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Summary. In this paper we address the challenges that arise due to heterogeneities across
independently created and autonomously managed Web service requesters and Web service
providers. Previous work in this area either involved significant human effort or in cases of
the efforts seeking to provide largely automated approaches, overlooked the problem of data
heterogeneities, resulting in partial solutions that would not support executable workflow for
real-world problems. In this paper, we present a planning-based approach to solve both the
process heterogeneity and data heterogeneity problems. We adopt a declarative approach to
capture the partner specifications external to the process and demonstrate the usefulness of
this approach in adding more dynamism to Web processes. Our system successfully outputs a
BPEL file which correctly solves a non-trivial real-world problem in the SWS Challenge.

Semantic Templates, Process Mediation, Semantic Web Services, SAWSDL, SWS Challenge

6.1 Introduction

Web services are software systems designed to support interoperable machine-to-machine in-
teractions over a network. They are the preferred standards-based way to realize Service Ori-
ented Architecture (SOA) computing. A problem that has seen much interest from the research
community is that of automated composition (i.e., without human involvement) of Web ser-
vices. The ultimate goal is to realize Web service compositions or Web processes by leveraging
the functionality of autonomously created services. While SOAs loosely coupling approach is
appealing, it inevitably brings the challenge of heterogeneities across these independently de-
veloped services. Two key types of heterogeneities are those related to data and process. It
is necessary and critical to overcome both types of these heterogeneities in order to organize
autonomously created Web services into a process to aggregate their power.

Previous efforts related to Web service composition considered various approaches, and
have included use of HTN [1], Golog [2], classic AI planning [3], rule-based planning [4]
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model checking [5], theorem proving [6] etc. Some solutions involve too much human ef-
fort; some overlook the problem of data heterogeneities. Overcoming both process and data
heterogeneities is the key to automatic generation of executable process.

One of the metrics for evaluating the solution is to measure the flexibility of a solution.
The objective is to minimize the human effort required when the execution scenario is mod-
ified. We adopt a declarative approach towards achieving a greater degree of flexibility. Our
solution externalizes the partner and the process requirements from the process control flow.
Various variable parameters including QoS requirements, data and functional requirements
are specified using semantic templates in a declarative manner. In the event of a change in the
environment, one can reconfigure the process by changing the external specification.

In our solution, we extend GraphPlan[7], an AI planning algorithm, to automatically gen-
erate the control flow of a Web process. Our extension is that besides the preconditions and
effects of operations, we also take into consideration in the planning algorithm the structure
and semantics of the input and output messages. This extension reduces the search space
and eliminates plans containing operations with incompatible messages. Our approach for the
problem of data heterogeneity is a data mediator which may be embedded in the middleware
or an externalized Web service. By separating the data mediation from the process media-
tion, we allow the process mediation system concentrate on generating the control flow. This
separation of concerns also makes it easier to analyze the control flow.

The key benefits of our solution are

1. The ability to automatically generate executable workflow that addresses both control
flow and data flow considerations (in our current implementation it is a BPEL process
specification).

2. A pattern-based approach for loop generation in planning.
3. A loosely coupled data mediation approach and a context-based ranking algorithm for

data mediation.
4. Declarative approach towards specifying requirements that makes it easier to manage

change.

We demonstrate the above capabilities using a case/scenario in the 2006 SWS Challenge.
The remainder of this paper is organized as follows. We first give some background infor-

mation of the problem of Web service composition in section 6.2, and then introduce a mo-
tivating scenario in section 6.3. The next two sections form the technical core of this paper–
section 6.4 presents a formal definition of semantic Web services and Semantic Templates,
and section 6.6 discusses the automatic Web service composition capability.

Finally, we give conclusions and future work in section 6.7.

6.2 Background and Related Work

6.2.1 Background

There are two categories of partners that are described within the Web services domain,
namely the service provider and service requester. A service provider presents its Web service
functionality by providing a set of operation specifications (or operations for short). These
operations allow service requesters to use the services by simply invoking them. These oper-
ations might be inter-dependent. The dependences can be captured using precondition, effect,
input, and output specifications of the operation. Using these available operations, a service
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requester performs one or more inter-related steps to achieve the desired goal. These steps
can be best viewed as activities in a process and can be divided into smaller and more con-
crete sub-steps, and eventually invocations of concrete operations. Specifications by service
requesters and providers are often times autonomously created. This causes heterogeneities to
exist between the requester and provider when Web services need to interoperate as part of a
composition of Web services. Two key types of heterogeneities may exist – the data related
and the communication/process related. We say that process heterogeneity exists when the
goal of the service requester cannot be achieved by atomically invoking exactly one operation
once. On the other hand, data heterogeneity exists when the output message of an operation
has different structure or semantics from the input message of the consecutive operation.

