey has

6 The derivation of the consistent estimator of the covariance matrix Ω follows a pattern similar to
that given in the earlier work of the authors Kakwani and Podder (1972) and, therefore, has been
omitted here.
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been extensively discussed elsewhere (Podder (1972)). The data were supplied to us
in the form of a set of individual observations. The income considered here is net
of taxes but does not include imputed rent from owner occupied houses. Individual
income figures made it possible to compute the actual values of the concentration
ratio and other measures which were useful in judging the degree of accuracy of the
methods discussed in this paper. The grouped data are presented in Table 4.1.

Table 4.1: Income Distribution

Income Number Mean
Range ($) of families Income ($) p q r y

Below 1000 310 674.39 0.05698 0.009274 0.046849 0.033730
1000-1999 552 1426.10 0.15846 0.044193 0.143297 0.080799
2000-2999 1007 2545.79 0.34357 0.157912 0.354601 0.131280
3000-3999 1193 3469.35 0.56287 0.341510 0.639493 0.156525
4000-4999 884 4470.33 0.72536 0.516805 0.878343 0.147471
5000-5999 608 5446.60 0.83713 0.663701 1.061248 0.122633
6000-6999 314 6460.93 0.89485 0.753693 1.165696 0.099813
7000-7999 222 7459.14 0.93566 0.827147 1.246493 0.076730
8000-8999 128 8456.66 0.95919 0.875164 1.297084 0.059415
9000-10999 112 9788.38 0.97978 0.923794 1.346030 0.039588
11000 and over 110 15617.69 1.00000 1.000000 1.414213 0.000000

Table 4.2 presents the estimated parameters of the Lorenz curve (4.7) along with
the different inequality measures. The equation has been estimated using four alter-
native methods of estimation discussed in Section 4.

In the table u′, v′, and w′ represent the three new inequality measures proposed
by Elteto and Frigyes (1968). The last row of the table presents the actual values of
the inequality measures computed on the basis of the individual observations. It is
observed that the inequality measures computed by all four methods are very close
to the actual values and their standard errors are generally low. Method IV gives
the best result in the sense that the standard errors are the lowest and the estimated
inequality measures are closest to their actual values.

It should be pointed out that various approximations have been used in the past to
estimate the concentration ratio from grouped data. The most common is the linear
approximation which assumes that within each income range the inequality is zero
(see Morgan (1962)). Therefore this approximation provides only the lower limit
of the CR which in the present case is 0.3134. Gastwirth (1972) has recently sug-
gested the method of obtaining the upper limit of the CR which has been computed
as 0.3223 in our case. The CR computed in Table 4.3 lies within the lower and up-
per limit for all four methods of estimation. Thus the goodness-of-fit test criterion
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Table 4.2: Results of the Different Methods of Estimation

Method of Coefficients Inequality Measures
Estimation Estimates CR T u’ v’ w

α=0.7542
(0.0061)

I β=0.8042 0.3203 0.2250 0.3772 0.6002 0.3579
(0.0072) (0.0041) (0.0081) (0.0051) (0.0015) (0.0048)

a=0.2728
(0.0156)

α=0.7535
(0.0059)

II β=0.8029 0.3208 0.2252 0.3774 0.6004 0.3583
(0.0067) (0.0039) (0.0070) (0.0043) (0.0013) (0.0038)

a=0.2730
(0.0132)

α=0.7615
(0.0042)

III β=0.8061 0.3206 0.2255 0.3767 0.6009 0.3596
(0.0058) (0.0038) (0.0022) (0.0041) (0.0009) (0.0037)

a=0.2744
(0.0121)

α=0.7611
(0.0009)

VI β=0.8049 0.3195 0.2246 0.3753 0.5993 0.3583
(0.0020) (0.0008) (0.0018) (0.0009) (0.0008) (0.0029)

a=0.2732
(0.0091)

Actual Values of
Inequality Measures 0.3196 0.2219 0.3750 0.5951 0.3521

NOTE: Figures in brackets are the asymptotic standard errors

Table 4.3: Actual and Estimated y

Methods of Estimation
Actual y I II III IV

0.0337 0.0349 0.0349 0.0343 0.0342
0.0808 0.0764 0.0766 0.0758 0.0755
0.1313 0.1307 0.1310 0.1306 0.1300
0.1565 0.1586 0.1588 0.1589 0.1583
0.1475 0.1498 0.1500 0.1503 0.1498
0.1226 0.1235 0.1237 0.1240 0.1236
0.0998 0.0999 0.1002 0.1004 0.1001
0.0767 0.0766 0.0769 0.0769 0.0768
0.0594 0.0592 0.0593 0.0594 0.0593
0.0396 0.0394 0.0395 0.0395 0.0395
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Table 4.4: Actual and Estimated Frequency Distribution of Family Income

Relative Frequency Mean Income
Income Range Actual Estimated Actual Estimated

Below 1000 0.0569 0.0403 674.39 380.47
1000-1999 0.1015 0.1188 1426.10 1583.66
2000-2999 0.1851 0.2089 2545.79 2515.38
3000-3999 0.2193 0.2029 3469.35 3482.29
4000-4999 0.1625 0.1527 4470.33 4469.68
5000-5999 0.1118 0.1033 5446.60 5463.85
6000-6999 0.0577 0.0661 6460.93 6451.13
7000-7999 0.0408 0.0406 7459.14 7471.49
8000-8999 0.0235 0.0245 8456.66 8440.27
9000-10999 0.0206 0.0236 9788.38 9868.39
11000+ 0.0203 0.0183 15617.69 15964.67

proposed by Gastwirth and Smith (1972) is satisfied for the density function fitted
here.7

The equation of the curve (4.28) was also fitted to 20 income groups earlier con-
sidered by the authors (Kakwani and Podder (1972)) using Method I of estimation.
The CR and T have been computed as 0.3201 and 0.3241 respectively. Thus in-
creasing the number of income groups from 11 to 20 improves the accuracy of the
technique.

Table 4.5: Shares of Incomes: The poorest and Richest 5 and 10 per Cent

Shares of Estimated from Estimated from Actual from
Income 11 Groups 20 Groups Individual Observations

Poorest 5% 0.5857 0.623 0.767
Poorest 10% 2.2600 2.314 2.132
Richest 5% 14.2000 14.380 14.424
Richest 10% 23.6000 23.780 23.757

In order to obtain the estimated frequency distribution of the income we need to
solve for π in terms of x from the following non-linear equation:

αaπα−1(
√

2−π)β −βaπα(
√

2−π)β−1 =
µ − x
µ + x

, (4.43)

where the estimates of a, α , and β are given in Table 4.2. The Newton-Raphson
method was used to compute π for given values of x (see Henrici (1967)). The esti-
mated frequency distribution for the family income so obtained is given in Table 4.4.

7 This goodness-of-fit test is based on the idea that any fitted distribution whose theoretical Gini
index falls outside the lower and upper bounds should be declared to fit the data inadequately.
According to this test the lognormal distribution did not fit United States data.
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It can be concluded from this table that the density function underlying the Lorenz
curve (4.7) provides a reasonably good fit to the whole range of the observed income
distribution.

The estimated shares of incomes going to the poorest and richest 5 and 10 per
cent are presented in Table 4.5. It is clear from the table that the estimated income
shares are quite close to the actual based on the individual observations. The twenty
income groups again provide more accurate results than ten groups.

The above procedure can be used to obtain the relative frequency and the mean
income of income ranges which could be made as small as one wishes. By dividing
the whole income range into a large number of income groups it is thus possible to
compute accurately a number of inequality measures which could not be otherwise
obtained from group observations. In addition, the density function can be useful
for other purposes which need not be mentioned here.
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CHAPTER 5

Distribution and Mobility
of Wealth of Nations∗

Richard Paap† and Herman K. van Dijk‡

Abstract

We estimate the empirical bimodal cross-section distribution of real Gross Domestic
Product per capita of 120 countries over the period 1960–1989 by a mixture of a
Weibull and a truncated normal density. The components of the mixture represent a
group of poor and a group of rich countries, while the mixing proportion describes
the distribution over poor and rich. This enables us to analyse the development of the
mean and variance of both groups separately and the switches of countries between
the two groups over time. Empirical evidence indicates that the means of the two
groups are diverging in terms of levels, but that the growth rates of the means of the
two groups over the period 1960–1989 are the same.

1 Introduction

Empirical evidence on convergence of national economies has usually been in-
vestigated by regressing growth rates of real Gross Domestic Product [GDP] on
initial levels, sometimes after correcting for exogenous variables (conditional con-
vergence), see among others, Baumol (1986), Barro (1991), Mankiw, Romer and
Weil (1992) and Sala-i-Martin (1994). A negative regression coefficient, usually la-
belled the β -coefficient, is interpreted as an indication of so called β -convergence. It
implies that countries with a relatively low level of GDP grow faster than countries
with a high level of GDP, indicating catching-up, compare also Abramowitz (1986).

∗ Reprint of Richard Paap and Herman K. van Dijk (1998) Distribution and Mobility of Wealth
of Nations, European Economic Review, 42, 1269-1293. Copyright (1998), with permission from
Elsevier.
† Econometric and Tinbergen Institutes, Erasmus University Rotterdam.
‡ Econometric and Tinbergen Institutes, Erasmus University Rotterdam.
Email: hkvandijk@few.eur.nl
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A different concept of convergence, called σ -convergence, refers to a reduction in
cross-sectional variance or dispersion over time, see Barro and Sala-i-Martin (1992).
Friedman (1992) and especially Quah (1993a) show, using Galton’s fallacy, that
a negative β -regression coefficient can be perfectly consistent with the absence
of σ -convergence, even when conditioning on exogenous variables. Furthermore,
Levine and Renelt (1991, 1992) discuss the robustness of the regression approach
with respect to the conditioning variables and the consistency of the results, see also
Durlauf and Johnson (1995). Another limitation of the regression approach is that
the dynamics of the economic process is summarised in a growth rate and an initial
level, neglecting the short run dynamics of the variable investigated.

This paper deals with the analysis of convergence in terms of several char-
acteristics of the distribution of real GDP per capita and is related to the
work by Quah (1993a,b), Desdoigts (1994), Jones (1997), Quah (1996a,b) and
Bianchi (1997). In these studies nonparametric methods are usually applied to
analyse convergence. In the present paper we take a parametric approach. More,
generally, we analyse the development of the distribution and mobility of wealth of
120 countries from 1960 until 1989. As measure for wealth we take the real Gross
Domestic Product per capita, which can be interpreted as a rough approximation
of the basic idea about wealth, see Parente and Prescott (1993)10. We start with
presenting some stylized facts on the observed real GDP per capita over the period.
This leads to the conclusion that the data may be described by a bimodal distri-
bution. Next, we divide the further analysis into two parts11. In the first part, the
empirical cross sectional bimodal distribution of the real GDP per capita in each
year is described by a finite mixture density. Efficient estimation of the parameters
of several classes of finite mixtures results in a partitioning of the countries into
two groups in each year, a group with a relatively high level of real GDP per capita
and a group with a low level of real GDP per capita and two estimated conditional
density functions for the two groups. The use of mixtures enables us to analyse
the distribution of countries over poor and rich as well as the development of the
distribution of each group.

In the second part, the results of the estimated mixture distributions are used to
consider the intra-distribution dynamics. By examining the movements of countries
between the poor group and the rich group, we obtain insight into the extent of
catching-up of poor countries with rich countries.

The outline of the paper is as follows. In section 2 we describe the data and
present some stylized facts. In section 3 we briefly discuss the interpretation, repre-
sentation and estimation of finite mixture distributions. Section 4 considers the esti-
mation results of the mixture distribution for the cross-section real GDP per capita
distribution including the development of the mean, the variance and the mixing
parameter through time. The mobility in wealth between and within both groups is
investigated in section 5. The final section contains our conclusions.

10 Of course, the real GDP per capita of a country is a measure which neglects information about
the spread of wealth among people living in this country. There can be a small group of persons
living in a country with a high level of income, while the majority has low income.
11 Here we differ from Quah who considers the year by year distribution and intra-distribution
dynamics simultaneously.
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2 Stylized Facts

In order to analyse the distribution and mobility of wealth of nations empirically,
one needs a suitable data set containing per capita data over a long period for a large
number of countries. Usually, one has data over several periods (years) but only a
limited number of (industrialized) countries or one has many countries over a small
number of years. In this paper we analyse the distribution and mobility of wealth
using a reasonably large collection of countries over 30 years. The obvious data set
for our analysis is the Penn World Table version 5.6 of Summers and Heston (1991).
This table contains a set of economic time series, based on national accounts cover-
ing 152 countries for the period 1950–1992. Because observations are not available
for each country over the whole period, we focus on the period 1960–1989. By re-
stricting ourselves to this period, there remain observations for 120 countries. The
variable we analyse in this paper is the real Gross Domestic Product [GDP] per
capita, which is constructed by dividing nominal GDP per capita by a special price
index made up of the weighted averages across countries of relative prices of all
goods in a particular basket of final goods and services. This is intended to make
real GDP per capita comparable across time and countries. For a discussion of the
construction of the special price index and the data in general, we refer to Summers
and Heston (1991).

Figure 5.1 shows smoothed versions of histograms for real GDP per capita of
120 countries in each year12. Several features of the data are shown in this figure.
First, the cross-section distribution of the real GDP per capita is bimodal. There is a
group of countries with a relative small real GDP per capita (poor countries) and a
smaller group of countries with a relative large real GDP per capita (rich countries).
Second, the gap between these groups seems to become larger over time, as the peak
of the real GDP per capita of the rich countries shifts more to the right than the peak
of the poor countries, leaving very few countries in a middle group.

In order to obtain better insight into the stylized facts of our data set we divide
our sample into six subperiods of five years and compute the average real GDP
per capita for all 120 countries over these subperiods, i.e. for 1960–1964, 1965–
1969, 1970–1974, 1975–1979, 1980–1984 and 1985–1989. Figure 5.2 displays the
histograms for the mean real GDP per capita in each subperiod in a 3-dimensional
space, similar to figure 5.1. This figure shows the data features mentioned before
even more clearly. In addition, we notice that the variance of the poor group in the
early sixties seems to be smaller than in the early eighties. For the rich countries this
seems to be the opposite. The same features of the data can be detected from figure
5.3 which shows the histograms of the real GDP per capita in the six subperiods in
a one-dimensional setting. The six histograms give good insight in the development
of the cross-section distribution of the real GDP per capita. From the stylized facts

12 This figure is constructed by making a histogram for real GDP per capita in each year and
putting these histograms in a 3-dimensional space. For visual convenience we use small ribbons,
which connect the midpoints of the bars, instead of 3-dimensional bars. Furthermore, the real GDP
per capita data, are divided by 1000 for the convenience of representation, like in the remainder of
this paper.
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Fig. 5.1: Histograms of real GDP per capita divided by 1000 (1960–1984).
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Fig. 5.2: Histograms of the average real GDP per capita divided by 1000 in six subperiods.



Distribution and Mobility of Wealth of Nations 75

Fig. 5.3: Histograms of the average real GDP per capita divided by 1000 with the fitted density
functions.

we conclude that: the distribution in each period is bimodal; a gap arises between
the poor and rich group, which increases over time; the number of countries with
an extremely low real GDP per capita decreases, but the spread of wealth within
the poor group seems to rise. Similar findings are reported in e.g. Quah (1993a,b),
Bianchi (1997) and Quah (1996a,b).

We end this section with three remarks. First on the loss of individual information
through our histogram analysis, we note that a data summarization of 3600 individ-
ual observations into 30 yearly histograms - with only a relatively small number of
cells - involves some loss of individual information. The optimal level of aggrega-
tion of information depends on the purpose of the empirical analysis. We are inter-
ested in describing and estimating efficiently such stylized facts as the behaviour of
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the poor and rich countries and their relative position through the post-war period.
From the data summarization presented in this section we conclude as main stylized
fact the bimodality of the empirical distribution of real GDP per capita.

Second on the relative merits of parametric and non-parametric analysis of in-
come distributions, we note that we estimate the bimodal cross-section distribution
of real GDP per capita per year by means of a mixture of two densities using in-
dividual observations per country. A mixture density belongs to a parametric class
of densities which are defined as a convex combination of two or more densities. In
our case these densities describe the distribution of the poor and the distribution of
the rich countries, with a mixing distribution, representing the distribution over poor
and rich. The separate analysis of the components of the mixture and of the relative
importance of these components over time are the main advantages over a non-
parametric approach as performed by, for instance, Desdoigt (1994). A clear choice
between a parametric or a non-parametric approach depends on the availability of
large data sets and on the purpose of the analysis. If there are many data over a long
period then the asymptotically valid non-parametric approach is attractive in the
sense that one can let the data ‘speak for themselves’. Often in economics there are
not enough data to have a reliable non-parametric analysis. The parametric analysis
is attractive in case there are no overly restrictive assumptions. In the next section
we perform a sensitivity analysis with respect to the chosen functional form of the
components of the mixture. One might also discuss the proper number of compo-
nents in the mixture. Our choice of bandwidth and therefore the number of classes
in the histograms are to some extent arbitrary. Using a different bandwidth in the
histograms may result in the conjecture of more than two modes in the cross-section
distribution. It is difficult to estimates a component of a mixture if the number of
observations belonging to the components is very small, see also section 3 for a dis-
cussion about singularities in the likelihood function. Furthermore, the extra modes
which occur using a smaller bandwidth, may also be due to noise. Bianchi (1997)
rejects the hypothesis of more than two modes using a non-parametric approach
based on the choice of the bandwidth. This supports our choice of two components
in the mixture.

Third, on the choice between level, log of the level and relative level of real
GDP per capita we note that in this paper we are interested in investigating conver-
gence in the level of real GDP per capita. That is, that convergence implies that the
differences in the level of real GDP per capita between countries disappear. As a
byproduct we test in section 4 whether the growth rates of the the rich and the poor
group of countries are the same. Another option is to scale the data by the sum of the
real GDP per capita in each year as suggested by Canova and Marcet (1995) or to
analyse log transformed data to test for convergence in relative welfare. In section 3
we show that our analysis is not sensitive to scaling the data in each year by a con-
stant. A log transformation makes the data more homogenous and the evidence of
bimodality in the data is considerably reduced, see Bianchi (1997). Homogeneity
of the data is an attractive feature if one has to meet the assumptions of classical
regression models, e.g. when testing for β -convergence. Also, one may use data on
real GDP per worker instead of real GDP per capita in order to analyse convergence
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in productivity. In the present paper, we have chosen to focus on testing for conver-
gence in the level of real GDP per capita.

3 Finite Mixture Distributions

We briefly discuss the representation, interpretation and estimation of mixtures dis-
tributions. For a good introductory survey of finite mixture distribution reference is
made to Everitt and Hand (1981) or Titterington, Smith and Makov (1985). For our
purpose it suffices to restrict ourselves to finite mixtures with a multinomial mixing
distribution. In this case, the mixture density function g is defined as

g(y;θ1, ...θS,λ1, ...λS−1) =
S

∑
s=1

λs f (y;θs) with λS = 1−
S−1

∑
s=1

λs, (5.1)

where S denotes the number of components in the mixture; f (y;θs), s = 1, ...,S are
probability density functions evaluated at y depending on a parameter vector θs;
and λs, s = 1, ...,S − 1 represent the mixing proportions. An example of a finite
mixture distribution is a mixture of two normal distributions. The density function g
evaluated at yi is given by

g(yi;θ1,θ2,λ ) =
λ

σ1
√

2π
exp

(
− (yi −µ1)2

2σ2
1

)
+

(1−λ )
σ2

√
2π

exp
(
− (yi −µ2)2

2σ2
2

)
,

(5.2)

where θ1 = {µ1,σ2
1 } and θ2 = {µ2,σ2

2 } denote the mean and the variance of the
normal distribution of each component and λ represents the mixing proportion. For
suitable chosen parameters, this mixture distribution is bimodal13.

Interpretation

Representing the bimodal distribution of the data by a mixture of two densities is
a convenient and interpretable way of describing the real GDP per capita. The dis-
tribution of the real GDP per capita of the poor countries is described by the first
component of the mixture and the distribution of the rich countries by the second
component. The mixing parameter λ gives the ex-ante probability that a country be-
longs to the first component of the mixture. Formally, the probability density func-
tion for the real GDP per capita for country i, denoted by yi for i = 1, ..,N can be
written as

g(yi;θ1,θ2,λ ) = λ f (yi | si = 1;θsi)+(1−λ ) f (yi | si = 2;θsi), (5.3)

13 A sufficient condition that a value λ exists such that the mixture of two normal distributions is
bimodal is (µ2 −µ1)2 < (8σ2

1 σ2
2 )/(σ2

1 +σ2
2 ).
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where λ = P[si = 1] and 1−λ = P[si = 2] are the ex-ante probabilities that country
i is poor or rich and where f (yi | si = 1;θsi) and f (yi | si = 2;θsi) are conditional
probability density functions given that country i is poor or rich. The mean and vari-
ance of the conditional distribution of component s can be interpreted as the mean
and the variance of the real GDP per capita of countries belonging to component s.

An attractive feature of our approach is that the mixing parameter λ is an en-
dogenous parameter which determines the relative importance of each component
in the mixture distribution.14 So, a priori we do not impose an absolute borderline
between the rich and the poor countries but let the data determine the relative im-
portance of each group. One may interpret a mixture model as an unobserved com-
ponent model in the following sense. To generate an observation yi from a mixture,
a country is selected to be poor with probability λ or to be rich with probability
(1− λ ), or in other words the value of si is determined. Given that the country is
poor the value of the real GDP per capita, yi is generated by the conditional density
function f (yi | si = 1;θsi) (or f (yi | si = 2;θsi) in case the country is rich). However,
we only observe the value of the real GDP per capita yi and not the value of si.
Given the realized value of the real GDP per capita yi and given the values of the
parameters θ1, θ2 and λ , we can make inference about the value of si. The condi-
tional probability that observation yi is generated by the first component (si = 1) for
the mixture defined in (5.3) is defined as

Pr[si = 1 | yi;θ1,θ2,λ ] =
λ f (yi | si = 1;θsi)

λ f (yi | si = 1;θsi)+(1−λ ) f (yi | si = 2;θsi)
(5.4)

This conditional probability denotes the ex-post probability that a country is poor
and is used for the investigation of mobility in wealth in section 5. Note that
the ex-post probability of being rich Pr[si = 2 | yi;θ1,θ2,λ ] equals 1− Pr[si = 1 |
yi;θ1,θ2,λ ] by definition.

In practice, we do not know the true values of the parameters θ1, θ2, λ and
we have to replace them by their estimates. The estimated λ can be interpreted as
the proportion of countries belonging to the first component, i.e. the percentage of
poor countries, while the probability in (5.4) can be seen as the relative ex-post
contribution of country i to the first component. (Note that in case of a mixture of
normal densities the estimated mean µ̂1 = 1

λN ∑N
i=1 Pr[s1 = 1 | yi; θ̂1, θ̂2λ̂ ] yi, i.e. a

weighted average of the observations.)
Since countries can switch over time from being poor to being rich and vice

versa the mixing proportion λ can change through time. The growth in real GDP
per capita causes changes in the means of the mixture components through time.
Further, countries belonging to a group do not need to have the same growth rates,
which implies that the variance does not have to be the same over time. Note that
a change in the mean and/or the variance of a component can also be caused by
movement of countries between the rich and the poor group.

14 Durlauf and Johnson (1995) use the regression tree technique to endogenously split the data in
multiple regimes.
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Estimation

Several methods have been proposed to estimate the parameters of a mixture, e.g.
maximum likelihood and the methods of moments, see Everitt and Hand (1981). We
follow the maximum likelihood approach, which implies maximising the following
criterion function

L (Y ;θ1,θ2,λ ) =
N

∏
i=1

g(yi;θ1,θ2,λ ), (5.5)

where the density function g is given by (5.2) and Y = {y1, ...,yN}. From the first or-
der conditions, it is easy to see that maximising the likelihood implies a non-linear
optimisation problem. Standard numerical algorithms can be use to maximise the
likelihood function. Note that the likelihood function (5.5) for estimation of a mix-
ture of normal densities (5.2) has not a global maximum, since a singularity in the
likelihood function arises, whenever one of the components is imputed to have a
mean equal to one of the observations (µ1 equals yi) with zero variance (σ2

1 → 0).
At that point the value of the likelihood function becomes infinite. Kiefer (1978)
shows that if there exists a local maximum in the interior of the parameter region
then this maximum yields consistent, asymptotically normal estimators of the pa-
rameters. In this case, the ML estimators are not values of the parameters which
maximize the likelihood function globally, but are those solutions of the likelihood
equations, which yields asymptotically the largest value of the likelihood function.
In practice, if a numerical optimisation algorithm gets “stuck” at a singularity, the
easiest strategy is to try a different starting value. Another solution is to use a quasi
Bayesian approach by multiplying the likelihood function by a prior density to can-
cel out the singularity problem (see Hamilton, 1991).

A mixture of two normal densities does not suffice to describe our bimodal distri-
butions. It is clear from figure 5.3 that the first component of the mixture distribution
is skew. Another point is that real GDP per capita can never be negative, so a mix-
ture of normal densities is, strictly speaking, not appropriate. Possible candidates to
describe the distribution of the poor countries (first component) are e.g. the Weibull
distribution, the gamma distribution and the lognormal distribution. For the distri-
bution of the rich countries a normal distribution (truncated at 0) seems appropriate.

We have estimated several combinations of the proposed distributions and com-
pared the fit to select the best candidates. To analyse the fit of these distribution we
divide the data in each of the six subperiods in equally-sized intervals. In each sub-
period we compare the number of observations in each interval with the expected
number of observations in the interval based on the estimated mixture distribution
using a χ2 goodness of fit test. We note that this strategy is dependent on the num-
ber of intervals. We choose 8 through 15 equally spaced intervals to evaluate the
estimated mixtures. This means that we perform (15− 7)× 6 = 48 goodness of fit
tests for each candidate mixture density. Table 5.1 shows the number of rejections
for different mixtures in each subperiod using a 5% level of significance. We note
that three cases result in four rejections: the mixture of a Weibull or a gamma with a
truncated normal density and the mixture of two truncated normal distributions. The
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other mixtures including the mixtures containing the lognormal distribution perform
worse. To choose between the three best fitting mixtures, we look at the number of
rejections at the 1% and 10% level. In that case the mixture of a Weibull and a
truncated normal distribution produces the best fit.

Table 5.1: The outcomes of χ2 goodness of fit test for different mixture distributions1.

components2 subperiod
first second 1960–64 1965–69 1970–74 1975–79 1980–84 1984–89

normal normal 0 1 1 1 1 0
gamma normal 0 0 0 1 3 0
gamma gamma 0 0 0 2 3 0

lognormal normal 0 0 0 1 4 0
lognormal lognormal 0 0 0 1 5 2
Weibull normal 0 0 0 1 3 0
Weibull Weibull 0 0 0 1 4 0

1 The cell denotes the number of rejections at a 5% level out of eight χ2 goodness of fit test in
each subperiod. The data in each subperiod are divided in 8 through 15 equally-sized interval.
The χ2 test compares the number of observations in each interval with the expected number of
observations in the interval based on the estimated mixture distribution.
2 Normal means truncated normal with 0 as point of truncation.

Figure 5.3 shows the fitted density of a mixture of a Weibull and a truncated
normal together with the histograms of figure 5.3. The histograms have been nor-
malised such that the area under the bars is equal to one in order to compare them
with the density functions. The estimated mixtures fit the histograms reasonably
well. Therefore, we decide to consider in this paper a mixture of a Weibull and a
truncated normal density. Since a gamma and a truncated normal distribution are
also good candidates to describe the first component, we discuss the robustness of
our results with respect to the other two mixtures at the end of each section. The
density function h of a mixture of a Weibull and a truncated normal evaluated at yi
is given by

h(yi;β1,α1,λ ,µ2,σ2) = λ
β1

αβ1
1

yβ1−1
i exp

((
− y1

α1

)β1
)

+(1−λ )
φ(yi; µ2,σ2

2 )
Φ(µ2/σ2)

,

(5.6)

where φ(y; µ2,σ2
2 ) represents the probability density function of a normal dis-

tribution with mean µ2 and variance σ2
2 and Φ the cumulative density function

of a standard normal distribution. The parameters α1 and β1 are the scale and
location parameters of the Weibull component. The parameters of the mixture
{α1,β1,µ2,σ2,λ} are estimated by maximizing the likelihood function



Distribution and Mobility of Wealth of Nations 81

L (Y ;β1,α1,µ2,σ2,λ ) =
N

∏
i=1

h(yi;β1,α1,µ2,σ2,λ ), (5.7)

where the density function h is given in (5.6). Here we face, of course, the same
problem with the singularity in the likelihood function as in the case of a mixture
of two normal densities and we opt for the same solution as before. The numerical
algorithm to maximise the likelihood functions (5.7) is Newton-Raphson. A range of
starting values is used to find the maximum. In case two or more maxima are found
the maximum with the largest value of the likelihood function is chosen. Finally, it
can easily be shown that scaling of the data via multiplying by a constant k does
not influence the estimated value of the mixing parameter and changes the other
parameters in the corresponding way, kα1, kµ2 and kσ . Therefore, scaling the data
by the sum of the real GDP per capita in a year does not alter the conclusions, since
the means and the variances of the components change accordingly.

4 Distribution of Wealth

To describe the cross-section distribution of real GDP per capita over the 120 coun-
tries in each year, we estimate a mixture of a Weibull and a truncated normal density.
First, we focus on the six subperiods. The first five columns of table 5.2 show the
parameter estimates of the fitted mixture distributions in every subperiod. Apart
from the mixing proportion λ it is difficult to interpret the estimated scale and lo-
cation parameters directly, since they do not represent the means and variances of
the components. Therefore, the second panel of the table shows the means and the
variances of the poor and the rich group based on the parameters estimates together
with the mean and variance of all countries. Note that the truncation of the normal
component becomes less important in the end of the sample.

From the sixth column of table 5.2 we notice that the mixing proportions indi-
cate an almost constant percentage of poor countries in the first three subperiods
followed by a substantially increase after the subperiod 1970–1974. There are 14%
more poor countries in the final subperiod than in the first subperiod. A Likelihood
Ratio [LR] test for equal mixing proportions in the first and final subperiod equals,
however, 2.56 which is not significant at a 5% level (the 95% percentile of the χ2

distribution with one degree of freedom equals 3.84). The LR test is computed by
comparing the sum of the maximum likelihoods of the two unrestricted densities
with the maximum likelihood of the mixture densities in the first and final period
estimated under the restriction of equal mixing parameters.

The seventh column of table 5.2 shows the mean of all countries in every sub-
period. The mean has increased monotonically over time. The same is true for the
means of the poor and the rich group. Notice that the mean real GDP per capita of
both groups has grown faster than the overall mean. This is possible because the
relative number of poor countries has increased over time. The difference between
the mean of the poor and rich group is about 4.1 in the first subperiod, while in the
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Table 5.2: Estimates of mixture parameters, means and variances of real GDP per capita of the
poor and the rich component and of all countries in the six subperiods.1

sub- β̂1 µ̂2 α̂1 σ̂2
2 λ̂ mean variance

period all poor rich all poor rich

60–64 2.02 5.24 1.40 6.27 0.70 2.46 1.24 5.35 5.55 0.41 5.66
65–69 1.79 6.68 1.68 6.50 0.73 2.91 1.49 6.71 7.75 0.74 6.27
70–74 1.63 8.29 2.03 7.05 0.73 3.53 1.81 8.30 11.20 1.31 6.98
75–79 1.38 10.66 2.76 3.13 0.82 4.01 2.52 10.66 13.71 3.41 3.13
80–84 1.35 11.77 2.95 2.18 0.82 4.32 2.70 11.78 16.29 4.08 2.18
84–89 1.25 13.32 3.15 3.02 0.84 4.62 2.93 13.33 20.60 5.57 3.02

1 The mean and variance of the truncated normal component are computed using the formulae in
appendix A of Maddala (1986). The mean and the variance of a Weibull distribution are α1Γ (1+
1/β1) and α2

1 Γ (1+2/β1)− (α1Γ (1+1/β1))2 respectively.

final subperiod this difference is 10.4. This indicates that the means of the real GDP
per capita of the two groups are diverging. However, the growth rates in the mean
of both groups are roughly the same. The mean of real GDP per capita of the rich
countries in the final subperiod is two and a half times larger than in the first sub-
period. For the poor group this factor is about 2.4. A LR test for equal growth rates
equals 0.12, which is not significant at a 5% percent level. This means that although
the difference in the mean between the poor and the rich group gets larger over the
last 25 years, the growth rates of the means of both groups over this period are not
significantly different. To compute the LR test we estimate the mixture distribution
in the first period and the final period jointly under the restriction of an equal growth
rate.

The final three columns of table 5.2 display the variance of the poor, the variance
of rich and the variance of all countries. The total variance has increased monoton-
ically over the last 25 years. The same conclusion can be drawn for the spread of
wealth within the poor group, which indicates the absence of convergence within
the poor group. For the group of rich countries an increase in the spread of wealth
is followed by a decrease after the subperiod 1970–1974.

We have to interpret the results of the diverging means with care. Changes in
the mean of each component over time can be caused by two forces. First, the real
GDP per capita of countries in a group can increase over time. Second, countries can
switch from the poor to the rich group and vice versa, which can lead to a change in
the ratio of the means of the rich and the poor group. A typical example of the latter
occurs when only the very rich countries stay in the rich group. The same kind of
reasoning counts for the variances of each component. Changes in the variances of
the components can also be caused by changes in the mixing parameter.

To correct for the effect of the decrease in the number of rich countries on the
development of the means and variances of the components, we estimate in each
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period a mixture of a Weibull and a truncated normal with equal mixing propor-
tions. We analyse three different scenarios. First, we determine an optimal mixing
parameter for the six subperiods by jointly estimating the mixture densities under
the restriction of equal mixing parameters. Next, we set the mixing parameter equal
to the estimated mixing parameter in the final subperiod (=0.84) and equal to the
estimated parameter in the first subperiod (=0.70). Notice that we theoretically still
allow for switches of countries between the poor and the rich group. Using the
same techniques that we apply in the next section, we can show that the number of
switches between the two groups is low. This means that the rich and the poor group
contain almost the same countries in every subperiod.

Table 5.3 shows the means and the variances of each component under the differ-
ent restrictions on λ . Several conclusions emerge from the results of this table. Not
surprisingly, fixing the mixing parameter results in different values for the means
of both groups. However, for all three scenarios, the means of the poor and the rich
group still diverge, which implies that the change in the number of rich countries
is not the driving force in the diverging process. Note that the growth rates in real
GDP per capita over the last 25 years of the rich and the poor group are still about
the same.

The variances of the components are more sensitive to the value of the mixing
parameter. Under equal mixing parameters, the variance of the poor group still in-
creases over time. For the rich group the situation is different. From the lower left
panel of table 5.3 we observe that the variance of the countries, which were rich
in the beginning of the sample, is increasing over time. This indicates that the de-
crease in variance, when we allow for a changing mixing parameter, is mainly due
to the decrease in the number of rich countries. Hence, a number of countries, which
originally were located in a middle group, was not capable of catching-up with the
remaining rich countries. The lower right panel of table 5.3 shows the development
of the variance of the countries, who ended up rich in the last subperiod. We still
notice the decrease in the variance after the period 1970–1974 and the increase after
1980–1984 but the changes in the variances are less pronounced.

The results in tables 5.2 and 5.3 are not suitable to notice short run patterns,
since we have considered the average real GDP of five consecutive years. In the
remainder of this section we analyse the distribution of the real GDP per capita
using a mixture of a Weibull and a truncated normal density for each year from
1960 until 1989. Instead of using tables with parameter estimates, we report the
main results in several graphs, which show the interesting aspects of the estimated
distributions15.

Figure 5.4 shows the estimated values of the mixing proportions λ . In 1960 the
percentage of poor countries was about 71%. In the first part of our sample there is
an overall effect of a decrease in the number of poor countries to 67% in 1973, but
after 1973 the number of poor countries has risen especially during the period 1975–
1977. At the end of the sample the percentage of poor countries seems to stabilise
around 83%. These results match the outcomes of table 5.2.

15 A detailed outline of the parameter estimates can be obtained from the authors.
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Table 5.3: The means and the variances of the poor and the rich component in the six subperiods
for different values of the mixing parameters1.

unrestricted value of λ constant value of λ = 0.79

mean variance mean variance
subperiod poor rich poor rich poor rich poor rich

1960-1964 1.24 5.35 0.41 5.66 1.35 6.11 0.57 4.23
1965-1969 1.49 6.71 0.74 6.27 1.59 7.32 0.93 4.70
1970-1974 1.81 8.30 1.31 6.98 1.97 8.99 1.70 4.90
1975-1979 2.52 10.66 3.41 3.13 2.44 10.44 3.09 3.80
1980-1984 2.70 11.78 4.08 2.18 2.68 11.73 3.92 2.30
1984-1989 2.93 13.33 5.57 3.02 2.82 13.08 4.94 3.98

initial period value of λ = 0.70 final period value of λ = 0.84

mean variance mean variance
subperiod poor rich poor rich poor rich poor rich

1960-1964 1.24 5.35 0.41 5.66 1.42 6.52 0.70 3.34
1965-1969 1.46 6.44 0.69 6.90 1.66 7.64 1.08 3.94
1970-1974 1.73 7.89 1.14 8.15 2.08 9.34 2.03 4.00
1975-1979 2.04 8.95 1.82 8.40 2.58 10.77 3.67 2.81
1980-1984 2.25 10.18 2.33 7.99 2.72 11.80 4.19 2.13
1985-1989 2.28 10.69 2.34 13.16 2.93 13.33 5.57 3.02

1 The results in the upper right corner are ased on a joint estimate of the six mixture densities with
equal λ parameter. In the lower panel of the table the λ is equal to the estimated λ in the first and
the final subperiod respectively, see the sixth column of table 5.2.

Figure 5.5 shows means and variances of the real GDP per capita in each year for
the period 1960–1989, which are based on the parameter estimates of the mixtures.
The left panel of the figure shows the overall means and the means of each com-
ponent. The mean of the real GDP per capita of all countries has increased almost
monotonically during the whole period. There are small decreases in the periods
1974–1975 and 1980–1983 reflecting the oil crisis and the crisis in the beginning of
the eighties. These periods of decrease can also be detected in the mean of the poor
group and the mean of the rich group. In 1960 the difference in the means is about
3.8, while in 1989 this difference is 11. The means of both groups are diverging,
which leads to a gap between the poor and the rich group. If we however look at the
growth rates of both groups we see that for the poor group the real GDP per capita
in 1989 is about 2.5 times larger than in 1960, while for the rich group the factor
is about 2.8. A LR test for equal growth rates equals 0.37, which is not significant
at 5% level of significance. Therefore, this implies again that although the means
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Fig. 5.4: Estimated mixing proportions in each year (1960–1989).

of the poor and the rich group are diverging, the growth rates of the means of both
groups are the same over the period 1960–1989. To investigate whether changes in
the mixing parameter are responsible for the effects on the means, we estimate the
mixture densities under the restriction of equal mixing parameters like in table 5.3.
Unreported results show that although we find slightly different values for the means
of the poor and the rich group, the means of the two groups are still diverging and
the growth rates of the two groups are still about the same.

The right panel of figure 5.5 shows the variance for all countries and for the poor
and the rich group in every year. The variance of the real GDP per capita of all
countries has risen during 1960–1989 indicating an increase in the spread of wealth
between all countries. There are two short periods with a decrease in the variance,
i.e. 1974–1975 and 1980–1982. The same periods can be found in the variance of
the poor group. Unreported estimation results show that the increase in the variance
of the pour group remains if we fix the mixing proportion λ . The sharp increase in
the variance of the poor group after 1975 is due to the increase in the number of
poor countries.

Figure 5.5 shows an increase in the spread of wealth within the rich group until
1973. After the oil crisis the variance has decreased strongly until 1982. In the period
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Fig. 5.5: Means and variances of the poor and the rich component and all countries.

1982-1986 there is an increase in the variance. The same analysis as in table 5.3
shows that the variance of the countries, which are rich in the beginning of the
sample, is increasing over time and that the variance of the countries, which are
rich at the end of the sample, does not decrease. Furthermore, the decrease in the
variance of the rich component during the two crises still remains if we fix the
mixing parameter, but the decreases are much smaller. In summary, the analysis
shows that especially in the middle of the seventies a number of countries was not
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capable of catching-up with the rich countries and became poor. This has caused a
gap between the poor and the rich group. The movement of the poorest rich countries
from the rich to the poor group leads to an increase in the variance of the poor
countries and a decrease in the variance of the very rich countries.

In this section we have analysed the development of the real GDP per capita over
time using a mixture of a Weibull and a truncated normal density. We have seen that
the number of poor countries has increased over the last 30 years. The difference in
the mean of the real GDP per capita of the poor and the rich group is increasing,
indicating no convergence in the level. However, there is no significant difference in
the growth rates of both groups, which suggests convergence in growth rates. The
spread of wealth within the poor group increases. This is partially caused by the
increase in the number of poor countries. For the rich group there is some indication
for convergence as the spread of wealth of the rich group has decreased during the
two crises in our sample. The largest part of these decreases is however due to the
decrease in the number of rich countries. These rich countries were not capable of
catching-up with the very rich countries.

In order to investigate the sensitivity of the results with respect with our choice
of mixture, we performed the same analysis of cross-section distribution of the real
GDP per capita using a mixture of a gamma and a truncated normal density and a
mixture of two truncated normal densities, which also produce a reasonable fit ac-
cording to table 5.1. The results coming out of these analyses are roughly the same.
The main difference lies in the estimated mixing proportions before 1974, using a
mixture of two truncated normals. The estimated mixing proportions are about 0.10
smaller compared to the mixtures of a Weibull or gamma and a truncated normal.
In the next section we analyse the intra-distribution movement of countries within
the estimated mixtures. We also consider in more detail the switches of countries
between the poor and the rich group.

5 Mobility in Wealth

So far our analysis was limited to describing the development of the distribution of
real GDP per capita in each year. In this section we consider the intra-distribution
mobility of wealth. The obvious strategy is to look at switches of countries and/or
groups of countries from the poor to the rich group and vice versa. From figure 5.4
we observe that the mixing proportion has risen during the period 1960–1989 in-
dicating an increase in the number of poor countries. One might conclude that the
main mobility between the two groups consists of countries moving from the rich to
the poor group. However, even when the mixing parameter is rising over time, there
can be switches from poor to rich, when the number of rich countries that become
poor is larger than the number of poor countries that become rich. We start analysing
mobility in wealth by considering the individual switches of countries between the
two groups.
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To analyse the mobility between groups, we need to decide whether a country is
rich or poor. We can do inference about this question based on the ex-post condi-
tional probability that an observation is generated by one of the components of the
mixture, see (5.4). We declare a country poor, if the ex-post conditional probability
that a country belongs to the first component of the mixture is larger than 50%, i.e.
Pr[si = 1 | yi; θ̂1, θ̂2, λ̂ ] > 0.5, otherwise the country is labelled as rich. Note that
this means that a rich country can become poor even if the level of real GDP per
capita of this country does not change or even increases. Such a situation can for
instance arise when the other rich and the poor countries grow faster than this coun-
try. In summary, switching from rich to poor depends on the relative movement of a
country in the distribution with respect to the other countries.

Table 5.4 displays the number of countries that belong to each group based on the
ex-post conditional probability. We see that the number of poor countries has risen
from 87 in first subperiod to 100 in the last subperiod. The movements from the poor
group to the rich group can be summarised as follows. After the first subperiod only
Hong Kong moves from the poor group to the rich group and stays in the rich group
for two subperiods. However, after 1974 Hong Kong moves back to the rich group.
Furthermore, Barbados moves from the poor to the rich group after the second sub-
period and stays in the rich group for only one subperiod. The number of movements
from the rich group to the poor group is much larger. Especially after the subperiod
1970–1974 many countries have moved from the rich to the poor group including
Argentina, Puerto Rico, Iran and Israel, Spain and Ireland. These countries were not
able to catch-up with the very rich countries. After 1979 only Venezuela, Trinidad
and Saudi Arabia have moved from the rich group to the poor group. Before 1970,
Martinique, Barbados, Mexico and Chile have moved from rich to the poor group.
There are 19 countries that are rich in every period, i.e. Canada, the USA, Japan,
Australia, New Zealand, Iceland, Switzerland, Sweden and all countries of the Eu-
ropean Union except for Greece, Ireland, Portugal and Spain. There are 86 countries
including most of the African and Asian countries that are poor in every period.

The same analysis can be performed using the estimation results in each year.
Figure 5.6 shows the number of rich and poor countries in each year based on the
ex-post probabilities of the estimated mixtures. In the period 1960–1973 the number
of poor countries drops from 88 to 83. After 1975 we see an increase in the number

Table 5.4: The number of rich and poor countries in each subperiod based on ex-post probabilities1.

subperiod 60–64 65–69 70–74 75–79 80–84 85–89

# poor 87 (→ 86) 90 (→ 89) 90 (→ 90) 98 (→ 97) 98 (→ 98) 100
# rich 33 (→ 29) 30 (→ 29) 30 (→ 22) 22 (→ 21) 22 (→ 20) 20

1 In parentheses the number of countries that are in the same group the following period.
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of poor countries resulting in 99 poor and 21 rich countries in the final year of our
sample. The majority of the switches is from the rich to the poor group.

Fig. 5.6: Number of rich and poor countries in each year based on ex-post probabilities.

To investigate the intra-distribution movements of countries we follow the strat-
egy proposed by Quah (1993a). He analyses the intra-distribution dynamics of real
GDP per worker over time by a so called fractile Markov Chain. Formally, let Ft
denote the distribution of real GDP per worker at time t and suppose that the distri-
bution at time t +1 can be written as

Ft+1 = MFt , (5.8)

where M is an operator which maps the distribution F at time t into the distribution
at time t + 1. Iteration of (5.8) gives a prediction for future distributions of the ex-
post probabilities

Ft+k = M...M︸ ︷︷ ︸
k

Ft = MkFt . (5.9)

Quah (1993a) approximates the operator M by an transition matrix by discretis-
ing the distribution Ft into intervals. Then M becomes a transition matrix of a
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Markov chain. The ergodic probabilities of the Markov chain give insight in the
limiting distribution over the states16. The transition matrix M is estimated by aver-
aging the total number of switches between the predefined intervals on F . A more
technical description of analysing mobility using Markov chains can be found in
Shorrocks (1978) and Geweke, Marshall and Zarkin (1986).

In this paper we use the simple framework of Quah (1993a) to analyse the move-
ments of countries between rich and poor. For the distribution Ft we choose the
cross-section distribution of the ex-post probabilities of being poor in year t (Since
the ex-post probability of being poor is equal to one minus the ex-post probability of
being rich, we can limit ourselves to analysing the first probabilities.). To estimate
the M matrix we divide the the cross-section distribution of ex-post probabilities of
being poor at time t, Ft into equally-sized intervals, which is in the line of Quah
(1993b). The [0,1] interval on which Ft is defined, is divided into 2, 3 and 4 equally-
sized intervals. In the case of 2 equally-sized intervals, we consider movements from
the rich to the poor group and vice versa. The division into 3 intervals is useful to
analyse whether countries who initially belong to a “middle” group can catch up
with the rich countries or fall behind. Movements within the rich and the poor group
can be analysed if we use 4 subdivision. The transition matrix M is estimated by
averaging the total number of switching between the states over 30 years.

Table 5.5 shows the estimated values of M for the three proposed subdivisions.
The transition matrix of the 2-state Markov process shows that the probability of
staying poor is larger than the probability of staying rich. The ergodic probabili-
ties of being poor is 0.83, which matches the estimates of the mixing proportions
in the last years of our sample period. The transition matrix of the 3-state Markov
chain shows the probability of moving from the middle group to the poor group is
larger than vice versa, which indicates that the probability of catching up is smaller
than the probability of falling behind. The ergodic probability of being in the middle
group shows that the middle group is vanishing. This matches our earlier findings on
the divergence of the levels of the means of the poor and the rich group in section 4
and corresponds with the stylized facts, discussed in section 2. We note that the in-
consistency in the ergodic probabilities (0.83 for 2-state, 0.86 for 3-state) is due to
the relatively small sample size. The transition matrix of the 4-state Markov process
show that if a country is very poor there is almost no chance of becoming rich any-
more. The probability to catch up is larger for countries who are in the middle rich
group than for countries in the middle poor group. The diagonal elements of the
transition matrices are always larger than 0.5, except for the state enabled middle
rich in the 4-state Markov process. Further, only sub- and superdiagonal elements
differ substantially from zero except for the transition from middle rich to rich, indi-
cating that there are almost no major movements in relative wealth. This implies that
the rate at which convergence proceeds, is not large enough for the poorest countries
to escape from a poverty trap. Similar findings are reported in Quah (1993a,b).

16 As Quah (1993b) indicates, this framework is much too simple for forecasting. The limiting
distribution should be interpreted as an indication for the long-run tendencies in the data rather
than a forecast.
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There is no need that the transition matrix M is time invariant or that the law of
motion for Ft is first order. The former statement is not straightforward to analyse
in the present framework. The latter however, can be analysed by considering, for
instance, second and higher order Markov chains and compare the estimates of the
second order transition matrix with estimates of M from table 5.5 to the power two or
to compare the ergodic probabilities. In table 5.6 we show the ergodic probabilities
based on a first, second and a third order Markov process. We see that if we increase
the order of the chain the ergodic probability of being poor increases. However, the
conclusions about the long-run tendencies in the data stay the same.