It is also important that we use a framework that has the flexibility to support both func-
tional and non-functional requirements for service discovery. Such a framework must allow
service providers to publish their non-functional capabilities. In such a framework the criteria
for selection must not be too restrictive, since it may be very difficult to find services that
exactly match the requirements. The requester must be able to specify the expected level of
match for the different aspects of the request. For example, a requester can specify that an
exact match is needed with respect to the operation while a sufficiently similar match would
suffice for the input and output parameters.

SAWSDL

We describe Web services and Semantic Templates (discussed next) in SAWSDL. SAWSDL
[8] is a W3C standard to add semantics to Web services descriptions. SAWSDL does not
specify a language for representing the semantic models, e.g., ontologies. Instead, it provides
mechanisms by which concepts from the semantic models that are defined either within or out-
side the WSDL document can be referenced from within WSDL components as annotations.
Semantic annotations facilitate process composition by eliminating ambiguities. We annotate
a Web service by specifying Model References for its operations as well as Model References
and Schema Mappings for the input and output message of its operations. We also extend
SAWSDL by adding preconditions and effects as in our W3C submission on WSDL-S [9] for
an operation, which will be discussed in later sections.

Rao et al. [3] discuss the use of the GraphPlan algorithm to successfully generate a pro-
cess. While it is good to consider the interaction with the users, their approach suffers from the
extent of automation. Also this work, unlike ours does not consider the input/output message
schema when generating the plan, though their system does give alert of missing message to
the users. This is important because an operation’s precondition may be satisfied even when
there is no suitable data for its input message. Another limitation of their work is that the only
workflow pattern their system can generate is sequence, although the composite process may
contain other patterns. As the reader may observe from the motivation scenario, other patterns
such as loops are also frequently used.

Duan et al. [10] discuss using the pre and post-conditions of actions to do automatic
synthesis of Web services. This is initiated by finding a backbone path. One weakness of their
work is the assumption that task predicates are associated with ranks (positive integers). Their
algorithm gives priority to the tasks with higher rank. However, this is clearly invalid if the
Web services are developed by independent organizations, which is the common case and the
main reason leading to heterogeneities.

Pistore et al. [11] propose an approach to planning using model checking. They encode
OWL-S process models as state transition systems and claim their approach can handle non-
determinism, partial observability, and complex goals. However, their approach relies on the
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specification of OWL-S process models, i.e., the users need to specify the interaction between
the operations. This may not be a realistic requirement in a real world scenario where multiple
processes are implemented by different vendors.

6.3 Motivating Scenario

The 2006 SWS Challenge mediation scenario version 1 is a typical real-world problem where
distributed organizations are trying to communicate with each others . A customer (depicted
on the left side of the figure) desires to purchase goods from a provider (depicted on the
right side of the figure). The anticipated process, i.e., the answer of this problem, is depicted
on the middle of the figure which should be generated by a mediation system automatically.
Both process and data heterogeneities exist in this scenario. For instance, from the point of
view of the service requester called Blue, placing an order is a one-step job (send PO), while
the service provider called Moon, involves four operations (searchCustomer, createNewOrder,
addLineItem, and closeOrder). The message schemas they use are not exactly the same. For
example, Blue uses fromRole to specify the partner who wants to place an order, while Moon
uses billTo to mean the same thing. The structures of the message schemas are also different.
To make matters worse, an input message may involves information from two or more output
message, for example, the operation addLineItem requires information from the order request
message by Blue and the newly created order ID from the output message of operation cre-
ateNewOrder. In order to solve this problem successfully and automatically, the composition
system at least should be able to do the following: generate the control flow of the mediator
that involves at least two workflow patterns (Sequence and Loop) based on the specification
of the task and the candidate Web service(s), and convert (and combine if needed) an input
message to an acceptable format annotated with appropriate semantics.

6.4 Declarative Approach towards Solution

One of the evaluation measures to determine the efficiency of the composition approach is the
ability to manage change with minimal programming efforts. Systems developed using con-
ventional approaches where the requirements and the services are not externalized from the
actual system itself, may often prove to be inflexible. To overcome this limitation, we adopt
an declarative approach to capture the requirements of the process and the service descrip-
tion of partner services. Our system generates a plan based on the requirement and discovers
partner services based on their descriptions. A Web process is then generated that can be
deployed and executed. When there is a change in the requirement, a new process can be gen-
erated using the changed requirements. The requirements are captured as semantic template
and partner services are described using SAWSDL. The non-functional properties of both the
requirement and the service can be captured using WS-Policy. We define a new class of as-
sertions called business assertions that can be added to WS-Policy to describe business level
non-functional properties such as shipment destinations and shipment weight. It is our belief
that the availability of visual XML editors and WSDL editors would make it easier to change
these specifications. Further, this externalization eliminates re-compilation of the system for
each change.
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6.4.1 Semantic Templates

A semantic template captures the functional and non-functional requirements of a service
requestor. It allows service requesters to semantically describe their requirements. Similar to
SAWSDL the semantics are captured using the model reference attribute.The elements in a
semantic template are the template term, operation, input, output, and term policy. The model
reference attribute in a template term captures the domain requirement which is a concept in a
classification hierarchy such as the NAICS industry classification hierarchy. In addition to the
domain attribute, a template term also consists of one or more operations. The model reference
attribute in the operation element carries a reference to a concept in a semantic meta-model that
provides a richer description of the operation including its behavioral aspects. Each operation
element has input and output elements. The model reference attribute of the input and the
output elements is a concept in the semantic meta-model that describes their schema. The non-
functional requirements are captured using the term policy element. Each term policy element
is a collection of assertions. The term policy element can be attached to a operation, template
term or to the entire semantic template. [12] and [13] discuss the Semantic Template in great
detail. However for the sake of clarity and completion we describe the semantic template
briefly.

Formally semantic templates are defined by:

ω
r , Iω, Oω, πω, pω, eω} is a 7-tuple with:

• ω: the operation
• Mω

r : set of operation model references
• Iω: operation inputs and their model references
• Oω: operation outputs and their model references
• πω: operation level term policy and the non-functional semantics
• pω: operation precondition
• eω: operation effect

The template term θs = {ε, ε, ε, ε, πs, ε, ε} defining just the term policy defines semantic
template wide term policies.

Figure 6.1 illustrates the conceptual model of a semantic template.

6.4.2 Business assertions in WS-Policy

The motivating scenario illustrates the importance to model the non-functional properties to-
wards enhancing the discovery of partner services. In this section we present our approach
to declaratively specify the non-functional properties of both a request as well as a service.
The WS-Policy specification provides a flexible grammar for describing the non-functional
properties. The WS-Policy specification defines a policy as a collection of alternatives; each
policy alternative is a collection of assertions [14]. Leveraging this flexibility, we define a new
class of assertions called business assertions to capture business level non-functional metrics.
Examples of these metrics in the Muller service include maximum weight of shipment and
shipping destinations. When used by service providers, they are attached to the SAWSDL
service descriptions in the same manner as WS-Policy, using WS-PolicyAttachment.The ele-
ments of a business assertion are described in Table 6.1. These assertions are illustrated in the
business policy example in Figure 6.2

A template term θ = {ω,M
Definition 1. A semantic templateψ is a collection of template terms = {θ|θ is a template term}.
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Fig. 6.1. Conceptual Model of Semantic templates

6.4.3 Formal model of abstract Web services:

WSDL is a widely accepted industry standard (a W3C recommendation) for describing Web
services. SAWSDL is expressive for functional and data semantics, and sufficient to solve
the problem of semantic discovery and data mediation. We extend SAWSDL by adding pre-
conditions and effects in the operations for process mediation. Preconditions and effects are
necessary because not all the states of a Web service are represented by the input/output mes-
sage. For example, both a book buying service and book renting service may take as the input
the user ID and the ISBN, and give as the output the status succeed or fail. Importance of
pre-condition and effects have been recognized by major semantic Web services initiatives
including OWL-S, WSMO and WSDL-S, here we do that by extending the emerging standard
of SAWSDL.

For the purpose of service composition, our model only focuses on the abstract represen-
tation of Web services, i.e., operations and messages, but does not consider the binding detail.
Before giving our formal model, we need to introduce some definitions of the basic build-
ing blocks. Most classic AI planning problems are defined by the STRIPS representational
language (or its variants like ADL), which divides its representational scheme into three com-
ponents, namely, states, goals, and actions. For the domain of Web service composition, we
extend the STRIPS language as the representational language of our method.