In this section we have analysed the mobility in wealth using the outcomes of the
estimated mixtures of a Weibull and a truncated normal density. The main mobility

Table 5.5: Intra-distribution movements in real GDP per capita analysed using a first order Markov
Chain on the ex-post probabilities.

first order Markov process (2-states)

poor rich

poor 0.99 0.05
rich 0.01 0.95

ergodic1 0.83 0.17

first order Markov process (3-states)

poor middle rich

poor 0.99 0.24 0.01
middle 0.01 0.60 0.03

rich 0.00 0.17 0.96

ergodic1 0.86 0.02 0.12

first order Markov process (4-states)

very poor middle poor middle rich very rich

very poor 0.99 0.24 0.10 0.00
middle poor 0.01 0.52 0.31 0.01
middle rich 0.00 0.22 0.38 0.02
very rich 0.00 0.02 0.21 0.97

ergodic1 0.88 0.02 0.02 0.08

1 Ergodic probabilities of the Markov Chain.



92 Richard Paap and Herman K. van Dijk

Table 5.6: Ergodic probabilities of a first, second and a third order Markov process with 2, 3 and 4
states, see table 5.5.

order poor rich
1 0.83 0.17

2 subdivisions 2 0.87 0.13
3 0.89 0.11

order poor middle rich
1 0.86 0.02 0.12

3 subdivisions 2 0.90 0.02 0.08
3 0.92 0.02 0.06

order very poor middle poor middle rich very rich
1 0.88 0.02 0.02 0.08

4 subdivisions 2 0.93 0.01 0.01 0.05
3 0.94 0.01 0.01 0.04

we have detected is movements of countries from the rich group to the poor group,
which have caused the increase in the number of poor countries. The middle group
has vanished into the poor group because of the inability of poor countries to catch
up with the rich countries. The main results stay the same if we use a Gamma instead
of a Weibull distribution to describe the distribution of the poor countries. If we
however take a mixture of two truncated normal distributions, we observe a bit more
mobility in the beginning of the sample, but after 1975 the results are the same.

6 Conclusion

In this paper we have analysed the distribution of real GDP per capita over 120
countries during the period 1960–1989. The cross-section distribution of the real
per capita GDP turns out to be bimodal, displaying a relative large group of poor
countries and a small group of rich countries. The analysis is split up in two parts.
In the first part we describe the bimodal distributions in each year by a mixture of
a Weibull and a truncated normal density and analyse the mixing proportions, the
means and variances of the components of the mixture. In the second part we use
the estimated mixture distributions for analysing intra-distribution mobility.

The analysis of the cross section distributions shows that the means of the real
GDP per capita of the poor and the rich group are diverging, resulting in an increas-
ing gap between the poor and the rich group in terms of levels. However, there is
indication of convergence in growth rates between the two groups. The analysis of
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the mixing proportions shows a large increase in the number of poor countries in the
middle of the seventies, which results in an increase in the spread of wealth within
the poor group and a decline in the spread of wealth within the rich group. The anal-
ysis of the mobility of wealth shows that the main mobility is from rich to poor and
the “middle” group between poor and rich disappears. The probability to catch up
for the poor countries is smaller than the probability of falling behind. The rate at
which convergence proceeds, is not large enough for the poorest countries to escape
from a poverty trap.

The results have to be interpreted with care and further research is needed. Spe-
cific further research topics are to consider conditioning variables and to link up
with endogenous growth models.
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CHAPTER 6

A Guide to the Dagum
Distributions

Christian Kleiber†

Abstract

In a series of papers in the 1970s, Camilo Dagum proposed several variants of a new
model for the size distribution of personal income. This Chapter traces the genesis of
the Dagum distributions in applied economics and points out parallel developments
in several branches of the applied statistics literature. It also provides interrelations
with other statistical distributions as well as aspects that are of special interest in
the income distribution field, including Lorenz curves and the Lorenz order and
inequality measures. The Chapter ends with a survey of empirical applications of
the Dagum distributions, many published in Romance language periodicals.

1 Introduction

In the 1970s, Camilo Dagum embarked on a quest for a statistical distribution
closely fitting empirical income and wealth distributions. Not satisfied with the
classical distributions used to summarize such data – the Pareto distribution (de-
veloped by the Italian economist and sociologist Vilfredo Pareto in the late 19th
century (Pareto, 1895, 1896, 1897)) and the lognormal distribution (popularized
by the French engineer Robert Gibrat (1931)) – he looked for a model accom-
modating the heavy tails present in empirical income and wealth distributions as
well as permitting an interior mode. The former aspect is well captured by the
Pareto but not by the lognormal distribution, the latter by the lognormal but not the
Pareto distribution. Experimenting with a shifted log-logistic distribution (Dagum,
1975), a generalization of a distribution previously considered by Fisk (1961), he
quickly realized that a further parameter was needed. This led to the Dagum type I

† Correspondence to: Christian Kleiber, Dept. of Statistics and Econometrics, Universität Basel,
Petersgraben 51, CH-4051 Basel, Switzerland. E-mail: christian.kleiber@unibas.ch.
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distribution, a three-parameter distribution, and two four-parameter generalizations
(Dagum, 1977, 1980c).

It took more than a decade until Dagum’s proposal began to appear in the
English-language economic and econometric literature. The first paper in a major
econometrics journal utilizing the Dagum distribution appears to be by Majumder
and Chakravarty (1990). In the statistical literature, the situation is more favorable,
in that the renowned Encyclopedia of Statistical Sciences contains, in Vol. 4 (Kotz
et al., 1983), an entry on income distribution models, unsurprisingly authored by
Camilo Dagum (Dagum, 1983). In retrospect, the reason for this long delay is fairly
obvious: Dagum’s (1977) paper was published in Economie Appliquée, a French
journal with only occasional English-language contributions and fairly limited cir-
culation in English-language countries. In contrast, the paper introducing the more
widely known Singh and Maddala (1976) distribution was published in Economet-
rica, just one year before Dagum’s contribution. It slowly emerged that the Dagum
distribution is, nonetheless, often preferable to the Singh-Maddala distribution in
applications to income data.

This Chapter provides a brief survey of the Dagum distributions, including inter-
relations with several more widely known distributions as well as basic statistical
properties and inferential aspects. It also revisits one of the first data sets considered
by Dagum and presents a survey of applications in economics.

2 Genesis and Interrelations

Dagum (1977) motivates his model from the empirical observation that the income
elasticity η(F,x) of the cumulative distribution function (CDF) F of income is a
decreasing and bounded function of F . Starting from the differential equation

η(F,x) =
d logF(x)

d logx
= ap{1− [F(x)]1/p}, x ≥ 0, (6.1)

subject to p > 0 and ap > 0, one obtains

F(x) = [1+(x/b)−a]−p, x > 0. (6.2)

This approach was further developed in a series of papers on generating sys-
tems for income distributions (Dagum, 1980a,b, 1983, 1990). Recall that the well-
known Pearson system is a general-purpose system not derived from observed stable
regularities in a given area of application. D’Addario’s (1949) system is a transla-
tion system with flexible so-called generating and transformation functions built
to encompass as many income distributions as possible; see e.g. Kleiber and Kotz
(2003) for further details. In contrast, the system specified by Dagum starts from
characteristic properties of empirical income and wealth distributions and leads to a
generating system specified in terms of
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d log{F(x)−δ}
d logx

= ϑ(x)φ(F) ≤ k, 0 ≤ x0 < x < ∞, (6.3)

where k > 0, ϑ(x) > 0, φ(x) > 0, δ < 1, and d{ϑ(x)φ(F)}/dx < 0. These con-
straints ensure that the income elasticity of the CDF is a positive, decreasing and
bounded function of F , and therefore of x. Table 6.1 provides a selection of models
that can be deduced from Dagum’s system for certain specifications of the func-
tions ϑ and φ , more extensive versions are available in (Dagum, 1990, 1996). The
parameter denoted as α is Pareto’s alpha, it depends on the parameters of the un-
derlying distribution and equals a for the Dagum and Fisk distributions and aq in
the Singh-Maddala case (see below). The parameter denoted as β also depends on
the underlying distribution and equals p in the Dagum case. In addition, signs or
values of the parameters β and δ consistent with the constraints of equation (6.3)
are indicated. Among the models specified in Table 6.1 the Dagum type II and III
distributions are mainly used as models of wealth distribution.

Table 6.1: Dagum’s generalized logistic system of income distributions

Distribution ϑ(x) φ(F) (δ ,β ) Support

Pareto (I) α (1−F)/F (0,0) 0 < x0 ≤ x < ∞
Fisk α 1−F (0,0) 0 ≤ x < ∞
Singh-Maddala α 1−(1−F)β

F(1−F)−1 (0,+) 0 ≤ x < ∞
Dagum(I) α 1−F1/β (0,+) 0 ≤ x < ∞

Dagum(II) α 1−
(

F−δ
1−δ

)1/β
(+,+) 0 ≤ x < ∞

Dagum(III) α 1−
(

F−δ
1−δ

)1/β
(−,+) 0 < x0 ≤ x < ∞

Dagum (1983) refers to his system as the generalized logistic-Burr system. This
is due to the fact that the Dagum distribution with p = 1 is also known as the
log-logistic distribution (the model Dagum (1975) experimented with). In addition,
generalized (log-) logistic distributions arise naturally in Burr’s (1942) system of
distributions, hence the name. The most widely known Burr distributions are the
Burr XII distribution – often just called the Burr distribution, especially in the actu-
arial literature – with CDF

F(x) = 1− (1+ xa)−q, x > 0,

and the Burr III distribution with CDF

F(x) = (1+ x−a)−p, x > 0.

In economics, these distributions are more widely known, after introduction of
an additional scale parameter, as the Singh-Maddala and Dagum distributions. Thus
the Dagum distribution is a Burr III distribution with an additional scale parame-
ter and therefore a rediscovery of a distribution that had been known for some 30
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years prior to its introduction in economics. However, it is not the only rediscov-
ery of this distribution: Mielke (1973), in a meteorological application, arrives at a
three-parameter distribution he calls the kappa distribution. It amounts to the Dagum
distribution in a different parametrization. Mielke and Johnson (1974) refer to it as
the Beta-K distribution. Even in the income distribution literature there is a parallel
development: Fattorini and Lemmi (1979), starting from Mielke’s kappa distribution
but apparently unaware of Dagum (1977), propose (6.2) as an income distribution
and fit it to several data sets, mostly from Italy.

Not surprisingly, this multi-discovered distribution has been considered in
several parameterizations: Mielke (1973) and later Fattorini and Lemmi (1979)
use (α,β ,θ) := (1/p,bp1/a,ap), whereas Dagum (1977) employs (β ,δ ,λ ) :=
(p,a,ba). The parametrization used here follows McDonald (1984), because both
the Dagum / Burr III and the Singh-Maddala/Burr XII distributions can be nested
within a four-parameter generalized beta distribution of the second kind (hereafter:
GB2) with density

f (x) =
axap−1

bapB(p,q)[1+(x/b)a]p+q , x > 0,

where a,b, p,q > 0. Specifically, the Singh-Maddala is a GB2 distribution with
shape parameter p = 1, while the Dagum distribution is a GB2 with q = 1 and
thus its density is

f (x) =
apxap−1

bap[1+(x/b)a]p+1 , x > 0. (6.4)

It is also worth noting that the Dagum distribution (D) and the Singh-Maddala dis-
tribution (SM) are intimately connected, specifically

X ∼ D(a,b, p) ⇐⇒ 1
X

∼ SM(a,1/b, p) (6.5)

This relationship permits to translate several results pertaining to the Singh-Maddala
family into corresponding results for the Dagum distributions, it is also the reason
for the name inverse Burr distribution often found in the actuarial literature for the
Dagum distribution (e.g., Panjer (2006)).

Dagum (1977, 1980c) introduces two further variants of his distribution, hence
the previously discussed standard version will be referred to as the Dagum type I
distribution in what follows. The Dagum type II distribution has the CDF

F(x) = δ +(1−δ )[1+(x/b)−a]−p, x ≥ 0,

where as before a,b, p > 0 and δ ∈ (0,1). Clearly, this is a mixture of a point mass
at the origin with a Dagum (type I) distribution over the positive halfline. The type II
distribution was proposed as a model for income distributions with null and negative
incomes, but more particularly to fit wealth data, which frequently presents a large
number of economic units with null gross assets and with null and negative net
assets.
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There is also a Dagum type III distribution, like type II defined as

F(x) = δ +(1−δ )[1+(x/b)−a]−p,

with a,b, p > 0. However, here δ < 0. Consequently, the support of this variant is
now [x0,∞), x0 > 0, where x0 = {b[(1−1/a)1/p −1]}−1/a is determined implicitly
from the constraint F(x) ≥ 0.

As mentioned above, both the Dagum type II and the type III are members of
Dagum’s generalized logistic-Burr system.

Investigating the relation between the functional and the personal distribution of
income, Dagum (1999) also obtained the following bivariate CDF when modeling
the joint distribution of human capital and wealth

F(x1,x2) = (1+b1x−a1
1 +b2x−a2

2 +b3x−a1
1 x−a2

2 )−p, xi > 0, i = 1,2.

If b3 = b1b2,

F(x1,x2) = (1+b1x−a1
1 )−p(1+b2x−a2

2 )−p,

hence the marginals are independent. There do not appear to be any empirical ap-
plications of this multivariate Dagum distribution at present.

The remainder of this paper will mainly discuss the Dagum type I distribution.

3 Basic Properties

The parameter b of the Dagum distribution is a scale while the remaining two pa-
rameters a and p are shape parameters. Nonetheless, these two parameters are not
on an equal footing: This is perhaps most transparent from the expression for the
distribution of Y := logX , a generalized logistic distribution with PDF

f (y) =
apeap(y−logb)

[1+ ea(y−logb)]p+1
, −∞ < y < ∞.

Here, only p is a shape (or skewness) parameter while a and logb are scale and
location parameters, respectively.

Figure 6.1 illustrates the effect of variations of the shape parameters: for ap < 1,
the density exhibits a pole at the origin, for ap = 1, 0 < f (0) < ∞, and for ap > 1
there exists an interior mode. In the latter case, this mode is at

xmode = b
(

ap−1
a+1

)1/a

.

This built-in flexibility is an attractive feature in that the model can approximate
income distributions, which are usually unimodal, and wealth distributions, which
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Fig. 6.1: Shapes of Dagum distributions. Left panel: variation of p (a = 8, p =
0.01,0.1,0.125,0.2,1, from top left to bottom left). Right panel: variation of a (p = 1, a = 2,4,8,
from left to right).

are zeromodal. It should be noted that ap and a determine the rate of increase (de-
crease) from (to) zero for x → 0 (x → ∞), and thus the probability mass in the tails.
It should also be emphasized that, in contrast to several popular distributions used
to approximate income data, notably the lognormal, gamma and GB2 distributions,
the Dagum permits a closed-form expression for the CDF. This is also true of the
quantile function,

F−1(u) = b[u−1/p −1]−1/a, for 0 < u < 1, (6.6)

hence random numbers from a Dagum distribution are easily generated via the in-
version method.

The kth moment exists for −ap < k < a and equals

E(Xk) =
bkB(p+ k/a,1− k/a)

B(p,1)
=

bkΓ (p+ k/a)Γ (1− k/a)
Γ (p)

, (6.7)

where Γ () and B() denote the gamma and beta functions. Specifically,

E(X) =
bΓ (p+1/a)Γ (1−1/a)

Γ (p)
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and

Var(X) =
b2{Γ (p)Γ (p+2/a)Γ (1−2/a)−Γ 2(p+1/a)Γ 2(1−1/a)}

Γ 2(p)
.

Moment-ratio diagrams of the Dagum and the closely related Singh-Maddala dis-
tributions, presented by Rodriguez (1983) and Tadikamalla (1980) under the names
of Burr III and Burr XII distributions, reveal that both models allow for various
degrees of positive skewness and leptokurtosis, and even for a considerable degree
of negative skewness although this feature does not seem to be of particular inter-
est in applications to income data. (A notable exception is an example of faculty
salary distributions presented by Pocock et al. (2003).) Tadikamalla (1980, p. 342)
observes “that although the Burr III [= Dagum] distribution covers all of the region
... as covered by the Burr XII [= Singh-Maddala] distribution and more, much atten-
tion has not been paid to this distribution.” Kleiber (1996) notes that, ironically, the
same has happened independently in the econometrics literature.

An interesting aspect of Dagum’s model is that it admits a mixture representation
in terms of generalized gamma (GG) and Weibull (Wei) distributions. Recall that the
generalized gamma and Weibull distributions have PDFs

fGG(x) =
a

θ apΓ (p)
xap−1e−(x/θ)a

, x > 0,

and

fWei(x) =
a
b

( x
b

)a−1
e−(x/b)a

, x > 0,

respectively. The Dagum distribution can be obtained as a compound generalized
gamma distribution whose scale parameter follows an inverse Weibull distribution
(i.e., the distribution of 1/X for X ∼Wei(a,b)), symbolically

GG(a,θ , p)
∧
θ

InvWei(a,b) = D(a,b, p).

Note that the shape parameters a must be identical. Such representations are useful
in proofs (see, e.g., Kleiber (1999)), they also admit an interpretation in terms of
unobserved heterogeneity.

Further distributional properties are presented in Kleiber and Kotz (2003). In
addition, a rather detailed study of the hazard rate is available in Domma (2002).

4 Measuring Inequality using Dagum Distributions

The most widely used tool for analyzing and visualizing income inequality is the
Lorenz curve (Lorenz (1905); see also Kleiber (2008) for a recent survey), and
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several indices of income inequality are directly related to this curve, most notably
the Gini index (Gini, 1914).

Since the quantile function of the Dagum distribution is available in closed form,
its normalized integral, the Lorenz curve

L(u) =
1

E(X)

∫ u

0
F−1(t)dt, u ∈ [0,1],

is also of a comparatively simple form, namely (Dagum, 1977)

L(u) = Iz(p+1/a,1−1/a), 0 ≤ u ≤ 1, (6.8)

where z = u1/p and Iz(x,y) denotes the incomplete beta function ratio. Clearly, the
curve exists iff a > 1.

For the comparison of estimated income distributions it is of interest to know
the parameter constellations for which Lorenz curves do or do not intersect. The
corresponding stochastic order, the Lorenz order, is defined as

F1 ≥L F2 ⇐⇒ L1(u) ≤ L2(u) for all u ∈ [0,1].

First results were obtained by Dancelli (1986) who found that inequality is de-
creasing to zero (i.e., the curve approaches the diagonal of the unit square) if a → ∞
or p → ∞ and increasing to one if a → 1 or p → 0, respectively, keeping the other
parameter fixed. A complete analytical characterization is of more recent date. Sup-
pose Fi ∼ D(ai,bi, pi), i = 1,2. The necessary and sufficient conditions for Lorenz
dominance are

L1 ≤ L2 ⇐⇒ a1 p1 ≤ a2 p2 and a1 ≤ a2. (6.9)

This shows that the less unequal distribution (in the Lorenz sense) always exhibits
lighter tails. This was derived by Kleiber (1996) from the corresponding result for
the Singh-Maddala distribution using (6.5), for a different approach see Kleiber
(1999). Figure 6.2 provides an illustration of (6.9).

Apart from the Lorenz order, stochastic dominance of various degrees has been
used when ranking income distributions, hence it is of interest to study conditions
on the parameters implying such orderings. A distribution F1 first-order stochasti-
cally dominates F2, denoted as F1 ≥FSD F2, iff F1 ≤ F2. This criterion was suggested
by Saposnik (1981) as a ranking criterion for income distributions. Klonner (2000)
presents necessary as well as sufficient conditions for first-order stochastic domi-
nance within the Dagum family. The conditions a1 ≥ a2, a1 p1 ≤ a2 p2 and b1 ≥ b2
are sufficient for F2 ≥FSD F1, whereas the conditions a1 ≥ a2 and a1 p1 ≤ a2 p2 are
necessary.

As regards scalar measures of inequality, the most widely used of all such indices,
the Gini coefficient, takes the form (Dagum, 1977)

G =
Γ (p)Γ (2p+1/a)
Γ (2p)Γ (p+1/a)

−1. (6.10)
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Fig. 6.2: Tails and the Lorenz order for two Dagum distributions: X1 ∼ D(2,1,3) (dashed), X2 ∼
D(3,1,3) (solid), hence F1 ≥L F2.

For generalized Gini indices see Kleiber and Kotz (2003). From (6.7), the coef-
ficient of variation (CV) is

CV =

√
Γ (p)Γ (p+2/a)Γ (1−2/a)

Γ 2(p+1/a)Γ 2(1−1/a)
−1. (6.11)

Recall that the coefficient of variation is a monotonic transformation of a mea-
sure contained in the generalized entropy class of inequality measures, e.g., Kleiber
and Kotz (2003). All these measures are functions of the moments and thus easily
derived from (6.7). The resulting expressions are somewhat involved, however, as
are expressions for the Atkinson (1970) measures of inequality. Recently, Jenkins
(2007) provided formulae for the generalized entropy measures for the more general
GB2 distributions, from which the Dagum versions are also easily obtained.

Some 20 years ago, an alternative to the Lorenz curve emerged in the Italian
language literature. Like the Lorenz curve the Zenga curve (Zenga, 1984) can be
introduced via the first-moment distribution

F(1)(x) =
∫ x

0 t f (t)dt
E(X)

, x ≥ 0,
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thus it exists iff E(X) < ∞. The Zenga curve is now defined in terms of the quantiles
F−1(u) of the income distribution itself and of those of the corresponding first-
moment distribution, F−1

(1) (u): for

Z(u) =
F−1

(1) (u)−F−1(u)

F−1
(1) (u)

= 1− F−1(u)
F−1

(1) (u)
, 0 < u < 1, (6.12)

the set {(u,Z(u))|u ∈ (0,1)} is the Zenga concentration curve. Note that F(1) ≤ F
implies F−1 ≤ F−1

(1) , hence the Zenga curve belongs to the unit square. It follows
from (6.12) that the curve is scale-free.

It is then natural to call a distribution F2 less concentrated than another distribu-
tion F1 if its Zenga curve is nowhere above the Zenga curve associated with F1 and
thus to define an ordering via

F1 ≥Z F2 :⇐⇒ Z1(u) ≥ Z2(u) for all u ∈ (0,1).

Zenga ordering within the family of Dagum distributions was studied by
Polisicchio (1990) who found that a1 ≤ a2 implies F1 ≥Z F2, for a fixed p, and
analogously that p1 ≤ p2 implies F1 ≥Z F2, for a fixed a. Under these conditions
it follows from (6.9) that the distributions are also Lorenz ordered, specifically
F1 ≥L F2. Recent work of Kleiber (2007) shows that the conditions for Zenga
ordering coincide with those for Lorenz dominance within the class of Dagum
distributions.

5 Estimation and Inference

Dagum (1977), in a period when individual data were rarely available, minimized

n

∑
i=1

{Fn(xi)− [1+(xi/b)−a]−p}2,

a non-linear least-squares criterion based on the distance between the empirical CDF
Fn and the CDF of a Dagum approximation. A further regression-type estimator
utilizing the elasticity (6.1) was later considered by Stoppa (1995).

Most researchers nowadays employ maximum likelihood (ML) estimation. Two
cases need to be distinguished, grouped data and individual data. Until fairly re-
cently, only grouped data were available, and here the likelihood L(θ ), where
θ = (a,b, p)�, is a multinomial likelihood with (assuming independent data)

L(θ) =
m

∏
j=1

{F(x j)−F(x j−1)}, x0 = 0, xm = ∞.

By construction this likelihood is always bounded from above.
In view of the 30th anniversary of Dagum’s contribution it seems appropriate to

revisit one of his early empirical examples, the US family incomes for the year 1969.
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Fig. 6.3: Dagum distribution fitted to the 1969 US family incomes.

The data are given in Dagum (1980c, p. 360). Figure 6.3 plots the corresponding his-
togram along with a Dagum type I approximation estimated via grouped maximum
likelihood. The resulting estimates are â = 4.273, b̂ = 14.28 and p̂ = 0.36, and are
in good agreement with the values estimated by Dagum via nonlinear least squares.

With the increasing availability of microdata, likelihood estimation from indi-
vidual observations attracts increasing attention, and here the situation is more in-
volved: the log-likelihood �(θ)≡ logL(θ) for a complete random sample of size n is

�(a,b, p) =n loga+n log p+(ap−1)
n

∑
i=1

logxi −nap logb

−(p+1)
n

∑
i=1

log{1+(xi/b)a}
(6.13)

yielding the likelihood equations
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n
a

+ p
n

∑
i=1

log(xi/b) = (p+1)
n

∑
i=1

log(xi/b)
1+(b/xi)a , (6.14)

np = (p+1)
n

∑
i=1

1
1+(b/xi)a , (6.15)

n
p

+a
n

∑
i=1

log(xi/b) =
n

∑
i=1

log{1+(xi/b)a} (6.16)

which must be solved numerically. However, likelihood estimation in this family is
not without problems: considering the distribution of logX , a generalized logistic
distribution, Shao (2002) shows that the MLE may not exist, and if it does not, the
so-called embedded model problem occurs. That is, letting certain parameters tend
to their boundary values, a distribution with fewer parameters emerges. Implications
are that the behavior of the likelihood should be carefully checked in empirical
work. It would be interesting to determine to what extent this complication arises
in applications to income data where the full flexibility of the Dagum family is not
needed.

Apparently unaware of these problems, Domański and Jedrzejczak (1998) pro-
vide a simulation study for the performance of the MLEs. It turns out that rather
large samples are required until estimates of the shape parameters a, p can be con-
sidered as unbiased, while reliable estimation of the scale parameter seems to re-
quire even larger samples.

The Fisher information matrix

I(θ) =

[
−E

(
∂ 2 logL
∂θi∂θ j

)
i, j

]
=:

⎛⎝ I11 I12 I13
I21 I22 I23
I31 I32 I33

⎞⎠
takes the form

I11 =
1

a2(2+ p)
[
p[{ψ(p)−ψ(1)−1}2 +ψ ′(p)+ψ ′(1)]+2{ψ(p)−ψ(1)}]

I21 = I12 =
p−1− p{ψ(p)−ψ(1)}

b(2+ p)

I22 =
a2 p

b2(2+ p)

I23 = I32 =
a

b(1+ p)

I31 = I13 =
ψ(2)−ψ(p)

a(1+ p)

I33 =
1
p2

where ψ is the digamma function.
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It should be noted that there are several derivations of the Fisher information
in the statistical literature, a detailed one using Dagum’s parameterization due to
Latorre (1988) and a second one due to Zelterman (1987). The latter article consid-
ers the distribution of logX , a generalized logistic distribution, using the parameter-
ization (θ ,σ ,α) = (logb,1/a, p).

As regards alternative estimators, an inspection of the scores (6.14)–(6.16) re-
veals that supx ||∂�/∂θ || = ∞, where ||.|| stands for the Euclidean norm, thus the
score function is unbounded in the Dagum case. This implies that the MLE is rather
sensitive to single observations located sufficiently far away from the majority of
the data. There appears, therefore, to be some interest in more robust procedures.
For a robust approach to the estimation of the Dagum model parameters using an
optimal B-robust estimator (OBRE) see Victoria-Feser (1995, 2000).

Income distributions have always been popular with Italian authors, and the
Dagum distribution is no exception. Cheli et al. (1995) study mixtures of Dagum
distributions and their estimation via the EM algorithm. Distributions of the sample
median and the sample range were obtained by Domma (1997). In addition, Latorre
(1988) provides delta-method standard errors for several inequality measures de-
rived from MLEs for the Dagum model.

6 Software

As regards available software, Camilo Dagum started to develop routines for fitting
his distributions fairly early. A stand-alone package named “EPID” (Econometric
Package for Income Distribution) (Dagum and Chiu, 1991) written in FORTRAN
was available from the Time Series Research and Analysis Division of Statistics
Canada for some time. The program fitted Dagum type I–III distributions and
computed a number of associated statistics such as Lorenz and Zenga curves,
the Gini coefficient and various goodness of fit measures. More recently, Jenk-
ins (1999) provided Stata routines for fitting Dagum and Singh-Maddala distri-
butions by (individual) maximum likelihood (current versions are available from
the usual repositories), while Jenkins and Jäntti (2005, Appendix) present Stata
code for estimating Dagum mixtures. Yee (2007) developed a rather large R (R
Development Core Team, 2007) package named VGAM (for “vector generalized
additive models”) that permits fitting nearly all of the distributions discussed in
Kleiber and Kotz (2003) – notably the Dagum type I – conditional on covariates
by means of flexible regression methods. The computations for Figure 6.3 were
also carried out in R, Version 2.5.1, but along different lines, namely via modifying
the fitdistr() function from the MASS package, the package accompanying
Venables and Ripley (2002).
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7 Applications of Dagum Distributions

Although the Dagum distribution was virtually unknown in the major English
language economics and econometrics journals until well into the 1990s there are
several early applications to income and wealth data, most of which appeared in
French, Italian and Latin American publications. Examples include Fattorini and
Lemmi (1979) who consider Italian data, Espinguet and Terraza (1983) who study
French earnings and Falcão Carneiro (1982) with an application to Portuguese data.
Even after 1990 there is a noticable bias towards Romance language contributions.
Fairly recent examples include Blayac and Serra (1997), Dagum et al. (1995) and
Martı́n Reyes et al. (2001).

Table 6.2: Selected applications of Dagum distributions

Country Source
Argentina Dagum (1977), Botargues and Petrecolla (1999a,b)
Australia Bandourian et al. (2003)
Belgium Bandourian et al. (2003)
Canada Dagum (1977, 1985), Dagum and Chiu (1991), Bandourian et al. (2003),

Chotikapanich and Griffiths (2006)
Czech Republik Bandourian et al. (2003)
Denmark Bandourian et al. (2003)
Finland Bandourian et al. (2003), Jenkins and Jäntti (2005)
France Espinguet and Terraza (1983), Dagum et al. (1995), Bandourian et al. (2003)
Germany Bandourian et al. (2003)
Hungary Bandourian et al. (2003)
Ireland Bandourian et al. (2003)
Israel Bandourian et al. (2003)
Italy Fattorini and Lemmi (1979), Dagum and Lemmi (1989), Bandourian et al.

(2003)
Mexico Bandourian et al. (2003)
Netherlands Bandourian et al. (2003)
Norway Bandourian et al. (2003)
Philippines Bantilan et al. (1995)
Poland Domański and Jedrzejczak (2002), Bandourian et al. (2003), Łukasiewicz and

Orłowski (2004)
Portugal Falcão Carneiro (1982)
Russia Bandourian et al. (2003)
Slovakia Bandourian et al. (2003)
Spain Bandourian et al. (2003)
Sri Lanka Dagum (1977)
Sweden Fattorini and Lemmi (1979), Bandourian et al. (2003)
Switzerland Bandourian et al. (2003)
Taiwan Bandourian et al. (2003)
United Kingdom Victoria-Feser (1995, 2000)
USA Dagum (1977, 1980c, 1983), Fattorini and Lemmi (1979), Majumder and

Chakravarty (1990), Campano (1991), McDonald and Mantrala (1995),
McDonald and Xu (1995), Bandourian et al. (2003)
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Table 6.2 lists selected applications of Dagum distributions to some 30 countries.
Only works containing parameter estimates are included. There exist several further
studies mainly concerned with goodness of fit that do not provide such information.
A recent example is Azzalini et al. (2003) who fit the distribution to the 1997 data
for 13 countries from the European Community Household Panel.

Of special interest are papers fitting several distributions to the same data, with
an eye on relative performance. From comparative studies such as McDonald and
Xu (1995), Bordley et al. (1996), Bandourian et al. (2003) and Azzalini et al. (2003)
it emerges that the Dagum distribution typically outperforms its competitors, apart
from the GB2 which has an extra parameter. Bandourian et al. (2003), find that, in
a study utilizing 82 data sets, the Dagum is the best 3-parameter model in no less
than 84% of the cases. From all these studies it would seem that empirically relevant
values of the Dagum shape parameters are a ∈ [2,7] and p ∈ [0.1,1], approximately.
Hence the implied income distributions are heavy-tailed admitting moments E(Xk)
for k ≤ 7 while negative moments may exist up to order 7 in some examples.

For reasons currently not fully understood, the Dagum often provides a better fit
to income data than the closely related Singh-Maddala distribution. Kleiber (1996)
provides a heuristic explanation arguing that in the Dagum case the upper tail is
determined by the parameter a while the lower tail is governed by the product ap,
for the Singh-Maddala distribution the situation is reversed. Thus the Dagum distri-
bution has one extra parameter in the region where the majority of the data are, an
aspect that may to some extent explain the excellent fit of this model.

The previously mentioned works typically consider large populations, say house-
holds of particular countries. In an interesting contribution, Pocock et al. (2003)
estimate salary distributions for different professions (specifically, the salaries of
statistics professors at different levels) from sparse data utilizing the Dagum distri-
bution (under the name of Burr III). This is of interest for competitive salary offers
as well as for determining financial incentives for retaining valued employees. One
of the few applications to wealth data, and at the same time one of the few applica-
tions of the Dagum type III distributions, is provided by Jenkins and Jäntti (2005)
who estimate mixtures of Dagum distributions using wealth data for Finland.

Researchers have also begun to model conditional distributions in a regression
framework, recent examples are Biewen and Jenkins (2005) and Quintano and
D’Agostino (2006).

During the last decade, Camilo Dagum furthermore attempted to obtain informa-
tion on the distribution of human capital, an example utilizing US data is Dagum
and Slottje (2000) while the paper by Martı́n Reyes et al. (2001) mentioned above
considers Spanish data.

In addition to all these empirical applications, the excellent fit provided by the
distribution has also led to an increasing use in simulation studies. Recent exam-
ples include Hasegawa and Kozumi (2003), who consider Bayesian estimation of
Lorenz curves, and Cowell and Victoria-Feser (2006), who study the effects of trim-
ming on distributional dominance, both groups of authors utilize Dagum samples
for illustrations. Also, Palmitesta et al. (1999, 2000) investigate improved finite-
sample confidence intervals for inequality measures using Gram-Charlier series and



112 Christian Kleiber

bootstrap methods, respectively. Their methods are illustrated using Dagum sam-
ples. There even exist occasional illustrations in economic theory such as Glomm
and Ravikumar (1998). Finally, there are numerous applications of this multi-
discovered distribution in many fields of science and engineering (typically under
the name of Burr III distribution), a fairly recent example from geophysics explicitly
citing Dagum (1977) is Clark et al. (1999).

8 Concluding Remarks

This Chapter has provided a brief introduction to the Dagum distributions and their
applications in economics. Given that the distribution only began to appear in the
English language literature in the 1990s, it is safe to predict that there will be many
further applications. On the methodological side, there are still some unresolved
issues including aspects of likelihood inference. When the distribution celebrates its
golden jubilee in economics, these problems no doubt will be solved.
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CHAPTER 7

Pareto and Generalized Pareto
Distributions

Barry C. Arnold†

Abstract

More than one hundred years after its introduction, Pareto’s proposed model for fit-
ting income distributions continues to be heavily used. A variety of generalizations
of this model have been proposed including discrete versions, together with natu-
ral multivariate extensions. Several stochastic scenarios can be used to justify the
prevalence of income distributions exhibiting approximate Paretian behavior. This
chapter will provide a survey of results related to these Pareto-like models including
discussion of related distributional and inferential questions. Topics will include the
classical Pareto models and its generalizations, stochastic income models leading
to Paretian income distributions, distributional properties of generalized Pareto dis-
tributions, related discrete distributions, inequality measures for Paretian models,
inferential issues and multivariate extensions.

1 The Classical Pareto Model

Pareto (1897) observed that in many populations the income distribution was one in
which the number of individuals whose income exceeded a given level x could be
approximated by Cx−α for some choice of C and α . More specifically, he observed
that such an approximation seemed to be appropriate for large incomes, i.e. for
x’s above a certain threshold. If one, for various values of x, plots the logarithm
of the income level against the number of individuals whose income exceeds that
level, Pareto’s insight suggests that an approximately linear plot will be encountered.
Empirical experience over the last century has buttressed this belief. It is however
remarkable how scanty was the actual evidence published by Pareto to justify this
claim. Income distributions with upper tails decreasing at a polynomial rate are
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indeed commonly encountered. Consequently variants of Pareto’s model are well
accepted as default models for income distributions absent strong evidence to the
contrary. The ubiquitous role of the Pareto laws in the study of income and other size
distributions is somewhat akin to the central role played by the normal distribution in
many experimental sciences. In both settings, plausible stochastic arguments can be
advanced in favor of the models, but probably the deciding factor is that the models
are analytically tractable and do seem to adequately “fit” observed data in many
cases. In Section 3, we will mention a few of the stochastic income models that
have been suggested as possible explanations of Pareto-tail phenomena. Whether
any of these models are compelling or not will be a subjective decision on the part
of the reader. Nevertheless, history has confirmed a central role for Pareto models
in income theory, thus justifying a careful study of the distributional and inferential
aspects of the popular variants of Vilfredo Pareto’s models. To this we now turn.

2 Variations on the Basic Pareto Theme

We will follow Arnold (1983) in setting up a hierarchy of Pareto models of increas-
ing complexity, beginning with the classical Pareto model which will be called a
Pareto (I) distribution.

A random variable X will be said to have a Pareto (I) distribution if its survival
function is of the form

F̄X (x) = P(X > x) = (x/σ)−α , x > σ (7.1)

where σ is a (positive) scale parameter and α is a positive slope parameter. The
parameter α is sometimes called Pareto’s index. It corresponds to the negative of
the slope of what is called a Pareto income chart, a plot of logFX (x) vs. logx.
If a random variable X has a survival function of the form (7.1) we will write
X ∼ P(I)(σ ,α).

Remark: If a random variable X has survival function (7.1) then it is readily
verified that the random variable Y = logX has a translated exponential distribution,
i.e. logX admits the representation logσ + U where U has an exponential (α)
distribution. This observation allows us to borrow freely from the rich distributional
and inferential literature regarding exponential random variables when discussing
properties of the classical Pareto or Pareto (I) model. See for example, the discus-
sion following equation (7.13) below.

The introduction of a location parameter leads us to the Pareto (II) model. Thus
X has a Pareto (II) distribution and we write X ∼ P(II)(µ,σ ,α) if

F̄X (x) = P(X > x) = [1+(
x−µ

σ
)]−α , x > µ (7.2)
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where µ ∈ R,σ ∈ R+ and α ∈ R+. Frequently µ is assumed to be positive but this
is not essential. Note that parameter α controls the shape of the Pareto (II) density.
It is sometimes described as an index of inequality. When µ = 0, it does indeed
qualify as a suitable parameter for ordering populations with regard to inequality. In
that case most of the popular analytic measures of inequality are indeed monotone
functions of α .

A distribution whose survival function mimics the tail behavior of the Pareto (II)
survival function is

F̄X (x) = [1+(
x−µ

σ
)1/γ ]−1, x > µ. (7.3)

Here µ ∈ R and σ ,γ ∈ R+. If X has (7.3) as its survival function we will say that
it has a Pareto (III) distribution and we will write X ∼ P(III)(µ,σ ,γ). We will
call γ the index of inequality. When µ = 0, γ is exactly equal to the Gini index of
inequality.

Even more general models are available. The Pareto (IV) distribution has a sur-
vival function of the form

F̄X (x) = [1+(
x−µ

σ
)1/γ ]−α , x > µ (7.4)

where µ ∈ R and σ ,γ,α ∈ R+. All the models (7.1)-(7.4) exhibit the slowly varying
tail behavior that Pareto noted as a characteristic of many empirical income data sets,
i.e. in all cases F̄X (x) ∼ x−δ as x → ∞.

The Pareto (III) distribution is sometimes called the log-logistic distribution
since, if X has a logistic distribution then eX has a Pareto (III) distribution (with
µ = 0). The Pareto (IV) density is included in Burr’s (1942) catalog of frequency
functions (his Type XII).

For resolving distributional questions regarding the Pareto (I) - (IV) distributions
it is sometimes convenient to recognize them as all being special cases of what
Arnold and Laguna (1977) call a Feller-Pareto distribution. They arrive at this dis-
tribution by using the following construction. Begin with a random variable Y which
has a beta distribution with parameters γ1 and γ2, i.e.

fY (y) = yγ1−1(1− y)γ2−1/B(γ1,γ2), 0 < y < 1. (7.5)

Feller (1971) then considered the distribution of the random variable Y−1 − 1
and called it the Pareto distribution. Arnold and Laguna then raised this random
variable to a power and introduced a location and a scale parameter. Instead we will
use an equivalent construction of a Feller-Pareto variable by beginning with two
independent gamma random variables. Thus we take U1 and U2 to be independent
random variables with U1 ∼ Γ (δ1,1) and U2 ∼ Γ (δ2,1). Then define

W = µ +σ(
U1

U2
)γ . (7.6)
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A random variable defined as in (7.6) will be said to have a Feller-Pareto distribution
and we will write W ∼ FP(µ,σ ,γ,δ1,δ2). (Note that in Arnold and Laguna (1977)
and Arnold (1983) a slightly different parameterization is used, i.e. δ1 is replaced
by γ2 and δ2 by γ1). Observe that all of the distributions in our hierarchy of Pareto
models are special cases of the Feller-Pareto model. Thus:

P(I)(σ ,α) = FP(σ ,σ ,1,1,α)
P(II)(µ,σ ,α) = FP(µ,σ ,1,1,α)
P(III)(µ,σ ,γ) = FP(µ,σ ,γ,1,1)

P(IV )(µ,σ ,γ,α) = FP(µ,σ ,γ,1,α) (7.7)

The representation (7.6) will prove to be very useful for deriving properties of
the various Pareto models, I-IV. Note that (U1/U2) in (7.6) has a beta distribution
of the second kind and, since a random variable with an F distribution has a scaled
beta distribution of the second kind, it is reasonable to dub the Feller-Pareto dis-
tribution as a generalized F distribution. Indeed in the survival literature it is so
christened usually with µ = 0, see Kalbfleisch and Prentice (2002).

In the context of extreme value theory, especially in the study of peaks over
thresholds, Pickands (1975) introduced what he called a generalized Pareto distri-
bution. The corresponding density is

f (x;σ ,k) =
1
σ

(1− kx
σ

)(1−k)/kI(x > 0,
kx
σ

< 1) (7.8)

where σ > 0 and k ∈ R. The density corresponding to k = 0 is obtained by tak-
ing the limit as k ↑ 0 in (7.8). In fact (7.8) includes three kinds of densities. When
k < 0, it yields a Pareto (II) density (with µ = 0), when k = 0 it yields an expo-
nential density while for k > 0 it corresponds to a scaled beta distribution (of the
first kind). The density (7.8) thus unifies 3 models that are of interest in peaks over
threshold analysis. However for income modeling it will generally be true that only
the case k < 0 (and perhaps k = 0) will be of interest. Nevertheless, the literature on
Pickands’ generalized Pareto distribution has become quite extensive and provides
a useful source of information about the Pareto (II) distribution.

Before investigating distributional properties of the various Paretian models in-
troduced in this section, we will digress and describe some of the stochastic models
which have been suggested as possible explanations for the ubiquity of regularly-
varying survival functions that Pareto drew to the attention of the world.

3 Some Income Distribution Models

Gibrat (1931) argued that the income of an individual is a stochastic process subject
to small multiplicative fluctuations. This line of argument leads to a proposal of the
lognormal distribution as a suitable income model. The major advantage of such a
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log-normal model is that, by a simple transformation, the enormous existing body of
normal theory inference procedures becomes immediately available for the study of
income. Indeed, the log-normal model continues to be a popular alternative to Pareto
models for fitting income distributions. Recalling Pareto’s observation that survival
functions that are regularly varying at ∞ are typically encountered in such settings,
it is appropriate to study the log-normal model from this viewpoint. The regularly
varying survival function is characterized by the linearity of the Pareto chart (a plot
of log F̄X (x) vs. logx). Such plots for the lognormal distribution are curvilinear, but
they might well be judged to be close enough to linear to satisfy Pareto (who was
often quite easily satisfied in this regard).

In a series of publications Champernowne (1937, 1953, 1973) discussed a dis-
crete time model for income in which income was restricted to take on values in
some grid (say in units of hundreds of pounds, euros or dollars). Under the assump-
tion that transitions from one income level to the next were governed by a Markov
chain with steps down limited to no more than N income levels, he was able to show
that the long run distribution was a discretized Pareto distribution, and he conse-
quently argued that the continuous classical Pareto model could then be reasonably
used as a simple approximation for fitting income data sets.

Ericson (1945) used a coin-shower mechanism to justify the use of an exponential
distribution as a model for income data. Assuming that real populations are mixtures
of relatively homogeneous sub-populations, the coin shower model can be used to
argue for the use of mixtures of exponential distributions as income models. Since
the Pareto (II) model (with µ = 0) can be viewed as a scale mixture of exponential
distributions (see (7.6) and (7.7)), the Ericson approach might be used to argue for
use of the Pareto (II) model.

An excellent survey of various other income distribution models may be found in
Kleiber and Kotz (2003). We mention only two more in the interest of brevity. Lydall
(1959) suggested a pyramid structure of employment organization. Each individual
at level i is viewed as supervising n employees at the next lowest level. His salary is
assumed to be proportional to the aggregate income of his supervisees. This is shown
to lead to a discrete Pareto distribution of income which will be well approximated
by the classical model.

Arnold and Laguna (1976, 1977) use a model of competitive bidding for em-
ployment in which a random number of individuals apply for job openings and
employers hire the individual requesting the lowest salary. The long run income dis-
tribution in this case is of the Pareto (II) (or log-logistic) form. It is interesting that,
historically, the major competitor to Pareto models for fitting income data has been
provided by the log-normal distribution. Typically, data that are well fitted by Pareto
models are found to also be quite well described by a log-normal model. The obvi-
ous similarity between the normal and the logistic distributions, will of course imply
an analogous similarity between the log-normal and the Paretian log-logistic distri-
butions. From this viewpoint we will not be surprised by the difficulty of making a
selection between Pareto and log-normal models.

While some would argue that we can live comfortably using log-normal models
and do not need to use the various Pareto models, the same arguments can be used to
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justify using Pareto models and discarding log-normal models as being inessential.
The Pareto models form a considerably richer family than do log-normal models
and this may be a strong argument in their favor.

4 Distributional Properties of Pareto Distributions

We will refer to the hierarchy of Pareto distributions introduced in Section 2 as
generalized Pareto distributions (with apologies to Pickands who limited use of this
term to densities of the form (7.8)).

The hierarchy of generalized Pareto models to be discussed is

P(I) F̄(x;σ ,α) = (x/σ)−α , µ > σ ,

P(II) F̄(x; µ,σ ,α) = [1+(
x−µ

σ
)]−α , x > µ,

P(III) F̄(x; µ,σ ,γ) = [1+(
x−µ

σ
)1/γ ]−1, x > µ,

P(IV ) F̄(x; µ,σ ,γ,α) = [1+(
x−µ

σ
)1/γ ]−α , x > µ,

all of which can be viewed as special cases of the Feller-Pareto (µ,σ ,γ,δ1,δ2)
model given by

W = µ +σ(
U1

U2
)γ (7.9)

where U1,U2 are independent gamma random variables with shape parameters δ1
and δ2 respectively. The parametric values in (7.9) which lead to Pareto (I) - (IV)
models were listed in (7.7).

Feller-Pareto random variables do not have simple expressions available for their
moment generating functions though it is not difficult to obtain expressions for
their moments using the representation (7.9). Feller-Pareto densities are always uni-
modal. The mode will be at µ if γ > δ1 and will be at µ +σ [ δ1−γ

δ2+γ ]γ if γ ≤ δ1.
Recall that if U ∼ Γ (α,1) then the τ-th moment of U is given by

E(Uτ) = Γ (τ +α)/Γ (α) (7.10)

provided that τ + α > 0. Using this result we can readily obtain moments for a
Feller-Pareto distributed random variable with, for simplicity, µ = 0. Thus if W is
as defined in (7.9), with µ = 0, we have

E(W τ) = στ Γ (δ1 + τγ)Γ (δ2 − τγ)
Γ (δ1)Γ (δ2)

(7.11)

provided that − δ1
γ < τ < δ2

γ . From this expression we may obtain moments for
the Pareto (II) - (IV) distributions by making the substitutions indicated in (7.7).
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Moments for the classical Pareto model (i.e. Pareto (I) (σ ,α)) cannot be obtained
from (7.11) (since for the Pareto (I) model, µ = σ �= 0) but elementary computations
yield

Pareto (I) E(Xτ) = στ(1− τ
α )−1, τ < α . (7.12)

Convolutions of Pareto densities do not generally admit closed form expressions;
at best series expansions can be exhibited. However such convolutions will have
regularly varying tails and in this sense are asymptotically Paretian.

Products of independent classical Pareto (I) random variables do have tractable
distributions. To verify this we recall an alternative description of the classical
Pareto model that will prove useful in several subsequent discussions related to that
distribution. If X ∼ P(I)(σ ,α) then

Y = logX =d logσ +V/α (7.13)

where V ∼ exp(1)(= Γ (1,1)). Thus distributional (and inferential) questions about
Pareto (I) variables can be reinterpreted as dealing with translated exponential
random variables (or two parameter exponential variables, as they are sometimes
called). Using this representation and well known results for sums of independent
exponential random variables we can obtain the density for products of independent
Pareto (I) random variables in two cases.

Case (i): If X1, . . . ,Xn are i.i.d. P(I)(σ ,α) random variables and Y = ∏n
i=1 Xi,

then

fY (y) =
(σ log( y

σ ))n−1( y
σ )−α(α

y )

Γ (n)
I(y > σ), (7.14)

where σ = ∏n
i=1 σi.

Case (ii): If X1, . . . ,Xn are independent random variables with Xi ∼ P(I)(σi,αi)
in which all the αi’s are distinct then, again with Y = ∏n

i=1 Xi, we have

fY (y) =
n

∑
i=1

αi

σ
(

y
σ

)−(αi+1)
n

∏
k=1,k �=i

(
αk

αi −αk
)I(y > σ), (7.15)

with σ = ∏n
i=1 σi.

Inspection of the Pareto (IV) survival function in (7.4) makes it clear that min-
ima of independent Pareto (IV) variables (with the same µ,σ and γ) will again have
distributions of the Pareto (IV) form. Thus if X1,X2, . . . ,Xn are independent with
Xi ∼ P(IV )(µ,σ ,γ,αi), i = 1,2, . . . ,n then

min(X1,X2, . . . ,Xn) ∼ P(IV )(µ,σ ,γ,
n

∑
i=1

αi). (7.16)
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4.1 Order Statistics

For a sample of size n from a Feller-Pareto distribution, we will denote the
corresponding order statistics by X1:n,X2:n, . . . ,Xn:n. Generally speaking, elegant
expressions for the densities of these order statistics are not obtainable. One
exception, previously noted, involves P(IV ) samples. If X1,X2, . . . ,Xn are i.i.d.
P(IV )(µ,σ ,γ,α) then X1:n ∼ P(IV )(µ,σ ,γ,nα). If we begin with a sample from
a Pareto (III) (µ,σ ,γ) distribution then the distribution of the i’th order statistic is
tractable. We have Xi:n ∼ FP(µ,σ ,γ, i,n− i+1).