• Extended state: We extend a state by adding a set of semantic data types in order to
ensure that the data for the input message of an operation is available before the operation
is invoked. An extended state s has two components: s = <SSF, SDT >, where:
– SSF is a set of status flags, each of which is an atomic statement with a URI in a

controlled vocabulary. SSF defines the properties of the world in the specific state.
We use ternary logic for status flags, thus the possible truth values are True, False,
and Unknown. We use the open-world assumption, i.e., any status flag not mentioned
in the state has the value unknown.

– SDT is a set of semantic data types representing the availability of data. A semantic
data type is a membership statement in Description Logic of a class (or a union of
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Business As-
sertion Element

Definition Example

Assertion Ex-
presssion

captures a unit assertion. Assertion ex-
pressions can either be quantitative or
logical.The ignorable tag from the WS-
Policy specification can be added to
an assertion expression to indicate that
the assertion encapsulated in this ex-
pression can be ignored during policy
matching.

Assertion
Concept

The ontology concept that describes the
entity of the assertion

Assertion Op-
erator

The fulfillment condition that this asser-
tion will satisfy in case of a guarantee or
the condition that needs to be satisfied
in case of a requirement

In the cost constraint illus-
trated in the above example, the
lessthan operator is the asser-
tion operator.

Assertion
Constraint

Captures the value of the assertion ex-
pression. Each assertion constraint has
a constraint value and a unit that de-
notes the unit in which the constraint is
expressed in.

In the cost constraint illustrated
in the above example, 50 is
the constraint value and Amer-
icanDollar is the unit. The unit
is usually a ontology concept.
This mapping allows us to rep-
resent unit conversion rules in
the ontology.

Assertion Op-
tions

When the assertion expression can have
multiple values, one or more either is
guaranteed or required, they are repre-
sented as options. Options contains as-
sertion constraints

In the business assertion exam-
ple, the provider agrees to a 2
day shipping if express ship-
ping option is chosen and a 5
day delivery if priority shipping
is chosen.

Table 6.1. Elements in a Business Assertion

classes) in an ontology. An example state could be: <{ orderComplete=True, order-
Closed=False }, { ontology1#OrderID(Msg1)} >

The reason why we use predicate logic for status flags is because it is simple for the user
to specify the values of status flags in predicate logic, and computationally efficient. On
the other hand, we use description logic for semantic data types since it makes it easier to
express relationships such as sub-class relationships.

• Abstract semantic Web service [13]: Our definition of an abstract semantic Web service
is built upon SAWSDL [8] An abstract semantic Web service SWS can be represented as a
vector: SWS = (sop1, sop2, , sopn) Each sop is a semantic operation, which is defined
as a 6-tuple: sop = <op, in, out, pre, eff, fault>where,
– op is the semantic description of the operation. It is a membership statement of a class

or property in an ontology.
– in is the semantic description of the input message. It is a set of semantic data types,

stating what data are required in order to execute the operation.
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Fig. 6.2. Example Business Policy

– out is the semantic description of the output message. It is a set of semantic data types,
stating what data are produced after the operation is executed.

– pre is the semantic description of the precondition. It is a formula in predicate logic
of status flags representing the required values of the status flags in the current state
before an operation can be executed.

– eff is the semantic description of the effect. It can be divided into two groups: positive
effects and negative effects, each of which is a set of status flags describing how the
status flags in a state change when the action is executed.

– fault is the semantic description of the exceptions of the operation represented using
classes in an ontology.

Table 6.2 illustrates an example of the representation of part of the Order Management System
Web service described in our running scenario.
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sop sop1 sop2 sop3

op CreateNewOrder AddLineItem CloseOrder
in CustomerID LineItemEntry,Order OrderID

out OrderID AddItemResult ConfirmedOrder
pre orderComplete ∧ order-

Closed
orderComplete ∧ order-
Closed

eff negative:{orderComplete,
orderClosed}

positive:{orderComplete} positive: { orderClosed }

fault sop1fault sop2fault sop3fault

Table 6.2. Representation of Order Management System Web service

6.5 Discovering Services

In this section we discuss the hierarchy-based matching algorithm. for discovering services
The algorithm exploits the hierarchical structure of service definitions and the semantic tem-
plate to compute the level of similarity between them. We define a mapping between the
elements in the service structure hierarchy and the elements in the structure hierarchy of the
semantic template. This mapping is illustrated in Figure 6.3. The elements in the service struc-
ture hierarchy are then compared with their mapped counterparts in the structural hierarchy of
the semantic template.

Fig. 6.3. Mapping Between Elements in Service Structure Hierarchy and Semantic Template
Hierarchy

6.5.1 Overview of the Hierarchy-based Matching Algorithm

Adopting an approach that exploits the hierarchy found in service descriptions allows us to
customize the comparison technique for each of the service elements. While techniques based
on description logic can help in determining the semantic similarity and can be used in match-
ing the interface and operation elements. They would not be sufficient for matching the data
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objects , however, because when comparing data objects one must also consider the structural
similarity between them in addition to the semantic similarity.

We define a weighted scheme to compute the match score. The weights are determined
by the matchlevel attribute of each element defined in the semantic template. This weighted
scheme is used in ranking the discovered services. The rest of this section discusses the match-
ing approach for different elements and the ranking of discovered services.

6.5.2 Description Logic Based Matching

We employ a description logic-based matching for identifying the semantic similarity be-
tween the ontological concepts captured in the modelreference attributes of the elements in
the service structure and semantic template hierarchies. The similarity measure can be one of
subsumption-similar, equivalence, or generalized-similar defined as:

• Equivalence: The interface element is equivalent to the templateterm element, if the on-
tological concepts represented by their respective modelreferences are either the same or
equivalent. The equivalence measure is similarly defined for operations, input and output
elements.

• Generalized-Similar: The interface element is generalized-similar to the templateterm
element , if the ontology concept represented by modelreference attribute of the interface
element subsumes the ontology concept represented by the modelreference attribute of
the templateterm element. For example, a service whose domain is electronics would be
generalized-similar to a semantic template for personal computers since electronics sub-
sumes personal computers in the NAICS ontology illustrated in The generalized-similar
measure is similarly defined for operations, input and output elements..

• Subsumption-Similar: The interface element is subsumption-similar to the templateterm
element , if the ontology concept represented by modelreference attribute of the interface
element is subsumed by the ontology concept represented by the modelreference attribute
of the templateterm element. The subsumption-similar measure is similarly defined for
operations, input, and output elements.

6.5.3 Non-functional Matching

In this section we describe the approach to matching non-functional requirements during ser-
vice discovery. Non functional requirements consist of certain quality of service (QoS) guran-
tees the service provider advertices and possibly the service requestor would expect other than
the functional capabilities such as security and reliability. These non-functional aspects are
usually expressed using policies. To match non-functional requirements, we match the poli-
cies of the provider and the requestor. We first create the normalized effective policy for the
operations in the service and in the semantic template. The procedure for creating the normal-
ized policy is described in [14]. The effective policy of a service operation is the disjunction
of the service policy, the interface policy and the operation policy. The normalized effective
policy of a service operation is the normalized form of the effective policy of the operation.
We define this policy as the effective provider policy. The effective policy of a semantic tem-
plate operation is the disjunction of the template policy, templateterm policy and the operation
policy. The normalized effective policy of a semantic template operation is the normalized
form of the effective policy of the operation. We define this as the effective requestor policy.
[14] describes two modes for policy matching: (1) The Lax mode in which assertions marked
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Requestor
Assertion
Operator

Provider
Assertion
Operator

Jess Rule Example

<, >, ≤ <, >,≤,≥
=

(Requestor Assertion
Operator, Provider
Assertion Value, Re-
questor Assertion
Value)

Requestor assertion
expression: Memory
>512 MB; Provider
assertion expression:
Memory <2GB;Jess
rule: (>, 2048, 512).

= <, ≤,>,≥,
=

(Inverse of provider op-
erator, Provider Asser-
tion Value, Requestor
Assertion Value)

Requestor assertion
expression: Memory
= 512 MB; Provider
assertion expression:
Memory <2GB;Jess
rule: (>, 2048, 512).

Table 6.3. Generating Jess Rules From Assertion Expressions

as ignorable can be ignored. It is not necessary for such assertions to match for the policies to
match and (2) The Strict mode in which all the assertions must match for the two policies to
match. In our policy matching approach we adopt the lax mode.

Given two policies, the first step is to identify the equivalent business assertions. This
is done by comparing the assertion concept elements of the business assertions in the two
policies. Two business assertions are equivalent if the ontology concepts described in their
assertion concept elements are equivalent. The two policies are said to match, if all pairs of
equivalent assertions that are not ignorable match. To match a pair of equivalent business
assertions, we first identify the type of the assertion expression. If the assertion expression is
quantitative, then they are compared using the Jess framework. Assertion expressions that are
logical are compared using description logics.