If we have observations from a classical Pareto (I) (σ ,α) distribution then dis-
tributional properties of the corresponding order statistics can be readily derived
using well known results for exponential random variables. We use the fact that for
a sample from a translated exponential distribution (Yi = β0 + β1Zi in which the
Zi’s are i.i.d. exp(1)) the scaled spacings (n− i + 1)(Yi:n −Yi−1:n) are themselves
i.i.d. exponential random variables (here Y0:n = β0 by definition) (Sukhatme, 1937).
This result allows us to derive distributional properties of ratios of classical Pareto
order statistics. Thus for order statistics X1:n,X2:n, . . . ,Xn:n from a Pareto (I) (σ ,α)
distribution we may consider, for k1 < k2, the ratio

Rk1,k2:n = Xk2:n/Xk1:n. (7.17)

Using the Sukhatme (1937) result we have

Rk1,k2:n =d
k2

∏
j=k1+1

Wj (7.18)

where the Wj’s are independent random variables with Wi ∼ P(I)(1,(n− j +1)α).
Referring to (7.15) it is then possible to write down the corresponding density

of Rk1,k2:n. By introducing X0:n = σ , by definition, the above analysis can be used
to obtain the survival function (and hence the density function) of Xi:n based on a
classical Pareto sample. Since the Pareto (II) distribution is a simple translation of
the classical Pareto model we can then obtain the distribution for Xi:n, the ith order
statistic, in a sample from a P(II)(µ,σ ,α) distribution. Thus, in that case,

P(Xi:n > x) =
i

∑
j=1

(1+
x−µ

σ
)−(n− j+1)α

i

∏
�=1,��= j

(
n− �+1

�− j
), x > µ, (7.19)

a linear combination of P(II) survival functions.
Moments of order statistics can be computed in some special cases as follows.

(i) Pareto (I): If the Xi’s are i.i.d. P(I)(σ ,α) then Xi:n =d σ ∏i
j=1 Wj:n where the

Wj:n’s are independent random variables with Wj:n ∼ P(I)(1,(n− j +1)α). Conse-
quently



Pareto and Generalized Pareto Distributions 127

E(Xτ
i:n) = στ

i

∏
j=1

(1− τ
α(n− j +1)

)−1

= στ n!
(n− j)!

Γ (n− i+1− τα−1)
Γ (n+1− τα−1)

. (7.20)

Means, variances and covariances can then be readily obtained from this expression.
(ii) Pareto (II): If the Xi’s are i.i.d. P(II)(µ,σ ,α) then Xi:n =d (µ −σ)+Yi:n where
the Yi:n’s are i.i.d. P(I)(σ ,α) so that means and variances and covariances of Xi:n
can be obtained using (7.20).
(iii) Pareto (III): If the Xi’s are i.i.d. P(III)(µ,σ ,γ) Then Xi =d µ + σZγ

i where Zi
has what we may call a standard Pareto distribution with survival function

F̄Z(z) = (1+ z)−1, z > 0. (7.21)

The corresponding quantile function (or inverse distribution function) is

F−1
Z (y) = y/(1− y), 0 < y < 1. (7.22)

It is then a straightforward matter to obtain the τ’th moment of the i’th order statistic
from a sample of size n from the standard Pareto distribution (7.21). Thus

E(Zτ
i:n) =

∫ 1

0
(

z
1− z

)τ zi−1(1− z)n−idz/B(i,n+ i+1)

=
Γ (i+ τ)Γ (n− i− τ +1)

Γ (i)Γ (n− i+1)
(7.23)

provided that i+τ < n+1. Using (7.23) and the representation Xi:n =d µ +σZγ
i:n we

can obtain expressions for the means, variances and covariances of order statistics
from a P(III)(µ,σ ,γ) population.
Pareto IV: Although general expressions for the moments of Pareto (IV) order statis-
tics are not available, there is a straightforward approach available for generating
moments of such order statistics. We make use of the following identity (see e.g.
Arnold et al. (1992, p. 112)).

E(Xτ
i:n) =

n

∑
r=n−i+1

(−1)r−n+i−1
(

n
r

)(
r−1
n− i

)
E(Xτ

1:r). (7.24)

Thus it is only necessary to compute moments of sample minima. If X1, . . . ,Xr are
i.i.d. P(IV )(µ,σ ,γ,α) then X1:r ∼ P(IV )(µ,σ ,γ,rα), as was observed earlier, and
consequently

E(Xτ
1:r) = E((µ +σZ1:r)τ) (7.25)

where Z1:r ∼ P(IV )(0,1,γ,rα). Referring to (7.11) we find

E(Zτ
1:r) =

Γ (1+ τγ)Γ (rα − τγ)
Γ (rα)

,
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from which we may immediately obtain E(Xτ
1:r) when µ = 0, and also obtain readily

the mean and variance of X1:r when µ �= 0.

4.2 Truncation From Below

For any distribution function FX we may define the corresponding truncated version
of F , truncated from below at x0 and denoted by F(x0)

X , by

F(x0)
X (x) = P(X ≤ x|X > x0). (7.26)

Such truncated distributions are naturally of interest in income distribution studies
since much of the available data is so truncated. We will denote the corresponding
survival function of F(x0)

X by F̄(x0)
X , i.e. F̄(x0)

X (x) = 1−F(x0)
X (x). The Pareto (II) family

of distributions is closed under truncation from below. To see this consider, for X ∼
P(II)(µ,σ ,α) and x > x0 ≥ µ

P(X > x|X > x0) =
(1+ x−µ

σ )−α

(1+ x0−µ
σ )−α

= (1+
x− x0

σ + x0 −µ
)−α .

Thus if X ∼ P(II)(µ,σ ,α) then X |X > x0 ∼ P(II)(x0,σ + x0 − µ,α)). It follows
readily that

P(II) E(X |X > x0) = x0 +
σ + x0 −µ

α −1
(7.27)

provided x0 ≥ µ . In a reliability context, one would say that X has a linear mean
residual life function (as a function of x0).

The truncated versions of more general Pareto models (such as P(III),P(IV )
and FP) will not have recognizable forms. This fact together with the ubiquity of
truncated data sets could be used to argue for use of only the P(II) (including the
classical Pareto) model for fitting income data. However the limited flexibility of the
Pareto (II) model must be recognized. Arguments against use of the Pareto (II) as a
model might be based on the fact that the corresponding Gini index (see Section 6)
is somewhat limited in its range.

4.3 Record Values

Suppose that X1,X2, . . . is a sequence of i.i.d. random variables with common con-
tinuous distribution function F . An observation Xj will be called a record value if it
is larger than all X’s that precede it in the sequence. By convention, X1 is a record
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value (the zero’th record value). The corresponding sequence of record values will
be denoted by X(0),X(1), . . . . It is convenient to denote with asterisks a sequence
X∗

1 ,X∗
2 , . . . of i.i.d. exponential (1) random variables with corresponding record val-

ues X∗
(0),X

∗
(1), . . .. We define a transformation ΨF by

ΨF(u) = F−1(1− e−u). (7.28)

It is not difficult to verify that

X(n) =d ΨF(X∗
(n)),n = 0,1, . . . . (7.29)

In the particular case in which the X’s have a Pareto(II) (µ,σ) distribution we will
have

F−1(u) = (µ −σ)+σ(1−u)−1/α

and so the n’th record value can be represented in the form

X(n) =d (µ −σ)+σeX∗
(n)/α

. (7.30)

However it is readily verified that X∗
(n) =d ∑n

j=0 X∗
i and that eX∗

1 /α ∼ P(I)(1,α).
Consequently, X(n) admits the representation

X(n) =d (µ −σ)+σ
n

∏
j=0

Yj (7.31)

where the Yj’s are i.i.d. P(I)(1,α) random variables. Distributional questions about
Pareto (II) record values are usually most simply resolved by using the representa-
tion (7.30) or (7.31).

If one considers the Pareto (IV) distribution, it transpires that only in the case
when γ = 1 (i.e. the Pareto (II) case) does the inverse distribution function assume
a convenient form, and thus there is no attractive available representation analogous
to (7.30), except in the Pareto (II) case.

4.4 Characterizations

Because of the intimate relationship between the classical Pareto distribution and the
standard exponential distribution, there are numerous characterizations of the Pareto
distribution (in particular of the classical Pareto distribution) available in the lit-
erature. We will not attempt a complete list but will briefly mention some of the
characterizations which might be meaningful in an income distribution context.
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4.4.1. Truncation equivalent to rescaling

If X ∼P(I)(σ ,α) then for x0 > σ we have X |X > x0 ∼P(I)(x0,α) so that truncation
is equivalent to rescaling i.e. X |X > x0 =d x0

σ X . If this is assumed to hold true for
every x0 > σ , the result can be rephrased as being equivalent to a lack of memory
property for logX which implies an exponential distribution for logX and thus a
P(I) distribution for X .

4.4.2. An underreported income scenario

Let Y denote actual income and X denote reported income. Let us assume a multi-
plicative reporting error model so that

X = RY (7.32)

where R and Y are independent and 0 ≤ R ≤ 1. Also assume that P(RX > x0) > 0.
Suppose that the distribution of Y = RX truncated below at x0 is the same as the
distribution of X . Krishnaji (1970) in this setting assumed that R has density

fR(r) = δ rδ−1, 0 < r < 1 (7.33)

and was led to a differential equation for F̄X whose solution corresponds to a Pareto
(II) distribution for X . In fact, the assumption of the density (7.33) for R is not
crucial. The result holds for a quite general class of distributions for R. The prob-
lem can be translated to one involving the integrated Cauchy functional equation
(Huang, 1978).

4.4.3. Geometric minimization

If X1,X2, . . . are i.i.d. P(III)(µ,σ ,γ) and if N, independent of the Xi’s, has a geo-
metric distribution (i.e. P(N = n) = p(1− p)n−1,n = 1,2, . . .) and if we define

Y = min
1≤i≤N

Xi (7.34)

then we may verify that, for y > µ ,

P(Y > y) =
∞

∑
n=1

P(Y > y|N = n)P(N = n)

=
∞

∑
n=1

[1+(
y−µ

σ
)1/γ ]−n p(1− p)n−1

= [1+(
y−µ
σ pγ )1/γ ]−1.
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Thus

Y ∼ P(III)(µ,σ pγ ,γ). (7.35)

In particular if µ = 0, we have

p−γY =d X1. (7.36)

Thus if the Xi’s have a P(III)(0,σ ,γ) distribution then Y defined by (7.34) has a dis-
tribution that is the same as X1 except for a change of scale. In this setting, the con-
dition Y =d cX1 plus a mild regularity condition that limx→0 x−λ F(x) = η > 0, will
guarantee that the Xi’s must have a Pareto (III) distribution with µ = 0. (Arnold and
Laguna (1976)). Without the regularity condition, the Xi’s can have what is known
as a semi-Pareto distribution (such distributions are discussed in Pillai (1991)).

4.4.4. Some failed “characterizations”

First we discuss a failure involving order statistics. If X1, . . . ,Xn are i.i.d. Pareto (I)
(σ ,α) random variables then for any k ∈ {1,2, . . . ,n−1} we may readily verify that

Xk+1:n/Xk:n ∼ P(I)(1,α). (7.37)

Is this a characteristic property of the classical Pareto distribution? If (7.37) is as-
sumed to hold for just one value of k, then we cannot conclude that the Xi’s have a
Pareto (I) distribution. To see this let Y1,Y2,Y3,Y4 be i.i.d. Γ ( 1

2 ,1) random variables
and define U1,U2 and V1,V2 by

U1 = Y1 +Y2, U2 = Y3 +Y4

V1 = Y1 −Y2, V2 = Y3 −Y4.

Now U1 and U2 are exponential random variables while V1 and V2 are not. Define
X1 = eU1 ,X2 = eU2 , X̃1 = eV1 , X̃2 = eV2 . Now X1,X2 are i.i.d. P(I)(1,1) random vari-
ables while X̃1 and X̃2 are clearly not Pareto variables. However

X̃2:2 / X̃1:2 = eV2:2−V1:2 =d e|V1−V2|

= de|U1−U2| =d eU2:2−U1:2 = X2:2/X1:2

∼ P(I)(1,1).

Now let us turn to a putative characterization based on record values. We have ob-
served that if X1,X2, . . . are i.i.d. Pareto (I) (σ ,α) random variables then the “geo-
metric” record value spacings X(k)/X(k−1) have the property that for k = 1,2, . . .

X(k)/X(k−1) ∼ P(I)(1,α). (7.38)
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If (7.38) holds for one value k ∈ {1,2, . . .}, can we conclude that the Xi’s are Pareto
(I) variables? Here too, the answer is no. Houchens (1984) showed that if we begin
with U1,U2, . . . as a sequence of i.i.d. Gumbel random variables, i.e.

Ui =d µ +σ logX∗
i

Where, as usual, the X∗
i ’s are i.i.d. exponential(1) variables, then the corresponding

record values admit the representation

U(n) =d µ +σ log(
n

∑
i=0

X∗
i ) (7.39)

and consequently the record spacing U(n) −U(n−1) can be shown to have an expo-
nential distribution. So, if we define X̃n = eUn we will find that although the X̃n’s do
not have a Pareto distribution, it is indeed true that X̃(k)/X̃(k−1) ∼ P(I)(σ ,αk).

4.5 Asymptotics

Intermediate order statistics from Pareto (IV) samples will be asymptotically nor-
mal, thus

P(IV ) Xk:n ∼ AN(F−1( k
n ), [ k

n (1− k
n )/n f 2(F−1( k

n ))]) (7.40)

where f and F denote the Pareto (IV) density and distribution function respectively
and so

F−1(u) = µ +σ [(1−u)−1/α −1]γ . (7.41)

In the classical Pareto (I) (σ ,α) case we have

Xk:n ∼ AN(σ(1− k
n
)−1/α ,

kσ2

n2α2 (1− k
n
)−(1+2α−1)) (7.42)

The asymptotic distributions for the extremes of Pareto (IV) samples are readily
obtainable. We find, for the minimum,

lim
n→∞

P((αn)γ(X1:n −µ)/σ > z) = e−z1/γ
,z > 0 (7.43)

(a Weibull limit distribution). For the maximum,

lim
n→∞

P(n−γ/α(Xn:n −µ)/σ ≤ z) = e−z(−α/γ)
,z > 0 (7.44)

(a Frechet extreme value limit distribution).
If Sn = ∑n

i=1 Xi where the Xi’s are i.i.d. P(IV )(µ,σ ,γ,α) random variables then,
provided α/γ > 2, the central limit theorem will apply and



Pareto and Generalized Pareto Distributions 133

(Sn −E(Sn))/σ(Sn) →d N(0,1)

If α/γ = 2 asymptotic normality is also encountered if σ(Sn) (which is not defined
when α/γ = 2) is replaced by n logn. For α/γ < 2, suitable normalization of Sn will
lead to a stable limit distribution with characteristic exponent α/γ .

The Pareto (III) distribution can itself arise as a limit distribution under repeated
geometric minimization (Arnold and Laguna (1976)) while the Pareto (II) distribu-
tion can arise as a limiting distribution when one considers residual life at great age
(Balkema and de Haan, 1974).

5 A Note on Related Discrete Distributions

Quite frequently income data is available only in grouped form. For this reason it
is of interest to study discretized versions of the Pareto distributions discussed in
this chapter. Without loss of generality (simply redefine the units of measurement
if necessary) we can focus on random variables that can be identified as the integer
parts of Pareto variables. Arnold (1983) suggests that these be called Zipf distri-
butions in honor of George Zipf who, in Zipf (1949), described a wide variety of
settings in which such distributions appear to arise naturally. We will say that a
random variable X has a Zipf(IV) (k0,σ ,γ,α) distribution if it has possible values
k0,k0 +1,k0 +2, . . . and satisfies

P(X ≥ k) = [1+(
k− k0

σ
)1/γ ]−α ,k = k0,k0 +1, ... (7.45)

Typically k0 will be an integer, but it does not have to be. Analogously we may define
Zipf(I), (II) and (III) distributions by suitable parametric constraints in (7.45). Min-
ima of Zipf (IV) samples again have Zipf (IV) distributions and as a direct parallel to
the Pareto (III) result, the Zipf (III) family is closed under geometric minimization.
The standard Zipf distribution may be taken to be the Zipf (IV) (0,1,1,1) distribu-
tion. If U has such a distribution then

P(U ≤ k) =
k

k +1
,k = 0,1,2, . . . . (7.46)

This distribution (translated by 1) arises as the waiting time till the first record value
in a sequence of i.i.d. continuous random variables. It also admits a representation
as a uniform mixture of geometric distributions.

6 Inequality Measures

Pareto (1897) suggested that the (negative of the) slope of a Pareto chart (the plot
of logFX (x) vs. logx) could be used as a suitable indication of inequality in a
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population. In fact, for a classical Pareto distribution, the slope will be −α and
small values of α will be associated with a large amount of inequality. Most of the
popular inequality measures are, in the classical Pareto case, decreasing functions
of α . For the more general Pareto models, (II) - (IV), the Pareto chart will be ap-
proximately linear with a slope given by −α/γ and for these distributions also, most
of the commonly utilized inequality measures again will be decreasing functions of
the negative of this slope. A pot-pourri of inequality measures have been proposed
since Pareto proposed his graphical measure.

Arguments can be advanced in favor of inequality measures that are scale in-
variant. From this viewpoint the Gini index introduced in Gini (1914) becomes an
attractive candidate. For a distribution F supported in (0,∞) we can define the Gini
index to be

G(F) = E(|X1 −X2|)/2E(X1) (7.47)

where X1,X2 are i.i.d. with common distribution F . Here we assume that E|X1|< ∞.
A somewhat earlier competitor of the Gini index is the coefficient of variation

which can be defined by

CV (F) =
√

E[(X1 −X2)2]/
√

2E(X1) (7.48)

where again X1,X2 are i.i.d. with common distribution F . For this we must assume
that E(X2

1 ) < ∞.
However, it has transpired that another graphical indicator of inequality has taken

over center stage, especially in income distribution contexts. This is the celebrated
Lorenz curve introduced by Lorenz (1905). The Lorenz curve LF(u) associated with
a distribution function F supported in (0,∞) (with quantile function F−1) is conve-
niently defined by (following Gastwirth (1971))

L(u) =
∫ u

0
F−1(y)dy/

∫ 1

0
F−1(y)dy, 0 ≤ u ≤ 1 (7.49)

where it is assumed that the mean of F (equal to the denominator in (7.49)) ex-
ists. Lorenz proposed to measure inequality by the degree to which the bow-
shaped Lorenz curve is “bent”. Thus if F1 and F2 have corresponding Lorenz
curves L1 and L2, we will say that F1 exhibits at least as much inequality as does
F2 if L1(u) ≤ L2(u),∀u ∈ [0,1] and we will write F1 ≥L F2. Arguments based on
Dalton’s (1920) transfer principles suggest that inequality measures should respect
this Lorenz ordering. Many, though not all, inequality measures do so, and indeed
several have attractive graphical interpretations related to Lorenz curves. For exam-
ple, the Gini index (7.47) corresponding to a distribution F is equal to two times
the area between the Lorenz curve L(F) and the egalitarian line (which corresponds
to the Lorenz curve for a degenerate random variable X = c > 0, representing the
situation where everyone has the same income). Thus

G(F) = 2
∫ 1

0
[u−LF(u)]du. (7.50)
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The Pietra index which can be defined as

E(|X −E(X)|)/2E(X) (7.51)

also has a Lorenz curve interpretation (Pietra, 1932). It can be viewed either as the
maximal deviation between LF(u) and u or, equivalently, as two times the area of
the maximal triangle that can be inscribed between L(u) and the egalitarian line. For
the hierarchy of Pareto distribution (I) - (IV) we may summarize these inequality
measures as follows

Pareto (I) (σ ,α) F̄(x) = (x/σ)−α ,x ≥ σ . Assume α > 1 to ensure that E|X | < ∞.

Lorenz curve : L(u) = 1− (1−u)(α−1)/α

Gini index : (2α −1)−1

Pietra index : (α −1)α−1/αα

Coefficient of variation : (α2 −2α)−1/2 if α > 2

Pareto (II) (0,σ ,α) (µ = 0 for simplicity)

Gini index : α/(2α −1)

Pietra index : [
α −1

α
]α−1

Coefficient of variation : α1/2(α −2)−1/2 if α > 2

Pareto (III) (0,σ ,γ)

Gini index : γxxxxxxxxxx

Pareto (IV) (µ,σ ,γ,α)

Lorenz curve : L(u) =
µu+α{B(α − γ,γ +1)− I(1−u)1/α (α − γ,γ +1)}

µ +σαB(α − γ,γ +1)

Gini index : 1− µ +2σαB(2α − γ,γ +1)
µ +σαB(α − γ,γ +1)

where Iz(α,β ) =
∫ z

0 vα−1(1− v)β−1dv denotes the incomplete beta function.
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7 Inference

Parameter estimation based on samples from the classical Pareto (I) distribution
has been the subject of a large number of papers. By a simple transformation this
problem reduces to the problem of estimation for data from a translated exponential
distribution, though few authors have explicitly taken advantage of this possible
approach. If we have a sample X1,X2, . . . ,Xn from a Pareto (I) (σ ,α) population,
the corresponding likelihood function is of the form

L(σ ,α) = αnσnα(
n

∏
i=1

Xi)−(α+1)I(σ ≤ X1:n). (7.52)

A complete minimal sufficient statistic based on X1, . . . ,Xn is (X1:n,∏n
i=1 Xi). It is

not difficult to determine the maximum likelihood estimate of (σ ,α). Observe that
for any fixed α , the likelihood is monotone increasing in σ and so is maximized
when σ = X1:n. Thus we have

P(I) σ̂n = X1:n (7.53)

α̂n = [
1
n

n

∑
i=1

log(Xi/X1:n)]−1 (7.54)

(α̂n, σ̂n),n = 1,2, . . . is a strongly consistent sequence of estimates of (α,σ). In
addition, α̂n is asymptotically normal. For a fixed sample size n we can explicitly
describe the distribution of(α̂n, σ̂n). Using Basu’s lemma or results on ratios of
adjacent order statistics for Pareto (I) samples, we can verify that α̂n and σ̂n are
independent random variables. The corresponding marginal densities are available
when we observe that

σ̂n ∼ P(I)(σ ,nα) (7.55)

and
(α̂n)−1 ∼ Γ (n−1,(αn)−1). (7.56)

From (7.55) and (7.56) we obtain

E(σ̂n) = σ(1− 1
nα

)−1 (7.57)

var(σ̂n) = σ2nα(nα −1)−2(nα −2)−1 (7.58)
E(α̂n) = αn/(n−2) (7.59)

var(α̂n) = α2
n (n−2)−2(n−3)−1 (7.60)

Both α̂n and σ̂n are thus positively biased.
To obtain minimum variance unbiased estimates of σ and α , we need only to

identify the (unique) functions of the minimal sufficient statistics which are unbiased
for σ and α . In this way we are led to the MVUE’s:
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σ̂ (U)
n = [1− (n−1)−1 α̂−1

n ] σ̂n (7.61)

and
α̂(U)

n =
n−2

n
α̂n . (7.62)

An alternative estimator of α , which has smaller mean squared error than α̂n and
α̂(U)

n is given by

α̂(J)
n =

n−3
n

α̂n (7.63)

where the “J” refers to A.M. Johnson who first derived this estimate (see Saksena
(1978)).

Minor modifications of σ̂ (U)
n have been suggested with a goal of reducing the

mean squared error, but no uniformly better estimate has been identified. Note that
which of the estimates σ̂ (U)

n and σ̂n has smallest mean squared error depends on the
true value of α .

Since we have a complete sufficient statistic available it is not difficult to identify
minimum variance unbiased estimates of many functions of (σ ,α). For example one
can find the MVUE of P(X > t) = (t/σ)−α (Lwin (1972)) or the Gini index (2α −
1)−1. Of course, maximum likelihood estimates of functions of the form h(σ ,α)
will be obtained by “plugging in” σ̂n and α̂n, i.e. ĥ(σ ,α) = h(σ̂n, α̂n). Likewise
one can determine the best unbiased predictor of a future observation X .

Several alternative estimation methods have been proposed. One simple approach
is based on the fact that the Pareto chart (a plot of log F̄X (x) against logx) for a
Pareto distribution is linear, with a slope −α and intercept logσ . So we may simply
find a least squares line of best fit to the empirical Pareto chart of the sample and
use the fitted slope and intercept to estimate σ and α in the obvious way. Such esti-
mates are consistent (Quandt (1966)). Similarly it is possible to obtain a consistent
estimate of α by a least squares fitting of the empirical Lorenz curve.

Variants of the method of moments can instead be used for parameter estimation.
Perhaps the most popular of these techniques is one suggested by Quandt (1966).
He equated the sample mean and the sample minimum to their expected values and
solved for σ and α . Using an (M) to remind us that a method of moments was used,
we can express these estimates as

α̂(M)
n =

nX̄ −X1:n

n(X̄ −X1:n)
(7.64)

and

σ̂ (M)
n =

nα̂(M)
n −1

nα̂(M)
n

X1:n (7.65)

(here we must assume α > 1 for the existence of E(X̄)). The estimates in (7.64) and
(7.65) are consistent. If we are unhappy with the assumption α > 1, we may use a
fractional moment of X̄ instead of its mean, to derive alternative estimates. This will
extend the range of values for which α can be consistently estimated.
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Quantile estimation is a viable alternative. For this Quandt (1966) proposed se-
lection of two probabilities p1 > p2. We may then obtain estimates by equating
sample quantiles to population quantiles. Thus we solve the pair of equations

pi = 1− (
X[npi]:n

σ
)α , i = 1,2 (7.66)

to obtain our estimates.
By transforming our Pareto (I) data to exponential data, several authors have dis-

cussed best linear unbiased estimates based on chosen order statistics (see Johnson
et al. (1994, pp. 584-587) for an introduction to this area of investigation).

In the case in which σ is known, Brazauskas and Serfling (2000) make a strong
case for the use of a generalized median estimate of α constructed as follows. For
each subset of k of the n random variables X1,X2, ...,Xn define

h(Xi1 ,Xi2 , ...,Xik) =

(
1
k

k

∑
j=1

logXi j − logσ

)−1

.

The generalized median estimate of α is then defined to be the median of these
quantities that can be viewed as subsample based estimates. If σ is not known, it
is reasonable to substitute X1:n for it in the generalized median. A strong argument
in favor of such estimates is their robustness against outliers. Detailed discussion of
generalized median estimates, together with comparisons with competing estimates
in terms of asymptotic relative efficiency and breakdown points may be found in
Brazauskas and Serfling (2000).

Instead of using the frequentist estimation approaches discussed above, we may
consider a Bayesian formulation of the problem. If σ is known, then the problem,
after a logarithmic transformation reduces to one involving estimation of the recip-
rocal of the scale parameter from a sample from a gamma distribution. A gamma
prior will be conjugate here and a routine analysis is possible. If α is known, then
a power function prior density for σ ( f (σ) ∝ δσδ−1,0 < σ < σ0) is conjugate
and again a routine analysis is possible. More interesting is the case in which both
σ and α are unknown. A “natural” conjugate prior for this case was identified by
Lwin (1972). Arnold and Press (1989) suggested that independent priors be used for
σ and α . Instead we will approach the problem from the viewpoint of conditionally
conjugate priors in the sense of Arnold et al. (1998). This approach subsumes the
Lwin prior and the independent marginals prior but provides more flexibility.

Before we begin it is convenient to reparameterize our Pareto density in terms of a
shape parameter α and a precision parameter τ(= 1/σ). With this parameterization
the likelihood function becomes

fX (x;α,τ) = αnτ−nα(
n

∏
i=1

xi)−(α+1)I(τx1:n > 1). (7.67)

If τ were known, it would be natural to take a prior for α to be in the gamma family.
If α were known, the natural conjugate prior for τ would be in the Pareto family.
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It is then reasonable to use a prior density for (α,τ) which has gamma and Pareto
conditionals. The corresponding 6 parameter family of priors is then given by

f (α,τ) ∝ exp[m01 logτ +m21 logα logτ]
×exp[m10α +m20 logα +m11α logτ]I(τc > 1) (7.68)

It is readily verified that (7.68) is a conjugate family and that it does have gamma
and Pareto conditionals. When (7.68) is combined with (7.67) the resulting posterior
density is again of the form (7.68) with posterior hyper-parameters (indicated by
primes) related to prior hyper-parameters (without primes) as below

m′
01 = m01

m′
21 = m21

m′
10 = m10 −

n

∑
i=1

logxi (7.69)

m′
20 = m20 +n

m′
11 = m11 −n

c′ = min(x1:n,c).

Because the posterior distribution has gamma and Pareto conditionals, it is easy to
simulate realizations from the posterior density using a Gibbs sampler. The family
of priors (7.68) includes the Lwin (1972) priors. For them, set m01 = m21 = 0. It
also includes the “independent marginals” priors of Arnold and Press (1989). They
correspond to the choice m11 = m21 = 0 in (7.68).

More detailed discussion of such conditionally conjugate priors may be found in
Arnold et al. (1999, ch. 13).

Censored data pose no additional difficulties for maximum likelihood or
Bayesian inference in the Pareto (I) family. If our data consists of n precisely
observed Xi’s say X1 = x1, . . . ,Xn = xn and m imprecisely observed observations
X

′
1 > c1,X

′
2 > c2, . . . ,X

′
m > cm where c1,c2, . . . ,cm are known, then our likelihood

function (reverting once more to the (σ ,α) parameterization) will be, provided
c1:n > x1:n,

L(σ ,α) =
n

∏
i=1

α
σ

(
Xi

σ
)−(α+1)

m

∏
j=1

(
ci

σ
)−α I(X1:n ≥ σ)

∝ αnσ (n+m)α(
n

∏
i=1

Xi

m

∏
j=1

c j)−α I(X1:n ≥ σ) (7.70)
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which is of the same form as (7.52) so that maximum likelihood estimates are readily
obtainable and the same classes of prior densities can be used for Bayesian analysis
as were used when all of the Xi’s were precisely observed. If the data are grouped,
life becomes more complicated. See Arnold and Press (1986) for some discussion
of Bayesian inference in such a situation.

Turning now to estimation problems for the more general Pareto (II) - (IV) distri-
butions, we predictably find estimation to be a little more difficult. Suppose that we
have n observations X1,X2, . . . ,Xn from a Pareto (IV) (µ,σ ,γ,α) distribution. The
log-likelihood is of the form

P(IV ) l(µ,σ ,γ,α) =(
1
γ
−1)

n

∑
i=1

log(
Xi −µ

σ
)− (α +1)

n

∑
i=1

log(1+(
Xi −µ

σ
)1/γ)

−n logγ −n logσ +n logα.

(7.71)

It is reasonable to use X1:n as an estimate of µ . If we do this and then subtract X1:n
from the other observations we may act as if we have a sample of size (n−1) from
a P(IV )(0,σ ,γ,α) distribution. The likelihood equations, even in this simplified
setting, must be solved numerically but we will be guaranteed asymptotic normality
of the resulting m.l.e.’s and so we will have⎛⎝ σ̂n

γ̂n
α̂n

⎞⎠∼ N

⎛⎝⎛⎝σ
γ
α

⎞⎠ ,
1
n

J

⎞⎠ (7.72)

where J is the information matrix. Brazauskas (2003) discusses this information ma-
trix in some detail. In an earlier paper Brazauskas (2002) provided the information
matrix for the Feller-Pareto distribution.

It is of course possible to use the method of moments for Pareto (IV) samples.
Again it is simplest to use X1:n as an estimate of µ and then we can set up 3 mo-
ment equations for a Pareto (0,σ ,γ,α) sample using expressions for the moments
in (7.11). Note that an iterative search for a solution may be necessary since the
expressions for the moments involve gamma functions. More attractive is the pos-
sibility of equating 4 sample quantiles to the corresponding population quantiles,
although even here, the solution of the 4 equations in 4 unknowns (or 3 equations if
we set µ = X1:n) will be a non-trivial numerical exercise.

Bayesian inference for P(II)−P(IV ) populations will be hindered by the absence
of a convenient minimal sufficient statistic. It is of course possible to use diffuse,
reference or non-informative priors for the parameters but analysis of the resulting
posterior density will be computer intensive.
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8 Multivariate Pareto Distributions

The first k-dimensional Pareto distribution to appear in the literature was introduced
by Mardia (1962). It has P(I) marginals. Its joint survival function is of the form

F̄X (x) = P(X > x) = [
k

∑
i=1

xi

σi
− k +1]−α , xi > σi, i = 1,2, . . . ,k (7.73)

where α > 0 and σi > 0, i = 1,2, . . . ,k. If X has such a survival function we will
write

X ∼ P(k)(I)(σ ,α).

Let us partition X = (X (1),X (2)) where X (1) is of dimension k1 < k and X (2) is
of dimension k−k1. Analogously we partition σ = (σ (1),σ (2)). Using this notation
we may verify that the marginals of the P(k)(I) distribution are again multivariate
Pareto and conditional distributions have translated multivariate Pareto distributions.
Specifically we have

X (1) ∼ P(k1)(I)(σ (1),α) (7.74)

and

X (1)|X (2) = x(2) ∼ c(x(2))P(k1)(σ (1),α + k− k1)+(1− c(x(2)))σ (1) (7.75)

where c(x(2)) = [∑k
1=k1+1 ( xi

σi
)− k + k1 +1].

It is possible to define multivariate Pareto (II) and Pareto (III) distributions but
of course they may be viewed as special cases of the following multivariate Pareto
(IV) distribution

F̄X (x) = [1+
k

∑
i=1

(
xi −µi

σi
)1/γi ]−α , xi > µi, i = 1,2, . . . ,k (7.76)

where µ ∈ Rk, σ > 0, γ > 0 and α > 0. If X has a survival function corresponding
to (7.76) we will write

X ∼ P(k)(IV )(µ,σ ,γ,α).

This family is “closed” under marginalization and conditioning. We have

X (1) ∼ P(k1)(IV )(µ(1),σ (1),γ(1),α) (7.77)

and
X (1)|X (2) = x(2) ∼ P(k1)(IV )(µ(1),τ(1),γ(1),α + k− k1) (7.78)

where
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τi = σi[1+
k

∑
j=k1+1

(
xi −µi

σi
)1/γ j ]γi , i = 1,2, . . . ,k.

The following stochastic representation of a P(k)(IV ) random vector X is conve-
nient for determining the regression functions and the variance covariance structure
of the distribution

Xi = µi +σi(Wi/Z)γi , i = 1,2, . . . ,k (7.79)

where the Wi’s are i.i.d. standard exponential random variables (i.e. Wi ∼ Γ (1,1))
and Z, independent of the Wi’s, has a Γ (α,1) distribution.
Remark: A multivariate Feller-Pareto distribution can be defined by using a repre-
sentation analogous to (7.79), in which the Wi’s are independent gamma variables
with Wi ∼ Γ (δi,1), i = 1,2, . . . ,k independent of Z ∼ Γ (α,1).

There are several other ways in which multivariate Pareto (IV) random vectors
can be constructed. One can take gamma mixtures of dependent Weibull random
variables. One can begin with m > k independent Pareto(IV) variables, Y1, . . . ,Ym,
and define X1, . . . ,Xk by postulating that each of the Xi’s is a minimum of some
subset of the Yi’s. Arnold (1983, pp. 260-263) discusses several multivariate Pareto
(III) distributions which are defined in terms of geometric minimization. Finally
we remark that Arnold et al. (1999, pp. 182-183) describe several multivariate dis-
tributions with Pareto conditional distributions. A requirement that the conditional
distributions should be Paretian, rather than positing that marginal densities should
be Paretian, might actually be more compelling as a modeling assumption. As an
example of a bivariate density with Pareto (II) conditionals (with µ = 0) consider

fX1,X2(x1,x2,λ ) ∝ (λ00 +λ10x1 +λ01x2 +λ11x1x2)−(α+1). (7.80)

This model includes Mardia’s bivariate Pareto model and also includes distributions
with independent Pareto (II) marginals. Higher dimensional versions of condition-
ally specified distributions such as (7.80) can potentially involve enormous numbers
of parameters so that simplified sub-models need to be considered to hopefully avoid
the curse of over-flexibility of these models. They are mathematically identifiable,
but based on a finite sample, many parameter configurations will seem to be equally
suitable for approximately matching the empirical data configurations.

9 Envoi

Multivariate models with surfeits of parameters and univariate models such as the
Feller-Pareto model with 5 parameters for univariate data, will cause enormous
headaches when we try to estimate parameters, construct confidence intervals, test
hypotheses or try to decide among hierarchical (and non-hierarchical) families of
submodels. It may be cause for wishing for the good old days when Pareto’s sim-
ple two parameter model held the field without competition. Life was easier when
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all you had to do was roughly sketch an empirical Pareto chart and read off the
slope and intercept. Then one could quickly get down to the enjoyable activity of
arguing with colleagues about the economic and social implications of the degree
of inequality exhibited by various populations and subpopulations. But even Pareto
recognized that his simple model wasn’t always adequate. Bells and whistles had to
be added. For example, Pareto proposed to sometimes use the following model

F̄X (x) = C(x+b)−α e−βx, x > d (7.81)

The hierarchy of generalized Pareto models introduced in section 2 may very well
not be the final answer. There is still room for suggestions of other suitable models
with Paretian tail behavior.
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Abstract

The generalized beta (GB) is considered as a model for the distribution of income.
It is well known that its special cases include Dagum’s distribution along with the
Singh-Maddala distribution. Related measures of inequality such as the Gini Co-
efficient, Pietra Index, or Theil Index are expressed in terms of the parameters of
the generalized beta. This paper also explores the use of numerical integration tech-
niques for calculating inequality indexes. Numerical integration may be useful since
in some cases it may be computationally very difficult to evaluate the equations that
have been derived or the equations are not available. We provide examples from the
distribution of family income in the United States for the year 2000.
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1 Introduction

Parametric and nonparametric methods have been considered in describing the size
distribution of income. This paper provides a survey of the generalized beta (GB)
as an income distribution, derives some inequality measures for some previously
unknown cases, and explores the use of numerical methods to evaluate inequality
measures to a fitted distribution. These issues are important because poor fitting
functional forms or inaccurate measures of inequality can lead to inappropriate eco-
nomic policy.

Pareto first proposed a model of income distribution in 1895 which was found
to accurately model the upper tail of the distribution, but did a poor job describing
the lower tail (Pareto, 1895). Pareto’s analysis generated a debate on the effect of
economic growth on income inequality. Gini disagreed with Pareto’s opinion that
economic growth leads to less inequality. Gini proposed a unit-free measure of in-
come inequality known as the Gini coefficient that is still commonly used today
(Gini, 1912).

Gibrat’s (1931) law of proportionate effect provided a theoretical basis for the
two-parameter lognormal distribution to be considered as a model for the size dis-
tribution of income. The lognormal was further examined by Aitchison and Brown
(1969). Another two-parameter distribution, the gamma, was proposed by Ammon
(1895)17 and was more recently reintroduced and fit to US income data by Salem
and Mount (1974). Bartels and van Metelen (1975) suggested the two-parameter
Weibull distribution. While these two-parameter models provide increased flexibil-
ity in fitting empirical data, they do not allow for intersecting Lorenz curves some-
times observed with income data.

The introduction of a third parameter allows for intersecting Lorenz curves. Some
three-parameter models which have been used to model the size distribution of in-
come include the generalized gamma (Amoroso, 1924-1925; Taillie, 1981) and beta
(Thurow, 1970) as well as two closely related models which are members of the
Burr family of distributions: the Singh and Maddala (1976), known in statistics lit-
erature as the Burr 12, and the Dagum (1977), known as the Burr 3.

The generalized beta of the first and second kind (GB1 and GB2) are four-
parameter distributions which have not only been very successful in fitting the data,
but also include all of the previously mentioned distributions as special or limiting
cases, McDonald (1984). The empirical success of the GB2 was complemented by
Parker’s (1999) theoretical model of income generation, showing earnings to follow
a GB2 distribution. Bordley et al. (1996) found that the GB2 distribution generally
provided a significantly better fit than its nested distributions when fit to income

17 Dagum (1980) states that, “Ammon appears to be the first to propose the gamma pdf as a descrip-
tive model of income distribution. It was applied by L. March (1898) to fit the wage distribution
of several professional categories. . . .” One of the referees to this paper indicated that he had been
unable to verify that Ammon proposed the gamma in any of the three editions of his book. Having
access to the third edition, the referee observed a histogram with a superimposed smooth curve,
which Ammon states is an eyeball estimate. This curve resembles a gamma pdf, but this does not
prove that Ammon actually used a gamma distribution.
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data from the United States. Bandourian et al. (2003) applied the generalized beta
distributions to income data from 23 countries and various years from the mid 70’s
to the mid 90’s. They found that the Weibull, Dagum, and generalized beta of the
second kind were generally the best fitting models with two, three, and four param-
eters when using earnings income data. Furthermore, estimated measures of income
inequality increased over time (1979-2000) for most countries. Dastrup et al. (2007)
investigated the impact of taxes and transfer payments on the distribution of income
over time for a number of countries.

Section 2 summarizes the statistical models, related estimation issues, and mea-
sures of inequality to be considered in this paper. Nonparametric and parametric
estimators of the Gini, Pietra, and Theil estimators are reviewed in Section 3, with
applications being considered in Section 4. Section 5 includes a summary of the
conclusions. The Appendices (I and II) contain the derivation of expressions for the
Pietra and Theil Indices as a function of the distributional parameters.

2 Statistical Models for the Size Distribution of Income

2.1 The generalized beta distribution family

The generalized beta (GB) distribution is defined by its probability density function
(pdf),

GB(y;a,b,c, p,q) =
|a|yap−1(1− (1− c)(y/b)a)q−1

bapB(p,q)(1+ c(y/b)a)p+q for 0 < ya <
ba

1− c
(8.1)

and zero otherwise, where 0 ≤ c ≤ 1; b, p,q > 0; and B(p,q) denotes the beta func-
tion.

The GB pdf has an inverted “U” shape if ap <1 and q <1 with vertical asymp-
totes at y = 0 and y = b/(1− c)1/a . The GB includes all of the distributions
mentioned in Section 1 as special or limiting cases, McDonald and Xu (1995). The
four- parameter GB1 and GB2 correspond to the GB with the c parameter set equal
to zero and one, respectively:

GB1(y;a,b, p,q) =
|a|yap−1 (1− (y/b)a)q−1

bapB(p,q)
= GB(y;a,b,c = 0, p,q) (8.2)

GB2(y;a,b, p,q) =
|a|yap−1

bapB(p,q)(1+(y/b)a)p+q = GB(y;a,b,c = 1, p,q). (8.3)

Thurow (1970) used the beta of the first kind (B1)
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B1(y;b, p,q) =
yp−1(b− y)q−1

bpB(p,q)
= GB1(y;a = 1,b, p,q) ; 0 < y < b (8.4)

to analyze factors contributing to income inequality for whites and blacks.
One of the first distributions used to model income was the Pareto distribution

Pareto(y;b, p) =
py−p−1

b−p = GB1(y;a = −1,b, p,q = 1) for b < y. (8.5)

The three-parameter Dagum distribution corresponds to the case

DAGUM(y;a,b, p) =
|a| pyap−1

bap (1+(y/b)a)p+1 = GB2 (y;a,b, p,q = 1). (8.6)

This is actually a Dagum Type 1 distribution. Dagum’s more general form has
the cumulative probability function (cdf): F (y) = α + (1−α)

(
1+(y/b)−a)−p

.
Dagum’s Types 1, 2, and 3 correspond to α=0, 0<α<1, and α<0, respectively.
Dagum’s Type 2 model allows for non-positive values of Y with F(0) = α . Type 3
is associated with a positive lower bound for Y , y0. A generalization of this formu-
lation is given by F(y) = α +(1−α)F∗(y) where F∗(y) could denote any cdf for
positive Y , such as a GB1, GB2, or GB. An alternative formulation could be viewed
as arising from a “translation of the origin” to y0 where y0 can be negative, zero,
or positive. The value of y0 can be estimated from other information such as the
fraction of negative and zero observations for Dagum’s Type 2 model or can be es-
timated as a parameter. Bandourian et al. (2003) include an example of a translated
origin in the estimation of the models considered in this paper.

The Singh-Maddala (SM) distribution is also a special case of the GB2

SM(y;a,b,q) =
|a|qya−1

ba (1+(y/b)a)q+1 = GB2(y;a,b, p = 1,q) (8.7)

and the generalized gamma (GG) distribution is a limiting case of the GB2 defined
as

GG(y;a,β , p) = lim
q→∞

GB(y;a,b = q1/aβ ,c = 1, p,q)

=
yap−1e−(y/β )a

β aΓ (p)
(8.8)

where Γ (p)denotes the gamma function. The cumulative distribution functions
(cdf) for the Dagum and Singh-Maddala distributions have closed form represen-
tations, but the cdf for the generalized gamma involves an infinite series.

The GB2 can be expressed as a mixture of a generalized gamma and an inverse
generalized gamma distribution
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GB2(y;a,bβ , p,q) =
∫ ∞

0
GG(y/λ ;a,β , p) IGG(λ ;a,b,q)dλ

where the IGG distribution is a GG with a negative value of the parameter a. This
mixture interpretation can be used as a model for a multiplicative measurement error
model where (λ ) denotes the multiplicative measurement error and true income is
distributed as a GG, Israelsen and McDonald (2003).

The two-parameter gamma (GA) and lognormal (LN) distributions used by
Salem and Mount (1974) are both special cases of the generalized gamma pdf and
are defined by

GA(y; p,β ) =
yp−1e−(y/β )

βΓ (p)
= GG(y;a = 1,β , p) (8.9)

LN(y; µ,σ) =

⎛⎜⎝e
−
(

(ln(y)−µ)2

2σ2

)
y
√

2πσ

⎞⎟⎠
= lim

a→0
GG

(
y;a,β =

(
σ2a2)1/a

, p = (aµ +1)/σ2a2
)

. (8.10)

The Weibull distribution is also a special case of the generalized gamma

Weibull(y;β ,q) =
ya−1e−(y/β )a

β a = GG(y;a,β , p = 1,q) . (8.11)

A convenient way to visualize these relationships and some other special cases
mentioned in the introduction is the distribution tree in figure 8.1 where Beta1 and
Beta2 are the beta of the first and second kind, respectively. Additional details can
be found in McDonald and Xu (1995).18

18 Some generalizations of this model could include situations in which the distributional param-
eters are functions of explanatory variables or regression models for positive random variables.
Examples of the former could include the distributional parameters of the distribution of income
being functions of age and education level, θ = θ (x) where θ denotes a vector valued function
of explanatory variables which needs to be estimated. The result would be a different income dis-
tribution for each age and education level. Examples of regression models with positive random
variables could take the form yi = ln(Ti) = Xiβ + εi where Ti , (0< Ti ), is the dependent variable
to be modeled and could be selected to be a distribution from the distributional family depicted
in Figure 8.1. McDonald and Butler (1990) give some additional details related to this regression
formulation.
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Fig. 8.1: Distribution tree

2.2 Parameter estimation and measures of goodness of fit

Maximum likelihood estimation (MLE) is probably the most common method of
estimating the distributional parameters for these models. For individual observa-
tions (yi : i = 1,2, ...,n) and for data reported in a grouped format, respectively, the
MLE of θ are obtained by maximizing

�(θ) =
N

∑
i=1

�n( fd (yi : θ)) (8.12 a−b)

�(θ) = �n(N!)+
g

∑
i=1

{ni�n [pi (θ)]− �n(ni!)}

over θ , with pi (θ) = Fd (Yi : θ)−Fd (Yi−1 : θ) where fd () and Fd () denote the pdf
and cdf for distribution type d, θ is a vector containing the distributional parameters,
Yi and Yi−1 are the upper and lower bounds of the ith of g data groups, ni is the num-
ber of observations in the ith group, and N is the total number of observations. Two
alternatives to MLE for grouped data are the minimum chi-squared and minimum
modified chi-squared estimators which correspond to minimizing

g

∑
i=1

(
(ni −N pi (θ))2

N pi (θ)

)
(8.13 a−b)
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g

∑
i=1

(
(ni −N pi (θ))2

ni

)
over θ . The MLE, minimum chi-squared and minimum modified chi-squared esti-
mators of θ are asymptotically efficient, Cox and Hinkley (1974, p.306). The chi-
square values can be considered as goodness of fit indices which also provide the
basis for statistical tests. The χ2 statistic is asymptotically distributed as a chi-square
with degrees of freedom equal to the one less than the difference between the num-
ber of groups and the number of estimated parameters, Cox and Hinkley (1974,
p.316). The derivation of any of these estimators generally involves the use of nu-
merical optimization algorithms.

Two other goodness of fit indices are the sum of squared errors (SSE) and sum
of absolute errors (SAE), respectively defined by

SSE =
g

∑
i=1

(ni

N
− pi (θ)

)2
and (8.14 a−b)

SAE =
g

∑
i=1

∣∣∣ni

N
− pi (θ)

∣∣∣ .
Minimizing SSE or SAE over θ could be thought of as yielding a least squares or a
least absolute errors estimator; however, these estimators will not be efficient.

Testing nested hypotheses, such as H0: GB2 = Dagum, can be performed using
the likelihood ratio test statistic, defined by

LR = 2
[
�̂− �̂∗

]∼a χ2 (r) , (8.15)

where �̂ and �̂∗ respectively represent the optimized log-likelihood values corre-
sponding to the unconstrained (GB2) and nested (Dagum) models and r (the de-
grees of freedom for the asymptotic chi-square) is the difference in the number of
estimated parameters in the two model specifications. Thus, degrees of freedom of
the chi-square test statistic in testing the equivalence of the GB2 and Dagum distri-
butions would be one. Nested models on the boundary of the parameter space may
compromise the appropriateness of χ2 (r).