In case of quantitative assertion expressions, we first ensure that both expressions are ex-
pressed in the same assertion unit. If not, we convert the provider assertion expression into the
same unit as the requestor assertion expression. We assume that the rules for unit conversion
are modeled in the ontology.Once the units are normalized, a Jess is rule is created from the
assertion expressions. This rule is evaluated and if it evaluates to True, then we say the asser-
tions match. The approach to creating the rule is determined by the assertion operator of the
assertion expression obtained from the effective requestor policy. This is described in Table
6.3. The assertions expressions are said to match if the rule can be asserted.

Logical expressions are evaluated using description logics. If the provider assertion value
subsumes or is equivalent to the requestor assertion, then we deem the expressions are a com-
plete match. If the requestor assertion value subsumes that of the provider, then we deem it a
partial match. If the subsumption or equivalence relationship cannot be determined between
the provider and requestor assertion units, we check if there is a property in the schema that
relates the assertion concept elements. If such a property P exists, we check if P holds between
the provider and requestor assertion values. We deem a match, if P holds. The following ex-
ample illustrates this better. The provider assertion expression is : Shipment destination is
Europe. The client assertion expression is: Shipment destination is Germany. The provider
assertion unit is a continent and the requestor assertion unit is a country. From the ontology
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(ISOCountries.rdf available at the web resource4), we identify that belongs to property exists
between country and continent. We check in the ontology, if Germany belongs to Europe.
Since it does, we deem it a match.

6.6 Automatic Web service composition

6.6.1 Formal definition of Web service composition

A semantic Web service composition problem involves composing a set of semantic Web
services (SWSs) to fulfill the given requirements, or in our case a Semantic Template. Figure
6.4 illustrates our approach.

Fig. 6.4. Business Process Levels

A semantic operation (Operationk in figure 6.4) has to be checked by the satisfy oper-
ator (X in figure 6.4)against the current extended state before it can be added in the process
specification. After it is added, a successor extended state is created by applying the apply (+
in figure 6.4) operator. We will give the formal definition of satisfy and apply operators below.
For convenience, we use the following notations.

Satisfy operator is a function mapping an extended state si and a semantic operation
sopk to T or F. Formally textitsatisfy is defined as:

Definition 2. satisfy: (si, sopk)→ {T, F}
This function maps to T (in such case, si satisfies sopk and is written as: si × sopk) if and
only if:

• ε(Pre(sopk), SSF (si)) = True, where ε(f, v) is an evaluation of formula f based on
the truth values in v.

• (Onto ∪ SDT (si)) � in(sopk) , where Onto is the ontology schema for semantic data
types.

4 http://knoesis1.wright.edu/swsc/
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Notation Explanation
SSF(s) The set of status flags of extended state s

Value(s) The truth value of a status flag sf in extended state s
SDT(s) The set of semantic data types of extended state s
in(sop) The input messages of semantic operation sop
pre(sop The output messages of semantic operation sop
eff(sop) The effect of semantic operation sop

positive(eff) The positive effects of eff
negative(eff) The negative effects of eff

Table 6.4. Representation of Order Management System Web service

That is, the precondition of sopk holds based on the truth values of the status flags in state si,
and the semantic data types of si together with the ontology schema entails the input of sopk.
For example, the following state satisfy the operation sop3 in table 6.2:

¡ {orderComplete = True, orderClosed = False}, {ontology1#OrderID(Msgx}¿

Here the semantic data type OrderID comes from an output message of any previous operation,
or the initial message of the Semantic Template, so we put Msgx in the above example.

Apply operator is a function mapping an extended state si and a semantic operation sopk
to a new extended state sj . Formally this is defined as

Definition 3. apply: (si, sopk)→ sj
Alternatively, we write si + sopk → sj This operator does the transition both on status flags
and semantic data types.

• For status flags:

∀sf ∈ positive(eff(sopk)), value(sf, sj) = True

∀sf ∈ negative(eff(sopk)), value(sf, sj) = False

∀sf ∈ (eff(sopk)), sf(sj) = sf(si)

That is, a status flag in the positive effects is true in sj , a status flag in the negative effects
is false in sj , while any status flag in si but not in the effect is assumed to be unchanged
in sj .

• For semantic data types: SDT (sj) = SDT (si) ∪ out(sopk) That is, the semantic data
types (membership statements) in sj are the union of the semantic data types in si and the
output of sopk.

As an example, if we apply the operation sop3 in 6.2 to the state

we will get a new state:

< {orderComplete = True, orderClosed = True}, {
ontology1#OrderID(Msgx),

ontology1#ConfirmedOrder(sop3OutMsg)} >

< {orderComplete = True, orderClosed = False}, {ontology1#OrderID(Msgx)} >
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6.6.2 Composition of semantic Web services

We consider a SWS composition problem as an AI planning problem such that the semantic
operation template defines the initial state and the goal state of the problem specification: Ini-
tial state is the extended state at the beginning of the process. It is defined by the precondition
and initial message of the semantic operation template ψ.

s0 =< ssf0(sopt), in(sopt) >

Goal state is a requirement of the extended state at the end of the process. It is defined by the
goal and output of sopt.

goalstate =< gl(sopt), out(sopt) >

Composition of semantic Web services is a function

swsc : (sopt, SWSs)→ plan

Where,

• sopt is a semantic operation template.
• SWSs is the set of the semantic operations in the semantic Web services.
• plan is a DAG (Directed Acyclic Graph) of operations. Every topological sort of the DAG

(say one of them is sop1, sop2, , sopn) must conform to the following restrictions:
– s0× ¡ pre(sop1), in(sop1) ¿
– s0 + sop1 → s1
– si−1× ¡ pre(sopi), in(si) ¿
– si−1 + sop1 → si
– sn × goalstate

That is, every topological sort of the plan must transform the initial state into the goal state by
conforming to the satisfy and apply operators. Loops are generated in a post-process step that
is explained in section 6.6.6.

6.6.3 Planning For Process Mediation

AI planning is a way to generate a process automatically based on the specification of a prob-
lem. Planners typically use techniques such as progression (or forward state-space search),
regression (or backward state-space search), and partial-ordering. These techniques attempt
to use exploration methods such as searching, backtracking, and/or branching techniques in
order to extract such a solution. There are two basic operations in every state-space-based
planning approach. First, the precondition of an action needs to be checked to make sure it is
satisfied by the current state before the operation can be a part of the plan. Second, once the
operation is put into the plan, its effect should be applied to the current state and thus produce
a consecutive state. We address the significant differences between classic AI planning and
semantic Web service composition as follows:

1. Actions in AI planning can be described completely by its name, precondition, and effect,
while Web services also include input and/or output message schema.
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2. For AI planning, it is assumed that there is an agreement within an application on the
terms in the precondition and effect. Terms with same name (string) mean the same thing,
while terms with different name (string) mean different things. For example, in the famous
block world scenario, if both block and box exist in the precondition/effect, they are
treated as different things. This obviously does not carry over to the resources on the
Web, thus it is necessary to introduce semantics in Web service composition.

3. More workflow patterns such as loops are desired in Web service composition. We ad-
dress this problem by a pattern-based approach.

As discussed in the previous sections, both Web services and the specification of the task,
i.e., Semantic Template are described in extended SAWSDL standard, so the terms in the
precondition, effect, and input/output messages reach an agreement which is captured by the
ontologies. For the first two types of differences we mentioned above, to apply AI planning
techniques to semantic Web service composition, any state-space-based planning algorithm
needs to be revised according to the following criteria.

1. State space should include status flags, as in the existing AI planning approaches, and
semantic data types to represent the availability of data.

2. For each candidate action, besides checking its precondition against the status flags in
the current state, it is also necessary to check its input message schema against the se-
mantic data types in the current state. This reduces the search space and eliminates plans
containing operations whose input message is unavailable in the state.

3. Since the states and the actions/operations are semantically annotated by referring to
ontologies, the checking in the previous step involves reasoning based on the ontologies,
not just comparing the name of the terms.

4. Once an action/operation is added into the plan, not only the status flags are updated by
applying the effect, the semantic data types should also be updated by put a new semantic
data type based on the output message schema.