2.3 Measures of Inequality

While the cumulative distribution function of income uniquely characterizes distri-
butional characteristics of income, alternative functions can facilitate a comparison
of the relative inequality of two distributions of income. For example, the Lorenz
curve depicts the relationship between the percent of income received by different
percentages of a given population. The Lorenz curve can be formally defined by

L(p) = µ−1
∫ p

0
F−1 (t)dt 0 ≤ p ≤ 1 (8.16)
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where L(p) denotes the fraction of total income that holders of the lowest pth frac-
tion of income possess and µ is the mean income, Gastwirth (1971). In comparing
two populations using Lorenz curves, population 2 is said to be more egalitarian than
population 1 if L1 (p) ≤ L2 (p) for all p, 0 < p < 1. Sarabia et al. (2002) consider
Lorenz orderings for distributions in the GB2 family.

Numerous scalar measures of inequality have been considered in the literature,
including the coefficient of variation (CV ), the Pietra index (P), the standard devi-
ation of logarithms (H), Theil’s entropy measure (T ), and the Gini coefficient (G).
In this paper we will consider the use of numerical and analytic methods to evaluate
G, P, and T defined by

G =
(

1
2µ

)
E (|Y −X |) =

(
1

2µ

)∫ ∞

0

∫ ∞

0
|x− y| f (x) f (y)dxdy (8.17 a− c)

= 1−
∫ ∞

0 (1−F (y))2 dy∫ ∞
0 (1−F (y))dy

(Dorfman, 1979)

P =
(

1
2µ

)
E (|Y −µ|) =

(
1

2µ

)∫ ∞

0
|y−µ| f (y)dy

T = E
(

ln
(
(Y/µ)Y/µ

))
=

∫ ∞

0

(
y
µ

)
ln
(

y
µ

)
f (y)dy.

The Gini Coefficient can be interpreted as twice the area of concentration be-
tween the Lorenz curve and the 45 degree line of perfect equality and the Pietra
Index is twice the area of the largest triangle which can be inscribed in the area
of concentration; thus, P ≤ G. Each of the income inequality measures can be ex-
pressed in terms of the underlying distributional parameters (θ ). Alternative mea-
sures of inequality are frequently compared on the basis of such characteristics as
their sensitivity to changes in units of measurement or to the impact of income trans-
fers from one group to another. For example, the Pigou-Dalton Principle states that
an income transfer from a richer person to a poorer person always reduces inequal-
ity and is satisfied by the Gini and Theil Coefficients, but not by the Pietra Index
which is invariant to income transfers on the same side of the mean. The known
equations expressing G in terms of the distributional parameters (θ ) are taken from
Dagum (1977) and McDonald (1984) and are summarized in Dastrup et al. (2007).
Some similar results for the Pietra and Theil indices are summarized in McDonald
(1981) for the Pareto, lognormal, gamma, beta, and Singh-Maddala distributions.
This paper provides equations for the Pietra and Theil derived from the GG, GB1
and GB2 distributions; hence, for all of their special cases.
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3 Evaluation of the Gini, Pietra, and Theil Measures

Given the results reported in this paper, analytic expressions for G, P, and T corre-
sponding to the GB1 or GB2 or any of their special cases such as shown in figure 8.1
can be readily obtained from the LN, GG, GB1 or GB2 results. Similar results for
the GB have not been derived, but numerical estimates can be obtained using nu-
merical integration.

3.1 Analytic expressions for G, P, and T

Expressions for the Gini coefficient corresponding to the LN, GG, GB1 and GB2
were derived and/or reported in McDonald (1984) and can be written as

GLN = 2 N
[
σ/

√
2;0,1

]
−1 (8.18 a−d)

GGG =
1

22p+1/aB(p, p+1/a)
×{(

1
p

)
2F1

[
1, 2p+1/a; 1

2
p+1;

]
−

(
1

p+1/a

)
2F1

[
1, 2p+1/a ; 1

2
p+1/a+1;

]}

GGB1 =
B(2p+1/a,q)

B(p,q)B(p+1/a,q) p(ap+1)
×

4F3

[
2p+1/a, p, p+1/a, 1−q;1

2p+q+1/a, p+1, p+1/a+1;

]

GGB2 =
B(2q−1/a,2p+1/a)

B(p,q)B(p+1/a,q−1/a)
×{(

1
p

)
3F2

[
1, p+q, 2p+1/a;1

p+1, 2(p+q) ;

]
−

(
1

p+1/a

)
3F2

[
1, p+q, 2p+1/a;1
p+1/a+1, 2(p+q) ;

]}

where N [x;0,1] = .5 + xe−x2/2√
2π 1F1

[
1; x2/2

3
2 ;

]
denotes the cdf for a standard nor-

mal evaluated at x, pFq

[
a1 ... ap; x
b1 ... bq;

]
= ∑∞

i=0
(a1)i...(ap)ix

i

(b1)i...(bq)ii!
represents the general-

ized hypergeometric series with (a)i = (a)(a+1) · · · (a+ i−1) = Γ (a + i)/Γ (a),
and Γ (x) denotes the gamma function, Rainville (1960). The hypergeometric se-
ries in GLN , GGG , GGB1, and GGB2 involve approximating infinite series and can
present computational problems.
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Derivations for the Pietra indices are outlined in Appendix I and can be shown to be

PLN = 2 N [σ/2; 0,1]−1 (8.19 a−d)

PGG =
e−

(
µ
β

)a (
µ
β

)ap

Γ (p)
×

{
1
p 1F1

[
1 ;

(
µ
β

)a

p+1;

]
−

(
1

p+1/a

)
1F1

[
1 ;

(
µ
β

)a

p+1/a+1;

]}

PGB1 =

( µ
b

)ap

B(p,q)
×

{
1
p 2F1

[
p, 1−q;

( µ
b

)a

p+1;

]
−

(
1

p+1/a,

)
2F1

[
p+1/a, 1−q;

( µ
b

)a

p+1/a+1;

]}

PGB2 =
(

zap

B(p,q)

)
×

{(
1
p

)
2F1

[
p, 1−q; z

p+1;

]
−
(

1
p+1/a

)
2F1

[
p+1/a, 1+1/a−q; z

p+1/a+1;

]}
,

where z =
(

(µ/b)a

1+(µ/b)a

)
and µ denotes the respective means for the GG, GB1 and

GB2.
The equations for the Theil indices, derived in the Appendix II, can be written as

TLN =
σ2

2
(8.20 a−d)

TGG =
1
a

ψ (p+1/a)+ �n(β/µ)

TGB1 =
(

1
a

)
[ψ (p+1/a)−ψ (p+q+1/a)]+ �n(b/µ)

TGB2 =
(

1
a

)
[ψ (p+1/a)−ψ (q−1/a)]+ �n(b/µ)

where ψ (x) denotes the digamma function which can be defined in terms of the
gamma function as ψ (x) = d�nΓ (x)

dx .
The Theil, Pietra, and Gini indices potentially involve infinite series as does the

digamma function. In these cases there are potential computational problems in-
volved in evaluating the corresponding results. An alternative approach is to use
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numerical integration routines to evaluate the integrals (8.17 a− c) associated with
the expectations defining the inequality index .

The LN, GG, GB1, and GB2 results given above can be used to obtain results
for their special cases. For example, we note from figure 8.1 that letting q = 1 in the
GB2 yields the Dagum distribution; hence, substituting q=1 into the GB2 equations
((8.18 d), (8.19 d), and (8.20 d)) for G, P, and T and simplifying yields the Dagum
results:

GDagum =
B(p, p)

B(p, p+1/a)
−1 (8.21 a− c)

PDagum = (zap)
{

1 −
(

p
p+1/a

)
2F1

[
p+1/a, 1/a; z

p+1/a+1;

]}

TDagum =
(

1
a

)
[ψ (p+1/a)−ψ (1−1/a)]+ �n(b/µ) .

3.2 Estimation of inequality measures

Income data are either reported with individual observations or in a grouped format.
For samples with individual observations there are two approaches to estimating
measures of income inequality. The first might be thought of as being nonpara-
metric with the inequality measures being estimated as natural extensions of their
definitions:

Ĝ =
(

1
2Ȳ

)
∑
i, j

∣∣yi − y j
∣∣( 1

N2

)
(8.22 a− c)

P̂ =
(

1
2Ȳ

)
∑

i
|yi − Ȳ |

(
1
N

)

T̂ =
N

∑
i=1

(yi

Ȳ
ln
(yi

Ȳ

))(
1
N

)
.

The second approach is parametric and involves estimating the distributional pa-
rameters

(
θ̃
)
and then substituting these estimates into the equations (8.18 a− d),

(8.19 a−d), and (8.20 a−d) to yield:

G̃d = Gd
(
θ̃
)

(8.23 a− c)

P̃d = Pd
(
θ̃
)

T̃d = Td
(
θ̃
)
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where d denotes the distributional type, e.g., for d = Dagum

GDagum =
B(p̂, p̂)

B(p̂, p̂+1/â)
−1.

For data in a grouped format, the same two approaches (nonparametric and para-
metric) are available with the yi in the “nonparametric” estimating equations for
G, P, or T usually being interpreted as the group mean or group midpoint. Both
of these interpretations neglect intra-group variation, with the midpoint approach
also ignoring problems where the last income interval is of the form [Yg−1, ∞).
McDonald and Ransom (1979a,b) explore a few of these issues and find that es-
timates of population characteristics depend on the assumed functional form and
estimation technique with estimators allowing for intra-group variation performing
better than those which do not.

4 Application

In order to illustrate the concepts in the previous sections we will fit the distribu-
tions discussed to a sample of U.S. Family income for the year 2000. The data used
consist of 1,010,418 positive observations. The corresponding nonparametric esti-
mates of G, P, and T , based on individual observations (equations (8.22 a− c)),
are 0.4624, .3298, and .3867. In the example below, for computational tractability,
we have grouped the individual observations into 50 equal probability bins. These
groupings are reported in Appendix III. The grouped methods outlined in Section
2.2 are used to estimate the unknown distribution parameters. Simplex search al-
gorithms in Matlab were used to maximize the log-likelihood function (equation
(8.12 b)) with a convergence criterion of 10 (-7). The estimated parameters and
standard errors19, along with four goodness of fit measures, for the Weibull, log-
normal, gamma, generalized gamma, Dagum, Singh-Maddala, GB1, GB2, and GB
distributions are reported in Table 8.1.

Based on the SAE and SSE, the gamma is the best fitting two-parameter distri-
bution; however, the LN has a smaller chi-square value. While the log-likelihood
value does not facilitate a likelihood ratio test for non-nested models, model se-
lection criteria such as Akaike’s Information Criterion (AIC= −�

(
θ̂
)

+ r) will se-
lect, when comparing models with the same number of parameters (r), the model
with the maximum likelihood value. Introducing a third parameter produces sta-
tistically significant improvements when comparing the generalized gamma with
either of its special cases (Weibull or gamma) or limiting cases (lognormal) using
a likelihood ratio test. However, two other three parameter distributions (Dagum
and Singh-Maddala) appear to yield a better fit to the data than does the general-
ized gamma with the Dagum being the best three –parameter distribution of those

19 The standard errors are obtained from the square root of the Hessian matrix obtained after the
Simplex optimizations are completed.
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considered. The generalized gamma appears to be observationally equivalent to the
four-parameter GB1 whether compared using the SAE, SSE, Chi square, or log-
likelihood values20. The five-parameter GB is observationally equivalent to the four-
parameter GB2 which gives a statistically significant improvement relative to any of
its special cases (Singh-Maddala, Dagum, generalized gamma, gamma, lognormal,
or Weibull).

Table 8.2: Income Inequality Indices – Family Income Data year 2000

Gini Coefficient Pietra Index Theil Index
Distribution analytic numeric analytic numeric analytic numeric
2-parameter distributions
Weibull 0.4441 0.4441 0.3239 0.3239 0.3272 0.3271
Lognormal 0.4955 0.4955 0.3630 0.3630 0.4454 0.4454
Gamma 0.4346 0.4346 0.3162 0.3162 0.3130 0.3130

3-parameter distributions
GG 0.4544 0.4544 0.3310 0.3310 0.3501 0.3501
Dagum 0.4708 0.4708 0.3358 0.3358 0.4284 0.4284
Singh-Maddala 0.4624 0.4624 0.3328 0.3328 0.3872 0.3871

4-parameter distributions
GB1 0.4544 0.4544 0.3311 0.3311 0.3500 0.3500
GB2 0.4682 0.4683 0.3345 0.3345 0.4172 0.4172

5-parameter distribution
GB N/A 0.4683 N/A 0.3345 N/A 0.4172

Table 8.2 reports analytic and numeric estimates of the Gini, Pietra, and Theil
indices corresponding to the estimated distributional parameters

(
θ̃
)

reported in
Table 8.1. The analytic estimates are obtained by substituting θ̃ into equations (8.23
a− c). The numeric estimates are obtained by numerically integrating the “expec-
tational” definitions of G, P, and T (equations (8.17 a− c)) corresponding to the
estimated pdf’s and cdf’s. The standard Matlab package includes the gamma, beta,
and psi functions and can evaluate the Gini coefficients for all distributions except
for the generalized gamma, GB1, GB2, and GB. Theil indices can be estimated for
all distributions with the psi function and a knowledge of parameter estimates. In-
dices using various forms of the hypergeometric series require the Symbolic Math
Toolbox in Matlab or programming the necessary functions into the basic Matlab
package. An alternative approach to evaluating inequality indices when the required
functions are not available is to use numerical integration. The Dorfman form for
the Gini coefficient was used for numerical evaluations using the Matlab adaptive
Simpson quadrature integration algorithm. The same integration algorithm was used
to estimate the Pietra and Theil indices.

20 While the numerical value of the log-likelihood value for the GG dominates that for the GB1,
the two fitted distributions are observationally equivalent.



The Generalized Beta Distribution as a Model for the Distribution of Income 161

An analytic expression for the GB has not been derived; hence, the method of
numerical integration was used to estimate corresponding values for G, P, and T .
Given the remarkably close agreement between the analytic and numeric methods,
when both are available, we feel that this approach is viable in the absence of an-
alytical expressions when there are no numerical problems. One such potential nu-
merical problem is when vertical asymptotes exist such as when ap < 1.

5 Summary and Discussion

There is an extensive literature that examines statistical distributions as models of
the size distribution of income, going back at least to Pareto (1897). Contributions to
this literature have generally taken the form of increasing flexibility by incorporating
additional parameters in the distribution and have included the lognormal, gamma,
Weibull, Dagum, Singh-Maddala, generalized gamma, and generalized beta types 1
and 2 distributions. The generalized beta is a very flexible distribution that includes
as special or limiting cases virtually all previous distributions used as models. In
this paper we have examined some theoretical and practical issues related to the use
of the generalized beta to model the income distribution.

For all of the special and limiting cases, we provide formulas that express popu-
lar measure of income inequality, the Gini, Pietra and Theil indexes, as functions of
the distributional parameters. Although formulas for the Gini index have been pre-
viously derived (McDonald, 1984), we have here added new results for the Pietra
and Theil indexes. Thus, we provide an almost complete catalog of formulas for
the inequality measures as they relate to parameters of the income distribution. The
results are missing only for the generalized beta. For the generalized beta, we sug-
gest a convenient method by which the inequality indexes may be calculated using
numerical integration.

While there are nonparametric methods for estimating inequality indexes, there
may be some advantages to using the approach of first fitting the income distribution
and then using the related formula. First, in many cases data on income distribution
are only available in grouped form. The grouping of data eliminates some informa-
tion about how incomes vary within groups. In such cases, calculation of inequality
indexes requires assumptions about the distribution of income within the groups,
which this approach provides. (See Gastwirth (1972) for some discussion of this
issue.)

Another reason for the parametric approach is to model how the income distribu-
tion changes with changes in exogenous variables. Thus, a researcher might relate
certain parameters of the income distribution to certain exogenous variables, as in
Thurow (1970). For example, one might be interested in studying how the rise of
computerization has influenced income inequality. In this approach, we can see how
such a variable, x, has affected income inequality by examining its effect on the pa-
rameters of the fitted income distribution, and through those parameters, the index
of income inequality:
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εG:x = ∑
i

εG:θiεθi:x

where εG:x denotes the elasticity of G with respect to x , εG:θi denotes the elasticity of
G with respect to the ith distributional parameter , and εθi:x denotes the elasticity of
the ith distributional parameter with respect to x. Hence, equations (8.23 a− c) and
regression analysis can be used to determine the sensitivity of measures of income
inequality with respect to various explanatory variables.

We have also examined some numerical issues related to fitting the distribution
of income or the calculation of indexes of income inequality. In the case of the
generalized beta, the indexes of income inequality as functions of the parameters
of the underlying distribution have not yet been derived. However, it is possible to
calculate the indexes through numerical integration methods, as we show. In other
cases, the Gini index for the GG, the GB1 and the GB2, require the evaluation of
generalized hypergeometric series. Some researches may find it easier to evaluate
the numerical integral forms than to evaluate the generalized hypergeometric series,
although they are available in Symbolic Math Toolbox in Matlab.

We have also provided an example of these techniques using the 1 percent public
use micro sample from the 2000 United States Census.

Appendix I

The Gini and Pietra indices

The Gini and Pietra indices can be defined in terms of the integrals

Id (x,h;θ) =
∫ x

0
yh fd (y;θ)dy

I∗d (i, j;θ) =
∫ ∞

0
xi fd (x;θ)

∫ x

0
y j fd (y;θ)dydx

as follows:

Gd (θ) = E (|y− x|)/2µ = (I∗d (1,0;θ)− I∗d (0,1;θ))/µ

Pd (θ) = E (|y−µ|)/2µ = Id (µ,0;θ)− Id (µ,1;θ)/µ

where d denotes the distribution type and θ and µ , respectively, represent the distri-
butional parameters and the mean.

McDonald (1984) reports the equations expressing the Gini coefficients in terms
of the distributional parameters for the GB1, GB2, GG, B1, B2, Singh-Maddala, LN,
GA, and Weibull distributions. The text of this paper reports the Gini coefficients
for the LN, GG, GB1, and GB2 distributions from which the others can be obtained
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by appropriate substitutions. The G, P, and T indices associated with the lognormal
can be obtained from results found in Aitchison and Brown (1969).

The Pietra indices for the GG, GB1, and GB2 can be obtained from the corre-
sponding expressions for Id (x,h;θ) given in McDonald (1984):

IGG (x,h;θ) =
bhe−(x/b)a

(x/b)ap+h

Γ (p)(p+h/a)
.1F1

[
1; (x/b)a

p+ h
a +1;

]

IGB1 (x,h;θ) =
bh (x/b)ap+h

B(p,q)(p+h/a)
.2F1

[
p+ h

a , 1 − q; (x/b)a

p+ h
a +1;

]

IGB2 (x,h;θ) =
bh (z)ap+h

B(p,q)(p+h/a)
.2F1

[
p+ h

a , 1+ h
a− q; z

p+ h
a +1;

]
where z = (x/b)a

1+(x/b)a .

Appendix II

The Theil index

The Theil Index, defined by

Td (θ) = E
[(

y
µ

)
�n

(
y
µ

)]
can be written as

T =
(

1
µ

)∫ ∞

0
y�n(y) fd (y;θ)dy− �n(µ) .

For the generalized gamma (d=GG), the Theil index is equal to

TGG =
(

1
µ

)∫ ∞

0
y�n(y)

{
|a|yap−1e−(y/β )

β apΓ (p)

}
dy− �n(µ)

where µ = β Γ (p+1/a)
Γ (p) is the mean of the generalized gamma. Making the change of

variable for s = (y/β )a in TGG and simplifying yields

TGG =
(

β
µΓ (p)

)∫ ∞

0
(�n(β )+(1/a)�n(s))sp+1/a−1e−sds− �n(µ) .

Using the integral representation for a gamma function,
∫ ∞

0 sh−1e−sds = Γ (h),
and

∫ ∞
0 �n(s)sh−1e−sds = Γ (h)ψ (h), we can write
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TGG =
(

1
a

)
ψ (p+1/a)+ �n(β/µ) .

The derivations for TGB1 and TGB2 follow the same format as for TGG except that the
final step in the derivation uses the integral definition of the beta function B(h,q) =∫ 1

0 sh−1 (1− s)q−1 ds and the two integrals∫ 1

0
�n(s)sh−1 (1− s)q−1 ds = B(h,q) [ψ (h)−ψ (h+q)]

∫ ∞

0

(
�n(s)sh−1

(1+ s)h+q

)
ds = B(h,q) [ψ (h)−ψ (q)] ,

respectively.

Appendix III

The data

The 2000 Family Income data comes from the Integrated Public Use Microdata
Series (IPUMS) from US Census Bureau (http://usa.ipums.org/usa/). The family
income data includes negative, zero, and positive incomes. The example reported
in this paper used the 1,010,418 positive observations. The total data set included
1,054,797 observations; hence, 44,379 non-positive observations (4%) were omitted
in the estimation.

The upper bounds on the 50 bins are listed below.
3,600 6,000 7,390 9,000 10,200
11,800 13,000 14,600 16,000 17,500
19,000 20,030 21,760 23,100 24,600
26,000 27,400 29,000 30,020 31,900
33,300 35,000 36,500 38,200 40,000
41,600 43,400 45,200 47,300 49,500
51,100 53,420 55,900 58,220 60,700
63,500 66,400 70,000 73,000 77,000
81,000 86,000 92,000 99,100 107,200
119,300 135,820 160,300 238,300 greater than 238,300
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CHAPTER 9

Parametric Lorenz Curves:
Models and Applications

José Marı́a Sarabia†

Abstract

The Lorenz curve (LC) is an important instrument for analyzing the size of distribu-
tion of income or wealth and inequality. Finding an appropriate functional form is
an important practical and theoretical problem. In this chapter we study parametric
models for the LC and some important applications.

The basic properties that a function should satisfy in order to be a genuine LC
are discussed. Next, we study the different ways for generating parametric families
of LCs, as well as some of their basic properties, including their relationship with
the underlying income distribution function. The basic parametric models proposed
in the literature are studied, including the Pareto, lognormal and other important
families of LCs.

Some general strategies to obtain extensions and generalizations of the basic
parametric models are presented. One of the main applications of LCs is the study
of inequality. We begin studying different measures of inequality together with their
expressions in terms of the LC. These measures include the Gini index and some
of their generalizations proposed by Kakwani (1980) and Yitzhaki (1983). Their
corresponding expressions for the proposed parametric families of LCs will be ob-
tained. The Lorenz ordering is also studied. The Lorenz ordering is a partial or-
der that allows the comparison of two distributions when its corresponding LCs do
not intersect. Some basic properties of this order are studied, including the effect
of transformations, its relations with other partial orderings and their application
to important parametric income distributions. The recent proposal of multivariate
versions of the LC are studied. Finally, some applications of the Lorenz curve are
presented.

† Department of Economics, University of Cantabria, Avda de los Castros s/n, 39005 Santander,
Spain. E-mail: sarabiaj@unican.es
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1 Introduction

The merits of parametric methods as opposed to non-parametric methods for the
construction of indices and inequality measures for income distributions have been
pointed out by Slottje (1990) and Ryu and Slottje (1996, 1999). These authors con-
clude, among other things, that the indices should be constructed using the para-
metric method and then the results checked using a non-parametric method. In this
regard, the Lorenz curve (LC) is an essential instrument for analyzing the size dis-
tribution of income, wealth and inequality and the problem of finding an appropriate
functional form is both an important practical and theoretical problem.

Some recent advances have contributed to the current development of this re-
search instrument. New ways to specify the Lorenz curve have been developed and
studied (see Section 4). On the other hand, the Lorenz ordering has been charac-
terized in important families of income distributions (see Kleiber and Kotz (2003)
and Section 6). The interest in and development of multivariate inequality measures
as well as the multivariate versions of the Lorenz curve (see Section 8) have led to
an increase in the amount of research devoted to this area. In this chapter we study
parametric models for the LC and some important applications.

The contents of this chapter are as follows. In Section 2 we study basic proper-
ties of the LC, including their relationship with the underlying income distribution
function. Section 3 reviews the LC of some important income models, including
the following distributions: classical Pareto, lognormal, Singh-Maddala and Dagum
type I. There exists a variety of approaches for the construction of parametric fam-
ilies of LC’s. In Section 4 we study the different ways of generating parametric
families of LC and some general strategies to obtain extensions and generalizations
of the basic parametric models. One of the main applications of the LC’s is the study
of inequality. Inequality indices derived from the Lorenz curve and other classical
inequality measures are studied in Section 5. The Lorenz ordering is a partial order
that allows us to compare two distributions when their corresponding LC’s do not
intersect. Properties of this order, and their application to important parametric in-
come distributions are studied in Section 6. Section 7 presents some variations of the
LC. The recent proposal of multivariate versions of the LC are studied in Section 8.
Finally, some applications of the Lorenz curve are presented in Section 9.

2 The Lorenz Curve. Basic Properties

The Lorenz curve is defined by points (p,L(p)), where p represents the cumula-
tive proportion of income-receiving units, and L(p) the cumulative proportion of
incomes, when the incomes are arranged in ascending order of magnitude.

In the empirical case, if we denote the ordered individual incomes in the popula-
tion by x1:n ≤ x2:n ≤ ·· · ≤ xn:n, then for i = 1,2, . . . ,n
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L(
i
n
) =

∑i
j=1 x j:n

∑n
j=1 x j:n

. (9.1)

The points ( i
n ,L( i

n )) are then linearly interpolated to complete the corresponding
Lorenz curve.

Now, our next step is to extend (9.1) to the continuous case. If n is large the
distribution of incomes within the population can be approximated by a continuous
distribution function F(x), with density f (x) related by F(x) =

∫ x
0 f (y)dy. The inter-

pretation here is similar to the previous one: for each positive x, F(x) represents or
approximates the proportion of individuals in the population whose income is less
than or equal to x. Now, we consider the k-moment distribution of the population
F(k)(x) defined by

F(k)(x) =
∫ x

0 ykdF(y)∫ ∞
0 ydF(y)

, k = 1,2, . . . (9.2)

where the denominator is assumed to be finite. If we set k = 1 in (9.2), then for each
x, F(1)(x) represents the proportion of the total incomes which accrues to individ-
uals with incomes less than or equal to x. The Lorenz curve corresponding to the
distribution F can be described as the set of points,

(F(x),F(1)(x)) (9.3)

defined in the unit square, where x ranges from 0 to ∞ completed if necessary by
linear interpolation.

An expression for the Lorenz curve can be constructed using the parametric rep-
resentation (9.3). We may write

L(p) = F(1)(F
−1(p)). (9.4)

To use formula (9.4) we obviously need closed form expressions for F(1) and F−1.
Let L be the class of all non-negative random variables with positive finite ex-

pectations. For a random variable X in L with cumulative distribution function FX
we define its inverse distribution function by

F−1
X (y) = inf{x : FX (x) ≥ y} (9.5)

Note that the mathematical expectation of X is µX =
∫ 1

0 F−1
X (y)dy. According to

Gastwirth (1971) we have the following definition.

Definition 9.1. Let X ∈ L with cumulative distribution function FX and inverse
distribution function F−1

X . The Lorenz curve LX corresponding to X is defined by

LX (p) =
1

µX

∫ p

0
F−1

X (y)dy, 0 ≤ p ≤ 1. (9.6)
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This definition contains the definition provided by (9.1) in the case of a finite popu-
lation and (9.2) in the continuous case. In formula (9.6) F−1

X is piecewise continuous
and the integrals can be assumed to be ordinary Riemann integrals.

From definition (9.6) we can show that a Lorenz curve will be a continuous, non-
decreasing convex function that is differentiable almost everywhere in [0,1] and
L(0) = 0 and L(1) = 1. These are properties that we expect to characterize an LC.
A formal characterization of a Lorenz curve attributed to Gaffney and Anstin by
Pakes (1981) is the following.

Theorem 9.1. Suppose L(p) is defined and continuous on [0,1] with second deriva-
tive L′′(p). The function L(p) is a Lorenz curve if and only if

L(0) = 0, L(1) = 1, L′(0+) ≥ 0, L′′(p) ≥ 0 in (0,1). (9.7)

The Lorenz curve determines the distribution of X up to a scale factor transfor-
mation. This is true since F−1

X (x) = µX L′(x) almost everywhere and F−1
X will de-

termine FX . Concerning the probability density function fX (x) associated with a
Lorenz curve L(p), we have the following result (Arnold, 1987).

Theorem 9.2. If L′′(p) exists and is positive everywhere in an interval (x1,x2), then
FX has a finite positive density in the interval (µL′(x+

1 ),µL′(x−2 )) which is given by

fX (x) =
1

µL′′(FX (x))
. (9.8)

As an illustration of these results, we consider Chotikapanich’s LC defined in (9.28).
The cumulative distribution function corresponding to this LC model is

F(x;k,µ) =
1
k

log
(

x
ckµ

)
, ckµ ≤ x ≤ ckµek,

where ck = k/(ek −1) and F(x;k,µ) = 0 if x ≤ ckµ and F(x;k,µ) = 1 if x ≥ ckµek.
Note that the cdf depends on k and a new scale parameter µ which represent the
population mean.

From a geometric viewpoint it is natural to enquire whether an LC exhibits sym-
metry. A Lorenz curve is symmetric if

L[1−L(p)] = 1− p, 0 ≤ p ≤ 1. (9.9)

If a random variable X has mean µ and density fX (x), its LC is symmetric if and
only if

fX (µ2/x)
fX (x)

=
(

x
µ

)3

,

for every x with fX (x) > 0.
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3 Lorenz Curves of Some Classical Income Distributions

In this section we review the LC corresponding to some important models of in-
come distributions. We begin with models corresponding to income distributions
with closed expressions for the inverse cdf which can be integrated so that and then
Gastwirth’s formula can be used. The first example corresponds to the classical
Pareto distribution (see Arnold (1983)) with cumulative distribution function

FX (x) = 1−
( x

σ

)−α
, x ≥ σ (9.10)

where σ > 0 is a scale parameter and α > 0 a shape parameter. For the Pareto
distribution the quantile function is,

F−1
X (y) = σ(1− y)−1/α , 0 < y < 1

and the mean µX = ασ/(α −1) if α > 1. Using (9.6) we obtain

LX (p) =
α −1
ασ

∫ p

0
σ(1− y)−1/α dy = 1− (1− p)1−1/α , 0 < p < 1 (9.11)

provided α > 1.
The Singh-Maddala distribution is one of the most popular distributions used in

practice to fit income and wealth data (Kleiber and Kotz, 2003). This distribution
was obtained by Singh and Maddala (1976) by considering the hazard rate of in-
come. Let X be a random variable with Singh-Maddala distribution with cdf,

FX (x) = 1− 1
[1+(x/σ)a]q

, x > 0 (9.12)

where a,q,σ > 0. Definition (9.12) corresponds to the Pareto IV distribution, in the
Arnold (1983) Pareto hierarchy. If q > 1/a then using expression (9.6) the Lorenz
curve of (9.12) is,

LX (p) =
1

µX

∫ p

0
σ [(1− y)−1/q −1]1/ady

=
σq
µX

∫ z

0
t1/a(1− t)q−1/a−1dt

= Iz(1+1/a,q−1/a), 0 ≤ p ≤ 1

where z = 1− (1− p)1/q and Ix(a,b) denotes the incomplete beta function ratio
defined as (0 < x < 1)

Ix(a,b) =
∫ x

0 ta−1(1− t)b−1dt∫ 1
0 ta−1(1− t)b−1dt

. (9.13)
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Another important income distribution is the Dagum type I distribution (Dagum,
1977) with cdf

F(x) = [1+(x/σ)−a]−q, x > 0 (9.14)

where a,q,σ > 0. This distribution is related with the Singh-Maddala distribution
by the inverse transformation 1/X . Since the quantile function is available in closed
form, the LC can be written as (Dagum, 1977),

L(p) = Iz(q+1/a,1−1/a), 0 ≤ p ≤ 1 (9.15)

where z = p1/q, a > 1 and Ix(a,b) is defined in (9.13). The Gini index is given by,

G =
Γ (q)Γ (2q+1/a)
Γ (2q)Γ (q+1/a)

−1.

Another group of income distributions corresponds to families where all of the
kth moment distributions and the original distribution belong to the same family so
that formulas (9.3) or (9.4) can be applied. Consider a lognormal distribution, for
which the cumulative distribution function is given by

F(x) = Φ(
logx−µ

σ
), x > 0 (9.16)

where Φ denotes the cdf of the standard normal distribution. This distribution will
be denoted by X ∼ L N (µ,σ2). The inverse of the cdf is F−1(x) = exp[µ +
σΦ−1(x)] and the cdf of the kth moment distributions is again lognormal and is
given by Aitchison and Brown (1957),

X(k) ∼ L N (µ + kσ2,σ2), k = 1,2, . . . (9.17)

In particular X(1) ∼ L N (µ + σ2,σ2). Now, by introducing F−1 and F(1)(x) in
formula (9.4) we obtain the LC corresponding to the lognormal distribution which
is given by

L(p) = Φ(Φ−1(p)−σ), 0 < p < 1. (9.18)

The gamma distribution is another popular distribution used in analysis of income
and wealth data. The pdf of a gamma distribution is

f (x) =
xα−1e−x/σ

σαΓ (α)
, x > 0 (9.19)

where σ > 0 is a scale and α > 0 a shape parameter. A random variable with
pdf (9.19) will be denoted as X ∼ G (α,σ). The gamma distribution includes as
particular cases the exponential (α = 1) and the chi-square distribution (α = n/2,
n = 1,2, . . . ). The cdf of the gamma distribution can be written as

F(x) =
γ(α,x/σ)

Γ (α)
, x > 0 (9.20)
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where γ(a,x) denotes the incomplete gamma function defined as,

γ(a,x) =
∫ x

0
ta−1e−tdt (9.21)

with a,x > 0. The kth moment distribution is distributed again as a gamma distri-
bution, that is, X(k) ∼ G (α + k,σ) and thus the Lorenz curve can be expressed in a
parametric fashion using (9.3) and (9.20). We thus have that

(p,L(p)) = (
γ(α,x/σ)

Γ (α)
,

γ(α +1,x/σ)
Γ (α +1)

), x > 0. (9.22)

Sarabia and Castillo (2005) have obtained expressions for the LC and the Gini index
for a general class of max-stable income distributions.

In order to complete this section we include the LC corresponding to a discrete
random variable. Let X be a geometric distribution with probability mass function
Pr(X = k) = pqk−1, k = 1,2, . . . with 0 < p < 1 and q = 1− p. Using formula (9.6),
the LC is (Gastwirth, 1971)

L(u) = 1− kqk−1 +(k−1)qk + kp[u− (1−qk−1)],

if 1−qk−1 ≤ u ≤ 1−qk, k = 1,2, . . . The Gini index is given by (Dorfman, 1979):
G = (1− p)/(2− p).

Table 9.1 summarized the Lorenz curves and the Gini index of some important
income distributions.

Table 9.1: Lorenz curves and Gini indices of Classical Income Distributions.

Distribution Lorenz Curve Gini Index

Uniform U [a,b] L(p) = 2ap+(b−a)p2

a+b G = b−a
3(a+b)

Exponential1 L(p) = p+(1+ µ
σ )−1(1− p) log(1− p) G = σ

2(µ+σ)

Classical Pareto L(p) = 1− (1− p)1−1/α G = 1
2α−1

Singh-Maddala L(p) = Iz(1+1/a,q−1/a) G = 1− Γ (q)Γ (2q−1/a)
Γ (q−1/a)Γ (2q)

where z = 1− (1− p)1/q

Dagum L(p) = Iz(q+1/a,1−1/a) G = Γ (q)Γ (2q+1/a)
Γ (2q)Γ (q+1/a) −1

where z = p1/q

Lognormal L(p) = Φ(Φ−1(p)−σ) G = 2Φ( σ√
2
)−1

Classical Gamma (p,L(p)) = ( γ(α,x/σ)
Γ (α) , γ(α+1,x/σ)

Γ (α+1) ) G = Γ (α+1/2)√
πΓ (α+1)

1Exponential distribution with cdf F(x) = 1− e−(x−µ)/σ if x > µ , with µ,σ > 0.
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4 Models of Parametric Lorenz Curves

There exists a variety of approaches for the construction of parametric families of
LC’s. The first obvious approach consists of starting from an appropriate parametric
family of income distribution functions and obtaining the corresponding LC by ana-
lytically using representations (9.4) or (9.6), as we have seen in the previous Section.
A second approach consists of selecting parametric families of simple curves satis-
fying the required conditions for Lorenz curves given in Theorem 9.1. This method
usually leads to complicated distribution functions, but may be flexible enough for
fitting empirical Lorenz curves.

Several parametric models have been proposed in using the second approach.
The pioneer model was established by Kakwani and Podder (1973), who proposed
the functional form,

L(p) = pα e−β (1−p), 0 ≤ p ≤ 1, (9.23)

with β > 0 and α ≥ 1 (see also Rao and Tam (1987)). An alternative parameter-
ization of this model was provided by Gupta (1984). Kakwani and Podder (1976)
also proposed a new parametric model based on a geometric motivation. This model
expresses a point of the LC as (x,y), where y is the length of the ordinate from LC
on the egalitarian line and x is the distance of the ordinate from the origin along the
egalitarian line. This model was completed by Rasche et al. (1980) who proposed
the family of curves

L(p) = [1− (1− p)α ]β , 0 ≤ p ≤ 1 (9.24)

where 0 < α ≤ 1 and β ≥ 1. If β = 1 we obtain the LC (9.11) corresponding to the
classical Pareto distribution, and if α = 1/β a symmetric LC is obtained according
to definition (9.9).

Using several well-known sets of data Villaseñor and Arnold (1989) observed
that segments of ellipses frequently fit data surprisingly well. The class of elliptical
LC is given by

L(p;α,β ,δ ) =
1
2

[
(a−β p)−

√
a2 +bp+ cp2

]
(9.25)

where a = α +β +δ +1 > 0, b = −2aβ −4δ , c = β 2 −4α , α +δ ≤ 1, and δ ≥ 0.
Equation (9.25) implies that any point (pi,qi) must satisfy yi = αxi + β zi + δwi,
i = 1,2, . . . ,n, where yi = qi(1−qi), xi = p2

i −qi, zi = qi(pi −1), and wi = pi −qi.
This is a linear function of α , β and δ and the least square estimation method can be
applied. Using this fact, robust estimation methods have been proposed by Castillo
et al. (1998). This functional form provides excellent fit and the associated distri-
bution and density functions are available in closed form. In a similar geometric
context and from a proposal by Aggarwal (1984) and Aggarwal and Singh (1984),
Arnold (1986) considered a hyperbolic functional form for the LC given by
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L(p;α,β ) =
p[1+(α −1)p]

1+(α −1)+β (1− p)
, 0 ≤ p ≤ 1 (9.26)

where α,β > 0 and α −β < 1. Models (9.25) and (9.26) can be considered to be
within the class of general quadratic Lorenz curves (Villaseñor and Arnold, 1989).
The circular LC was considered by Ogwang and Rao (1996).

Arnold et al. (1987) proposed a class of LC of the form,

L(p;σ) = F(F−1(p)−σ), σ ≥ 0, (9.27)

where F(·) is any strongly unimodal cdf. For instance, if F = Φ , we obtain the LC
(9.18), corresponding to a classical lognormal distribution.

Chotikapanich (1993) proposed the uniparametric model,

L(p;k) =
ekp −1
ek −1

, 0 ≤ p ≤ 1 (9.28)

where k > 0 and where the limit case k → 0 corresponds to the egalitarian line. With
several data sets the model outperforms those of Kakwani and Podder (1976) and
Rasche et al. (1980) in terms of the Gini coefficient estimation but is not as good for
predicting expenditures shares.

Sarabia (1997) considered an alternative method for the construction of LC spec-
ifying an appropriate quantile function, and using it to generate the LC. Using the
generalized Tukey’s Lambda distribution, this author obtained a family of nested
models, which, in the most general case, is

L(p) = π1 p+π2 pα1 +(1−π1 −π2)[1− (1− p)α2 ], 0 ≤ p ≤ 1,

where 0 ≤ π1,π2 ≤ 1, α1 ≥ 1 and 0 < α2 ≤ 1. This model is a mixture of the egali-
tarian line, the power LC and the classical Pareto LC.

Another important model was considered by Basmann et al. (1990), which ex-
tend Kakwani and Podder’s model (9.23). Ryu and Slottje (1996) introduced two
flexible functional form approaches to approximate Lorenz curves, an exponen-
tial polynomial and a Bernstein polynomial expansion. Holm (1993) has based his
model on the principle of maximum entropy and Sarabia and Pascual (2002) on
linear exponential loss functions.

Recent research on the Lorenz curve (Basmann et al., 1990; Ryu and Slottje,
1996; Ogwang and Rao, 2000) has shown that some families of LCs approximate
some segments of the income distributions well but not others segments. In the next
subsection we propose some general strategies to obtain extensions and generaliza-
tions of the basic parametric models.
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4.1 A Hierarchical Family

Recently, Sarabia et al. (1999) have suggested a general method for obtaining a hi-
erarchical family of LC that unifies and synthesizes some of the previous proposals,
as well as providing good fit in the whole the range of the data. If we begin with
any Lorenz curve L0 the following curves are also Lorenz curves that generalize the
initial model L0:

L1(p;α) = pα L0(p), α ≥ 1 or 0 ≤ α < 1 and L′′′
0 (p) ≥ 0, (9.29)

L2(p;γ) = [L0(p)]γ , γ ≥ 1, (9.30)
L3(p;α,γ) = pα [L0(p)]γ , α ≥ 1 or 0 ≤ α < 1 and L′′′

0 (p) ≥ 0, (9.31)

An advantage of this method is that Lorenz ordering results are obtained. Equations
(9.29) and (9.30) are ordered with respect to their parameters α and γ and a combi-
nation of these cases yield ordering results for (9.31).

This method allows for the generation of a hierarchy of Lorenz curves starting
from an initial curve L0. A relevant family is generated from

L0(p) = L0(p;k) = 1− (1− p)k, 0 < k ≤ 1,

which is the LC (9.11) associated to the classical Pareto distribution. Since
L
′′′
0 (p;k) > 0 we can apply results in a general way. We can consider the para-

metric family of Lorenz curves,

L1(p;k,α) = pα [1− (1− p)k], α ≥ 0 (9.32)
L2(p;k,γ) = [1− (1− p)k]γ , γ ≥ 1, (9.33)

L3(p;k,α,γ) = pα [1− (1− p)k]γ , α ≥ 0, γ ≥ 1, (9.34)

which is called the Pareto hierarchy of Lorenz curves, since they originate from
the Pareto distribution. Family (9.32) coincides with the family proposed by Ortega
et al. (1991) and (9.33) with the family proposed by Rasche et al. (1980). A detailed
study of the family (9.34) can be found in Sarabia et al. (1999). The method has been
used to generate other families of Lorenz curves beginning with different choices
for L0. If we begin with the Chotikapanich LC given in (9.28), we obtain a new
family of LC, called the exponential family of LC by Sarabia et al. (2001). This
approach was also used by Sarabia and Pascual (2002). Table 9.2 summarized the
Pareto LC family.

4.2 Mixture Lorenz Curve

A possible solution for obtaining better fit consists in building more complex models
combining some of the classical models using convex linear combinations of LCs.
The proposals of Sarabia (1997) and Ogwang and Rao (2000) respond to this idea.
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Table 9.2: The Pareto Lorenz curve family.

Lorenz Curve Gini Index

L0(p;k) = 1− (1− p)k G = 1−k
1+k

L1(p;k,α) = pα [1− (1− p)k] G = 1−2[B(α +1,1)−B(α +1,k +1))]

L2(p;k,γ) = [1− (1− p)k]γ G = 1− 2
k [B(1/k,γ +1)]

L3(p;k,α,γ) = pα [1− (1− p)k]γ G = 1−2∑∞
i=0

Γ (i−γ)
Γ (i+1)Γ (−γ) B(α +1,ki+1)

In this sense, one of the reasons that can explain the lack of fit in some LC’s is the
existence of some factor of heterogeneity in the population (for example, age, gender
or education), so the LC varies from some individuals to others. If we compose the
initial LC with the heterogeneity (described in terms of a known pdf) we obtain a
new LC called a mixture LC (Sarabia et al., 2005). If L(p;θ) denotes a LC, and we
assume that θ varies according to an absolutely continuous density function π(θ)
with support on a set Θ ⊂ R, the expression

L̃(p) =
∫

Θ
L(p;θ)π(θ)dθ

defines a genuine LC. Several mixture LC models have been proposed by Sarabia
et al. (2005). For example, if a power LC is composed with a gamma distribution,
we obtain the LC,

L(p;α,σ) =
p

(1−σ log p)α .

5 Inequality Measures Derived from the Lorenz Curve

The two best known measures of inequality which are directly related to the Lorenz
curve are the Gini and Pietra indices. Both indices can be viewed as alternative
forms of measuring the distance between the Lorenz curve and the egalitarian line.
The Gini index is defined as twice the area between the egalitarian line and the
Lorenz curve

GX = 2
∫ 1

0
[p−LX (p)]d p = 1−2

∫ 1

0
LX (p)d p. (9.35)

There are several alternative expressions of the Gini index equivalent to (9.35). One
of the most important is
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GX = 1− E(X1:2)
µ

= 1− 1
µ

∫ ∞

0
[1−FX (x)]2dx (9.36)

where X1:2 is the smaller of a sample of size 2 coming from the cdf FX . This expres-
sion is useful when we have a closed form for the cumulative distribution function
(see, for example, Cronin (1979)).

A second important inequality measure is the Pietra index, which is defined as
the maximal vertical deviation between the Lorenz curve and the egalitarian line

PX = max
0≤p≤1

{p−LX (p)} . (9.37)

If we assume that F is strictly increasing on its support, the function p− LX (p)
will be differentiable everywhere on (0,1) and its maximum will be reached when
1−F−1(x)/µ is zero, that is, when x = F(µ). The value of p−LX (p) in this point
is given by

PX = F(µ)− 1
µ

∫ F(µ)

0
[µ −F−1(y)]dy =

1
2µ

∫ ∞

0
|z−µ|dF(z),

in consequence

PX =
E|X −µ|

2µ
,

which is an alternative formula for the Pietra index. For the classical Pareto distri-
bution (9.10) the mean is µ = α/(α −1) if α > 1 and F(µ) = 1− (α/(α −1))−α

and thus the Pietra index is

PX = F(µ)−L(F(µ)) =
(α −1)α−1

αα .

There are several generalizations of the Gini index proposed in the literature.
Mehran (1976)considered the general class of linear measures of the form

I(w) =
∫ 1

0
[p−LX (p)]dw(p), (9.38)

where w(p) is some increasing function which allows value judgments about in-
equality to be incorporated. Note that I(w) is always compatible with the Lorenz
order. If we take w(p) = 2p, 0 ≤ p ≤ 1, we obtain the Gini index.

Another important generalization of the Gini index was proposed by Yitzhaki
(1983). This author proposed the generalized Gini index defined as

Gν = 1−ν(ν −1)
∫ 1

0
(1− p)ν−2LX (p)d p, (9.39)

where ν > 1. If ν = 2 we obtain the Gini index. When ν increases, higher weights
are attached to small incomes. The limit case when ν goes to infinity depends on the
lowest income, expressing the judgement introduced by Rawls, that social welfare
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depends only on the poorest society member. On the other hand, it can be proved
that (Muliere and Scarsini, 1989)

Gν = 1− E(X1:ν)
µX

,

which can also be seen as a generalization of (9.36). For the classical Pareto LC
(9.11) Yitzhaki’s index (9.39) is,

Gν =
ν −1

αν −1
, α,ν > 1.

Arnold (1983, p. 109) has proposed next generalization of the Gini index,

G̃n = 1− E(X1:n+1)
E(X1:n)

.

The Gini index corresponds to the case n = 1. The set of all such indices {G̃n : n =
1,2, . . .} determines the parent distribution up to a scale factor.

Another two important inequality measures deserve our attention: the Atkinson
(1970) inequality measures and the generalized entropy indices. The Atkinson in-
equality indices are defined as

A(ε) = 1−
[∫ ∞

0
(x/µ)1−ε dF(x)

]1/(1−ε)

, ε > 0, (9.40)

where ε is a parameter that controls the inequality aversion. The limit cases ε → 1
and ε → ∞ are

A(1) = 1− 1
µ

exp
{∫ ∞

0
log(x)dF(x)

}
,

A(∞) = 1− F−1(0)
µ

.

The generalized entropy indices are

G(θ) =
1

θ(θ −1)

∫ ∞

0

[
(x/µ)θ −1

]
dF(x), θ �= 0,1 (9.41)

and

G(0) =
∫ ∞

0
log(µ/x)dF(x),

G(1) =
∫ ∞

0
(x/µ) log(x/µ)dF(x).

These two latter indices are known as the Theil coefficients. Indices (9.40) and
(9.41) can be written in terms of the LC using the formulas,
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A(ε) = 1−
{∫ 1

0
[L′

X (p)]1−ε d p
}1/(1−ε)

, ε > 0 (9.42)

G(θ) =
1

θ(θ −1)

∫ 1

0

{
[L′

X (p)]θ −1
}

d p, θ �= 0,1 (9.43)

These formulas allow these indices to be obtained directly from the Lorenz curve
without the necessity of knowing the underlying cumulative distribution function.
For the classical Pareto distribution with LC (9.11), using (9.43) the generalized
entropy index is given by (θ �= 0,1),

G(θ) =
1

θ(θ −1)

[(
1− 1

α

)θ α
α −θ

−1

]

where α > max{1,θ}.

6 Lorenz Order

In this section we study the Lorenz ordering and its applications to the most im-
portant income distributions, including the members of the family proposed by
McDonald (1984). Lorenz curves can be used to define an ordering in the space
of the L distributions. If two distribution functions have associated Lorenz curves
which do not intersect, they can be ordered without ambiguity in terms of wel-
fare functions which are symmetric, increasing and quasiconcave (Atkinson, 1970);
(Dasgupta et al., 1973; Shorrocks, 1983).