6.6.4 Discovering Services

6.6.5 Extended GraphPlan Algorithm

Although most AI planning algorithms are suitable for the task here, we use GraphPlan algo-
rithm [7]. It is sound and complete thus we can always construct correct plans if there exist
any, and its compact representation of the states makes it space efficient while doing a breadth-
first style search. It also uses mutex links to avoid exploring some irrelevant search space. Like
other classical AI planning algorithms, GraphPlan only considers the precondition and effect
of actions, thus does not take into account the input/output message of actions. Our approach
requires an extension of the algorithm to accommodate the semantic data types defined above.
An operation may only be added in the next action level when its preconditions hold based
on the current state level of the planning graph and the data types of the input message of the
operation can be entailed by the union of ontology and the current state level. When an oper-
ation is placed in the next action level, its effects as well as output data types are applied to
the current state level, and thus produce the next state level. Afterwards, mutex links between
actions must be evaluated and placed so that they may be used when backtracking through
the graph for the solution. Note that the creation of the mutex links should also consider the
semantic data types accordingly.
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6.6.6 Pattern-Based Approach For Loop Generation

GraphPlan algorithm may generate plans only with sequence and AND-split workflow pat-
terns [15]. However, loops are also a frequently used pattern. Loop generation (or iterative
planning) itself is a difficult and open problem in AI. Much work on iterative planning is based
on theorem-proving [16]. It is believed by Stephan and Biundo [17] and other researchers that
iterative planning cannot be carried out in a fully automatic way. [18] proposes a new way that
is not tied to proving a theorem, but it is only correct for a given bound or a certain class of
simple planning problems. Here we proposed a pattern-based approach for loop generation. It
is based on the observation of frequently used patterns of iterations. For example, in the mo-
tivation scenario, the order request includes multiple line items (an array of line items) while
the addLineItem operation takes as input only one line item. It is obvious that the process
needs to iterate all the line items in the order request. We may extract the pattern as follows. If
an operation has an input message including an element with semantic annotation SDTi and
attribute maxOccurs in XML Schema whose value is 1, while the matched (see satisfy opera-
tor) semantic data type in the current state is from an output message where the corresponding
element in that message has maxOccurs with value unbounded or greater than 1, then a loop
is needed for this operation to iterate the array. Our approach avoids the computationally hard
problem by restricting possible patterns of loops. The limitation is that the patterns need to be
identified and put in the code beforehand.

Lifting and Lowering Mechanism of Data Mediation

The data mediation approach is primarily based on the lifting and lowering mechanism pre-
sented in [8]. This section looks in detail of how this lifting and lowering mapping schema
functions.The base technique is to convert the message into an intermediate semantic data
model and re-convert the semantic data model back into the required specific format. Convert-
ing from the message to the intermediate model is known as lifting and the reverse conversion
is known as lowering. It is important to note that the data heterogeneities cannot be overcome
merely by attaching an ontology reference. These conversions require specific references to
templates or other conversion resources in order to carry out the lifting and lowering. Due to
the use of XML as the primary message format, the most commonly used intermediate model
is also XML and hence the conversion references are often references to XSLT documents.

To understand the importance of this approach rather than the direct use of XSLT to trans-
form between each and every message format consider the following example. Given that there
are five heterogeneous (but convertible) messages that requires conversion from message A. If
direct conversion is used this requires ten conversion specifications. If the intermediate seman-
tic model is used this conversion would require a total of tweleve conversion specifications.
The advantage of the intermediate model can be seen when there is another message added
along with A. This will double the number of conversion specifications if direct conversion
is used. However if the intemediate model is used it results only in the addition of two new
conversion specifications. It can be clearly seen that the intermediate model approach is the
scalable mediation strategy.

in Figure 6.5 we describe the different heterogeneities that can exist between two XML
schemas and how such heterogeneities can effect the mediations as discussed in [19]
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Fig. 6.5. Different Heterogeneities

6.7 Conclusions and Future Work

This paper presents an automatic approach for Web service composition, while addressing the
problem of process heterogeneities and data heterogeneities by using a planner and a data me-
diator. Specifically, an extended GraphPlan algorithm is employed to generate a BPEL process
(the currently supported workflow patterns are sequence, AND-split and loop) based on the
task specification (Semantic Template) and candidate Web services described in SAWSDL.
Data mediation can be handled by assignment activities in the BPEL, or by a data mediator
which may be embedded in a middleware or an externalized Web service. While the BPEL pro-
cess is running, it calls the data mediator to convert (and combine if necessary) the available
messages into the format of the input message of an operation which is going to be invoked.
A context-based ranking algorithm is employed in the data mediator to select the best element
from the source messages if more than one element has acceptable semantics for the target
element.

Our experiment shows that our systems solved the problem in SWS challenge 2006 me-
diation scenario successfully, which is a non-trivial challenging problem that involves process
and data heterogeneities. We consider our approach to be highly flexible, since the only thing
a user need to change for a new scenario is the task specification (Semantic Template).

Our future work includes supporting more workflow patterns especially OR-Split, the
propogation/scopes of semantic data types in messages, and non-functional semantics.
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