Definition 9.2. Let X and Y be random variables belonging to L class. The Lorenz
order ≤L on L is defined by,

X ≤L Y ⇐⇒ LX (p) ≥ LY (p), ∀p ∈ [0,1]. (9.44)

If X ≤L Y , then X exhibits less inequality than Y in the Lorenz sense. Note that the
Lorenz order is a partial order and is invariant with respect to scale transformation.
We present two relevant examples of the Lorenz order:

• Let Xi ∼ Pa(αi,σi), i = 1,2 be Pareto distributions with cdf (9.10). Then:

X1 ≤L X2 ⇐⇒ α1 ≥ α2.

• Let Xi ∼L N (µi,σi), i = 1,2 be lognormal distributions with cdf (9.16). Then:

X1 ≤L X2 ⇐⇒ σ1 ≤ σ2.

The proof of these results is direct by checking the Lorenz curve. Other stronger
definitions of stochastic orderings are useful in this context. Let X and Y be random
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variables in L with distribution functions FX and FY . Star-shaped ordering is de-
fined as follows (Arnold, 1987).

Definition 9.3. We say that X is star-shaped with respect to Y , and we write X ≤∗ Y
if F−1

X (x)/F−1
Y (x) is a non-increasing function of x.

This definition is specially useful when the quantile function is available in a closed
form. The star-shaped ordering implies the Lorenz ordering.

Theorem 9.3. Suppose that X ,Y ∈ L . If X ≤∗ Y , then X ≤L Y .

The proof of this result is as follows. Without loss of generality we may assume that
E(X) = E(Y ) = 1, since both orders are scale invariant. Then,

LX (p)−LY (p) =
∫ p

0
[F−1

X (y)−F−1
Y (y)]dy.

Now, since F−1
X (y)/F−1

Y (y) is a non-increasing function, the integrand is first posi-
tive and then negative as y ranges from 0 to 1. In consequence the integral assumes
its smallest value when p = 1. Thus, LX (p)−LY (p) ≥ LX (1)−LY (1) = 1−1 = 0,
and X ≤L Y .

This result was used by Wilfling (1996) for proving the Lorenz ordering in the
Singh-Maddala family (see below).

The next theorem established by Fellman (1976), examines the Lorenz order
between a random variable X and a transformation g(X).

Theorem 9.4. Let f : R+ → R+ be a continuous function satisfying

1. g(x) > 0 for all x > 0,
2. g(x) is non-decreasing on [0,∞) and g(x)/x is non-decreasing on (0,∞).

If g(X) ∈ L then g(X) ≤L X.

Let us now focus our attention on three important income distributions proposed
in the literature. The generalized gamma (GG) and generalized beta of the first and
second kind (GB1 and GB2) (see McDonald (1984)) are defined in terms of their
probability density functions (a, p,q,σ > 0):

fGG(x;a, p,σ) =
axap−1e−(x/σ)a

σapΓ (p)
, x ≥ 0, (9.45)

fGB1(x;a, p,q,σ) =
axap−1[1− (x/σ)a]q−1

σapB(p,q)
, 0 ≤ x ≤ b (9.46)

fGB2(x;a, p,q,σ) =
axap−1

σapB(p,q)[1+(x/σ)a]p+q , x ≥ 0 (9.47)

and 0 otherwise. The parameter σ in (9.45), (9.46) and (9.47) is a scale parame-
ter and, due to the fact that the Lorenz ordering is invariant with respect to scale
changes, it can be assumed without loss of generality that it is equal to 1. Thus we
will represent them as X ∼ GG(a, p), X ∼ GB1(a, p,q) and X ∼ GB2(a, p,q).
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These models include an important number of income distributions pro-
posed in the literature. The generalized gamma includes the usual gamma dis-
tribution (GG(1, p) ≡ G(p)), the Weibull distribution (GG(a,1) ≡ W (a)) and
the exponential distribution (GG(1,1) ≡ E(1)). The GB2 includes the usual
beta distribution of the second kind (GB2(1, p,q) ≡ B2(p,q)), the Singh-
Maddala distribution (GB2(a,1,q) ≡ SM(a,q)), the Dagum (1977) distribution
(GB2(a, p,1) ≡ D(a, p)), the Lomax distribution (GB2(1,1,q) ≡ L(q)) and the
Fisk distribution (GB2(a,1,1) ≡ F(a)). Both of the generalized beta distributions
include the generalized gamma as a limiting case.

The next result provides the Lorenz order within the family of generalized
gamma distributions defined in (9.45) (Taillie, 1981; Wilfling, 1996).

Theorem 9.5. Let Xi ∼ GG(ai, pi), i = 1,2 be generalized gamma distributions.
Then,

X1 ≥L X2 ⇐⇒ a1 ≤ a2 and a1 p1 ≤ a2 p2.

For the GB2 family, the Lorenz ordering can be verified for certain parametric
configurations (Kleiber, 1999).

Theorem 9.6. Let Xi ∼ GB2(ai, pi,qi), i = 1,2 be GB2 distributions with finite
means. Then

1. If a1 ≤ a2, a1 p1 ≤ a2 p2 and a1q1 ≤ a2q2 then X1 ≥L X2.
2. If X1 ≥L X2 then a1 p1 ≤ a2 p2 and a1q1 ≤ a2q2.

This theorem leaves open some parameter configurations of the kind a1 ≤ a2,
p1 ≥ p2 and q1 ≥ q2, with a1 p1 ≥ a2 p2 and a1q1 ≥ a2q2. In spite of these holes, this
result allows a complete characterization of many subfamilies coming from GB2
distribution. Some important cases are the following:

• Let Xi ∼ SM(ai,qi), i = 1,2 be Singh-Maddala distributions with cdf given in
(9.12). Then (Wilfling and Krämer, 1993; Wilfling, 1996):

X1 ≥L X2 ⇐⇒ a1q1 ≤ a2q2, and a1 ≤ a2.

• Let Xi ∼ B2(pi,qi,σi), i = 1,2 be beta distributions of the second kind. Then:

X1 ≥L X2 ⇐⇒ p1 ≤ p2, and q1 ≤ q2.

• Let Xi ∼ D(ai,qi), i = 1,2 be Dagum distributions with cdf (9.14). Then
(Kleiber, 1996, 1999)

X1 ≥L X2 ⇐⇒ a1q1 ≤ a2q2, and a1 ≤ a2.

The following results (Sarabia et al., 2002) establish some additional Lorenz
orderings involving the three families of distributions (9.45)-(9.47).

Theorem 9.7. Assume that one of the following conditions holds:

1. Let X ∼ GG(ã, p̃) and Y ∼ GB2(a, p,q), with aq > 1, ã ≥ a and ãp̃ ≥ a.
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2. Let X ∼ GB1(a, p,q) and Y ∼ GB2(ã, p̃, q̃), with ãq̃ > 1, a ≥ ã, ap ≥ ãp̃ and
aq ≥ ãq̃.

3. Let X ∼ GB1(a, p,q) and Y ∼ GG(ã, p̃), with a ≥ ã, ap ≥ ãp̃.

Then: X ≤L Y

A whole range of literature is available for studying sampling theory of Lorenz
curves (Beach and Davidson (1983) and Bishop et al. (1989) among others). The
problem of making inequality comparison when Lorenz curves intersect has been
studied by Shorrocks and Foster (1987) and Davies and Hoy (1995).

7 Variations of the Lorenz Curve

The generalized Lorenz curve (GLC) introduced by Shorrocks (1983) is the most
important variation of the LC. The LC is scale invariant and is thus only an indicator
of relative inequality. However, it does not provide a complete basis for making
social welfare comparisons. The Shorrocks proposal is the generalized Lorenz curve
defined as

GLX (p) = µX ·LX (p) =
∫ p

0
F−1

X (y)dy, 0 ≤ p ≤ 1. (9.48)

Note that GLX (0) = 0 and GLX (1) = µX . A distribution with a dominating GLC
provides greater welfare according to all concave increasing social welfare func-
tions defined on individual incomes (Kakwani (1984) and Davies et al. (1998)). On
the other hand, the GLC is no longer scale-free and in consequence it determines
any distribution with finite mean. The order induced by (9.48) is the second-order
stochastic dominance

X1 ≤GL X2 ⇐⇒
∫ x

0
F1(y)dy ≤

∫ x

0
F2(y)dy, x ≥ 0,

which has been studied by Thistle (1989). This order is a new partial ordering,
and sometimes it allows a bigger percentage of curves to be ordered than in the
Lorenz ordering case. The normative interpretations for the restrictions required on
the class of social welfare function to satisfy a GLC dominance have been studied
by Shorrocks and Foster (1987) and Davies and Hoy (1994) among others.

Other variations of the LC have been proposed. The absolute Lorenz curve intro-
duced by Moyes (1987) is defined by,

ALX (p) = µX · [LX (p)− p] =
∫ p

0
[F−1

X (u)−µX ]du, 0 < p < 1.

Note that the new definition changes scale invariance with location invariance.
Zenga (1984) defined next concentration curve,

ZC(p) = 1− F−1(p)
F−1

(1) (p)
, 0 < p < 1,
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which is scale free and belongs to the unit square.

8 Multivariate Lorenz Curves

We finish this chapter about Lorenz curves with their extensions to higher dimen-
sions. Although the use of multivariate income data is becoming increasingly more
habitual, the proposals of multivariate Lorenz curves are very recent. The pioneer
work in this field is due to Taguchi (1972a,b) and Arnold (1987). A recent multi-
variate version of the LC is based on the concept of Lorenz zonoid of the population
introduced by Koshevoy (1995) and Koshevoy and Mosler (1996). Their idea is
based on a vision of the usual LC as a convex region bordered by L(p) and L̃(p),
where L̃(p) = 1−L(1− p) is the dual Lorenz curve. With this idea, the area between
these two curves is the classical Gini index.

The multivariate Lorenz curve is a generalization of this concept to d +1 space.
Consider the set L d of probability distribution functions on Rd

+ that have finite and
strictly positive expectations µ j =

∫
R+

x jdF(x), j = 1,2, . . . ,d and set

x̃ = (x̃1, . . . , x̃ j)�, x̃ j = x j
µ j

, j = 1,2, . . . ,d.

Then, X̃ is the normalization of X with expectation 1d = (1, . . . ,1)�. For F ∈L d ,
the set

LZ(F) = {z ∈ Rd+1 : z = (z0,z1, . . . ,zd) = ζ (h)}
where

ζ (h) =
(∫

Rd
+

h(x)dF(x),
∫

Rd
+

h(x)x̃dF(x)
)

for every measurable function h : Rd
+ → [0,1], is called the Lorenz zonoid. The

Lorenz zonoid is a convex compact subset of the unit hypercube in Rd+1
+ containing

the origin and the point 1d+1 in Rd+1. Now, we define a generalization of the LC.
For F ∈ L d , let us consider the set

Z(F) = {y ∈ Rd
+ : y =

∫
Rd

+

h(x)x̃dF(x), h : Rd
+ → [0,1], measurable},

which is called the F zonoid.
Note that if (z0,z1, . . . ,zd) ∈ LZ(F), then (z1, . . . ,zd) ∈ Z(F). The F zonoid is

contained in the unit cube on Rd
+ and consists of all total portion vectors held by

subpopulations. If d = 1, Z(F) is the unit interval. For a given (z1, . . . ,zd) ∈ Z(F),
we have (z0,z1, . . . ,zd) ∈ LZ(F) if and only if z0 is in the closed interval between
the smallest and the largest percentage of the population by which the portion vector
(z1, . . . ,zd) is held. This leads us to the definition of an inverse Lorenz function. The
function lF : Z(F) → R+ defined as

lF(y) = max{t ∈ R+ : (t,y) ∈ LZ(F)},
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is called the inverse Lorenz function of F . Its graph is the Lorenz surface of F . In
terms of a distribution of commodities, the function lF(y) is equal to the maximum
percentage of the population whose total portion amounts to y. The multivariate
order is defined as the set inclusion ordering of Lorenz zonoids

F ≥LZ G ⇐⇒ LZ(F) ⊇ LZ(G),

and implies the usual Lorenz ordering of all marginal distributions. Finally, the mul-
tivariate Gini index is defined as the volume of their Lorenz zonoid LZ(F)

G = vol[LZ(F)] =
E(|detQF |)

(d +1)!∏d
j=1 E(Xj)

,

where QF is the (d + 1)× (d + 1) matrix with rows (1,Xi), i = 1,2, . . . ,d + 1, and
X1, . . . ,Xd+1 are i.i.d. with cdf F .

The Lorenz zonoid order and the multivariate Gini index appear to be good
choices as suitable d-dimensional analogs of the Lorenz order and the Gini index.
However, there are some problems. Sometimes, the zonoid can have zero volume
for some non-degenerate distributions. In response to this, Mosler (2002) has pro-
vided a modified definition to rectify this problem. Several alternative definitions
for a Lorenz order among d-dimensional non-negative random vectors have been
proposed by Arnold (2007).

9 Applications of the Lorenz Curves

Application of Lorenz curves and associated concentration measures is encountered
in a broad spectrum of modern scientific fields. Many authors in very different areas
of investigation have realized the usefulness of these instruments. Atkinson (1970),
in his seminal and influential paper showed that the rules for ordering risky prospects
can be written in terms of Lorenz curves (Hadar and Russell, 1969; Hanoch and
Levy, 1969; Rothschild and Stiglitz, 1970). Perhaps the greatest number of applica-
tions can be found in the usual field of income distributions and poverty (Sen, 1976)
but also in the field of finance. In this last field, rules for ordering risky prospects
using the Gini index and for the evaluation of risky assets have been studied and
developed (Yitzhaki, 1982; Shalit and Yitzhaki, 1984).

Other applications include the use of the Lorenz/Leimkuhler concentration
curves in informetric contexts (Burrell, 2005), Lorenz curves of cumulative elec-
tricity consumption (Jacobson and Kammen, 2005), LC and Gini index to assess
yield inequality within paddocks (Sadras and Bongiovanni, 2004) or characteriza-
tion of the early growth inequality of ninety crosses of Chinese fir (Ma et al., 2006),
to mention but a few examples.
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CHAPTER 10

Maximum Entropy Estimation
of Income Distributions

from Bonferroni Indices†

Hang Keun Ryu‡

Abstract

This paper presents an information efficient technique to determine the functional
forms of income distributions subject to the given side conditions such as the Bon-
ferroni index (BI) and the Gini coefficient (GINI). The original GINI is insensitive
to the income share changes of the lower income groups and greater weight is at-
tached to those group shares when the BI was defined. To compare the performance
of the BI with those of the GINI and the Theil entropy measure (THEIL) the income
deciles of 113 countries were introduced using The UNU/WIDER World Income
Inequality Database WIID (2005). The information efficient technique provided
guidelines on which income inequality measure performs better for certain coun-
tries. The BI performed better for the Czech Republic (GINI=0.26) and the U.S.A.
(GINI=0.40), but poorly for Brazil (GINI=0.63). The GINI coefficient performed
better for Brazil, but not for the Czech Republic and the U.S.A. The BI is a better
index in describing the relative income changes of very evenly distributed country
like the Czech Republic or for moderately distributed country like the U.S.A. The
GINI is good for an extremely uneven society like Brazil. Based on regression R
squared values of 113 countries, the THEIL showed ability in describing the in-
come share changes of upper income groups, the GINI was productive in describing
the middle income group shares, and the BI was capable in describing the lower
income group shares.

† The author thanks the two anonymous referees for excellent comments and useful suggestions
‡ Department of Economics, Chung-Ang University, Seoul 156-756, South Korea. Email:
hangryu@cau.ac.kr
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1 Introduction

Summary measures are used in describing the degree of income inequalities. The
original GINI is best known, but other measures such as the Kuznets measure, the
THEIL, and Atkinson’s measure are used for various purposes. A review of these
measures are found and demonstrated by Ryu and Slottje (1998). Public policy mak-
ers rely on these measures to enact public policy and to predict the impact of po-
tential policy actions on income distribution as shown by Sawyer (1976), Dagum
(1977, 1996), Dagum and Slottje (2000).

To lessen the weakness of the original GINI as insensitive to the income shares of
lower income groups, Yitzhaki (1983, 1998) introduced a generalized Gini measure
attaching different weight to the lower and upper ends of the distributions. Yitzhaki
introduced two numbers for each country to describe income inequalities. One num-
ber is given to control the weighting and another for inequalities. A single value of
the control parameter can be chosen by the researcher and used for comparisons
across countries (or across time). An inequality table can be constructed where in-
equalities can be tabulated across a range of weight control values and the countries;
this is the strength of the contribution by Yitzhaki. The Bonferroni index involves
an implicit weighting of population segments and does not avoid the normative re-
striction.

This paper utilizes the Bonferroni (1930) index. Unlike the GINI, BI is more
sensitive at lower levels of income distribution as it gives more weights to transfer
among the poor: see Giorgi and Mondani (1995) and Nygard and Sandstorm (1981)
for the definition and properties of BI. The original GINI is defined using the area
between the 45 degree line and the Lorenz curve, but the BI is defined using the
ratios of the areas between the Lorenz curve and horizontal axis to the area between
the 45 degree line and the horizontal axis for each income group. Based on this
definition, more weight is given to the lower income groups and less weight to the
upper income groups. The BI will be very sensitive to the changes in income shares
of the lower income groups as later shown. A good review of the Bonferroni curve
and the properties of the BI can be found in Pundir et al. (2005) and Giorgi and
Crescenzi (2001).

The overview of the paper is as follows. In section 2, the definition of the BI
is reviewed. In section 3, income distributions are derived from the BI using the
maximum entropy method. This method is replicated for the GINI. In section 4, the
income deciles of 113 countries are used to compare the performance of the GINI,
BI, and THEIL. Summary and concluding remarks are provided in section 5.

2 The Bonferroni Index (BI)

Let X be a non-negative and absolutely continuous random variable. Its cumulative
distribution function F(x) =

∫ x
0 f (t)dt is continuous and differentiable at least twice

and its first moment µ =
∫ ∞

0 x f (x)dx is finite. The first incomplete moment is
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F1(x) =
1
µ

∫ x

0
t f (t)dt (10.1)

The partial mean of the probability distribution is

µx =
∫ x

0 t f (t)dt∫ x
0 f (t)dt

=
µF1(x)
F(x)

(10.2)

The Bonferroni curve (BC) is defined in the orthogonal plane [F(x),BF(F)] within
a unit square (Giorgi and Crescenzi, 2001) where

BF [F(x)] =
µx

µ
=

F1(x)
F(x)

(10.3)

For a cumulative distribution function z = F(x) with inverse, the parametric expres-
sion of BC is

BF(z) =
F1[x(z)]

z
=

∫ z
0 x(z′)dz′

zµ
, z ∈ (0,1], (10.4)

where x(z′) = inf{x : z(x) = F(x) ≥ z′}.
When z → 0, BF(z) takes the form 0/0. The BC does not always start from the

origin of the orthogonal plane, as it depends on the definition of X.
The Bonferroni index (BI) is defined as

BI = 1−
∫ 1

0
BF(z)dz (10.5)

The expressions for Bonferroni curve and Bonferroni index for some common dis-
tributions have been derived and are summarized in Pundir et al. (2005).

For a probability density function f (x) with the cumulative distribution function
z(x), the Lorenz curve is given by:

L[z(x)] =
∫ x

0 t f (t)dt∫ ∞
0 t f (t)dt

(10.6)

For a cumulative distribution function z(x) with inverse x(z), the Lorenz curve
L(z) is

L(z) =
∫ z

0 x(z′)dz′∫ 1
0 x(z′)dz′

(10.7)

The BC can be written as a ratio of two statistics.

BF(z) =
L(z)

z
(10.8)

BI = 1−
∫ 1

0

L(z)
z

dz (10.9)
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The BI becomes zero when there is an identical level of income with L(z) = z
and the BI becomes one when the income level is extremely unequal with L(z) = 0
for z ∈ [0,1) and L(z=1)=1.

Since the GINI is defined as

GINI = 1−2
∫ 1

0
L(z)dz (10.10)

The BI puts more weight to the lower income groups and less weight to the upper
income groups compared to the GINI.

The BI can be shown to be a special case of the well known Mehran’s (1976)
index. Mehran considered a linear averaging method and defined the class of linear
measures of income inequality by

MF =
∫ 1

0
[z−L(z)]W (z)dz

where W (z) is a score function. Taking W (z) = 1/z, MF becomes BI. Similarly, the
GINI and the generalized Gini coefficient (Yitzhaki, 1983) is shown as members
of this MF class with an appropriate choice of the weighting function W (z) as ex-
plained by Lambert (1993). When Bonferroni curves are used to estimate income
inequality from the sampled data, they derived the sample estimates of the Bonfer-
roni curve characterized by k ordinates. For a sample of size n, the sample estimate
of k− 1 element vector of the Bonferroni curve has a limiting multivariate normal
distribution when multiplied by

√
n.

The BI can also be defined for discrete distributions. Tarsitano (1990) assumed
the population to consist of n income receiving units labeled in a non-descending
order of income, x1, x2, ...,xn. Let µ be the mean income, Pi and Qi be the cumula-
tive population share and the cumulative income share corresponding to the first i
income receiving units. Then

Pi =
i
n

; Qi =
∑i

j=1 x j

nµ
(i = 1,2, ...n) (10.11)

The mean of incomes less than or equal to xi is

Mi =
1
i

i

∑
j=1

x j (10.12)

Therefore, for a discrete distribution, the BI is

BIn =
1

n−1

n−1

∑
i=1

[
µ −Mi

µ

]
=

1
n−1

n−1

∑
i=1

[
Pi −Qi

Pi

]
(10.13)

The statistical inference for Bonferroni curve is explained in Pundir et al. (2005).
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3 Maximum Entropy Estimation of Income Distributions

Information is lost because different income distributions can produce the same in-
equality measure when the degree of income inequality of a society is described
with an inequality measure. For example, if Lorenz curves of two countries cross,
the GINIs can be the same if the areas under the Lorenz curves are the same. This
effect is called as the Lorenz Dominance Effect as shown by Choo and Ryu (1994).

To compare performance of the BI and the Gini, the income distributions are
derived from the BI and from the GINI respectively, and the approximated values
are compared with the empirical values.

3.1 Derivation of an income distribution from the given BI

A review of the definition of a share function supposes that the observed income of
the ith individual is xi for i = 1,2, · · · ,n, then the share is

si =
xi

∑n
i=1 xi

(10.14)

The share function is interpreted as a probability density function because the
share si is the probability associated with the probability density that each dollar of
total measured income will end up with the ith person. Since each individual has
different attributes and a different location position, some will collect more money
than others. Each dollar bill will end up in the hand of the ith individual with proba-
bility si so that the continuous share function s(z) can be considered as a probability
density function. This share function is assumed as strictly positive for z ∈ [0,1].
The coordinate z is the population income coordinate with z = 0.01 for the lowest
1% group and z = 1 for the highest 1% group.

Once the share function is considered as a density function, the maximum en-
tropy method is applied to determine the functional form of the share function. What
follows the share function is derived in the most conservative way by maximizing
entropy subject to given conditions. To understand the notion of entropy, Jaynes
(1979) noted that it is possible to define a kind of measure on the space of proba-
bility distributions such that distributions of higher entropy represent greater ‘dis-
order’, or are ‘smoother’, or are ‘more probable’, or ‘assume less’. Shannon (1948)
defines entropy as

W ≡−
∫

f (x) log f (x)dx

Zellner and Highfield (1988) and Ryu (1993) solve the following problem.

Max f W ≡−
∫

f (x) log f (x)dx (10.15)

satisfying
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Pm(x) f (x)dx = µm, (10.16)

for m = 0,1, · · · ,N with the µm having known values and Pm(x) is any known func-
tion. Since entropy is a measure of a lack of information, the distribution of maxi-
mum entropy (ME) is the least informative and most conservative distribution, while
distributions of lower entropy are more informative. The given side conditions al-
lows for the determining of the functional forms of a density in a most conservative
way by choosing a ME density function. Through maximizing entropy a probability
density function is as flat as possible. If no information is given, the ME probability
density function is flat, and if the first and second moments are given, then the ME
probability density function becomes a normal function.

It is shown that knowledge of the BI is equivalent to knowledge of∫ 1

0
log z dL (10.17)

because ∫ 1

0
log z dL = [(log z) L ]z=1

z=0 −
∫ 1

0

L(z)
z

dz (10.18)

The first RHS term becomes zero using the L’Hopital’s rule

lim
z→0

log z
1

L(z)

= − lim
z→0

1/z
s(z)

L2(z)

= − lim
z→0

L2(z)
z s(z)

(10.19)

= − lim
z→0

2L(z)s(z)
s(z)+ z s′(z)

= − lim
z→0

2s2(z)+2L(z)s′(z)
2s′(z)+ z s′′(z)

= 0

when s(0) = 0, s′(0) �= 0, s′′(0) �= 0, L(0) = 0.
Since

dL(z) = s(z)dz (10.20)

(10.17) can be rewritten∫ 1

0
log z dL =

∫ 1

0
log z s(z)dz = −

∫ 1

0

L(z)
z

dz = BI−1 (10.21)

Solving an entropy maximization problem as stated in Ryu (1993) has

MaxsW ≡−
∫

s(z) logs(z)dz (10.22)

satisfying, ∫ 1

0
s(z)dz = 1 and

∫ 1

0
log zs(z)dz = BI−1 (10.23)
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The Lagrangian method

s(z) = exp [a+b logz] = A zb = (1+b) zb (10.24)

The constant A is removed using the normalization condition of the share function.
Applying the integral formula of Dwight (1961),

∫ 1

0
log zs(z)dz = (1+b)

∫ 1

0
(log z)zb dz = − 1

(1+b)
= BI−1 (10.25)

If BI=0 with identical level of income, b = 0 produces a flat share function. If BI=1
with completely uneven income distribution, b becomes a large number. The share
function will sharply increase. In the following section income distributions are de-
rived from a GINI value rather than the BI value. More details of this method are
found in Ryu and Slottje (2003).

3.2 Derivation of an income distribution from the GINI

The definition of the Lorenz curve shows

g ≡
∫ 1

0
L(z)dz =

1−GINI
2

(10.26)

It means g = 0.5 if GINI=0 and g = 0 if GINI=1. Now recalling the definition of the
Lorenz curve,

L ≡
∫ z

0
s(z′)dz′

Consider the partial integration of∫ 1

0
zdL = zL(z)

1

0
−

∫ 1

0
L(z)dz = 1−g (10.27)

Since

dL(z) = s(z)dz

the mean of the share function is

µ1 =
∫ 1

0
zs(z)dz = 1−g =

1+GINI
2

(10.28)

Knowledge of the GINI is equivalent to knowledge of the first moment of the true
share function. This result is also reported in Yitzhaki (1998). Solving an entropy
maximization problem as stated in Ryu (1993) has
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MaxsW ≡−
∫

s(z) logs(z)dz (10.29)

satisfying ∫
zs(z)dz = µ1, (10.30)

The Lagrangian method

s(z) = exp [a+bz] =
[

b
eb −1

]
· exp[bz] (10.31)

where the normalization condition of the share function is used to remove a. Now
the first moment condition of (10.26) produces,

µ1 =
[

b
eb −1

]∫ 1

0
zexp[bz]dz =

1+GINI
2

(10.32)

Since the integration is a function of b, h(b) is used to label µ1.

h(b) ≡−1
b

+
eb

eb −1
=

1+GINI
2

(10.33)

If the GINI=0, then b approaches zero while if GINI=1, b approaches infinity.

4 Applications

In this section performance of the GINI, BI, and the THEIL are compared. Since en-
tropy describes the degree of concentration, Theil (1967) defined the entropy mea-
sure of income distribution is as follows

THEIL = −
n

∑
i=1

si log si (10.34)

where si is income share of the ithperson.
The World Income Inequality Database V2.0a June 2005 is applied to compare

the performance of BI, GINI, and THEIL. The UNU/WIDER World Income In-
equality Database (WIID) collects and stores information on income inequality for
developed, developing, and transition countries (database and documentation are
available on the website). For the income deciles of 113 countries, the performance
of each inequality measures is evaluated and compared for ten income share groups.

Figure 1 shows the scatter plot of the BI and THEIL values against the GINI
value. Since the plots of BI and THEIL are not monotonic functions; it is possi-
ble that when the GINI value increases, the BI and THEIL values decrease. This
means the order of inequality can be reversed depending on the choice of inequality
measures.
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Figure 2 reports the results of regression analysis. For 113 countries, income
shares of the lowest income group denoted by s(1) can be regressed against the BI
values. If the lowest income group income share s(1) is very small, the correspond-
ing BI value should be large to show an extreme inequality. If income share s(1)
is not very small, then the corresponding BI value should not be large enough to
reflect a certain degree of income equality. If the income share of the richest group
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Fig.2 Regression R squared values
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denoted by s(10) is very large, then the corresponding BI value should be large to
reflect extreme inequality. Similar logic applies for the GINI and THEIL values.

s(1)i = a(1)i +b(1)BIi +u(1)i
...

...
s(10)i = a(10)i +b(10)BIi +u(10)i

(10.35)

s(1)i = A(1)i +B(1)THEILi + v(1)i
...

...
s(10)i = A(10)i +B(10)THEILi + v(10)i

(10.36)

s(1)i = α(1)i +β (1)GINIi + e(1)i
...

...
s(10)i = α(10)i +β (10)GINIi + e(10)i

(10.37)

Figure 2 shows the R2 values produced by each regression. Using the BI values
as explanatory variables produced higher R2 values for the lower income groups
compared to those values produced by the GINI and THEIL values. This explains
the details of income inequality of lower income groups are better shown with the
BI values. Similarly, the THEIL values explain the changes of the upper income
groups. The GINI values describe the changes of middle income group shares. All
three measures are quite insensitive to changes of the eighth and ninth income group
shares. These groups correspond to pivot points of a seesaw and the shares are in-
different whether they belong to an evenly distributed society or to an unevenly
distributed society. The seesaw balances are parallel to the surface and fixed to a big
angle even though the pivot points do not move.

All 113 countries can be sorted in the order of increasing BI values. Figure 3
shows twenty countries with large BI values. The income distributions are unequal.
The GINI and BI values are near 0.6 and 0.7 for those countries. The THEIL val-
ues fluctuate widely and increase rapidly for the last country. The description of
inequality in a country depends on the choice of inequality measure. The THEIL
value approaches infinity for an extremely unequal distribution. One to one com-
parison with the BI and GINI values are difficult as the BI and Gini coefficients are
bound within [0,1].

Figure 4 shows similar comparison to those of Figure 3 for the 20 countries with
small BI values. Both the GINI and the THEIL values are not monotonic increas-
ing functions. Though estimated inequality measures are plotted on Figure 3 and
Figure 4, they do not mean the inequality measure is better or worse than others.

Figure 5 shows scatter plot of the BI, GINI, and THEIL values against the income
shares of the poorest deciles of 113 countries. As the first deciles values increase in-
equality measures decrease. Figures 6-14 show similar scatter plots of the BI, GINI,
and THEIL values against the second, third, and tenth deciles of 113 countries. For
the lower 60 percent, up to sixth deciles, the inequality measures decrease as the
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portions of income share increases. Figures 11-13 show the inequality measures
have no definite patterns. The groups belonging to the 60-90% income share groups
act as pivot points. Figure 14 shows that inequality measures increase as inequality
worsens (as the tenth deciles shares increase). The extreme inequality case is found
in Zimbabwe where the estimated GINI value was 0.778 and the income share of
the richest 10% was 62%.

Figures 15-17 show the observed log share values and estimated log share
values for Czech Republic (GINI=0.26), the U.S.A. (GINI=0.40), and the Brazil
(GINI=0.63). For the given GINI and BI values, log shares are derived by the maxi-
mum entropy method. For countries with smaller or moderate GINI values (such as
the Czech Republic and the U.S.A.) the BI produced better approximation for the
log share functions. For countries with large GINI values, the GINI produced better
approximation for the log share functions.

The whole purpose of introducing the BI was to describe the changes of income
shares for the poorest group as well. This does not necessarily mean that the BI is
effective in describing the inequality of an extremely uneven society like Brazil, but
it means that the BI is effective in describing the relative share changes of the poor
groups of certain countries. The BI was good for the Czech Republic and the U.S.A.,
but was bad for an extremely uneven society like Brazil. The income share of the
poorest group in Brazil was 0.7% and the next poor group income share was 1.4%.
Those small numbers gave negligible effects to the BI and the GINI. In comparison
the income share of the poorest group in the Czech Republic was 3.98% and the next
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poor group income share was 5.77%. Such big numbers gave considerable effects to
the BI and the GINI. Thus the use of the BI produced limited results for the changes
of income shares for the poorest group in Brazil, but good results for the Czech
Republic and the U.S.A.

The reason why the GINI produced a better result for the relative changes of
the poor groups of Brazil is the following. From the maximum entropy estimation
method, the BI produced the logarithm of the share function to have a functional
form of log(z) and the GINI produced a linear function of z. See (10.24) and (10.31)
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for the functional forms and figures 15-17 for graphical shapes. If the observed log
share function is a concave function as in the cases of the Czech Republic and the
U.S.A., then the log share function increases but not too rapidly and the BI produced
better approximations for those countries. If the observed log share function can
be approximated by a linear function, then the share function is a rapid increasing
function for such uneven society and the GINI method is productive.

5 Summary and Concluding Remarks

To test the performance and usefulness of an inequality measure, the underlying in-
come distributions are derived from the given inequality measures. Ryu and Slottje
(2003) showed how to derive income distributions from the GINI and the general-
ized Gini coefficient proposed by Yitzhaki (1983). In this paper (as an extension of
the above paper) the BI measure is reviewed and the corresponding income distribu-
tions are derived from the BI using the maximum entropy method. The BI measure
gives more weight to the lower income groups as in the case of the generalized
Gini. The difference is the BI uses one summary number, but the generalized Gini
coefficients use a control variable to change the weight to the lower income groups.

The objective of introducing the maximum entropy estimation of income distri-
butions is as follows. It provides some guideline which income inequality measure
performs better for certain countries. Though the distinction is not clear cut, figures
15, 16, and 17 report that the BI performs better for the Czech Republic (GINI=0.26)
and the U.S.A. (GINI=0.40), but poorly for Brazil (GINI=0.63). The GINI coeffi-
cient performs better for Brazil, but not for the Czech Republic and the U.S.A.
Thus the GINI coefficient is an appropriate measure to describe income inequality
of the very uneven distribution like Brazil and the BI is better one for very evenly
distributed country like the Czech Republic and for moderately distributed country
like the U.S.A. The point of the maximum entropy estimation of the income distri-
bution is that not much information about inequality is lost if the BI is used for the
Czech Republic and the U.S.A. and if the GINI is used for Brazil. To study the year
to year income inequality changes of the U.S.A., the BI is better than the commonly
used GINI.

Derivations of the underlying distributions were possible for the GINI, BI, and
the generalized Gini, but it was not possible for other measures. The future aim is
to derive income distributions from other measures such as Theil’s entropy measure
or Atkinson’s measure to compare the performance of various inequality measures.
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CHAPTER 11

New Four- and Five-Parameter
Models for Income

Distributions
William J. Reed† and Fan Wu‡

Abstract

Two parametric models for income distributions are introduced. The models fit-
ted to log(income) are the 4-parameter normal-Laplace (NL) and the 5-parameter
generalized normal-Laplace (GNL) distributions. The NL model for log(income)
is equivalent to the double-Pareto lognormal (dPlN) distribution applied to income
itself. Definitions and properties are presented along with methods for maximum
likelihood estimation of parameters. Both models along with 4- and 5-parameter
beta distributions, are fitted to nine empirical distributions of family income. In
all cases the 4-parameter NL distribution fits better than the 5-parameter general-
ized beta distribution. The 5-parameter GNL distribution provides an even better
fit. However fitting of the GNL is numerically slow, since there are no closed-form
expressions for its density or cumulative distribution functions. Given that a fairly
recent study involving 83 empirical income distributions (including the nine used in
this paper) found the 5-parameter beta distribution to be the best fitting, the results
would suggest that the NL be seriously considered as a parametric model for income
distributions.
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1 Introduction

One area of interest of Camilo Dagum was the development of parametric models
for income distributions (IDs). Indeed two such distributions bear his name (Dagum
Types I and II). It is a measure of his authority in the field that he was chosen to write
the entry entitled Income Distribution Models in the first edition of the Encyclopedia
of Statistical Sciences (Dagum, 1983).

The interest in finding parametric models for IDs goes back over 100 years to
the work of Pareto (1897), who demonstrated the power-law behaviour of empirical
IDs, at least in the upper tail. The eponymous Pareto distribution is a two-parameter
distribution with a power-law density on a support (x0,∞). Gibrat (1931) proposed
the (two-parameter) lognormal distribution as model for IDs, based on a multiplica-
tive stochastic model for the growth of individual incomes. This idea was further
explored by Aitchison and Brown (1969). Other two-parameter distributions which
have been proposed are the gamma distribution (Ammon, 1895) and the Weibull
distribution (Bartels and van Metelen, 1975).

Three-parameter models which have been proposed include generalized forms
of the gamma (Taillie, 1981) and beta (Thurow, 1970) distributions, and the (Singh
and Maddala, 1976) and Dagum Type I (Dagum, 1977) distributions, which are both
particular cases of what is known in the statistics literature as the Burr family (see
e.g. (Johnson et al., 1994, p. 54) of distributions (Types XII and III respectively).

Two four-parameter generalizations of the beta distribution were introduced by
McDonald (1984) and named GB1 and GB2. McDonald showed that all of the pre-
viously mentioned two- and three-parameter models occurred as special or limiting
cases of one or other of these two distributions. Parker (1999) presented a theoretical
model of income generation, which resulted in a GB2 distribution of earnings.

Other four-parameter models which have been considered include the Dagum
Type II distribution (Dagum, 1996) and the double Pareto-lognormal(dPlN) distri-
bution (Reed and Jorgensen, 2004). This latter model emerges from a stochastic
model for the way in which income distributions are generated and which offers an
explanation for why Pareto’s law (power-law behaviour in the upper tail) should be
expected to hold (Reed, 2003). A discrete time formulation of the model is given in
Reed (2004). To date no broad study of the performance of this model, with respect
to its fit to IDs has been conducted. One of the purposes of this article is to remedy
this.

McDonald and Xu (1995) developed the five-parameter generalized beta (GB)
distribution family. This family includes the GB1 and GB2 as special cases (of
course along with all of the two- and three-parameter distributions nested within
them). Bandourian et al. (2002) made a comparison of the distributions contained
in the generalized beta family by fitting them to 83 datasets covering 23 countries.

If incomes follow a dPlN distribution then the logarithm of incomes follow a
normal-Laplace (NL) distribution, which is the convolution of normal and Laplace
(double exponential) components (Reed and Jorgensen, 2004). Just as GB1 and GB2
distributions can be generalized to the 5-parameter generalized beta family, so the
NL distribution can be generalized to a five-parameter family of distributions, which



New Four- and Five-Parameter Models for Income Distributions 213

includes as special cases many other distributions, including the NL, the normal and
the Laplace and the generalized Laplace (Kotz et al., 2001) distributions. It has been
called the generalized normal Lapace (GNL) distribution (Reed, 2007). In this paper
we consider fitting this GNL distribution to the logarithm of incomes21, along with
the NL. Unlike the 5-parameter generalized beta family, which has a finite support,
the GNL model for incomes has support on the positive reals.

A description of the NL distribution and some of its properties are presented in
the next section and in Section 3 the GNL distribution is introduced. Section 4 deals
with maximum likelihood estimation from grouped data and from percentile data.
In Section 5 comparisons of the fit of the four-parameter NL and the five-parameter
GNL distributions with the four- and five-parameter generalized beta distributions
are presented. For the nine datasets considered the NL and GNL perform better (in
terms of their goodness of fit as assessed by four different statistics) than their beta
counterparts. Indeed the four-parameter NL distribution provides a better fit than the
five-parameter GB distribution.

2 The Normal-Laplace (NL) and Double-Pareto Lognormal
(dPlN) Distributions

The normal-Laplace distribution arises as the convolution

Y d= W +V

where W is normally distributed, W ∼ N(µ,σ2), and V follows a Laplace distribu-
tion22 with probability density function (pdf)

f (v) =

⎧⎪⎨⎪⎩
αβ

α+β eβv, for v ≤ 0

αβ
α+β e−αv, for v > 0

(11.1)

with α,β > 0.
The pdf of such a NL distribution can be shown to be (Reed and Jorgensen, 2004)

fNL(y) =
αβ

α +β
φ
(

y−µ
σ

)
[R(ασ − (y−µ)/σ)+R(βσ +(y−µ)/σ)] ,

(11.2)

21 If log(income) follows a GNL distribution, one could say that income itself followed a gen-
eralized double Pareto-lognormal distribution on (0,∞). However this terminology seems rather
clumsy and we will refer to fitting the GNL.
22 Often the name Laplace distribution is confined to use with the symmetric version of this distri-
bution (α = β ), with the name skew-Laplace used for the asymmetric case (α �= β ). Here he refer
to both symmetric and asymmetric versions as Laplace distributions.
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where R is Mills’ ratio (of the complementary cumulative distribution function (cdf)
to the pdf of a standard normal variate):

R(z) =
Φc(z)
φ(z)

=
1−Φ(z)

φ(z)
.

The cumulative distribution function (cdf) of the NL distribution is

FNL(y) =Φ
(

y−µ
σ

)
− 1

α +β
φ
(

y−µ
σ

)
[βR(ασ − (y−µ)/σ)−αR(βσ +(y−µ)/σ)] .

(11.3)

We shall write Y ∼ NL(µ,σ2,α,β ) to indicate that the random variable Y has the
above normal-Laplace distribution.

If Y follows the above NL distribution then X = eY follows a double Pareto-
lognormal (dPlN) distribution. Thus the dPlN distribution bears the same relation-
ship to the normal distribution as the lognormal distribution bears to the normal. It is
the dPlN distribution which has been proposed as a model for income distributions
(Reed, 2003) and it can be thought of as a generalization of the lognormal (which
is indeed nested within it). The dPlN distribution arises as the state of a geometric
Brownian motion (GBM) after an exponentially distributed time, if the initial state
is lognormally distributed. Its pdf is simply

fdPlN(x) =
1
x

fNL(logx) (11.4)

while its cdf is
FdPlN(x) = FNL(logx) (11.5)

The dPlN model for incomes arises from a simple stochastic model first presented
in Reed (2003). In this respect it satisfies the preferred property (as specified by
Camilo Dagum in 1983 Encyclopedia of Statistical Sciences article on Income Dis-
tributions) of having a stochastic foundation. The model is based on the assumption
that individual incomes evolve follwing GBM, with starting incomes lognormally
distributed. This is the continuous-time version of a model with a long pedigree viz.
that individual incomes evolve in a random multiplicative way (see, e.g., Gibrat,
1931; Champernowne, 1953). Gibrat derived the lognormal distribution as that of
an individual after a fixed time whereas Champernowne looked at a population in
equilibrium. The innovation in the paper of Reed (2003) was to assume that the
population of income earners grows at a fixed rate, so that the time that any indi-
vidual has been earning follows a (truncated) exponential distribution. Ignoring the
truncation (due to the fact that no person lives for ever) the model implies that the
distribution of incomes over the population should be given by the state of a GBM
(with lognormally distributed starting state) after an exponentially distributed time
i.e. it should follow a dPlN distribution.
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A number of properties of the NL and dPlN distributions are given in Reed and
Jorgensen (2004). Among these are the moment generating function (mgf) of the
NL(µ,σ2,α,β ) distribution

MNL(s) =
αβ exp(µs+σ2s2/2)

(α − s)(β + s)
. (11.6)

from which the mean and variance and higher-order moments can be determined:

E(Y ) = µ +1/α −1/β ; var(Y ) = σ2 +1/α2 +1/β 2 (11.7)

The third and fourth order cumulants are

κ3 = 2/α3 −2/β 3; κ4 = 6/α4 +6/β 4. (11.8)

The shape of the NL distribution combines elements of both the normal and Laplace
components. Like both of those distributions it is unimodal with support on (−∞,∞).
If α = β , the distribution is symmetric about µ but if α > β the distribution is
skewed to the left and vice-versa. The parameters µ and σ2 affect the central loca-
tion and spread of the distribution. Besides affecting the skewness of the distribution
the parameters α and β affect the tails of the distribution (and hence its kurtosis). In
fact

fNL(y) ∼ k1e−αy (as y → ∞); fNL(y) ∼ k2e−βy (as y →−∞). (11.9)

where k1 and k2 are constants. Thus the tails of the NL distribution are fatter than
those of the normal distribution, behaving like those of a Laplace distribution.

Figure 11.1 (top row) shows some example of the NL distribution. In all three
panels µ = 1 and σ2 = 1; in the left and centre panels α = β , so the distributions are
symmetric, assuming common values of 2 (left-hand panel) and 0.5 (center panel);
in the right-hand panel α = 0.5, β = 2, so the distribution is skewed to the right.
The dot-dash curve is the pdf of N(1,1) (corresponding to α = β = ∞), drawn for
comparison purposes.

Turning now to the dPlN distribution it follows from (11.4) and (11.9) that the
dPlN follows power-law behaviour in both of its tails i.e.

f (x) ∼ c1 x−α−1 (x → ∞); f (x) ∼ c2 xβ−1 (x → 0)

for constants c1 and c2. The upper-tail power-law behaviour is simply Pareto’s law
(so the simple model on which the dPlN distribution is based offers an explanation
of Pareto’s law). The power-law behaviour at zero is a prediction from the model
which sems to be born out in actual data (see Reed (2003)) and was indeed identified
many years ago by Champernowne (1953).

The shape of the pdf of the dPlN distribution is somewhat like that of the log-
normal distribution in that it is skewed to the right. Indeed if β > 1 it is unimodal
(like the lognormal pdf), but if 0 < β < 1 it is monotonically decreasing. However
unlike the lognormal, the tails of the dPlN follow a power-law form. In the upper
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Fig. 11.1: Plots of the NL and GNL probability density functions. The top row is for the NL, and the
second and third rows are for the GNL with ρ = 2 and 0.5, respectively. In all plots µ = 1,σ2 = 1.
The columns correspond to α = β = 2 (left-hand column); α = β = 0.5 (centre column); and
α = 0.5,β = 2 (right-hand column). Also shown (dot-dash curve) is the normal pdf with mean and
variance parameters set equal to ρ . This is for comparison purposes, to show how the NL and GNL
distributions differ from the corresponding normal distribution.

tail, the smaller the value of α , so the longer the tail. In the limiting case α, β → ∞
the dPlN distribution tends to a lognormal distribution and for large values of α, β
the dPlN pdf is close to that of a lognormal.

Figure 11.2 (top row) shows some examples of the dPlN pdf. The cases corre-
spond to those of Figure 11.1 (top row) and also shown (dot-dash) is the lognormal
pdf with µ = 1, σ2 = 1. Note how in the centre panel (in which β = 0.5) the dPlN
pdf is decreasing over (0,∞).
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Fig. 11.2: Plots of the dPlN and generalized dPlN probability density functions. The top row is
for the dPlN, and the second and third rows are for the generalized dPlN with ρ = 2 and 0.5,
respectively. The panels correspond to those in Figure 11.1 i.e. in all plots µ = 1,σ2 = 1, and
the columns correspond to α = β = 2 (left-hand column); α = β = 0.5 (centre column); and
α = 0.5,β = 2 (right-hand column). Note how in the middle column (which has β = 0.5 < 1) the
pdfs are monotone decreasing. Also shown (dot-dash curve) is the lognormal pdf with mean and
variance parameters set equal to ρ . This is for comparison purposes, to show how the dPlN and
generalized dPlN distributions differ from the corresponding lognormal distribution.

Like the pdf of the log-hyperbolic distribution (Barndorff-Nielsen, 1977), when
plotted on logarithmic axes, the dPlN pdf has a shape similar to a hyperbola, with
asymptotes of slope −(α + 1) and β − 1. In the case 0 < β < 1, both arms have
negative slope. How the tail parameters α and β depend on the parameters of the
stochastic model from which the dPlN distribution is derived is discussed in Reed
(2003); and for a related discrete-time formulation in Reed (2004).
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The moment generating function of the dPlN distribution does not exist. However
lower-order moments about zero are easy to obtain. They are

µ ′
r = E(Xr) =

αβ
(α − r)(β + r)

exp
(
rν + r2σ2/2

)
(11.10)

for r < α . As with the Pareto distribution µ ′
r does not exist for r ≥ α . The mean (for

α > 1) is

E(X) =
αβ

(α −1)(β +1)
eµ+σ2/2 (11.11)

while the variance and coefficient of variation (for α > 2) are

var(X) =
αβe2µ+σ2

(α −1)2(β +1)2

[
(α −1)2(β +1)2

(α −2)(β +2)
eσ2 −αβ

]
(11.12)

and

CV =
[

(α −1)2(β +1)2)
αβ (α −2)(β +2)

eσ2 −1
]1/2

Clearly the CV is independent of µ , increases with σ2 and decreases with α and β .
Closed-form expressions exist neither for the Gini coefficient nor for the Lorenz
curve.

3 The Generalized Normal-Laplace (GNL) and Generalized
Double-Pareto Lognormal Distributions

The generalized normal-Laplace (GNL) distribution is defined in terms of its char-
acteristic function. The characteristic function of the ordinary NL distribution is

φNL(s) = E(eisY ) =
αβ exp(µis−σ2s2/2)

(α − is)(β + is)
, (11.13)

where i is the imaginary square root of -1 (i.e. i2 = −1). The generalized normal-
Laplace (GNL) distribution is obtained by considering the distribution with charac-
teristic function

φGNL(s) =
[

αβ exp(µis−σ2s2/2)
(α − is)(β + is)

]ρ

(11.14)

where ρ > 0, and we write Y ∼ GNL(µ,σ2,α,β ,ρ) to indicate that the random
variable Y follows this distribution. There are no closed-form expressions for the pdf
and cdf of the GNL distribution. However it is simple to determine the shape of the
GNL(µ,σ2,α,β ,ρ) pdf for given parameter values by simulating many replications
of the random variable, using the representation
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Y d= ρµ +σ
√

ρZ +
1
α

G1 − 1
β

G2 (11.15)

where Z,G1 and G2 are independent with Z ∼ N(0,1) and G1,G2 gamma random
variables with scale parameter 1 and shape parameter ρ , i.e. with probability density
function (pdf)

g(x) =
1

Γ (ρ)
xρ−1e−x.

(see Reed (2003)).
In general for ρ < 1, the GNL pdf is longer in the tails, narrower in the flanks and

more peaked than the corresponding NL distribution. The opposite holds for ρ > 1.
The mean and variance of the GNL(µ,σ2,α,β ,ρ) distribution are

E(Y ) = ρ
(

µ +
1
α
− 1

β

)
; var(Y ) = ρ

(
σ2 +

1
α2 +

1
β 2

)
while the higher order cumulants are (for r > 2)

κr = ρ(r−1)!
(

1
αr +(−1)r 1

β r

)
.

As with the ordinary NL distribution, the parameters µ and σ2 influence the
central location and spread of the distribution, while α and β affect the symmetry.
If α > β the distribution is skewed to the left, and vice versa. The parameter ρ
affects the lengths of the tails. The tails are respectively longer (shorter) than those of
the NL(µ,σ2,α,β ) distribution depending on whether ρ < 1 (or ρ > 1). Precisely
f (y) ∼ c1yρ−1e−αy (y → ∞) and f (y) ∼ c2(−y)ρ−1eβy (y →−∞), (where c1 and c2
are constants).

The parameter ρ affects all moments. However the coefficients of skewness
(γ1 = κ3/κ3/2

2 ) and of excess kurtosis (γ2 = κ4/κ2
2 ) both decrease with increasing ρ

(and converge to zero as ρ → ∞) with the shape of the distribution becoming more
normal with increasing ρ , (exemplifying the central limit effect since the sum of n
iid GNL(µ,σ2,α,β ,ρ) random variables has a GNL(µ,σ2,α,β ,nρ) distribution).

Figure 11.1 (second and third rows) display some plots of the pdf of the GNL
distribution. In the centre and left panels the distributions are symmetric with α = β
and equal to 2 and 0.5 respectively. In the right-hand panels α = 0.5 and β = 2, with
the distributions being skewed to the right. A comparison of the three rows shows the
effect of changing ρ , corresponding to ρ = 1 (top row, ordinary NL); ρ = 2 (middle
row) and ρ = 0.5 bottom row. Notice how decreasing ρ results in a thinning of the
flanks of the distribution with the probability mass near zero becoming larger (more
peaked distribution). At the same time the tails become longer, although this does
show up in the figures.

The generalized dPlN distribution bears the same relationship to the GNL, as
does the dPlN to the NL (or the lognormal to the normal) i.e. the log of a generalized
dPlN random variable follows a GNL distribution. The shape of the generalized
dPlN distribution is somewhat similar to that of the dPlN. This can be seen in
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Figure 11.2, where the parameter values in the panels are the same as those in
Figure 11.1 - in particular the top row corresponds to ρ = 1 (ordinary NL); the
middle row to ρ = 2 and the bottom row to ρ = 0.5. Notice how the pdf is mono-
tone decreasing in the three panels in the middle column, because of the fact that
β = 0.5 < 1.

4 Fitting the Models to Income Data by Maximum Likelihood

To fit the dPlN to grouped income data (with cell boundaries 0 = x1 < x2 < x3 . . . )
by maximum likelihood, one needs to maximize numerically the log likelihood

∑
j

f j logθ j (11.16)

where the f j are the frequencies in the classes and θ j = θ j(µ,σ2,α,β ) is the prob-
ability of an observation in class j, or

θ j = FNL(logx j+1)−FNL(logx j)

where FNL is the cdf of the NL (11.3).
If the data are in the form of percentiles of the distribution, then the likelihood

is proportional to the joint distribution of the order statistics corresponding to the
empirical percentiles. For example if x(1),x(2), . . . ,x(20) are the 5th, 10th, . . ., 95th
percentiles of a sample of size N, then the log-likelihood is of the form

� = c+
19

∑
i=1

log fNL(logx(i))+
N
20

19

∑
i=0

log[FNL(logx(i+1))−FNL(logx(i))]. (11.17)

Typically in income distribution studies the sample size N will be very large, so
that the second summation term in the log-likelihood will dominate over the first.
If one ignores the first term one arrives at precisely the multinomial log likelihood,
(11.16), above. In either case one needs to maximize the log-likelihood (11.16) or
(11.17) numerically over the four parameters, µ,σ2,α and β . Method of moments
estimates, based on the first four moments (for log(income) – (11.7), (11.8)) can be
used as starting values.

To fit the 5-parameter GNL (or generalized dPlN) by maximum likelihood one
can follow a similar procedure, except in this case there is no closed form for the cdf,
corresponding to (11.3). However for given parameter values the cdf at a point can
be computed numerically by inverting the characteristic function (11.14). This en-
ables computation of the likelihood function and thence its maximization. Of course
the numerical inversion of the characteristic function adds considerably to compu-
tation time.
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Table 11.1: Goodness of fit of two four-parameter distributions (GB2 and NL); and two five-
parameter distributions (GB and GNL) to various empirical IDs. The goodness-of-fit statistics are
the sum of squared errors (SSE) and the sum of absolute errors (SAE) between observed and fitted
frequencies; the Pearson goodness-of-fit statistic (χ2) and the maximized log-likelihood plus an
additive constant, included for convenience of presentation (max �).

GoF
Stat.

Distribution ID

AU94 BE97 CA87 CA97 IT00 MX00 TW00 UK99 US97

SSE∗103 GB2 2.379 0.974 1.038 0.456 4.569 0.679 2.396 0.467 0.504
NL 1.820 0.849 0.684 0.234 4.480 0.530 2.203 0.226 0.322
GB 2.345 0.990 1.031 0.438 4.582 0.657 2.279 0.452 0.499

GNL 0.702 0.494 0.360 0.165 4.238 0.349 0.204 0.139 0.276
SAE∗10 GB2 1.437 1.078 1.037 0.791 2.418 0.892 1.408 0.696 0.738

NL 1.323 1.027 0.854 0.604 2.345 0.778 1.270 0.491 0.566
GB 1.353 1.096 1.027 0.757 2.393 0.837 1.321 0.686 0.719

GNL 0.982 0.787 0.612 0.465 2.233 0.630 0.484 0.406 0.548
χ2 GB2 195.2 54.1 191.2 228.5 628.7 127.1 495.6 133.1 418.6

NL 152.7 47.9 129.5 118.7 586.2 102.5 457.7 64.3 266.6
GB 192.1 53.0 189.6 219.5 624.7 123.7 470.4 128.9 414.6

GNL 66.4 29.1 66.8 84.3 557.0 68.2 50.0 42.1 218.5
max � GB2 -136.2 -32.8 -156.6 -330.8 -77.12 -110.1 -204.3 -99.8 -480.1

NL -114.7 -29.5 -126.4 -275.9 -63.36 -97.7 -184.8 -64.9 -406.2
GB -134.8 -32.2 -155.9 -326.3 -76.45 -108.3 -191.4 -97.6 -478.2

GNL -69.9 -20.0 -96.5 -258.7 -51.21 -80.7 -75.5 -53.3 -384.2

5 Results of Fitting to Empirical Distributions

Nine empirical income distributions were used. Data was obtained from the
Luxembourg Income Study (2004) website for a representative sample of cases
considered by Bandourian et al. (2002). The IDs used were household income in
each of the following: Australia, 1994; Belgium, 1997; Canada, 1987, 1997; Italy,
2000; Mexico, 2000; Taiwan, 2000; UK, 1999; USA, 1997. In each case twenty
intervals were used, with equal frequencies in each cell - the lower cell bound-
aries were thus 0, and the 5th through 95th percentiles, and parameter estimates
were obtained by maximizing the appropriate log likelihood for the best four- and
five-parameter models found by Bandourian et al. (2002)(viz. the GB2 and the
GB) along with the four-parameter NL model and the five-parameter GNL model.
Goodness of fit was assessed using: the sum of squared errors (SSE); the sum of
absolute errors (SAE); the Pearson chi-squared statistic (χ2) and the maximized log
likelihood (max �) all for percentage frequencies as in Bandourian et al. (2002). The
results are given in Table 11.1. Note that, to simplify presentation, the same constant
has been added to each value of max � in a given column, in Table 11.1. This is of
no importance since the log-likelihood is only defined up to an additive constant.

While the numerical results for the GB2 and GB are similar to those of Ban-
dourian et al. (2002), there are some small differences. Some possible explanations
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for these differences are: (i) end-point differences - we used 0 and ∞ for the lower
and upper boundaries of the smallest and largest class; (ii) differences in retrieval of
data from LIS - we used SAS 9.13; (iii) possibility of multiple local maxima of the
likelihood function.

As can be seen from the table, in all cases the four-parameter NL is performing
better than the four-parameter GB2; and indeed better than the five-parameter GB.
The GNL performs considerably better than all of the other distributions.

We emphasize that the nine cases reported are the only ones to which model fit-
ting was done. They were not selected because the NL and GNL fitted well. We
anticipate that similar results would hold for most if not all of the 83 datasets con-
sidered by Bandourian et al. (2002), and indeed for most empirical IDs.

6 Conclusions

The results of fitting theoretical distributions to empirical income data, presented
in the last section, show overwhelmingly how the dPlN fits better than the GB2
distribution. Since Bandourian et al. (2002) claimed that the GB2 was the best fit-
ting 4-parameter model to date, it would seem that the title “best-fitting 4-parameter
model” can now be fairly applied to the dPlN. Bearing in mind that the dPlN satis-
fies all of the demands of a good income-distribution model as outlined by Dagum
(1983) in his Encyclopedia of Statistical Sciences entry on Income Distributions
(viz. (i) it is based on a plausible stochastic model; (ii) it satisfies Pareto’s law in the
upper tail; and (iii) it fits well to data) serious consideration should be given to its
widespread use in income modelling.

The 5-parameter GNL (or generalized dPlN) model provides an even better fit
than the dPlN, as of course it should since the dPlN is nested within it. However
there are no closed-form expressions for its pdf or cdf, and one might question
whether one needs 5 parameters to model an income distribution (especially if data
is reduced to frequencies in twenty classes). Also, unlike the dPlN, it is not based
on a stochastic model foundation; and furthermore, and of considerable importance,
fitting the GNL to data is computationally difficult and slow.
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CHAPTER 12

Fuzzy Monetary Poverty
Measures under a Dagum

Income Distributive
Hypothesis
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Abstract

This chapter explores the potential of introducing the Dagum distribution into the
IFR (Integrated Fuzzy Relative) poverty measure. This implies using the Dagum
model for fitting the empirical cumulative distribution that forms one of the com-
ponents of the membership function to the set of poor in the IFR methodology.
Moreover, we propose a heterogeneous Dagum model in order to allow the form of
income distribution to vary with personal characteristics. In this way, we are able to
make comparisons across sub-groups of the population between the traditional and
the IFR measures of poverty.

1 Introduction

Poverty estimates are mainly used in policy making in order to design a plan
of action to help the public authorities (international, national, regional) reduce
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unfavourable living conditions in defined segments of a population. Such segments
normally refer to demographic or geographical (or both) variables, while the hard-
ship characteristics can be of monetary and/or of non-monetary nature; moreover
they can be chronic, persistent or cyclical. Therefore policy makers should be in a
position to undertake specific and efficient policy action.

A possible method for evaluating ex-ante the effects of anti-poverty policies is
micro-simulation, where referring to a set of sufficient and reliable variables of liv-
ing conditions (poverty indicators) and to adequate models of diffusion and distribu-
tion of such variables (or of, at least, the most relevant of them), different parametric
hypotheses can be identified and statistically tested. A model representing personal
or household income distribution which has the two properties of great adequacy
and of deep economic meaning of its parameters can be very useful for analysing
plausible outcomes associated with alternative ways of decreasing poverty or im-
proving equality in income distribution. An income distributive model with similar
characteristics is the so-called 3-parameter Dagum model, the socio-economic and
mathematical foundations of which are well-known and the performances of which
have been widely experimented in several different economic realities. In particular,
the model parameters have a specific economic meaning and for this reason each
model has an immediate advantage over its empirical equivalent. Model parame-
ters reflect substantially different economic changes that can influence the income
distribution.

This means that deterioration or improvement in the income distribution, as a
result of a number of factors, can be related to them. In particular, deterioration can
occur when the income distribution moves as a whole to the left and consequently
the total mean income and the mean income of each decile decrease; an improve-
ment can be the result of a tax cut that benefits a wider range of individuals or of
localized subsidies directed at the poorest individuals and so forth.

The aim of this Chapter is to explore the potentiality of the Dagum distribution
into the IFR (Integrated Fuzzy Relative) poverty measure. This implies using the
Dagum model for fitting the empirical cumulative distribution that is one of the
components of the membership function to the set of the poor in the IFR methodol-
ogy.

In this way, our proposal bridges two research fields to which Camilo Dagum
greatly contributed during his long authoritative career: income distribution and the
fuzzy approach to poverty measurement.

In the first half of the 1990s, scholars working on poverty began applying the con-
cept of total fuzzy and relative (TFR) measures (Cheli and Lemmi, 1995). During
this period Dagum spent long periods of time at the University of Siena, participat-
ing in the activities of the Research Centre on Income Distribution. It turns out that
his contribution played a crucial role in this research program and in fact a paper
bearing his name (Dagum et al., 1992) was presented at an international conference
in which the TFR poverty measures were proposed for the first time to the inter-
national scientific community (Warsaw, 1992). In subsequent years Dagum further
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developed an approach similar to TFR leading to the so-called Dagum decomposi-
tion (Dagum and Costa, 2004).23

The Chapter is made up of five Sections. After this introduction, Section 2 de-
scribes the Integrated Fuzzy and Relative (IFR) approach to the measurement of
poverty. Section 3 presents some theory behind the Dagum type I income distribu-
tion, and its use in the IFR approach. Section 4 briefly describes the data set of the
Italian survey of EU-SILC (European Union - Statistics on Income and Living Con-
ditions) for the year 2004, which is the basis of the application. Section 5 concludes
the Chapter.

2 The Integrated Fuzzy and Relative Approach

2.1 Fuzzy set approach to poverty measurement

One of the main limitations of the traditional approach to poverty measurement
is the rigid poor/non-poor dichotomisation; it is undisputable that such a clear-cut
division causes a loss of information and removes the nuances that exist between the
two extremes of substantial welfare on the one hand and distinct material hardship
on the other. In other words, poverty should be considered as a matter of degree
rather than as an attribute that is simply present or absent for individuals in the
population.

An early attempt to incorporate this concept at the methodological level (and
in a multidimensional framework) was made in Cerioli and Zani (1990) which, in
proposing the Totally Fuzzy and Absolute (TFA) approach, drew inspiration from
the theory of Fuzzy Sets initiated in Zadeh (1965) and developed in Dubois and
Prade (1980). Given an X set of elements x∈X , any fuzzy subset A of X is defined as
follows: A = {x,µA (x)} , where µA (x): X → [0,1] is called the membership function
(m.f.) in the fuzzy subset A.

The value µA (x) indicates the degree of membership of x in A. Thus µA (x)= 0
means that x does not belong to A, whereas µA (x)= 1 means that x belongs to A com-
pletely. With µA (x) ∈ (0−1), x belongs to A partially and its degree of membership
of A increases in proportion to the proximity of µA (x) to 1.

23 He was also the promoter, together with Samuel Kotz and one of the authors of this Chapter, of
an international conference to commemorate two authoritative social scientists, Max Otto Lorenz
and Corrado Gini. Under his guidance, the conference was held at the Certosa di Pontignano of
the University of Siena (during the month of May 2005) where he had often spent periods study-
ing, working and carrying out research at the Centre for Research on Income Distribution at the
University of Siena. For this reason this place was very dear to him. In his memory, the above-
mentioned Centre is now dedicated to him and the people who work there remember Camilo with
great affection and gratitude.

At that Conference the paper by Betti et al. (2006) was presented for the first time. It was
the first to link the fuzzy set approach to the Generalised Gini coefficient, the basis for the new
proposal of this Chapter.
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The original proposed approach in Cerioli and Zani (1990) was later developed
in Dagum et al. (1992) and in Cheli and Lemmi (1995) giving origin to the so-called
Totally Fuzzy and Relative (TFR) approach. Both methods have been subsequently
applied by a number of authors (see Berenger and Verdier-Chouchane (2007) for an
excellent review of the literature). For instance, Chiappero (2000), Lelli (2001) and
Qizilbash (2003) use the TFR method in order to analyse poverty or well-being ac-
cording to Sen’s capability approach. Baliamoune-Lutz (2006) was the first to apply
the fuzzy set theory in order to construct measures at macro level. Moreover, re-
cently McGillivray and Clarke (2006), Ruggeri et al. (2006) and Rojas (2006) have
focused their attention on the measurement of well-being using fuzzy set theory.

2.2 From the TFR to the IFR

The TFR method was refined in Cheli (1995a) which used it to apply the fuzzy
approach to poverty measurement to a dynamic context where two consecutive
panel waves are available. From this point on, the methodological implementation
of this approach took two directions, with a somewhat different emphasis despite
their common orientation and framework. The first direction emphasized the time
dimension (Cheli and Betti, 1999; Betti et al., 2004) via the use of transition ma-
trices. Another direction is taken in Betti and Verma (2008) which focuses more
on capturing the multi-dimensional aspects of poverty and develops the concepts of
‘manifest’ and ‘latent’ deprivation to reflect the intersection and union of different
dimensions.

In this Chapter we take into account a further development of the TFR which has
led to an Integrated Fuzzy and Relative (IFR) approach to the analysis of poverty
and social exclusion (Betti et al., 2006; Lemmi and Betti, 2006).

The IFR measure is defined by taking into account the TFR approach (Cheli
and Lemmi, 1995) and the approach of Betti and Verma (1999). Here we take into
account only the monetary version of the IFR; let yi be the equivalised income of
individual i, the IFR measure is given by:

µ = FMi = (1−Fi)
α−1 (1−Li) =

(
∑n

γ=i+1 wγ

∑n
γ=2 wγ

)α−1 (
∑n

γ=i+1 wγ yγ

∑n
γ=2 wγ yγ

)
; µn = 0

(12.1)

where Fi is the income distribution function, wγ is the sample weight of individual
of rank γ (1 to n) in the ascending income distribution and finally α is a parameter
chosen so that the mean of these measures equals the head count ratio (H) given by:

H =

(
n

∑
ı=1

wi

)−1 n

∑
ı=1

wiI {yi < z} (12.2)

where I {.} is the indicator function, z is the poverty line.
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3 The Dagum Income Distribution Model

3.1 A brief introduction to the Dagum models

In the analysis of income distribution the mathematical description of the size distri-
bution of income to approximate the true distribution of income has been frequently
considered one of the main objectives of many researchers in the formal analysis of
welfare economics. In particular, we focus our attention on the parametric specifi-
cation of the Dagum model.

Dagum (1977) introduced his model in order to fit the distribution of personal
income and he discussed the essential and important (but not necessary) properties
for a probability density function to be specified as a model of income or wealth
distribution. This paper was a further generalization of the one proposed by him
during the first half of the 1970s (Dagum, 1973, 1975). The Dagum model was
independently specified also by Fattorini and Lemmi (1979) who derived the same
model starting from a set of stochastic assumptions on the infinitesimal mean and
variance of a continuous stochastic process. Then later Dagum proposed a further
generalization (Dagum, 1980a) underlining the relevance of the economic meaning
of the model parameters. The goodness of fit of this model (in both its four and
three-parameter versions) outperformed the models most frequently applied in the
literature such as the lognormal and the Gamma models (Aitchison and Brown,
1957; Salem and Mount, 1974) and also the Singh and Maddala (1976) model.

In fact, empirical applications based on income data from several countries -
Canada, the United States, Italy and Argentina (Dagum, 1983, 1990; Botargues and
Petrecolla, 1999) - provided strong evidence of the power of the Dagum model in
producing superior descriptions of the whole range of income. Dagum and Lemmi
(1989) showed that in a three-parameter version, the Dagum model provides a very
flexible parametric distribution and superior performance in a considerable number
of empirical results compared with the most popular and widespread interpreta-
tive models (Kleiber, 1996). Recently, Dastrup et al. (2007) explored the impact of
taxes and transfer payments on the distribution of income across 13 countries for
different years using the Luxembourg Income Study data, and discovered that the
three-parameter Dagum distribution shows one of the best fits for earnings in almost
all countries.

In the statistics literature, the Dagum model belongs to a classification system
drawn up by Burr (1942) and, in particular, the three-parameter version is known as
Burr III distribution (Tadikamalla, 1980). This form is the simplest of the Dagum
models and is known as Dagum type I. Considering the great performance of the
fitting of the three-parameter Dagum distribution, in this Chapter, we refer only to
this one.

Let y be the random variable with cd f given by:

F (y) =

{ 1

(1+λy−δ )β ,y > 0

0 ,y ≤ 0

}
(12.3)
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where λ > 0, δ > 0, β > 0 . The mathematical specification in (12.3) describes a
Dagum type I distribution.

The corresponding probability density function (pd f ) is given by:

f (y) = βλδy−δ−1
(

1+λy−δ
)−β−1

. (12.4)

As we said above, Dagum (1977, 1980b) explained the well-defined economic
meaning of the three parameters: i) λ is a scale parameter, moreover, λ (− 1

δ ) has the
same dimension as income y. For this reason, it accounts for the monetary scale,
henceforth it is a tool to adjust for inflation (Dagum and Lemmi, 1989) and to facili-
tate cross-country comparisons of income distribution that are expressed in different
monetary units; ii) δ and β are shape parameters and the Gini ratio is a decreasing
function of both; for this reason, they are also interpreted as equality parameters.
Moreover, they are scale free, thus, the scale parameter λ does not affect the mea-
surement of the parametric Gini ratio.

Model (12.3) also has an explicit mathematical expression for inequality mea-
sures; thus, for example, the Lorenz curve is given by:

L(y) =
B
(

t
1
β ;β + 1

δ ,1− 1
δ

)
B
(
β + 1

δ ,1− 1
δ
) (12.5)

where t = F (y) and B(.) is the Beta function.
Moreover, this model also yields an explicit mathematical solution for location

measures (median, mode, mean). For example, the median is given by:

ξ0.5 = λ
1
δ

[(
1

0.5

) 1
β −1

]−1
δ

. (12.6)

Using equation (12.6) consequently allows estimating a poverty line zD as a quan-
tile poverty line. This means that zD = ηξq, where ξq is the theoretical quantile of
order q of the distribution in (12.6) and η is a parameter greater than zero. Given zD
we can then compute a poverty measure as the head count ratio HD as:

H (zD) = F (zD|λ ,β ,δ ) =
1(

1+λ z−β
D

)δ (12.7)

that is the proportion of the population below the poverty line.

3.2 The use of the Dagum model in the IFR approach

The IFR measure is based on two main considerations: i) it takes into account both
the proportion of individuals less poor than the person concerned, and the share
of the total equivalised income received by all those less poor than the person
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concerned; ii) both c.d.f. and Lorenz curve are estimated from the data and so they
accommodate large flexibility for modelling personal income data.

On the other hand, the empirical estimation of F (.) and L(.) (see equation (12.1))
has some limitations which can be overcome by a parametric specification for the
size distribution of income. In fact, the researcher generally believes that the prob-
ability distribution underlying a process that generates income data is reasonably
smooth. Therefore, by smoothing the data using a parametric model, one expects
to obtain better estimates rather than if one just uses the empirical data. Moreover,
the smoothing can be very useful in order to recover relevant information which are
currently unavailable or which have been lost by focusing on published measures
that are not calculated coherently over time by government agencies. Furthermore
they can facilitate both the mathematical analysis of the basic structure of income
and harmonize information from two or more sources.

Starting from this consideration, here we propose to model F (.) using a Dagum
type I distribution whose parameters have a well-defined economic meaning. Such
a model in fact summarizes in three parameters the regularities discovered in em-
pirical distribution. Also, they can be employed to compute summary measures
that can be compared spatially and temporally. This is because, as we explained in
Section 3.1, its location, poverty and inequality measures can be expressed in terms
of its distributional parameters. Moreover, the sufficient flexibility of the Dagum
type I model provides a suitable fit for observed personal income distribution of de-
veloped as well as developing countries. Following this perspective, equation (12.1)
is computed in the same way, as explained in Section 2, but F (.) is assumed to fol-
low a Dagum type I distribution whose parameter estimates are obtained using max-
imum likelihood estimation by maximizing the log-likelihood function, given by:

lnL =
n

∑
i=1

ωi

(
lnβ + lnλ + lnδ +(−δ −1) lnyi − (β +1) ln

(
1+λy−δ

i

))
(12.8)

where ωi is the sample weight of individual i.24 In order to distinguish the Integrated
Fuzzy and Relative measure based on Dagum type I model with respect to the one
expressed in equation (12.1), we term this measure as FMD

i .

3.3 The use of the heterogeneous Dagum model in the IFR
approach

In inequality and poverty study, one of the main economics aims of analysts is to
make spatial or temporal (or both) comparisons in order to discover poverty (in-
equality) differences among sub-groups of population or poverty (inequality) per-
sistence across time. In this Chapter, we only referred to spatial comparison.

24 Also Cheli (1995b) used the Dagum model in the TFR approach.
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In Section 3.2 we have introduced the Dagum model in the IFR approach and
we have shown how the α parameter is computed so that the mean of FMi equals
the head count ratio H. In this way, we are able to make comparisons across sub-
groups of the population (as for example different regions) between the traditional
measure H and the IFR measure defined in equation (12.1). However, following this
perspective we do not use all the capacities of the Dagum model as the head count
ratio can be estimated using equation (12.7). If the model fits well we expect that the
observed H and the estimated HD from the specified distribution are very similar.

Taking into account that the aim of the study is to compare different population
sub-groups we can generalize equation (12.3) in order to allow the form of income
distribution to vary with personal characteristics. In this manner, we define a het-
erogeneous Dagum model (Biewen and Jenkins, 2005; Quintano and D’Agostino,
2006)25 because each model parameter may be made heterogeneous as follows:

βi = exp(xiγ1) ;δi = exp(xiγ2) ;λi = exp(xiγ3) (12.9)

where xi is a 1×m vector of personal characteristics and γ1,γ2,γ3 are m×1 unknown
parameter vectors to be estimated. Thus equation (12.3) becomes:

F (y;x;λ ;β ;δ ) =

⎧⎨⎩
1(

1+exp(xiγ3)y−exp(xiγ2)
)exp(xiγ1) ,y > 0

0 ,y ≤ 0

⎫⎬⎭ (12.10)

The maximum likelihood estimation of parameters are then obtained by maxi-
mizing the weighted log-likelihood function, given by:

lnL =
n

∑
i=1

ωi

(
lnβi + lnλi + lnδi +(−δi −1) lnyi − (βi +1) ln

(
1+λiy

−δi
i

))
(12.11)

The parameters γ1,γ2,γ3 do not have a direct meaning but they can be used in or-
der to calculate synthetic measures of the estimated income distribution such as the
median, poverty line, head count ratio, etc. Suppose, for example, we have one cat-
egorical variable with five items. Once the model parameters have been estimated,
we can compute the median, the poverty line and the head count ratio relative to
each item of the considered variable. This means that if we are interested in study-
ing personal differences with respect to macro-regions, the heterogeneous Dagum
model allows overcoming the estimation of different Dagum models for each macro-
region. In each macro-region k(k = 1,2, ...,K) the head count ratio with respect to
the national poverty line zD defined in Section 3.1 is computed as:

Hk
D (zD , x̃) = F (zD |γ1,γ2,γ3, x̃) =

1(
1+ exp(x̃γ3)z−exp(x̃γ2)

D

)exp(x̃γ1) (12.12)

25 For heterogeneous income models see also Pudney (1999).
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where x̃ identifies the vector of covariates x for macro-region k.
Following this approach we can now compute the IFR measure using equation

(12.5) where in this case α is chosen so that the mean of these measures, FMD,
equals the head count ratio HD and F(.) follows a Dagum type I distribution without
personal heterogeneity.

4 Empirical Analysis

4.1 The data set: EU-SILC year 2004

The European Union collection of Statistics on Income and Living Conditions, EU-
SILC has been developed as a flexible yet comparable instrument covering data and
data sources of various types: cross-sectional and longitudinal; household-level and
person-level; economic and social; from registers and interview surveys; from new
and existing national surveys or other sources. It envisages the creation of one or
more micro-data base(s) in each country to be used for the follow-up and monitoring
of income and social exclusion at the EU and national level (Verma and Betti, 2006).

The empirical analysis conducted in the present Chapter is based on the first
wave of the Italian sub-sample of the EU-SILC survey conducted in 2004 and which
has collected information on income for the reference year 2003. The sample is
composed of 61,429 individuals representative of the Italian population.

4.2 Results for Italian Macro-regions, year 2004

Table 12.1 illustrates the maximum likelihood estimates for the Dagum type I model
respectively specified in (12.3) and in its heterogeneous version in (12.10). The
Dagum type I model is made heterogeneous by considering a regional effect that is
represented by the four dummy variables in Table 12.1. They are so defined: ITC
(1 if north-western regions), ITD (1 if north-eastern regions), ITF (1 if southern re-
gions), ITG (1 if island regions), the reference category is the central Italian regions.
The log-likelihood ratio test statistics (LR) suggest a statistical improvement of the
heterogeneous Dagum type I distribution.

With regard to the goodness of the overall fit of the two models we refer to
Cox-Snell residuals (Cox and Snell, 1968).26 The Cox-Snell residuals are shown
respectively in Figure 12.1 for the Dagum type I model and in Figure 12.2 for the
heterogeneous Dagum type I model. The results indicate that the fit of the Dagum
distribution is sufficiently good. In fact, very few observations deviated from the 45-
degree line. In fact, only 0.9 percent of deviations is greater than 7 in Figure 12.1

26 See Quintano and D’Agostino (2006) for a methodological explanation of the use of Cox-Snell
residuals in parametric income distribution.
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Table 12.1: Results of estimation of parameters of Dagum Type I Model (1,000 euro, 2004)

Dagum type I without individual heterogeneity
β δ λ

0.7436 3.2736 6319.6294

-LogL=211658.271

Dagum type I with individual heterogeneity
Variables Estimates S.E. p-value

γ1 Intercept -0.1684 0.0301 0.0001
ITC +0.0853 0.0395 0.0308
ITD +0.1952 0.0443 0.0001
ITF -0.1805 0.0404 0.0001
ITG -0.0179 0.0505 0.7232

γ2 Intercept +1.2361 0.0139 0.0001
ITC -0.0224 0.0179 0.2122
ITD -0.0176 0.0194 0.3664
ITF -0.0491 0.0194 0.0115
ITG -0.1388 0.0234 0.0001

γ3 Intercept +9.2733 0.1685 0.0001
ITC -0.0765 0.2175 0.7248
ITD -0.1661 0.2369 0.4834
ITF -1.3477 0.2271 0.0001
ITG -2.2900 0.2516 0.0001

-LogL=207500.495

Likelihood ratio test (LR) = 8315.552 (p-value = 0.0001)

and only 1.5 percent is greater than 4 in Figure 12.2, which are both negligible for
overall fit. We can therefore conclude that the Dagum type I model can be used as a
theoretical model for describing personal income distribution in both versions.

The parameter estimates, presented in Table 12.1 have then been used to calculate
the IFR measure for income using the methodology described in Section 3.2 and
in Section 3.3. Then the regional effect on poverty measures is studied making a
comparison between the traditional indicator HCR and the IFR measure. In Table
12.2, results of the empirical analysis are presented.

Using (12.2), we find that H is equal to 0.1916 with a poverty line27 z of 7649.3
euros and we estimate α to be equal to 4.8267, whereas using (12.7) we find that
H(zD) is equal to 0.1920 with a poverty line zD of 7618.9 euros and the estimated α
for the IFR measures is equal to 4.8144. The percentage difference between the two
poverty lines z and zD is almost negligible being equal to 0.40.

27 The poverty line z is also defined as a quantile poverty line as zD, but in this case ξq is the
empirical quantile of order q = 0.5 of the distribution of equivalised income, i.e. ξq = sup{y|F(y)≤
q}) if η = 0.6 the poverty line adopted by Eurostat is defined (60% of the median equivalised
income).
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Fig. 12.1: Cox-Snell Residuals of Dagum type I

Fig. 12.2: Cox-Snell Residuals of heterogeneous Dagum type I
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Table 12.2: Poverty measures among macro-regions

HCR computed on observed data and IFR using estimates from Dagum type I model

Macro-region H FMD

North-West 0.1031 0.1173
North-East 0.0860 0.1079
Centre 0.1285 0.1434
South 0.3396 0.3139
Islands 0.3621 0.3223

National H 0.1916
α 4.8267
z 7649.3

HCR computed on heterogeneus Dagum type I model and IFR using estimates from
Dagum Type I model

Macro-region H (zD) FMD

North-West 0.1047 0.1176
North-East 0.0904 0.1083
Centre 0.1338 0.1439
South 0.3426 0.3146
Islands 0.3570 0.3229

National H (zD) 0.1920
α 4.8144
zD 7618.9

(z-zD) 0.40 %

Moreover, the differences between H and H(zD) at national and at macro-regions
level are very small. This confirms the excellent goodness of fit of the Dagum type
I model. Taking the latter into account the interpretative and economic discussion
is based on the results presented at the bottom of Table 12.2 as both the head count
ratio and the integrated fuzzy and relative measure are based on the Dagum type I
model. As expected, the head count ratio in southern regions and in islands (34.26
percent and 35.70 percent respectively) is much higher than the ones estimated in
the other macro-regions. In particular, North-east regions show the lowest value of
the head count ratio, only 9.04 percent of individuals are below the poverty line.
These empirical results have an obvious interpretation, as it is well known that the
socio-economic development in Italy is characterized by a very heavy regional effect
that shows the Northern regions at the top of the classification and the Southern and
Island regions at the bottom. The same picture is confirmed by the IFR measure.
In fact, the degree of membership to the set of poor increases if individuals live in
the South of Italy or in the Island regions. For example, people living in North-west
regions have a degree of poverty equal to 0.1176 which is much lower than those
who live in the Southern regions (0.3146).
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However, the differences are generally smoothed with respect to the traditional
measure and the difference between North-west and North-east regions is espe-
cially much less marked. This last result is also confirmed in Betti and Verma
(2008), based on the last wave (2001) of the European Community Households
Panel (ECHP).

As a final remark, it is also very interesting to note that the estimated values of
FMD presented in Table 12.2 are also very similar to the FM based on equation
(12.1) that, as we explained in Section 2, represent the empirical evaluation of the
membership function. In fact, we find FM equal to 0.1119 in North-west regions,
FM equal to 0.1015 in North-east regions, FM equal to 0.1389 in Centre regions,
FM equal to 0.3232 in Southern regions and finally FM equal to 0.3335 in Island
regions, with an estimated α equal to 11.9548.

5 Conclusions

This Chapter showed how the Dagum model can be used in order to fit the empirical
cumulative distribution in the IFR approach. The model parameters were also spec-
ified as a function of a macro-region variable so that spatial comparisons in poverty
analysis can be made. The method was applied to the first wave of the Italian sample
of the EU-SILC survey conducted in 2004. Different degrees of poverty were found
across macro-regions. North-western regions showed the lowest degree of poverty
and the difference with the southern and island regions was remarkably evident.

The goodness of fit of the Dagum distribution was good and the model therefore
represented very well the underlying process generating income data. This evidence
confirms that the Dagum type I model, also easily implemented in the IFR approach,
provides a useful way for discovering the true pattern of the process that generates
the degree of poverty. Moreover, the estimated model and the corresponding mem-
bership function in 2004 can then be adapted to the following year taking into ac-
count the forecasted inflation rate between the two years using the scale parameter
λ without having to estimate the model again in 2005. Logically, the potential of
the Dagum model in the IFR approach can be further explored by, for example, in-
troducing more than one covariate into the model parameters. Both individual and
macroeconomic factors can be considered and the relative changes in the average of
the membership function can be explored over time. This could be a good starting
point for future research.
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CHAPTER 13

Modelling Lorenz Curves:
Robust and Semi-parametric

Issues
Frank A. Cowell† and Maria-Pia Victoria-Feser‡

Abstract

Modelling Lorenz curves (LC) for stochastic dominance comparisons is central to
the analysis of income distributions. It is conventional to use non-parametric statis-
tics based on empirical income cumulants which are used in the construction of
LC and other related second-order dominance criteria. However, although attrac-
tive because of its simplicity and its apparent flexibility, this approach suffers from
important drawbacks. While no assumptions need to be made regarding the data-
generating process (income distribution model), the empirical LC can be very sen-
sitive to data particularities, especially in the upper tail of the distribution. This
robustness problem can lead in practice to “wrong” interpretation of dominance or-
ders. A possible remedy for this problem is the use of parametric or semi-parametric
models for the data-generating process and robust estimators to obtain parameter es-
timates. In this paper, we focus on the robust estimation of semi-parametric LC and
investigate issues such as sensitivity of LC estimators to data contamination (Cowell
and Victoria-Feser, 2002), trimmed LC (Cowell and Victoria-Feser, 2006), and in-
ference for trimmed LC (Cowell and Victoria-Feser, 2003), robust semi-parametric
estimation for LC (Cowell and Victoria-Feser, 2007), selection of optimal thresh-
olds for (robust) semi-parametric modelling (Dupuis and Victoria-Feser, 2006), and
use both simulations and real data to illustrate these points.

† STICERD and Economics Department, London School of Economics and Political Science.
‡ HEC, Faculty of Economics and Social Sciences, University of Geneva. Partially supported by
Swiss National Science Foundation, grant # PP001-106465.
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1 Introduction

The Lorenz curve is central to the analysis of income distributions, embodying
fundamental intuition about inequality comparisons (Dagum, 1985; Cowell and
Victoria-Feser, 2007). Ranking theorems based on Lorenz dominance and the as-
sociated concept of stochastic dominance are fundamental to the theoretical welfare
economics of distributions. But formal welfare propositions can only be satisfacto-
rily invoked for empirical constructs if sample data can be taken as a reasonable rep-
resentation of the underlying income distributions under consideration. In practice
income-distribution data may be contaminated by recording errors, measurement
errors and the like and, if the data cannot be purged of these, welfare conclusions
drawn from the data can be seriously misleading. Indeed, it has been formally shown
that Lorenz and stochastic dominance results are non-robust (Cowell and Victoria-
Feser, 2002). This means that small amounts of data contamination in the wrong
place can reverse unambiguous ranking orders: the “wrong place” usually means in
the upper tail of the distribution. This is of particular interest in view of a burgeon-
ing recent literature that has focused on empirical issues concerning the upper tail
of both income distributions and wealth distributions (Atkinson, 2004; Kopczuk and
Saez, 2004; Moriguchi and Saez, 1991; Piketty, 2001; Piketty and Saez, 2003; Saez
and Veall, 2005). So it is important to have an approach that enables one to control
for the distortionary effect of upper-tail contamination in a systematic fashion. This
paper addresses the problem by introducing a robust method of estimating Lorenz
curves and implementing stochastic-dominance criteria. To this end we have assem-
bled some recent research on this issue, mainly drawing on the results of Cowell
and Victoria-Feser (2006) and Cowell and Victoria-Feser (2007).

Our approach is organized as follows. We begin, in section 2, by setting out
the formal background to the Lorenz curve and the estimation problems associated
with extreme values. Section 3 develops the semi-parametric approach to modelling
Lorenz curves and section 4 discusses the practical problem of parameter choice in
implementing the method. Section 5 applies the method to UK data and section 6
concludes.

2 Background

We may set out the formal representation of the Lorenz curve using the following
simple framework. Let F be the set of all univariate probability distributions and X
be a random variable with probability distribution F ∈ F and support X ⊆ R. F can
be thought of as a parametric model Fθ . We shall write statistics of any distribution
F ∈ F as a functional T (F); in particular we write the mean as µ(F) :=

∫
xdF(x).

A key distributional concept derived from F is given by the qth cumulative functional
C : F× [0,1] �→ X:

C(F ;q) :=
∫ Q(F ;q)

x
xdF(x) = cq. (13.1)
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where x := infX and

Q(F ;q) = inf{x|F(x) ≥ q} = xq (13.2)

is the quantile functional. The importance of this concept is considerable in the
practical analysis of income distributions: for a given F ∈ F, the graph of C(F,q)
against q describes the generalized Lorenz curve (GLC); normalizing by the mean
functional µ(F) =C(F,1) one has the Relative Lorenz curve (RLC) (Lorenz, 1905):

L(F ;q) :=
C(F ;q)
µ(F)

(13.3)

The GLC and RLC are fundamental to a number of theorems drawing welfare-
conclusions from income-distribution data and other types of data.

Now consider the problem of estimating Lorenz curves. There are broadly three
approaches.

1. Nonparametric methods. Cumulative functionals can obviously be estimated
by replacing F in (13.1) by the empirical distribution of a sample of incomes
x1, . . . ,xn

F(n)(y) =
1
n

n

∑
i=1

ι (y ≤ xi)

where ι (·) is the indicator function. However, this can lead to misleading con-
clusions when it comes to comparing distributions in terms of their cumulative
functionals when there is data contamination (Cowell and Victoria-Feser, 2002).
One way of avoiding the potential bias induced by extreme data in the tails is to
rely on the concept of trimmed Lorenz curves: basically, F in (13.1) is replaced
by the trimmed distribution F̃α given by:

F̃α(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < Q(F,α)

F(x)−α
1−α if Q(F,α) ≤ x < Q(F,α)

1 if x ≥ Q(F,α)

with α +α = α . Using F̃α instead of F(n) amounts to trimming the sample data
below Q(F,α) and above Q(F,α), and then compute empirical cumulants. The
theoretical aspects are handled in Cowell and Victoria-Feser (2006).

2. Parametric modelling. Alternatively, one can estimate F using a model (a func-
tional form) such as the one proposed by Dagum (1977).28 The parameters
should obviously be estimated in a robust fashion (see e.g. Victoria-Feser and
Ronchetti (1994), Victoria-Feser (1995)), but as has been discussed in Cowell

28 Other models can be found in Dagum (1980), Dagum (1983) and McDonald (1984) and an
excellent overview is provided by Kleiber and Kotz (2003).
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and Victoria-Feser (2007), a full parametric estimation forces the data into the
mould of a functional form that may not be suitable for comparisons.

3. Semi-parametric approach. The problem that a single, tractable functional form
may not be appropriate for the data motivates the use of an approach in which
the data above a threshold x0 are (robustly) fitted to a parametric distribution,
while the rest of the data are treated nonparametrically. The semi-parametric ap-
proach is of particular interest because of its ad hoc use in practical treatment of
problems associated with the upper tails of distributions. For example a Pareto
tail is sometimes fitted to data in cases where data are sparse in order to provide
better estimates of upper tail probabilities or higher quantiles.

It is this third estimation method, the semi-parametric approach, that forms the
focus of the present paper.

3 Semi-parametric robust estimation of Lorenz curves

If the range of X is bounded below – 0 is a typical value – the problems with con-
taminated data occur in the upper tail of the distribution (Cowell and Victoria-Feser,
2002). A case can therefore be made for using parametric modelling only in the up-
per tail and estimating the parameter of the upper-tail model robustly. The rest of the
distribution is estimated using the empirical distribution function. If no restriction is
imposed on the range of the random variable of interest, then the results below can
easily be extended accordingly.

Cowell and Victoria-Feser (2007) proposed an approach which is suitable for
any parametric model for the upper tail of the distribution. They however choose a
model that is of special relevance empirically, that is the Pareto distribution given
by

Fθ (x) = 1−
[

x
x0

]−θ
, x > x0 (13.4)

with density f (x;θ) = θx−(θ+1)xθ
0 . The parameter of interest is θ .29 A semi-

parametric approach will combine a non-parametric RLC for say the 100(1−α)%
lower incomes and a parametric RLC based on the Pareto distribution for the 100α%
upper incomes. Therefore x0 is determined by the 1−α quantile Q(F ;1−α) de-
fined in (13.2). The method for a suitable choice of x0 is given in section 4. The full
semi-parametric distribution F̃ of the income variable X is

F̃(x) =
{

F(x) x ≤ x0
F(x0)+(1−F(x0))Fθ (x) x > x0

where F could be in principle any suitable parametric distribution, but in our case
will be estimated by the empirical distribution. With x0 = Q(F ;1−α), we have

29 θ is assumed to be greater than 2 for the variance to exist.



Modelling Lorenz Curves: Robust and Semi-parametric Issues 245

F̃(x) =

{
F(x) x ≤ Q(F ;1−α)

1−α
[

x
Q(F ;1−α)

]−θ
= x > Q(F ;1−α)

. (13.5)

For x > Q(F ;1−α), the density f̃ is

f̃ (x;θ) = αθQ(F ;1−α)θ x−θ−1 .

In particular

f̃ (x1−α ;θ) =
αθ

x1−α
. (13.6)

The quantile functional is then obtained using (13.5) and is given by

Q(F̃ ,q) =

{
Q(F,q) q ≤ 1−α

Q(F ;1−α)
(

1−q
α

)−1/θ
q > 1−α

Hence the cumulative income functional defining the semi-parametric GLC
becomes

C(F̃ ;q) =
∫ Q(F̃ ;q)

x
xdF̃(x) (13.7)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ Q(F ;q)
x xdF(x) q ≤ 1−α

∫ Q(F ;1−α)
x xdF(x)

+α
∫ Q(F ;1−α)

(
1−q

α

)−1/θ

Q(F ;1−α) xdFθ q > 1−α

(13.8)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ Q(F ;q)
x xdF(x) q ≤ 1−α

∫ Q(F ;1−α)
x xdF(x)

+α θ
1−θ Q(F ;1−α)

[(
1−q

α

) θ−1
θ −1

]
q > 1−α

(13.9)

where x := infX. The mean of the semi-parametric distribution is given by:

C(F̃ ;1) =
∫ Q(F ;1−α)

x
xdF(x)−αQ(F ;1−α)

θ
1−θ

= c1−α −αx1−α
θ

1−θ
(13.10)

= µ(F̃)

The semi-parametric RLC is simply
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L(F̃ ;q) =
C(F̃ ;q))

µ(F̃)
(13.11)

The cumulative income function (13.9) obviously needs to be estimated. The
(unknown) distribution F is replaced by the empirical distribution F(n) and an esti-
mate for α will be discussed in Section 4. To estimate the Pareto model, hence θ ,
for the upper tail of the distribution, one can use the maximum likelihood estimator
(MLE). Unfortunately, the MLE for the Pareto model is known to be very sensitive
to data contamination (Victoria-Feser and Ronchetti, 1994). This is also the case for
other models such as Dagum (1977) model (see Victoria-Feser (1995)). Cowell and
Victoria-Feser (2007) propose using a robust estimator in the class of M-estimators
(Huber, 1981). For a sample of k observations xi, a general M-estimator is defined
as the solution in θ of

1
n

k

∑
i=1

ψ (xi;θ) = 0

with some (mild) conditions on the function ψ . This function is chosen so that the
resulting estimator is consistent at the model Fθ and also that it is robust to slight
model deviations (for a discussion, see e.g. Hampel et al. (1986)). The latter condi-
tion is satisfied if the ψ-function is bounded, which is the case for so-called weighted
MLE (WMLE), i.e.

1
n

k

∑
i=1

w(xi;θ) [s(xi;θ)−a(θ)] = 0 (13.12)

where w(x;θ) is a weight function with value in [0,1] insuring the robustness of the
estimator, s(x;θ) = ∂ log f (x;θ)/∂θ is the score function and a(θ) is a consistency
correction factor30. Cowell and Victoria-Feser (2007) choose the optimal B-robust
estimators (OBRE) (Hampel et al., 1986), a robust estimator with minimal asymp-
totic covariance matrix (see e.g. Cowell and Victoria-Feser (2007) for details).

The resulting semi-parametric GLC (and RLC) estimates are hence robust to data
contamination. They are based on the Pareto model for the upper tail and robustness
is sought against deviations from the Pareto model. If the Pareto model is believed
not to be suitable, then it can be changed (for example, to a generalized version of it)
but the method remains the same. Cowell and Victoria-Feser (2007) also provide the
asymptotic covariances of the estimators for inference with semi-parametric GLC
(and RLC) which can be used for robust welfare comparison.

In section 5 an example will illustrate the performance of robust semi-parametric
estimators of RLC and GLC.

30 The correction factor does not need to be estimated simultaneously, see below.
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4 Choosing α

The choice of the proportion α of data in the upper tail to be fitted to the Pareto
model, or equivalently the threshold x0 above which the data are fitted to a Pareto
model, is not a problem specific to income distribution analysis. It has attracted and
still attracts the attention of researchers in domains such as finance, insurance, en-
gineering, or environmental sciences. This problem falls within the general heading
of extreme value distributions (for a general reference, see e.g. Embrechts et al.
(1997)). To estimate the threshold, a compromise should be sought between bias
and variance: choosing a threshold too close to the central data will cause bias in the
Pareto model estimator since only the tail can be assumed to be Pareto distributed,
and selecting too extreme a threshold will yield large variances for the estimator
since it will be based on a small sample. A common practice is to use the Pareto
quantile plot (see e.g. Beirlant et al. (1996)). Indeed, rearranging (13.4) one gets

log
(

x
x0

)
= − 1

θ
log(1−Fθ (x)) , x > x0 (13.13)

showing that there is a linear relationship between the log of the x > x0 and the log
of the survival function. This relationship was actually found empirically by Pareto
(1896) and led him to the construction of his model (see also Dagum (1983)). Let x∗[i],
i = 1, . . . ,k, be the ordered largest k observations, so that x∗[i] = Q(F∗(n); i/(k + 1)),

with F∗(n) the empirical distribution of x∗[i]. The empirical counterpart of (13.13) is
the Pareto quantile plot

log

(
Q(F∗(n); i/(k +1))

x0

)
= − 1

θ
log

(
k +1− i

k +1

)
, i = 1, . . . ,k. (13.14)

Therefore, given a sample of n income data xi,1, . . . ,n and by letting x[i] denote the
ith order statistic, the plot of log

(
x[i]

)
versus − log((n+1− i)/(n+1)), i = 1, . . . ,n

is the Pareto quantile plot that is used to detect graphically the quantile x[i] above
which the Pareto relationship is valid, i.e. the point above which the plot yields
a straight line. We note that there is a clear relationship between x0 and k in that
k = ∑n

i=1 ι(x[i] ≥ x0).
More formally, a general approach in determining k is the minimization of an

estimate of the asymptotic mean squared error (AMSE) of the estimator of θ . If a
classical estimator such as the MLE is chosen, then the determination of k can be
influenced by extreme data in the upper tail (see Dupuis and Victoria-Feser (2006)).
Note that here extreme is used relatively to the Pareto model: if it is assumed to fit
the upper tail, then extreme data represent deviations for this assumption that can
appear in the Pareto quantile plot as data that do not fit the straight line.

In order to choose k, or equivalently x0 in a robust fashion, Dupuis and Victoria-
Feser (2006) use another criterion, namely a prediction error criterion that is
estimated robustly (see also Ronchetti and Staudte (1994)), named the RC-criterion.
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Let Yi = log
(

x∗[i]/x0

)
, i = 1, . . . ,k, Ŷi = −1/θ̂ log [(k +1− i)/(k +1)] , i = 1, . . . ,k

where θ̂ is an estimator of θ , and

σ̂2
i =var(Y i) =

i

∑
j=1

1

θ̂ 2(k− i+ j)2

the (estimated) RC-criterion is given by

CR (x0) =
1
k

k

∑
i=1

ŵ2
i

(
Yi − Ŷi

σ̂i

)2

+
2
k

k

∑
i=1

1
σ̂2

i
cov

[
ŵiYi, ŵiŶi

]− 1
k

k

∑
i=1

1
σ̂2

i
var [ŵiYi]

(13.15)
where each ŵi,0 ≤ ŵi ≤ 1, is the fitted weight of the ith observation, provided
by a robust fit of the Pareto model, using a WMLE given in (13.12). For
suitable estimates of cov

[
ŵiYi, ŵiŶi

]
and var[ŵiYi], see Dupuis and Victoria-

Feser (2006). The effect of extreme observations on the calculation of CR (x0)
is controlled by the weights ŵi. The criterion is minimized over possible values
for x0. Obviously, at the minimum, we have that Yi ≈ Ŷi, hence log

(
x∗[i]/x0

)
≈

−1/θ̂ log [(k +1− i)/(k +1)].
For the choice of the WMLE, Dupuis and Victoria-Feser (2006) propose an es-

timator which downweights observations that are “far” from the Pareto model in
terms of the size of the residuals with respect to the Pareto regression model, i.e.

w(x∗[i];θ) =
{

1 if |ri| ≤ c
c/|ri| if |ri| > c (13.16)

with ri = (Yi − Ŷi)/σi and c is a constant regulating the amount of robustness (for
more details, see Dupuis and Victoria-Feser (2006)).

In the following section, an empirical example will illustrate the method.

5 Data analysis

Let us put the semi-parametric method into practice using a typical income distribu-
tion. The data for our illustration are for household disposable incomes in the UK,
1981 (n = 7470)31.

A Pareto quantile plot of the data together with fitted regression lines are given
in Figure 13.1 (see also Dupuis and Victoria-Feser (2006)). The fits are provided
by WMLE estimates with residual weights (13.16) for two values of c as well as
the classical MLE. The optimal values for x0 are obtained using CR (x0) in which
the weights ŵi and Ŷi are obtained using the different estimators. For the MLE,
ŵi = 1,∀i. The fit for the MLE (and hence the corresponding optimal value for

31 The data set is Households Below Average Income which, despite its name, actually provides
a representative sample of households over the whole income range – see Department of Social
Security (1992) for details.
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Fig. 13.1: Pareto regression plot. Fitted regression line based on classical and robust $RC-$ criteria
added. Only incomes above 600 are shown for clarity.

x0) are not adequate, probably because of a few very extreme observations. Both
robust fits seem on the other hand appropriate. For the latter, the optimal value of
x0 corresponds to k = 22 selected upper incomes (k = 32 for the MLE). Figure 13.2
(see also Dupuis and Victoria-Feser (2006)) shows observations above the robustly
selected threshold x0 = 803.3 and arrows indicate the downweighted observations.
The striking feature is that not only the largest observations are downweighted, but
also the smallest.

To estimate the Pareto parameter, we hence choose k = 22. The value for the
MLE is θ̂ = 17.5 (with standard error 3.73) and the one for the OBRE with c = 232

is θ̂ = 76.65 (17.62). We use these two estimates to build estimated RLC (see (13.9)
and (13.10)). These curves (corresponding to the 0.5% top incomes) are presented
in Figure 13.3 together with the empirical RLC estimate. Even if it is small, one can
see a difference between the three estimates, in that the MLE follows the empirical
RLC up to roughly the 0.1% of the top distribution, while the OBRE leads to an
estimated RLC showing less inequality on the entire 0.5% top range.

32 One can note that a different robust estimator is used to estimate the Pareto parameter. For the
choice of k a WMLE based on residual weights is a reasonable choice, whereas the more efficient
robust estimator (OBRE) for the Pareto parameter given a value for k is also a reasonable choice.
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Fig. 13.2: Pareto quantile plot of income data above robustly chosen threshold. Downweighted
observations (with WMLE, c = 1.25) are identified.

Fig. 13.3: RLC (top 0.5%) estimates (empirical and semi-parametric with MLE and OBRE with
c = 2) of the UK income data
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6 Conclusion

Using ranking criteria to compare distributions is of immense theoretical advantage
and practical convenience. In welfare economics they provide a connection between
the philosophical basis of welfare judgments and elementary statistical tools for de-
scribing distributions. In practical applications they suggest useful ways in which
simple computational procedures may be used to draw inferences from collections
of empirical distributions. However, since it has been shown that second order rank-
ings are not robust to data contamination, especially in the upper tail of the distribu-
tion, it is important to provide the empirical researcher with computational devices
which can be used to draw inferences about the properties of distributional compar-
isons in a robust fashion.

One way forward might be to estimate Lorenz curves through an appropriately
specified parametric model and to estimate the model parameters robustly. However,
this approach is too restrictive because tractable parametric models are unlikely to be
sufficiently flexible to capture some of the essential nuances of Lorenz comparisons.
For example, in order for Lorenz curves to be able to cross, a parametric model
would usually need to incorporate at least three parameters, which itself may lead
to serious estimation complications.

The method proposed here is a semi-parametric approach in that the upper tail
of the distribution is robustly fitted using the Pareto model and a semi-parametric
Lorenz curve is then built which combines non-parametric cumulative functionals
and estimated ones. Simulated examples have proved not only that a few extreme
data can reverse the ranking order, but also that the robust parametric Lorenz curve
restores the initial ordering. Inference can be made for comparing two distributions
even in the semi-parametric setting, by extending the general setting provided in
Cowell and Victoria-Feser (2007). For variances too, a robust approach provides
reasonable estimates when there is contamination. Note however, that inference has
been developed for a fixed value for the proportion α of data in the upper tail, and
when it is estimated as is done in this paper, inference that takes into account the
variability of an estimator of α is still an open question.

Finally note that although we took the Pareto distribution as a suitable parametric
model for the upper tail, and although we considered the (most common) case of a
range of definition for the variable bounded below, our results can be extended to
other models and to two-tail modelling in a relatively straightforward manner.
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CHAPTER 14

Modelling Inequality
with a Single Parameter∗

J. M. Henle,† N. J. Horton,‡ and S. J. Jakus§

Abstract

We argue that the Lorenz curve for income is well-modelled by members of the
one-parameter family of functions:

{y = (1− (1− r)k)
1
k }.

We justify this statement with data from the Luxembourg Income Study. The family
of curves arises from a dynamic model of income growth, in which the parameter k
has a direct economic interpretation.

1 Introduction

The unequal distribution of a resource is captured in all its variety by the Lorenz
curve which charts, given the rank r (0 ≤ r ≤ 1) of an entity (based on the entity’s
level of the resource in a given population), the proportion L(r) of the resource
belonging to all those of lower rank. For most of this paper, the entity will be the
family and the resource will be income.

In theory, the Lorenz curve, and hence inequality in a society, is a multifaceted
phenomenon. The curve is subject only to the constraints that it pass through (0,0)
and (1,1) and that its derivative be non-decreasing. In practice, however, real Lorenz

∗ The authors would like to thank Peter Lambert for his generous advice and encouragement and
the editor and referees for many helpful suggestions.
† Department of Mathematics and Statistics, Smith College, USA, email: jhenle@math.smith.edu.
The first author would like to dedicate his contribution to this paper to his father, the economist
Peter Henle.
‡ Department of Mathematics and Statistics, Smith College, USA.
§ Department of Mathematics and Statistics, Smith College, USA.
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curves appear to follow a very distinct pattern and in nearly every case the Lorenz
curve is well-modelled by a member of a one-parameter family of curves, the
Lamé curves of the form:

{y = (1− (1− r)k)
1
k }.

In section 1 we introduce our family of curves and use it to model Lorenz curves
for a number of countries and years, chiefly for income data. In section 2 we develop
two economic models based on “trickle-up” theories. Both yield Lamé curves. In
section 3 we consider a number of reality checks on our model and its consequences.
In section 4 we pose a few questions. For the most part, we will restrict our attention
to inequality of income. The Luxembourg Income Study (LIS) provides excellent
income data for many countries and many years. Data on the distribution of wealth
are less reliable or comparable.

We will use r to denote the rank (0 ≤ r ≤ 1) of a family in terms of its income
and I(r) for the income of a family at rank r. We will use N for the number of
families and A for the aggregate income of all families (i.e. A = N

∫ 1
0 I(x)dx). The

Lorenz curve, L(r), is the fraction of income earned by families of rank ≤ r, that
is, L(r) =

∫ r
0 I(x)dx∫ 1
0 I(x)dx

= N
A
∫ r

0 I(x)dx. Alternatively, we can write: L′(r) = I(r)
A
N

, that is,

the slope of the Lorenz curve at every rank is equal to the ratio of the income of a
family at that rank to the mean income for all families.33 For background on this
and on inequality in general, see Lambert (2001).

2 Modelling the Lorenz Curve

The problem of modelling the Lorenz curve has a history going back at least 40
years. Early models range from simple, L = 1 − (1 − r)k (Quandt, 1966), L =
re−k(1−r) (Kakwani and Podder, 1973), L = ekr−1

ek−1 (Chotikapanich, 1993) to quite
elaborate (1 − (1 − r) j)k (Rasche et al., 1980) [RGKO], rl(1 − (1 − r) j)k (Sara-

bia et al., 1999), 1√
2
(L + r) = k

(
1√
2
(L− r)

) j (√
2− 1√

2
(L− r)

)l
(Kakwani and

Podder, 1976).
Our curves are a special case of [RGKO], though we arrived at them from a

different direction, as a special case, xk +yk = 1, of the Lamé curves,
( x

a

)k +
( y

b

)k =
1. These were studied by the Danish engineer and designer Piet Hein and have been
called, when k > 1, “superellipses.”

33 In particular, L′(.5) is equal to the ratio of median income to mean income.
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Our family of functions results from taking a = b = 1 and k < 1,

x

y

r

L

x r

y L

giving us L(r) = (1− (1− r)k)1/k.

A second family can be formed by taking a = b = 1 and k > 1,

x

y

r

L

x r

y L

giving us L(r) = 1− (1− rk)1/k.

This second family has basically the same properties as the first. For this reason
and since it appears to fit the data no better and no worse, we will concentrate on
the first family.

The curves satisfy the four conditions for representing a Lorenz curve as stated
in Kakwani and Podder (1973): (a) L(0) = 0, (b) L(1) = 1, (c) L(r) ≤ r, and (d)
L′,L′′ > 0. It is clear that L = (1− (1− rk))1/k, 0 < k < 1, satisfies (a) and (b). For
(d), if we differentiate Lk + (1− r)k = 1 implicitly, we find that L′ =

( 1−r
L

)k−1
is

positive, since r < 1. Differentiating this yields L′′ = (1− k)
( 1−r

L

)k−2 · L+(1−r)L′
L2 ,

also positive, since k < 1. Condition (c) follows from the other three.
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The family L(r) = (1− (1− r)k)1/k is easily seen to be symmetric about the line
L = 1− r, that is, whenever a point (a,b) is on a curve, so is the point (1−b,1−a).
Members of the family do not intersect (see section 4A).

The Gini coefficient of L = (1− (1− r)k)1/k is not easily computable. Following
[RGKO], it is 1− 2

k B( 1
k , 1

k +1), where B is the Beta distribution.
An expression for the income distribution, since it is a multiple of the reciprocal

of the second derivative of L, is relatively easy to compute. We have(
d2L
dr2

)−1

=
1

1− k
(1− r)2−k(1− (1− r)k)2−1/k.

As mentioned earlier, our family is a special case of the two parameter family
proposed in [RGKO], (1− (1− r) j)k. Necessarily, because of the additional param-
eter, they achieve a better fit. McDonald (1984) catalogued a hierarchy of probability
models (ranging from one to four parameters) for the size distribution of income. We
are struck, however, by how well real Lorenz curves can be modelled without ad-
ditional degrees of freedom. In addition, for many situations where data are limited
(i.e. estimates are available only at the decile level), it is less clear that the additional
flexibility introduced with more than one parameter is worth increased complexity
of interpretation.

We tested our family of Lorenz curves, L(r) = (1− (1− r)k)1/k, on 89 sets of
data from LIS. Each set consisted of decile data for a country and year, specifically,
Austria (4 years), Australia (4 years), Belgium (4 years), Canada (8 years), Denmark
(4 years), Finland (4 years), France (4 years), Germany (8 years), Ireland (4 years),
Israel (4 Years), Italy (3 years), Mexico (6 years), Netherlands (4 years), Norway
(4 years), Taiwan (4 years), Sweden (7 years), United Kingdom (8 years), and the
United States (5 years). We also took two sets of data for the United States from
Ryu and Slottje (1996) which in addition to decile points included values at r = .91,
.92, . . . .99. The years considered ranged from 1967 to 2000; median: 1991. The
nonlinear least squares regression function nl in Stata version 9.1 was used for
estimation.

We compared three measures of goodness of fit for each of the deciles within
each observation (country/year). These included the root mean square error (square
root of the average square of the residual), the mean absolute deviation of the ob-
served and predicted value within a country/year as well as the maximum absolute
deviation within a country/year.

The results for the 91 observations are impressive:

Variable Mean Std. Dev. Min. Max.
root mean square error (MSE) .0043318 .0032447 .0004838 .0200169
mean absolute deviation .0034550 .0026484 .0003716 .0153033
maximum absolute deviation .0074414 .0060083 .0007958 .0446752
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The average root mean square error for the models overall was 0.0043. The max-
imum absolute deviation of the predicted value from any observed value was 0.045,
and the largest MSE for any country/year combination was 0.020 (Italy in 1991 for
both).34 The largest MSE for any other country/year combination (not including US
Sarabia) was 0.010 (US 1991) with corresponding maximum absolute deviation of
0.018.

35.2% of the models for country/year combinations yielded a max absolute de-
viation of less than 0.005; 80.2% were always within 0.01 of the observed value.

The proportion of variance accounted for by the single parameter model was
quite high (all R2 values ≥ 0.998). While the addition of a second parameter may
lead to a statistically significant better fit, it is less clear whether this is of practical
significance.

The figure below shows a typical example, LIS data for Canada in 1997, together
with the graph of y = (1− (1− r).752)1/.752.

The results from the one parameter model explain 99.99% of the variability, with
mean absolute deviation of 0.0046 and maximal deviation of 0.0098. A plot of the
residuals indicates that while these deviations are of relatively small magnitude,
the primary lack of fit is due to the symmetry assumption of the one-parameter
model. The two parameter model of Sarabia and colleagues provides an even better
fit (mean absolute deviation of 0.0003 and maximal deviation of 0.0008) but at the
cost of potentially overfitting the data, and with less readily interpretable parameters.

Wealth, which is more unequally distributed than income, was also well modelled
by members of this family of curves. Shown below is wealth data for the United
States in 1983 from Wolff (2000) with y = (1− (1− r).417)1/.417.

34 The numbers for Italy in 1991 are suspect. The first decile is negative (-.01), the only example in
all the data from LIS. In addition, the first decile was positive five years earlier (+.03) and positive
again four years later (+.02).
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Education, which is more equally distributed than income, again fits the pattern.
The figure below shows data for years of educational attainment among U.S. citizens
15 years and older, modelled by y = (1−(1−r).8862)1/.8862. The data, from the U.S.

Census Bureau (1998), was broken down into enough categories to yield 16 points
on the Lorenz curve (see Appendix A).

3 Modelling the Redistribution of Wealth

One justification for our family of Lorenz curves, L(r) = (1− (1− r)k)1/k, is its
success in matching real Lorenz curves. We have a second justification. The family
of curves is the solution to a simple dynamic model of income growth which we
present here.
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We start by viewing I and L as functions of two variables, rank and time. We
imagine income rising or falling for each family, which in turn affects the Lorenz
curve.

We also adopt a sort of “trickle-up” theory. This theory posits that families earn
money off families of lower rank. The higher the rank of a family, the faster its
income will grow. In other words, we assume that ∂ I

∂ t is related to

A
N L

N(1− r)
=

AL
N2(1− r)

.

A
N L is the aggregate income of families of lower rank. N(1− r) is the number of
families of higher rank (a family at rank r must share development rights on poorer
families with all richer families).

How is ∂ I
∂ t related to

A
N L

N(1−r) = AL
N2(1−r)? It seems reasonable to assume that

AL
N2(1−r) , and ∂ I

∂ t are simultaneously zero or simultaneously non-zero. Thus we can
allow for considerable possibilities by assuming that their logarithms satisfy a linear
equation. This leads to

log
(

∂ I
∂ t

)
= B log

(
AL

N2(1− r)

)
+C,

or,
∂ I
∂ t

= eC
(

AL
N2(1− r)

)B

,

for some constants B and C.
Now, for a small interval of time ∆ t, we have ∆ I = eC

(
AL

N2(1−r)

)B
∆ t. For a fixed

rank r, we have:

L+∆L =
∫ r

0 (I +∆ I)dx∫ 1
0 (I +∆ I)dx

=
A
N L+

∫ r
0 eC

(
AL

N2(1−x)

)B
∆ t dx

A
N +

∫ 1
0 eC

(
AL

N2(1−x)

)B
∆ t dx

.

We are interested in shape of L in the steady-state, that is, when ∆L = 0. This reduces
the equation to:

L
∫ 1

0

(
L

1− x

)B

dx =
∫ r

0

(
L

1− x

)B

dx.

The integral,
∫ 1

0
( L

1−x

)B dx is a constant; we will call it H. Taking the derivative of
both sides with respect to r, we have:

H
dL
dr

=
(

L
1− r

)B

We can solve this equation by separation of variables:
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H
∫

L−BdL =
∫
(1− r)−Bdr

H
1−BL1−B = −1

1−B(1− r)1−B +F

HL1−B = −(1− r)1−B +F(1−B).

If we relabel k = 1−B, this simplifies to

HLk +(1− r)k = Fk.

In practice, k > 0. Substituting the points r = 1, L = 1 and r = 0, L = 0, gives us
that H = 1 and F = 1

k and we are left with

Lk +(1− r)k = 1, or, L = (1− (1− r)k)1/k.

We can attempt a corresponding “trickle-down” theory by assuming that ∂ I
∂ t de-

pends on
A
N (1−L)

Nr —a family at rank r developing, with those of lower rank (Nr), the
wealth of those of higher rank ( A

N (1−L)). From

∂ I
∂ t

= eC
(

A(1−L)
N2r

)B

we derive the second family of Lamé curves mentioned earlier, L = 1− (1− rk)1/k.
But in this case, the constant k = 1−B is greater than 1, meaning B is negative. In
other words, we are left with another trickle-up theory, which one might describe as
a dollar in the hands of someone at rank r sharing development rights on families of
lower rank with all the dollars in the hands of those of higher rank.

These trickle-up theories suggest two additional theories, one in which dollars
develop dollars (with ∂ I

∂ t proportional to 1−L
L ) and one in which people develop peo-

ple (with ∂ I
∂ t proportional to 1−r

r ). Both of these result in one-parameter families, but
the families lack closed-form expressions because the differential equations can’t be
solved analytically. The MSEs associated with these approaches are of the same or-
der of magnitude as those associated with the other approaches.

A discussion of these alternative trickle-up theories is beyond the scope of this
paper. Initial investigation, however, has persuaded the authors that it would be dif-
ficult to argue that any one is significantly better than the others.

4 Checks and Balances

The success of the Lamé curves suggests that there is something fundamentally one-
dimensional about inequality. That is a radical hypothesis that should be treated with
caution. We explore the hypothesis and its ramifications here.
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A. Lamé curves, as solutions to a differential equation, do not cross. But Lorenz
curves do cross. Kakwani (1984) reports that in a collection of Lorenz curves 21%
of the pairs intersected. Does this falsify our hypothesis?

We don’t believe it does. Consider what we might find if the Lorenz curve for
a particular time and place were computed from two independently collected data
sets. The curves would follow the same basic arc but would vary up and down. The
two would almost certainly cross several times. For countries whose Lorenz curves
are close, it doesn’t seem surprising that they would cross.

B. We have just defended the hypothesis by appealing to possible errors or ran-
dom variation in the data. But the data are also the basis for our argument. Is that a
difficulty?

The LIS data, we understand, is the gold-standard for income data, yet we did
experience some difficulties with it. The program supplied for computing deciles,
for example, had a bug. Even after dealing with that, we found at least one set
of numbers that raised suspicions.35 But unless the data have systemic biases, it
seems a reasonable source on which to base our models. Note that our confidence
in the data does have limits. We have four different one-parameter families (the two
presented in the Introduction and the two noted at the end of the previous section),
all of which model Lorenz curves well, but we don’t feel we can distinguish among
them.

C. If Lorenz curves were fundamentally Lamé curves, then all monotonic mea-
sures of inequality would be equivalent in the sense that knowing one measure gives
you all the others. Suppose, for example, we knew the Gini coefficient g of a Lorenz
curve. Then we could find the unique Lamé curve with Gini coefficient g. From that
we could compute the Schutz index. Conversely, given the Schutz index, we could
recover the Gini coefficient. Further, if the computations of two measures are con-
tinuous, then plotting the measures against each other should result in a connected
curve.

Indeed, that seems to be the case. Here is the plot for Gini vs. Schutz, from the
LIS data. The graph on the right is a magnification.

1

1

Gini

Schutz

35 Italy, 1991, as mentioned in the previous section.
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Another measure of inequality is suggested by the trickle-up theory, the exponent
B in the partial differential equation,

∂ I
∂ t

= eC
(

AL
N2(1− r)

)B

.

Since B = 1− k, B can be determined from the best-fitting model of the Lorenz
curve from the family L(r) = {(1− (1− r)k)1/k}. We could call this measure the
“sensitivity factor” since it reflects how sensitive income growth for an individual
is to the incomes of others. Perfect equality occurs when sensitivity is zero (B = 0,
k = 1):

L(r) = 1− (1− r)1)1/1 = r.

In that case, all incomes grow at the same absolute rate:
(

∂ I
∂ t = eC

)
. At steady-state,

where the Lorenz curve doesn’t change, incomes can still grow, but they must all
grow proportionally. The only way incomes can grow at the same absolute rate and
the same proportional rate is if they are all equal.

Similarly, as k approaches 0, the Lamé curves approach absolute inequality.

1

1

L(r) = (1 − (1 − r).2)1/.2

This reflects a growth rate directly proportional to what we might call the “op-
portunity for development,” AL

N2(1−r) .
Compared to other measures, the sensitivity factor is, perhaps, less abstract and

more directly meaningful. It also tracks well with the Gini coefficient (LIS data).
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1

1

Gini

B

D. Harvey (2005) explores the relationship between the Gini coefficient and sev-
eral of the Atkinson indices Ir. His plots show large scattering which would seem
to refute our hypothesis. We computed for the LIS data two Atkinson indices, one
where the relationship is well-behaved in Harvey’s paper, I.5,

1

1

Gini

I.5

and also the one where the points are most scattered, I5.

1

1

Gini

I5
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The picture for I5 is not as clearly a curve as the picture for I.5, but it’s more
organized and linear than the picture in Harvey (2005). The higher subscript tends
to exaggerate differences at the low end of the Lorenz curve. An error, for example,
of ε in the calculation of L(.1) can change I5 by more than 10ε .

E. Finally, we are modelling a curve that is confined to a small space, a curve
that must go from (0,0) to (1,1) with a constantly increasing derivative. Under
those circumstances, modelling closely with a carefully chosen family of curves
may seem unspectacular.

We considered this and thought to test how well the derivatives of our curves
matched the derivatives of the Lorenz curves (Pen’s Parade, since L′ is proportional
to income). This is a significantly greater challenge, since the derivative is theoreti-
cally unbounded. The following graphs show the derivatives of the Lamé curves for
countries with varying degrees of inequality. The points are the difference quotients
formed from consecutive decile data.

1

1

1

1

1

1

Canada, 1997 Sweden, 1992 Mexico, 1989

The model passes this test surprisingly well.
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5 Questions

We have presented evidence that Lorenz curves for income taken at different times
in different countries are well-modelled by curves from a one-parameter family of
functions. Of course, additional parameters produce better fits. Modern economies
are subject to countless disturbances which must vary the Lorenz curve in local but
significant ways.

But the closeness of the approximations produced by a single parameter implies
that the distribution of income in a society is largely characterized by a single num-
ber. This raises some related questions.

1. Is there a single economic variable that drives inequality?
2. What are the ways in which the sensitivity factor can be changed through

economic policy?
3. What does the success of trickle-up theories have to say about how govern-

ments should stimulate the economy?
4. Can B = 1− k be seen as a measure of the efficiency of an economy? If so,

does this suggest an explicit trade-off between efficiency and equality?
5. Inequality in the United States decreased from 1950 to 1970 (Henle, 1972)

and increased from 1979 to 2000 (the Gini coefficient increased steadily from .301
to .368). Can the framework of this paper help explain these trends?

6. The relationship between the Gini coefficient and the sensitivity factor appears
almost linear. Does this mean that the Gini coefficient has a concrete interpretation?
That is, does the Gini coefficient tell us something definite about the relation be-
tween the rate of growth of one’s income and the income of those who earn less?

7. We were not able to distinguish among the four models of income growth ( L
1−r ,

r
1−L , L

1−L , r
1−r ). Is there a way of determining which leads to the best for model for

Lorenz curves?

Appendix A

On the education data

We found a Lorenz curve for educational attainment using data from the U.S. Census
Bureau. In the table below, we have noted the number of years we attached to each
category.

The data gave us (with (0,0) and (1,1)) 16 points on the Lorenz curve.
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Table 14.1: Educational Attainment of Persons 15 Years Old and Over (all races, both sexes, in
thousands)
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Appendix B

Computational details

For interest, we report here on the techniques we used to compute (a) the Gini coef-
ficient and (b) the Schutz index.

(a) We computed the Gini coefficient from quintile data using a Newton-Cotes
formula.

Given the value of a function f at three values, a, a + .5(b− a), b, Simpson’s
Rule approximates the integral of f on [a,b] by integrating the quadratic passing
through the three points. Given the value of f at more points the Newton-Cotes
formulae find more accurate approximations by integrating polynomials of higher
degree. The particular formula we used (appropriate for the six points given by
quintile data) approximates

∫ b
a f (x)dx by 95

288 f (a)+ 125
96 f (a+ .2(b−a))+ 125

144 f (a+
.4(b−a))+ 125

144 f (a+ .6(b−a))+ 125
96 f (a+ .8(b−a))+ 95

288 f (b).
(b) The Schutz index is the greatest distance between the Lorenz curve and the

straight line from the origin to (1,1). The difficulty is determining this given only
decile data for the Lorenz curve.

A little calculus tells us that the point where this distance is greatest is where
L′(r) = 1. For most Lorenz curves, that comes when r is between .6 and .7. We then
approximate L with the cubic passing through the points, (.5,L(.5)), (.6,L(.6)),
(.7,L(.7)), (.8,L(.8)) and use this to find a such that L′(a) = 1. and then to evaluate
a−L(a) (the Schutz index).
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CHAPTER 15

Lorenz Curves and
Generalised Entropy
Inequality Measures

Nicholas Rohde†

Abstract

Lorenz curves and Generalised Entropy (GE) measures are popular tools for ana-
lyzing income inequality. This paper seeks to connect these techniques by demon-
strating that GE inequality measures may be derived directly from the Lorenz curve.
The paper provides analytical expressions for Theil’s T and L inequality measures,
half the square of the coefficient of variation and Atkinson’s utility based measure
in terms of the Lorenz curve. Mathematical expressions for common GE measures
are derived for three simple parametric specifications. The results are empirically
illustrated and shown to be consistent with Lorenz dominance.

1 Introduction

Much of the current analysis of income inequality involves the use of both Lorenz
curves and measures derived from the notion of Generalised Entropy. These two
techniques are generally used alongside each other in most empirical studies, includ-
ing prominent works by Milanovic (2002) and Sala-i Martin (2002). Despite their
common application, little is known about the relationship between these methods
of inequality measurement.

Of these two approaches, the Lorenz curve is more intuitive and plays a more
fundamental role in inequality measurement. Graphically, the Lorenz curve gives
the proportion of total societal income accruing to the lowest earning proportion of
income earners, and the representation may be used to make comparisons between

† School of Economics, The University of Queensland, Brisbane, Australia. The author expresses
his gratitude to Prasada Rao for his support and encouragement.
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different distributions of income. If the Lorenz curve for distribution A lies nowhere
below, and is at some point above the Lorenz curve for distribution B, the Lorenz
curve for distribution A is said to dominate the Lorenz curve for distribution B.
When Lorenz dominance occurs, unambiguous statements about the relative in-
equality levels within the distributions can be made. If distribution A Lorenz dom-
inates distribution B, then the inequality level within distribution A is necessarily
less than that within distribution B, and any inequality measure that satisfies the
transfer principle will provide the same ranking (Atkinson, 1970). If Lorenz curves
intersect however, Lorenz dominance fails to provide a definitive ordering and nu-
merical measures must be used to complete the ranking.

As the most intuitive numerical inequality measures are derived from the Lorenz
curve, their relationship with Lorenz dominance is straightforward. In the case of
intersecting Lorenz curves, the Gini coefficient will rank the distribution which has
less area enclosed between the Lorenz curve and the egalitarian line as the more
equal. The Kakwani (1980) inequality measure uses the length of the Lorenz curve
to determine inequality and will rank the shorter Lorenz curve as more egalitarian.
Similarly the Schutz (1951) coefficient will prefer the Lorenz curve that has the
lower maximum difference between the Lorenz curve and the egalitarian line.

As GE measures are related to the concept of information theory, they have no
direct interpretation in terms of the Lorenz curve. This family of measures includes
popular inequality indices such as Theil’s T (Theil, 1967) and L (Theil, 1979) mea-
sures, as well as half the square of the coefficient of variation. While this group
of measures may be criticized for lacking an intuitive appeal they possess decom-
posability characteristics that make them particularly useful for analyzing inequality
(Cowell, 1995). Atkinson’s (Atkinson, 1970) measure is included with GE measures
in this analysis, as Cowell (1995) shows that the measure is closely related to the
family of GE measures.

The main objective of this paper is to improve the understanding of the rela-
tionship between these techniques by providing expressions for common GE mea-
sures in terms of the Lorenz curve. The results given here are all consistent with
Lorenz dominance and provide a basis for studying the behavior of GE measures
when Lorenz curves intersect. The results also provide an exact method for calcu-
lating these measures in the instance where a parametrically specified Lorenz curve
is known but little other data are available. These results have the same practical
implications as expressions for GE measures in terms of a parametrically specified
density function. One advantage to calculating GE measures from parametrically
specified Lorenz curves rather than grouped data is that parametric Lorenz curves
may be used for interpolation and thus inequality indices calculated from them do
not understate total inequality by ignoring the variation within subgroups.

This paper is divided into five major sections. Section 2 provides a quick
overview of the notation and techniques used within the paper. Section 3 discusses
the discrete versions of Theil’s T, Theil’s L, Atkinson’s measure and half the squared
coefficient of variation, and shows that the concepts may be extended to a contin-
uous Lorenz curve. Section 4 provides analytical expressions for these measures in
terms of the Kakwani and Podder (1973), Gupta (1984) and Chotikapanich (1993)
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functional forms. Unfortunately expressions for Atkinson’s measure in terms of the
Gupta and Kakwani-Podder Lorenz curves are not included as they were found to
be prohibitively difficult to compute. Section 5 provides an empirical illustration of
the results and Section 6 gives some concluding comments.

2 Notation and Basic Concepts

The paper considers the distribution of income as it accrues unevenly across a pop-
ulation of j individuals. We assume that all incomes are non-negative, and denote
the income of the kth individual to be xk. If the population is arbitrarily partitioned
such that we have n groups, the income share and population share of the ith group
are denoted qi and pi respectively. The income share of group i may be calculated
as the total income accruing to persons within income group i, divided by the total
income of the population. Similarly the population share of group i is the proportion
of total population contained within that group. For income group i that contains bi
individuals, the income and population shares may be calculated as

qi =
∑bi

ki=1 xk(i)

∑ j
k=1 xk

(15.1)

pi =
bi

j
(15.2)

Clearly

n

∑
i=1

qi = 1 (15.3)

n

∑
i=1

pi = 1 (15.4)

Generalised Entropy inequality measures are easily calculated from income and
population share data. These measures take the general form

GE(α) =
1

α2 −α

[
1
n

n

∑
i=1

(
qi

pi

)α
−1

]
(15.5)

where α is a non-negative sensitivity parameter which dictates the emphasis the
inequality measure places on higher and lower ends of the distribution. Low values
for α will place extra emphasis on the lower end of the distribution, while higher
values will place emphasis on the higher incomes. Taking the limits of this equation
as α → 0,1 gives Theil’s L and T inequality measures respectively

L =
n

∑
i=1

pi ln
(

pi

qi

)
(15.6)
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T =
n

∑
i=1

qi ln
(

qi

pi

)
(15.7)

Half the square of the coefficient of variation is given when α = 2. It may be written
as

1
2

CV 2 =
1
2

[
1
n

n

∑
i=1

(
qi

pi

)2

−1

]
(15.8)

Atkinson’s measure is given as

A = 1−
[

1
n

n

∑
i=1

(
qi

pi

)1−ε
] 1

1−ε

(15.9)

where ε is an inequality aversion parameter and lies between zero and infinity. The
higher the value that ε takes, the more harmful inequality is to the considered soci-
ety. Cowell (1995) shows that this measure is ordinally equivalent to GE measures
when α = 1− ε .

If the individual incomes are placed in ascending order such that x1 < x2.... < x j
a Lorenz curve may be constructed. The Lorenz curve is a plot of the cumulative
income share of the lowest earning k individuals against the cumulative population
share of the same group. If expressed as a continuous function, the Lorenz curve is
typically given as

η = f (π) (15.10)

where π is the cumulative population share and 0 ≤ π ≤ 1. η is the cumulative
income share and 0 ≤ η ≤ 1. Here dη

dπ > 0, d2η
dπ2 > 0, η (0) = 0, η (1) = 1.

3 Income Shares and the Lorenz Curve

We start with a linear piecewise Lorenz curve constructed from n equal sized seg-
ments, each describing successive income blocks. Data is often presented in this
form, usually with n = 10 equal sized income groups. These aggregate income
shares are represented as (η1,η2, ...η10) and may be plotted against aggregate pop-
ulation shares(π1,π2, ...π10) to form the Lorenz curve. Clearly the point (π10,η10)
represents the termination point (1,1) on the Lorenz curve, while the origin would
be represented as(π0,η0). The population share of income group i, denoted pi, is
given as pi = πi −πi−1 where i is the income group under consideration. If we are
dealing with decile data, each pi = 0.1. The income data may be similarly disaggre-
gated using the formula qi = ηi −ηi−1 to give income shares corresponding to each
population share.
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Since GE measures are easily calculated from income and population share data,
the task now is to express the GE measures such that they can be interpreted as a
discrete form integral or Riemann sum. The Riemann sum approximates a definite
integral by measuring the area under a curve. This is done by filling the space under
the curve with a series of rectangles and summing these to measure the enclosed
area. These rectangles may be infinitesimal in size, yielding a good approximation
to the area under a curve. If the area under the curve is in the range from zero to one
(as for a Lorenz curve) and is divided into n evenly sized partitions, the Riemann
sum may be written as ∫ 1

0
f (x)dx ≈

n

∑
i=1

f (xi)
1
n

(15.11)

where f (xi)gives the height of partition i and 1
n gives the width. The product of

these two terms gives the area of the enclosed rectangle; the sum of these terms
gives an approximation of the total area under the curve. An attractive property of
the Riemann approximate integral is that the limit of this sum as n→∞ is the definite
integral. This allows us to dispense with the approximate symbol in equation (15.11)
when considering the limit, and allows us to refer to the enclosed area as a Riemann
integral.

When the population is divided into n equal sized partitions, each population
share pi is equal to 1

n . Replacing this term in equation (15.6) allows Theil’s L mea-
sure to be written as

L = −
n

∑
i=1

1
n

ln
(

qi

pi

)
(15.12)

Equation (15.7) may also be expressed as an approximate form integral. Multiplying
and dividing through by the scaling factor 1

n gives

T =
n

∑
i=1

1
n

(
qi
1/n

)
ln
(

qi

pi

)
(15.13)

which may be written as

T =
n

∑
i=1

1
n

(
qi

pi

)
ln
(

qi

pi

)
(15.14)

Equations (15.8) and (15.9) for half the squared coefficient of variation and
Atkinson’s measure are already written in the form given by equation (15.11)
and may easily be interpreted as a Riemann sum.

Our focus now turns to the limit of the
(

qi
pi

)
ratios that make up equations (15.8),

(15.9), (15.12) and (15.14) as n → ∞. As we obtained the income and population
shares qi and pi from disaggregating the Lorenz curve, these shares may be inter-
preted as the “rise” and “run” of each piecewise segment. As we increase the number
of segments to the Lorenz curve we get a parallel to Newton’s Difference Quotient
for the derivative. This is
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f ′(x) = lim
h→0

f (x+h)− f (x)
h

(15.15)

which states that the derivative of f at x is given by the limit of the difference
quotient as h→ 0. This formula may be applied to the Lorenz curve. If two points are
chosen on the π axis, the “run” or gap between the two points is given as πi −πi−1,
which is denoted h in the difference quotient formula, and defined as the population
share pi. Similarly the “rise” is expressed as f (x+h)− f (x) which is given by ηi −
ηi−1 in Lorenz curve notation and is equal to income share qi. Substituting these
expressions into equation (15.15) produces the result that the derivative of η at π is

η ′(πi) = lim
n→∞

qi

pi
(15.16)

where h = 1
n . This result is consistent with Kakwani’s (Kakwani, 1980) finding that

the slope of the Lorenz curve is equal to x(F)
µ , where x(F) is the inverse function of

the income CDF and lies on the interval [0,1). This may be seen by examining the
discrete income data outlined in the previous section, where we have j non-negative
incomes ordered such that x1 < x2.... < x j where xk represents the income accruing
to the kth individual.

If F is taken to be equal to k
j , then x(F), which may be interpreted as the income

accruing to the person earning at the k
j proportion of income earners will be equal

to xk. The mean income level is µ = 1
j ∑ j

k=1 xk, giving the result that the slope of the
Lorenz curve using discrete data at point π = k

j is equal to

η ′ =
xk(

1
j ∑ j

k=1 xk

) (15.17)

The result used in this paper shows that the derivative of a linear segment is equal
to qi

pi
. We may calculate qi from discrete data using the formula

qi =
xk

∑ j
k=1 xk

(15.18)

where the numerator is the income earned by the individual determining income
“group” i and is equal to xk . The denominator is the total population income.

The population share is given as

pi =
1
j

(15.19)

Using equations (15.18) and (15.19) to compute qi
pi

, which is an input component
for all GE measures, gives the result that the slope of the Lorenz curve at π = k

j is
equal to

η ′ =
jxk(

∑ j
k=1 xk

) (15.20)
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which is clearly equal to the result given by Kakwani in equation (15.17).
Applying the results from equations (15.11) and (15.16) to the discrete GE mea-

sures given in equations (15.12), (15.14) and (15.8) and (15.9) respectively gives the
following results for the selected GE measures in terms of the continuous Lorenz
curve. Theil’s L and T measures are denoted L and T respectively, while Atkinson’s
measure is denoted A.

L = lim
n→∞

−
n

∑
i=1

1
n

ln
(

qi

pi

)
= −

∫ 1

0
lnη ′(π)dπ (15.21)

T = lim
n→∞

n

∑
i=1

1
n

(
qi

pi

)
ln
(

qi

pi

)
=

∫ 1

0
η ′(π) ln(η ′(π))dπ (15.22)

1
2

CV 2 = lim
n→∞

1
2

n

∑
i=1

1
n

((
qi

pi

)2

−1

)
=

1
2

∫ 1

0

(
η ′(π)2 −1

)
dπ (15.23)

A = lim
n→∞

1−
[

n

∑
i=1

1
n

(
qi

pi

)1−ε
] 1

1−ε

= 1−
[∫ 1

0
η ′(π)1−ε dπ

] 1
1−ε

(15.24)

Equations (15.21)-(15.24) show that the four inequality measures may be calculated
directly from the Lorenz curve. Thus in the absence of any other data, the Lorenz
curve is sufficient for the calculation of these GE measures.

4 Calculating Analytical Expressions for GE Measures
from Simple Lorenz Curves

In this section we derive analytical expressions for the given inequality measures
associated with three selected functional specifications for Lorenz curves. The
functional specifications are taken from Chotikapanich (1993), Gupta (1984) and
Kakwani and Podder (1973). Direct analytical solutions for Atkinson’s measure are
not provided for the Gupta and Kakwani-Podder Lorenz curves as they were found
to be difficult to determine.

4.1 The Chotikapanich specification

The Chotikapanich Lorenz curve is a simple functional form that has some useful
properties. This functional form was used in a recent inequality analysis by Dowrick
and Akmal (Dowrick and Akmal, 2005) and is particularly attractive for this purpose
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as it is easily integrable. The functional form for the specification of the Lorenz
curve, η = f (π) is

η =
ekπ −1
ek −1

, k > 0 (15.25)

The first and second order derivatives of the Lorenz curve with respect to π are given
by:

η ′ =
kekπ

ek −1
> 0 (15.26)

η ′′ =
k2ekπ

ek −1
> 0 (15.27)

Using equations (15.21)-(15.24) we are able to determine analytical solutions for
the given GE measures in terms of parameter k (and ε in the case of Atkinson’s
measure).

L =
k
2
− ln

(
kek

ek −1

)
(15.28)

T = k + lnk− ln(ek −1)−
(

ek − k−1
ek −1

)
(15.29)

1
2

CV 2 =
1
2

[
k
(
e2k −1

)
2(ek −1)2 −1

]
(15.30)

A = 1−
[

1
k (ε −1)

((
k

ek −1

)1−ε
−

(
kek

ek −1

)1−ε)] 1
1−ε

(15.31)

4.2 The Gupta specification

Gupta provides another single parameter Lorenz curve given by the following
equation.

η = πaπ−1, a > 0 (15.32)

It can be seen that the first and second order derivatives of the Lorenz curve in
Equation 15.32 are given by

η ′ = aπ−1 (1+π lna) > 0 (15.33)

η ′′ = aπ−1 lna(2+π lna) > 0 (15.34)
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The solutions for the GE measures in terms of parameter a are

L = 1+ ln
(

a
ln(a)+1

)
− ln(ln(a)+1)

ln(a)
− ln(a)

2
(15.35)

T = ln(1+ lna)− (15.36)[(
1

lna −
γ+ln(lna+1)+∑∞

k=1
(lna+1)k

kk!
ae ln2 a

)
lna+

(
γ+∑∞

k=1
1

kk!
ae ln2 a

)
lna

]

1
2

CV 2 =
2ln(a)(ln(a)+1)−a−2 +1

8ln(a)
− 1

2
(15.37)

The integral required to express Theil’s T measure in terms of parameter estimate
a does not have a closed form solution. The analytical equation given here uses
series approximations as a substitute for exponential integral (Hildebrand, 1962).
An exponential integral is defined as

Ei(x) = −
∫ ∞

−x

e−t

t
dt (15.38)

and may be used to generate integrals of functions where no clear anti-derivative
exists. The exponential integrals are represented here with the series

Ei(x) = γ + lnx+
∞

∑
k=1

xk

kk!
(15.39)

where γ is the Euler gamma constant and is approximately equal to 0.57721. This
constant is defined as the limiting difference between the harmonic series and the
log function. As a result the computation of Theil’s T measure based on equation
(15.36) requires a series approximation and is therefore not a closed form solution.

4.3 The Kakwani and Podder specification

Kakwani and Podder proposed the following functional form for the Lorenz curve
which was used in their 1973 Australian income study. The Kakwani Podder Lorenz
curve is specified as

η = πe−β (1−π), β > 0 (15.40)

The first and second order derivatives of the Lorenz curve are given by

η ′ = e−β (1−π)(1+πβ ) > 0 (15.41)
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η ′′ = βe−β (1−π)(2+πβ ) > 0, (15.42)

and the above GE measures are

L =
β +2

2
− ln(β +1)

(
1+

1
β

)
(15.43)

T = ln(1+β )− (15.44)⎡⎣ e−β−1
(

βeβ+1−
[(

γ+ln(β+1)+∑∞
k=1

(β+1)k
kk!

)
−(γ+∑∞

k=1
1

kk! )
])

β

⎤⎦
1
2

CV 2 =
2β (β −1)− e−2β +1

8β
(15.45)

Again the expression for Theil’s T measure in terms of the Lorenz curve parameter
requires a series approximation for an exponential integral. This need not be con-
sidered a problem however, as the series rapidly converges to the true value defined
by the exponential integral. Equations (15.28)-(15.31), (15.35), (15.37), (15.43) and
(15.45) demonstrate the feasibility of producing closed form solutions for GE in-
equality measures from Lorenz curve parameters.

5 Empirical Illustration of Results

In this section the empirical validity of the equations giving GE measures directly in
terms of the parameters of the Lorenz curve is examined using a simulation experi-
ment. To conduct this experiment a realistic range of parameter values are chosen for
each Lorenz curve. For each parameter value the set of implied decile income shares
is generated. Approximate GE measures are calculated from these decile shares, and
represent what is commonly reported as GE inequality estimates. Exact inequality
measurements are then calculated using the analytic solutions provided in the pa-
per and are compared to the commonly used approximate values. The validity and
accuracy of the results are reflected in the closeness of the approximate and exact
inequality measurements.

The following tables show the results from the simulation for six different pa-
rameter values for the Chotikapanich, Gupta and Kakwani-Podder Lorenz curves.
Column 1 of the tables gives the selected parameter values for each Lorenz curve.
Columns 2 and 3 give the approximation from decile shares and analytical values
for Theil’s L measure based on the selected parameter value. Columns 4 and 5 give
the corresponding approximate and analytic measurements from Theil’s T measure,
while columns 6 and 7 repeat the process for half the squared coefficient of varia-
tion. An extra table is included to demonstrate the behavior of Atkinson’s measure
with respect to the parameter k from the Chotikapanich specification. This is done
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for three chosen values for ε , and the analytical results are again presented alongside
approximate values calculated from decile shares.

5.1 Results from Simulations

Parameter values ranging from one to six have been chosen for Chotikapanich and
Kakwani-Podder functional forms to demonstrate the effectiveness of the analytic
solutions over a wide range of values. In practice most parameter estimates for the
Chotikapanich Lorenz curve lie between two and four, while most parameter esti-
mates for the Kakwani-Podder functional form lie between one and three. Parameter
estimates for the Gupta Lorenz curve are typically higher, usually ranging between
4 and 12. All analytical solutions accurately match the discrete approximations even
when using extreme parameter values. As expected, the values calculated using the
analytical expressions are all slightly higher than the values from the decile share
data. This is because data presented in grouped form ignores the inequality within
each group. The analytic solutions do not face this drawback. The results are all con-
sistent with expectations of Lorenz dominance with higher parameter values giving
larger inequality estimates in all cases.

Table 15.1: Chotikapanich Lorenz curve: η = ekπ−1
ek−1

Parameter Theil L Theil L Theil T Theil T 1
2CV 2 1

2CV 2

(k) value decile analytic decile analytic decile analytic

1 0.040908 0.041324 0.040227 0.040911 0.040537 0.040988
2 0.159773 0.161439 0.149902 0.151910 0.154337 0.156517
3 0.346570 0.350318 0.303075 0.307247 0.322434 0.328593
4 0.588561 0.595220 0.472698 0.479863 0.523701 0.537314
5 0.873405 0.883801 0.639681 0.650656 0.741207 0.766959
6 1.190802 1.205758 0.794193 0.809783 0.963801 1.007454
Analytic values for this table are based on algebraic expressions (15.28)-(15.30). Decile values
represent what is commonly reported for these indices.

Table 15.2: Gupta Lorenz curve: η = πaπ−1

Parameter Theil L Theil L Theil T Theil T 1
2CV 2 1

2CV 2

(k) value decile analytic decile analytic decile analytic

2 0.059654 0.060277 0.057742 0.058393 0.057899 0.058539
4 0.193880 0.196019 0.175846 0.177790 0.178681 0.181106
6 0.292866 0.296211 0.254285 0.257195 0.261675 0.265765
8 0.369756 0.374082 0.310943 0.314617 0.323430 0.329033
10 0.432575 0.437733 0.354771 0.359078 0.372403 0.379390
12 0.485722 0.491602 0.390270 0.395122 0.412918 0.421181
Analytic values are based on algebraic expressions (15.35)-(15.37).
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Table 15.3: Kakwani-Podder Lorenz curve: η = πe−β (1−π)

Parameter Theil L Theil L Theil T Theil T 1
2CV 2 1

2CV 2

(k) value decile analytic decile analytic decile analytic

1 0.112503 0.113705 0.106020 0.107239 0.106801 0.108083
2 0.348035 0.352081 0.295247 0.298786 0.306199 0.311355
3 0.643483 0.651607 0.488006 0.494619 0.528921 0.541563
4 0.974912 0.988202 0.663555 0.673970 0.756373 0.781239
5 1.330424 1.349888 0.818505 0.833475 0.982144 1.024998
6 1.703177 1.729771 0.954457 0.974748 1.203314 1.270833
Analytic values are based on algebraic expressions (15.43)-(15.45).

Table 15.4: Atkinson’s measure from Chotikapanich Lorenz curve

Parameter Atkinson
decile

Atkinson
analytic

Atkinson
decile

Atkinson
analytic

Atkinson
decile

Atkinson
analytic

(k) value (ε = 1.5) (ε = 1.5) (ε = 2) (ε = 2) (ε = 3) (ε = 3)

1 0.059637 0.060223 0.078558 0.079325 0.113784 0.114890
2 0.214621 0.216580 0.273521 0.275937 0.364951 0.368115
3 0.410688 0.413991 0.499997 0.503729 0.610141 0.614492
4 0.596713 0.600721 0.691836 0.695911 0.784632 0.788880
5 0.744444 0.748400 0.825670 0.829257 0.889354 0.892738
6 0.848010 0.851384 0.907597 0.910320 0.945995 0.948351
Analytic values are based on equation (15.31).

6 Conclusions

The paper has provided a formal link between the popular Generalised Entropy in-
equality measures and the Lorenz curve, which forms the basis for a number of other
inequality measures including the Gini coefficient. The paper provides mathemati-
cal expressions for these measures in terms of the Lorenz curve and its parameters.
The main result of the paper shows that the Lorenz curve can be seen as the basis
for most of the commonly used inequality measures, including GE measures which
stem form information theory. Analytical expressions for GE inequality statistics
are derived for some specific Lorenz curve functional forms and results from the
simulation experiments demonstrate the validity of the analytical expressions pro-
vided.
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CHAPTER 16

Estimating Income
Distributions Using a Mixture

of Gamma Densities
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Abstract

The estimation of income distributions is important for assessing income inequality
and poverty and for making comparisons of inequality and poverty over time, coun-
tries and regions, as well as before and after changes in taxation and transfer poli-
cies. Distributions have been estimated both parametrically and non-parametrically.
Parametric estimation is convenient because it facilitates subsequent inferences
about inequality and poverty measures and lends itself to further analysis such as
the combining of regional distributions into a national distribution. Non-parametric
estimation makes inferences more difficult, but it does not place what are some-
times unreasonable restrictions on the nature of the distribution. By estimating a
mixture of gamma distributions, in this paper we attempt to benefit from the advan-
tages of parametric estimation without suffering the disadvantage of inflexibility.
Using a sample of Canadian income data, we use Bayesian inference to estimate
gamma mixtures with two and three components. We describe how to obtain a pre-
dictive density and distribution function for income and illustrate the flexibility of
the mixture. Posterior densities for Lorenz curve ordinates and the Gini coefficient
are obtained.
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1 Introduction

The estimation of income distributions has played a major role in economic anal-
ysis. Information from such estimations is used to measure welfare, inequality and
poverty, to assess changes in these measures over time, and to compare measures
across countries, over time and before and after specific policy changes, designed,
for example, to alleviate poverty. Typical inequality measures are the Gini coef-
ficient and Atkinson’s inequality measure. Measures of poverty are based on the
proportion of population below a threshold or the expected value of a function over
that part of the income distribution below a threshold. See, for example, Kakwani
(1999). Estimates of these quantities and the Lorenz curve, a fundamental tool for
measuring inequality, depend on the income distribution and how it is estimated.
Thus, the estimation of income distributions is of central importance for assessing
many aspects of the well being of society. A convenient reference for accessing the
literature on the various dimensions of inequality measurement, and how they relate
to welfare in society is Silber (1999).

A large number of alternative distributions have been suggested in the literature
for estimating income distributions. See Kleiber and Kotz (2003) for a review of
many of them, one of which is the Dagum distribution, whose inventor is being
honoured by this volume. Further reviews of alternative income distributions appear
elsewhere in this volume. After an income distribution model has been selected
and estimated, probability distributions are used to draw inferences about inequality
and poverty measures. These probability distributions can be sampling distributions
for estimators of inequality and poverty, or Bayesian posterior distributions for in-
equality and poverty measures. In each case the required probability distributions
are derived from corresponding probability distributions for the parameters (or their
estimators) of the assumed income distribution. This parametric approach to the
analysis of income distributions can be applied to a sample of individuals, typically
obtained via household surveys, or to more limited grouped data which may be the
only form available. An advantage of the parametric approach is the ease with which
probability distributions for inferences about inequality and poverty can be derived
from those for the income distribution parameters. Also, in the case of more limited
grouped data, the parametric approach gives a complete picture of the income distri-
bution by allowing for within-group inequality. For an example of where the latter
advantage is utilized, see Chotikapanich et al. (2007) who estimated generalized
beta distributions from grouped data.

Assuming a particular parametric distribution also has disadvantages. Inferences
about inequality can depend critically on what distribution is chosen. This was ev-
ident in the work of Chotikapanich and Griffiths (2006) who found the posterior
probabilities for Lorenz and stochastic dominance were sensitive to the choice of a
Singh-Maddala or Dagum income distribution. To avoid the sensitivity of inferences
to choice of income distribution, nonparametric approaches are frequently used. See
Cowell (1999) and Barret and Donald (2003) for examples of nonparametric sam-
pling theory approaches and Hasegawa and Kozumi (2003) for a Bayesian approach.
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One way of attempting to capture the advantages but not the disadvantages of a
parametric specification of an income distribution is to use a functional form that
is relatively flexible. This paper represents an attempt in this direction. Mixtures
of distributions can provide flexible specifications and, under certain conditions,
can approximate a distribution of any form. With these characteristics in mind, we
consider a mixture of gamma distributions; the gamma density is convenient one
and it has been widely used for estimating income distributions. Our approach is
Bayesian. Using data on before-tax income for Canada in 1978, taken from the
Canadian Family Expenditure Survey and kindly provided by Gary Barrett, we find
(i) posterior densities for the parameters of a gamma mixture, (ii) an estimate of the
income distribution and 95% probability limits on the distribution, (iii) the posterior
density for the Gini coefficient and (iv) an estimate of the Lorenz curve and 95%
probability limits on this curve.

In Section 2 we specify the Gamma mixture and describe the Markov chain
Monte Carlo algorithm (MCMC) for drawing observations from the posterior den-
sity for the parameters of the mixture. The data set and our selection of prior pa-
rameters is given in Section 3. Section 4 contains the results and a summary of the
expressions used to obtain those results. Goodness-of-fit comparisons with other
functional forms for the income distribution are given in Section 5. Some conclud-
ing remarks appear in Section 6.

2 Estimating the Gamma Mixture Model

An income distribution that follows a gamma mixture with k components can be
written as

f (x |w,µ,ν) =
k

∑
z=1

wzG(x |νz,νz/µz) (16.1)

where x is a random draw of income from the probability density function (pdf)
f (x |w,µ,ν), with parameter vectors, w = (w1,w2, . . . ,wk)′, µ = (µ1,µ2, . . . ,µk)′,
and ν = (ν1,ν2, . . . ,νk)′. The pdf G(x |vz,vz

/
µz) is a gamma density with mean

µz > 0 and shape parameter vz > 0. That is,

G(x |νz,νz/µz) =
(νz/µz)νz

Γ (νz)
xνz−1 exp

(
− νz

µz
x
)

(16.2)

Including the mean µz as one of the parameters in the pdf makes the parameteriza-
tion in (16.2) different from the standard textbook one, but it is convenient for later
analysis. The parameter wz is the probability that the i-th observation comes from
the z-th component in the mixture. To define it explicitly, let x = (x1,x2, . . . ,xn) be
a random sample from (16.1), and let Z1,Z2, . . . ,Zn be indicator variables such that
Zi = z when the i-th observation comes from the z-th component in the mixture.
Then,
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P(Zi = z |w) = wz for z = 1,2, . . . ,k

with wz > 0 and ∑k
z=1 wz = 1. Also, conditional on Zi = z, the distribution of xi is

G
(
vz,vz

/
µz

)
.

To use Bayesian inference, we specify prior distributions on the unknown pa-
rameters w, µ, and ν, and then combine these pdfs with the likelihood function
defined by (16.1) to obtain a joint posterior pdf for the unknown parameters. This
joint posterior pdf represents our post-sample knowledge about the parameters and
is the source of inferences about them. However, as is typically the case in Bayesian
inference, the joint posterior pdf is analytically intractable. This problem is solved
by using MCMC techniques to draw observations from the joint posterior pdf and
using these draws to estimate the quantities required for inference. Because we are
interested in not just the parameters, but also the income distribution, the Gini coef-
ficient, and the Lorenz curve, the parameter draws are also used in further analysis
to estimate posterior information about these quantities.

The MCMC algorithm used to draw observations from the posterior density for
(µ,ν,w) is taken from Wiper et al. (2001). In the context of other problems, Wiper
et al. consider estimation for both a known and an unknown k. We will assume
a known value of k that is specified a priori. In our empirical work we consid-
ered k = 3 and k = 2 but settled on k = 2 as an adequate formulation. The MCMC
algorithm is a Gibbs sampling one where draws are taken sequentially and itera-
tively from the conditional posterior pdfs for each of the parameters. Because only
the conditional posterior pdfs are involved in this process, it is not necessary to
specify the complete joint posterior pdf. The relevant conditional posterior pdfs are
sufficient; they are specified below after we introduce the prior pdfs.

Following Wiper et al. (2001), the prior distributions used for each of the param-
eters are

f (w) = D(ϕ) ∝ wφ1−1
1 wφ2−1

2 . . .wφk−1
k (Dirichlet) (16.3)

f (vz) ∝ exp{−θvz} (exponential) (16.4)

f (µz) = GI (αz,βz) ∝ µ−(αz+1)
z exp

{
−βz

µz

}
(inverted gamma) (16.5)

for z = 1,2, . . . ,k
The Dirichlet distribution is the same as a beta distribution for k = 2 and a mul-
tivariate extension of the beta distribution for k > 2. Its parameters are ϕ =
(φ1,φ2, . . . ,φk)′. To appreciate the relationship between the gamma and inverted
gamma pdfs, note that if y ∼ G(α,β ), then q = (1

/
y) ∼ GI(α,β ). The pdfs in

(16.3), (16.4) and (16.5) are chosen because they combine nicely with the likelihood
function for derivation of the conditional posterior pdfs, and because they are suffi-
ciently flexible to represent vague prior information which can be dominated by the
sample data. In addition to the above prior pdfs, the restriction µ1 < µ2 < · · · < µk
is imposed a priori to ensure identifiability of the posterior distribution. Settings for
the prior parameters (ϕ,θ ,αz,βz) are discussed in Section 3.
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After completing the algebra necessary to combine the prior pdfs with the likeli-
hood function in such a way that isolates the conditional posterior densities for use
in a Gibbs sampler, we obtain the following conditional posterior pdfs.

The posterior probability that the i-th observation comes from the z-th component
in the mixture, conditional on the unknown parameters, is the discrete pdf

P(Zi = z |x,w,ν,µ) =
piz

pi1 + pi2 + · · ·+ pik
(16.6)

where

piz = wz
(νz/µz)

νz

Γ (νz)
xνz−1

i exp
{
−νzxi

µz

}
The posterior pdf for the mixture-component probabilities w, conditional on

the other parameters and on the realized components for each observation z =
(z1,z2, . . . ,zn)′, is the Dirichlet pdf

f (w |x,z,ν,µ) = D(ϕ+n) (16.7)

where n = (n1,n2, . . . ,nk)′, with nz being the number of observations for which
Zi = z. Thus, ∑k

z=1 nz = n.
The posterior pdfs for the means of the component densities µz, conditional on

the other parameters and on z, are the inverted gamma pdfs

f (µz |x,z,w,ν) = GI (αz +nzνz, βz +Szνz) (16.8)

where Sz = ∑
i:Zi=z

xi.

The form of the posterior pdfs for the scale parameters of the component densities
vk, conditional on the other parameters and on z, is not a common recognizable one.
It is given by

f (νz |x,z,w,µ) ∝
νnzνz

z

[Γ (νz)]
nz exp

{
−νz

(
θ +

Sz

µz
+nz log µz − logPz

)}
(16.9)

where Pz = ∏
i:Zi=z

xi.

A Gibbs sampling algorithm that iterates sequentially and iteratively through the
conditional posterior pdfs can proceed as follows:

1. Set t = 0 and initial values w(0),µ(0),ν(0).
2. Generate

(
z(t+1) |x,w(t),ν(t),µ(t)

)
from (16.6).

3. Generate
(

w(t+1) |x, z(t+1),ν(t),µ(t)
)

from (16.7).

4. Generate
(

µ(t+1)
z |x,z(t+1),ν(t),w(t+1)

)
from (16.8), for z = 1,2, . . . ,k.

5. Generate
(

ν(t+1)
z |x,z(t+1),µ(t+1),w(t+1)

)
from (16.9), for z = 1,2, . . . ,k.
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6. Order the elements for µ(t+1) such that µ1 < µ2 < .. . < µk and sort w(t+1) and
ν(t+1) accordingly.

7. Set t = t +1 and return to step 2.

To describe each of the generation steps in more detail, first consider (16.6). In
this case we divide the interval (0,1) into k sub-intervals with the length of the
z-th sub-interval equal to P(Zi = z |x,w,ν,µ). A uniform random number is gen-
erated from the (0,1) interval. The value assigned to Zi is the sub-interval in which
the uniform random number falls. To generate observations from the Dirichlet den-
sity in (16.7), we first generate k gamma random variables, say γz, z = 1,2, . . . ,k
from G(φz + nz, 1) densities, and then set wz = γz

/
∑k

j=1 γ j. To generate µz from
(16.8), we generate a random variable from a G(αz +nzvz, βz +Szvz) density and
then invert it.

Generating vz from equation (16.9) is more complicated, requiring a Metropolis
step. We draw a candidate ṽ(t+1)

z from a gamma density with mean equal to the
previous draw v(t)

z . That is, a candidate ṽ(t+1)
z is generated from a G

(
r, r

/
v(t)

z

)
distribution and is accepted as v(t+1)

z with probability

min

⎧⎨⎩1,
f
(

ν̃(t+1)
z |x,z(t+1),w(t+1),µ(t+1)

)
f
(

ν(t)
z |x,z(t+1),w(t+1),µ(t+1)

) p
(

ν̃(t+1)
z ,ν(t)

z

)
p
(

ν(t)
z , ν̃(t+1)

z

)
⎫⎬⎭

where p
(

ν(t)
z , ν̃(t+1)

z

)
is the gamma density used to generate ν̃(t+1)

z . Non-

acceptance of ν̃(t+1)
z implies ν(t+1)

z = ν(t)
z . The value of r is chosen by experi-

mentation to give an acceptance rate of approximately 0.4.

3 Data Characteristics and Prior Parameters.

Characteristics of the sample of incomes from the 1978 Canadian Family Expen-
diture Survey are presented in Figure 16.1. The units are thousands of Canadian
dollars. There are 8526 observations with values ranging from 0.281 to 173.8. Sam-
ple mean income is 35.5 and the sample median income is 32.4. The histogram
reveals two modes, one at approximately 23 and the other at approximately 32. The
Gini coefficient computed from the sample is 0.3358.

In choosing values for the parameters of the prior densities, our objective was to
have proper but relatively uninformative priors so that posterior densities would be
dominated by the sample data. We initially tried a mixture of k = 3 components but
encountered identification problems and then reduced the number of components to
k = 2.

We set φz = 1 for all z, thus implying a uniform prior for the weights on each
component. For the exponential prior on the scale parameters vz we set θ = 0.02. A
95% probability interval for this prior is (0.5, 161) implying a large range of values
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Fig. 16.1: Characteristics of Canadian income data

are possible. For the µz we initially set αz = 2.2 for z = 1,2,3 and β1 = 24, β2 = 54,
β3 = 120. Then, when we proceeded with k = 2, we set β1 = 30 and β2 = 95.
From this latter setting, and ignoring the truncation µ1 < µ2, 95% prior probability
intervals for µ1 and µ2 are, respectively, (5, 98) and (16, 306). In light of the sample
mean of 35.5, these intervals suggest priors that are relatively uninformative.

4 Results

The algorithm described in Section 2 was used to generate 200,000 observations
from the joint posterior density for the parameters (w,µ,ν) and the first 100,000
were discarded as a burn in. In our first attempts with k = 3 there appeared to be
an identification problem with the second and third components. For separate iden-
tification of these two components, we require µ2 < µ3. If µ2 = µ3, some other
mechanism is required for identification (Wiper et al. 2001). The two-dimensional
plot of the draws for µ2 and µ3 given in Figure 16.2 shows a large number of obser-
vations on the boundary where µ2 = µ3. Other evidence is the bimodal distributions
for v2 and v3 (Figure 16.3), the very high correlation between w2 and w3 (Figure
16.4) and the fact that the marginal posterior densities for w2 and w3 were mirror
images of each other.

These issues led us to consider instead a model with two components (k = 2).
In this case there was no apparent identification problem, and the Gibbs sampler
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Fig. 16.2: Posterior observations on µ2 and µ3 for k = 3

Fig. 16.3: Posterior observations on v2 and v3 for k = 3
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Fig. 16.4: Posterior observations on w2 and w3 for k = 3

showed evidence of converging. Summary statistics for the draws on the parameters
are given in Table 16.1. There is relatively large weight (about 0.9) on the second
component and a relatively small weight (about 0.1) on the first component. The
posterior mean for the mean of the first component is relatively small (compared to
the sample mean) and, likely, serves to help capture the first mode of the income
distribution.

Table 16.1: Posterior Summary Statistics for Parameters

Name Mean St.Dev Min Max

µ1 9.6134 0.3569 7.8906 11.130
µ2 38.704 0.4207 36.903 40.768
w1 0.1090 0.0121 0.0608 0.1566
w2 0.8910 0.0121 0.8434 0.9392
v1 7.4761 0.8087 5.2314 12.653
v2 3.3616 0.1198 2.9667 3.9985

Having obtained M MCMC-generated observations from the posterior density
f (w,µ,ν |x), for a sample of observations x we can proceed to obtain estimates
for the density and distribution functions for income and for the corresponding
Lorenz curve as well as probability bands around these functions. Indexing an



294 Duangkamon Chotikapanich and William E Griffiths

MCMC-generated observation by a superscript (j), an estimate for the density
function at a given income x is given by

f (x |x) =
1
M

M

∑
j=1

k

∑
z=1

w( j)
z G

(
x |ν( j)

z ,ν( j)
z /µ( j)

z

)
(16.10)

This function was calculated for 101 values of x from 0 to 200 such that the intervals
between successive values of log x were equal. For each x 95% probability bands
were found by sorting the M values of

f (x |w( j),µ( j),ν( j)) =
k

∑
z=1

w( j)
z G

(
x |ν( j)

z ,v( j)
z /µ( j)

z

)
and taking the 0.025 and 0.975 percentiles of these values. The plots for the mean
distribution and its probability bounds appear in Figure 16.5. The bimodal nature of
the distribution has been well captured, although, as one would expect, it is at the
peaks of the distribution where the greatest uncertainty is exhibited through wider
bounds.

Fig. 16.5: Mean and 95% probability bounds for the predictive density for income

An estimate of the distribution function and probability bounds on that distribu-
tion can be found in a similar way. In this case the value of the distribution function
for a given value x is given by

F(x |x) =
1
M

M

∑
j=1

k

∑
z=1

w( j)
z

∫ x

0
G
(

t |ν( j)
z ,ν( j)

z /µ( j)
z

)
dt

(16.11)

=
1
M

M

∑
j=1

F(x |w( j),µ( j),ν( j))
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This function was evaluated for the same 101 values of x. To estimate the Lorenz
curve we consider for each x the M points F

(
x |w( j),µ( j),ν( j)

)
and the correspond-

ing points for the first moment distribution which is given by

η
(

x |w( j),µ( j),ν( j)
)

=
1

∑k
h=1 w( j)

h µ( j)
h

∫ x

0
t f

(
t |w( j),µ( j),ν( j)

)
dt (16.12)

=
1

∑k
h=1 w( j)

h µ( j)
h

k

∑
z=1

w( j)
z

∫ x

0
tG

(
t |ν( j)

z ,ν( j)
z /µ( j)

z

)
dt

=
1

∑k
h=1 w( j)

h µ( j)
h

k

∑
z=1

w( j)
z µ( j)

z

∫ x

0
G
(

t |(ν( j)
z +1),ν( j)

z /µ( j)
z

)
dt

To see how to use these points to estimate a Lorenz curve and find its probability
bounds it is instructive to examine a graph of the M points for F(x |w( j),µ( j),ν( j))
and η(x |w( j),µ( j),ν( j)) for a given value of x. Such a graph for the point x = 35 is
given in Figure 16.6. A graph like that in Figure 16.6 could be drawn for each of the
101 x points. To estimate the Lorenz curve and draw probability bounds around it,
we need to “select” three points from each graph, an estimate of the Lorenz curve
for each x and its corresponding upper and lower probability bounds. As an estimate
of the Lorenz curve for a given x we can take the mean values of all the points in
Figure 16.6. That is, the point [η(x |x),F(x |x)] where

η(x |x) =
1
M

M

∑
j=1

η(x |w( j),µ( j),ν( j)) (16.13)

and F(x |x) is given in (16.11). Then an estimate of the complete Lorenz curve is
obtained by joining these points for all x.

Finding 95% probability bounds for the Lorenz curve is more difficult than
it is for the density and distribution functions because, for each x, we have a
2-dimensional space for F(x |w( j),µ( j),ν( j)) and η(x |w( j),µ( j),ν( j)) to consider.
Two approaches were taken. In the first, for each x, we regressed the M values of
η(x |w( j),µ( j),ν( j)) on the corresponding M values of F(x |w( j),µ( j),ν( j)) via a
least squares regression. The residuals from this regression were ordered and the
0.025 and 0.975 percentiles of the residuals were noted. Denoting them by ê.025 and
ê.975, the bounds at a given x were taken as the points

[F(x |x), η(x |x)+ ê.025] and [F(x |x), η(x |x)+ ê.925 ] (16.14)

Note that ê.025 < 0, so we add it rather than subtract it from η(x |x). To obtain the
lower bound on the Lorenz curve, we computed [F(x |x), η(x |x)+ ê.025] for each
x, and joined these points. Similarly, to obtain the upper Lorenz bound, we com-
puted [F(x |x), η(x |x)+ ê.925 ] for each x and joined these points. These bounds
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Fig. 16.6: Plots of 100,000 pairs of F(x) and η(x) for x = 35

and the estimated Lorenz curve are plotted in Figure 16.7. However, the bounds
are so narrow that they are indistinguishable from the estimated curve. In Figure
16.8 we present a more distinct cross section of the plots for 0.4 < F(x) < 0.6 and
0.2 < η(x) < 0.4. Also, to give an idea of the width of the bounds, in Figure 16.9
we plot ê.025 and ê.975 against F(x). The maximum width of the probability interval
is less than 0.008, implying the Lorenz curve is accurately estimated.

To introduce our second approach for finding probability bounds on the Lorenz
curve, first note that, in the first approach, the bounds do not correspond to one
set of parameter values for all x. The upper and lower extreme 2.5% of parameter
values is likely to be different for each x setting. While this is not necessarily a bad
thing – it is also a characteristic of the estimated density function for income – it
is interesting to examine an alternative method of obtaining bounds that “discards”
the same parameter values for each x. One way to use a unique set of upper and
lower 2.5% of parameter values is to order Lorenz curves on the basis of their Gini
coefficients. Denoting the 101 x points as x1,x2, . . . ,x101, the Gini coefficient for the
j-th set of parameters can be approximated by

Gini
(

w( j),µ( j),ν( j)
)

=
100

∑
m=1

η
(

xm+1 |w( j),µ( j),ν( j)
)

F
(

xm |w( j),µ( j),ν( j)
)

(16.15)

−
100

∑
m=1

η
(

xm |w( j),µ( j),ν( j)
)

F
(

xm+1 |w( j),µ( j),ν( j)
)



Estimating Income Distributions Using a Mixture of Gamma Densities 297

Fig. 16.7: Entire Lorenz curve and 95% probability bounds

Fig. 16.8: Close up of Lorenz curve and 95% probability bounds
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Fig. 16.9: Plots of the differences between the estimated Lorenz curve and 95% probability bounds

In this approach the probability bounds of the Lorenz curve were taken as
the Lorenz curves corresponding to the parameter values that yield the 0.025
and 0.975 percentiles for the Gini coefficient. Thus, the bounds on the Lorenz
curve are found by using the area under the Lorenz curve to determine a pa-
rameter ordering. Specifically, if the parameter values corresponding to the
0.025 and 0.975 percentiles of the Gini coefficient are (w.025,µ.025,ν.025)
and (w.975,µ.975,ν.975), then the upper bound is the curve joining the points
[η (x |w.975,µ.975,ν.975) ,F(x |w.975,µ.975,ν.975)] for each x, and the lower bound
is the curve joining the points [η (x |w.025,µ.025,ν.025) , F(x |w.025,µ.025,ν.025)] for
each x.

While it is straightforward to draw the bounds in this way, it is not obvious how
one might define the “errors” between the estimated Lorenz curve and its 95% prob-
ability bounds if one is interested in these values. In the regression approach, where
η was treated as the “dependent” variable and F was treated as the “explanatory”
variable, it was natural to define the errors as the vertical distances as specified in
(16.14). In this case, however, there is no reason why they should be vertical or
horizontal distances. To solve this dilemma, we define the errors as the orthogonal
distances from the Lorenz curve

d̂U (x) =
√

(F(x |w.975,µ.975,ν.975)−F(x |x))2 +(η (x |w.975,µ.975,ν.975)−η(x |x))2

d̂L(x) =
√

(F(x |w.025,µ.025,ν.025)−F(x |x))2 +(η (x |w.025,µ.025,ν.025)−η(x |x))2
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Once again, it turned out that the Lorenz curve is estimated very accurately with
the probability bounds not discernible from the mean Lorenz curve. Rather than
present another figure that appears identical to Figure 16.7, in this case we simply
plot the errors d̂U (x) and d̂L(x) that appear in Figure 16.10. The pattern of these
differences is a strange one, and, as expected, they are larger than those obtained
using the regression method. Larger differences are expected because the regres-
sion method minimizes the “error” for each x. Nevertheless, the largest error is still
relatively small, being less than 0.016.

Fig. 16.10: Orthogonal differences between Lorenz curve and 95% probability bounds

Also, of interest is the Gini coefficient. Its posterior density, estimated from the
100,000 points defined by equation (16.15), is plotted in Figure 16.11. The posterior
mean is 0.337 and 95% probability bounds for the Gini coefficient are 0.333 and
0.342.

5 Goodness of Fit

Given our objective was to specify a gamma mixture as a flexible parametric model
for an income distribution, it is useful to assess its goodness of fit against those of
some common income distributions. To do so we compare the estimated distribution
function F(x |x) with the empirical distribution function F0(x j) = j/n where j refers
to the j-th observation after ordering them from lowest to highest and n is the sample
size. We compute goodness of fit using the root mean squared error
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Fig. 16.11: Posterior density for the Gini coefficient

RMSE =

√
1
n

n

∑
j=1

(F (x j |x)−F0(x j))
2

In addition we perform a Kolmogorov-Smirnov test which is based on the largest
difference between F (x j |x) and F0(x j). Table 16.2 contains the results for the
Bayesian-estimated gamma mixture and for maximum likelihood estimates of the
lognormal, beta2, Singh-Maddala and Dagum distributions. Clearly, the gamma
mixture is far superior to other models in terms of goodness of fit.

Table 16.2: Goodness of Fit Comparisons

RMSE Max Dif(δn) δn
√

n p-value

Gamma Mix 0.0064 0.01449 1.33795 0.055738
Log Normal 0.0414 0.07449 6.87813 0.000000
Beta2 0.0310 0.05523 5.09974 0.000000
Singh-Maddala 0.0122 0.02757 2.54571 0.000005
Dagum 0.0135 0.03146 2.90490 0.000000

6 Concluding Remarks

A mixture of gamma densities has been suggested as a model for income distri-
butions. Mixtures have the advantage of providing a relatively flexible functional
form and at the same time they retain the advantages of parametric forms that are
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amenable to inference. We have demonstrated how a Bayesian framework can be
utilized to estimate the gamma mixture and related quantities relevant for income
distributions. In addition to showing how the income distribution estimate and its
95% probability bounds can be calculated, we considered the distribution function,
the Lorenz curve and the Gini coefficient. Two ways of computing 95% probability
bounds for the Lorenz curve were explored. Goodness-of-fit comparisons showed
the gamma mixture fits well compared to a number of commonly used income dis-
tributions.

An attempt to estimate a mixture with 3 components was not successful leading
us to opt for a model with 2 components. The results for 3 components suggested a
lack of identification between the second and third components. Most likely, the em-
pirical characteristics of the distribution are well captured by 2 components, making
it hard for the data to discriminate when 3 are specified. This outcome does not nec-
essarily imply 2 will always be adequate. There could be other distributions where
more components improve the specification. Also, the number of components can
be treated as an unknown parameter which, in a Gibbs sampling algorithm, can vary
from iteration to iteration.

Further research will focus on the use of estimated gamma mixtures in the mea-
surement of inequality and poverty and in methodology for examining stochastic
and Lorenz dominance for income distributions. Expressing uncertainty about such
quantities in terms of posterior densities facilitates making inferences and probabil-
ity statements about relative welfare scenarios.
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CHAPTER 17

Inequality in Multidimensional
Indicators of Well-Being:

Methodology and Application
to the Human Development

Index∗

Quentin Wodon† and Shlomo Yitzhaki‡

Abstract

Inequality measures for multidimensional indicators of well-being may be sensi-
tive to the weights used for weighting the various dimensions taken into account
in the overall indicator. This paper provides a general yet simple method for as-
sessing whether the Gini index of inequality is sensitive to changes in weights. The
method is applied to the Human Development Index (HDI). Changing the weights
used to compute the HDI would not change significantly world inequality in human
development.

1 Introduction

In order to provide measures of well-being which take into account several dimen-
sions of well-being, multidimensional indices have been proposed in the literature.
A well known example is the Human Development Index (HDI hereafter) published
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authors and need not reflect those of the World Bank, its Executive Directors or the countries they
represent.
† World Bank, Washington D.C. E-mail: qwodon@worldbank.org.
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by the United Nations Development Programme (2006). The HDI is a weighted av-
erage of three other indices dealing respectively with life expectancy, educational
attainment, and per capita GDP. Each of the three indices receives an equal weight
of one third in the HDI. These weights (and to some extent the variables themselves)
are arbitrary, so that the results obtained (for example, in terms of measuring world-
wide between country inequality in human development) may be sensitive to the
choice of the weights. The objective of this paper is to assess to what extent this is
the case.

The choice of the variables used in defining the HDI and their weights has been
discussed extensively, among others by Doessel and Gounder (1994); Hicks (1997);
Lüchters and Menkhoff (1996); McGillivray (1991); McGillivray and White (1993);
McGillivray and Noorbakhsh (2004); Noorbakhsh (1998, 2007); Ogwang (1994);
Palazzi and Lauri (1998) and Ram (1992). One first set of issues revolves around the
choice of the variables to be used. As noted by McGillivray and Noorbakhsh (2004),
indices that were developed before the HDI, such as the General Index of Develop-
ment (GID; see McGranahan et al. (1972)) and the Socio-Economic Development
Index (United Nations Research Institute for Social Development (UNRISD), 1970)
were criticized because they were closer to measures of structural activity rather
than well-being. The choice of the variables used in the HDI was made in order to
try to capture Sen’s concept of capabilities. Still, this choice of variables remains
somewhat ad hoc, and it is not clear that this can be easily avoided, not only because
different observers may have an interest in different variables, but also from a prac-
tical point of view because there are constraints in terms of what can be properly
measured at regular intervals by developing countries in order to be incorporated
in the overall index. Difficulties in measurement are also one of the reasons why
it is easier to work with country means for the selected variables (or more pre-
cisely, in the case of the HDI, transformations of these means taking into account
minimum and maximum thresholds that the variables can reach), rather than with
more complex indicators that would take into account within country inequality in
indicators.

A second set of issues relates to the weight to be used in order to combine the
chosen indicators in one aggregate measure of well-being. Quite a few studies have
been devoted to assessing the correlations between various composite indices of
well-being, between the various variables used in the HDI or other indices, and
between the variables and the HDI or the indices themselves. For example, Ram
(1992) calculates correlation coefficients between the HDI and real income inequal-
ities and finds them to be very high. However, he notes that despite high correlations,
inequality measures differ markedly, with inequality in the HDI being much lower
than in real GDP per capita.36

As noted by McGillivray and Noorbakhsh (2004), when comparing different
composite indices, “a fundamental weakness with these studies is that it is not en-
tirely clear what extent of statistical association deems a new indicator empirically
redundant with respect to a pre-existing one”. More generally, a key issue when

36 For a recent analysis of inequality in HDI, see Noorbakhsh (2007).
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assessing weighting schemes is that the assessment of the appropriate weights, or
the assessment of whether changes in weights make a substantial difference in the
results obtained, depends on the purpose of the analysis. For example, in the con-
text of work aiming to assess the level of inequality in human development, perhaps
with the aim to subsequently measure whether there is convergence over time or not
between countries in average levels of human development (as done by Noorbakhsh
(2007)), one might be interested in testing first whether changes in the weighting
system affect between-country inequality in the HDI, because this may in turn af-
fect conclusions reached about convergence.

In this paper, building on work by Wodon and Yitzhaki (2003) and Yitzhaki and
Wodon (2004), we provide a general yet simple method for assessing whether in-
equality measures for multidimensional indicators of well-being are sensitive to the
weights used for the various dimensions taken into account in the overall indicator.
The basic idea is the following: the higher the association between the variables
included in the index is, the less important is the weighting scheme used for aggre-
gating the various components of the index when estimating inequality in the overall
index. However, measures of association may differ in their values and therefore it
is important to find out the “appropriate” measure of association to be used in order
to translate the association between the various variables included in the index into
a correlation measure. This “appropriate” correlation indeed depends on the choice
of the inequality measure (such as the Gini index, which requires the use of the Gini
correlation to measure the association between the variables used for the index).
When applying our method to the HDI and estimating the Gini index for the HDI,
we are able to predict fairly accurately how inequality in human development would
be affected by changes in weights for the various components of the HDI. We also
find that the impact of changing weights on inequality is not very large.

2 Methodology

Let (Z1,Z2) be a bivariate distribution, with F(Z1) and F(Z2) as marginal cumula-
tive distributions. It is assumed that first and second moments exist. We want to es-
timate the Gini index of inequality of a linear combination of Z1 and Z2. To simplify
the derivation, we work with variables with unit means, Yi = Zi/µi. To perform such
an exercise we need the equivalent of the correlation coefficient which is appropri-
ate for Gini analysis. Schechtman and Yitzhaki (1987, 1999) define the asymmetric
Gini correlation between Y1 and Y2 as:

Γ12 = cov(Y1,F(Y2))/cov(Y1,F(Y1)) (17.1)

The Gini correlation is asymmetric because Γ12 need not be equal to Γ21, although
both are bounded by minus one and one. If each observation k in distribution 2
is obtained by applying a monotonic increasing transformation t() on distribution
1, with y2k = t(y1k), then Γ12 = Γ21 = 1. Under rank reversal (the largest value in
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distribution 1 becomes the lowest in distribution 2, etc.), Γ12 = Γ21 = −1. If Y1 and
Y2 are independent, Γ12 = Γ21 = 0. Although Γ12 need not equal Γ21, one can define
a symmetric Gini correlation as:

Γ = w1Γ12 +w2Γ21 (17.2)

where wi = Gi/(G1 + G2), i = 1,2, are the shares of inequality of each distribution
in the sum for both distributions. Changing the role of the distributions does not
affect Γ .

Let Yα = αY1 +(1−α)Y2 where 0 < α < 1 is a constant. If α is known, the Gini
of Yα , denoted by Gα , can be computed directly by creating a new variable, Yα . If α
is not known with certainty, it is useful to provide lower and upper bounds for Gα .
Denoting by F(Yα) the cumulative distribution of Yα , Gα = 2cov(Yα ,F(Yα)) since
all variables have unit means (on this covariance formula, see Lerman and Yitzhaki,
1994). This implies:

Gα = 2αcov(Y1,F(Yα))+2(1−α)cov(Y2,F(Yα)) (17.3)

Yitzhaki and Wodon (2004) show that (17.3) is bounded by:

Max[0,αG1Γ12 +(1−α)G2Γ21] ≤ Gα ≤ αG1 +(1−α)G2 (17.4)

The proof is reproduced in appendix. For example, if Γ12 = 0.8, Γ21 = 0.9,G1 =
0.4, and G2 = 0.3, then 0.27 + 0.05 α ≤ Gα ≤ 0.3 + 0.1 α , which is an error range of
less than 10 percent. The upper bound is reached when one variable is a monotonic
increasing transformation of the other, so that the ranking of observations in distri-
butions 2 and 1 are identical. If F(Yα) = F(Y1) = F(Y2), Gα is simply the weighted
average of G1 and G2. The lower bound depends on the Gini correlations, with low
Gini correlations reducing the potential value of Gα , up to a minimum value of zero
since the Gini coefficient is non-negative. Under negative Gini correlations, the vari-
ables “neutralize” each other. However, in most cases of interest, the variables will
exhibit positive correlations, so that the binding factor will be the second term in the
maximum function in (17.4). A special case occurs when Y1 and Y2 are exchange-
able37, as is the case for the bivariate normal distribution. Then, Γ = Γ12 = Γ21. If Yα
and Y1 are also exchangeable, as well as Yα and Y2, then it can be shown (the proof
is reproduced in appendix) that:

G2
α = α2G2

1 +(1−α)2G2
2 +2α(1−α)G1G2Γ . (17.5)

Under exchangeability, the Gini behaves like the coefficient of variation. So far,
we worked with variables with unit means. To handle variables with non-equal

37 A set of random variables is said to be exchangeable if, for all n ≥ 1, and for every permuta-
tion of n subscripts, the joint distributions are identical (Stuart and Ord, 1987). For the two Gini
correlations to be equal ( Γjs = Γs j), it is required that the variables be exchangeable up to a linear
transformation, a requirement which is weaker than exchangeability (Schechtman and Yitzhaki,
1987).
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means, the Gini behaves like the coefficient of variation, so that it suffices to re-
place α by a = αµ1/(αµ1 +(1−α)µ2).

3 Application to the Human Development Index

To provide evidence on the good predictive power of the above upper and lower
bounds in (17.4), and of the estimates obtained under the exchangeability assump-
tion in (17.5), we estimate measures of between country inequality in human de-
velopment, using the HDI. The data are for the year 2004 and come from the 2006
Human Development Report (United Nations Development Program, 2006). Specif-
ically, the variables used for computing the Human Development Index come from
Table 1 on pages 283-286, while the data used to compute the population weights
in the covariances and Gini indices comes from Table 5 on pages 297-30038.

We provide results for both population weighted and non-weighted samples. The
HDI is a weighted sum of three indices themselves based on indicators. Denoting
by X the value of the indicator, each index is computed using a formula taking into
account the actual value of the indicator as well as fixed minimum and maximum
values.39 The formula is such that for each country, the value of each index is be-
tween zero and one. That is, for any given country, the indices are computed as:

Index = (Actual X – Minimum X)/(Maximum X – Minimum X) (17.6)

The first index is that of life expectancy at birth, for which the maximum and
minimum values are respectively 25 and 85 years. The second index is that of ed-
ucational attainment. It is itself a weighted average of two indices or components.
The first component is the adult literacy rate index for which the minimum and max-
imum values are 0 and 100 percent. The second component is the combined gross
enrolment ratio index for primary, secondary, and tertiary education, with minimum
and maximum values also fixed at 0 and 100 percent. In the HDI calculation, the
adult literacy index and the combined gross enrolment ratio index are given weights
of 2/3 and 1/3, so that the educational attainment index is simply the weighted arith-
metic mean of its two components. Finally, the third index is that of the logarithm of

38 Due to lack of data for some variables, we deleted from the sample a number of small countries:
Bhutan, Cuba, Ecuador, Haiti, Maldives, Occupied Palestinian Territories, Suriname, Timor-Leste,
and Turkmenistan. For countries for which data on the combined enrolment indicator were missing
(there was a slightly larger number of such countries), values of one were given for the richest
countries, and for other countries, the average of the values obtained for the three countries ranked
(in terms of HDI) just above the country with missing data were used. These hypotheses do not
affect the results reported in this paper in any meaningful way, and they were used in order to keep
as many countries as possible in the sample. The final sample consists of 167 countries.
39 We are grateful to an anonymous referee who pointed out the importance of stating that the
maxima and minima are subjective goalposts assigned by UNDP. This is discussed among others
by McGillivray and Noorbakhsh (2004).
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real GDP per capita measured using Purchasing Power Parity values in U.S. dollars,
with the minimum and maximum values set at log(100) and log(40,000). According
to the UNDP report, income is used as a proxy for those dimensions of well-being
that are not already reflected through the other components of the HDI, namely life
expectancy and knowledge as measured by education outcomes. It is worth noting
that the way in which income enters in the HDI index has been modified from earlier
versions of the aggregate (this is discussed for example in Anand and Sen (1999)).
The HDI index is then computed as the simple arithmetic mean of the three indices.
Real GDP, life expectancy, and educational attainment are thus given equal weights
of one third in the HDI.

For the purpose of our analysis, it is convenient to present the HDI in a slightly
different way. In equation (17.7), the educational attainment index is a weighted sum
of the adult literacy index (ALI) and the combined gross enrolment index (CGEI),
with weights γ and one minus γ (for the UNDP, γ is set at two thirds). Next, we
shall refer to the non-GDP index, denoted by NGDPI, as the weighted sum of the
life expectancy (LEI) and educational attainment (EAI) indices, with weights β and
one minus β (for the UNDP, β is set at 0.5). Finally, the HDI itself is a weighted
sum of the real GDP and non-GDP indices, with weights α and one minus α (for the
UNDP, given the way the formula is set up in equation (17.7), α is set at one third).
In other words, in order to add only two indices at a time to get to the HDI, we have
grouped the life expectancy and educational attainment indices together into a new
non-real GDP index. This manipulation will facilitate the analysis, and it does not
change any of our conclusions.

HDI = αGDPI +(1−α)NGDPI

With NGDPI = βLEI +(1−β )EAI

and EAI = γALI +(1− γ)CGEI
(17.7)

Table 17.1 provides summary statistics for the variables used. The non-weighted
values give an equal weight to all countries regardless of their population size. The
weighted values use the population shares as weights. The mean values for the world
as well as other summary statistics are given. There are some differences in both the
indicators and the indices according to the weighting scheme, as expected. Typically,
weighted indicators and indices have lower values than unweighted variables.

In what follows, we focus on the ability of our lower and upper bounds to predict
the level of inequality in the HDI and its various components at the world level.
Table 17.2 provides the estimates of the Gini indices of inequality as well as the
asymmetric and symmetric Gini correlations. As mentioned in the previous section,
the two asymmetric Gini correlations need not be equal, even though in practice
they tend to be close to each other. Overall, the Gini correlations between the var-
ious dimensions of the HDI are high. The lowest correlation is observed for the
relationship between life expectancy and educational attainment, which is 0.79.

Table 17.3 gives the test of the predictive power of the lower and upper bounds
in equation (17.4), as well as the estimates under the exchangeability assumption in
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equation (17.5). Consider first the inequality in educational attainment, which is a
function of the adult literacy and gross enrolment indices. Using the UNDP weight
of 0.667, the actual between country Gini index of inequality for the educational
attainment index is 0.126 when the variables are not weighted by population, and
0.115 when they are weighted. The lower and upper bounds provide fairly small
intervals around these values, with the mid point of the interval being less than one
percentage point away from the true value of the Gini index. The estimates under
the exchangeability hypothesis perform even better, with an error below one tenth of
a percentage point. The same can be observed for the NGDPI (non-per capita GDP)
index computed using the life expectancy and educational attainment sub-indices.
And again, the same is observed for the overall HDI, which is very well predicted
under the exchangeability assumption.

Table 17.4 provides the intervals obtained for the various indices and sub-indices
using different weighting schemes. All these intervals are fairly small overall due
to high Gini correlations between the various indices entering into the HDI. For
extreme weighting schemes such as α equal to zero or one, the analyst of course
knows directly what the Gini of the weighted index of well-being will be, since
in such cases the upper bound applies, and this is apparent in the estimates under
the exchangeability assumption. But even for other weighting schemes such as those
used by the UNDP, the predictions will be good. Also, it is worth noting that in most
cases, changing the weights of the HDI would not affect between country inequality
in human development very much.

4 Conclusion

Using the property that the Gini coefficient can be decomposed in a way which
resembles the decomposition of the coefficient of variation, we have provided a
method for testing the sensitivity of inequality measures based on multidimensional
indicators to changes in the weights used to combine the various indicators. When
applying the technique to the HDI, we found that the Gini correlations among the
various components of the HDI are fairly high, and therefore, the impact of changing
the weights of the various variables can be predicted with accuracy. More generally,
while we have applied our method to the HDI, the method is quite general, and it
can be applied to any multidimentional indicator when inequality is measured with
the Gini index.

It is worth mentioning that while changing the weights in the HDI would not
have a large impact on between country inequality in human development, this does
not mean that there are no consequences from changing those weights. For example
some governments tend to be sensitive to their country’s precise ranking, as these
rankings tend to be widely used. Even if in the aggregate inequality in the HDI is
not affected much by changes in weights, particular country rankings may well be.
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Lüchters, G. and L. Menkhoff (1996) Human Development as Statistical Artifact,
World Development, 24(8), 1385–1392.

McGillivray, M. (1991) The Human Development Index: Yet Another Redundant
Composite Development Indicator?, World Development, 19(10), 183–192.

McGillivray, M. and F. Noorbakhsh (2004) Composite Indices of Human Well-
being: Past, Present and Future, Research Paper no. 2004/63, (November), United
Nations University: WIDER.

McGillivray, M. and H. White (1993) Measuring Development? The UNDP’s Hu-
man Development Index, Journal of International Development, 5, 183–192.

McGranahan, D. V., C. Richard-Proust, N. V. Sovani and M. Subramanian (1972)
Contents and Measurement of Socioeconomic Development, staff Study of the
United Nations Research Institute for Social Development, New York: Praeger.

Noorbakhsh, F. (1998) The Human Development Index: Some Technical Issues and
Alternative Indices, Journal of International Development, 10, 589–605.

Noorbakhsh, F. (2007) International Convergence or Higher Inequality in Human
Development? Evidence for 1975-2002, in G. Mavrotas and A. Shorrocks (eds.)
Advancing Development, pp. 149–167, Palgrave Macmillan.

Ogwang, T. (1994) The Choice of Principle Variable for Computing the Human
Development Index, Worlk Development, 22(12), 2011–2014.

Palazzi, P. and A. Lauri (1998) The Human Development Index: Suggested Correc-
tions, Banca Nazionale del Lavoro Quarterly Review, 51(205), 193–221.

Ram, R. (1992) International Inequalities in Human Development and Real Income,
Economics Letters, 38, 351–354.

Schechtman, E. and S. Yitzhaki (1987) A Measure of Association Based on Gini’s
Mean Difference, Communications in Statistics Theory and Methods, A16(1),
207–231.

Schechtman, E. and S. Yitzhaki (1999) On the Proper Bounds of the Gini Correla-
tion, Economics Letters, 63, 133–138.

United Nations Development Programme (2006) Human Development Report 2006
- Beyond Scarcity: Power, Poverty and the Global Water Crisis, Oxford Univer-
sity Press, New York.

United Nations Research Institute for Social Development (UNRISD) (1970) Con-
tents and Measuremetns of Socioeconomic Development, United Nationas Re-
search Institute for Social Development, Geneva.



316 Quentin Wodon and Shlomo Yitzhaki

Wodon, Q. and S. Yitzhaki (2003) Inequality and the Accounting Period, Economics
Bulletin, 4(36), 1–8.

Yitzhaki, S. and Q. Wodon (2004) Mobility, Inequality, and Horizontal Equity, Re-
search on Economic Inequality, 12, 179–199.

Appendix

Proof of Equation (17.4):
The proof consists of finding upper and lower bound for Gα . The upper bound is

Gα = 2cov[αY1 +(1−α)Y2,F(Yα)]
= 2αcov[Y1,F(Yα)]+2(1−α)cov[Y2,F(Yα)]
≤ 2αcov[Y1,F(Y1)]+2(1−α)cov[Y2,F(Y2)] = αG1 +(1−α)G2.

The derivation of the upper bound is based on Cauchy-Shwartz inequality, which
can be utilized to show that for all Yj and Yk, cov[Yj,F(Yk)] ≤ cov[Yj,F(Yj)].

The lower bound obtains from the following:

Gα = 2cov[αY1 +(1−α)Y2,F(Yα)]
= 2αcov[Y1,F(Yα)]+2(1−α)cov[Y2,F(Yα)]
≥ Max[0,2αcov[(Y1,F(Y2)]+2(1−α)cov[Y2,F(Y1)]
= Max[0,αG1Γ12 +(1−α)G2Γ21].

Proof of Equation (17.5):
Equation (17.5) states that when the variables are exchangeable then:

G2
α = α2G2

1 +(1−α)2G2
2 +2α(1−α)G1G2Γ

As before, using the properties of the covariance we can writee:

Gα = 2cov[αY1 +(1−α)Y2,F(Yα)]
= 2αcov[Y1,F(Yα)]+2(1−α)cov[Y2,F(Yα)]
= αΓ1α G1 +(1−α)Γ2α G2

Under exchangeability between (Y1,Yα),(Y2,Yα), and (Y1,Y2), Γi j = Γji for
i, j = 1,2,α . Substituting Γkα by Γαk (k = 1,2), we can write Γαk (k = 1,2) in terms
of covariances, and move the denominator to the left hand side of the equation.
Rearranging terms, and using Γ12 = Γ21 = Γ , we get the proof of equation (17.5).
Equation (17.5) can be adjusted to hold for distributions with different expected
value. In this case:
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G2
α = s2G2

1 +(1− s)2G2
2 +2s(1− s)G1G2Γ ,

where s = αµ1/(αµ1 +(1−α)µ2), where µi > 0, is the expected value of the ap-
propriate variable.
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